
Mohamed Faouzi Atig · Saddek Bensalem
Simon Bliudze · Bruno Monsuez (Eds.)

 123

LN
CS

 1
11

81

12th International Conference, VECoS 2018
Grenoble, France, September 26–28, 2018
Proceedings

Verification and Evaluation
of Computer
and Communication Systems

Lecture Notes in Computer Science 11181

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Mohamed Faouzi Atig • Saddek Bensalem
Simon Bliudze • Bruno Monsuez (Eds.)

Verification and Evaluation
of Computer
and Communication Systems
12th International Conference, VECoS 2018
Grenoble, France, September 26–28, 2018
Proceedings

123

Editors
Mohamed Faouzi Atig
Uppsala University
Uppsala
Sweden

Saddek Bensalem
Grenoble Alpes University
St Martin d’Hères
France

Simon Bliudze
Inria Lille - Nord Europe
Villeneuve d’Ascq
France

Bruno Monsuez
École Nationale Superieure
de Techniques Avancées

Palaiseau
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-00358-6 ISBN 978-3-030-00359-3 (eBook)
https://doi.org/10.1007/978-3-030-00359-3

Library of Congress Control Number: 2017950042

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-8229-3481
http://orcid.org/0000-0002-7900-5271

Preface

This volume contains the papers presented at the 12th International Conference on
Verification and Evaluation of Computer and Communication Systems (VECoS 2018)
held during September 26–28, 2018, at the Université Grenoble Alpes in Grenoble,
France.

The aim of the VECoS conference is to bring together researchers and practitioners
in the areas of verification, control, performance, and dependability evaluation in order
to discuss the state of the art and challenges in modern computer and communication
systems in which functional and extra-functional properties are strongly interrelated.
Thus, the main motivation for VECoS is to encourage cross-fertilization between
various formal verification and evaluation approaches, methods, and techniques, and
especially those developed for concurrent and distributed hardware/software systems.

The Program Committee (PC) of VECoS 2018 included researchers from 18
countries. We received 23 full submissions from 15 countries and each paper was
evaluated by at least three reviewers (except one paper which received two reviews).
After a thorough and lively discussion phase, the PC decided to accept 11 papers
(which represented an acceptance rate of 48%).

The conference program also included three invited talks. The invited speakers for
VECoS 2018 were: Parosh Aziz Abdulla from the Uppsala University, Sweden; Axel
Legay of Inria Rennes, France; and Alexandra Silva from the University College
London, UK.

We are grateful to all members of the PC and organizing committee, to all referees
for their cooperation, and to Springer for their professional support during the publi-
cation phase of the proceedings.

Finally, we would like to thank the sponsoring institutions without whom
VECoS 2018 could not have been realized. We are also thankful to all authors of
submitted papers and to all participants of the conference. Their interest in this con-
ference and contributions to the discipline are greatly appreciated.

September 2018 Mohamed Faouzi Atig
Saddek Bensalem

Simon Bliudze
Bruno Monsuez

Organization

Steering Committee

Djamil Aissani University of Bejaia, Algeria
Hassane Alla GIPSA-lab and Grenoble INP, France
Kamel Barkaoui (Chair) CNAM, France
Hanifa Boucheneb École Polytechnique de Montréal, Canada
Francesco Flammini Ansaldo STS, Italy
Belgacem Ben Hedia CEA-LIST, France
Mohamed Kaaniche LAAS-CNRS, France
Bruno Monsuez ENSTA ParisTech, France
Nihal Pekergin Université Paris-Est-Créteil, France
Tayssir Touili CNRS, and Université Paris 13, France

Organizing Committee

Belgacem Ben Hedia
(Publicity Co-chair)

CEA-LIST, France

Saddek Bensalem
(Co-chair)

University of Grenoble Alpes and VERIMAG, France

Marius Bozga CNRS and VERIMAG, France
Jacques Combaz CNRS and VERIMAG, France
Bruno Monsuez (Co-chair) ENSTA ParisTech, France
Ayoub Nouri University of Grenoble Alpes, France
Vladimir-Alexandru Paun

(Publicity Co-chair)
ENSTA ParisTech, France

Program Committee

Djamil Aissani University of Bejaia, Algeria
Yamine Ait Ameur IRIT, INPT-ENSEEIHT, France
Mohamed Faouzi Atig

(Co-chair)
Uppsala universitet, Sweden

Eric Badouel Inria Rennes - Bretagne Atlantique, France
Kamel Barkaoui CNAM, France
Imen Ben Hafaiedh Institut supérieur d’Informatique (ISI) and LIP2,

Tunisia
Belgacem Ben Hedia CEA-LIST, France
Saddek Bensalem University of Grenoble Alpes and VERIMAG, France
Adel Benzina Tunisia Polytechnic School, Tunisia
Simon Bliudze (Co-chair) Inria Lille - Nord Europe, France
Patrice Bonhomme Université François Rabelais de Tours, France

Hanifa Boucheneb École Polytechnique de Montréal, Canada
Florian Brandner Télécom ParisTech, France
Yu-Fang Chen Institute of Information Science, Academia Sinica,

Taiwan
Feng Chu Université d’Evry-Val-d’Essonne, France
Gabriel Ciobanu Romanian Academy, Institute of Computer Science,

Iasi, Romania
Mohamed Escheikh Enit, Tunisia
Alessandro Fantechi Università di Firenze, Italy
Marc Frappier Université de Sherbrooke, Canada
Fabio Gadducci Università di Pisa, Italy
Annie Geniet Lias/Ensma, France
Mohamed Ghazel IFSTTAR - COSYS/ESTAS, France
Serge Haddad ENS Paris-Saclay, CNRS, and Inria, France
Mohamad Jaber American University of Beirut, Lebanon
Abderrazak Jemai Insat, Tunisia
Mohamed Jmaiel Digital Research Center of Sfax, Tunisia
Jorge Julvez University of Cambridge, UK, and University

of Zaragoza, Spain
Mohamed Kaaniche LAAS-CNRS, France
Panagiotis Katsaros Aristotle University of Thessaloniki, Greece
Igor Konnov Inria Nancy - Grand Est and LORIA, France
Lars Kristensen Western Norway University of Applied Sciences,

Norway
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Eric Madelaine Université Côte d’Azur and Inria Sophia Antipolis

Méditerranée, France
Roland Meyer TU Braunschweig, Germany
Ali Mili NJIT, USA
Bruno Monsuez ENSTA ParisTech, France
Ayoub Nouri University of Grenoble Alpes, France
Claire Pagetti ONERA and IRIT-ENSEEIHT, France
Vladimir-Alexandru Paun ENSTA ParisTech, France
Ahmed Rezine Linköping University, Sweden
Krishna S. IIT Bombay, India
Paola Spoletini Kennesaw State University, USA
Sofiene Tahar Concordia University, Canada
Tayssir Touili CNRS and Université Paris 13, France
Bernard van Gastel Open University of the Netherlands, The Netherlands
Roger Villemaire Université du Québec à Montréal, Canada
Qiang Wang National University of Defense Technology, China
Karsten Wolf Universität Rostock, Germany
Faiez Zalila Inria Lille - Nord Europe, France

VIII Organization

Université Grenoble
Alpes

VERIMAG Inria Lille – Nord
Europe

CNRSGrenoble INP Formal Methods
Europe

Commissariat à l’Énergie Atomi-
que et aux Énergies Alternatives

Additional Reviewers

Kevin Delmas
Iulia Dragomir
Yassmeen Elderhalli
He Junkai
Slim Kallel
Victor Khomenko

Li Yantong
Afef Maâlej
Huu Vu Nguyen
Adrien Pommellet
Adrian Puerto Aubel
Prakash Saivasan

Sponsors

Organization IX

Automated Black-Box Verification
of Networking Systems

(Invited Talk)

Alexandra Silva

University College London, UK

Abstract. Our society is increasingly reliant on complex networking systems,
consisting of several components that operate in a distributed and concurrent
fashion, exchange data that may be highly sensitive, and are implemented with a
mix of open and closed-source code. In this talk, we will present a broad
overview of techniques and tools to automate the modelling and verification of
networking software systems. We will focus mainly on the model learning
paradigm, originally proposed in artificial intelligence, to automatically build an
automaton model of a running system in a black-box fashion — purely via
interactions with the running system.

Contents

Invited Papers

The State of Fault Injection Vulnerability Detection 3
Thomas Given-Wilson, Nisrine Jafri, and Axel Legay

Replacing Store Buffers by Load Buffers in TSO . 22
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani,
and Tuan Phong Ngo

Distributed Systems and Protocols

Orchestration Synthesis for Real-Time Service Contracts 31
Davide Basile, Maurice H. ter Beek, Axel Legay,
and Louis-Marie Traonouez

Modelling and Verification of Dynamic Role-Based Access Control 48
Inna Vistbakka and Elena Troubitsyna

Performance Evaluation of Dynamic Load Balancing Protocols Based
on Formal Models in Cloud Environments . 64

Roua Ben Hamouda, Sabrine Boussema, Imene Ben Hafaiedh,
and Riadh Robbana

A Protocol for Constraint Automata Execution in a Synchronous
Network of Processors . 80

Alireza Farhadi, Mohammad Izadi, and Jafar Habibi

Testing and Fault Detection

MBT/CPN: A Tool for Model-Based Software Testing of Distributed
Systems Protocols Using Coloured Petri Nets . 97

Rui Wang, Lars Michael Kristensen, and Volker Stolz

How to Be Sure a Faulty System Does Not Always Appear Healthy? 114
Lina Ye, Philippe Dague, Delphine Longuet, Laura Brandán Briones,
and Agnes Madalinski

Model Checking and State-Space Exploration

Improving Parallel State-Space Exploration Using Genetic Algorithms. 133
Etienne Renault

LTL Model-Checking for Communicating Concurrent Programs 150
Adrien Pommellet and Tayssir Touili

Exploiting Local Persistency for Reduced State Space Generation 166
Kamel Barkaoui, Hanifa Boucheneb, and Zhiwu Li

Stochastic and Probabilistic Systems

Analysis of a Road/Tramway Intersection by the ORIS Tool 185
Laura Carnevali, Alessandro Fantechi, Gloria Gori, and Enrico Vicario

Toward Implicit Learning for the Compositional Verification of Markov
Decision Processes . 200

Redouane Bouchekir and Mohand Cherif Boukala

Author Index . 219

XIV Contents

Invited Papers

The State of Fault Injection Vulnerability
Detection

Thomas Given-Wilson, Nisrine Jafri, and Axel Legay(B)

Inria Rennes - Bretagne Atlantique, Rennes, France
{thomas.given-wilson,nisrine.jafri,axel.legay}@inria.fr

Abstract. Fault injection is a well known method to test the robustness
and security vulnerabilities of software. Fault injections can be explored
by simulations (cheap, but not validated) and hardware experiments
(true, but very expensive). Recent simulation works have started to apply
formal methods to the detection, analysis, and prevention of fault injec-
tion attacks to address verifiability. However, these approaches are ad-
hoc and extremely limited in architecture, fault model, and breadth of
application. Further, there is very limited connection between simula-
tion results and hardware experiments. Recent work has started to con-
sider broad spectrum simulation approaches that can cover many fault
models and relatively large programs. Similarly the connection between
these broad spectrum simulations and hardware experiments is being val-
idated to bridge the gap between the two approaches. This presentation
highlights the latest developments in applying formal methods to fault
injection vulnerability detection, and validating software and hardware
results with one another.

Keywords: Fault injection · Vulnerability · Model checking
Formal methods · Simulation

1 Introduction

Fault injection is a commonly used technique to test the robustness or vulner-
ability of systems against potential physical fault injection attacks. Testing for
system robustness is generally applied for systems that are deployed in hostile
environments where faults are likely to occur. Such environments include avia-
tion, military, space, etc. where atmospheric radiation, EMP, cosmic rays etc.
may induce faults. Vulnerability against attacks is usually used to detect places
where a malicious attacker may attempt to exploit a system with a targeted
fault injection. Since the underlying mechanism of a fault causing undesirable
behaviour is common to both of these scenarios, the detection of potential fault
injection vulnerabilities is an important area of research.

To support this research requires being able to reproduce the effect of some
kind of fault in an experimental environment. There are two broad classes of
approaches used to reproduce such faults, either simulating the fault injection
c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 3–21, 2018.
https://doi.org/10.1007/978-3-030-00359-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_1&domain=pdf

4 T. Given-Wilson et al.

using a software based approach, or (re)producing the fault injection with some
specialised equipment as a hardware based approach.

The software based approach was first proposed as an alternative to the
requiring specialised hardware to (re)produce a fault [4,16,39]. The typical soft-
ware approach is to perform a simulation based upon a chosen fault model; a
model of how the fault effects the system. The main advantage of software based
approaches are that they are cheap and fast to implement since they require
only development skills and normal computing systems without any specialised
hardware. The main challenge for software based approaches are that they have
not been validated against hardware based approaches to verify that their results
coincide, i.e. that the vulnerabilities found by the software based approaches are
genuine.

The hardware based approach was proposed as a technique to study poten-
tial vulnerabilities which may be created by environmental factors or potential
malicious attacks [21]. The hardware based approach consists of using specialised
hardware to induce an actual fault on a specific device. Some examples include:
setting up a laser that can target specific transistors in a chip [33], setting up an
X-ray beam to target a transistor [2], mounting an EMP probe over a chip to
disrupt normal behaviour [23], and many others [3,5,37]. The main advantage
of such hardware based approaches are that any detected vulnerability is guar-
anteed to be genuine and potentially reproducible. The main challenge for such
hardware based approaches are the cost of specialised hardware and expertise
to configure such an environment and conduct the experiments.

Since both software and hardware based approaches have advantages (and
disadvantages), research has proceeded using both approaches. Thus, there are
many works that explore the software based approach [8,20,25], and also many
works that explore hardware based approaches [5,26,34], but none that explore
both. However, due to the relative cost and also the potential for broader and
faster results, the more recent focus has been on improving software based
approaches [14,25,27].

One recent development in the software based approaches is the use of formal
methods that can provide stronger claims about the existence (or more often
absence) of a fault injection vulnerability [13,14]. The benefit of formal methods
is that the results allow for strong positive statements about the properties
that have been proved (or disproved) formally. Thus, results can show that a
particular attack cannot succeed [14], or that a particular counter-measure is
effective against an attack [24].

However, a significant challenge for the software based approaches is in their
breadth of applicability. Many software based approaches are only able to per-
form simulations of produce results for a single hardware architecture [11,25].
Similarly, many are only able to produce results for a single fault model, that is
they can only detect vulnerabilities against one kind of fault injection attack [27].
Further, some software based approaches only aim to formalise that very small
fragments of a program are not vulnerable to fault injection attack (or that a
counter-measure is effective), but cannot produce results on even whole functions

The State of Fault Injection Vulnerability Detection 5

(let alone whole programs) [24]. Lastly, many approaches do not operate on the
binary and hardware model itself, but instead on a (higher-level) language that
is significantly abstracted away from the hardware and actual fault injections
[9].

Another significant challenge for the software based approaches are in the
accuracy and breadth of the tools they use. Various works have applied tech-
niques that build upon exploiting tools to transform between languages or mod-
els [14,15] or that rely on tools for checking or verifying [27]. However, many of
these tools have their own limitations.

Recent works have started to address the above challenges by using an auto-
mated process to find fault injection vulnerabilities over whole functions and
with many fault models [13,14]. However, despite these showing good results
they are still challenges due to the tools used, and are still targeting a single
architecture (albeit upon the binary itself).

Similar issues appear in the hardware based approaches. For example, demon-
strating a vulnerability by flipping a bit with a laser on one chip, says nothing
about robustness or vulnerability: against flipping a different bit with the same
laser; being able to flip the same bit with an X-ray beam; flipping the same bit
on a different chip; or against EMP attacks, etc. Here the search for breadth in
results is significantly harder to achieve, since testing every possible transistor
of a single chip is already infeasible, let alone reasoning over all chips on the
market.

Further to the above challenges, to date there has been no significant effort to
correlate the software and hardware approaches on a common case study. Thus,
there is very little information on whether the two approaches coincide, and
whether many of the assumptions made about the approaches hold in practice.

This work provides an overview of some of these recent and significant devel-
opments and the general state of the art of fault injection vulnerability detection.
This covers a background on the key components of fault injection vulnerability
detection, and an overall explanation of how the software based and hardware
based approaches operate. The main focus here is on the capabilities and chal-
lenges for the state of the art, with a view towards how to develop improved
approaches to this area in future.

The latest in automated approaches that can be applied more generally to
binary programs are also recalled. This highlights the strengths and capabilities
of automating fault injection vulnerability detection, and recent developments in
the software based approach. These results are able to show several vulnerabil-
ities in cryptographic implementations. Significantly formal methods were able
to be applied to relatively complex program behaviour to produce useful results
with reasonable cost.

This paper also discusses the approach of ongoing work on connecting the
software and hardware based approaches together by experimenting on the same
case study. This overviews the requirements to yield useful results from these
experiments, and also identifies some open questions that can be addressed by
the results of this ongoing work.

6 T. Given-Wilson et al.

More broadly this paper looks to the future of fault injection vulnerabil-
ity detection and how to improve the approaches. Longer term the goal should
be to raise fault injection vulnerability detection from a niche and specialised
area of software quality, to something that can be applied in the manner that
we currently apply bug detection and standards compliance. That is, a future
where fault injection vulnerability detection can be automated into development
environments and processes to seamlessly integrate with the development envi-
ronment and identify vulnerabilities efficiently and with negligible cost.

The structure of the paper is as follows. Section 2 recalls background informa-
tion helpful for understanding this work. Section 3 recalls recent related works on
various approaches to fault injection vulnerability detection. Section 4 discusses
challenges for current approaches and tools. Section 5 overviews some recent
results on broad spectrum software approaches to detecting fault injection vul-
nerabilities. Section 6 considers how to combine software and hardware based
approaches and the questions being addressed in ongoing work. Section 7 con-
siders the future directions in fault injection vulnerability detection. Section 8
concludes.

2 Background

This sections recalls useful background information for understanding the rest of
the paper. This includes an overview of the definition of fault injection and how
to reason about fault injection by fault models and their typical classification.
The two approaches (software and hardware) are both overviewed, along with
their main advantages and disadvantages.

2.1 Fault Injection

Fault injection is any modification at the hardware level which may change
normal program execution. Fault injection can be unintentional (e.g. background
radiation, power interruption [4,21]) or intentional (e.g. induced EMP [10,23],
rowhammer [29,35,41]).

Unintentional fault injection is generally attributed to the environment
[12,21] An example of this is one of the first observed fault injections where
radioactive elements present in packing materials caused bits to flip in chips [4].

Intentional fault injection occurs when the injection is done by an attacker
with the intention of changing program execution [23,29,35,41]. For example,
fault injection attacks performed on cryptographic algorithms (e.g. RSA [9], AES
[33], PRESENT [40]) where the fault is introduced to reveal information that
helps in computing the secret key.

A fault injection vulnerability is a fault injection that yields a change to
the program execution that is useful from the perspective of an attacker. This
is in contrast to other effects of fault injection that are not useful, such as
simply crashing a program, causing an infinite loop, or changing a value that is
subsequently over-written. Observe that the definition of a vulnerability is not

The State of Fault Injection Vulnerability Detection 7

necessarily trivial or stable, the above example of a program crash may be a
vulnerability if the attacker desires to achieve a denial of service attack.

One challenge in understanding and reasoning about fault injection is to be
able to understand the effect that different kinds of faults can have upon the
system that is effected. This requires some definition of how to characterise a
fault and its behaviour in a manner that can be used experimentally.

2.2 Fault Model

Fault models are used to specify the nature and scope of the induced modifi-
cation. A fault model has two important parameters, location and impact. The
location includes the spatial and temporal location of fault injection relating
to the execution of the target program. The impact depends on the type and
granularity of the technique used to inject the fault, the granularity can be at
the level of bit, byte, or multiple bytes.

According to their granularity fault models can be classified into the follow-
ing kinds [31]. Bit-wise models: in these fault models the fault injection will
manipulate a single bit. One can distinguish five types of bit-wise fault model
[31]: bit-set, bit-flip, bit-reset, stuck-at and random-value. Byte-wise models: in
these fault models the fault injection will modify eight contiguous bits at a time
(usually in the same byte from the program or hardware perspective, not spread
across multiple bytes). One can distinguish three types of byte-wise fault model:
byte-set, byte-reset or random-byte. Wider models: in these fault models the
fault injection will manipulate an entire word (defined for the given architec-
ture). For this fault model a sequence of 8 to 64 bits will be modified depending
on the architecture, e.g. changing the value of an entire word at once. This will
typically target the modification of an entire instruction or single word value.

Based on the fault model classification presented in the paragraph above,
a list of fault models used in the experiment results presented in Sect. 5.2 are
as follows. The bit flip (FLP) fault model that flips the value of a single bit,
either from 0 to 1 or from 1 to 0, this fault model is an example of a Bit-wise
model. The zero one byte (Z1B) fault model that sets a single byte to zero
(regardless of initial value), this fault model is an example of a Byte-wise model.
The unconditional jump (JMP) and conditional jump (JBE) fault models that
change the value of a single byte in the target of an unconditional or conditional
jump instruction (respectively), these are examples of Byte-wise fault models.
The non-operation (NOP) fault model that sets a byte to a non-operation code
for the chosen architecture, this is an example of a Byte-wise fault model (but
can also be implemented as a Wider model by changing the value of the whole
instruction word). The zero one word (Z1W) fault model that sets a whole word
to have the value zero (regardless of prior value), this is an example of the Wider
model.

8 T. Given-Wilson et al.

2.3 Software-Based Fault Injection Approaches

Software-based approaches consists of reproducing at software level the effect
that would have been produced by injecting a fault at the hardware level. Soft-
ware based approaches can be achieved in a number of ways, two common ones
are described below. The first common approach is to simulate the program exe-
cution (sometimes including simulating the entire hardware stack as well) and
then simulate the fault injection as part of the simulation [17]. The results of the
simulation are then used to indicate the behaviour of the program under the fault
injection performed. The second common approach is to take the program and
use software to build a model of its behaviour [18]. The faults may be injected
into the program before or after the model is constructed, but the model is then
tested for specific behaviours or properties and the results used to reason about
the behaviour of the program. The second is becoming more popular in recent
works [13,14] as formal methods can be used on the model that allow for reason-
ing about all possible outcomes, and verifying when properties of the model may
hold. Note that a vulnerability can be defined rather abstractly in many software
based approaches since no clearly observable behaviour is required, merely some
definition of how to define vulnerability for the simulation or model.

The advantages of software-based approaches are in cost, automation, and
breadth. Software-based simulations do not require expensive or dedicated hard-
ware and can be run on most computing devices easily [26]. Also with various
software tools being developed and matured, limited expertise is needed to plug
together a toolchain to do fault injection vulnerability detection [13,14]. Such a
toolchain can then be automated to detect fault injection vulnerabilities without
direct oversight or intervention. Further, simulations can cover a wide variety of
fault models that represent different kinds of attacks and can therefore test a
broad range of attacks with a single system. Combining all of the above allows
for an easy automated process that can test a program for fault injection vul-
nerabilities against a wide variety of attack models, and with excellent coverage
of potential attacks.

The disadvantages of software-based approaches are largely in their imple-
mentations or in the veracity of their results. Many software-based approaches
have shown positive results, but are often limited by the tools and implemen-
tation details, with limitations in architecture, scope, etc. However, the biggest
weakness is the lack of veracity of the results: software-based approaches have
not been proven to map to actual vulnerabilities in practice.

2.4 Hardware-Based Fault Injection Approaches

Hardware-based approaches consists of disturbing the hardware at physical level,
using hardware materiel (e.g. EMP, Laser, Temperature, etc.). Hardware based
approaches are usually achieved by configuring the specific hardware to be exper-
imented on and loading the program to be tested for vulnerabilities. A special
device is then used to perform fault injection on the hardware during execution,
e.g. EMP a chip, laser a transistor, overheat a chip. The result of the execution

The State of Fault Injection Vulnerability Detection 9

of the program is observed under this fault injection, with some particular out-
comes considered to be “vulnerable” and thus a vulnerability is considered to
have been achieved. One typical requirement for this approach is to have idea
of how a vulnerability is observable from program execution, since otherwise it
is unclear whether the outcome of execution is a vulnerability or merely some
normal or faulty behaviour.

The advantages of hardware-based approaches are in the quality of the
results. A fault injection that has been demonstrated in practice with hardware
cannot be denied to be genuine.

The disadvantages of hardware-based approaches are the cost, automa-
tion, and breadth. To do hardware-based fault injection vulnerability detection
requires specialised hardware and expertise to conduct the experiments. This is
compounded when multiple kinds of attacks are to be considered; since differ-
ent equipment is needed to perform different kinds of fault injection (e.g. EMP,
laser, power interrupt). Further, hardware-based approaches tend to be difficult
to automate, since the experiments must be done with care and oversight, and
also the result can damage or interrupt the hardware in a manner that breaks
the automation. Lastly, hardware-based approaches tend to have limited breadth
of application; this is due to requiring many different pieces of hardware to test
different architectures, attacks, etc. and also due to the time and cost to test
large numbers of locations for fault injection vulnerability.

3 Existing Work

This section recalls recent works related to the detection of fault injection vulner-
abilities. These are divided according to their general approach as being either
software or hardware based.

3.1 Software Based Approach

This section recalls recent related works that use software based approaches for
detection of fault injection vulnerabilities.

One recent work which uses formal methods to detect vulnerabilities is [19].
Here the authors presents a symbolic LLVM-based Software-implemented Fault
Injection (SWiFI) evaluation framework for resilience evaluation. InSWiFI the
fault injection simulation and the vulnerability detection are done on the inter-
mediate language LLVM-IR, which limits accurate simulation of fault models
closely related to low level hardware effects.

The Symbolic Program Level Fault Injection and Error Detection Framework
(SymPLFIED) [25] is a program-level framework to identify potential vulnera-
bilities in software. The vulnerabilities are detected by combining symbolic exe-
cution and model checking techniques. The SymPLFIED framework is limited
as SymPLFIED only supports the MIPS architecture [28].

Lazart [27] is a tool that can simulate a variety of fault injection attacks and
detect vulnerabilities using formal methods. The Lazart process begins with the

10 T. Given-Wilson et al.

source code which is compiled to LLVM-IR. The simulated fault is created by
modifying the control flow of the LLVM-IR. Symbolic execution is then used to
detect differences in the control flow, and thus detect vulnerabilities. One of the
main limitations of Lazart is that it is unable to reason about or detect fault
injection attacks that operate on binaries rather than the LLVM-IR.

In [32] the authors propose combining the Lazart process with the Embedded
Fault Simulator (EFS) [6]. This extends from the capabilities of Lazart alone by
adding lower level fault injection analysis that is also embedded in the chip
with the program. The simulation of the fault is performed in the hardware,
so the semantics of the executed program correspond to the real execution of
the program. However, EFS is limited to only considering instruction skip faults
(equivalent to NOPs of Sect. 2.2).

An entirely low level approach is taken by Moro et al. [24] who use model
checking to formally prove the correctness of their proposed software counter-
measures schemes against fault injection attacks. The focus is on a very specific
and limited fault injection model that causes instruction skips and ignores other
kinds of attacks. Further, the model checking is over only limited fragments of
the assembly code, and not the program as a whole.

A less formal approach is taken in [1] where experiments are used for test-
ing the TTP/C protocol in the presence of faults. Rather than attempting to
find fault injection attacks, they injected faults to test robustness of the pro-
tocol. They combined both hardware testing and software simulation testing,
comparing the results as validation of their approach.

A fault model inference focused approach is taken by Dureuil et al. [11].
They fix a hardware model and then test various fault injection attacks based
upon this hardware model. Fault detection is limited to EEPROM faults on the
ARMv7-M architecture. The fault model is then inferred from the parameters
of the attack and the embedded program. The faults are simulated upon the
assembly code and the results checked with predefined oracles on the embedded
program.

3.2 Hardware Based Approach

This section recalls recent related works that use software based approaches for
detection of fault injection vulnerabilities.

In [34] the authors applies the electromagnetic and the optical attacks to the
RSA algorithm, a well known algorithm used in various cryptographic systems.
The authors presented a successful attack on the RSA algorithm implementation
over an 8-bit architecture micro-controller. Experiments showed that the faults
can affect program flow as well as the SRAM content and the flash memory.

Skorobogatov [36] showed using a laser, one can effect certain memory cells
SRAM and cause them to switch. The experiments were conducted on an
PIC16F84 micro-controller. The advantage of using a laser is that they can
accurately target a single bit to modify.

In [7] the authors presents a practical laser fault attack which target creating
fault in the Deep Neural Networks (DNN) on a low-cost micro-controller.

The State of Fault Injection Vulnerability Detection 11

An other type of hardware attack was presented in [5] where the authors
showed that they can perform successful attacks by alternating the power supply.
The experiments were performed on a software implementation of the AES and
RSA crypto algorithm running on a ARM9 CPU. The result showed that it
was possible to retrieve the full 256-bit key of the AES crypto algorithm, and
reproduce with cheaper equipment a known attack against RSA.

In [26,42] the authors present a survey of the different hardware based app-
roach techniques used to inject a fault. The authors also refer to relevant works
where the various fault injection techniques are used. For many other recent and
older works on hardware fault injection and their approaches we refer the reader
to these works.

4 Challenges

This section discusses common challenges for fault injection vulnerability detec-
tion and how they impact the current state of the art in this and closely related
areas.

Historically informal approaches (i.e. those that do not employ formal meth-
ods) while using a software based approach are unable to provide strong guaran-
tees about the absence of fault injection vulnerabilities [30]. A similar challenge
faces hardware based approaches that cannot guarantee that their inability to
find a vulnerability ensures that no such vulnerability exists.

One solution to the above challenge is the employment of formal methods
in the vulnerability detection approach [14,25]. This allows results to guarantee
that if no vulnerability is found, then no vulnerability exists in the program
that was analysed. However, in practice most of these approaches are only able
to formally show the lack of vulnerability for a very specific case, or the effective-
ness of a counter-measure with limited scope. Thus they are still challenged to
produce broad or general results that have the guarantee of formal correctness.

More generally another key challenge for both software and hardware based
approaches is the limited scope considered. For either approach the results tend
to be highly specific with respect to the architecture being considered [11,25].
That is, although the results may be complete and correct for one program,
they only hold for a single implementation executed on a single specific chip and
against a single fault injection technique or fault model [27]. Although this does
not limit the significance of finding a fault injection vulnerability, the absence of
any vulnerability is not a particularly strong claim under these conditions. Thus
the challenge here for both software and hardware based approaches is to find
some way to generalise beyond very small and highly specific case studies.

To some extent the software based approaches can be generalised to incor-
porate multiple fault models and so offer broader coverage and vulnerability
detection. However, this requires a software based approach that can be scaled
effectively to multiple fault models [13,14].

For the hardware based approaches the fault model is inherent to the attack
and so does not need to be considered. On the other hand, there is limited

12 T. Given-Wilson et al.

opportunity to transfer or generalise results. Demonstrating a vulnerability with
a laser offers very limited information about whether a vulnerability can be
produced with an EMP. Thus a challenge here is to find ways to be able to
transfer or compare both positive and negative results between different kinds
of hardware attacks.

Considering this, recent broad spectrum approaches to fault injection vul-
nerability detection by using automated software approaches show significant
promise [13,14]. However, even these are still limited to some specific architec-
tures and known or implemented fault models.

This identifies yet another challenge area for the software based approaches:
the limitations of the tools used in their software process. For many software
based approaches there are specific tools developed for them, that tend to lack
breadth and maturity [15,27]. For others that employ tools (often from other
domains), these tools tend to have limitations of their own such as being unable
to handle everything required (e.g. not supporting all instructions of a given
architecture), or being unreliable or inconsistent in their results [13,14].

5 Broad Spectrum Simulation

This section recalls some recent approaches to addressing the various challenges
discussed above. In particular, the focus here is on recent broad spectrum sim-
ulations that adopt an automated scalable formal process for detecting fault
injection vulnerabilities in binary files [13,14]. These works address some of the
challenges described above and progress towards approaches that vastly reduce
their limitations, and thus are more widely applicable.

5.1 Process

This section recalls the core concepts of the process used in [13,14] for the broad
spectrum detection of fault injection vulnerabilities. One of the main contribu-
tions of these works is in the development of this automated process that can
apply formal verification techniques to the detection of fault injection vulnera-
bilities in binary files. An overview of the key concepts of the process is depicted
in Fig. 1, the rest of this section discusses the key points of implementation and
application of this process.

The process begins with a binary file that is to be checked for fault injection
vulnerabilities. In [13,14] the properties that define the correct and vulnera-
ble behaviours are also in this file as annotations maintained by the compiler.
(These properties may also define other behaviours such as incorrect or crashed,
but these are used for exploration and precision rather than detection of fault
injection vulnerabilities.)

The binary file is then translated into a model that represents the behaviour
of the binary program in an intermediate language suitable for a formal verifi-
cation tool. In [13,14] this translation is done to LLVM-IR as an intermediate
language that is then used by a model checker (see below). This translation to

The State of Fault Injection Vulnerability Detection 13

Source
Code &

Properties

Executable
Binary
(with

Properties)

Mutant
Binaries
(with

Properties)

Checking
Results

Validation
Result

Compile

Fault Injections

Validate

Differences?

Check

Fig. 1. Software process diagram

LLVM-IR also maintains the properties and converts them to known properties
for the model checker.

The properties are then checked by a model checker to validate that they do
indeed hold on the original binary program. In [13,14] this is done using LLBMC
a bounded model checker for LLVM-IR. The purpose of this step is to verify that
the properties hold and are correctly defined for the binary program, and so that
later results can be compared with the validation.

The binary is then injected with a simulated fault injection according to a
choice of fault model. This can include many different fault models, and they
can be injected in many different locations within the binary. Each possible fault
injection combination (of fault model and location) yields a new mutant binary.
Note that some care is taken here to ensure fault injection does not effect the
property annotations.

The mutant binary is then translated to a model in LLVM-IR, and this
model is then checked with LLBMC, both of these are done in the same manner
as for the original binary program. The results of this checking on the mutant
binary are compared with the validation results for the original program, with
any changes being attributed to the fault injection. Thus, the introduction of
a “vulnerable” result by the simulated fault injection indicates a fault injection
vulnerability.

Note that in [13] this process is refined to be vastly more efficient, but the
core concepts are the same in both works.

5.2 Results

This section recalls the main results of these broad spectrum experiments and
their implications for detecting fault injection vulnerabilities. The above process
was applied to the PRESENT and SPECK cryptographic algorithm implemen-
tations. In both cases these algorithms are significantly complex and would be
infeasible for a human to check for fault injection vulnerabilities manually. This
infeasibility is particularly true for some of the more unusual fault injection

14 T. Given-Wilson et al.

Fig. 2. Model checking results for PRESENT (taken from [13])

mutations that cause instructions to be accessed at a different offset and so
interpreted as different instructions.

An overview of the results of applying the process to PRESENT with six fault
models described in Sect. 2.2 (flipping one bit FLP, zeroing one byte Z1B, zero-
ing one word Z1W, nopping one instruction NOP, modifying a on-conditional
jump address JMP, and modifying a conditional jump address JBE) can be
seen in Fig. 2. Each square in the diagram indicates a byte of the program that
was analysed, with white indicating no impact on execution. Overall 73 vulner-
abilities to various properties were found in PRESENT using this automated
fault injection vulnerability detection process. Only a small number of these (9
occurrences, indicated with a “2” on the square in the diagram) were found to
violate a property that allowed an attacker to send the plaintext in place of the
ciphertext. The majority (64 occurrences, indicated with a “3” on the square
in the diagram) were crypto-analytical vulnerabilities that allow the encryption
key to be calculated from a number of ciphertexts by an attacker. The remain-
ing non-white squares indicated a different “incorrect” behaviour due to fault
injection. (Note that a square with a “2” may contain multiple fault injection
vulnerabilities depending on the fault model used.)

Overall these broad spectrum experiments indicated that several significant
fault injection vulnerabilities existed in the PRESENT algorithm. Further, the
results indicated which fault model and location would be able to implement a
successful fault injection attack in practice.

The same process with the same six fault models (from Sect. 2.2) was applied
to SPECK yielding the results overviewed in Fig. 3. Overall there were only 9
vulnerabilities found in SPECK, and all of them were fault injection vulnera-
bilities that allowed the attacker to directly access the plaintext (indicated by
a “2” on the square corresponding to the byte in the program in the diagram).
Other colours are as described above for PRESENT.

Again these results indicated there exist vulnerabilities in the SPECK imple-
mentation, as well as the exact fault model and location to implement the attack.

The State of Fault Injection Vulnerability Detection 15

Fig. 3. Model checking results for SPECK (taken from [13]) (Color figure online)

6 Connection to Hardware

Another major challenge is the lack of connection between the software and
hardware experiments in fault injection vulnerability detection. The natural pro-
gression in this area would be to combine the software based simulations with
hardware based experiments. This section presents some of the key concepts of
ongoing work, and the questions being addressed by this work.

The experimental approach used is to take a case study that has a variety
of behaviours, and includes weaknesses that are believed to be vulnerable to
some kinds of fault injection (i.e. some fault models). This case study is then
experimented on using both software and hardware based approaches. The braod
spectrum software based approach of Sect. 5.1 is applied to the whole program
with a variety of fault models. A hardware based fault injection technique is also
used to test the whole program for fault injection vulnerabilities.

This combined approach requires significantly more experimental work than
is typically conducted. The software based experiments must cover the whole
program and a wide variety of (or ideally all known) fault models to be able
to reason about and compare the results well. This is in contrast to many prior
works where merely checking a specific location, fault model, or counter-measure
was the goal. Similarly, the hardware experiments must cover the whole program
(and with enough repetitions to be reliable) to ensure that all possible configu-
rations have been tested, and that they can be compared with all the software
results. Again this differs from prior work where the hardware approach typically
focuses only on very specific (known to be potentially vulnerable) code points
and exploits the expert knowledge of the experimenter.

The results of such experiments on a common case study and with coverage
of the whole program allows for many interesting questions to be addressed
including those below.

– Do the software and hardware based approaches coincide? That is, do the
results actually match each other, or are the two unrelated in where they find
vulnerabilities and how they explain such vulnerabilities.

– Do the software results have false negatives or positives? In theory using a
(correct) formal approach should never yield false negative results since this
would imply the formalism is incorrect. However, false positives are a more

16 T. Given-Wilson et al.

interesting question since the inability to produce a fault with a hardware
technique may be due to a variety of factors. Further, a false positive may
merely indicate an extremely rare or difficult to reproduce attack.

– What fault model matches a hardware attack method? For some hardware
attacks such as lasering a bit the fault model is very clear. For other hardware
methods such as EMP the fault model is considered to correlate with skipping
an instruction [22], but with such an imprecise attack the evidence could show
otherwise.

– Can combining both software and hardware improve vulnerability detection?
Although having access to both approaches (particularly for a variety of hard-
ware attacks) is not feasible, knowing how to make the most efficient use of the
available resources could be an advantage gained by knowing the coincidence
between software and hardware. That is, software could indicate where to
attempt to fault the hardware in a program without a known (or suspected)
weakness.

These and other open questions can be addressed by conducting such combined
experiments, yielding deeper insight into both the software and hardware aspects
of fault injection vulnerability detection.

7 Looking Forward

Recent works have shown significant advances in detecting fault injection vul-
nerabilities using software, hardware, and combined approaches. However, there
are still many opportunities for progress and areas that need significant effort
to be able to make fault injection vulnerability detection a reliable and easily
applicable part of software development.

One significant challenges for many of the recent and current approaches is
the underlying tools that they depend upon. For example, the translation tools
used for the results highlighted here rely upon MC-Sema [38] that has various
limitations with instruction sets, or failures to correctly translation behaviour.
Similarly, in many other works [15,25] the tools limit the applicability of the
technique to some limited scope, limited architecture, limited size, etc. Thus, in
many areas the tools used require refinement and maturity, and in other areas
the tools simply do not exist and would need to be created. Another example
is of the limitations of applying some of the tools in the manner used here,
such as LLBMC as used in [14] is not able to produce a counter-example to
the property and thus indicate which combination of inputs were vulnerable
for a given fault injection vulnerability, further in [13] LLBMC was shown to
be inconsistent when producing results. Here an alternative model checker (and
likely alternative intermediate language and so translation tools) could yield
much more precise results.

Another main area of improvement would be in the automation of fault
injection vulnerability detection. Although some recent works highlighted here
[13,14] have begun to address automation, most approaches have not. Being able
to automate the the search for vulnerabilities allows fault injection vulnerability

The State of Fault Injection Vulnerability Detection 17

detection to be changed from a highly manual process, to another quality or veri-
fication process used during software development. Indeed, this would allow fault
injection vulnerability to be considered along with other quality checks such as:
bug detection, standards compliance, verification, correctness-by-construction,
etc.

Another area to advance in would be in the application of formal methods.
Many of the current approaches use highly specific and limited applications of
formal methods [14,25,27], or a heavy technique that does not exploit domain
specific information. For example, the model checking highlighted here does not
take into account prior results, or modularity of sub-components. Thus, an incre-
mental approach may yield significant efficiency returns. Similarly, developing
and exploiting formal methods that focus on the exact problems considered in
vulnerability detection could yield much more precise results than those that are
currently state of the art.

Work on strongly connecting the software and hardware based approaches
is clearly a goal for future research and development. A strong foundation of
understanding of the relations between different kinds of software and hardware
based approaches will enrich and improve the results of both. Further, by con-
necting these results, software based results can be validated to be genuine by
reproducing them with hardware experiments. In the other direction, hardware
based experiments will demonstrate the efficacy and accuracy of the software
based approaches.

Finally, many existing works in the domain of fault injection vulnerabili-
ties and their detection work on examples or programs where a vulnerability is
already known to exist. The goal of the work is to (re)produce a known attack
(or exploit one that has been intentionally designed in) to demonstrate the effi-
cacy of the approaches used. However, finding vulnerabilities that were not even
suspected in advance, or devising approaches that allow the finding of such vul-
nerabilities in an efficient manner is a clear requirement for practical application
in the future.

8 Conclusion

Fault injection represent a serious threat to the robustness and security of many
software systems used in daily life. There are two main approaches to detect-
ing fault injection vulnerabilities and testing system robustness; software and
hardware based. Both approaches have yielded useful results and can make use-
ful contributions. Software based approaches are good for simulation and being
able to cheaply implement, albeit at the cost of the ability to demonstrate a
fault injection vulnerability is genuine and can be exploited. Hardware based
approaches are good for proving genuine exploitability, but are expensive in
time, equipment, and expertise to conduct.

Many recent software based approaches propose the use of formal methods in
the process of detecting fault injection vulnerabilities. However, these solutions
still have challenges regarding the proposed process as an whole or the tools

18 T. Given-Wilson et al.

used in their implementation. Although some of the most recent works attempt
to broaden the abilities of software based approaches, in combination with formal
methods, there are still challenges ahead for the underlying tools.

Recently proposed and evaluated software approaches have shown their
efficiency in detecting potential fault injection vulnerabilities. These software
approaches were applied to a variety of systems, working on different architec-
tures, embedding different types of programs. Further, these software approaches
have demonstrated scalability in being able to be applied to many fault models
in many locations on non-trivial real-world programs with previously unknown
vulnerabilities.

Despite these software approach’s good results, they can not guarantee that
the detected vulnerabilities correspond to real vulnerabilities in practice. The
fact that the fault injection are simulated gives no guarantee that in a real
physical fault injection attack on the system will have the same effect. Thus the
challenge of combining both software and hardware based approaches on a single
case study to explore how the two approaches connect. Such experiments should
improve our understanding of how to interpret software based approaches: do
they produce false positives, false negatives, how reproducible the claimed fault
injection vulnerabilities are, and other questions. Similarly, such experiments
will allow the fault models of hardware based approaches to be more accurately
determined. Further, combining both approaches may yield vastly more effective
techniques to find vulnerabilities by exploiting the strengths of each approach.

There are many challenges open in the domain of fault injection vulnerabil-
ity detection. In addition to those explicitly mentioned above, the broader goal
can be to have fault injection vulnerability detection reach the maturity and
confidence of other software quality approaches. Developing tools that can inte-
grate into development environments or build processes to automatically detect
(potential) fault injection vulnerabilities in the near future is a desirable goal.

References

1. Ademaj, A., Grillinger, P., Herout, P., Hlavicka, J.: Fault tolerance evaluation using
two software based fault injection methods. In: Proceedings of the Eighth IEEE
International On-Line Testing Workshop, pp. 21–25. IEEE (2002)

2. Anceau, S., Bleuet, P., Clédière, J., Maingault, L., Rainard, J., Tucoulou, R.:
Nanofocused X-ray beam to reprogram secure circuits. In: Fischer, W., Homma, N.
(eds.) CHES 2017. LNCS, vol. 10529, pp. 175–188. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66787-4 9

3. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characteri-
zation of the effects of clock glitches on 8-bit MCUs. In: 2011 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pp. 105–114. IEEE (2011)

4. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. IACR Cryptology ePrint Archive, 2004:100
(2004)

5. Barenghi, A., Bertoni, G.M., Breveglieri, L., Pelosi, G.: A fault induction technique
based on voltage underfeeding with application to attacks against AES and RSA.
J. Syst. Softw. 86(7), 1864–1878 (2013)

https://doi.org/10.1007/978-3-319-66787-4_9
https://doi.org/10.1007/978-3-319-66787-4_9

The State of Fault Injection Vulnerability Detection 19

6. Berthier, M., Bringer, J., Chabanne, H., Le, T.-H., Rivière, L., Servant, V.: Idea:
embedded fault injection simulator on smartcard. In: Jürjens, J., Piessens, F.,
Bielova, N. (eds.) ESSoS 2014. LNCS, vol. 8364, pp. 222–229. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04897-0 15

7. Breier, J., Hou, X., Jap, D., Ma, L., Bhasin, S., Liu, Y.: Practical fault attack on
deep neural networks. arXiv preprint arXiv:1806.05859 (2018)

8. Carreira, J., Madeira, H., Silva, J.G., et al.: Xception: software fault injection and
monitoring in processor functional units. Dependable Comput. Fault Toler. Syst.
10, 245–266 (1998)

9. Christofi, M., Chetali, B., Goubin, L.: Formal verification of an implementation
of CRT-RSA vigilant’s algorithm. In: PROOFS Workshop: Pre-proceedings, p. 28
(2013)

10. Dehbaoui, A., Dutertre, J.-M., Robisson, B., Orsatelli, P., Maurine, P., Tria, A.:
Injection of transient faults using electromagnetic pulses-practical results on a cryp-
tographic system-. IACR Cryptology EPrint Archive, 2012:123 (2012)

11. Dureuil, L., Potet, M.-L., de Choudens, P., Dumas, C., Clédière, J.: From code
review to fault injection attacks: filling the gap using fault model inference. In:
Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 107–124.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31271-2 7

12. Ecoffet, R.: In-flight anomalies on electronic devices. In: Velazco, R., Fouillat, P.,
Reis, R. (eds.) Radiation Effects on Embedded Systems, pp. 31–68. Springer, Dor-
drecht (2007). https://doi.org/10.1007/978-1-4020-5646-8 3

13. Given-Wilson, T., Heuser, A., Jafri, N., Lanet, J.-L., Legay, A.: An automated
and scalable formal process for detecting fault injection vulnerabilities in binaries
(2017)

14. Given-Wilson, T., Jafri, N., Lanet, J., Legay, A.: An automated formal process for
detecting fault injection vulnerabilities in binaries and case study on PRESENT.
In: 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, Australia, 1–4 August 2017,
pp. 293–300. IEEE (2017)

15. Höller, A., Krieg, A., Rauter, T., Iber, J., Kreiner, C.: QEMU-based fault injection
for a system-level analysis of software countermeasures against fault attacks. In:
2015 Euromicro Conference on Digital System Design (DSD), pp. 530–533. IEEE
(2015)

16. Hsueh, M.-C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. Com-
puter 30(4), 75–82 (1997)

17. Johansson, A.: Software implemented fault injection used for software evaluation.
In: Building Reliable Component-Based Systems (2002)

18. Kooli, M., Di Natale, G.: A survey on simulation-based fault injection tools for
complex systems. In: 2014 9th IEEE International Conference on Design and Tech-
nology of Integrated Systems In Nanoscale Era (DTIS), pp. 1–6. IEEE (2014)

19. Le, H.M., Herdt, V., Große, D., Drechsler, R.: Resilience evaluation via symbolic
fault injection on intermediate code. In: Design, Automation and Test in Europe
Conference and Exhibition (DATE), pp. 845–850. IEEE (2018)

20. Marinescu, P.D., Candea, G.: LFI: a practical and general library-level fault injec-
tor. In: IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN 2009, pp. 379–388. IEEE (2009)

21. May, T.C., Woods, M.H.: A new physical mechanism for soft errors in dynamic
memories. In: 16th Annual Reliability Physics Symposium, pp. 33–40. IEEE (1978)

22. Moro, N.: Sécurisation de programmes assembleur face aux attaques visant les
processeurs embarqués. Ph.D. thesis, Université Pierre et Marie Curie-Paris VI
(2014)

https://doi.org/10.1007/978-3-319-04897-0_15
http://arxiv.org/abs/1806.05859
https://doi.org/10.1007/978-3-319-31271-2_7
https://doi.org/10.1007/978-1-4020-5646-8_3

20 T. Given-Wilson et al.

23. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: towards a fault model on a 32-bit microcontroller. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 77–88.
IEEE (2013)

24. Moro, N., Heydemann, K., Encrenaz, E., Robisson, B.: Formal verification of a
software countermeasure against instruction skip attacks. J. Cryptogr. Eng. 4(3),
145–156 (2014)

25. Pattabiraman, K., Nakka, N., Kalbarczyk, Z., Iyer, R.: SymPLFIED: symbolic
program-level fault injection and error detection framework. In: 2008 IEEE Inter-
national Conference on Dependable Systems and Networks with FTCS and DCC
(DSN), pp. 472–481. IEEE (2008)

26. Piscitelli, R., Bhasin, S., Regazzoni, F.: Fault attacks, injection techniques and
tools for simulation. In: Sklavos, N., Chaves, R., Di Natale, G., Regazzoni, F.
(eds.) Hardware Security and Trust, pp. 27–47. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-44318-8 2

27. Potet, M.-L., Mounier, L., Puys, M., Dureuil, L.: Lazart: a symbolic approach
for evaluation the robustness of secured codes against control flow injections. In:
2014 IEEE Seventh International Conference on Software Testing, Verification and
Validation, pp. 213–222. IEEE (2014)

28. Price, C.: MIPS IV instruction set (1995)
29. Qiao, R., Seaborn, M.: A new approach for rowhammer attacks. In: 2016 IEEE

International Symposium on Hardware Oriented Security and Trust (HOST), pp.
161–166. IEEE (2016)

30. Quisquater, J.-J.: Eddy current for magnetic analysis with active sensor. In: Pro-
ceedings of ESmart, pp. 185–194 (2002)

31. Rivière, L., Bringer, J., Le, T.-H., Chabanne, H.: A novel simulation approach for
fault injection resistance evaluation on smart cards. In: 2015 IEEE Eighth Inter-
national Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pp. 1–8. IEEE (2015)

32. Rivière, L., Potet, M.-L., Le, T.-H., Bringer, J., Chabanne, H., Puys, M.: Com-
bining high-level and low-level approaches to evaluate software implementations
robustness against multiple fault injection attacks. In: Cuppens, F., Garcia-Alfaro,
J., Zincir Heywood, N., Fong, P.W.L. (eds.) FPS 2014. LNCS, vol. 8930, pp. 92–
111. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17040-4 7

33. Roscian, C., Dutertre, J.-M., Tria, A.: Frontside laser fault injection on
cryptosystems-application to the AES, last round. In: 2013 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), pp. 119–124. IEEE
(2013)

34. Schmidt, J.-M., Hutter, M.: Optical and EM fault-attacks on CRT-based RSA:
Concrete results, na (2007)

35. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain kernel
privileges. In: Black Hat (2015)

36. Skorobogatov, S.: Optically enhanced position-locked power analysis. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 61–75. Springer, Heidelberg
(2006). https://doi.org/10.1007/11894063 6

37. Skorobogatov, S.: Optical fault masking attacks. In: 2010 Workshop on Fault Diag-
nosis and Tolerance in Cryptography (FDTC), pp. 23–29. IEEE (2010)

38. Trail of bits. Mc-semantics (2016). https://github.com/trailofbits/mcsema
39. Verbauwhede, I., Karaklajic, D., Schmidt, J.-M.: The fault attack jungle-a classi-

fication model to guide you. In: 2011 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pp. 3–8. IEEE (2011)

https://doi.org/10.1007/978-3-319-44318-8_2
https://doi.org/10.1007/978-3-319-44318-8_2
https://doi.org/10.1007/978-3-319-17040-4_7
https://doi.org/10.1007/11894063_6
https://github.com/trailofbits/mcsema

The State of Fault Injection Vulnerability Detection 21

40. Wang, G., Wang, S.: Differential fault analysis on present key schedule. In: 2010
International Conference on Computational Intelligence and Security (CIS), pp.
362–366. IEEE (2010)

41. Yim, K.S.: The rowhammer attack injection methodology. In: 2016 IEEE 35th
Symposium on Reliable Distributed Systems (SRDS), pp. 1–10. IEEE (2016)

42. Yuce, B., Schaumont, P., Witteman, M.: Fault attacks on secure embedded soft-
ware: threats, design, and evaluation. J. Hardw. Syst. Secur. 2(2), 111–130 (2018).
https://doi.org/10.1007/s41635-018-0038-1. ISSN 2509-3436

https://doi.org/10.1007/s41635-018-0038-1

Replacing Store Buffers by Load Buffers
in TSO

Parosh Aziz Abdulla1(B), Mohamed Faouzi Atig1, Ahmed Bouajjani2,
and Tuan Phong Ngo1

1 Uppsala University, Uppsala, Sweden
{parosh,mohamed faouzi.atig,tuan-phong.ngo}@it.uu.se

2 IRIF Université Paris Diderot - Paris 7, Paris, France
abou@irif.fr

Abstract. We consider the weak memory model of Total Store Ordering
(TSO). In the classical definition of TSO, an unbounded buffer is inserted
between each process and the shared memory. The buffers contains pend-
ing store operations of the processes. We introduce a new model where
we replace the store buffers by load buffers. In contrast to the classical
model, the buffers now contain load operations. We show that the models
have equivalent behaviors in the sense that the processes reach identical
sets of states when the input program is run under the two models.

Keywords: Program verification · Weak memory models · TSO

1 Introduction

Designers of concurrent programs traditionally assume Sequential Consistency
(SC) [36]. Under SC, the results of any execution is the same as if the operations
of all the processors were executed in some sequential order, and the opera-
tions of each individual processor appear in this sequence in the order specified
by its program. However, to optimize performance, modern architectures and
compilers implement memory models that weaken the guarantees given by SC,
by allowing various processes to execute instructions out-of-order, and also by
allowing access to memory stores by different processes in different orders. In
the context of sequential programming, this out-of-order execution is transpar-
ent to the programmer since one can still work under the SC model. However,
this is not true any more when we consider concurrent processes that share
the memory. In fact, it turns out that concurrent algorithms such as mutual
exclusion and producer-consumer protocols may not behave correctly any more.
Therefore, program verification is a relevant (and difficult) task in order to prove
correctness under the new semantics. The out-of-order execution of instructions
has led to the invention of new program semantics, so called Weak (or Relaxed)
Memory Models (WMMs), by allowing permutations between certain types of
memory operations. Examples include the Intel x86 [31] and SPARC [49] proces-
sors that use the TSO [43] (total store order) memory model. SPARC also defines
c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 22–28, 2018.
https://doi.org/10.1007/978-3-030-00359-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_2&domain=pdf

Replacing Store Buffers by Load Buffers in TSO 23

two other weak memory models: PSO (Partial Store Order) and RMO (Relaxed
Memory Order). The Power [30] and ARM [14] architectures employ memory
models that are even more relaxed [13,38,40,41]. Moreover, compilers, such as
Java [39] and C++ [15], reorder commands to prefetch values from memory and
fill the processor’s execution line. In all these weak or relaxed memory models,
different processes can observe different memory states at the same time. This
implies that programs when run under weak or relaxed memory models display
some behaviours which are not possible in SC.

2 Total Store Ordering

Total Store Ordering (TSO) is a classical model corresponding to the relax-
ation adopted by Sun’s SPARC multiprocessors [49] and to formalizations of
the x86-TSO memory model [42,44]. In TSO, a store buffer is inserted between
each process and the main memory. The buffer behaves like an unbounded per-
fect (non-lossy) FIFO channel that carries the pending store operations of the
process. When a process performs a write (store) operation, it appends it to
the end of its buffer. These operations are propagated to the shared memory
non-deterministically in a FIFO manner. When a process reads a variable, it
searches its buffer for a pending store operation on that variable. If no such a
store operation exists, it fetches the value of the variable from the main memory.
The unboundedness of the buffers implies that the state space of the system is

Fig. 1. The classical operational semantics for TSO.

24 P. A. Abdulla et al.

infinite even in the case where the input program is finite-state. Therefore, ver-
ifying programs running on the TSO memory model poses a difficult challenge.
Decidability of safety properties has been obtained by constructing equivalent
models that replace the perfect store buffer by lossy channels [2,16,17]. How-
ever, these constructions are complicated and involve several ingredients that
lead to inefficient verification procedures. For instance, they require each mes-
sage inside a lossy channel to carry (instead of a single store operation) a full
snapshot of the memory representing a local view of the memory contents by
the process. Furthermore, the reductions involve non-deterministically guessing
the lossy channel contents. The guessing is then resolved either by consistency
checking [16] or by using explicit pointer variables (each corresponding to one
process) inside the buffers [2], causing a serious state space explosion problem
(Fig. 1).

3 Load-Buffer Semantics

We introduce an alternative semantics which we call the load buffer semantics,
where we replace the store buffers by load buffers that contain pending load
operations. The pending load operations represent values that will potentially
be taken by forthcoming load operations. The flow of information will now be
in the reverse direction, i.e., store operations are performed by the processes
atomically on the main memory, while values of variables are propagated non-
deterministically from the memory to the load buffers of the processes. When a
process performs a load operation, it can fetch the value of the variable from the
head of its load buffer. The load-buffer semantics is equivalent to the original
store-buffer semantics in the sense that any given set of processes will reach the
same set of local states under both semantics. This alternative TSO semantics
allows us to understand the original model in a different way compared to the
classical semantics. Furthermore, the load-buffer semantics offers several impor-
tant advantages from the point of view of formal reasoning and program verifi-
cation. First, it allows transforming the load buffers to lossy channels without
adding the costly overhead that was necessary in the case of store buffers. This
means that we can assume w.l.o.g. that any message in the load buffers (except
a finite number of messages) can be lost in non-deterministic manner. Hence, we
can apply the theory of well-structured systems [5,6,27] in a straightforward man-
ner leading to a much simpler proof of decidability of safety properties. Second,
the absence of extra overhead means that we obtain more efficient algorithms and
better scalability. Finally, the load-buffer semantics allows extending the frame-
work to perform parameterized verification which is an important paradigm in
concurrent program verification. A parameterized system, e.g. a mutual exclusion
protocol, consists of an arbitrary number of processes. The task is to show cor-
rectness of the system regardless of the number of processes. In the case of TSO,
this means that we have a system that is infinite in two dimensions: we have an
unbounded number of processes each of which is equipped with an unbounded
buffer (Fig. 2).

Replacing Store Buffers by Load Buffers in TSO 25

Fig. 2. The load-buffer semantics for TSO.

4 Related Work

There have been a lot of works related to the analysis of programs running
under WMMs (e.g., [2,8–10,19–24,28,32–35,37,47,48,50]). Some of these works
propose precise analysis techniques for checking safety properties or stability
of finite-state programs under WMMs (e.g., [2,4,10,19,26]). Others propose
context-bounded analyzing techniques (e.g., [7,18,45,46]) or stateless model-
checking techniques (e.g., [1,25,29,51]) for programs under TSO and PSO. Dif-
ferent other techniques based on monitoring and testing have also been devel-
oped during these last years (e.g., [21,22,37]). There are also a number of
efforts to design bounded model checking techniques for programs under WMMs
(e.g., [11,12,20,50]) which encode the verification problem in SAT/SMT.

The closest works to ours are those presented in [2,3,16,17] which provide
precise and sound techniques for checking safety properties for finite-state pro-
grams running under TSO. However, these techniques are complicated and can-
not be extended, in a straightforward manner, to the verification of parameter-
ized systems (as it is the case of the developed techniques for the Dual TSO
semantics).

26 P. A. Abdulla et al.

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 28

2. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 204–219. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 15

3. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Memorax,
a precise and sound tool for automatic fence insertion under TSO. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 530–536. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 37

4. Abdulla, P.A., Atig, M.F., Ngo, T.-P.: The best of both worlds: trading efficiency
and optimality in fence insertion for TSO. In: Vitek, J. (ed.) ESOP 2015. LNCS,
vol. 9032, pp. 308–332. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46669-8 13

5. Abdulla, P., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems for
infinite-state systems. In: LICS 1996, pp. 313–321. IEEE Computer Society (1996)

6. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. Bull. Symb.
Log. 16(4), 457–515 (2010)

7. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: Context-bounded analysis for
POWER. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp.
56–74. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5 4

8. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Automatic
fence insertion in integer programs via predicate abstraction. In: Miné, A., Schmidt,
D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 164–180. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33125-1 13

9. Abdulla, P.A., Atig, M.F., Jonsson, B., Leonardsson, C.: Stateless model checking
for POWER. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
134–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 8

10. Abdulla, P.A., Atig, M.F., L̊ang, M., Ngo, T.P.: Precise and sound automatic fence
insertion procedure under PSO. In: Bouajjani, A., Fauconnier, H. (eds.) NETYS
2015. LNCS, vol. 9466, pp. 32–47. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-26850-7 3

11. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37036-6 28

12. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 9

13. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM TOPLAS 36(2), 7:1–7:4 (2014)

14. ARM: ARM architecture reference manual ARMv7-A and ARMv7-R edition
(2012)

15. ISO/IEC 14882:2014. Programming language C++ (2014)

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-642-28756-5_15
https://doi.org/10.1007/978-3-642-28756-5_15
https://doi.org/10.1007/978-3-642-36742-7_37
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-642-33125-1_13
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-26850-7_3
https://doi.org/10.1007/978-3-319-26850-7_3
https://doi.org/10.1007/978-3-642-37036-6_28
https://doi.org/10.1007/978-3-642-37036-6_28
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9

Replacing Store Buffers by Load Buffers in TSO 27

16. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: POPL (2010)

17. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s decidable about
weak memory models? In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 26–46.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 2

18. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 9

19. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp.
533–553. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-
6 29

20. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: checking consistency of
concurrent data types on relaxed memory models. In: PLDI, pp. 12–21. ACM
(2007)

21. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 12

22. Burnim, J., Sen, K., Stergiou, C.: Testing concurrent programs on relaxed memory
models. In: ISSTA, pp. 122–132. ACM (2011)

23. Dan, A.M., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed
memory models. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol.
7935, pp. 84–104. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38856-9 7

24. Dan, A., Meshman, Y., Vechev, M., Yahav, E.: Effective abstractions for verifica-
tion under relaxed memory models. Comput. Lang. Syst. Struct. 47(Part 1), 62–76
(2017)

25. Demsky, B., Lam, P.: Satcheck: sat-directed stateless model checking for SC and
TSO. In: OOPSLA 2015, pp. 20–36. ACM (2015)

26. Derevenetc, E., Meyer, R.: Robustness against power is PSpace-complete. In:
Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8573, pp. 158–170. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43951-7 14

27. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

28. He, M., Vafeiadis, V., Qin, S., Ferreira, J.F.: Reasoning about fences and relaxed
atomics. In: 24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, PDP 2016, Heraklion, Crete, Greece, 17–19 February
2016, pp. 520–527 (2016)

29. Huang, S., Huang, J.: Maximal causality reduction for TSO and PSO. OOPSLA,
pp. 447–461 (2016)

30. IBM (ed.): Power ISA v. 2.05 (2007)
31. Inc, I.: IntelTM64 and IA-32 Architectures Software Developer’s Manuals
32. Kuperstein, M., Vechev, M.T., Yahav, E.: Automatic inference of memory fences.

In: FMCAD, pp. 111–119. IEEE (2010)
33. Kuperstein, M., Vechev, M.T., Yahav, E.: Partial-coherence abstractions for

relaxed memory models. In: PLDI, pp. 187–198. ACM (2011)
34. Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In:

Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 311–323. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47666-6 25

https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-540-70545-1_12
https://doi.org/10.1007/978-3-642-38856-9_7
https://doi.org/10.1007/978-3-642-38856-9_7
https://doi.org/10.1007/978-3-662-43951-7_14
https://doi.org/10.1007/978-3-662-43951-7_14
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25

28 P. A. Abdulla et al.

35. Lahav, O., Vafeiadis, V.: Explaining relaxed memory models with program trans-
formations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM
2016. LNCS, vol. 9995, pp. 479–495. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-48989-6 29

36. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. C–28(9), 690–691 (1979)

37. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M.T., Yahav, E.: Dynamic synthesis
for relaxed memory models. In: PLDI 2012, pp. 429–440 (2012)

38. Mador-Haim, S., et al.: An axiomatic memory model for POWER multiprocessors.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 495–512.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 36

39. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL2005, pp.
378–391. ACM (2005)

40. McKenney, P.E.: Memory ordering in modern microprocessors, part II. Linux J.
137, 5 (2005)

41. Nieplocha, J., Carpenter, B.: ARMCI: a portable remote memory copy library for
distributed array libraries and compiler run-time systems. In: Rolim, J., et al. (eds.)
IPPS 1999. LNCS, vol. 1586, pp. 533–546. Springer, Heidelberg (1999). https://
doi.org/10.1007/BFb0097937

42. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 27

43. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO (extended
version). Technical report. UCAM-CL-TR-745, University of Cambridge (2009)

44. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-tso: a rigorous
and usable programmer’s model for x86 multiprocessors. CACM 53, 89–97 (2010)

45. Tomasco, E., Lam, T.N., Fischer, B., Torre, S.L., Parlato, G.: Embedding weak
memory models within eager sequentialization, October 2016. http://eprints.soton.
ac.uk/402285/

46. Tomasco, E., Lam, T.N., Inverso, O., Fischer, B., Torre, S.L., Parlato, G.:
Lazy sequentialization for TSO and PSO via shared memory abstractions. In:
FMCAD16, pp. 193–200 (2016)

47. Travkin, O., Wehrheim, H.: Verification of concurrent programs on weak memory
models. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 3–24.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4 1

48. Vafeiadis, V.: Separation logic for weak memory models. In: Proceedings of the Pro-
gramming Languages Mentoring Workshop, PLMW@POPL 2015, Mumbai, India,
14 January 2015, p. 11:1 (2015)

49. Weaver, D., Germond, T. (eds.): The SPARC Architecture Manual Version 9. PTR
Prentice Hall, Englewood Cliffs (1994)

50. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: a framework for
axiomatic and executable specifications of memory consistency models. In: IPDPS.
IEEE (2004)

51. Zhang, N., Kusano, M., Wang, C.: Dynamic partial order reduction for relaxed
memory models. In: PLDI, pp. 250–259. ACM (2015)

https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1007/978-3-642-31424-7_36
https://doi.org/10.1007/BFb0097937
https://doi.org/10.1007/BFb0097937
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
http://eprints.soton.ac.uk/402285/
http://eprints.soton.ac.uk/402285/
https://doi.org/10.1007/978-3-319-46750-4_1

Distributed Systems and Protocols

Orchestration Synthesis for Real-Time
Service Contracts

Davide Basile1,2(B), Maurice H. ter Beek2, Axel Legay3,
and Louis-Marie Traonouez3

1 University of Florence, Florence, Italy
2 ISTI–CNR, Pisa, Italy

{davide.basile,maurice.terbeek}@isti.cnr.it
3 Inria Rennes, Rennes, France

{axel.legay,louis-marie.traonouez}@inria.fr

Abstract. Service contracts offer a way to define the desired
behavioural compliance of a composition of services, characterised by the
fulfilment of all requirements (e.g. service requests) by obligations (e.g.
service offers). Depending on their granularity, requirements may vary
according to their criticality and contain real-time aspects (e.g. service
expiration time). Synthesis of safe orchestrations, the standard method
to refine spurious compositions into compliant ones, is of paramount
importance. Ideally, safe orchestrations solve competition among match-
ing requests/offers, respecting criticalities and time constraints, in the
best possible way. The contribution of this paper is (i) the introduc-
tion of timed service contract automata, a novel formalisation of service
contracts with (ii) real-time constraints and (iii) service requests with
varying levels of criticality, and a means to compute their (iv) composi-
tion and (v) safe orchestration. Orchestration is based on the synthesis
of the most permissive controller from supervisory control theory, com-
puted using the concept of zones from timed games. An intuitive example
illustrates the contribution.

1 Introduction

Service computing is concerned with the creation, publication, discovery and
orchestration of services [1]. A typical application is an orchestration of services
created and published by different organisations that are dynamically discovered.
In the recent Service Computing Manifesto [2], service design is listed as one of
the four emerging research challenges in service computing for the next 10 years.

Formal models of service contracts are surveyed in [3]. These offer specification
frameworks to formalise the externally observable behaviour of services in terms of
obligations (i.e. offers) and requirements (i.e. requests) to be matched. Contracts
that are fulfilled characterise agreement among services as an orchestration (i.e.
composition) based on the satisfaction of all requirements through obligations.
Orchestrations must be able to dynamically adapt to the discovery of new services,
to service updates and to services that are no longer available [4].
c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 31–47, 2018.
https://doi.org/10.1007/978-3-030-00359-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_3&domain=pdf

32 D. Basile et al.

In this paper, we include notions of time in one such model, viz. (service) con-
tract automata [5]. Such an automaton represents either a single service (called
a principal) or a multi-party composition of services. The goal of each principal
is to reach an accepting (final) state by matching its requests with corresponding
offers of other principals. The underlying composition mechanism is orchestra-
tion. Service interactions are implicitly controlled by an orchestrator synthesised
from the principals, which directs them in such a way that only finite executions
in agreement actually happen. The (verifiable) notion of agreement characterises
safe executions of services (i.e. all requests are matched by corresponding offers).

In [6], service contract automata were equipped with modalities distinguish-
ing necessary and permitted requests to mimick the uncontrollable and control-
lable actions, respectively, as known from Supervisory Control Theory (SCT) [7].

Contribution. We introduce timed service contract automata (TSCA) by endow-
ing service contract automata with real-time constraints. TSCA also allow to
specify different types of necessary requests, called urgent , greedy and lazy, with
decreasing levels of criticality as in [8], which are key aspects to ensure that cer-
tain necessary requests must always be satisfied (e.g. in each possible context)
while others must eventually be satisfied (e.g. in specific contexts). To handle
this in a synthesis algorithm for TSCA, a notion of semi-controllability is used,
which encompasses both the notion of controllability and that of uncontrollabil-
ity as used in classical synthesis algorithms from SCT. Our synthesis algorithm
mixes and extends techniques from SCT with notions from timed games [9,10].

A TSCA orchestration thus solves multi-party competitions on service actions
and on the associated timing constraints, a natural scenario in service computing.
Moreover, TSCA offer a lot of flexibility in the design of service systems through
different levels of critical requests and, in particular, by allowing to indicate
those service offers and requests that can possibly be (temporarily) ignored in
an orchestration to avoid it becoming unsafe. This neatly delimits the fragments
(i.e. executions) of service compositions allowed in safe orchestrations (cf. Fig. 4
discussed in Sect. 4). By changing the timing constraints or criticality levels,
designers can fine-tune such fragments according to their specific needs.

We summarise our contribution: (i) we introduce TSCA, a new formalisation
of service contracts with (ii) real-time constraints and (iii) service requests with
varying criticality levels, and a means to compute TSCA (iv) composition and
(v) safe orchestration. We are not aware of other formalisms for service contracts
or component-based software engineering with native support for these features.
We illustrate its functioning with a TSCA model of a Hotel reservation system.

Related Work. Formalisms for service contracts and session types are surveyed in
[11]: all of them lack an explicit notion of time and different levels of criticality.

Component-based formalisms like Interface automata [12] and (timed) (I/O)
automata [13–15] cannot model contracts that compete for the same service
offer or request, a key feature of TSCA, and also do not allow different critical-
ity levels. Modal I/O automata [16] distinguish may and must modalities, thus
admitting some actions to be more critical than others, but the other differences

Orchestration Synthesis for Real-Time Service Contracts 33

remain. The accidentally homonym contract automata of [17] were introduced
to model generic natural language legal contracts between two parties: they are
not compositional and do not focus on synthesising orchestrations of services in
agreement.

Finally, the synthesis algorithm for TSCA (introduced in Sect. 3) resembles
a timed game, but differs from classical timed game algorithms [9,10]: it solves
both reachability and safety problems, and a TSCA might be such that all
‘bad’ configurations are unreachable (i.e. it is safe), while at the same time no
final configuration is reachable (i.e. the resulting orchestration is empty). TSCA
strategies are defined as relations: the orchestration is the maximal winning
strategy, which is computable since only finite traces are allowed [18] and all
services terminate by definition. The orchestrator enforces only fair executions.

2 Modelling Real-Time Service Contracts

Contract automata were introduced to describe and compose service contracts
[5]. A contract automaton represents the behaviour of a set of principals (possibly
a singleton) which can either request, offer or match services (a match is a pair of
complementary request-offer services) or remain idle. The number of principals
in a contract automaton is called its rank. The states and actions labelling the
transitions of a contract automaton (of rank n) are vectors (of rank n) over the
states of its principals and over the actions that each performs, respectively.

Notation. The complement of a finite set S is denoted by S; the empty set by
∅. For a vector v = (e1, . . . , en) of rank n ≥ 1, denoted by rv, its ith element is
denoted v(i), 1 ≤ i ≤ rv. Concatenation of m vectors vi is denoted by v1 · · ·vm.

The set of basic actions of a contract automaton is defined as Σ = R∪O∪{•},
where R = {a, b, . . .} is the set of requests, O = {a, b, . . .} is the set of offers,
R ∩O = ∅, and • �∈ R ∪O is a distinguished element representing an idle move.
We define the involution co(·) : Σ �→ Σ s.t. co(R) = O, co(O) = R and co(•) = •.

We stipulate that in an action vector a over Σ there is either a single offer
or a single request, or a single pair of request-offer that matches, i.e. there exist
i, j such that a(i) is an offer and a(j) is the complementary request or vice versa;
all the other entries of a contain the symbol • (meaning that the corresponding
principals remain idle). Let •m denote a vector (•, . . . , •) of rank m.
Definition 1 (Actions). Let a be an action vector over Σ. Let n1, n2, n3 ≥ 0.

If a = •n1α•n2 , then a is a request (action) on α if α ∈ R, whereas a is an
offer (action) on α if α ∈ O.

If a = •n1α •n2 co(α)•n3 , then a is a match (action) on α, with α ∈ R ∪ O.
Actions a and b are complementary, denoted by a�b, iff the following holds:

(i) ∃α∈R∪O s.t.a is either a request or offer on α; (ii)a is an offer on α implies
b is a request on co(α); (iii) a is a request on α implies b is an offer on co(α).

In [6], the contract automata of [5] were equipped with action variability via
necessary (�) and permitted (�) modalities that can be used to classify requests
(and matches), while all offers are by definition permitted. Permitted requests
and offers reflect optional behaviour and can thus be discarded in compositions.

34 D. Basile et al.

2.1 Timed Service Contract Automata

In this paper, the set of necessary requests of the service contract automata of
[6] is partitioned in urgent, greedy and lazy requests as in [8]. These must be
matched to reach agreement, thus adding a layer of ‘timed’ variability: a means
to specify ‘when’ certain (service) requests must be matched in a composition
(contract). Table 1 depicts the different types of actions considered in this paper.

Table 1. Classification of (basic) actions of timed service contract automata

Permitted offers Permitted requests Necessary requests

lazy greedy urgent

a a� a�� a�g a�u

We borrow notation concerning clocks from [10]. Let X be a finite set of
real-valued variables called clocks. Let C(X) denote the set of constraints ϕ
generated by the grammar ϕ ::=x ∼ k | x − y ∼ k | ϕ ∧ ϕ, where k ∈ Z, x, y ∈ X
and ∼ ∈ {<,≤,=, >,≥}. Let B(X) denote the subset of C(X) that uses only
rectangular constraints of the form x ∼ k. For simplicity, we consider only such
constraints. A valuation of the variables in X is a mapping X �→ R≥0. Let 0
denote the valuation that assigns 0 to each clock. For Y ⊆ X, let v[Y] denote
the valuation assigning 0 for any x ∈ Y and v(x) for any x ∈ X \ Y . Let v + δ
for δ ∈ R≥0 denote the valuation s.t. for all x ∈ X, (v + δ)(x) = v(x) + δ. For
g ∈ C(X) and v ∈ R

X
≥0, we write v |= g if v satisfies g and [g] denotes the set of

valuations {v ∈ R
X
≥0 | v |= g }. A zone Z is a subset of R

X
≥0 s.t. [g] = Z for some

g ∈ C(X).

Definition 2 (TSCA). A timed service contract automaton A (TSCA for
short) of rank n ≥ 1 is a tuple 〈Q, q0, A�, A�u , A�g , A�� , Ao,X, T, F 〉, in which

– Q = Q1 × · · · × Qn is the product of finite sets of states
– q0 ∈ Q is the initial state
– A�, A�u , A�g , A�� ⊆ R are (pairwise disjoint) sets of permitted, urgent,

greedy and lazy requests, respectively, and we denote the set of requests by
Ar = A� ∪ A�, where A� = A�u ∪ A�g ∪ A��

– Ao ⊆ O is the finite set of offers
– X is a finite set of real-valued clocks
– T ⊆ Q×B(X)×A×2X×Q, where A = (Ar∪Ao∪{•})n, is the set of transitions

partitioned into permitted transitions T� and necessary transitions T� with
T = T� ∪ T� s.t., given t = (q, g,a, Y, q′) ∈ T , the following holds:
– a is either a request or an offer or a match
– ∀i ∈ 1 . . . n : a(i) = • implies q(i) = q′

(i)

– t ∈ T� iff a is either a request or a match on a ∈ A� or an offer on
a ∈ Ao; otherwise t ∈ T�

– F ⊆ Q is the set of final states

A principal TSCA (or just principal) has rank 1 and Ar ∩ co(Ao) = ∅.

Orchestration Synthesis for Real-Time Service Contracts 35

Fig. 1. TSCA: (a) hotel booking system; (b) discount client

For brevity, unless stated differently, in the sequel we assume a fixed TSCA
A = 〈QA, q0A , A�

A, A�u

A , A
�g

A , A��

A , Ao
A,XA, TA, FA〉 of rank n. Subscript A may

be omitted when no confusion can arise. Moreover, if not stated otherwise, each
operation op(Ar) (e.g. union) is intended to be performed homomorphically on
op(A�), op(A�), op(A�u), op(A�g) and op(A��). Finally, abusing notation, we
may write T� ∪ � as shorthand for T� ∪T� and likewise for other transition sets,
and we may write a transition t as a request, offer or match, if its label is such.

Pictorially, offer actions are overlined while request actions are not. Moreover,
permitted actions label dotted transitions and are suffixed by �, whereas urgent,
greedy and lazy necessary actions label red, orange and green transitions and
are suffixed by �u, �g and ��, respectively (cf. Table 1).1

Example 1. Figure 1 shows two TSCA. The one in Fig. 1a depicts a hotel booking
system offering two room types (normal and discount) and requests payment
from clients. The discount room is only available upon waiting at least 50 time
units (t.u. for short). Then the hotel requests payment, either in cash (which
takes at least 4 t.u.) or by card (at least 5 t.u.). In the latter case only, the hotel
offers a receipt after at least 5 t.u. The TSCA in Fig. 1b depicts a hotel client,
who requests a discount room, offers to pay by card and requests a receipt.

2.2 Semantics

A TSCA recognises a trace language over actions and their modalities. Let A
be a TSCA and let � ∈ {�,�u,�g,��}. From now on we use � as placeholder
for necessary (�) and permitted (�) transitions. A configuration of a TSCA is
a tuple (w, q, v)∈(A ∪ {�})∗ × Q × R

X
≥0 consisting of a recognised trace, a state

and a valuation of clocks. Recognised traces are such that from a configuration
(w, q, v), a TSCA either lets time progress or performs a discrete step to reach a
new configuration. This is formally defined by the transition relation → by which
a step (w, q, v) a�−−→(w′, q′, v′) is fired iff w = a� w′ and (q, g,a, Y, q′) ∈ T�,
where v |= g and v′ = v[Y] or else, for some δ≥0, we have (w, q, v) δ−→(w, q, v′) if
v′ = v + δ. Time progress δ is a silent action in languages recognised by TSCA.

The semantics of a TSCA A is a labelled transition system TSA = (C, c0,→),
where C=(A∪{�})∗ ×Q×R

X
≥0 is the set of configurations, c0=(w, q0,0) is the

1 In this paper, there are no examples of greedy necessary actions.

36 D. Basile et al.

initial configuration, for some w ∈ (A ∪ {�})∗, and the set of transition labels
is (A{�}) ∪ R≥0. A run of A is a sequence of alternating time and discrete
transitions in TSA. Note that the traces recognised by TSCA languages are
finite.

By an abuse of notation, modalities can be attached to basic actions or to
their action vector (e.g. (a��, a) ≡ (a, a)��). We may write (q, v) whenever w is
immaterial, (q, v) a�−−→ whenever (q′, v′) is immaterial and (w, q, v) → (w′, q′, v′)
whenever a� or δ are immaterial. Let →∗ denote the reflexive and transitive
closure of →. The language of A is L (A) = {w | (w, q0,0)−→∗(ε, q, v), q ∈ F }.

Behavioural analysis is based on exploring a (finite) simulation graph, whose
nodes are symbolic configurations, defined as pairs (q, Z), where q ∈ Q and Z
is a zone of R

X
≥0. Let C ⊆ C be a set of configurations and let a ∈ A. Then we

define the a-successor of X by PostA,a(C) = { c′ | ∃ c ∈ C : c a◦−→c′ } and the
a-predecessor PredA,a(C) = { c | ∃ c′ ∈ C : c a◦−→c′ }. We moreover define the
match/offer predecessor as moPredA(C) =

⋃
a match or offer PredA,a(C).

The timed successors and timed predecessors of C are defined by C↗ =
{ (q, v + δ) | (q, v) ∈ C, δ ∈ R≥0 } and C↙ = { (q, v − δ) | (q, v) ∈ C, δ ∈ R≥0 },
respectively. Let → be the transition relation defined on symbolic configurations
by (q, Z) a�−−→(q′, Z ′) if (q, g,a, Y, q′) ∈ T� and Z ′ = ((Z ∩ [g])[Y])↗.

2.3 Composition

A set of TSCA is composable iff their sets of clocks are pairwise disjoint.

Definition 3 (Composable TSCA). A set {Ai | i ∈ 1 . . . n } of TSCA is said
to be composable iff ∀Xi,Xj , i �= j : Xi ∩ Xj = ∅.

The operands of the composition operator are either principals or composite
services. Intuitively, a composition interleaves the actions of all operands, with
only one restriction: if two operands are ready to execute two complementary
actions, then only their match is allowed wheras their interleaving is prevented.
The formal definition precedes an intuitive explanation. Recall from Definition 2
that the set of actions is A ⊆ (Ar∪Ao∪{•})m. Also recall that we set � ∈ {�,�}.

Definition 4 (Composition). Let Ai be composable TSCA of rank ri,
i ∈ 1 . . . n. The composition

⊗
i∈1...n Ai is the TSCA A of rank m =∑

i∈1...n ri, where

– Q = Q1 × · · · × Qn, with q0 = q01 · · · q0n

– Ar =
⋃

i∈1...n Ar
i , Ao =

⋃
i∈1...n Ao

i , X =
⋃

i∈1...n Xi

– T� ⊆ Q × B(X) × A × 2X × Q s.t. (q, g,a, Y, q′) ∈ T� iff, when q =
q1 · · · qn ∈ Q, either case (1) or case (2) holds:
1. ∃ i, j, 1 ≤ i < j ≤ n, s.t. (qi, gi,ai, Yi, q

′
i) ∈ T�

i , (qj , gj ,aj , Yj , q
′
j) ∈

T� ∪ �
j , ai � aj holds, and
⎧
⎨

⎩

a = •uai •v aj•z,with u = r1 + · · · + ri−1, v = ri+1 + · · · + rj−1,
z = rj+1 + · · · + rn, |a| = m, g = gi ∧ gj , Y = Yi ∪ Yj ,
and q′ = q1 · · · qi−1 q′

i qi+1 · · · qj−1 q′
j qj+1 · · · qn

Orchestration Synthesis for Real-Time Service Contracts 37

or
⎧
⎨

⎩

k, k′ ∈ {i, j}, k �= k′, g = gk ∧ ¬gk′ , Y = Yk,
a = •uak•v,with u = r1 + · · · + rk−1, v = rk+1 + · · · + rn, |a| = m,
and q′ = q1 · · · qi−1 q′

i qi+1 · · · qn

2. ∃ i, 1 ≤ i ≤ n, s.t. (qi, gi,ai, Yi, q
′
i) ∈ T�

i and ∀j �= i, 1 ≤ j ≤
n, s.t. (qj , gj ,aj , Yj , q

′
j) ∈ T� ∪ �

j , ai � aj does not hold, and
{
a = •uai•v,with u = r1 + · · · + ri−1, v = ri+1 + · · · + rn, |a| = m,
g = gi, Y = Yi, and q′ = q1 · · · qi−1 q′

i qi+1 · · · qn

– F = { q1 · · · qn ∈ Q | qi ∈ Fi, i ∈ 1 . . . n }
The composition of (untimed) contract automata has been carefully revisited in
Definition 4. Case (1) generates match transitions starting from complementary
actions of two operands’ transitions, say ai �aj . If (qj , gj ,aj , Yj , q

′
j) ∈ T�, then

the resulting match transition is marked necessary (i.e. (q, g,a, Y, q′)∈ T�), with
g = gi ∧ gj the conjunction of the guards. If both ai and aj are permitted, then
so is their resulting match transition t. All principals not involved in t remain
idle. In case ai �aj as before, but only one guard (i.e. either gi or gj) is satisfied,
then only the interleaving is possible and guard g = gk ∧¬gk′ requires the guard
of principal k (either gi or gj) to be satisfied and that of principal k′ �= k not.

Case (2) generates all interleaved transitions if no complementary actions can
be executed from the composed source state (i.e. q). Now one operand executes
its transition t = (qi, gi,ai, Yi, q

′
i) and all others remain idle: only the guard

of principal i must be satisfied. The resulting transition is marked necessary
(permitted) only if t is necessary (permitted, respectively). Note that condition
ai �aj excludes pre-existing match transitions of the operands to generate new
matches.

Fig. 2. Excerpt of composition Hotel ⊗ DiscountClient of the two TSCA in Fig. 1

Example 2. Figure 2 shows excerpts of the TSCA composition of the hotel and
client TSCA of Fig. 1. The more relevant part is depicted, viz. whose semantics
is an orchestration (from initial to final state). Note that request discount�� can
either be matched with the offer discount if y ≥ 50 or not matched if y < 50.

38 D. Basile et al.

2.4 Controllability

We now discuss the different types of actions of TSCA (cf. Table 1) in light of
the orchestration synthesis algorithm we will present in Sect. 3. To begin with,
we define dangling configurations, i.e. those that are either not reachable or
from which no final state can be reached (i.e. not successful). The orchestration
synthesis will be specified as a safety game, in which reachability of final states is
satisfied through the dangling predicate. The definition makes use of a set C of
‘bad’ configurations that are not to be traversed. Recall that A is a fixed TSCA.

Definition 5 (Dangling configuration). Let A, C ⊆ C and c = (q, v) ∈ C.
We say that c is reachable in A given C, denoted as c ∈ ReachableA(C), iff

(q0,0) w−→∗c without traversing configurations (qr, vr) ∈ C.
We say that c is successful in A given C, denoted as c ∈ SuccessfulA(C), iff

c w−→∗(qf , v′) ∈ F without traversing configurations (qr, vr) ∈ C.
The set of dangling configurations in A given C is defined as

DanglingA(C) = ReachableA(C) ∩ SuccessfulA(C).

In the sequel, abusing notation, we simply say that a state q ∈ Q is dangling
(in A given C), denoted by q ∈ DanglingA(C), iff (q, v) ∈ DanglingA(C) for all
possible evaluations v. Moreover, we set Dangling(A) = DanglingA(∅).

Orchestration synthesis for (service) contract automata resembles that of
the most permissive controller from SCT; in fact, [6] provided a correspondence
between controllable/uncontrollable actions from SCT and permitted/necessary
requests of contract automata. Intuitively, the aim of SCT is to synthesise a most
permissive controller enforcing ‘good’ computations, i.e. runs reaching a final
state without traversing any given forbidden state. To do so, SCT distinguishes
controllable events (those the controller can disable) from uncontrollable events
(those always enabled). Ideally, actions ruining a so-called safe orchestration
of service contracts (a notion formally defined in Sect. 3, resembling a most
permissive controller) should be removed by the synthesis algorithm. However,
this can only be done for actions that are controllable in the orchestration.

We now characterise when a TSCA action (and the transition it labels) is
(un)controllable. We also define ‘when’ a necessary request can be matched,
stemming from the composition of TSCA (interleavings in Definition 4). Indeed,
in TSCA it is possible to require that a necessary action (either a request or a
match) must be matched in every possible configuration of the orchestration. It
is also possible to require that a necessary action must be matched in at least
one configuration from which it is fired. In the latter situation, it is possible
to safely remove those requests (or matches) from the orchestration, as long as
they appear as part of a match in some other transition of the orchestration.
Such necessary actions are called semi-controllable, basically a controllable action
becomes uncontrollable in case all possible matches are removed, but not vice
versa. Table 2 summarises the controllability of requests and matches of TSCA.

Recall that all offers are permitted. All permitted actions (offers, requests
and matches) are fully controllable. Necessary actions (urgent , greedy and lazy

Orchestration Synthesis for Real-Time Service Contracts 39

Table 2. Controllability of request actions and match actions

Action Requests Matches

Urgent �u Uncontrollable Uncontrollable

Greedy �g Semi-controllable Uncontrollable

Lazy �� Semi-controllable Semi-controllable

Permitted � Controllable Controllable

requests) have an increasing degree of (semi-)controllability. An urgent request
must be matched in every possible state in which it can be executed. Accordingly,
urgent requests and urgent matches are uncontrollable. A greedy request can be
disabled by the controller as long as it is matched elsewhere; once it is matched,
it can no longer be disabled. In this case, greedy requests are semi-controllable
while greedy matches are uncontrollable. Finally, a lazy action only requires to
be matched: its matches are controllable in the orchestration, provided at least
one match is available (i.e. lazy requests and lazy matches are semi-controllable).

In the rest of this section, we characterise semi-controllability of transitions
(cf. Definition 6). Since we deal with real-time systems, this notion is defined on
configurations. Note from Table 2 that permitted actions are always controllable,
while urgent actions are always uncontrollable.

A semi-controllable transition t is either a (greedy or lazy) request or a lazy
match, and it is controllable in TSCA A given C if there exists a (greedy or lazy)
match transition t′ in A, which is reachable given C, and in both t and t′ the
same principal, in the same local state, does the same request, and additionally
the target configuration is successful given C. Otherwise, t is uncontrollable.

Definition 6 (Semi-controllable transition). Let A be a TSCA, let C ⊆ C

and let t = (q1, g1,a1, Y1, q
′
1) be a transition of A. Then t is semi-controllable

if it is a request on a ∈ A�g ∪ A�� or a match on a ∈ A�� .
At the same time, t is either controllable or uncontrollable in A given C.
We say that t is controllable in A given C if ∃ t′ = (q2, g2,a2, Y2, q

′
2) ∈

T�, s.t. a2 is a match, ∃ v s.t. (q2, v) ∈ ReachableA(C), (q′
2, v

′) ∈
PostA,a2((q2, v)↗), (q′

2, v
′) ∈ SuccessfulA(C), q1(i) = q2(i) and a1(i) = a2(i) ∈

R ∩ (A�g ∪ A��); otherwise t is uncontrollable in A given C.

In Definition 6, it does not suffice to require q2 or q′
2 to be in DanglingA(C):

it could be the case that q′
2 is only reachable from a trace not passing through

transition t′, while q2 only reaches a final configuration through a trace not
traversing t′. Hence, we need to require that for some v, (q2, v) is reachable, and
(q′

2, v
′) is a (timed) successor of (q2, v) that reaches a final configuration.

Example 3. In Fig. 2, all transitions are permitted, except for the lazy dis-
count actions. The transition (•, discount)�� is thus a controllable lazy
request, as the same request of DiscountClient is matched in the transition
(discount , discount)��. In the resulting orchestration (cf. Sect. 4) this will be
the only match available for such a necessary action.

40 D. Basile et al.

We call a transition uncontrollable if one of the above cases holds (i.e. urgent
or greedy match, uncontrollable greedy or lazy request or uncontrollable lazy
match).

3 Orchestration Synthesis

In this section, we define synthesis of safe orchestrations of TSCA, considering
both timing constraints and service requests with different levels of criticality. We
carefully adapt the synthesis algorithm for (modal) service contract automata
defined in [6], which was based on the synthesis of the most permissive controller
from SCT. To respect the timing constraints, the synthesis algorithm of TSCA
presented below is computed using the notion of zones from timed games [9,10].

The algorithm we will propose differs from the ones presented in [9,10] by
combining two separate games, viz. reachability games and safety games. Indeed,
as said before, the orchestration synthesis of TSCA is based on the synthesis
of the most permissive controller from SCT, which ensures that (i) forbidden
states are never traversed (a.k.a. a safety game) and (ii) marked states must be
reachable (a.k.a. a reachability game). In the TSCA framework, marked states
are the final states of the composition of contracts, whereas bad states are those
states that spoil an agreement among contracts (cf. Definitions 7 and 9 below).

We recall (modal) agreement and safety on languages of service contract
automata [6]. Intuitively, a trace is in agreement if it is a concatenation of
matches, offers and their modalities, while a TSCA is safe if all traces of its
language are in agreement, and it admits agreement if at least one of its traces
is.

Definition 7 (Agreement, safety). Let A be a TSCA. A trace accepted by A
is in agreement if it belongs to the set

A={w∈(Σn�)∗ | ∀i s.t. w(i)=a�, a is a match or an offer, n>1 }
A is safe if L (A) ⊆ A; else unsafe. If L (A)∩A �= ∅, then A admits agreement.

Basically, an orchestration of TSCA enables the largest sub-portion of a com-
position of TSCA that is safe. Given the timed setting, the orchestration must
consider clock evaluations for each contract. Hence, the underlying transition
system of a TSCA is inspected by the synthesis algorithm. The orchestration
will be rendered as a strategy on this transition system such that only traces in
agreement are enforced. We start by introducing the notion of strategy on TSCA
and that of a well-formed strategy: a strategy avoiding dangling configurations.

Definition 8 (Strategy). Let A be a TSCA. A strategy f is a relation defined
as f : (Σn{�} ∪ R

X
≥0)

∗ × (Σn{�} ∪ R
X
≥0) mapping traces to actions or delays

s.t. given (q0,0) w−→∗(q, v), then (q, v) λ−→(q′, v′), for some λ ∈ f(w), (q′, v′) ∈ C.
Furthermore, f is well-formed given C ⊆ C if never (q′, v′) ∈ DanglingA(C).

The language recognised by A following the strategy f is denoted by Lf (A) and
fC denotes the strategy allowing to traverse all and only configurations in C.

Orchestration Synthesis for Real-Time Service Contracts 41

We discuss further differences compared to timed games. A TSCA game can
be seen as a 2-player game. A controller (i.e. orchestrator) fires controllable tran-
sitions to enforce agreement among contracts. An opponent fires uncontrollable
transitions to drive the orchestrator to some ‘bad’ configuration, from which an
agreement can no longer be enforced (cf. Definition 9). The opponent has prece-
dence over the orchestrator, as long as its uncontrollable transitions are enabled
(i.e. satisfied clock guards). Finally, fairness of TSCA guarantees that a final
state is eventually reached, as traces recognised by TSCA languages are finite.

In timed games, strategies cannot prevent uncontrollable transitions from
being fired. This follows from the notion of outcome of a strategy, which is used to
characterise winning strategies. In TSCA, winning strategies are defined as those
avoiding ‘bad’ configurations while at the same time enforcing agreement among
contracts. Next we will formally define bad configurations, i.e. configurations
in uncontrollable disagreement. Basically, a configuration is in uncontrollable
disagreement if the orchestrator cannot prevent a request of a principal from
being fired without a corresponding offer (i.e. no match). In such configurations,
the controller loses: the orchestration is unsafe. Note that the opponent can only
win by reaching one such configuration. Indeed, unfair traces are ruled out in
TSCA.

Definition 9 (Configuration in uncontrollable disagreement). Let A be
a TSCA and let C ⊆ C. A transition t = q a−→ ∈ TA is forced in a configuration
(q, v) given C iff (q, v) a−→ and (i) t is uncontrollable in A given C or (ii) q �∈ F
and no other t′ = q a′−→ ∈ TA is s.t. (q, v) δ−→(q, v′) a′−→ for some delay δ.

A configuration (q, v1) �∈ DanglingA(C) is in uncontrollable disagreement in
A given C iff (q, v1) w−→∗(q1, v2) s.t. only timed or forced transitions are enabled
and either (i) w �∈ A or (ii) some configuration in C was traversed or (iii) � w′ ∈
A s.t. (q1, v2) w′−→∗(qf , v3) with qf ∈ FA without traversing configurations in C.

A safe orchestration of TSCA can be interpreted as a winning strategy in
terms of timed games, and it is defined below. Basically, a winning strategy
enforces agreement among contracts: no bad configurations will ever be tra-
versed.

Definition 10 (Winning strategy). Let A be a TSCA, f be a strategy given
C ⊆ C and U its set of configurations in uncontrollable disagreement in A given
C. Then f is a winning strategy given C if it is well-formed given C, it never
traverses configurations in U and Lf (A) ⊆ A. A winning strategy f given C is
maximal if there is no winning strategy f ′ given C s.t. Lf (A) ⊆ Lf ′(A).

Before defining the synthesis of a safe orchestration, we introduce some useful
notions. Given a set of configurations C ⊆ C of a TSCA A, the uncontrollable
predecessor predicate uPredA(C) is defined as all configurations from which some
configuration in C is reachable by firing an uncontrollable transition. Formally:

uPredA(C) = { c | ∃c′ ∈ C, c a�−−→c′ uncontrollable in A given C }

42 D. Basile et al.

We borrow the notion of safe timed predecessor of a set C1 ⊆ C with respect
to a set C2 ⊆ C from [10]. Intuitively, a configuration c is in PredA,t(C1, C2) if
from c it is possible to reach a configuration c′ ∈ C1 by time elapsing and the
trace from c to c′ avoids configurations in C2. Formally:

PredA,t(C1, C2) = { c ∈ C | ∃ δ∈R≥0 s.t. c δ−→c′, c′ ∈C1 and PostA,[0,δ](c)⊆C2 },

where PostA,[0,δ](c) = { c′ ∈ C | ∃ t ∈ [0, δ] s.t. c t−→c′ } and C2 = C \ C2

We can now specify the synthesis of a safe orchestration of TSCA. Let Â denote
the TSCA obtained from A by replacing TA with TÂ = { t = q a◦−→ | t ∈
TA and (� �= �∨a not request) }, i.e. all permitted requests are pruned from A.

Definition 11 (Safe orchestration synthesis). Let A be a TSCA and let
φ : 2C → 2C be a monotone function on the cpo (2C,⊆) s.t. φ(Ci−1) = Ci, where
C0 = { c | c ∈ C, c a�−−→, a uncontrollable request in Â given ∅ } and

Ci = PredÂ,t(Ci−1 ∪ uPredÂ(Ci−1),moPredÂ(Ci−1)) ∪ DanglingÂ(Ci−1) ∪ Ci−1

Finally, let C
∗ = sup({φn(C0) | n ∈ N }) be the least fixed point of φ. Then the

safe orchestration of A is the strategy:

f∗ =
{⊥ if (q0,0) ∈ C

∗

fC
∗

otherwise

This definition is such that whenever the initial configuration belongs to C
∗, then

the orchestration is empty : no strategy exists to enforce agreement among con-
tracts while avoiding configurations in uncontrollable disagreement. Otherwise,
C

∗
identifies a winning strategy characterising a safe orchestration of contracts.

This strategy allows as many transitions as possible without traversing configu-
rations in C

∗. The controller can avoid principals reaching bad configurations in
C

∗, while guaranteeing all requirements to be satisfied. C
∗

moreover identifies
the maximal winning strategy, i.e. f∗ allows all controllable match/offer transi-
tions to configurations not in C

∗ (recall f∗ is not a function). Note that f∗ is
computable due to finiteness of the symbolic configurations and monotonicity of
the fixed-point computation [10]: it is the maximal well-formed winning strategy.

Theorem 1 (Maximal winning strategy). Let A be a TSCA and f∗ be the
strategy computed through Definition 11. If f∗ = ⊥, then there exists no well-
formed winning strategy f given C

∗. Otherwise, f∗ is the maximal well-formed
winning strategy in A given C

∗.

Example 4. Recall the composition Hotel⊗DiscountClient in Fig. 2. We can apply
the synthesis algorithm to compute its safe orchestration f∗. In f∗, the request
transition (•, discount��) is removed because it is controllable (cf. Example 3).
The language recognised by f∗ is the singleton Lf∗(Hotel ⊗ DiscountClient) =
{(discount, discount)��(card, card)�(receipt, receipt)�}.

Orchestration Synthesis for Real-Time Service Contracts 43

In [10] (Theorem 4) the computation of PredA,t is reduced to the following
basic operations on zones: PredA,t(C1, C2) = (C↙

1 \ C↙
2) ∪ ((C1 ∩ C↙

2) \ C2)↙.
Similarly, we now provide procedures for computing the newly introduced sets
moPredA, uPredA and DanglingA using basic operations on zones. Together these
provide an effective procedure for computing C

∗ (hence a safe orchestration). The
set moPredA can be computed from PredA by only considering discrete steps that
are not requests. Conversely, both uPredA and DanglingA require visiting the
symbolic configurations of A, and can be computed as follows.

Theorem 2 (Compute dangling configuration). Let A be a TSCA, C ⊆ C

and φ be as in Definition 11 s.t. φ(Ci−1) = Ci and C
∗ = sup({φn(C0) | n ∈ N }).

1. The reachable configurations in A given C are computed as ReachableA(C) =
C

∗, where C0 = (q0,0)↗ \ C↗ and Ci =
⋃

a(PostA,a(Ci−1)↗ \ C↗) ∪ Ci−1

2. The successful configurations in A given C are computed as SuccessfulA(C)=
C

∗, where C0 = { (qf , v) | qf ∈ FA and v ∈ R
XA
≥0 } \ C and Ci =

PredA,t(Ci−1 ∪ (PredA(Ci−1) \ C), C) ∪ Ci−1

3. The dangling configurations in A given C are computed as DanglingA(C) =
SuccessfulA(C ∪ ReachableA(C))

Note that the dangling configurations are efficiently computed by combining a
forward exploration (i.e. reachable configurations) with a backward exploration
(i.e. successful configurations): it is then possible to ignore unreachable suc-
cessful configurations. We thus determined an effective procedure to compute
DanglingA(C) that uses basic operations on zones. Finally, we define a proce-
dure for computing the set of uncontrollable predecessors using Theorem 2.

Lemma 1 (Compute uncontrollable predecessors). Let A be a TSCA and
C ⊆ C. Then the set of uncontrollable predecessors of C in A is computed as

uPredA(C) = { c ∈ C | ∃c′ ∈ C : c a�−−→c′ ∈ uncA(C) },

where uncA(C) = { (q, v) a�−−→ | (q, v)∈C∧(a urgent∨a greedy match∨ (�(q2, v)∈
ReachableA(C), (q′

2, v
′) ∈ SuccessfulA(C).(q′

2, v
′) ∈ PostA,a′(q2, v)↗ ∧ a(i) =

a′
(i) = a ∈ R ∧ a′ match ∧ q(i) = q2(i))) }

With our results, safe TSCA orchestrations can be implemented using libraries
for timed games [19,20] with primitive zone operations (i.e. ∪, ∩, \, ↗ and ↙).

4 Running Example Revisted

We continue our running example with a PriviledgedClient, depicted in Fig. 3a,
optionally asking for a discount room via a permitted request, but after 8 t.u.
(in its initial state) urgently requests a normal room. In orchestration f∗ of
composition (Hotel ⊗DiscountClient) ⊗ PriviledgedClient, the discount request of
DiscountClient could be matched before one of the requests of PriviledgedClient.
But, this interaction is prevented in f∗. Let a = (discount, discount, •)��,

44 D. Basile et al.

b = (•, •, room)�u, t1 = ((qH0, qD0, qP0), y ≥ 50,a, y ← 0, (qH1, qD1, qP0))
and t2 = ((qH1, qD1, qP0), x ≥ 8, b, ∅, (qH1, qD1, qP1)). Now t1 is not enabled
by f∗ or else we can reach a configuration c2 in uncontrollable disagree-
ment via c0

δ = 50−−−−→c1
a−→c2

δ = 0−−−→c2
b−→. In c2, the uncontrollable transition t2 is

enabled, but urgent request b is not matched, thus violating agreement. The
first transition enabled in f∗ is ((qH0, qD0, qP0), x ≥ 8, (room, •, room)�u,
y ← 0, (qH1, qD0, qP1)).

Thus, PriviledgedClient interacts with Hotel prior to DiscountClient, who is
served successively. This is only possible as both lazy request (•, discount)�� and
lazy match (discount , discount)�� of Hotel⊗DiscountClient are semi-controllable
and are delayed in the orchestration of (Hotel⊗DiscountClient)⊗PriviledgedClient.

Fig. 3. TSCA: (a) priviledged, (b) urgent (c) lazy business clients, (d) hotel2

Next consider the TSCA of Fig. 3b–d, variants of the previous contracts:
BusinessClientU requests urgently a room within 5 t.u., BusinessClientL requests
lazily a room within 8 t.u, while Hotel2 offers only a normal room (no discount).

First look at the (Hotel2 ⊗ BusinessClientL) ⊗ BusinessClientU orchestration.
It is empty (i.e. no agreement). In the initial state of Hotel2 ⊗ BusinessClientL,
the room offer is available only after 8 t.u., otherwise it is matched by Business-
ClientL’s lazy room request. As BusinessClientU’s urgent room request must be
matched within 5 t.u., it cannot be matched prior to BusinessClientL’s lazy room
request: a violation, so the initial configuration is in uncontrollable disagreement.

Next look at (Hotel2⊗BusinessClientU) ⊗BusinessClientL’s orchestration f∗.
Part of the behaviour allowed by f∗ is depicted in Fig. 4 in the fragment marked
with � (in this figure, a transition is fired as soon as it is enabled). Now
BusinessClientU performs the transaction with the hotel first. In case of card pay-
ments, the minimum time required to reach state q = (qH0, qU3, qL0) is 5 + 5 = 10
t.u., with clocks evaluation v = (y = 0, xU = 5, xL = 10). In (q, v) (the top left-
most configuration in Fig. 4), the (lazy) necessary room request of BusinessClientL
can no longer be satisfied as it should have been matched within 8 t.u., so vio-
lating agreement. Thus f∗ forbids card payments of BusinessClientU. Note that

Orchestration Synthesis for Real-Time Service Contracts 45

also the two previous configurations (contained in the fragment marked with �
in Fig. 4) are forbidden in f∗, as they are in uncontrollable disagreement.

If, however, BusinessClientU pays cash, then the minimum time required to
reach state q is 7 t.u., with clocks evaluation v′ = (y = 0, xU = 7, xL = 7).
Indeed, in configuration (q, v′) (the central rightmost configuration in the frag-
ment marked with � in Fig. 4) the lazy room request of BusinessClientL can be
matched by the room offer of Hotel2, and successively the orchestration enables
this client to pay either by cash or by card. Therefore, to satisfy BusinessClientL’s
lazy room request, in the resulting safe orchestration BusinessClientU is only
allowed to pay with cash.

Fig. 4. Excerpt of TS (Hotel2 ⊗ BusinessClientU) ⊗ BusinessClientL, whose fragment marked with �
is allowed in the safe orchestration whereas the one marked with � is not

5 Conclusions and Future Work

We have presented TSCA, a new formalism for specifying service contracts with
real-time constraints, and for synthesising their safe orchestration in the presence
of service requests with different levels of criticality (viz. urgent, greedy and lazy).

We plan to implement the theory in a prototype, extending tools for contract
automata [21–23] and reusing libraries from timed games for operations on zones
[19,20], to which orchestration synthesis has been reduced (cf. Theorem2). We
would also like to equip the formalism with weighted actions, e.g. to specify the
prices of hotel rooms or how much clients are willing to pay for their room.

46 D. Basile et al.

References

1. Georgakopoulos, D., Papazoglou, M.P.: Service-Oriented Computing. MIT, Cam-
bridge (2008)

2. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60(4), 64–72 (2017)

3. Bartoletti, M., Cimoli, T., Zunino, R.: Compliance in behavioural contracts: a brief
survey. In: Bodei, C., Ferrari, G.-L., Priami, C. (eds.) Programming Languages
with Applications to Biology and Security. LNCS, vol. 9465, pp. 103–121. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25527-9 9

4. Basile, D., Degano, P., Ferrari, G.L.: A formal framework for secure and complying
services. J. Supercomput. 69(1), 43–52 (2014)

5. Basile, D., Degano, P., Ferrari, G.L.: Automata for specifying and orchestrating
service contracts. Log. Meth. Comput. Sci. 12(4:6), 1–51 (2016)

6. Basile, D., Di Giandomenico, F., Gnesi, S., Degano, P., Ferrari, G.L.: Specifying
variability in service contracts. In: VaMoS 2017, pp. 20–27. ACM (2017)

7. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

8. Basile, D., ter Beek, M.H., Di Giandomenico, F., Gnesi, S.: Orchestration of
dynamic service product lines with featured modal contract automata. In: SPLC
2017, pp. 117–122. ACM (2017)

9. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed
automata. IFAC Proc. Vol. 31(18), 447–452 (1998)

10. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452 9

11. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

12. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE 2001, pp. 109–
120. ACM (2001)

13. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q.
2(3), 219–246 (1989)

14. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

15. David, A., Larsen, K.G., Legay, A., Nyman, U., W ↪asowski, A.: Timed I/O
automata. In: HSCC 2010, pp. 91–100. ACM (2010)

16. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 6

17. Azzopardi, S., Pace, G.J., Schapachnik, F., Schneider, G.: Contract automata.
Artif. Intell. Law 24(3), 203–243 (2016)

18. Bouyer, P., Markey, N., Sankur, O.: Robust reachability in timed automata: a
game-based approach. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R.
(eds.) ICALP 2012. LNCS, vol. 7392, pp. 128–140. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31585-5 15

19. David, A., et al.: UPPAAL DBM Library (2017)
20. Legay, A., Traonouez, L.-M.: PyEcdar: towards open source implementation for

timed systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172,
pp. 460–463. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-
8 35

https://doi.org/10.1007/978-3-319-25527-9_9
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1007/978-3-642-31585-5_15
https://doi.org/10.1007/978-3-319-02444-8_35
https://doi.org/10.1007/978-3-319-02444-8_35

Orchestration Synthesis for Real-Time Service Contracts 47

21. Basile, D., Degano, P., Ferrari, G.-L., Tuosto, E.: Playing with our CAT and
communication-centric applications. In: Albert, E., Lanese, I. (eds.) FORTE 2016.
LNCS, vol. 9688, pp. 62–73. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-39570-8 5

22. Basile, D., Di Giandomenico, F., Gnesi, S.: FMCAT: supporting dynamic service-
based product lines. In: SPLC 2017, pp. 3–8. ACM (2017)

23. Basile, D., ter Beek, M.H., Gnesi, S.: Modelling and analysis with featured modal
contract automata. In: SPLC 2018. ACM (2018)

https://doi.org/10.1007/978-3-319-39570-8_5
https://doi.org/10.1007/978-3-319-39570-8_5

Modelling and Verification of Dynamic
Role-Based Access Control

Inna Vistbakka1(B) and Elena Troubitsyna1,2

1 Åbo Akademi University, Turku, Finland
inna.vistbakka@abo.fi

2 KTH, Stockholm, Sweden
elenatro@kth.se

Abstract. Controlling access to resources is essential for ensuring cor-
rectness of system functioning. Role-Based Access Control (RBAC) is a
popular authorisation model that regulates the user’s rights to manage
system resources based on the user’s role. In this paper, we extend the
traditional static approach to defining RBAC and propose as well as for-
malise a dynamic RBAC model. It allows a designer to explicitly define
the dependencies between the system states and permissions to access
and modify system resources. To facilitate a systematic description and
verification of the dynamic access rights, we propose a contract-based
approach and then we demonstrate how to model and verify dynamic
RBAC in Event-B. The approach is illustrated by a case study – a report-
ing management system.

1 Introduction

Modern software systems become increasingly resource-intensive. It is essential
to guarantee that the authorised users have an access to the eligible resources
and the resources are protected from an access by the unauthorised users. This
aspect of the system behaviour is addressed by the access control policy.

Role-Based Access Control (RBAC) [4] is a widely used access control model.
It regulates users’ access to computer resources based on their role in an organi-
sation. The standard RBAC framework adopts a static, state-independent app-
roach to define the access rights to the system resources. However, it is often
insufficient for correct implementation of the desired system functionality and
should be augmented with the dynamic, i.e., a state-dependant view on the
access control.

In this paper, we propose a dynamic RBAC model, which allows a designer
to explicitly define the rights to access a certain resource based on the resource
state and the system workflow. We formalise the dynamic RBAC and propose a
systematic contract-based approach to defining the rights to access the system
resources. We rely on the design-by-contract approach [8] to explicitly define
the dynamic access rights for each role over resource. Moreover, we propose an
approach that allow us to verify the consistency of the desired system workflow,

c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 48–63, 2018.
https://doi.org/10.1007/978-3-030-00359-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_4&domain=pdf

Modelling and Verification of Dynamic RBAC 49

described by the scenarios, with the static and dynamic RBAC constraints. The
workflow is described using UML use case and activity diagrams, which serve
as a middle-hand between the textual requirements description and their formal
Event-B model.

Event-B [2] is a state-based formalism for the correct-by-construction system
development. It allows us to specify both dynamic and static aspects of system
behaviour. The dynamic behaviour, defined by the events, models the workflow
scenarios, which we want to analyse. The static component of the specification
models the interdependencies between the roles, resources and the users. The
Rodin platform and Pro-B plug-in [10,14] allow us to automate the verification
of consistency between the dynamic RBAC and the desired system workflow.
The approach is illustrated by a case study – a reporting management system.

2 From Static to Dynamic RBAC

RBAC: Basic Concepts. Role-Based Access Control (RBAC) [4] is one of the
main mechanisms for ensuring data integrity in a wide range of computer-based
systems. The authorisation model defined by RBAC regulates users’ access to
computer resources based on their role in an organisation.

RBAC is built around the notions of users, roles, rights and protected system
resources. A resource is an entity, e.g., data, access to which should be controlled.
A user can access a resource based on an assigned role, where a role is usually
seen as a job function performed by a user within an organisation. In their turn,
rights define the specific actions that can be applied to the resources. RBAC can
be defined as a table that relates roles with the allowed rights over the resources.
RBAC (depicted in Fig. 1) has the following elements:

• USERS is a set of users;
• ROLES is a set of available user roles;
• RESOURSES is a set of protected system resources;
• RIGHTS is a set of all possible rights over the resources;
• PERMISSIONS is a set of permissions over the resources.

Moreover, US ASSIGN defines a user assignment to roles, while RO PERM is per-
mission assignment to roles. Next we discuss all these notions in details.

Let USERS = {u1, u2, ..., un} be a set of users. In general, a concept of a user
may stand for a person in the organisation, an administrative entity or a non-
person entity, such as a computing (sub)system. A user can access a resource
based on the assigned role.

USERS ROLES RIGHTS RESOURCES

User
Assignment

Permission
Assignment

PERMISSIONS

Fig. 1. RBAC structure

50 I. Vistbakka and E. Troubitsyna

Let ROLES = {r1, r2, ..., rm} be a set of possible user roles within the system. A
role is usually seen as a job function performed by a user within an organisation.
For example, often, a role is used to indicate the job-related access rights to a
resource.

The protected system resources are denoted by the set RESOURCES =
{re1, re2, ..., rek}. The notion of the resource depends on the system, i.e., it
can denote OS files or directories; data base columns, rows or tables; disk space
or just simple lock mechanisms.

Let RIGHTS = {ri1, ri2, ..., ril} be a set of possible rights over the system
resource. Rights are defined as specific manipulations that can be performed
with the resources. For example, for a resource database, the access rights can
be Update, Insert, Append, Delete; for a resource file – Create, View, Print.

A user can access resources based on the assigned roles. A user authorisation
list – user assignment – can be defined as the mapping between users and roles:

US ASSIGN : USERS → P(ROLES),

which assigns to a given user a set of possible roles. A user can play (i.e., be
mapped to) a number of roles, and a role can have many users. The notation
P(ROLES) stands for the powerset (set of all subsets) type over elements of the
type ROLES.

Static RBAC. Access control in RBAC is realised in terms of (static) permis-
sions. A permission is an ability of a holder of a permission to perform some
action(s) in the system. To formally define all possible permissions, we introduce
the relation PERMISSIONS as follows:

PERMISSIONS : RESOURCES ↔ RIGHTS

It describes relationships between a certain system resource and the rights that
can be applied to it.

Permission assignments to a role are defined based on the job authority and
responsibilities within the job function. To formally define permissions that are
provided by the system to the different user roles, we define the function RO PERM
that maps each user role to a set of allowed rights over the resources:

RO PERM : ROLES → P(PERMISSIONS).

In the paper, we make a distinction between rights and operations. The
operations (or use cases) define the specific tasks, which a user may perform in
the system. Therefore, an “operation” is a more general concept than a “right”
and designates specific basic rights which are invoked by a user. Let us consider
a resource “personal profile page” – page, which is typically created for each
employee in an organisation. The set of the access rights for this resource includes
Create, Delete, Read, Write. An examples of user’s operation within a system
can be “View Personal Profile”, “Edit Personal Profile”, etc. To be successfully
executed, the operation “View Personal Profile” requires the Read right, while
the “Edit Personal Profile” operation requires both Read and Write rights.

Modelling and Verification of Dynamic RBAC 51

Usually RBAC gives a static view on the access rights associated with each
role, i.e., it defines the permissions to manipulate certain resources “in general”,
i.e., without referring to the system state. Therefore, rights define the neces-
sary conditions for an operation to be executed. However, we argue, that these
conditions are insufficient for a correct implementation of the intended system
functionality. For instance, assume that a user with a specific role User has Read
and Write rights to the personal profile page page, where a user with the role
Admin has Read, Write as well as Create and Delete rights to the resource page.
Even though User has rights to Read and Write the profile page, s/he cannot
use them if Admin has not created the web-page before using his/her right Create
or has already deleted it using Delete right.

It is easy to see that the access rights depend not only on the role but
also on the state of the resource. Therefore, the static view on RBAC should
be complemented with an explicit definition of the dynamic state-dependant
conditions.

Dynamic RBAC. Let us now discuss a formalisation of the dynamic view on
RBAC. Each resource can be characterised by its state, i.e., we can introduce
the set STATES = {st1, ..., stj} defining all possible states of the resources. Then
we can define dynamic (state-dependant) permissions as the following function:

DYN PERM : RESOURCES × STATES → P(RIGHTS).

For each resource and its specific state, DYN PERM returns access rights applicable
to the resource in each of its states. Let us note, that DYN PERM is defined for all
allowed access rights that can be applied to the resources. Then dynamic role
permissions can be defined as the function DYN RO PERM:

DYN RO PERM : ROLES → P(DYN PERM).

Essentially, it maps the assigned dynamic permissions to the roles.
Let us now return to our personal profile page example. Assume that the

resource page can be in three states: null (before it is created), locked (after it
is deleted) or unlocked. Then, when page is in the state null, User has no rights
over this resource. However, when page is in the state unlocked, User has Read
and Write rights, and when page is in the state locked, User role has Read right.

The dynamic and static views on RBAC are intrinsically interdependent.
The permissions defined by the static and dynamic constraints constitute the
necessary and sufficient constraints the user has over the operations execution.
In the next section, we discuss how to verifying these conditions using the design-
by-contract approach.

3 Reasoning About Dynamic RBAC Using Contracts

The dynamic view on RBAC, advocated in this paper, aims at defining con-
ditions enabling a successful execution of an operation with respect to both –

52 I. Vistbakka and E. Troubitsyna

static access rights defined by RBAC and system dynamics defined by its work-
flow. Typically, the workflow is described by the scenarios. A scenario defines a
sequence of operations – use cases – that should be performed over the resources
to implement the desired functionality. A scenario consists of individual steps
that combine the operations executed over the resources in a certain order.

Usually a scenario involves a single or multiple actors (users) that perform
the operations over the resources. The users performing the operations in a
scenario must have all the permissions required to complete every single step of
a given scenario. Thus we should verify consistency between the defined RBAC
and the control flow implemented by the desired scenarios. For each operation in
the scenario, we define the correctness conditions as the contract for operation.
We follow the design-by-contract approach [8], i.e., define each contract as a
combination of a precondition (the conditions on the operational input) and a
postcondition (conditions to be satisfied as a result of the operation execution).

A Concept of an Operation Contract. Let OPERATIONS be a set repre-
senting all possible operations within a system execution. Each operation rep-
resents an interaction of a user with the system. We assume that the state of a
system is represented by a collection of variables denoted as v. Then the user
operations result in changing the system state.

For each operation we define a pre- and post-condition pair. Figure 2 presents
a generic from of an operation structure definition. An operation operi might
have parameters pi that are defined in the params clause. The pre-clause defines
the assumptions about the state of the system before the execution of the oper-
ation. The post-clause defines the state of the system after the completion of
the operation. Here postconditions describe the actual changes in the state of
the resource. The operation as such is a state transition resulting in the change
of the variables values from v to v′.

A precondition represents the static and dynamic constraints that should be
satisfied by each operation. If precondition of an operation is not satisfied then
the scenario containing it is deadlocked indicating an inconsistency between the
formulated constrains and the desired workflow.

Defining Consistency Conditions. Let us now investigate how to use con-
tracts to derive consistency conditions. We start by introducing the function
ScenarioSeq such that

ScenarioSeq ∈ SCENARIOS → seq(OPERATIONS),

Fig. 2. General structure of an operation contract

Modelling and Verification of Dynamic RBAC 53

where seq is a sequence constructor to represent composite steps within a sce-
nario. Here SCENARIOS is a set of scenario ids.

Lets consider a scenario S, where S ∈ SCENARIOS. We say that a scenario
S is executable if the final state of a scenario S is reachable from its initial state.
Since a scenario is defined as a sequence of the corresponding operations, and
the operations, in their turn, are defined as state transitions, we can define a
scenario execution as follows:

σS
init �S σS

fin, (1)

where σS
init and σS

fin denote the initial and final states of a scenario S respectively.
Let a scenario S be a sequence consisting of m operations:

ScenarioSeq(S) = [oper1, oper2, ..., operm], (2)

We use the definition of an operation contract to explicitly formulate the con-
sistency property of a scenario control flow. A scenario S is executable (i.e., a
scenario control flow is consistent) if the following properties are hold:

Pre(operi+1) ⊆ Post(operi), i = 1...m − 1, (3)

Pre(oper1) ⊆ σS
init, (4)

σS
fin ⊆ Post(operm) (5)

Essentially, these properties require that all sequences of the scenario steps are
enabled. Property (3) requires that any next operation should be enabled by the
previously executed operation. Property (4) describes the consistency conditions
imposed on the initial state of a scenario, i.e., verifies that the first operation is
enabled. Property (5) requires for the final state of the scenario to be a subset
of the states in which the last operation in the scenario terminates.

The above definitions formalise the constraints that should be verified to
ensure that the operations of a given scenario can be executed in the desired
order. If any of the conditions is violated then an inconsistency is detected, which
should be eradicated either by inspecting the requirements or their formalisation.
Next we will discuss how to use the proposed formalisation in the context of
dynamic RBAC.

Operation Implementation Under RBAC. The generic structure of an
operation description is given in Fig. 2. In the RBAC context, an operation
defines user action over a system resource. Upon an operation execution, the
state of the resource might be changed. Consequently, it might result in chang-
ing the (dynamic) access rights for a particular role over resources. Thus, in the
context of RBAC, we can define an operation as shown in Fig. 3.

Below we give an explanation of each clause:

– params clause. The user operation over the system resource has following
parameters: a user us , a user role ro and a resource res .

– pre clause. Predicates over

54 I. Vistbakka and E. Troubitsyna

Fig. 3. A generic operation implementation for RBAC

• a current state of the resource res ;
• required access rights of the role ro over the resource res to perform the

operation.
– post clause. Predicates over

• modified state of a resource res ;
• revised access rights for all roles over the resource res .

The precondition aims at verifying that the resource is in the correct state
before the operation execution, the user has a role that makes him/her eligible
for executing this operation, and the operation can be executed with respect to
the current resource state and the role. The postcondition postulates that the
state of the resource might change as well as the dynamic rights for the system
roles. Let us observe, that the input parameter role ro does not change as a
result of the operation execution. However, it should be defined since the same
operation would typically have different contracts for different roles.

In this section, we have defined the conditions which should be verified to
ensure consistency of desired scenarios and static and dynamic RBAC con-
straints. To automate the proposed approach, we propose to use Event-B frame-
work. In the next section, we give its brief overview.

4 Background: Event-B and ProB

The Event-B formalism [2] is a state-based formal approach that promotes the
correct-by-construction system development and formal verification by theorem
proving. In Event-B, a system model is specified as an abstract state machine [2].
An abstract state machine encapsulates the model state, represented as a col-
lection of variables, and defines state operations, i.e., it describes the dynamic
system behaviour. Types of variables and other properties are defined in the
Invariants clause. A machine also has an accompanying component, called con-
text, which includes user-defined sets, constants and their properties given as
model axioms.

The dynamic behaviour of the system is defined by a collection of atomic
events. Generally, an event has the following form:

e =̂ any a where Ge then Re end,

Modelling and Verification of Dynamic RBAC 55

where e is the event’s name, a is the list of local variables, Ge is the event guard,
and Re is the event action. The guard Ge is a predicate over the local variables of
the event and the state variables of the system. The body of an event is defined
by a multiple (possibly nondeterministic) assignment over the system variables.
The guard defines the conditions under which the event is enabled, i.e., its body
can be executed. If several events are enabled at the same time, any of them can
be chosen for execution nondeterministically.

The system behaviour in Event-B is modelled by a set of events. We can
transform this representation into the pre- postcondition format, as we did in [16]
and then establish the correspondence between the definitions of an operation
contract and an Event-B event. To perform it we can rely on our previous work
presented, e.g., in [6].

Refinement in Event-B. Event-B employs a top-down refinement-based app-
roach to system development. Development typically starts from an abstract
specification that nondeterministically models most essential functional require-
ments. In a sequence of refinement steps, we gradually reduce nondeterminism
and introduce detailed design decisions. The consistency of Event-B models, i.e.,
verification of well-formedness, invariant preservation as well as correctness of
refinement steps, is demonstrated by proving the relevant verification theorems
– proof obligations [2].

Tool Support for Development and Model Checking. Modelling, refine-
ment and verification in Event-B is supported by an automated tool – Rodin
platform [14]. The platform provides the designers with an integrated modelling
environment, supporting automatic generation and proving of the proof obli-
gations. Moreover, various Rodin extensions allow the modeller to transform
models from one representation to another. They also give access to various
verification engines (theorem provers, model checkers, SMT solvers).

For instance, the ProB extension [10] of Rodin supports automated consis-
tency checking of Event-B machines via model checking, constraint based check-
ing, and animation. ProB supports analysis of liveness properties (expressed in
linear or computational tree logic (LTL/CTL)), invariant violations as well as the
absence of deadlocks. A model checker systematically explores the state space,
looking for various errors in the model under consideration [7].

In this paper, we argue that modelling with Event-B provides us with a
suitable verification dynamic policies of RBAC.

5 Verification of System Scenarios Under Dynamic
RBAC

In Sects. 2 and 3 we discussed the dynamic extension of RBAC and defined the
conditions for verifying scenario consistency. In this section, we propose a formal
Event-B based approach that implements these ideas to identify possible scenar-
ios violating consistency. Our approach uses the graphical modelling in UML
as the front-end. Graphical models are used to describe the general structure

56 I. Vistbakka and E. Troubitsyna

of the system and its scenarios. They serve as a middle-hand between the tex-
tual requirements description and formal specification. The proposed approach
is shown in Fig. 4. It consists of the following six steps:

Step 1: Define RBAC model. Define the system roles and operations over the
system resources for each role. Represent the actors as roles, the operations as
use cases and create the UML use case diagram of a system. Create an activity
diagram representing the intended system workflow.

Step 2: Define/modify operation implementations. Define all possible states of
the system resources and create a state diagram representing how execution
of each actor’s operation changes the state of the resources. Then using the
created state diagram, create an abstract specification in Event-B that defines
the resource states and the corresponding state transitions. Each defined state
transition should correspond to a realisation of the user operation.

Next, for each operation, define (or modify) its contract. Represent all the
required elements: resource state, a role, required basic access rights for a role to
perform an operation and the id of the accessed resource. Incorporate into the
Event-B model the defined contracts by specifying the Event-B events.

Step 3: Compose a scenario and check it for consistency. Compose/modify a
scenario over the operations defined in the Step 2. All the dynamic characteris-
tics of a system are formulated in terms of the model variables and the required
properties as the model invariants. All the static system properties are defined
in the model context (e.g., a sequence of evolved scenario steps). Then simu-
late execution of a chosen scenario in Event-B and model check this model in
ProB looking for inconsistencies in its execution. Any violations of the control
flow consistency conditions (3)–(5) lead to deadlocking the model, which in turn
indicate such inconsistencies in the operation definitions.

Step 4: Scenario analysis. If a deadlock in the previous Step 3 is found for a
certain scenario, then analyse the operations involved in the scenario execution.
The purpose of a such analysis is to come up with one or several recommenda-
tions for modification of the operation implementation. Then return to the Step
2 for necessary modifications of one or several operations.

Step 5: Storing a valid scenario. A checked valid scenario is stored as the cor-
responding command sequence in the Event-B context. Return back to Step 3
until a scenario model is complete.

The resulting Event-B model (specification) can be used as an input for the
next system development steps. Event-B specification can be refined further to
introduce detailed requirements representation. Since the consequent refinement
steps depend on the nature of the system to be developed, we omit their consid-
eration in this paper.

In the next section, we illustrate the proposed approach by an example.

Modelling and Verification of Dynamic RBAC 57

Step 1
Define RBAC
model for the

system

Step 3
Compose a scenario and

check for control flow
consistency

Step 4
Analyse an invalid

scenario

Step 5
Add the checked

scenario into the pool

[is scenario
model

complete?][valid][invalid]

[incomplete]

[complete]

Step 2
Define/modify

operation
implementation

Fig. 4. Steps of the approach

6 Formal Modelling of a Reporting Management System

The Reporting Management System (RMS) is used by different employees in an
organisation to send periodic (e.g., monthly) work reports. Below we summarise
the access control-related requirements:

– There are three roles in the system – employee, controller and administrator;
– Functionality associated with the roles:

• An employee can create a new report, modify an existing one or delete a
non-approved report, as well as submit a report to its controller;

• A controller can read the submitted report received from one of the asso-
ciated employees, and can either approve or disapprove it;

• An administrator has an access to all the reports of all her/his associated
controllers, and it is her/his responsibility to register the reports approved
by the controllers.

– Report access policies:
• Until a report is submitted, the employee can modify or delete it.
• As soon as a report is submitted, it cannot be altered or deleted by the

employee any longer.
• Upon the controller’s approval, the report is registered by the adminis-

trator.
• In case of disapproval, the report is returned back to the employee and

can be further modified or deleted.

Let us note that each actor operation requires certain basic access rights. For
instance, an employee, to execute Modify Report operation, should have Read
and Write access rights to the report file. In its turn, the employee’s supervisor –
controller – should have Read and Write access rights to the same file to execute
Approve Report operation. However, as soon as an employee submits a report
to a controller, she/he can have only Read access right to the report file.

System Modelling and Verification. To specify and verify RMS, we follow
the steps described in Sect. 5:

58 I. Vistbakka and E. Troubitsyna

Step 1. We identify the main roles and their operations and create the use case
diagram as shown in Fig. 5(a). It shows the actors, their roles in the system and
also their possible interactions with the system. Also we create the activity dia-
gram presented in Fig. 5(b) to describe the workflow associated with the defined
functions.

Fig. 5. Reporting management system: (a) Use case diagram, (b) Activity diagram

Step 2. Each actor’s function changes the state of a certain report. Hence, the
overall behaviour of the system, for each particular report, can be considered as a
set of transitions between all the possible states of the report. The corresponding
state diagram is represented in Fig. 6.

Fig. 6. State diagram – reporting management system

Then, we use the state diagram and create an abstract specification in Event-
B that defines the state of reports and the corresponding state transitions. To
represent a current state for each report we define a function report state:

report state ∈ REPORTS → STATES.

Modelling and Verification of Dynamic RBAC 59

Initially each report has the state VOID. The actual report creation is modelled
by the event CreateReport that changes the state of a single report rp to CRE-
ATED. Then the events ModifyReport, DeleteReport and SubmitReport become
enabled. When the report is submitted, its state changes to SUBMITTED. Upon
report approval, its state is changed to APPROVED, otherwise, if the report is
rejected, it returns back to the state CREATED. Finally, once the administrator
registers already approved report, the report goes to its final state ARCHIVED.

Next we link each role with the set of operations that correspond to it.
Moreover, for each role, we will define the required basic access rights – Create,
Read, Write, Delete – modelled as C, R, W, D values, respectively.

To specify dynamic permissions for the introduced roles, we define a variable
dPerm with the following properties:

dPerm ∈ ROLES × REPORTS → P(RIGHTS),
∀ r ∈ REPORTS · dPerm(Employee, r) ⊆ {C,R,W,D}∧

dPerm(Controller, r) ⊆ {R,W} ∧ dPerm(Administrator, r) ⊆ {R,W}.

The variable dPerm is a function that assigns to each role and a report a set of
possible access rights that can be associated with the role.

Obviously, for each role, the set of available access rights to a report depends
on the current state of this report. For instance, a controller can have Read
(R) and Write (W) rights only over the submitted reports. Moreover, when the
report that has been submitted for approval, it cannot be further modified by the
employee until the end of the approval period. Therefore, during the approval
period, the employee has only Read right to this particular report. Hence, we
should restrict the set of enabled rights depending on the report’s state. In the
corresponding Event-B events which model the change of a report state, the
values of role permissions will be updated. For brevity, we omit showing the
whole Event-B specification – its excerpt is presented in Fig. 7. For more details,
please see our previous work [20].

Let us note that the variables dPerm and report state together represent
the dynamic role permissions RO DYN PERM discussed in Sect. 2. We use these
two variables instead of one just to avoid nested data structures (function of
function) in Event-B specification.

Step 3: Scenario Verification. In this step, we analyse the desired system
scenarios associated with RMS. For example, we consider a simple scenario as
the following chain of operations performed by an employee and a controller:

CreateReport → ModifyReport → SubmitReport → ReturnReport → ModifyReport

We represent this chain as the corresponding command sequence and define
it in the context. Then, in the machine part of the Event-B specification of RMS,
we simulate the scenario execution by accumulating the information about the
sequence of the corresponding scenario steps in Scenario. To implement it, we
define a number of events – Start, Next, Finish – that simulate the scenario exe-
cution (see Fig. 8). The sequence of operations is built by starting from the first
operation and simulating the execution sequenceleading to the last operation.

60 I. Vistbakka and E. Troubitsyna

The scenario execution process is completed when the last command of the sce-
nario is executed.

We formulate the invariant property finish=TRUE⇒CurScenario=Scenario
stating that if the scenario execution has been completed then the scenario con-
tains all the steps (i.e., is equal to the executed steps). In the case, when the
resulting command sequence does not match to the required sequence (CurSce-
nario), a violation is found by model checking. Consequently, a found scenario
sequence becomes an input for Step 4.

Step 4: Analysis and Operation modifications. In our example, we have
found a deadlock – the scenario execution deadlocks on the execution of the event
ReturnReport. We analysed the operation and discovered that in the implementa-
tion of ReturnReport the access rights for Employee upon the operation execution
are set to R (Read right). However, the operation ModifyReport requires for a
role Employee to have R, W, D access rights (Read, Write and Delete, respec-
tively) to the report file. As a result, we modify the operation ReturnReport and
check again this scenario for consistency.

Step 5: Storing a scenario. The checked scenario from CurScenario is then
added to the set of checked scenarios CheckedScenarios. Then we repeat phases
Step 3–5 until we verify all the scenarios in the desired system workflow repre-
sented in the activity diagram.

As a result of the described process, we arrive at an Event-B model of RMS.
We specify and verify dynamic access control via allowed rights over the resources
according to the system policies.

7 Related Work and Conclusions

Recently the problem of modelling and analysing the access control policies
has attracted a significant research attention. Milhau et al. [9] have proposed

Fig. 7. Event-B specification of RMS (with possible inconsistencies)

Modelling and Verification of Dynamic RBAC 61

Fig. 8. Step 3: some events of the formalisation

a methodology for specifying access control policies using a family of graphical
frameworks and translating them into the B. The main aim of the work has been
to formally specify an access control filter that actually regulates access control
to the data. In this work, the dynamics is mainly considered with respect to the
operation execution order, while, in our work, the dynamic view on the access
policies depends on the system state, in particular, on the state of a resource.

The basic RBAC model has been extended in a variety of ways [1,5,13]. The
problem of spatio-temporal RBAC model is discussed in [1]. The authors consid-
ered role-based access control policies under time and location constraints. More-
over, they demonstrated how the proposed model can be represented and anal-
ysed using UML and OCL. Ray et al. [13] proposed location-aware RBAC model
that incorporates location constraints in user-role activation. In our work we con-
sider dynamic, state-dependent constraints within the access control model.

A number of works uses UML and OCL based domain specific language to
design and validate the access control model. For instance, in the work [15]
UML is used to describe security properties. In contrast to our work, here the
authors transform UML models to Alloy for analysis purpose. A domain-specific
language for modelling RBAC and translating graphical models in Event-B was
proposed in [19].

Verification of behaviour aspects of software models defined using the design-
by-contract approach has been discussed, e.g., in [3]. The goal of this work has
been to detect the defects in the definition of the operations. Formal verification
has been performed over the declarations of the operations in the UML/OCL
models. In contrast, in our work, the defined operational contracts are used to
model the scenario execution sequences and formulate the consistency properties.
A contract-based approach to modelling and verification of RBAC for cloud was
proposed in [11]. An approach to integrating UML modelling and Event-B to
reason about behaviour and properties of web-services was proposed in [12].

A data-flow oriented approach to graphical and formal modelling has been
proposed in [17,18,21]. These works use the graphical modelling to represent
system architecture and the data flow. The diagrams are translated into Event-
B, to verify the impact of security attacks on the invariant system properties.

62 I. Vistbakka and E. Troubitsyna

In this paper, we have done two main research contributions. Firstly, we
have defined a formal model of dynamic RBAC and proposed a contract-based
approach to verification of consistency of scenarios with respect to the static and
dynamic RBAC constraints. Secondly, we have proposed an integrated approach
incorporating verification of dynamic RBAC into Event-B. In our approach,
graphical models are used as a middle hand between the textual requirements
description and a formal model. They help a designer to identify the scenarios
and define the system workflow.

In this paper, we have used a combination of proving and model checking to
verify consistency between the scenarios and the constraints of dynamic RBAC.
Event-B and the Rodin platform have offered us a suitable basis for the formal-
isation and automation of our approach. The provers have been used to verify
correctness of the data structure definitions and the Pro-B model checker to find
violations in the scenario models. Moreover, model animation has facilitated
analysis of the scenarios as well as identifying the recommendations for opera-
tion implementation specifications. We have validated our approach by a case
study – Reporting Management System. We believe that the proposed approach
facilitates an analysis of complex access control policies.

As a future work, we are planing to consider more complex variants of
dynamic RBAC. For instance, we will model the situations when several users
can get simultaneous or partial access to some parts of a data resource depend-
ing on their roles and resource states. Moreover, we are planing to work on an
extension of the proposed approach for modelling and verification of dynamic
RBAC and formalise it as Event-B specification patterns.

References

1. Abdunabi, R., Al-Lail, M., Ray, I., France, R.B.: Specification, validation, and
enforcement of a generalized spatio-temporal role-based access control model. IEEE
Syst. J. 7(3), 501–515 (2013)

2. Abrial, J.R.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
3. Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL operation contracts. In:

Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 40–55. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00255-7 4

4. Ferraiolo, D.F., Sandhu, R.S., Gavrila, S.I., Kuhn, D.R., Chandramouli, R.: Pro-
posed NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur.
4(3), 224–274 (2001)

5. Fuchs, L., Pernul, G., Sandhu, R.S.: Roles in information security - a aurvey and
classification of the research area. Comput. Secur. 30(8), 748–769 (2011)

6. Laibinis, L., Troubitsyna, E.: A contract-based approach to ensuring component
interoperability in Event-B. In: Petre, L., Sekerinski, E. (eds.) From Action Systems
to Distributed Systems - The Refinement Approach, pp. 81–96. Chapman and
Hall/CRC (2016)

7. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

8. Meyer, B.: Design by contract: the Eiffel method. Proc. Tools 26, 446 (1998)

https://doi.org/10.1007/978-3-642-00255-7_4

Modelling and Verification of Dynamic RBAC 63

9. Milhau, J., Idani, A., Laleau, R., Labiadh, M., Ledru, Y., Frappier, M.: Combining
UML, ASTD and B for the formal specification of an access control filter. ISSE
7(4), 303–313 (2011)

10. ProB: Animator and Model Checker. https://www3.hhu.de/stups/prob/index.
php/. Accessed 06 June 2018

11. Rauf, I., Troubitsyna, E.: Generating cloud monitors from models to secure clouds.
In: DSN 2018. IEEE Computer Society (2018, in print)

12. Rauf, I., Vistbakka, I., Troubitsyna, E.: Formal verification of stateful services with
REST APIs using Event-B. In: IEEE ICWS 2018. IEEE (2018, in print)

13. Ray, I., Kumar, M., Yu, L.: LRBAC: a location-aware role-based access control
model. In: Bagchi, A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp. 147–161.
Springer, Heidelberg (2006). https://doi.org/10.1007/11961635 10

14. Rodin: Event-B platform. http://www.event-b.org/. Accessed 06 June 2018
15. Sun, W., France, R.B., Ray, I.: Rigorous analysis of UML access control policy

models. In: POLICY 2011, pp. 9–16. IEEE Computer Society (2011)
16. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Integrating stochastic reasoning into

Event-B development. Formal Asp. Comput. 27(1), 53–77 (2015)
17. Troubitsyna, E., Laibinis, L., Pereverzeva, I., Kuismin, T., Ilic, D., Latvala, T.:

Towards security-explicit formal modelling of safety-critical systems. In: Skavhaug,
A., Guiochet, J., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9922, pp. 213–
225. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45477-1 17

18. Troubitsyna, E., Vistbakka, I.: Deriving and formalising safety and security require-
ments for control systems. In: SAFECOMP 2018. LNCS. Springer, Cham (2018,
in print)

19. Vistbakka, I., Barash, M., Troubitsyna, E.: Towards creating a DSL facilitating
modelling of dynamic access control in Event-B. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 386–391. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 28

20. Vistbakka, I., Troubitsyna, E.: Towards integrated modelling of dynamic access
control with UML and Event-B. In: IMPEX/FM&MDD 2017. EPTCS, vol. 271,
pp. 105–116 (2018)

21. Vistbakka, I., Troubitsyna, E., Kuismin, T., Latvala, T.: Co-engineering safety
and security in industrial control systems: a formal outlook. In: Romanovsky, A.,
Troubitsyna, E.A. (eds.) SERENE 2017. LNCS, vol. 10479, pp. 96–114. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-65948-0 7

https://www3.hhu.de/stups/prob/index.php/
https://www3.hhu.de/stups/prob/index.php/
https://doi.org/10.1007/11961635_10
http://www.event-b.org/
https://doi.org/10.1007/978-3-319-45477-1_17
https://doi.org/10.1007/978-3-319-91271-4_28
https://doi.org/10.1007/978-3-319-65948-0_7

Performance Evaluation of Dynamic Load
Balancing Protocols Based on Formal

Models in Cloud Environments

Roua Ben Hamouda1, Sabrine Boussema2(B), Imene Ben Hafaiedh2,
and Riadh Robbana3

1 Faculty of Sciences of Tunis (FST), University of Tunis El Manar (UTM),
2092 Tunis, Tunisia

2 Higher Institute of Computer Science (ISI), UTM, 2080 Tunis, Tunisia
boussemasabbrine@gmail.com

3 National Institute of Applied Science and Technology (INSAT),
University of Carthage (UC), 1080 Tunis, Tunisia

Abstract. Cloud computing has recently emerged as a new paradigm
for hosting and delivering services over the Internet. It is an attracting
technology in the field of computer science since it allows starting from
the small and increases resources only when there is a rise in service
demand. Load balancing can improve the Quality of Service (QoS) met-
rics, including response time, cost, throughput, performance and resource
utilization in Cloud environments. It can be described as an optimization
problem and should be adapting nature due to the changing needs. In this
paper, we propose a first step towards formal verification of dynamic load
balancing protocols in the Cloud. The proposed approach offers a way to
easily implement, analyze and compare different load balancing proto-
cols, based on a generic model. We focus on the study of centralized and
dynamic load-balancing protocols. We propose a high-level model allow-
ing to specify a set of well known load balancing protocols. A formal
and QoS evaluations has been performed automatically, using Uppaal
framework.

Keywords: Formal model · Cloud computing · Load balancing
Task migration · Dynamic load balancing · Performance analysis

1 Introduction

Cloud Computing has become one of the most popular technology adopted by
both industry and academia and in which shared resources, information ser-
vices, software and other services are provided in a flexible and efficient way
to users according to their need at exact time [1]. Load balancing [2] is a key
aspect of cloud computing as it allows to avoid the situation in which some nodes
become overloaded while the others are underloaded or even idle. Load balancing
can improve the QoS metrics, including response time, cost, throughput, per-
formance and resource utilization [3]. Thus, it becomes imperative to develop
c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 64–79, 2018.
https://doi.org/10.1007/978-3-030-00359-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_5&domain=pdf

Performance Evaluation of Dynamic Load Balancing Protocols 65

an algorithm which can improve the system performance by balancing the work
load among different nodes. Indeed, Service Level Agreement (SLA) and user
satisfaction could be provided by choosing excellent load balancing techniques.
Therefore, providing the efficient load-balancing algorithms and mechanisms is
a key to the success of cloud computing environments. Several researches have
been done in the field of load balancing and task scheduling in cloud environ-
ments and different load-balancing strategies have been proposed [4]. In general,
load balancing algorithms are classified following two main categories namely
Static and Dynamic. Static algorithms segregate the traffic equally among the
different nodes in the cloud environment. In this approach, the division of the
traffic is easier and consequently it will lead to imperfect circumstances. Indeed,
such algorithms are used in the environment where there are few load variations
as it does not take into consideration the real-time information about the sys-
tem while distributing the load thereby making things simpler. But, they are not
capable to handle the load changes during run-time [5,6]. Dynamic algorithms [7]
continuously check the different properties of the nodes such as their capabilities,
network bandwidth, processing power, memory and storage capacity and other
parameters thereby assigning suitable weights to the nodes.

Dynamic algorithms could be implemented either in a distributed or a cen-
tralized (non-distributed) way. It depends on whether their models are based
on a main controller (non-distributed) or a set of local controllers (distributed)
to gather and analyze information about the system status continuously which
provides a basis for choosing the right load balancing strategy dynamically.

In centralized load balancing technique, all the allocation and scheduling
decisions are made by a single node. This node is responsible for storing knowl-
edge base of entire cloud network. Therefore, in cloud systems, such decisive
nodes should provide the application users with robustness, fault tolerance, exe-
cution automation, and powerful computing facilities which implies various cloud
service requirements to be maintained. Therefore, several verification challenges
arise throughout the design development and deployment of these systems. In
addition, unlike conventional software and hardware systems, a wide range of
different properties and design requirements arise in the cloud based systems.
Thus, providing efficient load-balancing algorithms and mechanisms is a key to
the success of cloud computing environments. The analysis of the efficiency of dif-
ferent load-balancing techniques and their comparison results could be achieved
through different techniques and approaches.

Formal methods and techniques [8] are based on mathematical models for
the analysis of computing, communication, and industrial systems in order to
establish system correctness with mathematical rigor. Such methods are highly
recommended verification techniques for safety critical systems. In particular,
after the promising recently developed verification tools and techniques which
facilitate the early detection of defects and hence enhance the design quality.
In this work, we provide a generic formal model allowing the description of
load balancing mechanisms in cloud architecture. Our proposition allows to eas-
ily specify different dynamic and centralized load balancing protocols. We have

66 R. Ben Hamouda et al.

conducted formal verification through model-checking such as for deadlock free-
dom, invariance and a set of CTL properties using UPPAAL Framework [9]. We
have also performed a series of experiments to evaluate, analyze and compare
the QoS of the modeled protocols under a set of real-time executions for different
configurations and metrics.

The rest of this paper is organized as follows. Section 2 discusses related works
and presents the proposed approach. In Sect. 3, we depict the different concepts
of the UPPAAL tool adopted to design the proposed formal model. In Sect. 4,
we describe our formal model for the specification of dynamic load-balancing
algorithms, in particular the modeling of three well-known algorithms namely;
Weighted Round-Robin (WRR), Weighted least connection (WLC) and the
Exponential Smooth Forecast based on Weighted Least Connection (ESWLC).
In Sect. 5, we provide and discuss the different verification and analysis results.
Section 6 concludes the paper and discusses possible perspectives.

2 Related Work and Approach

2.1 Related Work

In [10,11], authors have studied state of the art load balancing techniques and
the necessary requirements and considerations for designing and implementing
suitable load-balancing algorithms for cloud environments. They have also eval-
uated them based on different metrics. However, their work suffers from the lack
of simulating the load balancing techniques by simulator tools. Authors in [12]
discussed some basic concepts of cloud computing and load balancing by study-
ing some of the existing load balancing algorithms applied to clouds. However,
their approach does not pertain time optimization. In many other researches as
in [5,6], evaluation and comparison of load balancing algorithms are performed
based on simulation tools like CloudSim [13]. In [14], various algorithms are ana-
lyzed using an analysis tool, namely, cloud analyst, which is also a simulation
tool allowing the user to run multiple simulations. These conventional simulation
methods that are used in the context of Cloud cannot provide full coverage for
complex systems, therefore, formal methods are used in addition to simulation
to improve the quality and the reliability of cloud systems. Most of the existing
researches addressing formal modeling and verification of cloud environments,
are focusing on security issues like in [15] where authors introduced cloud calcu-
lus, a process algebra based on structural congruence and a reduction relation,
for the specification of security aspects in the cloud. Different other issues in
Cloud computing have been formally studied like Elasticity [16], Data Inconsis-
tency, Misconfiguration [17]. To the best of our knowledge, there is no researches
addressing the formal modeling and verification of load balancing algorithms in
Cloud environments.

2.2 Approach

In this work, we propose a generic formal model allowing to easily describe at
a high-level different load-balancing policies (see Fig. 1). We first give a formal

Performance Evaluation of Dynamic Load Balancing Protocols 67

model for the description of cloud architecture based on a set of timed automata
and communication channels provided by UPPAAL framework [9]. Second, we
define a particular function called LB Policy() implementing the load balanc-
ing policy of the algorithm under study. Modeling formally a given algorithm is
reduced to coding the corresponding strategy in the LB Policy() function. Once
the load balancing policy is implemented, the model could be formally checked
for a set of properties described as CTL formulas. Moreover, a set of performance
measures could be easily performed using the simulator integrated in UPPAAL.
In this work, we provide a model considering centralized and dynamic load bal-
ancing algorithms. Then, to apply our approach, we consider in particular three
well-known centralized and dynamic protocols:

– Weighted Round Robin (WRR): adapts the most important advantage of the
traditional Round-Robin (RR) algorithm [18]. Therefore, it was developed to
improve the critical issues of round robin. In weighted round robin algorithm
each server is assigned a weight and according to the highest weight they
receive more connections. In a situation, when all the weights become equal,
servers will receive balanced traffic.

– Weighted Least Connection (WLC): assigns the performance weight to each
real node and selects least weighted real node. The real node with a higher
weight receives more requests and more connections than others [19].

– Exponential Smooth Forecast based on Weighted Least Connection
(ESWLC): improves WLC by taking into account the time series and trials.
That is ESWLC builds the conclusion of assigning a certain task to a node
after having a number of tasks assigned to that node and getting to know the
node capabilities. ESWLC builds the decision based on the experience of the
node’s CPU power, memory, number of connections and the amount of disk
space currently being used. Thus, it allocates the resource with least weight
to a task and takes into account node capabilities [20].

Fig. 1. Modeling and verification approach of load-balancing protocols

68 R. Ben Hamouda et al.

3 Preliminaries

In this section, we give an overview about the modeling formalism and the frame-
work, we use for the description of real-time load balancing protocols in cloud
environment. We choose to specify our model using the Uppaal framework [9],
which is a toolbox for verification of real-time systems. It consists of three main
parts:

– A description language: serves as a modeling or design language to describe
system behavior as networks of timed automata extended with data variables.

– A simulator: enables examination in an interactive and graphical fashion of
possible dynamic executions of a system during early modeling (or design)
stages and thus provides an inexpensive mean of fault detection.

– A model-checker: checks whether the property (a system requirement) holds
for the model of a system. It takes as input a network of automata in the
textual-format and a CTL formula.

A system description consists of a collection of timed automata, extended with
integer variables in addition to clock variables. Each automaton consists of a
set of control nodes (states) which are defined by automata’s locations, value of
clocks, and the value of all local and global variables. It can use a dense-time
model where a clock variable evaluates to a real number. Each edge may have
a guard, a synchronization and updates of some variables. A guard is a side-
effect free expression that evaluates to a boolean and it must be satisfied when
the transition is fired. It can contain predicates on clocks, integer and boolean
variables. When a transition is fired, a set of variables are updated by means
of a set of user defined functions. In Uppaal, a transition may be labeled by a
synchronization of the form Sync! or Sync? where Sync evaluates to a channel.
Uppaal description language provides three types of synchronization:

– Binary synchronization: channels are declared as chan c. An edge labelled
with c! synchronizes with another c?. A synchronization pair is chosen non-
deterministically if several combinations are enabled.

– Urgent synchronization: channels are declared by prefixing the channel
declaration with the keyword urgent. Delays must not occur if a synchroniza-
tion transition on an urgent channel is enabled. Edges using urgent channels
for synchronization cannot have time constraints, i.e., no clock guards.

– Broadcast synchronization: channels are declared as broadcast chan c.
In a broadcast synchronization one sender can synchronize with an arbitrary
number of receivers. Any receiver then can synchronize in the current state
must do so. If there are no receivers, then the sender can still execute the c!
action, i.e. broadcast sending is never blocking.

4 A Generic Formal Model of Load-Balancing Protocols

Our purpose is to provide generic formal model of load-balancing protocols in
cloud architecture. In this section, using the already presented notions of Uppaal,

Performance Evaluation of Dynamic Load Balancing Protocols 69

we first provide the detailed description of a generic model of the cloud archi-
tecture. Then, we describe how this model could be adapted to model different
load-balancing protocols.

4.1 The Overall Architecture of the Proposed Model

In centralized load balancing techniques, all the allocation and scheduling deci-
sions are made by a single controller named Load Balancer (LB). This latter is
responsible for storing knowledge based of entire cloud network and can apply
static or dynamic approach for load balancing. Thus, it must be linked to all
existing virtual machines which process its given tasks by interacting with its
associated cores. The recent is the processing unit that receives instructions and
performs calculations, or actions, based on those instructions. Figure 2, describes
the overall structure of our model which is the same for modeling any central-
ized load-balancing protocol. In other words, components, their behaviors and
channels are the same for all protocols. Each protocol is coded and encapsulated
in a particular function called LB Policy(). For this reason, we first give the
description of the generic model, depicted in Fig. 2. Then, we give how it can
be easily extended to a particular load balancing protocol such as WRR, WLC
and ESWLC protocols. Hence, the architecture of our generic model is given
by the superposition of three layers, where each layer defines a different type
of component namely: LB, Virtual Machine (VM) and Core (C) (see Fig. 2).

Fig. 2. The overall architecture of the proposed model

70 R. Ben Hamouda et al.

To detail our proposed model, we proceed in a bottom-up manner through the
different layers. Note that, in our model, all components communicate with each
other over a set of binary synchronizations (see Sect. 3).

Fig. 3. (a) The behavior of VM component (b) the behavior of core component

Core Layer: The lower layer of our model is defined by a set of Uppaal compo-
nents defining the set of cores of each VM. For each virtual machine {VMi}i∈[1..n]

we define a set of core components {Ci1 , .., Cim}. This latter has 2 control nodes
namely {disabled, enabled}, where disabled is the initial state. Figure 3 describes
the behavior of Cij , where i ∈ [1..n] and j ∈ [1..m], as follows:

– Initially, Cij is in disabled control node, until VMi chooses it to execute a
task. Then, the edge labeled by load[i][j]? is taken leading to enabled control
node. Here the clock t is reset to 0 to control the task completion execution
time x.

– In enabled control node, we define an invariant Inv = (t � x), which expresses
constraint on the clock values in order to control remaining in a enabled
control node. Thus, Cij can stay in this node as long as the value of t satisfies
Inv. Then, once the defined guard [t � x] is satisfied, the edge labeled by
complete[i][j]! can be taken leading back to the initial state.

Performance Evaluation of Dynamic Load Balancing Protocols 71

Virtual Machine Layer: The medium layer of our generic model consists
of a set of virtual machines defined as a set of n components {VM1, .., V Mn}.
A VM component has 2 control nodes namely idle and working, where idle
is the initial state. All the VMs have the same behavior thus technically we
can easily instantiate as many VMs as needed. For each VM, we define a set of
channels allowing interacting between a VM and the rest of components. Figure 3
describes the behavior of a VMi, where i ∈ [1..n], as follows:

– Initially, VMi is in idle control node where a first local edge must be taken
up allowing to initialize the different VM variables. In particular, these latter
are: VM initial capacity capiniti , the number of its associated cores nbc and
its assigned queue of tasks.

– After initialization, VMi can fire up an local loop edge labeled read(i), allow-
ing to scroll task from its assigned queue. In this case, VMi checks if it has
available cores to compute a task by the defined guard [nbc > 0], else it waits
the current task instance to complete. This edge can be taken in idle and in
working control nodes.

– In its both control nodes a VMi can fire up an external loop edge labeled
MA[i]?, allowing to accept a task from other VM assigned by LB. To do that,
a VMi checks that it has not yet a task scrolled to compute [nb = 0], that
it is not overloaded [over = 0] and that it has available core [nbc > 0]. This
edge can be taken in idle and in working control nodes.

– Once VMi has a task to compute, it checks that it has sufficient resource
capacity capi to begin task execution and so it can fire up load[i][j]! edge,
where j ∈ [1..m]. If it is in idle control node, it takes up the load edge and goes
to working control node. Else it can take up the load loop edge in working
control node. In both cases, VMi decreases its current capacity value capi to
reserve the scrolled task needed capacity capt.

– If Cij complete a task execution, it interrogates the complete[i][j]! external
edge, thus, VMi take up its complete[i][j]! edge. If Cij is the only core under
execution, then by taken up complete edge, VMi goes from working control
node to the idle one. Else, it fires up the loop complete edge in working
control node. In both cases, VMi increases its current capacity value capi.

Load Balancer Layer: The top layer of our proposed model consists of LB
component, which is the central component in the architecture. It has 2 control
nodes namely waiting and checking, where waiting is the initial state. LB has
different local and external edges. These latter are defined to allow interacting
with VM components. Note that, all VMs characteristics are globally declared,
thus LB has full visibility of their current values. In other word, VM data is
passed via globally declared shared variables and synchronization is achieved
via channels. Figure 2 describes the behavior of LB as follows:

– At LB definition we have initialized, by collecting initial capacities capiniti of
underloaded VMs, in a queue, where i ∈ [1..n]. At the beginning of each cycle,
LB is in waiting control node. Once a request is received from an overloaded

72 R. Ben Hamouda et al.

VM, with unique identifier idvr, LB takes up an edge labeled request[idvr]?
to go then to checking control node. To model mapping (load balancing)
between an overloaded VM and an underloaded one, we define the function
LB Policy(idvr, idva). This function is performed one a request for migration
is received. It models the fact of checking the existence of an underloaded
VM in the current queue, then comparing the selected VM capacity capa,
depending on the coded load-balancing policy, with the needed task capacity
capt.

– In checking control node, LB Policy() function is already performed, and
thus depending on its result, LB can go back to waiting control node or go
to dispatching control node. More precisely, if there is no VM with enough
capacity (check = false), LB comes back to waiting control node. However,
if there is at least one suitable VM, with unique identifier idva, to run the
task (check = true), then LB goes to dispatching control node by taken up
MA[idva]!. This edge allows synchronization with the selected VM. There-
after, LB returns to waiting control node by taken up MA[idvr]! allowing to
synchronize with VM which requested for migration. This synchronization is
needed to respond VM for its request.

4.2 Modeling Dynamic Load-Balancing Protocols

Now that, the overall architecture is given, implementing a given load-balancing
strategy is reduced to code the corresponding policy in the LB Policy() function.

Modeling WRR Protocol: In this protocol, the Load balancer considers only
the resource capabilities in mapping between the overloaded VM and the under-
loaded one. Which means that, once the existence of an underloaded VM in the
current queue is checked, LB executes its LB Policy() function performed while
taken up request edge, to search for suitable VM capacity [capa ≥ capt], where
capa is the current capacity of VM, which will accept migration and capt is task
needed capacity. Then, it assigns task to the selected VM.

Modeling WLC Protocol: In this protocol, the Load balancer does not con-
sider current VMs capacities, however it considers the current number of free
cores in VMs. In other words, once the existence of an underloaded VM in the
current queue is checked, LB executes its LB Policy() function, to search for
suitable VM having the least free resources nbc considering migrated task needs.
Then, it assigns task to the selected VM.

Modeling ESWLC Protocol: In this protocol, the Load balancer allocates the
resource with least weight to a task and takes into account current VMs capac-
ities. Thus, ESWLC protocol is the merge of previous load balancing protocols.
Particularly, once the existence of an underloaded VM in the current queue is
checked, LB executes its LB Policy() function, to search for suitable VM having
the least free resources nbc and a suitable current capacity [capa ≥ capt]. Then,
it assigns task to the selected VM.

Performance Evaluation of Dynamic Load Balancing Protocols 73

5 Performance Analysis

As already detailed in Sect. 4, the proposed model, have been parametrized and
adapted to specify three well-known load-balancing protocols. Note that, speci-
fying other algorithms could be easily performed based on the same approach.
Now a comparative analysis of the specified protocols is performed and different
experiments could be easily extracted using the automatically generated code of
our models. In this section, we perform the formal analysis of these models to
compare them and to prove a set of formally defined properties like deadlock-
freedom and invariance. All experiments were performed on a 2.6 Ghz Intel Core
i5 with 8 GB of RAM.

5.1 Formal Evaluation

Based on Uppaal Model-checker, we have proven a set of formally defined prop-
erties (Deadlock, Invariance, Safety and Liveness properties) of the specified
load-balancing algorithms at a high level of abstraction with no need to code
generation. Extending our proposed model to any number of components is easily
performed. Thus, we have generated several versions of our models for different
numbers of components and we have studied the performance of the modeled
algorithms for different configurations.

Deadlock-Freedom: is an important property to be checked when it comes to
resource allocation protocols in general and dynamic load-balancing ones in par-
ticular. Indeed, in dynamic systems where behaviors and configurations may
change at run time deadlock situations have to be avoided. Such situations can-
not be proven using simulations. Table 1 summarizes the verification time taken
for checking deadlock freedom of the 3 specified algorithms (WRR, WLC and
ESWLC). Unfortunately and due to the state space explosion problem, deadlock-
freedom becomes undecidable when increasing considerably the number of com-
ponents of the model. However, in the context of load-balancing in the cloud,
several other properties are also very interesting to evaluate, in particular when
increasing the system load.

Invariance: is also an important issue when studying dynamic load balancing
protocols. Indeed, task scheduling and load balancing in the cloud are defin-
ing on which resources a given task is executed and when. Thus, ensuring the
satisfaction of time constraints related to these scheduled or migrated tasks is
mandatory. In our model, we have defined cores as a set of timed automata in
order to specify tasks execution to a predefined execution time. More precisely,
we define an invariant for each Core component in its state named Executing,
which guarantees that a core cannot execute a given task for more than the
predefined worst-case execution time x of that task. This invariant is formally
described using Temporal-Logic as follow:

∀i : VMid, j : Coreid,
A[] (Core(i, j).enabled =⇒ (Core(i, j).t ≤ V [i].task[j].x)

74 R. Ben Hamouda et al.

Table 1. Verification time of deadlock-freedom

Nbr of components WRR WLC ESWLC

6 0,015 s 0,016 s 0,032 s

9 30,124 s 34,387 s 42,384 s

10 220,289 s 253,36 s 251,577 s

12 558,374 s 693,309 s 695,961 s

Figure 4(a), shows the verification-time of invariance when increasing the num-
ber of VMs in WRR, WLC and ESWLC protocols. Figure 4(b), shows the
verification-time for the invariance verification when increasing the number of
cores with a configuration of 10 VMs. Extending our model to a large number
of components (VMs or Cores) provides a way to study at a high-level how load
balancing protocols may react in the context of more complex architectures.

CTL Properties: Any desired property expressed as a CTL formula could be
automatically checked over the proposed model and thus on the different spec-
ified load-balancing protocols.We have specified a set of properties and checked
them using UPPAAL model-checker. Verification results are computed for a con-
figuration of 100 VMs and are given in Table 2:

• Property 1: Load-balancing algorithm terminates and returns a result.

A[] (LB.Checking =⇒ A <> LB.Waiting)

• Property 2: Whenever a task is read, it will be eventually loaded or scheduled
for migration

∀i : VMid,∀j : Taskid A[] (VM(i).R(j) = 1 =⇒ A <>
(VM(i).req(j) = true or VM(i).load(j) = true))

• Property 3: Whenever a VM requested is Task for migration, it will be even-
tually loaded or migrated

∀i : VMid,∀j : Taskid A[] VM(i).req(j) = true =⇒ A <>
VM(i).load(j) = true or IdV R(i)(j) = true

• Property 4: Whenever a VM is overloaded, it will be eventually become under-
loaded.

∀i : VMid A[] (VM(i).over = true =⇒ A <> VM(i).over = false)

All specified properties have been proven to be satisfied by the studied protocols,
except the Property 1 for the WLC protocol.

Performance Evaluation of Dynamic Load Balancing Protocols 75

Fig. 4. Invariance verification-time (second) for dynamic load balancing protocols: (a)
when increasing the number of VMs (b) when increasing the number of cores

Table 2. Verification-time (second) of variety of CTL properties

Protocols WRR WLC ESWLC

Property 1 42.72 5.116 (not satisfied) 47.51

Property 2 3.869 4.399 4.337

Property 3 3.85 5.679 4.306

Property 4 3.916 4.368 4.321

5.2 Performance Evaluation

In order to evaluate and compare the described load-balancing algorithms, a
series of experiments have been conducted using simulations set up in Uppaal.
For each load balancing algorithm different metrics could be measured in differ-
ent possible configurations. In Fig. 5, we have measured different metrics, such as
the number of migration, number of requests for migration. Such aspects are very
interesting in the context of load-balancing as they allow to have an idea about
the throughput of the studied protocols and their performance. In Fig. 6(a), we
measure the completion execution time of the total number of tasks for the dif-
ferent load-balancing protocols by increasing the number of VMs. Similarly, in
Fig. 6(b) we measure the same metric but by increasing the number of tasks. We
can see through these measures that ESWLC protocol performs better in terms
of completion time. The model we have proposed, allows to define easily different

76 R. Ben Hamouda et al.

Fig. 5. Number of migrations and requests for migration for (a) WRR, (b) WLC, (c)
ESWLC

set of configurations providing a way to compare different load-balancing strate-
gies. Even though, VMs are modeled by the same Uppaal component, one can
define different VM types which allows to specify heterogeneous configurations.
Figure 7 provides the completion time measured for different heterogeneous con-
figurations.

Performance Evaluation of Dynamic Load Balancing Protocols 77

Fig. 6. Completion execution-time: (a) when increasing the number of VMs (b) when
increasing the number of tasks

Fig. 7. Completion-time for different configurations.

6 Conclusion

In this work we have proposed a formal generic model for the specification
of dynamic Load Balancing protocol in a centralized environment. The model
has been parametrized so that it can specify different load balancing protocols
namely WRR, WLC and ESWLC. This model could be easily adapted to specify

78 R. Ben Hamouda et al.

other or even new load-balancing strategies. Our approach provides a way to for-
mally analyze different properties and aspects of the specified protocols, without
having to implement them in a concrete platform. For future work, we intend, to
extend this model, to take into account other load-balancing protocols. We are
also working on a completely distributed formal model allowing the description
of distributed load-balancing protocols.

References

1. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

2. Rimal, B.P., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing sys-
tems. In: 2009 Fifth International Joint Conference on INC, IMS and IDC, pp.
44–51 (2009)

3. Joshi, S., Kumari, U.: Load balancing in cloud computing: challenges issues. In: 2nd
International Conference on Contemporary Computing and Informatics (IC3I), pp.
120–125 (2016)

4. Aslam, S., Shah, M.A.: Load balancing algorithms in cloud computing: a survey of
modern techniques. In: 2015 National Software Engineering Conference (NSEC),
pp. 30–35 (2015)

5. Nuaimi, K.A., Mohamed, N., Nuaimi, M.A., Al-Jaroodi, J.: A survey of load bal-
ancing in cloud computing: challenges and algorithms. In: Second Symposium on
Network Cloud Computing and Applications, NCCA, pp. 137–142 (2012)

6. Radojevic, B., Zagar, M.: Analysis of issues with load balancing algorithms in
hosted (cloud) environments. In: 2011 Proceedings of the 34th International Con-
vention MIPRO, Opatija, Croatia, 23–27 May 2011, pp. 416–420 (2011)

7. Panwar, R., Mallick, B.: Load balancing in cloud computing using dynamic load
management algorithm. In: International Conference on Green Computing and
Internet of Things (ICGCIoT), pp. 773–778 (2015)

8. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. 28(4), 626–643 (1996)

9. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1, 134–152 (1997)

10. Mesbahi, M., Rahmani, A.: Load balancing in cloud computing: a state of the art
survey. Int. J. Mod. Educ. Comput. Sci. 8(3) (2016)

11. Milani, A.S., Navimipour, N.J.: Load balancing mechanisms and techniques in
the cloud environments: systematic literature review and future trends. J. Netw.
Comput. Appl. 71, 86–98 (2016)

12. Padhy, R.P., Rao, P.: Load balancing in cloud computing systems. PhD thesis
(2011)

13. Ray, S., De Sarkar, A.: Execution analysis of load balancing algorithms in cloud
computing environment. Int. J. Cloud Comput.: Serv. Arch. (IJCCSA) 2(5), 1–13
(2012)

14. Volkova, V.N., Chemenkaya, L.V., Desyatirikova, E.N., Hajali, M., Khodar, A.,
Osama, A.: Load balancing in cloud computing. In: IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 387–
390 (2018)

Performance Evaluation of Dynamic Load Balancing Protocols 79

15. Jarraya, Y., Eghtesadi, A., Debbabi, M., Zhang, Y., Pourzandi, M.: Cloud calculus:
security verification in elastic cloud computing platform. In: 2012 International
Conference on Collaboration Technologies and Systems, CTS 2012, Denver, CO,
USA, 21–25 May 2012, pp. 447–454 (2012)

16. Naskos, A., et al.: Cloud elasticity using probabilistic model checking. CoRR (2014)
17. Kikuchi, S., Aoki, T.: Evaluation of operational vulnerability in cloud service man-

agement using model checking. 2013 IEEE Seventh International Symposium on
Service-Oriented System Engineering, pp. 37–48 (2013)

18. Samal, P., Mishra, P.: Analysis of variants in round robin algorithms for load
balancing in cloud computing. Int. J. Comput. Sci. Inf. Technol. 4, 416–419 (2013)

19. Choi, D.J., Chung, K.S., Shon, J.G.: An improvement on the weighted least-
connection scheduling algorithm for load balancing in web cluster systems. In:
Kim, T., Yau, S.S., Gervasi, O., Kang, B.-H., Stoica, A., Śl ↪ezak, D. (eds.) FGIT
2010. CCIS, vol. 121, pp. 127–134. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-17625-8 13

20. Bakde, K.G., Patil, B.: Survey of techniques and challenges for load balancing in
public cloud. Int. J. Tech. Res. Appl. 4, 279–290 (2016)

https://doi.org/10.1007/978-3-642-17625-8_13
https://doi.org/10.1007/978-3-642-17625-8_13

A Protocol for Constraint Automata
Execution in a Synchronous Network

of Processors

Alireza Farhadi1(B), Mohammad Izadi2, and Jafar Habibi2

1 Kish International Campus, Sharif University of Technology, Tehran, Iran
alirezafarhadi@ce.sharif.edu

2 Computer Engineering Department, Sharif University of Technology, Tehran, Iran
{izadi,jhabibi}@sharif.edu

Abstract. In service oriented computing we encounter the problem
of coordinating autonomous services (e.g., micro-services) communicate
within the deployment environments (e.g., multi-cloud infrastructures)
but participate for the functional requirements. While the environments
have the deployment concerns like real-time, security, privacy or even
energy consumption constraints, for the sake of brevity, the formal mod-
els of coordination in service oriented systems generally abstract away
these concerns and focus on the functional ones such as synchronization,
data and context dependency constraints. In this paper, we consider Con-
straint Automata (CA) as a formal model of the functional behaviours
for the Reo coordination networks without any buffered channel. We
devise a distributed protocol to model execution the CA subject to the
deployment constraints on the messaging within a network of proces-
sors derived from the Reo network structure. We assume the constraints
are satisfied while the protocol messages go through the shortest paths
in the network. The protocol itself is modelled by another formal model
Network of Timed Automata (NTA) with the untimed transitions imple-
mented by the Uppaal tool. Our protocol models the message passing
along the shortest paths for performing a CA’s transition by all the par-
ticipant processors. The protocol guarantees all the processors do the
same CA’s transition as a consensus in the same round of execution.

Keywords: Reo coordination language · Constraint Automata
Deployment constraints · UPPAAL tool

1 Introduction

One of the challenges in service-oriented computing is that autonomous services
are deployed on remote machines and must cope with the existence of the time
delays in the network. However, the overall behaviour of the system must con-
form to the designer’s intent. Reo coordination language [1] is a notation for
modelling service composition which can also be used for executing service ori-
ented systems. Services are assumed to have no knowledge about each other and
c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 80–94, 2018.
https://doi.org/10.1007/978-3-030-00359-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_6&domain=pdf

A Protocol for CA Execution in a Synchronous Network of Processors 81

Reo networks constructed from Reo channels and nodes, model coordination of
all interactions among the services without a-priori knowledge of their internal
details.

Problem. In the presence of the time delays and asynchronous communications
imposed by the deployment concerns, enforcing a network to behave in a time
delay agnostic and synchronous manner is not a trivial task [15]. The existing
coordination models have difficulties in dealing with some real world challenges,
such as carrying out transactions subject to the deployment constraints. These
challenges become more formidable when the models of coordination are used
for concrete implementations.

Motivation. In [8,11,13] the authors show Constraint Automta (CA) as an
operational semantic model of Reo for which a proposed distributed protocol
forces a particular communication order among specific regions within a Reo
network. The regions contain stateless channels connected by nodes that decide
collectively on their behaviour in synchronous manner. The regions are separated
by channels with a buffer of size of one [20] and called synchronous regions. Each
synchronous region acts as an autonomous component. The behaviour of such a
region is modelled as a constraint automaton with a single state that can interact
with the other regions. Reo network structure is a suitable model that makes
synchronous regions explicit to the designers of the distributed applications. The
authors in [8,10,11,13] propose an algorithm for detecting synchronous regions
within a Reo network and a distributed semantics for composing them.

As a motivation, fully distributing Reo nodes within synchronous regions
because of hardware requirements (see Sect. 6.5.4 in [19]), is in analogy to
migrating service oriented architectures to micro-service architectures [7] where
autonomous big services can be decomposed into more finer and stateless ones
because of non-functional requirements. In fact, micro-services actually must
communicate asynchronously with real-time, security, privacy or even energy
consumption constraints.

The deployment constraints of the behaviour of the synchronous region are
ensured by the messaging along the shortest paths, therefore, our protocol can
be used as the more concrete implementation of the synchronous regions that
targets the deployment concerns.

For example, in micro-service architecture, cost efficiency in deploying such
services is a vital need in multi-cloud native applications, so we need to combine
both service coordination and deployment complexities while keeping the micro-
services small and simple. Reo networks can model coordination logics, then
based on the result of our work, each corresponding synchronous region can be
implemented as a new set of coordinating micro-services (here processors) that
are deployed on the multi-cloud computing environment. In our protocol, spe-
cific constraints of the deployment environment can be considered together with
coordination logics in the implementation of the coordinating micro-services.

Contribution. In this paper, we propose a generic fully distributed protocol
for ensuring that a static network of processors executes high-level user-defined

82 A. Farhadi et al.

specifications in the form of a CA with a single state. The observed computa-
tions in the underlying generic protocol represent a refinement of the user-defined
specification [18] that takes into account not only the constraints imposed by the
higher behavioural model, i.e. CA, but also the deployment constraints rooted
in asynchronous nature of the communication over the actual paths for the mes-
saging. In fact, low-level messages should go through shortest paths to satisfy
the latter constraints. In our setting the deployment constraints are realized over
link costs between the actual processors.

We assume that all the processors hold the same CA model and collectively
run that model. It is guaranteed that the same results (cf. next paragraph)
are achieved by each processor independently. Each processor knows (i) the
behaviour of the synchronous region specified by the CA, (ii) the shortest paths
to the other processors for the messaging (iii) and, executes the proposed generic
protocol. In this way, we show, in formal setting, how the behaviour of the CA
and the deployment constraints in messaging along the shortest paths within a
network of the Reo synchronous region are preserved together.

For modelling the distributed execution of the Reo synchronous regions, we
assign each node of the corresponding Reo network to a processor that is running
on a separate machine [15]. These processors concurrently exchange a number
of messages through the shortest paths during a limited period called round to
inform each other about their statuses, decide which transition of the CA as a
consensus must be executed in the current round and execute it.

The Uppaal Network of Timed Automata (NTA) with the untimed tran-
sitions can be a suitable tool to model this distributed execution since it has
the Uppaal synchronization channels capable of modelling the message passing
across the network of the automata [16] with plenty of variables and methods
which can be used in the guard and update sections of their transitions, as
well as the facilities for the design and validation of the protocol. The facilities
are model checking, simulation and trace tracking features [6]. Furthermore, we
derive a detailed semantic model consisting of four relations induced from the
CA and the deployment constraints. The relations collectively are used in the
protocol coded in the Uppaal tool and some properties of the protocol execution
are verified in an example by using the Uppaal model checker.

For the rest of the paper, the structure is as follows. In Sect. 2, we provide
the background about the Reo coordination language, networks, synchronous
regions and the Reo operational formal semantics in terms of CA. The summary
of the related works are reviewed in Sect. 3. In Sects. 4 and 5, we introduce our
protocol for the distributed execution of a Reo synchronous region and explain
its implementation in the Uppaal tool. In Sect. 6, we elaborate on the semantic
models of the proposed protocol. Finally in Sect. 7, we give a conclusion of our
work.

2 Reo Coordination Language

The Reo coordination language has a user-friendly notation [1,2] that consists
of two types of building block elements. With these building blocks, one can

A Protocol for CA Execution in a Synchronous Network of Processors 83

construct a Reo network. The first type of the basic elements in Reo is channel ;
this type is used for showing the data items flow over the network. Some of
the channels are illustrated in the top of Fig. 1. In general, the data item can
represent the actual or control data. By convention, the channels in Reo are the
entities that have exactly two ends, which can be either the source (input) or
sink (output) end.

The channel ends are used for accepting or dispensing the data items. In the
Sync channel, when two ends are ready to interact, then the data item flows
from the input to the output end. The Filter channel applies a data constraint
in addition to the synchronization one forced by the Sync channel. Whenever
the synchronization constraint is satisfied, the data item can flow if it belongs to
the relation set induced by the data constraint (e.g., R>0 for the data items with
positive real number values). Otherwise, the data item is accepted at the input
end but it is lost when flowing towards the output end. The LossySync channel
behaves like the Sync channel, when their two ends are ready to interact. But if
the input end is ready to interact and the output one is not, then the data item
is lost and not delivered to the output end.

The other type of the building blocks in Reo is called node (see bottom
Fig. 1). The elements of this type are located on the channel ends and used
for connecting the channels along the network. The behaviours of the nodes in
absorbing the ingoing data items and synchronously dispensing the outgoing
ones can be different but they generally fall into three categories: Replicator,
Merger and Join nodes. In the Replicator node, the selected input is dispensed
into all the outputs. In the Merger node, one of the incoming data items is non-
deterministically allowed to be dispensed over all the outgoing channels. The
Join node has a different way in absorbing the data item; it combines all the
incoming data items into a tuple which consists of all the data items received,
and then sends the tuple into all of the outgoing channels.

A B A B A B

Sync Filter LossySync

A
B

C
C

A

B
C

A

B

Replicator Merger Join

Fig. 1. Graphical representation of some basic Reo channels and nodes

A Reo network composed of the connecting building blocks elements has an
internal structure. The structure can have complex behaviours, and communicate
with its external environment only through its boundary nodes. In the Reo
networks, the boundary nodes are connected directly to the external components’
ports. The ports are used for reading or writing the data items from/to the
networks; therefore, from the surrounding components’ point of view, the internal

84 A. Farhadi et al.

behaviours and structures of the networks are not important. This feature scales
up the design capability of protocol designers and simplifies the overall system
design by doing it in several layers of abstraction.

2.1 Synchronous Regions of Reo Networks

The data flow over the Reo network takes place in a stepwise fashion. This means
that in each step, based on the structure of interconnection among the elements
and the existence of the data items on the boundary nodes; the data items can
flow synchronously within the synchronous regions. The observed behaviour of
the whole network can be expressed by the sequences of the data flows which
exist in the synchronous regions along the consecutive steps. Such sequences
obey a set of the constraints grouped as synchronization, data, context-sensitive
constraints.

The synchronization constraints determine which boundary nodes participate
in the current step by reading or writing the data items initiated by the connected
components’ ports, and the data constraints specify the relation between the
input and output data items during the data flow. Meanwhile context-sensitive
constraints deal with not only what happens on boundary nodes but also what
cannot happen on them. The other type of constraints like time, cost and priority
are good candidates to be used in specifying behaviours of the Reo networks [3].

The constraints over the sequences can be studied by automata theory. For
example, The automata model for the synchronization constraints over the data
flow in a Reo network have a set of states that formally corresponds to the set of
the synchronous regions of the network. Moreover, for each state, we can define
a union set of the labels on its outgoing transitions that resembles the Reo
nodes and their stateless connected channels within the corresponding region
(see Sect. 5.1 in [10]). Here, a transition models an instantaneous step of the
data flow over a set of the Reo nodes labelled on it.

2.2 Constraint Automata Semantics for Reo

Several semantic models have been proposed for Reo. They serve different pur-
poses (model checking, simulation, implementation) or focus on the behaviour
of various subsets of the Reo channels (context-sensitive, timed, probabilistic,
etc.). The popular semantic model for Reo is presented in a form of Constraint
Automata (CA) [5].

By definition, since a Reo network keeps running as long as the input data
arrived, so there are no final states in its respective CA. In CA, each state shows
an evaluation for the internal buffer. The transitions of the CA are labelled by
the port names which model the Reo nodes and the constraints over the data
item values on those ports.

Definition 1 [Constraint Automata (CA)]. A constraint automaton A =
(S,N ,→, s0) consists of a set of states S, a set of port names N , a transi-
tion relation →⊆ S ×2N ×DC ×S, where DC is the set of data constraints over
an infinite data domain Data, and an initial state s0 ∈ S.

A Protocol for CA Execution in a Synchronous Network of Processors 85

Fig. 2. CA for some basic Reo channels and nodes

The data constraints set DC is formally defined by a set of dcs with the
following grammar:

dc ::= dc1 ∧ dc2 | ¬dc | � | data(n) = (d1, d2, · · · , di)
where n ∈ N and d ∈ Data and i ≥ 1

(1)

Informally, data(n) = (d1, d2, · · · , di) can be used as a syntax for denoting
the flow of the data tuple (d1, d2, · · · , di) through the port name n [9]. We often
use dA = dB and expr(dA) to show the derived data constraints which means
that the data items on the sample ports A and B are the same and the boolean
expression expr over the data item on the sample port A is evaluated to true,
respectively.

A transition relation can be written as q
(N,g)−−−→ p instead of (q,N, g, p) ∈→.

Figure 2 shows the CA for the basic Reo channels and nodes given in Fig. 1. The
behaviour of any Reo network composed of these elements can be obtained by
computing the product of their corresponding CAs. It is customary to make the
composed automaton amenable by hiding the unimportant port names during
compositional design [5].

For example, a Reo network that consists of a Merger node connected to
a Filter channel on C port, and its composed behaviour in the CA with one
state and four transitions are shown on the left and right sides of Fig. 3, respec-
tively. Note that C port in the CA is hidden. Intuitively, the network routes
non-deterministically the data item, from the boundary nodes A or B to the
node D via the internal node C, where the data value is greater than value d1,
otherwise the data item will be lost and not received by the node D.

The CA can be used in the implementations in which the Reo networks are
deployed on a centralized machine and there is no deployment constraints for
the message passing between the ports [17]. Therefore, it cannot be used for
modelling real coordination problems. This means centralized implementations
of the CA can probably be used if the deployment constraints are negligible, but
they are not suitable for the distributed service coordination in the presence of
the deployment constraints (e.g., communication delays [14]).

86 A. Farhadi et al.

Fig. 3. Merger-Filter Reo network and its CA

3 Related Works

Since most implementations of the current semantics of Reo are centralized [9],
they assume that all nodes that participate in a synchronous act of the coordi-
nation are located on one machine and there is no communication hop between
any two nodes. In contrast with works in [8,10,11,13] that each synchronous
region itself is assumed to be sequential event-handling code, Reo nodes within
a synchronous region can be considered as distinct coordinating processors that
are distributed across the Reo network of the region and communicate asyn-
chronously in presence of deployment constraints.

All the previous distributed execution models proposed for the Reo imple-
mentations show the complexity in extracting from the global models the sepa-
rate local behavioural models which are suitable for deployment on the separate
distributed processors [10,15,20]. In our approach, it’s assumed that a Reo net-
work can be splitted to separate synchronous region(s). We only deal with a
single synchronous region with its behaviour modelled by a single state CA.

4 Execution Protocol

Our aim in this section is to show a distributed execution protocol among a
set of components. The protocol models the execution of the Reo network of the
synchronous region with the single state CA as its operational semantics, over the
network of the processors categorized into two groups. The internal processors
are connected in a free-form topology that can be like the Reo network structure.
The second group consists of the boundary processors that each of them interact
with an adjacent component and an internal processor.

All the boundary processors contain the same CA representation of the
behaviour of the network. This representation includes the synchronization and
data constraints sections for each CA’s transition. The processors and communi-
cation links among them in the network resemble the corresponding nodes and
channels in the Reo network of the synchronous region. In this protocol, the
CA’s port names are also the same as the processor names. We formally define
the CA representation in Sect. 6.

A Protocol for CA Execution in a Synchronous Network of Processors 87

After a message passing period during a round of the execution protocol,
consumption or production of the data items over the boundary processors obey
the synchronous region behaviour model specified by the corresponding CA’s
transition, which is selected by all the boundary processors after reaching a
consensus.

In fact, the processors of the network are committed to do that transition.
Some of the processors take an action (that is either consumption or production
of the data items) in the execution of the CA’s transition if they correspond
to the CA’s port names in the synchronization constraints and the values of
the data items satisfy the data constraints of that transition. Such processors
are called the active participant processors during the round. The rest of the
processors do not take any action and are called the inactive processors.

During each round of the protocol, all the boundary processors communi-
cate and route their messages using the shortest paths through the network of
the internal processors. But the message passing between the component ports
and the corresponding boundary processors are considered simultaneous in the
protocol.

All the messages exchanged between each two processors have the same for-
mat, consisting of

(i) an item showing whether there is a pending request from the adjacent com-
ponent port on the corresponding boundary processor,

(ii) the data item provided by the component which may be null, and
(iii) a random transition number that is selected randomly by the boundary

processor from all the possible CA’s transitions.

This last item can be used as a suggestion to decide the final selected tran-
sition at the end of the round as the consensus.

In the protocol, all the processors begin from the same round number zero
and increase it by one after selecting and executing the consensus transition at
the end of the current round and repeat the process described above in the next
round. The maximum number of the rounds is equal to one less than the number
of the boundary processors and when the round number reaches the maximum
value, it gets back to zero.

4.1 Protocol Properties

In each round, there is a specific processor whose initial random transition num-
ber must be used to decide the consensus transition. In other words all the
boundary processors take a chance in a round robin order, to force the other
boundary processors to use its initial random transition number as a starting
point for searching within the possible transitions list, therefore, the protocol is
fair.

After all the boundary processors’ messages reach their destination during
a round, each processor starts to check which transition can be selected as a
consensus transition. This search is done based on the received statuses and the

88 A. Farhadi et al.

available data items from all the other boundary processors. Since the search
starts from a common agreed starting point in the possible CA’s transition list, it
is guaranteed that all processors will agree on the same transition or no transition
because of the identical conditions happened during the current round. When
the consensus transition is selected, the boundary processors execute it.

It is also obvious by design of the protocol that there is no active boundary
processor by the end of each round that has not already received any request
from its corresponding component’s port during that round.

In Sect. 5, an illustrative example comes with the implementation details in
the Uppaal tool. There, we also show the correctness of the proposed protocol
by using the model checker of the Uppaal to verify two CTL properties.

5 Implementation in UPPAAL

The Uppaal tool is used to model and verify a wide range of applications from
communication protocols to multimedia applications [6]. Networks of Timed
Automata (NTA) extended with the bounded integer and Boolean variables,
the user defined functions and the channel synchronizations make the Uppaal
suitable for the design and the implementation of the distributed protocols.

In the protocol implementation there are two important Uppaal templates
named BoundaryNode and InternalNode, for modelling the behaviour of the
processors, one for the boundary and another for the internal processors. Here,
the term node is used instead of the term processor in the Uppaal implemen-
tation.

Based on our assumption a boundary processor can interact with an adjacent
components port and an internal processor. But the internal processors can be
connected to any number of the other internal processors according to the Reo
network structure.

The Uppaal template BoundaryNode has three parameters that specify the
index of the instantiated processor, the type of the boundary processor, and the
internal processor that is connected to the boundary processor. In contrast, the
InternalNode template has just two parameters, one shows the index of the
instantiated internal processor and the other corresponds to the index of the
boundary processor that its message can be sent to that internal processor to be
routed forward.

Since it is possible for the messages of all the boundary processors to pass
through an internal processor, the number of times the InternalNode template
is instantiated equals the number of the boundary processors. The pseudo-codes
of the instantiated boundary and internal processors are listed in Algorithms 1
and 2, respectively. Informally, the NTA of the proposed protocol behave in three
phases within a round of execution:

(i) determining the status of the boundary nodes,
(ii) routing the messages by internal nodes, and
(iii) calculating and executing the consensus CA’s transition.

A Protocol for CA Execution in a Synchronous Network of Processors 89

Algorithm 1. Algorithm of Boundary Processor i
1: procedure BoundaryProcessor
2: adjacentComponentPort ← the adjacent component port
3: connectedInternalProcessor ← the connected internal processor
4: numOfBoundaryProcess ← the number of the boundary processors
5: maxTransition ← the maximum number of the transition of the CA rep.
6: while true do
7: foreach currentRound ∈ [1..maxTransition] do
8: idle:
9: if Is there any request from adjacentComponentPort then

10: informs the connectedInternalProcessor by the message encoded as:
11: boundaryNodeStatus[i] ← true
12: boundaryNodeDataItem[i] ← the data on the writeradjacentComponentPort
13: selectedRandomTransitionIndex[i] ← rand([1..maxTransition])
14: else
15: informs the connectedInternalProcessor by the message encoded as:
16: boundaryNodeStatus[i] ← false
17: boundaryNodeDataItem[i] ← null
18: selectedRandomTransitionIndex[i] ← rand([1..maxTransition])

19: committing, suspend :
20: foreach receivedMessageNo ∈ [1..numOfBoundaryProcess] do
21: get informed by the connectedInternalProcessor

22: consensus:
23: consensusTransition ← compute the consensus transition based on the CA

rep. and received messages during the currentRound
24: if consensusTransition is not found then
25: progress to the next round.
26: else
27: execute the consensusTransition based on the CA rep.
28: It may update the reader adjacentComponentPort

Illustrative Example. Here we define a system with four processors A Node,
B Node, D Node and (three instances of) C Node, where A Node and B Node
receive data from the adjacent component’s ports. For the sake of modelling

Algorithm 2. Algorithm of Internal Processor i
1: procedure InternalProcessor
2: correspondingBoundaryProcessor ← boundary processor whose message can be

received
3: numOfBoundaryProcess ← number of the boundary processors
4: free:
5: exitNodeNumber ← calculating the exit nodes based on the shortest paths for

routing the messages of correspondingBoundaryProcessor
6: while exitNodeNumber �= 0 do
7: lock :
8: Pick an exit node and inform it

90 A. Farhadi et al.

the component’s port, we introduce two other templates named WriterPort
and ReaderPort for the writer and reader component’s ports, respectively. The
boundary processors A Node, B Node are connected to the internal processor
C Node which in turn connects to the boundary processor D Node that sends the
received data item to its adjacent component’s port Reader D.

This network of processors operates as a Reo network shown in Fig. 3. The
Uppaal system declaration is encoded as follows and the complete code of this
example is available at http://ce.sharif.edu/∼alirezafarhadi/MergerFilter.xml.

Writer_A = WriterPort(A);
Writer_B = WriterPort(B);
Reader_D = ReaderPort(D);
A_Node = BoundaryNode(A, writer, C);
B_Node = BoundaryNode(B, writer, C);
D_Node = BoundaryNode(D, reader, C);
C_Node_For_A = InternalNode(C,A);
C_Node_For_B = InternalNode(C,B);
C_Node_For_D = InternalNode(C,D);
system
Writer_A, Writer_B, Reader_D,
A_Node, B_Node, D_Node,
C_Node_For_A, C_Node_For_B, C_Node_For_D;

Example Evaluation. By using the model checker of the Uppaal tool, we
can verify correctness of our protocol implementation for the current example.
Since the protocol model must be tractable for the model checker, we determined
a maximum number of the round in our example implementation. This makes
the result NTA finally encounter a deadlock situation when the round number
reaches the maximum.

The following CTL property specifies if there is a situation where the protocol
finishes the maximum round while one of the boundary processors (in this case,
D Node) is not in its consensus state. This property is not satisfied by the model
checker.

E<> A_Node.consensus and B_Node.consensus
and not D_Node.consensus and deadlock

As a second property we check if there is a situation where all the boundary
processors with pending requests and data items on them are committed to
participate in a specific transition but it is not executed. The Uppaal model
checker shows the property is not valid. Both the above properties are provided
in companion with the code of the example.

In a random simulation run generated by the Uppaal simulator, Writer B
and Reader D component’s ports participate during a single round but Writer A
has not any request. A sequence chart available at http://ce.sharif.edu/
∼alirezafarhadi/MSC.png shows all the boundary nodes receive the messages

http://ce.sharif.edu/~alirezafarhadi/MergerFilter.xml
http://ce.sharif.edu/~alirezafarhadi/MSC.png
http://ce.sharif.edu/~alirezafarhadi/MSC.png

A Protocol for CA Execution in a Synchronous Network of Processors 91

of the others through the corresponding connected internal nodes and reach to
their consensus states. Note that A Node sends its message only after receiving
the message of D Node.

6 Semantic Models

To model the proposed protocol formally, let us consider the protocol represen-
tation of the synchronization and data constraints in CA in more details. For
the synchronization constraints, we construct a set of the node statuses. In this
section, we use term node instead of terms port and processor.

Definition 2 [Transition Nodes Participations (TNP)]. A transition nodes par-
ticipation relation over a constraint automaton C = (S,N ,→, s0) is a set of
tuples of the form (Tr, φTr(N)) where Tr ∈→ is a transition in the →, the tran-
sition relation in the C, and φTr : N → PTr is a function from N , a set of
all node names, to a set PTr which determines status of participation (active or
inactive) for each node A ∈ N in the Tr and is defined as below:

PTr = {A|A ∈ N , where A has the active role in the Tr}∪ {A|A ∈ N , where
A has the inactive role in the Tr}

For modelling the data constraints over a transition in the CA in our protocol,
we must distinguish between the disjoint sets of the input nodes I and the
output nodes O. The internal nodes can be removed from the CA’s transitions
by the hiding operator [5], therefore, we formally have N = I ∪ O. For the data
constraints, we define two separate relations:

1. The input data constraints relation that shows what evaluation over the data
items in the input nodes is valid in a transition.

3. The output data assignments relation that determine for each output node
which data items can be consumed based on each valid input data evaluation.

Definition 3 [Input Data Constraints (IDC)]. An input data constraint relation
over a constraint automaton C = (S,N ,→, s0) is a set of tuples of the form
(Tr, ηTr(I)) where Tr ∈→ is a transition in the →, the transition relation in
the C, and ηTr(I) is a set of all allowable data evaluations over the set of input
nodes I ⊆ N for the transition Tr. For each member of ηTr(I), we have a set
of tuples of the form (A, dA) where A ∈ I is an input node and dA ∈ Data is
the corresponding data item. For this member, the Tr’s data constraints for the
input nodes are satisfied.

This relation is interpreted as the data items provided by the adjacent writer
components’ ports and consumed by the network in the active input nodes during
the related transition Tr. An evaluation in ηTr(I) assigns the data items to all
active nodes in the set I. The data items are from the data value domain Data
of the CA. The value nil, is used for the inactive nodes in I.

Intuitively we can see the IDC relation which models a part of the data
constraints set DC of the CA as the simpler version of the constraints where
the dcs over the output nodes are replaced by true. The other part of the data
constraints in CA must be modelled as the output data assignments relations.

92 A. Farhadi et al.

Definition 4 [Output Data Assignments (ODA)]. An output data assignment
relation over a constraint automaton C = (S,N ,→, s0) is a set of tuples of the
form (Tr, ηTr(I ∪ O)) where Tr ∈→ is a transition in the →, the transition
relation in the C, and ηTr(I ∪ O) is a set of all allowable data evaluations
over the set of input and output nodes I ∪ O = N for the transition Tr. For
each member of ηTr(I ∪ O), we have a set of tuples of the form (A, dA) where
A ∈ I ∪ O and dA ∈ Data is the corresponding data item. For this member, the
Tr’s data constraints for all the input and output nodes are satisfied.

This relation is the extended version of the IDC. It also has information about
the data item provided by the network in active output ports and consumed by
adjacent reader components during the related transition Tr. An evaluation in
ηTr(I ∪ O), in contrast to ηTr(I), assigns data items to all active nodes in the
set I ∪ O.

In addition to the CA-based models above, another useful concept in running
the proposed distributed protocol is the shortest path nodes relation. Given two
nodes, this relation maps them to a set of intermediate nodes, which must be
traversed in order to stay on the shortest path between the two nodes. The
message passing based on the relation preserves the deployment constraints.

Definition 5 [Shortest Path Nodes (SPN)]. A SPN relation is a set of tuples of
the form (A,B, σ(A,B)) in which A,B ∈ N and σ(A,B) is a sequence of node
names of the CA that shows a path with the minimum cost among all the other
possible paths in the corresponding graph of the Reo network.

Based on the semantic models described in this section, we can deal with the
protocol correctness. First, we can formally introduce a language to specify the
behaviour of the CA and NTA associated with nodes running the protocol. Then
we can make sufficient statements about the progress of the protocol over time
and definitiveness of reaching a consensus. Finally, in a theorem we can show
that there is an equivalence relation [4] between the CA and the corresponding
NTA, thus showing the correctness of the whole protocol.

7 Conclusion

In this paper we devise a protocol for the distributed execution of the CA of the
synchronous regions, among the processors within which passing the messages
conforms the deployment constraints by going through the shortest paths. The
protocol is deployed on the machines located in a network resembling the Reo
network of the synchronous region, with deployment constraints on the message
passing over the links in the network.

We use the network of the Uppaal timed automata with untimed transi-
tions to model each processor which communicates with the other processors
by the Uppaal channels during a round period. They finally select a consensus
CA’s transition based on the collected messages and the functional constraints

A Protocol for CA Execution in a Synchronous Network of Processors 93

imposed by the CA. The protocol simply guarantees that all the processors exe-
cute the transition at the end of the round.

By using our proposed protocol, previous works on automatically generat-
ing the centralized and distributed coordination codes for the Soap-based web
services [12] in service oriented architecture, are suitable to be extended to com-
munication protocols in micro-service architecture (e.g., Rest and web socket
technologies). In the future works we intend to extend our distributed protocol
with the context dependent Reo semantics. In this setting the distributed Reo
synchronous regions that are related by the context dependency constraints must
communicate with each other to reach a consensus transition.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

2. Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Formal Modeling: Actors, Open Systems, Biological Systems: Essays Dedicated to
Carolyn Talcott on the Occasion of Her 70th Birthday. LNCS, vol. 7000, pp. 169–
206. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24933-4 9

3. Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component connectors with QoS
guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS,
vol. 4467, pp. 286–304. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72794-1 16

4. Baier, C., Katoen, J.P.: Principles of Model Checking, vol. 950. The MIT press,
Cambridge (2008)

5. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

6. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

7. Fowler, M., Lewis, J.: Microservices. ThoughtWorks (2014). http://martinfowler.
com/articles/microservices.html. Accessed 7 Dec 2017

8. Jongmans, S.-S.T.Q., Arbab, F.: Global consensus through local synchronization:
a formal basis for partially-distributed coordination. Sci. Comput. Program. 115,
199–224 (2016)

9. Jongmans, S.-S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo.
Sci. Ann. Comput. Sci. 22(1), 201–251 (2012)

10. Jongmans, S.-S.T.Q., Clarke, D., Proença, J.: A procedure for splitting processes
and its application to coordination. arXiv preprint arXiv:1209.1422 (2012)

11. Jongmans, S.-S.T.Q., Santini, F., Arbab, F.: Partially distributed coordination
with Reo and constraint automata. Serv. Oriented Comput. Appl. 9(3–4), 311–
339 (2015)

12. Jongmans, S.-S.T.Q., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.:
Orchestrating web services using Reo: from circuits and behaviors to automati-
cally generated code. Serv. Oriented Comput. Appl. 8(4), 277–297 (2014)

13. Jongmans, S.-S.T.Q., Arbab, F.: Global consensus through local synchronization.
In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 174–188. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-45364-9 15

https://doi.org/10.1007/978-3-642-24933-4_9
https://doi.org/10.1007/978-3-540-72794-1_16
https://doi.org/10.1007/978-3-540-72794-1_16
https://doi.org/10.1007/978-3-540-30080-9_7
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://arxiv.org/abs/1209.1422
https://doi.org/10.1007/978-3-642-45364-9_15

94 A. Farhadi et al.

14. Kokash, N., Changizi, B., Arbab, F.: A semantic model for service composition
with coordination time delays. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS,
vol. 6447, pp. 106–121. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16901-4 9

15. Kokash, N.: Handshaking protocol for distributed implementation of Reo. arXiv
preprint arXiv:1504.03553 (2015)

16. Kokash, N., Jaghoori, M.M., Arbab, F.: From timed Reo networks to networks of
timed automata. Electron. Notes Theor. Comput. Sci. 295, 11–29 (2013)

17. Maraikar, Z., Lazovik, A., Arbab, F.: Building mashups for the enterprise with
SABRE. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 70–83. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-89652-4 9

18. Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A.K., Weikum, G.: From central-
ized workflow specification to distributed workflow execution. J. Intell. Inf. Syst.
10, 159–184 (1998)

19. Proença, J., et al.: Synchronous coordination of distributed components. Ph.D.
thesis, Faculty of Science, Leiden University (2011)

20. Proença, J., Clarke, D., de Vink, E., Arbab, F.: Dreams: a framework for dis-
tributed synchronous coordination. In: Proceedings of the 27th Annual ACM Sym-
posium on Applied Computing, pp. 1510–1515 (2012)

https://doi.org/10.1007/978-3-642-16901-4_9
https://doi.org/10.1007/978-3-642-16901-4_9
http://arxiv.org/abs/1504.03553
https://doi.org/10.1007/978-3-540-89652-4_9
https://doi.org/10.1007/978-3-540-89652-4_9

Testing and Fault Detection

MBT/CPN: A Tool for Model-Based
Software Testing of Distributed Systems
Protocols Using Coloured Petri Nets

Rui Wang(B), Lars Michael Kristensen, and Volker Stolz

Department of Computing, Mathematics, and Physics,
Western Norway University of Applied Sciences, Bergen, Norway

{rwa,lmkr,vsto}@hvl.no

Abstract. Model-based testing is an approach to software testing based
on generating test cases from models. The test cases are then executed
against a system under test. Coloured Petri Nets (CPNs) have been
widely used for modeling, validation, and verification of concurrent soft-
ware systems, but their application for model-based testing has only been
explored to a limited extent. The contribution of this paper is to present
the MBT/CPN tool, implemented through CPN Tools, to support test
case generation from CPN models. We illustrate the application of our
approach by showing how it can be used for model-based testing of a
Go implementation of the coordinator in a two-phase commit protocol.
In addition, we report on experimental results for Go-based implemen-
tations of a distributed storage protocol and the Paxos distributed con-
sensus protocol. The experiments demonstrate that the generated test
cases yield a high statement coverage.

1 Introduction

Society is heavily dependent on software and software systems, and design- and
implementation errors in software systems may render them unavailable and
return erroneous results to their users. It is therefore important to develop tech-
niques that can be used to ensure correct and stable operation of the software.

Model-based testing (MBT) [13] is a promising technique for using models of
a system under test (SUT) and its environment to generate test cases for the
system. MBT approaches and tools have been developed based on a variety of
modeling formalisms, including flowcharts, decision tables, finite-state machines,
Petri nets, state-charts, object-oriented models, and BPMN [6]. A test case usu-
ally consists of test input and expected output and can be executed against
the SUT. The goal of MBT is validation and error-detection by finding observ-
able differences between the behavior of an implementation and the intended
behavior. Generally, MBT involves: (a) constructing a model of the SUT and its
environment; (b) define test selection criteria for guiding the generation of test
cases and the corresponding test oracle representing the ground-truth; (c) gen-
eration and execution of test cases; (d) comparison of the output from the test
c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 97–113, 2018.
https://doi.org/10.1007/978-3-030-00359-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_7&domain=pdf

98 R. Wang et al.

case execution with the expected result from the test oracle. The component
that performs (c) and (d) is known as a test adapter and uses the test oracles to
determine whether a test has passed or failed.

Coloured Petri Nets (CPNs) [5] is a modeling language for distributed and
concurrent systems combining Petri nets and the Standard ML programming
language. Petri nets provide the primitives for modeling concurrency, synchro-
nization and communication while Standard ML is used for modeling data. Con-
struction and analysis of CPN models is supported by CPN Tools [2] which
have been widely used for modeling and verifying models of complex systems
for domains such as concurrent systems, communication protocols, and dis-
tributed algorithms [9]. Recently, work on automated code generation has also
been done [8]. Comprehensive testing is an important task in the engineering of
software, including the case of automated code generation, as it is seldom the
case that the correctness of the model-to-text transformations and their imple-
mentation can be formally established. We have chosen CPNs as the foundation
of our MBT approach due to its strong track record in modeling distributed
systems, and the support for parametric models and compact modeling of data.
Moreover, CPNs enables model validation prior to test case generation, and CPN
Tools supports both simulation and state space exploration which is paramount
for the development of our approach and for conducting practical experiments.

The main contribution of this paper is to present our approach to model-
based testing using CPNs and the supporting MBT/CPN tool. MBT/CPN
has been implemented on top of CPN Tools to support test case generation
from CPN models. It has been developed as part of our ongoing research into
MBT for quorum-based distributed systems [15]. The main idea underlying our
approach is for the modeler to capture the observable input and output events
(transitions) in a test case specification. A main facility of the tool is the uniform
support for both state space and simulation-based test case generation. A second
contribution of this paper is to experimentally evaluate the tool on a two-phase
commit protocol implemented using the Go programming language, and to sum-
marize experimental results from the application of MBT/CPN to a distributed
storage protocol [15] and the Paxos distributed consensus protocol [14]. The dis-
tributed storage protocol and the Paxos protocol have both been implemented
in the Go programming language [3] using a quorum-based distributed systems
middleware [10]. These experiments show a high statement coverage and demon-
strate in addition that the approach is able to detect programming errors via
the generation and execution of unit and system tests.

The rest of this paper is organized as follows. Section 2 gives an overview of
MBT/CPN and its software architecture. In Sect. 3 we introduce the two-phase
commit transaction protocol that we use as a running example to present the
features of MBT/CPN. Sections 4 and 5 explain how test case generation and
test case execution are supported. Section 6 presents our experimental evaluation
of MBT/CPN. In Sect. 7, we sum up conclusions and discuss related work. We
assume that the reader is familiar with the basic concepts of Petri nets. The
MBT/CPN tool is available via [11].

MBT/CPN: A Tool for Model-Based Software Testing 99

2 Tool Overview and Software Architecture

The MBT/CPN tool is implemented in the Standard ML programming lan-
guage on top of the simulator of CPN Tools. In CPN models, Standard ML is
used to define the data types of the model, to declare the colour set of places
and the variables of transitions, for defining guards of transitions, and for the arc
expressions appearing on the arcs connecting places and transitions. MBT/CPN
provides the user with a set of Standard ML functions which can be invoked in
order to perform test case generation.

Figure 1 gives an overview of the modules that constitute MBT/CPN and
puts the tool into the context of model-based test case generation. The main
outputs of the MBT/CPN tool are files containing Test Cases which can be
read by a Reader of a test Adapter and executed by a Tester against the System
Under Test (SUT). The Tester will provide the input events as stimuli to the SUT
and compare the observed outputs from the SUT with the expected outputs.

Fig. 1. Overview of MBT/CPN modules.

The application of MBT/CPN
requires the user to identify
the observable events originat-
ing from occurrences of binding
elements in the CPN model. A
binding element is a pair con-
sisting of a transition and an
assignment of values to the vari-
ables of the transition. A bind-
ing element hence represents
a mode in which a transition
may be enabled and may occur.
A test case is comprised of
observable events where input
events represent stimuli to the
SUT and output events repre-
sent expected outputs. It is the expected outputs that are used as test oracles
during test case execution to determine the overall test outcome.

The MBT/CPN base module defines a generic colour set (data type) used to
represent the observable events in test cases:

colset TCEvent = union InEvent:TCInEvent + OutEvent:TCOutEvent;

The definition of the colour sets TCInEvent and TCOutEvent depends on the
SUT in terms of the events to be made observable. These must be defined by the
user of the tool and can use the standard colour set constructors in CPN Tools.
The tool supports two approaches for extracting test cases from the model:

State-space based test case generation. This approach is based on generat-
ing the state space of the CPN model and extracting test cases by considering
paths in the state space. This approach is implemented in the SSTCG module
on top of the state space tool of CPN Tools.

100 R. Wang et al.

Fig. 2. Standard ML interface for test case specification.

Simulation-based test case generation. This approach is based on conduct-
ing a simulation of the CPN model and extracting the test case corresponding
to the execution. This approach is implemented in the SIMTCG module on
top of the simulation monitoring facilities of CPN Tools.

The state-space based approach works for finite-state models and is based
on computing all reachable states and state changes of the CPN model. The
simulation-based approach is based on running a set of simulations and extract-
ing test cases from the corresponding set of executions. The advantage of the
state-space based approach is that it covers all the possible executions of the
CPN model which gives a high test coverage. However, if the CPN model is com-
plex, the state-space based approach may be infeasible due to the state explosion
problem. The advantage of the simulation-based approach over the state-space
based approach is scalability when the complexity of the CPN model is high,
while the disadvantage is potentially reduced test coverage.

The CNF (configuration) module is shared between the state space- and
simulation-based test case generation. It supports configuring the output direc-
tories and naming of test cases, and configuration of a test case generation spec-
ification. The test case specification is used to specify the observable input and
output events during test case generation and is comprised of a:

Detection function constituting a predicate on binding elements that evaluates
to true for binding elements representing observable events.

Observation function which maps an observable binding element into an
observable input or output event belonging to the TCEvent colour set.

Formatting function mapping observable events into a string representation
which is used in order to export the test cases into files.

The test case specification is provided by the user implementing a Standard
ML structure satisfying the TCSPEC signature (interface) shown in Fig. 2. The
type Bind.Elem is an existing data type in CPN Tools representing binding
elements. The observation function is specified to return a list of observable
events to cater for the case where one might want to split a binding element into
several observable events in the test case. We will give examples of detection and
observation functions for the two-phase commit protocol example in Sect. 4.

The detection and observation functions are specified independently of
whether simulation-based or state space-based test case generation is employed.
This allows the input from the user to be specified in a uniform way, indepen-
dently of which approach will be used for the test case generation. This makes it

MBT/CPN: A Tool for Model-Based Software Testing 101

Fig. 3. Standard ML interface for test case generation.

easy to switch between the two approaches. The tool invokes the detection func-
tion on each arc of the state space (occurring binding element in a simulation)
to determine whether the corresponding event is observable, and if so, then the
observation function will be invoked to map the corresponding binding element
into an observable event. The Export module implements the export of the test
cases into files and relies on the CNF module for persistence and naming.

When an implementation of the test case specification has been provided by
the user, the MBT/CPN tool can be used to generate test cases. The primitives
available for the user to control the test case generation are provided by the
Test Case Generation module which implements the TCGEN interface (signature)
partly shown in Fig. 3. The ss function is used for state-space based test case
generation. The sim function is used for simulation-based test case generation
and takes an integer as a parameter specifying the number of simulation runs
that should be conducted to generate test cases. Both functions return a list of
test cases, where each test case is comprised of a list of test case events (TCEvent).
The export function is used for exporting the test cases into files according to
the settings which the user provided via the CNF configuration module (Fig. 1).

3 Example: Two-Phase Commit Transaction Protocol

We use the two-phase commit transaction (TPC) protocol from [5] to explain
the use of MBT/CPN. The CPN model is comprised of four hierarchically
organized modules. Figure 4 shows the CPN module for the coordinator process
and Fig. 5 shows the CPN module for the worker processes. Figure 6 shows model-
based test case generation and exporting. Due to space limitations, we do not
show the top-level CPN module and have also omitted the submodule of the
CollectVotes substitution transition in Fig. 4. Each port place (place drawn with
a double border) in the coordinator module is linked via so-called port-socket
assignments to the accordingly named place in the workers module. The colour
sets and variable used are shown in Fig. 7.

The coordinator starts by sending a message to each worker (transition Send-
CanCommit), asking whether the transaction can be committed or not. Each
worker votes Yes or No (transition ReceiveCanCommit). The coordinator then
collects each vote as modeled by the CollectVotes submodule of the CollectVotes
substitution transition. Based on the collected votes, the coordinator sends back
an abort or commit decision.

102 R. Wang et al.

The coordinator will decide on commit if and only if all workers voted yes.
The workers that voted yes then receive the decision (transition ReceiveDecision)
and send back an acknowledgement. The coordinator then receives all acknowl-
edgements (transition ReceiveAcknowledgement). After having executed the pro-
tocol, the place Completed will contain a token with colour abort or commit
depending on whether the transaction was to be committed or not.

When presenting MBT/CPN in the remainder of this paper, we show how
it can be used to generate test cases from the TPC CPN model. These can then
be executed by a test adapter against an implementation of the coordinator
process in the Go programming language. The workers module is used to obtain
input events (stimuli) for the coordinator implementation, and the coordinator
CPN module is used to obtain expected outputs (test oracles) which in turn
determine whether a test is successful or not. In that respect, the CPN module
of the coordinator serves as an abstract specification of the coordinator process
against which the behavior of the implementation can be compared.

Fig. 4. MBT/CPN example in CPN Tools: Coordinator module.

MBT/CPN: A Tool for Model-Based Software Testing 103

4 Test Case Generation

The first step in using the MBT/CPN tool for test case generation is to
extend the TCEvent base colour set by defining the colour sets TCInEvent and
TCOutEvent according to the input and output events of the system that are to
be observed. For the TPC protocol, we can define the input events to be the
votes of the individual workers. The output events can be defined as the deci-
sions sent to the individual workers and the overall decision as to whether the
transaction is to be committed or aborted. Relying on the colour set definitions
already in the CPN model (Fig. 7), this can be implemented as shown in Fig. 8.
In the TCOutEvent colour set, WDecision is used for the decision sent to each
worker while SDecision is used for the overall system decision.

For the TPC protocol, the input events corresponding to the votes sent by
the workers can be obtained by considering occurrences of the ReceiveCanCommit
transition (Fig. 5), while the output events can be obtained by considering the
ReceiveDecision and ReceiveAcknowledgement transitions. This means that the

Fig. 5. MBT/CPN example in CPN Tools: Workers module.

104 R. Wang et al.

Fig. 6. MBT/CPN example in CPN Tools: Model-based test case generation and
exporting.

Fig. 7. Colour set and variable declarations.

detection function for the TPC protocol must return true if and only if the
occurrence of the binding element corresponds to one of the above-mentioned
transitions. The implementation of the detection function is shown in Fig. 9.

The observation function maps binding elements into observable input and
output events. For the TPC protocol this function can be implemented as in
Fig. 10. The function accesses the values bound to the variables (w,vote, and
decision) of the transitions and uses the constructors of the TCEvent and
TCOutEvent data types to construct the observable events.

MBT/CPN: A Tool for Model-Based Software Testing 105

Fig. 8. Definitions of the colour sets TCInEvent, TCOutEvent and TCEvent.

Fig. 9. The implementation of the detection function for the TPC protocol.

Fig. 10. The implementation of the observation function for the TPC protocol.

The MBT/CPN tool has built-in for exporting the test cases into an XML
format. The use of XML makes it easy to reuse the test generator for systems
under test implemented in different programming languages. The concrete XML
format will depend on the observable events and hence the user needs to provide
a format function as part of the test case generation specification that maps
each observable event into a string representing an XML element. This function
is typically implemented as a pattern match on the TCEvent data type. For the
TPC protocol it would for instance map the InEvent corresponding to worker
one (wrk(1)) voting No into the following XML element:

<Vote><WorkerID>1</WorkerID><VoteValue>0</VoteValue></Vote>

The complete formatting function for the TPC protocol is similar in com-
plexity to the detection and the observation functions.

5 Test Case Execution

To perform model-based testing using the test cases generated by MBT/CPN,
the developer (user) must implement a test Adapter as was shown in Fig. 1. The

106 R. Wang et al.

implementation of the test adapter depends on the concrete SUT, but consists
of the same overall components independently of the SUT. To illustrate how
MBT/CPN test cases can be used, we outline how to implement a test adapter
for a Go implementation of the coordinator process. The adapter consists of
a Reader and a Tester. The implementation of the Reader (around 30 lines of
code) is based on the encoding/xml package from the Go standard library, while
the implementation of the Tester (around 80 lines of code) is based on testing
packages of the Go standard library. Go’s testing infrastructure allows us to
run the go test command to execute the test cases and it provides pass/fail
information for each test case. In addition, it provides information about code
coverage. The full Go implementation of the adapter and also the coordinator
SUT is available together with the MBT/CPN distribution [11].

The purpose of the reader is to read the XML files containing test cases and
convert them into a representation which can be used by the tester. In this case,
the encoding/xml package of the Go standard library supports the implementa-
tion of the Reader. The purpose of the tester is to provide input and read the
output from the SUT according to the test case being executed. Hence, the tester
serves as an intermediate between the test cases and the SUT. In this case, our
coordinator SUT is implemented in Go, and the communication between the
coordinator SUT and the tester is implemented using Go channels. The tester
provides input to the coordinator SUT via the channels and implements the test
oracles by comparing the values received with the expected output as specified
in the test case. An important property of the tester implementation is that it
is transparent to the coordinator SUT that it is interacting with the tester and
not a real set of worker implementations.

The messages exchanged between the tester and the coordinator SUT are
defined according to the mapping between the colour sets defined for messages
in the CPN model (Fig. 7) and corresponding types in Go. Figure 11 shows the
declarations of messages in Go for such communication which include CanCommit,
Vote, Decision and Ack (Go code organized in two columns to save space).

The Go implementation of the coordinator SUT itself follows closely the
CPN module of the coordinator (Fig. 4). Figure 12 shows the coordinator inter-
face implemented in Go, which consists of methods for sending and delivering
messages through channels. The method Start is the entry point of the coordi-
nator which starts the coordinator’s main control flow as a goroutine (thread).
Within this loop, the coordinator receives incoming Vote and Ack messages
through channels, delivered by the invocations of DeliverVote and DeliverACK
methods, respectively. The coordinator invokes CollectVotes method to col-
lect received Vote messages, and invoke SendDecision and SendFinalDecision
methods to send Decision messages and a final Decision message.

MBT/CPN: A Tool for Model-Based Software Testing 107

Fig. 11. Message declarations in Go.

Fig. 12. Interface of the coordinator SUT in Go.

6 Experimental Evaluation

We report on experimental results on applying the MBT/CPN tool on the
two-phase commit protocol with the coordinator as the system under test. In
addition, we summarize experimental results obtained using our approach on
two larger case studies: a distributed storage protocol and the Paxos consen-
sus protocol. All three systems under test have been implemented in Go and
the distributed storage and consensus protocol furthermore rely on the Gorums
middleware [10]. The case studies illustrate the use of both simulation- and state
space based test case generation. We use statement coverage of the system under
test as the quantitative evaluation criteria of the test cases generated by our app-
roach. Other criteria exist such as branch-, condition-, and path coverage, but
these are currently not supported by the Go tool chain.

6.1 Two-Phase Commit Protocol

Table 1 gives experimental results from application of our approach to the two-
phase commit protocol for different number of workers W. The Gen column spec-
ifies the approach used for test case generation (state spaces (SS) or simulation

108 R. Wang et al.

(SIM)). The Size-Steps column specifies the size of the state space (nodes/arcs)
and the number of simulation runs. The Test Cases column specifies the number
of test case generated and the Time gives the total time (in second) used for
test case generation (including state space generation and model simulation).
Finally, the Coverage gives the statement coverage obtained for the coordinator
implementation. The lines of code for the coordinator is around 120 lines.

Table 1. Experimental results for the two-phase commit protocol.

W Gen Size - Steps Test Cases Time Coverage

2 SS 59/86 4 <1 94.7%

2 SIM 5 3 <1 84.2%

2 SIM 10 4 <1 94.7%

3 SS 357/614 8 <1 94.7%

3 SIM 10 4 <1 94.7%

3 SIM 20 8 <1 94.7%

4 SS 2,811/5,957 16 5 94.7%

4 SIM 50 13 <1 94.7%

4 SIM 100 16 <1 94.7%

5 SIM 100 31 <1 94.7%

5 SIM 200 32 <1 94.7%

10 SIM 5000 1,015 13 94.7%

10 SIM 10000 1,024 25 94.7%

15 SIM 10000 8,627 91 84.2%

15 SIM 20000 14,946 265 94.7%

For simulation-based test case generation, we stopped increasing the num-
ber of simulations when reaching the same number of test cases as obtained
with state space based generation which represents the maximum number of
test cases that can be obtained. It can be seen that as W increases more sim-
ulations are needed in order to reach the maximum number of test cases. In
general, we recommend using state-space based test case generation whenever
possible as it ensures coverage of all executions of the CPN model, and resort
to simulation-based test case generation if the state space is too big to be gen-
erated with the available computing power. For the two-phase commit protocol
we have not pursued state space based test case generation beyond four workers
as it becomes quite time consuming. It can, however, be seen that simulation-
based test case generation can easily handle configurations with 5, 10, and 15
workers demonstrating the scalability of simulation-based test case generation.
The coverage results show that test cases generated based on state space and
simulation based approaches can both reach 94.7%. The reason why the results
do not reach 100% is that the coordinator contains error handling code, which is

MBT/CPN: A Tool for Model-Based Software Testing 109

not covered by the generated test cases, as any failures are not part of the model.
The other coming two examples also have failures modeled explicitly. Further,
the results also show that the statement coverage for both SIM-5 and SIM-10000
is 84.2%. This is a consequence of the simulation-based approach not covering
all the possible executions of the CPN model in the absence of guided search.
The longest time used for test case execution was approximately four hours (case
SIM-20000) with more than 14,000 test cases.

6.2 Distributed Storage Protocol

The distributed storage protocol has been implemented by the Go language and
Gorums framework. It is a single-writer, multi-reader distributed storage using
read and write quorum calls and functions. The quorum calls and functions
are abstractions provided by the Gorums framework/library. Clients can then
invoke a write call with read calls concurrently and/or sequentially to access
the distributed storage. By using our MBT/CPN tool, we have generated test
cases based on the state-space based exploration to perform both system tests by
invoking the read and write quorum calls concurrently and sequentially, and unit
tests for quorum functions. The CPN model of the distributed storage makes it
possible to generate system test cases for both successful scenarios and scenarios
involving server failures and programming errors. We use a state-space based
approach since the state space of the CPN testing model of the distributed
storage protocol is relatively small. This is due to the fact that the CPN model
describes the distributed storage system at a high level of abstraction which in
turn means that we obtain all test cases without encountering state explosion.

Table 2 gives the experimental results obtained using different test drivers
to invoke the read and/or write quorum calls concurrently and/or sequentially,
without server failures included. The test drivers we have considered include:
one read call (RD), one write call (WR), a read call followed by a write call
(RD;WR), a write call followed by a read call (WR;RD), a read and a write call
executed concurrently (WR||RD), a read and a write call executed concurrently
and followed by a read call ((WR||RD);RD).

The results show that, for successful execution scenarios, the statement cov-
erage for read (RD-QF) and write (WR-QF) quorum functions is 100% for both
system and unit tests, as long as both read and write calls are involved. The
statement coverage for read (RD-QC) and write (WR-QC) quorum calls is up to
84.4%. For the Gorums library as a whole, the statement coverage reaches 40.8%.
The total number of lines of code for the system under test is approximately 2100
lines. The highest number of generated test cases for systems tests involving quo-
rum calls is 6; the highest number of test cases for unit tests is 17. These test
cases are generated within 2 s.

In addition to the successful scenarios, we has also considered to test the
system under programming errors and server failures. We injected programming
errors in the read and write quorum functions for the distributed storage such
that the clients receive incorrectly replies from the storage system. The results
show that our test adapter can capture injected errors by using generated test

110 R. Wang et al.

Table 2. Experimental results for distributed storage protocol.

Test driver Test case execution (coverage in percentage)

System Unit

ID Name Gorums library QCs QFs

RD WR RD WR

S1 RD 24.6 84.4 0 100 0

S2 WR 24.6 0 84.4 0 100

S3 RD;WR 39.1 84.4 84.4 100 100

S4 WR;RD 40.8 84.4 84.4 100 100

S5 WR||RD 40.8 84.4 84.4 100 100

S6 (WR||RD);RD 40.8 84.4 84.4 100 100

cases from our MBT/CPN tool. For server failures scenario, we mainly test
the fault tolerance of the distributed storage system. For example, a distributed
storage system with three servers can tolerate one server failure. The test adapter
we implemented can terminate one or more servers during the test case execution.
We considered the S6 driver from Table 2 and created a scenario where S6 is
executed first, then there is one or more server failures, and then S6 is repeated.
The results for the scenario involving server failures show that the statement
coverage for read (RD-QF) and write (WR-QF) quorum functions stay the same
(100%) for both system and unit tests. The coverage for read (RD-QC) and
write (WR-QC) quorum calls is increased from 84.4% to 96.7%. For the Gorums
library as a whole, the statement coverage is increased from 40.8% to 52.3%.

6.3 Paxos Consensus Protocol

Paxos is a consensus protocol that can handle a group of server replicas to con-
struct a replicated service, and ensure fault-tolerance. It is far more complex
than the distributed storage system and the two-phase commit protocol. We
have applied our MBT/CPN tool to validate a Go implementation of the single-
decree Paxos. For such an implementation, each Paxos server replica implements
a proposer, an acceptor, and a learner subsystem. In addition to these sub-
systems, the implementation also includes software components for failure and
leader detection. Further, the communication and message handling between
Paxos subsystems are implemented with quorum calls and functions (prepare,
accept, and commit), which are abstractions from the Gorums framework. The
total number of lines of code for the single-decree Paxos protocol is approxi-
mately 3890 lines.

The Paxos protocol is too complex for state space exploration, and we have
therefore used simulation-based test case generation with up to 10 simulation
runs. A summary of our experimental results is shown in Table 3. It shows the
statement coverage obtained for the different Paxos subsystems, quorum calls

MBT/CPN: A Tool for Model-Based Software Testing 111

and functions. Note that the unit tests are only for the quorum functions. The
total number of generated test cases for 3 and 5 replicas configurations, respec-
tively are given below System tests and Unit tests in the table. The time used to
generate test cases for each configuration is less than 10 s, and the time used to
execute each test case is less than one minute.

Table 3. Experimental results for test case generation and execution.

Subsystem Component System tests Unit tests

15/38 74/424

Gorums library 51.8% -

Paxos core Proposer 97.4% -

Acceptor 100.0% -

Failure Detector 75.0% -

Leader Detector 91.4% -

Replica 91.4% -

Quorum calls Prepare 83.9% -

Accept 83.9% -

Commit 83.9% -

Quorum functions Prepare 100.0% 90.0%

Accept 100.0% 85.7%

The results show that, for unit tests, the statement coverage of Prepare and
Accept quorum functions reach 90% and 85.7%, respectively. For system tests,
the statement coverage of Prepare, Accept and Commit quorum calls are up to
83.9%, respectively; the statement coverage for the Failure Detector and Leader
Detector modules are 75.0% and 91.4%, respectively; the statement coverage of
the Paxos replica module is up to 91.4%; for the Gorums library as a whole, the
highest statement coverage is 51.8%.

7 Conclusions

The MBT/CPN tool augments the CPN Tools with facilities for model-based
test case generation, and is based on the user identifying observable events for-
malized in a test case specification. As illustrated on the TPC protocol, this
entails implementing a detection, observation, and formatting function which is
applied by the tool during test case generation. An important feature of our
approach is the uniform support for test case generation based on state spaces
and simulation. We have shown by practical experiments on the TPC protocol,
the distributed storage protocol, and the Paxos consensus protocol that we can
obtain a high SUT code coverage and that our approach can be used to detect
implementation errors.

112 R. Wang et al.

The application of MBT in the context of CPNs have until now been limited.
Xu [16] presents the Integration and System Test Automation (ITSA) tool which
supports test code generation for languages such as Java, C/C++, and C� based
on state spaces. To obtain concrete test cases with input data, the ITSA tool
relies on a separate model implementation mapping. In contrast, we obtain the
input data for the system under test and call directly from the data contained in
the testing model. Tretmans et al. have presented the TorX [12] tool which is used
to randomly generate test cases based on a walk through the state space. The test
cases can be generated either offline or on-the-fly during the test execution. There
is also an adapter component in TorX to translate the inputs to be readable by
the system under test, and check the actual outputs from the system under test
against expected outputs. Conformiq Qtroniq [4] can be used to derive functional
test cases from a system model, and can generate test cases online or offline by
using a symbolic execution algorithm. Such test cases then are mapped into the
TTCN-3 format. The expected outputs can also be generated from the model.
The Automatic Efficient Test Generation (AETG) [1] tool is aimed at efficient
generation of test cases by decreasing the number of test data required for the
input test space. However, the test oracles have to be furnished manually.

There are several interesting directions to further develop the MBT/CPN
tool. Related to [17], one area is to provide a higher degree of automation when
implementing the test adapter such that for instance the data types required in
the adapter implementation can be automatically obtained. For simulation-based
test case generation investigating how a search heuristic can be specified and
synthesized is an important. Such heuristics will most likely require knowledge
about the SUT implementation and its CPN model specification. For the latter,
we are currently investigating how to measure so-called Modified Condition/De-
cision Coverage, which is prescribed e.g. in safety critical system development
[7]. Another direction for future work is to investigate if the use of partial state
spaces combined with a search heuristics can provide a fruitful middle ground
between simulation-based and state space-based test case generation.

References

1. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Trans. Softw. Eng. 23(7),
437–444 (1997)

2. CPN Tools. CPN Tools homepage. http://www.cpntools.org
3. Google Inc., The Go Programming Language. https://golang.org
4. Huima, A.: Implementing conformiq qtronic. In: Petrenko, A., Veanes, M., Tret-

mans, J., Grieskamp, W. (eds.) FATES/TestCom -2007. LNCS, vol. 4581, pp. 1–12.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73066-8 1

5. Jensen, K., Kristensen, L.: Coloured petri nets: a graphical language for modelling
and validation of concurrent systems. Comm. ACM 58(6), 61–70 (2015)

6. Jorgensen, P.: The Craft of Model-Based Testing. CRC Press, Boca Raton (2017)
7. Kelly, J.H., Dan, S.V., John, J.C., Leanna, K.R.: A Practical Tutorial on Modified

Condition/Decision Coverage. Technical report (2001)

http://www.cpntools.org
https://golang.org
https://doi.org/10.1007/978-3-540-73066-8_1

MBT/CPN: A Tool for Model-Based Software Testing 113

8. Kristensen, L.M., Veiset, V.: Transforming CPN models into code for TinyOS: a
case study of the RPL protocol. In: Kordon, F., Moldt, D. (eds.) PETRI NETS
2016. LNCS, vol. 9698, pp. 135–154. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-39086-4 10

9. Kristensen, L.M., Simonsen, K.I.F.: Applications of coloured petri nets for func-
tional validation of protocol designs. In: Jensen, K., van der Aalst, W.M.P., Balbo,
G., Koutny, M., Wolf, K. (eds.) Transactions on Petri Nets and Other Models
of Concurrency VII. LNCS, vol. 7480, pp. 56–115. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38143-0 3

10. Lea, T.E., Jehl, L., Meling, H.: Towards new abstractions for implementing
quorum-based systems. In: Proceedings of 37th IEEE International Conference
on Distributed Computing Systems (ICDCS), pp. 2380–2385 (2017)

11. MBT/CPN. Repository, January 2018. https://github.com/selabhvl/mbtcpn.git
12. Tretmans, G., Brinksma, H.: TorX: automated model-based testing. In: Hartman,

A., Dussa-Ziegler, K. (eds.) 1st European Conference on Model-Driven Software
Engineering, vol. 12, pp. 31–43 (2003)

13. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verifi. Reliab. 22, 297–312 (2012)

14. Wang, R., Kristensen, L., Meling, H., Stolz, V.: Automated test case generation for
the paxos single-decree protocol using a coloured petri net model. J. Log. Algebraic
Method. Programm. (JLAMP) (Submitted)

15. Wang, R., Kristensen, L., Meling, H., Stolz, V.: Application of model-based testing
on a quorum-based distributed storage. In: Proceedings of PNSE 2017, CEUR
Workshop Proceedings, vol. 1846, pp. 177–196 (2017)

16. Xu, D.: A tool for automated test code generation from high-level petri nets. In:
Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp.
308–317. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21834-
7 17

17. Xu, D., Xu, W., Wong, W.E.: Automated test code generation from class state
models. Int. J. Softw. Eng. Knowl. Eng. 19(04), 599–623 (2009)

https://doi.org/10.1007/978-3-319-39086-4_10
https://doi.org/10.1007/978-3-319-39086-4_10
https://doi.org/10.1007/978-3-642-38143-0_3
https://github.com/selabhvl/mbtcpn.git
https://doi.org/10.1007/978-3-642-21834-7_17
https://doi.org/10.1007/978-3-642-21834-7_17

How to Be Sure a Faulty System Does
Not Always Appear Healthy?

Lina Ye1(B), Philippe Dague2, Delphine Longuet2, Laura Brandán Briones3,
and Agnes Madalinski4

1 LRI, Univ. Paris-Sud, CentraleSupélec, Univ. Paris-Saclay, Orsay, France
lina.ye@lri.fr

2 LRI, Univ. Paris-Sud, CNRS, Univ. Paris-Saclay, Orsay, France
{philippe.dague,delphine.longuet}@lri.fr

3 Universidad Nacional de Córdoba, Córdoba, Argentina
4 Otto-von-Guericke-University Magdeburg, Magdeburg, Germany

Abstract. Fault diagnosis is a crucial and challenging task in the auto-
matic control of complex systems, whose efficiency depends on the diag-
nosability property of a system. Diagnosability describes the system
property allowing one to determine with certainty whether a given fault
has effectively occurred based on the available observations. However,
this is a quite strong property that generally requires a high number of
sensors. Consequently, it is not rare that developing a diagnosable system
is too expensive. In this paper, we analyze a new discrete event system
property called manifestability, that represents the weakest requirement
on observations for having a chance to identify on line fault occurrences
and can be verified at design stage. Intuitively, this property makes sure
that a faulty system cannot always appear healthy, i.e., has at least one
future behavior after fault occurrence observably distinguishable from all
normal behaviors. Then, we prove that manifestability is a weaker prop-
erty than diagnosability before proposing an algorithm with PSPACE
complexity to automatically verify both properties. Furthermore, we
prove that the problem of manifestability verification itself is PSPACE-
complete. The experimental results show the feasibility of our algorithm
from a practical point of view. Finally, we compare our approach with
related work.

1 Introduction

Fault diagnosis is a crucial and challenging task in the automatic control of com-
plex systems, whose efficiency depends on a system property called diagnosabil-
ity. Diagnosability is a system property describing whether one can distinguish
with certainty fault behaviors from normal ones based on sequences of observ-
able events emitted from the system. In a given system, the existence of two
infinite behaviors with the same observations, where exactly one contains the
considered fault, violates diagnosability. The existing work concerning discrete
event systems (DESs) searches for such ambiguous behaviors, both in centralized
c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 114–129, 2018.
https://doi.org/10.1007/978-3-030-00359-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_8&domain=pdf

How to Be Sure a Faulty System Does Not Always Appear Healthy? 115

and distributed ways [10,12–14,20]. However, in reality, diagnosability turns out
to be a quite strong property that generally requires a high number of sensors.
Consequently, it is often too expensive to develop a diagnosable system.

To achieve a trade-off between the cost, i.e., a reasonable number of sen-
sors, and the possibility to observe a fault manifestation, we recently introduced
a new property called manifestability [21], which is borrowed from philosophy
“...which I shall call the “manifestability of the mental”, that if two systems are
mentally different, then there must be some physical contexts in which this differ-
ence will display itself in differential physical consequences” [11]. In the domain
of diagnosis, similarly, the manifestability property describes the capability of
a system to manifest a fault occurrence in at least one future behavior. This
should be analyzed at design stage on the system model. Under the assumption
that no behavior described in the model has zero probability, the fault will then
necessarily show itself with nonzero probability after enough runs of the sys-
tem. In other words, given a system, if this property holds, this system cannot
always appear healthy when a fault occurs in it, i.e., at least one future behavior
observably distinguishes from normal behaviors. In all cases, manifestability is
the weakest property to require from the system to have a chance to identify
the fault occurrence. Differently, for diagnosability, all future behaviors of all
fault occurrences should be distinguishable from all normal behaviors, which is
a strong property and sensor demanding. Obviously one has to continue to rely
on diagnosability for online safety requirements, i.e., for those faults which may
have dramatic consequences if they are not surely detected when they occur,
in order to trigger corrective actions. But for all other faults that do not need
to be detected at their first occurrence (e.g., whose consequence is a degraded
but acceptable functioning that will require maintenance actions in some near
future), manifestability checking, which is cheaper in terms of sensors needed, is
enough under the probabilistic assumption above.

We have several contributions in this paper. First, we define (strong) mani-
festability before proving that it is weaker than diagnosability. Second, we pro-
vide a sufficient and necessary condition for manifestability with a formal algo-
rithm based on equivalence checking and prove that the manifestability problem
itself is a PSPACE-complete problem. Third, the algorithm’s efficiency is shown
by our experimental results before comparing our approach with related work.

2 Motivating Example

In this section, we explain why it is worth analyzing the manifestability property
with a motivating example.

Example 1. Figure 1 shows a modified version of a HVAC system from [13], which
is a composite model that captures the interactions between the component
models, i.e., a pump, a valve, and a controller. In this system, the initial state is
q0, the events V alve open, Pump start, Pump stop, V alve close are observable
and the fault event Pump failed is not observable. Once fault event occurs, the
system enters and always stays in an abnormal state.

116 L. Ye et al.

q0

q1

q2

q3

q4

q5

q6

q7

q8q9

V alve open Pump start

Pump stopV alve close

Pump failed

Pump stop V alve close

V alve open

Pump start

V alve close

V alve open

V alve close

Fig. 1. A simplified HVAC system.

The correct behavior of this system is (V alve open Pump start Pump stop
V alve close)ω, where ω denotes the infinite concatenation. After the unobserv-
able faulty event Pump failed, the system has two possibilities: either con-
tinue the execution with the same observations as the correct behavior or go
to the states q8 and q9. Thus, this system is not diagnosable since at least one
infinite future behavior of the fault occurrence is indistinguishable from the
correct behavior, which is V alve open Pump start Pump failed (Pump stop
V alve close V alve open Pump start)ω. Considering real faulty scenarios, with
an assumption of nonzero probability, at one moment in the future the system
will go to q8, in which case the fault manifests itself and thus can be diagnosed.
The original diagnosability property is not suitable to handle such situations. If
we consider manifestability, this fault is effectively manifestable since its occur-
rence has at least one future that is distinguishable from the correct behavior.
The manifestability property is the minimal requirement for the system to allow
one to establish a diagnostic mechanism. If a fault is not manifestable, then it
is totally useless to try to design a diagnoser for the system.

3 Manifestability for DESs

We now present our system model, recall diagnosability, and introduce (strong)
manifestability, before giving a formal sufficient and necessary condition for this
property to hold. We demonstrate that (strong) manifestability is a weaker prop-
erty than diagnosability.

3.1 Models of DESs

We model a DES as a Finite State Machine (FSM), i.e., an automaton, denoted
by G = (Q,Σ, δ, q0), where Q is the finite set of states, Σ is the finite set of
events, δ ⊆ Q × Σ × Q is the set of transitions (the same notation will be kept
for its natural extension to words of Σ∗), and q0 is the initial state. The set of
events Σ is divided into three disjoint parts: Σ = Σo �Σu �Σf , where Σo is the
set of observable events, Σu the set of unobservable normal events and Σf the
set of unobservable fault events.

How to Be Sure a Faulty System Does Not Always Appear Healthy? 117

Example 2. The left part of Fig. 2 shows an example of a system model G, where
Σo = {o1, o2, o3}, Σu = {u1, u2}, and Σf = {F}. Notice that for diagnosis prob-
lem, fault is predefined as an unobservable event in the model. This is different
from testing, where faulty behaviors are judged against a specification.

q0

q1 q2 q4 q5

q3

q6 q7 q0 N

q1 N q2 F q4 F q5 F

q3 F

q6 N q7 N q5 N

o1

F

u1 o2

o3 o1

u2 o1 o2

o3
o1

F

u1 o2

o3 o1

u2 o1 o2

o3

o3

Fig. 2. A system example (left) and its diagnoser (right).

Similar to diagnosability, the manifestability algorithm that we will propose
has exponential complexity in the number of fault types. To reduce it to linear
complexity, as in [12,14], we consider only one fault type at a time. However,
multiple occurrences of faults are allowed. The other types of faults are processed
as unobservable normal events. This is justified as the system is manifestable
if and only if (iff) it is manifestable for each fault type. Thus, to check the
manifestability of a system with several faults, one can check its manifestability
with respect to each fault type in turn. In the following, Σf = {F}, where F is
the currently considered fault.

Given a system model G, its prefix-closed language L(G), which describes
both normal and faulty behaviors of the system, is the set of words produced by
G: L(G) = {s ∈ Σ∗|∃q ∈ Q, (q0, s, q) ∈ δ}. Those words containing (resp. not
containing) F will be denoted by LF (G) (resp. LN (G)). In the following, we call
a word from L(G) a trajectory in the system G and a sequence q0σ0q1σ1 . . . a
path in G, where q0 = q0 and, for all i, (qi, σi, qi+1) ∈ δ, whose label σ0σ1 . . . is
a trajectory in G. Given s ∈ L(G), we denote the post-language of L(G) after s
by L(G)/s, formally defined as: L(G)/s = {t ∈ Σ∗|s.t ∈ L(G)}. The projection
of the trajectory s to observable events of G is denoted by P (s), the observation
of s. This projection can be extended to L(G), i.e., P (L(G)) = {P (s)|s ∈ L(G)},
whose elements are called observed trajectories. Traditionally, we assume that
each state of Q has a successor, so that L(G) is live (any trajectory has a continu-
ation, i.e., is a strict prefix of another trajectory) and that G has no unobservable
cycle, i.e., each cycle contains at least one observable event. This makes it feasi-
ble to check the infiniteness of a trajectory. We will need some infinite objects.
We denote by Σω the set of infinite words on Σ and by Σ∞ = Σ∗ ∪ Σω the set
of words on Σ, finite or infinite. We define in an obvious way infinite paths in
G and thus Lω(G) the language of infinite words recognized by G in the sense
of Büchi automata [6]. As all states of G are considered as final states, those
infinite trajectories are just the labels of infinite paths, and the concept of Büchi
automaton coincides with that of Muller automaton, which can be determinized,
according to the McNaughton theorem. We can conclude from this that Lω(G)

118 L. Ye et al.

is the set of infinite words whose prefixes belong to L(G) and that two equivalent
system models, i.e., such that L(G1) = L(G2), define the same infinite trajecto-
ries, i.e., Lω(G1) = Lω(G2). Particularly, we use Lω

F (G) = Lω(G) ∩ Σ∗FΣω for
the set of infinite faulty trajectories, and Lω

N (G) = Lω(G) ∩ (Σ \ {F})ω for the
set of infinite normal trajectories, where \ denotes set subtraction. We denote
L∞(G) = L(G) ∪ Lω(G). In the following, we use the classical synchronization
operation between two FSMs G1 and G2, denoted by G1 ‖Σs

G2, i.e. any event
in Σs should be synchronized while others can occur whenever possible. It is
easy to generalize the synchronization to a set of FSMs using its associativity
property [7]. To verify manifestability, we define the following basic operation,
which is to keep only information about a given set of events, while keeping the
same structure. It will be used to simplify some intermediate structures when
checking manifestability without affecting the validity of the result obtained.

Definition 1 (Delay Closure). Given a FSM G = (Q,Σ, δ, q0), its delay closure
with respect to Σd, with Σd ⊆ Σ, is �Σd

(G) = (Qd, Σd, δd, q
0), where: (1) Qd =

{q0} ∪ {q ∈ Q | ∃s ∈ Σ∗,∃σ ∈ Σd, (q0, sσ, q) ∈ δ}; (2) (q, σ, q′) ∈ δd if σ ∈ Σd

and ∃s ∈ (Σ\Σd)∗, (q, sσ, q′) ∈ δ.

3.2 Diagnosability and Manifestability

A fault F is diagnosable in a system model G if it can be detected with certainty
when enough events are observed from G after its occurrence. This property is
formally defined as follows [13], where sF denotes a trajectory ending with F
and F ∈ p, for p a trajectory, means that F appears as a letter of p.

Definition 2 (Diagnosability). F is diagnosable in a system model G iff

∃k ∈ N,∀sF ∈ L(G),∀t ∈ L(G)/sF , |t| ≥ k ⇒
(∀p ∈ L(G), P (p) = P (sF t) ⇒ F ∈ p).

The above definition states that F is diagnosable iff, for each trajectory sF

in G, for each of its extensions t with enough events, then every trajectory p in
G that has the same observations as sF t should contain F . It has been proved
that the existence of two indistinguishable infinite trajectories, i.e., holding the
same sequence of observable events, with exactly one of them containing the
given fault F , is equivalent to the violation of the diagnosability property [10].

Definition 3 (Critical Pair). A pair of trajectories s, s′ is called a critical
pair with respect to F , denoted by s � s′, iff s ∈ Lω

F (G), s′ ∈ Lω
N (G) and

P (s) = P (s′).

Theorem 1. A fault F is diagnosable in G iff �s, s′ ∈ Lω(G), such that s � s′.

The nonexistence of a critical pair w.r.t. F witnesses diagnosability of F . To
design a diagnosable system, each faulty trajectory should be distinguished from
normal trajectories, which is often very expensive in terms of number of sensors

How to Be Sure a Faulty System Does Not Always Appear Healthy? 119

required. To reduce such a cost and still make it possible to show the fault after
enough runs of the system, another property called manifestability has been
recently introduced [21], which is much weaker than diagnosability. Intuitively,
manifestability describes whether or not a fault occurrence has the possibility
to manifest itself through observations. Precisely, if a fault is not manifestable,
then we can never be sure about its occurrence no matter which trajectory is
executed after it. Thus, the system model should be necessarily revised.

Definition 4 (Manifestability). F is manifestable in a system model G iff

∃sF ∈ L(G),∃t ∈ L(G)/sF ,

∀p ∈ L(G), P (p) = P (sF t) ⇒ F ∈ p.

F is manifestable iff there exists at least one trajectory sF in G, and there
exists at least one extension t of sF , such that every trajectory p that is observ-
able equivalent to sF t should contain F . In other words, manifestability is vio-
lated iff each occurrence of the fault can never manifest itself in any future.

Theorem 2. A fault F is manifestable in a system model G iff the following
condition, denoted by �, is satisfied:

∃s ∈ Lω
F (G), �s′ ∈ Lω

N (G), such that s � s′.

Proof. ⇒ Suppose that F is manifestable in G. Thus from Definition 4, ∃s ∈
LF (G) such that �s′ ∈ LN (G) with P (s) = P (s′). By extending s with enough
events, which is possible since the language is live, we obtain then ∃s ∈ Lω

F (G),
�s′ ∈ Lω

N (G), such that s � s′.
⇐ Suppose now that F is not manifestable in G and show that the condition
� is consequently not true. From non-manifestability of F and Definition 4, we
have ∀sF ∈ L(G),∀t ∈ L(G)/sF , ∃p ∈ L(G), P (p) = P (sF t), p ∈ LN (G). Thus,
∀sF t ∈ LF (G), ∃p ∈ LN (G), P (p) = P (sF t). This can be formulated as equality
of the languages of two automata, as it will be seen in Sect. 4. It results that
this equality of the languages still holds for infinite words, i.e., ∀sF t ∈ Lω

F (G),
∃p ∈ Lω

N (G) such that sF t � p, which is ¬�, i.e., the condition � is not true. �

Manifestability concerns the possibility for the system to manifest at least
one occurrence of the fault, i.e., there exists such an occurrence that shows itself
in at least one of its futures. Now we propose a strong version of manifestability,
which requires that all occurrences of the fault should show themselves in at
least one of their futures.

Definition 5 (Strong Manifestability). A fault F is strongly manifestable
in a system model G iff

∀sF ∈ L(G),∃t ∈ L(G)/sF ,

∀p ∈ L(G), P (p) = P (sF t) ⇒ F ∈ p.

120 L. Ye et al.

F is strongly manifestable iff, for each sF in G (and not just for only one
as in Definition 4) there exists at least one extension t of sF in G, such that
every trajectory p in G that is observable equivalent to sF t should contain F .
Precisely, each occurrence of F should show itself in at least one of its futures.
So, in a similar way as Theorem2, we can prove the following theorem, which
provides a sufficient and necessary condition for strong manifestability.

Theorem 3. A fault F is strongly manifestable in a system model G iff the
following condition, denoted by �s, is satisfied:

∀sF ∈ L(G),∃t ∈ Lω(G)/sF , �s′ ∈ Lω
N (G), such that sF t � s′.

Theorem 4. Given a system model G and a fault F , we have:

1. F is diagnosable in G implies that F is strongly manifestable in G.
2. F is strongly manifestable in G implies that F is manifestable in G.

Proof. 1. Suppose that F is not strongly manifestable, then from Theorem 3, we
have ¬�s, i.e., ∃sF ∈ L(G),∀t ∈ Lω(G)/sF , ∃s′ ∈ Lω

N (G) such that sF t � s′.
This implies that there does exist at least one critical pair in the system.
From Theorem 1, F is not diagnosable.

2. Suppose that F is not manifestable. From Theorem 2, we have ∀s ∈ Lω
F (G),

∃s′ ∈ Lω
N (G), such that s � s′. By choosing arbitrarily one sF ∈ L(G) and

taking all s of prefix sF , we obtain ∃sF ∈ L(G),∀t ∈ Lω(G)/sF , ∃s′ ∈ Lω
N (G)

such that sF t � s′, i.e., ¬�s. Hence F is not strongly manifestable. �

4 Manifestability Verification

Manifestability verification consists in checking whether the condition � in The-
orem 2 is satisfied for a given system model. In this section, we show how to
construct different structures based on a system model to obtain Lω

F (G), Lω
N (G)

as well as the set of critical pairs. The condition � can then be checked by using
equivalence techniques with these intermediate structures. Precisely, if for each
infinite faulty trajectory s ∈ Lω

F (G), there exists a corresponding critical pair,
then the considered fault is not manifestable. Otherwise, it is manifestable. For
the sake of simplicity, we concentrate on how to check manifestability, which
can be extended in a straightforward way to handle strong manifestability. This
extension will be explained explicitly in Sect. 4.3.

4.1 System Diagnosers

Given a system model, the first step is to construct a structure showing fault
information for each state, i.e., whether the fault has effectively occurred up to
this state from the initial state.

How to Be Sure a Faulty System Does Not Always Appear Healthy? 121

Definition 6 (Diagnoser). Given a system model G, its diagnoser with respect
to a considered fault F is the FSM DG = (QD, ΣD, δD, q0D), where: (1) QD ⊆
Q × {N,F} is the set of states; (2) ΣD = Σ is the set of events; (3) δD ⊆
QD × ΣD × QD is the set of transitions; (4) q0D = (q0, N) is the initial state.
The transitions of δD are those ((q, �), e, (q′, �′)), with (q, �) reachable from q0D,
such that there is a transition (q, e, q′) ∈ δ, and �′ = F if � = F ∨ e = F ,
otherwise �′ = N .

The right part of Fig. 2 shows the diagnoser for the system depicted in the left
part, where each state has its own fault information. Precisely, given a system
state q, if the fault has occurred on the path from q0 to q, then the fault label for
q is F . Such a state is called fault (diagnoser) state. Otherwise, the fault label is
N and the state is called normal (diagnoser) state. Diagnoser construction keeps
the same set of trajectories and splits into two those states reachable by both a
faulty and a normal path (q5 in the example).

Lemma 1. Given a system model G and its corresponding diagnoser DG, then
we have L(G) = L(DG) and Lω(G) = Lω(DG).

In order to simplify the automata handled, the idea is to keep only the
minimal subparts of DG containing all faulty (resp., normal) trajectories.

Definition 7 (Fault (Refined) Diagnoser). Given a diagnoser DG, its fault diag-
noser is the FSM DF

G = (QDF , ΣDF , δDF , q0DF), where: (1) q0DF = q0D; (2)
QDF = {qD ∈ QD | ∃q′

D = (q, F) ∈ QD,∃s′ ∈ Σ∗
D, (qD, s′, q′

D) ∈ δ∗
D}; (3) δDF =

{(q1D, σ, q2D) ∈ δD | q2D ∈ QDF }; (4) ΣDF = {σ ∈ ΣD | ∃(q1D, σ, q2D) ∈ δDF }. The
fault refined diagnoser is obtained by performing the delay closure with respect
to the set of observable events Σo on the fault diagnoser: DFR

G = �Σo
(DF

G).

The fault diagnoser keeps all fault states as well as all transitions and inter-
mediate normal states on paths from q0D to any fault state. Then we refine this
fault diagnoser by only keeping the observable information, which is sufficient
to obtain the set of critical pairs. The left (resp. right) part of Fig. 3 shows the
fault diagnoser (resp. fault refined diagnoser) for Example 2.

q0 N q1 N q2 F

q4 F

q5 F

q3 F

q0 N q1 N

q4 F

q5 F
o1 F

u1 o2

o3 o1

o3
o1

o3 o1

o2
o3

Fig. 3. Fault diagnoser (left) and its refined version (right) for Example 2.

By construction, the sets of faulty trajectories in DF
G and in G are equal and

this is still true for infinite faulty trajectories. This is also the case for infinite
faulty trajectories in DFR

G and infinite observed faulty trajectories in G. But

122 L. Ye et al.

take care that it may exist infinite normal trajectories in DF
G (resp., DFR

G) if it
exists in G a normal cycle in a path to a fault state (e.g., adding a loop in state
q1 of the system model of Example 2).

Lemma 2. Given a system model G and its corresponding fault diagnoser DF
G

and fault refined diagnoser DFR
G , we have Lω

F (G) = Lω
F (DF

G) and P (Lω
F (G)) =

Lω
F (DFR

G).

Similarly, we obtain the subpart of DG containing only normal trajectories.

Definition 8 (Normal (Refined) Diagnoser). Given a diagnoser DG, its normal
diagnoser is the FSM DN

G = (QDN , ΣDN , δDN , q0DN), where: (1) q0DN = q0D; (2)
QDN = {(q,N) ∈ QD}; (3) δDN = {(q1D, σ, q2D) ∈ δD | q2D ∈ QDN }; (4) ΣDN =
{σ ∈ ΣD | ∃(q1D, σ, q2D) ∈ δDN }. The normal refined diagnoser is obtained by
performing the delay closure with respect to Σo on the normal diagnoser: DNR

G =
�Σo

(DN
G).

Lemma 3. Given a system model G and its corresponding normal diagnoser
DN

G and normal refined diagnoser DNR
G , we have Lω

N (G) = Lω(DN
G) and

P (Lω
N (G)) = Lω(DNR

G).

q0 N

q1 N

q6 N q7 N q5 N q0 N

q1 N

q7 N q5 N

o1

u2 o1 o2
o3

o1

o1 o2
o3

Fig. 4. Normal diagnoser (left) and its refined version (right) for Example 2.

The left (resp. right) part of Fig. 4 shows the normal diagnoser (resp. normal
refined diagnoser) for Example 2.

4.2 Manifestability Checking

In this section, we show how to obtain the set of critical pairs based on the diag-
nosers described in the precedent section. Based on this, equivalence checking
will be used to examine the manifestability condition � in Theorem 2.

Definition 9 (Pair Verifier). Given a system model G, its pair verifier VG is
obtained by synchronizing the corresponding fault and normal refined diagnosers
DFR

G and DNR
G based on the set of observable events, i.e., VG = DFR

G ‖Σo
DNR

G .

To construct a pair verifier, we impose that the synchronized events are the
whole set of observable events. Then VG is actually the product of DFR

G and DNR
G

and the language of the pair verifier is thus the intersection of the language of
the fault refined diagnoser and that of the normal refined diagnoser. In the pair
verifier, each state is composed of two diagnoser states, whose label (F or N) of

How to Be Sure a Faulty System Does Not Always Appear Healthy? 123

the first one indicates whether the fault has effectively occurred in the first of
the two corresponding trajectories. If the first of these two states is a fault state,
then this verifier state is called ambiguous state since, reaching this state, the
first trajectory contains the fault and the second not, while both have the same
observations. Infinite trajectories of VG are thus either normal (all states labels
are (N ,N)) or ambiguous (all states labels from a certain state are (F ,N)), the
latter ones being denoted by Lω

a (VG).

Lemma 4. Given a system model G with its VG, DFR
G and DNR

G , we have
Lω

a (VG) = Lω
F (DFR

G) ∩ Lω(DNR
G).

In the pair verifier depicted in Fig. 5, the gray node represents an ambiguous
state.

q0 N

q0 N

q1 N

q1 N

q1 N

q7 N

q5 F

q5 N

o1

o1
o2

o3

Fig. 5. The pair verifier for the system in Example 2.

Lemma 5. Given a system model G, a fault F is diagnosable iff Lω
a (VG) = ∅.

Proof. Lω
a (VG) �= ∅ ⇔ Lω

F (DFR
G)∩Lω(DNR

G) �= ∅ (from Lemma 4) ⇔ P (Lω
F (G))∩

P (Lω
N (G)) �= ∅ (from Lemmas 2 and 3) ⇔ ∃s ∈ Lω

F (G),∃s′ ∈ Lω
N (G)P (s) =

P (s′) ⇔ ∃s, s′ ∈ Lω(G) s � s′ (from Definition 3) ⇔ F is not diagnosable (from
Theorem 1). �

Theorem 5. Given a system model G, a fault F is manifestable iff Lω
a (VG) ⊂

Lω
F (DFR

G).

Proof. Lω
a (VG) �⊂ Lω

F (DFR
G) ⇔ Lω

F (DFR
G) ⊆ Lω(DNR

G) (from Lemma 4) ⇔
P (Lω

F (G)) ⊆ P (Lω
N (G)) (from Lemmas 2 and 3) ⇔ ∀s ∈ Lω

F (G),∃s′ ∈ Lω
N (G)

P (s) = P (s′) ⇔ ∀s ∈ Lω
F (G),∃s′ ∈ Lω

N (G) s � s′ (from Definition 3) ⇔ ¬� ⇔ F
is not manifestable (from Theorem 2). �

4.3 Algorithm

Algorithm 1 is the pseudo-code to verify manifestability, which can simultane-
ously verify diagnosability. Given the input (line 1) as the system model G and
the fault F , we first construct the diagnoser (line 2) as described by Definition 6.
We then construct fault and normal refined diagnosers (lines 3–4) as defined by
Definitions 7 and 8. The next step is to synchronize DFR

G and DNR
G to obtain

the pair verifier VG (line 5). With DFR
G and VG, we have the following verdicts:

124 L. Ye et al.

– if Lω
a (VG) = ∅ (line 6), from Lemma 5, F is diagnosable and thus manifestable

from Theorems 1 and 4 (line 7).
– if Lω

a (VG) = Lω
F (DFR

G) �= ∅ (line 8), we can deduce from Theorem 5 that F is
not manifestable. Thus, by Theorem4 (or directly from Lemma 5), F is not
diagnosable (line 9).

– if Lω
a (VG) �= ∅ and Lω

a (VG) ⊂ Lω
F (DFR

G) (line 10), which can be deduced
because of Lemma 4, the former condition means that F is not diagnosable
and, by Theorem 5, the latter means that F is manifestable (line 11).

Algorithm 1. Manifestability and Diagnosability Algorithm for DESs
1: INPUT: System model G; the considered fault F
2: DG ← ConstructDiagnoser(G)
3: DFR

G ← ConstructFRDiagnoser(DG)
4: DNR

G ← ConstructNRDiagnoser(DG)
5: VG ← DFR

G ‖Σo DNR
G

6: if Lω
a (VG) = ∅ then

7: return “F is diagnosable and manifestable in G”
8: else if Lω

a (VG) = Lω
F (DFR

G) then
9: return “F is neither diagnosable nor manifestable in G”

10: else
11: return “F is not diagnosable but manifestable in G”
12: end if

Note that Lω
F (DFR

G) = Lω(D′FR
G) (resp., Lω

a (VG) = Lω(V ′
G)) where D′FR

G is
identical to DFR

G (resp., V ′
G identical to VG), except that the final states, for

Büchi acceptance conditions, are limited to fault (resp., ambiguous) states. Note
also that the condition Lω

a (VG) = Lω
F (DFR

G) is equivalent to Lω(VG) = Lω(DFR
G)

as the infinite normal trajectories are identical in VG and in DFR
G .

In Algorithm 1, the complexity of the different diagnosers constructions is lin-
ear. Building the pair verifier by synchronizing the fault and the normal refined
diagnosers is polynomial with the number of system states. To finally check
the manifestability, the equivalence checking (line 8) cannot be avoided, which
is already demonstrated to be PSPACE, even for infinite words, in the litera-
ture [18]. Thus, the total complexity of this algorithm is PSPACE. Algorithm1
suggests that the manifestability problem is more complex than diagnosabil-
ity (for which a test of language emptiness is sufficient, which implies a total
NLOGSPACE complexity, a result already known), which we will formally prove
later.

To verify the strong manifestability, one has to check the condition �s in
Theorem 3. Algorithm 1 can be adapted for this with the following modifications:

– For each occurrence of the fault, we construct one fault refined diagnoser. To
do this, we assume that the system has a finite number of fault occurrences
(excluding thus cycles before a fault occurrence or containing a fault occur-
rence). To simplify, it is then enough to consider those latest occurrences of

How to Be Sure a Faulty System Does Not Always Appear Healthy? 125

the fault (for which no future contains another occurrence of the fault) since
if such occurrence can show itself in one future, then this is the case for all
earlier occurrences of the fault in the same trajectory.

– For each fault refined diagnoser, one constructs a pair verifier as described
by Definition 9. Then, one has to compare the language defined by each fault
refined diagnoser with the language defined by its corresponding verifier. The
fault is not strongly manifestable iff there exists at least one such pair verifier
and fault refined diagnoser defining the same languages for infinite words, as
this violates the condition �s in Theorem 3.

Now we show that the problem of manifestability verification itself is a
PSPACE-complete problem by the reduction to it of rational languages equiva-
lence checking. The problem of checking non-deterministic FSM equivalence on
infinite words is already proved to be PSPACE-complete [18].

Theorem 6. Given a system model G and a fault F , the problem of checking
whether F is manifestable in G is PSPACE-complete.

Proof. The complexity of Algorithm 1 is PSPACE. Now we demonstrate that the
problem of checking manifestability is PSPACE-hard. Let G1 = (Q1, Σ, δ1, q

0
1)

and G2 = (Q2, Σ, δ2, q
0
2) be two arbitrary (non-deterministic) automata on

the same vocabulary defining live languages. One can always assume that
Q1 ∩ Q2 = ∅. Based on G1 and G2, one can construct a new FSM, repre-
senting a system model, G = (Q,Σ ∪ {F}, δ, q02), where Q = Q1 ∪ Q2 and
δ = δ1 ∪ δ2 ∪ {(q02 , F, q01)}, with Σo = Σ, Σu = ∅ and Σf = {F}. From the con-
struction of G, one has Lω(G1) = P (Lω

F (G)) and Lω(G2) = P (Lω
N (G)). From

Lemmas 2, 3 and 4, one obtains Lω(VG) = P (Lω
F (G)) ∩ P (Lω

N (G)). This implies
Lω(G1) ∩ Lω(G2) = Lω(VG). From Theorem 5, one has Lω(G1) ∩ Lω(G2) ⊂
Lω(G1) ⇐⇒ F is manifestable in G, i.e., Lω(G1) ⊆ Lω(G2) ⇐⇒ F is not man-
ifestable in G. So, rational languages inclusion testing on infinite words boils
down to manifestability checking, which gives the result. �

5 Experimental Results

We have applied our algorithm on more than one hundred examples taken from
literature and hand-crafted ones. The latter ones are constructed to show the
scalability since the sizes of the former ones are very small. Our experimental
results are obtained by running our program on a Mac OS laptop with a 1.7
GHz Intel Core i7 processor and 8 Go 1600 MHz DDR3 of memory.

Table 1 shows part of our experimental results, where verdicts (i.e.,
Manifes(tability), S(trong)Manifes(tability), Diagno(sability), N(on)Manifes
(tability)) show the strongest property satisfied by the system. For example,
if it is Manifes, then it is not SManifes nor Diagno. Diagno implies both SMan-
ifes and Manifes. We give the number of states and transitions of the system
(|S|/|T|), of the pair verifier (|S|/|T|(PV)), as well as the execution time (mil-
lisecond is used as time unit). The size of the pair verifier includes all transitions

126 L. Ye et al.

Table 1. Experimental Results

LitSys |S|/|T| |S|/|T|(PV) Time Verdict HCSys |S|/|T| |S|/|T|(PV) Time Verdict

Ex. 2 8/10 4/4 15 SManifes h-c1 22/24 18/18 32 SManifes

[14] 16/23 21/23 51 Manifes h-c2 36/39 74/77 90 Manifes

[12] 16/20 7/9 25 Manifes h-c3 46/50 105/110 120 Manifes

[9] 3/6 4/6 12 SManifes h-c4 52/57 160/183 151 SManifes

[20] 18/21 53/57 69 SManifes h-c5 57/69 32/37 78 SManifes

[15] 9/11 2/1 16 Diagno h-c6 509/570 79/81 132 Manifes

[13] 12/28 45/51 68 NManifes h-c7 320/390 1752/1791 323 NManifes

generated from the synchronization of the fault refined diagnoser and the nor-
mal refined diagnoser. The examples shown here include Example 2 in this paper
with the illustrative examples of other papers that handle similar problems.

To construct the hand-crafted examples (HCSys) from those selected from
the literature (LitSys), we are not interested in diagnosable examples. First,
diagnosable systems are rare in the literature as well as in the industry. Sec-
ond, diagnosability implies an empty language of ambiguous infinite words for
the pair verifier, which can be verified without equivalence checking. The effi-
ciency cannot be convincing by applying our algorithm on diagnosable examples.
When extending the examples from the literature, we keep the same verdict. For
example, for a manifestable system, an arbitrary FSM without fault is added in
a place such that at least one faulty infinite trajectory can always manifest itself
(and obviously critical pairs are preserved).

From our experimental results, the executed time is also dependent on the
size of the pair verifier besides that of the system. To achieve a worst case, one
way is to employ the example construction in the proof of Theorem 6 by setting
Lω(G1) = Lω(G2). The hand-crafted example h-c7 is constructed in such a way.

We can see that the original HVAC system in [13] is not manifestable, i.e., any
faulty behavior cannot be diagnosed in all its infinite futures. It is thus necessary
to go back to design stage to revise the system model. For other manifestable
but not diagnosable systems, one interesting future work is to study bounded-
manifestability, making sure to detect the fault in bounded time.

6 Related Work

The first approach to verify the diagnosability of DESs is to construct a deter-
ministic FSM to check the existence of critical pairs [13], which has however
exponential complexity in the number of system states. Then the authors of [10]
proposed another method called twin plant with polynomial complexity. Here we
adapted the twin plant plus equivalence checking to verify manifestability. Note
that the existence of critical pairs, that excludes diagnosability, does not exclude
manifestability. Intuitively, manifestability is a more complicated problem than
diagnosability, which was demonstrated by proving that the problem itself is
PSPACE instead of polynomial (actually NLOGSPACE) for diagnosability.

How to Be Sure a Faulty System Does Not Always Appear Healthy? 127

In [16,17], the authors proposed different variants of detectability (e.g.,
(strong) detectability) about state estimation. The system is detectable (resp.
strongly detectable) if, based on a sequence of observations, one can be sure
about the state in which is the system for some given trajectory (resp. all trajec-
tories). They proposed a polynomial algorithm for strong detectability, for which
two different trajectories with the same observations implies the violation. How-
ever, to analyze detectability, they constructed a deterministic observer that has
exponential complexity with the number of system states. Our approach can
be adapted to handle state estimation by considering an ambiguous state as one
that contains different system states. Thus, we can improve their state estimation
by using the improved equivalence checking techniques (e.g., the approach of [5]
normally constructs a small part of the deterministic automaton). Furthermore,
we proved that the problem of manifestability itself is PSPACE-complete.

The authors of [1,8] proposed an approach for weak diagnosability in a con-
current system by using Petri net, i.e., impose a constraint of weak fairness by
disallowing the enabled transition to be perpetually ignored. The idea is to make
impossible some non-diagnosable scenarios in order to upgrade the diagnosabil-
ity level. They focused on how to get the more appropriate model, based on
which the solution can be polynomial such as that for classical diagnosability.

Two definitions for stochastic diagnosability were introduced and analyzed
in [19], which are weaker than diagnosability. A-diagnosability requires that the
ambiguous behaviors have a null probability. AA-diagnosability admits errors in
the provided information which should have an arbitrary small probability. Then
four variants of diagnosability (FA, IA, FF, IF) were introduced and studied
for different probabilistic system models [3,4]. Different ambiguity criteria were
then defined according to different types of runs: for faulty runs only or for all
runs; for infinite runs or for finite sub-runs. Among them IF-diagnosability (for
infinite faulty runs) is the weakest one. Note that IF-diagnosability of a finite
probabilistic system is equivalent to A-diagnosability.

The authors of [2,9] analyzed (safe) active diagnosability by introducing con-
trollable actions for (probabilistic) DESs, where the complexity of these problems
were also studied. The idea is to design controllers (resp. label activation strate-
gies for probabilistic version) to enable a subset of actions in order to make it
diagnosable (resp. stochastically diagnosable).

7 Conclusion and Future Work

In this paper we addressed the formal verification of manifestability for DESs.
To bring an alternative to diagnosability analysis, whose satisfaction is very
demanding in terms of sensors placement, we defined (strong) manifestability, a
new weaker property. Then, we constructed different structures from the system
model to check manifestability by using equivalence techniques. The entailment
relations between different properties were proved and demonstrated on exam-
ples from the literature. Thus, engineers have a variety of criteria to design
systems with optimal trade-off between safety and cost. One interesting future

128 L. Ye et al.

work is to extend our approach for distributed systems composed of a set of
components, each one being modeled as a FSM with synchronization events.

References

1. Agarwal, A., Madalinski, A., Haar, S.: Effective verification of weak diagnosability.
In: Proceedings of the 8th IFAC Symposium on Fault Detection, Supervision and
Safety for Technical Processes (SAFEPROCESS 2012), pp. 636–641. IFAC (2012)

2. Bertrand, N., Fabre, É., Haar, S., Haddad, S., Hélouët, L.: Active diagnosis for
probabilistic systems. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp.
29–42. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7 2

3. Bertrand, N., Haddad, S., Lefaucheux, E.: Foundation of diagnosis and predictabil-
ity in probabilistic systems. In: 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science, FSTTCS 2014, 15–17
December 2014, New Delhi, India, pp. 417–429 (2014)

4. Bertrand, N., Haddad, S., Lefaucheux, E.: Diagnosis in infinite-state probabilis-
tic systems. In: 27th International Conference on Concurrency Theory, CONCUR
2016, 23–26 August 2016, Québec City, Canada, pp. 37:1–37:15 (2016)

5. Bonchi, F., Pous, D.: Checking NFA Equivalence with Bisimulations up to Congru-
ence. In: Proceedings of 40th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL-2013), pp. 457–468. ACM (2013)

6. Büchi, J.R.: On a decision method in restricted second order arithmetic. Z. Math.
Logik Grundlag. Math 6, 66–92 (1960)

7. Cassandras, C.G., Lafortune, S.: Introduction To Discrete Event Systems, 2nd edn.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-68612-7

8. Germanos, V., Haar, S., Khomenko, V., Schwoon, S.: Diagnosability under weak
fairness. ACM Trans. Embed. Comput. Syst. 14(4), 69 (2015)

9. Haar, S., Haddad, S., Melliti, T., Schwoon, S.: Optimal constructions for active
diagnosis. J. Comput. Syst. Sci. 83(1), 101–120 (2017)

10. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial time algorithm for
testing diagnosability of discrete event systems. Trans. Autom. Control 46(8),
1318–1321 (2001)

11. Papineau, D.: Philosophical Naturalism. Blackwell Publishers, Hoboken (1993)
12. Pencolé, Y.: Diagnosability analysis of distributed discrete event systems. In: Pro-

ceedings of the 16th European Conference on Articifial Intelligent (ECAI 2004),
pp. 43–47. IOS Press, Nieuwe Hemweg (2004)

13. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Diagnosability of discrete event system. Trans. Autom. Control 40(9), 1555–1575
(1995)

14. Schumann, A., Huang, J.: A scalable jointree algorithm for diagnosability. In: Pro-
ceedings of the 23rd American National Conference on Artificial Intelligence (AAAI
2008), pp. 535–540. AAAI Press, Menlo Park (2008)

15. Schumann, A., Pencolé, Y.: Scalable diagnosability checking of event-driven sys-
tem. In: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI 2007), pp. 575–580. International Joint Conferences on Artifi-
cial Intelligence Inc., Menlo Park (2007)

16. Shu, S., Lin, F.: Detectability of discrete event systems with dynamic event obser-
vation. Syst. Control Lett. 59(1), 9–17 (2010)

https://doi.org/10.1007/978-3-642-54830-7_2
https://doi.org/10.1007/978-0-387-68612-7

How to Be Sure a Faulty System Does Not Always Appear Healthy? 129

17. Shu, S., Lin, F.: I-detectability of discrete-event systems. IEEE Trans. Autom. Sci.
Eng. 10(1), 187–196 (2013)

18. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. Theor. Comput. Sci. 49(2–3), 217–
237 (1987)

19. Thorsley, D., Teneketzis, D.: Diagnosability of stochastic discrete-event systems.
IEEE Trans. Autom. Control 50(4), 476–492 (2005)

20. Ye, L., Dague, P.: Diagnosability analysis of discrete event systems with
autonomous components. In: Proceedings of the 19th European Conference on
Artificial Intelligence (ECAI 2010), pp. 105–110. IOS Press, Nieuwe Hemweg (2010)

21. Ye, L., Dague, P., Longuet, D., Briones, L.B., Madalinski, A.: Fault manifestabil-
ity verification for discrete event systems. In: Proceedings of the 22nd European
Conference on Artificial Intelligence (ECAI 2016), pp. 1718–1719. IOS Press (2016)

Model Checking and State-Space
Exploration

Improving Parallel State-Space
Exploration Using Genetic Algorithms

Etienne Renault(B)

LRDE, EPITA, Kremlin-Bicêtre, France
renault@lrde.epita.fr

Abstract. The verification of temporal properties against a given sys-
tem may require the exploration of its full state space. In explicit model-
checking this exploration uses a Depth-First-Search (DFS) and can be
achieved with multiple randomized threads to increase performance.

Nonetheless the topology of the state-space and the exploration order
can cap the speedup up to a certain number of threads. This paper
proposes a new technique that aims to tackle this limitation by gener-
ating artificial initial states, using genetic algorithms. Threads are then
launched from these states and thus explore different parts of the state
space.

Our prototype implementation runs 10% faster than state-of-the-art
algorithms. These results demonstrate that this novel approach worth to
be considered as a way to overcome existing limitations.

1 Introduction and Related Work

Model checking aims to check whether a system satisfies a property. Given a
model of the system and a property, it explores all the possible configurations
of the system, i.e., the state space, to check the validity of the property. Typ-
ically two kind of properties are distinguished, safety and liveness properties.
This paper focus on safety properties that are of special interest since they stip-
ulate that some “bad thing” does not happen during execution. Nonetheless the
adaptation of this work for liveness properties is straightforward.

The state-space exploration techniques for debugging and proving correct-
ness of concurrent reactive systems has proven their efficiency during the last
decades [3,13,18,21]. Nonetheless they suffer from the well known state space
explosion problem, i.e., the state space can be far too large to be stored and thus
explored in a reasonable time. This problem can be addressed using symbolic [4]
or explicit techniques even if we only consider the latter one in this paper.

Many improvements have been proposed for explicit techniques. On-the-fly
exploration [5] computes the successors of a state only when required by the
algorithm. As a consequence, if the property does not hold, only a subset of the
state space is constructed. Partial Order Reductions (POR) [15,19,23] avoid the
systematic exploration of the state space by exploiting the interleaving semantic
of concurrent systems. State Space Caching [9] saves memory by “forgetting”
states that have already been visited causing the exploration to possibly revisit
c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 133–149, 2018.
https://doi.org/10.1007/978-3-030-00359-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_9&domain=pdf

134 E. Renault

a state several times. Bit-state Hashing [11] is a semi-decision procedure in which
each state is associated to a hash value. When two states share the same hash
value, one of this two states (and thus its successors) will be ignored.

The previous techniques focus on reducing the memory footprint during
the state-space exploration. Combining these techniques with modern computer
architectures, i.e., many-core CPUs and large RAM memories, tends to shift from
a memory problem to an execution time problem which is: how this exploration
can be achieved in a reasonable time?

To address this issue multi-threaded (or distributed) exploration algo-
rithms (that can be combined with previous techniques) have been developed
[2,7,12,18]. Most of these techniques rely on the swarming technique presented
by Holzmann et al. [13]. In this approach, each thread runs an instance of a
verification procedure but explores the state space with its own transition order.

Nowadays, best performance is obtained when combining swarming with
Depth-First Search (DFS)1 based verification procedures [3,21]. In these com-
binations, threads share information about states that have been fully explored,
i.e. states where all successors have been visited by a thread. Such states are
called closed states. These states are then avoided by other threads explorations
since they can not participate in invalidating the property. These swarmed-DFS
algorithms are linear but their scalability depends on two factors:

Topology problems. If the state space is linear (only one initial state, one
successor per state), using more than one thread cannot achieve any speedup.
This issue can be generalized to any state space that is deep but not wide.

Exploration order problems. States are tagged closed following the DFS
postorder of a given thread. Thus, a state s can only be marked closed after
visiting at least N states, where N is the minimal distance between the initial
state and s.

1 thread 2 threads 4 threads 8 threads 12 threads

Time in milliseconds 2 960 296 1 796 418 118 6344 981 222 978 711

Speedup 1 1.65 2.50 3.016 3.025

The table above highlights this scalability problem over the benchmark2 used
in this paper. It presents the cumulated exploration time (in a swarmed DFS
fashion) for 38 models extracted from the literature. It can be observed that this
algorithm achieves reasonable speedup up to 4 threads but is disappointing for
8 threads and 12 threads (the maximum we can test).

This paper proposes a novel technique that aims to keep improving the
speedup as the number of threads increases and which is compatible with all
memory reduction methods presented so far.

The basic idea is to use genetic algorithms to generate artificial initial states
(Sects. 2 and 3). Threads are then launched with their own verification procedure
1 It should be noted that even if DFS-based algorithms are hard to parallelize [20] they

scale better in practice than parallelized Breadth-First Search (BFS) algorithms.
2 See Sect. 6 for more details about the benchmark.

Improving Parallel State-Space Exploration Using Genetic Algorithms 135

from these artificial states (Sects. 4 and 5). We expect that these threads will
explore parts of the state space that are relatively deep regarding to (many)
DFS order(s). Thus, some states may be marked as closed without processing
some path between the original initial state to these states.

Our prototype implementation (Sect. 6) has encouraging performances: the
proposed approach runs 10% faster (with 12 threads) than state-of-the-art algo-
rithms (with 12 threads). These results are encouraging and show that this novel
approach worth to be considered as a way to overcome existing limitations.

Related Work. To our knowledge, the combination of parallel state space explo-
ration algorithms with the generation of artificial initial states using genetic
algorithms has never been done. The closest work is probably the one of Gode-
froid and Khurshid [8] that suggests to use genetic programming as an heuristic
to help random walks to select the best successor to explore. The generation
of other initial states have been proposed to maximize the coverage of random
walks [22]: to achieve this, a bounded BFS is performed to obtain a pool of states
that can be used as seed states. This approach does not help the scalability when
the average number of successors is quite low (typically when mixing with POR).

In the literature there are some work that combine model checking with
genetic programming but they are not related to the work presented here: Katz
and Peled [14] use it to synthesize parametric programs, while all the other
approaches are based on the work of Ammann et al. [1] and focus on the auto-
matic generation of mutants that can be seen as particular “tests cases”.

2 Parallel State Space Exploration

Preliminaries. Concurrent reactive systems can be represented using Transi-
tions Systems (TS). Such a system T = 〈Q, ι, δ, V, γ〉 is composed of a finite
set of states Q, an initial state ι ∈ Q, a transition relation δ ⊆ Q × Q, a finite
set of integer variables V and γ : Q → N

|V | a function that associates to each
state a unique assignment of all variables in V . For a state s ∈ Q, we denote
by post(s) = {d ∈ Q | (s, d) ∈ δ} the set of its direct successors. A path of
length n ≥ 1 between two states q, q′ ∈ Q is a finite sequence of transitions
ρ = (s1, d1) . . . (sn, dn) with s1 = q, di = q′, and ∀i ∈ {1, . . . , n − 1}, di = si+1.
A state q is reachable if there exists a path from the initial state ι to q.

Swarming. Checking temporal properties involves the exploration of (all or
some part) of the state space of the system. Nowadays, best performance is
obtained by combining on-the-fly exploration with parallel DFS reachability
algorithms. Algorithm 1 presents such an algorithm.

This algorithm is presented recursively for the sake of clarity. Lines 4 and 5
represent the main procedure: ParDFS takes two parameters, the transition sys-
tem and the number n of threads to use for the exploration. Line 5 only launches
n instances of the procedure DFS. This last procedure takes three parameters, s
the state to process, tid the current thread number and a color used to tag new

136 E. Renault

visited states. Procedure DFS represents the core of the exploration. This explo-
ration relies on a shared hashmap visited (defined line 2) that stores all states
discovered so far by all threads and associate each state with a color (line 1):

– open indicates that the state (or some of its successors) is currently processed
by (at least) a thread,

– closed indicates that the states and all its successors (direct or not) have
been visited by some thread.

Algorithm 1. Parallel DFS Exploration.
1 enum color = { open, closed }
2 visited: hashmap of (Q, color) // Shared variable

3 stop ← ⊥ // Shared variable

4 Procedure ParDFS(〈Q, ι, δ, V, γ〉 : TS, n : Integer)
5 DFS(ι, 1,open) || . . . || DFS(ι, n,open)

6 Procedure DFS(s ∈ Q, tid : Integer, status : color)
7 if s �∈ visited then visited.add(s, status)
8 else if visited[s] = closed then return
9 todo ← shuffle(post(s), tid) // Shuffle successors using tid as seed

10 while (¬stop ∧ ¬todo.isempty()) do
11 s′ ← todo.pick()
12 if s′ is in the current recursive DFS stack then continue
13 if (s′ �∈ visited) ∨ visited[s′] �= closed) then
14 DFS(s′, tid, status)

15 visited[s] ← closed
16 if (s = ι) then stop ←

The DFS function starts (lines 7 to 8) by checking if the parameter s has
already been inserted, by this thread or another one, in the visited map (line 7). If
not, the state is inserted with the color open (line 7). Otherwise, if s has already
been inserted we have to check whether this state has been tagged closed. In
this case, s and all its successors have been visited: there is no need to revisit
them. Line 9 grabs all the successors of the state s that are then shuffled to
implement the swarming. Finally lines 10 to 14 perform the recursive DFS: for
each successor s′ of the current state, if s′ has not been tagged closed a recursive
call is launched. When all successors have been visited, s can be marked closed.

One can note that a shared Boolean stop is used in order to stop all threads as
soon as a thread closes the initial state. This Boolean is useless for this algorithm
since, when the first threads ends, all reachable states are tagged closed and
every thread is forced to backtrack. Nonetheless this Boolean will be useful later
(see Sect. 4). Moreover the visited map is thread safe (and lock-free) so that it
does not degrade performances of the algorithm.

Problem Statement. The previous algorithm (or some adaptations of it [3,
21]) obtains the best performance for explicit model checking. Nonetheless this
swarmed algorithm suffers from a scalability problem. Figure 1 describes a case

Improving Parallel State-Space Exploration Using Genetic Algorithms 137

where augmenting the number of threads will not bring any speedup3. This figure
describes a transition system that is linear. The dotted transitions represent long
paths of transitions. In this example, state x cannot be tagged closed before
state y and all the states between x and y have been tagged closed. The problem
here is that all threads start from state s. Since threads have similar throughput
they will discover x and y approximately at the same time. Thus they cannot
benefit from the information computed by the other threads. This example is
pathological but can be generalized to any state space that is deep and narrow.

s

x

y

Fig. 1. Using more than
one thread for the explo-
ration is useless.

Suppose now that there are 2 threads and that the
distance between s and x is the same than the distance
between x and y. The only way to obtain the maximum
speedup is to launch one thread with a DFS starting
from s and launch the other thread from x. In this case,
when the first thread reaches state x, x has just been
tagged closed: the first thread can backtrack and stop.

A similiar problem arise when performing on-the-fly
model checking since (1) there is only one initial state
and (2) all states are generated during the exploration.
Thus a thread cannot be launched from a particular
state. Moreover, the system’s topology is only known after the exploration: we
need a technique that works for any kind of topology.

The idea developed in this paper is the automatic generation of state x using
genetic algorithms. The generation of the perfect state (the state x in the exam-
ple) is a utopia. Nonetheless if we can generate a state relatively deep regarding
to many DFS orders, we hope to avoid redundant work between threads, and
thus maximize the information shared between threads. In practice we may gen-
erate states that do not belong to the state space, but Sect. 6 shows that more
than 84% of generated states belongs to it.

3 Generation of Artificial Initial State

Genetic Algorithms. For many applications the computation of an optimal
solution is impossible since the set of all possible solutions is too large to be
explored. To address this problem, Holland [10] proposed a new kind of algo-
rithms (now called genetic algorithms) that are inspired by the process of natural
selection. These algorithms are often considered as optimizer and used to gen-
erate high-quality solutions to search problems. Basically, genetic algorithms
start by a population of candidate solutions and improve it using bio-inspired
operators:

– Crossover : selects multiple elements in the population (the parents) and pro-
duces a child solution from them.

– Mutation: selects one element in the population and alters it slightly.

3 This particular case will certainly degrade performance due to contention over the
shared hashmap.

138 E. Renault

Applying and combining these operators produces a new generation that can
be evaluated using a fitness function. This fitness function allows to select the
best elements (w.r.t the considered problem) of this new population. These best
elements constitute a new population on which mutation and crossover opera-
tions can be re-applied. This process is repeated until some satisfying solution
is found (or until a maximal number of generations has been reached).

a b
00101010 00110011

Fig. 2. Chromosome
representation.

Genetic algorithms rely on a representation of solu-
tions that is chromosome-like. In the definition of a
transition system we observe that every state can be
seen as a tuple of integer variables using the γ func-
tion. Each variable can be considered as a gene and
the set of variables can be considered as a chromosome
composed of 0 and 1. For instance, if a state is composed of two variables a = 42
and b = 51 the resulting chromosome (considering 8 bits integers) would be the
one described Fig. 2.

Crossover. Concurrent reactive systems are generally composed of a set of Np

processes and a set of shared variables (or channels). Given a transition system
T = 〈Q, ι, δ, V, γ〉 we can define E : V → [0, Np], such that if v is a shared
variable, E(v) returns 0 and otherwise E(v) returns the identifier of the process
where the variable v is defined.

Algorithm 2 defines the crossover operation we use. This algorithm takes
a parameter S which represents the population to use for generating a new
state. Line 2 instantiates a new state s that will hold the result of the crossover
operation. Lines 3 to 5 set up the values of the shared variables of s: for each
shared variable v, an element of S is randomly selected to be the parent. Then,
at line 5, one can observe that γ(s)[v] (the value of v in s) is set according
to γ(parent)[v] (the value of v in the parent). Lines 6 to 9 perform a similar
operation on all the remaining variables.

Process 1
a b

parent1 00000000 00000000
parent2 11111111 11111111

Crossover(S) 00000000 11111111

Fig. 3. Possible crossover.

These variables are treated by batch, i.e.,
all the variables that belong to a same pro-
cess are filled using only one parent (Line 7).
This choice implies that in our Crossover
algorithm the local variable of a process can-
not have two different parents: this partic-
ular processing helps to exploit the concur-
rency of underlying system. A possible result
of this algorithm is represented Fig. 3 (with
8 bits integer variables, only one process, no
shared variables, S = {parent1, parent2} and child the state computed by
Crossover(S)).

Improving Parallel State-Space Exploration Using Genetic Algorithms 139

Algorithm 2. Crossover.
1 Procedure Crossover(S ⊆ Q)
2 s ← newState()
3 for v ∈ V s.t. E(v) = 0 do
4 parent ← pick random one of S
5 γ(s)[v] ← γ(parent)[v]

6 for i ∈ [0, Np] do
7 parent ← pick random one of S
8 for v ∈ V s.t. E(v) = i do
9 γ(s)[v] ← γ(parent)[v]

10 return s

Algorithm 3. Mutation.
1 Procedure Mutation(s ∈ Q)
2 for v ∈ V do
3 r ← random(0..1)
4 if r > threshold then
5 γ(s)[v] =

random flip one bit in(γ(s)[v])

6 γ(s)[v] =
bound project(γ(s)[v])

Mutations. The other bio-inspired operator simulates alterations that could
happen while genes are combined over multiples generations. In genetic algo-
rithms, these mutations are performed by switching the value of a bit inside of
a gene. Here, all the variables of the system are considered as genes.

Algorithm 3 describes this mutation. For each variable in the state s (line 2),
a random number is generated. A mutation is then performed only if this number
is above a fixed threshold (line 4): this restriction limits the number of mutations
that can occur in a chromosome. We can then select randomly a bit in the current
variable v and flip it (line 5). Finally, line 6 exploits the information we may have
about the system by restricting the mutated variable to its bounds.

Process 1
a b

s 00000100 00001000
Mutation(s) 00000101 00001000

Fig. 4. Possible mutation.

Indeed, even if all variables are consid-
ered as integer variables there are many cases
where the bounds are known a priori: for
instance Boolean, enumeration types, char-
acters, and so on are represented as integers
but the set of value they can take is rela-
tively small regarding the possible values of
an integer. A possible result of this algorithm is represented Fig. 4 (with 8 bits
integer variables and only two character variables, i.e., that have values between
[0..255]).

Fitness. As mentioned earlier, every new population must be restricted to the
only elements that help to obtain a better solution. Here we want to generate
states that are (1) reachable and (2) deep with respect to many DFS orders.
These criteria help the swarming technique by exploring parts of the state space
before another thread (starting from the real initial state) reaches them.

140 E. Renault

We face here a problem that is: for a given state it is hard to decide whether it
is a good candidate without exploring all reachable states. For checking deadlocks
(i.e., states without successors) Godefroid and Khurshid [8] proposed a fitness
function that will only retains state with few transitions enabled4.

Since we have different objectives a new fitness function must be defined. In
order to maximize the chances to generate a reachable state, we compute the
average outgoing transitions (Tavg) of all the states that belong to the initial
population. Then the fitness function uses this value as a threshold to detect
good states. Many fitness function can be considered:

– equality: the number of successors of a good state is exactly equal to Tavg.
The motivation for this fitness function is that if there are N > 1 independent
processes that are deterministic then at every time, any process can progress.
Thus a good state has exactly N (equal to Tavg) outgoing transitions.

– lessthan: the number of successors of a good state is less than Tavg. The
motivation for this fitness function is that if there are N > 1 independent
deterministic processes that communicate then at any time each process can
progress or two processes can be synchronized. This latter case will reduce
the number of outgoing transitions

– greaterthan: the number of successors of a good state is greater than Tavg.
The motivation for this fitness function is that if there are N > 1 independent
and non-deterministic processes then at any time each processes can perform
the same amount of actions or more.

Algorithm 4. The generation
of new states.
1 Procedure Generate(S ⊆ Q)
2 for i ← 0 to nb generation

do
3 S′ ← ∅
4 for j ← 0 to pop size do
5 s ← Crossover(S)
6 Mutation(s)
7 if Fitness(s) then

S′ ← S′ ∪ {s}
8 S ← S′

9 return S

Generation of Artificial State. Algo-
rithm4 presents the genetic algorithm
used to generate artificial initial states
using the previously defined functions.

The only parameter of this algo-
rithm is the initial population S we
want to mutate: S is obtained by per-
forming a swarmed bounded DFS and
keeping trace of all encountered states.
From the initial population S, a new
generation can be generated (lines 4 to
8). At any time the next generation is
stored in S′ (lines 7 and 3). The algo-
rithm stops after nb generation gener-
ations (line 2). Note that this algorithm
can report an empty set according to the
fitness function used.

4 Godefroid and Khurshid [8] do not generate states but finite paths and their fitness
fonction analyzes the whole paths to keep only those with few enabled transitions.

Improving Parallel State-Space Exploration Using Genetic Algorithms 141

4 State-Space Exploration with Genetic Algorithm

This section explains how Algorithm 1 can be adapted to exploit the generation
of artificial initial states mentioned in the previous section. Algorithm5 describes
this parallel state-space exploration using genetic algorithm. The basic idea is to
have a collaborative portfollio approach in which threads will share information
about closed states. In this strategy, half of the available threads runs a the DFS
algorithm presented Sect. 2, while the other threads perform genetic exploration.
This exploration is achieved by three steps:

1. Perform swarmed bounded depth-first search exploration that stores into a
set P all encountered states (line 7). This exploration is swarmed, so that each
thread has a different initial population P. (Our bounded -DFS differs from
the literature since it refers DFS that stops after visiting N states.).

2. Apply Algorithm4 on P to obtain a new population P ′ of artificial initial
states (line 8).

3. Apply the DFS algorithm for each element of P ′ (lines 9 to 11). When the
population P ′ is empty, just restart the thread with the initial state ι (line 12).

One can note (line 1) that the color enumeration has been augmented with
open gp. This new status may seem useless for now but allows to distinguish
states that have been discovered by the genetic algorithm from those discov-
ered by the traditional algorithm. In this algorithm open gp acts and means
exactly the same than open but: (1) this status is useful for the sketch of termi-
nation proof below and, (2) the next section shows how we can exploit similar
information.

Algorithm 5. Parallel DFS Exploration using Genetic Algorithm.
1 enum color = { open, open gp, closed }
2 visited: hashmap of (Q, color)
3 stop ← ⊥
4 Procedure ParDFS GP(〈Q, ι, δ, V, γ〉 : TS, n : Integer)
5 DFS(ι, 1,open) || . . . || DFS(ι, �n

2
�,open) || DFS GP(ι, �n

2
�+1) || . . . || DFS GP(ι, n)

6 Procedure DFS GP(ι ∈ Q, tid : Integer)
7 P ← Bounded DFS(ι, tid) // Swarmed exploration using tid as a seed

8 P ′ ← Generate(P) // Described Algorithm 4

9 while P ′ not empty ∧ ¬stop do
10 s ← pick one of P ′

11 DFS(s, tid,open gp)

12 if ¬stop then DFS(ι, tid,open)

142 E. Renault

Termination. Until now we have avoided mentioning one problem: there is no
reason that a generated state is a reachable state. Nonetheless even if the state
is not reachable, some of its successors (direct or not) may be reachable. Since
the number of unreachable states is generally much larger than the number of
reachable states, we have to ensure that Algorithm 5 terminates as soon as all
reachable states have been explored.

First of all let us consider only threads running the DFS algorithm. Since this
algorithm has already been prove (see. [21] for more details), only the intuition is
given here. When all the successors of an open state have been visited, this state
is tagged as closed. Since all closed states are ignored during the exploration,
each thread will restrict parts of the reachable state space. At some point all the
states will be closed: even if a thread is still performing its DFS procedure, all
the successors of its current state will be marked closed. Thus the thread will
be forced to backtrack and stop.

The problem we may have with using genetic algorithm is that all the threads
performing the genetic algorithm may be running while all the other ones are idle
since all the reachable states have already been visited. In this case, a running
thread can see only unreachable states, i.e. open gp, or closed ones. To handle
this problem, a Boolean stop is shared among all threads (line 2). When this
Boolean is set to 	 all threads stop regardless the exploration technique used
(line 10, Algorithm 1). We observe line 9 that the use of other artificial states
is also stopped, and no restart will be performed (line 12). This Boolean is set
to 	 only when all the successors of the real initial state have been explored
(line 16, Algorithm 1). Thus, one can note that even if a thread using the genetic
algorithm visits first all reachable states it will stop all the other threads.

5 Checking Temporal Properties

Safety properties cover a wide range of properties: deadlock freedom (there is no
state without successors), mutual exclusion (two processes execute some critical
section at the same time), partial correction (the execution terminates in a state
that does not satisfies the postcondition while the precondition of the run was
satisfied), etc. One interesting characteristic of safety properties is that they can
be checked using a reachability analysis (as described Sect. 2). Nonetheless, our
genetic reachability algorithm (Algorithm5) cannot be directly used to check
safety properties. Indeed, if a thread (using genetic programming) reports an
error we do not know if this error actually belongs to the state space.

Algorithm 6 describes how to adapt Algorithm 5 to check safety properties. To
simplify things we focus on checking deadlock freedom, but our approach can be
generalized to any safety property. This algorithm5 relies on both Algorithms 1

5 Main differences have been highlighted to help the reader.

Improving Parallel State-Space Exploration Using Genetic Algorithms 143

and 5 The basic idea is still to launch half of the threads from the initial state ι
and the remaining ones from some artificial initial state (line 7).

Algorithm 6. Parallel Deadlock Detection Using Genetic Algorithm.
1 enum color = { open, open gp, closed , deadlock gp }
2 visited: hashmap of (Q, color)
3 stop ← ⊥
4 deadlock ← ⊥
5 Procedure ParDeadlockGP(〈Q, ι, δ, V, γ〉 : TS, n : Integer)
6 DeadlockDFS(ι, 1,open) || . . . || DeadlockDFS(ι, �n

2
�,open) ||

7 DeadlockDFS GP(ι, �n
2
� + 1) || . . . || DeadlockDFS GP(ι, n)

8 Procedure DeadlockDFS(s ∈ Q, tid : Integer, status : color)
9 if s �∈ visited then visited.add(s, status)

10 else if visited[s] = closed then return
11 todo ← shuffle(post(s), tid)
12 while (¬stop ∧ ¬todo.isempty()) do
13 s′ ← todo.pick()
14 if s′ is in the current recursive DFS stack then continue
15 if (s′ �∈ visited ∨ visited[s′] �= closed) then

16 if s′ ∈ visited ∧ visited[s′] = deadlock gp ∧ status = open then

17 deadlock ←
; stop ←

18 break

19 DeadlockDFS(s′, tid, status)

20 if visited[s′] = deadlock gp ∧ status = open gp then

21 visited[s] ← deadlock gp

22 return

23 if post(s) = ∅ ∧ status = open then deadlock ←
; stop ←

24 if post(s) = ∅ ∧ status = open gp then visited[s] ← deadlock gp
25 else v[s] ← closed
26 if (s = ι) then stop ←

27 Procedure DeadlockDFS GP(ι ∈ Q, tid : Integer)
28 P ← Bounded DFS(ι, tid) // Also check deadlock during this DFS

29 P ′ ← Generate(P)
30 while P ′ not empty ∧ ¬stop do
31 s ← pick one of P ′

32 DeadlockDFS(s, tid,open gp)

33 if ¬stop then DeadlockDFS(ι, tid,open)

– For a thread performing reachability with genetic algorithm the differences
are quite few. When a deadlock state is detected (line 24) we just tag this state
as deadlock gp rather than closed. This new status is used to mark all
states leading to a deadlock state. Indeed since we do not know if the state is a
reachable one we cannot report immediately that a deadlock has been found.

144 E. Renault

Moreover we cannot mark this state closed otherwise a counterexample
could be lost. This new status helps to solve the problem: when such a state
is detected to be reachable, a deadlock is immediately reported. The other
modifications are lines 20 and 22: when backtracking, if a deadlock has been
found no more states will be explored.

– For a thread performing reachability without genetic algorithm the differences
are also quite few. Lines 16 to 18 only check if the next state to process has
been marked deadlock gp. In this case this state is a reachable one and
it leads to a deadlock state. We can then report that a deadlock has been
found and stop all the other threads. A deadlock can also be reported directly
(line 23), if the current state is a deadlock.

Deadlock – Sketch of Proof. Due to lack of space only the schema of a proof,
that the algorithm will report a deadlock if and only if there exists a reachable
state that has no successors, is given here.

Theorem 1. For all systems S, the algorithm terminates.

Theorem 2. A thread reports a deadlock iff ∃s ∈ Q, post(s) = ∅.

To simplify the sketch of proof, we denote by classical thread a thread that
does not perform genetic algorithm while the other threads are called gp threads.
The following invariants hold for all lines of Algorithm6:

Invariant 1. If stop is 	 then no new state will be discovered.
Invariant 2. A deadlock state can only be open, open gp or deadlock gp.
Invariant 3. No direct successor of a closed state is a deadlock state.
Invariant 4. A state is closed iff all its successors that are not on the thread’s

recursive stack are closed.
Invariant 5. Only gp threads can tag a state deadlock gp.
Invariant 6. A state is deadlock gp iff it is a deadlock state or if one of its

successors (direct or not) is a deadlock state.
Invariant 7. Only classical thread can report that a deadlock has been found.
Invariant 8. If a state is reachable then all its direct successors are reachable.

Invariants, combined to the sketch of proof of the previous section, helps to
prove Theorem 1: the algorithm stops either because a deadlock is detected or
because all reachable states have been explored. These invariants establish both
directions of Theorem 2: invariant 7 and 8 are the most important for correctness.

Discussion. The verification of complex temporal properties involves the explo-
ration of an automaton which is the result of the synchronous product between
the state space of the system and the property automaton. Thus a state is com-
posed of two parts: the system state and the property state. Genetic algorithms
presented so far can then be applied by considering that the property state is
a variable just like the other system’s variables. The adaptation of Algorithm6
for checking liveness properties is straightforward: when a gp thread detects an
accepting cycle, all the states forming it are tagged with an accepting cycle
status. When a classical thread detects such a state, a counterexample is raised.

Improving Parallel State-Space Exploration Using Genetic Algorithms 145

6 Evaluation

Benchmark Description. To evaluate the performance of our algorithms, we
selected 38 models from the BEEM benchmark [16] that cover all types of models
described by the classification of Pelánek [17]. All the models where selected
such that Algorithm 1 with one thread would take at most 40 min on Intel(R)
Xeon(R) @ 2.00 GHz with 250 GB of RAM. This six-core machine is also used
for the following parallel experiments6. All the approaches proposed here have
been implemented in Spot [6]. For a given model the corresponding system is
generated on-the-fly using DiVinE 2.4 patched by the LTSmin team7.

Reachability. To evaluate the performance of the algorithm presented Sect. 4
we conducted 9158 experiments, each taking 30 s on the average. Table 1 reports
selected results to show the impact of the fitness function and the threshold over
the performance of Algorithm 5 with 12 threads (the maximum we can test). For
each variation, we provide nb the number of models computed within time and
memory constraints, and Time the cumulated walltime for this configuration (to
run the whole benchmark). For a fair-comparison, we excluded from Time models
that cannot be processed. Table 1 also reports state-of-the-art and random (used
to evaluate the accuracy of genetic algorithms by generating random states as
seed state). This latter technique is irrelevant since it is five time slower than
state-of-the-art and only process 32 models over 38.

If we now focus on genetics algorithms, we observe that the threshold highly
impacts the results regardless the fitness function used: the more the threshold
grows, the more models are processed within time and memory constraints.

The table also reports the best threshold8 for all fitness function, i.e. 0.999.
It appears that greaterthan only processed 37 models: this fitness function
does not seem to be a good fitness function since (1) it tends to explore useless
parts of the state-space and (2) the variations of the threshold highly impacts
the performance of the algorithm. All the other fitness function provide similar
results for a threshold fixed at 0.999. Nonetheless we do not recommend equality
since a simple variation of the threshold (0.7) could lead to extremely poor
results. Our preference goes to lessthan and lessstrict since they seem to be
less sensitive to threshold variation while achieving the benchmark 9% faster
than state-of-the-art algorithm. Thus, while the speedup for 12 threads was 3.02
for state-of-the-art algorithm, our algorithm achieves a speedup of 3.31.

Note that the results reported Table 1 include the computation of the artificial
initial states. On the overall benchmark, this computation take in average slightly
less than 1 s per model (30 s for the whole benchmark). This computation has a
negligible impact on the speedup of our algorithm.

6 For a description of our setup, including selected models, detailed results and code,
see http://www.lrde.epita.fr/∼renault/benchs/VECOS-2018/results.html.

7 See http://fmt.cs.utwente.nl/tools/ltsmin/#divine for more details. Also note that
we added some patches (available in the webpage) to manage out-of-bound detection.

8 We evaluate other thresholds like 0.9999 or 0.99999 but it appears that augmenting
the threshold does not increase performance, see the webpage for more details.

http://www.lrde.epita.fr/~renault/benchs/VECOS-2018/results.html
http://fmt.cs.utwente.nl/tools/ltsmin/#divine

146 E. Renault

Table 1. Impact of the threshold and the fitness function on Algorithm 5 with 12
threads (nb generation=3, init= 1000, pop size=50). The time is expressed in
millisecond and is the cumulated time taken to compute the whole benchmark (38
models); nb is the number of instances resolved with time and memory limits.

Threshold

0.7 0.8 0.9 0.999

nb Time (ms) nb Time (ms) nb Time (ms) nb Time (ms)

greaterthan 35 1 041 015 35 970 248 35 1 000 184 37 900 468

equality 35 3 217 183 35 965 259 35 934 947 38 907 148

lessthan 35 972 038 35 951 767 35 928 978 38 904 776

lessstrict 35 970 668 35 983 225 35 935 319 38 894 131

No threshold

random (trivial comparator to evaluate genetic algorithms) 32 5 079 869

Algorithm 1 (state-of-the-art with 12 threads) 38 978 711

We have also evaluated (not reported here, see webpage for more details) the
impact of the size of the initial population and the size of each generation over
the performance. It appears that augmenting (or decreasing) these two param-
eters deteriorate the performance. It is worth noting that the best value of all
parameters are classical values regarding to state-of-the-art genetic algorithms.
Finally, for each model (and lessthan as fitness), we compute a set of artifi-
cial initial states and run an exploration algorithm from each of these states. It
appears that 84.6% of the 7 866 005 486 generated states are reachable states.

Safety Properties. Now that we have detected the best values for the param-
eters of the genetic algorithm we can evaluate the performance of our deadlock
detection algorithm. In order to evaluate the performance of our algorithm we
conduct 418 experiments. The benchmark contains 21 models with deadlocks and
17 models without. Table 2 compares the relative performance of state-of-the-
art algorithm and Algorithm6. For this latter algorithm, we only report the two
fitness functions that give the best performance for reachability. Indeed, since
Algorithm 6 is based on Algorithm 5 we reuse the best parameters to obtain the
best performance. Results for detecting deadlocks are quite disappointing since
our algorithm is 15% to 30% slower. A closer look to these results show that
deadlocks are detected quickly and Algorithm 6 has degraded performance due
to the computation of artificial initial states.

On the contrary we observe that our algorithm is 10% faster (regardless
whether we use lessthan or lesstrict) than the classical algorithm when the
system has no deadlock. One can note that this algorithm performs better than
simple reachability algorithm. Indeed, even if the system has no deadlock: the
algorithm can find non-reachable deadlock. In this case, the algorithm backtracks
and the next generation is processed. This early backtracking force the use of a
new generation that will helps the exploration of the reachable states. To achieve

Improving Parallel State-Space Exploration Using Genetic Algorithms 147

this speedup, we observe an overhead of 13% for the memory consumption. The
use of dedicated memory reduction techniques could help to reduce this footprint.

Table 2. Comparison of algorithms for deadlock detection. Each runs with 12 threads,
and we report the variation of two different fitness functions: lessstrict and lessthan.
Results presents the cumulated time and states visited for the whole benchmark.

Algorithm 1 Algorithm 6

(state-of-the-art) lessthan lessstrict

Time (ms) States Time (ms) States Time (ms) States

Deadlocks 2 888 7.01e6 3 713 5.87e6 3 414 5.47e6

No deadlocks 516 152 5.79e8 462 881 6.73e8 468 683 6.82e8

Discussion. Few models in the benchmark have a linear topology, which can be
considered as the perfect one for the algorithms presented in this paper. Nonethe-
less, we observe a global improvement of state-of-the-art algorithm. We believe
that other fitness function (based on interpolation or estimation of distribution)
could help to generate better states, i.e. deep with respect to many DFS orders.

7 Conclusion

We have presented some first and new parallel exploration algorithms that rely
on genetic algorithms. We suggested to see variables of the model as genes
and states as chromosomes. With this definition we were able to build an algo-
rithm that generates artificial initial states. To detect if such a state is relevant
we proposed and evaluate various fitness functions. It appears that these seed
states improve the swarming technique. This combination between swarming and
genetic algorithms has never been proposed and the benchmark show encour-
aging results (10% faster than state-of-the-art). Since the performance of our
algorithms highly relies on the generation of good artificial states we would like
to see if other strategies could help to generate better states.

This work mainly focused on checking safety properties even if we proposed
an adaptation for liveness properties. A future work would be to evaluate the
performance of our algorithm in this latter case. We also want to investigate
the relation between artificial state generation and POR, since both rely on the
analysis of processes variables. Finally, we strongly believe that this paper could
serve as a basis for combining parametric model-checking with neural network.

References

1. Ammann, P.E., Black, P.E., Majurski, W.: Using model checking to generate tests
from specifications. In: ICFEM 1998, pp. 46–54, December 1998

148 E. Renault

2. Barnat, J., Brim, L., Ročkai, P.: Scalable shared memory LTL model checking.
STTT 12(2), 139–153 (2010)

3. Bloemen, V., van de Pol, J.: Multi-core SCC-based LTL model checking. In: Bloem,
R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp. 18–33. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49052-6 2

4. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: Proceedings of the Fifth Annual IEEE Sym-
posium on Logic in Computer Science, pp. 1–33. IEEE (1990)

5. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient algo-
rithms for the verification of temporal properties. In: Clarke, E.M., Kurshan,
R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1991).
https://doi.org/10.1007/BFb0023737

6. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

7. Garavel, H., Mateescu, R., Smarandache, I.: Parallel state space construction for
model-checking. Technical report RR-4341, INRIA (2001)

8. Godefroid, P., Khurshid, S.: Exploring very large state spaces using genetic algo-
rithms. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp.
266–280. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 19

9. Godefroid, P., Holzmann, G.J., Pirottin, D.: State space caching revisited. In:
von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 178–191.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56496-9 15

10. Holland, J.H.: Genetic Algorithms. Scientific American (1992)
11. Holzmann, G.J.: On limits and possibilities of automated protocol analysis. In:

PSTV 1987, pp. 339–344. North-Holland, May 1987
12. Holzmann, G.J., Bosnacki, D.: The design of a multicore extension of the SPIN

model checker. IEEE Trans. Softw. Eng. 33(10), 659–674 (2007)
13. Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification techniques. IEEE Trans.

Softw. Eng. 37(6), 845–857 (2011)
14. Katz, G., Peled, D.A.: Synthesis of parametric programs using genetic program-

ming and model checking. In: INFINITY 2013, pp. 70–84 (2013)
15. Laarman, A., Pater, E., Pol, J., Hansen, H.: Guard-based partial-order reduction.

STTT 18, 1–22 (2014)
16. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,

Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73370-6 17

17. Pelánek, R.: Properties of state spaces and their applications. Int. J. Softw. Tools
Technol. Transf. (STTT) 10, 443–454 (2008)

18. Pelánek, R., Hanžl, T., Černá, I., Brim, L.: Enhancing random walk state space
exploration. In: FMICS 2005, pp. 98–105. ACM Press (2005)

19. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58179-0 69

20. Reif, J.H.: Depth-first search is inherently sequential. Inf. Process. Lett. 20, 229–
234 (1985)

21. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Variations on parallel
explicit model checking for generalized Büchi automata. Int. J. Softw. Tools Tech-
nol. Transf. (STTT) 19, 1–21 (2016)

https://doi.org/10.1007/978-3-319-49052-6_2
https://doi.org/10.1007/BFb0023737
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/3-540-46002-0_19
https://doi.org/10.1007/3-540-56496-9_15
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/3-540-58179-0_69

Improving Parallel State-Space Exploration Using Genetic Algorithms 149

22. Sivaraj, H., Gopalakrishnan, G.: Random walk based heuristic algorithms for dis-
tributed memory model checking. Electron. Not. Theor. Comput. Sci. 89(1), 51–67
(2003)

23. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

https://doi.org/10.1007/3-540-53863-1_36

LTL Model-Checking for Communicating
Concurrent Programs

Adrien Pommellet1(B) and Tayssir Touili2

1 LIPN and Université Paris-Diderot, Paris, France
pommellet@irif.fr

2 LIPN, CNRS, and Université Paris 13, Villetaneuse, France

Abstract. Communicating Pushdown Systems (CPDSs) can be used to
model multi-threaded programs with recursive procedure calls and syn-
chronisation by rendez-vous between parallel threads. While the reacha-
bility problem for this particular class of automata is undecidable, it can
be tackled using an algebraic framework for computing abstractions of
context-free languages. In this paper, we combine this framework with
an automata-based approach in order to approximate an answer to the
model-checking problem for Linear Temporal Logic (LTL) on CPDSs: we
show that, given a single-indexed LTL formula, we can accurately tell if
a CPDS does not follow this formula. Finally, we show how this method
can be used to find race conditions in concurrent programs.

1 Introduction

The use of parallel programs has grown in popularity in the past fifteen years,
but these remain nonetheless fickle and vulnerable to specific issues such as
race conditions or deadlocks. Static analysis methods for this class of programs
remain therefore more relevant than ever.

The model-checking framework has proven to be a cornerstone of modern
static analysis techniques. The program is modelled as a simpler abstract mathe-
matical model. Desirable properties and forbidden behaviours are then expressed
using a well-defined logical framework, then checked against the abstract math-
ematical model of the program. The linear-time temporal logic (also known
as LTL) encodes properties about the future of execution paths, that is, the
sequence of configurations the model goes through. It can be used to express
safety and liveness properties.

Pushdown systems are a natural model for programs with sequential, recur-
sive procedure calls [6]. Thus, networks of pushdown systems can be used to
model multi-threaded programs, where each PDS in the network models a
sequential component of the whole program.

Communicating pushdown systems (CPDSs) were introduced by Bouajjani
et al. in [3] as a model for communicating multi-threaded programs. It is a
natural abstraction, as each thread is modelled as a PDS, and can synchronize
by rendez-vous with other threads. The reachability problem is undecidable for
c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 150–165, 2018.
https://doi.org/10.1007/978-3-030-00359-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_10&domain=pdf

LTL Model-Checking for Communicating Concurrent Programs 151

CPDSs. Therefore, the set of execution paths cannot be computed in an exact
manner. To overcome this problem, Bouajjani et al. computed an abstraction of
the execution paths language, using a framework based on Kleene algebras.

Solving the model-checking problem of LTL for CPDSs would therefore be
a worthy addition to the existing verification techniques. However, this problem
is unfortunately undecidable. Our contributions in this paper are the following:

– we define the semantics of single-indexed LTL formulas for CPDS, that is,
formulas of the form ϕ = (ψ1, . . . , ψn), where each LTL sub-formula ψi must
hold for the i-th process with regards to the synchronized CPDS semantics;

– we abstract the set of accepting traces of a Büchi pushdown system; to do so,
we use the abstraction framework of [3] as well as the LTL model-checking
methods for PDS developed by Esparza et al. in [6];

– we use this abstraction on isolated pushdown components to compute an
over-approximation of the model-checking problem of single-indexed LTL for
CPDSs;

– we apply this abstraction framework to detect race conditions in a toy exam-
ple.

Related Work. Multi-Stack Pushdown Systems (MPDSs) are pushdown sys-
tems with two or more stacks that can be used to model synchronized parallel
programs. In [8] Qadeer et al. solve the model-checking problem of LTL given a
context-bounding constraint on runs, where context is an uninterrupted sequence
of actions by a single thread. This result still holds with a weaker phase-bounding
constraint, where only a single stack can be popped from during a phase, as
shown by La Torre et al. in [11]. Atig introduced in [1] Ordered Multi-Pushdown
Automata, a sub-class of MPDSs such that the stacks are ordered and only the
first-non empty stack can be popped from. Given this constraint, the model-
checking problem of LTL can be solved with an 2ETIME upper bound. These
models depend on a bounding constraints on runs; our abstraction framework,
while less accurate, does not.

Dynamic pushdown networks (DPNs) were introduced by Bouajjani et al.
in [4]. A DPN models a concurrent program as a network with an unbounded
number of pushdown systems that can spawn new threads, also modeled as
pushdown systems. Song et al. described in [10] a model-checking framework for
single-indexed LTL and CTL formulas. A DPN can spawn new threads according
to a finite number of patterns, since it has a finite number of rules. Hence, a
single-indexed formula on a DPN is of the form ϕ = (ψ1, . . . , ψn), where each
component ψi is a formula that must hold for the i-th thread pattern. While
CPDSs can’t model thread spawns, but DPNs do not feature synchronization
between threads, an important aspect of concurrent programs.

Synchronized dynamic pushdown networks (DPNs) were later introduced by
Pommellet et al. in [7]. The reachability problem for this class of automata is
undecidable but can be abstracted. Abstractions for the model-checking problem,
however, have yet to be defined.

152 A. Pommellet and T. Touili

Paper Outline. In Sect. 2 of this paper, we remind the reader of the definition
of communicating pushdown systems (CPDSs). In Sect. 3, we define the single-
indexed linear-time temporal logic for CPDSs. We describe in Sect. 4 the abstrac-
tion framework designed by Bouajjani et al. in [3] in order to over-approximate
the set of execution paths of a PDS. In Sect. 5, as a main contribution of this
paper, we introduce an abstract model-checking algorithm. We apply this algo-
rithm to an example in Sect. 6. Finally, we show our conclusion in Sect. 7.

2 Communicating Pushdown Systems

2.1 Pushdown Systems

Pushdown systems are a natural model for sequential programs with recursive
procedure calls.

Definition 1 (Pushdown system). A pushdown system (PDS) is a tuple P =
(P,Act, Γ,Δ, c0) where P is a finite set of control states, Act a finite input
alphabet, also called the set of actions, Γ a finite stack alphabet, Δ ⊆ P ×
Γ × Act × P × Γ ∗ a finite set of transition rules, and c0 ∈ P × Γ ∗ a starting
configuration.

If d = (p, γ, a, p′, w) ∈ Δ, we write d = (p, γ) a−→ (p′, w). We call a the label of
d. We can assume without loss of generality that Δ ⊆ P × Γ × Act × P × Γ≤2.

Configurations of PDSs. A configuration of P is a pair 〈p,w〉 where p ∈ P is
a control state and w ∈ Γ ∗ a stack content. Let ConfP = P × Γ ∗ be the set of
configurations of P. A set of configurations C of a PDS P is said to be regular
if ∀p ∈ P , there exists a finite-state automaton Ap on the alphabet Γ such that
L(Ap) = {w | 〈p,w〉 ∈ C}, where L(A) stands for the language recognized by an
automaton A.

In order to represent regular sets of configurations, we consider the following
structure:

Definition 2 (Bouajjani et al. [2]). Let P = (P,Act, Γ,Δ, c0) be a pushdown
system. A P-automaton A = (Q,Γ, δ, I, F) is a finite automaton on the stack
alphabet Γ of P where Q is a set of states such that P ⊆ Q, I = P the set of
initial states, F ⊆ Q the set of final states, and δ ⊆ Q × Γ ∪ {ε} × Q a set of
transitions.

Let →A be the transition relation inferred from δ. We say that A accepts
a configuration 〈p,w〉 if there is a path p

w−→∗
Af such that f ∈ F . Let L(A) ⊆

ConfP be the set of configurations accepted by A. Intuitively, a P-automaton
is a finite automaton whose edges are labelled by stack symbols of P and whose
initial states represent the states of P. The following lemma holds:

Lemma 1 (Bouajjani et al. [2]). A set of configurations C of a PDS P is
regular if and only if there exists a P-automaton A such that L(A) = C.

LTL Model-Checking for Communicating Concurrent Programs 153

The Reachability Relation. For each a ∈ Act, we define the transition rela-
tion a−→P on configurations as follows: if (p, γ) a−→ (p′, w) ∈ Δ, for each w′ ∈ Γ ∗,
〈p, γw′〉 a−→P 〈p′, ww′〉. From these relations, we can then infer the immediate
successor relation →P = ∪

a∈Act

a−→P . The reachability relation →∗
P is the reflex-

ive and transitive closure of the immediate successor relation →P .
A run r is a sequence of configurations r = (ri)i≥0 such that r0 = c0, and

∀i ≥ 0, ri
ai−→P ri+1. The sequence (ai)i≥0 of actions is then said to be the trace

of r. Traces and runs may be finite or infinite. Let Runsω(P) (resp. Runs(P))
be the set of all infinite (resp. finite) runs of P. We define Tracesω(P) and
Traces(P) in a similar manner.

If C is a set of configurations, we introduce its set of predecessors pre∗(P, C) =
{c ∈ P ×Γ ∗ | ∃c′ ∈ C, c ⇒P c′}. We may omit the variable P when only a single
PDS is being considered.

It has been shown in [2] that the set of predecessors pre∗(P, C) is regular and
can be computed by applying a saturation procedure:

Theorem 1 (Bouajjani et al. [2]). Given a PDS P and a regular set of con-
figurations C, there exists a P-automaton Apre∗ accepting pre∗ (C).

2.2 The Model and Its Semantics

We now model each thread in a concurrent program as a PDS:

Definition 3 (Bouajjani et al. [3]). A communicating pushdown system
(CPDS) is a tuple CP = (P1, . . . ,Pn) of pushdown systems sharing the same
input alphabet Act and the same stack alphabet Γ .

From then on, we assume that the set Act contains a special action τ that
represents internal actions, and that other letters in Lab = Act \ {τ} model
synchronization signals. We assume that each pair (Pi,Pj) of pushdown systems
in the network uses a dedicated set of signals Labi,j disjoint from the other sets
of signals.

A global configuration of CP is a tuple g = (c1, . . . , cn) of configurations of
P1, . . . ,Pn. Let ConfCP be the set of global configurations of the CPDS CP.
The global starting configuration of CP is the tuple g0 = (c10, . . . , c

n
0) where ci

0 is
the starting configuration of Pi. We define a transition relation a−→CP on global
configurations as follows:

– (c1, . . . , cn) τ−→CP (c′
1, . . . , c

′
n) if there is i such that ci

τ−→Pi
c′
i and cj = c′

j for
all j �= i; a single process applies a pushdown operation on its own stack;

– (c1, . . . , cn) a−→CP (c′
1, . . . , c

′
n) if there are i and j, i �= j such that ci

a−→Pi
c′
i,

cj
a−→Pj

c′
j and ck = c′

k for all k �= i �= j; two synchronized processes perform
a simultaneous action.

We define runs and traces with regards to this transition relation in a manner
similar to PDSs. Given a global run g, we define gi as its projection on its i-th
component ConfPi

.

154 A. Pommellet and T. Touili

2.3 From a Program to a CPDS Model

We can assume that the program is given by a n-tuple of control flow graphs,
whose nodes represent control points of threads or procedures and whose edges
are labelled by statements. These statements can be variable assignments, proce-
dure calls or returns, or communications between threads through unidirectional
point-to point channels, where a thread sends a value x through a channel ch
and another thread waits for this value then assigns it to a variable y.

Without loss of generality, we assume that threads share no global variables
and instead can only synchronize through unidirectional, point-to-point chan-
nels: for all 1 ≤ i, j ≤ n, i �= j, there is a channel chi,j that allows thread i to
send values to another thread j. With a send statement ch!(x), value x is sent
through channel ch. With a receive statement ch?(y), the value received through
channel ch is bound to variable y. We also consider that both local and global
variables may only take a finite number of values.

For each control flow graph, we will define a corresponding PDS P =
(P,Act, Γ,Δ). The whole program will be modelled by the tuple of these PDSs.
The set of states P is the set of all possible valuations of global variables of the
thread. The stack alphabet Γ is the set of all pairs (n, l) where n is a node of the
flow graph and l is a valuation of the local variables of the current procedure.

The set Act contains an internal action τ and an action ch(n) for each channel
ch and value n that can be carried through it. Lab is a disjoint union of sets Labi,j

corresponding to synchronization actions of the form chi,j(v) from a system Pi

to another system Pj .
For each statement s labelling an edge of the flow graph between nodes n1

and n2, we introduce the following transition rules in the corresponding PDS,
where g1 and g2 (resp. l1 and l2) are the valuations of global (resp. local) variables
before and after the execution of the statement:

– if s is an assignment, it is represented by rules of the form (g1, (n1, l1))
τ−→

(g2, (n2, l2)); assigning new values to variables in g1 and l1 results in new
valuations g2 and l2;

– if s is a procedure call, it is represented by rules of the form (g1, (n1, l1))
τ−→

(g2, (f0, l0)(n2, l2)), where f0 is the starting node of the called procedure and
l0 the initial valuation of its local variables;

– if s is a procedure return, it is represented by rules of the form (g1, (n1, l1))
τ−→

(g2, ε); we simulate returns of values by introducing an additional global vari-
able and assigning the return value to it in the valuation g2;

– if s is an assignment ch?(y) of a value x carried through a channel c to a vari-

able y, it is represented by rules of the form (g1, (n1, l1))
ch(v)−−−→ (g2, (n2, l2))

where g1 and g2 (resp. l1 and l2) are such that assigning the value v to the
variable y in g1 (resp. l1) results in the new valuations g2 (resp. l2);

– if s is an output ch!(x) through a channel c of the value x of a variable y, it

is represented by rules of the form (g1, (n1, l1))
ch(v)−−−→ (g2, (n2, l2)) such that

the variable y has value x in either g1 or l1.

LTL Model-Checking for Communicating Concurrent Programs 155

Finally, we consider the starting configuration of each process
(ginit, (ninit, linit)) where ginit and linit are respectively the initial valuations
of the global and local variables of the thread, and ninit the starting node of its
initial procedure.

3 Model-Checking LTL on CPDSs

3.1 The Linear-Time Temporal Logic LTL

Let AP be a finite set of atomic propositions used to express facts about a
program. A path is an infinite word ρ = (ρi)≥0 in the set Paths = (2AP)ω.

Definition 4 (LTL). The set of LTL formulas is given by the following gram-
mar:

ϕ,ψ ::= ⊥ | p ∈ AP | ¬ϕ | ϕ ∨ ψ | X ϕ (Next) | ϕ U ψ (Until)

⊥ stands for the predicate ‘always true’. X and U are called the next and until
operators: the former means that a formula should happen at the next step, the
latter, that a formula should hold at least until another formula becomes true.
We consider the following semantics on paths:

Definition 5 (Semantics of LTL). Let ϕ be a LTL formula, ρ ∈ Paths, and
i ∈ N. We define inductively the semantics of the relation ρ, i |= ϕ:

ρ, i |= ρ where ρ ∈ AP ⇔ ρ ∈ ρi

ρ, i |= X ϕ ⇔ ρ, i + 1 |= ϕ

ρ, i |= ϕ U ψ ⇔ ∃j ≥ i such that ρ, j |= ψ and
∀k ∈ {i, . . . , j − 1} , ρ, k |= ϕ

as well as the obvious interpretation of the boolean operators.

Intuitively, ρ, i |= ϕ means that the path ρ verifies φ from it’s i-th symbol
onward. We consider the language L(ϕ) = {w | w ∈ Paths and w, 0 |= ϕ} of a
LTL formula ϕ, that is, the set of all paths verifying ϕ according to the semantics
outlined previously.

3.2 LTL Model-Checking for PDSs

We recall in this Section the model-checking problem for PDSs and the
automata-theoretic framework introduced in [2,6].

Let ν : ConfP → 2AP be a valuation function on configurations of a PDS
P = (P,Act, Γ,Δ, c0). It is said to be simple if for all w,w′ ∈ Γ ∗, p ∈ P ,
and γ ∈ Γ , we have ν(〈p, γw〉) = ν(〈p, γw′〉). Intuitively, a simple valuation is
equivalent to a function ν : P ×Γ → 2AP that only depends on the control state
and the top stack symbol.

Let r = (ri)i≥0 be an infinite run of P. We define the image ν(r) = (ν(ri))i≥0

in Paths of r by the valuation function ν. We write that r |=ν ϕ if ν(r), 0 |= ϕ.
The model-checking problem is defined as follows:

156 A. Pommellet and T. Touili

Definition 6 (The model-checking problem). Given a LTL formula ϕ, a
PDS P with a starting configuration c0, and a simple valuation ν on con-
figurations of P, the model-checking problem consists in determining whether
∃r ∈ Runsω(P), r |=ν ϕ.

In order to solve this problem, we consider the following class of automata:

Definition 7 (Büchi pushdown system). A Büchi pushdown system is a
tuple BP = (P,Act, Γ,Δ, c0, G) such that (P,Act, Γ,Δ, c0) is a PDS and G ⊆ P
a set of final states.

An accepting run of BP is an infinite run of the PDS (P,Act, Γ,Δ, c0) that
visits infinitely often configurations whose control state is in G. To these runs,
we match accepting traces.

A BPDS can be seen as a product automaton between a PDS and Büchi
automaton. The use of this model is the following:

Theorem 2. Given a PDS P and a LTL formula ϕ, there exists a BPDS BP
such that t is an accepting trace of BP if and only if t is a trace of P matched
to a run r such that r |=ν ϕ.

A repeating head of BP is an element 〈p, γ〉 of G × Γ such that ∃w ∈ Γ ∗,
〈p, γ〉 →+

BP 〈p, γw〉. Let Rep(BP) be the finite set of repeating heads of BP. The
following lemma characterizes accepting runs with regards to repeating heads:

Lemma 2. r is an accepting run of a BPDS BP if and only if BP has a repeating
head 〈p, γ〉 such that r visits configurations in 〈p, γΓ∗〉 infinitely often.

3.3 Single-Indexed LTL for CPDSs

Let CP = (P1, . . . ,Pn) be a CPDS, ν a simple valuation function on ConfP1 ∪
. . . ∪ ConfPn

, and for i = 1, . . . , n, let ψi be a LTL formula. The formula ϕ =
(ψ1, . . . , ψn) is said to be a single-indexed LTL formula. We define the following
semantics for single-indexed LTL formula on CPDSs:

Definition 8 (Single-indexed LTL model-checking). Given a CPDS CP =
(P1, . . . ,Pn), a global run g of CP, and a single-indexed LTL formula ϕ =
(ψ1, . . . , ψn), g |=ν ϕ if and only if for each i = 1, . . . , n, gi |=ν ψi. Find-
ing such a global run g is called the model-checking problem.

Intuitively, each PDS Pi in the CPDS satisfies formula fi, but does so while
synchronizing with the others PDSs. If the model-checking problem for CPDSs
were decidable, so would be the reachability problem. However, since the latter
is obviously undecidable, the former is as well.

We therefore seek to get at least an approximate answer to this problem.
The issue with CPDSs is the following: for each i = 1, . . . , n, there may be a run
r of the PDS Pi satisfying a formula ψi, but a global, synchronized run on the
CPDS (P1, . . . ,Pn) satisfying ϕ = (ψ1, . . . , ψn) may not exist.

LTL Model-Checking for Communicating Concurrent Programs 157

4 An Abstraction Framework for Traces

We seek to approximate global runs of CPDSs. To do so, we want to abstract
traces of their pushdown components. We remind here the mathematical frame-
work presented by Bouajjani et al. in [3] in order to abstract the language
LP({c0}, C) = {t ∈ Traces(P)|∃c ∈ C, c0

t−→∗
Pc} of traces of a PDS P lead-

ing from the starting configuration c0 to a regular set of configurations C.

4.1 Abstractions and Galois Connections

Let L = (2Act∗
,⊆,∪,∩, ∅, Act∗) be the complete lattice of languages on Act.

Our abstraction of L requires a lattice E = (D,≤,�,�,⊥,�), from now on
called the abstract lattice, where D is a set called the abstract domain, as well
as a pair of mappings (α, β) called a Galois connection, where α : 2Act∗ → D
and β : D → 2Act∗

are such that ∀x ∈ 2Act∗
, ∀y ∈ D, α(x) ≤ y ⇔ x ⊆ β(y).

∀L ∈ L, given a Galois connection (α, β), we have L ⊆ β(α(L)). Hence,
the Galois connection can be used to over-approximate a language such as
LP({c0}, C).

Moreover, it is easy to see that ∀L1,∀L2 ∈ L, α(L1) � α(L2) = ⊥ if and only
if β(α(L)) ∩ β(α(L)) = ∅. We can therefore check the emptiness of intersections
of over-approximations directly in the abstract domain.

4.2 Kleene Abstractions

As defined in [3], an abstract lattice E = (D,≤,�,�,⊥,�) is said to be com-
patible with a Kleene algebra K = (A,⊕,�, 0, 1) if D = A, x ≤ y ⇔ x ⊕ y = y,
⊥ = 0 and � = ⊕.

The Kleene algebra K is an Act-semiring if it can be generated by 0, 1, and
elements of the form va ∈ A, ∀a ∈ Act. A Kleene abstraction is an abstraction
such that the abstract lattice E is compatible with the Kleene algebra and the
Galois connection α : 2Act∗ → D and β : D → 2Act∗

is defined by:

α(L) =
⊕

a1...an∈L

va1 � . . . � van

β(x) =
{

a1 . . . an ∈ 2Act∗ | va1 � . . . � van
≤ x

}

Intuitively, a Kleene abstraction is such that the abstract operations ⊕, �,
and ∗ can be matched to the union, the concatenation, and the Kleene closure
of the languages of the lattice L, 0 and 1 to the empty language and {ε}, va to
the language {a}, the upper bound � ∈ K to Act∗, and the operation � to the
intersection of languages in the lattice L.

In order to compute α(L) for a given language L, each word a1 . . . an in L
is matched to its abstraction va1 � . . . � van

, and we consider the sum of these
abstractions. Moreover, we must have vτ = 1.

158 A. Pommellet and T. Touili

A finite-chain abstraction is such that the lattice (K,⊕) has no infinite
ascending chains. Prefix and suffix abstractions are such examples on the lattice
2W , where W (n) = {w ∈ Act∗ | |w| ≤ n} is the set of words of length smaller
than n.

4.3 The Set of K-Predecessors

Let P = (P,Act, Γ,Δ, c0) be a PDS and K = (A,⊕,�, 0, 1) a Kleene algebra
corresponding to a Kleene abstraction of the set Lab. We define inductively the
set ΠK of path expressions as the smallest subset of K such that:

– 1 ∈ ΠK ;
– if π ∈ ΠK , then ∀a ∈ Act, va � π ∈ ΠK .

For a given path expression π, we define its length |π| as the number of
occurrences of simple elements of the form va in π.

A K-configuration of P is a pair (c, π) in ConfK
P = P × Γ ∗ × ΠK . We

can extend the transition relation −→P to K-configurations with the following
semantics: ∀a ∈ Act, if c

a−→P c′, then ∀π ∈ ΠK , (c, va � π) −→P,K (c′, π);
(c, va � π) is said to be an immediate K-predecessor of (c′, π). The reachability
relation �P,K is the reflexive transitive closure of −→P,K .

Given a set of configurations C, we introduce the set pre∗
K(P, C) of K-

configurations (c, π) such that (c, π) �P,K (c′, 1) for c′ ∈ C:

pre∗
K(P, C) = {(c′, π) | c′ ∈ pre∗(P, C), π ≤ α(LP({c′}, C))}

As we will see later, the abstract path expression π is meant to be the abstrac-
tion of an actual trace from c′ to C.

4.4 K-automata

P-automata are used to represent regular sets of configurations. They can be
extended to K-automata in order to handle sets of K-configurations of a PDS P.

Definition 9 (K-automaton). A K-automaton is a tuple A = (Q,Γ, δ, I, F)
where Q is a finite set of control states, δ ⊆ Q × Γ × K × Q× a finite set of
transition rules, I = P the set of initial states, and F ⊆ Q the set of final states.

Intuitively, a P-automaton can be seen as K-automaton whose transitions are
all labelled by 1.

We define −→A⊆ Q × Γ ∗ × K × Q× as the smallest transition relation
satisfying:

– q
(ε,1)−−−→A q′ for every q ∈ Q;

– if (q, γ, e, q′) ∈ δ, then q
(γ,e)−−−→A q′;

– if q
(w,e)−−−→A q′ and q′ (w′,e′)−−−−→A q′′, then q

(ww′,e�e′)−−−−−−−→A q′′.

LTL Model-Checking for Communicating Concurrent Programs 159

We say that A accepts a K-configuration (< p,w >, π) if p
(w,e)−−−→A q for q ∈ F

and some e ∈ K such that π ≤ e. Let LK(A) be the set of all configurations
accepted by A, and PK(A) = {π | ∃c ∈ C, (c, π) ∈ LK(A)} the set of abstract
traces matched to these configurations.

By labelling the P-automaton Apre∗ accepting pre∗ (C) yielded by Theorem
1, the following theorem has been proven:

Theorem 3 (Bouajjani et al. [3]). Let P be a PDS and A a P-automaton
accepting a regular set of configurations C. Then we can compute a K-automaton
Apre∗

K
accepting the set pre∗

K(P,C).

From there, it is possible to compute the abstract trace language using the
product automaton A′ between Apre∗

K
and a P-automaton accepting 〈c0, Γ ∗〉.

5 Abstract Model-Checking of LTL for CPDSs

In this section, as a main contribution of this paper, we will introduce a semi-
decision procedure for model-checking LTL on CPDSs.

5.1 Abstracting Accepting Traces of a BPDS

By Lemma 2, each accepting run of a BPDS BP can be matched to a repeating
head it visits infinitely often, and any run visiting a repeating head infinitely
often is accepting. As a consequence, if we can for each repeating head compute
(resp. abstract) the set of traces visiting it infinitely often, we can compute (resp.
abstract) the set of accepting traces of the BPDS.

Let 〈p, γ〉 ∈ Rep(BP) be a repeating head. An accepting trace visiting
〈p, γΓ ∗〉 infinitely often can be split into two parts:

(1) first, it must reach the set 〈p, γΓ ∗〉 from the initial configuration c0;
(2) then, it must infinitely often move from 〈p, γΓ ∗〉 to 〈p, γΓ ∗〉, using a

sequence of transitions of length superior or equal to one.

In order to abstract the set of accepting traces visiting 〈p, γ〉 infinitely often,
we first compute the set pre∗

K(BP, 〈p, γΓ ∗〉) of K-predecessors of configura-
tions with this repeating head, using Theorem 3. Then, we consider the set
pre∗

K(BP, 〈p, γΓ ∗〉) ∩ (c0 × ΠK) and check its emptiness.
It will be empty if the repeating head is not reachable from the start-

ing configuration c0. Otherwise, it will be equal to the product of c0 with an
abstraction I〈p,γ〉 of the set of traces from c0 to C. Therefore, the abstraction
I〈p,γ〉 = PK(pre∗

K(BP, 〈p, γΓ ∗〉)∩ (ci
0 ×ΠK))) yields part (1) of our abstraction

of the set of accepting traces of the BDPS.
Next, we want to abstract the set of paths between two occurrences of

the repeating head. To do so, we use again the set pre∗
K(BP, 〈p, γΓ ∗〉) of K-

predecessors of configurations with a repeating head 〈p, γ〉. We consider its
intersection pre∗

K(BP, 〈p, γΓ ∗〉) ∩ 〈p, γΓ ∗〉 × ΠK with the product of the set
of configurations with a repeating head 〈p, γ〉 with all path expressions.

160 A. Pommellet and T. Touili

This set of K-configurations abstracts traces between two configurations
with the same repeating head 〈p, γΓ ∗〉. Therefore, the abstraction L〈p,γ〉 =
PK(pre∗

K(BP, 〈p, γΓ ∗〉) ∩ 〈p, γΓ ∗〉 × ΠK)) yields part (2) of our abstraction
of the set of accepting traces of the BDPS.

In an accepting run of a BPDS, part (1) happens once, then (2) occurs
infinitely often. Hence, R〈p,γ〉 = I〈p,γ〉 � (L〈p,γ〉)∗ is an abstraction of the set of
accepting traces using the repeating head 〈p, γ〉 infinitely often. This set can be
computed in a finite-chain abstraction framework.

We can finally compute an abstraction R =
⊕

〈p,γ〉∈Rep(BP)

R〈p,γ〉 of the set of

all accepting traces of BP by abstracting the set of accepting traces for each
repeating head, then considering the finite sum of these sets.

5.2 Abstracting the Model-Checking Problem for CPDSs

Let CP = (P1, . . . ,Pn) be a CPDS and ϕ = (ψ1, . . . , ψn) a single-indexed LTL
formula. We want to abstract the model-checking problem CP |= ϕ. Our intu-
ition is, for each component Pi, to abstract the set of paths verifying ψi, then
examine the emptiness of the intersection of these abstractions.

If n = 2, then for i = 1, 2, to each PDS Pi and formula ψi, we match a
BPDS BPi according to Theorem 2 and compute an abstraction of its sets of
paths Ri as outlined previously. R1 � R2 = ⊥ implies that we can’t find a trace
that is accepting for both BPDSs, hence, there is no synchronized global run
verifying ϕ.

However, in a global run of a CPDS, the execution paths of the pushdown
components are interleaved. If the CPDS has more than two threads, synchro-
nization signals with a third thread may occur in the global run but cannot be
computed by abstracting runs of each BPDS on its own. We cannot therefore
study the paths of a pushdown system Pi in isolation from the other compo-
nents. Without loss of generality, we assume that a partition of Lab such that
Lab =

⋃
k �=j

Lk,j and that transitions of the component Pi can only be labelled

by elements in Labi =
⋃

k �=i

Li,k. Intuitively, each pair (Pi,Pj) of pushdown com-

ponents can only synchronize by using its own set of symbols Labi.
For each component Pi, we then consider a new pushdown system P ′

i that
extends Pi with self-loops in each control state labelled by synchronization sig-
nals between pair of other processes in Labj,k, j �= k �= i. The following lemma
holds:

Lemma 3. If g is a global run of CP, then gi is a run of P ′
i.

We then want abstract the set of paths of P ′
i verifying ψi for each i and

consider the intersection of these abstractions. If it is indeed empty, the same
property holds for the intersection of the actual sets of paths, and no global run
satisfying ϕ exists in CP.

LTL Model-Checking for Communicating Concurrent Programs 161

To do so, to each PDS P ′
i and formula ψi, we match a BPDS BPi according

to Theorem 2. We then compute an abstraction Ri of the set of traces of the
BPDS BPi, as outlined in Sect. 5.1. The following theorem then holds:

Theorem 4. If R1 � . . . � Rn = ⊥, then there is no global run of CP accepting
the single-indexed LTL formula ϕ.

We can therefore over-approximate the model-checking problem for CPDSs.

5.3 Using Our Framework in a CEGAR Scheme

In a manner similar to the work of Chaki et al. in [5], we propose a semi-decision
procedure that, in case of termination, answers exactly whether there exists a
global run of a CPDS CP = (P1, . . . ,Pn) satisfies a single-indexed LTL formula
ϕ = (ψ1, . . . , ψn).

We introduce the following Counter-Example Guided Abstraction Refine-
ment (CEGAR) scheme based on the finite-domain abstraction framework
detailed previously, starting from n = 1.

Abstraction: for each PDS P ′
i, we compute an abstraction of the set of all

accepting traces Ri of BPi (the product between P ′
i and the Büchi automa-

ton representing ψi), using either the prefix or suffix abstraction of rank n
introduced in [3];

Verification: we then check if R1 � . . . � Rn = ⊥; if it is indeed true, then we
conclude that no global run of CP can satisfy ϕ;

Counter-Example Validation: if there is such a global run, we then check
if our abstraction introduced a spurious counter-example; if the counter-
example is not spurious, then we conclude that there exists a global run
of CP satisfying ϕ;

Refinement: if the counter-example was spurious, we go back to the first step,
but use this time prefix and suffix abstractions of order n + 1.

If this procedure ends, we can decide the model-checking problem.

6 Application to Race Conditions

A race condition is an issue peculiar to multi-threaded programs that happens
when events do not occur in the order the programmer intended, such concurrent
operations on a shared memory location. In this section, we show a toy example
of a race condition in a CPDS that can be detected thanks to our abstraction.

6.1 The CPDS Model

We consider a network composed of three processes: one of these handles memory
allocation, and the two others processes can synchronize with it in order to use
memory to fulfil requests. These processes are the following:

162 A. Pommellet and T. Touili

MEMORY: handles the amount of free memory available; this amount
decreases when another process uses memory; the process will send differ-
ent signals depending on whether there is free memory left or not;

CONSUME: can arbitrarily use the free memory handled by the previous pro-
cess;

REQUEST: has a stack of requests to fulfil, and will use memory to do so.

If MEMORY runs out of free memory and another process try to use some
nonetheless, MEMORY will reach an error state.

Each process can be modelled by a PDS as follows:

The Process MEMORY. Let m and me be its two states. Its stack alphabet
is {γ,⊥}. The number of γ’s in the stack corresponds to the amount of memory
available to other threads, a single γ being enough to handle a single request.
This process will pop a γ from its stack if it receives a signal use. As an internal
action, it can also push a γ on its stack (allocating memory) if there is no free
memory left. It can send a signal on to other threads if there is at least one γ
on the stack, and will send off otherwise. If it receive a use signal but there is
no γ on the stack, it will instead move to the error state me.

MEMORY is represented by the following PDS rules:

(r1) (m, γ) on−→ (m, γ); the process signals that there is still free memory left;

(r2) (m,⊥)
off−−→ (m,⊥); the process signals that there is no free memory left;

(r3) (m,⊥) τ−→ (m, γ⊥); the process allocates memory;
(r4) (m, γ) use−−→ (m, ε); the amount of free memory available decreases;
(r5) (m,⊥) use−−→ (me,⊥); the process reaches its error state.

The Process CONSUME. Let c, ccheck, and cdone be its three states and ⊥
its only stack symbol. This process can check if there is any free memory left
by exchanging a signal on with MEMORY, then consume one unit by sending a
signal use.

CONSUME is represented by the following PDS rules:

(r6) (c,⊥) on−→ (ccheck,⊥); the process checks if there is any memory left;
(r7) (ccheck,⊥) use−−→ (cdone,⊥); the process uses one unit of memory;
(r8) (cdone,⊥) τ−→ (c,⊥); the process goes back to its initial waiting state.

The Process REQUEST. Let r and rcheck be its two states. Its stack alphabet
is {γ,⊥}. The number of γ’s in the stack corresponds to the number of requests
it must handle. As an internal action, it can receive a new request and push a γ
symbol on its stack. This process can check if there is any free memory left by
exchanging a signal on with MEMORY, then handle a request and consume one
unit by sending a signal use, popping a symbol γ from its own stack.

LTL Model-Checking for Communicating Concurrent Programs 163

REQUEST is represented by the following PDS rules:

(r9a) (r, γ) τ−→ (r, γγ); the process adds a new request;
(r9b) (r,⊥) τ−→ (r,⊥γ); the process adds a new request;
(r10) (r, γ) on−→ (rcheck, γ); the process checks if there is any free memory left;
(r11) (rcheck, γ) use−−→ (r, ε); the process handles a request while using one unit of

memory.

6.2 Using a Single-Indexed LTL Formula

Let P be the set of all states of the CPDS. We define AP = P and a simple
valuation ν such that for each stack symbol x and p ∈ P , ν(〈p, x〉) = {p}. We
express the desirable behaviour of the CPDS as the conjunction of the three
following LTL formulas:

– ψMEMORY = G(¬me); the process MEMORY can’t reach its error state;
– ψCONSUME = GF (c); the process CONSUME will always go back to its

waiting state c;
– ψREQUEST = G(rcheck) ⇒ F (r); the process REQUEST, when it starts

handling a request, must complete it and go back to its default state.

We then use a CEGAR scheme to check if there is a global run g such that
the single-indexed formula (ψMEMORY , ψCONSUME , ψREQUEST) does not hold
for g. Our algorithm finds such a counter-example in seven steps.

Intuitively, a race condition happens when both CONSUME and REQUEST
try to use memory while MEMORY only has a single unit available.

6.3 An Erroneous Trace

We write (ri) ↔ (rj) if we apply two rules that synchronize. We start from the
initial configuration:

(〈m,⊥〉, 〈c,⊥〉, 〈r,⊥〉)
(r3) MEMORY allocates memory:

(〈m, γ⊥〉, 〈c,⊥〉, 〈r,⊥〉)
(r6) ↔ (r1) MEMORY sends on to CONSUME:

(〈m, γ⊥〉, 〈ccheck,⊥〉, 〈r,⊥〉)
(r9b) REQUEST adds a new request:

(〈m, γ⊥〉, 〈ccheck,⊥〉, 〈r, γ⊥〉)
(r10) ↔ (r1) MEMORY sends on to REQUEST:

(〈m, γ⊥〉, 〈ccheck,⊥〉, 〈rcheck, γ⊥〉)

164 A. Pommellet and T. Touili

(r7) ↔ (r4) CONSUME sends use to MEMORY and the latter process uses
one unit of memory:

(〈m,⊥〉, 〈cdone,⊥〉, 〈rcheck, γ⊥〉)
(r8) CONSUME goes back to default mode:

(〈m,⊥〉, 〈c,⊥〉, 〈rcheck, γ⊥〉)
(r11) ↔ (r5): REQUEST sends use to MEMORY and the latter process

reaches an error mode, violating ψMEMORY :

(〈me,⊥〉, 〈c,⊥〉, 〈r,⊥〉)
This an erroneous execution path in 7 steps. We can find it using a prefix

abstraction of order 7.

7 Conclusion and Future Works

In this paper, we study the model-checking problem of single-indexed LTL prop-
erties for CPDSs, which is unfortunately undecidable. We design an algorithm
to abstract the model-checking problem that relies on the automata-theoretic
approach of [2,6] and the Kleene abstraction framework of [3]. We then apply
this technique to a toy example and find a race condition.

An automata-theoretic approach to the CTL model-checking problem for
PDSs has been introduced in [9]. It remains to be seen if the CTL model-checking
problem for CPDSs can be abstracted in a similar manner to LTL.

References

1. Atig, M.F.: Model-checking of ordered multi-pushdown automata. Log. Methods
Comput. Sci. 8(3), (2012)

2. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0 10

3. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2003, pp.
62–73, New York. ACM (2003)

4. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452 36

5. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-
passing C programs with recursive calls. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 334–349. Springer, Heidelberg (2006). https://
doi.org/10.1007/11691372 22

https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/11539452_36
https://doi.org/10.1007/11539452_36
https://doi.org/10.1007/11691372_22
https://doi.org/10.1007/11691372_22

LTL Model-Checking for Communicating Concurrent Programs 165

6. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722167 20

7. Pommellet, A., Touili, T.: Static analysis of multithreaded recursive programs com-
municating via Rendez-Vous. In: Chang, B.-Y.E. (ed.) APLAS 2017. LNCS, vol.
10695, pp. 235–254. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
71237-6 12

8. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 7

9. Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems. Theor.
Comput. Sci. 549, 127–145 (2014)

10. Song, F., Touili, T.: Model-checking dynamic pushdown networks. Form. Asp.
Comput. 27(2), 397–421 (2015)

11. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: 22nd Annual IEEE Symposium on Logic in Computer Science (LICS
2007), pp. 161–170, July 2007

https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/978-3-319-71237-6_12
https://doi.org/10.1007/978-3-319-71237-6_12
https://doi.org/10.1007/978-3-540-31980-1_7

Exploiting Local Persistency for Reduced
State Space Generation

Kamel Barkaoui1, Hanifa Boucheneb2(B), and Zhiwu Li3,4

1 Laboratoire CEDRIC, Conservatoire National des Arts et Métiers,
192 rue Saint Martin, Paris Cedex 03, France

kamel.barkaoui@cnam.fr
2 Laboratoire VeriForm, Department of Computer Engineering and Software

Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-ville,
Montréal, Québec H3C 3A7, Canada

hanifa.boucheneb@polymtl.ca
3 Institute of Systems Engineering, Macau University of Science and Technology,

Taipa, Macau
zhwli@xidian.edu.cn

4 School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China

Abstract. This paper deals with the partial order techniques of Petri
nets, based on persistent sets and step graphs. To take advantage of the
strengths of each method, it proposes the persistent step sets as a para-
metric combination of the both methods. The persistent step sets method
allows to fix, for each marking, the set of transitions to be covered by
the selected steps and then to control their maximal length and number.
Moreover, this persistent step selective search preserves, at least, dead-
locks of Petri nets.

This paper also provides two practical computation procedures of the
persistent step sets based on the strong-persistent sets [5,10] and the
persistent sets, respectively.

Keywords: Petri nets · Reachability analysis
State explosion problem · Persistent sets · Partial order techniques
Step graphs

1 Introduction

The state explosion problem is the main obstacle for the verification of concur-
rent systems, as they are generally based on an interleaving semantics, where
all possible firing orders of concurrent actions are exhaustively explored. Differ-
ent techniques for fighting this problem have been proposed such as structural
analysis, symmetries and partial orders.

The structural analysis attempts to find a relationship between the behaviour
of the net and its structure. Its results are of particular importance since initial
marking is considered as a parameter. The net structure can be studied through

c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 166–181, 2018.
https://doi.org/10.1007/978-3-030-00359-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_11&domain=pdf

Exploiting Local Persistency for Reduced State Space Generation 167

its associated incidence matrix and the corresponding net state equation leading
mainly to the concept of place invariants [4] or through topological properties of
the interplay between conflict and synchronisation of remarkable substructures
of the net such siphons and traps leading to necessary and/or sufficient structural
conditions to check general behavioural properties such as liveness [3,7] for large
subclasses of place/transition nets [1,2].

The second well-accepted technique to tackle combinatorial explosion in
model-checking consists into exploitation of symmetries over states and the tran-
sition relation [6] leading to the building of a quotient graph of equivalence classes
of states, that may be exponentially smaller than the full state graph and pre-
serving many behavioural properties of interest.

The partial order techniques have been proven to be the most successful in
practice. We distinguish two classes of partial order techniques: partial order
reduction [5,8,9,11–13] and step graph [14]. Partial order reduction techniques,
such as the ample sets [8,9], the stubborn sets [11–13] and the persistent sets [5],
deal with the state explosion problem by avoiding as much as possible to explore
firing sequences that are equivalent w.r.t. the properties of interest (deadlock
freeness, reachability, liveness, or linear properties)1. The step graph methods
explore all the transitions of the state space but some of them are fired together
in atomic steps. The common characteristics of all these methods is to reduce
the state space to be explored, by selecting the actions or sets of actions (steps)
to be executed from each state. The selection procedure of actions or steps relies
on the notion of independent actions. Two actions are said to be independent,
if whenever they are enabled, they can be fired in both orders and the firing of
one of them does not inhibit the occurrence of the other. Moreover, their firing
in both orders leads to the same state. Both of these conditions constitute the
well known diamond property.

Each of the partial order reduction methods above provides sufficient condi-
tions that ensure, at least, preservation of deadlocks. Thus, the set ST of the
selected transitions or steps is only empty for the deadlock markings (i.e., mark-
ings with no enabled transitions). The other sufficient conditions are generally
based on the structure of the model, the property to be verified and the current
marking. Their aim is to ensure independency between transitions of ST and the
others. Indeed, for the ample sets method [8,9], there is no transition outside ST
that is firable before all transitions of ST and, at the same time, is dependent of
at least a transition of ST . For the stubborn sets method [11–13], ST contains
at least an enabled transition that cannot be disabled by the transitions outside
ST and each of its transitions t is independent of all transitions outside ST that
are firable before t. The persistent sets method [5] is considered a particular case
of the stubborn sets method, where all transitions of ST are enabled. For the
covering-steps graph method [14], the set of steps to be fired from each marking
must cover the set of enabled transitions.

1 Two firing sequences are equivalent w.r.t. some property, if they cannot be distin-
guished by the property.

168 K. Barkaoui et al.

To achieve more reductions, in [10], the authors have combined this technique
with the persistent sets method. This combination consists to firstly compute
a persistent set for the current marking and then look for firing steps within
this persistent set. For these approaches, the transitions within the same step
are neither in weak-conflict nor in structural conflict with the partially enabled
transitions.

This paper is interested in the persistent sets and the step graphs. To take
advantage of the strengths of each method, it investigates their combination and
proposes persistent step sets method. Persistent-step sets method is a paramet-
ric combination of persistent sets with step graphs that allows to fix, for each
marking, the set of transitions to be covered by the selected steps and then to
control their maximal length and number.

The rest of the paper is organized as follows. Section 2 fixes some classi-
cal definitions and notations used throughout the paper. Section 3 presents the
strong-persistent sets [5,10], the persistent sets (a weaker version of the strong-
persistent sets) and the step graph methods, while pointing out their weaknesses.
Section 4 provides a formal definition of persistent step sets and proves that they
yield graphs preserving deadlocks of Petri nets. Section 5 establishes two com-
putation procedures of persistent step sets that are based on strong-persistent
sets and persistent sets, respectively. Conclusions are presented in Sect. 6.

2 Preliminaries

Let P be a nonempty set. A multi-set over P is a function M : P −→ N, N
being the set of natural numbers, defined also by the linear combination over
P :

∑

p∈P

M(p) × p. We denote by PMS and 0 the set of all multi-sets over P

and the empty multi-set, respectively. Operations on multi-sets are defined as
usual. Notice that any subset X ⊆ P can be defined as a multi-set over P :
X =

∑

p∈X

1 × p.

An ordinary Petri net (PN in short) is a tuple PN = (P, T, pre, post) where:

– P and T are finite and nonempty sets of places and transitions with P ∩ T = ∅,
– pre and post are the backward and forward incidence functions over the set

of transitions T (pre, post : T −→ 2P).

For t ∈ T, pre(t) and post(t) are the sets of input and output places of t,
denoted also by •t and t•, respectively. Similarly, the sets of input and output
transitions of a place p ∈ P are defined by •p = {t ∈ T | p ∈ t•} and p• = {t ∈
T | p ∈ •t}, respectively.

Two transitions t and t′ are in structural conflict, denoted by t ⊥ t′ iff
pre(t) ∩ pre(t′) �= ∅. We denote by CFS(t) = {t′ ∈ T |t ⊥ t′} = (•t)• the set
of transitions in structural conflict with t. They are in weak conflict iff t ⊥∗ t′,
where ⊥∗ is the transitive closure of ⊥. We denote by CFS∗(t) = {t′ ∈ T |t ⊥∗

t′} the set of transitions in weak conflict with t. Notice that t ∈ CFS(t) and
CFS(t) ⊆ CFS∗(t).

Exploiting Local Persistency for Reduced State Space Generation 169

A marking of an ordinary Petri net indicates the distribution of tokens over
its places. It is defined as a multi-set over places. A marked PN is a pair
N = (PN,M0), where PN is an ordinary Petri net and M0 ∈ PMS is its initial
marking. Starting from its initial marking, PN evolves by firing enabled tran-
sitions. For the following, we fix a marked PN N , a marking M ∈ PMS and a
transition t ∈ T of N .

The transition t is enabled at M , denoted M [t〉 iff all the required tokens for
firing t are present in M , i.e., M ≥ pre(t). The transition t is partially enabled in
M iff t is not enabled in M and, at least, one of its input places is marked. In case
t is enabled at M , its firing leads to the marking M ′ = M −pre(t)+post(t). The
notation M [t〉M ′ means that t is enabled at M and M ′ is the marking reached
from M by t. We denote by En(M) the set of transitions enabled at M , i.e.,
En(M) = {t ∈ T | M ≥ pre(t)}. The marking M is a deadlock iff En(M) = ∅.

For any sequence of transitions ω = t1t2...tn ∈ T+ of N , the usual notation
M [t1t2...tn〉 means that there exist markings M1, ...,Mn such that M1 = M and
Mi[ti〉Mi+1, for i ∈ [1, n − 1] and Mn[tn〉. The sequence ω is said to be a firing
sequence of M . The notation M [t1t2...tn〉M ′ gives, in addition, the marking
reached by the sequence (M ′ is reachable from M by ω). By convention, we
have M [ε〉M . We denote by

−→
M the set of markings reachable from M , i.e.,−→

M = {M ′ ∈ PMS |∃ω ∈ T ∗,M [ω〉M ′}.
A firing sequence ω of M is maximal iff it is infinite (i.e., ω ∈ T∞) or it is

finite and leads to a deadlock marking. The transition t is potentially firable from
M if there exists a sequence ω ∈ T ∗ s.t. M [ωt〉. Two sequences of transitions ω
and ω′ are equivalent, denoted by ω ≡ ω′ iff they are identical or each one can
be obtained from the other by a series of permutations of transitions. If ω ≡ ω′

then ∀M ′,M ′′ ∈ PMS , (M [ω〉M ′ ∧ M [ω′〉M ′′) ⇒ M ′ = M ′′. We denote by [ω]
the set of transitions in ω. The firing sequences of N are the firing sequences of
its initial marking.

The different possible evolutions of N are represented in a marking graph
MG defined by the structure MG = (

−→
M0, [〉,M0). Let n be a natural number.

The marked PN N is n-bounded iff for every reachable marking of M0, the
number of tokens in each place does not exceed n. It is safe iff it is 1-bounded.
It is bounded iff it is k-bounded for some natural number k.

A firing step τ of N is a non-empty subset of transitions (τ ⊆ T) fired simul-
taneously and atomically from a marking of N . From an interleaving semantic
point of view, it represents an abstraction of all firing orders of its transitions.
For instance, τ = {t1, t2, t3} represents the following six sequences: t1t2t3, t1t3t2,
t2t1t3, t2t3t1, t3t1t2 and t3t2t1. The intermediate markings are abstracted to keep
only the markings before and after the firing step.

Let M ∈ PMS be a marking and τ a firing step of N . The firing step τ
is enabled in M , denoted by M [τ〉 iff M ≥ ∑

t∈τ
pre(t), which means that there

are enough tokens to fire concurrently all the transitions within the step. If τ is
enabled in M , its firing leads to the marking M ′ = M +

∑

t∈τ
(post(t) − pre(t)).

The notation M [τ〉M ′ means that τ is enabled at M and M ′ is the marking

170 K. Barkaoui et al.

reached from M by τ . We denote by EnS(M) the set of all enabled steps in M ,
i.e., EnS(M) = {τ ⊆ T | τ �= ∅ ∧ M ≥ ∑

t∈τ
pre(t)}. The firing step τ is maximal

in M iff it is maximal for the inclusion in EnS(M), i.e., M ≥ ∑

t∈τ
pre(t) and

∀t′ ∈ En(M) − τ,M �≥ pre(t′) +
∑

t∈τ
pre(t).

A step graph of N is a structure SG = (MM,R,M0), where MM ⊆ −→
M0 is a

subset of reachable markings, M0 is the initial marking and R ⊆ MM × 2T ×
MM is relation defined by (M, τ,M ′) ∈ R ⇒ M [τ〉M ′.

For the rest of paper, we fix an ordinary Petri net N = (P, T, pre, post,M0).

3 Persistent Sets and Step Graphs

3.1 Persistent Sets

Let M be a marking. Informally, a persistent set of M is a subset μ of enabled
transitions such that no transition of μ can be disabled, as long as no transition
of μ is fired [5,10]. A persistent graph is obtained by recursively firing from each
marking a persistent set. Persistent graphs preserve deadlocks of Petri nets [10].

However, this strong definition of persistent sets can be weakened while pre-
serving deadlocks of Petri nets. The idea comes from the stubborn sets [13]. But
unlike the stubborn sets, all the transitions inside a persistent set are enabled.
To distinguish between the two definitions of persistent sets, the persistent sets
of [5,10] are referred to as strong-persistent sets.

Definition 1. Let M be a marking and μ ⊆ En(M) a subset of enabled transi-
tions.
Formally, the subset μ is a strong-persistent set of M , if all the following condi-
tions are satisfied:

– En(M) �= ∅ ⇔ μ �= ∅.
– ∀t ∈ μ,∀ω ∈ (T − μ)+,M [ω〉 ⇒ M [ωt〉.
– ∀t ∈ μ,∀ω ∈ (T − μ)+,M [ωt〉 ⇒ M [tω〉.
The subset μ is a persistent set of M , if it satisfies all the following conditions:

– D0: En(M) �= ∅ ⇔ μ �= ∅.
– D1: ∃t ∈ μ,∀ω ∈ (T − μ)+,M [ω〉 ⇒ M [ωt〉.
– D2: ∀t ∈ μ,∀ω ∈ (T − μ)+,M [ωt〉 ⇒ M [tω〉.

Intuitively, Condition D0 ensures that the persistent set of M is empty only
if M is a deadlock. Conditions D1 means that there is at least a transition inside
μ such that no transition outside μ can disable it. Condition D2 means that if
some sequence ω with no transition from μ is firable before any transition t of
μ, then it is also firable after t.

The transitions of μ that satisfy D1 are called the key-transitions of μ [13].
Note that in strong-persistent sets, all their transitions are key-transitions.

In the following, we investigate the combination of the persistent sets with
the step graphs, in order to achieve more reduction.

Exploiting Local Persistency for Reduced State Space Generation 171

p1 p2 p3

p4 p5 p6 p7 p8 p9

t1 t2 t3 t4 t5 t6

• • •

Fig. 1. Model PN1

M0

M7

M8 M9

M10

M11
M14

M12 M13

{t1, t3, t5}

{t1, t3, t6}

{t1, t4, t5}
{t1, t4, t6}

{t2, t3, t5}
{t2, t3, t6}

{t2, t4, t5}
{t2, t4, t6}

Fig. 2. Step graph of PN1

M0M1 M2M3 M6

M4 M5

M7

M8

M9 M10 M11 M12

M13

M14

t1

t2
t3

t4 t3

t4

t5

t6

t5
t6 t5

t6

t5 t6

Fig. 3. A persistent set graph of PN1

M0M3

M4 M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

{t1, t4}
{t2, t3}

{t2, t4}
{t5}
{t6}

{t5}
{t6}

{t5}
{t6}

{t5}{t6}
{t1, t3}

Fig. 4. A persistent step graph of PN1

3.2 Step Graphs

The aim of the step graph methods is to represent by a single path a largest
possible set of equivalent maximal firing sequences of the model, by choosing
appropriately, from each marking, the transitions to be fired together in steps.
All transitions of the equivalent sequences are represented in the path but the
concurrent ones are grouped together in steps. Step graphs allow to reduce the
path depths.

However, in case there are several sets of transitions that are independent
from each other, the number of steps and their lengths may be very large. For
example, consider the model PN1 at Fig. 1. Its marking graph consists of 27
nodes and 54 arcs. Its initial marking M0 has 3 persistent sets that are indepen-
dent from each other: {t1, t2}, {t3, t4} and {t5, t6}. A persistent graph of PN1
is shown in Fig. 3. Note that there are different persistent graphs but they have
all the same size (24 − 1 = 15 nodes and 15 − 1 = 14 arcs). Using the 3 indepen-
dent persistent sets of M0, steps can be built by picking a transition from each
persistent set. Its step graph is shown in Fig. 2 and consists of 9 = 23 + 1 nodes,

172 K. Barkaoui et al.

8 = 23 arcs and 23 maximal steps. It is a covering-step graph, as the set of steps
selected from each marking covers all its enabled transitions. But, the number
of successors of the initial marking exceeds the number of enabled transitions
and is exponential with the number of independent persistent sets. Even if the
covering-step graph is smaller than the persistent graph, the number of maximal
steps and their lengths may be very large, which limits the usefulness of the step
graph method.

To take advantage of the strengths of each method, the persistent sets and
step graphs are combined in [10]. The idea is to compute a strong-persistent
set and then determine the transitions within this set to be fired together in
steps. As an example, for the strong-persistent set {t1, t2, t3, t4} of the initial
marking M0, we can build 4 steps: {t1, t3}, {t1, t4}, {t2, t3} and {t2, t4}. The
resulting reduced graph is reported in Fig. 4 and consists of 13 nodes and 12
arcs. This combination allows to control the number and the length of the steps
to be considered from each marking, while yielding a graph that is larger than
the step graph but smaller than the persistent graph.

4 Persistent Step Sets

We first define the notion of persistent step sets. Then, we show that the resulting
graphs preserve deadlock markings of Petri nets.

Definition 2. Let M be a marking and SS = {τ1, ..., τn} a set of n enabled
steps in M with n > 0. The set SS is a persistent step set in M if it satisfies
all the following conditions: Let μ =

⋃

i∈[1,n]

τi.

– DS0: En(M) �= ∅ ⇔ μ �= ∅.
– DS1: ∀(t1, ...tn) ∈ τ1 × ... × τn,∀ω ∈ (T − ⋃

j∈[1,n]

{tj})+,

(M [ω〉 ⇒ ∃i ∈ [1, n],∃t ∈ τi,M [ωt〉)∧ (∀i ∈ [1, n],M [ωti〉 ⇒ M [tiω〉)
Condition DS0 is identical to D0. Intuitively, Condition DS1 means that

as long as a sequence does not contain all transitions of, at least, a step (even
scattered), there is always a possibility to extend this sequence with a missed
transition of a step. Moreover, if a missed transition is firable after ω then it can
be shifted to the front of the sequence of ω to, at the end, constitute a firing
step. Note that if SS is a persistent step set of M such that all its steps are
singletons, then μ is a persistent set of M . Indeed, in this case μ = {t1, ..., tn}
and then DS0 ∧ DS1 implies D0 ∧ D1 ∧ D2.

Example 1. Consider the model PN1 at Fig. 1.

– The set μ = {t1, t2, t3} is a persistent set but is not a strong-persistent set of
the initial marking M0 = p1 + p2 + p3, as it satisfies conditions D0 and D1
(for only t1 and t2). There are two key-transitions in μ: t1 and t2.

– The step set SS = {{t1, t3}, {t2, t3}} is not a persistent step set of M0, as it
does not satisfy Condition DS1. Indeed, we have M0[t4t1〉 and ¬M0[t4t1t3}〉.

Exploiting Local Persistency for Reduced State Space Generation 173

Theorem 1. Let M be a marking reached in a persistent step selective search
from M0 and D a deadlock marking reachable from M in the Petri net. Then D
will also be reached by the persistent step selective search from M0.

Proof. The marking M is reachable in the Petri net. Let ω be a firing sequence
leading to the marking D from M in the Petri net. The proof is by induction on
the length of ω.

(a) If ω = ε then M = D.
(b) If ω = t and {t} ∈ SS then D is reached by the persistent step selective

search.
(c) If ω = t and {t} /∈ SS then, by DS1, D is not a deadlock marking as there is,

at least, a transition from μ that is firable after t, which is in contradiction
with the fact that D is a deadlock.

Suppose that Theorem 1 holds for any marking M ′ (reachable in a persistent
step set selective search) and D reachable from M ′ by a sequence ω′ such that
|ω′| < |ω|.
– If there is no step of SS (scattered or not) in ω, then, by DS1, there is, at

least, a missed transition of a step that is firable after ω. It means that D
has, at least, a successor, which is in contradiction with the fact that D is a
deadlock.

– If there is, at least a step τ of SS, scattered or not, in ω, then these transitions
of this step can be shifted to the front to constitute a step firable from M .
Firing this step from M leads to some marking M ′ that is reachable by the
persistent step selective search. Moreover, D is reachable from M ′, in the
Petri net, by a sequence ω′ s.t. |ω′| < |ω|. Therefore, D is reachable by the
persistent step selective search from M0. ��

5 Parametric Combination of Persistent Sets with Step
Graphs

From a practical point of view, the above definition of persistent step sets is not
useful. We propose, in the following, two parametric selection algorithms of per-
sistent step sets, based on strong-persistent sets and persistent sets, respectively.

For a given marking M and a subset S of transitions enabled in M (S ⊆
En(M)), the idea is to compute a persistent step set that covers, at least, the
transitions of S. Unlike, the approach proposed in [10], the set S is not necessarily
a strong-persistent set. As we will show, according to the parameter S, the
provided persistent step set is either a (strong) persistent set, a covering-step
set or a set of steps that covers partially the enabled transitions in M .

We suppose that there are two available computation procedures PS and
PS+ of strong-persistent sets and persistent sets, respectively. For a given mark-
ing M and a transition t enabled in M , PS(t,M) returns a persistent set of M ,
where at least t is a key-transition. This set can be computed from {t} by adding

174 K. Barkaoui et al.

recursively the enabled transitions that prevent it to satisfy D1 and D2, until
reaching a fixed point. For PS+(t,M), the set returned is a strong-persistent set
of M calculated from PS(t,M) by adding recursively PS(t′,M), for each non
key-transition t′ within the set, until reaching a fixed point. Thus, the transitions
of PS+(t,M) are all key-transitions.

5.1 Computing Strong-Persistent Step Sets

A computation procedure of strong-persistent step sets is provided in Algo-
rithm 1. For a given marking M and a set of enabled transitions S ⊆ En(M),
Algorithm 1 returns a set of steps firable from M . The parameter S allows to
specify the set of enabled transitions that must be, at least, covered by the set
of steps. The computed set of steps is a sort of product of some disjoint strong-
persistent sets (PS+(t,M), for t chosen from the input set S). The first term of
the product is R = PS+(t,M), where t is chosen randomly in S′ (a copy of S).
Then, the transitions of R are deleted from S′, to ensure that the next terms
are disjoints from those computed so far. If the resulting S′ is not empty, then
the same process is repeated to compute the next term of the product, and so
on. Theorem 2 establishes that the returned set of steps is a persistent step set.

Algorithm 1. Strong-persistent step set of a marking M covering the transitions
of S
1: Input : A marking M and a subset S of enabled transitions such that S �= ∅;
2: Output : A strong-persistent step set SS of M w.r.t. S;
3: SS = ∅; S′ = S;
4: while (S′ �= ∅) do
5: Choose t ∈ S′;
6: R = PS+(t, M);
7: S′ = S′ − R;
8: SS = SS ⊗ R;
9: end while
10: return SS;
11: [For X ∈ 2T and a set Y ⊆ T , X ⊗ Y = {x ∪ {y} | x ∈ X ∧ y ∈ Y }. By convention,

∅ ⊗ Y = {{y} |y ∈ Y }]

Example 2. Consider the initial marking M0 of the model PN1 at Fig. 1.

– For S = {t1, t2, t3}, Algorithm 1 computes SS as follows. It starts by setting
SS and S′ to ∅ and {t1, t2, t3}, respectively. If t1 of S′ is the first transition
selected in the loop while, then R = {t1, t2}, S′ = {t3} and SS = ∅ ⊗ R =
{{t1}, {t2}}. For the second iteration, t3 is selected, then R = {t3, t4}, S′ = ∅
and SS = SS ⊗ {t3, t4} = {{t1, t3}, {t1, t4}, {t2, t3}, {t2, t4}}. Algorithm 1
returns SS.

– For M0 and S = En(M0), Algorithm 1 returns the set:
SS = ({{t1}, {t2}} ⊗ {{t3, t4}}) ⊗ {{t5, t6}}.
Indeed, initially, we have S′ = S = En(M0). The loop while will perform

Exploiting Local Persistency for Reduced State Space Generation 175

successively the following updates of R, S′ and SS, for the case where the
selected transitions are successively t1, t3 and t5:
For t1: R = {t1, t2}, S′ = {t3, t4, t5, t6} and SS = {{t1}, {t2}}.
For t3: R = {t3, t4}, S′ = {t5, t6} and SS = SS × R.
For t5: R = {t5, t6}, S′ = ∅ and then
Then, SS = ({{t1}, {t2}} ⊗ {t3, t4}) ⊗ {t5, t6}. Note that in this case, SS is
a covering-step set.

– For M0 and S = {t1, t2}, Algorithm 1 returns SS = {{t1}, {t2}}, as the
transitions of S are all key-transitions. If t1 (or t2) is selected first then R = S′,
S′ = ∅ and SS = {{t1}, {t2}}.

Theorem 2. Algorithm 1 returns a persistent step set of M .

Proof. It suffices to show that the returned set SS by Algorithm 1 satisfies DS0
and DS1 (presented in Definition 2). It is obvious that SS satisfies DS0.
DS1? Suppose that n (n > 0) iterations are needed to complete the loop while
of the algorithm. During the ith iteration (i ∈ [1, n], a transition ti is selected
from S′i and Ri = PS+(ti,M). The set Ri is a strong-persistent set where all
its transitions are keys. Therefore, it holds that:

∀i ∈ [1, n],∀ti ∈ Ri,∀ω ∈ (T − Ri)+,M [ω〉 ⇒ M [ωti〉 ∧ M [tiω〉.

Each step of SS contains one and only one transition from each Ri, for i ∈ [1, n].
Therefore, all sequences where, at least, a transition from each step is missing,
is given by the union of sets (T − Ri)+, for i ∈ [1, n]. Consequently, SS satisfies
DS1. ��

5.2 Computing Persistent Step Sets

The set of steps returned by Algorithm 1 is a product of some pairwise dis-
junct strong-persistent sets of the marking M . To achieve further reductions,
Algorithm 2 computes, in SS, a product of some pairwise disjunct persistent
sets, instead of strong-persistent sets. However, unlike disjunct strong-persistent
sets, the product of disjunct persistent sets may contain some non enabled steps.
These steps must be deleted from SS to keep only the enabled ones. According
to Theorem 3, SS is a persistent step set.

Example 3. Consider the model PN2 at Fig. 5 and its initial marking M0.
For S = {t0, t1, t2, t3}, Algorithm 2 first sets SS, S′ and R′ to ∅, {t0, t1, t2, t3}
and ∅, respectively. Then, if t0 of S′ is the first transition selected in the loop
while on S′, then R = {t0, t1}, S′ = {t2, t3}, SS = ∅ ⊗ R = {{t0}, {t1}} and
R′ = {t0, t1}. For the second iteration, t3 is selected, as: PS(t2,M0) ∩ R′ = {t1}
and PS(t3,M0) ∩ R′ = ∅. Therefore, R = {t2, t3}, S′ = ∅ and

SS = SS ⊗ {t2, t3} = {{t0, t2}, {t0, t3}, {t1, t2}, {t1, t3}}.

Finally, Algorithm 2 returns SS ∩ EnS(M0), i.e., {{t0, t2}, {t0, t3}, {t1, t3}}.

176 K. Barkaoui et al.

Algorithm 2. Persistent-step set of a marking M covering the transitions of S

1: Input : A marking M and a subset S of enabled transitions such that S �= ∅;
2: Output : A persistent step set SS of M w.r.t. S;
3: SS = ∅; S′ = S; R′ = ∅;
4: while (∃t ∈ S′ s.t. PS(t, M) ∩ R′ = ∅) do
5: Choose t ∈ S′ s.t. PS(t, M) ∩ R′ = ∅;
6: R = PS(t, M);
7: S′ = S′ − R;
8: R′ = R′ ∪ R;
9: SS = SS ⊗ R;
10: end while
11: return SS ∩ EnS(M);
12: [For X ∈ 2T and a set Y ⊆ T , X ⊗ Y = {x ∪ {y} | x ∈ X ∧ y ∈ Y }. By convention,

∅ ⊗ Y = {{y} |y ∈ Y }]

p0 p1 p2

p3 p4 p5 p6

p7

t0 t1 t2 t3

t4 t5 t6 t7

Fig. 5. Model PN2

M0

M1 M2 M3

M4 M5

t1t3
t0t2

t0t3

t5t7
t4t6

t4t7

Fig. 6. CSG of PN2

Theorem 3. Algorithm 2 returns a persistent step set of M .

Proof. It is obvious that the set SS returned by Algorithm 2 satisfies DS0.
DS1? SS is a product of some pairwise disjunct persistent sets. Suppose that
SS = R1 ⊗ R2.... ⊗ Rn with (n > 0).
Then, (i) ∀i ∈ [1, n],∃ti ∈ Ri,∀ω ∈ (T − Ri)+,M [ω〉 ⇒ M [ωti〉 and
(ii) ∀i ∈ [1, n],∀ti ∈ Ri,∀ω ∈ (T − Ri)+,M [ωti〉 ⇒ M [tiω〉.
By construction, sets Ri, for i ∈ [1, n] are pairwise disjunct and each step of SS
contains one and only one transition from each Ri, for i ∈ [1, n]. Condition (i)
states that there is at least a transition ti in Ri that is firable after each firable
sequence of (T − Ri)+. As the sets Ri, for i ∈ [1, n], are pairwise disjunct, it
follows that Rj ⊆ (T − Ri) for i, j ∈ [1, n] s.t. i �= j.
Condition (ii) means that whenever a first transition from Ri is fired (after some
sequence), it can be shifted to the front without disabling the sequence.
Let ω ∈ T+ be a sequence firable from M . We distinguish 3 main cases (a) ω
contains no transition from R1 ∪ ... ∪ Rn, (b) ω contains at least a transition
from R1 ∪ ...∪Rn and ω contains at least a transition from each Ri for i ∈ [1, n].

Exploiting Local Persistency for Reduced State Space Generation 177

M0

M5

M1 M2 M3 M4

M10 M11

M18M15

M6 M7 M8 M9 M5 M6 M8

M14

M19M12 M12 M13M12 M13

M12 M13 M12 M12 M13M12

M12

M17M16

t3 t2
t1 t0

t1 t0
t7 t0

t6 t3
t5 t3

t2 t4

t5t7 t4t7 t1
t0 t4t6 t0 t5t7 t3 t4t7 t4t6

t3t2

t5 t4 t7t6t4 t7

Fig. 7. MSPG of PN2 (using Algorithm 2)

For n = 2, the different cases are shown in Fig. 8: (a) ω has no transition from
R1 ∪ R2; (b1) ω has at least a transition from R1 but no transition from R2;
(b2) ω has at least a transition from R2 but no transition from R1, and (c) ω
has at least a transition from R1 and from R2.

– Case a: According to Condition (i) above, ∀i ∈ [1, n],∃ti ∈ Ri,M [ω{t1, ..., tn}〉
and by Condition (ii), M [{t1, ..., tn}ω〉. Note that {t1, ..., tn} is eventually a
firing step of M as each ti is a key-transition of Ri and Ri for i ∈ [1, n] are
pairwise disjunct.

– Case b: If ω contains no transition from Rj1 ∪ ... ∪ Rjk but contains some
transitions of Rl1 , ..., and Rlm , for some m and n such that 0 < m, 0 < k
and m + k = n, then according to Condition (i), ∃tj1 ∈ Rj1 , ...,∃tjk ∈
Rjk ,M [ω{tj1 , ..., tjk}〉 and by Condition (ii), M [{tj1 , ..., tjk}ω〉.
Let tl1 , ..., tlm be the first transitions of Rl1 , ..., Rlm , respectively, appear-
ing in ω. By Condition (ii), all these transitions can be shifted to the front
of ω without disabling the other transitions of ω. Therefore, there is a
firable sequence from M equivalent to ωtj1 ...tjk that starts with a sequence
of the step {tj1 , ..., tjk , tl1 , ..., tlm}. Note that this case is not possible, if
{tj1 , ..., tjk , tl1 , ..., tlm} is not a firable step of M .

– Case c: Let tl1 , ..., tln be the first transitions of Rl1 , ..., Rln , respectively,
appearing in ω. By Condition (ii), all these transitions can be shifted to
the front of ω without disabling the other transitions of ω. Therefore, there
is a firable sequence from M equivalent to ω that starts with a sequence of
the step {tl1 , ..., tln}. Note that this case is not possible, if {tl1 , ..., tln} is not
a firable step of M .

Consequently, SS ∩ EnS(M) satisfies DS1. ��

178 K. Barkaoui et al.

Fig. 8. Proof of DS1, case n = 2 and M [ω〉
p0,1 p1,1 p2,1

p3,1 p4,1 p5,1 p6,1

p7,1

t0,1 t1,1 t2,1 t3,1

t4,1 t5,1 t6,1 t7,1

• • •

• • •

p0,n p1,n p2,n

p3,n p4,n p5,n p6,n

p7,n

t0,n t1,n t2,n t3,n

t4,n t5,n t6,n t7,n

Fig. 9. Model PN3: Parallel composition of n instances of PN2 (‖n PN2)

Example 4. For the model PN2 at Fig. 5, the graphs depicted at Figs. 6 and 7
are obtained using the selection Algorithms 1 and 2, respectively, for the case
where all the enabled transitions are covered from each marking. Let us apply,
Algorithm 1 to the initial marking M0 for S = En(M0). It starts by SS =
∅, S′ = S = {t0, t1, t2, t3}. If t0 of S′ is the first transition selected in the loop
while on S′, then R is set to PS+(t0,M0) = {t0, t1, t2, t3} and S′ to ∅. Then,
Algorithm 1 returns SS = ∅ ⊗ R = {{t0}, {t1}, {t2}, {t3}}. Note that for M0

and S = En(M0), Algorithm 2 returns SS = {{t0, t2}, {t0, t3}, {t1, t3}} (see
Example 3).

Unlike the method in [14], which is based, as Algorithm 1, on the strong-
persistent sets, the firing steps obtained by Algorithm 2 may contain some tran-
sitions that are in weak-conflict. Indeed, for the previous example, the transitions
within each step of SS, returned by Algorithm 2, are not in conflict but they are
in weak-conflict. The following examples shows the effectiveness of Algorithm 2
over Algorithm 1 for models where concurrency and weak-conflicts are combined.

Example 5. Consider now the model PN3 at Fig. 9 a parallel composition of PN2.
We report in Table 1 for the model in Fig. 9, sizes of MG, CSG, PO, PO combined

Exploiting Local Persistency for Reduced State Space Generation 179

Table 1. Parallel composition of instances of PN2

PN MG CSG PO CSG+PO MPSG

‖2 PN2

Markings 400 194 133 125 14

Edges 1280 401 184 176 18

CPU (s) 0 0 0 0 0

‖3 PN2

Markings 8000 2072 969 929 36

Edges 38400 5393 1464 1425 54

CPU (s) 0 0 0 0 0

‖4 PN2

Markings 160000 23138 6905 6737 98

Edges 1024000 71801 11048 10880 162

CPU (s) 1.45 0 0 0 0

‖5 PN2

Markings 3200000 265640 48361 47681 276

Edges 25600000 952997 80488 79808 486

CPU (s) 50 0 0 0 0

with CSG, and MPSG. The CSG, PO, PO combined with CSG are provided by
the tool TINA2. The MPSG is computed based on Algorithm 2 for the case
where all the enabled transitions are covered from each marking. For this model,
PO provides better results than CSG. Also, even if it is combined with CSG, it
never gives better reduction than MPSG. One can easily check that the number
of markings of the state space is of order of 3n for MPSG while it is of order
of 4n+1 for PO, CSG, and their combination. It stems from the fact that the
selection Algorithm 2 handles in better way the weak-conflicts. For this model,
the application of the selection Algorithm 2 shows an effectiveness relatively to
the selection Algorithm 1, which is based, as the approach developed in [14], on
the strong-persistent sets. Thus, it is not exaggerated to say that the persistent
step sets method, based on persistent sets, is very promising to fight the state
explosion and to address the verification of very large asynchronous concurrent
systems, where the interplay between concurrency and conflict is expanded.

6 Conclusion

Although, partial order methods gained some success in coping with the state
space explosion in concurrent systems with asynchronous components, the appli-
cability of verification by state-space exploration of large systems remains as a
challenge.
2 http://projects.laas.fr/tina//home.php.

http://projects.laas.fr/tina//home.php

180 K. Barkaoui et al.

In this work, we have proposed a new parametric combination of the persis-
tent sets with step graphs, based on a better understanding of the intricacy of
the interplay between concurrency and conflict, revealing local persistency and
leading to a significant reduction. The proposed approach takes into account, in
a finer way, the structure of the net, while preserving deadlocks of Petri Nets.
Indeed, unlike the method in [14], persistent steps may contain some transitions
that are in weak-conflict. Moreover, it allows choosing the transitions to be cov-
ered while controlling the length and the number of steps to be selected from
each marking.

Finally, the performed tests show the effectiveness of the proposed approach
in terms of state space reduction and time execution, relatively to the covering-
steps, strong-persistent sets methods or their combination implemented in the
tool TINA. They also suggest that combining step graphs with any partial order
technique is of very great interest for model-checking.

References

1. Barkaoui, K., Couvreur, J.-M., Klai, K.: On the equivalence between liveness and
deadlock-freeness in Petri nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005.
LNCS, vol. 3536, pp. 90–107. Springer, Heidelberg (2005). https://doi.org/10.1007/
11494744 7

2. Barkaoui, K., Pradat-Peyre, J.-F.: On liveness and controlled siphons in Petri nets.
In: Billington, J., Reisig, W. (eds.) ICATPN 1996. LNCS, vol. 1091, pp. 57–72.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61363-3 4

3. Chen, Y.F., Li, Z.W., Barkaoui, K.: New Petri net structure and its application
to optimal supervisory control: Interval inhibitor arcs. IEEE Trans. Syst. Man
Cybern. 44(10), 1384–1400 (2014)

4. Desel, J., Juhás, G.: “What is a Petri net?” Informal answers for the informed
reader. In: Ehrig, H., Padberg, J., Juhás, G., Rozenberg, G. (eds.) Unifying Petri
Nets. LNCS, vol. 2128, pp. 1–25. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45541-8 1

5. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60761-7

6. Junttila, T.: On the symmetry reduction method for Petri nets and similar for-
malisms. Ph.D. dissertation, Helsinki University of Technology, Espoo, Finland
(2005)

7. Li, Z.W., Zhao, M.: On controllability of dependent siphons for deadlock prevention
in generalized Petri nets. IEEE Trans. Syst. Man Cybern. 38(2), 369–384 (2008)

8. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-56922-7 34

9. Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without
the next-time operator. Inf. Process. Lett. 63(5), 243–246 (1997)

10. Ribet, P.-O., çois, F., Berthomieu, B.: On combining the persistent sets method
with the covering steps graph method. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 344–359. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-36135-9 22

https://doi.org/10.1007/11494744_7
https://doi.org/10.1007/11494744_7
https://doi.org/10.1007/3-540-61363-3_4
https://doi.org/10.1007/3-540-45541-8_1
https://doi.org/10.1007/3-540-45541-8_1
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-36135-9_22
https://doi.org/10.1007/3-540-36135-9_22

Exploiting Local Persistency for Reduced State Space Generation 181

11. Valmari, A.: A stubborn attack on state explosion. Form. Methods Syst. Des. 1(4),
297–322 (1992)

12. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 21

13. Valmari, A., Hansen, H.: Can stubborn sets be optimal? Fundam. Inform. 113(3–
4), 377–397 (2011)

14. Vernadat, F., Azéma, P., Michel, F.: Covering step graph. In: Billington, J., Reisig,
W. (eds.) ICATPN 1996. LNCS, vol. 1091, pp. 516–535. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61363-3 28

https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-61363-3_28

Stochastic and Probabilistic Systems

Analysis of a Road/Tramway Intersection
by the ORIS Tool

Laura Carnevali, Alessandro Fantechi(B), Gloria Gori, and Enrico Vicario

Department of Information Engineering, University of Florence, Florence, Italy
{laura.carnevali,alessandro.fantechi,gloria.gori,enrico.vicario}@unifi.it

Abstract. Intelligent Transportation Systems for urban mobility aim
at the grand objective of reducing environmental impact and minimize
urban congestion, also integrating different mobility modes and solutions.
However, the different transportation modalities may end in a conflict
due to physical constraints concerned with the urban structure itself: an
example is the case of intersection between a public road and a tramway
right-of-way, where traffic lights priority given to trams may trigger road
congestion, while an intense car traffic can impact on trams’ performance.
These situations can be anticipated and avoided by accurately modeling
and analyzing the possible congestion events. Typically, modeling tools
provide simulation facilities, by which various scenarios can be played
to understand the response of the intersection to different traffic loads.
While supporting early verification of design choices, simulation encoun-
ters difficulties in the evaluation of rare events. Only modeling techniques
and tools that support the analysis of the complete space of possible sce-
narios are able to find out such rare events. In this work, we present an
analytical approach to model and evaluate a critical intersection for the
Florence tramway, where frequent traffic blocks used to happen. Specif-
ically, we exploit the ORIS tool to evaluate the probability of a traffic
block, leveraging regenerative transient analysis based on the method of
stochastic state classes to analyze a model of the intersection specified
through Stochastic Time Petri Nets (STPNs). The reported experience
shows that the frequency of tram rides impacts on the road congestion,
and hence compensating measures (such as sychronizing the passage of
trams in opposite directions on the road crossing) should be considered.

Keywords: Intelligent Transportation Systems
Transportation modeling · Integrated traffic model
Stochastic state classes · Markov Regenerative Processes

1 Introduction

By the year 2030, urban mobility will have changed due to sociodemographic
evolution, urbanization, increase of the energy costs, implementation of envi-
ronmental regulations, and further diffusion of Information and Communication
Technology (ICT) applications. The demand for public and collective modes of
c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 185–199, 2018.
https://doi.org/10.1007/978-3-030-00359-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_12&domain=pdf

186 L. Carnevali et al.

transport will increase considerably. Part of the answer will come from the public
transport that will evolve as an integrated combination of buses, cars, metros,
tramways and trains [1,13]. In general, right-of-way (ROW) is the defining char-
acteristic of public transportation modes and we can list three ROW types:

1. Exclusive: Transit vehicles operate on fully separated and physically protected
ROW. Tunnels, elevated structures, or at-grade tracks are such examples.
This ROW type offers very high capacity, speed, reliability and safety. All
heavy rail transit systems, like the Metrorail of the Washington Metropolitan
Area Transit Authority, belong to this category.

2. Semi-Exclusive: Transit ways are longitudinally separated from other traffic,
such as private vehicles and pedestrians. Light rail transit (LRT) systems,
like the Florence tramway in Italy, are mostly built according to this ROW
type.

3. Fully-Shared: Transit vehicles share ROW with other traffic, for examples
buses, taxi and cars. This ROW type requires the least infrastructure invest-
ment, but operations are relatively unreliable due to roadway congestion.

Exclusive ROW needs major investment, thus often semi-exclusive or fully-
shared modes are chosen. The drawback of this choice is that the different trans-
portation modalities may end in a conflict due to physical constraints concerned
with the urban structure itself. For example, this is the case of an intersection
between a public road and a tramway right-of-way, where traffic lights prior-
ity given to trams may trigger road congestion, while an intense car traffic can
impact on trams’ performance. These situations can be anticipated and avoided
by accurately modeling and analyzing the possible congestion events. Typically,
modeling tools provide simulation facilities, by which various scenarios can be
played to understand the response of the intersection to different traffic loads.
Simulation techniques are used to support early verification of design choices,
but can analyze a limited, yet high, number of different scenarios, and encounter
difficulties in the evaluation of rare events. Only modeling techniques and tools
that support the analysis of the complete space of possible scenarios are able to
find out such rare events [4,7].

In this work, we present an analytical approach to model and evaluate a
critical intersection for the Florence tramway, where frequent traffic blocks used
to happen. This work was funded by Fondazione Cassa di Risparmio di Firenze,
with the kind help of GEST1, the company running the Florence tramway, in
providing important data on which to base the study.

Figure 1 shows the route of line 1, which has been put in service in 2010 and
links Santa Maria Novella central station to Scandicci (Florence suburbs). This
line has overall good performance, with trams running regularly from the end
of the line in Scandicci to almost the other end in the city center, but there
is a consistent source of delay just a few meters short of the last scheduled
stop, near Santa Maria Novella train station [10]. The root cause for these issues
is the Diacceto-Alamanni intersection, where both via Iacopo da Diacceto, a

1 https://www.ratpdev.com/en/references/italy-florence-tramway.

https://www.ratpdev.com/en/references/italy-florence-tramway

Analysis of a Road/Tramway Intersection by the ORIS Tool 187

Fig. 1. Map of tram route from Villa Costanza (Scandicci) to Alamanni-Stazione
(Santa Maria Novella station). The route is 7720m long with 14 tram stops.

street with dedicated tracks for tramways, and via Luigi Alamanni, a street for
private transport, head to Santa Maria Novella train station.2. An aerial view
of this intersection is shown in Fig. 2. The darker stripe that crosses the tracks
represents the (unidirectional) private traffic flow from Alamanni street that is
the source of the analyzed conflict.

Taking this intersection as a case study, we exploit the ORIS tool to evaluate
the probability of a traffic block, leveraging regenerative transient analysis based
on the method of stochastic state classes to analyze a model of the intersection
specified by Stochastic Time Petri Nets (STPNs). Note that ORIS supports
the analysis of models with multiple concurrent temporal parameters associated
with a general (i.e., non-exponential) distribution. In particular, the model of the
Diacceto Alamanni intersection includes timers associated with a deterministic
value (e.g., tram interleaving period), a uniform distribution (e.g., tram delay
time), and an exponential distribution (e.g., private vehicles arrival rate). The
reported experience shows that the frequency of tram rides impacts on the road

2 The construction works of the new tramway lines (due to be opened soon) have
consistently changed the geometry of the considered intersection, partially removing
the car traffic. Anyway, the analysis presented in this work refers to a relevant
scenario, typical of intersections between a public road and a tramway right-of-way,
which will occur more frequently in Florence as new tramway lines will be built.

188 L. Carnevali et al.

Fig. 2. Aerial view of the Diacceto-Alamanni intersection.

congestion, and hence compensating measures (e.g., sychronizing the passage of
trams in opposite directions on the road crossing) should be considered.

The remainder of the paper is structured as follows. Section 2 summarises
related works. Section 3 provides a short introduction to STPNs, the method of
stochastic state classes, and the ORIS tool. Section 4 presents the realized model
and Sect. 5 the obtained results. Finally, Sect. 6 concludes the paper.

2 Related Works

Earliest research on integrated control for traffic management at network level
can be traced back to the 1970 s. The first railway timetables were planned based
on the experience and knowledge of dispatchers in resolving train conflicts [17].
This manual scheduling practice proved its low efficiency with the increase of
traffic congestion and exacerbated train delays.

An integrated policy for priority signals at intersections is required, given
that trams operate in a semi-exclusive ROW environment. In the literature, we
can find two different streams of studies: the first aiming at optimizing tram
schedules without considering their effects on other traffic flows; the second aim-
ing at manipulating the tram schedule so that trams always clear the intersection
during green phases, thus reducing influences on other traffic flows. In [27], the
tradeoffs between tram travel times and roadway traffic delays are explored.
Literature counts several works applying different simulation techniques. Micro-
scopic models, i.e., models in which each vehicle is modeled by itself as a particle,
can be divided according to the representation of road structure in greater detail.
In the continuous road model group, a base structure of road space is modeled
as a continuous one dimensional (1D) link. The behavior of car agents is often
implemented by applying car-following theories [26,28,35]. In the cell-type road
model group, road space is discretized by homogeneous cells in which the behav-
ior of car agents is expressed using transition rules such as cellular automata

Analysis of a Road/Tramway Intersection by the ORIS Tool 189

[19,29]. In a queuing model group, road networks are modeled as queuing net-
works [2,15]. Most commercial microscopic traffic simulators employ the con-
tinuous road model. In addition, several researchers have proposed simulation
frameworks for mixed traffic of two or more models. For example, Yang et al.
[32] proposed a framework for pedestrian road crossing behavior in Chinese cities
in which they determined the criterion used by pedestrians to decide whether
to start crossing a road after considering vehicle flows. Meanwhile, Zeng et al.
[34] modeled pedestrian-vehicles interactions at crosswalks in order to minimize
pedestrian-vehicle collisions.

Dobler and Lämmel [12] integrated multi-modal simulation modules to the
existing framework of MATSim, a large scale traffic simulation framework based
on the queuing model [8]. Their integration approach was based on locally replac-
ing simple queue structures with continuous 2D space at sections with higher
traffic flows. The behavior rules of agents in the 2D space are based on the
social force model (SFM). Krajzewicz et al. [20] introduced pedestrian and bicy-
cle agent models into SUMO, which is a widely used traffic simulator belonging
to the continuous road model group [21]. Finally Fujii et al. [14] introduced an
agent-based framework for mixed-traffic of cars, pedestrians and trams by using
the simulator MATES [33]. To our knowledge, there is no work that leverages
analytic, non simulative, techniques for the analysis of traffic models.

3 Background

In this section, we provide some background on STPNs (Sect. 3.1), the method
of stochastic state classes (Sect. 3.2), and the ORIS tool (Sect. 3.3).

3.1 Stochastic Time Petri Nets

An STPN is a tuple 〈P, T,A−, A+, A·,m0, F,W,E,U〉 where: P is the set of
places; T is the set of transitions; A− ⊆ P×T , A+ ⊆ T×P and A· ⊆ P×T are the
sets of precondition, postcondition, and inhibitor arcs, respectively: m0 : P → N

is the initial marking; F : T → [0, 1][EFTt,LFTt] associates each transition t with
a Cumulative Distribution Function (CDF) F (t) : [EFTt, LFTt] → [0, 1], where
EFTt ∈ Q≥0 and LFTt ∈ Q≥0 ∪ {∞} are the earliest and latest firing time,
respectively; W : T → R>0 associates each transition with a weight; E and U
associate each transition t with an enabling function E(t) : NP → {true, false}
and an update function U(t) : NP → N

P , which associate each marking with a
boolean value and a new marking, respectively.

A place p is an input, output, or inhibitor place for a transition t if 〈p, t〉 ∈ A−,
〈t, p〉 ∈ A+, and 〈p, t〉 ∈ A·, respectively. A transition t is immediate (IMM)
if EFTt = LFTt = 0 and timed otherwise; a timed transition t is exponen-
tial (EXP) if Ft(x) = 1 − e−λx over [0,∞] with λ ∈ R>0, and general (GEN)
otherwise; a general transition t is deterministic (DET) if EFTt = LFTt > 0
and distributed otherwise; for each distributed transition t, we assume that Ft is
the integral function of a Probability Density Function (PDF) ft, i.e., Ft(x) =

190 L. Carnevali et al.

∫ x

0
ft(y)dy. IMM, EXP, GEN, and DET transitions are represented by thick

white, thick gray, thick black, or thin black bars, respectively.
The state of an STPN is a pair 〈m, τ〉, where m is a marking and τ : T →

R≥0 associates each transition with a time-to-fire. A transition is enabled by
a marking if each of its input places contains at least one token, none of its
inhibitor places contains any token, and its enabling function evaluates to true;
an enabled transition t is firable in a state if its time-to-fire is equal to zero.
The next transition t to fire in a state s = 〈m, τ〉 is selected among the set of
firable transitions Tf,s with probability W (t)/

∑
ti∈Tf,s

W (ti). When t fires, s is
replaced with s′ = 〈m′, τ ′〉, where:

– m′ is derived from m by: removing a token from each input place of t, which
yields an intermediate marking mtmp; adding a token to each output place
of t, which yields a second intermediate marking m′

tmp; and, applying the
update function U(t) to m′

tmp;
– τ ′ is derived from τ by: (i) reducing the time-to-fire of each persistent transi-

tion (i.e., enabled by m, mtmp and m′) by the time elapsed in s; (ii) sampling
the time-to-fire of each newly-enabled transition tn (i.e., enabled by m′ but
not by mtmp) according to Ftn ; and, (iii) removing the time-to-fire of each
disabled transition (i.e., enabled by m but not by m′).

3.2 The Method of Stochastic State Classes

The method of stochastic state classes [6,18,31] permits the analysis of STPNs
with multiple concurrent GEN transitions. Given a sequence of firings, a stochas-
tic state class encodes the marking and the joint PDF of the times-to-fire
of the enabled transitions and the absolute elapsed time τage. Starting from
an initial stochastic state class, the transient tree of stochastic state classes
that can be reached within a time tmax is enumerated, enabling derivation of
continuous-time transient probabilities of markings (forward transient analysis),
i.e., pm(t) := P{M(t) = m} ∀ 0 ≤ t ≤ tmax, ∀ m ∈ M, where M(t) is the
marking process describing the marking M(t) of an STPN for each time t ≥ 0
and M is the set of reachable markings.

If the STPN always reaches within a bounded number of firings a regen-
eration, i.e., a state satisfying the Markov condition, its marking process is a
Markov Regenerative Process (MRP) [9], and its analysis can be performed enu-
merating stochastic state classes between any two regenerations. This results in
a set of trees that permits to compute a local and a global kernel characteriz-
ing the MRP behavior, enabling evaluation of transient marking probabilities
through the numerical solution of Markov renewal equations (regenerative tran-
sient analysis). Trees also permit to compute conditional probabilities of the Dis-
crete Time Markov Chain (DTMC) embedded at regenerations and the expected
time spent in any marking after each occurrence of any regeneration [22], sup-
porting derivation of steady-state marking probabilities according to the Markov
renewal theory (regenerative steady-state analysis).

Analysis of a Road/Tramway Intersection by the ORIS Tool 191

While stochastic state classes support quantitative evaluation of an STPN
model, the set Ω of behaviors of the STPN can be identified with simpler and
more consolidated means through non-deterministic analysis of the underlying
TPN model. In this case, the state space is covered through the method of state
classes [11,30], each made of a marking and a joint support for τage and the times-
to-fire of the enabled transitions. In this approach, enumeration of state classes
starting from an initial marking provides a representation for the continuous set
of executions of an STPN, enabling verification of qualitative properties of the
model, e.g., guarantee, with certainty, that a marking cannot be reached within
a given time bound (non-deterministic transient analysis).

3.3 ORIS Overview

ORIS [5]3 is a software tool for qualitative verification and quantitative eval-
uation of reactive timed systems. ORIS supports modeling and evaluation of
stochastic systems governed by timers (e.g., interleaving or service times, arrival
rate, timeouts) with general probability density functions (PDFs). The tool
adopts Stochastic Time Petri Nets (STPNs) as a graphical formalism to spec-
ify stochastic systems, and it efficiently implements the method of stochastic
state classes, including regenerative transient, regenerative steady-state and non-
deterministic analysis.

The software architecture of ORIS decouples the graphical editor from the
underlying analysis engines. Given the many variants of Petri net features, ORIS
was developed with extensibility in mind: new features can be defined by imple-
menting specific interfaces, so that they can be introduced in the graphical editor
and made available to the analysis engines. In turn, analysis engines implement
a specific interface that allows them to cooperate with the graphical interface,
i.e., to collect analysis options from the user, to start/stop analysis runs, to
record and display analysis logs, and to show time series and tabular results.
The following analysis engines are available.

Non-deterministic Analysis is based on the theory of Difference Bound
Matrix (DBM) and supports the identification of the boundaries of the space
of feasible timed behaviors, producing a compact representation of the dense set
of timed states that can be reached by the model [30]. The state space is dis-
played as a directed graph, where edges represent transition firings while nodes
are state classes comprising a marking and a DBM zone of timer values. This
analysis is useful to debug STPNs models and ensure that their state space M
is finite.

Transient and Regenerative Analysis computes transient probabilities in
Generalized Semi-Markov Processes (GSMPs) and Markov Regenerative Pro-
cesses (MRPs), respectively. These methods evaluate trees where edges are

3 ORIS is available for download at the webpage https://www.oris-tool.org/.

https://www.oris-tool.org/

192 L. Carnevali et al.

labeled with transitions and their firing probabilities, while nodes are stochastic
state classes [18] comprising a marking, the PDF of timers, and their support
(a DBM zone). For a given time limit T , the enumeration proceeds until the
tree covers the transition firings of the STPN by time T with probability greater
than 1 − ε, where ε > 0 is an error term. While standard transient analysis
enumerates a single, very large tree of events, regenerative analysis avoids the
enumeration of repeated subtrees rooted in the same regeneration point (where
all general timers are reset or have been enabled for a deterministic time). A time
step Δt is used to select equispaced time points where transient probabilities are
evaluated (directly or by solving Markov renewal equations).

Regenerative Steady-State Analysis computes steady-state probabilities
in MRPs (and thus Semi-Markov Processes (SMPs) and Continuous Time
Markov Chains (CTMCs)) with irreducible state space. This method uses trees
of stochastic state classes between regeneration points to compute steady-state
probabilities of markings: expected sojourn times in each tree are combined with
the steady-state probability of regenerations at their roots [22]. As for transient
analysis, this method can be applied to STPNs allowing multiple general timers
enabled in each state.

Transient Analysis Under Enabling Restriction computes transient prob-
abilities in MRPs with at most one general transition enabled in each state [16].

ORIS engines support instantaneous (transient or steady-state) and cumu-
lative (transient) rewards. A reward is a real-valued function of markings
r : M → R that is evaluated by substituting place names with the number
of contained tokens in order to compute the instantaneous expected reward
Ir(t) =

∑
i∈M r(i)pi(t) at each time t, its steady-state value Ir = limt→∞ Ir(t) =

∑
i∈M r(i)pi or its cumulative value over time Cr(t) =

∫ t

0
Ir(t)dt. In addition, the

user can specify a stop condition, i.e., a Boolean predicate on markings such as
(p0 == 1)&&(p1 == 1), that is used to halt the STPN. This feature can be used
to compute first-passage probabilities [18] or reach-avoid objectives equivalent
to bounded until operators [25].

4 Diacceto-Alamanni: An STPN Model

In this section, we describe the STPN model of the Diacceto-Alamanni intersec-
tion. Figure 3 shows the model which is composed of two submodels: the tramway
submodel (blue box) and the private traffic submodel (red box).

4.1 Tramway Submodel

The portion of the tramway submodel in the dotted blue box represents the
direction from Santa Maria Novella train station (Alamanni-Stazione), while the
one in the dashed blue box represents the opposite direction. GEST provided the

Analysis of a Road/Tramway Intersection by the ORIS Tool 193

Fig. 3. Intersection model. The tramway submodel is highlighted by the blue box, the
private traffic queue submodel is highlighted by the red one. Transitions associated
with an enabling function are marked by a label “e”. (Color figure online)

interleaving period of trams, which is equal to 220 s; the transition period, which
models tram departures, fires a new token periodically and is enabled with con-
tinuity until place KO receives a token. Places p0 and p1 represent a tramway
departing from Alamanni-Stazione and Villa Costanza, respectively. Transitions
delayFromSmn and delayFromScndc represent the delays cumulated by the two
trams, respectively; note that 120 s is an upper bound on the maximum delay
observed in the available data set and, given that data are few and their distri-
bution is unknown, this parameter is modeled using a uniform distribution [3].

When the tramway is approaching the intersection, dedicated wayside sys-
tems (i.e., two loops placed under the railway tracks) are activated (places
Loop01 .001 .1 and Loop01 .001 .2) and the corresponding traffic lights are set
to red (places setRedFromSmn and setRedFromScnd). The traffic lights are in
fact set to red 5 s before the arrival of the tram at the intersection; this parameter

194 L. Carnevali et al.

has been provided by GEST and is modeled by the DET transitions crossligh-
tAnticipationSmn and crosslightAnticipationScnd. Places crossingFromSmn and
crossingFromScnd represent the arrival of the tram at the intersection, while
transitions leavingFromSmn and leavingFromScndc account for the time needed
to free the intersection. Specifically, the minimum and the maximum time needed
to free the intersection are set equal to 6 s and 14 s, respectively, based on the
fact that in the data set provided by GEST this temporal parameter has mean
value nearly equal to 10 s and a standard deviation approximately equal to 4 s.
Also in this case, given that available data are few, this parameters is modeled
by a uniform distribution over the interval [6, 14] [3].

4.2 Private Transport Submodel

We model private traffic as a birth-death process with three levels of traffic
congestion: specifically, places carQueue0 , carQueue1 , and carQueue2 model
the condition of low, moderate, and high volume of traffic, respectively. Since we
lack data on car traffic in Florence, we assume that the average traffic density
is approximatively 1000 cars per hour, which is a typical value for a high traffic
flow on a single lane [24], and we consider the case that the arrival/departure of
two cars increases/decreases the traffic congestion level, respectively, and that
the time needed to occupy the intersection is nearly half the time needed to
leave it. According to this, the EXP transitions t7 and t8 have rate equal to
0.14 s−1, while the EXP transitions t9 and t10 have rate equal to 0.067 s−1.

Intuitively, the number of cars in the queue increases when the private traf-
fic light is set to red and decreases otherwise. In order to model this behavior,
transitions t7 and t8 are associated with an enabling function that evaluates
to true when at least one token is present in place setRedFromSmn or in place
setRedFromScnd (i.e. setRedFromSmn+setRedFromScnd>0). Conversely, tran-
sitions t9 and t10 are associated with an enabling function that evaluates to
true when no token is present in places setRedFromSmn and setRedFromScnd
(i.e., setRedFromSmn+setRedFromScnd==0).

4.3 Interaction Between the Tramway Submodel and the Private
Transport Submodel

Road congestion may cause cars to stand for a while on the tracks after the pri-
vate traffic light has turned to red, thus blocking trams. Place yellow models the
private traffic light set to yellow, while place KO actually models the case that
a tram ride is blocked by private vehicles on the lane. When place KO receives
a token, transition stopAll becomes enabled (given that it is associated with an
enabling function KO>0) and fires, depositing a token in place inhibitAll. This
finally disables transitions period, leavingFromSmn, and leavingFromScndc, due
to the inhibitor arcs from inhibitAll to each of these transitions.

Transitions t13 through t19 model the possibility that a tram ride is blocked
by private vehicles stopping on the tracks. If the traffic congestion level is low
(i.e., carQueue0 > 0), the tram runs regularly and transition t19 is enabled,

Analysis of a Road/Tramway Intersection by the ORIS Tool 195

so that no token is deposited in place KO. If traffic congestion increases to a
moderate level (carQueue1 > 0) or to a high level (carQueue2 > 0), transition
t13 or transition t14 becomes enabled and fires, respectively. In the former case
(p3 > 0), transitions t15 and t17 fire with probability 0.3 and 0.7, respectively,
given that they have weight equal to 30 and 70, respectively; in the latter case,
transitions t16 and t18 fire with probability 0.4 and 0.6, respectively, given that
they have weight equal to 40 and 60, respectively. In doing so, the probability of
a traffic block is 0.3 and 0.4 in the case of moderate and high traffic congestion,
respectively. These parameters have been estimated from tram delays observed
in the data set provided by GEST.

5 Analysis and Results

In this section, we report the results obtained from the analysis of the model of
Sect. 4. In all the experiments, we performed regenerative transient analysis of
the model through the ORIS tool using the following parameters:

– Time limit T = 7200 s (corresponding to 2 h);
– Time step Δt = 20 s.
– Error ε = 0.01;

The first experiment has been performed with average traffic density equal to
1000 cars per hour (i.e., the EXP transitions t7 and t8 have rate equal to 0.14
s−1, and the EXP transitions t9 and t10 have rate equal to 0.067 s−1, as shown
in Fig. 3) and crosslight anticipation equal to 5 s (i.e., the value of the DET
transitions crosslightAnticipationSmn and crosslightAnticipationScnd is 5 s, as
also shown in Fig. 3). Figure 4 shows the probability of the private traffic queue
status in a time interval of 2 h, obtained computing the instantaneous rewards
“carQueue0 > 0”, “carQueue1 > 0”, and “carQueue2 > 0”. Due to the high
value of average traffic density, the car queue tends to be filled quite rapidly.
As we can see, the reward “carQueue2 > 0” (high traffic volume) tends to 1 s,
while the rewards “carQueue0 > 0” (low traffic volume) and “carQueue1 > 0”
(moderate traffic volume) tend to 0 s (note that the sum of tokens in places
carQueue0 , carQueue1 , and carQueue2 is 1).

Figure 5 shows the KO probability for different values of the crosslight antici-
pation parameter, obtained computing the instantaneous reward “KO > 0”. We
observe that the probability of reaching the KO state increases every 220 s for
all the displayed curves, due to periodic tram departures. We also note that the
probability of reaching the KO state increases when the crosslight anticipation is
higher: intuitively, when the anticipation time increases, the time during which
private traffic should flow away from the intersection decreases, thus degrading
the queue status and consequently increasing the KO probability.

Finally, Fig. 6 shows the KO probability (obtained computing the instanta-
neous reward “KO > 0”) for different values of the private traffic density. The
probability of reaching the KO state increases when the traffic density is higher
and reaches 0.7 in less than half an hour with extremely congested private traffic

196 L. Carnevali et al.

Fig. 4. Transient probability of the traffic queue status.

Fig. 5. Transient probability of the KO state for different values of the crosslight antic-
ipation parameter.

(i.e., 1500 cars per hour), while the same value is reached in more than a hour
with moderately congested private traffic (i.e., 500 cars per hour).

We also argue that, for the planning of both tram timetables and traffic
light timings, it is important to consider the correlation between the time of red
signal, the time of green signal, and the tram headway, pointing out the need of
an integrated management of the different transport systems in order to have a
more robust and higher quality service. Furthermore, a more detailed analysis is
needed to accurately model the behavior of private traffic during the day.

Analysis of a Road/Tramway Intersection by the ORIS Tool 197

Fig. 6. Transient probability of the KO state for different values of traffic density.

6 Conclusion

Modeling and analysis of complex intersections for the integration of private
and public transport supports the evaluation of the perceived availability of
public transport and the identification of robust traffic light plans and tram
timetables. In this work, we presented an analytical approach to model and
evaluate a critical intersection for the Florence tramway. Specifically, we used the
ORIS tool to evaluate the probability of a traffic block, leveraging regenerative
transient analysis based on the method of stochastic state classes to analyze a
model of the intersection specified through Stochastic Time Petri Nets (STPNs).
The analysis results showed a correlation between the frequency of tram rides,
the traffic light plan, and the status of the queue of private vehicles, pointing
out that the frequency of tram rides impacts on the road congestion. Therefore,
compensating measures should be considered, such as synchronizing the passage
of trams in opposite directions on the road crossing.

Within the context of modeling techniques to optimize the integration of
public and private traffic, our work will go towards the following directions:

– analyze other road/tramway intersections, also considering the new tramway
lines that will be opened in Florence, so as to compare differences and simi-
larities and generalize the modeling methodology;

– improve the scalability of the approach by combining numerical solution of
the tramway submodel through the ORIS tool with analytical evaluation of
the traffic congestion level, which could permit to model private traffic more
accurately (e.g., considering a larger number of congestion levels) without
incurring in the state space explosion problem;

198 L. Carnevali et al.

– evaluate to which extent the behavior of passengers and pedestrians as well
as the weather conditions perturb the tramway performance, including them
in the model of the road/tramway intersection [23].

Acknowledgements. This work was partially supported by Fondazione Cassa di
Risparmio di Firenze.

References

1. ACEA: The 2030 urban mobility challenge. Technical report, European Automobile
Manufacturers Association, May 2016

2. Agarwal, A., Lämmel, G.: Modeling seepage behavior of smaller vehicles in mixed
traffic conditions using an agent based simulation. Transp. Dev. Econ. 2(2), 12
(2016)

3. Bernardi, S., Campos, J., Merseguer, J.: Timing-failure risk assessment of UML
design using time Petri net bound techniques. IEEE Trans. Ind. Inform. 7(1), 90–
104 (2011)

4. Biagi, M., Carnevali, L., Paolieri, M., Vicario, E.: Performability evaluation of the
ERTMS/ETCS - Level 3. Transp. Res. C-Emerg. 82, 314–336 (2017)

5. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification
and evaluation of real-time systems. Int. J. Softw. Tools Technol. Transf. 12(5),
391–403 (2010)

6. Carnevali, L., Grassi, L., Vicario, E.: State-density functions over DBM domains
in the analysis of non-Markovian models. IEEE Trans. Softw. Eng. 35(2), 178–194
(2009)

7. Carnevali, L., Flammini, F., Paolieri, M., Vicario, E.: Non-Markovian performabil-
ity evaluation of ERTMS/ETCS level 3. In: Beltrán, M., Knottenbelt, W., Bradley,
J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 47–62. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23267-6 4

8. Charypar, D., Axhausen, K., Nagel, K.: Event-driven queue-based traffic flow
microsimulation. Transp. Res. Rec. 2003, 35–40 (2007)

9. Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets.
Perform. Eval. 20(1–3), 333–357 (1994)

10. Ciuti, I.: Jean-Luc Laugaa: Ingorgo-trappola alla stazione, un rischio anche per la
linea 2. Repubblica.it (2014). http://goo.gl/QxrXR4

11. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8 17

12. Dobler, C., Lämmel, G.: Integration of a multi-modal simulation module into a
framework for large-scale transport systems simulation. In: Weidmann, U., Kirsch,
U., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 739–
754. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02447-9 62

13. ERTRAC: ERTRAC road transport scenario 2030+ “road to implementation”.
Technical report, European Road Transport Research Advisory Council, October
2009

14. Fujii, H., Uchida, H., Yoshimura, S.: Agent-based simulation framework for mixed
traffic of cars, pedestrians and trams. Transp. Res. C-Emerg. 85, 234–248 (2017)

15. Gawron, C.: An iterative algorithm to determine the dynamic user equilibrium in
a traffic simulation model. Int. J. Mod. Phys. C 9(3), 393–407 (1998)

https://doi.org/10.1007/978-3-319-23267-6_4
https://doi.org/10.1007/978-3-319-23267-6_4
http://goo.gl/QxrXR4
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-319-02447-9_62

Analysis of a Road/Tramway Intersection by the ORIS Tool 199

16. German, R.: Performance Analysis of Communication Systems with Non-
Markovian Stochastic Petri Nets. Wiley, Hoboken (2000)

17. Higgins, A., Kozan, E., Ferreira, L.: Optimal scheduling of trains on a single line
track. Transp. Res. B-Methodol. 30(2), 147–161 (1996)

18. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian
models using stochastic state classes. Perform. Eval. 69(7–8), 315–335 (2012)

19. Kerner, B.S., Klenov, S.L., Wolf, D.E.: Cellular automata approach to three-phase
traffic theory. J. Phys. A: Math. Gen. 35(47), 9971–10013 (2002)

20. Krajzewicz, D., Erdmann, J., Härri, J., Spyropoulos, T.: Including pedestrian and
bicycle traffic into the traffic simulation SUMO. In: ITS 2014, 10th ITS European
Congress, 16–19 June 2014, Helsinki, Finland (2014)

21. Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P.: SUMO (simulation of urban
mobility) - an open-source traffic simulation. In: 4th Middle East Symposium on
Simulation and Modelling, pp. 183–187 (2002)

22. Martina, S., Paolieri, M., Papini, T., Vicario, E.: Performance evaluation of Fis-
cher’s protocol through steady-state analysis of Markov regenerative processes. In:
2016 IEEE 24th International Symposium on MASCOTS, pp. 355–360 (2016)

23. Nagy, E., Csiszár, C.: Analysis of delay causes in railway passenger transportation.
Period. Polytech. Transp. Eng. 43(2), 73–80 (2015)

24. Ondráček, J., et al.: Contribution of the road traffic to air pollution in the Prague
city (busy speedway and suburban crossroads). Atmos. Environ. 45(29), 5090–5100
(2011)

25. Paolieri, M., Horváth, A., Vicario, E.: Probabilistic model checking of regenerative
concurrent systems. IEEE Trans. Softw. Eng. 42(2), 153–169 (2016)

26. Peng, G., Cai, X., Liu, C., Cao, B., Tuo, M.: Optimal velocity difference model for
a car-following theory. Phys. Lett. A 375(45), 3973–3977 (2011)

27. Shi, J., Sun, Y., Schonfeld, P., Qi, J.: Joint optimization of tram timetables and
signal timing adjustments at intersections. Transp. Res. C-Emerg. 83, 104–119
(2017)

28. Tang, T., Wang, Y., Yang, X., Wu, Y.: A new car-following model accounting for
varying road condition. Nonlinear Dyn. 70(2), 1397–1405 (2012)

29. Tonguz, O.K., Viriyasitavat, W., Bai, F.: Modeling urban traffic: a cellular
automata approach. IEEE Commun. Mag. 47(5), 142–150 (2009)

30. Vicario, E.: Static analysis and dynamic steering of time dependent systems using
time Petri nets. IEEE Trans. Softw. Eng. 27(1), 728–748 (2001)

31. Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative
evaluation of dense-time reactive systems. IEEE Trans. Softw. Eng. 35, 703–719
(2009)

32. Yang, J., Deng, W., Wang, J., Li, Q., Wang, Z.: Modeling pedestrians’ road crossing
behavior in traffic system micro-simulation in China. Transp. Res. A-Policy 40(3),
280–290 (2006)

33. Yoshimura, S.: MATES : multi-agent based traffic and environmental simulator-
theory, implementation and practical application. Comput. Model. Eng. Sci. 11(1),
17–25 (2006)

34. Zeng, W., Chen, P., Nakamura, H., Iryo-Asano, M.: Application of social force
model to pedestrian behavior analysis at signalized crosswalk. Transp. Res. C-
Emerg. 40, 143–159 (2014)

35. Zheng, L.J., Tian, C., Sun, D.H., Liu, W.N.: A new car-following model with
consideration of anticipation driving behavior. Nonlinear Dyn. 70(2), 1205–1211
(2012)

Toward Implicit Learning for the
Compositional Verification of Markov

Decision Processes

Redouane Bouchekir(B) and Mohand Cherif Boukala

MOVEP, Computer Science Department, University of Science and Technology
Houari Boumediene, BP 32 El-Alia, Algiers, Algeria

{rbouchekir,mboukala}@usthb.dz

Abstract. In this paper, we propose an automated compositional veri-
fication using implicit learning to verify Markov Decision Process (MDP)
against probabilistic safety properties. Our approach, denoted ACV uIL
(Automatic Compositional Verification using Implicit Learning), starts
by encoding implicitly the MDP components by using compact data
structures. Then, we use a sound and complete symbolic assume-
guarantee reasoning rule to establish the compositional verification pro-
cess. This rule uses the CDNF learning algorithm to generate automat-
ically the symbolic probabilistic assumptions. Experimental results sug-
gest promising outlooks for our approach.

Keywords: Probabilistic model checking
Compositional verification · Symbolic model checking
Assume-guarantee paradigm · Machine learning · CDNF Learning

1 Introduction

An important feature of modern systems is their complexity. This characteristic
makes the design, implementation and verification of complex systems extremely
difficult. This difficulty is enhanced by the often critical role of these systems
(avionics control process, nuclear power plants, etc.). Probabilistic verification
is a set of techniques for formal modelling and analysis of such systems. Prob-
abilistic model checking [1–3] involves the construction of a finite-state model
augmented with probabilistic information, such as Markov chains or probabilis-
tic automaton [17,26]. This is then checked against properties specified in prob-
abilistic extensions of temporal logic, such as Probabilistic Computation Tree
Logic (PCTL) [18].

Formal methods, including the Probabilistic Model Checking [1–3] suffer from
the problem of state space explosion. This problem constitutes, even after sev-
eral years of research, the main obstacle of probabilistic model checking. Com-
positional verification [14,15,19,24] and Symbolic model checking [7,27] are two
promising approaches to cope with this problem. Compositional verification sug-
gests a divide and conquer strategy to reduce the verification task into simpler
c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 200–217, 2018.
https://doi.org/10.1007/978-3-030-00359-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00359-3_13&domain=pdf

Toward Implicit Learning for the Compositional Verification of MDP 201

subtasks. A popular approach is the assume-guarantee paradigm [9,11,29], in
which individual system components are verified under assumptions about their
environment. Once it has been verified that the other system components do
indeed satisfy these assumptions, proof rules can be used to combine individual
verification results, establishing correctness properties of the overall system. The
success of assume-guarantee reasoning approach depends on discovering appro-
priate assumptions. The process of generating automatically assumptions can
be solved by using machine learning [9,14], such as CDNF learning algorithm
[6]. Symbolic model checking is also a useful technique to cope with the state
explosion problem. In symbolic model checking, system states are implicitly rep-
resented by Boolean functions, as well as the initial states and transition relation
of the system. To verify probabilistic systems encoded using Boolean function,
the Boolean function should be converted to another data structures such as
Binary Decision Diagrams(BDD) or Multi Terminal BDD(MTBDD) [16], this is
due to the absence of SAT-based model checking for probabilistic systems.

In this paper, we present a novel approach for the compositional verification
for probabilistic systems through implicit learning. Our aim is to reduce the size
of the state space. For that, we propose to encode the system components using
Boolean functions and Multi Terminal BDD. This encoding allows to store and
explore a large number of states efficiently [9]. We use the Boolean functions as
input of the CDNF learning algorithm. This algorithm generates an assumption
which simulates a set of MDP component. The idea is to use this assumption
for the verification instead of the real system components. Thus, if the size of
this assumption is much smaller than the size of the corresponding MDP com-
ponent, then we can expect significant gain of the verification performance. In
our work, Interval Markov Decision Processes (IMDP) are used to represent
assumptions. To establish the verification process and guarantee that the gener-
ated assumption simulates all the possible behaviour of the set of components,
we proposed a sound and complete symbolic assume-guarantee reasoning rule.
This rule defines and establish the compositional verification process. We have
illustrated our approach using a simple example, and we have applied our app-
roach in a several case studies derived from PRISM benchmarks. Experimental
results suggest promising outlooks for the implicit learning of the compositional
verification.

The remainder of this paper is organized as follows: In Sect. 2 we provide the
most relevant works to our work. Section 3 provides some background knowledge
about MDP, Interval MDP and the parallel composition MDP ‖ IMDP. In Sect. 4,
we present our approach, where we detail the process of encoding MDP using
Boolean function, our symbolic assume-guarantee reasoning proof rule and the
application of the CNDF learning algorithm to generate assumptions. Section 6
concludes the paper and talks about future works.

2 Related Works

In this section, we review some research works related to the symbolic probabilis-
tic model checking, compositional verification and assume-guarantee reasoning.

202 R. Bouchekir and M. C. Boukala

Verification of probabilistic systems have been addressed by Vardi and Wolper
[32–34], and then by Pnueli and Zuck [30], and by Baier and Kwiatkowska [3].
The symbolic probabilistic model checking algorithms have been proposed by
[10,28]. These algorithms have been implemented in a symbolic probabilistic
model checker PRISM [22]. The main techniques used to generate counterexam-
ples was detailed in [21]. A recent work [12] proposed to use causality in order
to generate small counterexamples, the authors of this work propose to used the
tool DiPro to generate counterexamples, then they applied an aided-diagnostic
method to generate the most indicative counterexample. For the compositional
verification of non-probabilistic systems, several frameworks have been devel-
oped using the assume-guarantee reasoning approach [9,11,29]. The composi-
tional verification of probabilistic systems has been a significant progress in
these last years [14,15,19,23]. Our approach is inspired by the work of [14,15].
In this work, they consider the verification of Discrete Time Markov Chains, and
they proposed to use CDNF learning algorithm to infer assumptions. Another
work relevant to ours is [19]. This work proposed the first sound and complete
learning-based composition verification technique for probabilistic safety prop-
erties, where they used an adapted L∗ learning algorithm to learn weighted
automata as assumptions, then they transformed them into MTBDD.

3 Preliminaries

In this section, we give some background knowledge about MDP and IMDP.
MDP are often used to describe and study systems exhibit non deterministic
and stochastic behaviour.

Definition 1. Markov Decision Process (MDP) is a tuple M = (StatesM , sM
0 ,

ΣM , δM) where StatesM is a finite set of states, sM
0 ∈ StatesM is an initial state,

ΣM is a finite set of actions, δM ⊆ StatesM × (ΣM ∪{τ})×Dist(StatesM) is a
probabilistic transition relation, where where τ denotes a “silent” (or “internal”)
action.

In a state s of MDP M , one or more transitions, denoted (s, a) → μ, are
available, where a ∈ ΣM is an action label, μ is a probability distribution over
states, where μ �= 0, and (s, a, μ) ∈ δM . A path through MDP is a (finite or
infinite) sequence (s0, a0, μ0) → (s1, a1, μ1) → An example of two MDP M0

and M1 is shown in Fig. 1.
Interval Markov Chains (IMDP) generalize ordinary MDP by having interval-

valued transition probabilities rather than just probability value. In this paper,
we use IMDP to represent the assumptions used in our compositional verification.

Definition 2. Interval Markov Chain (IMDP) is a tuple
I = (StatesI , i

I
0, ΣI , P

l, Pu) where StatesI , i
I
0 and ΣI are respectively the set of

states, initial state and the set of actions. P l, Pu : StatesI ×ΣI ×StatesI �→ [0, 1]
are matrices representing the lower/upper bounds of transition probabilities such
that: P l(i, a)(i′) ≤ Pu(i, a)(i′) for all states i, i′ ∈ StatesI and a ∈ ΣI .

Toward Implicit Learning for the Compositional Verification of MDP 203

s0start s1

s2 s3

o
p
e
n
M

0
sendM0 0.3

sendM0 0.7

checkM0 0.8

c
h
e
c
k
M

0
0
.2

done fail

t0start t1

t2 t3

o
p
e
n
M

1

sendM1 0.3

sendM1 0.7

checkM1 0.8

c
h
e
c
k
M

1
0
.2

done fail

Fig. 1. Example of two MDP, M0 (left) and M1 (right).

i0start i1

i2 i3

all [0,1]

all [0,1]

all [0,1]
all [0,1]

all [0,1]

all [0,1]
all [0,1]

all [0,1]

all [0,1]

all [0,1]

Fig. 2. Example of IMDP I.

An example of IMDP I is shown in Fig. 2, where all represents the set of
actions : {openM0 , sendM0 , checkM0 , done, fail} with the probability interval
value equal to [0, 1].

In Definition 3, we describe how MDP and IMDP are composed together. This
is done by using the asynchronous parallel operator (‖) defined by [31], where
MDP and IMDP synchronise over shared actions and interleave otherwise.

Definition 3. Parallel composition MDP ‖ IMDP
Let M and I be MDP and Interval MDP, respectively. Their parallel com-
position, denoted by M ‖ I, is an Interval MDP MI. MI = {StatesM ×
StatesI , (sM

0 , sI
0), ΣM ∪ ΣI , P

l, Pu}, where P l, Pu are defined such that: (si, sj)
a−→ [P l(si, a)(sj) × μi, P

u(si, a)(sj) × μi] if and only if one of the following
conditions holds: Let si, s′

i ∈ StatesM and sj, s′
j ∈ StatesI : (i) si

a,μi−−−→
s′

i, sj

P l(sj ,a)(s′
j),P

u(sj ,a)(s′
j)−−−−−−−−−−−−−−−−→ s′

j, where a ∈ ΣM ∩ ΣI , (ii) si
a,μi−−−→ s′

i, where

a ∈ ΣM \ ΣI , and (iii) sj

P l(sj ,a)(s′
j),P

u(sj ,a)(s′
j)−−−−−−−−−−−−−−−−→ s′

j, where a ∈ ΣM \ ΣI .

204 R. Bouchekir and M. C. Boukala

In this work we use the symbolic model checking to verify if a system M0 ‖ I
satisfies a probabilistic safety property. The symbolic Model checking uses BDD
and MTBDD to encode the state space. It is straightforward to convert a Boolean
function to a BDD/MTBDD.

Definition 4. A Binary Decision Diagram (BDD) is a rooted, directed acyclic
graph with its vertex set partitioned into non-terminal and terminal vertices (also
called nodes). A non-terminal node d is labelled by a variable var(d) ∈ X, where
X is a finite ordered set of Boolean variables. Each non-terminal node has exactly
two children nodes, denoted then(d) and else(d). A terminal node d is labelled
by a Boolean value val(d) and has no children. The Boolean variable ordering <
is imposed onto the graph by requiring that a child d′ of a non-terminal node d
is either terminal, or is non-terminal and satisfies var(d) < var(d′).

Definition 5. A Multi-Terminal Binary Decision Diagram (MTBDD) is a
BDD where the terminal nodes are labelled by a real number.

4 ACVuIL Approach

Our approach, probabilistic symbolic compositional verification using implicit
learning (ACVuIL), aims to mitigate the state explosion problem. Figure 3 illus-
trates an overview of ACVuIL. The first step consists to encode the system
component M0 using Boolean functions β(M0). Different from the explicit rep-
resenting of the state space, the implicit representation using Boolean functions
allows to store and explore a large number of states efficiently. β(M0) will be
used as input of the CDNF learning algorithm as target language. The second
step aims to generate an appropriate assumption SIi , which needs to abstract
the behaviour of the original competent M0. In our approach, we use the CDNF
learning algorithm to generate automatically the assumptions. The second step
starts by calling the CDNF learning algorithm, with β(M0) as input. At each
iteration, the CDNF learns a new assumption β(Ii) represented as Boolean func-
tions. For the first iteration (i = 0), the CDNF generates true as assumption,
for that, we generate a special initial assumption SI0 . For (i ≥ 1) iterations,
we convert the generated assumption β(Ii) to MTBDD SIi , then we refine the
initial assumption SI0 using SIi . We use the symbolic probabilistic model check-
ing algorithm (SPMC) to verify if SI0 ‖ SM1 satisfies the probabilistic safety
property P≤P [ψ]. If SPMC(SI0 , SM1) returns true, then we can conclude that
M0 ‖ M1 |= P≤P [ψ] is true i.e. P≤P [ψ] satisfies M0 ‖ M1, otherwise, we gen-
erate a counterexample Ctx illustrated why P≤P [ψ] is violated. Ctx can be
a real counterexample of the system M0 ‖ M1 or a spurious counterexample
due to the generated assumption. Thus, at each iteration, we analyse if Ctx
is real or not. If Ctx is real, then we can conclude that M0 ‖ M1 � P≤P [ψ]
i.e. P≤P [ψ] does not satisfy the system M0 ‖ M1, otherwise, we return Ctx to
CDNF to generate a new assumption. Our compositional verification process is
sound and complete. The soundness and completeness is guaranteed by the use
of an assume-guarantee reasoning rule. All steps of our approach are described
in details in the next sections.

Toward Implicit Learning for the Compositional Verification of MDP 205

Input: MDP M0 and M1 and a probabilistic safety property P≤P [ψ]

Step 1:
- Encode M0 using Boolean functions B(M0)
- Encode M1 using MTBDD SM1

Probabilistic Symbolic Compositional Verification using Implicit Learning (ACV uIL)

B(M0), SM1 and P≤P [ψ]

Step 2 :

CDNF Learning algorithm

Input: B(M0)

No + β(Ii)

Convert β(Ii) to MTBDD SIi

Refine SI0 using SIi

SIi

Use Symbolic probabilistic
to check if SI0 SM1

If (i = 0) Yes
Generate Initial assumption SI0

satisfies P≤P [ψ]
SI0 SM1 |= P≤P [ψ]

Generate counterexample

Analyse Cex

Ctx

is Ctx

real counter-
example

SI0

No

No

False + Counterexample Ctx

True (SI0 SM1 |= P≤P [ψ])

Output:

Yes

Yes

and Generate sub-MDP
subM0

Fig. 3. An overview of our approach (ACVuIL).

4.1 Encoding MDP Using Boolean Functions

MDP can be encoded implicitly as Boolean functions, we denote by β(M0)
the Boolean functions encoded MDP M0. The encoding process of MDP using
Boolean functions aims to reduce the size of the state space. Indeed, many works
such as [7,16,27,28] show that the implicit representation is often more efficient
than the explicit representation. In addition, this Boolean functions will be used
as input of the CDNF learning algorithm. In this section we describe the process
of encoding MDP using Boolean functions.

Definition 6. β(M0) = (InitM0 , fM0 (yxx′eleu)) is a pair of Boolean functions
encoded the MDP M0, where InitM0 is predicate encoding the initial state sM0

0

over the set X and fM (yxx′eleu) is a transition predicate over Y ∪ X ∪ X ′ ∪ E
where y, x, x′, el, eu are predicates of receptively Y,X,X ′ and E. Y , X, X ′ and
E are finite ordered set of Boolean variables with Y ∩ X ∩ X ′ ∩ E = ∅. The set
X encodes the states of M0, X ′ next states, Y encodes actions and E encodes
the probability values.

206 R. Bouchekir and M. C. Boukala

More concretely, let M0 = (StatesM0 , s
M
0 , ΣM0 , δM0) be a MDP. Let n =

|StatesM0 |, m = |ΣM0 | and k = log2(n)�. We can see δM0 as a function
of the form StatesM0 × ΣM0 × {1, 2, ..., r} × StatesM0 → [0, 1], where r is
the number of non-deterministic choice of a transition. We use a function
enc : StatesM0 → {0, 1}k over X = 〈x1, x2, ..., xk〉 to encode states in
StatesM0 and X ′ = 〈x′

1, x
′
2, ..., x

′
k〉 to encode next states. We use also Y = 〈

y1, y2, ..., ym 〉 to encode actions and we represent the probability values using
E = 〈el

1, e
u
1 , el

2, e
u
2 , ..., el

t, e
t〉, where t is the number of distinct probability value

in δM0 . fM0 (yxx′eleu) encodes the probabilistic transition relation δM0 as a
disjunction over a set of transition formulae, where each formula encodes a tran-
sition between two states. Suppose a transition s

a,p−−→ s′, we encode the state s,
the next state s′ and the action a using respectively enc(s), enc(s′) and enc(a),
where enc is a function encodes: (i) states s over Boolean variable set X, (ii) next
states s′ over Boolean variable set X ′, and (iii) actions over Boolean variable
Y . In addition, to encode the probability value p, we use the Boolean vari-
ables el and eu, where el and eu encode predicates of the form p ≥ μ(s, s′) and
p ≤ μ(s, s′) respectively. Thus, a transition of the from s

a,p−−→ s′ can be encoded
as: enc(y) ∧ enc(s) ∧ enc(s′) ∧ el ∧ eu.

Example 1. To illustrate how we encode MDP as Boolean functions, we consider
the MDP M0 (Fig. 1). M0 contains the set of states StatesM0 = {s0, s1, s2, s3}
and the set of actions ΣM0 = {openM0 , sendM0 , checkM0 , done, fail}. We use
X = 〈x0, x1〉 to encode the set of states in StatesM0 as: enc(s0) = ¬x0 ∧ ¬x1,
enc(s1) = ¬x0 ∧ x1, enc(s2) = x0 ∧ ¬x1, enc(s3) = x0 ∧ x1; and we use the set
Y = 〈o, s, c, d, f〉 to encode the actions {openM0 , sendM0 , checkM0 , done, fail},
respectively. Table 1 summarizes the process of encoding the transition function
δM0 . β(M0) = (InitM0 , fM0 (yxx′eleu)) encoded M0 is InitM0 = ¬x0 ∧¬x1 and

fM0(yxx′eleu) =

((s ∧ ¬x0 ∧ ¬x1 ∧ ¬x′
0 ∧ x′

1 ∧ el
3 ∧ eu

3)
∨(s ∧ ¬x0 ∧ ¬x1 ∧ x′

0 ∧ ¬x′
1 ∧ el

2 ∧ eu
2)

∨(o ∧ ¬x0 ∧ ¬x1 ∧ x′
0 ∧ ¬x′

1 ∧ el
5 ∧ eu

5)
∨(c ∧ ¬x0 ∧ x1 ∧ x′

0 ∧ ¬x′
1 ∧ el

4 ∧ eu
4)

∨(c ∧ ¬x0 ∧ x1 ∧ x′
0 ∧ x′

1 ∧ el
1 ∧ eu

1)
∨(d ∧ x0 ∧ ¬x1 ∧ x′

0 ∧ ¬x′
1 ∧ el

5 ∧ eu
5)

∨(f ∧ x0 ∧ x1 ∧ x′
0 ∧ x′

1 ∧ el
5 ∧ eu

5))

4.2 Encoding MDP Using MTBDD

In this paper, we also consider the implicit representation using MTBDD.
MTBDD are used to encode components M1 and to perform the probabilis-
tic model checking. In Definition 7, we introduce Symbolic MDP (SMDP) and
we provide the different data structures used to encode MDP. We denoted by
SM1 the SMDP encoded the MDP M1.

Definition 7. Symbolic MDP (SMDP) is a tuple SM = (X, InitM , Y, fSM

(yxx′)) where X, X ′ and Y are finite ordered set of Boolean variables with

Toward Implicit Learning for the Compositional Verification of MDP 207

Table 1. Encoding the set of states and the probability values of MDP M0 (Fig. 1).

ei ∈ E Predicate ei ∈ E Predicate si ∈ ΣM0 enc(si)

el0 ≥ 0 el2 ≥ 0.3 s0 ¬x0 ∧ ¬x1

eu0 ≤ 0 eu2 ≤ 0.3 s1 ¬x0 ∧ x1

el1 ≥ 0.2 el3 ≥ 0.7 s2 x0 ∧ ¬x1

eu1 ≤ 0.2 eu3 ≤ 0.7 s3 x0 ∧ x1

el4 ≥ 0.8 el5 ≥ 1

eu4 ≤ 0.8 eu5 ≤ 1

X ∩ X ′ ∩ Y = ∅. Init(X) is a BDD encoded the initial state and fSM
(yxx′) is

an MTBDD encoded the transition relation. The sets X, X ′ and Y are used to
encode respectively the set of states, next states and the set of actions of M , and
y, x, x′ are valuations of receptively, Y,X,X ′.

The encoding of MDP as SMDP follows the same process as the encoding
using Boolean functions.

Example 2. We consider the MDP M1 (Fig. 1) to illustrate the encoding of MDP
using SMDP. M1 contains the set of states StatesM1 = {t0, t1, t2, t3} and the
set of actions ΣM1 = {openM1 , sendM1 , checkM1 , done, fail}. We use the set
X = 〈x0, x1〉 to encode the set of states StatesM0 as: enc(t0) = (00), enc(t1)
= (01), enc(t2) = (10), enc(t3) = (11); and we use the set Y = 〈s, o, c, d, f〉 to
encode the actions {openM1 , sendM1 , checkM1 , done, fail}, respectively.

Following the same process to encode MDP implicitly as SMDP, we can
encode Interval MDP as SIMDP.

Definition 8. Symbolic Interval MDP (SIMDP) is a tuple SI = (X, InitI ,
Y, f l

SI
(yxx′), fu

SI
(yxx′)) where X, X ′ and Y are finite ordered set of Boolean

variables with X ∩ X ′ ∩ Y = ∅. InitI is a BDD encodes the initial state
and f l

SI
(yxx′) and fu

SI
(yxx′) are MTBDD encode the transition relation over

Y ∪ X ∪ X ′. The MTBDD f l
SI

(yxx′) encodes the lower probability bound and
fu

SI
(yxx′) encodes the lower. The sets X, X ′ and Y encode respectively, the

set of states, next states and the set of actions, and y, x, x′ are valuations of
receptively, Y,X,X ′.

4.3 Symbolic Assume-Guarantee Reasoning Rule

To establish the compositional verification process we propose an assume-
guarantee reasoning proof rule, where assumptions are represented using IMDP.
As described before, the compositional verification aims to generate a symbolic
assumption Ii represented using IMDP, where M0 is embedded in Ii (M0 � Ii).

208 R. Bouchekir and M. C. Boukala

Definition 9. Let M0 = (StatesM0 , s
M0
0 , ΣM0 , δM0) and Ii = (StatesIi , s

Ii
0 , ΣIi ,

P l, Pu) be MDP and IMDP, respectively. We say M0 is embedded in Ii, written
M0 � Ii, if and only if: (1) StatesM0 = StatesIi , (2) sM0

0 = sIi
0 , (3) ΣMi

= ΣIi ,
and (4) P l(s, a)(s′) ≤ μ(s, a)(s′) ≤ Pu(s, a)(s′) for every s, s′ ∈ StatesM and
a ∈ ΣM .

Example 3. Consider the MDP M0 shown in Fig. 1 and IMDP I shown in Fig. 2.
They have the same number of states, identical initial state (s0, i0) and the same
set of actions ΣM1 = {openM1 , sendM1 , checkM1 , done, fail}. In addition, the
transition probability between any two states in M0 lies within the correspond-
ing transition probability interval in I by taking the same action in ΣM1 . For

example, the transition probability between s0 and s1 is s0
sendM0 ,0.7−−−−−−−→ s1, which

falls into the interval [0, 1] labelled the transition i0
sendM0 ,[0,1]−−−−−−−−→ i1 in I. Thus,

we have M0 � I; (M0 is embedded in I).

Theorem 1. Symbolic assume-guarantee reasoning rule
Let M0,M1 be MDP and P≤P [ψ] a probabilistic safety property, then the follow-
ing proof rule is sound and complete: if M0 � I and I ‖ M1 |= P≤P [ψ] then
M0 ‖ M1 |= P≤P [ψ]. This proof rule means, if we have a system composed of
two components M0 and M1, then we can check the correctness of a probabilistic
safety property P≤P [ψ] over M0 ‖ M1 without constructing and verifying the full
state space. Instead, we first generate an appropriate assumption I, where I is an
IMDP, then we check if this assumption could be used to verify M0 ‖ M1 by check-
ing the two promises: (i) Check if M0 is embedded in I, M0 � I, and (ii) Check
if I ‖ M1 satisfies the probabilistic safety property P≤P [ψ], I ‖ M1 |= P≤P [ψ].
If the two promises are satisfied then we can conclude that M0 ‖ M1 satisfies
P≤P [ψ].

Proof (Soundness). Consider M0 and M1 be MDP, where M0 = (StatesM0 ,
sM0
0 , ΣM0 , δM0), M1 = (StatesM1 , s

M1
0 , ΣM1 , δM1), and IMDP I, I =

(StatesI , s
I
0, ΣI , P

l, Pu). If M0 � I and based on Definition 9 we have
StatesM = StatesI , sM

0 = sI
0, ΣM = ΣI , and P l(s, a)(s′) ≤ μ(s, a)(s′) ≤

Pu(s, a)(s′) for every s, s′ ∈ StatesM0 and a ∈ ΣM0 . Based on Definitions 3
and 9, M0 ‖ M1 and I ‖ M1 have the same state space, initial state and
actions. Since P l(s, a)(s′) ≤ μ(s, a)(s′) ≤ Pu(s, a)(s′), and we suppose the tran-
sition probability of M0 ‖ M1 as: μM0‖M1((si, sj), a)(s′

i, s
′
j) = μM0((si), a)(s′

i)×
μM1((sj), a)(s′

j) for any state si, s
′
i ∈ StatesM0 and sj , s

′
j ∈ StatesM1 . Thus,

P l((si, sj), a)(s′
i, s

′
j) ≤ μM0‖M1((si, sj), a) (s′

i, s
′
j) ≤ Pu((si, sj), a)(s′

i, s
′
j) for the

probability between two states (si, s
′
i) and (sj , s

′
j). In I ‖ M1 the probability

interval between any two states (si, sj) and (s′
i, s

′
j) is restricted by the interval

[P l((si, a)(s′
i)×μM1(sj), a)(s′

j), Pu((si, a)(s′
i)×μM1(sj) , a)(s′

j)], this implies, if
M0 � I and I ‖ M1 |= P≤P [ψ] then M0 ‖ M1 |= P≤P [ψ] is guaranteed.
Proof (Completeness). The completeness of our approach is guarantee since
we always generate a new assumption to refine the initial one. In the worst case,
the CDNF will learn a final assumption equivalent to the original component.

Toward Implicit Learning for the Compositional Verification of MDP 209

4.4 CDNF Learning Algorithm

The CDNF learning algorithm [6] is an exact learning algorithm for Boolean
functions. It learns a Boolean formula in conjunctive disjunctive normal form
(CDNF) for a target Boolean function over a fixed set of Boolean variables x.
In this paper, we use this algorithm to learn the symbolic assumptions I for
MDP represented by Boolean functions. During the learning process, the CDNF
learning algorithm interacts with a Teacher to make two types of queries: (i)
membership queries and (ii) equivalence queries. A membership queries are used
to check whether a valuation v over Boolean variables x satisfies the target
function. Equivalence queries are used to check whether a conjectured Boolean
function is equivalent to the target function.

4.5 ACVuIL: Automatic Compositional Verification Using Implicit
Learning Algorithm

Algorithm ACVuIL highlighted the main steps of our approach. ACVuIL accepts
the system components MDP M0, M1 and the probabilistic safety property ϕ =
P≤P [ψ] as input. ACVuIL starts by encoding M0 using Boolean functions and
M1 using SMDP. Then, it calls the CDNF learning algorithm to learn the initial
assumption I0. For the first iteration, CDNF learns true as initial assumption.
For that, ACVuIL calls the function GenerateInitialAssumption to generate
SI0 . The process of generating the SIMDP SI0 is described in the next section.

4.6 Generate Initial Assumption

The ACVuIL calls the function GenerateInitialAssumption to generate the
initial assumption SI0 . This function accepts MDP M0 and the Boolean functions
I0 as inputs, and returns SIMDP SI0 . The process of generating SI0 is described
in Algorithm 2.

GenerateInitialAssumption creates a new IMDP Initial I0 equivalent to
M0, with transitions equal to [0, 1] between all states, and the set of actions are
hold in each transition. Then it encodes the IMDP of Initial I0 as SIMDP. The
aim behind the generation of SI0 with transition equal to [0, 1] between all states
is to reduce the size of the implicit representation of the state space. Indeed, for
large probabilistic system, when we use uniform probabilities (0 and 1 in our
case) this will reduce the number of terminal nodes as well as non-terminal nodes.
Adding transition between all states, will keep our assume-guarantee verified for
the initial assumption, since M0 is embedded in Initial I0, in addition, this
process will help to reduce the size of the implicit representation of Initial I0
and this by combining any isomorphic sub-tree into a single tree, and eliminating
any nodes whose left and right children are isomorphic.

Example 4. To illustrate our approach, we consider the verification of M0 ‖ M1

(Fig. 1) against the probabilistic safety property P≤0.0195[♦“err”], where “err”
stands for the state (s3, t3). This property means that the maximum probabil-
ity that the system M0 ‖ M1 should never fails, over all possible adversaries,

210 R. Bouchekir and M. C. Boukala

Algorithm 1. ACVuIL
1: Input: M0, M1 and ϕ = P≤P [ψ]
2: output: SIMDP Ii, set of counterexamples and a Boolean value
3: Begin
4: β(M0) ← Encode M0 as a Boolean functions;
5: SM1 ← Encode M1 as SMDP;
6: I0 ← CDNF (β(M0));
7: SI0 ← GenerateInitialAssumption(M0, I0);
8: result ← SPMC(SI0 , SM1 , ϕ);
9: while (result == false) do

10: i ← i + 1;
11: Ctx ← GenerateCounterexample (SIi−1 , SM1 , ϕ);

12: subM0 ← GenerateSub-MDP (M0,Ctx);
13: real ← AnalyseCounterexample (subM0,SM1 ,ϕ);
14: if (real == true) then
15: return (SIi−1 ,Ctx,false);

16: else
17: β(Ii) ← return false to CDNF to generate new assumption;
18: SIi ← Refine SIi(SI0 , β(Ii), β(M0)).
19: result ← SPMC(SIi , SM1 , ϕ);
20: end if
21: end while;
22: return (SIi ,NULL,true);
23: End

is less than 0.0195. ACVuIL starts by encoding M0 using Boolean functions
β(M0). β(M0) encoded M0 is illustrated in Sect. 4.1. In addition, The encod-
ing process of M1 as SMDP is illustrated in Sect. 4.2. After encoding the
system components using implicit representation, ACVuIL calls the function
GenerateInitialAssumption to generate the initial assumption. The explicit
representation of the initial assumption Initial I0 is illustrated in Fig. 2.

Symbolic Probabilistic Model Checking (SPCV). In line 8 and 19,
ACVuIL calls the function Symbolic probabilistic model checking (SPCV). To
model checking SIi ‖ SM1 � P≤P [ψ], SPCV computes the parallel composition
SIi ‖ SM1 , where the result is SIMDP, because SIi is SIMDP. Indeed, model
checking algorithm for IMDP was considered in [4,8], where it was demonstrated
that the verification of IMDP is often more consume, in time as well as in space,
than the verification of MDP. In this work, our ultimate goal is reducing the
size of the state space. Therefore, the verification of IMDP needs to be avoided.
Thus, we propose rather than verifying SIMDP SIi ‖ SM1 , we verify only a
restricted SMDP RI, which is an MTBDD contains the upper probability value
of the probability interval associate in each transition of SIi . This can be done by
taking the MTBDD fu

SIi
of SIi . Then, the verification of RI ‖ SM1 can be done

using the standard probabilistic model checking proposed in [19]. The symbolic
probabilistic model checking used in this work was proposed in [28].

Toward Implicit Learning for the Compositional Verification of MDP 211

Algorithm 2. GenerateInitialAssumption

1: Input: MDP M0, Boolean functions I0
2: output: SIMDP SI0

3: BEGIN
4: Create a new IMDP Initial I0 equivalent to M0, with transitions equal to [0, 1]

between all states. The set of actions in M0 are hold in each transition of I0.
5: SI0 ← Encode Initial I0 as SIMDP;
6: return SI0 ;
7: End

Example 5. To analyse if SI0 could be used to establish the compositional
verification, ACVuIL calls the symbolic model cheeking (SPCV) to check if
SI0 ‖ SM1 |= P≤0.0195[♦“err”]. This latter returns false. In practice, to ver-
ify SI0 ‖ SM1 |= P≤0.0195[♦fail] we used the model PRISM with the engine
“MTBDD” [22].

Generate Probabilistic Counterexamples. The probabilistic counterexam-
ples are generated when a probabilistic property ϕ is not satisfied. They provide
a valuable feed back about the reason why ϕ is violated.

Definition 10. The probabilistic property ϕ = P≤ρ[ψ] is refuted when the prob-
ability mass of the path satisfying ϕ exceeds the bound ρ. Therefore, the coun-
terexample can be formed as a set of paths satisfying ϕ, whose combined measure
is greater than or equal to ρ.

As denoted in Definition 10, the probabilistic counterexample is a set of finite
paths, for example, the verification of the property “a fail state is reached with
probability at most 0.01” is refused by a set of paths whose total probability
exceeds 0.01. The main techniques used for the generation of counterexamples
are described in [21]. The probabilistic counterexamples are a crucial ingredient
in our approach, since they are used to analyse and refine the conjecture symbolic
assumptions. Thus, our need consist to find the most indicative counterexample.
A most indicative counterexample is the minimal counterexample (which has the
least number of paths). A recent work [12] proposed to use causality in order to
generate small counterexamples.

Example 6. Since PSCV (SI0 ‖ SM1 |= P≤0.0195[♦“err”]) returns false, the
ACVuIL calls the function GenerateCounterexample to generate Ctx, which
shows the reason why P≤0.0195[♦“err”]) is violated. In addition Ctx will be
used to check if it is a real counterexample or not. In practice, we used the

tool DiPro to generate counterexamples. This returns Ctx = {(s0, t0)
openM1 ,1−−−−−−→

(s3, t0)
sendM2 ,0.7−−−−−−−→ (s3, t1)

checkM2 ,0.2−−−−−−−−→ (s3, t3)}.

212 R. Bouchekir and M. C. Boukala

Generate Sub-MDP and Analyse the Probabilistic Counterexamples.
To analyse if the counterexample Ctx is real or not, ACVuIL generates a sub-
MDP, where this latter represents a fragment of the MDP M0 based on the prob-
abilistic counterexample Ctx, where the MDP fragment SubM0 contains only
transitions present in Ctx. Thus, the fragment SubM0 is obtained by removing
from M0 all states and transitions not appearing in any path of the set Ctx. Since
we use symbolic data structures to encode the state space, we encode the MDP
fragment SubM0 using SMDP (following the same process to encode MDP). The
function GenerateSubMDP is described in Algorithm 3.

Algorithm 3. GenerateSub − MDP

1: Input: MDP M0 and a set of counterexample Ctx
2: output: SMDP subM0

3: Begin
4: Sub-MDP MCtx

0 = remove from M0 all states and transitions not appearing in any
path of the set Ctx;

5: SMDP SubM0 = Encode MCtx
0 as SMDP;

6: return SubM0;
7: End

Then ACVuIL calls the function AnalyseCounterexample. This function
aims to check whether the probabilistic counterexample Ctx is real or not. Ctx
is a real counterexample of the system M0 ‖ M1 |= P≤P [ψ] if and only if SubM0 ‖
SM1 |= P≤ρ[ψ] does not hold i.e. AnalyseCounterexample returns true if and
only if the symbolic probabilistic model cheeking of SubM0 ‖ SM1 |= P≤ρ[ψ]
returns false, or false otherwise.

Example 7. To analyse the counterexamples, ACVuIL generates a sub − MDP
containing only states and transitions exist in Ctx. For our example, the set Ctx

contains transition s0
openM1 ,1−−−−−−→ s3, where this transition is not present in M0.

Thus, AnalyseCounterexample returns false, since no sub-MDP was generated
for this counterexample. After a few iterations, ACVuIL returns the final assump-
tion SIf equivalent to the original component M0. In this example, ACVuIL was
not able to generate a final assumption more compact than the original com-
ponent. Indeed, in the worst case, ACVuIL returns the original component as a
final assumption.

If the probabilistic counterexample Ctx is not real, then ACVuIL returns
false to the CDNF learning algorithm. When ACVuIL returns false to CDNF,
this means that the generated assumption is not equivalent to the target Boolean
functions. Thus, CDNF generates a new assumption β(Ii) (i ≥ 1). In line 18,
the ACVuIL calls the functions Refine SIi to refine the initial assumption. The
function Refine SIi is described in the next section (Sect. 4.6).

Toward Implicit Learning for the Compositional Verification of MDP 213

Refinement Process of the Conjecture Symbolic Assumption SIi . At
each iteration of the ACVuIL, the generated assumption SIi converges to the
target Boolean functions (β(M0)). The function Refine SIi aims to refine the
initial assumption SI0 using the new generated assumption. This is done by
removing from the initial assumption all transitions between two states, if these
states are present in the new generated assumption, and add transitions from
the original component between these states.

Algorithm 4. Refine SIi

1: Input: SI0 , β(Ii), β(M0)
2: output: SIi

3: Begin
4: SIMDP SItmp ← convert β(Ii) to SIMDP.
5: We consider fu

SItmp
(yxx′) the MTBDD encoding the lower probability values of

SItmp and fu
SI0

the MTBDD encoding the lower probability values of SI0 ;

6: Let vItmp = (yItmp , xItmp , x′
Itmp

), vI0 = (yI0 , xI0 , x′
I0);

7: Let vM0 = (yM0 , xM0 , x′
M0 , euM0);

8: for each valuation vItmp ∈ fu
SItmp

do

9: remove from SI0 all valuations vI0 if (xItmp = xI0 & x′
Itmp

= x′
I0);

10: add all valuations vM0 ∈ β(M0) to fu
SIi

if (xItmp = xM0 & x′
Itmp

= x′
M0);

11: end for
12: optimise fu

SI0
;

13: return SI0 ;
14: End

5 Implementation and Experimental Results

We have implemented a prototype tool to evaluate our approach. Our tool
accepts MDP specified using PRISM code and a probabilistic safety property
as input, and returns either true if the MDP satisfies the probabilistic safety
property, or false and a counterexample otherwise. To implement our tool, we
have used the library BULL1, which impelements the CDNF learning algorithm
and the tool Dipro2 to generate counterexamples. In this section, we give the
results obtained for the application of our approach in a several case studies
derived from the PRISM benchmark3. For each case study, we check the model
against a probabilistic safety property using: (i) symbolic monolithic probabilis-
tic model checking and (ii) compositional verification (our approach). The tests
1 https://sourceforge.net/projects/bull/.
2 https://se.uni-konstanz.de/research1/tools/dipro/.
3 http://www.prismmodelchecker.org/casestudies/index.php.

https://sourceforge.net/projects/bull/
https://se.uni-konstanz.de/research1/tools/dipro/
http://www.prismmodelchecker.org/casestudies/index.php

214 R. Bouchekir and M. C. Boukala

were carried on a personal computer with Linux as operating system, 2.30 GHz
I5 CPU and 4 GB RAM.

For each case study, we compare the size of the original component M0

and the final assumption If and this by considering the number of clauses
(#Clauses) and the number of nodes (MTBDD nodes). In addition, we compare
the symbolic non-compositional verification (SMV) with our approach ACVuIL.
For SMV, we report the size (number of MTBDD nodes) and the time for model
construction (T4MC) for the model SM0 ‖ SM1 . For ACVuIL, we report the
number of iterations for ACVuIL algorithm to learn the final assumption SIf

(#ite.), total time to generate SIf (T. Gen. SIf), as well as the size and T4MC
to model checking SIf ‖ SM1 .

The results are reported in Table 2. The case studies considered in our exper-
imental results are:

(i) Randomized dining philosophers [13,25], for this case study we check the prop-
erty ϕ1 = the probability that philosophers do not obtain their shared resource
simultaneously is at most 0.1, formally: P≤0.1[♦“err”], where label “err” sands
for every states satisfy: [(sN ≥ 8)&(sN ≤ 9)], and N is the component number,
(ii) The second case study is Israeli and Jalfon [20] solution for the randomized
Self stabilising algorithm, we check the system against property: ϕ2 = the prob-
ability to reach a stable configuration for all algorithms is at most 0.999, (iii)
The third case study is a variant of the client-server model from [29]. It models
a server and N clients. The server can grant or deny a client’s request for using a
common resource, once a client receives permission to access the resource, it can
either use it or cancel the reservation. Failures might occur with certain prob-
ability in one or multiple clients, causing the violation of the mutual exclusion
property (i.e. conflict in using resources between clients). In this case study, we
consider the property: ϕ3 =the probability a failure state is reached is at most
0.98.

The overall results show that ACVuIL successfully generates assumptions
for all case studies. As shown in Table 2, CDNF learns assumption β(If) smaller
than the original component β(M0). For the case studies R.D. Philos and Client-
Server, the implicit representation of the final assumption using MTBDD is
more compact than the implicit representation of the original components. How-
ever, for R.S. Stab. is the same size, this is due to the fact that ACVuIL had
refined all transitions of the initial assumption, therefore, the final assumption is
equal to the original component. For the verification time, the symbolic mono-
lithic verification (non-compositional) verifies the system faster than our app-
roach ACVuIL. Indeed, our approach takes more time to generate and refine the
assumptions, as well as, the time necessary to generate counterexamples at each
iteration.

Toward Implicit Learning for the Compositional Verification of MDP 215

Table 2. Experimental results for the case studies randomized dining philosophers,
randomized Self stabilising algorithm and Client-server

Case

study

N. P. # Clauses MTBDD

nodes

SMV ACVuIL

SM0 SM1 #Ite. T. gen

SIf

SIf
SM1

β(M0) β(If) SM0 SIf
T4MC Size T4MC Size

R.D.

Philos

6 ϕ1 3696 467 910 340 0.883 5008 237 30.57 0.110 1816

8 48656 3486 1958 670 2.573 9215 308 67.28 0.128 3711

10 599600 24677 3335 1062 7.353 14570 381 103.62 0.259 6164

R.S.

Stab.

6 ϕ2 21 12 7 7 0.001 63 12 2.14 0.001 63

10 140 80 31 31 0.007 1023 29 7.05 0.007 1023

14 784 448 127 127 0.016 16383 59 17.25 0.016 16383

18 4032 2304 511 511 0.034 262143 102 39.52 0.034 262143

Client

Server

5 ϕ3 3348 3122 917 911 0.114 5962 12 17.02 0.091 5855

6 12069 11052 1282 1274 0.146 7439 19 25.08 0.139 7129

7 42282 38947 1707 1697 0.130 10684 28 41.06 0.181 8433

6 Conclusion and Future Works

In this paper, we proposed a fully-automated probabilistic symbolic composi-
tional verification to verify probabilistic systems, where each component is an
MDP. Our approach ACVuIL is based on complete and sound symbolic assume-
guarantee reasoning rule. The first step aims to encode the system components
using compact data structures such as Boolean functions and MTBDD, then
we use the compositional verification to model checking the system against the
probabilistic safety property. In addition, we proposed to use the CDNF to learn
automatically assumptions used in the verification process. We evaluated our
approach using three case studies derived from PRISM benchmark, that are
R.D. Philos, R.S. Stab. and Client-Server. The overall results show that our
approach successfully generates assumptions. For two of the listed case stud-
ies, the CDNF learns assumption with implicit representation smaller than the
original competent. For the future works, we plan to proposed other assume-
guarantee reasoning rule such as asymmetric rule or circular rule to handle more
large and complex systems. In addition, the research present in this paper can be
extended to verify other probabilistic properties such as liveness. Furthermore,
we plan to evaluate our approach using real-life complex systems such as the
verification of the composition of inter-organisational Workflows [5].

References

1. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica 44(11),
2724–2734 (2008)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT press, Cambridge
(2008)

216 R. Bouchekir and M. C. Boukala

3. Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time
logic with fairness. Distrib. Comput. 11(3), 125–155 (1998)

4. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval markov
chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
32–46. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 3

5. Bouchekir, R., Boukhedouma, S., Boukala, M.C.: Automatic compositional verifi-
cation of probabilistic safety properties for inter-organisational workflow processes.
In: 2016 6th International Conference on Simulation and Modeling Methodologies,
Technologies and Applications (SIMULTECH), pp. 1–10. IEEE (2016)

6. Bshouty, N.H.: Exact learning boolean functions via the monotone theory. Inf.
Comput. 123(1), 146–153 (1995)

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.-J.: Symbolic
model checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

8. Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking ω-regular properties of
interval markov chains. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp.
302–317. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-
9 22

9. Chen, Y.-F., Clarke, E.M., Farzan, A., Tsai, M.-H., Tsay, Y.-K., Wang, B.-Y.:
Automated assume-guarantee reasoning through implicit learning. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 511–526. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 44

10. Ciesinski, F., Baier, C., Größer, M., Parker, D.: Generating compact MTBDD-
representations from Probmela specifications. In: Havelund, K., Majumdar, R.,
Palsberg, J. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 60–76. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85114-1 7

11. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 24

12. Debbi, H., Debbi, A., Bourahla, M.: Debugging of probabilistic systems using struc-
tural equation modelling. Int. J. Crit. Comput.-Based Syst. 6(4), 250–274 (2016)

13. Duflot, M., Fribourg, L., Picaronny, C.: Randomized dining philosophers without
fairness assumption. Distrib. Comput. 17(1), 65–76 (2004)

14. Feng, L.: On learning assumptions for compositional verification of probabilistic
systems. Ph.D. thesis, University of Oxford (2013)

15. Feng, L., Kwiatkowska, M., Parker, D.: Compositional verification of probabilistic
systems using learning. In: 7th International Conference on Quantitative Evalua-
tion of Systems (QEST 2010), p. 133 (2010)

16. Fujita, M., McGeer, P.C., Yang, J.C.-Y.: Multi-terminal binary decision diagrams:
an efficient data structure for matrix representation. Form. Methods Syst. Des.
10(2–3), 149–169 (1997)

17. Hart, S., et al.: Probabilistic temporal logics for finite and bounded models. In:
Proceedings of the sixteenth annual ACM symposium on Theory of computing,
pp. 1–13. ACM (1984)

18. Hasson, H., Jonsson, B.: A logic for reasoning about time and probability. Form.
Asp. Comput. 6, 512–535 (1994)

19. He, F., Gao, X., Wang, M., Wang, B.-Y., Zhang, L.: Learning weighted assumptions
for compositional verification of markov decision processes. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 25(3), 21 (2016)

https://doi.org/10.1007/978-3-642-36742-7_3
https://doi.org/10.1007/978-3-540-78499-9_22
https://doi.org/10.1007/978-3-540-78499-9_22
https://doi.org/10.1007/978-3-642-14295-6_44
https://doi.org/10.1007/978-3-540-85114-1_7
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24

Toward Implicit Learning for the Compositional Verification of MDP 217

20. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizing mutual exclusion. In: Proceedings of the Ninth Annual ACM Symposium
on Principles of Distributed Computing, pp. 119–131. ACM (1990)

21. Jansen, N., et al.: Symbolic counterexample generation for large discrete-time
markov chains. Sci. Comput. Program. 91, 90–114 (2014)

22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

23. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification
for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 23–37. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12002-2 3

24. Larsen, K.G., Pettersson, P., Yi, W.: Compositional and symbolic model-checking
of real-time systems. In: Proceedings of 16th IEEE Real-Time Systems Symposium
1995, pp. 76–87. IEEE (1995)

25. Lehmann, D., Rabin, M.O.: On the advantages of free choice: a symmetric and fully
distributed solution to the dining philosophers problem. In: Proceedings of the 8th
ACM SIGPLAN-SIGACT Symposium on Principles of programming languages,
pp. 133–138. ACM (1981)

26. Lehmann, D., Shelah, S.: Reasoning with time and chance. Inf. Control 53(3),
165–198 (1982)

27. McMillan, K.L.: Symbolic model checking. In: McMillan, K.L. (ed.) Symbolic
Model Checking, pp. 25–60. Springer, Boston (1993). https://doi.org/10.1007/978-
1-4615-3190-6 3

28. Parker, D.A.: Implementation of symbolic model checking for probabilistic systems.
Ph.D. thesis, University of Birmingham (2003)

29. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the l∗ algorithm to automate assume-
guarantee reasoning. Form. Methods Syst. Des. 32, 175–205 (2008)

30. Pnueli, A., Zuck, L.: Verification of multiprocess probabilistic protocols. Distrib.
Comput. 1(1), 53–72 (1986)

31. Segala, R.: Modeling and verification of randomized distributed real-time systems
(1996)

32. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state pro-
grams. In: 26th Annual Symposium on Foundations of Computer Science (SFCS
1985) (FOCS), pp. 327–338, October 1985

33. Vardi, M.Y.: Probabilistic linear-time model checking: an overview of the
automata-theoretic approach. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601,
pp. 265–276. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48778-
6 16

34. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-12002-2_3
https://doi.org/10.1007/978-3-642-12002-2_3
https://doi.org/10.1007/978-1-4615-3190-6_3
https://doi.org/10.1007/978-1-4615-3190-6_3
https://doi.org/10.1007/3-540-48778-6_16
https://doi.org/10.1007/3-540-48778-6_16

Author Index

Abdulla, Parosh Aziz 22
Atig, Mohamed Faouzi 22

Barkaoui, Kamel 166
Basile, Davide 31
Ben Hafaiedh, Imene 64
Ben Hamouda, Roua 64
Bouajjani, Ahmed 22
Bouchekir, Redouane 200
Boucheneb, Hanifa 166
Boukala, Mohand Cherif 200
Boussema, Sabrine 64
Briones, Laura Brandán 114

Carnevali, Laura 185

Dague, Philippe 114

Fantechi, Alessandro 185
Farhadi, Alireza 80

Given-Wilson, Thomas 3
Gori, Gloria 185

Habibi, Jafar 80

Izadi, Mohammad 80

Jafri, Nisrine 3

Kristensen, Lars Michael 97

Legay, Axel 3, 31
Li, Zhiwu 166
Longuet, Delphine 114

Madalinski, Agnes 114

Ngo, Tuan Phong 22

Pommellet, Adrien 150

Renault, Etienne 133
Robbana, Riadh 64

Stolz, Volker 97

ter Beek, Maurice H. 31
Touili, Tayssir 150
Traonouez, Louis-Marie 31
Troubitsyna, Elena 48

Vicario, Enrico 185
Vistbakka, Inna 48

Wang, Rui 97

Ye, Lina 114

	Preface
	Organization
	Automated Black-Box Verification of Networking Systems (Invited Talk)
	Contents
	Invited Papers
	The State of Fault Injection Vulnerability Detection
	1 Introduction
	2 Background
	2.1 Fault Injection
	2.2 Fault Model
	2.3 Software-Based Fault Injection Approaches
	2.4 Hardware-Based Fault Injection Approaches

	3 Existing Work
	3.1 Software Based Approach
	3.2 Hardware Based Approach

	4 Challenges
	5 Broad Spectrum Simulation
	5.1 Process
	5.2 Results

	6 Connection to Hardware
	7 Looking Forward
	8 Conclusion
	References

	Replacing Store Buffers by Load Buffers in TSO
	1 Introduction
	2 Total Store Ordering
	3 Load-Buffer Semantics
	4 Related Work
	References

	Distributed Systems and Protocols
	Orchestration Synthesis for Real-Time Service Contracts
	1 Introduction
	2 Modelling Real-Time Service Contracts
	2.1 Timed Service Contract Automata
	2.2 Semantics
	2.3 Composition
	2.4 Controllability

	3 Orchestration Synthesis
	4 Running Example Revisted
	5 Conclusions and Future Work
	References

	Modelling and Verification of Dynamic Role-Based Access Control
	1 Introduction
	2 From Static to Dynamic RBAC
	3 Reasoning About Dynamic RBAC Using Contracts
	4 Background: Event-B and ProB
	5 Verification of System Scenarios Under Dynamic RBAC
	6 Formal Modelling of a Reporting Management System
	7 Related Work and Conclusions
	References

	Performance Evaluation of Dynamic Load Balancing Protocols Based on Formal Models in Cloud Environments
	1 Introduction
	2 Related Work and Approach
	2.1 Related Work
	2.2 Approach

	3 Preliminaries
	4 A Generic Formal Model of Load-Balancing Protocols
	4.1 The Overall Architecture of the Proposed Model
	4.2 Modeling Dynamic Load-Balancing Protocols

	5 Performance Analysis
	5.1 Formal Evaluation
	5.2 Performance Evaluation

	6 Conclusion
	References

	A Protocol for Constraint Automata Execution in a Synchronous Network of Processors
	1 Introduction
	2 Reo Coordination Language
	2.1 Synchronous Regions of Reo Networks
	2.2 Constraint Automata Semantics for Reo

	3 Related Works
	4 Execution Protocol
	4.1 Protocol Properties

	5 Implementation in UPPAAL
	6 Semantic Models
	7 Conclusion
	References

	Testing and Fault Detection
	MBT/CPN: A Tool for Model-Based Software Testing of Distributed Systems Protocols Using Coloured Petri Nets
	1 Introduction
	2 Tool Overview and Software Architecture
	3 Example: Two-Phase Commit Transaction Protocol
	4 Test Case Generation
	5 Test Case Execution
	6 Experimental Evaluation
	6.1 Two-Phase Commit Protocol
	6.2 Distributed Storage Protocol
	6.3 Paxos Consensus Protocol

	7 Conclusions
	References

	How to Be Sure a Faulty System Does Not Always Appear Healthy?
	1 Introduction
	2 Motivating Example
	3 Manifestability for DESs
	3.1 Models of DESs
	3.2 Diagnosability and Manifestability

	4 Manifestability Verification
	4.1 System Diagnosers
	4.2 Manifestability Checking
	4.3 Algorithm

	5 Experimental Results
	6 Related Work
	7 Conclusion and Future Work
	References

	Model Checking and State-Space Exploration
	Improving Parallel State-Space Exploration Using Genetic Algorithms
	1 Introduction and Related Work
	2 Parallel State Space Exploration
	3 Generation of Artificial Initial State
	4 State-Space Exploration with Genetic Algorithm
	5 Checking Temporal Properties
	6 Evaluation
	7 Conclusion
	References

	LTL Model-Checking for Communicating Concurrent Programs
	1 Introduction
	2 Communicating Pushdown Systems
	2.1 Pushdown Systems
	2.2 The Model and Its Semantics
	2.3 From a Program to a CPDS Model

	3 Model-Checking LTL on CPDSs
	3.1 The Linear-Time Temporal Logic LTL
	3.2 LTL Model-Checking for PDSs
	3.3 Single-Indexed LTL for CPDSs

	4 An Abstraction Framework for Traces
	4.1 Abstractions and Galois Connections
	4.2 Kleene Abstractions
	4.3 The Set of K-Predecessors
	4.4 K-automata

	5 Abstract Model-Checking of LTL for CPDSs
	5.1 Abstracting Accepting Traces of a BPDS
	5.2 Abstracting the Model-Checking Problem for CPDSs
	5.3 Using Our Framework in a CEGAR Scheme

	6 Application to Race Conditions
	6.1 The CPDS Model
	6.2 Using a Single-Indexed LTL Formula
	6.3 An Erroneous Trace

	7 Conclusion and Future Works
	References

	Exploiting Local Persistency for Reduced State Space Generation
	1 Introduction
	2 Preliminaries
	3 Persistent Sets and Step Graphs
	3.1 Persistent Sets
	3.2 Step Graphs

	4 Persistent Step Sets
	5 Parametric Combination of Persistent Sets with Step Graphs
	5.1 Computing Strong-Persistent Step Sets
	5.2 Computing Persistent Step Sets

	6 Conclusion
	References

	Stochastic and Probabilistic Systems
	Analysis of a Road/Tramway Intersection by the ORIS Tool
	1 Introduction
	2 Related Works
	3 Background
	3.1 Stochastic Time Petri Nets
	3.2 The Method of Stochastic State Classes
	3.3 ORIS Overview

	4 Diacceto-Alamanni: An STPN Model
	4.1 Tramway Submodel
	4.2 Private Transport Submodel
	4.3 Interaction Between the Tramway Submodel and the Private Transport Submodel

	5 Analysis and Results
	6 Conclusion
	References

	Toward Implicit Learning for the Compositional Verification of Markov Decision Processes
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 ACVuIL Approach
	4.1 Encoding MDP Using Boolean Functions
	4.2 Encoding MDP Using MTBDD
	4.3 Symbolic Assume-Guarantee Reasoning Rule
	4.4 CDNF Learning Algorithm
	4.5 ACVuIL: Automatic Compositional Verification Using Implicit Learning Algorithm
	4.6 Generate Initial Assumption

	5 Implementation and Experimental Results
	6 Conclusion and Future Works
	References

	Author Index

