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Abstract. The surface electromyography (sEMG) has been used to
characterize normal and abnormal behavior of the swallowing related
muscles. One important activity in the analysis of the electromyographic
recordings, is the detection of bursts, indicators of muscle activations
but problematic in muscles with low signal-to-noise ratio (SNR). Most
of methods for burst detection are based on amplitude measures which
are signal-conditions dependent. We proposed a method to detect bursts
based on the continuous wavelet transform and thresholding over the
scalogram but not over amplitude. sEMG signals from 38 healthy sub-
jects were recorded during swallowing tasks. We compared the proposed
method to the visual method as a reference, and a previous method based
on the Teager-Kaiser energy operator (TKEO). The proposed method
avoids detection of false negatives better than TKEO, and it is suitable
to apply in problems of burst detection in sEMG signals with low SNR.
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1 Introduction

The swallowing mechanism is a sequential process with differentiated oral, pha-
ryngeal, and esophageal phases that carry saliva, solids and fluids from the mouth
to the stomach. Alterations in this process is known as dysphagia. Normal swal-
lowing involves the coordination of 30 pairs of muscles [5]. The infrahyoid muscles
and also another laryngeal and pharyngeal muscles, play an important role in
the pharyngeal phase behavior [8]. In special, the infrahyoid muscles descend
the hyolaryngeal complex toward the sternum [16]. Such displacement moves
the larynx under the base of the tongue and closes the laryngeal vestibule before
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opening the upper esophageal sphincter [5]. Studies of surface electromyographic
signal (sEMG) from infrahyoid muscles can help to determine alterations in swal-
lowing, i.e. the presence of dysphagia [12,19,24]. However, these muscles have
been relatively few investigated due to difficulty to assess them non-invasively
[8].

Problems with sEMG acquisition from swallowing related muscles rely on
the fact that they have small size and overlying fibers [5], producing low signal-
to-noise ratio (SNR) and difficulties to detect the muscle activations (bursts).
In the time elapsed between the end of a muscle burst and the beginning of
the successive one, the muscle under study is silent. However, the electrode
detects a background noise [13]. In order to evaluate the quality of the recorded
signals, the background noise and SNR are usually estimated by manual or
automatic segmentation of the signal in the time domain [1]. Signal processing
and analysis methods can improve the SNR in the sEMG measurements from
infrahyoid muscles [17]. Visual muscle onset determination by an expert examiner
is considered to be the gold standard for detect the bursts [25]. However, this
time-consuming method has moderate reproducibility and repeatability [4].

Automatic strategies for onset detection include the simple [7] and double-
threshold [3], Teager-Kaiser energy operator (TKEO) [21]. Most of these meth-
ods are based on amplitude measures as well as they are oriented to analysis of
the large muscles of limbs. It is well known that in sEMG signals, the amplitude
depends on several uncontrolled variables such as: electrode-skin impedance,
volume conductor, inter electrode distances, location of electrodes, etc. [6]. Fur-
thermore, the heuristically chosen threshold has been shown to introduce errors
into onset determination [7,23], specially in signals with low SNR. Some stud-
ies set the threshold by optimization, but this process can generate overfitting
because the high variability of amplitude and SNR in sEMG recordings between
trials and subjects.

In order to avoid the above mentioned problems, another strategies such
as the maximum likelihood ratio [26] and gaussian-mixture models [10,15], have
been implemented. These methods have the assumption that sEMG is generated
by a Gaussian process - which is not exact - and need previous information about
the distribution involved in the generation of sEMG signal.

In this study we propose a time-frequency method based on Continuous
Wavelet transform (CWT) in order to detect bursts. This method is based on the
scales-coefficients energies but not in amplitude measures. Our process includes
a denoising step base on discrete wavelet transform (DWT) to improve the SNR.
We tested the proposed method in a database with sEMG recorded in the right
infrahyoid muscle during swallowing tasks. In order to make a comparison, we
tested the signal with a previously reported threshold-based method which used
amplitude based measures such as TKEO and RMS [17], instead measures of
energy of the spectrogram. This is one of the first approaches aiming to char-
acterize swallowing related signals in a automatic way, as a preliminary step to
analyze muscle behavior in patients with swallowing disorders.
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2 Materials and Methods

2.1 Subjects

We recruited 38 volunteers (16 males and 22 females), healthy subjects aged
between 32 and 50 years old (41.16 ± 6.12). The following exclusion criteria were
used for subject selection: dental braces, congenital oral malformations, active
inflammatory processes (mouth, head or neck), strange elements in mouth (like
piercing), diagnosed cognitive disorders (motor or sensorial), chronic obstructive
pulmonary disease, head or neck cancer antecedents, or facial aesthetic surgery.
All the males were well-shaved. A balanced sex ratio was not considered neces-
sary. Informed consent was taken from each case and the study was approved
from Ethics Committee of the Instituto Tecnológico Metropolitano.

2.2 Signal Acquisition

We analyzed right infrahyoid muscles during swallowing tasks. This muscle plays
an important role in the oral and pharyngeal phases of the swallowing process.
Myoelectrical activity was measured with a differential bioamplifier connected
to the polygraph PowerLab 16/35 (AD Instruments Inc.). The sEMG signal
was acquired with non-polarizable, bipolar, disposable and pre-gelled Ag/AgCl
electrodes (Ref. 2228, 3M - 30 mm × 35 mm, 15 mm diameter in gel area and
interelectrode distance of 25 mm). The reference electrode was placed in the
forehead. Figure 1 shows the placement of the sEMG electrodes.

Fig. 1. Electrode placement for right infrahyoid sEMG acquisition.

The following boluses were taken by the subjects: thin liquid (water - 5,
10 and 20 mL), yogurt (3, 5 and 7 mL), and one saliva swallow; 266 sEMG
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recordings were used for analysis. The three consistencies have been used for
assessment of penetration/aspiration in dysphagia [18]. Liquid and yogurt were
delivered to the oral cavity via a 1.5 oz cup. Every task was video-recorded and
initiated when the examiner require to swallow. Video frames were synchronized
with the signal acquisition.

2.3 Signal Pre-processing

The sEMG signals were acquired with sampling frequency Fs = 2 kHz. The pre-
processing, storage and visualization of the raw signals were carried out with
LabChart Pro (AD Instruments Inc.). Offline analysis was performed using a
custom program (Matlab, MathWorks Inc.). As the acquired signals have low
signal-to-noise ratio (SNR) and are highly susceptible to crosstalk, another filter
with narrow bandwidth was employed to improve the burst detection. The signals
were filtered with a 5th order bandpass Butterworth filter between 90 and 250 Hz
[17].

Each signal was visually inspected in the time domain in order to detect
onset and offset of bursts. These times were saved for subsequent analysis and
comparison with the automatic method proposed here.

2.4 Time-Frequency Method for Burst Detection

Every signal was denoised using a Discrete Wavelet Transform (DWT)-based
algorithm, with soft minimax thresholding, symlet-8 as mother wavelet and
8 decomposition levels. To evaluate the time-frequency behavior of denoised
sEMG, We applied subsequently a continuous wavelet transform (CWT) given
by [20]:

CWT (s, τ) =
1√
s

∫
x(t)ψ∗

(
t − τ

s

)
dt (1)

where ψ(t) denotes the mother wavelet, the asterisk is the complex conjugate,
τ is the translation in time and s is a frequency-related scale. Although initial
signals have only one dimension, the CWT gives a bi-dimensional representation
of scale vs. time (scalogram).

The selection of the mother wavelet must be done carefully based on the
nature of the signal. We selected the Haar wavelet for analyzing sEMG signals
since we are looking for amplitude changes in the signal and it has low complexity.

The original scalogram was rescaled in the range 1–255 (CWTrs(srs, τ)).
We sought for times τ with scales-coefficients energies above a background level
Emin. With the information in (CWTrs(srs, τ)), we built a projection vector
Proj(τ) which was used for burst detection. This procedure is summarized in
Algorithm 1. We defined a threshold for Proj(τ), denoted as Thw, that define the
points at which onset and offset points are detected. This procedure is detailed
in the Algorithm 2. Both Emin and Thw were optimized to get an accurate
detection of bursts.
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Algorithm 1. CWT-based algorithm for burst detection
1: Input: CWTrs(srs, τ) - scalogram of EMG signal
2: Input: Emin - threshold of Energy defined by CWT coefficients.
3: Input: Thw - threshold of CWT scales.
4: N = length of the signal.
5: for j = 1, ..., N do
6: Proj(j) = f (CWTrs(srs, j) ≥ Emin): f(•) counts the number of rows of j-th

column of CWTrs(srs, τ) greater than Emin

7: Calculate onset and offset for each burst using Algorithm 2.
8: for j = 1, ...,number of burst do
9: if time between offsetj and onsetj+1 ≤ 250 ms then

10: Concatenate offsetj and onsetj+1 in the same burst.

11: Remove all burst with a duration ≤ 100 ms.
12: Recalculate onset and offset using Algorithm 2
13: Output: onset and offset markers

If the difference between the offset of a burst and onset of the subsequent
one was lesser than 250 ms, we unified both burst as only one. This was made
to avoid the presence of consecutive bursts with non-physiological duration, and
a false increasing of true positives.

Algorithm 2. Onset and offset marker
1: N = length of the signal.
2: for i = 1, ..., N do
3: if Proj(i) ≤ Thw and Proj(i + 1) > Thw then
4: i ← assign as onset

5: if Proj(i) > Thw and Proj(i + 1) ≤ Thw then
6: i ← assign as offset

2.5 TKEO+RMS for Burst Detection

We compared the above mentioned method to a TKEO-based method for burst
detection. This method has been reported for burst detection in signals with low
SNR [21,27]. The TKEO of a discrete signal x(t) is computed point-by-point
follows:

TKEO {x (ti)} = (x (ti))
2 − x (ti−1) x (ti+1) (2)

We computed the RMS over the TKEO signal according to [17]. The resulting
signal is denoted as RMSTK(t). We applied a fixed-size sliding window with
length of 250 ms and steps of 100 ms. RMSTK(t) is decimated in time due to
the windowing process. The burst detection was made using a threshold defined
by the following expression:
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ThTK = μ + hσ (3)

where μ and σ are the mean and standard deviation of RMSTK(t), respectively,
and h is a preset variable that defines the level of the threshold. The parameter
h was fixed at 18 according to [17]. We applied a process similar to Algorithm 1
for burst detection through thresholding, but in this case Proj(τ) is changed by
RMSTK(t).

2.6 Validation

A burst is limited by the time elapsed between the onset and the offset points.
One trained person marked these points in order to avoid inter-expert variability
and uncertainty. Every mark is done if and only if two conditions is accomplished:
the laryngeal ascent is clearly identified in the video-recording and changes in
amplitude and frequency are detected in the time-domain signal. The visual
mark was used as reference for assessment of the proposed method.

We computed the true positives (TP), false positives (FP) and false nega-
tives (FN) of burst detection process in the whole dataset. Both, the proposed
CWT-detection based algorithm and TKEO-based algorithm were evaluated in
comparison with the visual marks. Using TP, FP and FN, we computed the
precision (Pr), recall (R) and F1 score of the burst detection methods as follows:

Pr =
TP

TP + FP
R =

TP

TP + FN
F1 =

2 × R × Pr

R + Pr
. (4)

True negatives were not computed because they correspond to the identifica-
tion of the background segments, which are not part of the interest of the current
work. For the CWT-detection based algorithm, we compared different combina-
tion of parameters Emin and Thw, and those that achieved the maximum value
of the F1 score were chosen as the optimal parameters. For the method based
on TKEO, we varied ThTK in order to maximize the F1 score.

3 Results and Discussion

We propose a time-frequency method based on the CWT aiming to detect bursts
in sEMG signals from infrahyoid muscles. The proposed method uses two thresh-
olds: Emin and Thw, which are applied to CWT scales but not to sEMG ampli-
tude. We performed an exhaustive search to find the optimal parameters Emin

and Thw. Emin varied between 1 and 20 whereas Thw varied between 1 and 30.
Optimal parameters were found to be Emin = 3 and Thw = 18. Left side of
Fig. 2 shows the values generated by the F1 score for variations of Emin when
Thw is fixed at the optimal value. In the same way, the right side of of Fig. 2
shows the values generated by the F1 score for variations of Thw when Emin is
fixed at the optimal value. Emin = 3 means that, if energy for each scale is lesser
or equal than 3 (in a scale between 1 and 255), that point of the scalogram is
marked as noise. Thw = 18 means that at less 18 scales - in a scalogram with
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64 scales - contain energy components greater than Emin. It is clear that the
energy threshold Emin is very small, which means that in our method, it is more
important the scale-related threshold than the energy one. This finding avoids
problems related to amplitude variability in the signals.
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Fig. 2. Effect on F1 score when the following parameters vary: (left) Thw (Emin fixed
at 3); and (right) Emin (Thw fixed at 18)

Table 1 shows a comparison of the number of burst detected by both meth-
ods, the proposed CWT-based method and the TKEO-based one. The optimal
parameters of Thw and Emin used in the CWT-based method achieve the highest
values of F1 score (88,64%) in comparison to the TKEO-based method (83,46%).
The proposed CWT-based method exhibits a balance between the precision and
recall better than TKEO.

Table 1. Counting of true positives (TP), false positives (FP) and false negatives (FN)
for the proposed and the TKEO-based methods in the whole dataset. Performance
measures achieved with the both methods are shown.

TP FP FN F1 score Precision Recall

CWT-based method 462 46 75 88.64% 90.98% 86.43%

TKEO 340 48 183 83.46% 76.81% 91.4%
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Problems with traditional threshold-based methods for detection of muscular
activation are widely reported. As the threshold is user selected, it could be
specially hard to find the optimal value if the signal has low SNR. This means
affectation of precision and recall. If the threshold is too low, the number of
false positives increases (low precision), whilst if the threshold is too high, the
number of false negatives increases (low recall) [26]. This is specially true in
the signals recorded in our work. Two factors come together: the SNR is low
(below to 10 dB) and the infrahyoid muscles are highly susceptible to cross-
talk. Additionally, amplitude-based methods need previous knowledge of the
signal baseline to estimate the threshold [9]. To overcome this limitation, it
is necessary to ask the subject not to execute any movement during the first
second. By contrast, the proposed time-frequency method does not need an
initial background segment.

Merlo et al. proposed a method for onset and offset detection based on CWT
[14]. However, their method depends on a scales-energy threshold and does not
consider additional information from the CWT scalogram. Our method uses
time-frequency analysis and it measures CWT coefficient energies and uses more
detailed information from the scalogram. In this way, Thw is a measure of the
energy distribution across the frequency scales for each sample. Based on our
observations, noise segments contain less energy across different frequency com-
ponents and this behavior does not have a strong dependence on the amplitude.
Consequently, our method is able to detect onset and offset in signals with low
amplitude and low SNR, for instance sEMG signals from infrahyoid muscle.

Figure 3A shows an example of pre-processed sEMG signal with low SNR.
Figure 3B shows the same signal after denoising process using DWT (SNR
increases). Although three segments with activity are present in this signal, the
scalogram (Fig. 3C) shows that only one activity segment has the highest energy
components for most scales. After the projection process described in Algo-
rithm1 only one burst is detected. Figure 3D illustrates a comparison between
the reference signal and the burst detection performed by our method. Visual
inspection, in comparison to the video recorded during the protocol, confirms
that there is only one burst associated with one swallowing.

On the other hand, Fig. 4 shows an example of the burst detection process
using TKEO with the same signal used in the Fig. 3 (see Fig. 4B). One threshold
applied to RMS signal computed over TKEO time series (Fig. 4C). Figure 4D
shows that three bursts are detected using this method, two of them considered
as false positives. One of the main problem of this method is its dependence of
the selected threshold. This behavior was observed in the whole database.

Several published methods measure the error in time for onset detection [10,
11,22,26,27]. We computed the performance measures for the presence/absence
of burst even though our method is able to detect onset and offset times. We have
a limitation in our database, because low SNR makes difficult to mark accurately
onset and offset times by visual inspection. In future works, simulated sEMG
signals and real signals will be used to optimize the method to reduce the error
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Fig. 3. Example of burst detection by the proposed method: A. Signal filtered with
90–250 Hz bandpass filter, B. Signal after denoising with DWT, C. Scalogram applied
to denoised signal, D. Burst detection estimated using the proposed method (blue line)
and marks with visual inspection (red dashed line). (Color figure online)

in time. Real sEMG signals will be recorded synchronized with other signals as
a reference for mark onset and offset times.

In future works our method will be used for swallowing characterization. For
instance, duration of the bursts could be measured. This factor is crucial for
the swallowing analysis, because the time required to swallow different kind of
boluses varies between grades of compromise in dysphagia [2]. Also, the method
can be applied to sEMG signal from different muscles involved in swallowing.
In that case, onset and offset times will be used to establish the sequence of
activation in healthy and pathological subjects during swallowing.
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Fig. 4. Example of burst detection by the TKEO based method: A. Filtered sEMG sig-
nal with 90–250 Hz bandpass filter, B. TKEO applied to filtered signal, C. RMSTK(t)
and thresholds for onset and offset detection, D. Burst detection estimated using the
TKEO method (blue line) and marks with visual inspection (red dashed line). (Color
figure online)
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4 Conclusions

In this paper, we proposed a novel method for onset and offset detection on
sEMG signals based on time-frequency analysis. The proposed method used the
CWT scalogram to detect the time where there are changes of scales-coefficients
energies. We used a scale-related threshold to ensure that those changes are
present in a broad range of frequency-scales. Our method avoids two major
problems in sEMG burst detection: performance highly dependent on amplitude
measures, and the requirement of an initial segment without muscle activity.
We tested the method in sEMG signals recorded in the infrahyoid muscle group
during swallowing tasks. Results evidence that the proposed method is feasible
for burst detection in signals with low SNR - F1score = 88, 64%-. This method
is a promissory tool for sEMG segmentation in swallowing analysis.
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