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Abstract. This article presents a general methodology of state estima-
tion by interval analysis in a dynamic system modeled by difference equa-
tions. The methodology is applied to a pineapple osmotic dehydration
process, in order to predict the behavior of the process within a range of
allowed perturbation. The paper presents simulations and validations.
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1 Introduction

When it comes to industrial processes, it is difficult to obtain a precise model
for disturbances and noise that may interfere with these processes. This paper
presents a methodology for state estimation, where the state equations for the
process are known and the disturbances are limited through intervals. Interval
algebra has diverse applications as shown in [1,2].

State estimation is fundamental for analysis, design, control and supervi-
sion of processes in engineering [3–6]. Specifically, state estimation methodology
based on intervals has received a lot of attention in the last few years and liter-
ature about this subject shows a growing progress [7–12].

This work is organized in the following manner: Sect. 2 shows an approach to
the problem statement and the process under study. Section 3 reviews the fun-
damentals of interval algebra, including the definition of interval, box, interval
matrix and inclusion function. This section also presents the state estimation
algorithm for solving differential equations according to [13]. Initially, the exis-
tence and uniqueness of the solution for the difference equations is verified, when
the initial conditions belong to an interval vector. Afterwards, the solution is cal-
culated through Taylor’s expansion. Sections 4 and 5 present the state estimation
of the studied process, with the interpretation of the obtained results. Finally,
Sect. 6 finishes the work, highlighting a few future work perspectives.
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2 Theoretical Framework

2.1 Problem Statement

The unknown state x for a dynamic system is defined by:

ẋ(t) = f(x(t)), y(t) = g(x(t)), x(0) ∈ [X0] (1)

where x(t) ∈ Rn and y(t) ∈ Rm, and they denote, respectively, the state variables
and the outputs of the system. Initial conditions x(0) are supposed to belong to
an initial “box” [X0]. The concept of “box” will be described in Sect. 3. Time
is t ∈ [0, tmax]. The functions f and g are real and can be differentiable in M ,
where M is an open set of Rn, such as x(t) ∈ M for each t ∈ [0, tmax]. Besides,
function f is at least k-times differentiable in the M domain. The output error
is defined by:

v(ti) = y(ti) − ym(ti), i = 1, 2, . . . , N. (2)

We assume that v(t) and v(t) represent the lower and upper limit of accept-
able output error, respectively. These limits correspond to a bounded noise. The
integer number N is the total number of records. The interval arithmetics are
used to calculate the guaranteed limits for the solution of Eq. 1 in the sampling
times {t1, t2, . . . , tN}. Even though the studied process is a continuous dynamic
system, Eq. 2 indicates that the problem statement is applicable for a discrete
system, which is governed by difference Equations [4].

2.2 Studied Process (Osmotic Dehydration of Pineapple)

The osmotic dehydration process has highly complex dynamics, which implies
that there are a great variety of models and experimental procedures for different
kinds of fruits and foods [14–17]. Independent of the chosen model, some authors
coincide that the most significant variables of the process are identified with
the food concentration and the concentration of the solution where the food is
immersed in [18,19]. Pineapple is a completely heterogeneous, highly watery and
porous food, that when immersed in solutions with high concentration of soluble
solids (sugar), provokes two simultaneous upstream main flows. The first flow
corresponds to a transfer of soluble solids (sugar) from the solution to the food.
The second one is flow of water from the food that goes highly concentrated
to the solution. A third secondary and negligible flow of aroma, vitamins and
minerals happens, which is less intense, and occurs from the fruit to the solution.
The mass transfer mechanisms that are present in the osmotic dehydration at
atmospheric pressure and room temperature are mainly discussion (Fick’s laws
of diffusion).These mechanisms are originated by the concentration differences
between the food and the osmotic solution where the fruit is immersed in [18–
20]. Figure 1 shows the previously described flows that occur during the osmotic
dehydration.

The sugar concentrations found in the osmotic solution and the fruit are
registered by refractometers and reported in refraction indexes or Degrees Brix.
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Fig. 1. Mass transfer process between solution and fruit

Degrees Brix can be understood as a percentage from 0 to 1 or a mass fraction,
that provides the sugar mass contained in the mass of each analyzed component
(solution and fruit). The model that was studied in this paper was extracted from
[18] and it considers three state variables: concentration in fruit, concentration
in tank 1 solution and volume that enters tank 1 from tank 2. The dehydration
plant and its operation is described in [18–20]. Figure 2 shows the process.

Fig. 2. Pineapple osmotic dehydration process diagram

The model of [18] assumes that there is a perfect mix in tank 1, where the
flow is perfectly controlled and the values for concentration in fruit and in tank
1 obey ideally to mass balances. The process is modeled in a discrete manner
with a sample time of ΔT . The model is represented by difference equations, as
indicated below:

– Variation of sugar concentration for the solution:

[Y S ]k+1 = [Y S ]k − B[C]k[XS ]kΔT + ([Y S ]cte − [Y S ]k) [U ]kΔT
[V ]k

(3)
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– Variation of sugar concentration for the food:

[XS ]k+1 = [C]k[XS ]kΔT +
[U ]k[XS ]kΔT

[V ]k
(4)

where:
– [V ]k is the variation of tank 1 volume:

[V ]k+1 = [V ]k + [U ]kΔT (5)

– [C]k is the specific rate of sugar concentration in food:

[C]k = μ
[Y S ]k

KY S + [Y S ]k
(6)

– B is a dimentionless proportion factor between the concentration variation of
the solution and that of the food. This parameter is calculated using the final
(subindex f) and initial (subindex o) values of the concentrations in solution
and food during an experimental process:

B =
[Y S ]f − [Y S ]o
[XS ]f − [XS ]o

(7)

– μ is the maximum change rate in sugar growth for the food. It is represented
by:

μ =
ln( [X

S ]f
[XS ]o

)

tf − to
(8)

– KY S = 0.65 (gr. of sugar/gr. of osmotic solution in tank 1) is the saturation
constant for sugar concentration in tank 1.

The raw material associated to the presented model is pineapple (ananas
comosus in the cayena lisa variety) in a geometric shape (eighths of slice of 1 cm
of thickness without any previous treatment).

The attributes of the osmotic solution for each tank were:

– Tank 2: Constant. [Y S ]cte = 0.65◦Brix.
– Tank 1: Reference. [Y S ]ref = 0.6◦Brix.

The process was simulated for a constant lineal entry flow: [U2]k : (0 to 2.09)
L/min for 180 min. The calculation of the kinetic parameter [C]k and the kinetic
constants μ and B are assumed as known and are reported in Table 1.

Table 1. Kinetic constants for the experiment

µ (L/min) B

0.0007 0.27
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3 Methodology

3.1 Interval Analysis Fundamentals

At first, interval analysis was a response to explain quantification errors that
occurred when real numbers were represented rationally in computers and the
technique was extended to validated numerics [31]. According to [31], an interval
[u] = [u, u], is a closed and connected subset of R, denoted by IR. Two intervals
[u] and [v] are equal, if and only if their inferior and superior limits are the same.
Arithmetic operations between two intervals [u] and [v], can be defined by:

◦ ∈ {+,−,×,÷} , [u] ◦ [v] = {x ◦ y|[u], y ∈ [v]} (9)

The interval vector (or box) [X] is a vector with interval components and it
is equivalent to the cartesian product of scalar intervals:

[X] = [x1] × [x2] × ... × [xn] (10)

The vector set of real n-dimensional intervals is denoted by IRn. A matrix
interval is a matrix where its components are intervals. The set of n × m real
interval matrices is denoted by IRn×m. The classic operations for interval vectors
or interval matrices are direct extensions of the same operations of point vectors
[31].

The operations for punctual vectors can be extended to become classical
operations for interval vectors [22]. This way, if f : Rn → Rm, the range of
function f in an interval vector [u], is given by:

f([u]) = {f(x)|x ∈ [u]} (11)

The interval function [f ] of IRn to IRm is a function of the inclusion of f if:

∀[u] ∈ IRn, f([u]) ⊆ [f ]([u]) (12)

An inclusion function of f can be obtained through the substitution of each
occurrence of a real variable for its corresponding interval. Said function is called
natural inclusion function. In practice, the inclusion function is not unique and
it depends on the syntax of f [31].

3.2 Inversion Set

Consider the problem of determining a solution set for the unknowns u, defined
by:

S = {u ∈ U/φ(u) ∈ [y]} = φ−1([y]) ∩ U (13)

where [y] is known a priori, U is a search set for u and φ of an invertible non-
linear function, which is not necessarily in the classical sense. [23] includes the
calculation of the reciprocal image of φ and that is known as a set inversion prob-
lem that can be solved using the SIVIA (Set Inversion Via Interval Analysis)
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algorithm. SIVIA as proposed in [9] is a recursive algorithm that goes through
all the searching space so it does not lose any solution. This algorithm makes it
possible to derive a guaranteed enclosure of the solution of set S, that meets:
S is factible, enough to prove that φ([u]) ⊆ [y]. Conversely, if it can be proven
that φ([u]) ∩ [y] = 0, then the box [u] is non-viable. On the contrary, there is
no conclusion and the box [u] is said to be undetermined. If the box is unde-
termined, the box is bisected and tried again until its size reaches a threshold
precision, specified for ε > 0. This criterion assures that SIVIA finishes after a
limited number of iterations.

3.3 State Estimation

State estimation refers to the integration of Eq. 1. Thus, the goal is to estimate
the state of vector x in the sampling times {t1, t2, . . . , tN}, which correspond to
the times of output measurements. The box [x(tj)] is denoted as [xj ], where tj
represents the sampling time, j = 1, 2, . . . , N and xj represents the solution of
(1) at tj . For models like the one presented in (1), the sets are characterized
by not being convex and there could even be several disconected components.
Interval analysis consists of enclosing said sets in interval vectors that do not
overlap and the usual inconvenient is obtaining wider solution interval vectors
each time. This in known as the Wrapping Effect. This way, the wrapping effect
yields poor results. The poverty brought by the big width of the set can be
reduced through the use of a higher-order k for the Taylor expansion and through
the use of mean value forms and matrices of pre-conditioning [13,24].

3.4 Prediction and Correction

Prediction aims at calculating the accessibility fixed for the state vector, while
the correction stage keeps only the parts of the accessibility set that are consis-
tent with the measurements and the error limits defined by Eq. 2. It is assumed
that [Xj ] is a box that is guaranteed to contain xj at tj . The exterior aproxi-
mation of the predicted set [Xj+1

+] is defined as the validated solution of the
difference equation at tj+1. The set [Xj+1

+] is calculated using the EMV algo-
rithm (extenden mean value), defined in [24]. The set is guaranteed to contain
the state at tj+1. At tj+1, a “measurement vector”, yj+1, is obtained and it
corresponds to the upper and lower limits for measurement noise.

[yj+1] = [yj+1 − vj+1, yj+1 − vj+1] (14)

Then, the set [g]−1([yj+1]) is calculated. This evaluation is obtained by the
SIVIA algorithm. The expected solution at the sampling time tj+1 is finally given
by [xj+1] = [Xj+1

+] ∩ [g]−1([yj+1]). The procedure for the state estimation is
summarized in the following algorithm: For j = 0 to j = N − 1 do:

– Prediction step: compute [Xj+1
+] using EMV algorithm.

– Correction step: calculate [xj+1] so that

[xj+1] = [Xj+1
+] ∩ [g]−1([yj+1])
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3.5 Extended Mean Value (EMV)

The most efficient methods to solve state estimation for dynamic systems are
based on Taylor’s expansions [24]. These methods consist of two parts: the first
part verifies the existence and uniqueness of the solution, using the fixed point
theorem and the Picard-Lindelf operator. At a time tj+1, a box, a priori [x̃j ],
that contains all the solutions that correspond to all the possible trajectories
between tj and tj+1 is obtained. In the second part, the solution at tj+1 is
calculated using Taylor’s expansion, in the term that remains is [x̃j ]. However,
in practice, the set [x̃j ] often doesn’t contain the true solution [25]. Therefore,
the used technique consists of inflating this set until the next inclusion is verified
with the following expression:

[xi] + hf([x̃i]) ⊆ [x̃i] (15)

where h indicates the integration stage and [xj ] is the first solution. This method
is summarized in the Enclosure algorithm, which was developed by [26]. The
inputs are [xj ] and α > 0 and the output is [x̃j ]:

[xj ] = [x̃j ]
While ([xj ] + hf([x̃j ])) ⊆ [x̃j ] do:

[x̃j ] = inflate([x̃j ], α)

The function inflate for an interval vector [u] = [u1, u1], . . . , [un, un], operates
as follows:

[(1 − α)u1, (1 + α)u1], . . . , [(1 − α)un, (1 + α)un]

Precision depends of the α coefficient. If the set [x̃j ] satisfies the inclusion pre-
sented in Eq. 15, then the inclusion x(t) ∈ [x̃j ] is maintained for all t ∈ [tj , tj+1].
The solution xj+1 of the differential equation given in Eq. 1 at tj+1 is guaranteed,
in the interval vector [xj+1] and it is given by the Taylor expansion [31]:

[xj+1] = [xj ] +
k−1∑

i=1

hif [i]([xj ]) + hkf [k]([x̃j ]) (16)

where k denotes the end of the Taylor expansion and the f [i] coefficients are the
Taylor coefficients of the x(t) solution, which are obtained in a recursive form
by:

f [1] = f, f [i] =
1
i

∂f [i−1]

∂x
f, i ≥ 2 (17)

The application of the inflate function in the set [x̃1] leads to increase of its
width. The poor quality introduced by the wider set can be reduced through
the use of a higher order k for the Taylor expansion in Eq. 17. But the width of
the solution always increases, even for higher orders. To sort this obstacle, Rihm
[27] proposes evaluating (17) through the extended mean value algorithm, based
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on mean value forms and pre-conditioning matrices. This algorithm is used to
solve the differential equation given in (1). The inputs for this algorithm are
[x̃j ], [xj ], x̂j , [vj ], pj , Aj , h and the outputs are [x̃j+1], x̂j+1,[vj+1], [pj+1], Aj+1.
The variable x̂j is the mean point of a certain interval vj . The initial conditions
may be provided by p0 = 0, q0 = 0 and v0 = x0. Up next, the sequence of the
algorithm is presented:

1. [vj+1] = x̂j +
∑k−1

i=1 hif [i](x̂j) + hkf [k]([x̃j ])
2. [Sj ] = I +

∑k−1
i=1 J(f [i]; [xj ])hi

3. [qj+1] = ([Sj ]Aj)[Pj ] + [Sj ]([vj ] − x̂j))
4. [xj+1] = [vj+1] + [xj+1]
5. Aj+1 = m([Sj ]Aj)
6. [pj+1] = A−1

j+1([Sj ]Aj)[pj ] + (A−1
j+1[Sj ])([vj ] − x̂j)

7. x̂j+1 = m([vj+1])

In the previous algorithm, I represents the identity matrix (with the same
dimension of the state vector). J(f [i]; [xj ]) is the Jacobian matrix of the Tay-
lor coefficient, f [i], which is evaluated over [xj ]. The variables x̂j and [vj ] are
calculated in the state (tj − 1).

4 Results

The state estimation algorithm is applied to the pineapple dehydration model.
The analysis is taken to simulation level. Noise R is delimited for the state
variables [Y S ], [XS ] and [V ] respectively, as follows:

R =

⎡

⎣
−0.05 0.05
−0.05 0.05
−0.05 0.05

⎤

⎦ (18)

The initial conditions for the state variables [Y S ], [XS ] and [V ], are given
by:

x(0) =

⎡

⎣
0.135 0.145
0.600 0.610
40.45 40.55

⎤

⎦ (19)

The results of the prediction are calculated for the state variables and the
specific rate of sugar concentration in the food, which is a function of the state
variables. In Figs. 3, 4, 5 and 6, the dotted lines present the simulated values
and solid lines show the model reconstruction. The obtained results for the state
variables display that the uncertainty is adequately controlled by the estimation
algorithm, in spite of the fixed noise, which is in sync with the experimental
conditions of the process. The estimation of the specific concentration rate is a
close approximation to the model data. This proves the method’s efficiency, based
on the higher order of the Taylor expansion, to solve state equations through
center forms and pre-conditioning matrices.
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Fig. 3. State estimation and model
data for variation of sugar concentra-
tion in food

Fig. 4. State estimation and model
data for variation of sugar concentra-
tion in solution

Fig. 5. State estimation and model
data for variation of volume in tank 2

Fig. 6. State estimation and model
data for sugar concentration rate in
food

5 Discussion

The state estimation methodology complement the probabilistic methods, where
noises and disturbances are assumed as random variables and the problem of
state estimation is solved through the election and optimization of adequate
criteria [28]. However, in practice, it is often complicated to make a character-
ization of the random variables that model noise and disturbances, making it
difficult to evaluate proposed stochastic hypothesis. This way, the estimation by
intervals method offers an alternative approach that is based on the fact that the
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dynamic system is limited to a defined uncertainty, having a state estimation in
an enclosed error context. This approach allows characterizing the values of the
state vector, which are consistent with the model structure and the defined error
limits. It is important to highlight that when the dynamic system is governed
by non-linear differential equations, it is fundamental to linearize the model and
afterwards, applying the estimation algorithms presented in this work.

6 Conclusions

State estimation algorithms were applied to a fruit dehydration process, where
it was necessary to know beforehand the operation ranges of the process. The
used state estimation algorithms allowed for the process to be manipulated so
that the necessary state variables were monitored, in order to rebuild the process
based on interval analysis.

The SIVIA and EMV algorithms were experimentally validated, which
allowed for the definition of an adequate operation zone for the plant. State
estimation led to a solution that is in sync with the system’s response, which is
based on the dynamics of the process’ model.

State estimation is highly dependent of limited error. If the error is not bound
in the proper intervals, the reconstruction of the state variable may be wrong,
for when the prediction is made. The bounded noise allows finding important
relationships between input and output variables of the process.

In the future, interval analysis may allow using control techniques based on
state estimation, that may be able to complement traditional methods of auto-
matic control. The methodology used in this work is applicable to real processes
such as those shown in [29–31] and may be used for failure detection and diag-
nostics. It is possible to determine reliable intervals for the correct functioning
of the system, just as the precision of the regions. This has a direct relationship
with the level of uncertainty and the plant’s instrumentation.
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(ficus carica). Información Tecnológica 18(2), 43–48 (2007)

15. Arballo, J.: Modelado y simulación de la deshidratación combinada osmótica-
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