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Abstract. Artificial neural networks are being used in diagnosis support sys-
tems to detect different kind of diseases. As the design of multilayer perceptron
is an open question, the present work shows a comparison between a traditional
empirical way and neuroevolution method to find the best architecture to solve
the disease detection problem. Tuberculosis and appendicitis databases were
employed to test both proposals. Results show that neuroevolution offers a good
alternative for the tuberculosis problem but there is lacks of performance in the
appendicitis one.
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1 Introduction

Nowadays with the increasing volume in data, different fields have been advantage
beneficiaries with the advances of the computational intelligence. More techniques and
methods are employed in big data, knowledge extraction and support of decision
making in diverse applications. One example of this can be encountered in medical
purposes, where a better management of data, faster performance and improvement of
the level of accuracy detection in diseases have made evident [1].

Different proposals from the computational intelligence have been employed to
support problems in medical and biomedical applications. Learning systems as artificial
neural networks (ANN) are commonly used in different applications such as image
analysis and pattern recognition, biochemical analysis, drug design and diagnostic
systems mainly [2—4]. In this last field, ANN have been used as support assistance for
diagnosis of appendicitis in patients presenting with acute right iliac fossa [5], and
comparisons with traditional medical models as the decision trees also have been
implemented [6, 7]. Exploring different proposals of these learning systems, a database
from 801 patients was applied to distinct proposals of ANN as radial basis function,
multilayer network and probabilistic networks with results that reached rates of 99% in
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accuracy [8]. Other study to regard is related with analysis of data from a rural location,
based on information collected in a period of 12 months from 156 patients, which also
employed an ANN [9]. For the tuberculosis case, ANN have been widely used in
diagnosis support systems. Proposals with different input information have been
exposed, having results with sensitivity values upper than 80%, reaching rates of 100%
in some cases. For specificity, results have been less satisfactory, with registered values
that have dropped to 40%, in the worst case [10-13]. All those results show differences
according to available information used in each study. Some studies just used a couple
of variables, and a very few cases used all medical data of patients. It also depends on
the quality of the information system used for such studies.

Neuroevolution of augmenting topologies (NEAT) is a technique to evolve ANN
based on genetic algorithms. It was proposed in the beginning of the present millen-
nium and is based on modifications of the weights and structure of the network
synapses. Meanwhile the balance between the fitness of the evolved solutions and their
diversity is maintained, crossover among topologies is developed, applying speciation
[14-16].

Present work establishes a comparison between two different techniques to obtain
the best architecture of an ANN to solve the disease detection problem in diagnosis
support systems for tuberculosis and appendicitis. First technique is based on a tradi-
tional empirical mode to find the number of nodes in the hidden layer of a multilayer
perceptron (MLP), which consists in to modify the number of nodes and test the
network performance. Second method is based on NEAT technique to find the nodes
and connections to solve the mentioned problems.

2 Methodology

Two databases were used for our comparison due to its similarities in number of
examples, proportion of positive cases and number of variables to be considered. Both
databases are detailed in this section. Then, aspects about the implementation of the
ANN for disease detection will be explained.

2.1 Databases

First database was obtained from the TB Program at Hospital Santa Clara (HSC) in
Bogota D.C. - Colombia. Information from people under suspicion of pulmonary
tuberculosis in the period from January 2008 to March 2011 was considered. The
Ethics and Research Committee of the HSC approved this study. An informed consent
was not needed because all data were obtained in a retrospective and anonymous mode.
Only data from subjects with confirmed diagnostic were considered (using culture and
individuals that finished the anti-TB therapy). At the end, information of 105 subjects
was used: 83 subjects (79%) with TB confirmed and 22 subjects (21%) that were
determined without the disease using diagnosis of exclusion. Confirmation of the TB
cases was achieved using a culture test. For TB negative cases, tests did not have a
positive culture test, other disease was found meanwhile the treatment, and as men-
tioned, a diagnosis of exclusion was used.
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Features were extracted from different information. A first examination of signs and
symptoms was performed by medical personnel, and a clinical suspicion diagnosis was
determined. This variable was represented in an input variable named “Clinical
information”, which takes a “1” value when just the medical report was considered, and
“0” when other test result or additional information lead the subject to start the treat-
ment. Other included variables were extracted from sex, age, homeless, diabetes status,
and HIV (human immunodeficiency virus)/AIDS (acquired immunodeficiency syn-
drome) status. This last was determined using the study of clinical suggestion and
confirming the status with exams, but without complementary information as CD4 cell
or viral load. All variables were coded with zeros and ones according to negative or
positive presence, respectively (Table 1). Age variable was maintained as numeric,
with its original information, and a normalization given by the maximum value was
achieved. This procedure was developed to avoid saturation of values in the synaptic
weights of network and to avoid a wrong representation of the information in training.

Table 1. Variables used in the Tuberculosis diagnostic problem.

Variable Quantity
Sex Male 72 (69%)
Female 33 (31%)
Age Mean + std [40.8 + 17.7
Clinical information | Yes 30 (29%)
No 75 (71%)
HIV/AIDS Yes 28 (27%)
No 77 (73%)
Homeless Yes 33 27%)
No 72 (72%)
Diabetes Yes 2 2%)
No 103 (98%)

Second database represents seven medical measures with information from labo-
ratory tests to confirm the diagnosis of appendicitis [17]. A total of 106 patients admitted
to the emergency room during a three-month in 1980 and a six-month period of 1981-
1982 were included with 85 with confirmed diagnostic by biopsy analysis with a his-
tologic examination of the removed appendix. The age range was from two to 81 years
with a mean age of 25. Fifty-five patients were males and 51 were females [18].

Variables were extracted from information from temperature and an admission
blood sample. Then, total white count, manual differential count, cytochemical dif-
ferential, and C-reactive protein quantity were taken into account. All values were real
and then when normalized to be in the interval [0-1], according with the previous
works reported in [17, 18]. Information about these variables can be seen in Table 2,
where ‘Yes’ means subjects with confirmed disease.
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Table 2. Variables used in the appendicitis diagnostic problem.

Variable Mean + std
Temperature (°F) Yes | 100.2 + 1.4
No [99.2 + 1.1
Total White Blood Count (WBC) | Yes | 13.8 + 3.7
No [9.2 +4.8
Neutrophils count (%) Yes |79.9 + 8.0
No |68.3 + 114
Neutrophils count (x10°/L) Yes | 11.0 + 3.3
No |6.6 +4.5
Manual differential count (%) Yes | 16.7 + 14.3
No | 8.3 + 10.6
Manual differential count (x10°/L) | Yes | 2.2 + 2.1
No [0.7 + 0.8
C-reactive proteins Yes | 4.0 +4.3
No |22+ 44

2.2 Models Determination

For estimating the statistical error and generalization of the models, using the explained
dataset, cross-validation technique was employed [19]. In this case, the dataset was
divided into three sets ensuring that data from people without and with the disease are
equitable distributed. This is performed to assess the generalization of the trained
model, preserving a portion of data that was not used in training. Table 3 shows these
sets and the number of its members.

Commonly, one hidden layer and one output layer are enough to solve classifi-
cation problems, regardless of the type of input variable [20]. The ANN used in this
work had an input layer composed of seven units, each one for each variable, and one
output layer composed just of one neuron. Values of +1 and —1 were used to represent
if input data corresponds to a patient with TB or not, respectively. Neurons in the
hidden layer were established in an experimental way, testing from two to ten neurons.
All neurons had a hyperbolic tangent function as activation function.

Between different algorithms to train the ANN, resilient backpropagation was used
because its speed and low computational cost [21]. In training, also a cross-validation
strategy was considered. In each case, training was performed with two sets (see
Table 3) and results for validation were computed with the left out set, maximizing the
classification rate between TB and no disease. To avoid overfitting, an early stopping
procedure was implemented. Performances of the obtained models were evaluated
using sensitivity and specificity. The different trainings were performed employing
MATLAB 2017a (The MathWorks, Inc, Natrick, MA) through its Neural Networks
Toolbox [22].
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Table 3. Dataset division for training and validation.

Fold | Tuberculosis Appendicitis

Positive | Negative | Total | Positive | Negative | Total
1 28 7 35 |29 7 36
2 28 7 35 |28 7 35
3 27 8 35 |28 7 35
Total | 83 22 105 |85 21 106

In the development of the NEAT approach, a proposal begins with a network in a
similar way that a MLP feed-forward network of only input neurons and output neu-
rons. As evolution progresses through discrete steps, the complexity of the network
grows, inserting more nodes into a connection between input-output path and creating
new connections within the actual nodes. For this, parameters of the network are
represented into a phenotype of genetic algorithms, encoding the schemes that means
every connection and neuron in an explicit representation. In this way, the NEAT
method attempt simultaneously the learned weights and an appropriate topology for the
MLP.

For this case, a cross-validation was used and 100 initializations were implemented
to compute statistical measures of the results and to see the coherence between them.
Fitness computation was based in the error given by the distance of the output from the
correct answer summed for all patterns included in the training set. The resulting
number was squared to give more proportionally more fitness the closer a network was
to a solution [14]. First generation was formed by networks without hidden nodes with
one output and a number of inputs according with the number of variables in each
database. Also, a node with bias information was settled as one. There were connec-
tions corresponding with these initial nodes, representing the genes in each genome,
and each connection with a random weight.

One hundred runs were developed by each fold considered in the database for
training. Each run was composed by 200 as maximum number of generation for a
generational loop, and the population size was of 150. The population with best results
was save as more representative of each run. Finally, the results were collected to study
the generalization of the network in front of new patterns taken from the fold left out.
The NEAT tool for Matlab © was employed to developed the experiments [16].

3 Results

First, results with comparison for both databases when the NEAT method was applied
are presented. Then, results for each disease are shown in terms of sensitivity and
specificity. Figures 1 and 2 show the results for the three used folds, visualizing the
average of nodes in the hidden layer found by the NEAT method. It is possible to see
that the tuberculosis detection, architectures between two and six nodes were obtained
to do the classification. Meanwhile, the Appendicitis problem shows that between ten
and twelve nodes, in mean, are necessary to perform the classification.
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Fig. 1. Results for average of number of hidden nodes found for the NEAT method in both
databases.

Other comparison can be visualized in the number of connections in the hidden
layer (Fig. 2), where the appendicitis problem seems to be more difficult to classify.
This can be indicated by the higher numbers for nodes and connections, compared with
the tuberculosis case.
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Fig. 2. Results for average of disabled connections found for the NEAT method in both
databases.



On the Use of Neuroevolutive Methods as Support Tools 177

Neuroevolution results were compared with the empirical method to find the
number of nodes in the hidden layer in a MLP between two and ten, according as
mentioned before. The best values of each fold were taken into account to compute the
comparative results. Table 4 resumes these corresponding results. For this, the best
value in each fold was taken into account and mean and standard deviation were
computed for these measures. In empirical cases, the model to detect appendicitis had
three nodes in the hidden layer for all folds. The model to detect tuberculosis had two,
five and nine nodes in the hidden layer, respectively.

Figures 3 and 4 show the ROC curve for the used folds. It is possible to see that
best results were reached with the empirical method (Fig. 4). Therefore, the NEAT
method reached comparable results for the detection (Fig. 3). In a similar way, Figs. 5
and 6 show the results for appendicitis detection, allowing to observe similarities in
both methods, but with best results for the empirical one (Table 4).
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Fig. 3. ROC curve for three folds in the tuberculosis problem using NEAT method.
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Fig. 4. ROC curve for three folds in the tuberculosis problem using the empirical method.
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Fig. 5. ROC curve for three folds in the appendicitis problem using the NEAT method.
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Fig. 6. ROC curve for three folds in the appendicitis problem using the empirical method.

Table 4. Comparison results for both employed techniques.

Measure (%) | Tuberculosis Appendicitis

Neuro-evolution | Empirical Neuro-evolution | Empirical
Sensitivity | 88.09 + 7.43 96.42 + 3.5791.86 + 11.03 | 96.51 + 3.44
Specificity | 90.47 + 8.24 100 + 0 68.45 +5.15 7143 +0

4 Discussion

First observation is given by the complexity of models for both diseases. Tuberculosis
diagnosis problem come from an easier problem compared with the appendicitis
problem, this can be seen according with the number of hidden nodes and the con-
nections in the network when NEAT method was used (Figs. 1 and 2). There is
possible to note that tuberculosis problem can be solve with between three and six
nodes, while appendicitis problem needs between ten and twelve nodes in mean to
detect the disease.

After the comparison with the empirical technique, it is possible to observe that the
results are equivalent for the tuberculosis detection (Table 4). NEAT offers best results
for this particular problem, finding a better sensitivity and specificity. At the same time
a smaller architecture also is found. This because the results are for architectures
between three and six nodes in the NEAT method compared with three, five or nine
nodes for the empirical way. This, in terms of number of connections is more efficient
because for NEAT method this number can be in the interval 15 to 25 in mean. Instead
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the model with six nodes in the hidden layer for the empirical method produces around
50 connections.

In the case of appendicitis detection, the values for sensitivity and specificity were
not so good. It is notable the results for the specificity when the empirical way was
implemented, but sensitivity was not well succeeded as in reported works, where
reached rates of 89% [18] and 97% [9]. However, the results are comparable and the
scope of this work was to compare two different methods to obtain ANN architectures.
In this case, a NEAT method offered comparable results as regards to measures of
sensitivity and specificity, and size of the architecture related with nodes and
connections.

Differences in the results can be explained by the type of used variables. For the
tuberculosis case, most of variables are binary inputs, manifesting existence or absence
of the variable. Meanwhile the used variables in the appendicitis problem were all real,
making more difficult the classification. In spite of ANN can be deal with any type of
input variable, for the present case, this could manifest a problem. This supposes a
future work to do by the light of these results.

5 Conclusions

Two methods to obtain networks architectures were compared for the disease detection
problem. A neuroevolution of augmenting topologies and traditional empirical way
were employed to detect diseases based on different input variables. Results show that
for tuberculosis case, the NEAT method offered better results and for appendicitis case
the results are comparable in terms of sensitivity and specificity, but for architecture
size represent a bigger network.
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