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Abstract The main point of this work is the comparison between linear and
geometrically non-linear elasticity modeling in the field of piezoelectric actuators
fabricated at the micro-scale. Manufacturing limitations such as non-symmetrical
lamination of the structure or minimum length scale are taken into account during
the optimization process. The robust approach implemented in the problem also
reduces the sensitivity of the designs to small manufacturing errors.
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1 Introduction

The conceptual tool of topology optimization was initially designed for structural
design, nevertheless, nowadays its use is not restricted only to this purpose.
Some fields where its contribution has been crucial are the design of compliant
mechanisms [5, 25], dynamics [4, 19], band gaps [7, 29] and metamaterials [30],
amongst others.

The topology optimization method has played an important role in the optimal
design of MEMS (micro-electro-mechanical systems), where the size of the devices
typically is smaller than 1mm. In [25] is presented the optimal design of compliant
mechanisms based on the topology optimization method, where these mechanisms
were fabricated at macro- and micro-scale. Concerning piezoelectric effect, [33]
suggested a procedure based on topology optimization and homogenizationmethods
to optimize unit cells for piezocomposites. Regarding thermal and electrothermal
actuators, [26] and [27] optimizedmicrodevices composed of one and two materials,
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respectively. A methodology of the design of MEMS under stochastic loads and
boundary conditions is presented in [16].

In the last years many authors have also applied the topology optimization
method to piezoelectric devices. A pioneering work is [31], where the authors
designed the unit cell of 1–3 composites for hydrophone applications. In the field
of piezoelectric actuators, [32] presented a method to design in-plane actuators
by optimizing the host structure, but fixing the piezoelectric material layer. Kögl
and Silva [12] considered the optimization of piezoelectric layer together with the
polarization based on a three layer model. Carbonari et al. [3] and Luo et al. [15]
optimized simultaneously the host structure and the piezoelectric distribution. The
inclusion of a third variable, the spatial distribution of the control voltage (related
to the polarization of the piezoelectric layers) in the optimization problem, was
presented in [8] and improved in [9] by introducing an interpolation scheme in the
tri-level actuation voltage term. New results are presented in [10] and [11] for in-
plane and out-of-plane piezoelectric transducers, respectively. In [17] is optimized
at the same time the structure and the piezoelectric profile in the context of actuators.

Recently, in prior works, [23] and [22] presented a systematic procedure to
design static microtransducers and modal filters by optimizing simultaneously the
structure layout and the polarization profile. The three layer model considers that
both piezoelectric layers are perfectly bonded to the top and bottom of the host
structure. Either in-phase or out-of-phase polarization of the two piezoelectric
layers makes the structure move in-plane or out-of-plane, respectively. As shown
in [13], at the micro-scale due to limitations in the fabrication techniques only one
piezoelectric film can be deposited on the top of the surface. This is an important
issue for actuators, since with only one piezoelectric layer the device moves in
the in-plane and out-of-plane directions. This issue is overcome in [24], where
unimorph piezoelectric microgrippers working in-plane are designed by optimizing
simultaneously the host structure and the polarization profile of the piezoelectric
layer.

Ruiz and Sigmund [21] improved the latter by using a geometrically non-linear
model that is able to model large displacements. With regard to the topic of
geometrical non-linearities in topology optimization, [2] was the pioneering work,
using the total Lagrangian formulation. In [1] and [20] were presented the optimal
design of compliant mechanisms taking into account this non-linearity. The robust
design of compliant mechanisms that undergo large displacement was included in
[14], adding random variations that model possible geometry errors.Wang et al. [36]
suggests an interpolation scheme for fictitious domain and topology optimization
approaches. The objective of the present paper is to present a comparison between
the behavior of piezoelectric actuators when they are modeled by using linear
elasticity and geometric non-linearities. The main novelty introduced in this work is
the dependence of the external force (the piezoelectric one) on the design variables.
Vertical displacements produced by a nonsymmetrical laminate are suppressed
at some points of interest and a robust approach is used with the objective of
controlling the minimum length scale and minimizing the effect of the small
manufacturing errors.
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The paper is organized as follows. In Sect. 2 the discrete formulation of
the problem is described, including the finite element modeling and the robust
approach implemented. Section 3 is focused on the numerical algorithm used to
solve the problem. Examples with different boundary conditions are shown in
Sect. 4. Section 5 is devoted to the comparison between the two different elasticity
modeling, showing the importance of using the most suitable model. Finally, in
Sect. 6 the conclusions of this work are presented.

2 Topology Optimization of Piezoelectric Microactuators

As design domain Ω we consider a rectangular plate clamped at its left side Γu,
as represented in Fig. 1(top). A piezoelectric layer, that is sandwiched between two
piezoelectric films, is perfectly bonded to the top surface of the host structure. This
configuration is shown in Fig. 1(bottom).

When an input voltage Vin is applied to the electrodes, the electric field generated
polarizes the piezoelectric layer. Thanks to the direct piezoelectric effect, the
resulting force deforms the host structure. Due to a non-symmetrical lamination
of the device, an out-of-plane displacement distorts the genuine in-plane behavior
of the gripper. In such a kind of lamination the piezoelectric effect is divided into
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Fig. 1 Top and side view of the piezoelectric device
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two components: an initial strain that makes the structure expand or contract and a
flexural moment that produces the aforementioned vertical displacement.

This manufacturing limitation leads us to try to suppress this vertical deformation
(in the z-axis) at some points of interest. The output of the actuator is modeled by
a spring of stiffness kout (that depends on the application). The points where the
vertical displacement is suppressed and the output port will be defined for different
examples in Sect. 4.

The goal of the problem is the maximization of the displacement at the output
port, while the vertical displacement along the z-axis at some points of interest
is suppressed as much as possible. This suppression is controlled by adding a
constraint which relates the optimized and the canceled displacements. Finally, a
volume constraint is used to control the amount of material used.

The optimization problem proposed involves two different design variables. The
first one is a characteristic function χs ∈ {0, 1}, that represents the structure layout
and piezo as well (χs = 1) and void (χs = 0). The second variable is also a discrete
function such that χp = {−1, 0, 1}, meaning negative, null or positive polarity.

The role of the latter is crucial in this problem for two reasons. The first one is
that only the part of the host structure covered by electrode is electrically affected
and then subjected to the piezoelectric force. The second concerns the piezoelectric
force: this variable is related with the sign of the force. In other words, χp controls
which parts of the structure works under compression or traction, and this is key to
suppress undesired displacements.

In this work two different elasticity models are used, for small and large in-
plane displacements. Nevertheless, the out-of-plane displacements are expected to
be small, and then it can be studied separately from the in-plane one (decoupled
problems). It will be shown in the examples that the fact of suppressing the vertical
displacement at the output port makes out-of-plane displacements small in general.
This assumption leads us to model out-of-plane displacements in both cases with
linear elasticity theory.

As usual, topology optimization problems lacks of classical solution and the
characteristic functions χs and χp must be relaxed into density variables ρs and
ρp. The well-known SIMP (solid isotropic material with penalization) is used for
this purpose. The Young’s modulus Ee of each element depends on the element
density as follows:

Ee = (ρ̄se)
p(E0 − Emin) + Emin, (1)

where E0 is the Young’s modulus of the base material, Emin > 0 is a small value
used to avoid singularities of the stiffness matrix and p is the penalization exponent
(typically p = 3). Afterwards, the domain is discretized in ne finite elements with
two variables per element.

The discrete formulation written as a topology optimization [21, 24] problem
becomes:

max
ρs ,ρp

: u1(ρs ,ρp)
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s.t.: In-plane and out-of-plane equilibrium equations:

{
rip(ρs ,ρp,Uip) = 0

rop(ρs ,ρp,Uop) = 0

Displacements:

{
u1 = LT

1 Uip

uj = LT
j Uop, j = 1, . . . , nc

Constraints:

(
uj

u1

)2

− ε2d ≤ 0, j = 1, . . . , nc

1T ρs

V
− 1 ≤ 0

ρs ∈ [0, 1]
ρp ∈ [−1, 1],

where ρs and ρp represent the structure layout and the polarization profile,
respectively, L1 and Lj are vectors of zeros with 1 in the degree of freedom of
interest, u1 is the in-plane displacement to be optimized, uj is the out-of-plane
displacements to be suppressed, nc is the number of points where the vertical
displacement is suppressed, εd is a small value that relates the suppressed and the
optimized displacements, V is the maximum volume allowed, rip and rop are the
residual vectors and finally, subscripts ip and op stand for the in-plane and out-of-
plane case, respectively. The residual vectors are defined as the difference between
the external forces (in our case the piezoelectric one) and the internal forces:

rip = fpiezo
ip − fint

ip

rop = fpiezo
op − fint

op .
(2)

Linear Elasticity For this particular case the dependence of the strain on the
displacements is linear, and the elastic energy density can be defined as:

φ = 1

2
λε2kk + μεij εij , (3)

where λ and μ are the Lamé parameters and ε is the strain tensor. The stress
tensor σ can be obtained by differentiating Eq. (3) with respect to the strain tensor.
The discretization of the problem with finite elements is straightforward and the
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interested reader is referred to [18]. Finally, the residual vectors can be written as
follows:

rip = fpiezo

ip (ρs,ρp) − (
Kip(ρs) + 1outkout

)
Uip = 0

rop = fpiezo
op (ρs,ρp) − Kop(ρs )Uop = 0,

where 1out is a zero matrix with 1 in the degree of freedom of the output port and
Kip and Kop are the stiffness matrices. The piezoelectric force depends on both
design variables, ρp defines the sign of the force and ρs represents the fact that void
areas are not electrically affected.

The piezoelectric force modeling can be found in [6] and it is not presented here.
In addition, the same powerlaw dependence presented in Eq. (1) R = ρ

p
s is used for

the piezoelectric force generation. It is easy to see that the value of this interpolation
function is 0 for void regions, and 1 for the solid ones. This interpolation scheme
was presented in [22].

Non-linear Elasticity In this case the displacements of the in-plane case are
supposed to be large and a linear elasticity model is not appropriate to represent
the behavior of the device. Instead, we will use a geometrically non-linear model,
taking the assumption of large displacements but small strains. The Saint-Venant-
Kichhoff model is used to represent this behavior. The expression for the stored
elastic energy density is:

φ = 1

2
λE2

kk + μEijEij , (4)

where E is the Green-Lagrange strain tensor, that can be expressed as follows:

E = 1

2
(FFT − I),

beingF the deformation gradient tensor defined as F = I+∂u/∂y. The second Piola-
Kirchhoff stress tensor S is defined as the derivative of the stored elastic energy
density presented in Eq. (4) with respect to the Green-Lagrange strain tensor.

Finally, the expression for the internal forces presented in Eq. (2) is:

fint,e
ip = ∂

∫
Ω

φedΩ

uip

.

where uip is the elemental displacement vector for element e.
Taking into account that the out-of-plane displacements are supposed to be small

enough to be modeled with a linear elasticity model, the residual vector can be
expressed as follows:

rip = fpiezo

ip −
∫

Ω

Bip(Uip)SdΩ

rop = fpiezo
op − KopUop,
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where Bip is the in-plane non-linear strain displacement matrix. The residual of the
out-of-plane equation depends linearly on the displacements, then to obtain Uop

we must solve a system of linear equations. For the in-plane case the system of
equations is non-linear and an iterative method must be used. For this problem we
use the Newton-Raphson method, where the non-linear system to solve is:

KtΔUip = rip,

whereKt is the tangent stiffness matrix defined as:

Kt = − ∂rip

∂Uip

and the nodal displacement vector is updated by Uip = Uip + ΔUip. The detailed
computations of the nodal force vectors, the strain displacement matrix and the
tangent stiffness matrix can be found in [37].

The interpolation presented in [36] for the elastic stored energy density is
implemented in this work. The objective of this scheme is to alleviate the issue
of distorted and ill-converged void region mesh. This paper suggests basing the
analysis of the solid region on the non-linear analysis and on the linear analysis for
the void one, thereby eliminating mesh distortion and ill-convergence issues in the
low density domain. The interpolation scheme for element e is:

φe(uip) = [φ(γeuip) − φL(γeuip) + φL(uip)]Ee,

where φ(·) is the stored elastic energy density, φL(·) is the stored elastic energy
density under small deformations, both with unit Young’s modulus, and finally,
γe is the interpolation factor. In order to differ between solid and void regions in
intermediate steps of the optimization process, a smoothed Heaviside projection is
used:

γe = tanh(β1ρ0) + tanh
(
β1(ρ̄

p
se − ρ0)

)
tanh(β1ρ0) + tanh

(
β1(1 − ρ0)

) ,

being β1 the parameter that models the smoothness of the projection, ρ0 the
threshold and ρ̄s the physical density, which will be introduced in the next section.

2.1 Robust Formulation

Having in mind the manufacturability of the designs, a robust formulation has
been used with two goals: the first is the minimization of the objective to small
manufacturing errors, the second one is the control of the minimum length scale
in both, void and solid, avoiding the appearance of hinges. This approach was
presented in [28] and [35].
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This formulation consists in the use of three different projections: eroded,
intermediate and dilated. The expression for a projection is:

ρ̄s = tanh(β0η) + tanh
(
β0(ρ̃s − η)

)
tanh(β0η) + tanh

(
β0(1 − η)

) ,

where β0 is a tunable parameter that represents the smoothness of the heaviside
function, η is the threshold which can take values between 0 and 1, and ρ̃s is the
filtered density that is expressed as follows:

ρse =

∑
i∈Ne

ω(xi )viρsi

∑
i∈Ne

ω(xi )vi

,

where xi is the center of element i, vi the volume of element i, Ne the neighborhood
of element e within a certain filter radius r specified by Ne = {i| ||xi − xe|| ≤ r},
and ω(xi ) = r − ||xi − xe||.

From now on superscript q stands for the projection, meaning e erode, d dilate
and i intermediate. The robust topology optimization problem is written as:

max
ρs ,ρp

: min
q={e,i,d} {uq

1(ρ̄s ,ρp)}

s.t.: In-plane and out-of-plane equilibrium equations:

{
rq
ip(ρ̄

q
s ,ρp,Uq

ip) = 0

rq
op(ρ̄

q
s ,ρp,Uq

op) = 0

Displacements:

{
u

q
1 = LT

1 U
q
ip

u
q

j = LT
j U

q
op, j = 1, . . . , nc

Constraints: (
u

q

j

u
q

1

)
− ε2d ≤ 0, j = 1, . . . , nc

1T ρ̄d
s

V ∗
d

− 1 ≤ 0

ρs ∈ [0, 1]
ρp ∈ [−1, 1]
q ≡ {e, i, d},
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where V ∗
d is the maximum volume for the dilated design. This value is computed

at the beginning of the optimization process and then is update every 20 iterations
following the next equation:

V ∗
d = V ∗

Vi

Vd,

being V ∗ the maximum volume prescribed for the intermediate design and Vi and
Vd the volume of the intermediate and dilated designs, respectively.

Since the max-min function is not differentiable, the problem is rewritten by
using the so-called bound formulation [19]:

max
ρs ,ρp

: β

s.t.: In-plane and out-of-plane equilibrium equations:

{
rq
ip(ρ̄

q
s ,ρp,Uq

ip) = 0

rq
op(ρ̄

q
s ,ρp,Uq

op) = 0

Displacements:

{
u

q
1 = LT

1 U
q
ip

u
q

j = LT
j U

q
op, j = 1, . . . , nc

Constraints:

−u
q
1 ≤ β(

u
q
j

u
q

1

)
− ε2d ≤ 0, j = 1, . . . , nc

1T ρ̄d
s

V ∗
d

− 1 ≤ 0

ρs ∈ [0, 1]
ρp ∈ [−1, 1]
q ≡ {e, i, d},

being β a new variable that does not depend on the design variables ρs and ρp and
resolves the issue of the non-differentiability of the max-min function.
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3 Numerical Implementation

The well-known MMA (Method of Moving Asymptotes, [34]) is used to solve
the optimization problem. This algorithm is included inside the group of descent
methods, which require information about the objective function, constraints and
the sensitivities of both. The adjoint method is used to compute the sensitivities
with respect to both design variables, ρs and ρp, but these computations are not the
objective of this work, and this is why they are not included here.

The complete process algorithm in a pseudo code looks like:

Pre-process

1. Define dimensions, boundary conditions and material properties of the plate.
Input parameters like Vin, εd and V must be fixed.

2. Initialize both design variables, ρs with ρse = V and ρp with ρpe = 1.

Optimization Algorithm

3. Compute the physical densities ρ̄s by filtering the structural density ρs and then
projecting with three different thresholds.

4. Solve the finite element problems for the three different physical densities:

• For the in-plane case.
• For the out-of-plane case.

5. Extract the displacements u
q

1 and u
q

j from the global displacements vectors and
compute the value of the objective function and constraints.

6. Compute the sensitivities of the objective function and constraints.
7. Update design variables ρs and ρp by using MMA.
8. Until convergence, update parameters β0 and V ∗

d and go back to step 3.

Post-process

9. Plot the optimized designs.

4 Examples

In this section three actuators with different boundary conditions will be presented
to show the validity of our method. For the sake of brevity, all the examples have
been obtained using a geometrically non-linear modeling.

The materials used for the three different actuators remain constant. The host
layer with a thickness of t = 5 μm is made of silicon with Young’s modulus E0 =
130GPa and Poisson’s coefficient ν = 0.3. The piezoelectric film with thickness
tp = 0.5 μm is made of PZT with E0 = 67GPa, ν = 0.3 and d31 = 190 pm. The
stiffness of the void is chosen to be small compared to the stiffness of the solid one,
Emin = 10−9E0. The minimum length scale is set to 22.5 μm with η = 0.3 and
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Fig. 2 Boundary conditions
for the first example
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Ω
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β0 = 1 and doubling its value each 50 iterations. Concerning the interpolation
scheme of the elastic stored energy density, the values of the parameters of the
projection are fixed to β1 = 500 and ρ0 = 0.01. The maximum volume fraction
of the designs is V0 = 40%. Finally, the values of the inputs are Vin = 1000V,
kin = 1000N/m and εd = 5%.

The design domain Ω will change for the different examples and then its
dimensions will be shown in each particular case.

4.1 Maximizing Displacement in Horizontal Direction

A square plate-type structure clamped at its left side is considered as design domain
Ω . The objective is the maximization of the displacement u1 while u2 is suppressed.
Boundary conditions and dimensions of the plate are shown if Fig. 2.

The result of the optimization process is shown in Fig. 3. For the sake of brevity,
only the intermediate projection (blueprint design) is presented. The structural
layout (ρ̄s ) is shown in Fig. 3(left), where black and white mean solid and void
areas, respectively. There is no gray areas (microstructure) in the optimized design,
meaning that the projection method is working properly. The minimum length scale
imposed on both, solid and void, is represented with the black circle. The electrode
profile (ρp) is shown in Fig. 3(right), where cyan and orange represent parts of the
structure with opposite polarization. The in-plane displacement is u1 = 122 μm,
while the out-of-plane u2 is smaller than the 5% of u1. As can be seen, the in-plane
displacement is bigger than the 5% of the length of the plate. This value remarks the
importance and is the motivation of using a geometrically non-linear modeling.

4.2 Maximizing Displacement in Horizontal Direction
Including Void Passive Area

There are two differences with respect to the previous example: the sense of the
displacement to be optimized and the inclusion of a void passive area in the middle
of the domain. Boundary conditions are presented in Fig. 4.
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Fig. 3 Structural layout (left) and polarization profile (right) for the first boundary conditions. The
black circle indicates the minimum length scale

1000µm

1000µm

u2
u1

kout

Ω

Fig. 4 Boundary conditions for the second example

The optimized design are presented in Fig. 5. The structural layout is shown
in Fig. 5(left) and the polarization profile in Fig. 5(right). In this case the in-plane
displacement is u1 = 104 μm.

4.3 Maximizing Displacement in Vertical Direction Including
Void Passive Area

Boundary conditions and passive area are shown in Fig. 6. This configuration defines
a particular case of actuators: grippers. Interested reader is referred to [24] and [21],
where this problem is fully described. As can be seen one passive area has been
added: a void passive area necessary to have enough space to grab objects.
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Fig. 5 Structural layout (left) and polarization profile (right) for the second boundary conditions.
The black circle indicates the minimum length scale
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Fig. 6 Boundary conditions for the third example

Fig. 7 Structural layout (left) and polarization profile (right) for the third boundary conditions.
The black circle indicates the minimum length scale

Optimized design for the new boundary conditions is shown in Fig. 7. Structural
layout and polarization profile are presented in Fig. 7(left) and (right), respectively.
The in-plane displacement of the gripper is u1 = 140 μm.
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Fig. 8 Evolution of the
output displacement
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5 Comparison Between Linear and Non-linear Modeling

In this section we show the importance of using the geometrically non-linear
modeling when the displacements are big enough (> 5% of the length of the
domain). In Fig. 8 the evolution of the output displacement (u1) is plotted as
a function of the input voltage. Blue line represents the linear modeling of the
displacements. In this case the optimized design does not change when the input
voltage is increased and the evolution of the output is linear. The green line shows
the geometrically non-linear modeling of the displacements. For this particular case,
the optimized designs change when the input voltage in increased, actually, the
higher the input, the greater the difference between both models. As expected, for
low voltages, both designs are the same.

6 Conclusions

In this paper, different kind of piezoelectric actuators have been obtained by
using the topology optimization method. The out-of-plane displacement caused by
unsymmetrical lamination of the piezoelectric actuator (which is a real limitation
when fabricating at micro-scale) is suppressed in order to get genuine in-plane
actuators. This is obtained by adding an additional constraint to the optimization
problem for each point where we want to cancel the out-of-plane bending.

Two different modelings have been used in this work, a linear model used
for low inputs and a geometrically non-linear one for high voltages where the
displacements are big compared to the size of the device. In both cases the out-
of-plane displacement has been modeled with the linear approach, since these
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displacements are small in general and this allows us to save computational time.
In addition, an elastic energy interpolation scheme has been used with the objective
of alleviating convergence problems due to the excessive distortion of low density
elements.

Finally, in order to ensure robustness (avoiding the appearance of hinges) and
manufacturability (controlling the minimum length scale) of the optimized designs,
a robust formulation approach has been used in this problem.
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