# **Applications of Observability Inequalities**



#### **Jone Apraiz**

**Abstract** This article presents two observability inequalities for the heat equation over  $\Omega \times (0, T)$ . In the first one, the observation is from a subset of positive measure in  $\Omega \times (0, T)$ , while in the second, the observation is from a subset of positive surface measure on *∂Ω* ×*(*0*,T)*. We will provide some applications for the above-mentioned observability inequalities, the bang-bang property for the minimal time control problems and the bang-bang property for the minimal norm control problems, and also establish new open problems related to observability inequalities and the aforementioned applications.

**Keywords** Parabolic equations · Control theory · Controllability · Observability inequalities · Bang-Bang properties

**AMS 2010 Codes:** 49J20, 49J30, 58E25, 93B05, 93B07, 35K05

## **1 Introduction**

This article serves as a review on observability inequalities from measurable sets for solutions to the heat equation. The purpose of trying to obtain the two observability inequalities that we will see and prove in this article, was that in control theory there is a very well known result, the Hilbert Uniqueness Method, that assures that the null controllability of an equation is equivalent to obtain an observability inequality for the adjoint equation. This result is attributed to J.L. Lion. In our previous research we were studying the null controllability of parabolic equations over measurable sets, so, for the Hilbert Uniqueness Method reason, we focused on proving the observability inequalities (Theorems [1](#page-3-0) and [2\)](#page-3-1) that we will see in this article.

J. Apraiz  $(\boxtimes)$ 

Departamento de Matemáticas, Universidad del País Vasco, Leioa, Spain e-mail: [jone.apraiz@ehu.eus](mailto:jone.apraiz@ehu.eus)

<sup>©</sup> Springer Nature Switzerland AG 2019

J. L. García Guirao et al. (eds.), *Recent Advances in Differential Equations and Applications*, SEMA SIMAI Springer Series 18, [https://doi.org/10.1007/978-3-030-00341-8\\_1](https://doi.org/10.1007/978-3-030-00341-8_1)

In the next lines of the Introduction we will establish the type of problem we will work on, remember some a priori estimates for the parabolic equations and recall some previous results about this kind of work.

Then, in Sect. [2,](#page-3-2) we will establish and prove Theorems [1](#page-3-0) and [2](#page-3-1) which will give us two observability inequalities. We will continue, in Sect. [3,](#page-8-0) showing some applications of the observability inequalities we have proved, the bang-bang property for the minimal time control problems and the bang-bang property for the minimal norm control problems. Finally, with Sect. [4,](#page-13-0) we will finish the article establishing some open problems related to observability inequalities and their applications to control theory.

Let  $\Omega$  be a bounded Lipschitz domain in  $\mathbb{R}^n$  and  $T$  be a fixed positive time. Consider the heat equation:

<span id="page-1-0"></span>
$$
\begin{cases} \n\partial_t u - \Delta u = 0, & \text{in } \Omega \times (0, T), \\ \nu = 0, & \text{on } \partial \Omega \times (0, T), \\ \nu(0) = u_0, & \text{in } \Omega, \n\end{cases} \tag{1}
$$

with *u*<sub>0</sub> in  $L^2(\Omega)$ . The solution of [\(1\)](#page-1-0) will be treated as either a function from [0, T] to  $L^2(\Omega)$  or a function of two variables *x* and *t*. Two important a priori estimates for the above equation are as follows:

<span id="page-1-1"></span>
$$
||u(T)||_{L^{2}(\Omega)} \leq N(\Omega, T, \mathcal{D}) \int_{\mathcal{D}} |u(x, t)| dx dt, \tag{2}
$$

for all  $u_0 \in L^2(\Omega)$ , where  $D$  is a subset of  $\Omega \times (0, T)$ , and

<span id="page-1-2"></span>
$$
||u(T)||_{L^{2}(\Omega)} \leq N(\Omega, T, \mathcal{J}) \int_{\mathcal{J}} |\frac{\partial}{\partial \nu} u(x, t)| d\sigma dt, \tag{3}
$$

for all  $u_0 \in L^2(\Omega)$ , where  $\Im$  is a subset of  $\partial \Omega \times (0, T)$ . Such a priori estimates are called observability inequalities.

In the case that  $\mathcal{D} = \omega \times (0, T)$  and  $\mathcal{J} = \Gamma \times (0, T)$  with  $\omega$  and  $\Gamma$  accordingly open and nonempty subsets of  $\Omega$  and  $\partial\Omega$ , both inequalities [\(2\)](#page-1-1) and [\(3\)](#page-1-2) (where *∂Ω* is smooth) were essentially first established, via the Lebeau-Robbiano spectral inequalities in [\[6\]](#page-15-0). These two estimates were set up to the linear parabolic equations (where  $\partial \Omega$  is of class  $C^2$ ), based on the Carleman inequality provided in [\[5\]](#page-15-1). In the case when  $\mathcal{D} = \omega \times (0, T)$  and  $\mathcal{J} = \Gamma \times (0, T)$  with  $\omega$  and  $\Gamma$  accordingly subsets of positive measure and positive surface measure in *Ω* and *∂Ω*, both inequalities [\(2\)](#page-1-1) and  $(3)$  were built up in [\[1\]](#page-15-2) with the help of a propagation of smallness estimate from measurable sets for real-analytic functions first established in [\[10\]](#page-15-3). For  $\mathcal{D} = \omega \times E$ , with *ω* and *E* accordingly an open subset of *Ω* and a subset of positive measure in *(*0*,T)*, the inequality [\(2\)](#page-1-1) (when *∂Ω* is smooth) was proved in [\[11\]](#page-15-4) with the aid of the Lebeau-Robbiano spectral inequality, and it was then verified for heat equations (when *Ω* is convex) with lower terms depending on the time variable, through a frequency function method in [\[8\]](#page-15-5). When  $\mathcal{D} = \omega \times E$ , with  $\omega$  and E accordingly subsets of positive measure in  $\Omega$  and  $(0, T)$ , the estimate [\(2\)](#page-1-1) (when  $\partial \Omega$  is realanalytic) was obtained in [\[12\]](#page-15-6).

In [\[2\]](#page-15-7), we established the inequalities [\(2\)](#page-1-1) and [\(3\)](#page-1-2) when  $\mathcal D$  and  $\mathcal J$  were arbitrary subsets of positive measure and of positive surface measure in  $\Omega \times (0, T)$  and  $\partial \Omega \times$ *(*0*,T)* respectively. Such inequalities not only are mathematically interesting but also have important applications in the control theory of the heat equation, such as the bang-bang control, the time optimal control, the null controllability over a measurable set and so on.

We will see how we proved the two above-mentioned inequalities. We start assuming that the Lebeau-Robbiano spectral inequality stands on *Ω*. To introduce it, we write

$$
0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_j \leq \cdots
$$

for the eigenvalues of −*Δ* with the zero Dirichlet boundary condition over *∂Ω*, and  ${e_i : i > 1}$  for the set of  $L^2(\Omega)$ -normalized eigenfunctions, i.e.,

$$
\begin{cases} \Delta e_j + \lambda_j e_j = 0, & \text{in } \Omega, \\ e_j = 0, & \text{on } \partial \Omega. \end{cases}
$$
 (4)

For  $\lambda > 0$  we define

$$
\mathcal{E}_{\lambda} f = \sum_{\lambda_j \leq \lambda} (f, e_j) e_j \quad \text{and} \quad \mathcal{E}_{\lambda}^{\perp} f = \sum_{\lambda_j > \lambda} (f, e_j) e_j,
$$

where

$$
(f, e_j) = \int_{\Omega} f e_j dx, \text{ when } f \in L^2(\Omega), j \ge 1.
$$

Throughout this paper the following notations are used:

$$
(f, g) = \int_{\Omega} fg \, dx \quad \text{and } \|f\|_{L^{2}(\Omega)} = (f, f)^{\frac{1}{2}}.
$$

*ν* is the unit exterior normal vector to  $\Omega$ .  $d\sigma$  is surface measure on  $\partial\Omega$ .  $B_R(x_0)$ stands for the ball centered at  $x_0$  in  $\mathbb{R}^n$  of radius  $R$ ,  $\Delta_R(x_0)$  denotes  $B_R(x_0) \cap \partial \Omega$ ,  $B_R = B_R(0)$  and  $\Delta_R = \Delta_R(0)$ . For measurable sets  $\omega \subset \mathbb{R}^n$  and  $\mathcal{D} \subset \mathbb{R}^n \times (0, T)$ ,  $|\omega|$  and  $|\mathcal{D}|$  stand for the Lebesgue measures of the sets. For each measurable set  $\mathcal J$  in  $\partial \Omega \times (0, T)$ , |J| denotes its surface measure on the lateral boundary of  $\Omega \times \mathbb{R}$ . {*e*<sup>*t*Δ</sup> :  $t \geq 0$ } is the semigroup generated by  $\Delta$  with zero Dirichlet boundary condition over *∂Ω*. Consequently, *etΔf* is the solution to the problem [\(1\)](#page-1-0) with the initial state *f* in  $L^2(\Omega)$ . The Lebeau-Robbiano spectral inequality is as follows:

*For each*  $0 \lt R \lt 1$ *, there is*  $N = N(\Omega, R)$ *, such that the inequality* 

<span id="page-3-3"></span>
$$
\|\mathcal{E}_{\lambda}f\|_{L^2(\Omega)} \le N e^{N\sqrt{\lambda}} \|\mathcal{E}_{\lambda}f\|_{L^2(B_R(x_0))}
$$
 (5)

*holds, when*  $B_{4R}(x_0) \subset \Omega$ ,  $f \in L^2(\Omega)$  and  $\lambda > 0$ .

#### <span id="page-3-2"></span>**2 Observability Inequalities**

Our main results related to the observability inequalities are stated as follows, but, first, we will define the real-analyticity of the set  $\Delta_{4R}(q_0)$ .

**Definition 1** Let  $q_0 \in \partial \Omega$  and  $0 \lt R \le 1$ . We say that  $\Delta_{4R}(q_0)$  is real-analytic with constants  $\varrho$  and  $\delta$  if for each  $q \in \Delta_{4R}(q_0)$ , there are a new rectangular coordinate system where  $q = 0$ , and a real-analytic function  $\phi : B'_\rho \subset \mathbb{R}^{n-1} \to \mathbb{R}$ verifying

$$
\begin{cases}\n\phi(0') = 0, & |\partial^{\alpha}\phi(x')| \le |\alpha|! \delta^{-|\alpha|-1}, \\
\text{when } x' \in B_{\varrho}', \ \alpha \in \mathbb{N}^{n-1}, \\
B_{\varrho} \cap \Omega = B_{\varrho} \cap \{(x', x_n) : x' \in B_{\varrho}', \ x_n > \phi(x')\}, \\
B_{\varrho} \cap \partial \Omega = B_{\varrho} \cap \{(x', x_n) : x' \in B_{\varrho}', \ x_n = \phi(x')\}.\n\end{cases}\n\tag{6}
$$

Here,  $B'_{\varrho}$  denotes the open ball of radius  $\varrho$  and with center at  $0'$  in  $\mathbb{R}^{n-1}$ .

In the next two theorems, we establish two observability inequalities for the heat equation over  $\Omega \times (0, T)$ . In Theorem [1,](#page-3-0) the observation is from a subset of positive measure in  $\Omega \times (0, T)$ , while in Theorem [2,](#page-3-1) the observation is from a subset of positive surface measure on  $\partial \Omega \times (0, T)$ .

<span id="page-3-0"></span>**Theorem 1** *Suppose that a bounded domain Ω verifies the condition [\(5\)](#page-3-3) and T >* 0*. Let x*<sup>0</sup> ∈ *Ω and R* ∈ *(*0*,* 1] *be such that B*4*R(x*0*)* ⊂ *Ω. Then, for each measurable set*  $D \subset B_R(x_0) \times (0, T)$  *with*  $|D| > 0$ *, there is a positive constant*  $B = B(\Omega, T, R, \mathcal{D})$ *, such that* 

<span id="page-3-4"></span>
$$
\|e^{T\Delta}f\|_{L^2(\Omega)} \le e^B \int_{\mathcal{D}} |e^{t\Delta}f(x)| \, dx dt,\tag{7}
$$

*when*  $f \in L^2(\Omega)$ *.* 

<span id="page-3-1"></span>**Theorem 2** *Suppose that a bounded Lipschitz domain Ω verifies the condition [\(5\)](#page-3-3) and*  $T > 0$ *. Let*  $q_0 \in \partial \Omega$  *and*  $R \in (0, 1]$  *be such that*  $\Delta_{4R}(q_0)$  *is real-analytic.* 

*Then, for each measurable set*  $\mathcal{J} \subset \Delta_R(q_0) \times (0, T)$  *with*  $|\mathcal{J}| > 0$ *, there is a positive constant*  $B = B(\Omega, T, R, \mathcal{J})$ *, such that* 

$$
\|e^{T\Delta}f\|_{L^2(\Omega)} \le e^B \int_{\mathcal{J}} |\frac{\partial}{\partial \nu} e^{t\Delta} f(x)| d\sigma dt, \tag{8}
$$

*when*  $f \in L^2(\Omega)$ *.* 

Next, we will see some results that will be necessary in the proof of the previous Theorem [1.](#page-3-0)

<span id="page-4-0"></span>**Lemma 1** *Let B<sub>R</sub>*(*x*<sub>0</sub>) ⊂ *Ω and*  $D$  ⊂ *B<sub>R</sub>*(*x*<sub>0</sub>) × (0*,T*) *be a subset of positive measure. Set*

$$
\mathcal{D}_t = \{x \in \Omega : (x, t) \in \mathcal{D}\}, \ E = \{t \in (0, T) : |\mathcal{D}_t| \ge |\mathcal{D}|/(2T)\}, \ t \in (0, T). \tag{9}
$$

*Then,*  $\mathcal{D}_t \subset \Omega$  *is measurable for a.e.*  $t \in (0, T)$ *, E is measurable in*  $(0, T)$ *,*  $|E| \ge$  $|D|/2|B_R|$  *and* 

<span id="page-4-2"></span>
$$
\chi_E(t)\chi_{\mathcal{D}_t}(x) \le \chi_{\mathcal{D}}(x,t), \text{ in } \Omega \times (0,T). \tag{10}
$$

*Proof* From Fubini's theorem,

$$
|\mathcal{D}| = \int_0^T |\mathcal{D}_t| dt = \int_E |\mathcal{D}_t| dt + \int_{[0,T] \setminus E} |\mathcal{D}_t| dt \le |B_R||E| + |\mathcal{D}|/2.
$$

<span id="page-4-1"></span>**Theorem 3** *Let*  $x_0 \in \Omega$  *and*  $R \in (0,1]$  *be such that*  $B_{4R}(x_0) \subset \Omega$ *. Let*  $D ⊂ B<sub>R</sub>(x<sub>0</sub>) × (0, T)$  *be a measurable set with*  $|D| > 0$ *. Write E and*  $D<sub>t</sub>$  *for the sets associated to*  $D$  *in Lemma [1.](#page-4-0) Then, for each*  $\eta \in (0,1)$ *, there are*  $N =$  $N(\Omega, R, |\mathcal{D}|/(T|B_R|), \eta)$  *and*  $\theta = \theta(\Omega, R, |\mathcal{D}|/(T|B_R|), \eta)$  *with*  $\theta \in (0, 1)$ *, such that*

$$
\|e^{t_2\Delta} f\|_{L^2(\Omega)} \le \left( Ne^{N/(t_2 - t_1)} \int_{t_1}^{t_2} \chi_E(s) \|e^{s\Delta} f\|_{L^1(\mathcal{D}_s)} ds \right)^{\theta} \|e^{t_1\Delta} f\|_{L^2(\Omega)}^{1-\theta},\tag{11}
$$

*when* 0 ≤ *t*<sub>1</sub> < *t*<sub>2</sub> ≤ *T*,  $|E \cap (t_1, t_2)|$  ≥  $η(t_2 - t_1)$  *and*  $f ∈ L^2(\Omega)$ *. Moreover,* 

$$
e^{-\frac{N+1-\theta}{t_2-t_1}} \|e^{t_2 \Delta} f\|_{L^2(\Omega)} - e^{-\frac{N+1-\theta}{q(t_2-t_1)}} \|e^{t_1 \Delta} f\|_{L^2(\Omega)}
$$
  
\n
$$
\leq N \int_{t_1}^{t_2} \chi_E(s) \|e^{s \Delta} f\|_{L^1(\mathcal{D}_s)} ds, \text{ when } q \geq (N+1-\theta)/(N+1).
$$
\n(12)

The reader can find the proof of the following Lemma 2 in either [\[7,](#page-15-8) pp. 256–257] or [\[8,](#page-15-5) Proposition 2.1].

<span id="page-5-0"></span>**Lemma 2** *Let E be a subset of positive measure in (*0*,T). Let l be a density point of E. Then, for each*  $z > 1$ *, there is*  $l_1 = l_1(z, E)$  *in*  $(l, T)$  *such that, the sequence* {*lm*} *defined as*

$$
l_{m+1} = l + z^{-m} (l_1 - l), \; m = 1, 2, \cdots,
$$

*verifies*

<span id="page-5-1"></span>
$$
|E \cap (l_{m+1}, l_m)| \ge \frac{1}{3} (l_m - l_{m+1}), \text{ when } m \ge 1.
$$
 (13)

*Proof (Theorem [1\)](#page-3-0)* Let *E* and  $\mathcal{D}_t$  be the sets associated to  $\mathcal{D}$  in Lemma [1](#page-4-0) and *l* be a density point in *E*. For  $z > 1$  to be fixed later,  $\{l_m\}$  denotes the sequence associated to  $l$  and  $z$  in Lemma [2.](#page-5-0) Because [\(13\)](#page-5-1) holds, we may apply Theorem [3,](#page-4-1) with  $\eta = 1/3$ ,  $t_1 = l_{m+1}$  and  $t_2 = l_m$ , for each  $m \ge 1$ , to get that there are  $N =$  $N(\Omega, R, |\mathcal{D}|/(T|B_R|)) > 0$  and  $\theta = \theta(\Omega, R, |\mathcal{D}|/(T|B_R|))$ , with  $\theta \in (0, 1)$ , such that

<span id="page-5-2"></span>
$$
e^{-\frac{N+1-\theta}{l_m-l_{m+1}}} \|e^{l_m\Delta} f\|_{L^2(\Omega)} - e^{-\frac{N+1-\theta}{q(l_m-l_{m+1})}} \|e^{l_{m+1}\Delta} f\|_{L^2(\Omega)}
$$
  
\n
$$
\leq N \int_{l_{m+1}}^{l_m} \chi_E(s) \|e^{s\Delta} f\|_{L^1(\mathcal{D}_s)} ds, \text{ when } q \geq \frac{N+1-\theta}{N+1} \text{ and } m \geq 1.
$$
\n(14)

Setting  $z = 1/q$  in [\(14\)](#page-5-2) (which leads to  $1 < z \leq \frac{N+1}{N+1-\theta}$ ) and

$$
\gamma_z(t) = e^{-\frac{N+1-\theta}{(z-1)(l_1-l)t}}, \ t > 0,
$$

recalling that

$$
l_m - l_{m+1} = z^{-m} (z - 1) (l_1 - l), \text{ for } m \ge 1,
$$

we have

<span id="page-5-3"></span>
$$
\gamma_{z}(z^{-m})\|e^{l_{m}\Delta}f\|_{L^{2}(\Omega)} - \gamma_{z}(z^{-m-1})\|e^{l_{m+1}\Delta}f\|_{L^{2}(\Omega)}
$$
\n
$$
\leq N \int_{l_{m+1}}^{l_{m}} \chi_{E}(s)\|e^{s\Delta}f\|_{L^{1}(\mathcal{D}_{s})} ds, \text{ when } m \geq 1.
$$
\n(15)

Choose now

$$
z = \frac{1}{2} \left( 1 + \frac{N+1}{N+1-\theta} \right).
$$

The choice of *z* and Lemma [2](#page-5-0) determines  $l_1$  in  $(l, T)$  and from [\(15\)](#page-5-3),

<span id="page-6-0"></span>
$$
\gamma(z^{-m})\|e^{l_m\Delta}f\|_{L^2(\Omega)} - \gamma(z^{-m-1})\|e^{l_{m+1}\Delta}f\|_{L^2(\Omega)}
$$
  
\n
$$
\leq N \int_{l_{m+1}}^{l_m} \chi_E(s)\|e^{s\Delta}f\|_{L^1(\mathcal{D}_s)} ds, \text{ when } m \geq 1.
$$
 (16)

with

$$
\gamma(t) = e^{-A/t}
$$
 and  $A = A(\Omega, R, E, |\mathcal{D}|/(T|B_R|)) = \frac{2(N + 1 - \theta)^2}{\theta (l_1 - l)}$ .

Finally, because of

$$
\|e^{T\Delta}f\|_{L^2(\Omega)} \le \|e^{l_1\Delta}f\|_{L^2(\Omega)}, \sup_{t \ge 0} \|e^{t\Delta}f\|_{L^2(\Omega)} < +\infty, \lim_{t \to 0+} \gamma(t) = 0,
$$

and  $(10)$ , the addition of the telescoping series in  $(16)$  gives

$$
\|e^{T\Delta}f\|_{L^2(\Omega)} \le Ne^{zA}\int_{\mathcal{D}\cap(\Omega\times[l,l_1])}|e^{t\Delta}f(x)|\,dxdt,\text{ for }f\in L^2(\Omega),
$$

which proves [\(7\)](#page-3-4) with  $B = zA + \log N$ .

*Remark [1](#page-3-0)* The constant *B* in Theorem 1 depends on *E* because the choice of  $l_1 =$  $l_1(z, E)$  in Lemma [2](#page-5-0) depends on the possible complex structure of the measurable set *E* (See the proof of Lemma [2](#page-5-0) in [\[8,](#page-15-5) Proposition 2.1]). When  $\mathcal{D} = \omega \times (0, T)$ , one may take  $l = T/2$ ,  $l_1 = T$ ,  $z = 2$  and then,

$$
B=A(\Omega, R, |\omega|/|B_R|)/T.
$$

*Remark 2* The proof of Theorem [1](#page-3-0) also implies the following observability estimate:

$$
\sup_{m\geq 0}\sup_{l_{m+1}\leq t\leq l_m}e^{-z^{m+1}A}\|e^{t\Delta}f\|_{L^2(\Omega)}\leq N\int_{\mathcal{D}\cap(\Omega\times[l,l_1])}|e^{t\Delta}f(x)|\,dxdt,
$$

for *f* in  $L^2(\Omega)$ , and with *z*, *N* and *A* as defined along the proof of Theorem [1.](#page-3-0) Here,  $l_0 = T$ .

Next, we will see some results that will be necessary in the proof of the previous Theorem [2.](#page-3-1)

**Lemma 3** *Let*  $q_0 \in \partial \Omega$  *and*  $\partial \subset \Delta_R(q_0) \times (0, T)$  *be a subset with*  $|\partial| > 0$ *. Set* 

<span id="page-6-1"></span>
$$
\mathcal{J}_t = \{x \in \partial \Omega : (x, t) \in \mathcal{J}\}\, t \in (0, T) \quad E = \{t \in (0, T) : |\mathcal{J}_t| \ge |\mathcal{J}|/(2T)\}.
$$

$$
\Box
$$

 $\Box$ 

*Then,*  $\mathcal{J}_t \subset \Delta_R(q_0)$  *is measurable for a.e.*  $t \in (0, T)$ *, E is measurable in*  $(0, T)$ *,*  $|E| \geq |\mathcal{J}|/(2|\Delta_R(q_0)|)$  *and*  $\chi_E(t)\chi_{\mathcal{J}_t}(x) \leq \chi_{\mathcal{J}}(x, t)$  *over*  $\partial\Omega \times (0, T)$ *.* 

*Proof* From Fubini's theorem,

$$
|\mathcal{J}| = \int_0^T |\mathcal{J}_t| dt = \int_E |\mathcal{J}_t| dt + \int_{[0,T] \setminus E} |\mathcal{J}_t| dt \le |\Delta_R(x_0)| |E| + |\mathcal{J}|/2.
$$

<span id="page-7-0"></span>**Theorem 4** *Suppose that*  $\Omega$  *verifies the condition* [\(5\)](#page-3-3)*. Assume that*  $q_0 \in \partial \Omega$  *and*  $R \in (0, 1]$  *such that*  $\Delta_{4R}(q_0)$  *is real-analytic. Let*  $\beta$  *be a subset in*  $\Delta_R(q_0) \times$ *(*0*,T) of positive surface measure on ∂Ω* × *(*0*,T), E and* J*<sup>t</sup> be the measurable sets associated to*  $\beta$  *in Lemma [3.](#page-6-1) Then, for each*  $\eta \in (0,1)$ *, there are*  $N =$  $N(\Omega, R, |\mathcal{J}|/(T|\Delta_R(q_0)|), \eta)$  *and*  $\theta = \theta(\Omega, R, |\mathcal{J}|/(T|\Delta_R(q_0)|), \eta)$  *with*  $\theta \in$ *(*0*,* 1*), such that the inequality*

$$
\|e^{t_2\Delta} f\|_{L^2(\Omega)} \le \left( Ne^{N/(t_2 - t_1)} \int_{t_1}^{t_2} \chi_E(t) \|\frac{\partial}{\partial v} e^{t\Delta} f\|_{L^1(\mathcal{J}_t)} dt \right)^\theta \|e^{t_1\Delta} f\|_{L^2(\Omega)}^{1-\theta},\tag{17}
$$

*holds, when*  $0 \le t_1 < t_2 \le T$  *with*  $t_2 - t_1 < 1$ *,*  $|E \cap (t_1, t_2)| \ge \eta(t_2 - t_1)$  *and*  $f \in L^2(\Omega)$ *. Moreover,* 

$$
e^{-\frac{N+1-\theta}{t_2-t_1}} \|e^{t_2 \Delta} f\|_{L^2(\Omega)} - e^{-\frac{N+1-\theta}{q(t_2-t_1)}} \|e^{t_1 \Delta} f\|_{L^2(\Omega)}
$$
  
\n
$$
\leq N \int_{t_1}^{t_2} \chi_E(t) \| \frac{\partial}{\partial \nu} e^{t \Delta} f\|_{L^1(\mathcal{J}_t)} dt, \text{ when } q \geq \frac{N+1-\theta}{N+1}.
$$
\n(18)

*Proof (Theorem [2\)](#page-3-1)* Let *E* and  $\lambda$  be the sets associated to  $\lambda$  in Lemma [3](#page-6-1) and *l* be a density point in *E*. For  $z > 1$  to be fixed later,  $\{l_m\}$  denotes the sequence associated to *l* and *z* in Lemma [2.](#page-5-0) Because of [\(13\)](#page-5-1) and from Theorem [4](#page-7-0) with  $\eta = 1/3$ ,  $t_1 = l_{m+1}$ and  $t_2 = l_m$ , with  $m \ge 1$ , there are  $N = N(\Omega, R, |\mathcal{J}|/(T|\Delta_R(q_0)|)) > 0$  and  $\theta = \theta(\Omega, R, |\mathcal{J}|/(T|\Delta_R(q_0)|))$ , with  $\theta \in (0, 1)$ , such that

$$
e^{-\frac{N+1-\theta}{l_m-l_{m+1}}} \|e^{l_m\Delta} f\|_{L^2(\Omega)} - e^{-\frac{N+1-\theta}{q(l_m-l_{m+1})}} \|e^{l_{m+1}\Delta} f\|_{L^2(\Omega)}
$$
  
  $\leq N \int_{l_{m+1}}^{l_m} \chi_E(s) \| \frac{\partial}{\partial \nu} e^{s\Delta} f\|_{L^1(\mathcal{J}_s)} ds, \text{ when } q \geq \frac{N+1-\theta}{N+1} \text{ and } m \geq 1.$ 

Let

$$
z = \frac{1}{2} \left( 1 + \frac{N+1}{N+1-\theta} \right).
$$

Then, we can use the same arguments as those in the proof of Theorem [1](#page-3-0) to verify Theorem [2.](#page-3-1)

<span id="page-8-3"></span>*Remark 3* The proof of Theorem [2](#page-3-1) also implies the following observability estimate:

$$
\sup_{m\geq 0}\sup_{l_{m+1}\leq t\leq l_m}e^{-z^{m+1}A}\|e^{t\Delta}f\|_{L^2(\Omega)}\leq N\int_{\mathcal{J}\cap(\partial\Omega\times[l,l_1])}\left|\frac{\partial}{\partial\nu}e^{t\Delta}f(x)\right|\,d\sigma dt,
$$

for *f* in  $L^2(\Omega)$ , with  $A = 2(N + 1 - \theta)^2/[\theta(l_1 - l)]$  and with *z*, *N* and  $\theta$  as given along the proof of Theorem [2.](#page-3-1) Here,  $l_0 = T$ .

## <span id="page-8-0"></span>**3 Applications of Observability Inequalities**

We will now show some applications of the Theorems [1](#page-3-0) and [2](#page-3-1) in the control theory of the heat equation. Specifically, we will focus on the uniqueness and bang-bang properties of the minimal time and minimal  $L^\infty$ -norm control problems.

In this section we assume that  $T > 0$  and that  $\Omega$  is a bounded Lipschitz domain verifying the condition [\(5\)](#page-3-3).

First of all, we will show that Theorems [1](#page-3-0) and [2](#page-3-1) imply the null controllability with controls restricted over measurable subsets in  $\Omega \times (0, T)$  and  $\partial \Omega \times (0, T)$ respectively. Let D be a measurable subset with positive measure in  $B_R(x_0) \times (0, T)$ with  $B_{4R}(x_0) \subset \Omega$ . Let  $\mathcal J$  be a measurable subset with positive surface measure in  $\Delta_R(q_0) \times (0, T)$ , where  $q_0 \in \partial \Omega$ ,  $R \in (0, 1]$  and  $\Delta_{4R}(q_0)$  is real-analytic. Consider the following controlled heat equations:

<span id="page-8-2"></span>
$$
\begin{cases} \n\partial_t u - \Delta u = \chi_{\mathcal{D}} v, \text{ in } \Omega \times (0, T], \\ \n u = 0, \text{ on } \partial \Omega \times [0, T], \\ \n u(0) = u_0, \text{ in } \Omega, \n\end{cases} \tag{19}
$$

and

<span id="page-8-1"></span>
$$
\begin{cases}\n\partial_t u - \Delta u = 0, \text{ in } \Omega \times (0, T], \\
u = g \chi_{\mathcal{J}}, \text{ on } \partial \Omega \times [0, T], \\
u(0) = u_0, \text{ in } \Omega,\n\end{cases}
$$
\n(20)

where  $u_0 \in L^2(\Omega)$ ,  $v \in L^\infty(\Omega \times (0, T))$  and  $g \in L^\infty(\partial \Omega \times (0, T))$  are controls. *We say that u is the solution to* [\(20\)](#page-8-1) *if*  $v \equiv u - e^{t\Delta}u_0$  *is the unique solution defined in [\[4,](#page-15-9) Theorem 3.2] to*

$$
\begin{cases}\n\partial_t v - \Delta v = 0, \text{ in } \Omega \times (0, T), \\
v = g \chi_{\beta}, \text{ on } \partial \Omega \times (0, T), \\
v(0) = 0, \text{ in } \Omega,\n\end{cases}
$$
\n(21)

*with g in*  $L^p(\partial \Omega \times (0, T))$  *for some*  $2 \leq p \leq \infty$ .

From now on, we always denote by  $u(\cdot; u_0, v)$  and  $u(\cdot; u_0, g)$  the solutions to problems [\(19\)](#page-8-2) and [\(20\)](#page-8-1) corresponding to *v* and *g* respectively.

<span id="page-9-1"></span>**Corollary 1** *For each*  $u_0 \in L^2(\Omega)$ *, there are bounded control functions v and g with*

$$
||v||_{L^{\infty}(\Omega \times (0,T))} \leq C_1 ||u_0||_{L^2(\Omega)},
$$
  

$$
||g||_{L^{\infty}(\partial \Omega \times (0,T))} \leq C_2 ||u_0||_{L^2(\Omega)},
$$

*such that*  $u(T; u_0, v) = 0$  *and*  $u(T; u_0, g) = 0$ *. Here*  $C_1 = C(\Omega, T, R, \mathcal{D})$  *and*  $C_2 = C(\Omega, T, R, \emptyset).$ 

*Proof* We only prove the boundary controllability. Let *E* be the measurable set associated to  $\beta$  in Lemma [3.](#page-6-1) Write

$$
\widetilde{\beta} = \{(x, t) : (x, T - t) \in \mathcal{J}\} \text{ and } \widetilde{E} = \{t : T - t \in E\}.
$$

Let  $l > 0$  be a density point of *E* (Hence,  $T - l$  is a density point of *E*). We choose *z*,  $l$ , and the assume a  $l$ ,  $l$  as in the area of of Theorem 2 but with 4 and *F* associationals  $l_1$  and the sequence  ${l_m}$  as in the proof of Theorem [2](#page-3-1) but with  $\beta$  and  $E$  accordingly replaced by  $\mathcal J$  and  $E$ . It is clear that

$$
0 < l < \cdots < l_{m+1} < l_m \cdots < l_1 < l_0 = T, \ \lim_{m \to +\infty} l_m = l.
$$

We set

$$
\mathcal{M} = \mathcal{J} \cap (\partial \Omega \times [T - l_1, T - l]) \subset \mathcal{J}.
$$

It is clear that  $|\mathcal{M}| > 0$ . The proof of Theorem [2,](#page-3-1) the change of variables  $t = T - \tau$ and Remark [3](#page-8-3) show that the observability inequality

<span id="page-9-0"></span>
$$
\|\varphi(0)\|_{L^2(\Omega)} \le e^B \int_{\mathcal{M}} |\frac{\partial \varphi}{\partial \nu}(p, t)| \, d\sigma \, dt,\tag{22}
$$

holds, when  $\varphi$  is the unique solution in  $L^{\infty}([0, T], L^2(\Omega)) \cap L^2([0, T], H_0^1(\Omega))$  to

$$
\begin{cases}\n\partial_t \varphi + \Delta \varphi = 0, & \text{in } \Omega \times [0, T), \\
\varphi = 0, & \text{on } \partial \Omega \times [0, T), \\
\varphi(T) = \varphi_T, & \text{in } \partial \Omega,\n\end{cases}
$$
\n(23)

for some  $\varphi_T$  in  $L^2(\Omega)$ . Set

$$
X = \{\frac{\partial \varphi}{\partial \nu}|_{\mathcal{M}} : \varphi(t) = e^{(T-t)\Delta} \varphi_T, \text{ for } 0 \le t \le T, \text{ for some } \varphi_T \in L^2(\Omega)\}.
$$

Since  $M ⊂ ∂Ω × [T - l_1, T - l]$ , *X* is a subspace of  $L^1(M)$  and from [\(22\)](#page-9-0), the linear mapping  $\Lambda : X \longrightarrow \mathbb{R}$ , defined by

$$
\Lambda(\frac{\partial \varphi}{\partial \nu}|_{\mathcal{M}}) = (u_0, \varphi(0)),
$$

verifies

$$
\left|\Lambda(\frac{\partial\varphi}{\partial\nu}|\mathcal{M})\right| \leq e^B \|\mu_0\|_{L^2(\Omega)} \int_{\mathcal{M}} |\frac{\partial\varphi}{\partial\nu}(p,t)| d\sigma dt, \text{ when } \frac{\partial\varphi}{\partial\nu}|_{\mathcal{M}} \in X.
$$

From the Hahn-Banach theorem, there is a linear extension  $T: L^1(\mathcal{M}) \longrightarrow \mathbb{R}$  of *Λ*, with

$$
T\left(\frac{\partial\varphi}{\partial\nu}\big|_{\mathcal{M}}\right) = (u_0, \varphi(0)), \text{ when } \frac{\partial\varphi}{\partial\nu}\big|_{\mathcal{M}} \in X,
$$
  

$$
|T(f)| \le e^B \|u_0\| \|f\|_{L^1(\mathcal{M})}, \text{ for all } f \in L^1(\mathcal{M}).
$$

Thus, *T* is in  $L^1(\mathcal{M})^* = L^\infty(\mathcal{M})$  and there is *g* in  $L^\infty(\mathcal{M})$  verifying

$$
T(f) = \int_{\mathcal{M}} fg \, d\sigma dt, \text{ for all } f \in L^1(\mathcal{M}) \text{ and } ||g||_{L^{\infty}(\mathcal{M})} \le e^B ||u_0||.
$$

We extend *g* over  $\partial \Omega \times (0, T)$  by setting it to be zero outside M and denote the extended function by *g* again. Then it holds that  $u(T; u_0, g) = 0$  provided that we know that

$$
\int_{\Omega} u(T; u_0, g)\varphi_T dx = \int_{\Omega} u_0 \varphi(0) dx - \int_{\mathcal{M}} g \frac{\partial \varphi}{\partial \nu} d\sigma dt, \text{ for all } \varphi_T \in L^2(\Omega). \tag{24}
$$

To prove [\(24\)](#page-10-0), we first use the unique solvability for the problem

<span id="page-10-0"></span>
$$
\begin{cases}\n\partial_t u - \Delta u = 0, & \text{in } \Omega \times (0, T], \\
u = \gamma, & \text{on } \partial \Omega \times [0, T], \\
u(0) = 0 & \text{in } \Omega,\n\end{cases}
$$

with lateral Dirichlet data  $\gamma$  in  $L^p(\partial\Omega \times (0,T))$ ,  $2 \leq p \leq \infty$ , established in [\[4,](#page-15-9) Theorem 3.2] (See also [\[3,](#page-15-10) Theorems 8.1 and 8.3]). Then, because  $g\chi_M$  is bounded and supported in  $\partial \Omega \times [T - l_1, T - l] \subset \partial \Omega \times (2\eta, T - 2\eta)$  for some  $\eta > 0$ , the calculations leading to [\(24\)](#page-10-0) can be justified via the regularization of  $g\chi_M$  and the approximation of  $\Omega$  by smooth domains  $\{\Omega_j; j \ge 1\}$  as in [\[3,](#page-15-10) Lemma 2.2].

## *3.1 Definition of the Minimal Time Control Problems and Main Results*

In this section, we apply Theorems [1](#page-3-0) and [2](#page-3-1) to get the bang-bang property for the minimal time control problems usually called the first type of time optimal control problems; they are stated as follows. Let  $\omega$  be a measurable subset with positive measure in  $B_R(x_0)$  and  $B_{4R}(x_0) \subset \Omega$ . Suppose that  $\Delta_{4R}(q_0)$  is real-analytic for some  $q_0 \in \partial \Omega$  and  $R \in (0, 1]$  and let  $\Gamma$  be a measurable subset with positive surface measure of  $\Delta_R(x_0)$ . For each  $M > 0$ , we define the following control constraint set:

$$
\mathcal{U}_M^1 = \{ v \text{ measurable on } \Omega \times \mathbb{R}^+ : \ |v(x,t)| \le M \text{ for a.e. } (x,t) \in \Omega \times \mathbb{R}^+ \}.
$$

$$
\mathcal{U}_M^2 = \{ g \text{ measurable on } \partial \Omega \times \mathbb{R}^+ : |g(x, t)| \le M \text{ for a.e. } (x, t) \in \partial \Omega \times \mathbb{R}^+ \}.
$$

Let  $u_0 \in L^2(\Omega) \setminus \{0\}$ . Consider the minimal time control problems:

$$
(TP)_{M}^{1}: T_{M}^{1} \equiv \min_{v \in \mathcal{U}_{M}^{1}} \left\{ t > 0: e^{t\Delta}u_{0} + \int_{0}^{t} e^{(t-s)\Delta}(\chi_{\omega}v) ds = 0 \right\}
$$

and

$$
(TP)_{M}^{2}: T_{M}^{2} \equiv \min_{g \in \mathcal{U}_{M}^{2}} \{t > 0: u(x, t; g) = 0 \text{ for a.e. } x \in \Omega\},
$$

where  $u(\cdot, \cdot; g)$  is the solution to

$$
\begin{cases}\n\partial_t u - \Delta u = 0, & \text{in } \Omega \times \mathbb{R}^+, \\
u = g \chi_{\Gamma}, & \text{on } \partial \Omega \times \mathbb{R}^+, \\
u(0) = u_0, & \text{in } \Omega.\n\end{cases}
$$
\n(25)

Any solution of  $(TP)^i_M$ ,  $i = 1, 2$ , is called a minimal time control to this problem. According to Theorem [1](#page-3-0) and Theorem 3.3 in [\[9\]](#page-15-11), problem  $(TP)^{1}_{M}$  has solutions. By Theorem [2,](#page-3-1) using the same arguments as those in the proof of Theorem 3.3 in [\[9\]](#page-15-11), we can verify that there is  $g \in \mathcal{U}_M^2$  such that for some  $t > 0$ ,  $u(x, t; g) = 0$  for a.e. *x* ∈ *Ω*.

## <span id="page-12-5"></span>**Lemma 4** *Problem*  $(TP)$ <sup>2</sup> $_M$  *has solutions.*

*Proof* Let  $\{t_n\}_{n\geq 1}$ , with  $t_n \searrow T_M^2$ , and  $g_n \in \mathcal{U}_M^2$  be such that  $u(x, t_n; g_n) = 0$  over *Ω*. Hence, on a subsequence,

<span id="page-12-0"></span>
$$
g_n \longrightarrow g^* \text{ weakly star in } L^{\infty}(\partial \Omega \times (0, t_1)). \tag{26}
$$

It suffices to show that

<span id="page-12-4"></span>
$$
u_n(x, t_n) \equiv u(x, t_n; g_n) \longrightarrow u^*(x, T_M^2) \equiv u(x, T_M^2; g^*), \text{ for all } x \in \Omega. \tag{27}
$$

For this purpose, let  $G(x, y, t)$  be the Green's function for  $\Delta - \partial_t$  in  $\Omega \times \mathbb{R}$  with zero lateral Dirichlet boundary condition. Reference [\[4,](#page-15-9) Theorems 1.3 and 1.4] and [\[4,](#page-15-9) p. 643] show that for  $g \in \mathcal{U}_M^2$  and  $(x, t) \in \Omega \times (0, T)$ ,

<span id="page-12-1"></span>
$$
u(x, t; g) = e^{t\Delta}u_0 - \int_0^t \int_{\partial \Omega} \frac{\partial G}{\partial v_q}(x, q, t - s) \chi_{\Gamma}(q, s) g(q, s) d\sigma_q ds \tag{28}
$$

and

<span id="page-12-2"></span>
$$
\int_0^T \int_{\partial \Omega} \left| \frac{\partial G}{\partial v_q}(x, q, \tau) \right|^2 d\sigma_q d\tau < +\infty, \text{ when } x \in \Omega, T > 0. \tag{29}
$$

Also, by standard interior parabolic regularity there is  $N = N(n, \epsilon)$  with

<span id="page-12-3"></span>
$$
|u(x,t; g) - u(x,s; g)| \le N|t - s| \left( \|g\|_{L^{\infty}(\partial \Omega \times (0,T))} + \|u_0\|_{L^2(\Omega)} \right) \tag{30}
$$

when  $d(x, \partial \Omega) > \sqrt{\epsilon}$  and  $t > s \ge \epsilon$ . Now, when  $x \in \Omega$  with  $d(x, \partial \Omega) > \sqrt{\epsilon}$ , it holds that

$$
|u_n(x, t_n) - u^*(x, T_M^2)| \le |u_n(x, t_n) - u_n(x, T_M^2)| + |u_n(x, T_M^2) - u^*(x, T_M^2)|.
$$

This, along with [\(26\)](#page-12-0), [\(28\)](#page-12-1), [\(29\)](#page-12-2) and [\(30\)](#page-12-3) indicates that [\(27\)](#page-12-4) holds for all  $x \in \Omega$ with  $d(x, \partial \Omega) > \sqrt{\epsilon}$ . Since  $\epsilon > 0$  is arbitrary, [\(27\)](#page-12-4) follows at once.

Now, we can use the same methods as those in [\[11\]](#page-15-4), as well as in Lemma [4,](#page-12-5) to get the following consequences of Theorems [1](#page-3-0) and [2](#page-3-1) respectively.

**Corollary 2** Problem  $(T P)^{1}_{M}$  has the bang-bang property: any minimal time *control v satisfies that*  $|v(x, t)| = M$  *for a.e.*  $(x, t) \in \omega \times (0, T^1_M)$ *. Consequently, this problem has a unique minimal time control.*

**Corollary 3** *The problem*  $(TP)$ <sup>2</sup> $^2$ *M has the bang-bang property: any minimal time boundary control g satisfies that*  $|g(x, t)| = M$  *for a.e.*  $(x, t) \in \Gamma \times (0, T_M^2)$ *. Consequently, this problem has a unique minimal time control.*

## *3.2 Definition of the Minimal Norm Control Problems and Main Results*

In this section, we apply Theorems [1](#page-3-0) and [2](#page-3-1) to get the bang-bang property for the minimal norm control problems; they are stated as follows. Let  $D$  and  $D$  be the subsets given at the beginning of this section. Let  $u_0 \in L^2(\Omega)$ , we define two control constraint sets as follows:

$$
\mathcal{V}_{\mathcal{D}} = \left\{ v \in L^{\infty}(\Omega \times (0, T)) : u(T; u_0, v) = 0 \right\}
$$

and

$$
\mathcal{V}_{\mathcal{J}} = \left\{ g \in L^{\infty}(\partial \Omega \times (0, T)) : u(T; u_0, g) = 0 \right\}.
$$

Consider the minimal norm control problems:

$$
(NP)_{\mathcal{D}}: \quad M_{\mathcal{D}} \equiv \min\left\{ ||v||_{L^{\infty}(\Omega \times (0,T))} : v \in \mathcal{V}_{\mathcal{D}} \right\}
$$

and

$$
(NP)_{\mathcal{J}}: M_{\mathcal{J}} \equiv \min \left\{ \|g\|_{L^{\infty}(\partial \Omega \times (0,T))} : g \in \mathcal{V}_{\mathcal{J}} \right\}.
$$

Any solution of  $(NP)_{\mathcal{D}}$  (or  $(NP)_{\mathcal{A}}$ ) is called a minimal norm control to this problem. According to Corollary [1,](#page-9-1) the sets  $\mathcal{V}_{\mathcal{D}}$  and  $\mathcal{V}_{\mathcal{J}}$  are not empty. Since  $\mathcal{V}_{\mathcal{D}}$ is not empty, it follows from the standard arguments that Problem  $(NP)$ <sup>D</sup> has solutions. Because  $\mathcal{V}_{\mathcal{J}}$  is not empty, by using the similar arguments as those in the proof of Lemma [4,](#page-12-5) we can justify that Problem  $(NP)_3$  has solutions.

We can use the same methods as those in  $[8]$  to get the following consequences of Theorem [1](#page-3-0) and Theorem [2](#page-3-1) respectively:

**Corollary 4** *Problem*  $(NP)_{\mathcal{D}}$  *has the bang-bang property: any minimal norm control v satisfies that*  $|v(x, t)| = M_D$  *for a.e.*  $(x, t) \in D$ *. Consequently, this problem has a unique minimal norm control.*

**Corollary 5** *The problem*  $(NP)_3$  *has the bang-bang property: any minimal norm boundary-control g satisfies that*  $|g(x, t)| = M_3$  *for a.e.*  $(x, t) \in \mathcal{J}$ *. Consequently, this problem has a unique minimal norm control.*

### <span id="page-13-0"></span>**4 Open Problems**

In this section we will establish the heat equation with similar conditions to what we studied before, but in this case we will require it to verify other type of boundary conditions instead of Dirichlet boundary conditions.

Let  $\Omega$  be a bounded Lipschitz domain in  $\mathbb{R}^n$  and consider the following heat equation,

$$
\begin{cases} \n\partial_t u - \Delta u = 0, & \text{in } \Omega \times (0, 1), \\ \n\frac{\partial}{\partial v} u = 0, & \text{on } \partial \Omega \times (0, T), \\ \nu(0) = u_0, & \text{in } \Omega, \n\end{cases} \tag{31}
$$

with Neumann boundary condition and

$$
\begin{cases} \n\partial_t u - \Delta u = 0, & \text{in } \Omega \times (0, 1), \\ \n\frac{\partial}{\partial v} u + \alpha u = 0, & \text{on } \partial \Omega \times (0, T), \\ \n\frac{\partial}{\partial v} u = u_0, & \text{in } \Omega, \n\end{cases} \tag{32}
$$

with Robin boundary condition, where  $\alpha \in \mathbb{R}$  and  $u_0$  in  $L^2(\Omega)$ .

We proved two observability inequalities (Theorems [1](#page-3-0) and [2\)](#page-3-1) for these kind of equations over measurable sets with Dirichlet boundary conditions, but if we change that condition to now use Neumann or Robin conditions, would we be able to prove some similar observability inequalities? And, if that's the case, could we apply them to prove some bang-bang properties?

The idea of facing these questions is to spread our mathematical knowledge about this kind of problems and also to discover new interesting ways or limitations in the techniques we are used to working with. It could also be physically interesting because of the physical meaning of these new boundary conditions, as we will see now.

The Dirichlet boundary condition states that we have a constant temperature at the boundary. This can be considered as a model of an ideal cooler in a good contact having infinitely large thermal conductivity.

With the Neumann boundary condition case for the heat flow, we can say that we have a constant heat flux at the boundary or that it corresponds to a perfectly insulated boundary. If the flux is equal to zero, the boundary condition describes the ideal heat insulator with the heat diffusion. For the Laplace equation and drum modes, we could think this corresponds to allowing the boundary to flap up and down but not move otherwise.

Finally, the Robin boundary condition is the mathematical formulation of Newton's law of cooling where the heat transfer coefficient  $\alpha$  is utilized. The heat transfer coefficient is determined by details of the interface structure (sharpness, geometry) between two media. This law describes the boundary between metals and gas quite well and is good for the convective heat transfer.

### **References**

- <span id="page-15-2"></span>1. Apraiz, J., Escauriaza, L.: Null-control and measurable sets. ESAIM Control Optim. Calc. Var. **19**, 239–254 (2013)
- <span id="page-15-7"></span>2. Apraiz, J., Escauriaza, L., Wang, G., Zhang, C.: Observability inequalities and measurable sets. J. Eur. Math. Soc. **16**, 2433–2475 (2014)
- <span id="page-15-10"></span>3. Brown, R.M.: The method of layer potentials for the heat equation in Lipschitz cylinders. Am. J. Math. **111**, 339–379 (1989)
- <span id="page-15-9"></span>4. Fabes, E.B., Salsa, S.: Estimates of caloric measure and the initial-Dirichlet problem for the heat equation in Lipschitz cylinders. Trans. Am. Math. Soc. **279**, 635–650 (1983)
- <span id="page-15-1"></span>5. Fursikov, A.V., Yu Imanuvilov, O.: Controllability of Evolution Equations. Lecture Notes Series, vol. 34. Seoul National University, Seoul (1996)
- <span id="page-15-0"></span>6. Lebeau, G., Robbiano, L.: Contrôle exact de l'équation de la chaleur. Commun. Partial Differ. Equ. **20**, 335–356 (1995)
- <span id="page-15-8"></span>7. Lions, J.L.: Optimal Control for Systems Governed by Partial Differential Equations. Springer, Berlin (1971)
- <span id="page-15-5"></span>8. Phung, K.D., Wang, G.: An observability estimate for parabolic equations from a measurable set in time and its applications. J. Eur. Math. Soc. **15**, 681–703 (2013)
- <span id="page-15-11"></span>9. Phung, K.D., Wang, G., Zhang, X.: On the existence of time optimal controls for linear evolution equations. Discrete Contin. Dynam. Syst. Ser. B **8**, 925–941 (2007)
- <span id="page-15-3"></span>10. Vessella, S.: A continuous dependence result in the analytic continuation problem. Forum Math. **11**, 695–703 (1999)
- <span id="page-15-4"></span>11. Wang, G.: *L*∞-null controllability for the heat equation and its consequences for the time optimal control problem. SIAM J. Control Optim. **47**, 1701–1720 (2008)
- <span id="page-15-6"></span>12. Zhang, C.: An observability estimate for the heat equation from a product of two measurable sets. J. Math. Anal. Appl. **396**, 7–12 (2012)