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Preface

The research areas of the Semantic Web, Linked Data and Knowledge Graphs have
received a lot of attention in academia and industry recently. Since its inception in
2001, the Semantic Web has aimed at enriching the existing Web with meta-data and
processing methods, so as to provide Web-based systems with intelligent capabilities
such as context-awareness and decision support. Over the years, the Semantic Web
vision has been driving many community efforts which have invested substantial
resources in developing vocabularies and ontologies for annotating their resources
semantically. Besides ontologies, rules have long been a central part of the Semantic
Web framework and are available as one of its fundamental representation tools, with
logic serving as a unifying foundation. Linked data is a related research area which
studies how one can make RDF data available on the Web and interconnect it with
other data with the aim of increasing its value for everybody. Knowledge Graphs have
been shown useful not only for Web search (as demonstrated by Google, Bing, etc.) but
also in many other application domains.

In 2018, Reasoning Web, the 14th Reasoning Web Summer School, took place in
Esch-sur-Alzette at the new Belval Campus of the University of Luxembourg during
September 22–26 and was part of the Luxembourg Logic for AI Summit (LuxLogAI:
https://luxlogai.uni.lu).

Topics and Lecturers

The program of 2018 included nine lectures covering the following topics:

1. Guido Governatori (CSIRO/Data61) Practical Normative Reasoning with
Defeasible Deontic Logic

2. Hannah Bast (University of Freiburg) Efficient SPARQL Queries on Very Large
Knowledge Graphs

3. Thomas Lukasiewicz and Ismail Ilkan
Ceylan (University of Oxford)

A Tutorial on Query Answering and
Reasoning over Probabilistic Knowledge
Bases

4. Hendrik ter Horst, Matthias Hartung and
Philipp Cimiano (Bielefeld University)

Cold-start Knowledge Base Population using
Ontology-based Information Extraction with
Conditional Random Fields

5. Heiko Pauleim (University of
Mannheim)

Machine Learning with and for Knowledge
Graphs

6. Daria Stepanova (Max Planck Institute
for Informatics, Saarbrücken)

Rule Induction and Reasoning over
Knowledge Graphs

(Continued)

https://luxlogai.uni.lu/


7. Steffen Staab and Daniel Janke
(University of Koblenz-Landau)

Storing and Querying Semantic Data in the
Cloud

8. Emanuele Della Valle (Politecnico di
Milano)

Engineering of Web Stream Processing
Applications

9. Jacopo Urbani (Vrije Universiteit
Amsterdam)

Reasoning at Scale (Tutorial)

Applications and Acknowledgements

We received 55 applications from a broad spectrum of Master and PhD students,
Post-Docs, and Professionals in the Semantic Web domain, of which 53 have been
accepted for participation at the Summer School and 4 have been selected for a travel
grant (including PhD students from Brazil, France, Germany, and Sweden).

We specifically thank the University of Luxembourg and the Luxembourg National
Research Fund (FNR) for their support in the organization of the 14th Reasoning Web
Summer School in Luxembourg, and we are looking forward to an interesting and
exciting program!

July 2018 Martin Theobald
Claudia d’Amato

VI Preface
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Practical Normative Reasoning
with Defeasible Deontic Logic

Guido Governatori(B)

Data61, CSIRO, Dutton Park, Australia
guido.governatori@data61.csiro.au

Abstract. We discuss some essential issues for the formal representation
of norms to implement normative reasoning, and we show how to capture
those requirements in a computationally oriented formalism, Defeasible
Deontic Logic, and we provide the description of this logic, and we illus-
trate its use to model and reasoning with norms with the help of legal
examples.

1 Introduction: Two Normative Reasoning Scenarios

The aim of this contribution is to provide an introduction to a practical com-
putational approach to normative reasoning. To this end we start by proposing
two scenarios illustrating some distinctive features of normative reasoning.

Example 1. License for the evaluation of a product [16,26].

Article 1. The Licensor grants the Licensee a license to evaluate the Product.
Article 2. The Licensee must not publish the results of the evaluation of the

Product without the approval of the Licensor; the approval must be
obtained before the publication. If the Licensee publishes results of
the evaluation of the Product without approval from the Licensor,
the Licensee has 24 h to remove the material.

Article 3. The Licensee must not publish comments on the evaluation of the
Product, unless the Licensee is permitted to publish the results of
the evaluation.

Article 4. If the Licensee is commissioned to perform an independent evalua-
tion of the Product, then the Licensee has the obligation to publish
the evaluation results.

Article 5. This license terminates automatically if the Licensee breaches this
Agreement.

Suppose that the licensee evaluates the product and publishes on her website
the results of the evaluation without having received an authorisation from the
licensor. Suppose also that the licensee realises that she was not allowed to
publish the results of the evaluation, and removes the published results from
their website within 24 h from the publication. Is the licensee still able to legally
use the product? Since the contract contains a remedial clause (removal within
c© Springer Nature Switzerland AG 2018
C. d’Amato and M. Theobald (Eds.): Reasoning Web 2018, LNCS 11078, pp. 1–25, 2018.
https://doi.org/10.1007/978-3-030-00338-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00338-8_1&domain=pdf


2 G. Governatori

24 h remedies unauthorised publication), it is likely that the license to use the
product still holds.

Suppose now, that the licensee, right after publishing the results, posted a
tweet about the evaluation of the product and that the tweet counts as com-
menting on the evaluation. In this case, we have a violation of Article 3, since,
even if the results were published, according to Article 2 the publication was not
permitted. Thus, she is no longer able to legally use the product under the term
of the license.

The final situation we want to analyse is when the publication and the tweet
actions take place after the licensee obtained permission for publication. In this
case, the licensee has the permission to publish the result and thus they were
free to post the tweet. Accordingly, she can continue to use the product under
the terms of the license.

Example 2. Consider the following fragment of a contract from the provision of
goods and services taken from [10].

3.1 A “Premium Customer” is a customer who has spent more that $10000 in
goods.

3.2 Services marked as “special order” are subject to a 5% surcharge. Premium
customers are exempt from special order surcharge.

5.2 The (Supplier) shall on receipt of a purchase order for (Services) make them
available within one day.

5.3 If for any reason the conditions stated in 4.1 or 4.2 are not met the (Pur-
chaser) is entitled to charge the (Supplier) the rate of $100 for each hour
the (Service) is not delivered.

Clause 3.1 provides a definition of Premium Customer for the purpose of the
contract. Then Clause 3.2 provides a recipe to compute the price for service
marked as special order. In this case, we have two conditions, the standard
condition specifying that the price for special order has to be incremented by
5%, and an exception to that computation, when the customer is a Premium
Customer. Clause 5.2 establishes an obligation on one of the subject of the norms
(a party in the contract, the supplier) based on a condition (that a purchase order
had been issued). While we cannot give the complete meaning of Clause 5.3 (it
depends on Clauses 4.1 and 4.2, not given here), we can infer that the is triggered
in response to a violation of either the conditions specified in 4.1 and 4.2, and
that the effect produced is an “entitlement” or in other words a permission.

2 Foundations for Normative Reasoning

The scenarios depicted in the examples illustrate many salient and characteristic
aspects of normative reasoning. The first aspect we want to focus on is that
when we are given a set of norms normative reasoning is concerned about what
are the normative effects that follows from the set of norms, and when such
normative effects are in force (or in other terms, when they produce effects that
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are “legally” binding). As we will elaborate further in the rest of the paper,
we will distinguish between two types of “normative” effects. The first type is
that some norms (for example Article 3.1 and Article 3.2 in Example 2) specify
the meaning of terms/concepts in the context where the norms are valid. The
second type of effects determine constraints affecting the subjects of the norms
(essentially all other Articles in the two examples above). In both cases, the
norms consist of two parts the normative effects, and the conditions under which
the normative effects are in force (and when they are in force), for example,
taking Article 2 of Example 1 the normative effect is the prohibition of publishing
the result of the evaluation of a product, and the condition is not having the
authorisation from the licensor to publish. Accordingly, norms can be represented
as if . . . then. . . rules, where the if part determines the conditions of applicability
of the norm, and the then part gives the normative effects.

Based on the discussion so far, we can consider a normative system as a set
of clauses (norms), where the clauses/norms are represented as if . . . then rules.
Every clause/norm is represented by one (or more) rule(s) with the following
form:

A1, . . . , An ↪→ C (1)

where A1, . . . , An and the conditions of applicability of the norm and C is
the “effect” of the norm. According to the type of effect we can classify the
norms/rules as

– constitutive (also known as counts-as) rules that define the terms used in the
normative systems, or in other terms they create “institutional facts” from
brute facts and other brute facts.1

– prescriptive rules, that determine what “normative” effects are in force based
on the conditions of applicability.

For normative effects we consider:

– Obligation,
– Prohibition,
– Permission.

These notions can be defined as follows [30]:

Obligation: a state, an act, or a course of action to which a Bearer is legally
bound, and which, if it is not achieved or performed, results in a Violation.

Prohibition: a state, an act, or a course of action to which a Bearer is legally
bound, and which, if it is achieved or performed, results in a Violation.

Permission: something is permitted if a Bearer has no Prohibition or Obligation
to the contrary. A weak Permission is the absence of the Prohibition or
Obligation to the contrary; a strong Permission is an exception or derogation
of the Prohibition or Obligation to the contrary.

1 For extended discussions on constitutive or counts-as rules, see the seminal work by
Searle [33] and, for formal treatments, the comprehensive [25].
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One of the functions of norms is to regulate the behaviour of their subjects
by imposing constraints on what the subjects can or cannot do, what situations
are deemed legal, and which ones are considered to be illegal. There is an impor-
tant difference between the constraints imposed by norms and other types of
constraints. Typically, a constraint means that the situation described by the
constraint cannot occur. For example, suppose you have a constraint A. This
means that if ¬A (the negation of A, that is, the opposite of A) occurs, then we
have a contradiction, or in other terms, we have an impossible situation. Norms,
on the other hand, can be violate ¬A, we do not have a contradiction, but rather
a violation, or in other terms we have a situation that is classified as “illegal”.
From a logical point of view, we cannot represent the constraint imposed by
a norm simply by A, since the conjunction of A and ¬A is a contradiction.
Thus, we need a mechanism to identify the constraints imposed by norms. This
mechanism is provided by modal (deontic) operators.

2.1 Deontic Operators

Here we are going to consider the following deontic operators: O for obliga-
tion, F for prohibition (forbidden), and P for permission. The deontic operators
are modal operators. A modal operator applies to a proposition to create a
new proposition where the modal operator qualifies the “truth” of the proposi-
tion the operator is applied to. Consider, for instance, based on Example 1, the
proposition publishEvaluation meaning that “the licensee published the results
of the evaluation of the product”. We can distinguish the following proposi-
tions/statements:

– publishEvaluation: this is a factual statement that is true if the licensee has
published the evaluation (of the product), and false otherwise (in this case
¬publishEvaluation is true).

– OpublishEvaluation: this is a deontic statement meaning that the licensee has
the obligation to publish the evaluation of the product. The statement is true,
if the obligation to publish the evaluation is in force in the particular case.

– FpublishEvaluation: this is a deontic statement meaning that the licensee has
the prohibition to publish the evaluation of the product. The statement is
true, if the prohibition to evaluate the produce is in force in the particular
case.

– PpublishEvaluation: this is a deontic statement meaning that the licensee has
the permission to publish the evaluation of the product. The statement can
be evaluated as true, if the permission to publish the evaluation is in force in
the particular case.

Looking again at Example 1, we have that the prohibition to publish the evalu-
ation of the product is in force (thus, FpublishEvaluation is true) if the licensee
does not get the approval for publication from the licensor, or if she is not com-
missioned to evaluate the product. However, if she gets the approval (Article 2),
then the permission to publish is in force (PpublishEvaluation holds), and if she
is commissioned, then she is under the obligation to publish the evaluation.
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Now the question is if she is commissioned to evaluate the product (and thus
have the obligation to publish the evaluation), then does she have the permission
to publish the evaluation? To provide an answer to this question, we go back to
the idea that norms define constraints on what is legal and what is illegal, and
how to model a violation. Obligations and prohibitions can be violated; according
to some legal scholars, the possibility of being violated can be used to define an
obligation (prohibition). A violation means that the content of the obligation
has not been met. As we have alluded to above, it is important to notice that a
violation does not result in an inconsistency. A violation is, basically, a situation
where we have2

OA and ¬A, or FA and A. (2)

On the other hand, a permission, as we have already said, is the lack of the
obligation to the contrary (and a violation requires an obligation it violates),
thus permissions cannot be violated. Now, going back to the question, suppose
that we have the obligation to publish the evaluation but we do not have the cor-
responding permission; this means that we have the prohibition of publishing the
evaluation. Thus, we have at the same time the obligation and the prohibition of
publishing the evaluation. We have two cases, we publish the evaluation, com-
plying with the obligation to publish, but we violated the prohibition; we refrain
from publishing the evaluation complying with prohibition (lack of permission),
this violates the obligation to publish. In both cases, we get a violation, while,
the intuition is that if we have the obligation to publish, and we do publish, we
are fully compliant with the norms. Thus, we can conclude that, in case, we have
an obligation, we should have (or derive) the corresponding permission.

From the definitions of the normative effects and the discussion above, we
get the following equivalences:

FA ≡ O¬A OA ≡ F¬A PA ≡ ¬O¬A (3)

The first two equivalences state that a prohibition corresponds to a negative
obligation, and that a permission is the lack of the obligation to the contrary, or
more precisely, that the obligation to the contrary is not in force. However, for
permission, we can distinguish two notions: strong permission, which specifies
that the obligation to the contrary is not in force because it has been dero-
gated by the explicit permission; and weak permission simply meaning that the
obligation to the contrary is not in force (this can be because the conditions of
applicability for the obligation to the contrary do not hold, or simply because
there are not norms for it). We will use Pw to indicate weak permission, Ps for
strong permission and P where the strength of the permission is not specified.
We further assume that, for every proposition A, OA → PsA,3 and PsA → PwA

2 In (modal/deontic) logics where OA does not imply A a violation does not imply a
contradiction, thus there are consistent state to represent situations corresponding
to violations.

3 In this section we use “→” to indicate material implication of classical propositional
logic. In the rest of the paper it will be used to denote a particular type of rules in
Defeasible Logic.
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and that the equivalence ¬O¬A ≡ PwA for weak permission but not for strong
permission4.

2.2 Handling Violations

Given that a violation is not a contradiction, but a situation where we have OA
and ¬A, then we can reason about violations, and having provisions depending
on violations. An important issue is related to the so called contrary-to-duty
obligations (CTD)5. Shortly a contrary-to-duty obligation is an obligation (or
more generally a normative effect) that enters in force because another obligation
has been violated. The general structure of a CTD is

1. an obligation OA, and
2. a norm such that the opposite of the content of the obligation is part of

the conditions of applicability of the norm, so something with the following
structure C1, . . . , Cn,¬A ↪→ OB

When the obligation OA is in force, and the conditions of applicability of the
norm holds, we have (1) a violation, and (2) the obligation OB enters in force.
However, if C1, . . . , Cn do no contain OA, then the two provisions are somehow
independent, and the CTD is somehow accidental. Nevertheless, normative sys-
tems, typically contain prescriptions related to violations, to establish penalties
to compensate for the violation (an instance of this is Article 2 in Example 1);
or, in some other cases, they contain provisions for ancillary penalties or norma-
tive effects that, per se, do not compensate for the violation (this is the case of
clause 5.3 in Example 2). In both cases they should make explicit the relation-
ship with a violation. Accordingly, following [14,21] we introduce the operator
(⊗) proposed in [21] for CTD and reserve it for compensatory obligations, and
we distinguish between norms

C1, . . . , Cn,OA,¬A ↪→ OB (4)

C1, . . . , Cn ↪→ A ⊗ B (5)

A norm with the form as in 4 means that the obligation of B requires to have a
violation of A as its conditions to be in force. While A ⊗ B means that OA is in
force, but if violated (i.e., ¬A holds) then OB is in force, and the fulfilling the
obligation of B compensates for the violation of the obligation of A.

Notice that not all violations are compensable, this means that there are
situations, that while logically consistent, are not legal according to a normative
system, and normative systems can contain provisions about this type of situ-
ations, see the termination clause, Article 5 in Example 1. An instance of such
a case, is when the licensee is commissioned to evaluate the produce, but she
4 Suppose that you do not have an explicit permission for ¬A; this means that there

are no rules to derogate the obligation of A, but it does not mean that there are no
norms mandating A.

5 The term contrary-to-duty was coined by Chisholm [6]; his work inspired a wealth
of research on deontic logic to address the paradox proposed in [6] and other CTD
paradoxes. For overviews of such paradoxes and development in the field see [5,31].
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does not (Article 4). Another instance, is when the licensee publishes the results
of the evaluation without approval, and fails to remove within the allotted time
(Article 2).

2.3 Defeasibility: Handling Exceptions

So far we have assumed that norms are represented by normative conditionals
with the form A1, . . . , An ↪→ C, but we have not discussed the nature of such
conditionals, which are generally defeasible and do not correspond to the if-then
material implication of classical propositional logic. Norms are meant to provide
general principles, but at the same time they can express exceptions to the prin-
ciple. It is well understood in Legal Theory and Artificial Intelligence and Law
[8,32] that, typically, there are different types of “normative conditionals”, but in
general normative conditionals are defeasible. Defeasibility is the property that
a conclusion is open in principle to revision in case more evidence to the con-
trary is provided, the conclusion is obtained using only the information available
when the conclusion is derived. Defeasible reasoning is in contrast to monotonic
reasoning of propositional logic, where no revision is possible. In addition, defea-
sible reasoning allows reasoning in the face of contradictions, which gives rise to
ex false quodlibet in propositional logic. One application of defeasible reasoning
is the ability to model exceptions in a simple and natural way.

The first use of defeasible rules is to capture conflicting rules/norms without
making the resulting set of rules inconsistent. The following two rules conclude
with the negation of each other

A1, . . . , An ↪→ C (6)

B1, . . . , Bm ↪→ ¬C (7)

without defeasibile rules, rules with conclusions that are negations of each other
could give rise, should A1, . . . , An and B1, . . . , Bm both hold, to a contradiction,
i.e., C and ¬C, and consequently ex falso quodlibet. Instead, defeasible reasoning
is sceptical; that is, in case of a conflict such as the above, it refrains from taking
any of the two conclusions, unless there are mechanisms to solve the conflict.

Norms, typically give the general conditions of applicability to guarantee that
some particular conclusions hold, and then list the possible exceptions (Articles
2, 3 in Example 1 and Clause 3.2 in Example 2 provide explicit instances of this
phenomenon, while the exception is implicit in Article 1, it assumes an implicit
norm that forbids the use of the product without a license). Exceptions limit the
applicability of basic norms/rules. The general structure to model exceptions is
given by the following rules:

A1, . . . , An ↪→ C (8)

A1, . . . , An, E1 ↪→ ¬C (9)
· · ·

A1, . . . , An, Em ↪→ ¬C (10)
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In this case, the rules from is more specific than the first, and thus it forms
an exception to the first, i.e., a case where the rule has extra conditions. In a
classical logic setting this would result in contradiction as soon as the conditions
of applicability of the general norm/rule (8) and the any of the exceptions (Ei)
holds. In defeasible reasoning the extra condition encodes the exception, and
blocking the conclusion of the first rule. It is possible to use classical (monotonic)
reasoning by encoding (8) as

A1 ∧ · · · ∧ An ∧
m∧

i=1

¬Ei → C (11)

The above representation still suffers from several drawbacks (for a detailed
discussion see [20]). To apply this rule, we have to know for each Ei whether it
is true or false. This means that if in a (legal) case we only have partial knowledge
of the facts of the cases we cannot draw conclusions, and in the extreme case this
approach would require factually omniscient knowledge. The second drawback
depends on the possibility of having exceptions to the exceptions, thus for each
exception Ei, we could have rules

A1, . . . , An, Ei, F
i
1 ↪→ C (12)

· · ·
A1, . . . , An, Ei, F

i
k ↪→ C (13)

To capture exceptions to the exceptions we have to revise (11) to

A1 ∧ . . . ∧ An ∧
m∧

i=1

(¬Ei ∧
k∨

j=1

F i
j

) → C (14)

with the same problems of factual omniscience as above (and recursive refinement
in case of exceptions to the exceptions to the exceptions). In contrast in defeasible
reasoning, exceptions can simply be represented by replacing rules (9)–(10) with

E1 ↪→ ¬C (15)

· · ·
Em ↪→ ¬C (16)

plus a mechanism to solve conflict. The key point is that unless one is able to
conclude the conditions of applicability of a rule, the rule does not fire, and it is
not able to produce its conclusion.

In this section we gave a short overview of the salient features for practical
legal reasoning, in the next section we are going to present how to implement
them in a computationally oriented formalism: Defeasible Deontic Logic.
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3 Defeasible Deontic Logic

Defeasible Deontic Logic is an extension of Defeasible Logic with deontic oper-
ators, and the operators for compensatory obligation introduced in [21]. Defea-
sible Logic is a simple rule based computationally oriented (and efficient) non-
monotonic formalism, designed for handling exception in a natural way. While
Defeasible Logic was originally proposed by Nute [29], we follow the formalisa-
tion proposed in [2]. Defeasible Logic is a constructive logic with its proof the-
ory and inference condition as its core. The logic exploits both positive proofs,
a conclusion has been constructively prove using the given rules and inference
conditions (also called proof conditions), and negative proofs: showing a con-
structive and systematic failure of reaching particular conclusions, or in other
terms, constructive refutations. The logic uses a simple language, that proved
successful in many application area, due to the scalability of the logic, and its
constructiveness. These elements are extremely important for normative reason-
ing, where an answer to a verdict is often nor enough, and full traceability is
needed. This feature is provided by the constructive proof theory of Defeasible
logic.

In the rest of this section we first provide an informal presentation of basic
Defeasible Logic, we informally discuss how the extend it to cover the normative
features we outlined in the previous section, and then finally, we provide the
formal presentation of Defeasible Deontic Logic.

3.1 Basic Defeasible Logic

Knowledge in Defeasible logic is structured in three components:

– A set of facts (corresponding to indisputable statements represented as liter-
als, where a literal is either an atomic proposition or its negation).

– A set of rules. A rule establishes a connection between a set of premises
and a conclusion. In particular, for reasoning with norms, it is reasonable to
assume that a rule provides the formal representation of a norm. Accordingly,
the premises encode the conditions under which the norm is applicable, and
the conclusion is the normative effect of the norm.

– A preference relation over the rules. The preference relation just gives the
relative strength of rules. It is used in contexts where two rules with opposite
conclusions fire simultaneously, and determines that one rule overrides the
other in that particular context.

Formally, the knowledge in the logic is organised in Defeasible Theories, where
a Defeasible Theory D is a structure

(F,R,≺) (17)

where F is the set of facts, R is the set of rules, and ≺ is a binary relation over
the set of rules, i.e., ≺ ⊆ R × R.6

6 Defeasible Logic does not impose any property for ≺. However, in many applications
it is useful to assume that the transitive closure to be acyclic to prevent situations
where, at the same time a rule overrules another rule and it is overridden by it.



10 G. Governatori

As we have alluded to above, a rule is formally a binary relation between, a
set premises and a conclusion. Thus, if Lit is the set of literals, the set Rule of
all rules is:

Rule ⊆ 2Lit × Lit. (18)

Accordingly, a rule is an expression with the following form:7

r : a1, . . . , an ↪→ c (19)

where r is a unique label identifying the rule. Given that a rule is a relation, we
can ask what is the strength of the link between the premises and the conclusion.
We can distinguish three different strengths: (i) given the premises the conclusion
always holds, (ii) given the premises the conclusion holds sometimes, and (iii)
given the premises the opposite of the conclusions does not hold. Therefore, to
capture theses types Defeasible Logic is equipped with three types of rules: strict
rules, defeasible rules and defeaters. We will use →, ⇒ and � instead of ↪→ to
represent, respectively, strict rules, defeasible rules and defeaters.

Given a rule like rule r in (19) we use the following notation to refer to the
various elements of the rule. A(r) denotes the antecedent or premises of the rule,
in this case, {a1, . . . , an}, and C(r) denotes the conclusion or consequent, that
is, c. From time to time we use head and body of a rule to refer, respectively, to
the consequent and to the antecedent of the rule.

Strict rules are rules in the classic sense: whenever the premises are indis-
putable so is the conclusion. Strict rules can be used to model legal definitions
that do not admit exceptions, for example the definition of minor: “‘minor’ means
any person under the age of eighteen years”. This definition can be represented as

age(x) < 18yrs → minor(x). (20)

Defeasible Rules are rules such that the conclusions normally or typically
follow from the premises, unless there are evidence or reasons to the contrary.

Defeaters are rules that do not support directly the derivation of a conclusion,
but that can be used to prevent a conclusion.

Finally, for the superiority relation, given two rules r and s, we use r ≺ s to
indicate that rule r defeats rule s; in other terms, if the two rules are in conflict
with each other and they are both applicable, then r prevails over s, and we
derive only the conclusion of r.

Example 3. We illustrate defeasible rules and defeaters with the help of the
definition of complaint from the Australian Telecommunication Consumer Pro-
tections Code 2012 TCP-C268 2012 May 2012 (TCPC).

Complaint means an expression of dissatisfaction made to a Supplier in
relation to its Telecommunications Products or the complaints handling
process itself, where a response or Resolution is explicitly or implicitly
expected by the Consumer.

7 More correctly, we should use r : {a1, . . . , an} ↪→ c. However, to improve readability,
we drop the set notation for the antecedent of rule.
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An initial call to a provider to request a service or information or to request
support is not necessarily a Complaint. An initial call to report a fault or
service difficulty is not a Complaint. However, if a Customer advises that
they want this initial call treated as a Complaint, the Supplier will also
treat this initial call as a Complaint.
If a Supplier is uncertain, a Supplier must ask a Customer if they wish to
make a Complaint and must rely on the Customer’s response.

Here is a (simplified) formal representation:

tcpc1 : ExpressionDissatisfaction ⇒ Complaint
tcpc2 : InformationCall ⇒ ¬Complaint
tcpc3 : ProblemCall ,FirstCall � Complaint
tcpc4 : AdviseComplaint ⇒ Complaint

where tcpc2 ≺ tcpc1 and tcpc4 ≺ tcpc2.
The first rule tcpc1 sets the basic conditions for something to be a complaint.

On the other hand, rule tcpc2 provides an exception to the first rule, and rule
tcpc4 is an exception to the exception provided by rule tcpc2. Finally, tcpc3 does
not alone warrant the call to be a complaint (though, it does not preclude the
possibility that the call turns out to be a complaint; hence the use of a defeater
to capture this case).

Defeasible Logic is a constructive logic. This means that at the heart of it we
have its proof theory, and for every conclusion we draw from a defeasible theory
we can provide a proof for it, giving the steps used to reach the conclusion, and at
the same time, providing a (formal) explanation or justification of the conclusion.
Furthermore, the logic distinguishes positive and negative conclusion, and the
strength of a conclusion. This is achieved by labelling each step in a derivation
with a proof tag. As usual a derivation is a (finite) sequence of formulas, each
obtained from the previous ones using inference conditions.

Let D be a Defeasible Theory. The following are the proof tags we consider
for basic Defeasible Logic:

+Δ if a literal p is tagged by +Δ, then this means that p is provable using
only the facts and strict rules in a defeasible theory. We also say that p is
definitely provable from D.

−Δ if a literal p is tagged by −Δ, then this means that p is refuted using only
the facts and strict rules in a defeasible theory. In other terms, it indicates
that the literal p cannot be proved from D using only facts and strict rules.
We also say that p is definitely refuted from D.

+∂ if a literal p is tagged by +∂, then this means that p is defeasibly provable
from D.

−∂ if a literal p is tagged by −∂, then this means that p is defeasibly refutable
from D.
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Some more notation is needed before explaining how tagged conclusions can be
asserted. Given a set of rules R, we use Rx to indicate particular subsets of rules:
Rs for strict rules, Rd for defeasible rules, Rsd for strict or defeasible rules, Rdft

for defeaters; finally R[q] denotes the rules in R whose conclusion is q.
There are two ways to prove +Δp at the n-th step of a derivation: the first is

that p is one of the facts of the theory. The second case is when we have a strict
rule r for p and all elements in the antecedent of r have been definitely proved
at previous steps of the derivation.

For −Δp we have to argue that there is no possible way to derive p using
facts and strict rules. Accordingly, p must not be one of the facts of the theory,
and second for every rule in Rs[p] (all strict rules which are able to conclude
p) the rule cannot be applied, meaning that at least one of the elements in the
antecedent of the rule has already refuted (definitely refuted). The base case is
where the literal to be refuted is not a fact and there are no strict rules having
the literal as their head.

Defeasible derivations have a three phases argumentation-like structure8. To
show that +∂p is provable at step n of a derivation we have to:9

1. give an argument for p;
2. consider all counterarguments for p; and
3. rebut each counterargument by either:

(a) showing that the counterargument is not valid;
(b) providing a valid argument for p defeating the counterargument.

In this context, in the first phase, an argument is simply a strict or defeasible rule
for the conclusion we want to prove, where all the elements are at least defeasibly
provable. In the second phase we consider all rules for the opposite or complement
of the conclusion to be proved. Here, an argument (counterargument) is not valid
if the argument is not supported.10 Here “supported” means that all the elements
of the body are at least defeasibly provable.

Finally to defeasibly refute a literal, we have to show that either, the opposite
is at least defeasible provable, or show that an exhaustive search for a construc-
tive proof for the literal fails (i.e., there are rules for such a conclusion or all rules
8 The relationships between Defeasible Logic and argumentation are, in fact, deeper

than the similarity of the argumentation like proof theory. [18] prove characterisation
theorems for defeasible logic variants and Dung style argumentation semantics [7].
In addition, [11] proved that the Carneades argumentation framework [9], widely
discussed in the AI and Law literature, turns out to be just a syntactic variant of
Defeasible Logic.

9 Here we concentrate on proper defeasible derivations. In addition we notice that a
defeasible derivations inherit from definite derivations, thus we can assert +∂p if we
have already established +Δp.

10 It is possible to give different definitions of support to obtain variants of the logic
tailored for various intuitions of non-monotonic reasoning. [4] show how to modify
the notion of support to obtain variants capturing such intuitions, for example by
weakening the requirements for a rule to be supported: instead of being defeasibly
provable a rule is supported if it is possible to build a reasoning chain from the facts
ignoring rules for the complements.
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are either “invalid” argument or they are not stronger than valid arguments for
the opposite).

Example 4. Consider again the set of rules encoding the TCPC 2012 definition
of complaint given in Example 3. Assume to have a situation where there is an
initial call from a customer who is dissatisfied with some aspects of the service
received so far where she asks for some information about the service. In this case
rules tcpc1 and tcpc2 are both applicable (we assume that the facts of the case
include the union of the premises of the two rules, but AdviseComplaint is not
a fact). Here, tcpc2 defeats tcpc1, and tcpc4 cannot be used. Hence, we can con-
clude −∂AdviseComplaint and consequently +∂¬Complaint and −∂Complaint .
However, if the customer stated that she wanted to complain for the service,
then the fact AdviseComplaint would appears in the facts. Therefore, we can
conclude +∂AdviseComplaint , making then rule tcpc4 applicable, and we can
reverse the conclusions, namely: +∂Complaint and −∂¬Complaint .

While the Defeasible Logic we outlined in this section and its variants are
able to model different features of legal reasoning (e.g., burden of proof [24] and
proof standards [11] covering and extending the proof standards discussed in [9]),
we believe that a few important characteristics of legal reasoning are missing.
First, we do not address the temporal dimension of norms (and, obviously, this
is of paramount importance to model norm dynamics), and second, we do not
handle the normative character of norms: norms specify what are the obligations,
prohibitions and permissions in force and what are the conditions under which
they are in force. In the next sections we are going to extend Defeasible Logic
with (1) deontic operators, to capture the normative nature of norms and (2)
time, to model the temporal dimensions used in reasoning with norms.

3.2 The Intuitions Behind Defeasible Deontic Logic

In the language of Defeasible Deontic Logic the set of literals Lit is partitioned
in plain literals and deontic literals. A plain literal is a literal in the sense of
basic defeasible logic, while a deontic literal is obtained by placing a plain literal
in the scope of a deontic operator or a negated deontic operator. Accordingly,
expressions like Ol, ¬Pl and F¬l are deontic literals, where l is plain literal. We
use ModLit to indicate the set of all deontic literals. We have now to give the
construction for the operator for compensatory obligations (⊗). We will refer to
such expression as ⊗-expressions, whose construction rules are as follows:

(a) every literal l ∈ Lit is an ⊗-expression;
(b) if l1, . . . , ln are plain literals, then l1 ⊗ · · · ⊗ ln is an ⊗-expression;
(c) nothing else is an ⊗-expression;
(d) the set of all ⊗-expression is denoted by Oexpr.

The main idea is that instead of a single family or rules, we are going to have to
have two families: one for constitutive rules, and the other for prescriptive rules.
The behaviour of these rules is different. Given the constitutive defeasible rule

a1, . . . , an ⇒C b (21)
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we can assert b, given a1, . . . , an, thus the behaviour of constitutive rule is just
the normal behaviour of rules we examined in the previous section. Thus, when
the rule is applicable, we can derive +∂Cb meaning that b is derivable. For
prescriptive rules the behaviour is a different. From the rule

a1, . . . , an ⇒O b (22)

we conclude +∂Ob meaning that we derive Ob when we have a1, . . . , an. Thus we
conclude the obligation of the consequent of the rule, namely that b is obligatory,
i.e., Ob, not just the consequent of the rule, i.e., b.11. Furthermore, for prescriptive
rules we can have rules like

a1, . . . , an ⇒O b1 ⊗ · · · ⊗ bm (23)

In this case, when the rule is applicable, we derive, Ob1 (+∂Ob1), but if in addition
we prove that ¬b1 holds, we can conclude that we have a violation, and then we
derive the compensatory obligation Ob2, and so on.

The reasoning mechanism is essentially the same as that of basic defeasi-
ble presented in Sect. 3.1. The first difference is that an argument can only be
attacked by an argument of the same type. Thus if we have an argument con-
sisting of a constitutive rule for p, a counterargument should be a constitutive
rule for ∼p. The same applies for prescriptive rule. An exception to this is when
we have a constitutive rule for p such that all its premises are provable as obli-
gations. In this case the constitutive rule behaves like a prescriptive rule, and
can be used as a counterargument for a prescriptive rule for ∼p, or the other
way around.

Consider, for example, the following two rules

r1 : a1, a2 ⇒C b (24)

r2 : c ⇒O ¬b. (25)

The idea expressed by r1 is that, in a particular normative system, the combi-
nation of a1 and a2 is recognised as the institutional fact b, while r2 prohibits b
given c. Suppose now that a1 and a2 are both obligatory. Under these conditions
it is admissible to assert that b is obligatory as well. Accordingly, r1 can be used
to conclude Ob instead of simply b. This means that the conclusions of r1 and
r2 are conflicting: thus r1, when its premises are asserted as obligation, can be
used to counter an argument (e.g., r2) forbidding b (making ¬b obligatory, or
O¬b).
11 As explained elsewhere [10,22], we do not add a deontic operator in the consequent

of rules (i.e., a1, . . . , an ⇒ Ob), but we rather differentiate the mode of conclusions
by distinguishing diverse rule types. This choice has a technical motivation: (a) it
considerably makes simpler and more compact the proof theory; (b) it allows us to
characterise a specific logical consequence relation for O, and eventually implement
different proof conditions for constitutive rule, and prescriptive rules, also, to account
for different burden of proof, and compliance and violations based on the definition
of burden presented in [11,12,24] justified by the results by [17].
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The second difference is that now the proof tags are labelled with either C,
e.g., +∂Cp, (for constitutive conclusions) or with O, e.g., −∂Oq (for prescriptive
conclusions). Accordingly, when we are able to derive +∂Op we can say that Op
is (defeasibly) provable.

This feature poses the question of how we model the other deontic operators
(i.e., permission and prohibition). As customary in Deontic Logic, we assume
the following principles governing the interactions of the deontic operators.12

O∼l ≡ Fl (26)

Ol ∧ O∼l → ⊥ (27)

Ol ∧ P∼l → ⊥ (28)

Principle (26) provides the equivalence of a prohibition with a negative obliga-
tion (i.e., obligation not). The second and the third are rationality postulates
stipulating that it is not possible to have that something and its opposite are
at the same time obligatory (27) and that a normative system makes something
obligatory and its opposite is permitted (28). (26) gives us the immediate answer
on how prohibition is modelled. A rule giving a prohibition can be modelled just
as a prescriptive rule for a negated literal. This means that to conclude Fp we
have to derive +∂O¬p, in other terms that ¬p is (defeasibly) provable as an
obligation.

Example 5. Section. 40 of the Australian Road Rules (ARR)13.

Making a U–turn at an intersection with traffic lights

A driver must not make a U–turn at an intersection with traffic lights unless

there is a U–turn permitted sign at the intersection.

The prohibition of making U-turns at traffic lights can be encoded by the fol-
lowing rule:

arr40a : AtTrafficLigths ⇒O ¬Uturn.

In a situation where AtTrafficLights is given we derive +∂O¬Uturn which cor-
responds to FUturn.

The pending issue is how to model permissions. Two types of permissions have
been discussed in literature following [1,34,35]: (i) weak permission, meaning

12 In the three formulas below → is the material implication of classical logic.
13 This norm makes use of “must not”, to see that “must not” is understood as prohi-

bition in legal documents see, the Australian National Consumer Credit Protection
Act 2009, Sect. 29, whose heading is “Prohibition on engaging in credit activities
without a licence”, recites “(1) A person must not engage in a credit activity if
the person does not hold a licence authorising the person to engage in the credit
activity”.
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that there is no obligation to the contrary; and (ii) strong permission, a per-
mission explicitly derogates an obligation to the contrary. In this case we have
an exception. For both types of permission we have that the obligation to the
contrary does not hold. Defeasible Deontic Logic is capable to handle the two
types of permission is a single shot if we establish that Pp is captured by −∂O∼p.
The meaning of −∂Op is that p is refuted as obligation, or that it is not possible
to prove p as an obligation; hence it means that we cannot establish that p is
obligatory, thus there is no obligation contrary to ∼p.

The final aspect we address is how to model strong permissions. Remember
that strong permissions are meant to be exceptions. Exceptions in Defeasible
Logic can be easily captured by rules for the opposite plus a superiority relation.
Accordingly, this could be modelled by

arr40e : UturnPermittedSign ⇒O Uturn.

and arr40e ≺ arr40a. We use a prescriptive defeasible rule for obligation to block
the prohibition to U-turn. But, since arr49e prevails over arr49a, we derive that
U-turn is obligatory, i.e., +∂OUturn.

Thus, when permissions derogate to prohibitions (or obligations), there are
good reasons to argue that defeaters for O are suitable to express an idea of
strong permission14. Explicit rules such as r : a �O q state that a is a specific
reason for blocking the derivation of O¬q (but not for proving Oq), i.e., this rule
does not support any conclusion, but states that ¬q is deontically undesirable.
Accordingly, we can rewrite the derogating rule as

arr40e : UturnPermittedSign �O Uturn.

In this case, given UturnPermittedSign we derive −∂O¬Uturn.

3.3 Defeasible Deontic Logic Formalised

The presentation in this section is based on [19], and while it is possible to use
the standard definitions of strict rules, defeasible rules, and defeaters [2] and the
full language presented in [19] for the sake of simplicity, and to better focus on
the non-monotonic and deontic aspects, we restrict our attention to defeasible
rules and defeaters, and we assume that facts are restricted to plain literals.
In addition, we use the equivalences between obligations and prohibitions to
transform all prohibitions in the corresponding obligations.

A Defeasible Deontic Theory is a structure

(F,RC , RO,≺) (29)

where F is a set of facts, where every RC is a set of constitutive rules, where a
constitutive rule obeys the following signature

2Lit × PLit (30)
14 The idea of using defeaters to introduce permissions was introduced by [23].
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while the signature for RO, a set of prescriptive rules is

2Lit × Oexpr (31)

Notice that in both cases, the antecedent of a rule can contain both plain and
deontic literal, but, in any case, the conclusion is plain literal. Thus, the question
is if the conclusions of rules are plain literals, where do we get deontic literals?
The answer is that we have two different modes of for the rules. The first mode
is that of constitutive rule, where the conclusion is an assertion with the same
mode as it appears in the rule (i.e., as an institutional fact); the second mode is
that of prescriptive rule, where the conclusion is asserted with a deontic mode
(where the deontic mode corresponds to one of the deontic operators).

Constitutive rules behaves as the rules in Basic Defeasible Logic, and we use
↪→C to denote the arrow of a constitutive rule. ↪→O for the arrow of a prescriptive
rule.

For ⊗-expression we stipulate that they obey the following properties:

1. a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c (associativity);
2.

⊗n
i=1 ai = (

⊗k−1
i=1 ai) ⊗ (

⊗n
i=k+1 ai) where there exists j such that aj = ak

and j < k (duplication and contraction on the right).

Given an ⊗-expression A, the length of A is the number of literals in it. Given
an ⊗-expression A ⊗ b ⊗ C (where A and C can be empty), the index of b is the
length of A ⊗ b. We also say that b appears at index n in A ⊗ b if the length of
A ⊗ b is n.

Given a set of rules R, we use the following abbreviations for specific subsets
of rules:

– Rdef denotes the set of all defeaters in the set R;
– R[q, n] is the set of rules where q appears at index n in the consequent. The

set of (defeasible) rules where q appears at any index n is denoted by R[q];
– RO[q, n] is the set of (defeasible) rules where q appears at index n and the

operator preceding it is ⊗ for n > 1 or the mode of the rule is O for n = 1.
The set of (defeasible) rules where q appears at any index n is denoted by
RO[q];

A proof P in a defeasible theory D is a linear sequence P (1) . . . P (n) of
tagged literals in the form of +∂�q and −∂�q with � ∈ {C,O,P,Pw ,Ps}, where
P (1) . . . P (n) satisfy the proof conditions given in the rest of the paper. The
initial part of length i of a proof P is denoted by P (1...i). The tagged literal
+∂�q means that q is defeasibly provable in D with modality �, while −∂�q
means that q is defeasibly refuted with modality �. More specifically we can
establish the following relationships

– +∂Ca: a is provable;
– −∂Ca: a is rejected;
– +∂Oa: Oa is provable;
– +∂O¬a: Fa is provable;
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– −∂Oa: Oa is rejected;
– −∂O¬a: Fa is rejected;
– +∂Pa: Pa is provable;
– −∂Pa: Pa is rejected;
– +∂Psa: Psa is provable;
– −∂Psa: Psa is rejected;
– +∂Pwa: Pwa is provable;
– −∂Pwa: Pwa is rejected;

The first thing to do is to define when a rule is applicable or discarded. A
rule is applicable for a literal q if q occurs in the head of the rule, all non-modal
literals in the antecedent are given as facts and all the modal literals have been
defeasibly proved (with the appropriate modalities). On the other hand, a rule
is discarded if at least one of the modal literals in the antecedent has not been
proved (or is not a fact in the case of non-modal literals). However, as literal q
might not appear as the first element in an ⊗-expression in the head of the rule,
some additional conditions on the consequent of rules must be satisfied. Defining
when a rule is applicable or discarded is essential to characterise the notion of
provability for obligations (±∂O) and permissions (±∂P).
A rule r ∈ R[q, j] is body-applicable iff for all ai ∈ A(r):

1. if ai = �l then +∂�l ∈ P (1...n) with � ∈ {C,O,P,Pw ,Ps};
2. if ai = ¬�l then −∂�l ∈ P (1...n) with � ∈ {C,O,P,Pw ,Ps};
3. if ai = l ∈ Lit then l ∈ F .

A rule r ∈ R[q, j] is body-discarded iff ∃ai ∈ A(r) such that

1. if ai = �l then −∂�l ∈ P (1...n) with � ∈ {C,O,P,Pw ,Ps};
2. if ai = ¬�l then +∂�l ∈ P (1...n) with � ∈ {C,O,P,Pw ,Ps};
3. if ai = l ∈ Lit then l /∈ F .

A rule r ∈ R is body-p-applicable iff

1. if r ∈ RO and it is body-applicable; or
2. if r ∈ RC and, A(r) = ∅, A(r) ⊆ PLit and ∀ai ∈ A(r), +∂Oai ∈ P (1...n).

A rule r ∈ R is body-p-discarded iff

1. if r ∈ RO and it is not body-applicable; or
2. if r ∈ RC and either A(r) = ∅ or A(r) ∩ DLit = ∅ and ∃ai ∈ A(r), −∂Oai ∈

P (1...n).

The last two conditions are used to determine if we can use a constitutive rule
to derive an obligation when all the elements in the antecedent are provable as
an obligation but in the constitutive rule require them to be factually derivable,
see the discussion for (24) above.
A rule r ∈ R[q, j] such that C(r) = c1 ⊗ · · · ⊗ cn is applicable for literal q at
index j, with 1 ≤ j < n, in the condition for ±∂O iff
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1. r is body-p-applicable; and
2. for all ck ∈ C(r), 1 ≤ k < j, +∂Ock ∈ P (1...n) and (ck ∈ F or ∼ck ∈ F ).

Conditions (1) represents the requirements on the antecedent while condition (2)
on the head of the rule states that each element ck prior to q must be derived
as an obligation, and a violation of such obligation has occurred.

We are now ready to give the proof conditions for the proof tags used in
Defeasible Deontic Logic. The conditions for +∂� and −∂� are related by the
Principle of Strong Negation [3,20]: The strong negation of a formula is closely
related to the function that simplifies a formula by moving all negations to
an inner most position in the resulting formula, and replaces the positive tags
with respective negative tags, and vice versa. We will give the positive and
negative proof conditions for one tag to illustrate how the principle works. For
the remaining tag we present only the positive case.

The proof condition of defeasible provability for a factual conclusion is
+∂C : If P (n + 1) = +∂Cq then
(1) q ∈ F or

(2.1) ∼q /∈ F and
(2.2) ∃r ∈ RC [q] such that r is body-applicable, and
(2.3) ∀s ∈ R[∼q], either

(2.3.1) s is body-discarded, or
(2.3.2) ∃t ∈ RO[q] such that t is body-applicable and s ≺ t.

The proof condition for defeasible refutability for a factual conclusion is
−∂C : If P (n + 1) = −∂Cq then
(1) q /∈ F and

(2.1) ∼q ∈ F or
(2.2) ∀r ∈ RC [q] either r is body-discarded, or
(2.3) ∃s ∈ R[∼q], such that

(2.3.1) s is body-applicable for q, and
(2.3.2) ∀t ∈ RO[q] either t is body-discarded or not s ≺ t.

The proof conditions for ±∂C are the standard conditions of basic defeasible logic
with the proviso that the element of the antecedents of the rules are applicable
in the extended deontic logic.
The proof condition of defeasible provability for obligation is
+∂O: If P (n + 1) = +∂Oq then
(1) ∃r ∈ RO

d [q, i] ∪ RC
d [q] such that r is applicable for q, and

(2) ∀s ∈ R[∼q, j], either
(2.1) s is discarded, or
(2.2) ∃t ∈ R[q, k] such that t is applicable for q and s ≺ t.

To show that q is defeasibly provable as an obligation, then q must be derived the
prescriptive rules or by rules of the theory that behaves as prescriptive rules in
the theory. More specifically, (1) there must be a rule introducing the obligation
for q which can apply; this is possible if the rule is a prescriptive rules and
all the applicability conditions hold, or there is a constitutive rule where all
the conditions of applicability are mandatory (i.e., are provable as obligations).
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(2) every rule s for ∼q is either discarded or defeated by a stronger rule for q. If
s is an obligation rule, then it can be counterattacked by any type of rule.

The strong negation of the condition above gives the negative proof condition
for obligation.

Let us now move to the proof conditions for permission. We start with the
condition for strong permission.
The proof condition of defeasible provability for strong permission is
+∂Ps : If P (n + 1) = +∂Psq then
(1) +∂Oq ∈ P (1...n) or

(2.1) ∃r ∈ RO
def [q] ∪ RC

def [q] such that r is body-p-applicable, and
(2.2) ∀s ∈ R[∼q, j], either

(2.2.1) s is discarded, or
(2.2.2) ∃t ∈ R[q, k] such that t is applicable for q and s ≺ t.

In this case we have two conditions. The first condition is that, we inherit the
strong permission from an obligation (see the discussion in Sect. 2). In the sec-
ond case, the condition has the same structure as that of a defeasible obligation,
but instead of a defeasible rule there is a body-applicable prescriptive defeater
or body-p-applicable constitutive defeater, that is not defeated (see the discus-
sion in Sect. 3.2, in particular the formalisation of the U-turn at traffic lights
example).

The proof condition for weak permission simply boils down to the failure to
prove the obligation to the contrary, namely:
+∂Pw : If P (n + 1) = +∂Pwq then
(1) −∂O∼q ∈ P (1...n).

Similarly, for a generic permission, a permission that does not distinguish
between strong and weak permission, the proof condition is that we have proved
either to the two:
+∂P: If P (n + 1) = +∂Pq then
(1) +∂Psq ∈ P (1...n) or
(2) +∂Pwq ∈ P (1...n).

Notice that in the majority of cases, where a permission appears in the
antecedent of a rule the permission is understood as a generic permission.

Finally, we introduce a special proof tag for a distinguished literal meant to
represent an non-compensable violation. To this end we extend the set of literal
language with the proposition ⊥. Furthermore, we stipulate that this literal can
only appear in the antecedent of rules. As we have seen we can use ⊗-expressions
to model obligations, their violations, and the corresponding compensatory obli-
gations. Thus, given the ⊗-expression

a1 ⊗ · · · ⊗ an (32)

Oa1 is the ideal primary obligations, Oa2 is the second best option when there
is a violation of the primary obligation, and if we repeat this argument, an

is the least one can do to compensate the violations that precede it, and no
further compensation is then possible. Thus, we can say that we have obligation
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that cannot be compensated if we fully traverse an ⊗-expression. Thus, we can
say that we have a violation that cannot be compensate if the following proof
condition holds.
+∂⊥: If P (n + 1) = +∂⊥ then
(1) ∃RO

d ∪ RC
d such that

(1.1) r is body-p-applicable and
(1.2) ∀ci ∈ C(r) +∂Oci ∈ P (1...n) and either ci /∈ F or ∼ci ∈ F .

We conclude this section by reporting some results about the logic, showing
the behaviour of the logic, its deontic and computational properties. In what
follows, given a defeasible deontic theory D, we use D � ±#q, where # stand
for any of the proof tags discussed in this section, to denote that there is a
derivation of #q from D.

Proposition 1. Given a defeasible deontic theory D.

1. it is not possible to have both D � +#q and D � −#q;
2. D � +∂Cq and D � +∂C¬q if q,¬q ∈ F ;
3. for � ∈ {O,Ps}, it is not possible to have both D � +∂�q and D � +∂�∼q;
4. for � ∈ {O,Ps}, if D � +∂�q, then D � −∂�∼q;
5. it is not possible to have both D � +∂Oq and D � +∂Ps∼q;
6. for � ∈ {P,Ps,Pw}, if D � +∂Oq, then D � +�q;
7. if D � +∂Pwq, then D � −∂O∼q.

The first property is an immediate consequence of using the Principle of Strong
Negation in formulating the proof conditions. Properties 2 and 3 establish the
consistency of the logic. The inference mechanisms cannot produce an inconsis-
tency unless the monotonic part (facts) is already inconsistent. Property 4 is
again a corollary of the Principle of Strong Negation. Finally, Properties 5 and
6 show that the deontic operators satisfy the properties normally ascribed to
them in deontic logics.

Given a Defeasible Theory D, HBD is the set of literals such that the literal
or its complement appears in D, where ‘appears’ means that it is a sub-formula
of a modal literal occurring in the theory. The modal Herbrand Base of D is
HB = {�l| � ∈ {C,O,P,Pw ,Ps}, l ∈ HBD}. Accordingly, the extension of a
Defeasible Theory is defined as follows.

Given a Defeasible Theory D, the defeasible extension of D is defined as

E(D) = (+∂�,−∂�)

where ±∂� = {l ∈ HBD : D � ±∂�l} with � ∈ {C,O,P,Pw ,Ps}. In other
words, the extension is the (finite) set of conclusions, in the Herbrand Base, that
can be derived from the theory.

Proposition 2. Given a defeasible theory D, the extension of the theory E(D)
can be computed in O(size(D)). Where the size of the theory D, size(D) is
determined by the number of occurrences of literals in the theory.

The procedure to compute the extension in polynomial (linear) time is given
in [19] and it is based on the algorithm given by Maher [28] to show that com-
puting the extension of a basic defeasible theory can be computed in linear time.
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4 Modelling Norms with Defeasible Deontic Logic

We begin this paper with a scenario, Example 1, that has been used to identify
limitations of other approach to model real life norms (to be precise, it is an
extension of the example to show the drawback of other approach to model
norms using formalism based on possible world semantics, see [14,15]). Let us
see how to model it in Defeasible Deontic Logic.

The first step is to understood the intent of the contract. We can paraphrase
the contract as follows:

C0: the use of the product is forbidden;
C1: if a license is granted, then the use of the product is permitted;
C2: the publication of the result of the evaluation is forbidden;

C2c: the removal of the illegally published results within the allotted times
compensates the illegal publication;

C2e: the publication of the results of the evaluation is permitted if approval is
obtained before publication;

C3: commenting about the evaluation is forbidden;
C3e: commenting about the evaluation is permitted, it publication of the results

is permitted;
C4: publication of the results of evaluation is obligatory, if commissioned for

an independent evaluation;
C4x: the use of product is obligatory, if commissioned for an independent eval-

uation;
C5: the use of the product is forbidden, if there is a violation of the above

conditions.

Based on the decomposition above we can formulate the following rules and
instances of the superiority relation:

r0 : ⇒O ¬use
r1 : license �O use
r2 : ⇒O ¬publish ⊗ remove

r2e : approval �O publish
r3 : ⇒O ¬comment

r3e : Ppublish �O comment
r4 : commission ⇒O publish

r4x : commission ⇒O use
r5 : ⊥ ⇒O ¬use

where rO ≺ r1, ro ≺ r4x, r1 ≺ r5, r4x ≺ r5 r2 ≺ r2e, r3 ≺ r3e.
The situation problematic for other approaches is the case, that the licensee,

with a valid license, illegally publishes the results of the evaluation, remove
them, and at the same time post a comment about the evaluation. The other
approaches conclude that commenting is permitted, but the permission to post
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a comment requires the permission to publish, but since the publishing was
illegal, there was not permission to publish. For us, if we assume, the facts
license, publish, remove and comment , then from r1 we derive Puse, from r2, we
have Fpublish, and Oremove. Given that we have Fpublish we cannot conclude
Ppublish, thus, −∂Ppublish hence from r3, we obtain Fcomment , and thus the
conditions to derive +∂⊥ indicating that the situation is not compliant.

5 Conclusion and Summary

We began this paper with some simple and small examples containing essential
features for normative reasoning. We discussed, why defeasible reasoning, supple-
mented with deontic operators has the capability to offer a conceptually sound and
computationally feasible tool for legal reasoning (or aspects of it). Then, we pro-
posed a specific logic, Defeasible Deontic Logic, and we show how to capture the
various features in the logic, we illustrated some of the feature with legal examples.
The logic presented in the paper has a full implementation [27], and it has been
used in a number of applications and industry scale pilot projects (for example
to determine the regulatory compliance of business processes [13]). Recently, the
logic has been proposed for the reasoning engine for a platform to handle legisla-
tions in a digital format in the Regulation as a Platform (RaaP) project funded by
the Australian Federal Government. As part of the project, several Acts have been
encoded in Defeasible Deontic Logic demonstrating the suitability of the logic to
model normative systems. The Regulation as a Platform framework is available
for public evaluation at https://raap.d61.io.
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Abstract. This is a quick survey about efficient search on a text corpus
combined with a knowledge base. We provide a high-level description
of two systems for searching such data efficiently. The first and older
system, Broccoli, provides a very convenient UI that can be used without
expert knowledge of the underlying data. The price is a limited query
language. The second and newer system, QLever, provides an efficient
query engine for SPARQL+Text, an extension of SPARQL to text search.
As an outlook, we discuss the question of how to provide a system with
the power of QLever and the convenience of Broccoli. Both Broccoli and
QLever are also useful when only searching a knowledge base (without
additional text).

Keywords: Knowledge bases · Semantic search · SPARQL+Text
Efficiency · User interfaces

1 Introduction

This short survey is about efficient search on a text corpus combined with a
knowledge base. For the purpose of this paper, a knowledge base is a collection of
subject-predicate-object triples, like in the following example. Note that objects
can also be strings, called literals, and that such literals can contain a qualifier
indicating the language.

<Neil Armstrong> <Space Agency> <NASA>
<Neil Armstrong> <Place of birth> <Wapakoneta>
<Neil Armstrong> <Date of birth> ‘‘1930-08-05”
<NASA> <Slogan> ‘‘For the Benefit of All”@en

Knowledge bases are well suited for structured data, which has a natural rep-
resentation in the form above. With information cast in this form, we can ask
queries with precise semantics, just like on a database. Here is an example query,
formulated in SPARQL, the standard query language on knowledge bases. The
query asks for astronauts and their agencies. The result is a table with two
columns. If an astronaut works for k agencies, the table has k rows for that
astronaut.

c© Springer Nature Switzerland AG 2018
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SELECT ?x ?y WHERE {
?x <is-a> <Astronaut>.
?x <Space Agency> ?y

}
Note that it is crucial that in the knowledge base the same identifier is used
to denote the same entity in different triples. This is easier said than done:
in practice, knowledge bases are often co-productions of large teams of people,
and it is not trivial to ensure that different people use the same identifier when
referring to the same entity.

Much of today’s information is available only in text form. The main reasons
for this are as follows. First, text as a direct representation of spoken language
is a very natural form of communication for humans and it requires extra effort
to convert a given piece of information into a structured form. Second, as a
particular consequence of the first reason, especially current and expert infor-
mation is much more likely to be available in text form than in structured form.
Third, not all information can be meaningfully cast in the above mentioned triple
form. For example, consider the following sentence, which, among other pieces
of information, expresses that Neil Armstrong walked on the moon:

On July 21st 1969, Neil Armstrong became the first man to walk on the Moon.

The statement that a certain person walked on the moon is rather specific and
applies to only few entities. Casting this into triple form might be reasonable
for statements of historical importance. Doing it for all statements that are
mentioned in a large text corpus, would lead to a knowledge base that has hardly
more structure than the text corpus itself. Also note that the larger the set of
predicates becomes, the harder it becomes to maintain the above-mentioned
property of using consistent identifiers.

It is therefore very natural to consider both knowledge bases and text for
search. The simplest way to achieve this is to query both data sets separately
and return the results as distinct result sets (provided that matches were found).
This is essentially what the big commercial search engines currently do. In this
paper, we consider a more powerful search, which considers the knowledge base
and the text in combination. In the following, Sect. 2 explains the nature of this
combination. Section 3 presents a system, called Broccoli, which enables a user
to interactively and conveniently search on such a combined data set. Section 4
presents SPARQL+Text, a powerful extension of SPARQL, along with QLever,
an efficient query engine implementing this extension. Section 5 briefly discusses
how to combine the power of a system like QLever with the convenience of a
system like Broccoli.

Both Broccoli and QLever are available online. A demo of Broccoli is available
under http://broccoli.cs.uni-freiburg.de. A demo of QLever is available under
http://qlever.cs.uni-freiburg.de. The source code of QLever is available under
http://github.com/ad-freiburg/qlever.

http://broccoli.cs.uni-freiburg.de
http://qlever.cs.uni-freiburg.de
http://github.com/ad-freiburg/qlever
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2 Combining Text and Knowledge Base Data

A natural way to connect a given text corpus to a given knowledge base is to
identify which pieces of text refer to an entity from the knowledge base, and
exactly which entity is meant in each case. These problems are known as named
entity recognition (NER) and named entity disambiguation (NED). For example,
consider the following sentence:

Buzz Aldrin joined Armstrong and became the second human to set foot on
the Moon.

Underlining the correct tokens is the NER problem. This entails figuring out the
extent of the text used to refer to one entity. This can be just a single word, but it
can also be a sequence of two or more words. Identifying which entities from the
knowledge base the underlined pieces of text refer to is the NED problem. Note
that there are many entities which could be referred to by the word Armstrong.
Figuring out the correct entity can be a hard problem. In the sentence above, the
other words in the sentence make it pretty clear that Neil Armstrong is meant.
In the ERD’14 challenge [10], the best approach achieved an F-measure of 76%
[12]. A quick overview of the state of the art in NER and NED can be found
in a recent survey [7, Sect. 3.2.2]. In the following, we simply assume that the
NER+NED problem has been solved satisfactorily and we thus have a text and
a knowledge base linked in the way described.

With a text corpus and a knowledge base linked in this manner, we now
have a notion of co-occurrence of an entity from the knowledge base with one
or more words from the text corpus. The two systems described in Sects. 3 and
4 allow to specify such co-occurrences as part of a query. For example, both
systems allow a query that searches for entities in the knowledge base with the
profession astronaut (that is, astronauts), which somewhere in the text co-occur
with a word starting with walk (walk, walked, walking, ...) and the word moon.
The scope of the co-occurrence is an additional parameter: for example, we can
consider co-occurrence within the same sentence or co-occurrence within the
same grammatical sub-clause of a sentence; this is explained further in Sect. 3.
Note how such a co-occurrence is a good indicator that the respective astronaut
indeed walked on the moon. The more such co-occurrences we find, the more
likely it is. The examples given in the next sections will clarify this further.

To get a feeling for the amount of data which these systems can handle,
here are two concrete datasets, which have been used in the evaluation of these
systems.

Wikipedia+Freebase Easy: The text from a dump of the English Wikipedia
with links to a curated and simplified version of Freebase called Freebase Easy
[2]. In particular, all entities and predicates in Freebase Easy are denoted by
unique human-readable names, like in the example triples at the beginning of
the introduction. The dataset is available at http://freebase-easy.cs.uni-freiburg.
de. The dimensions of this dataset are: 360,744,363 triples, 2,316,712,760 word
occurrences, 494,253,129 entity links.

http://freebase-easy.cs.uni-freiburg.de
http://freebase-easy.cs.uni-freiburg.de
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Clueweb+Freebase: The text from the Clueweb12 collection [11] with links to
the latest complete version of Freebase (see below). Freebase uses alphanumerical
IDs as identifiers for entities (for example, fb:m.05b6w for Neil Armstrong) and
human-readable strings with a directory-like structure as identifiers for pred-
icates (for example, fb:people.person.profession for the predicate that links a
person to their profession).1 The dimensions of this dataset are: 1,934,771,338
triples, 32,281,516,161 word occurrences, 3,263,384,664 entity links.

Freebase was initiated by a company called Metaweb in 2007. The company
was eventually acquired by Google in 2010. In August 2015, the Freebase dataset
was frozen. Wikidata is a general-purpose knowledge base which is very similar
in spirit to Freebase [15]. Wikidata has grown steadily but slowly until August
2017. It has then almost tripled in size over the next 12 months. A full dump of
Wikidata from May 2018 contains 4,157,785,636 triples, of which 1,204,269,433
have a literal as an object. Wikidata uses numerical IDs both for entity and
predicate names (for example, wd:Q1615 for Neil Armstrong and wdt:P106 for
the predicate that links a person to their profession). An instance of the query
engine described in Sect. 4 running on the complete Wikidata is available under
http://qlever.cs.uni-freiburg.de.

3 Broccoli: Interactive Search on a Knowledge Base
Combined with a Text Corpus

Search on a knowledge base alone is not easy, and in combination with text,
the task becomes even harder. The main reason is that such a search requires
knowledge of the names of the entities and the predicates in the knowledge base,
as well as on how the information is structured in the knowledge base in the first
place. This is hard even when the identifiers are human-readable (because there
are so many of them, and names are ambiguous). It is complicated further when
the identifiers are just numerical (or alphanumerical) IDs.

Another problem is that query languages like SPARQL have no concept of a
ranking by relevance, as we know it from text search engines. Instead, a SPARQL
query primarily delivers a set of entities or table rows, and any desired order
needs to be explicitly specified. For some queries, there are natural predicates
by which the data can be ordered. For example, for a list of cities, an order by
descending population is natural. For other queries, there is no such predicate.
For example, for a list of people, one probably wants to see the better known
individuals first, but knowledge bases usually do not have predicates expressing
the relative “popularity” of an entity.

Broccoli is a system that tries to address all of these problems. Broccoli
guides the user in incrementally constructing a query by providing suggestions
for extending the query after each keystroke and by visualizing, at each step of
the construction process, the current query and the current result in an intuitive

1 The identifiers are actually URIs and the prefix fb:stands for the common beginning
of these URIs. See Sect. 5 for more explanation of this.

http://qlever.cs.uni-freiburg.de


30 H. Bast and N. Schnelle

Fig. 1. A screenshot of Broccoli in action for an example query. The box on the top right
visualizes the current query as a tree. The large box below shows the hits grouped by
instances that match the query root and ranked by relevance. Comprehensive evidence
for each hit is provided. For matches in the text corpus, a whole sentence is shown,
with parts outside of the matching semantic unit (this is explained in the text) greyed
out. On the left, there are suggestions for classes, instances and relations, which can
be used to extend or narrow down the query. Suggested classes are parent classes of
the entities from the current result. Relations and instances are context sensitive with
respect to the current query. That is, all suggestions, if clicked, would lead to at least
one hit. There are no word suggestions in the screenshot, because the search field on
the top left is empty at this point of the query construction process. As soon as letters
are typed, word suggestions appear and the other suggestions are narrowed down to
those matching the typed prefix.

way. Figure 1 provides a screenshot of the system in action for a particular query.
The caption of that figure provides some additional explanations on the various
components and features. Note that Broccoli refers to entities as instances and
predicates as relations. Broccoli also knows classes, which are simply groups
of entities with the same type, according to a fixed type relation, which every
general-purpose knowledge base has. The semantics of the query should be self-
explanatory; if not, the formalization to SPARQL+Text in Sect. 4 should help
to clarify this. A demo of Broccoli is available online at http://broccoli.cs.uni-
freiburg.de.

The design and realization of Broccoli was a complex endeavour, which
required several person-years. The architecture and the technology behind Broc-
coli is described in a series of papers. The system architecture has first been
described in [1]. The index data structures and algorithms used for the inter-
active query processing and suggestions are described in [4]. The curation and
simplification of the Freebase dataset is described in [2]. The engineering behind
the public demo is described in [3]. The relevance scores which form the basis of

http://broccoli.cs.uni-freiburg.de
http://broccoli.cs.uni-freiburg.de
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the ranking are described in [6]. The natural language processing used to split
the text into semantic units is described in [8].

Broccoli does what it does extremely well. The convenience and the high
speed come at a price though. Here are the most important shortcomings of
Broccoli:

1. Broccoli only supports tree-shaped SPARQL queries. Many typical queries
are tree-shaped, but by far not all.

2. Broccoli only supports SPARQL queries with one variable in the SELECT
clause. Again, many typical queries have this property, but by far not all.

3. Broccoli has no special treatment for n-ary relations, that is, relations which
connect more than two entities. Section 5 gives an example of such a query
on Wikidata.

4. Broccoli does not support SPARQL queries with predicate variables (that is
connecting two entities, which themselves may be variables, by an unknown
predicate).

5. Broccoli has no query planner. Since the queries are constructed incremen-
tally, by adding one part of a triple at a time, the order of the basic operations
(index scans and joins, see Sect. 4), is completely determined by the way the
query is constructed.

6. Broccoli uses a non-standard API. The original focus of the project was on
usability aspects and efficiency, not on the underlying query language.

The query engine presented in the next section addresses all of these shortcom-
ings.

4 QLever: A Query Engine for SPARQL+Text

QLever is a query engine for what we call SPARQL+Text. SPARQL+Text
contains standard SPARQL, so QLever can also be used to process standard
SPARQL queries (and quite efficiently so, see below). SPARQL+Text queries
operate on a knowledge base linked to a text corpus, as explained in Sect. 2. It
is assumed that the text has been segmented beforehand. These segments can
be the semantic units of the sentences (as briefly explained in Sect. 3), or sim-
ply the sentences of the text. The search results are best if the segmentation is
such that co-occurrence in the same segment has a semantic meaning, as in the
“astronauts who walked on the moon” example above.2

Specifically, SPARQL+Text extends SPARQL by two built-in predicates
ql:contains-entity and ql:contains-word. Here is an example query, which is sim-
ilar to the query from Fig. 1 (but asking for the space agencies of the astronauts
instead of restricting their birth date).

2 We sweep under the rug here that this is not a matter of co-occurrence alone. For
example, a text segment may additionally contain the word not and thus negate the
meaning. There are different approaches to handle this which we do not discuss here.
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SELECT ?astronaut ?agency TEXT(?text) WHERE {
?astronaut <is-a> <Astronaut>.
?astronaut <Space Agency> ?agency.
?text ql:contains-entity ?astronaut.
?text ql:contains-word ‘‘walk∗”.
?text ql:contains-word ‘‘moon”.

}
ORDER BY DESC(SCORE(?text))

The last three triples in the WHERE clause express that there is a segment of
text, denoted by ?text, which contains a mention of an entity ?astronaut (which
was identified as part of the NER+NED preprocessing described in Sect. 2) as
well as a word starting with walk and the word moon. With a reasonable seg-
mentation, a large number of such segments means that the respective candidate
is indeed an astronaut who walked on the moon. On the two collections listed
in Sect. 2, this query already gives very good results when the segments are
simply sentences. The TEXT(?text) yields a third column in the result table,
containing a matching text segment for each match for the remaining variables
in the SELECT clause.3 The final ORDER BY ... clause orders the results by
the number of matching text segments, results with most matches first.

The details of the query engine behind QLever and the results of an exten-
sive evaluation are provided in [5]. The source code and documentation is
available under http://github.com/ad-freiburg/qlever. A front-end for entering
SPARQL+Text queries on the datasets from Sect. 2 as well as on the complete
Wikidata is available under http://qlever.cs.uni-freiburg.de.

We briefly provide the main ideas and results in a nutshell. The basic idea of
the index structure behind QLever is similar to that of Broccoli, but with various
engineering improvements. For example, the index data structures are laid out
(with slight redundancy) such that all basic operations (such as obtaining a
range of items from an index list) can efficiently read only exactly that data
which is actually needed for the operations (for example, only the subjects from
a range of triples). Due to these improvements, QLever is 2–3 times faster on
queries which can also be processed by Broccoli.

Unlike Broccoli, QLever has a full-featured query planner, suited for arbi-
trary query graphs and with a special treatment of the two special ql:contains-
... predicates. The query planner finds the query execution plan with the best
estimated cost, using dynamic programming. For accurate cost estimations, for
each subquery not only the result size is estimated, but also the number of dis-
tinct elements in each column. This is crucial for a good estimation of the result
size of the join operations. Computing good estimates for the result size and the
number of distinct elements in each column for each of QLever’s basic operations
(including the operations involving text search) is not trivial.

3 The number of matching text segments shown (per match for the remaining variables
in the SELECT clause) can be controlled with a TEXTLIMIT <k> clause. The
default is TEXTLIMIT 1.

http://github.com/ad-freiburg/qlever
http://qlever.cs.uni-freiburg.de
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The performance improvements over existing SPARQL engines are consid-
erable. Even for SPARQL queries without a text search component, QLever is
several times faster than existing query engines like Virtuoso [14] (widely used in
the commercial world) and RDF-3X [13] (a state-of-the-art research prototype)
for most queries. On SPARQL+Text queries, which can only be simulated on
query engines like Virtuoso and RDF-3X, QLever is faster by several orders of
magnitude.

5 Outlook

QLever supports SPARQL+Text, a powerful extension of SPARQL to integrate
search on a given text corpus linked to a given knowledge base. In particular,
QLever addresses all the shortcomings of Broccoli listed at the end of Sect. 3. The
price is that there is currently no UI that enables the construction of arbitrary
SPARQL+Text queries with the same level of convenience as Broccoli.

To illustrate the need for such a UI, let us look at one more query. It is a
SPARQL query on Wikidata for computing a table of all astronauts and where
they studied and for which degree. This query involves a 3-ary predicate (linking
a person to a university and the degree) and it is already surprisingly complex.
What adds to the complexity is that Wikidata uses IDs for both entities and
predicates and that we need to use a special predicate for obtaining the human-
readable labels and additional FILTER clauses to get the labels only in one
language instead of hundreds. Note that this query does not even involve a text
search part (we could, however, just add the two text search triples from the
query above). The prefixes at the beginning are abbreviations for the common
prefixes of Wikidata’s IDs, which are URIs. For example, in the SPARQL query
below, wd:Q11631 is equivalent to <http://www.wikidata.org/entity/Q11631>.

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX p: <http://www.wikidata.org/prop/>
PREFIX pq: <http://www.wikidata.org/prop/qualifier/>
PREFIX ps: <http://www.wikidata.org/prop/statement/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?astronautLabel ?universityLabel ?degreeLabel
WHERE {

?astronaut wdt:P106 wd:Q11631.
?astronaut rdfs:label ?astronautLabel.
?astronaut p:P69 ?educatedAt.
?educatedAt ps:P69 ?university.
?university rdfs:label ?universityLabel.
?educatedAt pq:P512 ?degree.
?degree rdfs:label ?degreeLabel.
FILTER langMatches(lang(?astronautLabel), ‘‘en”)
FILTER langMatches(lang(?universityLabel), ‘‘en”)
FILTER langMatches(lang(?degreeLabel), ‘‘en”)

}
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Enabling such queries, or more complex ones, without requiring knowledge of
a particular query language or of the particularities of the knowledge base is a
challenging problem. One line of attack is to try to generalize the UI of Broccoli
to SPARQL+Text. This looks feasible, but it remains to be seen how practical
such a UI would be when queries become more complex. Another line of attack
is to automatically translate questions in natural language to SPARQL+Text
queries as the above. This has been proven very hard already for simple SPARQL
queries, for example see [9]. A compromise might be a hybrid approach, which
allows an incremental construction of such a query via elements formulated in
natural language.
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Abstract. Large-scale probabilistic knowledge bases are becoming
increasingly important in academia and industry alike. They are con-
stantly extended with new data, powered by modern information extrac-
tion tools that associate probabilities with knowledge base facts. This
tutorial is dedicated to give an understanding of various query answer-
ing and reasoning tasks that can be used to exploit the full potential of
probabilistic knowledge bases. In the first part of the tutorial, we focus on
(tuple-independent) probabilistic databases as the simplest probabilistic
data model. In the second part of the tutorial, we move on to richer
representations where the probabilistic database is extended with onto-
logical knowledge. For each part, we review some known data complexity
results as well as discuss some recent results.

Keywords: Probabilistic reasoning · Probabilistic databases
Probabilistic knowledge bases · Query answering · Data complexity

1 Introduction

In recent years, there has been a strong interest in building large-scale proba-
bilistic knowledge bases from data in an automated way, which has resulted in
a number of systems, such as DeepDive [65], NELL [50], Reverb [27], Yago [40],
Microsoft’s Probase [75], IBM’s Watson [29], and Google’s Knowledge Vault [25].
These systems continuously crawl the Web and extract structured information,
and thus populate their databases with millions of entities and billions of tuples.
To what extent can these search and extraction systems help with real-world
use cases? This turns out to be an open-ended question. For example, Deep-
Dive is used to build knowledge bases for domains such as paleontology, geology,
medical genetics, and human movement [46,55]; it also serves as an important
tool for the fight against human trafficking [35]. IBM’s Watson makes impact
on health-care systems [30] and many other application domains of life sciences.

This tutorial is mostly based on the dissertation work [13], and previously published
material [8,14], and also makes use of some material from the classical literature on
probabilistic databases [21,68].
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Google’s Knowledge Vault has compiled more than a billion facts from the Web
and is primarily used to improve the quality of search results on the Web [26],
From a broader perspective, the quest for building large knowledge bases serves
as a new dawn for artificial intelligence (AI) research in general and for uni-
fying logic and probability in particular. Fields such as information extraction,
natural language processing (e.g., question answering), relational and deep learn-
ing, knowledge representation and reasoning, and databases are taking initiative
towards a common goal.

The most basic model to manage, store, and process large-scale probabilis-
tic data is that of tuple-independent probabilistic databases (PDBs) [68], which
indeed underlies many of these systems [25,65]. The first part of this tutorial
is thus dedicated to give an overview on PDBs. We first recall the basics of
query answering over PDBs, and then give an overview of the data complexity
dichotomy between polynomial time and #P for evaluating unions of conjunc-
tive queries over PDBs [21]. Then, we focus on two additional inference tasks
that are inspired by maximal posterior probability computations in probabilistic
graphical models (PGMs) [44]. That is, we discuss the problems of finding the
most probable database and the most probable hypothesis for a given query, which
intuitively correspond to finding explanations for PDB queries [14,37].

Probabilistic databases typically lack a suitable handling of incompleteness,
in practice. In particular, each of the above systems encodes only a portion of
the real-world, and this description is necessarily incomplete. However, when
it comes to querying, most of these systems employ the closed-world assump-
tion (CWA) [60], i.e., any fact that is not present in the knowledge base is
assigned the probability 0, and thus assumed to be impossible. It is also com-
mon practice to view every extracted fact as an independent Bernoulli variable,
i.e., any two facts are probabilistically independent. Similarly, by the closed-
domain assumption (CDA) of PDBs, the domain of discourse is fixed to a finite
set of known constants, i.e., it is assumed that all individuals are known a pri-
ori. These assumptions are very strong, and lead to more problematic semantic
consequences, once combined with another limitation of these systems, namely,
the lack of commonsense knowledge, which brings us to probabilistic knowledge
bases.

In the second part of this tutorial, we focus on probabilistic knowledge bases,
which are probabilistic databases that additionally allow to encode common-
sense knowledge. Note that incorporating commonsense knowledge is inherently
connected to giving up the above completeness assumptions of standard PDBs.
In the scope of this tutorial, we assume that commonsense knowledge is encoded
in the form of ontologies. There are many different models that allow for encod-
ing commonsense knowledge; see e.g. [36], but most of these models, such as
MLNs [61], relational Bayesian networks [42], and function-free variants of prob-
abilistic logic programs employ the closed-domain assumption, and therefore,
do not allow fully fledged first-order knowledge, as it already occurs in (rather
restricted) ontology languages. These semantic differences have been recently
highlighted in a survey [9].
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Ontologies are first-order theories that formalize domain-specific knowledge,
thereby allowing for open-world, open-domain reasoning. The most prominent
ontology languages in the literature are based on description logics (DLs) [3], and
lately also on Datalog± [10–12] (also studied as existential rules). For a uniform
syntactic presentation, we focus on Datalog± ontologies, but we note that, in
almost all cases, it is straight-forward to extend all the presented techniques
and results. Interpreting databases under commonsense knowledge in the form
of ontologies is closely related to ontology-based data access [56], also known
as ontology-mediated query answering (OMQA) [7]. In the second part of this
tutorial, we lift the reasoning problems introduced for probabilistic databases
to ontology-mediated queries, and give an overview of various data complexity
results.

2 Preliminaries: Logic, Databases, and Complexity

Intellectual roots of databases are in first-order logic [1]; in particular, in finite
model theory [47]. Thus, we adopt the model-theoretic perspective and view
databases as first-order structures over some fixed domain.

2.1 Logic and Notation

A relational vocabulary σ consists of sets R of predicates, C of constants, and V
of variable names (or simply variables). The function ar : R �→ N associates with
each predicate P ∈ R a natural number, which defines the (unique) arity of P.
A term is either a constant or a variable. An atom is of the form P(s1, . . . , sn),
where P is an n-ary predicate, and s1, . . . , sn are terms. A ground atom is an
atom without variables.

A first-order formula is defined inductively by combining the logical atoms
with logical connectives ¬, ∧, ∨, and quantifiers ∃, ∀, as usual. A literal is either
an atom or its negation. A quantifier-free formula is a formula that does not
use a quantifier. A variable x in a formula Φ is quantified, or bound, if it is in
the scope of a quantifier; otherwise, it is free. A (first-order) sentence is a first-
order formula without any free variables, also called a closed formula, or Boolean
formula. A (first-order) theory is a set of first-order sentences.

Let FO be the class of first-order formulas. The class of existential first-
order formulas (∃FO) consists of first-order formulas of the form ∃x.Φ(x), where
Φ is any Boolean combination of atoms. The class of universal first-order for-
mulas (∀FO) consists of first-order formulas of the form ∀x.Φ(x), where Φ is
any Boolean combination of atoms. A disjunctive clause is a finite disjunction
of literals. A conjunctive clause is a finite conjunction of literals. The class of
formulas in existential conjunctive normal form (∃CNF) consists of first-order
formulas of the form ∃x.Φ(x); the class of formulas in universal conjunctive nor-
mal form (∀CNF) consists of first-order formulas of the form ∀x.Φ(x), where Φ
is a conjunction of disjunctive clauses. The class of formulas in existential dis-
junctive normal form (∃DNF) consists of formulas of the form ∃x.Φ(x); the class
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of formulas in universal disjunctive normal form (∀DNF) consists of formulas of
the form ∀x.Φ(x), where Φ is a disjunction of conjunctive clauses. The class of
formulas in conjunctive normal form (CNF) consists of ∃CNF and ∀CNF formu-
las. The class of formulas in disjunctive normal form (DNF) consists of ∃DNF
and ∀DNF formulas. A formula is positive if it contains only positive literals. We
also write kCNF, or kDNF, to denote the class of formulas, where k denotes the
maximal number of atoms that a clause can contain.

2.2 Databases and Query Answering

A database D over a (finite) relational vocabulary σ is a finite set of ground
atoms over σ. We follow a model-theoretic approach and view a database as
a Herbrand interpretation, where the atoms that appear in the database are
mapped to true, while the ones not in the database are mapped to false,

Note that this semantics implies the closed-world assumption (CWA) [60],
and the closed-domain assumption (CDA), i.e., restricts the domain of an inter-
pretation to a finite, fixed set of constants; namely, to database constants. As a
matter of fact, such interpretations presume that the domain is complete. Finally,
the unique name assumption (UNA) ensures a bijection between the database
constants and the domain: it is not possible to refer to the same individual in
the domain with two different constant names. These simplifying assumptions
of databases are useful for a variety of reasons. At the same time, it becomes
very easy to produce some undesirable consequences under these assumptions,
as we will elaborate. We will revisit some of these assumptions, and discuss their
implications; for a recent survey on these assumptions, see e.g. [9].

The most fundamental task in databases is query answering ; that is, given
a database D and a formula Φ(x1, . . . , xn) of first-order logic, to decide whether
there exists assignments to the free variables x1, . . . , xn such that the resulting
formula is satisfied by the database. Importantly, here, the variable assignments
are of a special type, also called substitutions. Formally, a substitution [x/t]
replaces all occurrences of the variable x by some database constant t in some
formula Φ[x, y], denoted Φ[x/t].

Given these, we can now formulate query answering as a decision prob-
lem. Let σ be a relational vocabulary; Φ(x1, . . . , xn) be a first-order formula
over σ; and D be a database over σ. Then, query answering is to decide whether
D |= Φ[x1/a1, . . . , xn/an] for a given substitution (answer) [x1/a1, . . . , xn/an] to
the free variables x1, . . . , xn. For a Boolean formula Φ, Boolean query answering
(or simply query evaluation) is to decide whether D |= Φ.

There exists a plethora of query languages in the literature. Classical
database query languages range from the well-known conjunctive queries to arbi-
trary first-order queries, which we briefly introduce. A conjunctive query over σ
is an existentially quantified formula ∃x.Φ(x,y), where Φ(x,y) is a conjunction
of atoms over σ. A Boolean conjunctive query over σ is a conjunctive query with-
out free variables. A union of conjunctive queries is a disjunction of conjunctive
queries with the same free variables. A union of conjunctive queries is Boolean if
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it does not contain any free variable. The class of Boolean unions of conjunctive
queries is denoted UCQ.

We always focus on Boolean queries unless explicitly mentioned otherwise.
Conjunctive queries are the most common database queries used in practice;
thus, they will also be emphasized in this work. Besides, note that full relational
algebra corresponds to the class of first-order formulas. Therefore, we include
fragments of the class of first-order formulas as query languages in our analysis.
In particular, we study ∃FO, ∀FO, and FO queries as query languages. Besides,
we sometimes use different syntactic forms to represent relational queries, such
as CNF or DNF.

We also speak of matches for Boolean queries. Let Q be a Boolean query
over σ, D a database over σ, and V(Q) be the set of variables that occur in Q.
A mapping ϕ : V(Q) �→ C is called a match for the query Q in D if D |= ϕ(Q).
For existentially quantified queries, it is sufficient to find a single match, to
satisfy a given Boolean query evaluation. Conversely, for universally quantified
queries, all mappings must result in a match in order to satisfy the query.

2.3 Complexity Background

We assume some familiarity with complexity theory and refer the reader to stan-
dard textbooks in the literature [53,66]. We now briefly introduce the complexity
classes that are most relevant to the presented results.

FP is the class of functions f : {0, 1}∗ → {0, 1}∗ computable by a polynomial-
time deterministic Turing Machine. The function class #P [71] is central for
problems related to counting. The canonical problem for #P is #SAT, that is,
given a propositional formula ϕ, the task of computing the number of satisfying
assignments to ϕ. In this tutorial, we mostly focus on decision complexity classes.
Intuitively, the complexity class PP [32] can be seen as the decision variant
of #P. Formally, PP is the set of languages recognized by a polynomial time
nondeterministic Turing machine that accepts an input if and only if more than
half of the computation paths are accepting. The canonical problem for PP
is MAJSAT, that is, given a propositional formula ϕ, the problem of deciding
whether the majority of the assignments to ϕ are satisfying. Importantly, PP
is closed under truth table reductions [6]; in particular, this implies that PP
is closed under complement, union, and intersection. PP contains NP and is
contained in PSpace.

Another class of interest is NPPP, which intuitively combines search and opti-
mization problems. A natural canonical problem for this class is EMAJSAT [48],
that is, given a propositional formula ϕ and a set of distinguished variables x
from ϕ, is there an assignment μ to x-variables such that majority of the assign-
ments τ that extend μ satifies ϕ. NPPP appears as a fundamental class for
probabilistic inference and planning tasks. The inclusion relationships between
these complexity classes can be summarized as follows:

P ⊆ NP ⊆ PPP = P#P ⊆ NPPP ⊆ PSpace ⊆ Exp,

where PPP = P#P is due to Toda’s result [70].
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We also make references to lower complexity classes characterized by Boolean
circuits. AC0 consists of the languages recognized by Boolean circuits with con-
stant depth and polynomial number of unbounded fan-in AND and OR gates.
TC0 consists of the languages recognized by Boolean circuits with constant
depth and a polynomial number of unbounded fan-in AND, OR, and MAJOR-
ITY gates. Unlike Turing machines, Boolean circuits are non-uniform models of
computation; that is, inputs of different size are processed by different circuits.
It is therefore common to impose some uniformity conditions that require the
existence of some resource-bounded Turing machine that, on an input, produces
a description of the individual circuit. The most widely accepted uniformity con-
dition for these classes is DLogTime-uniformity, bounding the computation in
accordance to a logarithmic-time deterministic Turing machine. For a detailed
treatment of the subject, we refer to the relevant literature [73]. The relationships
between these classes can be summarized as follows:

AC0 ⊆ TC0 ⊆ LogSpace ⊆ P

When analyzing the computational complexity, we restrict ourselves to the
data complexity throughout this tutorial, in order to achieve a more focused
presentation. As usual, the data complexity is calculated only based on the size
of the database, i.e., the query is assumed to be fixed [72].

3 Probabilistic Databases

In this section, we introduce probabilistic databases (PDBs) [68] as one of the
most basic data models underlying probabilistic knowledge bases. Our analysis
is organized in two subsections; first, we give an overview of query evaluation
methods in PDBs, and afterwards, we study maximal posterior computation
tasks, introduced for PDBs [14,37].

We adopt the simplest probabilistic database model, which is based on the
tuple-independence assumption. For alternative models, we refer the reader to
the rich literature of probabilistic databases; see e.g. [68] and the references
therein. Tuple-independent probabilistic databases generalize classical databases
by associating every database atom with a probability value.

Definition 1. A probabilistic database (PDB) P for a vocabulary σ is a finite
set of tuples of the form 〈t : p〉 , where t is a σ-atom and p ∈ (0, 1]. Moreover,
if 〈t : p〉 ∈ P and 〈t : q〉 ∈ P, then p = q.

Table 1 shows a sample PDB Pm, where each row in a table represents
an atom that is associated with a probability value. Semantically, a PDB can
be viewed as a factored representation of exponentially many possible worlds
(classical databases), each of which has a probability to be true. Both in the
AI [24,57,63,64] and the database literature [68], this is commonly referred to
as the possible worlds semantics.

In PDBs, each database atom is viewed as an independent random variable
by the tuple-independence assumption. Each world is then simply a classical
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Table 1. The PDB Pm represented in terms of database tables, where each row is
interpreted as a probabilistic atom.

StarredIn P

deNiro taxiDriver 0.7
thurman pulpFiction 0.1
travolta pulpFiction 0.3

DirectedBy P

pulpFiction tarantino 0.8
taxiDriver scorsese 0.6
winterSleep ceylan 0.8

database, which sets a choice for all database atoms in the PDB. Furthermore,
the closed-world assumption forces all atoms that are not present in the database
to have probability zero.

Definition 2. A PDB P for vocabulary σ induces a unique probability distribu-
tion PP over the set of (possible worlds) D such that

PP(D) =
∏

t∈D
PP(t)

∏

t/∈D
(1 − PP(t)),

where the probability of each atom is given as

PP(t) =
{p if 〈t : p〉 ∈ P

0 otherwise.

Whenever the probabilistic database is clear from the context, we simply write
P(t), instead of PP(t). We say that a database is induced by a PDB P if it is a
possible world (with a non-zero probability) of P.

Observe that the choice of setting PP(t) = 0 for tuples missing from PDB P is
a probabilistic counterpart of the closed-world assumption. Let us now illustrate
the semantics of PDBs on a simple example.

Example 1. Consider the PDB Pm given in Table 1. The probability of the world
D1, given as

D1 := {StarredIn(deNiro, taxiDriver),DirectedBy(taxiDriver, scorsese)},

can then be computed by multiplying the probabilities of the atoms that appear
in D1 with the dual probability of the atoms that do not appear in D1 as follows

P(D1) = 0.7 · (1 − 0.1) · (1 − 0.3) · (1 − 0.8) · 0.6 · (1 − 0.8). �
The semantics of queries is given through the possible worlds semantics,

which amounts to walking through all the possible worlds and summing over the
probabilities of those worlds that satisfy the query.

Definition 3 (query semantics). Let Q be a Boolean query and P be a PDB.
The probability of Q in the PDB P is defined as

PP(Q) =
∑

D|=Q

PP(D),

where D ranges over all possible worlds.
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In general, there are exponentially many worlds, and in some cases, it is
unavoidable to go through all of them in order to compute the probability. This
is computationally intractable, but as we shall see later, in some cases, computing
the query probability is actually easy.

Example 2. Consider again the PDB Pm. In order to evaluate the following
Boolean query

Q := ∃x, y StarredIn(x, y) ∧ DirectedBy(y, scorsese),

on Pm, we can näıvely check, for each world D, whether D |= Q. One such world
is D1, as it clearly satisfies D1 |= Q. Afterwards, we only need to sum over the
probabilities of the worlds, for which the satisfaction relation holds, in order to
obtain the probability of the query. �

In the given example, it is easy to compute the probability of the query.
Notably, this is the case for any PDB and not only for our toy PDB. The next
section is dedicated to give an understanding of easy and hard queries.

3.1 Query Evaluation in Probabilistic Databases

In this section, we provide a short overview on existing complexity results for
inference in (tuple-independent) probabilistic databases including a data com-
plexity dichotomy result. In our analysis, we are interested in the decision prob-
lem of probabilistic query evaluation, as defined next.

Definition 4 (probabilistic query evaluation). Given a PDB P, a query Q
and a threshold value p ∈ [0, 1), probabilistic query evaluation, denoted PQE,
is to decide whether PP(Q) > p. PQE is parametrized with a particular query
language; thus, we write PQE(Q) to define PQE on the class of Q queries.

The data complexity of query evaluation depends heavily on the structure of
the query. In a remarkable result [21], it has been shown that the probability of
a UCQ can be computed either in FP or it is #P-hard on any PDB. Using the
usual terminology [21], we say that queries are safe if the computation problem
is in FP, and unsafe, otherwise. Probabilistic query evaluation, as defined here,
is the corresponding decision problem. It is easy to see that this problem is either
in P or it is PP-complete as a corollary to the result of [21].

Corollary 1. PQE(UCQ) is either in P or it is PP-complete for PDBs in data
complexity under polynomial-time Turing reductions.

Proof. Let a UCQ Q be safe for PDBs. Then, for any PDB P, the computation
problem P(Q) uses only polynomial time. As a consequence, it is possible to
decide whether the probability exceeds a given threshold p in polynomial time.
Thus, PQE(UCQ) is in P for all safe UCQ queries.

Conversely, let a UCQ Q be unsafe for PDBs. Then, the problem of computing
P(Q) on a given PDB P is #P-hard under polynomial-time Turing reductions.
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ỹ x̃

R

C D

(a)QNH := ∃x, y C(x) ∧ R(x, y) ∧ D(y)

x̃

ỹ

RC, D

(b) QH := ∃x, y C(x) ∧ R(x, y) ∧ D(x)

Fig. 1. Venn diagram for the queries QNH (non-hierarchical) and QH (hierarchical).

Let us loosely denote by P(Q) the problem of computing P(Q). We now only show
that PP is contained in PPQE(Q), i.e.,PQE(Q) is PP-hard in data complexity
under polynomial-time Turing reductions.

To show this, let A be any other problem in PP. By assumption, its compu-
tation problem, denoted #A, is contained in FPP(Q), i.e., there is a polynomial-
time Turing machine with oracle P(Q) that computes the output for #A. We
can adapt this Turing machine then to compare the output to some threshold,
which means that A is contained in PP(Q). We also know that P(Q) is con-
tained in FPPQE(Q), as we can perform a binary search over the interval [0, 1] to
compute the precise probability P(Q). This implies that A is contained in PC,
where C = FPPQE(Q). Finally, note that the intermediate oracle does not pro-
vide any additional computational power (as this computation can be performed
by the polynomial-time Turing machine and the oracle PQE(Q) can be queried
directly). This shows that A is in PPQE(Q), which proves the result. �

We use the same terminology also for the associated decision problem: we
say that a query Q is safe if PQE(Q) is in P, and unsafe, otherwise. Historically,
a dichotomy is considered first by [34], and later, the so-called small dichotomy
result has been proven by [20], which applies to a subclass of conjunctive queries.
As it gives nice insights on the larger dichotomy result [21], we look into this
result, in more detail. The small dichotomy applies to all conjunctive queries
without self-joins, i.e., conjunctive queries with non-repeating relation symbols.
It asserts that a self-join free query is hard if and only if it is nonhierarchical,
and it is safe, otherwise. It is therefore crucial to understand hierarchical and
nonhierarchical queries.

Definition 5 (hierarchical queries). Let Q be a conjunctive query. For any
variable x that appears in the query Q, its x-cover, denoted x̃, is defined as the
set of all relation names that have the variable x as an argument. Two covers x̃
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C(x) ∧ R(x, y) ∧ D(x)

C(b) ∧ R(b, y) ∧ D(b)

R(b, a)

C(a) ∧ R(a, y) ∧ D(a)

R(a, b)

Fig. 2. Decomposition tree of a safe query for the grounding [x/a, y/b] (left branch)
and [x/b, y/a] (right branch). Different branches of the tree do not share an atom,
which ensures independence.

and ỹ are pairwise hierarchical if and only if x̃ ∩ ỹ �= ∅ implies x̃ ⊆ ỹ or ỹ ⊆ x̃.
A query Q is hierarchical if every cover x̃, ỹ is pairwise hierarchical ; otherwise,
it is called nonhierarchical.

Let us consider the query QNH := ∃x, y C(x) ∧ R(x, y) ∧ D(y). It is easy to see
that this query is not hierarchical, since the relation R occurs in both covers x̃
and ỹ (as depicted in Fig. 1a). This simple join query is already unsafe, as shown
in [20].

Theorem 1 (Theorem7,[20]). QNH is unsafe.

Proof. We provide a reduction from the model counting problem, that is, given
a propositional formula ϕ, the problem of computing the model count of ϕ,
denoted #ϕ. Provan and Ball [58] showed that computing #ϕ is #P-complete
(under Turing reductions) even for bipartite monotone 2DNF Boolean formu-
las ϕ, i.e., when the propositional variables can be partitioned into X =
x1, . . . , xm and Y = y1, . . . , yn such that ϕ = c1 ∨ · · · ∨ cl, where each clause ci

has the form xj ∧ yk, xj ∈ X, yk ∈ Y .
Given ϕ, we define the probabilistic database Pϕ, which contains the atoms

〈C(x1) : 0.5〉, . . . , 〈C(xm) : 0.5〉, 〈D(y1) : 0.5〉, . . . , 〈D(yn) : 0.5〉, and for every
clause (xj ∧ yk) an atom 〈R(xj , yk) : 1〉. It is then easy to verify that #ϕ =
P(QNH) · 2m+n, which concludes the result. �

Similar reductions can be obtained for all (self-join free) conjunctive queries that
are non-hierarchical. Note, however, that removing any of the atoms from QNH

results in a safe query. For example, the query ∃x, y C(x) ∧ R(x, y) is hierarchical
and thus safe. The query QH := ∃x, y C(x) ∧ R(x, y) ∧ D(x), as shown in Fig. 1b,
is yet another example of a safe query.

The intuition behind a safe query is the query being recursively decomposable
into sub-queries such that each such sub-query is probabilistically independent.
Let us consider the query QH, as it admits a decomposition, and is safe. We can
first ground over x, which results in a query of the form ∃y C(a) ∧ R(a, y) ∧ D(a)
for a grounding [x/a]. The atoms in the resulting query do not share a relation
name or a variable, and since we additionally assume tuple independence, it
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Fig. 3. Decomposition tree of an unsafe query for the grounding [x/a, y/b] (left branch)
and [x/b, y/a] (right branch). Different branches of the tree share D-atoms, which makes
them dependent.

follows that the probability of each atom is independent. Thus, their probabilities
can be computed separately and combined afterwards using appropriate rules of
probability.

Note that our observation for the independence is also valid for all differ-
ent groundings of QH. For example, the groundings QH[x/a] and QH[x/b], are
probabilistically independent, since after applying a grounding over y, we obtain
mutually disjoint sets of ground atoms. That is, once x is mapped to different
constants, then all mappings for y will result in different sets of atoms. As a
result, their probabilities can be computed separately and combined afterwards.
The decomposition of the safe query QH is depicted in Fig. 2 in terms of a tree.
The key ingredient in this example is related to the variable x, which serves as a
separator variable in the first place and allows us to further simplify the query.

Definition 6 (separator variable). Let Q be a first-order query. A variable
x in Q is a separator variable if x appears in all atoms of Q and for any two
different atoms of the same relation R, the variable x occurs in the same position.

Note that the query QNH has no separator variable, since neither x nor y
serve as a separator variable. Intuitively, this means that the query cannot be
decomposed into independent sub-queries. For example, two different groundings
QNH[x/a] and QNH[x/b] are not independent for QNH, since they do not neces-
sarily result in mutually exclusive sets of atoms once grounded over y, as shown
in Fig. 3. The small dichotomy theorem uses other rules of probability theory to
further simplify the query, and we illustrate this on an example.

Example 3. Consider the hierarchical query QH := ∃x, y C(x) ∧ R(x, y) ∧ D(x).
To compute the probability of QH, we first apply the decomposition based on
the seperator variable x, which yields

P(QH) = 1 −
∏

c∈C

P(∃y C(c) ∧ R(c, y) ∧ D(c)),

Here, c ranges over the database constants, and the probability of the resulting
expression can be computed by decomposing the conjunctions as

P(∃y C(c) ∧ R(c, y) ∧ D(c)) = P(C(c)) · P(∃y R(c, y)) · P(D(c)).
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Table 2. The probabilistic database Pv encodes dietary regimes of some individuals,
and the friendship relation among those individuals.

Vegetarian

alice 0.7
bob 0.9
chris 0.6

FriendOf

alice bob 0.7
alice chris 0.8
bob chris 0.1

Eats

bob spinach 0.7
chris mussels 0.8
alice broccoli 0.2

Meat

shrimp 0.7
mussels 0.9
seahorse 0.3

The probabilities of the ground atoms C(c), D(c) can be read off from the given
probabilistic database; thus, it only remains to apply the grounding in R(c, y),
which results in

P(∃y R(c, y)) = 1 −
∏

d∈C

P(R(c, d)).
�

The dichotomy for unions of conjunctive queries is much more intricate and
a characterization of safe queries is unfortunately not easy. Thus, an algorithm
is given in [21] to compute the probability of all safe queries by recursively
applying the simplification rules on the query. This algorithm is complete, i.e.,
when the algorithm fails on the query, then the query is unsafe. Later, a lifted
inference algorithm, called LiftR, was proposed in [38], which was also proven
to be complete. Afterwards, this algorithm has also been extended to an open-
world semantics in [15], where it has also been noted that this algorithm runs in
linear time for PDBs in the size of the database, under reasonable assumptions,
such as unit arithmetic cost assumption for all arithmetic operations. For full
details on different algorithms and their properties, we refer to the relevant
literature [13,15,21,38].

3.2 Maximal Posterior Computations for Probabilistic Databases

Forming the foundations of large-scale knowledge bases, probabilistic databases
have been widely studied in the literature. In particular, probabilistic query
evaluation has been investigated intensively as a central inference mechanism.
However, despite its power, query evaluation alone cannot extract all the relevant
information encompassed in large-scale knowledge bases.

To exploit this potential, two additional inference tasks are proposed [14,37],
namely, finding the most probable database and the most probable hypothesis for
a given query, both of which are inspired by maximal posterior probability com-
putations in probabilistic graphical models (PGMs) [44]. Let us briefly explain
why probabilistic query evaluation alone may not be sufficient on the following
example.

Example 4. Consider the PDB Pv given in Table 2 and the conjunctive query

Qfr = ∃x, y Qveg(x) ∧ FriendOf(x, y) ∧ Qveg(y).
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In the given PDB, alice, bob, and chris are all vegetarians and friends with each
other with some probability. We can now ask the probability of vegetarians being
friends with vegetarians. The query

Qfr[x/bob] = ∃y Qveg(bob) ∧ FriendOf(bob, y) ∧ Qveg(y)

is a special case of Qfr, which asks whether bob has vegetarian friends. Its prob-
ability can be computed as P(Qfr[x/bob]) = 0.9 · 0.1 · 0.6 = 0.054.

Suppose now that we observe that Qfr[x/bob] is true and would like to
learn what best explains this observation relative to the underlying probabilistic
database. To be able to explain such an observation, we need different inference
tasks than probabilistic query answering. �

The most probable database problem (analogous to most probable explana-
tions (MPE) in PGMs), first proposed in [37], is the problem of determining the
(classical) database with the largest probability that satisfies a given query. Intu-
itively, the query defines constraints on the data, and the goal is to find the most
probable database that satisfies these constraints. The most probable hypothe-
sis problem (analogous to maximum a posteriori problems (MAP) in PGMs),
first proposed in [14], only asks for partial databases satisfying the query. The
most probable hypothesis contains only atoms that contribute to the satisfaction
condition of the query, which allows to more precisely pinpoint the most likely
explanations of the query.

The Most Probable Database Problem. The need for alternative inference
mechanisms for probabilistic knowledge bases has been observed before, and the
most probable database problem has been proposed in [37] as follows.

Definition 7. Let P be a probabilistic database and Q a query. The most prob-
able database for Q over P is given by

arg max
D|=Q

P(D),

where D ranges over all worlds induced by P.

Intuitively, a probabilistic database defines a probability distribution over
exponentially many classical databases, and the most probable database is the
element in this collection that has the highest probability, while still satisfy-
ing the given query. This can be seen as the best instantiation of a proba-
bilistic model, and hence analogous to most probable explanation in Bayesian
networks [23]. We illustrate the most probable database on our running example.

Example 5. Consider the given PDB Pv. We can now filter the most probable
database that satisfies the query

Qfr = ∃x, y Qveg(x) ∧ FriendOf(x, y) ∧ Qveg(y).
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Table 3. The most probable database for the query Qfr over the PDB Pv.

Vegetarian

alice 0.7
bob 0.9
chris 0.6

FriendOf

alice bob 0.7
alice chris 0.8
bob chris 0.1

Eats

bob spinach 0.7
chris mussels 0.8
alice broccoli 0.2

Meat

shrimp 0.7
mussels 0.9
seahorse 0.3

Intuitively, the atoms Vegetarian(alice), Vegetarian(bob), and FriendOf(alice, bob)
need to be included in the most probable database, as they satisfy the query with
the highest probability (compared to other possible matches). Since the query
is monotone, for the remaining atoms, we only need to decide whether including
them results in a higher probability than excluding them, which amounts to
deciding whether their probability is greater than 0.5. Table 3 shows the most
probable database for Qfr over the PDB Pv, where all atoms that belong to the
most probable database are highlighted. �

Identifying the most probable database in this example is rather straight-
forward, and as we shall see later, this is tightly related to the query language
that is considered. We now illustrate that identifying the most probable database
can be more cumbersome if we consider other query languages; in particular, ∀FO
queries.

Example 6. Consider again the PDB Pv and the query

Qveg = ∀x, y ¬Vegetarian(x) ∨ ¬Eats(x, y) ∨ ¬Meat(y),

which defines the constraints of being a vegetarian, which is violated by the
atoms Vegetarian(chris), Eats(chris,mussels), and Meat(mussels). Therefore, the
most probable database for Qveg cannot contain all three of them, i.e., one of
them has to be removed (from the explanation). In this case, it is easy to see
that Vegetarian(chris) needs to be removed, as it has the lowest probability among
them. Thus, the most probable database (in this case unique) contains all atoms
of Pv that have a probability above 0.5, except for Vegetarian(chris).

Suppose now that we have observed Qfr[x/bob], and we are interested in
finding an explanation for this observation under the constraint of Qveg, which
is specified by the query

Qvf = Qfr[x/bob] ∧ Qveg.

Observe that Vegetarian(chris) and FriendOf(bob, chris) must be in the explana-
tion to satisfy Qfr[x/bob]. Moreover, either Eats(chris,mussels) or Meat(mussels)
has to be excluded from the most probable database, since otherwise Qveg will
be violated. The resulting most probable database is highlighted in Table 4. �

The most probable database is formulated as a decision problem as follows.
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Table 4. The most probable database for the query Qvf over the PDB Pv.

Vegetarian

alice 0.7
bob 0.9
chris 0.6

FriendOf

alice bob 0.7
alice chris 0.8
bob chris 0.1

Eats

bob spinach 0.7
chris mussels 0.8
alice broccoli 0.2

Meat

shrimp 0.7
mussels 0.9
seahorse 0.3

Definition 8 (MPD). Let Q be a query, P a probabilistic database, and p ∈
(0, 1] a threshold. MPD is the problem of deciding whether there exists a data-
base D that satisfies Q with P(D) > p. MPD is parametrized with a particular
query language; thus, we write MPD(Q) to define MPD on the class Q of queries.

The first result that we present concerns the well-known class of unions of
conjunctive queries: MPD can be solved using at most logarithmic space and
polynomial time. More precisely, it is possible to encode the MPD problem uni-
formly into a class of TC0 circuits.

Theorem 2. MPD(UCQ) is in DLogTime-uniform TC0 in data complexity.

Proof. Let P be a PDB, Q a UCQ, and p ∈ [0, 1) a threshold value. In principle,
we can enumerate all the databases induced by the PDB P and decide whether
there is a database that satisfies Q and has a probability greater or equal than
p. This would require exponential time, as there are potentially exponentially
many databases (worlds) induced by a probabilistic database. Fortunately, this
can be avoided, as the satisfaction relation for unions of conjunctive queries is
monotone: once a database satisfies a UCQ, then any superset of this database
will satisfy the UCQ. We can, therefore, design an algorithm, which initiates the
database with the atoms resulting from a match for the query (where the match
is over the atoms that appear with a positive probability in the PDB P) and
extends this to a database with maximal probability, as follows: it adds only
those atoms from the PDB P to the database that appear with a probability
higher than 0.5, ensuring to obtain the database with the maximal probability.
As a consequence, all these databases satisfy Q and if, furthermore, there is
a database D among them with P(D) ≥ p, then the algorithm answers yes;
otherwise, it answers no.

It is easy to see that this algorithm is correct. However, if performed näıvely,
as described, it results in a polynomial blow-up: there are polynomially many
matches for the query (in data complexity), and for each match, constructing
a database requires polynomial time and space. Observe, on the other hand,
that we can uniformly access every match through an AC0 circuit, and we can
avoid explicitly constructing a database for each such match. More concretely,
since we are only interested in the probability of the resulting database, we can
perform an iterated multiplication over the probabilities of the individual atoms:
if 〈a : q〉 ∈ P, where q > 0.5, we multiply with q, otherwise, we multiply with
1−q. We can perform such iterated multiplication with TC0 circuits that can be
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constructed in DLogTime [39]. Finally, it is sufficient to compare the resulting
number with the threshold value p. This last comparison operation can also be
done using uniform AC0 circuits. This puts MPD(UCQ) in DLogTime-uniform
TC0 in data complexity. �

This low data complexity result triggers an obvious question: what are the
sources of tractability? The answer is partially hidden behind the fact that the
satisfaction relation for unions of conjunctive queries is monotone. This allows us
to reduce the search space to polynomially many databases, which are obtained
from different matches of the query, in a unique way. Is the monotonicity a strict
requirement for tractability? It turns out that the TC0 upper bound can be
strengthened towards all existential queries, i.e., existentially quantified formulas
that allow negations in front of query atoms.

Theorem 3. MPD(∃FO) is in DLogTime-uniform TC0 in data complexity.

Proof. Let P be a PDB, Q a ∃FO query, and p ∈ [0, 1) a threshold value. Anal-
ogously to the proof of Theorem 2, we can design an algorithm that initiates
the database with the positive atoms from a match, while now also keeping the
record of the negative atoms from this match. We can again enumerate all the
matches, and for each such match, perform an iterated multiplication over the
probabilities of the atoms. The only difference is that now we need to exclude
the atoms from the database that appear negatively in the match to ensure the
satisfaction of the query. Thus, for all probabilistic atoms 〈a : q〉 ∈ P, we check
whether ¬a appears in the match, and if so, then we multiply with 1 − q; other-
wise, we check whether q > 0.5 and multiply with q, if this test is positive, and
multiply with 1 − q, if this test is negative. It is then sufficient to compare the
result of each multiplication with the threshold value p: if one of the resulting
multiplications is greater than or equal to p, then the algorithm answers yes,
otherwise, it answers no. It is easy to verify the correctness of this algorithm.

By similar arguments as in the proof of Theorem2, we can check the matches
in AC0, perform the respective multiplications in TC0 and the respective com-
parisons in AC0. Thus, MPD(∃FO) is in DLogTime-uniform TC0 in data
complexity. �

In some sense, the presented tractability result implies that nonmonotonicity
is not harmful if we restrict our attention to existential queries. This is because
the nonmonotonicity involved here is of a limited type and does not lead to a
combinatorial blow-up. This picture changes once we focus on universally quan-
tified queries: nonmonotonicity combined with universal quantification creates
nondeterministic choices, which we use to prove an NP-hardness result for the
most probable database problem. We note that this result is very similar to the
hardness result obtained in [37], only on a different query. Additionally, we show
that the complexity bound is tight even if we consider FO queries.

Theorem 4. MPD(∀FO) is NP-complete in data complexity, and so is
MPD(FO).
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Proof. We first show that MPD(FO) can be solved in NP. Let P be a PDB, Q a
FO query, and p ∈ [0, 1) a threshold value. To solve the decision problem, we first
guess a world D, and then verify both that the query is satisfied, i.e., D |= Q,
and that the threshold is met, i.e., P(D) ≥ p. Note that all these computations
can be done using a nondeterministic Turing machine, since only the first step is
nondeterministic, and both of the verification steps can be done in polynomial
time in data complexity.

To prove hardness, we provide a reduction from the satisfiability of propo-
sitional 3CNF formulas. Let ϕ =

∧
i ϕi be a propositional formula in 3CNF. We

define the ∀FO query

QSAT := ∀x, y, z ( L(x) ∨ L(y) ∨ L(z) ∨ R1(x, y, z)) ∧
(¬L(x) ∨ L(y) ∨ L(z) ∨ R2(x, y, z)) ∧
(¬L(x) ∨ ¬L(y) ∨ L(z) ∨ R3(x, y, z)) ∧
(¬L(x) ∨ ¬L(y) ∨ ¬L(z) ∨ R4(x, y, z)) ,

which is later used to encode the satisfaction conditions of ϕ. Without loss of
generality, we denote with u1, . . . , un the propositional variables that appear
in ϕ.

We then define the PDB Pϕ, depending on ϕ, as follows. For each proposi-
tional variable uj , we add the probabilistic atom 〈L(uj) : 0.5〉 to the PDB Pϕ.
The clauses ϕj are described with the help of the predicates R1, . . . , R4, each
of which corresponds to one type of clause. For example, if we have the clause
ϕi = x1 ∨ ¬x2 ∨ ¬x4, we add the atom 〈R3(x4, x2, x1) : 0〉 to PΦ, which enforces
via QSAT that either ¬L(x4), or ¬L(x2), or L(x1) holds. All other R-atoms that do
not correspond in such a way to one of the clauses are added with probability 1
to PΦ.

The construction provided for QSAT and Pϕ is clearly polynomial. Further-
more, the query is fixed, and only Pϕ depends on ϕ. We now show that MPD
can be used to answer the satisfiability problem of ϕ, using this construction.

Claim. The 3CNF formula ϕ is satisfiable if and only if there exists a database D
induced by Pϕ such that P(D) ≥ (0.5)n and D |= QSAT (where n is the number
of variables appearing in ϕ).
To prove the claim, suppose that ϕ is satisfiable, and let μ be such a satisfying
assignment. We define a world D such that it contains all the atoms of the form
L(uj) if and only if μ(uj) �→ 1 in the given assignment. Moreover, D contains
all the atoms that are assigned the probability 1 in Pϕ. It is easy to see that D
is one of the worlds induced by Pϕ. Observe further that Pϕ contains n nonde-
terministic atoms, each with 0.5 probability. By this argument, the probability
of D is clearly (0.5)n. It only remains to show that D |= QSAT, which is easy
to verify.

For the other direction, let D |= QSAT and P(D) ≥ (0.5)n for some world D.
We define an assignment μ by setting the truth value of uj to 1, if L(uj) ∈ D, and
to 0, otherwise. Every world contains exactly one assignment for every variable,
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by our construction. Thus, the assignment μ is well-defined. It is easy to verify
that μ |= ϕ. �

This concludes our analysis for the most probable database problem in the
context of PDBs, and this problem is revisited later for ontology-mediated
queries.

The Most Probable Hypothesis Problem. The most probable database
identifies the most likely state of a probabilistic database relative to a query.
However, it has certain limitations, which are analogous to the limitations of
finding the most probable explanations in PGMs [44]. Most importantly, one is
always forced to choose a complete database although the query usually affects
only a subset of the atoms. That is, it is usually not the case that the whole
database is responsible for the goal query to be satisfied. To be able to more
precisely pinpoint the explanations of a query, the most probable hypothesis is
introduced [14].

Definition 9. The most probable hypothesis for a query Q over a PDB P is

arg max
H|=Q

∑

D|=H
P(D),

where H ranges over sets of atoms t and negated atoms ¬t such that t occurs
in P, and H |= Q holds if and only if all worlds induced by P that satisfy H also
satisfy Q.

Intuitively, the most probable hypothesis contains atoms only if they con-
tribute to the satisfaction of the query, that is, the most probable hypothesis is
a partial explanation. It is still the case that an explanation has to satisfy the
query, but to do so, it does not need to make a decision for all the database
atoms. Indeed, it is possible to specify some positive and negative atoms that
ensure the satisfaction of the query, regardless of the truth value of the remaining
database atoms.

Conversely, any database D with D |= H must satisfy Q, and thus the most
probable database can be seen as a special case of the most probable hypothesis
that has to contain all atoms from a PDB (positively or negatively). We denote
the sum inside the maximization, i.e., the probability of the explanation by P(H).
Differently from PGMs, the probability of the explanation can be computed by
simply taking the product of the probabilities of the (negated) atoms in H. This
is a consequence of the independence assumption and influences the complexity
results, as we elaborate later.

Example 7. Consider again our running example with the PDB Pv and recall
the query Qvf := Qveg ∧ Qfr[x/bob], where

Qveg :=∀x, y ¬Vegetarian(x) ∨ ¬Eats(x, y) ∨ ¬Meat(y),
Qfr[x/bob] :=∃y Qveg(bob) ∧ FriendOf(bob, y) ∧ Qveg(y).
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Table 5. The most probable hypothesis for the query Qvf over Pv.

Vegetarian

alice 0.7
bob 0.9
chris 0.6

FriendOf

alice bob 0.7
alice chris 0.8
bob chris 0.1

Eats

bob spinach 0.7
chris mussels 0.8
alice broccoli 0.2

Meat

shrimp 0.7
mussels 0.9
seahorse 0.3

Recall that the most probable database for Qvf contains many redundant atoms.
The most probable hypothesis H for the query Qvf contains only 4 atoms, as
given in Table 5: as before, light gray highlighting denotes positive atoms, while
the dark gray one denotes negated atoms, i.e., ¬Eats(chris,mussels). Note that
all of these atoms directly influence the satisfaction of the query and thus are
part of the explanation. Since the most probable hypothesis contains less atoms,
it is more informative than the most probable database. We can compute the
probability of the hypothesis by P(H) = 0.9 · 0.6 · 0.1 · (1 − 0.8) = 0.0108. �

Whereas the most probable database represents full knowledge about all
facts, which corresponds to the common closed-world assumption for (probabilis-
tic) databases, the most probable hypothesis may leave atoms of P unresolved,
which can be seen as a kind of open-world assumption (although the atoms that
do not occur in P are still false). MPH is defined as a decision problem as follows.

Definition 10 (MPH). Let Q be a query, P a PDB, and p ∈ (0, 1] a threshold.
MPH is the problem of deciding whether there exists a hypothesis H that satis-
fies Q with P(H) ≥ p. MPH is parametrized with a particular query language;
thus, we write MPH(Q) to define MPH on the class Q of queries.

We again start our analysis with unions of conjunctive queries and show
that, as is the case for MPD, MPH can also be solved using at most logarithmic
space and polynomial time.

Theorem 5. MPH(UCQ) is in DLogTime-uniform TC0 in data complexity.

Proof. Let P be a PDB, Q a UCQ, and p ∈ [0, 1) a threshold value. It has
already been observed that the satisfaction relation for unions of conjunctive
queries is monotone, i.e., the fact that once a database satisfies a UCQ, then any
superset of this database satisfies the UCQ. Clearly, this also applies to partial
explanations: the databases extending the hypothesis H satisfy the query only if
H (extended with all atoms that have probability 1) is already a match for the
query. This means that the hypothesis must be a subset of a ground instance of
one of the disjuncts of the UCQ Q. The major difference from MPD is that, once
the explanation is found, we do not need to consider the other database atoms
in the PDB. As before, there are only polynomially many such hypotheses in
the data complexity, and they can be encoded uniformly into AC0 circuits, as in
the proof of Theorem2. Moreover, their probabilities can be computed in TC0

and the comparison with the threshold p can be done again in AC0. This puts
MPH(UCQ) in DLogTime-uniform TC0 in data complexity. �
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Recall that, for MPD, it was possible to generalize the data tractability result
from unions of conjunctive queries to existential queries. It is therefore interesting
to know whether the same holds for MPH. Does MPH remain tractable if we
consider existential queries? The answer is unfortunately negative: to be able to
verify a test such as H |= Q, we need to make sure that all extensions D of H
satisfy the query and this test is hard, once we allow negations in front of query
atoms. We illustrate the effect of negations on a simple example.

Example 8. Consider the following ∃FO query

Q := ∃x, y (A(x) ∧ ¬B(x, y)) ∨ (¬A(x) ∧ ¬B(x, y)).

To decide MPH on an arbitrary PDB, we could walk through all (partial) matches
for the query and then verify H |= Q. However, observe that this verification is
not in polynomial time, in general, as there are interactions between the query
atoms and these interactions need to be captured by the explanation itself. For
instance, the A-atoms in Q are actually redundant, and it is enough to find an
explanation that satisfies ∃x, y ¬B(x, y) for some mapping. �

The next result is for existential queries, and via a reduction from the validity
problem of 3DNF formulas, it shows that MPH is coNP-hard for these queries.
It is easy to see that this is also a matching upper bound.

Theorem 6. MPH(∃FO) is coNP-complete in data complexity.

Proof. Let P be a PDB, Q an ∃FO query, and p ∈ [0, 1) a threshold value. As
for membership, consider a nondeterministic Turing machine, which enumerates
all partial matches forming the hypothesis H and answers yes if and only if
P(H) ≥ p and there is no database D that satisfies D |= H while D �|= Q.

To prove hardness, we provide a reduction from the validity of propositional
3DNF formulas. Let ϕ =

∨
i ϕi be a propositional formula in 3DNF. We first

define the following ∃FO query

QVAL := ∃x, y, z ( L(x) ∧ L(y) ∧ L(z) ∧ R1(x, y, z)) ∨
(¬L(x) ∧ L(y) ∧ L(z) ∧ R2(x, y, z)) ∨
(¬L(x) ∧ ¬L(y) ∧ L(z) ∧ R3(x, y, z)) ∨
(¬L(x) ∧ ¬L(y) ∧ ¬L(z) ∧ R4(x, y, z)) ,

which is later used to encode the validity conditions of ϕ. Without loss of gener-
ality, let us denote with u1, . . . , un the propositional variables that appear in ϕ.
We then define the PDB Pϕ, depending on ϕ, as follows.

– For each propositional variable uj , we add the probabilistic atom 〈L(uj) : 0.5〉
to the PDB Pϕ.

– The conjuncts ϕj are described with the help of the predicates R1, . . . , R4,
each of which corresponds to one type of conjunct. For example, if we have a
clause ϕj = u1 ∧¬u2 ∧¬u4, we add the atom 〈R3(u4, u2, u1) : 1〉 to PΦ, which
enforces via QVAL that the conjunct that includes all atoms ¬L(u4), ¬L(u2),
and L(u1) can be true. All other atoms Ri(uk, ul, um) that do not correspond
in such a way to one of the clauses are added with probability 0 to PΦ.
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The construction provided for QVAL and Pϕ is clearly polynomial. Furthermore,
the query is fixed, and only Pϕ depends on ϕ. We now show that MPH can be
used to answer the validity problem of ϕ, using this construction.

Claim. The 3DNF formula ϕ is valid if and only if there exists a hypothesis H
over PΦ such that P(H) ≥ 1 and H |= QVAL.
To prove the claim, suppose that ϕ is valid. We show that the empty hypothesis
H = ∅ satisfies both P(H) ≥ 1 and H |= QVAL. It is easy to see that P(H) =
1 in Pϕ, as it encodes all possible databases, i.e., worlds. Let us assume by
contradiction that there exists a database D that extends the hypothesis, H |= D,
but does not satisfy the query, i.e., D �|= QVAL. Then, we can use this database
to define a valuation for the given propositional formula: define an assignment
μ by setting the truth value of uj to 1, if L(uj) ∈ D, and to 0, otherwise. Every
world contains exactly one assignment for every variable, by our construction.
Thus, the assignment μ is well-defined. But then it is easy to see that this implies
μ �|= ϕ, which contradicts the validity of ϕ.

For the other direction, let H be a hypothesis such that P(H) ≥ 1 and
H |= QVAL. This can only be the case if the H is the empty set (as otherwise
P(H) ≤ 0.5). This means that any database D induced by Pϕ must satisfy the
query. It is easy to see that every database is in one-to-one correspondence with
a propositional assignment; thus, we conclude the validity of QVAL. �

Having shown that MPH is harder than MPD for existential queries, one may
wonder whether this is also the case for universal queries. We now show that
MPH has the same complexity as MPD for universal queries.

Theorem 7. MPH(∀FO) is NP-complete in data complexity.

Proof. NP-hardness can be obtained analogously to the proof of Theorem4,
and we leave the hardness proof as an exercise, and focus on the upper bound
which is not as straight-forward. Let P be a PDB, Q a ∀FO query, and p ∈
[0, 1) a threshold value. To show membership, we nondeterministically guess a
hypothesis H such that the satisfaction relation H |= Q is ensured. To do so,
assume without loss of generality that the universal query is of the form

Q := ∀x1, . . . , xn

∧

i

qi(x1, . . . , xn),

for some finite numbers i, n > 0, where each qi(x1, . . . , xn) is a clause over
x1, . . . , xn. Our goal is to find a hypothesis that satisfies this query and that
meets the threshold value p. To satisfy a universal query, we need to identify
all database atoms that could possibly invalidate the query and rule them out.
Thus, we consider the negation of the given query

¬Q = ∃x1, . . . , xn

∨

i

¬qi(x1, . . . , xn),

which encodes all database atoms that could possibly invalidate the original
query Q. Furthermore, to make the effect of the database atoms more concrete,
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we consider all possible groundings of this query. Let us denote by

¬Q[x1/a1, . . . xn/an]

a grounding with database constants ai. There are polynomially many such
groundings in data complexity. We need to ensure that none of the clauses in any
of the groundings is satisfied by the hypothesis. Note that this can be achieved
by including, for every clause, an atom into the hypothesis that contradicts the
respective clause. For example, suppose that a grounding of the query is

(A(a) ∧ ¬B(b)) ∨ . . . ∨ (¬C(c) ∧ ¬D(d)).

Then, for the first clause, we have to either add the atom ¬A(a) or the atom B(b)
to the hypothesis, and similarly for the last clause. The subtlety is that we cannot
deterministically decide which atoms to include into the hypothesis (as there are
interactions across clauses as well as across different groundings). Therefore, we
nondeterministically guess each such choice. In essence, while constructing the
hypothesis, we rule out everything that could invalidate the original query. As a
consequence, we ensure that H |= Q. It only remains to check whether P(H) ≥ p,
which can be done in polynomial time. Thus, we obtain an NP upper bound in
data complexity. �

MPH is coNP-complete for ∃FO queries (by Theorem 6) and NP-complete for
∀FO queries (by Theorem 7). By considering a particular query, which combines
the power of existential and universal queries, it becomes possible to show ΣP

2 -
hardness for MPH.

Theorem 8. MPH(FO) is ΣP
2 -complete in data complexity.

Proof. Let P be a PDB, Q a FO query, and p ∈ [0, 1) a threshold value. Consider
a nondeterministic Turing machine with a (co)NP oracle: given a PDB P, a
first-order query Q, and a threshold p ∈ (0, 1], we can decide whether there
exists a hypothesis H such that P(H) ≥ p by first guessing a hypothesis H,
and verifying whether (i) P(H) ≥ p and (ii) for all databases D that extend H
and are induced by P, it holds that D |= Q. Verification of (i) can be done in
deterministic polynomial time, and (ii) can be done in coNP (the complement
is equivalent to the existence of an extension D and a valuation for the query
variables that falsifies Q). This shows that MPH(FO) is in ΣP

2 in data complexity.
As for hardness, we provide a reduction from validity of quantified Boolean

formulas of the form Φ = ∃u1, . . . , un∀v1, . . . , vm ϕ, where ϕ is in 3DNF. Check-
ing validity of such formulas is known to be ΣP

2 -complete. For the reduction,
we consider the following query Q = QVAL ∧ Qs, where QVAL is the ∃FO query
from Theorem 6 that encodes the validity conditions, and Qs is a ∀FO query
defined as

Qs := ∀x (¬E(x) ∧ L(x)) ∨ (E(x) ∧ ¬L(x)) ∨ F(x).

Moreover, we define a PDB PΦ such that
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– for each variable u that appears in ϕ, PΦ contains the atom 〈L(u) : 0.5〉;
– for each existentially quantified variable uj , PΦ has the atom 〈E(uj) : 0.5〉;
– for every universally quantified variable vj , PΦ contains the atom 〈F(vj) : 1〉;
– every conjunction in ϕ is described with the help of the predicates R1, . . . , R4,

each of which corresponds to one type of conjunctive clause. For example, if
we have ϕj = u1∧¬u2∧¬u4, we add the atom 〈R3(u4, u2, u1) : 1〉 to PΦ, which
enforces via QVAL that the clause that includes all atoms ¬L(u4), ¬L(u2), and
L(u1) can be true. Moreover, all the remaining Ri-atoms have probability 0.

In this construction, QVAL encodes the 3DNF, and Qs helps us to distinguish
between the existentially and universally quantified variables through the E- and
F-atoms.

Claim. The quantified Boolean formula Φ is valid if and only if there exists a
hypothesis H over PΦ such that P(H) ≥ (0.5)2n and H |= Q.
Suppose that Φ is valid. Then, there exists a valuation μ of u1, . . . , un, such that
all valuations τ that extend this partial valuation (by assigning truth values
to v1, . . . , vm) satisfy ϕ. We define a hypothesis H depending on μ as follows.
For all assignments uj �→ 1 in μ, we add L(uj) to H; if, on the other hand,
uj �→ 0 in μ, we add ¬L(uj) to H. Moreover, to satisfy the query Qs, for every
L(uj) ∈ H, we add ¬E(uj) to H, and analogously, for every ¬L(uj) ∈ H, we add
E(uj) to H. By this construction, there are clearly 2n atoms in H, each of which
has the probability 0.5 in Pϕ. Hence, it holds that P(H) = (0.5)2n. Finally, it is
sufficient to observe that all databases D that extend H must satisfy the query Q,
as every such database is in one-to-one correspondence with a valuation τ that
extends μ.

For the other direction, we assume that there exists a hypothesis H over PΦ

such that P(H) ≥ (0.5)2n and H |= Q. This implies that H contains at most 2n
atoms that have probability 0.5 in Pϕ (and possibly some deterministic atoms).
Furthermore, since H |= Qs, we know that H contains each E-atom either posi-
tively or negatively, and it also contains the complementary L-atom. Since these
are already 2n atoms, H cannot contain any L-atoms for the universally quan-
tified variables vj . We can thus define a valuation μ for u1, . . . , un simply by
setting uj �→ 1, if L(uj) ∈ H, and uj �→ 0, if ¬L(uj) ∈ H. It is easy to see that
the extensions τ of μ are in one-to-one correspondence with the databases that
extend H, and that ϕ evaluates to true for all of these assignments. �

With this result, we conclude the data complexity analysis for MPH. We
first showed a data tractability result concerning unions of conjunctive queries
analogous to MPD. As before, this is the only result with no matching lower
bound. Unlike MPD, however, ∃FO queries are proven to be coNP-complete for
MPH in data complexity. Besides, MPH remains NP-complete for ∀FO queries,
but turns out to be ΣP

2 -complete for first-order queries in data complexity.

4 Probabilistic Knowledge Bases

We have discussed several limitations of PDBs in the introduction, and stated
that the unrealistic assumptions employed in PDBs lead to even more undesired



58 İ. İ. Ceylan and T. Lukasiewicz

consequences once combined with another limitation of these systems, namely,
the lack of commonsense knowledge, a natural component of human reasoning,
which is not present in plain (probabilistic) databases. A common way of encod-
ing commonsense knowledge is in the form of ontologies.

In this section, we enrich probabilistic databases with ontological knowl-
edge. More precisely, we adopt the terminology from [7] and speak of ontology-
mediated queries (OMQs), that is, database queries (typically, unions of con-
junctive queries) coupled with an ontology. The task of evaluating such queries
is then called ontology-mediated query answering (OMQA). We first give a brief
overview on the Datalog± family of languages, and introduce the paradigm of
ontology-mediated query answering. Afterwards, we present results regarding
ontology-mediated query evaluation over PDBs. We also discuss maximal pos-
terior reasoning problems in the context of ontology-mediated queries.

4.1 Ontology-Mediated Query Answering in Datalog±

We again consider a relational vocabulary σ, which is now extended with a
(potentially infinite) set N of nulls. We first introduce the so-called negative con-
straints (NCs). From a database perspective, NCs can be seen as a special case
of denial constraints over databases [67]. Formally, a negative constraint (NC) is
a first-order formula of the form ∀xΦ(x) → ⊥, where Φ(x) is a conjunction of
atoms, called the body of the NC, and ⊥ is the truth constant false. Consider,
for example, the NCs

∀xWriter(x) ∧ Novel(x) → ⊥,

∀x, y ParentOf(x, y) ∧ ParentOf(y, x) → ⊥.

The former states that writers and novels are disjoint entities, whereas the latter
asserts that the ParentOf relation is antisymmetric.

To formulate more general ontological knowledge, tuple-generating depen-
dencies are introduced. Intuitively, such dependencies describe constraints on
databases in the form of generalized Datalog rules with existentially quanti-
fied conjunctions of atoms in rule heads. Formally, a tuple-generating depen-
dency (TGD) is a first-order formula of the form ∀xΦ(x) → ∃y Ψ(x,y), where
Φ(x) is a conjunction of atoms, called the body of the TGD, and Ψ(x,y) is a
conjunction of atoms, called the head of the TGD. Consider the TGDs

∀x, y AuthorOf(x, y) ∧ Novel(y) → Writer(x), (1)

∀yNovel(y) → ∃xAuthorOf(x, y) ∧ Writer(x). (2)

The first one states that anyone who authors a novel is a writer. The second one
asserts that all novels are authored by a writer. Note that TGDs can express the
well-known inclusion dependencies and join dependencies from database theory.
A Datalog± program (or ontology) Σ is a finite set of negative constraints and
tuple generating dependencies. A Datalog± program is positive if it consists of
only TGDs, i.e., does not contain any NCs.
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In essence, Datalog± languages are only syntactic fragments of first-order
logic, which also employ the standard name assumption, as in databases. Thus,
a first-order interpretation I is a model of an ontology Σ in the classical sense,
i.e., if I |= α for all α ∈ Σ. Given a database D defined over known constants
and an ontology Σ, we write mods(Σ,D) to represent the set of models of Σ
that extend D, which is formally defined as {I | I |= D, I |= Σ}. A database D
is consistent w.r.t. Σ if mods(Σ,D) is non-empty.

The entailment problem in Datalog± ontologies is undecidable [5], which
motivated syntactic restrictions on Datalog± ontologies; there are a plethora of
classes of TGDs [4,10,11,28,45]; here, we only focus on some of these classes.
Our choice is primarily for ease of presentation, and most of the results can be
extended to other classes in a straight-forward manner; see e.g. [13], for a more
detailed analysis.

The (syntactic) restrictions on TGDs that we recall are guardedness [10],
stickiness [12], and acyclicity, along with their “weak” counterparts, weak guard-
edness [10], weak stickiness [12], and weak acyclicity [28], respectively. A TGD
is guarded, if there exists a body atom that contains (or “guards”) all body
variables. The class of guarded TGDs, denoted G, is defined as the family of all
possible sets of guarded TGDs. A key subclass of guarded TGDs are the linear
TGDs with just one body atom, which is automatically the guard. The class of
linear TGDs is denoted by L. Weakly guarded TGDs extend guarded TGDs by
requiring only the body variables that are considered “harmful” to appear in the
guard (see [10] for full details). The associated class of TGDs is denoted WG. It
is easy to verify that L ⊂ G ⊂ WG.

Stickiness is inherently different from guardedness, and its central property
can be described as follows: variables that appear more than once in a body
(i.e., join variables) must always be propagated (or “stuck”) to the inferred
atoms. A TGD that enjoys this property is called sticky, and the class of sticky
TGDs is denoted by S. Weak stickiness generalizes stickiness by considering only
“harmful” variables, and defines the class WS of weakly sticky TGDs. Observe
that S ⊂ WS.

A set of TGDs is acyclic and belongs to the class A if its predicate graph
is acyclic. Equivalently, an acyclic set of TGDs can be seen as a non-recursive
set of TGDs. A set of TGDs is weakly acyclic, if its dependency graph enjoys a
certain acyclicity condition, which guarantees the existence of a finite canonical
model; the associated class is denoted WA. Clearly, A ⊂ WA. Interestingly, it
also holds that WA ⊂ WS [12].

Another fragment of TGDs are full TGDs, i.e., TGDs without existentially
quantified variables. The corresponding class is denoted by F. Restricting full
TGDs to satisfy linearity, guardedness, stickiness, or acyclicity yields the classes
LF, GF, SF, and AF, respectively. It is known that F ⊂ WA [28] and F ⊂ WG [10].

We usually omit the universal quantifiers in TGDs and NCs, and for clarity
we consider single-atom-head TGDs; however, our results can be easily extended
to TGDs with conjunctions of atoms in the head (except under the bounded-
arity assumption). Following the common convention, we will assume that NCs
are part of all Datalog± languages.
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Table 6. A database that consists of the unary relations Writer, Novel and the binary
relation AuthorOf.

Writer

balzac
dostoyevski
kafka

AuthorOf

hamsun hunger
dostoyevski gambler
kafka trial

Novel

goriot
hunger
trial

Ontology-mediated query answering is a popular paradigm for querying
incomplete data sources in a more adequate manner [7]. Formally, an ontology-
mediated query (OMQ) is a pair (Q, T ), where Q is a Boolean query, and T is
an ontology. Given a database D and an OMQ (Q, T ), we say that D entails
the OMQ (Q, T ), denoted D |= (Q, T ), if for all models I |= (T ,D) it holds
that I |= Q. Then, ontology-mediated query answering (OMQA) is the task of
deciding whether D |= (Q, T ) for a given database D and an OMQ (Q, T ). Note
that we use the term query answering in a rather loose sense to refer to the
Boolean query evaluation problem.

Example 9. Let us consider the database Da given in Table 6. Observe that the
simple queries

Q1 := Writer(hamsun) and Q2 := ∃xWriter(x) ∧ AuthorOf(x, goriot)

are not satisfied by the database Da although they should evaluate to true from
an intuitive perspective. On the other side, under the Datalog± program Σa that
consists of the TGDs

∀x, y AuthorOf(x, y) ∧ Novel(y) → Writer(x),
∀yNovel(y) → ∃xAuthorOf(x, y) ∧ Writer(x),

both of these queries are satisfied: Da |= (Q1, Σa) holds due to the first rule,
and Da |= (Q2, Σa) holds due to the second rule. The incomplete database is
queried through the logical rules that encode commonsense knowledge, which in
turn results in more complete answers. �

A key paradigm in ontology-mediated query answering is the first-order
rewritability of queries. Intuitively, FO-rewritability ensures that we can rewrite
an OMQ into a (possibly large) UCQ, and this transformation is homomorphism-
preserving over all finite structures [62]. More formally, let T be an ontology
and Q a Boolean query. Then, the OMQ (Q, T ) is FO-rewritable if there exists
a Boolean UCQ QT such that, for all databases D that are consistent w.r.t. T ,
we have D |= (Q, T ) if and only if D |= QT . In this case, QT is called an FO-
rewriting of (Q, T ). A language L is FO-rewritable if it admits an FO-rewriting
for any UCQ and theory in L.

FO-rewritability implies a data-independent reduction from OMQA to query
evaluation in relational databases. In practical terms, this means that the query
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Fig. 4. Inclusion relationships and data complexity of ontology-mediated query answer-
ing for Datalog± languages.

can be rewritten into an SQL query to be evaluated in relational database man-
agement systems. In theoretical terms, this puts OMQA in AC0 in data complex-
ity for all FO-rewritable languages. The data complexity of ontology-mediated
query answering for basic Datalog± languages is summarized in Fig. 4.

4.2 Ontology-Mediated Queries for Probabilistic Databases

We give an overview of the problem of evaluating ontology-mediated queries
for PDBs. The idea is to allow Datalog± programs on top of tuple-independent
PDBs and query the probability of a given OMQ.

Definition 11 (semantics). The probability of an OMQ (Q,Σ) relative to a
probability distribution P is

P(Q,Σ) =
∑

D|=(Q,Σ)

P(D),

where D ranges over all databases over σ.

The major difference compared to PDBs is that this semantics defers the
decision of whether a world satisfies a query to an entailment test, which also
includes a logical theory.

Note that the Datalog± program can be inconsistent with some of the worlds,
which makes standard reasoning very problematic, as anything can be entailed
from an inconsistent theory (“ex falso quodlibet”). The common way of tackling
this problem in probabilistic knowledge bases is to restrict probabilistic query
evaluation to only consider consistent worlds by setting the probabilities of incon-
sistent worlds to 0 and renormalizing the probability distribution over the set
of worlds accordingly. More formally, the query probabilities can be normalized
by defining

Pn(Q,Σ) := (P(Q,Σ) − γ)/(1 − γ),
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Table 7. A probabilistic database Pa, which consists of the unary relations Writer,
Novel and the binary relation AuthorOf.

Writer P

balzac 0.8
dostoyevski 0.6
kafka 0.9

AuthorOf P

hamsun hunger 0.9
dostoyevski gambler 0.6
kafka trial 0.8

Novel P

goriot 0.7
hunger 0.4
trial 0.5

where γ is the probability of the inconsistent worlds given as

γ :=
∑

mods(Σ,D)=∅
P(D).

The normalization factor γ can thus be computed once and then reused as a
post-processing step. Hence, for simplicity, we assume that all the worlds D
induced by the PDB are consistent with the program.

Let us now illustrate the effect of ontological rules in PDBs. Recall Example 9,
where we illustrated the effect of ontological rules in querying databases. Queries
that intuitively follow from the knowledge encoded in the database were not
satisfied by the given database (from Table 6). Still, it was possible to alleviate
this problem using ontological rules. We now adopt this example to PDBs and
observe a similar effect.

Example 10. Let us consider the PDB Pa given in Table 7. The queries

Q1 := Writer(hamsun) and Q2 := ∃xWriter(x) ∧ AuthorOf(x, goriot)

from Example 9 evaluate to the probability 0 on Pa. On the other side, under
the Datalog± program Σa that consists of the rules

∀x, y AuthorOf(x, y) ∧ Novel(y) → Writer(x),
∀yNovel(y) → ∃xAuthorOf(x, y) ∧ Writer(x),

there are worlds where both of these queries are satisfied. One such world is Da

given in Table 6, i.e., recall that Da |= (Q1, Σa) and Da |= (Q2, Σa).
More precisely, we obtain that P(Q1) = 0.63, since any world that contains

both AuthorOf(hamsun, hunger) and Novel(hunger) entails Writer(hamsun), and
no other world does. Similarly, P(Q2) = 0.7, since Q2 is entailed from all and
only those worlds where Novel(goriot) holds. �

Probabilistic query evaluation, as a decision problem, is defined as before
with the only difference that it is now parametrized with OMQs.

Definition 12 (probabilistic query evaluation). Given a PDB P, an OMQ
(Q,Σ), and a value p ∈ [0, 1), probabilistic query evaluation, denoted PQE, is to
decide whether PP(Q,Σ) > p holds. PQE is parametrized with the language of
the ontology and the query; we write PQE(Q,L) to define PQE on the class Q
of queries and on the class of ontologies restricted to the language L.
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We will deliberately use the terms probabilistic query evaluation and prob-
abilistic OMQ evaluation interchangeably if there is no danger of ambiguity.
We now provide a host of complexity results for probabilistic OMQ evaluation
relative to different languages.

We start our complexity analysis with a rather simple result that is of a
generic nature. Intuitively, given the complexity of OMQA in a Datalog± lan-
guage, we obtain an immediate upper and lower bound for the complexity of
probabilistic OMQ evaluation in that language.

Theorem 9. Let C denote the data complexity of ontology-mediated query
answering for a Datalog± language L. Then, PQE(UCQ,L) is C-hard and in
PPC for PDBs in data complexity.

Proof. Let (Q,Σ) be an OMQ, P be a PDB, and p ∈ [0, 1) be a threshold value.
Consider a nondeterministic Turing machine with a C oracle. Each branch cor-
responds to a world D and is marked as either accepting or rejecting depending
on the outcome of the logical entailment check D |= (Q,Σ). This logical entail-
ment test is in C for the language L, by our assumption. Thus, it can be per-
formed using the oracle. Then, by this construction, the nondeterministic Turing
machine answers yes if and only if PP(Q,Σ) > p, which proves membership to
PPC in the respective complexity.

To show C-hardness, we reduce from ontology-mediated query answering,
that is, given a database D and an OMQ (Q,Σ), where Q is a UCQ, and Σ is a
program over L, decide whether D |= (Q,Σ). We define a PDB P that contains
all the atoms from the database D with probability 1. Then, it is easy to see
that D |= (Q,Σ) if and only if PP(Q) ≥ 1. �

We briefly analyze the consequences of Theorem 9. Observe that, for all deter-
ministic complexity classes C that contain PP, it holds that PPC = C, and thus
Theorem 9 directly implies tight complexity bounds. For instance, the data com-
plexity of probabilistic OMQ evaluation for WG is Exp-complete as a simple
consequence of Theorem 9.

Beyond this generic result, one is interested in lifting the data complexity
dichotomy for unions of conjunctive queries to OMQs. This connection is imme-
diate, as shown in the following.

Lemma 1. Let (Q,Σ) be an OMQ, where Q is a UCQ, and Σ is a program,
and QΣ be an FO-rewriting of (Q,Σ). Then, for any PDB P, it holds that
PP(Q,Σ) = PP(QΣ).

Proof. For any PDB P, it holds that

PP(Q,Σ)
(1)
=

∑

D|=(Q,Σ)

PP(D)
(2)
=

∑

D|=QΣ

PP(D)
(3)
= PP(QΣ),

where (1) follows from Definition 11; (2) follows from QΣ being the FO-rewriting
of Q w.r.t. Σ; and (3) is the definition of the semantics of QΣ in PDBs. �
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With the help of Lemma 1, it becomes possible to lift the data complexity
dichotomy in probabilistic databases to all Datalog± languages that are FO-
rewritable.

Theorem 10 (dichotomy). For all FO-rewritable Datalog± languages L, the
following holds. PQE(UCQ,L) is either in P or it is PP-complete for PDBs in
data complexity under polynomial-time Turing reductions.

Proof. Let (Q,Σ) be an OMQ, where Q is a UCQ, and Σ is a Datalog± pro-
gram over an FO-rewritable language, and QΣ be an FO-rewriting of (Q,Σ). By
Lemma 1, any polynomial-time algorithm that can evaluate QΣ over PDBs also
yields the probability of the OMQ (Q,Σ) relative to an PDB, and vice versa.
This implies that the OMQ (Q,Σ) is safe if QΣ is safe.

Dually, by the same result, the probabilities of all rewritings of Q coincide,
and hence the same algorithm can be used for all of them. Thus, if (Q,Σ) is
unsafe, then QΣ must also be unsafe for PDBs. By the dichotomy of [21] and
Lemma 1, this implies that evaluating the probability of both the UCQ QΣ and
the OMQ (Q,Σ) must be PP-hard under Turing reductions. �

Obviously, ontological rules introduce dependencies. Therefore, a safe query
can become unsafe for OMQs. However, the opposite effect is also possible, i.e.,
an unsafe query may become safe under ontological rules. We illustrate both of
these effects on a synthetic example.

Example 11. Consider the conjunctive query ∃x, y C(x) ∧ D(x, y), which is safe
for PDBs. It becomes unsafe under the TGD R(x, y),T(y) → D(x, y), since then
it rewrites to the query

(∃x, y C(x) ∧ D(x, y)) ∨ (∃x, y C(x) ∧ R(x, y) ∧ T(y)),

which is unsafe. Conversely, the conjunctive query ∃x, y C(x) ∧ R(x, y) ∧ D(y)
is not safe for PDBs, but becomes safe under the TGD R(x, y) → D(y), as it
rewrites to ∃x, y C(x) ∧ R(x, y). Note that these are very simple TGDs, which
are full, acyclic, guarded, and sticky. �

Recall that the PP-hardness of probabilistic UCQ evaluation in data com-
plexity holds under polynomial-time Turing reductions. This transfers to proba-
bilistic OMQ evaluation relative to FO-rewritable languages. On the other hand,
for guarded full programs, it is possible to show that PP-hardness holds even
under standard many-one reductions.

Theorem 11. PQE(UCQ,GF) is PP-hard for PDBs in data complexity.

Proof. We reduce the following problem [74]: decide the validity of the for-
mula Φ = Cc x1, . . . , xn ϕ, where ϕ = ϕ1 ∧ · · · ∧ ϕk is a propositional formula in
CNF over the variables x1, . . . , xn. This amounts to checking whether there are
at least c assignments to x1, . . . , xn that satisfy ϕ. We assume without loss of
generality that ϕ contains all clauses of the form xj ∨ ¬xj , 1 ≤ j ≤ n; clearly,
this does not affect the existence or number of satisfying assignments for ϕ. For
the reduction, we use a PDB PΦ and a program ΣΦ. We first define the PDB
PΦ as follows.
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– For each variable xj , 1 ≤ j ≤ n, PΦ contains the probabilistic atoms
〈L(xj , 0) : 0.5〉 and 〈L(xj , 1) : 0.5〉, where we view xj as a constant. These
atoms represent the assignments that map xj to false and true, respectively.

– For each propositional literal (¬)x� occurring in a clause ϕj , 1 ≤ j ≤ k, PΦ

contains the atom D(x�, j, i) with probability 1, where i = 1, if the literal is
positive, and i = 0, if the literal is negative.

– PΦ contains all the atoms T(0), S(0, 1),S(1, 2), . . . ,S(k−1, k), K(k), each with
probability 1.

We now describe the program ΣΦ. To detect when a clause is satisfied, we use
the additional unary predicate E and the TGD

L(x, i),D(y, j, i) → E(j),

which is a universally quantified formula over the variables x, y, i, and j. We
still need to ensure that in each world, exactly one of L(x, 0) and L(x, 1) holds.
The clauses xj ∨ ¬xj take care of the lower bound; for the variables x1, . . . , xn,
we use the TGDs

L(x, 0), L(x, 1) → B and B,D(y, j, i) → E(j).

These TGDs ensure that any inconsistent assignment for x1, . . . , xn, i.e., one
where some xj is both true and false, is automatically marked as satisfying the
formula, even if the clause xj ∨ ¬xj is actually not satisfied. Since there are
exactly 4n − 3n such assignments (where both L(xj , 0) and L(xj , 1) hold for at
least one xj), we can add this number to the probability threshold that we will
use in the end. Note that the probability of each individual assignment is 0.25n,
since there are 2n relevant L-atoms (the other atoms are fixed to 0 or 1 and do
not contribute here).

It remains to detect whether all clauses of ϕ are satisfied by a consistent
assignment, which we do by the means of the TGDs

T(i),S(i, j),E(j) → T(j) and T(i),K(i) → Z(i).

Lastly, we define the simple UCQ Q := ∃i Z(i). Then, we prove the following
claim.

Claim. PPΦ
(Q,ΣΦ) ≥ 0.25n(4n − 3n + c) holds if and only if Φ is valid.

Suppose that Φ is valid, i.e., there are at least c different assignments to
x1, . . . , xn that satisfy ϕ. Then, for each such assignment τ , we can define a
world Dτ such that it contains all atoms from PΦ that occur with probability
1. Moreover, Dτ contains an atom L(xj , 1), if xj is mapped to true in μ, and
an atom L(xj , 0), if xj is mapped to false in μ. It is easy to see that each such
database Dτ is induced by the PDB PΦ and that Dτ |= Q by our constructions.
In particular, this implies that Dτ |= QΦ for c worlds. Recall also that (4n − 3n)
worlds, capturing the inconsistent valuations, satisfy the query. As every world
has the probability (0.5)2n, we conclude that PPΦ

(QΦ) ≥ 0.52n(4n − 3n + c).
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Table 8. The probabilistic database Pv.

Vegetarian

alice 0.7
bob 0.9
chris 0.6

FriendOf

alice bob 0.7
alice chris 0.8
bob chris 0.1

Eats

bob spinach 0.7
chris mussels 0.8
alice broccoli 0.2

Meat

shrimp 0.7
mussels 0.9
seahorse 0.3

Conversely, if the query probability exceeds the threshold value, then some
worlds in PΦ with non-zero probability entail (Q,ΣΦ), i.e., all clauses of ϕ are
satisfied. Each of the non-zero worlds in PDBs represents a unique combination
of atoms of the form L(x, 0) and L(x, 1). The worlds where for at least one vari-
able xj , 1 ≤ j ≤ n, neither L(xj , 0) nor L(xj , 1) holds do not satisfy ϕ, and hence
do not entail (Q,ΣΦ) and are not counted. Excluding (4n −3n) worlds capturing
the inconsistent valuations, all other worlds represent the actual assignments
for x1, . . . , xn, and hence we know that at least c of those satisfy ϕ. Thus, we
conclude that Φ is valid.

Observe that all TGDs used in the reduction are full and guarded. More-
over, only the PDB and the probability threshold depend on the input formula
(which is allowed in data complexity). Hence, the reduction shows PP-hardness
of PQE(GF,UCQ) for PDBs in data complexity. �

GF is one of the least expressive Datalog± languages with polynomial time
data complexity for OMQA. Thus, this result already implies PP-hardness for
the classes G, F, WS, and WA. This completes all results regarding the data
complexity. It remains open whether the data complexity dichotomy can be
extended to Datalog-rewritable languages. Clearly, a data complexity dichotomy
in these languages would be closely related to a similar result in Datalog.

4.3 Most Probable Explanations for Ontology-Mediated Queries

Motivated by maximal posterior computations in PGMs, we studied the most
probable database and most probable hypothesis problems in PDBs. We now
extend these results towards ontology-mediated queries. In a nutshell, we restrict
ourselves to unions of conjunctive queries (instead of first-order queries), but in
exchange consider additional knowledge encoded through an ontology.

Importantly, in MPD (resp., MPH), we are interested in finding the database
(resp., the hypothesis) that maximizes the query probability. In the presence
of ontological rules, we need to ensure that the chosen database is at the same
time consistent with the ontology. More precisely, for ontology-mediated queries,
models must be consistent with the ontology; thus, the definitions of MPD and
MPH are adapted accordingly.

The Most Probable Database Problem for Ontological Queries. In the
most probable database problem for ontological queries, we consider only the
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consistent worlds induced by the PDB, and thus maximize only over consistent
worlds.

Definition 13. Let P be a probabilistic database and Q a query. The most
probable database for an OMQ (Q,Σ) over a PDB P is given by

arg max
D|=(Q,Σ),mods(D,Σ) �=∅

P(D),

where D ranges over all worlds induced by P.

To illustrate the semantics, we now revisit the Example 4 and the PDB Pv,
which is depicted in Table 8.

Example 12. Recall the following query

Qveg := ∀x, y ¬Vegetarian(x) ∨ ¬Eats(x, y) ∨ ¬Meat(y).

The most probable database for Qveg contains all atoms from Pv that have
a probability above 0.5, except for Vegetarian(chris). We can impose the same
constraint through the negative constraint

∀x, y Vegetarian(x) ∧ Eats(x, y) ∧ Meat(y) → ⊥,

and then the most probable database for the query � will be the same as before.
Obviously, we can additionally impose constraints in the form of TGDs, such as

∀x Vegetarian(x) → ∃y FriendOf(x, y) ∧ Vegetarian(y),

which states that vegetarians have friends who are themselves vegetarians. �
The corresponding decision problem is defined as before with the only differ-

ence that now we consider ontology-mediated queries.

Definition 14 (MPD). Let (Q,Σ) be an OMQ, P a probabilistic database,
and p ∈ (0, 1] a threshold. MPD is the problem of deciding whether there exists
a database D that entails (Q,Σ) with P(D) > p. MPD is parametrized with the
language of the ontology and the query; we write MPD(Q,L) to define MPD on
the class Q of queries and on the class of ontologies restricted to the languages L.

We start our complexity analysis with some simple observations. Note first
that consistency of a database D with respect to a program Σ can be written
as D �|= (⊥, Σ), or equivalently, D �|= (Q⊥, Σ+), where Q⊥ is the UCQ obtained
from the disjunction of the bodies of all NCs in Σ, and Σ+ is the corresponding
positive program (that contains all TGDs of Σ). This transformation allows us
to rewrite the NCs into the query.

A näıve approach to solve MPD is to first guess a database D, and then
check that it entails the given OMQ does not entail the query (Q⊥, Σ+) (i.e., it
is consistent with the program), and exceeds the probability threshold. Since the
probability can be computed in polynomial time, the problem can be decided by
a nondeterministic Turing machine using an oracle to check OMQA. Obviously,
MPD is at least as hard as OMQA in the underlying ontology languages. These
observations result in the following theorem.
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Theorem 12. Let C denote the data complexity of ontology-mediated query
answering for a Datalog± language L. MPD(UCQ,L) is C-hard and in NPC

under the same complexity assumptions.

By a reduction from 3-colorability, it is possible to show that MPD is NP-
hard already in data complexity for OMQs, even if we only use NCs, i.e., the
query and the positive program Σ+ are empty. This strengthens the previous
result about ∀FO queries, since NCs can be expressed by universal queries, but
are not allowed to use negated atoms.

Theorem 13. MPD(UCQ,NC) is NP-complete in data complexity (which holds
even for instance queries).

Proof. The upper bound is easy to obtain; thus, we only show the lower bound.
We provide a reduction from the well-known 3-colorability problem: given an
undirected graph G = (V,E), decide whether the nodes of G are 3-colorable. We
first define the PDB PG as follows. For all edges (u, v) ∈ E, we add the atom
E(u, v) with probability 1, and for all nodes u ∈ V , we add the atoms V(u, 1),
V(u, 2), V(u, 3), each with probability 0.7. In this encoding, the atoms V(u, 1),
V(u, 2), V(u, 3) correspond to different colorings of the same node u.

We next define the conditions for 3-colorability through a set Σ containing
only negative constraints (that do not depend on G). We need to ensure that
each node is assigned at most one color, which is achieved by means of the
negative constraints:

V(x, 1),V(x, 2) → ⊥, V(x, 1),V(x, 3) → ⊥, V(x, 2),V(x, 3) → ⊥.

Similarly, we need to enforce that the neighboring nodes are not assigned the
same color, which we ensure with the negative constraint:

E(x, y),V(x, c),V(y, c) → ⊥.

Finally, we define the query Q := � and prove the following claim.

Claim. G is 3-colorable if and only if there exists a database D such that D �|=
(⊥, Σ) and P(D) ≥ (0.7 · 0.3 · 0.3)|V |.
Suppose that there exists a database D with a probability of at least (0.7 · 0.3 ·
0.3)|V | that satisfies all NCs in Σ. Then, for every node u ∈ V , D must contain
exactly one tuple V(u, c) for some color c ∈ {1, 2, 3}. Recall that at most was
ensured by the first three NCs; hence, in order to achieve the given threshold, at
least one of these tuples must be present. This yields a unique coloring for the
nodes. Furthermore, since D must contain all tuples corresponding to the edges
of G, and D satisfies the last NC, we conclude that G is 3-colorable.

Suppose that G is 3-colorable. Then, for a valid coloring, we define a DB D
that contains all tuples that correspond to the edges, and add all tuples V(u, c)
where c is the color of u. It is easy to see that D is consistent with Σ and
P(D) = (0.7 · 0.3 · 0.3)|V |, which concludes the proof. �
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The Most Probable Hypothesis Problem for Ontological Queries. As
before, we have to update the definition of most probable hypothesis to take into
account only consistent worlds.

Definition 15. The most probable hypothesis for an OMQ (Q,Σ) over a
PDB P is

arg max
H|=(Q,Σ)

∑

D⊇H
mods(D,Σ) �=∅

P(D),

where H is a set of (non-probabilistic) atoms t occurring in P.

The corresponding decision problem is defined as before, but parametrized
with ontology-mediated queries.

Definition 16 (MPH.) Let (Q,Σ) be an OMQ, P a PDB, and p ∈ (0, 1] a
threshold. MPH is the problem of deciding whether there exists a hypothesis H
that satisfies (Q,Σ) with P(H) > p. MPH is parametrized with the language of
the ontology and the query; we write MPH(Q,L) to define MPH on the class Q
of queries and on the class of ontologies restricted to the languages L.

Importantly, computing the probability of a hypothesis for an OMQ is not
as easy as for classical database queries, since now there are also inconsistent
worlds that shall be ruled out. As a consequence, computing the probability
of a hypothesis becomes PP-hard, which makes a significant difference in the
complexity analysis.

To solve MPH for OMQs, one can guess a hypothesis, and then check whether
it entails the query, and whether the probability mass of its consistent exten-
sions exceeds the given threshold. The latter part can be done by a PP Turing
machine with an oracle for OMQA. The oracle can be used also for the initial
entailment check. Clearly, MPH(UCQ,L) is at least as hard as OMQA in L. The
next theorem follows from these observations.

Theorem 14. Let C denote the data complexity of ontology-mediated query
answering for a Datalog± language L. MPD(UCQ,L) is C-hard and in NPPPC

under the same complexity assumptions.

For any C ⊆ PH, this result yields NPPPPH

= NPPPP

= NPPP as an upper
bound, due to a result from [69]. For FO-rewritable Datalog± languages, we
immediately obtain an NPPP upper bound for MPH as a consequence of Theo-
rem 14. The obvious question is whether this is also a matching lower bound for
FO-rewritable languages?

In general, the (oracle) test of checking whether the probability of a hypoth-
esis exceeds the threshold value is PP-hard. Thus, PP-hardness for MPH for
FO-rewritable languages cannot be avoided in general. The remaining question
is whether the hypothesis can be identified efficiently, or do we really need to
guess the hypothesis? Fortunately, this can be avoided, since we can walk through
polynomially many hypotheses (in data complexity) and combine the threshold
tests for each of the hypotheses into a single PP computation using the results
of [6].



70 İ. İ. Ceylan and T. Lukasiewicz

Theorem 15. Let L be a Datalog± languages, for which ontology-mediated
query answering is in AC0 in data complexity. Then, MPH(UCQ,L) is PP-
complete in data complexity under polynomial time Turing reductions.

Proof. PP-hardness follows from the complexity of probabilistic query evalua-
tion over PDBs ([68], Corollary 1), since we can choose Q = � and reformulate
any UCQ into a set of NCs such that the consistency of a database is equivalent
to the non-satisfaction of the UCQ.

We consider an OMQ (Q,Σ), a PDB P, and a threshold p. Since the query is
FO-rewritable, it is equivalent to an ordinary UCQ QΣ over P. Similarly, we can
rewrite the UCQ Q⊥ expressing the non-satisfaction of the NCs into a UCQ Q⊥,Σ .
By the observation in Theorem 5, we can enumerate all hypotheses H, which are
the polynomially many matches for QΣ in P, and then have to check for each H
whether the probability of all consistent extensions exceeds p. The latter part is
equivalent to evaluating ¬Q⊥,Σ ∧

∧
t∈H t over P, which can be done by a PP

oracle. We accept if and only if one of these PP checks yields a positive answer.
In the terminology of [6], this is a polynomial-time disjunctive reduction of our
problem to a PP problem. Since that paper shows that PP is closed under such
reductions, we obtain the desired PP upper bound. �

Given Theorem 15, one may wonder whether the PP upper bound for MPH
also applies to languages where OMQA is P-complete in data complexity. Inter-
estingly, MPH(UCQ,GF) is already NPPP-hard.

Theorem 16. MPH(UCQ,GF) is NPPP-hard in data complexity.

Proof. We reduce the following problem from [74]: decide the validity of

Φ = ∃x1, . . . , xn Cc y1, . . . , ym ϕ,

where ϕ = ϕ1 ∧ · · · ∧ ϕk is a propositional formula in CNF, defined over the
variables x1, . . . , xn, y1, . . . , ym. This amounts to checking whether there is a
partial assignment for x1, . . . , xn that admits at least c extensions to y1, . . . , ym

that satisfy ϕ.
We can assume without loss of generality that each of the clauses ϕi con-

tains exactly three literals: shorter clauses can be padded by copying existing
literals, and longer clauses can be abbreviated using auxiliary variables that are
included under the counting quantifier Cc. Since the values of these variables are
uniquely determined by the original variables, this does not change the number
of satisfying assignments.

We define the PDB PΦ that describes the structure of Φ:

– For each variable v occurring in Φ, PΦ contains the tuples 〈V(v, 0) : 0.5〉 and
〈V(v, 1) : 0.5〉, where v is viewed as a constant. These tuples represent the
assignments that map v to false and true, respectively.

– For each clause ϕj , we introduce the tuple 〈C(v1, t1, v2, t2, v3, t3) : 1〉, where
ti is 1, if vi occurs negatively in ϕj , and 0, otherwise (again, all terms are
constants). For example, for x3∨¬y2∨x7, we use 〈C(x3, 0, y2, 1, x7, 0) : 1〉. This
encodes the knowledge about the partial assignments that do not satisfy ϕ.
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– We use auxiliary atoms 〈A(x1) : 1〉, 〈S(x1, x2) : 1〉, . . . , 〈S(xn−1, xn) : 1〉,
〈L(xn) : 1〉 to encode the order on the variables xi, and similarly for yj we use
the atoms 〈B(y1) : 1〉, 〈S(y1, y2) : 1〉, . . . , 〈S(ym−1, ym) : 1〉, and 〈L(ym) : 1〉.

We now describe the program Σ used for the reduction. First, we detect whether
all variables xi (1 ≤ i ≤ n) have a truth assignment (i.e., at least one of the
facts V(xi, 0) or V(xi, 1) is present) by the special nullary predicate A, using the
auxiliary unary predicates V and A:

V(x, t) → V(x),
A(x) ∧ V(x) ∧ S(x, x′) → A(x′),

A(x) ∧ V(x) ∧ L(x) → A,

where x, x′, t are variables. We do the same for the variables y1, . . . , ym:

B(y) ∧ V(y) ∧ S(y, y′) → B(y′),
B(y) ∧ V(y) ∧ L(y) → B.

Now, the query Q = A ensures that only such hypotheses are valid that at least
contain a truth assignment for the variables x1, . . . , xn.

Next, we restrict the assignments to satisfy ϕ by using additional NCs in Σ.
First, we ensure that there is no “inconsistent” assignment for any variable v,
i.e., only one of the facts V(v, 0) or V(v, 1) holds:

V(v, 0) ∧ V(v, 1) → ⊥.

Furthermore, if all variables y1, . . . , ym have an assignment, then none of the
clauses in ϕ can be falsified:

C(v1, t1, v2, t2, v3, t3) ∧ V(v1, t1) ∧ V(v2, t2) ∧ V(v3, t3) ∧ B → ⊥,

where v1, t1, v2, t2, v3, t3 are variables. We now prove the following claim.

Claim. Φ is valid if and only if there exists a hypothesis H that satisfies (Q,Σ)
such that all consistent databases that extend H sum up to a probability
(under PΦ) of at least p = 0.25n · 0.25m(3m − 2m + c).
Assume that such a hypothesis H exists. Since H |= (Q,Σ), we know that for
each xi (1 ≤ i ≤ n) one of the atoms V(xi, 0), V(xi, 1) is included in H. In
each consistent extension of H, it must be the case that the complementary
facts (representing an inconsistent assignment for xi) are false. In particular,
these complementary facts cannot be part of H, since then its probability would
be 0. Hence, we can ignore the factor 0.25n in the following. There are exactly
3m −2m databases satisfying H that represent consistent, but incomplete assign-
ments for the variables yj . Since these databases do not entail B, they are all
consistent, and hence counted towards the total sum. The inconsistent assign-
ments for y1, . . . , ym yield inconsistent databases, which leaves us only with the
2m databases representing proper truth assignments. Those that violate at least
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one clause of ϕ become inconsistent, and hence there are at least c such consis-
tent databases if and only if there are at least c extensions of the assignment
represented by H that satisfy ϕ. We conclude these arguments by noting that
the probability of each individual choice of atoms V(yj , tj) (1 ≤ j ≤ m) is 0.25m.

On the other hand, if Φ is valid, then we can use the same arguments to con-
struct a hypothesis H (representing the assignment for x1, . . . , xn) that exceeds
the given threshold. �

We observe a sharp contrast in data complexity results for MPH: PP vs.
NPPP, as summarized in Theorems 15 and 16, respectively. These results entail
an interesting connection to the data complexity dichotomy for probabilistic
query evaluation in PDBs [21]. Building on Theorem15, we can show a direct
reduction from MPH for FO-rewritable languages to probabilistic query eval-
uation in PDBs, which implies a data complexity dichotomy between P and
PP [21].

Theorem 17 (dichotomy). For FO-rewritable languages L, MPH(UCQ,L) is
either in P or PP-hard in data complexity under polynomial time Turing reduc-
tions.

Proof. Recall the proof of Theorem15. According to [21], the evaluation problem
for the UCQ Q⊥,Σ over a PDB P is either in P or PP-hard (under polynomial
time Turing reductions). In the former case, MPH can also be decided in deter-
ministic polynomial time. In the latter case, we reduce the evaluation problem
for Q⊥,Σ over a PDB P to the MPH for QΣ and Q⊥,Σ over some PDB P̂ ⊇ P.

For the reduction, we introduce an “artificial match” for QΣ into P̂, by adding
new constants and atoms (with probability 1) that satisfy one disjunct of QΣ ,
while taking care that these new atoms do not satisfy Q⊥,Σ . Such atoms must
exist if QΣ is not subsumed by Q⊥,Σ ; otherwise, all hypotheses would trivially
have the probability 0 (and hence the MPH would be decidable in polynomial
time). In P̂, the probability of the most probable hypothesis for QΣ and Q⊥,Σ

is the same as the probability of Q⊥,Σ over P, and hence deciding the threshold
is PP-hard by [21] and Corollary 1. �

5 Related Work

Research on probabilistic databases is almost as old as traditional databases as
stated in [68]. We note the seminal work of [31], which has been very important in
probabilistic database research as well as the first formulation of possible worlds
semantics in the context of databases by [41]. Note that the possible worlds
semantics has been widely employed in artificial intelligence; e.g., in probabilistic
graphical models [23,44,54] and probabilistic logic programming [24,57,63,64].

Recent advances on PDBs are mainly driven by the dichotomy result given for
unions of conjunctive queries [21]. Recently, open-world probabilistic databases
have been proposed as an alternative open-world probabilistic data model, and
the data complexity dichotomy has been lifted to this open-world semantics
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[15,16]. Other dichotomy results extend the dichotomy for unions of conjun-
cive queries in other directions; some allow for disequality (�=) joins in the
queries [51] and some for inequality (<) joins in the queries [52]. There is also
a trichotomy result over queries with aggregation [59]. The common ground in
all these dichotomy results is the fact that they classify queries as being safe
or unsafe (while the data is not fixed). A different approach is to obtain a clas-
sification relative to the structure of the underlying database, and it has been
proven in [2], for instance, that every query formulated in monadic second-order
logic can be evaluated in linear time over PDBs with a bounded tree-width.

The literature on probabilistic extensions of ontology languages is rich, and
we refer the interested reader to a survey [49], and focus on the most recent, and
in particular, data-oriented models, which are also recently surveyed in terms of
semantic expressivity [9]. Ontology-mediated queries for probabilistic databases
have been investigated in the context of both description logics [18,43] and
Datalog± [8], and the dichotomy results from PDBs are lifted. Most of the recent
work on probabilistic query answering using ontologies is based on lightweight
ontology languages, such as the approaches to Bayesian description logics in
[18,19,22], which combine the description logics of the DL-Lite family and the
description logic EL, respectively, with Bayesian networks [54]. The underly-
ing probabilistic semantics can be generalized to other ontology languages and
PGMs as well. For example, a closely related approach is the one to probabilistic
Datalog± in [33], which combines Datalog± with Markov logic networks [61]. In
[17], the computational complexity of query answering in probabilistic Datalog±

under the possible worlds semantics is investigated.
Maximal posterior computational problems are inspired by PGMs [44], in

particular, Bayesian networks [54]. The most probable database problem is intro-
duced in [37], while the most probable hypothesis problem is introduced in [14].
Moreover, these problems are also studied for ontological queries in [14].

6 Conclusion

We have surveyed several query answering and reasoning tasks that can be used
to exploit the full potential of probabilistic knowledge bases. In the first part of
the tutorial, we focused on (tuple-independent) probabilistic databases as the
simplest probabilistic data model. In the second part of the tutorial, we moved
on to richer representations where the probabilistic database is extended with
ontological knowledge. For each part, we surveyed some known data complexity
results and highlighted some recent results.
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74 İ. İ. Ceylan and T. Lukasiewicz

2. Amarilli, A., Bourhis, P., Senellart, P.: Tractable lineages on treelike instances:
limits and extensions. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (PODS-16), pp. 355–370. ACM
(2016)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

4. Baget, J.F., Mugnier, M.L., Rudolph, S., Thomazo, M.: Walking the complexity
lines for generalized guarded existential rules. In: Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 712–717 (2011)

5. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even,
S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg
(1981). https://doi.org/10.1007/3-540-10843-2 7

6. Beigel, R., Reingold, N., Spielman, D.: PP is closed under intersection. J. Comput.
Syst. Sci. 50(2), 191–202 (1995)

7. Bienvenu, M., Cate, B.T., Lutz, C., Wolter, F.: Ontology-based data access: A
study through disjunctive Datalog, CSP, and MMSNP. ACM Trans. Database
Syst. (TODS) 39(4), 33:1–33:44 (2014)
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Abstract. In this tutorial we discuss how Conditional Random Fields
can be applied to knowledge base population tasks. We are in particular
interested in the cold-start setting which assumes as given an ontology
that models classes and properties relevant for the domain of interest, and
an empty knowledge base that needs to be populated from unstructured
text. More specifically, cold-start knowledge base population consists in
predicting semantic structures from an input document that instantiate
classes and properties as defined in the ontology. Considering knowledge
base population as structure prediction, we frame the task as a statistical
inference problem which aims at predicting the most likely assignment
to a set of ontologically grounded output variables given an input doc-
ument. In order to model the conditional distribution of these output
variables given the input variables derived from the text, we follow the
approach adopted in Conditional Random Fields. We decompose the
cold-start knowledge base population task into the specific problems of
entity recognition, entity linking and slot-filling, and show how they can
be modeled using Conditional Random Fields.

Keywords: Cold-start knowledge base population
Ontology-based information extraction · Slot filling
Conditional random fields

1 Introduction

In the era of data analytics, knowledge bases are vital sources for various down-
stream analytics tasks. However, their manual population may be extremely
time-consuming and costly. Given that in many scientific and technical domains,
it is still common practice to rely on natural language as the primary medium
for knowledge communication, information extraction techniques from natural
language processing [17,26] pose a viable alternative towards (semi-)automated
knowledge base population by transforming unstructured textual information
into structured knowledge.
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Against this backdrop, cold-start knowledge base population [14] has recently
attracted increasing attention. Cold-start knowledge base population can be seen
as a particular instance of an information extraction problem with two charac-
teristics: First, information extraction serves as an upstream process in order to
populate an initally empty knowledge base. Second, an ontology is given that
defines the structure of a domain of interest in terms of classes and properties
(entities and relations). Based on these requirements, the goal is to populate a
knowledge base that structurally follows the specifications of the ontology, given
a collection of textual data. This implies extracting classes (entities) and filling
their properties (as defined by the underlying ontology).

Knowledge base population can be modeled as a statistical inference problem.
Given a document as input, the goal is to infer the most likely instantiation(s)
of ontological structures that best capture the knowledge expressed in the doc-
ument. Modeling the cold-start population task as statistical inference problem
requires the computation of the distribution of possible outputs. Here, an output
refers to a specific variable assignment that determines the instantiation of such
structure(s) of interest. In the context of stochastic models, we are in particular
interested in the conditional probability of the variables of the output given an
input document. Let y = (y1, . . . , ym) specify the output vector of variables and
x = (x1, . . . , xn) the input vector of variables (usually tokens of a document).
We are interested in modeling the following probability distribution:

p(y|x) = p(y1, . . . , ym|x1, . . . , xn)

Given a model of this distribution, the goal is to find the assignment that max-
imizes the likelihood under the model, that is:

ŷ1, . . . , ŷm = argmax
y1,...,yn

p(y1, . . . , ym|x1, . . . , xn)

Typically, probabilistic models are parameterized by some parameter vector θ
that is learned during a training phase:

p(y1, . . . , ym|x1, . . . , xn; θ)

One class of machine learning models that provides an efficient computation of
the above distribution are called Conditional Random Fields (CRFs; [11,23]). A
CRF typically models the probability of hidden output variables conditioned on
given observed input variables in a factorized form, that is relying on a decomposi-
tion of the probability into local factors. These factors reflect the compatibility of
variable assignments in predefined subsets of random variables. Conditional ran-
dom fields are typically trained in a discriminative fashion with the objective to
maximize the likelihood of the data given the parametrized model.

In this tutorial, we discuss how conditional random fields can be applied to
two constitutive subtasks of knowledge base population.

Entity Recognition and Linking. As a first task, we show how the problem of
entity recognition and linking [6,21] can be modeled. In particular, we inves-
tigate the problem of disease recognition and linking from biomedical texts as
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illustrated in the following example taken from PubMed1. We underline occur-
rences of diseases (recognition), concepts (as defined in the MeSH2 thesaurus)
are shown in subscript (linking):

Example 1. “An instance of aortic intimal sarcomaD001157 [...], with clinical evi-
dence of acutely occurring hypertensionD006973 [...], and aortic occlusionD001157

in a 50-year-old male is reported.”

The conditional probability of the example can be explicitly expressed as3 :

p(y|x) = p(y1 = 〈“aortic intimal sarcoma”,D001157〉,
y2 = 〈“occurring hypertension”,D006973〉,
y3 = 〈“aortic occlusion”,D001157〉 |
x1 = “An”, x2 = “instance”, . . . ,

xn−1 = “reported”, xn = “.”)

Slot Filling. Second, we show how slot filling can be modeled via conditional
random fields. We consider slot filling as a relation extraction task with ontolog-
ically defined templates as output structures. Such templates consist of a number
of typed slots to be filled from unstructured text [3]. Following an ontology-based
approach [26], we assume that these templates (including slots and types of their
potential fillers) are pre-defined in a given ontology.4 Consider the following input
document:

Example 2. “Six- to eight-week-old adult female (192-268 g) Sprague-Dawley
rats were used for these studies.”

In this example, we are interested in predicting an AnimalModel template as
specified by the Spinal Cord Injury Ontology (SCIO) [2]. This ontological tem-
plate specifies details about the animal model that was used in a pre-clinical
study. A probable variable assignment of the output might be:

age → “Six- to eight-week”,
age category → Adult,
gender → Female,
weight → “192 - 268 g”,
species → Sprague Dawley Rat.

This tutorial paper is structured as follows. Section 2 provides an introduction to
conditional random fields as well as inference inference and parameter learning.

1 https://www.ncbi.nlm.nih.gov/pubmed?cmd=search&term=2584179.
2 https://www.ncbi.nlm.nih.gov/mesh.
3 Note, the conditional probability can be modeled in many different ways, depending

on the model structure.
4 Considering ontological properties, one must distinguish between object-type and

data-type properties. Values for the latter case are arbitrary literals and thus not
predefined.

https://www.ncbi.nlm.nih.gov/pubmed?cmd=search&term=2584179
https://www.ncbi.nlm.nih.gov/mesh
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In Sect. 3, we apply this approach to the problem of named entity recognition and
linking in the biomedical domain, namely for diseases and chemicals. In Sect. 4,
we apply our approach to the task of slot filling in the domain of therapies about
spinal cord injury and provide all necessary information to tackle this task. This
tutorial ends with Sect. 5 in which we conclude our proposed approach. Parts of
the materials presented here are taken from our previous publications [4,7,8].

2 Conditional Random Fields for Knowledge Base
Population

Many tasks in knowledge base population and natural language processing in
general can be modeled as structure prediction problems where ontology-defined
target structures need to be predicted from some input structure [22]. A partic-
ular case of this are sequence-to-sequence prediction problems such as part-of-
speech tagging or named-entity-recognition. Here, an output sequence needs to
be predicted from a given sequence of tokens.

From a general perspective, such tasks require predicting a hidden output
vector y on the basis of an observed input vector x. Usually x represents a
tokenized document (containing natural language) in which all variables xt ∈ x
correspond to single tokens in the document. Thus, the length of the input vector
is equal to the number of tokens T in the document, that is |x| = T , where xt

corresponds to the tth token. The hidden output vector y may vary in length
and complexity depending on the structure of the problem.

Such problems can be modeled via a conditional distribution of the following
form:

p(y|x; θ),

where the probability of the output is conditioned on the input and parametrized
by some vector θ.

The variable assignment that maximizes the probability can be found by
what is called Maximum A Posteriori (MAP) inference:

ŷ = argmax
y

p(y|x; θ).

Conditional Random Fields (CRF) are widely applied for such problems as they
can model the above conditional distribution via a product of factors directly.
These factors are parameterized with subsets of yi ⊆ y and xi ⊆ x. Factors
and the corresponding variables are typically specified in a so called factor graph
[9,10]. A factor graph is a bipartite graph G = (V,E, F ) consisting of a set of
random variables V , factors F and edges E. We define vj ∈ V as a subset of
all possible random variables: vj = yj ∪ xj . Each factor Ψj ∈ F represents
a function: Ψj : Vj → R≥0 that is parameterized with vj and returns a non-
negative scalar score indicating the compatibility of variables in vj . Further,
an edge ej ∈ E is defined as a tuple: ej = 〈Vj , Ψj〉. An important aspect is
that CRFs assume x as fully observed and thus do not model statistical depen-
dencies between variables in x. Figure 1 shows an example factor graph with
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Fig. 1. Bipartite undirected factor graph with V = {A, B, C, D} and F =
{Ψ1, Ψ2, Ψ3, Ψ4} (black boxes).

V = {A,B,C,D} and F = {Ψ1, Ψ2, Ψ3, Ψ4}. Based on the structure of this factor
graph, the factorization can be formulated as:

p(A,B,C,D) =
1
Z

Ψ1(A,B) · Ψ2(A,C) · Ψ3(C,D) · Ψ4(B,D) (1)

where Z is the partition function that sums up over all possible variable assign-
ments in order to ensure a valid probability distribution:

Z =
∑

a∈A,b∈B,c∈C,d∈D

Ψ1(a, b) · Ψ2(a, c) · Ψ3(c, d) · Ψ4(b, d). (2)

To concretize the example, let each random variable in V can take binary values,
that is A = {a1, a2}, B = {b1, b2}, C = {c1, c2},D = {d1, d2}, and each factor
Ψi computes a score that reflects the compatibility of two variables as shown
in Table 1. The probability for a concrete variable assignment e.g. A = a1, B =
b1, C = c2 and D = d1 is then explicitly calculated as:

p(a1, b1, c2, d1) =
1
Z

(Ψ1(a1, b1) · Ψ2(a1, c2) · Ψ3(c2, d1) · Ψ4(b1, d1))

=
1
Z

(5 · 4 · 1 · 1) =
1
Z

20
(3)

where
Z = Ψ1(a1, b1) · Ψ2(a1, c1) · Ψ3(c1, d1) · Ψ4(b1, d1)

+ Ψ1(a1, b1) · Ψ2(a1, c1) · Ψ3(c1, d2) · Ψ4(b1, d2)
+ . . .

+ Ψ1(a2, b2) · Ψ2(a2, c2) · Ψ3(c2, d2) · Ψ4(b2, d2)
= 659

(4)

So that the probability is calculated as: p(a1, b1, c2, d1) = 20
659 = 0.03.

This is essentially the approach taken by conditional random fields which
model the conditional distribution of output variables given input variables
through a product of factors that are defined by a corresponding factor graph:

p(y|x) =
1

Z(x)

∏

Ψi∈F

Ψi(N (Ψi)), (5)
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Table 1. Compatibility table for all possible pairwise variable assignments. The specific
assignment A = a1, B = b1, C = c2, and D = d1 is highlighted.

A B Ψ1(·, ·) A C Ψ2(·, ·) B D Ψ3(·, ·) C D Ψ4(·, ·)
a1 b1 5 a1 c1 3 b1 d1 1 c1 d1 3
a1 b2 2 a1 c2 4 b1 d2 1 c1 d2 2
a2 b1 2 a2 c1 0 b2 d1 1 c2 d1 1
a2 b2 1 a2 c2 3 b2 d2 7 c2 d2 4

where N (Ψi) is the set of variables neighboring Ψi in the factor graph:

N (Ψi) := {vi | (vi, Ψi) ∈ E}

Typically, factors are log-linear functions specified in terms of feature functions
fj ∈ Fj as sufficient statistics:

Ψi(N (Ψi)) = exp

⎧
⎨

⎩
∑

fj∈Fi

fj(yi,xi) · θi

⎫
⎬

⎭

This yields the following general form for a conditional random field that repre-
sents the conditional probability distribution:

p(y|x) =
1

Z(x)

∏

Ψi∈F

exp

⎧
⎨

⎩
∑

fj∈Fi

fj(yi,xi) · θi

⎫
⎬

⎭ (6)

The number of factors is determined by the length of the input and by the
output structure as defined by the problem. The number of factors differs in
any case by the size of the input. This leads one to consider factor types that
are determined by so called factor templates (sometimes clique templates) that
can be rolled out over the input yielding specific factor instances. Hereby, all
the factors instantiating a particular template are assumed to have the same
parameter vector θΨ . Each template Cj ∈ C defines (i) subsets of observed
and hidden variables for which it can generate factors and (ii) feature functions
to provide sufficient statistics. All factors generated by a template Cj share
the same parameters θj . With this definition, we reformulate the conditional
probability from Eq. (5) as follows:

p(y|x; θ) =
1

Z(x)

∏

Cj∈C

∏

Ψi∈Cj

Ψi(yi,xi, θj) (7)

Linear Chain CRF. A Linear Chain CRF is a linear structured instance of
a factor graph which is mostly used to model sequence-to-sequence problems.
The linear chain CRF factorizes the conditional probability under the following
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restriction. A hidden variable yt at position t ∈ [0..T ] depends only on itself,
the value of the previous hidden variable yt−1 and a subset of observed vari-
ables xt ⊆ x. xt contains all information that is needed to compute the factor
Ψt(yt, yt−1,xt) at position t. For example, factors that are based on the con-
text tokens with distance of δ to each side, the observed vector at position t is
xt = {xt−δ, . . . , xt, . . . , xt+δ}. Each factor Ψt ∈ F computes a log-linear value
based on the scalar product of a factor related feature vector Ft, to be determined
from the corresponding subset of variables, and a set of related parameters θt.
Due to the linear nature of the factor graph G, feature functions are formulated
in the form of ft(yt, yt−1,xt). The decomposed conditional probability distri-
bution is then defined on the joint probability p(yt, yt−1,xt) as formulated in
Eq. (8):

p(y|x) =
1

Z(x)

T∏

t=1

Ψt(yt, yt−1,xt) (8)

where each Ψt has the log-linear form:

Ψt(yt, yt−1,xt) = exp

{ Ft∑

i=1

fi(yt, yt−1,xt) · θi

}
(9)

An example of a linear chain CRF for a sequence-to-sequence application
with |y| = |x| and xt = {xt} is shown in Fig. 2. Observed variables x is a
sequence of tokens from the sentence: “Barack Obama is the former president of
the USA.”.

Fig. 2. Linear chain CRF for a sequence-to-sequence application with |y| = |x| and
xt = {xt}. Observed variables x are tokens from a tokenized input sentence.

Linear chain CRF models are commonly used for sequence tagging prob-
lems where |y| = |x|. A well known problem that fits this condition
is POS tagging. Given a finite set Φ of possible (POS) tags e.g. Φ =
{NNP, V BZ,DT, JJ,NN, IN, .}, the goal is to assign a tag to each token in
x so that the overall probability of the output tag-sequence p(y) is maximi-
ized.5 But also more complex tasks such as named entity recognition can be
formulated as a sequence-to-sequence problem although the number of entities

5 Based on the given example, the optimal output vector is y∗ =
{NNP, NNP, V BZ, DT, JJ, NN, IN, DT, NNP, .}.
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is priorly unknown. For that, the input document is transformed into an IOB-
sequence, that is the document is tokenized and each token is labeled with one
value of Φ = {I,O,B}, (where B states the beginning of an entity, I states that
the token is inside of an entity, and tokens labeled with O are outside of an
entity).6

2.1 Inference and Learning

Although the factorization of the probability density already reduces the com-
plexity of the model, exact inference is still intractable for probabilistic graphical
models in the general case and for conditional random fields in particular. While
efficient inference algorithms exist for the case of linear chain CRFs (cf. [23]),
in the general case inference requires computing the partition function Z(x)
which sums up over an exponential number of possible assignments to the vari-
ables Y1, ..., Yn. Further, inference for a subset YA ⊆ Y of variables requires
marginalization over the remaining variables in addition to computing the par-
tition function.

Maximum-A-Posteriori Inference (MAP) in turn requires considering all pos-
sible assignments to the variables Y1, ...Yn to find the maximum.

To avoid the exponential complexity of inference in conditional random fields,
often approximative inference algorithms are used. One class of such algorithms
are Markov Chain Monte Carlo (MCMC) methods that iteratively generate
stochastic samples from a joint distribution p(y) to approximate the posterior
distribution.

Samples are probabilistically drawn from a state space Y that contains (all)
possible variable assignments (state) for y. While walking through the state
space, MCMC constructs a Markov Chain that, with sufficient samples, con-
verges against the real distribution of interest. That means the distribution of
states within the chain approximates the marginal probability distribution of
p(yi) for all yi ∈ y. The drawback of this method is that it is priorly unknown
how many iterations are needed to ensure convergence.

Inference: In high dimensional multivariate distributions the Markov Chain
can be efficiently constructed by Metropolis–Hastings sampling algorithms. In
Metropolis–Hastings, new samples are drawn from a probability distribution Q.
The next drawn sample y′ is only conditioned on the previous sample y making
it a Markov Chain. If Q is proportional to the desired distribution p, then, with
sufficient samples, the Markov Chain will approximate the desired distribution
by using a stochastically-based accept/reject strategy. The pseudo-code for the
standard procedure of Metropolis–Hastings is presented in Algorithm 2.1.

Here, the function acceptanceRatio(·, ·) calculates a ratio for a new state to
be accepted as the next state. In standard Metropolis–Hastings, this ratio is
6 Based on the given example, the optimal output vector for NER is y∗ =

{B, I, O, O, O, O, O, O, B, O}. The generated sequence, tells us that the tokens
Barack and Obama belong to the same entity (B is directly followed by I), whereas
USA is another single token entity.
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Algorithm 1. Pseudo-code Metropolis–Hastings Sampling
1: y0 ← random sample
2: t ← 1
3: repeat
4: y′ ∼ Q(y′|yt)
5: α ← acceptanceRatio(y′, yt)
6: if α ≥ rand[0, 1] then
7: y(t+1) ← y′

8: else
9: y(t+1) ← y

10: end if
11: t ← t + 1
12: until convergence

computed as the probability of the new state divided by the probability of the
current state:

acceptanceRatio(y′, y) =
f(y′)
f(y)

, (10)

where f(y) is a function that is proportional the real density p(y). Note that,
if f(y′) ≥ f(y), the new state y′ will be always accepted as the resulting ratio
is greater 1. Otherwise, the likelihood of being accepted is proportional to the
likelihood under the model.

One special case of the general Metropolis–Hastings algorithm is called Gibbs
sampling. Instead of computing the fully joint probability of all variables in
p(y) = p(y1, . . . , yn) in Gibbs each variable yi individually resampled while
keeping all other variables fixed, that makes p(yi|y\i). Resnik et al. [20] describe,
drawing the next Gibbs sample as:

Algorithm 2. Create next sample with Gibbs
1: for i = 1 to n do
2: y

(t+1)
i ∼ p(yi|y(t+1)

1 , . . . , y
(t+1)
i−1 , y

(t)
i+1, . . . , y

(t)
n )

3: end for

We propose a slightly different sampling procedure (hereinafter called atomic
change sampling) as depicted in Fig. 3.

While in standard Gibbs sampling, one needs to specify the order of variables
that are resampled, we relax this prerequisite by extending the state space in
each intermediate step to all possible states that can be reached by applying
one atomic change to the current state. Let Ω(y) be the set of states that can
be generated from y by applying one atomic change operation to y, then the
probability distribution Q can be described as:

Q(y′,y) =

{
q(y′) iff y′ ∈ Ω(y)
0 else

, (11)
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where

q(y′) =
f(y′)∑

ŷ∈Ω(y) f(ŷ)
. (12)

Parameter Learning. The learning problem consists of finding the optimal weight
vector θ that maximizes the a-posteriori probability p(y|x; θ).

Typically, the parameters of the distribution are optimized given some train-
ing data D = (yi ,xi) to maximize the likelihood of the data under the model,
that is

θ̂ = argmaxθ

∏

yi ,xi ∈D

P (yi |xi , θ)

However, parameter optimization typically calls the inference procedure to esti-
mate the expected count of features under the model θ to compute the gradient
that maximizes the likelihood of the data under the model.

Another solution to parameter learning is to rely on a ranking objective that
attempts to update the parameter vector to assign a higher likelihood to pre-
ferred solutions. This is the approach followed by SampleRank [25]. The imple-
mentation in our approach is shown below:

Algorithm 3. Sample Rank
1: Inputs: training data D
2: Initialization: set θ ← 0, set y ← y0 ∈ Y
3: Output: parameter θ
4: repeat
5: y′ ∼ M(·|y)
6: Δ ← φ(y′, x) − φ(y, x)
7: if θ · Δ > 0 ∧ P(y, y′) then
8: θ ← θ − ηΔ
9: else if θ · Δ ≤ 0 ∧ P(y′, y) then

10: θ ← θ + ηΔ
11: end if
12: if accept(y′, y) then
13: y ← y′

14: end if
15: until convergence

SampleRank is an online algorithm which learns preferences over hypotheses
from gradients between atomic changes to overcome the expensive computational
costs that arise during inference. The parameter update is based on gradient
descent on pairs of states (yt,y(t+1)) consisting of the current best state yt and
the successor state y(t+1). Two states are compared according to the following
objective preference function P : Y × Y → {false, true}:

P(y,y′) = O(y′) > O(y) (13)
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Here, O(y) denotes an objective function that returns a score indicating
its degree of accordance with the ground truth from the respective training
document. M : Y ×Y → [0, 1] denotes the proposal distribution that is provided
by the model, φ : Y × X → R|θ| denotes the sufficient statistics of a specific
variable assignment and:

accept(y, y′) ↔ p(y′) > p(y) (14)

3 Conditional Random Fields for Entity Recognition
and Linking

As a subtask in machine reading, i.e., automatically transforming unstructured
natural language text into structured knowledge [18], entity linking facilitates
various applications such as entity-centric search or predictive analytics in knowl-
edge graphs. In these tasks, it is advisable to search for the entities involved at the
level of unique knowledge base identifiers rather than surface forms mentioned
in the text, as the latter are ubiquitously subject to variation (e.g., spelling vari-
ants, semantic paraphrases, or abbreviations). Thus, entities at the concept level
can not be reliable, retrieved or extracted from text using exact string match
techniques.

Prior to linking the surface mentions to their respective concepts, named
entity recognition [16] is required in order to identify all sequences of tokens in
the input sentence that potentially denote an entity of a particular type (e.g.,
diseases or chemicals). Until recently, named entity recognition and entity linking
have been mostly performed as separate tasks in pipeline architectures ([6,19],
inter alia).

Although linear chain CRFs are widely used for NEL, recent research out-
lines the positive impact of complex dependencies between hidden variables that
exceeds the limitations of a linear model. We frame the entity recognition and
linking tasks as a joint inference problem in a general CRF model. In the follow-
ing, we describe (i) the underlying factor graph, (ii) the joint inference procedure
and (iii) the factor template / feature generation to provide sufficient statistics.

We train and evaluate our system in two experiments focusing on both dis-
eases and chemical compounds, respectively. In both tasks, the BioCreative V
CDR dataset [24] is used for training and testing. We apply the same model to
both domains by only exchanging the underlying reference knowledge base. We
show that the suggested model architecture provides high performance on both
domains without major need of manual adaptation or system tuning.

3.1 Entity Linking Model and Factor Graph Structure

We define a document as a tuple d = 〈x,m, c, s〉 comprising an observed
sequence of tokens x, a set of non-overlapping segments determining entity men-
tions m and corresponding concepts c. We capture possible word synonyms s
as hidden variables of individual tokens. In the following, we refer to an anno-
tation ai = 〈mi, ci, si〉 ∈ d as a tuple of corresponding variables. Further, we
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define a state as a specific assignment of values to each hidden variable in d.
The factor graph of our model is shown in Fig. 4. It consists of hidden variables
m, c, and s and observed variables x as well as factor types Ψi connecting sub-
sets of these variables. Note that the figure does not show an unrolled factor
graph but a general viewpoint to illustrate different types of factors (cf. Fig. 5
for an unrolled example). We distinguish 5 factor types by their instantiating
factor template {T 1, T 2, T 3, T 4, T 5} ∈ T e.g. Ψ1 : T 1 is a factor type that solely
connects variables of m.

Fig. 4. General factor graph of our model for joint entity recognition and linking. The
factor graph consists of hidden variables m, c, and s and observed variables x as well
as factor types Ψ i connecting subsets of these variables.

Let y = A be represented as a set of annotations of the document, then the
conditional probability p(y|x) from formula (5) can be written as:

P (y|x) =
1

Z(x)

My∏

mi

Ψ1(mi) ·
Cy∏

ci

Ψ2(ci) ·
Sy∏

si

Ψ3(si) ·
Xy∏

xi

Ψ4(xi) ·
Ay∏

ai

Ψ5(ai) (15)

Factors are formulated as Ψi(·) = exp(〈fTi
(·), θTi

〉) with sufficient statistics fTi
(·)

and parameters θTi
. In order to get a better understanding of our model, we

illustrate an unrolled version of the factor graph in Fig. 5. Given this example,
d can be explicitly written out as: c = {c1 = D011507, c2 = D011507, c3 =
D007674}, s = {s3 = disease → dysfunction}, and m = {m1 = {x7},m2 =
{x13},m3 = {x16, x17}} and x = {x0, . . . , x17}.

3.2 Inference

Exploring the Search Space. Our inference procedure is based on the MCMC
method with the exhaustive Gibbs sampling as defined in Sect. 2.1. The infer-
ence procedure is initialized with an empty state s0 that contains no assignment
to any hidden variables, thus s0 = {x = {x0, . . . , xn−1},m = ∅, s = ∅, c = ∅}. In
each iteration, a segmentation-explorer and a concept-explorer are consecutively
applied in order to generate a set of proposal states. The segmentation explorer
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Fig. 5. Unrolled factor graph of our model from Fig. 4 given a concrete example anno-
tated document.

(recognition) is able to add a new non-overlapping segmentation7, remove an
existing segmentation, or apply a synonym replacement to a token within an
existing segmentation. The concept-explorer (linking) can assign, change or
remove a concept to/from any segmentation.

Fig. 6. Illustration of the joint inference procedure for named entity recognition and
linking. The procedure begins with an empty state that is passed to the recognition
explorer. The successor state is stochastically drawn from the model distribution of
proposal states and passed to the linking explorer. We do this for n iterations until
convergence.

Applying these explorers in an alternating consecutive manner, as illustrated
in Fig. 6, effectively guarantees that all variable assignments are mutually guided
by several sources of information: (i) possible concept assignments can inform
the segmentation explorer in proposing valid spans over observed input tokens,
while (ii) proposing different segmentations together with synonym replacements

7 We do not extend or shrink existing spans. Instead, new annotations can be of
different length, spanning 1 to 10 tokens.
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Fig. 7. Subset of proposal states generated by the segmentation explorer, originating
from the current state st which has already one linked segmentation on token t13.
Each proposal state has a new non-overlapping segment annotation (marked in grey)
that is not linked to any concept. Proposal states may include synonym replacements
(depicted as dashed boxes) that are accepted for all subsequent sampling steps.

on these may facilitate concept linking. Thus, this intertwined sampling strat-
egy effectively enables joint inference on the recognition and the linking task.
Figure 7 shows an exemplary subset of proposal states that are generated by the
segmentation explorer.

Objective Function. Given a predicted assignment of annotations y′ the objective
function calculates the harmonic mean based F1 score indicating the degree of
accordance with the ground truth ygold. Thus:

O = F1(y′,ygold) (16)

3.3 Sufficient Statistics

In the following, we describe our way of creating sufficient statistics by features
that encode whether a segmentation and its concept assignment is reasonable
or not. All described features are of boolean type and are learned from a set of
labeled documents from the training data. We introduce δ as a given dictionary
that contains entity surface forms which are linked to concepts, and the bidi-
rectional synonym lexicon κ that contains single token synonyms of the form
x ↔ xsynonym.

Dictionary Generation

Dictionary Generation. A main component of this approach is a dictionary
δ ⊆ S × C, where C = {c0, . . . , cn} is the set of concepts from a reference
knowledge base and S = {s0, . . . , sm} denotes the set of surface forms that can
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be used to refer to these concepts. We define two functions on the dictionary:
(i) δ(s) = {c | (s, c) ∈ δ} returns a set of concepts for a given name s, and (ii)
δ(c) = {s | (s, c) ∈ δ} returns a set of names for a given concept c.

Synonym Extraction. We extract a bidirectional synonym lexicon from the dic-
tionary δ by considering all surface forms of a concept c that differ in one token.
We consider these tokens as synonyms. For example, the names kidney disease
and kidney dysfunction are names for the same concept and differ in the tokens
‘disease’ and ‘dysfunction’. The replacement (disease ↔ dysfunction) is (bidi-
rectional) inserted into the synonym lexicon denoted as κ provided that the pair
occurs in at least two concepts.

Feature Generation. For simplicity reasons, we refer in the following with
mi to the underlying text of the ith segmentation and si to the underlying text
of the corresponding segmentation that includes its synonym replacement. The
feature description is guided by the following example sentence:

“ Hussein Obama is the former president of the USA . ”

Here, three segments are annotated (framed tokens). Throughout the concrete
feature examples that are provided to each feature description, we denote:

m0 = “Hussein Obama”, s0 = {Hussein ↔ Barack}, c0 = ∅

m1 = “former”, s1 = ∅, c1 = ∅,
m2 = “USA”, s2 = ∅, c2 = dbpedia : United States.

Dictionary Lookup. For each segmentation mi in the document, a feature
fmi

mi∈δ(yi) is created that indicates whether the text within mi corresponds to
any entry in the dictionary δ. Further, a feature fci

(mi,ci)∈δ(yi) indicates whether
the text of a segmentation refers to its assigned concept ci. Analogously, a pair
of features is computed that indicate whether si is in or is related to the concept
ci according to the dictionary.

fmi

mi∈δ(yi) =

{
1 iff ∃c ∈ C(mi, c) ∈ δ

0 otherwise.
fci
(mi,ci)∈δ(yi) =

{
1 iff (mi, ci) ∈ δ

0 otherwise.
(17)

Example 3

fm0
m0∈δ(y0) = “Hussein Obama” ∈ δ = 1

fc0
(m0,c0)∈δ(y0) = (“Hussein Obama”, ∅) /∈ δ = 0

fm1
m1∈δ(y1) = “former” /∈ δ = 0

fc1
(m1,c1)∈δ(y1) = (“former”, ∅) /∈ δ = 0
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fm2
m2∈δ(y2) = “USA” ∈ δ = 1

fc2
(m2,c2)∈δ(y2) = (“USA”, dbpedia : United States) ∈ δ = 1

In this example, Hussein Obama and USA are part of the dictionary, whereas
former is not. Further, the assigned concept c2 to m2 matches an entry in the
dictionary.

Synonyms. Recall that the synonym lexicon κ is generated automatically from
training data. Thus, not all entries are meaningful or equally likely and may be
concept dependent. Thus, we add a feature fκ that measures the correlation for
a segment mi to its synonym si ∈ κ if any.

fmi,si
κ (yi) =

{
1 iff (mi, si) ∈ κ

0 otherwise.
(18)

Example 4

fm0,s0
κ (y0) = (“Hussein” ↔ “Obama”) ∈ κ = 1

fm1,s1
κ (y1) = (“former” ↔ ∅) /∈ κ = 0

fm2,s2
κ (y2) = (“USA” ↔ ∅) /∈ κ = 0

In this example, Hussein Obama is a synonym for Barack Obama based on the
synonym lexicon.8

Token Length. Given a segment mi, we consider its length ni = len(mi) by bin-
ning ni into discrete values ranging from 1 to ni: B = [b0 = 1, b1 = 2, . . . , bn−1 =
ni]. For each element in B, we add a feature flen that tells whether bj ∈ B is
less or equal to ni. Analogously, the feature is conjoined with the annotated
concept ci.

f
bj ,ni

len (yi) =

{
1 iff bj <= ni

0 otherwise.
(19)

Example 5

f b0,n0
len (yi) = “len (1 ≤ 2”) = 1

f b1,n0
len (yi) = “len (2 ≤ 2”) = 1

f b0,n1
len (yi) = “len (1 ≤ 1”) = 1

f b0,n2
len (yi) = “len (1 ≤ 1”) = 1

f b0,n2
len (yi) = “len + dbpedia : United States (1 ≤ 1)” = 1

In this example, n0 = len(“Barack Obama”) = 2, n1 = len(“former”) = 1,
ni = len(“USA”) = 1.
8 Note that, just because the feature is active it does not mean its a good replacement.

This is determined during training.
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Token Context and Prior. We capture the context of a segmentation mi in form
of token based N -grams. Let πk be the kth n-gram within or in the context
of mi, then features of type fmi,x

πk context(yi) and fmi

within(yi) are created for each
πk that indicate whether a segmentation is (i) preceded by a certain πk, (ii)
followed by πk, (iii) surrounded by πk, and (iv) within mi. In order to model
recognition and linking jointly, each of these features is additionally conjoined
with the corresponding concept ci that is: fmi,cix

πk context(yi) and fmi,ci
within(yi) .

Example 6
∀πk ∈ Πcontext

0 : fm0,x
πk context(y0) = πk = 1

∀πk ∈ Πwithin
0 : fm0

πk within(y0) = πk = 1

∀πk ∈ Πcontext
1 : fm1,x

πk context(y1) = πk = 1

∀πk ∈ Πwithin
1 : fm1

πk within(y1) = πk = 1

∀πk ∈ Πcontext
2 : fm2,x

πk context(y2) = πk = 1

∀πk ∈ Πwithin
2 : fm2

πk within(y2) = πk = 1

∀πk ∈ Πcontext
2 : fm2,c2,x

πk context(y2) = πk + dbpedia : United States = 1

∀πk ∈ Πwithin
2 : fm2,c2,x

πk within(y2) = πk + dbpedia : United States = 1

In this example, we restrict N to 3 which means we consider only uni-, bi-, and
tri-grams. We provide exemplary the N -grams for the first annotation which
are: Πcontext

0 = {“is”, “the”, “former”, “is the”, “the former”, “is the former”}
and Πwithin

0 = {“Hussein”, “Hussein Obama”, “Obama”}. Πcontext
1 ,Πcontext

2

and Πwithin
1 ,Πwithin

2 are defined analogously.

Coherence. We measure the pairwise coherence of annotations with the feature
fcoh defined as:

f
aj ,ak

coh (yj , yk) =

{
1 iff (mj == mk) ∧ (sj == sk) ∧ (cj == ck)
0 otherwise.

(20)

Example 7

fa0,a1
coh (y0, y1) =

⎧
⎪⎨

⎪⎩

(“Hussein Obama” �= “former”) ∧
((“Hussein” ↔ “Barack”) �= ∅) ∧
(∅ == ∅)

= 0
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fa1,a2
coh (y1, y2) =

⎧
⎪⎨

⎪⎩

(“former” �= “USA”) ∧
(∅ == ∅) ∧
(∅ == ∅)

= 0

fa0,a2
coh (y0, y2) =

⎧
⎪⎨

⎪⎩

(“Hussein Obama” �= “USA”) ∧
(∅ == ∅) �= ∅) ∧
(∅ == ∅)

= 0

For this example, we do not have any active features as they do not share surface
forms, concepts and synonym replacements.

Abbreviation. We address the problem of abbreviations (cf. [5]) in the task of
entity linking with features fabb that indicate whether the segmentation mi rep-
resents an abbreviation9 and its longform is locally known. That is, iff a non-
abbreviation segmentation mj exists that has the same concept assigned as the
abbreviation mi:

f
ai,aj

abb (yi, yj) =

{
1 iff (isAbbr(mi) ∧ ¬isAbbr(mj)) ∧ (ci == cj) ∧ (ci �= ∅)
0 otherwise.

(21)

Example 8

fa0,a1
abb (y0, y1) = (false ∧ true) ∧ (∅ == ∅) ∧ (∅ �= ¬∅) = 0

fa1,a2
abb (y1, y2) = (false ∧ true) ∧ (∅ == ∅) ∧ (∅ �= ¬∅) = 0

fa0,a2
abb (y0, y2) =

⎧
⎪⎨

⎪⎩

(true ∧ true) ∧
(∅ �= dbpedia : United States) ∧
(dbpedia : United States == ¬∅)

= 0

For this example, we do not have any active features as no longform of an
annotated abbreviation exists that shares the same concept.

3.4 Experiments

The objective of this model is to recognize segments in text denoting an entity
of a specific type and link them to a reference knowledge base by assigning a
unique concept identifier. In this section, we describe our experiments on two
types of biomedical entities. The first experiment evaluates our system in disease
recognition and linking. The second experiment is conducted on chemicals. Both
experiments use the same data set described below.

Data Sets and Resources

Data Sets. All experiments were conducted on data from the BioCreative V
Shared Task for Chemical Disease Relations (BC5CDR) [24]. The data set was
9 We define an abbreviation as a single token which is in uppercase and has at most

5 characters.
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designed to solve the tasks of entity recognition and linking for disease and
chemicals and further to find relations between both. However, the latter task is
not yet considered in our approach. Each annotation contains information about
its span in terms of character offsets and a unique concept identifier. Annotated
entities are linked to the Comparative Taxicogenomics Database10 for diseases
(CTDdis) or chemicals (CTDchem), respectively.

The data set consists of 1,500 annotated Pubmed abstracts equally dis-
tributed into training, development and test set with about 4,300 unique anno-
tations each.

Reference Knowledge Base. CTDdis is derived from the disease branch of MeSH
and the Online Mendelian Inheritance in Man (OMIM)11 data base. CTDdis

contains 11,864 unique disease concept identifiers and 75,883 disease names.
CTDchem is solely derived from the chemical branch of MeSH. It comprises
163,362 unique chemical concept identifiers and 366,000 chemical names.

Cleaning Procedure. In order to remove simple spelling variations, we implement
a text cleaning procedure which is applied to all textual resources and data sets.
The strategy uses six manually created regular expressions like replacing ’s by s.
Further, we convert all tokens into lowercase if they are not solely in uppercase,
we remove all special characters including punctuation and brackets, and replace
multiple whitespace characters by a single blank. We apply the same strategy to
both diseases and chemicals.

Resources Used in the Experiments. In the experiments for disease recognition
and linking, we initialize the dictionary δ with CTDdis and enhance it with
the disease annotations from the training data. We then apply the text cleaning
procedure as described above to all entries, as well as to all documents in training
and test set. Due to the cleaning, the size of the dictionary reduces to 73,773
unique names (−2,113), while the number of concepts remains the same. The
resulting synonym lexicon κ stores 2,366 entries.

In the experiments for chemicals, the dictionary δ is initialized with CTDchem

and enhanced with the chemical annotations from the training data. After the
cleaning procedure, the size of the dictionary reduces to 359,564 unique names
(−8.186), while the number of concepts remains the same. The resulting synonym
lexicon κ stores 4,912 entries.

The system’s overall performance depends on the two parameters k and λ
that influence the candidate retrieval procedure (cf. Sect. 3.3), as they determine
the maximum recall that can be achieved. We empirically set the best parameter
values using a two-dimensional grid search on the development set, assuming
perfect entity recognition. Best performance is achieved with k = 20 and λ = 0.7.
Given these parameters, a maximum recall of 90.4 for diseases, and 91.5 for
chemicals can be obtained by our system on the BC5CDR test set.

10 http://ctdbase.org, version from 2016.
11 http://www.omim.org.

http://ctdbase.org
http://www.omim.org
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Baselines. We compare our approach to the two state-of-the-art systems
DNorm [13] and TaggerOne [12], as well as against two simple baselines (LMB
and LMB+). The latter baselines are based on non-overlapping longest matches,
using the dictionary as described in Sect. 3.3. While in LMB+ all resources
(including the dictionary and documents) were cleaned, resources in LMB remain
as they are.

Due to the cleaning, we lose track of the real character offset position. Thus,
these baselines are not applicable to the entity recognition subtask.

Experimental Settings

Evaluation Metrics. We use the official evaluation script as provided by the
BioCreative V Shared Task organizers [24]. The script uses Precision, Recall
and F1 score on micro level. In the recognition task the measure is on mention
level comparing annotation spans including character positions and the anno-
tated text. Experiments on the linking task are evaluated on concept level by
comparing sets of concepts as predicted by the system and annotated in the gold
standard, i.e., multiple occurrences of the same concept and their exact positions
in the text are disregarded.

Hyper-parameter Settings. During development, the learning rate α and the
number of training epochs ε as hyper-parameters of SampleRank were empiri-
cally optimized by varying them on the development set. Best results could be
achieved with α = 0.06. The results reached a stable convergence at ε = 130.

Results. We report results on the BC5CDR test set in Table 2. Results on
the disease and chemicals subtasks are shown in the left and right part of the
table, respectively. For both tasks, we assess the performance of our system on
end-to-end entity linking (columns labeled with “Linking”), as well as the entity
recognition problem in isolation (“Recognition”).

Table 2. Evaluation results on BC5CDR test set for recognition and linking on diseases
(left part) and chemicals (right part)

Diseases Chemicals

Recognition Linking Recognition Linking

P R F1 P R F1 P R F1 P R F1

J-Link 84.6 81.9 83.2 86.3 85.5 85.9 90.0 86.6 88.3 85.9 91.0 88.4

TaggerOne 85.2 80.2 82.6 84.6 82.7 83.7 94.2 88.8 91.4 88.8 90.3 89.5

DNorm 82.0 79.5 80.7 81.2 80.1 80.6 93.2 84.0 88.4 95.0 80.8 87.3

LMB+ n/a n/a n/a 80.5 80.9 80.7 n/a n/a n/a 80.4 82.7 81.5

LMB n/a n/a n/a 82.3 58.5 68.3 n/a n/a n/a 84.0 58.8 69.2
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Disease Recognition and Linking. In disease recognition, our approach exhibits
the best F1 score of all systems compared here (F1 = 83.2). Only in terms of
Precision, TaggerOne has slight advantages.

In the linking task, our system (J-Link) clearly outperforms both lexicon-
based baselines as well as both state-of-the-art systems. In particular, J-Link
exceeds TaggerOne by 2.2 and DNorm by 5.3 points in F1 score, respectively.

Comparing these results to the baselines, we observe that a simple lexicon
lookup (LMB) already achieves robust precision levels that cannot be met by the
DNorm system. More than 22 points in recall can be gained by simply applying
a cleaning step to the dictionary and documents (LMB+).

However, the increasing recall comes with a drop in precision of 1.8 points.
This shows that preprocessing the investigated data can be helpful to find more
diseases, while aggravating the linking task. Obviously, our system (in contrast
to DNorm and to a greater extent than TaggerOne) benefits from a number
of features that provide strong generalization capacities beyond mere lexicon
matching.

Chemicals Recognition and Linking. In the second experiment, we are inter-
ested in assessing the domain adaptivity of our model. Therefore, we apply the
same factor model to a different reference knowledge base, without changing any
system parameters or engineering any additional domain-specific features.

The evaluation (cf. Table 2, right part) shows promising results regarding
the adaptation to chemicals, particularly in the linking task. Our approach is
competitive to DNorm and TaggerOne, while clearly outperforming both lexicon
baselines.

Compared to DNorm, our approach lacks in precision (−9.1), but shows bet-
ter results in recall (+10.2), which results in a slightly higher F1 score (+1.1).
Overall, TaggerOne obtains the best performance in this experiment, due to
the best precision/recall trade-off. However, the superior recall of our system is
remarkable (R=91.0), given that the dictionary for chemicals as used in Tag-
gerOne was augmented in order to ensure that all chemical element names and
symbols are included [12].

4 Conditional Random Fields for Slot Filling

Initiated by the advent of the distant supervision [15] and open information
extraction paradigms [1], the last decade has seen a tendency to reduce infor-
mation extraction problems to relation extraction tasks. In the latter, the focus
is on extracting binary entity-pair relations from text by applying various types
of discriminative classification approaches.

We argue that many tasks in information extraction (in particular, when
being used as an upstream process for knowledge base population) go beyond
the binary classification of whether a given text expresses a given relation or
not, as they require the population of complex template structures.

We frame template-based information extraction as an instance of a struc-
tured prediction problem [22] which we model in terms of a joint probability
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distribution over value assignments to each of the slots in a template. Subse-
quently, we will refer to such templates as schemata in order to avoid ambiguities
with factor templates from the factor graph. Formally, a schema S consists of
typed slots (s1, s2, . . . , sn). The slot-filling task corresponds to the maximum a
posteriori estimation of a joint distribution of slot fillers given a document d

(s1, s2, . . . , sn) = argmax
s′
1,s′

2,...,s′
n∈Φ

P (s1 = s′
1, . . . , sn = s′

n | d) , (22)

where Φ is the set of all possible slot assignments.
Slots in a schema are interdependent, and these dependencies need to be

taken into account to avoid incompatible slot assignments. A simple formulation
in terms of n binary-relation extraction tasks would therefore be oversimplify-
ing. On the contrary, measuring the dependencies between all slots would render
inference and learning intractable. We therefore opt for an intermediate solu-
tion, in which we analyze how far measuring pairwise slot dependencies helps
in avoiding incompatibilities and finally to improve an information extraction
model for the task.

We propose a factor graph approach to schema/template-based information
extraction which incorporates factors that are explicitly designed to encode such
constraints. Our main research interest is therefore to (1) understand whether
such constraints can be learned from training data (to avoid the need for manual
formulation by domain experts), and (2) to assess the impact of these constraints
on the performance.

We evaluate our information extraction model on a corpus of scientific pub-
lications reporting the outcomes of pre-clinical studies in the domain of spinal
cord injury. The goal is to instantiate multiple schemata to capture the main
parameters of each study. We show that both types of constraints are effective,
as they enable the model to outperform a naive baseline that applies frequency-
based filler selection for each slot.

4.1 Slot Filling Model and Factor Graph Structure

We frame the slot filling task as a joint inference problem in undirected proba-
bilistic graphical models in a distant supervised fashion. Our model is a factor
graph which probabilistically measures the compatibility of a given textual doc-
ument d consisting of tokenized sentences χ, a fixed set of entity annotations A,
and a to be filled ontological schema S. The schema S is automatically derived
from an ontology and is described by a set of typed slots, S = {s1, . . . , sn}. Let
C denote the set of all entities from the ontology, then each slot si ∈ S can
be filled by a pre-defined subset of C called slot filler. Further, each annotation
a ∈ A describes a tuple 〈t, c〉 where t = (ti, . . . , tj) ∈ χ is a sequence of tokens
with length ≥ 1 and a corresponding filler type c ∈ C.

Factorization of the Probability Distribution. We decompose the over-
all probability of a schema S into probability distributions over single slot
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and pairwise slot fillers. Each individual probability distribution is described
through factors that measure the compatibility of single/pairwise slot assign-
ments. An unrolled factor graph that represents our model structure is depicted
in Fig. 8. The factor graph consists of different types of factors that are con-
nected to subsets of variables of y = {y0, y1, . . . , yn} and of x = {χ,A}, respec-
tively. We distinguish three factor types by their instantiating factor template
{T ′, T ′

d, T
′′
d } ∈ T : (i) Single slot factors Ψ ′(yi) ∈ T ′ that are solely connected to

a single slot yi, (ii) Single slot+text factors Ψ ′(yi,x) ∈ T ′
d that are connected

to a single slot yi and x, (iii) Pairwise slot+text factors Ψ ′′(yi, yj ,x) ∈ T ′′
d

that are connected to a pair of two slots yi, yj and x.

Fig. 8. Factor graph of our model for an exemplary ontological schema S. It shows
three different types of factors. Each set of factors of the same type is instantiated by
a different factor template.

The conditional probability P (y | x) of a slot assignment y given x can be
simplified as:

P (y|x) =
1

Z(x)

∏

yi∈S

[
Ψ ′(yi) · Ψ ′(yi,x)

]
∏

yi∈S

∏

yj∈S

[
Ψ ′′(yi, yj ,x)

]
. (23)

Factors are formulated as Ψ(·) = exp(〈fT (·), θT 〉) with sufficient statistics fT (·)
and parameters θT (T ∈ T and Ψ ∈ {Ψ ′, Ψ ′′}).

4.2 Inference and Learning

Ontological Sampling. The initial state s0 in our exploration is empty, thus y =
(∅). A set of potential successors is generated by a proposal function changing a
slot by either deleting an already assigned value or changing the value to another
slot filler. The successor state st+1 is chosen based on the probability distribution
generated by the model. The higher the probability (according to the model) of
a state, the higher is the chance of being chosen as successor state. However, the
state is only accepted iff q(st+1) > q(st), where q(s′) is the model probability of
the state s′. The inference procedure stops if the state selected for each sampling
step does not change for three iterations.
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Objective Function. Given a predicted assignment y∗ of all slots in schema type
Ŝ and a set S of instantiated schemata of type Ŝ from the gold standard, the
training objective is

O(y∗) = max
y ′∈S

F1(y∗,y′) , (24)

where F1 is the harmonic mean of precision and recall, based on the overlap of
assigned slot values between y and y′.

4.3 Factors and Constraints

At the core of this model are features that encode soft constraints to be learned
from training data. In general, these constraints are intended to measure the
compatibility of slot fillers within a predicted schema. Such soft constraints are
designed through features that are described in the following.

Single-Slot Constraints in Template T ′. We include features which measure com-
mon, acceptable fillers for single slots with numerical values. Given a filler anno-
tation ai = 〈v, c〉 of slot yi, the model can learn individual intervals for different
types of fillers such as temperature (−10–40), or weight (200–500), for example.
For that, we calculate the average μ and standard deviation σ for each particular
slot based on the training data. For each slot si in schema S, a boolean feature
fsi

σ=n is instantiated for each n ∈ {0, . . . , 4}, indicating whether the value yi is
within n standard deviations σsi

of the corresponding mean μsi
. To capture the

negative counterpart, a boolean feature fsi
σ>n is instantiated likewise.

fsi
σ=n(yi) =

{
1 iff

⌈
(v−μsi

σsi
)
⌉

= n

0 otherwise.
fsi

σ>n(yi) =

{
1 iff

⌈
(v−μsi

σsi
)
⌉

> n

0 otherwise.
(25)

In this way, the model learns preferences over possible fillers for a given slot
which effectively encode soft constraints such as “the weight of rats typically
scatters around a mean of 300 g by two standard deviations of 45 g”.

Pairwise Slot Constraints in T ′′
d . In contrast to single-slot constraints, pairwise

constraints are not limited to slots with filler type v ∈ R. Soft constraints on
slot pairs are designed to measure the compatibility and (hidden) dependencies
between two fillers, e.g., the dependency between the dosage of a medication and
its applied compound, or between the gender of an animal and its weight. This
is modeled in terms of their linguistic context and textual locality, as discussed
in the following.

We assume that possible slot fillers may be mentioned multiple times at
various positions in a text. Therefore, given a pair of slots (si, sj), we define
λ as an aggregation function that returns the subset of annotations λ(si) =
{a = 〈t, c〉 ∈ A | a(c) = si(c)}. We measure the locality of two slots in the text
by the minimum distance between two sentences containing annotations for the
corresponding slot fillers. A bi-directional distance for two annotations is defined
as δ(ak, al) = |sen(ak) − sen(al)| where sen denotes a function that returns the
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sentence index of an annotation. For each n ∈ {0, . . . , 9} a boolean feature fδ=n

is instantiated as:

f
si,sj

δ=n (yi, yj) =

{
1 iff n = minak∈λ(yi),al∈λ(yj) δ(ak, al)
0 otherwise.

(26)

To capture the linguistic context between two slot fillers yi and yj , we define a
feature fsi

πn
(yi, yj) that indicates whether a given N -gram πn ∈ π with 1 < N ≤ 3

occurs between the annotations ak ∈ λ(yi) and al ∈ λ(yi) in the document.

Standard Textual Features in T ′ and T ′
d. Given a single slot si with filler yi and

the aggregated set of all corresponding annotations λ(yi), we instantiate three
boolean features for each annotation a ∈ λ(yi) as follows.

Let Ls(lyi
, a(t)) be the Levenshtein similarity between the ontological

class label lyi
, and the tokens of an annotation a(t). Two boolean features

fbin(smax)<Δ(yi) and fbin(smax)≥Δ(yi) are computed as:

fbin(smax)<Δ(yi) =

{
1 iff b < Δ

0 otherwise.
fbin(smax)≥Δ(yi) =

{
1 iff b ≥ Δ

0 otherwise.
,

(27)
where b = bin(smax) is the discretization of the maximum similarity smax into
intervals of size 0.1, and

smax = max
a∈λ(yi)

Ls(lyi
, a(t)) with Ls = 1 − levenshtein(lyi

, a(t))
max(len(lyi

), len(a(t)))
. (28)

Finally, we instantiate features fsi
πk context(si) and fsi

within, indicating whether
an N -gram πk occurs in the context (before or after) or within any annotation
of slot yi.

4.4 Cold-Start Knowledge Base Population in the Spinal Cord
Injury Domain

Problem Description. We address the problem of ontology-based information
extraction in a slot-filling setting as a prerequisite for cold-start knowledge base
population. The extraction task comprises multiple schemata of different types,
each of them provided by a domain ontology and containing multiple slots. Each
slot in a schema needs to be filled either by a literal from the input document
or by a class or individual from the ontology, depending on whether it is derived
from a data-type or object-type property

We consider slot-filling as a document-level task, i.e., entities filling the slots
of a particular schema may be dispersed across the entire text. In addition, each
literal or ontological category can, in principle, fill multiple slots of the appro-
priate type. We approach the task in a supervised machine learning approach;
supervision is available at the document level in terms of fully instantiated gold
schemata without direct links between slot fillers and text mentions.
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Spinal Cord Injury Ontology (SCIO). Pre-clinical trials in the spinal cord
injury domain follow strict methodological patterns. Experimental protocols
and the main outcomes of pre-clinical studies on spinal cord injury are for-
mally represented in SCIO [2]. In total, the ontology contains more than 500
classes and approx. 80 properties (slots). SCIO top-level classes defining the
schema types are AnimalModel, InjuryModel, Treatment, Investiga-

tionMethod and Result. Slots are either object-type properties which can be
filled by a SCIO class, or data-type properties which are filled with free text.

Annotated Data Set. The annotated data set was created by two SCI experts
who annotated 25 full-text scientific papers from the SCI literature. Annotations
were provided at the level of fully instantiated schemata per document, using
the set of top-level classes in SCIO and their corresponding properties as anno-
tation schema. The entire annotation process comprises three steps: (i) mention
identification, (ii) entity recognition (in case of data-type properties) and linking
(object-type properties), (iii) schema instantiation, and (iv) filling the slots of
an instantiated schema with an appropriate entity. The latter steps are due to
the fact that the cardinality of schemata of a particular type per document is
unknown a priori, and multiple schemata may share individual slot fillers. The
following example shows a sentence that describes two instantiations of an Ani-

malModel schema which share the slot fillers species (SpragueDawleyRat)
and ageCategory (Adult): “A total of 39 Sprague-Dawley rats were used for
these experiments: adult males (285-330 g) and females (192-268 g).”

Inter-annotator agreement at the level of fully instantiated schemata in terms
of F1 score between annotators amounts to 0.93 for AnimalModel, 0.79 for
Injury, 0.77 for Treatment and 0.65 for InvestigationMethod.

4.5 Experiments

In the following section, we describe our experimental settings, the evaluation
metrics and results. Model performances are independently reported for four
SCIO schemata: AnimalModel, Injury, Treatment, and Investigation-

Method. As a preprocessing step, we apply symbolic entity recognition in order
to generate annotations A. The regular expressions used are automatically gen-
erated from ontology class labels. In case of data-type properties (e.g., weight of
an animal), regular expressions are manually created.

Experimental Settings. The system is evaluated in a 6-fold cross valida-
tion on the complete data set. In all experiments, we restrict the complexity
of the schemata to first-order slots, i.e., ontological properties that are directly
connected to their respective domain class. In the current approach, we are
not aiming at predicting the correct number of instantiations per schema type.
Thus, our system is restricted to fill a single schema of each type per document,
even if it contains multiple instances of the same schema type (e.g., multiple
Treatments).
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With respect to this restriction, we report the evaluation results for both,
(i) Full Evaluation (taking the actual number of gold schemata into account),
and (ii) Best Match Evaluation (comparing the predicted schema to the best
matching gold schema).

Further, we report the performance for two different models, in order to inves-
tigate the relative impact of single-slot constraints vs. pairwise slot constraints.
In the pairwise slot filling (PSF) model, the inference and the factor graph is
based on the joint assignment of slot pairs, whereas in single slot filling (SSF)
model, all slots are independently filled.

Evaluation Metrics. We report model performances as macro precision, recall
and harmonic F1. Given a document with a set of gold schemata G of type
S = {s0, . . . sn} and the predicted schema p, the comparison is always based on
the best assignment g′ = argmaxg∈G F1(p, g). For the computation of the overall
F1 score, we convert all ontological schemata into sets of slot-filler pairs with
p = {s′

0 = cj , . . . , s
′
n = ck} and G = {g0, . . . , g′, . . . , gl} = {(s00 = ca, . . . , s0n =

cb), . . . , (s′
0 = cc, . . . , s

′
n = cd), . . . , (sl

0 = ce, . . . , s
l
n = cf )}. The overall F1 score

is calculated based on the two sets of p and G. We define a true positive (tp) as
a slot-filler pair that are in both p and G, a false positive (fp) as a pair that is
in p but not in G, and a false negative (fn) as a pair that is in G but not in p.
During the Best Match Evaluation, we set G = {g′}.

Most Frequent Filler Baseline. We compare the performance of our models in
all settings against a plausible but naive baseline. Following the intuition that
important information is mentioned in a higher frequency than non-important
information, a slot is always filled with the filler that has the highest annotation
frequency. In the following, we refer to this procedure as Most Frequent Filler
(MFF) baseline.

Results. In the following, we describe the evaluation results for all experiments.
First, we compare the performance in the Full Evaluation vs. Best Match Eval-
uation settings. In the former setting, we expect a rather low recall due to the
restriction of predicting exactly one schema per type. This leads to many false
negatives, as multiple instances of the same type can not be fully covered yet.
Hence, we hypothesize a significant increase in recall in the Best Match Evalu-
ation setting. By comparing the predicted schema to the best match only, we
investigate whether the low recall is due to the large amount of missing schemata.
If so, this would indicate that our model is able to select the correct slot fillers
among a huge set of possible candidates. The performance of all models in both
settings is reported in Table 3.

Full Evaluation Results. The results show a strong recall of our baseline model
with a distinct lack in precision. The baseline yields the highest recall among
all models and schema types except for the AnimalModel (0.55 for baseline
vs. 0.90 for SSF/PSF). Compared to the SSF model, we notice a consider-
able increase in precision in all schema types which is most pronounced in the



106 H. ter Horst et al.

Table 3. Performance of Most Frequent Filler Baseline (MFF) vs. Single Slot Filler
(SSF) and Pairwise Slot Filler (PSF) models in the Full Evaluation (full) and Best
Match (best) setting.

MFF SSF PSF

P R F1 P R F1 P R F1

Animal full 0.48 0.55 0.51 0.84 0.90 0.86 0.91 0.90 0.90

Model best 0.48 0.57 0.52 0.84 1.00 0.91 0.91 1.00 0.95

Injury full 0.28 0.38 0.31 0.52 0.22 0.31 0.77 0.30 0.43

best 0.28 0.43 0.33 0.52 0.29 0.35 0.77 0.40 0.50

Treatment full 0.39 0.26 0.30 0.70 0.16 0.26 0.87 0.16 0.27

best 0.39 0.74 0.51 0.70 0.63 0.65 0.87 0.63 0.73

Invest.Method full 0.36 0.45 0.36 1.00 0.39 0.50 1.00 0.39 0.50

best 0.36 0.98 0.52 1.00 1.00 1.00 1.00 1.00 1.00

InvestigationMethod (+0.64). The increase in precision for the three other
schemata are between +0.24 and +0.36. Comparing the PSF to the SSF model,
we observe further strong improvements in precision and slight improvements in
recall. The PSF model clearly outperforms the baseline for the AnimalModel

with an increase in F1 of +0.39, the Injury +0.12, and the Investigation-

Method with +0.14. Despite the precision being increased by +0.46 in the
Treatment, the baseline shows a higher F1 score in this configuration (+0.03),
due to a drop in recall by −0.10.

Best Match Evaluation Results. In this setting, we further investigate the recall
performance of our models compared to the previously discussed Full Evaluation
results. As we only remove uncaptured schema instances from G (cf. Sect. 4.5),
the precision remains the same. All models show an overall increase in recall for
all schema types. With respect to the PSF model, we can see a strong increase
in recall for InvestigationMethod by +0.61 and for Treatment by +0.47.
Further, slight increases by +0.10 and +0.07 can be observed for AnimalModel

and Injury, respectively. Similar observations can be made for the SSF model.

Discussion. Comparing the baseline model with the SSF model, we notice a
very strong increase in precision in combination with a slight drop in recall.
This positive trend in precision is continued when considering the PSF model.
Further, the results show a positive impact of pairwise over single-slot constraints
on recall.

The high recall of 0.90 for the AnimalModel in the full evaluation is mainly
due to a low number (1 to 2) of instances per schema type in each document.
The fact that there is no difference in the performance of the SSF and SPF
models for the InvestigationMethod suggests a strong slot independence, so
that pairwise slot constraints do not have a big impact. The low increase in recall
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between the two evaluation settings for the Injury suggests difficulties for this
schema. In contrast, the recall increase for the Treatment schema from 0.16 to
0.63 clearly shows that most of the errors are due to a large number of schema
instances per document.

Overall, the results show that our system is often able to select the correct
set of slot fillers for a schema, even from a huge set of possible schemata and
their corresponding slot filler candidates.

5 Conclusion

In this paper accompanying our tutorial, we have discussed how the cold-start
knowledge base population task can be modeled as structure-to-structure pre-
diction problems as statistical inference. We have adopted the framework of
conditional random fields which represent parametrized conditional probability
densities in which a set of output variables is conditioned on a set of input vari-
ables. The conditional distribution is represented as a product of so called local
factors that model the compatibility between assignments to a subset of vari-
ables. The structure of a CRF is typically represented by a factor graph that
connects factors to the variables in their scope.

We have shown how tasks in knowledge base population that consist in pre-
dicting the most likely instantiation of a given ontology structure given a doc-
ument can be modeled as statistical inference using conditional random fields.
As two prominent problems we have shown how the problem of linking named
entities to the corresponding URI representing the real world entity as well as
the problem of slot filling can be solved using the proposed framework.
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and Research (BMBF, Germany) in the PSINK project (project number 031L0028A).

References

1. Banko, M., Cafarella, M., Soderland, S., Broadhead, M., Etzioni, O.: Open infor-
mation extraction from the web. In: Proceedings of IJCAI, pp. 2670–2676 (2007)

2. Brazda, N., et al.: SCIO: an ontology to support the formalization of pre-clinical
spinal cord injury experiments. In: Proceedings of the 3rd JOWO Workshops:
Ontologies and Data in the Life Sciences (2017)

3. Freitag, D.: Machine learning for information extraction in informal domains.
Mach. Learn. 39(2–3), 169–202 (2000)

4. Hartung, M., ter Horst, H., Grimm, F., Diekmann, T., Klinger, R., Cimiano, P.:
SANTO: a web-based annotation tool for ontology-driven slot filling. In: Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics
(System Demonstrations), Association for Computational Linguistics (2018). in
press

5. Hartung, M., Klinger, R., Zwick, M., Cimiano, P.: Towards gene recognition from
rare and ambiguous abbreviations using a filtering approach. Proc. BioNLP 2014,
118–127 (2014)



108 H. ter Horst et al.

6. Hoffart, J., et al.: Robust disambiguation of named entities in text. In: Proceedings
of EMNLP, pp. 782–792 (2011)

7. ter Horst, H., Hartung, M., Cimiano, P.: Joint entity recognition and linking in
technical domains using undirected probabilistic graphical models. In: Gracia, J.,
Bond, F., McCrae, J.P., Buitelaar, P., Chiarcos, C., Hellmann, S. (eds.) LDK 2017.
LNCS (LNAI), vol. 10318, pp. 166–180. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-59888-8 15

8. ter Horst, H., Hartung, M., Klinger, R., Brazda, N., Müller, H.W., Cimiano, P.:
Assessing the impact of single and pairwise slot constraints in a factor graph
model for template-based information extraction. In: Silberztein, M., Atigui, F.,
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Abstract. Large-scale cross-domain knowledge graphs, such as DBpe-
dia or Wikidata, are some of the most popular and widely used datasets
of the Semantic Web. In this paper, we introduce some of the most pop-
ular knowledge graphs on the Semantic Web. We discuss how machine
learning is used to improve those knowledge graphs, and how they can be
exploited as background knowledge in popular machine learning tasks,
such as recommender systems.
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Background knowledge

1 Introduction

The term “Knowledge Graph” was coined by Google when they introduced their
knowledge graph as a backbone of a new Web search strategy in 2012, i.e., moving
from pure text processing to a more symbolic representation of knowledge, using
the slogan “things, not strings”1.

A similar idea, albeit already introduced in the mid-2000s, underlies the
concept of Linked Data: in order to organize knowledge, URIs (instead of textual
names) are used to identify and distinguish entities [1]. Hence, many datasets of
the Linked Open Data cloud [73] could also be considered knowledge graphs.

There is no formal definition of a knowledge graph [12]. In the course of this
work, we follow the characteristics sketched in [47], saying that a knowledge
graph

1. mainly describes real world entities and their interrelations, organized in a
graph.

2. defines classes and properties of entities in a schema.
3. allows for potentially interrelating arbitrary entities with each other.
4. covers various topical domains.

We call a dataset following those characteristics and published using Semantic
Web standards a Semantic Web Knowledge Graph. As Semantic Web standards,
we understand
1 https://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.

html.
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Fig. 1. Example RDF statement

– the use of derefencable URIs [1] for referring to entities, i.e., URIs that point
to resources on the Web

– the use of RDF2 for representing the graph, and
– the use of RDF schema3 and/or OWL4 for representing the schema of the

graph.

RDF organizes knowledge in statements, connecting either two entities in a
knowledge graph by an edge, or an entity with a literal (i.e., elementary) value
(such as a number or a date). Figure 1 shows an example of such an RDF state-
ment. It can also be written down as a triple consisting of a subject, a predicate,
and an object, where the subject and the object are the entities, whereas the
predicate is the property or edge label:

:Nine Inch Nails :singer :Trent Reznor.

Hence, an RDF knowledge graph can either be conceived as a directed, labeled
graph, or as a set of such triples.

As an alternative to the triple notation, such statements can be expressed in
terms of binary predicates, e.g.,

singer(Nine Inch Nails, Trent Reznor)

In the course of this paper, we will use the following terms to refer to concepts
related to knowledge graphs:

entities or instances are the nodes in a graph. Typically, they refer to an
entity in the real world, such as a person, a city, etc.

literals are elementary data values, such as numbers or dates. They can be used,
e.g., for expressing the birth date of a person or the population of a city.

relations are the edges in a graph. They link two entities or an entity and a
literal.

Those concepts are typically used in the A-box, i.e., the assertional part of the
knowledge graph. This is typically the larger part of a knowledge graph. It is
complemented by the schema, or T-box, which defines the types of entities and
relations that can be used in a knowledge graph. Those encompass:

classes or types are the categories of entities that exist in a knowledge graph,
e.g., Person, City, etc. They can form a hierarchy, e.g., City being a subclass
of Place.

2 https://www.w3.org/RDF/.
3 https://www.w3.org/TR/rdf-schema/.
4 https://www.w3.org/TR/owl-overview/.

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-overview/


112 H. Paulheim

properties are the categories of relations that exist in a knowledge graph, e.g.,
birth date, birth place, etc.

While the set of classes is defined in the T-box, the assertion that an individual
class is made as a triple in the A-box, e.g.:

:Nine Inch Nails a :Band.

or using a unary predicate:

Band(Nine Inch Nails)

All assertions made in the A-box – relating two entities, relating an entity and
a literal, and assigning a type to an entity, are called facts.

Often, the schema also defines further constraints, e.g., certain classes may
be disjoint, and properties may have a domain (i.e., all subjects of the relation
have a certain type) and a range (i.e., all objects of the relation have a certain
type). For example, the relation birth Place may have the domain Person and
the range City. Moreover, properties may be defined with other characteristics,
such as symmetry, transitivity, etc.

2 Semantic Web Knowledge Graphs

Various public knowledge graphs are available on the Web, including DBpedia
[30] and YAGO [33], both of which are created by extracting information from
Wikipedia (the latter exploiting WordNet on top), the community edited Wiki-
data [79], which imports other datasets, e.g., from national libraries5, as well as
from the discontinued Freebase [58], the expert curated OpenCyc [32], and NELL
[5], which exploits pattern-based knowledge extraction from a large Web corpus.
Lately, new knowledge graphs have been introduced, including DBkWik, which
transfers the DBpedia approach to a multitude of Wikis [26], and WebIsALOD,
which extracts a knowledge graph of hypernymy relations from the Web [24,74]
using Hearst patterns [20] on a large-scale Web corpus.

2.1 Cyc and OpenCyc

The Cyc knowledge graph is one of the oldest knowledge graphs, dating back to
the 1980s [32]. Rooted in traditional artificial intelligence research, it is a curated
knowledge graph, developed and maintained by CyCorp Inc.6 OpenCyc was a
reduced version of Cyc, which used to be publicly available, including a Linked
Open Data endpoint with links to DBpedia and other LOD datasets. Despite its
wide adoption, OpenCyc was shut down in 2017.7

OpenCyc contained roughly 120,000 entities and 2.5 million facts; its schema
comprised a class hierarchy of roughly 45,000 classes, and 19,000 properties.8

5 https://www.wikidata.org/wiki/Wikidata:Data donation.
6 http://www.cyc.com/.
7 http://www.cyc.com/opencyc/.
8 These numbers have been gathered by own inspections of the 2012 of version of

OpenCyc.

https://www.wikidata.org/wiki/Wikidata:Data_donation
http://www.cyc.com/
http://www.cyc.com/opencyc/
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2.2 Freebase

Curating a universal knowledge graph is an endeavour which is infeasible for most
individuals and organizations. To date, more than 900 person years have been
invested in the creation of Cyc [72], with gaps still existing. Thus, distributing
that effort on as many shoulders as possible through crowdsourcing is a way taken
by Freebase, a public, editable knowledge graph with schema templates for most
kinds of possible entities (i.e., persons, cities, movies, etc.). After MetaWeb, the
company running Freebase, was acquired by Google, Freebase was shut down on
March 31st, 2015.

The last version of Freebase contains roughly 50 million entities and 3 billion
facts9. Freebase’s schema comprises roughly 27,000 classes and 38,000 relation
properties.10

2.3 Wikidata

Like Freebase, Wikidata is a collaboratively edited knowledge graph, operated
by the Wikimedia foundation11 that also hosts the various language editions of
Wikipedia. After the shutdown of Freebase, the data contained in Freebase is
subsequently moved to Wikidata.12 A particularity of Wikidata is that for each
axiom, provenance metadata can be included – such as the source and date for
the population figure of a city [79].

To date, Wikidata contains roughly 16 million entities13 and 66 million
facts14. Its schema defines roughly 23,000 classes15 and 1,600 properties16.

2.4 DBpedia

DBpedia is a knowledge graph which is extracted from structured data in
Wikipedia. The main source for this extraction are the key-value pairs in the
Wikipedia infoboxes. In a crowd-sourced process, types of infoboxes are mapped
to the DBpedia ontology, and keys used in those infoboxes are mapped to prop-
erties in that ontology. Based on those mappings, a knowledge graph can be
extracted [30].

The most recent version of the main DBpedia (i.e., DBpedia 2016-10) con-
tains 5.1 million entities and almost 400 million facts.17 The ontology comprises
754 classes and 2,849 properties.

9 http://www.freebase.com.
10 These numbers have been gathered by queries against Freebase’s query endpoint.
11 http://wikimediafoundation.org/.
12 http://plus.google.com/109936836907132434202/posts/3aYFVNf92A1.
13 http://www.wikidata.org/wiki/Wikidata:Statistics.
14 http://tools.wmflabs.org/wikidata-todo/stats.php.
15 http://tools.wmflabs.org/wikidata-exports/miga/?classes# cat=Classes.
16 http://www.wikidata.org/wiki/Special:ListProperties.
17 http://wiki.dbpedia.org/dbpedia-2016-04-statistics.

http://www.freebase.com
http://wikimediafoundation.org/
http://plus.google.com/109936836907132434202/posts/3aYFVNf92A1
http://www.wikidata.org/wiki/Wikidata:Statistics
http://tools.wmflabs.org/wikidata-todo/stats.php
http://tools.wmflabs.org/wikidata-exports/miga/?classes#_cat=Classes
http://www.wikidata.org/wiki/Special:ListProperties
http://wiki.dbpedia.org/dbpedia-2016-04-statistics
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2.5 YAGO

Like DBpedia, YAGO is also extracted from DBpedia. YAGO builds its clas-
sification implicitly from the category system in Wikipedia and the lexical
resource WordNet [41], with infobox properties manually mapped to a fixed
set of attributes. While DBpedia creates different interlinked knowledge graphs
for each language edition of Wikipedia [4], YAGO aims at an automatic fusion of
knowledge extracted from various Wikipedia language editions, using different
heuristics [33].

The latest release of YAGO, i.e., YAGO3, contains 5.1 million entities and
1.5 billion million facts. The schema comprises roughly 488,000 classes and 77
properties [33].

2.6 NELL

While DBpedia and YAGO use semi-structured content as a base, methods for
extracting knowledge graphs from unstructured data have been proposed as
well. One of the earliest approaches working at web-scale was the Never End-
ing Language Learning (NELL) project [5]. The project works on a large-scale
corpus of web sites and exploits a coupled process which learns text patterns
corresponding to type and relation assertions, as well as applies them to extract
new entities and relations. Reasoning using a light-weight ontology18 is applied
for consistency checking and removing inconsistent axioms. The system is still
running today, continuously extending its knowledge base. While not published
using Semantic Web standards, it has been shown that the data in NELL can
be transformed to RDF and provided as Linked Open Data as well [83].

In its most recent version, NELL contains roughly 2 million entities and 3
million relations between those. The NELL ontology defines 285 classes and 425
properties.

2.7 DBkWik

DBkWik uses the software that is used to build DBpedia, and applies it to a
multitude of Wiki dumps collected from a large Wikifarm, i.e., Fandom powered
by Wikia.19 The most recent version, i.e., DBkWik version 1.1., integrates data
extracted from 12,840 Wiki dumps, comprising 14,743,443 articles in total. While
DBpedia relies on a manually created ontology and mappings to that, such an
ontology does not exist for DBkWik, i.e., the schema for DBkWik needs to be
inferred on the fly. Moreover, while for Wikipedia-centric knowledge graphs like
DBpedia, there are rarely any duplicate entities (since each entity corresponds
to exactly one page in Wikipedia), duplicates exist in DBkWik both on in the
A-box and the T-box, and need to be handled in an additional integration step.
Figure 2 illustrates the creation process of DBkWik.
18 The ontology has the complexity SRF(D), it mainly defines a class and a property

hierarchy, together with domains, ranges, and disjointness statements.
19 http://www.wikia.com/fandom.

http://www.wikia.com/fandom
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Fig. 2. The DBkWik creation process [26]

As a result, the latest release of DBkWik comprises 11M entities and 96M
facts. With 12k classes and 129k relations, the schema is fairly detailed.

2.8 WebIsALOD

While the above knowledge graphs cover a multitude of different relations
between entities, the WebIsALOD dataset is focusing solely on building a large-
scale hierarchy of concepts, i.e., it builds a lattice of hypernymy relations. To that
end, it scans the Common Crawl Web corpus20 for so-called Hearst patterns,
e.g. X such as Y, to infer relations like X skos:broader Y. The graph comes
with very detailed provenance data, including the patterns used and the original
text snippets, together with their sources [25]. Figure 3 depicts the schema of
WebIsALOD, illustrating the richness of its metadata.

In total, WebIsALOD contains more than 212 million entities (however, it
does not strictly separate between an entity and a class), and 400 million hyper-
nymy relations.

Table 1 gives an overview of the knowledge graphs discussed above and their
characteristics.21 The table depicts the number of entities and relations, as well
as the average indegree and outdegree of entity (i.e., the average number of
ingoing and outgoing relations for each entity), as well as the size of the schema
in terms of the number of classes and properties.

2.9 Non-public Knowledge Graphs

Furthermore, company-owned knowledge graphs exist, like the already men-
tioned Google Knowledge Graph, Google’s Knowledge Vault [11], Yahoo’s
Knowledge Graph [2], Microsoft’s Satori, and Facebook’s Knowledge Graph.
However, those are not publicly available, and hence neither suited to build
applications by parties other than the owners, nor can they be analyzed in depth.
20 http://commoncrawl.org/.
21 The numbers are taken from [24,61].

http://commoncrawl.org/
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Fig. 3. The schema of the WebIsALOD knowledge graph [24]

Table 1. Public cross-domain knowledge graphs and their size

Knowledge
graph

# Entities # Facts Avg.
indegree

Avg.
outdegree

# Classes # Properties

OpenCyc 118,499 2,413,894 10.03 9.23 116,822 165

NELL 1,974,297 3,402,971 5.33 1.25 290 1,334

YAGO3 5,130,031 1,435,808,056 9.83 41.25 30,765 11,053

DBpedia 5,109,890 397,831,457 13.52 47.55 754 3,555

DBkWik 11,163,719 91,526,001 0.70 8.17 12,029 128,566

Wikidata 44,077,901 1,633,309,138 9.83 41.25 30,765 11,053

WebIsALOD 212,184,968 400,533,808 3.72 3.31 – 1

3 Using Machine Learning for Building and Refining
Knowledge Graphs

As discussed above, large-scale knowledge graph can hardly be created manually
[49]. Therefore, heuristics are quite frequently used in the creation of knowledge
graphs, i.e., methods that can efficiently create large-scale knowledge graphs,
trading off data volume for accuracy.

Machine learning methods can serve as a technique to implement such heuris-
tics. They are widely used both in the creation of a knowledge graph (e.g., for
NELL, whose creation is fully machine-learning based), as well as in the subse-
quent refinement of the generated knowledge graphs [47].
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3.1 Type and Relation Prediction

No knowledge graph will ever contain every piece of knowledge that exists in
the world. Therefore, all knowledge graphs, no matter whether they are created
manually or heuristically, can have only incomplete knowledge.

Being grounded in semantic web standards, which adhere to the open world
assumption, this is not a problem from a logical perspective. However, in many
application scenarios, the value of a knowledge graph grows with the amount of
knowledge encoded therein. Therefore, a lot of work as been devoted on knowl-
edge graph completion [47].

As discussed above, semantic web knowledge graphs come with a common
schema or ontology, which usually define a – sometimes deeper, sometimes more
shallow – hierarchy of classes. Hence, adding missing type information is an
important and frequently addressed task in knowledge graph completion.

One of the simplest and hence most scalable approaches is SDType [51].
SDType considers each relation in which an entity takes part as an indicator for
its type. For example, the statement

Germany hasCapital Berlin.

involves the two entities Germany and Berlin, connected by the relation
hasCapital. Each relation has a specific distribution of types of entities it con-
nects. For example, considering all the pairs of entities connected by the relation
hasCapital and analyzing their types, there is a high probability that the sub-
ject is of type Country and the object is of type City.

SDType computes a weighted average across all relations an entity (such as
Berlin) is connected by, using their specific distribution of subject and object
types. Here, most of the relations Berlin will have a high probability of the
entity being a City. The weights are assigned by the specificity of the relation
w.r.t. types. For example, the relation hasCapital is very specific for the subject
and the object (it mostly links geographic regions to cities), whereas the relation
knownFor is only specific for the subject (it is mainly used for subjects of type
Person), but very unspecific for the object (persons can be known for lots of
different things, i.e., the distribution of types for the object of knownFor is rather
wide). This is illustrated in Fig. 4: when observing a knownFor relation between
two entities, it is very likely that the subject is of type Person, whereas such a
conclusion is more difficult for the object.

Fig. 4. Distribution of the subject (left) and object (right) types of the knownFor

relation
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Due to its simplicity, it is possible to develop well performing implementations
of SDType, and the algorithm has meanwhile been integrated in DBpedia and
used for building DBpedia releases.

The predictions of SDType are coherent with the existing type hierarchy,
given that the type information is fully materialized on the input knowledge
graph – i.e., it holds that for each subclass relation R � S, if R(a) is contained in
the knowledge graph, then S(a) is also contained. However, this is a characteristic
by design, but SDType does not specifically exploit the hierarchy information.

Looking at type prediction from a machine learning perspective, it can be
considered a hierarchical multi-label classification problem, i.e., a classification
problem where each instance can belong to multiple classes, and those classes
form a hierarchy [75]. In [36], we have shown that the type prediction prob-
lem can be well solved using a hierarchical classification problem. We used a
local classifier per node, i.e., we train a classifier for each class in the hierarchy,
sampling instances from the class’ neighbors in the hierarchy as negative train-
ing examples. Since the problem is thereby decomposed into smaller learning
problems, the solution becomes scalable and even largely parallelizable.

The scalability of type prediction using hierarchical classification can be even
further improved when taking into account that only a small subset of fea-
tures is required to tell a class from its siblings. For example, for telling a per-
son from an organization, a few relations like ceo, headquarter, birthplace,
and nationality are sufficient. For telling a movie from a book, relations like
director, studio, author, and publisher are helpful. Incorporating local fea-
ture selection, i.e., determining a small subset of relevant features for each indi-
vidual classification problem within the hierarchical classification, allows the
approach to be scaled to very large knowledge graphs [34].

Type information is often used as a prediction target, but other relations are
possible prediction targets as well. Usually, the knowledge graph itself is used as
ground truth, i.e., every relation assertion in the knowledge graph is used as a
positive training example. Since semantic web knowledge graphs follow the open
world assumption, and machine learning classifiers usually expect both positive
and negative examples, a common trick to generate negative examples is the
so-called partial completeness assumption [15] or local closed world assumption
[11]: it is assumed that if there is set of objects o1 . . . on for a given subject s and
a relation r, i.e., r(s, o1), r(s, o2), . . . r(on) are contained in the knowledge graph,
then this information is complete w.r.t. s, i.e., there is no o′ /∈ {o1, . . . , on} so
that r(s, o′) holds.

Building on this assumption, the approach sketched in [23] uses abstracts in
Wikipedia pages are used to train a classifier for each relation. It considers each
entity linked within an abstract in a Wikipedia page as a candidate relation.
Then, it uses a set of features to learn heuristic rules, such as: The first place to
be mentioned in an article about a person is that person’s birth place. Using those
heuristic rules, about 1M additional statements could be learned for DBpedia.
The approach has been shown to work for Wikipedia pages of any language, and
even for other Wikis, and is therefore also applicable to DBkWik [22].
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3.2 Error Detection

Most heuristics used for knowledge graph construction have to address a trade-
off between size and accuracy of the resulting knowledge graph. Decent sized
knowledge graphs can only be constructed heuristically by accepting a certain
level of noise.

For that reason, a few approaches have been proposed to identify wrong facts
in a knowledge graph. Again, a simplistic approach named SDValidate follows
the same basic idea of SDType, i.e., using statistical distribution of types in
the subject and object positions of a statement [52]. A statement is considered
wrong by the approach if the types in the subject and object position differ
significantly from the predicate’s characteristic distribution.

While SDType is quite stable since it combines a lot of evidence (i.e., many
relations in which an instance is involved) and improves with the connectivity of
the underlying knowledge graph, SDValidate is less powerful since it usually has
only fewer information to work with, i.e., the explicit types set for an entity are
typically less than the average degree [61]. Therefore, additional evidence needs
to be taken into account to reliably flag wrong relations.

PaTyBRED is a machine-learning based approach that does not only rely on
type features, but also on paths in which an entity is involved. It uses relations in
the knowledge graph as positive training examples, and creates negative exam-
ples by randomly replacing the subject or object with another instance from the
knowledge graph.22

For training a model, PaTyBRED takes into account both types and paths,
and therefore, it can also learn that the path residence(X,Y ), country(Y,Z) is
positive evidence for the relation assertion nationality(X,Z). We have shown
that this combination outperforms both approaches based on types and based
on paths alone.

An alternative to addressing error detection as a binary classification prob-
lem is assigning a confidence score to each entity. This approach is applied to
building the WebIsALOD dataset. Here, we use a crowd-sourced gold standard
of positive and negative examples (i.e., randomly selected examples from the
initial extraction presented to human judges for validation) to train a classifier
for telling correct from incorrect relations, using the rich provenance metadata.
Instead of discarding the negative examples, we attach the classifier’s confidence
score as a confidence to each individual statement [24].

Both approaches – identifying and removing errors, as well as using confi-
dence scores – have their advantages and disadvantages. Removing wrong state-
ments leads to a clean and intuitively usable dataset, and also reduces that
dataset’s size, which can help in the processing. On the other hand, keeping all
statements and attaching a confidence score has the advantage of letting the
user set an individual threshold, thereby deciding on whether higher recall or
22 While more complex strategies for generating meaningful negative training examples

exist [29], we have observed no significant qualitative difference in the resulting
models’ accuracy to creating random negative examples, although those complex
strategies are computationally much more expensive.
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higher precision is required for a given task at hand. Furthermore, it opens the
opportunity to process the dataset with methods being able to deal with such
imprecision, e.g., probabilistic and possibilistic reasoners [55].

3.3 Approximate Local Reasoning

As discussed above, many knowledge graphs come with an ontology, which may
be more or less formal. Given that a certain degree of formality is provided,
i.e., the ontology does not only define a class hierarchy and domain and range
restrictions for the properties, but also more restrictions, such as disjoint classes,
the knowledge graph can be validated against the ontology. For example, if the
two classes City and Team are defined as disjoint classes, the range of playsFor
is Team, and the two axioms playsFor(Ronaldo,Madrid) and City(Madrid)
are defined in the knowledge graph, the combination of both axioms can be
detected as a violation of the underlying ontology – although deciding which of
the two axioms is wrong is not possible with automatic reasoning.

Some knowledge graphs, such as DBpedia and NELL, validate new axioms
against an existing ontology before adding them to the knowledge graph.
For DBpedia, there also exists a mapping to the top level ontology DOLCE
[16], which can be used to detect more violations against the ontology. For
example, the statement award(TimBernersLee,RoyalSociety), together with
Organization (RoyalSociety) and the range of award being defined as Award,
is not a violation against the DBpedia ontology, since there is no explicit dis-
jointness between Award and Organization. In contrast, the usage of DOLCE
defines the corresponding super classes (i.e., Description and SocialAgent) as
disjoint. Hence, exploiting the additional formalism of the upper level ontology
of DOLCE leads to detecting more inconsistencies [54].

An issue with using reasoning, or even local reasoning (i.e., reasoning only
on a statement and its related statements) to detect inconsistencies, is compu-
tationally expensive: Validating all statements in DBpedia against the DBpedia
and DOLCE ontology using a state of the art reasoner like HermiT [17] would
take several weeks. In [57], we have introduced an approach that approximates
reasoning-based fact checking by exploiting machine learning: we treat the val-
idation problem as a binary classification problem, and let a reasoner validate
a small number of statements as consistent or inconsistent. Those examples are
then used to train a classifier, whose model approximates the reasoner’s behav-
ior. It has been shown that such models can reach an accuracy above 95%, at the
same time being some orders of magnitude faster: instead of several weeks, the
consistency of all statements in DBpedia can validated in less than two hours.

3.4 Deriving Higher Level Patterns

Once erroneous statements have been identified, there are several ways to pro-
ceed. For once, they can be simply removed from the knowledge graph. Second,
as for WebIsALOD, they may get lower confidence ratings and defer the decision
to a later point.
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However, analyzing (potentially) erroneous statements more deeply can also
reveal further insights. Clustering the errors may reveal groups of similar errors,
which may have a common root [54]. Such common roots may be errors in the
ontology, in particular translation statements (e.g., for DBpedia: mappings from
a Wikipedia infobox to the common ontology) [60], or the handling of particular
kinds of input, such as numerical values [14,80], dates, links with hashtags,
etc. [48].

Once the root cause is identified, it is possible to track back the issue and
address it at the respective place, i.e., improving the creation process of the
knowledge graph. The advantage is that a group of errors can be addressed with
a single fix, and the result is sustainable, i.e., it is also applied for any future
version of the same knowledge graph [48]. Moreover, grouping errors can also
serve as a sanity check: if an identified error does not belong to any group, i.e.,
it only occurs as a single, isolated statement, it is often a false negative, i.e., a
wrongly identified error [54].

3.5 Evaluating Machine Learning on Knowledge Graphs

Although there is a larger body of work in applying machine learning methods
to knowledge graph refinement, there is no common standard evaluation proto-
col and set of benchmarks. Methods encompass evaluation against (partial) gold
standards, the knowledge graph itself (treated as a silver standard), and retro-
spective evaluations, i.e., evaluating the output of the knowledge graph. With
respect to evaluation methods, precision and recall are quite frequently used,
but other metrics, e.g., accuracy, area under the precision-recall curve (AUC-
PR), area under the ROC curve (AUC-ROC), etc. [6], are also observed. As an
additional dimension to result quality, computational performance can also be
evaluated.

In [47], we have observed that a majority of all approaches is only evaluated
against one knowledge graph, usually DBpedia (see Fig. 5). This often limits the
significance of the results, because it is unclear whether the approach overfits
and/or consciously or unconsciously exploits of the specific knowledge graph
at hand. Therefore, evaluations against multiple knowledge graphs are clearly
advised.

3.6 Partial Gold Standard

One common evaluation strategy is to use a partial gold standard. In this
methodology, a subset of graph entities or relations are selected and labeled
manually. Other evaluations use external knowledge graphs and/or databases as
partial gold standards.

For completion tasks, this means that all axioms that should exist in the
knowledge graph are collected, whereas for correction tasks, a set of axioms in
the graph is manually labeled as correct or incorrect. The quality of completion
approaches is usually measured in recall, precision, and F-measure, whereas for
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correction methods, accuracy and/or area under the ROC curve (AUC) are often
used alternatively or in addition.

Sourcing partial gold standards from humans can lead to high quality data
(given that the knowledge graph and the ontology it uses are not overly complex),
but is costly, so that those gold standards are usually small. Exploiting other
knowledge graphs based on knowledge graph interlinks (e.g., using Freebase data
as a gold standard to evaluate DBpedia) is sometimes proposed to yield larger-
scale gold standards, but has two sources of errors: errors in the target knowledge
graph, and errors in the linkage between the two. For example, it has been
reported that 20% of the interlinks between DBpedia and Freebase are incorrect
[81], and that roughly half of the owl:sameAs links between knowledge graphs
connect two things which are related, but not exactly the same (such as the
company Starbucks and a particular Starbucks coffee shop) [19].

3.7 Knowledge Graph as Silver Standard

Another evaluation strategy is to use the given knowledge graph itself as a test
dataset. Since the knowledge graph is not perfect (otherwise, refinement would
not be necessary), it cannot be considered as a gold standard. However, assuming
that the given knowledge graph is already of reasonable quality, we call this
method silver standard evaluation, as already proposed in other works [18,27,45].

The silver standard method is usually applied to measure the performance of
knowledge graph completion approaches, where it is analyzed how well relations
in a knowledge graph can replicated by a knowledge graph completion method.
As for gold standard evaluations, the result quality is usually measured in recall,
precision, and F-measure. In contrast to using human annotations, large-scale
evaluations are easily possible. The silver standard method is only suitable for
evaluating knowledge graph completion, not for error detection, since it assumes
the knowledge graph to be correct.

There are two variants of silver standard evaluations: in the more common
ones, the entire knowledge graph is taken as input to the approach at hand, and
the evaluation is then also carried out on the entire knowledge graph. As this
may lead to an overfitting effect (in particular for internal methods), some works
also foresee the splitting of the graph into a training and a test partition, which,
however, is not as straight forward as, e.g., for propositional classification tasks
[44], which is why most papers use the former method. Furthermore, split and
cross validation do not fully solve the overfitting effect. For example, if a knowl-
edge graph, by construction, has a bias towards certain kinds of information
(e.g., relations are more complete for some classes than for others), approaches
over adapting to that bias will be rated better than those which do not (and
which may actually perform better in the general case).

Since the knowledge graph itself is not perfect, this evaluation method may
sometimes underrate the evaluated approach. More precisely, most knowledge
graphs follow the open world assumption, i.e., an axiom not present in the
knowledge graph may or may not hold. Thus, if a completion approach cor-
rectly predicts the existence of an axiom missing in the knowledge graph, this
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would count as a false positive and thus lower precision. Approaches overfitting
to the coverage bias of a knowledge graph at hand may thus be overrated.

3.8 Retrospective Evaluation

For retrospective evaluations, the output of a given approach is given to human
judges for annotation, who then label suggested completions or identified errors
as correct and incorrect. The quality metric is usually accuracy or precision,
along with a statement about the total number of completions or errors found
with the approach, and ideally also with a statement about the agreement of the
human judges.

In many cases, automatic refinement methods lead to a very large number of
findings, e.g., lists of tens of thousands of axioms which are potentially erroneous.
Thus, retrospective evaluations are often carried out only on samples of the
results. For some approaches which produce higher level artifacts – such as error
patterns or completion rules – as intermediate results, a feasible alternative is
to evaluate those artifacts instead of the actually affected axioms.

While partial gold standards can be reused for comparing different methods,
this is not the case for retrospective evaluations. On the other hand, retrospec-
tive evaluations may make sense in cases where the interesting class is rare. For
example, when evaluating error detection methods, a sample for a partial gold
standard from a high-quality graph is likely not to contain a meaningful num-
ber of errors. In those cases, retrospective evaluation methodologies are often
preferred over partial gold standards.

Another advantage of retrospective evaluations is that they allow a very
detailed analysis of an approach’s results. In particular, inspecting the errors
made by an approach often reveals valuable findings about the advantages and
limitations of a particular approach.

Table 2 sums up the different evaluation methodologies and contrasts their
advantages and disadvantages.

Table 2. Overview on evaluation methods with their advantages and disadvantages
[47]

Methodology Advantages Disadvantages

Partial gold
standard

Highly reliable results
reusable

Costly to produce balancing
problems

Knowledge graph as
silver standard

Large-scale evaluation
feasible subjectiveness is
minimized

Less reliable results prone to
overfitting

Retrospective
evaluation

Applicable to disbalanced
problems allows for more
detailed analysis of
approaches

Not reusable approaches
cannot be compared directly



124 H. Paulheim

(a) by method (b) by metric

(c) by dataset (d) by performance evaluation

Fig. 5. Breakdown of evaluations observed in [47] by method, metrics, dataset, and
computational performance evaluation

3.9 Computational Performance

In addition to the performance w.r.t. correctness and/or completeness of results,
computational performance considerations become more important as knowledge
graphs become larger. Typical performance measures for this aspect are runtime
measurements, as well as memory consumption. Besides explicit measurement of
computational performance, a “soft” indicator for computational performance
is whether an approach has been evaluated (or at least the results have been
materialized) on an entire large-scale knowledge graph, or only on a subgraph.
The latter is often done when applying evaluations on a partial gold standard,
where the retrospective approach is only executed on entities contained in that
partial gold standard.

Furthermore, synthetic knowledge graphs, constructed with exactly specified
characteristics, can assist in more systematic scalability testing [35].

4 Using Knowledge Graphs for Machine Learning

The common task of data mining is to discover patterns in data, which can be
used either to gain a deeper understanding of the data (i.e., descriptive data
mining), or for predictions of future developments (i.e., predictive data mining).
For solving those tasks, machine learning methods are used.

Fayyad et al. have introduced a prototypical pipeline which leads from data
to knowledge, comprising the steps of selection, preprocessing, transformation
of data, applying some machine learning or data mining, and interpreting the
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results [13]. As depicted in Fig. 6 and discussed in detail in [69], Linked Data
and, in particular, semantic web knowledge graphs can be used at almost every
stage in the process: the first step is to link the data to be analyzed to the corre-
sponding concepts in a knowledge graph. Once the local data is linked to a LOD
dataset, we can explore the existing links in the knowledge graph pointing to
related entities in the knowledge graph, as well as follow links to other graphs.
In the next step, various techniques for data consolidation, preprocessing, and
cleaning are applied, e.g., schema matching, data fusion, value normalization,
treatment of missing values and outliers, etc. Next, some transformations on the
collected data need to be performed in order to represent the data in a way
that it can be processed with any arbitrary data analysis algorithms. Since most
algorithms demand a propositional form of the input data (i.e., each entity being
represented as a set of features), this usually includes a transformation of the
knowledge graph to a canonical propositional form. After the data transforma-
tion is done, a suitable data mining algorithm is selected and applied on the
data. In the final step, the results of the data mining process are presented to
the user. Here, ease the interpretation and evaluation of the results of the data
mining process, where knowledge graphs can be used as well [69].

Fig. 6. Enhancing the data mining workflow by Fayyad et al. with Linked Data [69],
based on [13]

4.1 Simple Feature Engineering

One of the main issues for exploiting knowledge graphs in machine learning
tasks is that most machine learning algorithms are tailored towards propositional
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data, i.e., data where each instance is represented as a row in a table as a set of
attribute values, also called features. In contrast, each instance in a knowledge
graph is a node in a graph, connected to other nodes via edges. Hence, for being
able to apply a machine learning algorithm to a set of instances in a knowledge
graph, those have to be transferred into a propositional form first, a process
which we call propositionalization [65].

Generally, there are two families of approaches for feature engineering from
semantic web knowledge graphs: supervised and unsupervised [53].

For supervised approaches, knowledge about the knowledge graph at hand
and its vocabulary is required. This can be either hard coded in the application,
e.g., by adding features for genre and actors to a movie [7], or by letting the
user specify queries to the knowledge graph, assuming that the user knows the
graph’s schema in depth [28].

Unsupervised approaches, on the other hand, do not make any assumptions
about the dataset at hand. In contrast, they rather create features dynamically
for all entities they encounter, e.g., by creating a numerical feature for each
numerical literal, a set of binary features for each entity’s classes, etc. These
approaches have been shown to create valuable data mining features for a lot of
machine learning problems, however, they may also lead to a very large set of
features, many of which are actually not very valuable, e.g., because of sparsity
or uniformity. For example, for a dataset of movies, the information on which
novels they are based may be very sparse (since most movies are not based on
novels). On the other hand, almost23 of all them will be identified as being of
type Movie. Therefore, this feature is not very informative, since it contains the
same information for (almost) all entities.

To address the potentially large number of non-informative features and pick
the subset of those which are valuable, feature subset selection [9,42] has to
be applied. Once the data is in propositional form, standard feature selection
algorithms can be applied [62]. However, since knowledge graphs also have infor-
mation about semantics, it is valuable to incorporate that semantics into the
feature subset selection process. For example, for features that form a hierarchy
(such as types and categories), we have shown that this hierarchy information
bears valuable information for the feature subset selection, since it allows for
heuristically discarding features that are either too abstract or too generic [66].
This is illustrated in Fig. 7: for a dataset of persons in general, it may be specific
enough to distinguish them by profession, whereas for a dataset of athletes, a
finer grained set of features may be more useful.

4.2 Feature Vector Generation Using RDF2vec

As discussed above, simple feature creation techniques lead to a large number
of features, which, at the same time, are often rather sparse, i.e., each feature in
itself carries only little information. This lead us to the development of RDF2vec,
a method for creating universal, re-usable dense feature vectors from knowledge

23 Due to the open world assumption, it is likely that this does not hold for all movies.
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Fig. 7. A sample hierarchy of type features [66]

graphs. We have shown that even with moderately sized feature vectors (200 to
500 features), it is possible to outperform simple feature generation techniques
on many tasks, at the same time allowing for re-using the same set of features
across tasks, which minimizes the effort of feature generating for a new task
[68,70].

In a nutshell, RDF2vec picks up the idea of word2vec [39], which creates
feature vector representations for word. Given a text corpus, word2vec trains a
neural network for either predicting the surroundings of a word (context bag of
words or CBOW variant), or a word, given its surroundings (skip-gram or SG
variant). For example, for the sentence

Trent Reznor founded the band Nine Inch Nails in 1988

CBOW takes a single word (such as Reznor) as input and try to predict a set
of probably surrounding words (such as Trent, band, Nine, Inch, etc.), while SG
takes a set of words (e.g., Trent, founded, the, band,. . . ) and tries to predict a
word that “misses” in that set (e.g., Reznor).

The CBOW model predicts target words from context words within a given
window. The model architecture is shown in Fig. 8a. The input layer is comprised
from all the surrounding words for which the input vectors are retrieved from
the input weight matrix, averaged, and projected in the projection layer. Then,
using the weights from the output weight matrix, a score for each word in the
vocabulary is computed, which is the probability of the word being a target
word. Formally, given a sequence of training words w1, w2, w3, . . . , wT , and a
context window c, the objective of the CBOW model is to maximize the average
log probability:

1
T

T∑

t=1

logp(wt|wt−c . . . wt+c), (1)

where the probability p(wt|wt−c . . . wt+c) is calculated using the softmax
function:

p(wt|wt−c . . . wt+c) =
exp(v̄T v′

wt
)

∑V
w=1 exp(v̄T v′

w)
, (2)
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(a) CBOW architecture (b) Skip-gram architecture

Fig. 8. Architecture of the CBOW and Skip-gram model [68]

where v′
w is the output vector of the word w, V is the complete vocabulary of

words, and v̄ is the averaged input vector of all the context words:

v̄ =
1
2c

∑

−c≤j≤c,j �=0

vwt+j
(3)

The skip-gram model does the inverse of the CBOW model and tries to pre-
dict the context words from the target words (Fig. 8b). More formally, given
a sequence of training words w1, w2, w3, . . . , wT , and a context window c, the
objective of the skip-gram model is to maximize the following average log
probability:

1
T

T∑

t=1

∑

−c≤j≤c,j �=0

logp(wt+j |wt), (4)

where the probability p(wt+j |wt) is calculated using the softmax function:

p(wo|wi) =
exp(v′T

wovwi)∑V
w=1 exp(v′T

w vwi)
, (5)

where vw and v′
w are the input and the output vector of the word w, and V is

the complete vocabulary of words.
In both cases, calculating the softmax function is computationally inefficient,

as the cost for computing is proportional to the size of the vocabulary. Therefore,
two optimization techniques have been proposed, i.e., hierarchical softmax and
negative sampling [40]. Empirical studies haven shown that in most cases neg-
ative sampling leads to a better performance than hierarchical softmax, which
depends on the selected negative samples, but it has higher runtime.

Since knowledge graphs are not a text corpus, pseudo sentences are generated
by performing random walks on the knowledge graph, and feeding the resulting
sequences into the word2vec model.

Once the training is finished, all words (or, in our case, entities) are pro-
jected into a lower-dimensional feature space, and semantically similar words
(or entities) are positioned close to each other.
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(a) DBpedia vectors (b) Wikidata vectors

Fig. 9. Two-dimensional PCA projection of the 500-dimensional skip-gram vectors of
countries and their capital cities [68]

The word2vec vector space representations for words have been shown to
have two properties, among others: (1) semantically similar words are close in
the resulting vector space, and (2) the direction of both grammatical as well
as semantic relations between words remains stable for different pairs of words.
Besides being able to use RDF2vec as a versatile and well performing feature
vector generator, we have observed the same properties for RDF2vec as well, as
depicted in Fig. 9.

To visualize the semantics of the vector representations, we employ Principal
Component Analysis (PCA) to project the entities’ feature vectors into a two
dimensional feature space. We selected seven countries and their capital cities,
and visualized their vectors as shown in Fig. 9. Figure 9a shows the correspond-
ing DBpedia vectors, and Fig. 9b shows the corresponding Wikidata vectors.
The figure illustrates the ability of the model to automatically organize enti-
ties of different types, and preserve the relationship between different entities.
For example, we can see that there is a clear separation between the countries
and the cities, and the relation capital between each pair of country and the
corresponding capital city is preserved. Furthermore, we can observe that more
similar entities are positioned closer to each other, e.g., we can see that the
countries that are part of the EU are closer to each other, and the same applies
for the Asian countries.

Using random walks for creating the sequences to be fed into the RDF2vec
model is a straight forward and efficient approach, but has its pitfalls as well.
Since not all entities and relations in a knowledge graph are equally important,
putting more emphasis on the more important paths could lead to an improved
embedding. However, telling an important from a less important relation, espe-
cially when attempting to create a task agnostic feature representation, is a hard
problem.
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In [8], we have explored a total of 12 different heuristics to guide the RDF
graph walks towards more important paths, based on the frequency of properties,
entities, and combinations of properties and entities, as well as the PageRank [3]
of entities [76]. In that work, we could show that different heuristics, especially
those based on PageRank, can improve the results in many cases, however, the
interaction effects between the dataset or task at hand, the machine learning
algorithm used, and the heuristic used to generate the paths are still underex-
plored, so that it is difficult to provide a decision guideline on which strategy
works best for a given task.

4.3 Example Application 1: Recommender Systems

The purpose of recommender systems is to suggest items to users that they might
be interested in, given the past interactions of users and items. Interactions can
be implicit (e.g., users looking at items in an online store) or explicit (e.g., users
buying items or rating them) [59].

Generally, there are two directions of recommender systems:

Collaborative filtering recommender systems, which rely on the interac-
tions of users and items, and

Content based recommender systems, which rely on item similarity and
suggest similar items.

Hybrid approaches, combining collaborative and content based mechanisms,
exist as well. For collaborative filtering, there are two variants, i.e., user based
and item based.

Content based approaches can benefit massively from knowledge graphs.
Given that a dataset of items (e.g., movies, books, music titles) is linked to
a knowledge graph, background information about those items can be retrieved
from the knowledge graph, both in the form of direct interlinks between items
(e.g., movies by the same director), as well as in the form of similar attributes
(e.g., movies with a similar budget, runtime, etc.).

For the 2014 Linked Open Data-enabled recommender systems challenge [10],
book recommendations had to be computed, with all the books in the dataset
linked to DBpedia. There were two tasks: task 1 was the prediction of a user’s
rating given a user and a product, whereas task 2 was an actual recommendation
task (i.e., proposing items to users). We made an experiment [63] using the
software RapidMiner24, together with two extensions: the Linked Open Data
extension, which implements most of the algorithms discussed above [62], and
the recommender system extension [38].

The features for content-based recommendation were extracted from DBpe-
dia using the RapidMiner Linked Open Data extension. We use the following
feature sets for describing a book:

24 http://www.rapidminer.com/.

http://www.rapidminer.com/
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– All direct types of a book25

– All categories of a book
– All categories of a book’s author(s)
– All categories of a book including broader categories26

– All categories of a book’s author(s) and of all other books by the book’s
authors

– All genres of a book and of all other books by the book’s authors
– All authors that influenced or were influenced by the book’s authors
– A bag of words created from the abstract of the book in DBpedia. That bag

of words is preprocessed by tokenization, stemming, removing tokens with
less than three characters, and removing all tokens less frequent than 3% or
more frequent than 80%.

Furthermore, we created a combined book’s feature set, comprising direct types,
qualified relations, genres and categories of the book itself, its previous and
subsequent work and the author’s notable work, the language and publisher,
and the bag of words from the abstract.

Besides DBpedia, we made an effort to retrieve additional features from two
additional LOD sources: British Library Bibliography (BLB) and DBTropes27.
Using the RapidMiner LOD extension, we were able to link more than 90%
of the books to BLB entities, but only 15% to DBTropes entities. However,
the generated features from BLB were redundant with the features retrieved
from DBpedia, and the coverage of DBTropes was too low to derive meaningful
features. Hence, we did not pursue those sources further.

In addition to extracting content-based features, we used different generic
recommenders in our approach. First, the RDF Book Mashup dataset28 pro-
vides the average score assigned to a book on Amazon. Furthermore, DBpedia
provides the number of ingoing links to the Wikipedia article corresponding to
a DBpedia instance, and the number of links to other datasets (e.g., other lan-
guage editions of DBpedia), which we also use as global popularity measures.
Finally, SubjectiveEye3D delivers a subjective importance score computed from
Wikipedia usage information29.

To combine all feature sets into a content-based recommender engine, we
trained recommender systems on each of the feature sets individually. In order
to create a more sophisticated combination of the different base and generic
recommenders, we trained a stacking model as described in [77]: We trained
the base recommenders in 10 rounds in a cross validation like setting, collected
their predictions, and learned a stacking model on the predictions. As stacking

25 This includes types in the YAGO ontology, which can be quite specific (e.g., Amer-
ican Thriller Novels).

26 The reason for not including broader categories by default is that the category graph
is not a cycle-free tree, with some subsumptions being rather questionable.

27 http://bnb.data.bl.uk/ and http://skipforward.opendfki.de/wiki/DBTropes.
28 http://wifo5-03.informatik.uni-mannheim.de/bizer/bookmashup/.
29 https://github.com/paulhoule/telepath/wiki/SubjectiveEye3D.

http://bnb.data.bl.uk/
http://skipforward.opendfki.de/wiki/DBTropes
http://wifo5-03.informatik.uni-mannheim.de/bizer/bookmashup/
https://github.com/paulhoule/telepath/wiki/SubjectiveEye3D
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Table 3. Performances of the base and generic recommenders, the number of features
used for each base recommender, and the performance of the combined recommenders

Recommender #Features Task 1 Task 2

RMSE LR β F-Score

Item-based collaborative filtering – 0.8843 +0.269 0.5621

User-based collaborative filtering – 0.9475 +0.145 0.5483

Book’s direct types 534 0.8895 −0.230 0.5583

Author’s categories 2,270 0.9183 +0.098 0.5576

Book’s (and author’s author books’)
genres

582 0.9198 +0.082 0.5567

Combined book’s properties 4,372 0.9421 +0.0196 0.5557

Author and influenced/influencedBy
authors

1,878 0.9294 +0.122 0.5534

Books’ categories and broader categories 1,987 0.939 +0.012 0.5509

Abstract bag of words 227 0.8893 +0.124 0.5609

RDT recommender on combined book’s
properties

4,372 0.9223 +0.128 0.5119

Amazon rating – 1.037 +0.155 0.5442

Ingoing Wikipedia links – 3.9629 +0.001 0.5377

SubjectiveEye3D score – 3.7088 +0.001 0.5369

Links to other datasets – 3.3211 +0.001 0.5321

Average of all individual recommenders 14 0.8824 – –

Stacking with linear regression 14 0.8636 – 0.4645

Stacking with RDT 14 0.8632 – 0.4966

Borda rank aggregation 14 – – 0.5715

models, we use linear regression and random decision trees [82], a variant of
random forests, and for rank aggregation, we also use Borda rank aggregation.
Table 3 shows the results, showing both the RMSE and F1 score on the two tasks
of the challenge, as well as the weight β computed for each feature by the linear
regression meta learner.

The main learnings from the experiment were:

– Knowledge graphs can provide additional background knowledge, and con-
tent based recommender systems trained using that background knowledge
outperform collaborative filtering approaches.

– Combining predictions with a reasonably sophisticated stacking method out-
performs simple averaging.

– Generic recommenders (i.e., global item popularity ranks) that are not taking
into account the user’s preferences are a surprisingly strong baseline.
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In [71], we have explored the use of RDF2vec vector models as a means for
feature generation for recommender systems. We have shown that content-based
methods based on RDF2vec do not only outperform other feature generation
techniques, but also state of the art collaborative filtering recommender systems.

Accordingly to Fig. 9a, Fig. 10 depicts a 2-dimensional PCA projection of a
set of movies in the recommendation dataset. We can observe that related movies
(Disney movies, Star Trek movies, etc.) have a low distance in the vector space,
which allows for the use of content-based recommender systems based on item
similarity in the vector space.

4.4 Example Application 2: Explaining Statistics

While recommender systems are an example for predicting machine learning, i.e.,
training a model for predicting future behavior of users, semantic web knowledge
graphs can also be utilized in descriptive machine learning, where the task is
to understand a dataset. One example for this is the interpretation of a given
dataset, e.g., a collection of statistical observations.

One of the first prototypes for explaining statistical data with semantic web
knowledge graphs was Explain-a-LOD [46]. The tool takes as input a statistics
file, consisting of entities (e.g., regions) and a target variable (e.g., unemploy-
ment). It then uses a knowledge graph like DBpedia to identify factors that can
be used to explain the target variable, e.g., by measuring correlation.

Fig. 10. PCA projection of example movies
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As an example, we used a dataset of unemployment in different regions in
France. Among others, Explain-a-LOD found the following (positively and nega-
tively) correlating factors, using DBpedia as a starting point, and following links
to other knowledge graphs and linked open datasets [64] (Fig. 11):

– gross domestic product (GDP) (negative)
– available household income (negative)
– R&D spendings (negative)
– energy consumption (negative)

Fig. 11. Screenshot of the original Explain-a-LOD prototype

Fig. 12. Visualization of unemployment (left) and density of police stations (right)
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– population growth (positive)
– casualties in road accidents (negative)
– number of fast food restaurants (positive)
– number of police stations (positive).

In order to further inspect the findings and allowing the user to more intu-
itively interact with such interpretations, it is also possible to graphically visu-
alize the correlations, as shown in Fig. 12 [67].

While embedding based models have been shown to work well on predictive
tasks, their usage in descriptive scenarios is rather limited in contrast. Even if
we could find that certain attributes generated by an embedding model explain
a statistical variable well, this would not be very descriptive, since the embed-
ding dimensions do not come with a semantic annotation, and hence are not
interpretable by humans.

5 Conclusion and Future Directions

In this chapter, we have looked at a possible symbiosis of machine learning and
semantic web knowledge graphs from two angles: (1) using machine learning
for knowledge graphs, and (2) using knowledge graphs in machine learning. In
both areas, a larger body of works exist, and both are active and vital areas of
research.

Our recent approaches to creating knowledge graphs which are complemen-
tary to those based on Wikipedia, i.e., WebIsALOD and DBkWik, have shown
that there is an interesting potential of generating such knowledge graphs. When-
ever creating and extending a knowledge graph or mapping a knowledge graph
to existing ones, machine learning techniques can be used, either by having a
training set manually curated, or by using knowledge already present in the
knowledge graph for training models that add new knowledge or validate the
existing information.

With respect to knowledge graph creation, there are still valuable sources on
the Web that can be used. The magnitude of Wikis, as utilized by DBkWik, is
just one direction, while there are other sources, like structured annotations on
Web pages [37] or web tables [31], which can be utilized [78]. Also for Wiki-based
extractions, not all information is used to date, e.g., with the potential of tables,
lists, and enumerations still being underexplored [43,56].

While knowledge graphs are often developed in isolation, an interesting app-
roach would be to use them as training data to improve each other, allowing cross
fertilization of knowledge graphs. For example, WebIsALOD requires training
data for telling instances and categories from each other, which could be gath-
ered from DBpedia or YAGO. On the other hand, the latter are often incomplete
with type information, which could be mined using features from WebIsALOD.

As discussed above, embedding methods are currently not usable for descrip-
tive machine learning. Closing the gap between embeddings (which produce
highly valuable features) and simple, but semantics preserving feature genera-
tion methods would help developing a new breed of descriptive machine learning
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methods [50]. To that end, embeddings either need to be semantically enriched
with a posteriori developments, or trained in a fashion (e.g., by using pattern or
rule learners, such as [21]) that allow for creating embedding spaces which are
semantically meaningful.
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42. Molina, L.C., Belanche, L., Nebot, À.: Feature selection algorithms: a survey and
experimental evaluation. In: International Conference on Data Mining, ICDM, pp.
306–313. IEEE (2002)
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Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS, vol.
8777, pp. 288–300. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11812-3 25

67. Ristoski, P., Paulheim, H.: Visual analysis of statistical data on maps using linked
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Abstract. Advances in information extraction have enabled the auto-
matic construction of large knowledge graphs (KGs) like DBpedia, Free-
base, YAGO and Wikidata. Learning rules from KGs is a crucial task
for KG completion, cleaning and curation. This tutorial presents state-
of-the-art rule induction methods, recent advances, research opportu-
nities as well as open challenges along this avenue. We put a particu-
lar emphasis on the problems of learning exception-enriched rules from
highly biased and incomplete data. Finally, we discuss possible exten-
sions of classical rule induction techniques to account for unstructured
resources (e.g., text) along with the structured ones.

1 Introduction

Motivation. Recent advances in information extraction have led to huge graph-
structured knowledge bases (KBs) also known as knowledge graphs (KGs)
such as NELL [47], DBpedia [42], YAGO [72] and Wikidata [77]. These
KGs contain millions or billions of relational facts in the form of subject-
predicate-object (SPO) triples, e.g., 〈albert einstein marriedTo mileva maric〉
or 〈albert einstein type phycisist〉. Such triples can be straightforwardly rep-
resented by means of positive unary and binary first-order logic facts, e.g.
marriedTo(albert einstein,mileva maric) and phycisist(albert einstein).

An important task over KGs is rule learning, which is relevant for a variety
of applications ranging from knowledge graph curation (completion, error detec-
tion) [55] to data mining and semantic culturomics [73]. Rules over KGs are of
the form head ← body , where head is a binary atom and body is a conjunction
of (possibly negated) binary and unary atoms.

Traditionally, rule induction has been studied in the context of relational
data mining in databases (see e.g., [58] for overview), and has recently been
adapted to KGs (e.g., [6,30,79]). The methods from this area can be used to
identify prominent patterns from KGs, such as “Married people live in the same
place”, and cast them in the form of Horn rules (i.e., rules with only positive
atoms), such as: r1 : livesIn(Y ,Z ) ← marriedTo(X ,Y ), livesIn(X ,Z ).

For the KG curation, this has two-fold benefits. First, since KGs operate
under the open world assumption (i.e., absent facts are treated as unknown
c© Springer Nature Switzerland AG 2018
C. d’Amato and M. Theobald (Eds.): Reasoning Web 2018, LNCS 11078, pp. 142–172, 2018.
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Fig. 1. Example KG: marriage relations and living places [76].

rather than false), the rules can be used to derive additional facts such as missing
living places. Second, rules can be used to eliminate erroneous facts in KGs. For
example, assuming that livesIn is a functional relation, a living place of a person
could be questioned if it differs from the spouse’s.

When rules are automatically learned, statistical measures like support,
confidence and their variations are used to assess the quality of the rules.
Most notably, the confidence of a rule is the fraction of facts predicted by
the rule that are indeed in the KG. However, this is a meaningful measure
for rule quality only when the KG is reasonably complete. For rules learned
from incomplete KGs, confidence and other measures may be misleading, as
they do not reflect the patterns in the missing facts. This might lead to the
extraction of erroneous rules from incomplete and biased KGs. For exam-
ple, a KG that stores a lot of information about families of popular sci-
entists but lacks data in other domains, would yield a heavily biased rule
r ′
1 :hasChild(X ,Y ) ← worksAt(X ,Z ), educated(Y ,Z ), stating that workers of

certain institutions often have children among the people educated there, as
this is frequently the case for scientific families.

To address this issue, several rule measures that are specifically tailored
towards incomplete KGs have been proposed [30,82] (see [3,18] for an overview
of other measures). Along with KGs themselves, additional background knowl-
edge could be used for better rule assessment. As proposed in [75] this includes
metadata about the concrete numbers of facts of certain types that hold in the
real world (e.g., “Einstein has 3 children”) automatically extracted from Web
resources using techniques like [45]. Other types of background knowledge com-
prise description logic ontologies, e.g., [11] or more general hybrid theories, e.g.,
[36,43].

Horn rules such as r1 , might not always be sufficiently expressive to cap-
ture KG patterns accurately. Indeed, these rules cannot handle exceptions,
which often appear in practice. For instance, application of r1 mined from the
KG in Fig. 1 results in the facts livesIn(alice, berlin), livesIn(dave, chicago) and
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livesIn(lucy , amsterdam). Observe that the first two facts might be suspected to
be wrong. Indeed, both alice and dave are researchers, and the rule r1 could have
researcher as a potential exception resulting in its more accurate version given
as r2 : livesIn(Y ,Z ) ← marriedTo(X ,Y ), livesIn(X ,Z ),not researcher(Y ).
Exception handling has been faced in inductive logic programming (ILP) by
learning nonmonotonic logic programs, i.e., programs with negations from
databases (e.g., [35,64,66]), and recently also studied in the context of KGs
[29,76].

The aim of this article is to survey the current research on rule learning
from knowledge graphs. We present and discuss different techniques with the
roots in inductive logic programming and relational data mining as well as their
interrelation and applications for KGs.

Tutorial Overview. In Sect. 2, we briefly introduce knowledge graphs and their
key properties. We then provide necessary preliminaries on rule-based deductive
reasoning over KGs and discuss the tasks within the area of inductive logic pro-
gramming in Sect. 3. Section 4 describes recent research progress in the context
of Horn rule induction for KG completion. We present techniques for nonmono-
tonic rule extraction in Sect. 5. Finally, in Sect. 6 we conclude the article with
an outlook discussion, where we identify a number of promising directions for
future work.

2 Knowledge Graphs

Knowledge graphs have been introduced in the Semantic Web community to
create the “Web of data” that is readable by machines. They represent inter-
linked collections of factual information, and are often encoded using the RDF
data model [38]. This data model represents the content of a graph with a set
of triples of the form 〈subject predicate object〉 corresponding to positive unary
and binary first-order logic (FOL) facts.

Formally, we assume countable sets R of unary and binary predicate names
(aka relations) and C of constants (aka entities). A knowledge graph G is a finite
set of ground atoms of the form p(s, o) and c(s) over R ∪ C. With ΣG = 〈R, C〉,
the signature of G, we denote elements of R ∪ C that occur in G.

Example 1. Figure 1 shows a snippet of a graph about people, family and friend-
ship relations among them as well as their living places and professions. For
instance, the upper left part encodes the information that “Ann has a brother
John, and lives with her husband Brad in Berlin, which is a metropolitan
city” represented by the FOL facts {hasBrother(ann, john), livesIn(ann, berlin),
livesIn(brad , berlin), metropolitan(berlin), marriedTo(brad , ann)}. The set R of
relations appearing in the given KG contains the predicates livesIn,marriedTo,
hasBrother , hasFriend , researcher ,metropolitan, artist , while the set C of con-
stants comprises of the names of people and locations depicted on Fig. 1. ��
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Table 1. Examples of real-world KGs and their statistics [53,55].

Knowledge graphs # Entities # Relations # Facts

DBpedia (en) 4.8 M 2800 176 M

Freebase 40 M 35000 637 M

YAGO3 3.6 M 76 61 M

Wikidata 46 M 4700 411 M

Google knowledge graph 570 M 35000 18000 M

All approaches for KG construction can be roughly classified into two major
groups: manual and (semi-)automatic. The examples of KGs constructed man-
ually include, e.g., WordNet [44] which has been created by a group of experts
or Freebase [1] and Wikidata [77] which are constructed collaboratively by vol-
unteers. Automatic population of KGs from semi-structured resources such as
Wikipedia info-boxes using regular expressions and other techniques gave rise to,
e.g., YAGO [72] and DBpedia [42]. There are also projects devoted to the extrac-
tion of facts from unstructured resources using natural language processing and
machine learning methods. For example, NELL [47] and KnowledgeVault [16]
belong to this category. Table 1 shows examples of some KGs and their
statistics.

2.1 Incompleteness, Bias and Noise of Knowledge Graphs

While the existing KGs contain millions of facts, they are still far from being
complete; Therefore they are treated under the open world assumption (OWA),
i.e., facts not present in KGs are assumed to be unknown rather than false. For
example, given only Germany as the living place of Albert Einstein, we cannot
say whether livedIn(einstein, us) is true or false. This is opposed to the closed
world assumption (CWA) made in databases, under which ¬livedIn(einstein, us)
would be inferred.

Apart from incompleteness, both manually and semi-automatically created
KGs also suffer from the problem of bias in the data. Indeed, manually cre-
ated KGs such as Wikidata contain crowd-sourced information. While leveraging
crowd-sourcing for KG construction, human curators from different countries add
factual statements that they find interesting. Due to the difference in the pop-
ulation of contributors obviously facts about some countries are covered better
than about others. For example, KGs typically store more facts about Austrians
than Ghanians even though there are three times more inhabitants in Ghana
than in Austria. Moreover, different contributors find different facts interesting,
e.g., Austrians would add detailed information about music composers, while
Ghanians about national athletes. This naturally leads to cultural bias in KGs.
Likewise KGs that are semi-automatically extracted from Wikipedia infoboxes
such as DBPedia and YAGO highly depend on the pre-defined properties that
the infoboxes contain [40].
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Along with completeness and absence of data bias, there are also other impor-
tant aspects reflecting KGs’ quality including their correctness. Regardless of the
KG construction method, the resulting facts are rarely error-free. Indeed, in the
case of manually constructed KGs human contributors might bring their own
opinion on the added factual statements (e.g., Catalonia being a part of Spain
or an independent country). On the other hand, automatically constructed KGs
often contain noisy facts, since information extraction methods are imperfect.
We refer the reader to [53,55] for further discussions on the available KGs and
their quality.

The problems of KG completion and cleaning are among the central ones.
Approaches for addressing them can be roughly divided into two groups:
statistics-based, and logic-based. The firsts apply such techniques as tensor fac-
torization, or neural-embedding-based models (see [54] for overview). The second
group concentrates on logical rule learning [28]. In this tutorial, we primarily
focus on rule-based techniques, and their application for the KG completion
task. In the following, we assume that the given KG G stores only a subset of
all true facts.

Suppose we had an ideal KG Gi1 that contains all correct and true facts in
the world reflecting the relations from R that hold among the entities in C. The
gap between G and its ideal version Gi is defined as follows:

Definition 1 (Incomplete Knowledge Graph [12]). An incomplete knowl-
edge graph is a pair G = (G,Gi) of two KGs, where G ⊆ Gi and ΣG = ΣGi . We
call G the available graph and Gi the ideal graph.

Note that Gi is an abstract construct, which is normally unavailable. Intu-
itively, rule-based KG completion task concerns the reconstruction of the ideal
KG (or its approximation) by means of rules induced from the available KG and
possibly other external information sources.

3 Rules and Reasoning

In this section, we briefly review the concepts of rules, logic programming (see
[21] for more details) as well as deductive and inductive reasoning.

3.1 Logic Programs

Logic programs consist of a set of rules. Intuitively, a rule is an if-then expres-
sion, whose if-part may contain several conditions, some possibly with negation.
The then-part has a single atom that has to hold, whenever the if-part holds.
In general, the then-part can also contain disjunctions, but in this tutorial we
consider only non-disjunctive rules. More formally,

1 The superscript i stands for ideal.
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Definition 2 (Rule). A rule r is an expression of the form

h(X) ← b1(Y1), . . . , bk(Yk),not bk+1(Yk+1), . . . ,not bn(Yn ) (1)

where h(X), b1(Y1), . . . , bn(Yn ) are first-order atoms and the right-hand side of
the rule is a conjunction of atoms. Moreover, X,Y1, . . . ,Yn are tuples of either
variables or constants whose length corresponds to the arity of the predicates
h, b1, . . . , bn respectively.

The left-hand side of a rule r is referred to as its head, denoted by head(r),
while the right-hand side is its body body(r). The positive and negative parts of
the body are respectively denoted as body+(r) and body−(r). A rule r is called
positive or Horn if body−(r) = ∅.

For simplicity, in this work we use the shortcut

H ← B,not E (2)

to denote rules with a single negated atom, i.e., here H = h(X), B =
b1(Y1), . . . , bk(Yk), E = bk+1(Yk+1).

Example 2. Consider r2 from Sect. 1. We have that head(r2 ) = {livesIn(Y,Z)},
while body+(r2 ) = {isMarriedTo(X ,Y ), livesIn(X ,Z )}, and moreover it holds
that, body−(r2 ) = {not researcher(Y )}. ��

A logic program P is ground if it consists of only ground rules, i.e. rules
without variables.

Example 3. For instance, a possible grounding of the rule r2 is given as follows
livesIn(dave, chicago) ← livesIn(clara, chicago), isMarriedTo(clara, dave),

not researcher(dave). ��
Ground instantiation Gr(P ) of a nonground program P is obtained by sub-

stituting variables with constants in all possible ways.

Definition 3 (Herbrand Universe, Base, Interpretation). A Herbrand
universe HU (P) is a set of all constants occurring in the given program P.
A Herbrand base HB(P) is a set of all possible ground atoms that can be formed
with predicates and constants appearing in P. A Herbrand interpretation is any
subset of HB(P).

We now formally define the satisfaction relation.

Definition 4 (Satisfaction, Model). An interpretation I satisfies

– a ground atom a, denoted I |= a, if a ∈ I,
– a negated ground atom not a, denoted I |= not a, if I �|= a,
– a conjunction b1, . . . , bn of ground literals, denoted I |= b1, . . . , bn, if for each

i ∈ {1, . . . , n} it holds that I |= bi,
– a ground rule r, denoted I |= r if I |= body(r) implies I |= head(r), i.e., if

all literals in the body hold then the literal in the head also holds.
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An interpretation I is a model of a ground program P , if I |= r for each rule
r ∈ P . A model I is minimal if there is no other model I ′ ⊂ I. By MM (P) we
denote the set-inclusion minimal model of a ground positive program P .

The classical definition of answer sets based on the Gelfond-Lifschitz reduct
[31] is given as follows.

Definition 5 (Gelfond-Lifschitz Reduct, Answer Set [31]). An interpre-
tation I of P is an answer set (or stable model) of P iff I ∈ MM (P I), where
P I is the Gelfond-Lifschitz (GL) reduct of P , obtained from Gr(P ) by removing
(i) each rule r such that Body−(r) ∩ I �= ∅, and (ii) all the negative atoms from
the remaining rules. The set of answer sets of a program P is denoted by AS(P ).

An alternative definition of answer sets relies on the FLP-reduct [25] which
might be more intuitive. For the class of programs considered in this work, the
GL-reduct and FLP-reduct are equivalent.

Definition 6 (Faber-Leone-Pfeifer Reduct, Answer Set [25]). An inter-
pretation I of P is an answer set (or stable model) of P iff I ∈ MM (fP I ),
where fP I is the Faber-Leone-Pfeifer (FLP) reduct of P , obtained from Gr(P )
by keeping only rules r, whose bodies are satisfied by I, i.e.,

fP I = {r ∈ P | head(r) ← body(r), I |= body(r)}.

Example 4. Consider the program

P =
{

(1) livesIn(brad , berlin); (2) isMarriedTo(brad , ann);

(3) livesIn(Y ,Z ) ← isMarriedTo(X ,Y ), livesIn(X ,Z ),not researcher(Y )

}

The relevant part of ground instantiation Gr(P ) of P is obtained
by substituting X,Y,Z with brad , ann and berlin respectively. For
I = {isMarriedTo(brad ,ann),livesIn(ann,berlin), livesIn(brad , berlin)}, both
the GL- and FLP-reduct contain livesIn(ann, berlin) ← livesIn(brad , berlin),
isMarriedTo(brad , ann) and the facts (1), (2). As I is a minimal model of these
reducts, I is an answer set of P . ��

Apart from the model computation, another important task concerns decid-
ing whether a given atom a is entailed from the program P denoted by P |= a.
Typically, one distinguishes between brave and cautious entailment. We say that
an atom a is cautiously entailed from a program P (P |=c a) if a is present in
all answer sets of P . Conversely, an atom a is bravely entailed from a program
P (P |=b a) if it is present in at least one answer set of P . If a program has
only a single answer set, e.g., it is positive, then obviously cautious and brave
entailments coincide, in which case we omit the subscript.

Example 5. For P from Example 4 and a = livesIn(ann, berlin), we have that
a is entailed both bravely and cautiously from P , i.e., P |= a, while for a′ =
marriedTo(brad , brad), it holds that P �|= a′. ��
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The answer set semantics for nonmonotonic logic programs is based on the
CWA, under which whatever can not be derived from a program is assumed to be
false. Nonmonotonic logic programs are widely applied for formalizing common
sense deductive reasoning over incomplete information.

3.2 Inductive Reasoning Tasks

So far we have focused on logic programs and their semantics for deductive
reasoning. We now discuss the problem of automatic rule induction, which is a
research area commonly referred to as rule learning (see, e.g., [27,58]).

Broadly speaking, rule learning is an important sub-field of machine learning,
which focuses on symbolic methods for intelligent data analysis, i.e., methods
that employ a certain description language in which the learned knowledge is
represented.

First-order learning approaches are also referred to as inductive logic pro-
gramming (ILP), since the patterns they discover are expressed in relational for-
malisms of first-order logic (see [58] for overview). The goal of ILP is to generalize
individual instances/observations in the presence of background knowledge by
building hypotheses about yet unseen instances. The most commonly addressed
task in ILP is the task of learning logical definitions of relations. From training
examples ILP induces a logic program (predicate definition) corresponding to a
view that defines the target relation in terms of other relations that are given as
background knowledge.

More formally, the classical inductive logic programming task of learning
from positive and negative examples (also known as learning from entailment)
is defined as follows:

Definition 7 (Inductive Learning from Examples [49])

Given:
• Positive examples E+ and negative examples E− over the target n-ary

relation p, i.e. sets of facts;
• Background knowledge T , i.e. a set of facts over various relations and

possibly rules that can be used to induce the definition of p;
• Syntactic restrictions on the definition of p.

Find:
• A hypothesis Hyp that defines the target relation p, which is (i) complete,

i.e., ∀e ∈ E+, it holds that T ∪ Hyp |= e, and (ii) consistent, i.e., ∀e′ ∈
E−: T ∪ Hyp �|= e′.

Example 6. Suppose that you possess information about some of the relation-
ships between people in your family and their genders. However, you do not
know what the relationship fatherOf actually means. You might have the fol-
lowing beliefs, i.e., background knowledge.

T =
{

(1) parentOf (john,mary); (2) male(john); (3) parentOf (david , steve);
(4) male(david); (5) parentOf (kathy , ellen); (6) female(kathy);

}

Moreover, you are given the following positive and negative examples.
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Table 2. Overview of classical ILP systems.

System Input data Output
rules

Multiple
predicates

Increment Interact Noise
handling

FOIL [57] Examples Horn No No No Yes

GOLEM [51] Examples Horn No No No Yes

LINUS [19] Examples Horn No No No Yes

ALEPH [71] Examples Horn No No Yes Yes

MPL [61] Examples Horn Yes No No No

MIS [69] Examples Horn Yes Yes Yes No

MOBAL [48] Examples Horn Yes Yes No No

CIGOL [50] Examples Horn Yes Yes Yes No

CLINT [13] Examples Horn Yes Yes Yes No

σILP [24] Examples Horn No No No Yes

DROPS [8] Examples NM No No No No

ASPAL [9] Examples NM No No No No

XHAIL [64] Examples NM No No No No

ILASP [41] Interpretations NM Yes No No No

ILED [37] Examples NM No Yes No No

E+ = {fatherOf(john,mary), fatherOf(david, steve)}
E− = {fatherOf(kathy, ellen), fatherOf(john, steve)}
One of the possible hypothesis that can be induced from the above knowledge

reflecting the meaning of the fatherOf relation is given as follows:

Hyp : fatherOf (X ,Y ) ← parentOf (X ,Y ),male(X ). This hypothesis is consis-
tent with the background theory T , and together with T it entails all of the
positive examples, and none of the negative ones. The classical ILP task con-
cerns automatic extraction of such hypothesis. ��

In an alternative setting, known as learning from interpretations, instead of
positive and negative examples over a certain relation, one is given a Herbrand
interpretation I, i.e., a set of facts, and conditions (i) and (ii) in Definition 7 are
replaced with the requirement that I is a minimal model of Hyp ∪ T . Formally,

Definition 8 (Inductive Learning from Interpretations [60])

Given:
• An interpretation I, i.e., a set of facts over various relations
• Background knowledge T , i.e., a set facts and possibly rules
• Syntactic restrictions on the form of rules to be induced

Find:
• A hypothesis Hyp, such that I is a minimal Herbrand model of Hyp ∪ T.
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Several variations of learning from interpretations task have been studied
including learning from answer sets [41,66], where given possibly multiple partial
interpretations, the goal is to find a logic program, which has extensions of (all
of) the provided interpretations as answer sets.

To date, the main tasks considered in the ILP area can be classified based
on the following parameters [4,67].

– type of the data source, e.g., positive/negative examples, interpretations, text
– type of the output knowledge, e.g., Horn/nonmonotonic rules over single or

multiple predicates, description logic (DL) class descriptions, class inclusions
– the way the data is given as input, e.g., all data at once or incrementally
– availability of an oracle, e.g., involvement of a human expert in the loop
– quality of the data source, e.g., noisy or clean
– data (in)completeness assumption, e.g., OWA, CWA
– availability and type of background knowledge, e.g., DL ontology, set of datalog

rules, hybrid theories, etc.

An overview of some of the systems for Horn and nonmonotonic (NM) rule
induction with their selected properties is presented in Table 2.

4 Rule Learning for Knowledge Graph Completion

The majority of the classical existing rule induction methods mentioned in Sect. 3
assume that the given data from which the rules are induced is complete, accurate
and representative. Therefore, they rely on CWA and aim at extracting rule
hypotheses that perfectly satisfy the criteria from Definition 7 or Definition 8. On
the other hand, as discussed in Sect. 2.1, knowledge graphs are highly incomplete,
noisy and biased. Moreover, the real world is very complicated, and its exact
representation often cannot be acquired from the data, meaning that the task
of inducing a perfect rule set from a KG is typically unfeasible. Therefore, in
the context of KGs, one normally aims at extracting certain regularities from
the data, which are not universally correct, but when seen as rules predict a
sufficient portion of true facts.

In other words, the goal of automatic rule-based KG completion is to learn
a set R of logic rules from the available graph G, such that their application on
G results in a good approximation of the ideal graph Gi. More formally,

Definition 9 (Rule-based KG Completion). Let G be a KG over the sig-
nature ΣG = 〈R, C〉. Let, moreover, R be a set of rules with predicates from
R induced from G. Then rule-based completion of G w.r.t R is a graph GR

constructed from any answer set GR ∈ AS(R ∪ G).

Example 7. Given the KG in Fig. 1 as G and the rule set R = {r2}, where r2 is
from Sect. 1 we have GR = G ∪ {livesIn(lucy , amsterdam)}. ��
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If the ideal graph Gi was known, then the problem of rule-based KG comple-
tion would be essentially the same as the task of learning from interpretations
given in Definition 8, with G playing a role of the background knowledge T and
Gi the interpretation I. However, unfortunately Gi is unknown, and it cannot be
easily reconstructed, since KGs follow OWA.

Moreover, reusing the methods that induce logical theories from a set of
positive and negative examples from Definition 7 is likewise not possible due to
the following important obstacles [76].

First, the target predicates (e.g. fatherOf from Example 6) can not be easily
identified, since we do not know which parts of the considered KG need to be
completed. A standard way of addressing this issue would be just to learn rules
for all the different predicate names occurring in the KG. Unfortunately, this is
unfeasible given the huge size of KGs. Second, the negative examples are not
available, and they cannot be easily obtained from, e.g., domain experts due to
- once again - the huge size of KGs.

To overcome the above obstacles, it is more appropriate to treat the KG com-
pletion problem as an unsupervised relational learning task [30]. In this section,
we describe approaches that rely on relational association rule learning tech-
niques for extraction of Horn rules from incomplete KGs. These concern the
discovery of frequent patterns from a data set and their subsequent transforma-
tion into rules (see, e.g., [15] as the seminal work in this direction).

First, we describe the relational association rules, and how they are tradi-
tionally evaluated under CWA. Then, we present the standard relational rule
learning techniques, which usually proceed in two steps: rule construction and
rule assessment.

4.1 Relational Association Rules

An association rule is a rule where certain properties of the data in the body
of the rule are related to other properties in its head. For an example of an
association rule, consider a database containing transactional data from a store
selling computer equipment. From this data one can extract the association rule
stating that 70% of the customers buying a laptop also buy a docking station.
The knowledge that such rule reflects can assist in planning store layout or
deciding which customers are likely to respond to an offer.

Traditionally, the discovery of association rules has been performed on data
stored in a single table. Recently, however, many methods for mining relational,
i.e., graph-based data have been proposed [58].

The notion of multi-relational association rules is heavily based on frequent
conjunctive queries and query subsumption [32].

Definition 10 (Conjunctive Query). A conjunctive query Q over G is of
the form p1(X1), . . . , pm(Xm), where Xi are symbolic variables or constants
and pi ∈ R are unary or binary predicates. The answer of Q on G is the set
Q(G) = {(ν(X1), . . . , ν(Xm) | ∀i : pi(ν(Xi), ν(Yi)) ∈ G} where ν is a function
that maps variables and constants to elements of C.
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The (absolute) support of a conjunctive query Q in a KG G, is the number
of distinct tuples in the answer of Q on G [15].

Example 8. The support of the query

Q(X ,Y ,Z ) :- marriedTo(X ,Y ), livesIn(X ,Z )

over G in Fig. 1 asking for people, their spouses and living places is 6. ��
Definition 11 (Association Rule). An association rule is of the form Q1 ⇒
Q2, such that Q1 and Q2 are both conjunctive queries, and the body of Q1 con-
sidered as a set of atoms is included in the body of Q2, i.e., Q1(G′) ⊆ Q2(G′) for
any possible KG G′.

Example 9. For instance, from the above Q(X,Y,Z) and

Q′(X,Y,Z) :- marriedTo(X ,Y ), livesIn(X ,Z ), livesIn(Y ,Z )

we can construct the association rule Q ⇒ Q′. ��
Association rules are sometimes exploited for reasoning purposes, and thus

(with some abuse of notation) can be treated as logical rules, i.e., for Q1 ⇒ Q2

we write Q2\Q1 ← Q1, where Q2\Q1 refers to the set difference between Q2 and
Q1 considered as sets of atoms. For example, Q ⇒ Q′ from above corresponds
to r1 from Sect. 1.

A large number of measures for evaluating the quality of association rules
and their subsequent ranking have been proposed, e.g., support, confidence.

For r : H ← B ,not E (see Eq. 2), with H = h(X ,Y ), B,E involving
variables from Z ⊇ {X,Y } and a KG G, the (standard) confidence is given as:

conf(r,G) =
r-supp(r,G)
b-supp(r,G)

where r-supp(r,G) and b-supp(r,G) are the rule support and body support, respec-
tively, which are defined as follows:

r-supp(r,G) = #(x, y) : h(x, y) ∈ G,∃z B ∈ G, E �∈ G
b-supp(r,G) = #(x, y) : ∃z B ∈ G, E �∈ G

Example 10. Consider the rules r1 , r2 , and the KG G in Fig. 1, we have
r-supp(r1,G) = r-supp(r2,G) = 3, b-supp(r1,G) = 6 and b-supp(r2,G) = 4.
Hence, conf (r1 ,G) = 3

6 and conf (r2 ,G) = 3
4 . ��

Another popular metrics, which is shown to guarantee the high predictive
power [3] by measuring the intensity of rule’s implication [18] is conviction,
defined as:

conv(r,G) =
1 − rel-supp(H,G)

1 − conf(r,G)
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where rel-supp(H,G) is the relative support of the head, measured by:

rel-supp(H,G) =
#(x, y) : h(x, y) ∈ G

(#x : ∃y : h(x, y) ∈ G) × (#y : ∃x : h(x, y) ∈ G)

Example 11. For the KG in Fig. 1, we have rel-supp(livesIn,G) = 10
10×4 = 1

4 ,

thus conv(r1,G) = 1− 1
4

1− 3
6

= 3
2 and conv(r2,G) = 1− 1

4
1− 3

4
= 3. ��

4.2 Rule Construction

We now briefly summarize some of the state-of-the-art methods for rule con-
struction, most of which extract so-called closed rules, i.e., rules, in which every
variable appears at least twice. Restriction to closed rules ensures the actual
prediction of a fact by a rule, but not just its existence [30].

Example 12. The rules r1 and r2 from Sect. 1 are closed. An example of a non-
closed rule is:

∃Z livesIn(Y ,Z ) ← isMarriedTo(X ,Y )

which states that married people live somewhere. This rule cannot infer the exact
living place of a person, but merely its existence, and thus it is less interesting
in this context. ��

The most prominent examples of systems that are specifically tailored
towards inducing Horn rules from KGs are AMIE [30] and RDF2Rules [79].

AMIE. AMIE [30] is a state-of-the-art Horn rule mining system. Apart from a
KG, it expects the maximum length of the rule and the threshold value for its
support. In AMIE, rules are treated as sequences of atoms, where the first atom
is the head, and subsequent atoms form the body of the rule. The algorithm
maintains a queue of intermediate rules, which initially stores a single rule with
an empty body for every KG relation. Rules are removed from the queue and
refined by adding literals to the body according to a language bias that specifies
allowed rule forms (e.g., based on the user-provided rule length). The system
then estimates the support of the rule, and if it exceeds the given threshold,
the rule is output to the user and also added to the queue for possible further
processing. Refinement of a rule relies on the following set of mining operators
used to extend the sequences of atoms in the rule body:

– add dangling atom: add a new positive atom with one fresh variable, i.e.,
variable not appearing elsewhere in the rule;

– add instantiated atom: add a positive atom with one argument being a con-
stant and the other one being a shared variable, i.e., variable already present
in another rule atom;

– add closing atom: add a positive atom with both of its arguments being shared
variables.

The implementation of AMIE employs a variety of techniques from the
database area, which allow it to achieve high scalability.
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john mary

alice bob carol

dave tuwien mpi
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educatedAt

hasChild hasChild
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hasChild
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educatedAt

hasSibling

Fig. 2. Example KG: family relations, working and education places [75].

RDF2Rules. While AMIE mines a single rule at a time, RDF2Rules [79] par-
allelizes this process by extracting frequent predicate cycles (FPCs) of a certain
length k, which have the following form:

(X1, p
d1
1 ,X2, p

d2
2 , . . . , Xk, p

dk

k ,X1)

where, Xis are variables to appear in the extracted rules, pis are predicates
connecting these variables, and dis ∈ {0, 1} reflect the direction of the edges in
the KG labeled by the respective predicates. To extract FPCs, the RDF2Rules
algorithm first mines the frequent predicate paths (FPPs) of the form:

(X1, p
d1
1 ,X2, p

d2
2 , . . . , Xk, p

dk

k ,Xk+1)

of the length k, which are obtained recursively based on FPPs of the length k−1.
FPCs are then created from FPPs by merging the last variable Xk+1 with the
first one X1. After FPCs are mined, rules are extracted from them by choosing
a single predicate to be in the rule head, and collecting the rest into it’s body.

RDF2Rules is capable of accounting for unary predicates (i.e., types of enti-
ties), which are neglected in AMIE for scalability reasons. The unary predicates
are added to the constructed rule at the final stage after analyzing the frequent
types for FPCs corresponding to a given rule. While RDF2Rules performs the
rule extraction faster than AMIE due to an effective pruning strategy used in
the process of mining FPCs, the supported rule patterns are more restrictive.

4.3 Rule Evaluation

Most of state-of-the-art KG-based positive rule mining systems differ from each
other with respect to the employed rule ranking function. The ranking metrics
from data mining such as support and confidence (see e.g., [18] for overview of
others) presented in Sect. 4.1 have been designed for datasets treated under the
CWA, and they can be counterintuitive for the KGs, in which facts are largely
missing.

Example 13. For instance, consider the KG G′ in Fig. 2 [75], which presents
information about scientific families. The heavily biased rule from Sect. 1:
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r ′
1 : hasChild(X ,Y ) ← worksAt(X ,Z ), educated(Y ,Z ) can be mined from it

along with r ′
2 : hasSibling(X ,Z ) ← hasFather(X ,Y ), hasChild(Y ,Z ), which is

an accurate rule stating that people with the same father are likely siblings.
Since the graph is highly incomplete for the hasSibling relation, the standard rule
measures such as confidence reflect a counterintuitive rule preference. Indeed, we
have conf (r ′

1 ,G′) = 2
8 , while conf (r ′

2 ,G′) = 1
6 . ��

Below we present some of other alternative measures, designed to quantify
the quality of rules extracted specifically from incomplete data.

PCA Confidence. In [30], a completeness-aware rule scoring based on the
partial completeness assumption (PCA) has been introduced. The idea of PCA
is that whenever at least one object for a given subject and a predicate is in
the KG (e.g., “Eduard is Einstein’s child”), then all objects for that subject-
predicate pair (Einstein’s children) are assumed to be known. PCA relies on a
hypothesis that the data is usually added to KGs in batches, i.e., if at least
one child for a person has been added, then most probably all person’s children
are present in the KG. This assumption has turned out to be indeed valid in
real-world KGs for some topics [30]. The PCA confidence is defined as follows:

confpca(r,G) =
r-supp(r,G)

#(x, y) : ∃z : B ∈ G ∧ ∃y′ : h(x, y′) ∈ G
However, the effectiveness of the PCA confidence decreases when applied on
highly incomplete KGs as experienced in [34].

Example 14. Given the rules r ′
1 and r ′

2 from Example 13 and the KG from Fig. 2,
we have that confpca(r ′

1 ,G′) = 4
2 . Indeed, since carol and dave are not known

to have any children, four existing body substitutions are not counted in the
denominator. Meanwhile, we have confpca(r ′

2 ,G′) = 1
6 , since all people that are

predicted to have siblings by r ′
2 already have siblings in the available graph.

For the KG in Fig. 1 and the earlier introduced rule r1, it holds that
confpca(r1 ,G) = 3

4 , since we do not know any living places of lucy and dave.
��

Soft Confidence. Soft confidence measure introduced in [79], is also designed
to work under OWA, and for a rule r : h(X,Y ) ← B it is formally defined as
follows:

confst(r ,G) =
r-supp(r ,G)

b-supp(r ,G) − ∑
x∈Ur Pr(x , h,G)

where Ur is the set of entities that have no outgoing h-edges in G, but do have
some in Gr, and Pr(x, h,G) is the probability of the entity x having the relation
h, approximated using entity type information [79]. More specifically,

Pr(x , h,G) = maxt∈Tx

|Insth(t ,G)|
|Inst(t ,G)|
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where Tx = {t | t(x) ∈ G}, Inst(t ,G) = {x ′ | t(x ′) ∈ G}, and, moreover,
Insth(t ,G) = {x ′ ∈ Inst(t ,G) |∃ x ′′ : h(x ′, x ′′) ∈ G}. Intuitively, soft confidence is
designed to avoid the under-fitting of standard confidence and over-fitting of
PCA confidence by accounting for the probability of entities having certain rela-
tions.

Example 15. Consider the KG G from Fig. 1, we have Ur1 = {lucy , dave}.
Moreover, Pr(dave, livesIn,G) = 1

2 , since dave has only 1 type researcher , and
in total the KG stores 2 researchers (dave, alice) but only alice’s living place
(amsterdam) is known to G. In contrast, Pr(lucy , livesIn,G) = 0, as lucy has no
type information. Based on these numbers, we have confst(r1,G) = 3

6− 1
2

= 6
11 .

��

RC Confidence. The authors of [82] have recently proposed the RC confidence
as an attempt to rely on assumptions about the tuples not in the KG when
evaluating the quality of a potential rule. The intuition behind RC confidence
is that for computing rule’s confidence one does not necessarily have to know
which among rule predictions are true; just estimating their number is sufficient.
The key assumption for such estimation is that the proportion of positive facts
covered by a rule is the same for both true and unknown facts, which is reflected
in the following relationship coverage defined for r : h(X,Y ) ← B as follows

r-supp(r,G)
#(x, y) : h(x, y) ∈ G =

|UP (r,G)|
#(x, y) : h(x, y) ∈ Gi\G

where UP (r,G) = Gr ∩ Gi (assumed to be 0 in the case of standard confidence).
Intuitively, this equation would hold if the instantiations of r that appear in G
were selected completely at random [23] from the set of all true facts for r.

To approximately determine the size of UP (r,G) the authors rely on the
proportion β of all the unlabeled examples that are true in Gi, i.e., UP (r,G) = β∗
#(x, y) : h(x, y) �∈ G, and propose several ways for calculating β both empirically
via sampling and theoretically based on properties of G.

Finally, provided that there is a way to estimate |UP (r,G)|, the following
formula is used for computing the RC-confidence:

confrc(r,G) =
r-supp(r,G) + |UP (r,G)|

b-supp(r,G)

(In)completeness Metadata. In the solutions for the rule-based KG comple-
tion problem discussed so far, no external meta-information from outside of the
KG about potential existence of certain types of facts was exploited. However,
this knowledge is obviously useful, and furthermore, it can even be extracted from
the Web in the form of cardinality statements, e.g., Brad has three children. If
a given KG mentions just a single Brad’s child, we could aim at extracting rules
that predict the missing one.
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Based on this intuition, the recent work on completeness-aware rule learning
(CARL) [75] proposed improvements of rule scoring functions by making use of
this additional (in)completeness metadata.

In particular, such metadata is presented using cardinality statements by
reporting (the numerical restriction on) the absolute number of facts over a
certain relation in the ideal graph Gi. More specifically, the partial function
num is defined that takes as input a predicate p and an entity x and outputs a
natural number corresponding to the number of facts in Gi over p with x as the
first argument:

num(p, x) = #y : p(x, y) ∈ Gi (3)

These cardinality statements can be obtained via Web extraction techniques [46].
It is possible to rewrite cardinalities on the number of subjects for a given pred-
icate and object with such statements provided that inverse relations can be
expressed in a KG. Naturally, the number of missing facts for a given p and x
can be obtained as

miss(p, x,G) = num(p, x ) − #y : p(x, y) ∈ G
In the CARL framework, given a KG and its related cardinality statements of
the above form, two indicators are defined for a given rule r : h(X ,Y ) ← B ,
reflecting the number of new predictions made by r in incomplete (npi) and,
respectively, complete (npc) KG parts:

npi(r,G) =
∑
x

min(#y : h(x, y) ∈ Gr\G,miss(h, x,G))

npc(r,G) =
∑
x

max(#y : h(x, y) ∈ Gr\G − miss(h, x,G), 0)

Using these indicators, a class of completeness-aware rule measures have
been defined in [75], which we briefly present next.

Completeness Confidence. First, incompleteness information is used to
determine whether to consider an instance in the unknown part of the rule
as a counterexample or not. Formally, the completeness confidence is defined as:

confcomp(r,G) =
r-supp(r,G)

b-supp(r,G) − npi(r,G)

Example 16. Consider G′ in Fig. 2 and cardinality statements for it:

num(hC , john) = num(hC ,mary) = 3; num(hC , alice) = 1;
num(hC , carol) = num(hC , dave) = 0;
num(hS , alice) = num(hS , carol) = num(hS , dave) = 2;
num(hS , bob) = 3;

where hC, hS stand for hasChild and hasSibling, respectively. We have:
miss(hC ,mary ,G′) = miss(hC , john,G′) = miss(hC , alice,G′) = 1;
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miss(hC , carol ,G′) = miss(hC , dave,G′) = 0;
miss(hS , bob,G′) = miss(hS , carol ,G′) = 2;
miss(hS , alice,G′) = miss(hS , dave,G′) = 1;
For the rules r′

1 and r′
2 from Example 13 we have confcomp(r ′

1 ,G′) = 2
6 and

confcomp(r ′
2 ,G′) = 1

2 , which establishes the desired rule ranking. ��

Completeness Precision and Recall. In the spirit of information retrieval,
the notions of completeness precision and completeness recall are defined to
measure the rule quality based on its predictions in complete and incomplete
KG parts:

precisioncomp(r,G) = 1 − npc(r,G)
b-supp(r,G)

, recallcomp(r,G) =
npi(r,G)∑

x miss(h, x,G)

Intuitively, rules having high precision are rules that predict few facts in com-
plete parts, while rules having high recall are rules that predict many facts in
incomplete ones. Rule scoring could also be based on any weighted combination
of these two metrics.

Example 17. We have npi(r ′
1 ,G′) = 2, npc(r ′

1 ,G′) = 4, while npi(r ′
2 ,G′) = 4,

npc(r ′
2 ,G′) = 1, resulting in precisioncomp(r ′

1 ,G′) = 0.5, recallcomp(r ′
1 ,G′) ≈

0.67, and precisioncomp(r ′
2 ,G′) ≈ 0.83, recallcomp(r ′

2 ,G′) ≈ 0.67. ��

Directional Metric. If rule mining does make use of completeness informa-
tion, and both do not exhibit any statistical bias, then intuitively the rule
predictions and the (in)complete areas should be statistically independent. On
the other hand, correlation between the two indicates that the rule-mining is
(in)completeness-aware. Following this intuition, the directional metric has been
proposed, which measures the proportion between predictions in complete and
incomplete parts as follows:

dm(r,G) =
npi(r,G) − npc(r,G)

2 · (npi(r,G) + npc(r,G))
+ 0.5

Since the real-world KGs are often highly incomplete, it might be reasonable to
put more weight on predictions in complete parts. This is done via combining
any existing association rule measure rm, e.g., standard confidence or conviction,
with the directional metric, using a certain dedicated weighting factor γ ∈ [0...1].
Formally,

weighted dm(r,G) = γ · rm(r,G) + (1 − γ) · dm(r,G)

Example 18. We have dm(r ′
1 ,G′) ≈ 0.33 and dm(r ′

2 ,G′) = 0.8. With weighted
directional metric using standard confidence (rm = conf ), for γ = 0.5, we get
weighted dm(r ′

1 ,G′) ≈ 0.29 and weighted dm(r ′
2 ,G′) ≈ 0.48. ��



160 D. Stepanova et al.

Optimized Rule Evaluation. Most of state-of-the-art rule mining systems
parallelize only the rule construction phase, while the quality of the rules are
determined in a single thread. Huge size of KGs such as YAGO or Freebase pro-
hibits their storage on a single machine. Therefore, the rule quality estimation is
usually delegated to some third-party database management system. In practice
this might not always be effective.

Unlike other state-of-the-art rule mining systems, the algorithm of ontological
pathfinding (OP) [6] focuses on the efficient examination of the rule’s quality.
After candidate rules are constructed relying on a variation of [65], their quality is
determined via a sequences of parallelization and optimization methods including
KG partitioning, joining and pruning strategies.

5 Nonmonotonic Rule Learning

So far we have considered approaches for constructing Horn rules. However, these
are not sufficiently expressive for representing incomplete human knowledge, and
they are inadequate for capturing exceptions. Thus, Horn rules extracted from
the existing KGs can potentially predict erroneous facts as shown in Sect. 1.

In this section, we provide an overview of approaches for learning nonmono-
tonic rules from large and incomplete KGs. First, we describe a method that
relies on cross-talk among the extracted rules to guess their exceptions [29,76].
Then we present an approach that exploits embedding-based methods for knowl-
edge graph completion during rule construction [34].

5.1 Revision-Based Method

Exception handling has been traditionally faced in ILP by learning non-
monotonic logic programs [8,35,41,64,66] (see Sect. 3). However, most of the
existing methods assume that the data from which the rules are induced is com-
plete.

In [29], a revision-based approach for extracting exception-enriched (i.e., non-
monotonic) rules from incomplete KGs has been proposed. It pre-processes a
KG by projecting all binary facts into unary ones applying a form of propo-
sitionalization technique [39] (e.g., livesIn(brad , berlin) could be translated to
livesInBerlin(brad) or livesInCapital(brad) with obvious loss of information) and
adapts data mining methods designed for transaction data to extract Horn rules,
which are then augmented with negated atoms. In [76], the approach has been
extended to KGs in their original relational form. We now briefly summarize the
ideas of [29,76].

In these works, the KG completion problem from Definition 9 is treated as a
theory revision task, where, given a KG and a set of (previously learned) Horn
rules, the goal is to revise this set by adding exceptions, such that the obtained
rules have higher predictive accuracy than the original ones.

Since normally, the ideal graph Gi is not available, in order to estimate the
quality of a revised ruleset, two generic quality functions qrm and qconflict are
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devised, which both take as input a ruleset R and a KG G and output a real
value, reflecting the suitability of R for data prediction. More specifically,

qrm(R,G) =
∑

r∈R rm(r,G)
|R| , (4)

where rm is some standard association rule measure [3]. Conversely, qconflict
estimates the number of conflicting predictions that the rules in R generate. To
measure qconflict for R, an extended set of rules Raux is created, which con-
tains every revised rule in R together with its auxiliary version. For a rule
r : h(X,Y ) ← B,not E in R, its auxiliary version raux is constructed by:
(i) transforming r into a Horn rule by removing not from negated body atoms,
and (ii) replacing the head predicate h of r with a newly introduced predicate
not h which intuitively should contain instances which are not in h.

Example 19. The auxiliary rule raux2 for the rule r2 from Sect. 1 is as follows
raux
2 : not livesIn(Y ,Z ) ← marriedTo(X ,Y ), livesIn(X ,Z ), researcher(Y ), and

it informally reflects that married people among whom one is a researcher often do
not live together. For r3 : livesIn(X ,Y ) ← bornIn(X ,Y ),not immigrant(X ) we
similarly have raux

3 : not livesIn(X ,Y ) ← bornIn(X ,Y ), immigrant(X ). If R =
{r1, r2} then Raux = {r1, r

aux
1 , r2, r

aux
2 }.

Intuitively, qconflict(R,G) estimates the portion of conflicting predictions
livesIn(s, o),not livesIn(s, o) made by the rules in Raux. The hypothesis of
[29,76] is that for a set R of good rules with reasonable exceptions, the number
of conflicting predictions produced by Raux is small. ��

Formally, based on statistics of both rules r and raux in a set of exception-
enriched rules R, the measure qconflict is defined as

qconflict(R,G) =
∑

p∈pred(R)

|c | p(c),not p(c) ∈ GRaux |
|c |not p(c) ∈ GRaux | (5)

where pred(R) stores predicates appearing in R.
Formally, the problem targeted in [29,76] is formulated as follows:

Definition 12 (Quality-based Horn Theory Revision). Given a KG G, a
set of nonground Horn rules RH mined from G, and a quality function rm, find
a set of rules RNM obtained by adding negated atoms to body(r) for some r∈RH

s.t. (i) qrm(RNM ,G) is maximal, and (ii) qconflict (RNM ,G) is minimal.

Given the huge size of KGs, finding the best possible revision is infeasible in
practice. Thus, in [29,76] a heuristics-based method that computes an approxi-
mate solution to the above problem has been proposed (see Fig. 3 for overview).
It combines standard relational association rule mining techniques with a FOIL-
like supervised learning algorithm [57] for computing exceptions. We now briefly
discuss the steps of this approach.

Step 1. After mining Horn rules using an off-the-shelf algorithm (e.g., [30]), one
computes for each rule the normal and abnormal substitutions, defined as
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Fig. 3. Rule revision method for nonmonotonic rule learning [29,76].

Definition 13 (r-(Ab)Normal Substitutions). Let G be a KG, r a Horn
rule mined from G, and let V be a set of variables occurring in r. Then

– NS (r ,G) = {θ | head(r)θ, body(r)θ ⊆ G} is an r -normal set of substitutions;
– ABS (r ,G)={θ′ | body(r)θ′⊆G , head(r)θ′ �∈G} is an r -abnormal set of substi-

tutions, where θ, θ′ : V → C.

Example 20. For G from Fig. 1 and r1 , we have NS (r1 ,G) = {θ1 , θ2 , θ3},
where θ1 = {X /brad ,Y /ann,Z/berlin}, θ2 = {X /john,Y /kate,Z/chicago}
and θ3 = {X /sui ,Y /li ,Z/beijing} respectively. Besides, among substitutions
in ABS (r1 ,G), we have θ4 = {X /mat ,Y /lucy ,Z/amsterdam}, yet there are
others. ��

Step 2. Intuitively, if the given data was complete, then the r-normal and
r-abnormal substitutions would exactly correspond to instances for which the
rule r holds (respectively does not hold) in the real world. Since the KG is poten-
tially incomplete, this is no longer the case and some r-abnormal instances might
in fact be classified as such due to data incompleteness. In order to distinguish
the “wrongly” and “correctly” classified instances in the r-abnormal set, one
constructs exception witness sets (EWS ), which are defined as follows:

Definition 14 (Exception Witness Set (EWS)). Let G be a KG, let r
be a rule mined from it, let V be a set of variables occurring in r and X ⊆
V. Exception witness set for r w.r.t. G and X is a maximal set of predicates
EWS (r ,G,X) = {e1, . . . , ek}, s.t.

– ei(Xθj) ∈ G for some θj ∈ ABS (r ,G), 1 ≤ i ≤ k and
– e1 (Xθ′), . . . , ek (Xθ′) �∈ G for all θ′ ∈ NS (r ,G).

Example 21. For G in Fig. 1 and rule r1 , we observe that EWS (r ,G,Y ) =
{researcher} and EWS (r ,G,X ) = {artist}. If brad with ann and john with
kate did not live in metropolitan cities, then EWS (r ,G,Z ) = {metropolitan}. ��
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In general, there are exponentially many possible EWS s to construct. Combi-
nations of exception candidates could be an explanation for some missing KG
edges, so the search space of solutions to the above problem is large. In [76]
a restriction to a single atom as a final exception has been posed; extending
exceptions to arbitrary combinations of atoms is left for future research.

Steps 3 and 4. After EWS s are computed for all rules in RH , they are used to
create potential revisions (Step 3), i.e., from every ej ∈ EWS (ri ,G) a revision rji
of ri is constructed by adding a negated atom over ej to the body of ri. Finally,
a concrete revision for every rule is determined, which constitutes a solution to
the above problem (Step 4). To find such globally best ruleset revision RNM

many candidate combinations have to be checked, which due to the large size of
G and EWS s might be too expensive. Thus, instead, RNM is incrementally built
by considering every ri ∈ RH and choosing the locally best revision rji for it.

In order to select rji , four special ranking functions are introduced: a naive
one and three more advanced functions, which exploit the concept of partial
materialization (PM ). Intuitively, the idea behind it is to rank candidate revi-
sions not based on G, but rather on its extension with predictions produced by
other (selectively chosen) rules (grouped into a set R′), thus ensuring a cross-talk
among the rules. We now describe the ranking functions in more details.

– Naive ranker is the most straightforward ranking function. It prefers the
revision r j

i with the highest value of rm(r j
i ,G) among all revisions of ri.

– PM ranking function prefers r j
i with the highest value of

rm(r j
i ,GR′) + rm(r j

i

aux
,GR′)

2
(6)

where R′ is the set of rules r′
k, which are rules from RH\ri with all exceptions

from EWS (rk ,G) incorporated at once. Informally, GR′ contains only facts
that can be safely predicted by the rules from RH \ri , i.e., there is no evident
reason (candidate exceptions) to neglect their predictions.

– OPM is similar to PM , but the selected ruleset R′ contains only those rules
whose Horn version appears above the considered rule ri in the ruleset RH ,
ordered (O) based on some chosen measure (e.g., the same as rm).

– OWPM is the most advanced ranking function. It differs from OPM in
that the predicted facts in GR′\G inherit weights (W ) from the rules that
produced them, and facts in G get the highest weight. These weights are taken
into account when computing the value of (6). If the same fact is derived by
multiple rules, the highest weight is stored. To avoid propagating uncertainty
through rule chaining when computing weighted partial materialization of G
predicted facts (i.e., derived by applying rules from R′) are kept separately
from the explicit facts (i.e., those in G), and new facts are inferred using
only G.
For reasoning over weighted facts existing probabilistic deductive tools such
as ProbLog [14,26] can be used, but their exploitation is left for future work.
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re1 : writtenBy(X ,Z ) ← hasPredecessor(X ,Y ),writtenBy(Y ,Z ), not american film(X )

re2 : actedIn(X ,Z ) ← isMarriedTo(X ,Y ), directed(Y ,Z ), not silent film actor(X )

re3 : isPoliticianOf (X ,Z ) ← hasChild(X ,Y ),isPoliticianOf (Y ,Z ),not vicepresidentOfMexico(X )

Fig. 4. Examples of the mined rules [76]

Example Rules. Figure 4 shows examples of rules obtained in [76] by the
described method. For instance, re1 extracted from IMDB states that movie
plot writers stay the same throughout the sequel unless a movie is American,
while re2 reflects that spouses of movie directors often appear on the cast with
the exception of actors of old silent movies. Finally, the rule re3 learned from
YAGO says that ancestors of politicians are also politicians in the same country
with the exception of Mexican vice-presidents.

5.2 Method Guided by Embedding Models

In the work [34] introducing RuLES framework, an alternative method for non-
monotonic rule induction has been proposed, which first constructs an approx-
imation of an ideal graph Gi and then learns rules by relying on it. For build-
ing such approximation, representations (i.e. embeddings) of entities and rela-
tions are learned from a given KG possibly enriched with additional information
sources (e.g., text). We refer the reader to [78] for an overview of KG embedding
models.

The RuLES approach [34] establishes a framework to benefit from the advan-
tages of these models by iteratively inducing rules from a KG and collecting
statistics about them from a precomputed embedding model to prune unpromis-
ing rule candidates.

Let G be a KG over the signature ΣG = (R, C). A probabilistic KG is a pair
P = (G, f), where f : R × C × C → [0, 1] is a probability function over the facts
over ΣG such that for each atom a ∈ G it holds that f(a) ≥ ct, where ct is a
correctness threshold.

The goal of RuLES is to learn rules that do not only describe the available
graph G well, but also predict highly probable facts based on the function f
which relies on embeddings of the KG. For that, it utilizes a hybrid rule quality
function:

μ(r,P) = (1 − λ) × μ1(r,G) + λ × μ2(Gr,P).

where λ is a weight coefficient and μ1 is any classical quality measure of r
over G such that μ1 : (r,G) �→ α ∈ [0, 1] (e.g., standard confidence or PCA
confidence [30]). μ2 measures the quality of Gr (i.e., the extension of G resulting
from executing the rule r) based on P given that μ2: (Gr,P) �→ α ∈ [0, 1]. To this
end, μ2 is defined as the average probability of the newly predicted facts in Gr:

μ2(Gr,P) =
Σa∈Gr\Gf(a)

|Gr\G| .
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Fig. 5. Embedding-based method for nonmonotonic rule learning.

RuLES takes as input a KG, possibly a text corpus, and a set of user-
specified parameters that are used to terminate rule construction. These param-
eters include an embedding weight λ, a minimum threshold for μ1, a minimum
rule support r-supp and other rule-related parameters such as a maximum num-
ber of positive and negative atoms allowed in body(r). As illustrated in the
overview of the RuLES system in Fig. 5, the KG and text corpus are used to
train the embedding model that in turn is utilized to construct the probabilistic
function f . The Rule Learning component computes the rules similar to [30] in
an iterative fashion by applying refinement operators, starting from the head, by
adding atoms to its body one after another until at least one of the termination
criteria (that depend on f) is met. The set of refinement operators from [30] is
extended by the following two to support negations in rule bodies:

– add an exception instantiated atom: add a binary negated atom with one of
its arguments being a constant, and the other one being a shared variable.

– add an exception closing atom: add a binary negated atom to the rule with
both of its arguments being shared variables.

During the construction of a rule r, the quality μ(r) is computed by the Rule
Evaluation component, based on which a decision about the next action is made.
Finally as an output, the RuLES system produces a set of nonmonotonic rules
suitable for KG completion.

Note that the exploitation of the embedding feedback helps to distinguish
exceptions from noise. Consider the rule r1 stating that married people live
together. This rule can have several possible exceptions, e.g., either one of the
spouses is a researcher or he/she works at a company, which has headquarter in
the US. Whenever the rule is enriched with an exception, naturally, the support
of its body decreases, i.e., the size of Gr goes down. Ideally, such negated atoms
should be added to the body of the rule that the average quality of Gr increases,
as this witnesses that the addition of negated atoms to the rule body reduces
unlikely predictions.
Example Rules. Figure 6 presents examples of rules learned by the RuLES
system from the Wikidata KG. The first rule re4 says that a person is a citizen
of the country where his alma mater is located, unless it is a research institution,
since most researchers in universities are foreigners. Additionally, re5 encodes
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re4 : nationality(X ,Y ) ← graduatedFrom(X ,Z ), inCountry(Z ,Y ), not researchUni(Z )

re5 : nobleFamily(X ,Y ) ← spouse(X ,Z ),nobleFamily(Z ,Y ), not chineseDynasties(Y )

Fig. 6. Examples of the mined rules [34]

that someone belongs to a noble family if his/her spouse is also from the same
noble family, excluding the Chinese dynasties.

6 Discussion and Outlook

In this tutorial, we have presented a brief overview of the current techniques
for rule induction from knowledge graphs and have demonstrated how reasoning
over KGs using the learned rules can be exploited for KG completion.

While the problem of rule-based KG completion has recently gained a lot of
attention, several promising research directions are still left unexplored.

Learning Other Rule Forms. The majority of available methods focus on
extracting Horn or nonmonotonic rules, yet inducing rules of other, more com-
plex, forms would be beneficial. These include disjunctive rules (e.g., “Having
a sibling implies having a sister or a brother”, “Korean speakers are normally
either from South or North Korea”) or rules with existential quantifiers in the
head (e.g., “Being a musicians in a band, implies playing some musical instru-
ment”). Several recent works on mining keys in KGs [40,74], detecting manda-
tory relations [40] and learning SHACL constraints [56] are relevant, but they
do not directly address the mentioned rule forms. A combination of techniques
from relational rule learning [58] and propositionalization approaches [39] can
be utilized for learning rules with existentials, yet it is unclear how to detect
KG parts that are worth propositionalizing and combine the outputs of both
methods.

Rules that reflect correlations between edge counts in KGs such as “If a per-
son has two siblings then his/her parents are likely to have 3 children” have been
studied in [75]. Inducing more general rules, encoding mathematical functions
on edge counts (e.g., “If a person has k siblings then his/her parents are likely to
have k+ 1 children”) and other numerical rules is still an open problem, which
is particularly challenging due to large search space of possible hypothesis.

Learning temporal rules or constraints such as “A person cannot graduate
from a university before being born” is another promising future work direction.
Deductive reasoning over temporal KGs has been recently considered in [5];
however, the inductive setting has not yet been studied in full details to the best
of our knowledge. A framework for learning hard boolean constraints has been
described in [62], but its extension to KGs and soft constraints is still missing.

Learning Rules from Probabilistic Data. The majority of existing rule
learning approaches over knowledge graphs model KGs as sets of true facts thus
totally ignoring possible inaccuracies. Since KGs are usually constructed using
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(semi-)automatic methods from noisy textual resources, obviously not all of the
extracted facts should have the same weight. Learning rules from such noisy
KGs by treating all facts equally might naturally lead to problematic rules,
which when being applied may propagate faulty facts.

A recent ILP approach that accounts for noise has been proposed in [24]; but
it relies on CWA and neglects weights on the facts. Learning rules from KGs
treated as uncertain data sources has been considered in [10,59,63]; however,
these works neglect negation, disjunction or existential variables in the head.
Extending the techniques to more advanced rule forms is beneficial.

Rule Learning with External Sources. Another interesting research stream
is to consider pieces of evidence from hybrid external sources while inducing
rules from KGs (see Fig. 7). Similar to [22], where external functions are utilized
during deductive reasoning, various heterogeneous information sources can be
used to guide rule induction. These range from a human expert giving feedback
about the correctness of a given rule (similar as done in [20] for pattern mining),
to dedicated fact-checking engines (e.g., Defacto [70], FactChecker [52]) that
given a fact such as bornIn(einstein, ulm) rely on Web documents to estimate
its truthfulness.

Neural-Based Rule Learning. Utilizing embedding models for rule learning
is a new research direction that has recently gained attention [80,81]. Most of the
existing methods are purely statistics-based, i.e., they reduce the rule learning
problem to algebraic operations on neural-embedding-based representations of a
given KG. The approach [80] constructs rules by modeling relation composition
as multiplication or addition of two relation embeddings. The authors of [81]
propose a differentiable system for learning models defined by sets of first-order
rules that exploits a connection between inference and sparse matrix multiplica-
tion [7]. These techniques pose strong restrictions on target rule patterns, which
often prohibits learning interesting rules, e.g., non-chain-like or exception-aware
ones. Combining neural methods with symbolic ones in a similar way as in [34]
but also accounting for rich background knowledge in the form of logical theories
is expected to be advantageous for obtaining surprising insights from the data.

Another ambitious direction is to mimic the active learning framework of
Angluin et al. [2] for hypothesis discovery by issuing dedicated queries to possibly
text-enhanced KG embedding models instead of a human expert.
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Extracting Rules Jointly from KGs and Text. While modern KGs are rich
in facts and typically rather clean, they contain a limited set of encyclopedic rela-
tions (e.g., bornIn, marriedTo). On the other hand, textual resources certainly
cover a richer set of predicates (e.g., gotAquintedWith, celebratedWedding), but
suffer from noise. A natural way to address the above issues is to combine text-
based rule extraction relying on natural language processing (NLP) and textual
entailment techniques [17,33,68] with inductive rule learning from KGs. This
interesting research direction comes with many challenging due to the hetero-
geneity of the input sources.
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Abstract. In the last years, huge RDF graphs with trillions of triples
were created. To be able to process this huge amount of data, scalable
RDF stores are used, in which graph data is distributed over compute and
storage nodes for scaling efforts of query processing and memory needs.
The main challenges to be investigated for the development of such RDF
stores in the cloud are: (i) strategies for data placement over compute
and storage nodes, (ii) strategies for distributed query processing, and
(iii) strategies for handling failure of compute and storage nodes. In this
manuscript, we give an overview of how these challenges are addressed
by scalable RDF stores in the cloud.

1 Introduction

In the last years, huge RDF graphs with trillions of triples were created. For
instance, the number of Schema.org-based facts that are extracted out of the Web
have reached the size of three trillions [98]. Another example is the European
Bioinformatics Institute (EMBL-EBI) that would like to convert its datasets
into RDF resulting in a graph consisting of trillions of triples. To date no such
scalable RDF store exists and the current EBI RDF Platform can handle only
10 billion triples [88].

In order to provide RDF stores that can scale to these huge graph sizes,
researchers have started to develop RDF stores in the cloud, where graph data
is distributed over compute and storage nodes for scaling efforts of query process-
ing and memory needs. The main challenges to be investigated for such devel-
opment are: (i) strategies for data placement over compute and storage nodes,
(ii) strategies for distributed query processing, and (iii) strategies for handling
failure of compute and storage nodes. In this manuscript, we want to give an
overview of how these challenges have been addressed by scalable RDF stores in
the cloud that have been developed in the last 15 years.

In Sect. 3, we give an overview of the different architectures of scalable RDF
stores in the cloud. Basically there exist three types of architectures. The first

c© Springer Nature Switzerland AG 2018
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type uses general cluster computing frameworks like Spark1 or HBase2 to perform
queries on RDF graphs. The second type – so-called distributed RDF stores—
splits the RDF graph into smaller parts that are then stored and queried on the
compute and storage nodes. The last type are federated query processing sys-
tems. These systems do not have any influence on the data distribution over com-
pute and storage nodes. Instead, they process queries over several RDF stores.

In case of cluster computing frameworks and distributed RDF stores, the
RDF graph is distributed among several compute and storage nodes. The general
procedure of data distribution strategies is to first split the graph into several not-
necessarily disjoint triple sets. In relational and NoSQL databases this splitting
is called sharding. Thereafter, the individual triple sets are assigned to compute
and storage nodes. An overview of how these two steps are preformed by the
existing RDF stores is given in Sect. 4.

Querying a distributed dataset is usually done by splitting the query into
subqueries that can be answered locally without the need to exchange data over
the network. The results of these subqueries are finally combined into the over-
all results of the query. In order to identify which parts of the queries can be
answered locally on which compute nodes, an index is required that stores infor-
mation about the data distribution. The different types of indices are described
in Sect. 5. An overview of how distributed query processing is done by RDF
stores in the cloud is given in Sect. 6.

Another challenge of scalable RDF stores in the cloud is that the failure of an
individual compute or storage node should not lead to the failure of the complete
RDF store. A brief overview of how this challenge is addressed is given in Sect. 7.

In order to evaluate how well RDF stores in the cloud solve the challenges
in the cloud, their performance needs to be evaluated. In Sect. 8, we will present
different methodologies how RDF stores in the cloud are evaluated.

Due to the huge amount of RDF stores in the cloud that were developed in
the last 15 years, we will not present distributed solutions for the handling of
RDF streams or reasoning. Interested readers are referred to [118]. Beside RDF
stores in the cloud there also exist distributed graph databases like Sparksee3

or Titan4 as well as distributed graph processing frameworks like PGX.D [61]
or PEGASUS [66]. They are not described in this manuscript since they have
not been presented as part of an RDF store, yet. Furthermore, this manuscript
gives an overview of how RDF stores in the cloud work. Readers interested in a
performance comparison of RDF stores in the cloud are referred to, e.g., [49].

2 Preliminaries

RDF stores in the cloud have to deal with the two challenges how to distribute
RDF graphs on several compute and storage nodes and how to retrieve data
1 https://spark.apache.org/.
2 https://hbase.apache.org/.
3 http://www.sparsity-technologies.com/.
4 http://titan.thinkaurelius.com/.
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thereafter again. The following two sections formalize these challenges. The given
definitions are the usual definitions found in the literature. This section was taken
from [64].

2.1 Formalization of Graph Cover Strategies

In order to illustrate different graph cover strategies, we use Fig. 1 as our running
example. The graph represents the knows relationship between two employees of
the university institute WeST and one employee of the Leibniz institute GESIS.
Additionally, the graph includes the ownership of the dog Bello. The terms r:,
e:, w:, g:, and f: abbreviate IRI prefixes.

Fig. 1. The example graph describing the knows relationships between some employees
of WeST and Gesis.

To formalize the data distribution challenge, we define RDF graphs like in
[53]. Assume a signature σ = (I,B, L), where I, B and L are the pairwise disjoint
infinite sets of IRIs, blank nodes and literals, respectively. The union of these
sets is abbreviated as IBL.

Definition 1. The set of all possible RDF triples T for signature σ is defined
by T = (I ∪ B) × I × IBL. An RDF graph G or simply graph is defined
as G ⊆ T . The set of all vertices contained in G is defined by VG ={
v
∣
∣∃s, p, o : (v, p, o) ∈ G ∨ (s, p, v) ∈ G

}
.

(s, p, o) ∈ T is also called a triple with subject s, property p and object o. To
simplify later definitions, the functions subj(t), obj(t) and prop(t) return the
subject, object or property of triple t, respectively. Likewise, we use subj(T ),
obj(T ) and prop(T ) to refer to the set of subjects, objects and properties in the
triple set T .

In the context of distributed RDF stores, the triples of a graph have to be
assigned to different compute and storage nodes (in the following, we refer to
them more briefly as compute nodes). The finite set of compute nodes is denoted
as C in the rest of this paper.
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Definition 2. Let G denote an RDF graph. Then a graph cover is a function
cover: G → 2C , that assigns each triple of a graph G to at least one compute node.

Definition 3. The function chunk returns the triples assigned to a specific com-
pute node by a graph cover ( graph chunks). It is defined as

chunkcover: C → 2G

chunkcover(c):=
{
t
∣
∣c ∈ cover(t)

}
.

This definition allows for triples being replicated on several compute nodes.
If the graph chunks are pairwise disjoint the underlying graph cover is called a
graph partitioning.5

Some frequently used graph cover strategies require two additional definitions.

Definition 4. A graph cover of RDF graph G is subject-complete, if ∀c ∈ C :
∀ (s, p, o) ∈ chunkcover(c) : ∀ (s, p′, o′) ∈ G : (s, p′, o′) ∈ chunkcover(c).

Example 1. The graph cover shown in Fig. 2 is subject-complete, since all triples
with the same subject are located in the graph chunk of c1 or c2.

Definition 5. A path P is a sequence 〈t0, t1, . . . , tn〉, if ∀i ∈ [0, n] : ti ∈ G∧∀j ∈
[0, n] : j �= i ⇒ tj �= ti and ∀i ∈ [1, n] : ti−1 = (si−1, pi−1, si) ∧ ti = (si, pi, oi).
The length of path P is n + 1.

Example 2. In the example Graph shown in Fig. 1, 〈(w:daniel, f:knows,w:martin),
(w:martin, f:knows, g:wanja)〉 is a path of length 2.

Fig. 2. An example graph cover of the example graph.

Several RDF stores in the cloud create subsets of an RDF graph that are
distributed among the compute nodes. One frequently used graph subset is called
5 In the context of relational or NoSQL databases, graph covers are called sharding

and the graph chunks shards. In the literature, there exist definitions of sharding
that allow for data replication whereas others do not allow it.
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a molecule. A molecule is a set of triples that are reachable from its anchor
vertex. This property of molecules aims for an efficient processing of star-shaped
queries, in which the triple patterns are joined on the subject. Also path-shaped
queries might be processed efficiently, if the length of the path is smaller than
the diameter of the molecule.

Definition 6. A subset Mv ⊆ G of an RDF graph G is called molecule6 of
vertex v if

1. for all triples t ∈ Mv there must exist a path 〈t0, t1, . . . , tn, t〉 such that t0 =
(v, p0, o0) and t0, t1, . . . , tn ∈ Mv and

2. if s is a subject of some triple in Mv, then ∀ (s, p, o) ∈ G : (s, p, o) ∈ Mv.

The vertex v is called anchor vertex7.

Definition 7. The directed molecule diameter of a molecule Mv is the longest
shortest path between the anchor vertex v and all objects contained in triples of
Mv.

Example 3. The molecule with directed diameter 1 of the anchor vertex g:gesis
in the example graph only contains the triple (g:Gesis, e:employs, g:wanja). A
molecule with diameter 2 of the same anchor vertex would additionally contain
(g:wanja, f:knows,w:daniel) and (g:wanja, f:givenname, ”Wanja”).

2.2 Formalization of Query Execution Strategies

We define the used SPARQL core as done in [16,107,110]. For this definition
the infinite set of variables V that is disjoint from IBL is required. In order to
distinguish the syntax of variables from other RDF terms, they are prefixed with
?. The syntax of SPARQL is defined as follows.

Definition 8. A triple pattern is a member of the set TP = (I ∪ L ∪ V ) ×
(I ∪ V ) × (I ∪ L ∪ V ).

Definition 9. A basic graph pattern (BGP) is a

1. triple pattern or
2. a conjunction B1.B2 of two BGPs B1 and B2.

Definition 10. A SELECT query is defined as SELECT W WHERE {B} with
W ⊆ V and B a BGP.

Example 4. The following SELECT query returns the names of all persons who
are known by employees of WeST and who own the dog Bello. It contains a basic
graph pattern that concatenates four triple patterns. In the following examples
?v1 <f:knows> ?v2 is abbreviated as tp1, ?v2 <f:givenname> ?v3 as tp2 and
so on. All following examples in this section will refer to this query.
6 We adapted the definition of an RDF molecule in [38] to allow for paths with a

length ≥ 1.
7 The term anchor vertex was taken from [79].
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SELECT ?v3 WHERE {
?v1 <f:knows> ?v2.
?v2 <f:givenname> ?v3.
<w:WeST> <e:employs> ?v1.
<gs:bello> <e:ownedBy> ?v2

}

Before the semantics of a SPARQL query can be defined, some additional defini-
tions are required. In the following Q represents the set of all SPARQL queries.

Definition 11. The function var : Q → V returns the set of variables occurring
in a SPARQL query. It is defined as:

1. var(tp) is the set of variables occurring in triple pattern tp.
2. var(B1.B2) := var(B1)∪var(B2) for the conjunction of the BGPs B1 and B2.
3. var(SELECT W WHERE {B}) := W ∩ var(B) for W ⊆ V and B a BGP.

Definition 12. A variable binding is a partial function μ : V �→ IBL. The set
of all variable bindings is O.

The abbreviated notation μ(t) with t ∈ TP means that the variables in t are
substituted according to μ.

Example 5. The following three partial functions are variable bindings, that
assign values to some variables. μ1 would be an intermediate result produced
by the first triple pattern of the example query in Example 4 whereas μ2 and μ3

would be produced by the second triple pattern.

μ1 = {(?v1,w:martin) , (?v2, g:wanja)}
μ2 = {(?v2, g:wanja) , (?v3, ”Wanja”)}
μ3 = {(?v2,w:martin) , (?v3, ”Martin”)}

Definition 13. Two variable bindings μi and μj are compatible, denoted by
μi ∼ μj, if ∀?x ∈ dom(μi) ∩ dom(μj) : μi(?x) = μj(?x).8

Example 6. The variable bindings μ1 and μ2 from Example 5 are compatible
since in both variable bindings g:wanja is assigned to ?v2 which is the only
variable occurring in the domains of both variable bindings. μ1 and μ3 as well
as μ2 and μ3 are not compatible because they assign different values to common
variables.

Definition 14. The join of two sets of variable bindings Ω1 and Ω2 is defined
as Ω1 �� Ω2 = {μ1 ∪ μ2|μ1 ∈ Ω1 ∧ μ2 ∈ Ω2 ∧ μ1 ∼ μ2}.
The variables contained in dom(μ1) ∩ dom(μ2) are called join variables.

8 dom(µ) refers to the set of variables of this binding.
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Example 7. The join of the two variable bindings sets {μ1} and {μ2, μ3}
from Example 5 produces a result set only containing the variable binding
{(?v1,w:martin) , (?v2, g:wanja) , (?v3, ”Wanja”)} because only μ1 and μ2 are com-
patible.

[16,107] define the semantics of a SPARQL query as follows:

Definition 15. The evaluation of a SPARQL query Q over an RDF Graph G,
denoted by �Q�G, is defined recursively as follows:

1. If tp ∈ TP then �tp�G = {μ|dom(μ) = var(tp) ∧ μ (tp) ∈ G}.
2. If B1 and B2 are BGPs, then �B1.B2�G = �B1�G �� �B2�G.
3. If W ⊆ V and B is a BGP, then �SELECT W WHERE {B}�G =

project(W, �B�G) =
{
μ|W |μ ∈ �B�G

}
.9

The execution of a query requires the translation of a SPARQL query into
a query execution tree. This tree defines the individual operations and their
execution sequence. Thereby, each node of the query execution tree consists of
three components: (i) the name of the operation to be executed, (ii) the set of
variables that are bound in the resulting variable bindings and (iii) the set of
child operations.

Definition 16. Let Lnode be the set of node labels and Υ = Lnode × 2V × 2Υ

the set of all query execution trees, then a query execution tree of a query Q,
denoted as 〈〈Q〉〉, is defined recursively as follows:

1. If tp ∈ TP then 〈〈tp〉〉 = (tp, var(tp), ∅).
2. If B1 and B2 are BGPs, then 〈〈B1.B2〉〉 = (join, var(B1) ∪ var(B2), {〈〈B1〉〉,

〈〈B2〉〉}).
3. If W ⊆ V and B is a BGP, then 〈〈SELECT W WHERE {B}〉〉 =

(project,W, 〈〈B〉〉).
Example 8. Figure 3 shows a graphical representation of one query execution
tree for the example query from Example 4. The following query execution tree
represents the first join in its mathematical representation. It has the two child
trees (tp1, {?v1, ?v2} , ∅) and (tp2, {?v2, ?v3} , ∅).

(join, {?v1, ?v2, ?v3} , {
(tp1, {?v1, ?v2} , ∅) ,

(tp2, {?v2, ?v3} , ∅)
})

9 µ|W means that the domain of µ is restricted to the variables in W .
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Fig. 3. Bushy query execution tree for the query from Example 4.

3 Architectures

The RDF stores in the cloud can be categorized into three groups that charac-
terize their architecture. The first type of RDF stores in the cloud make use of
cloud computing frameworks (see Sect. 4). These frameworks hide the complexity
of distributed systems from the developers. This reduced developing complexity
comes with the cost of limited influence on, e.g., the data placement. To over-
come these limitation, developers of distributed RDF stores have to address the
challenges of data placement, distributed query processing and fault tolerance on
their own (see Sect. 3.2). In contrast to this, federated RDF stores aim to query
data from several RDF stores that manage the stored data on their own (see
Sect. 3.3). One application scenario would be querying several remote SPARQL
endpoints that can be found in the linked open data cloud.

One RDF store in the cloud that caused a lot of attention after its launch is
Neptune10. Due to a lack of descriptions that can be found, it is unclear which
architecture it has.

3.1 RDF Stores Using Cloud Computing Frameworks

Implementing a distributed system is a challenging task. To reduce the complex-
ity, several RDF stores in the cloud are realized on top of cloud computing frame-
works. As shown in Fig. 4, these RDF stores need a master node that translates
the RDF graph into some format that can be stored within the cloud computing
frameworks. This is the job of the graph converter. Similarly, SPARQL queries
need to be translated into queries or tasks that can be executed on the cloud
computing framework to produce the query results that are then transferred
back to the user. This is done by the query translator.

One of the first cloud computing frameworks that was used to build RDF
stores in the cloud is Hadoop11 [135]. RDF stores like SHARD [116], HadoopRDF
[42] and CliqueSquare [44] transform the RDF graph into one or several files that
are stored in the distributed file system of Hadoop [128]. SPARQL queries are
translated into one or several jobs that are executed within Hadoop. Depending

10 https://aws.amazon.com/neptune/.
11 https://hadoop.apache.org/.

https://aws.amazon.com/neptune/
https://hadoop.apache.org/
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Fig. 4. Architecture of an RDF store using a cloud computing framework.

on how the RDF graph is separated into files, one or several files are processed
during query execution.

To simplify the usage of Hadoop, the high-level query language and execution
framework Pig12 [99] was developed on top of Hadoop. Instead of translating
SPARQL into Hadoop jobs directly, systems like PigSPARQL [122] and RAPID+
[72] translate SPARQL into the Pig query language. Pig then translate the code
into Hadoop jobs and tries to optimized the orchestration of the individual jobs.

One of the main limitations of Hadoop is that the result of each individual
task has to be written back into the distributed file system. To overcome this
limitation, Spark (see footnote 1) [143] was developed. Spark stores the result of
each job in main memory. These results can be used by several other jobs before
the final result is optionally persisted on disk. Spark is used by SPARQLGX
[50], S2RDF [124], SPARQL-Spark [96] and PRoST [29].

On top of Spark the graph processing framework GraphX13 [45] was devel-
oped. In this framework a graph can be loaded and algorithms can be performed
on it. These algorithms are vertex-centric, i.e., each vertex is able to receive, pro-
cess and send messages to its neighboured vertices. S2X [121] translates SPARQL
queries into such vertex-centric algorithms to produce the query results. Sim-
ilar to S2X TripleRush [130], Random Walk TripleRush [132] (both basing on
Signal/Collect [131]) and [46] use vertex-centric graph processing frameworks.

Another type of cloud computing frameworks are NoSQL (Not only SQL)
database systems. These systems usually scale well with a high number of com-
pute nodes and a fault tolerant. Their withdraw is that they usually do not
provide ACID transactions. One type of NoSQL systems are key-value stores.
These systems map a unique key to an arbitrary value. DynamoDB14 [34] is such
a distributed key-value store. It is used in AMADA [24] to index and store the
triples of the RDF graph.

Column-family stores are another type of NoSQL database systems. These
systems store tabular data like in relational databases. Instead of storing all data

12 https://pig.apache.org/.
13 https://spark.apache.org/graphx/.
14 https://aws.amazon.com/de/dynamodb/.

https://pig.apache.org/
https://spark.apache.org/graphx/
https://aws.amazon.com/de/dynamodb/
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of a row physically together, column-family stores locate all entries of a set of
columns (i.e., a column-family) physically together. Examples of these stores are
HBase (see footnote 2) (used by Jena-HBase [70], H2RDF+ [103]), Cassandra15

[77] (used by CumulusRDF [75]), Accumulo16 (used by Rya [114] and RDF-4X
[4]) and Impala17 [117] (used by Sempala [111,123]). RDF stores relying on these
column-family stores usually vary in the way how they store the RDF graph in
tables.

The last type of NoSQL database systems that are used in RDf stores are
document stores. Document stores store the data in documents which are objects
with arbitrary fields and values. Each of the fields can be used to index the data.
The RDF store [32] uses Couchbase18 and D-SPARQ [95] uses MongoDB19.

3.2 Distributed RDF Stores

In contrast to RDF stores that use cloud computing frameworks, distributed
RDF store have to address the challenges resulting from the distribution. To
reduce the complexity of these challenges, most distributed RDF stores are real-
ized with a master-slave architecture. In this architecture a dedicated compute
node is the master. It is responsible for coordinating the individual slaves that
store the RDF graph and process the queries. The disadvantage of this architec-
ture is that the master node can easily become a bottleneck of the distributed
RDF store. To overcome this limitation some distributed RDF stores are realized
with a peer-to-peer architecture in which the design of every compute node is
identical.

Distributed RDF Stores with Master-Slave Architecture. In distributed
RDF stores that have a master-slave architecture there exists one master and
several slaves. The master is a dedicate compute node that is responsible for
the coordination of all slaves. The slaves are the compute nodes that store the
graph and process the queries. The general architecture of such a distributed
RDF store is shown in Fig. 5.

When a graph is loaded, the master first replaces each string identifier of
a resource by a shorter unique integer identifier. This replacement reduces the
storage size of the graph that needs to be processed. The mapping between the
string and integer identifiers are stored in the dictionary. Thereafter, the graph
cover creator assigns the triples to the individual slaves. Thereby, an index is
created which keeps track on which slave which part of the graph is stored. Each
slaves stores the triples assigned to him in its local RDF storage.

15 https://cassandra.apache.org/.
16 https://accumulo.apache.org/.
17 https://impala.apache.org/.
18 https://www.couchbase.com/.
19 https://www.mongodb.com/.

https://cassandra.apache.org/
https://accumulo.apache.org/
https://impala.apache.org/
https://www.couchbase.com/
https://www.mongodb.com/
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Fig. 5. Architecture of a master-slave distributed RDF store.

In order to query the RDF store, a query is send to the master. The query
coordinator first encodes all string identifier in the query with the help of the
dictionary. The query is then translated into a query execution tree and opti-
mized. With the help of the index, the query coordinator can decide which part
of the query can be executed on which slave and initiates the query processing on
the slaves. On each slave the query processor processes the (sub)query assigned
to him on the local RDF storage. The intermediate results can then be directly
exchanged between all slaves. The final results are sent back to the query coordi-
nator. With the help of the dictionary the query coordinator replaces the integer
identifier of the results by it string identifier and sends them back to the user.

The architectures of Custered TDB [102], COSI [23], Partout [43],
GraphDB [17], Blazegraph [2], SemStore [138], TriAD [52], DREAM [55,105],
DiploCoud [104,139] are as described above. But there also exist variations of
this architecture. For instance in Trinity.RDF [144], WARP [62], YARS2 [60]
and 4store [58] the query coordinator also has to join intermediate results.

Some of the components of the master can be distributed among the slaves.
For instance, in EAGRE [145] the graph cover creation is performed on all slaves
in parallel and the index is distributed over all slaves. Furthermore, distributed
RDF stores do not necessarily need all of the presented components. For instance,
PHDStore [10], 2way [27,106] do not need a global index and/or dictionary. If
distributed RDF stores adapt the graph cover during runtime based on the actual
workload, the master also contains a redistribution controller as in AdPart [57],
AdHash [9,56] and Spartex [5].

Beside these pure distributed RDF stores there also exist hybrid RDF stores
that also use some cloud computing infrastructure. In Sedge [141] a reimplemen-
tation of Pregel [84] is used to process distributed queries. A more common app-
roach is, to use Hadoop to process only distributed joins as done in [39,63,142],
SPA [81], VB-Partitioner [79], SHAPE [80,137].
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Distributed RDF Stores with Peer-to-peer Architecture. In distributed
RDF stores that follow the peer-to-peer architecture all compute nodes – called
peers – consist of the same components. This architecture has the advantage that
no single compute node can become a bottleneck by design. The disadvantage
is that usually no compute node knows how many compute nodes exist and
how the data is distributed among all compute nodes. Usually in systems like
Edutella [37,97], RDFPeers [25], PAGE [35], GridVine [6,31], RDFCube [87],
Atlas [67], 3RDF [12,13,101], a distributed index is used that routes requests to
the compute node storing the requested data. Since this distributed index is the
central component of the architecture, the implementation choice of the index
determines how the triples of the RDF graph are assigned to the compute nodes.
The architecture of most peer-to-peer distributed RDF stores is shown in Fig. 6.

Graph Cover Query

Peer Node

Creator Coordinator

Local RDF Storage

Query Processor

Index

Graph Cover Query

Peer Node

Creator Coordinator

Local RDF Storage

Query Processor

Index

Graph Cover Query
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Local RDF Storage

Query Processor

Index

Fig. 6. Architecture of a peer-to-peer distributed RDF store.

To load an RDF graph, the complete graph can be sent to any compute
node. The graph cover creator asks the distributed index on which compute
node the individual triples should be created. Based on this decision the triples
are distributed over the compute nodes. When a compute node receives triples
from a graph cover creator, it inserts them into its local RDF store and updates
the distributed index. In order to speed up the graph loading procedure, the
RDF graph can be split into several parts that are processed by the graph cover
creators on several compute nodes in parallel.

When a user sends a query to any of the compute nodes, the query coordina-
tor creates the query execution tree. Based on the index the query coordinator
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decides which part of the query execution tree is sent to which compute node.
When a query processor receives some subquery from a query coordinator, it
retrieves the requested information from its local RDF store. The intermedi-
ate results are sent to other compute nodes or back to the query coordinator
where they will be further processed. Finally, the query coordinator computes
the overall results and send them back to the user.

In contrast to the master-slave architecture, peer-to-peer distributed RDF
stores usually do not have a global dictionary. As a consequence string identifiers
are used when transferring triples during the loading of a graph or intermediate
results during the query processing.

3.3 Federated RDF Stores

In the linked open data cloud20 there exist many public datasets and SPARQL
endpoints. In order to combine several datasets and query them together a naive
approach would be to download all datasets and load them into a single RDF
store. This naive approach has several disadvantages. First of all, it requires
a lot of computational resources to store and process several datasets at once.
Furthermore, when the datasets change, the system would need to keep track of
these changes and update its local copies of the datasets.

Query

Query Federator

Coordinator Index

RDF Store

Local RDF Cache

RDF Store

Fig. 7. Architecture of a federated RDF store.

To overcome these limitations, federated RDF stores have been developed.
Their basic idea is to query remote RDF stores directly. The general architecture
of federated RDF stores is shown in Fig. 7. In order to query the remote RDF
stores a global index is required that indicates which RDF stores contain data
that are relevant for the query. This index is created by retrieving statistical
information that are provided by the remote RDF stores (e.g., SPLENDID [48],
WoDQA [8], LHD [134], DAW [120], SemaGrow [26], FEDRA [91], LILAC [92]
and Odyssey [90]) or the user (e.g., DARQ [115]), by sending special queries to
the remote RDF stores (e.g., FedX [127], ANAPSID [7,93], Lusail [86]) or by

20 http://lod-cloud.net/.

http://lod-cloud.net/


186 D. Janke and S. Staab

observing the results that are returned during the processing of user queries
(e.g., ADERIS [83]). Also combinations of these strategies are possible as in
Avalanche [18]. Also the absence of the index is possible if the resource IRIs are
dereferenced as proposed by SIHJoin [76].

When a user sends a query, the query coordinator transforms it into a query
execution tree. With the help of the index it can decide from which remote RDF
store can contributed to the query. Based on this decision it forwards the query
or parts of it to the corresponding remote RDF stores. The returned intermediate
results are joined by the query coordinator and finally sent back to the user. In
order to speed up the query execution, the query federator also contains a local
RDF cache in which data retrieved by previous queries is cached. This cached
data can be reused for future queries, which might reduce the number of queries
that needs to be sent to the remote RDF stores.

4 Graph Cover Strategies

One core aspect of RDF stores in the cloud is, how the RDF graph is distributed
among the compute nodes, resulting in a graph cover. A common procedure to
create a graph cover is to first split the RDF graph into small possibly over-
lapping subsets. Thereafter, this graph subsets are assigned to compute nodes.
In RDF stores that bases on cloud computing frameworks, the influence on
how this assignment to compute nodes is done is usually limited. Therefore, in
Sect. 4.1 is described how a graph is split into subsets that are then stored in
the cloud computing framework. The graph cover strategies of distributed RDF
stores can in general be separated into three categories: (i) hash-based graph
cover strategies (see Sect. 4.2), (ii) graph-clustering-based graph cover strategies
(see Sect. 4.3) and (iii) workload-aware graph cover strategies that distributes
the graph based on a historic query workload (see Sect. 4.4). In order to reduce
the amount of queries that need to combine data from different compute nodes,
the n-hop replication was proposed that replicates triples at the border of the
chunks of arbitrary graph cover strategies (see Sect. 4.5).

When RDF stores are queried frequently, the initial distribution of the graph
on the compute nodes might be suboptimal for the current query workload. To
improve the query performance, some RDF stores have implemented a dynamic
graph cover strategy (see Sect. 4.6). This strategy observes the current query
workload and tries to optimize the data placement by moving or copying parts
small triple sets from one compute node to another.

Since there are is huge number of graph cover strategies, we focus in this
section only on the most frequently graph cover strategies and give only hints
to a few variations that can be found. We do not present exotic graph cover
strategies that were only used in a single RDF store. Parts of this section was
taken from [64].
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4.1 Graph Cover Strategies in Cloud-Computing-Framework-Based
RDF Stores

RDF stores that build on cloud computing frameworks have usually limited
influence how the data is placed on the individual RDF stores. There influence
is limited to the way how the RDF graph is split into subsets that are stored
in files or tables. The goal of splitting the RDF graph into subsets is to reduce
the amount of triples that need to be processed during the query execution.
This is achieved by storing all triples with the same subject, object, predicate
or combinations of them in the same file or table.

Molecule Graph Splits. In order to process star-shaped queries efficiently,
the RDF graph is split into molecules of diameter 1. This means that all triples
with the same subject are stored in one file (Fig. 8). D-SPARQ [95], follows this
approach. The advantage of the molecule graph cover is that star shaped queries
whose triple patterns are joined on a subject no join needs to be processed. In
case of a constant subject only a single file needs to be processed.

Fig. 8. The example graph split into molecules.

In order to reduce the number of required joins, RAPID+ [72] proposes to
store all triples that have the same resource identifier at a subject or object
position in a single file. Additionally, RAPID+ reduces the number of joins by
increasing the molecule diameter in order to process path-shaped queries more
efficiently.

In some RDF stores like Stratustore [129], Sempala [123] and SHARD [116]
all molecules are stored in a single table. Each molecule is basically represented
by a single row in this table with the subject as unique identifier. The predicates
are the column names and the object as the value stored in each cell. If the
combination of subject and property occurs in several triples, these cells store a
list of objects or several rows for this subject are created. This storage layout is
called property table in the literature.
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Vertical Graph Splits. The basic idea of the vertical cover originated in [3]
to store RDF data in a relational database so that for each property a table
is created in which all triples with this property are stored. In the context of
distributed RDF stores, approaches like Jena-HBase [71], PigSPARQL [122,146]
and SPARQLGX [124] store all triples with the same property in a file or table
(Fig. 9). The advantage is that it is easy to compute but a query that matches
with paths of length l will only match with triples on at most l compute nodes.
Thus, this graph cover strategy is likely to result in an imbalanced workload and
a high number of exchanged intermediate results.

Fig. 9. An example vertical graph split of the example graph.

One disadvantage of the vertical graph split as presented above is, that fre-
quently occurring properties like rdf:type lead to very large files. Therefore, the
RDF store HadoopRDF [42] splits these tables based on combinations of prop-
erties and the RDFS types of the objects.

Another variant of the vertical graph split is realized in S2RDF [124]. In
order to reduce the number of joins that need to be processed, they additionally
create tables for all possible subject-subject and subject-object joins of triples.

4.2 Hash-Based Graph Cover Strategies

Hash Cover. A hash cover assigns triples to chunks according to the hash value
computed on their subjects modulo the number of compute nodes. Thus, all
triples with the same subject – i.e., a molecule – are located in the same graph
chunk. This graph cover strategy is used, for instance, by Virtuoso Clustered
Edition [40], VB-Partitioner [79], SPA [81], 4store [58] and AdHash [9].
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Example 9. The following hash function produces the graph cover shown in
Fig. 2.

∀r ∈ {g:Gesis, g:wanja,w:martin}: hash(r):= 1
∀r ∈ {g:bello,w:WeST,w:daniel}: hash(r):= 2 .

The advantages of the hash cover are that it is easy to compute and due to
a relatively random assignment of triples to compute nodes the resulting graph
chunks will have similar sizes. The disadvantages are that it may lead to a high
number of exchanged intermediate results if a query matches with long paths.
Since all hash covers are subject-contained, this graph cover strategy might be a
good choice if the expected queries will only match with paths of a short length
(ideally 1).

Beside the subject, distributed RDF stores like Trinity.RDF [144], Clus-
tered TDB [102], YARS2 [59,60] and RDFPeers [25] also use property and/or
the object to assign each triple three times to the compute nodes.21 Addition-
ally, RDF stores like PAGE [13,35] append at least two elements of each triple
and use the hash of the result to assign triples to compute nodes.

Hierarchical Hash Cover. Inspired by the observations that IRIs have a
path hierarchy and IRIs with a common hierarchy prefix are often queried
together, SHAPE [80] uses an improved hashing strategy to reduce the inter-
chunk queries. First, it extracts the path hierarchies of all IRIs. For instance,
the extracted path hierarchy of “http://www.w3.org/1999/02/22-rdf-syntax-
ns#type” is “org/w3/www/1999/02/22-rdf-syntax-ns/type”. Then, for each
level in the path hierarchy (e. g., “org”, “org/w3”, “org/w3/www”, ...) it com-
putes the percentage of triples sharing a hierarchy prefix. If the percentage
exceeds an empirically defined threshold and the number of prefixes is equal
or greater to the number of compute nodes at any hierarchy level, then these
prefixes are used for the hash cover.

Example 10. Assume the hash is computed on the prefixes gesis and west of the
subject IRIs in the example graph. If the hash function returns 1 for gesis and 2
for west the resulting hierarchical hash cover is shown in Fig. 10.

In comparison to the hash cover the creation of a hierarchical hash cover
requires a higher computational effort to determine the IRI prefixes on which the
hash is computed. For queries that match with paths in which the subjects and
objects have the same IRI prefix the number of exchanged intermediate results
may be reduced. This reduction might come at the cost of a more imbalanced
query workload since only a few chunks will contain these paths. Thus, the use
of the hierarchical hash cover might be beneficial (i) if the network connecting
the compute nodes is slow or (ii) if other functionality such as prefix matching
benefits from the hierarchical hash cover.
21 If the hash cover is only computed on the predicate, the resulting graph cover would

be similar to the vertical graph split.

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
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Fig. 10. An example hierarchical hash cover which is also a minimal edge-cut cover of
the example graph.

4.3 Graph-Clustering-Based Graph Cover Strategies

Graph clustering considers splitting a graph into partitions, i.e., a graph cover
with pairwise disjoint graph chunks. In this area a wide variety of algorithms
were developed (for instance, see the survey [85]). The basic idea is that an
RDF graph is partitioned by one of these algorithms. Since most of the graph
clustering algorithm create an assignment from vertices to compute nodes, the
triple are usually assigned to the compute node to which its subject was assigned
to. The most frequently applied graph clustering approach is the minimal edge-
cut partitioning which described below.

Another rarely used graph clustering algorithm tries to optimize the mod-
ularity. The modularity measures the difference between the actual number of
edges within the partitions and the expected number of such edges. This strategy
was applied for instance by MO+ [113].

Minimal Edge-Cut Cover. The minimal edge-cut cover is a vertex-centred
partitioning which tries to solve the k-way graph partitioning problem as
described in [69]. It aims at minimizing the number of edges between vertices
of different partitions under the condition that each partition contains approxi-
mately |VG|

k many vertices. Details about the computation of k-way graph par-
titioning and the targeted approximation can, e.g., be found in [69]. RDF stores
like D-SPARQ [63,95,105] convert the outcome of the minimal edge-cut algo-
rithm, i.e., a partitioning of VG, into a graph cover of G by assigning each triple
to the compute node to which its subject has been assigned.

Example 11. A minimal edge-cut algorithm might assign the resources g:Dog,
g:Gesis, g:bello, g:wanja and ”Wanja” to compute node c1 and all other resources
to compute node c2. For our specific running example the result of the minimal
edge-cut cover strategy is identical to the results of the hierarchical hash cover
strategy depicted in Fig. 10.
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In this example there exist two edges connecting vertices assigned to different
chunks. One is the f:knows edge starting at g:wanja and ending at w:daniel. The
other is the f:knows edge starting at w:martin and ending at g:wanja. Since the
subject g:wanja of the first triple is assigned to c1, this triple is assigned to c1.
The subject of the second triple w:martin is assigned to c2. Therefore, this triple
is assigned to c2.

Since the minimal edge-cut cover considers the graph structure, the creation
of the graph cover requires a high computational effort. The advantage of consid-
ering the graph structure might be a reduced number of exchanged intermediate
results. This would make the minimal edge-cut cover a good choice if the network
connection between compute nodes is slow.

In order to optimize the query performance, TriAD [52] creates an over-
partitioning. For instance, to create a graph cover that assigns triples to 5 com-
pute nodes, 100k-200k partitions are created. These partitions are then assigned
to compute nodes. To improve the performance of queries that use RDFS schema
information, in [108] the RDFS schema is replicated to all graph chunks. Since
the minimal edge-cut can lead to graph chunks whose cardinally vary strongly,
[133] proposes to weight vertices by the number of triples in which it occurs.

An alternative optimization is performed by EAGRE [145]. Instead of par-
titioning the original graph, a minimal edge-cut cover of the summary graph is
created. Each vertex of the summary graph represents a set of molecules that
have similar predicates. An edge (v1, v2) in the summary graph is created, if any
anchor vertex of the molecules contained in v2 occur as object in any molecule
contained in v1. The vertices are weighted by the number of molecules they con-
tain. This graph cover strategy ensures that molecules with similar predicates
are stored on the same compute node.

4.4 Workload-Aware Graph Cover Strategies

Another type of graph cover strategies assume that the query workload does
not change much over the time. Therefore, they learn from a historic query
workload which triples have been frequently queried together first. Based on
this knowledge they try to find a optimal graph cover for future queries. These
approaches are, for instance:

– The novel idea applied in WARP [62] is creating an initial minimal edge-cut
cover and then replicate triples in a way such that all historic queries can be
answered locally.

– In COSI [23] edges are weighted based on the frequency they are requested
by the historic query workload. Thereafter, a weighted minimal edge-cut par-
titioning is performed leading to an improved horizontal containment.

– In [17] the resulting graph cover aims to balance the overall workload of all
queries equally among all compute nodes. Thereby, each query is processed
by a single compute node in an ideal case. To reach this goal, the proposed
algorithm assigns the triples required by the queries to compute nodes in a
way that the number of replicated triples is reduced.
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– In Partout [43] the queries contained in the historic query workload are
first generalized by replacing every rarely queried subject or object con-
stants by variables. Thereafter, the matches of this generalized triple patterns
are assigned to compute nodes in a way that (i) ideally each query can be
answered by a single compute node without replicating triples and (ii) the
query workload of all queries is distributed equally among all compute nodes.

– DiploCloud [139] generalizes the queries in the historic query workload by
using schema information. Then triple sets are computed that can produce a
single query result. Finally, the triple sets are distributed equally among all
compute nodes.

4.5 nnn-Hop Replication

Whenever a query combines data from different graph chunks, intermediate
results need to be exchanged between different compute nodes. To reduce the
number of exchanged intermediate results for a subject-complete graph cover
of graph G, the n-hop replication strategy extends each of its chunks chi by
replicating all triples contained in some path of length ≤ n in G starting at
some subject or object occurring in chi. This way all queries that match with
paths of length ≤ n could be processed without exchanging intermediate results.
The n-hop replication is used by systems like [63], VB-Partitioner [79] and D-
SPARQ [95].

Fig. 11. The 2-hop extension of the hash cover in Fig. 2.

Example 12. Applying the 2-hop replication extension on the hash cover in Fig. 2
results in the 2-hop hash cover shown in Fig. 11. In this cover a query could
match with the path (g:bello, e:ownedBy, g:wanja) , (g:wanja, f:knows,w:daniel) on
compute node c2 without the need to exchange intermediate results.
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The n-hop replication may reduce the number of transferred intermediate
results at the cost of replicating triples. This replication will increase the effort
to create the graph cover and increase the size of the graph chunks. Furthermore,
the replication might cause a higher computational effort during the query pro-
cessing since the replicated triples might lead to duplicate intermediate results.
Thus, using the n-hop replication might be beneficial if the network connecting
the intermediate results is slow and the number of replicated triples is low.

4.6 Dynamic Graph Cover Strategies

Graph covers created by one of the graph cover strategies above can lead to a high
amount of data transfer between compute nodes, if the actual query workload
needs to combine data stored on different compute nodes. In order to overcome
this limitation, PHD-Store [9] and AdHash [9] keeps track of basic graph patterns
that are queried frequently. When the frequency exceeds a threshold, triples that
match with these frequent triple patterns are replicated in a way that these basic
graph patterns can be executed locally.

Instead of only trying to reduce the network communication, Sedge [9] tries
to primarily distribute the query workload equally among the compute nodes.
Therefore, Sedge keeps track how frequently the molecules are queried together.
If a set of molecules are queried together with a high frequency, these set of
molecules is replicated to a compute node with a low workload.

Another type of graph cover strategies assumes that during runtime new
triples can be added to the RDF store. In this setting it may happen that a single
compute node stores much more triples then other compute nodes. To prevent
the compute node from being overloaded, the triples of that compute node can
be redistributed based on the prefix of some hash values (as done in [101]).
Another strategy is performed by [19]. The triples are sorted lexicographically
and one half of them is sent to another compute node. In both cases the systems
keep track to which compute node they have moved the triples.

5 Indices

RDF stores in the cloud distributed the triples of an RDF graph over several
computers. When a query is sent to these RDF stores, they require an index
which can tell on which compute nodes the data contributing to the query pro-
cessing is located. These indices are either stored on a single compute node – i.e.,
the master or the query federator – (see Sect. 5.1) or they are distributed over
several compute nodes (see Sect. 5.2). A centralized index has the advantage that
it has knowledge about all graph chunks. To reduce the size of the index, some
type of aggregation needs to be applied. In contrast to this distributed indices
need fewer aggregation, since they are stored across all compute nodes. But a
single index lookup might require the routing of the lookup via several compute
nodes until the required information is found.
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5.1 Centralized Indices

Hash-Based Index. In distributed RDF stores that apply some variant of a
hash cover strategy (for instance, Virtuoso Clustered Edition [40], 4store [58] or
Trinity.RDF [144]), no explicit index is required. Based on the knowledge of all
compute nodes, the hash function and the triple elements that were hashed, the
compute node to which triples following a specific pattern were assigned can be
identified.

Statistics-Based Index. Another type of centralized indices base on statistical
information about the resources occurring in the individual graph chunks. In
RDF stores like DARQ [115], FedX, [133] and Sedge [141] the frequency of every
subject, property and object in each chunk is counted and stored. Since these
information do not tell anything about the RDFS types contained in the graph
chunks, systems like SPLENDID [115], WoDQA [115], LHD [115], SemaGrow
[115], Avalanche [115] bases on VoID descriptions [11] of each graph chunk.
These descriptions contain the occurences of URIs in the dataset, the used RDFs
types and the properties that occur in triples whose objects occur as subject in
triples assigned to a different compute node. Since these information might be
complicated to collect in a federated setting, if the remote RDF stores do not
provide VoID descriptions, ANAPSID [115] restricts itself to only count the
occurrences of properties and RDFS types.

If a triple pattern with two constants is requested, the indices described
so far could only restrict the number of queried compute nodes by either of
the two constants. To restrict the number of queried compute nodes even fur-
ther, LILAC [92], SemStore [138] additionally count how frequently all subject-
property, property-object and subject-object combinations occur.

Since not all subjects and objects occurring in a dataset have an RDFS
type, the RDF store Odyssey [90] defines the type of an subject v by the set of
properties occurring in its molecule Mv. Since the number of types might me
very large, types with similar property sets are merged. Additionally, it counts
how frequently instances of molecule types are connected by properties.

Summary-Graph-Based Index. In distributed RDF stores summary graphs
are created. This summary graph can be queried to identify compute nodes that
store triples required for the processing of a query. The definition of a summary
graph differ between the RDF stores.

In TriAD [52] each graph chunk becomes a vertex in the summary graph.
Since TriAD uses minimal edge-cut cover, the underlying algorithm assigns each
vertex to a compute node. For each triple (s, p, o), an edge with label p is crated
in the summary graph that connects the vertices representing the chunks stored
on the compute nodes to which s and o were assigned to. To reduce the size of
the summary graph, all edges connecting the same vertices and having the same
label are represented by only a single edge.
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Fig. 12. The summary graph of the graph cover shown in Fig. 10 used by TriAD.

Example 13. Figure 12 shows the summary graph created from the minimal edge
cut cover in Fig. 10. The vertices represent the compute nodes. For instance, c1
represents the graph chunk of compute node c1. The self-loop at the vertices
represent the properties occurring within these compute nodes. To simplify the
graphic, all labels were attached to a single edge instead of creating an own edge
for every label. The two edges connecting both vertices represent both triples
whose subject and object were assigned to different compute nodes.

Another type of summary graph is used by EAGRE [145]. Vertices in the
summery graph represent molecule types. A molecule type is a set of all proper-
ties that occur in at least one molecule. To reduce the number of molecule types,
molecule types with similar properties are merged. Each triple t contained in a
molecule of type T1 whose object is the anchor vertex of another molecule of
type T2 will result in an edge with the label of the property that connects the
vertices T1 and T2 of the summary graph.

Fig. 13. The summary graph of the graph cover shown in Fig. 10 used by EAGRE.

Example 14. Figure 13 shows the summary graph created by EAGRE for the
graph cover shown in Fig. 10. The three vertices represent the three different
molecule types. The properties occurring in molecules of that type are written
in the upper part of the vertex. The compute nodes on which molecules of that
type can be found are listed in the bottom part of each vertex. The leftmost
vertex represents the dog molecule, the middle vertex represents the employee
molecules and the right vertex represents the institutes molecules. The e:employs
edge connecting the institutes molecule type with the employees molecule type
represents the edges that connect the two institutes with their employees.
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5.2 Distributed Indices

In distributed indices every compute node knows only a part of the complete
index. In order to find every entry of the complete index, the compute nodes have
to forward the index lookup request to other compute nodes, until the compute
node knowing the requested information is found. In order to route these index
lookups, overlay networks are created that define to which compute node an
index lookup should be forwarded.

Hash-Based Index. If a distributed RDF store uses a hash partitioning, each
compute node can determine on which compute node a triple can be found,
by knowing the set of all available compute nodes. This approach is done, for
instance, by HDRS [22] and Virtuoso Clustered Edition [41].

c1

c2

c3

c4c5

c6

c7

(a) Ring overlay.

c1 c2 c3 c4

0 1

00 01 10 11

(b) Tree overlay.

Fig. 14. The different types of overlay networks used in distributed hash indices.

In peer-to-peer distributed RDF stores, the set of all compute nodes might
be large and change over time. To prevent the replication of this set and keeping
it up-to-date on all compute nodes, each compute node only stores a set of
neighboured compute nodes, to which index lookups might be forwarded. The
definition of the neighbourhood creates an overlay structure. In peer-to-peer
distributed RDF stores the following overlay structures are used frequently:

Ring structure. In RDFPeers [25], PAGE [35], Atlas [67] and [82] the compute
nodes are order, e.g., by their IP address. This order defines the direct neigh-
bours of each compute node. To ensure that every compute node has exactly
two neighbours, the first and last compute node are defined as neighbours. An
example of the resulting ring is shown in Fig. 14a. If only the ring structure
would be given, finding a compute node that stores the requested data would
take linear time. To reduce the lookup time, each compute nodes stores short-
cuts to compute nodes at later positions in the ring. For instance, compute
node c1 knows compute nodes c2, c3 and c5. If c1 is asked whether it knows
some information about resource r, it can compute with the hash that triples
with this resource would have been assigned to, e.g., c6. Since he does not
know c6 he sends the request to c5 which is closest to c6.
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Tree structure. In GridVine [6,31], UniStore [68], 3RDF [12–14] the overlay net-
work is based on a prefix tree as shown in Fig. 14b. Each vertex in this tree
represents a prefix. The root has an empty prefix, the left child of the root
node has the prefix 0 and the leaf c1 stores all triples with resources whose
hash value start with 00. Each compute node knows the path from the root
to itself. For each node n in the path, the compute node knows one compute
node contained in the subtree of the siblings of n. For instance c1, would
forward every hash with prefix 01 to compute node c2 and every hash with
prefix 1 to compute node c3.

Combinations of both overlay structures can be found in [19,101]. The basic
idea is initially they use the ring overlay structure. If one compute nodes has to
store too many entries, it redistributes it triples based on a tree structure.

Schema-Based Index. Instead of using hash-based indices, the RDFS types
can be used to distribute data. The RDFS types contained in a dataset usually
build a type hierarchy. Similar to the tree overlay structure presented above,
each compute node is responsible for the instances of the RDFS types assigned
to him. If a compute node should retrieve instances of a given type T that is not
assigned to him, it searches for a superclass of T for which he knows a responsible
compute node and forwards the request to it. This so called semantic overlay
network [30] is used, for instance, by SQPeer [73].

Chunk-Integrated Summary Graph Index. A completely different type of
distributed index is presented in [108,109]. It adapts the idea of the summary
graph from TriAD as described in Sect. 5.1. Instead of realizing an separate index
structure, it integrates the summary graph into its local RDF storage. With
the help of these additional information a compute node can decide, whether
the triples of another compute node has data that might lead to further query
results.

Example 15. Figure 15 shows the minimal edge-cut graph cover from Fig. 10
extended by the triples from the summary graph. On c1 the graph chunk from
c2 is represented by a super vertex named c2. All triples whose subject or object
is contained in the graph chunk of c1 but the counterpart not, is represented by
an edge connecting the vertex within the chunk of c1 with the super vertex rep-
resenting the graph chunk in which the other vertex is contained. For instance,
the subject of the triple w:daniel f:knows w:martin is contained in the chunk
of c1 whereas its object is only contained in the chunk of c2. Therefore, the
chunk of c1 is extended by the triple w:daniel f:knows c2. Furthermore, for
each property p label occurring in the graph chunk of c2, a triple c2 p c2 is added
to the chunk of compute node c1.

6 Distributed Query Processing Strategies

RDF stores in the cloud distribute RDF graphs over several compute nodes.
One challenge which arises from this distribution is how to query the distributed
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Fig. 15. The summary graph integrated into the graph cover shown in Fig. 10.

graph. In general RDF stores in the cloud try to compute as much on the graph
chunks as possible without the need to exchange data. Therefore, the received
query is decomposed into subqueries that can be executed only on the individ-
ual graph chunks stored on a single compute node. In the simplest case these
subqueries consist of a single triple pattern. Other systems can make use of
some properties of the underlying graph cover. For instance, SHARD [103] uses
a graph cover that assigns all triples with the same subject to one compute node.
As a result, all star-shaped subqueries can be executed locally. Another example
are RDF stores that make use of the n-hop replication. This replication ensures
that all queries that match with a subgraph with diameter n can be executed
locally. If the local RDF storage is able to return all partial matches of the query,
the complete query can be executed by the local RDF storage. With the help of
the indices, the number of compute nodes that can contributed to a subquery
can be restricted.

The intermediate results of the subqueries needs to be joined in order to
produce the overall query result. Several RDF stores transfer all intermediate
results to a single compute node that is then responsible for joining it (see
Sect. 6.1). If a huge number of intermediate results are produced, the joining
compute node might be overloaded. Therefore, several RDF stores distribute
the join computation over several compute nodes (see Sect. 6.2). An example
how queries are executed in distributed graph processing frameworks is given in
Sect. 6.3.
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6.1 Centralized Join

Especially in federated RDF stores, the intermediate results of subqueries that
were executed on remote RDF stores have to be joined on the query federator.
Thereby, the join strategies of relational databases are applied. The following
join strategies are used:

Nested loop join [89]: For each element in the intermediate result list of the first
subquery, the intermediate result list of the second result list needs to be
iterated completely to find all join candidates.

Merge join [89]: For this join the intermediate result lists must be ordered. One
list is iterated and for each element the join candidates in the other list can
be retrieved. Due to the ordering the other list does not need to be traversed
from the beginning. Instead only the elements with the same value of the
join variable needs to be reiterated. This join is performed by the distributed
RDF store Partout [43].

Hash join [36]: The intermediate results of the subqueries are stored in separate
hash tables. Each hash table distributes the results into several buckets. If
both hash tables use the same number of buckets, only the intermediate
results of two buckets need to be joined at once. When all buckets are joined,
the join is finished.

Symmetric join [136]: This type of join is a non-blocking hash join. For every
subquery a hash table is created that stores the already received intermediate
results. When a new intermediate result is received, it is joined with all join
candidates in the other hash tables. The results are emitted and the inter-
mediate result is inserted in the hash table of the subquery that produced it.
This join strategy is performed by, e.g., ANAPSID [7] and LHD [134].

Bind join [54]: In order to perform a bind join, the first subquery is executed. For
each returned distinct intermediate variable binding μ, the second subquery
is executed. Thereby, all variables bound by μ in the second subquery are
substituted by the bound values. This type of join is performed by, e.g., FedX
[127], Avalanche [18] and SemaGrow [26].

Beside performing a single type of join operation, RDF stores like DARQ
[115] and SPLENDID [48] choose between a bind join and a nested loop join or
between a bind join and a hash join, respectively. The choice depends on the
expected number of returned results.

Another join strategy is performed by [105]. In this distributed RDF store
partial evaluation [65] is performed. This means that the complete query is
executed on the local RDF stores of each compute node. These local RDF stores
return the overall results and all intermediate results. For each intermediate
result the subquery that created the result is returned. The intermediate results
from all compute nodes are sent to a single compute node who finally joins the
intermediate results and returns the overall results.
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6.2 Decentralized Join

The subqueries in which a query is decomposed can easily produce a large num-
ber of intermediate results. Joining all intermediate results on a single compute
node can overload the capacity of this compute node. To overcome this limitation
several RDF stores in the cloud apply distributed joins.

Replication-Based Distributed Join. In order to distribute the number
of join computations over the individual compute nodes, in SemStore [138] all
intermediate results of a subquery are sent to all compute nodes on which the
succeeding subquery is executed. This strategy increase the amount of trans-
ferred intermediate results but each compute node only joins its local results
with the intermediate results produced by the other compute nodes.

Distributed Hash Join. In DiploCoud [139] the intermediate results of the
subqueries are joined by a distributed hash join. Basically, the distributed hash
join is similar to a centralized hash join. The only difference is that each compute
node is a bucket of the used hash table.

The hypercube hash join was initially presented in [20] and was used in the
distributed RDF store presented in [28]. The basic idea is that for each join
variable one dimension is created. For instance, if a query has three join vari-
able, three dimensions are created. Therefore, we need to arrange the compute
nodes as a three-dimensional cube. Each compute node is responsible for one
cubic region within in this cube. Thereafter, every triple pattern is executed in
parallel producing variable bindings. If the variable binding {(?v1, w:martin)} is
produced, it is forwarded to all compute nodes that are responsible for the value
hash(w:martin) in the ?v1-dimension. Each compute nodes performs a local
join of the variable bindings it has received from the different triple patterns.
Depending on the selection of the regions each compute node is responsible, the
workload can be equally distributed among all compute nodes.

Distributed Merge Join. In a distributed merge join the intermediate result
lists of the subqueries are sorted by the values of the join variables. Thereafter,
each compute node receives all elements within a specific value range and joins
them. This type of join is primarily performed in Hadoop-based RDF stores like
H2RDF+ [103], SHARD [63,103] and Spark-based RDF stores like SparkRDF
[140] and SPARQLGX [50].

Distributed Bind Join. On way to realize a distributed bind join is imple-
mented in AdHash [9]. The first triple pattern is executed on each compute
node. Thereafter, each compute node performs a centralized bind join based on
the variable binding the first triple pattern has produced on this compute node.

In RDFPeers [25], GridVine [6,31], Atlas [67] and 3RDF [12] a hash cover
is applied which each triple is stored on at most three compute nodes based
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on the hash of its subject, property and object. As a consequence all triples in
which one resource occurs are located on the same compute node. Since usually
each triple pattern of a query contains at least one constant, all matches for
this triple pattern can be found on a single compute node. In order to process
a query, the query coordinator determines a sequence in which the compute
nodes should be traversed to process all triple patterns. When moving from one
compute node to the other, all intermediate results are transferred. In order to
join the intermediate results, bind joins are performed.

In order to generalize and parallelize the previously described strategy, [82]
introduced the so called spread by value querying strategy22. The basic idea is
that the first triple pattern is processed on the computed nodes on which matches
occur. These compute nodes start a bind join processing with the second triple
pattern. When a compute node identifies with the help of the global index that
for one triple pattern there exist matches on a different compute node, it will
fork the query processing on the other compute node that will continue with this
branch of the query execution. The final query results are sent back to the query
coordinator. This strategy was also used by, for instance, [13,14,108,109] and
TripleRush [130]. In order to speed up the query execution, Trinity.RDF [144]
performs the spread by value strategy from the first and the last triple pattern
in parallel.

Example 16. In this example the basic graph pattern <w:WeST> <e:employs>
?v1. ?v1 <f:knows> ?v2. ?v2 <f:givenname> ?v3 should be executed on
the graph cover with integrated summary graph index in Fig. 15. The first
triple pattern creates the variable binding {(?v1, w:martin)} on compute
node c2. Based on this variable binding the variable ?v1 of the second
triple pattern will be substituted by w:martin. When processing the triple
pattern <w:martin> <f:knows> ?v2, the variable binding {(?v1, w:martin),
(?v2, g:wanja)} is produced. Before processing the third triple pattern, ?v3
will be substituted by g:wanja. As a result <g:wanja> <f:givenname> ?v3
is executed. This time the only possible substitution for ?v3 is the super ver-
tex c1. This match means that there exists a triple on compute node c1 that
would match with the triple pattern. Therefore, the query, the created vari-
able binding, and the metadata that this variable binding was created by
the first two triple pattern is sent to compute node c1. Now, c1 executes
<g:wanja> <f:givenname> ?v3 and produces the resulting variable binding
{(?v1, w:martin), (?v2, g:wanja), (?v3, "Wanja")}. For the sake of simplicity,
the other intermediate results produced by the triple patterns that were exe-
cuted in parallel were skipped during the explanation of this example.

6.3 Distributed Query Processing in Graph Processing Frameworks

In S2X [140] a different type of distributed query processing is presented. First,
each vertex checks whether it can be a substitution for some variable in the query
22 This idea is named differently in the literature. For instance, in Trinity.RDF [144] it

is called graph exploration.
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by checking its incident edges, their labels and the adjacent vertices. Thereafter,
it notifies the neighboured vertices by its variable bindings. If for one variable
binding no join compatible variable binding can be found on the neighboured
vertices, it is discarded. The notification of the neighboured vertices and the
discard of local variable bindings is repeated until the variable binding of each
vertex in the graph does not change any more. The remaining variable binding
can be retrieved and joined as the final results.

7 Fault Tolerance

One problem of RDF stores in the cloud is that a single compute node might
fail or become disconnected from the network. RDF stores that bases on cloud
computing frameworks mainly rely on the fault tolerance of the used framework.
In federated RDF stores the actual data is stored on remote RDF stores that are
not under control of the system administrator. As a result the fault tolerance is
not an urgent problem for both types of RDF stores.

In contrast to these RDF stores, the failure of compute nodes is an issue for
distributed RDF stores. Since most of these RDF stores that can be found in the
literature are proof-of-concept implementations, they do not address the problem
of fault tolerance. The few systems that deal with fault tolerance, address this
problem by replication. Systems like Virtuoso Clustered Edition [41] suggest to
create identical copies of all compute nodes. If one compute node fails, it is
replaced by one of its copies.

Another strategy to become fault tolerant is used by, e.g., 4store [58] and
RDFPeers [25]. In these distributed RDF stores there exists an partial order of all
compute nodes, for instance, created by the comparison of their IP addresses. To
ensures that every compute node has a successor and predecessor, the successor
of the last compute node is the first compute node. Based on this ordering,
the triples assigned to one compute node are also assigned to the neighboured
compute nodes. If one compute node fails, the index forwards the queries to
one of neighbours that store replicas of the data originally assigned to the failed
compute node.

8 Evaluation Methodologies

In order to evaluate the performance of RDF stores several benchmarks were
proposed. In general benchmarks consist of a dataset, a set of queries and several
performance metrics. In order to test the RDF stores with differently-sized RDF
graphs, benchmarks usually use a dataset generator that generated RDF stores
based on a schema and/or specific characteristics. Some benchmarks provide
fixed queries or query patterns that contain special variables that are substituted
by constants after dataset generation (see Sect. 8.1). Instead of providing query
patterns, benchmark generators generate queries based on query characteristics
(see Sect. 8.2). In Sect. 8.3, we elaborate how benchmark are used to evaluate
distributed RDF stores.
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8.1 Benchmarks

Lehigh University Benchmark. LUBM [51] was developed to test the
query optimizer performance. It generates an RDF graph based on its Univ-
Bench ontology. This ontology describes universities, their departments, employ-
ees, courses, students and related activities. In order to provide more realistic
datasets, several constraints are applied during data generation. For instance, a
university can have between 15 and 25 departments and the ratio between under-
graduate students and faculty is between 8 and 14. The 14 provided SPARQL
queries are designed to test how well the query optimizer can improve the join
ordering. The characteristics of the queries are shown in Table 1. LUBM proposes
the following performance metrics:

Table 1. LUBM query characteristics.

Query # Triple
patterns

Query
diameter

Q1 2 1

Q2 6 2

Q3 2 1

Q4 5 1

Q5 2 1

Q6 1 1

Q7 4 2

Q8 5 2

Q9 6 2

Q10 2 1

Q11 2 1

Q12 4 2

Q13 2 2

Q14 1 1

Load time is the time that the RDF store needs to parse and load the RDF
graph.

Repository size is the size of all files that are required by the RDF store to store
the dataset including dictionary and indices.

Query execution time is the average time to execute a query ten times.
Query completeness and soundness measures with percentage of all results were

retrieved and the percentage of correct results.

SP2Bench. SP2Bench [126] was designed to test the most common SPARQL
constructs and how they are applied in realistic queries. It provides a dataset gen-
erator that creates an RDF graph that follows the DBLP schema. This schema
describes publications like articles and inproceedings with their bibliographic
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information. The generated graph mimics the characteristics of the real DBLP
graph. SP2Bench provides 17 queries. They mainly focus on testing the join
ordering capabilities of the query optimizer but also complex filters and dupli-
cate elimination. The characteristics of the queries are given in Table 2. The
proposed performance metrics are:

Table 2. SP2Bench query characteristics.

Query # Triple
patterns

Query
diameter

Q1 5 1

Q2 10 1

Q3a 2 1

Q3b 2 1

Q3c 2 1

Q4 8 2

Q5a 6 2

Q5b 6 2

Q6 9 2

Q7 13 5

Q8 8 2

Q9 4 2

Q10 1 1

Q11 1 1

Q12a 6 2

Q12b 8 2

Q12c 1 1

Load time is the time that the RDF store needs to parse and load the RDF
graph.

Query execution time is the average time to execute a query.
Global query execution time is the arithmetic and geometric mean of all 17

queries. It is computed by multiplying the execution times of all 17 queries
and then computing the 17th root of the result. If a query could not be
processed, it is punished with 3600 s.

Memory consumption is measured by (i) the maximum amount of memory that
was allocated during the processing of each individual query and (ii) the
average memory consumption of all queries.

Berlin SPARQL Benchmark (BSBM). The BSBM23 [21] focusses on the
use case of an e-commerce platform. It aims to simulate the search and naviga-
tion patterns of multiple concurrently acting customers. The dataset is generated
23 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/.

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
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based on a relational schema. This schema represents products, their offers and
the custom reviews of the products. BSBM provides 12 query patterns whose
characteristics are given in Table 3. These query mainly test the ability to opti-
mize the join ordering and the early application of filters. In BSBM a query
pattern refers to a query in which some constants are replaced by a special
type of variable. During the runtime of the benchmark these special variable
are replaced with varying constants occurring in the dataset. A set of queries in
which each query pattern is instantiated is called a query mix. Several of these
query mixes are executed in parallel in order to measure the performance of the
RDF store. The proposed performance metrics are:

Load time is the time that the RDF store needs to parse and load the RDF
graph.

Query mixes per hour is the number of query mixes that can be completely
processed within one hour.

Queries per second is the number of queries, which are instantiated from a single
query pattern, that can be answered within one second.

Table 3. BSBM query characteristics.

Query # Triple
patterns

Query
diameter

Q1 5 1

Q2 15 2

Q3 7 1

Q4 10 1

Q5 7 1

Q6 2 1

Q7 14 2

Q8 10 2

Q9 1 1

Q10 7 2

Q11 2 2

Q12 9 2

Semantic Publishing Benchmark (SPB). The SPB24 [74] is a benchmark
motivated by the industry. The use case is a publisher organization that pro-
vides metadata about its published work. Many journalists search for data and
perform insertions and deletions concurrently. SPB provides a dataset generator
that is designed to create datasets with several billions of triples that mimic the

24 http://ldbcouncil.org/developer/spb.

http://ldbcouncil.org/developer/spb
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BBC datasets. Similar to BSBM it provides query templates that contains spe-
cial variables that will be instantiated before query execution. SPB defines two
set of query templates. The basic query set focuses on join ordering, duplicate
elimination and filtering whereas the advanced query set additionally contains,
e.g., analytical queries. The query characteristics are given in Table 4a and b.
The proposed performance metrics are:

Minimum, maximum and average query execution time for each executed query.
Average execution rate per second measures how many queries could be finished

per second in average.

Table 4. SPB query characteristics.

Query # Triple Patterns Query Diameter
Q1 26 3
Q2 9 2
Q3 8 1
Q4 4 1
Q5 6 2
Q6 5 2
Q7 6 1
Q8 11 2
Q9 9 1
Q10 7 3
Q11 8 2

(a) Basic query set characteristics.

Query # Triple Patterns Query Diameter
Q1 26 3
Q2 9 2
Q3 1 1
Q4 3 1
Q5 3 2
Q6 4 2
Q7 2 1
Q8 4 1
Q9 1 1
Q10 5 1
Q11 11 1
Q12 9 1
Q13 5 1
Q14 12 2
Q15 10 2
Q16 9 1
Q17 5 2
Q18 6 1
Q19 4 1
Q20 11 2
Q21 9 1
Q22 9 1
Q23 9 1
Q24 4 1
Q25 4 1

(b) Advanced query set characteristics.

FedBench. FedBench [125] is designed as a benchmark for federated RDF
stores. It provides three different dataset collections: (i) a general linked data
collection containing DBPedia, GeoNames, Jamendo, Linked MDB, New York
Times and Semantic Web Dog Food, (ii) a life science data collection containing
KEGG, ChEBI and DrugBank as well as (iii) a dataset of 10M triples generated
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with the dataset generator of SP2Bench. FedBench provides two self-made query
sets as well as the queries from SP2Bench for the three data collections. The first
two query sets focus on the number of data sources involved, the join ordering
and query results set sizes. Since the actual benchmark cannot be found online
any more, the characteristics of the queries cannot be examined. The proposed
performance metrics are:

Query execution time for each executed query.
Number of requests to remote RDF stores during the processing of each query.

8.2 Benchmark Generators

DBPedia SPARQL Benchmark (DBSB). The general idea of DBSB [94]
is to scale the DBPedia dataset to the required size and create queries based on
a historic query log of DBPedia SPARQL endpoints. In order to generate the
dataset a DBPedia dump is taken. To increase the size, triples are replicated and
there namespaces are changed. To shrink the dataset size, triples are removed in
a way that its characteristics like the indegree and the outdegree of vertices is
not changed. In order to generate queries, DBSB clusters all queries of a historic
query log. Out of each cluster the most frequent queries were picked as well as
queries that cover most SPARQL features. Based on the selected queries, new
queries are generated by replacing the constants with resources of the generated
dataset during the benchmark generation process.

Waterloo SPARQL Diversity Test Suite (WatDiv). WatDiv [15] was
designed to create benchmarks that are able to test the performance change
of RDF stores under varying dataset and query characteristics. Therefore, the
dataset generator is able to create datasets with variations of (a) the entity
types, (b) the graph topology, (c) the well-structuredness of entities (i.e., which
portion of the defined edges are usually present at an entity), (d) the probability
of edges connecting two entities and (e) the cardinality of properties. In order
to generate queries based on a dataset, the following characteristics are defined:

Triple Pattern Count defines the number of triple patterns occurring in the
generated query.

Join Vertex Count counts the number of resources or variables that occur in
multiple triple patterns.

Join Vertex Degree determined in how many triple patterns each join vertex
occurs.

Join Vertex Type defines whether a subject-subject, subject-object or object-
object join is performed.

Result Cardinality is the number of results.
Filter Triple Pattern Selectivity defines with witch portion of the graph a triple

pattern matches.
BGP-Restricted f-TP Selectivity determines to which extent a triple pattern

contributes to the overall selectivity of a query.
Join-Restricted f-TP Selectivity determines to which extent a triple pattern

contributes to the overall selectivity of a join.
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FEASIBLE. FEASIBLE [119] does not provide a dataset generator. Instead
it can use an arbitrary dataset for which a historic query log exists. FEASIBLE
aims to generate queries that have similar characteristics to the queries in the
query log. Therefore, in a first step all syntactical incorrect queries and queries
with no results are removed. Each query is transformed into a vector based on
the following query characteristics:

SPARQL features defines which SPARQL features like SELECT, ASK, UNION, etc.
occur in the query.

Triple Pattern Count defines the number of triple patterns occurring in the
generated query.

Join Vertex Count counts the number of resources or variables that occur in
multiple triple patterns.

Join Vertex Degree determined in how many triple patterns each join vertex
occurs.

Join Vertex Type defines whether a subject-subject, subject-object or object-
object join is performed.

Triple Pattern Selectivity defines with witch portion of the graph a triple pattern
matches.

From the resulting set of query vectors, the requested number of queries are
selected in a way that their vectors are as far away as possible from each other.

SPLODGE. The idea of SPLODGE [47] is to generated queries with a given
set of characteristics from an arbitrary dataset. Thereby, it uses the following
query characteristics:

Query Type defines whether a SELECT, CONSTRUCT, ASK or DESCRIBE query
should be generated.

Join Type defines whether a conjunctive join (.), disjunctive join (UNION) or
left-join (OPTIONAL) should be performed.

Result Modifiers defines whether the result set should be altered by DISTINCT,
LIMIT, OFFSET or ORDER BY operators.

Variable Patterns defines at which positions of the triple pattern variables should
occur.

Join Patterns defines whether a subject-subject, subject-object or object-object
join is performed.

Cross Products defines whether conjunctive join without join variable should be
performed.

Number of Sources defines from how many different data sources triples should
be combined to answer the query.

Number of Joins defines how many joins should occur in the query.
Query Selectivity defines with witch portion of the graph all triple patterns of

a query match.
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Table 5. Evaluations of RDF stores in the cloud published since 2016.

Paper Benchmark Max. dataset size # compute
nodes

compute node size

[29] WatDiv ∼100M triples 10 6 cores, 32GB RAM, 4TB disk

[112] WatDiv ∼1,000M triples 10 6 cores, 32GB RAM, 4TB disk

[96] LUBM

WatDiv

∼1,330M triples 18 12 cores, 50GB RAM

[92] WatDiv ∼10M triples 11 4 cores, 24GB RAM

[86] LUBM ∼35M triples 18 slaves
1 federator

16 cores, 28GB RAM
16 cores, 56GB RAM

[5] LUBM ∼4,200M triples 12 24 cores, 148GB RAM

[139] LUBM ∼220M triples 4–16 slaves
1 master

4 cores, 8GB RAM, 500GB disk
4 cores, 16GB RAM, 500GB disk

[124] WatDiv ∼1,000M triples 10 6 cores, 32GB RAM, 4TB disk

[121] WatDiv ∼100M triples 10 6 cores, 32GB RAM, 4TB disk

[109] WatDiv
LUBM

∼1,382M triples 10 8 cores, 32GB RAM

[106] BSBM ∼5M triples 4–12 2 cores, 8GB RAM

[105] WatDiv
LUBM
FedBench

∼1,099M triples 10 4 cores, 16GB RAM, 500GB disk

[104] WatDiv ∼250M triples 10 4 cores, 16GB RAM, 150GB disk

[57] WatDiv
LUBM

∼4,288M triples 5–12 24 cores, 148GB RAM

[50] WatDiv
LUBM

∼1,380M triples 10 4 cores, 17GB RAM

[4] LUBM ∼3,100M triples 11 8 cores, 16GB RAM, 3TB disk

8.3 Performed Evaluations

The before mentioned benchmarks are usually used to evaluate and compare
the performance of RDF stores as a whole. Table 5 summarizes the evaluations
published from the beginning of 2016. All of them use are least one of the bench-
marks described above. Beside the generated datasets they usually also use a few
realistic datasets. The maximal dataset size is in most cases approximately 1 bil-
lion triples. In two cases a dataset with up to 4.2 billion triples was used. Most
RDF stores in the cloud were deployed on 10 compute nodes. In one evaluation
19 compute nodes were used.

The evaluations in these papers use rather small datasets. To give a better
overview of the capabilities of current RDF stores, [1] reports RDF stores running
on a single server or in the cloud that could store RDF graphs consisting of
several billions or even one trillion triples (see the summary in Table 6).

In order to compare the influence of alternative graph cover strategies or
different query execution strategies, all but the examined component of the dis-
tributed RDF store need to stay the same. This was done, for instance in [96] to
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Table 6. Evaluations of RDF stores reported by [1].

RDF store Max. dataset size # compute
nodes

Compute node size

Oracle database
12ca

∼1 trillion triples 1 360 cores, 2TB RAM, 45TB disk

AllegroGraphb ∼1 trillion triples 1 ?

Stardogc ∼50,000M triples 1 32 cores, 256GB RAM

Virtuoso Clustered
Edition [41]

∼37,000M triples 8 8 cores, 16GB RAM, 4TB disk

GraphDBd ∼17,000M triples 1 16 cores, 512GB RAM

4store [58] ∼15,000M triples 9 ?

Blazegraph [2] ∼12,700M triples ? ?

YARS2 [2] ∼7,000M triples ? ?

Jena TDBe ∼1,700M triples 1 2 cores, 10 GB RAM

RDFoxf ∼1,700M triples 1 16 cores, 50 GB RAM
ahttp://www.oracle.com/us/corporate/features/database-12c/index.html.
bhttps://franz.com/agraph/allegrograph/.
chttps://www.stardog.com/.
dwww.ontotext.com/products/ontotext-graphdb/.
ehttps://jena.apache.org/.
fhttp://www.cs.ox.ac.uk/isg/tools/RDFox/.

compare different query execution strategies on top of Spark or in [33,63,79,145]
to compare different graph cover strategies. But these evaluation used Hadoop
or its distributed file system to exchange data during the query processing. As
a result, it remains unclear whether their results are applicable on distributed
RDF stores in which the data is exchanged directly between the compute nodes.

9 Conclusion

To cope with the growing size of huge graphs, scalable RDF stores in the cloud
are used, where the graph data is distributed among several compute nodes. From
this distributed setting several challenges like (i) the data placement strategy, (ii)
the distributed query processing, and (iii) the handling of failed compute nodes.
In this manuscript we gave an overview of how these challenges are addressed
by RDF stores in the cloud.

Due to the high number of RDF stores in the cloud, we have only given an
overview of core challenges in distributed RDF stores. Beside these core chal-
lenges there exist further features that are required during the practical usage
of relational databases in the industry today. Realizing them in RDF stores is a
challenging task so that they are only partly realized in RDF stores. In order to
achieve a broader usage of RDF stores in industry, further research is required
to implement these features in RDF stores in the cloud. In the following we
describe some of these features. As an example use case we assume an online
retailer.

http://www.oracle.com/us/corporate/features/database-12c/index.html
https://franz.com/agraph/allegrograph/
https://www.stardog.com/
www.ontotext.com/products/ontotext-graphdb/
https://jena.apache.org/
http://www.cs.ox.ac.uk/isg/tools/RDFox/
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When two customers try to order a unique product at the same time, only one
of the orders must be successful and the other must fail. To prevent the situation
that both customers could successfully order the unique product, transactional
security (i.e., atomicity, consistency, isolation and durability) is required. Real-
izing transactional security in a distributed setting where the data is separated
among several compute nodes might require a lot of coordination between the
compute nodes. This additional coordination increase the query execution time.
To avoid this overhead while providing transactional security, most RDF stores
in the cloud assume that the RDF graph is immutable after loading it. Only few
RDF stores like Virtuoso Clustered Edition [40] allow for inserting or deleting
triples after loading.

In order to identify which products were sold the most frequently in the last
three month, the database is required to perform online analytical processing
(OLAP) queries. This type of queries require a huge amount of data to be pro-
cessed. In context of RDF stores in the cloud, processing OLAP queries cannot
be done by sending all required data to a single compute node since a single com-
pute node might be overloaded by the huge amount of data. Therefore, graph
cover strategies and distributed query execution strategies need to be developed
that support the parallel processing of OLAP queries with a low number of
exchanged network packets.

To simplify the search for a product, the online retailer has categorized its
products in a category hierarchy. For instance, an orange lemonade can be cate-
gorized as lemonade, soft drink and drink. With the introduction of SPARQL 1.1
[110] property paths were introduced that allow for requesting all offered drinks
independently of the subcategory they belong to. This type of query differs from
the pure graph pattern matching done in SPARQL 1.0 since it can easily require
the traversal of long paths. In a distributed setting the traversal of long paths
may lead to a high network traffic reducing the query execution time. One chal-
lenge arising from these queries is, how to optimize the data placement for these
queries. Alternatively to SPARQL, the retailer might want to use other query
languages like GraphQL25.

The retailer wants to prevent teenagers from buying alcohol. Therefore, he
stores in database the rules that every customer younger than 20 is a teenager
and teenagers should not be allowed to buy alcohol. These rules should be auto-
matically applied to all customers. In order to realize this, RDF stores need the
ability to reason about RDF graphs. In this context reasoning means inferring
logical consequences and checking the consistency of the RDF graph. Usually,
reasoning is done during the loading time of the graph and all logical conse-
quences are stored as explicit triples in the graph. The challenge of distributed
reasoning is that the reasoning of the complete graph might overload a single
compute node. Therefore, distributed reasoning algorithms are required. A few
RDF stores in the cloud like MaRVIN [100] and Rya [114] have addressed this
challenge. Another problem is, if the RDF graph is mutable after loading. In
this case the deletion or insertion of triples might produce inconsistencies, a lot

25 https://graphql.org/.

https://graphql.org/
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of newly inferred triples need to be inserted or formerly inferred triples need to
be removed.

Finally, the retailer wants to advertise summer products like swimwear,
portable fans, etc. more prominently if the temperature in the town where the
customer lives is high. Therefore, the constantly streamed data from temper-
ature sensors needs to be processed. This quickly arriving stream data cause
further challenges for RDF stores, like quickly combining the received data with
static data, updating the database frequently or balancing the workload among
all compute nodes. CQELS Cloud [78] is one example of a system that processes
RDF streams in a distributed fashion.
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Abstract. The goal of the tutorial is to outline how to develop and
deploy a stream processing application in a Web environment in a repro-
ducible way. To this extent, we intend to (1) survey existing research out-
comes from the Stream Reasoning/RDF Stream Processing that arise in
querying and reasoning on a variety of highly dynamic data, (2) introduce
stream reasoning techniques as powerful tools to use when addressing a
data-centric problem characterized both by variety and velocity (such as
those typically found on the modern Web), (3) present a relevant Web-
centric use-case that requires to address simultaneously data velocity
and variety, and (4) guide the participants through the development of
a Web stream processing application.

1 Introduction

More and more streams of information are becoming available on the Web. A
variety of sources give origin to data streams including social networks, mobile
phones, smart homes, healthcare devices and other modern infrastructures. A
significant portion of this data belongs to the Web-of-Services and to the Web-of-
Things ecosystems where data is published and consumed using Web standards
and technologies.

From new opportunities arise new challenges. A common problem in the
scenarios illustrated above is how to integrate such data and how to enable
the creation of new knowledge. Reasoning techniques are a possible solution.
However, while reasoners scale up in the classical, static domain of ontological
knowledge, reasoning upon rapidly changing information has received attention
only in the last decade [1]. The combination of reasoning techniques with data
streams gives rise to Stream Reasoning. i.e., reasoning on highly dynamic flows
of informations [2]. This is a high impact research area that has already started
to produce results relevant to both the Semantic Web [3] and stream processing
communities [4].

Learning Goals: The contents of this tutorial can be relevant for RW 2018
summer school attendees as it focuses on the engineering aspects of developing
and deploying applications that use streaming data to create new knowledge.

c© Springer Nature Switzerland AG 2018
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This tutorial aims at introducing different existing approaches for querying
and reasoning over data streams and providing guidelines to develop and deploy
Stream Reasoning applications. In particular, the tutorial offers to the audience:
(i) an overview of the use cases and the scenarios where Stream Reasoning can
be used (with the advantages it brings); (ii) an overview of the current state of
the art in this emerging area, with techniques and tools developed by several
research groups (including but not limited to presenters’ ones); (iii) a focus on
a subset of the technologies to perform complex reasoning over dynamic data.

Related Events: The tutorial follows from the Stream Reasoning for Linked
Data (SR4LD) tutorial series, successfully held at ESWC 2011, SemTech 2011,
ISWC 2013, ISWC 2014, ISWC 2015; the RDF Stream Processing (RSP) tutorial
series at ESWC 2014 and ISWC 2016; the Stream Reasoning: Managing Velocity
and Variety in Big Data tutorial at DEBS 2016; and the tutorial on How to Build
a Stream Reasoning Application co-located with ISWC 2017.

Technologies are now mature and reliable enough to make a step further
and build a tutorial with a stronger focus on hands-on sessions. Therefore, this
tutorial not only surveys existing research outcomes and introduce existing tools,
but it also presents a relevant Web-centric use-case and guide the participants
through application development of a Web stream processing application.

Audience: The tutorial targets researchers and practitioners interested in
approaching the topic of web stream processing (both querying and reasoning)
and who want to understand the current state-of-the-art as well as the future
directions. The technologies and topics on this tutorial are relevant for people
from IoT and sensor communities, as well as social media, pervasive health, oil
industry, etc., who produce massive amounts of streaming data.

2 Presenters

Emanuele Della Valle1 holds a PhD in Computer Science from the Vrije Uni-
versiteit Amsterdam and a Master degree in Computer Science and Engineering
from Politecnico di Milano. He is assistant professor at the Department of Elec-
tronics, Information and Bioengineering of the Politecnico di Milano.

In more than 15 years of research, his research interests covered Big Data,
Stream Processing, Semantic technologies, Data Science, Web Information
Retrieval, and Service Oriented Architectures. He started the Stream Reasoning
research field [2] by focusing the research community’s interest on this theme
through a number of personal initiatives (workshops, projects, journal papers)
that contributed to establishing Stream Reasoning as a recognized research and
industrial sector. Stream Reasoning is positioned at the intersection between
Stream Processing and Artificial Intelligence. In the Big Data era, it is a method
to tame simultaneously the velocity (analyzing data streams to enable real-time
decisions) and variety (integrating heterogeneous data) dimensions of Big Data.
Starting from 2011, he organized more than 15 tutorials and workshops on
1 http://emanueledellavalle.org/.

http://emanueledellavalle.org/
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Stream Reasoning2. His work on Stream Reasoning was applied in analyzing
Social Media, Mobile Telecom and IoT data streams in collaboration with Tele-
com Italia, IBM, Siemens, Oracle, Indra, and Statoil. In 2015, he started up a
company (Fluxedo) to commercialize the open source results of Stream Reason-
ing research.

3 Tutorial Structure

1. Introduction to WEB Stream Processing
1.1 From challenges to opportunities.
1.2 Paradigmatic shit to continuous semantics.
1.3 The limited ability of existing Stream Processing systems to address vari-

ety.
1.4 The Stream Reasoning research question.
1.5 Existing Stream Reasoning systems (quick introduction and high-level

comparison).
1.6 Anatomy of a Web Stream Processing Application.
1.7 Introduction of the tutorial running example.

2. Publishing and Describing Streams on the Web
2.1 Streams on the Web: creation and publications challenges.
2.2 VoCaLS: a vocabulary to describe RDF Streams on the WEB [5,6]
2.3 VoCaLSing existing data streams to catalog them3.
2.4 TripleWave: a framework to publish RDF streams on the Web [7]4.
2.5 Hands-on VoCaLS and TripleWave.

3. Processing Web Streams
3.1 Querying and Reasoning on Web Streams: RDF Stream Processing (RSP)

languages [8].
3.2 Overview and comparison RSP query languages: C-SPARQL [9], CQELS-

QL [10], SPARQLstream [11], RSP-QL [8].
3.3 Overview and comparison RSP engines: C-SPARQL E.5, CQELS6,

Yasper7;
3.4 Modeling an RSP Service with VoCaLS.
3.5 Hands-on RSP engine.

4. Building a Web Streams Application
4.1 Introduction of the RSP Services [12].
4.2 Designing the Application.
4.3 Using Jupyter notebooks and the RSP-Kernel8 to implement the Appli-

cation.
4.4 Hands on session.

5. Wrap-up and discussion
5.1 On-going research trends, real-world deployments.
5.2 Open problems and future directions.

2 http://streamreasoning.org/events.
3 https://w3id.org/rsp/vocals.
4 https://github.com/streamreasoning/TripleWave.
5 https://github.com/streamreasoning/CSPARQL-engine.
6 https://github.com/danhlephuoc/cqels.
7 https://github.com/streamreasoning/yasper/.
8 https://github.com/riccardotommasini/rsp-kernel.

http://streamreasoning.org/events
https://w3id.org/rsp/vocals
https://github.com/streamreasoning/TripleWave
https://github.com/streamreasoning/CSPARQL-engine
https://github.com/danhlephuoc/cqels
https://github.com/streamreasoning/yasper/
https://github.com/riccardotommasini/rsp-kernel
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Abstract. This tutorial gives an overview of current methods for per-
forming reasoning on very large knowledge bases. The first part of the
lectures is dedicated to an introduction of the problem and of related
technologies. Then, the tutorial continues discussing the state-of-the-
art for reasoning on very large inputs with particular emphasis on the
strengths and weaknesses of current approaches. Finally, the tutorial con-
cludes with an outline of some of the most important research directions
in this field.

1 Introduction

Broadly speaking, reasoning can be defined as the task of deriving non-trivial
implicit knowledge with a number of logic-based steps. Performing efficient rea-
soning is an important problem in the area of Artificial Intelligence since the
discovery of new knowledge from existing knowledge bases is one of the most
important features that intelligent agents should encode.

If we compare reasoning to other related technologies for knowledge discov-
ery (e.g., methods which perform inference using correlation-based embeddings
– see [8] for a survey), then we observe that reasoning has the distinctive advan-
tage of providing a clear and unambiguous explanation of the obtained results.
Moreover, it is easier to verify that the output of reasoning is correct, and this
can be crucial in contexts where even small errors cannot be tolerated (e.g.,
consider the diagnosis of some diseases, or autonomous driving). Finally, reason-
ing is useful also for “non-AI” tasks like data integration. To illustrate this last
case, consider a fictional company where there are two divisions which are both
working on similar products but use a different terminology. In this context,
reasoning can be applied to find some links between the knowledge produced by
these two divisions to maximize the transfer of knowledge.

Unfortunately, the size of some knowledge bases is particularly challenging to
handle for reasoners, also because the input might contain mistakes which lead to
inconsistencies. The inability of handling properly large inputs is an important
limitation which precludes the application of reasoning to many realistic use
cases, like the Semantic Web. This limitation motivated a significant amount of
research to develop methods for performing reasoning at scale, especially focusing
on Semantic Web data as a realistic “large-scale” use case.

The goal of this tutorial is to (1) introduce the problem of scalability for rea-
soning; (2) discuss the current state-of-the-art methods and (3) point to existing
c© Springer Nature Switzerland AG 2018
C. d’Amato and M. Theobald (Eds.): Reasoning Web 2018, LNCS 11078, pp. 227–235, 2018.
https://doi.org/10.1007/978-3-030-00338-8_9
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limitations and other future research challenges. To facilitate the comprehension
of the lectures, this document contains a brief explanation of some of the most
important concepts covered in the tutorial and links to a number of additional
pointers to aid the explanation during the lectures. We assume that the partic-
ipants have a basic familiarity with standard concepts in Artificial Intelligence
and the Semantic Web such as RDF [6], SPARQL [9], or Datalog [1]. If this is
not the case, then textbooks like [1,2] offer a first introduction to them.

2 The Problem of Scale

We focus on reasoning that can be performed through an exhaustive execution
of rules. Intuitively, rules can be seen as if-then constructs which allow the
deduction of some conclusions given a set of premises. More formally, a rule is
a sentence in first-order logic of the form α → β where α is the premise (or
body) and β is the conclusion (or head). In our context, α and β are expressions
about the truth values of statements that capture the knowledge in the KB.
For instance, let us assume that the input knowledge base contains statements
about the living location of people and their spouses. These can be expressed
as a number of facts livesIn(a, l), livesIn(b,m),marriedWith(a, c) where a, b, c
are people, l,m are locations, and lives,marriedWith are two predicates that
indicate the living location and respective spouse. Let A,B,L be some generic
variables. Then, the rule

livesIn(A,L) ∧ married(A,B) → livesIn(B,L) (1)

captures the implication that married people live in the same location. In this
case, α is a conjunction of two atoms while β is a single atom. Notice that
rules can be much more complex than (1). For instance, they could contain
negated atoms or disjunctions. In this tutorial, we restrict ourselves to consider
rules where the body and head are either a single or a conjunction of positive
atoms. We say that a rule is safe if every variable that appears in the body also
appears in the head. Otherwise, we assume that every variable in the head that
does not appear in the body is existentially quantified and refer to that rule as
an existential rule. Existential rules are very important in the Semantic Web
because it is well-known that knowledge bases are highly incomplete. Therefore,
in some cases it is necessary to reason also about individuals that cannot be
identified. For instance, the rule

marriedTo(A,B) → weddingLocation(A,L) (2)

states that if a person A is married, then she/he did so in a certain location L.
However, the binary relation marriedTo does not allow us to identify the precise
location. We can only say that such location must exist.

Existential rules are more problematic than safe rules because their execution
introduces new individuals that represent unknown values. This, in turns, can
lead to an infinite computation. While several restrictions can be imposed to
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ensure termination, in the general case it is not possible to guarantee that the
process will always terminate.

To understand the challenges behind the rule execution, we first need to
properly define what we mean with “executing a rule”. For simplicity, we restrict
to the case of safe rules. Let P be the set of rules that we want to execute and
r : B1, . . . , Bn → H be a generic rule in P . Then, let σ be a mapping from
variables to constants and use it as a postfix operators for translating atoms into
facts (i.e., atoms without variables). For instance, if X = married(A,B) and
σ = {A → john,B → peter} then Xσ = married(john, peter). Then, we define
r(I) = {Hσ | B1σ, . . . , Bnσ ∈ I} as the set of derivations that rule r can produce
from a set of atoms I. Similarly, P (I) = ∪r∈P r(I) is the set of derivations
produced by all rules on I. Clearly, rules can be executed exhaustively. To this
end, let P 0(I) = I and P i+1(I) = P (P i(I)) ∪ P i(I) for i ≥ 0. The set P∞(I)
is called the materialization of I using P and it is typically what we want to
compute.

We identify five classes of challenges for computing P∞(I):
– C1: The input set I might be too large to be stored and accessed efficiently

with the given hardware. For instance, consider that the linked data cloud is
estimated to contain about 30 billion statements. If we make the assumptions
that each statement can be stored in about 24 bytes (that is, each term and
predicate is represented by a 64bit number), then storing this large collection
would take about 686 GB of memory.

– C2: Similarly as before, the set P∞(I) might be too large to be stored with
the given hardware (this can occur where the rules produce an explosion of
the derivations).

– C3: The execution of some rule r on a given I might be particularly chal-
lenging because the generation of all possible σ requires a join between atoms
in I. It is well-known that the order of B1, . . . , Bn can determine which join
algorithm can be used and this can have a significant impact on the perfor-
mance. Unfortunately, it is not always easy to determine the best ordering
beforehand.

– C4: There can be two rules which can derive a significant number of equiva-
lent derivations, or the same rule can derive the same conclusions if applied
on the augmented versions of the same database. The duplicate derivations
need to be detected and removed.

– C5: There can be rulesets and/or particular input databases that trigger a
very large number of rule executions before the reasoner reaches the point
when P i+1(I) = P i(I). As we mentioned before, if the rules are not safe then
this can even degenerate in an infinite computation.

We say that a reasoning approach (or technique, or system) is scalable if it
can deal efficiently with at least one of these challenges.

3 Reasoning at Scale

The scalability of reasoning can be improved on two dimensions: Either by uti-
lizing more efficiently the computing resources of a single machine (for instance
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by compressing the data, or by exploiting modern multicore architectures) or
by distributing the computation on different machines. The first approach is
eventually limited by the physical capabilities of the underlying hardware while
the second one is limited by the network bandwidth and potential bottlenecks
synchronization mechanisms. In the tutorial, we cover both types of approaches.
First, we discuss approaches to distribute the computation of the full material-
ization since these were the first scalable approaches proposed in the literature.
Then, we describe the centralized approaches, which are more recent. Finally,
we discuss the execution of query-driven reasoning and of existential rules.

3.1 Distributed Materialization

We can distribute the computation of rule-based reasoning following two
approaches: First, we can replicate the input data on each machine and exe-
cute each rule concurrently. We refer to this form of distribution as inter-rule
distribution since multiple rules are executed concurrently. Second, we can par-
tition the data and execute the rules only on the data that is locally available.
We refer to this approach as intra-rule distribution since one rule is processed
by multiple machines. With both types of distribution, there can be cases when
the machines do not need to exchange information during the computation. This
represents the best case since we can obtain an ideal speed up. Unfortunately,
most of the times the machines need to communicate with each other. In this
case, the communication can quickly become a performance bottleneck that lim-
its the performance irrespectively of the number of machines.

In the context of reasoning on Semantic Web data, the intra-rule parallelism
has returned encouraging results. More in particular, MapReduce-based reason-
ers like WebPIE [12] were able to compute the closure of large databases with
billions of facts using a moderate number of machines. This performance was
obtained by partitioning the input and output of reasoning on different machines,
and by executing the rules on multiple partitions at the same time. Moreover,
several optimizations are introduced to either avoid the generation of duplicates.
We illustrate one example of such optimization below. Additional optimizations
are discussed during the tutorial.

Assume we want to execute the following two rules:

T (A,P,B), T (P, rdfs:domain, C) → T (A, rdf:type, C) (3)
T (A,P,B), T (P, rdfs:range, C) → T (B, rdf:type, C) (4)

where T is a generic predicate, A,B,C, P are variables, and rdfs:domain,
rdfs:range, and rdf:type are standard constants from the RDF and RDFS
vocabularies. Intuitively, these two rules capture the domain and range of prop-
erties and use them to infer the classes of the arguments of these relations.
Unfortunately, both rules can derive the same conclusion.

For instance, let us assume that we have two properties, playsFor and
taughtBy which have Person as domain and range respectively. In this case,
it is easy to see that both rules will produce the same derivation if there is an
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entity with both relations. To avoid this case, we can write a simple MapReduce
program where the map function outputs, for each input triple, two tuples which
have as key either the subject or object of the input triple. Then, the framework
will group all intermediate pairs by key, which in our case is a single entity.
Each group becomes the input of the function which is applied concurrently on
different machines. This function can be implemented so that it processes all the
triples in the group and whenever they instantiate the body of either (3) or (4)
then a derivation is returned. These derivations will have the group key as sub-
ject, following the logic of the rules. Therefore, since groups are partitioned by
the key, it is not possible that two different groups will return the same deriva-
tion, avoiding thus the possibility of producing multiple copies concurrently.

A limitation of WebPIE is that it can execute only a specific set of rules. We
are not aware of extensions to these methods which allow the execution of generic
rules and can scale to similar inputs. This feature is supported by centralized
methods, which are the topics of the following subsection.

3.2 Centralized Materialization

More recently, two scalable approaches were proposed for performing reasoning
using shared-memory architectures. These approaches are interesting because
shared-memory architectures are typically cheaper than MapReduce clusters
and are available in more contexts. These approaches differ from each other
because they improve the scalability in different ways. The first approach, which
is implemented in the system RDFOx [7], focuses on exploiting the multicore
architecture avoiding as much as possible any locking mechanism that impedes
parallelism. The second approach, implemented in the system VLog [11], focuses
instead on improving the performance by storing the derivations using a colum-
nar layout rather than a more conventional row-by-row layout.

The strategy adopted by the system RDFox is to store the input and the
derived facts into a number of highly-optimized hash tables designed which are
almost-lock-free (i.e., they are data structures which can be updated concurrently
with little or no delay due to locking). Then, it stores the facts that might lead
to new derivations in a centralized queue and let concurrent threads attempt at
producing new derivations using its content. New derivations are continuously
added to the hash tables and to the queue for further consideration until fixpoint.
By doing so, the system can effectively parallelize the execution of the rules and
is able to exploit all available cores to the fullest.

VLog is another reasoner for shared-memory architectures which improves
the scalability by storing the derivations using a columnar layout. For instance,
consider a simple binary relation R with the following facts: R(a1, b1), R(a1, b2),
R(a1, b3), R(a2, b1). In this case, the columnar layout would store the content
of R using two columns c1 = 〈a1, a1, a1, a2〉 and c2 = 〈b1, b2, b3, b1〉. This stor-
age layout is useful because it allows the implementation of some compression
techniques to reduce the storage of the derivations. For example, if we look at
the content of c1, then we can observe that the first three elements can be com-
pressed by simply appending after the first element a1 a special sequence that
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indicates that the value should be repeated three times. This type of well-known
compression, which is called run-length encoding (RLE), effectively reduces the
used space and enables the storage of a larger number of derivations. The usage
of columns is also interesting because columns can be reused in some specific
cases. This further reduces the space and enhances the scalability.

In practice, both RDFOx and VLog can handle inputs with billions of state-
ments without requiring large resources. For instance, VLog is able to com-
pute reasoning over the entire DBPedia using a single laptop. Moreover, they
have the additional advantage that the derived data is already indexed, and this
enables an efficient querying of the inferred knowledge without expensive loading
operations.

3.3 Query-Driven Reasoning

There are cases when performing a full materialization is either undesirable or
impossible. For instance, consider the case where the knowledge base contains
some errors and the full materialization would result in a huge number of non-
sensical derivations.

In such a case, a partial materialization might allow us to retrieve at least
a subset of all derivations. To this end, there are some well-known techniques
which we can use to rewrite the original program in such a way that it would
only derive facts that are relevant for answering a given query. More formally,
let us assume that the user is only interested in answering a specific query Q,
which is represented by a single atom, over P∞(I). In this case, the objective
of the system is to compute only the derivations that are strictly necessary to
retrieve all answers for Q.

The most famous technique for performing this type of rewriting is Magic
Sets [3]. In essence, this technique introduces a number of additional predicates,
called magic predicates, to produce only those derivations that might lead to
compute potential answers. It is possible to replicate the behavior of magic sets
by using auxiliary data structures without any program rewriting. This operation
is performed, for instance, by the algorithm QSQR [1], which rewrites an initial
query into a number of subqueries, and caches the results of previously-executed
queries to ensure termination.

Currently, query-driven reasoning is supported by state-of-the-art reasoners
like RDFox or VLog. One additional system that performs this type of reasoning
in a distributed setting is QueryPIE [14]. This system implements the QSQR
algorithm introducing a couple of novelties that improve the scalability. The first
novelty is that it pre-computes the answers to some specific queries, namely the
ones that describe the schema of the data. This pre-computation is important
because the pre-computed queries are relevant for answering multiple queries.
Second, the system “weakens” the rule execution by allowing the execution of
the same query multiple times. This operation results in some redundant com-
putation but it has the advantage that it reduces the number of synchronization
barriers and thus it can be executed on multiple machines.
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3.4 Existential Rules

It is interesting to drop the requirement that every variable in the head must
appear in the body of the rule in order to reason about unknown individuals.
For instance, consider the rule

isPerson(X) → isParentOf(X,Y ) (5)

which states that every person should have at least one parent. In this case,
we do not know who is the parent, but we know that such parent must exist.
This type of rules, which we call existential rules, is more problematic to execute
because they require the introduction of fresh individuals and it is easy to show
that there are cases when this operation might lead to a non-termination of the
rule application. While in some cases there is no alternative than stopping the
process without any guarantee of completeness, in some cases we can perform
some checks to verify that the process will terminate (for instance, some of these
checks are presented in [5]). Some recent work has shown that in practice most
of the real-world ontologies satisfy these checks. Moreover, we can restrict the
number of derivations by allowing the rules to produce a new derivation only if
the head of the rule was not previously instantiated with the non-existentially
quantified variables. In some cases, this constraint allows the computation to
terminate.

Regardless of the restrictions applied during the computation of these rules
(and the problem of non-termination), the management of the fresh individuals
makes it is challenging to execute existential rules on large inputs. Recently, a
new benchmark was introduced to facilitate the development and comparison of
systems for the execution of existential rules [4]. Using the test cases provided
by this benchmark, it emerged that the columnar architecture of VLog is well-
suited also for the execution of these rules [13]. This means that it is possible to
perform scalable reasoning also with existential rules, and this opens the door
for the application of reasoning to a much larger number of use cases.

4 Discussion

In Sect. 2 we indicated five classes of challenges that reasoners must tackle in
order to be able to process large inputs. It is interesting to relate these challenges
to the systems covered in the previous sections to understand how they effectively
address them.

Challenge C1. In general, all systems attempt at compressing the input so
that more data fits in one machine. The most common approach consists of
dictionary-encoding the data so that constants and predicates are represented
by (shorter) numerical IDs. Smarter compression techniques (e.g., [10]) can be
used to further reduce the occupied space. Distributed approaches like WebPIE
or QueryPIE further address this challenge by partitioning the input on multiple
machines.
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Challenge C2. The second challenge is concerned with the storage of the deriva-
tions. This challenge is different than the previous one because some compression
techniques that can be applied to the input cannot be applied to the set of derived
data since this is continuously augmented. To the best of our knowledge, only
VLog addresses this challenge by adopting the columnar storage layout.

Challenge C3. The problem of detecting the optimal join order has been stud-
ied extensively in database literature. Current reasoners address this issue in
various ways. WebPIE uses different join algorithms depending on the input rule
while VLog chooses the best ordering using cardinality estimation, and employs
merge join whenever the data is properly indexed. In contrast, RDFox relies
on hash-based joins leveraging the highly optimized hash-based indices. Despite
these efforts, finding the best join ordering remains a challenging problem and
this is still one of the major causes that can slow down the reasoning process.

Challenge C4. This challenge is addressed in the WebPIE system with the
introduction of special algorithms which “group together” the execution of mul-
tiple rules that might produce the same derivations. In this way, duplicates can
be removed locally with cheaper operations. Moreover, VLog partly addresses
this issue by performing backward reasoning in order to determine whether the
execution of a given rule would return some duplicates. Static analysis on the
program might further help to unveil some potential rule execution orders which
might lead to duplicates, but it is essential that the system maintains some sort
of provenance of the derivations. Currently, only VLog supports this feature.

Challenge C5. This challenge is intrinsic to the task of reasoning and it is easy
to construct examples which require a huge amount of computation and cannot
be easily parallelized. In these cases, one solution consists of adopting an anytime
behavior and return new derivations as soon as they are derived. Query-driven
approaches mitigate this problem by restricting reasoning to given queries. In
this way, in some cases reasoning can still terminate quickly. In general, none of
the other reasoners can circumvent this problem without dropping completeness.
It is interesting to explore whether predictive techniques can determine with
some degree of confidence what is the likelihood that the reasoner has computed
a certain ratio of all derivations. This would allow a premature stop of the
process with some indication of how much is still missed. To the best of our
knowledge, this is an open problem which, if solved, might significantly improve
the scalability of existing systems.
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