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Preface

Big and complex data is fuelling diverse research directions in the research fields of
medical image analysis and computer vision. These can be divided into two main
categories: (1) analytical methods and (2) predictive methods. While analytical meth-
ods aim to efficiently analyze, represent and interpret data (static or longitudinal),
predictive methods leverage the data currently available to predict observations at later
time-points (i.e., forecasting the future) or predicting observations at earlier time-points
(i.e., predicting the past for missing data completion). For instance, a method that only
focuses on classifying patients with mild cognitive impairment (MCI) and patients with
Alzheimer’s disease (AD) is an analytical method, while a method which predicts if a
subject diagnosed with MCI will remain stable or convert to AD over time is a pre-
dictive method. Similar examples can be established for various neurodegenerative or
neuropsychiatric disorders, degenerative arthritis, or in cancer studies, in which the
disease or disorder develops over time.

Why Predictive Intelligence?

It would constitute a stunning progress in the MICCAI research community if, in a few
years, we contribute to engineering a ‘predictive intelligence’ able to map both
low-dimensional and high-dimensional medical data onto the future with high preci-
sion. This workshop is the first endeavor to drive the field of ‘high-precision predictive
medicine’, where late medical observations are predicted with high precision, while
providing explanation via machine and deep learning, and statistically, mathematically,
or physically-based models of healthy, disordered development and aging. Despite the
terrific progress that analytical methods have made in the last 20 years in medical
image segmentation, registration, or other related applications, efficient predictive
intelligent models and methods are somewhat lagging behind. As such predictive
intelligence develops and improves (and this is likely to do so exponentially in the
coming years), this will have far-reaching consequences for the development of new
treatment procedures and novel technologies. These predictive models will begin to
shed light on one of the most complex healthcare and medical challenges we have ever
encountered, and, in doing so, change our basic understanding of who we are.

What Kind of Research Problems Do We Aim to Solve?

The main aim of PRIME-MICCAI is to propel the advent of predictive models in a
broad sense, with application to medical data. Particularly, the workshop accepted 8- to
10-page papers describing new cutting-edge predictive models and methods that solve
challenging problems in the medical field. We hope that the PRIME workshop



becomes a nest for high-precision predictive medicine — one that is set to transform
multiple fields of healthcare technologies in unprecedented ways. Topics of interests
for the workshop included but were not limited to predictive methods dedicated to the
following topics:

– Modeling and predicting disease development or evolution from a limited number
of observations

– Computer-aided prognostic methods (e.g., for brain diseases, prostate cancer, cer-
vical cancer, dementia, acute disease, neurodevelopmental disorders)

– Forecasting disease and cancer progression over time
– Predicting low-dimensional data (e.g., behavioral scores, clinical outcome, age,

gender)
– Predicting the evolution or development of high-dimensional data (e.g., shapes,

graphs, images, patches, abstract features, learned features)
– Predicting high-resolution data from low-resolution data
– Prediction methods using 2D, 2D+t, 3D, 3D+t, ND and ND+t data
– Predicting data of one image modality from a different modality (e.g., data

synthesis)
– Predicting lesion evolution
– Predicting missing data (e.g., data imputation or data completion problems)
– Predicting clinical outcome from medical data (genomic, imaging data, etc)

In-brief

This workshop mediated ideas from both machine learning and mathematical, statis-
tical, and physical modeling research directions in the hope of providing a deeper
understanding of the foundations of predictive intelligence developed for medicine, as
well as showed where we currently stand and what we aspire to achieve through this
field. PRIME-MICCAI 2018 featured a single-track workshop with keynote speakers
with deep expertise in high-precision predictive medicine using machine learning and
other modeling approaches which are believed to stand at opposing directions. Our
workshop also included technical paper presentations, poster sessions, and demon-
strations. Eventually, this helps steer a wide spectrum of MICCAI publications from
being ‘only analytical’ to being ‘jointly analytical and predictive’.

We received a total of 23 submissions. All papers underwent a rigorous
double-blinded review process by at least 2 members (mostly 3 members) of the
Program Committee composed of 30 well-known research experts in the field. The
selection of the papers was based on technical merit, significance of results, and rel-
evance and clarity of presentation. Based on the reviewing scores and critiques, the 20
best papers were accepted for presentation at the workshop and chosen to be included
in the present proceedings. The authors of the selected papers were invited to submit an

VI Preface



extended version to the PRIME special issue in the IEEE Journal of Biomedical and
Health Informatics (J-BHI).

July 2018 Islem Rekik
Gozde Unal
Ehsan Adeli

Sang Hyun Park
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Computer Aided Identification
of Motion Disturbances Related

to Parkinson’s Disease

Gudmundur Einarsson1(B), Line K. H. Clemmensen1, Ditte Rud̊a2,
Anders Fink-Jensen3, Jannik B. Nielsen1, Anne Katrine Pagsberg2,

Kristian Winge4, and Rasmus R. Paulsen1

1 Technical University of Denmark, Copenhagen, Denmark
guei@dtu.dk

2 Child and Adolescent Mental Health Center Mental Health Services,
Capital Region Denmark, Faculty of Health Science,
University of Copenhagen, Copenhagen, Denmark

3 Psychiatric Centre Copenhagen (Rigshospitalet), Laboratory of Neuropsychiatry,
University Hospital Copenhagen, Copenhagen, Denmark

4 Department of Neurology, Zealand University Hospital, Roskilde, Denmark

Abstract. We present a framework for assessing which types of sim-
ple movement tasks are most discriminative between healthy controls
and Parkinson’s patients. We collected movement data in a game-like
environment, where we used the Microsoft Kinect sensor for tracking
the user’s joints. We recruited 63 individuals for the study, of whom 30
had been diagnosed with Parkinson’s disease. A physician evaluated all
participants on movement-related rating scales, e.g., elbow rigidity. The
participants also completed the game task, moving their arms through
a specific pattern. We present an innovative approach for data acquisi-
tion in a game-like environment, and we propose a novel method, sparse
ordinal regression, for predicting the severity of motion disorders from
the data.

Keywords: Game-aided diagnosis · Kinect · Parkinson’s disease
Sparse · Ordinal · Classification

1 Introduction

Parkinson’s disease (PD) is a long-term neurodegenerative disease, where the
significant symptoms are tremor, rigidity, slowness of movements and difficulty
walking. Currently, there are 7 million individuals affected on a global scale
where the disease has a severe socioeconomic effect and reduces the quality of
life. The condition has a significant financial impact on health care systems and
society [16].

PD is now known to be caused by an interplay of environment and several
genetic factors [11], but there is no known cure, only treatment to reduce symp-
toms. Treatment consists mainly of medication, surgery and physical therapy.
c© Springer Nature Switzerland AG 2018
I. Rekik et al. (Eds.): PRIME 2018, LNCS 11121, pp. 1–8, 2018.
https://doi.org/10.1007/978-3-030-00320-3_1
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2 G. Einarsson et al.

Recent studies have also shown relief of symptoms via improved rehabilitation
[1]. There is no diagnostically conclusive test available yet. The current diagnosis
is clinical-questionaires and movement tests, and may be missed or misdiagnosed
since the symptoms are common to other diseases/disorders. At the time of PD
diagnosis, the disease has often progressed to an advanced stage with motor
symptoms and neurophysiological damage.

It is of great importance to develop tools that can aid an unbiased diagnosis
for PD in earlier stages of the disease. Some symptoms commonly appear before
the motor-symptoms, such as depression, feeling tired and weak, reduced abil-
ity to smell, problems with blood pressure, heart rate, sleep disturbances and
digestion [8].

Increasing the detection rate for early cases is very ambitious, especially if
we do not resort to novel diagnosis tools. It would be easier, more accurate,
and less prone to bias, to make a computerized diagnostic test a part of the
regular screening processes. Using data from such a tool would allow us to model
individual abnormalities more accurately, and make personalized and accurate
predictions of disease status and progression, by comparing to earlier screenings.
Another way to achieve this would be to have access to a proxy variable, that
the patient can choose to send for analysis, such as data from a personal health
monitor, movement data from a GPS tracker, mobile phone data, or data from
a video game.

Our ambition is to predict the clinical ratings made by the physician of the
underlying movement disorders from the motion tracking data, and to identify
what part of the movement sequences are best suited for this task. This problem
has several difficulties, of which the major ones are: (1) There are few observa-
tions compared to the number of variables. (2) The labels we want to predict
are ordinal. (3) The classes are imbalanced.

In recent years the Kinect sensor has been widely used for retraining and
physical therapy. Galna et al. presented such an application for PD patients [10].
A review of the usage of the Kinect sensor for medical purposes is presented in
[13], of which most of the work is development and testing of physical ther-
apy systems for various diseases and medical conditions. Of the studies covered
in [13], three describe assessment of conditions, related to facioscapulohumeral
muscular dystrophy (FSHD), stroke and balance in the elderly. The capabilities
of the Kinect are limited, as reported in [9]; thus we do not expect to be able to
detect or predict the presence of low amplitude tremors or movement disorders
related to smaller movements.

We want to predict the score from the clinically collected movement data and
identify the movement sequences related to PD. Due to the high number of vari-
ables, we propose to use a novel method, sparse ordinal regression. This method
builds upon sparse discriminant analysis (SDA) [6] by adapting the data replica-
tion method to the sparse setting [4] to handle ordinal labels. We further extend
the novel optimization approaches presented in [3] for sparse ordinal regression.
The data replication method works on the principle of transforming an ordinal
classification problem into multiple binary classification problems. These binary
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classification problems are solved together to find a common hyperplane that
separates each pair of classes corresponding to adjacent ordinal labels. The dif-
ference between the hyperplanes corresponding to different classification bound-
aries are biases.

In the past years, multiple methods have appeared which can handle feature
selection and classification problems of the type p � n, most notably Sparse
Discriminant Analysis (SDA) by [6] and Sparse Partial Least Squares for Classi-
fication by [5]. Other algorithms commonly used to solve such problems, where
the focus is not necessarily classification, are elastic net by [18] and sparse prin-
cipal component analysis by [7]. Using an l1-norm regularizer in the model for-
mulation ensures that variable selection is performed in the model optimization
process which gives leverage for the user to interpret the non-zero parameters
in the model. Incorporation of an l1-norm regularizer is influenced by the Lasso
[15], which uses the l1-norm to relax the vector cardinality function in the best
feature subset problem for linear regression.

Ordinal labels appear in a multitude of applications, e.g., surveys, medical
rating scales and concerning online user reviews. We believe that the methodol-
ogy can be applied to a variety of other problems in the future.

The main contributions of this paper consist of a novel game-like framework,
the Motor-game, for assessing arm-movement in individuals with movement-
related disorders in the arms. We further propose a novel method for performing
classification from this data, sparse ordinal regression, allowing us to summarize
a whole run into a single score.

2 Methods

We have developed a game-like environment, which we call the Motor-game,
where we use the Microsoft Kinect sensor [17] and the associated software frame-
work to do motion tracking of the players (See Fig. 1) [2].

The motor-game is designed to capture a range of motions from the hands
and arms. There are three levels in the Motor-game, where here we focus on

Fig. 1. Left : Screenshot from the motorgame. The player sees his pose reflected as a
stick figure and needs to make the stick figure’s hands hover over the buttons as fast
as possible. Right : View from behind a player playing the motor-game.
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data from the first level. The first level has 22 tasks. In the first 11 tasks, a
button appears on the right side of the screen, and the player needs to react,
catch the button and keep the hand stable there for one second. The following
11 tasks are similar but for the left hand. For each player, the buttons appear in
the same location, meaning that their hands have comparable positions between
playthroughs. The distances between appearances of the buttons vary, forcing
the player to perform large and smaller motions. Using the tracking software from
the Kinect, we obtain 30 measurements per second of ten joints, hands, wrists,
elbows, shoulders, center of shoulders and head, in the upper body. One of the
main reason to make this data collection process in a game-like environment is
to keep the players motivated to perform as well as they can, and to make the
process more enjoyable, similar to games that have been made for physiother-
apy in PD patients [10]. In [6], Clemmensen et al. presented the sparse optimal
scoring problem (SOS), which is the formulation we employ to solve sparse ordi-
nal regression. SDA is like a supervised version of Sparse Principal Component
Analysis (PCA). We seek to find discriminant vectors to project the data to a
lower dimensional representation, where we balance the objectives of minimiz-
ing variation within classes, maximizing variation between classes and feature
selection. For PCA, where we do not have labels, we seek directions to maximize
variation. New samples are then traditionally classified according to the nearest
centroid after projection. We reformulate the SOS criterion presented in [6] for
ordinal labels:

arg min
θ∈R2,βOrd∈Rp+K−1

‖YOrdθ − XOrdβOrd‖22 + λ2β
T
OrdΩ̂βOrd + λ1

p∑

i=1

|βi|

s.t.
1
n

θTY T
OrdYOrdθ = 1. (1)

When we solve the problem in Eq. 1 we seek a sparse discriminant vector
βOrd, which we can then use to project the data from feature space to a one-
dimensional representation. In the ordinal case, we cast our problem as a binary
classification problem, which only yields a single discriminant vector βOrd, sim-
plifying the interpretation of the solution. βOrd is a vector of length p + K − 1,
(where p is the number of variables and K the number of classes). The first p
parameters correspond to the original variables that we can interpret. The extra
K − 1 parameters are the additional biases introduced by the data replication
method, allowing us to classify the projected points, based on where they end
up concerning the biases.

[6] show that for a given βOrd one can find θ in polynomial time. For a
given θ the problem formulation is an elastic net problem, and the problem
can be solved with the LARS-EN algorithm by [18]. We, however, approach the
optimization from the point of proximal gradient (PG) methods and alternating
direction method of multipliers (ADMM), using the soft thresholding operator
to deal with the sparse regularizer in the same manner as [3].

A natural assumption for an ordinal classifier of K classes, is to have K − 1
non-intersecting classification boundaries, where boundary i separates classes 1



Computer Aided Identification of Motion Disturbances Related to PD 5

to i from classes i+1 to K. In our case, that means finding a hyperplane and a set
of biases to shift the hyperplane between classes. We extend the data replication
method of [4] to the sparse setting, by adapting the optimization, such that it
does not regularize these new bias parameters.

We construct a new data matrix XOrd and labels YOrd according to the data
replication method. We then define a new (p+K −1)×(p+K −1) regularization
matrix Ω̂.

Ω̂ :=
[
Ω 0
0 0

]

, βT
Ord :=

[
β1 β2 . . . βp b1 b2 . . . bK−1

]
, (2)

where Ω is a p×p positive semi-definite regularization matrix for the parameters
corresponding to the p original variables. The final adjustments relates to the
l1-norm in Eq. 1. In the soft-thresholding step of the ADMM and PG algorithms
used to find βOrd, we only apply soft-thresholding to the first p elements.

The resulting βOrd vector is show in Eq. 2. The first part is composed of a
traditional discriminant vector, corresponding to the first p elements, and then
K − 1 biases, denoted bi, for i ∈ {1, 2, ...,K − 1}. The proofs of convergence to
stationary points, of the algorithms in [3], extend naturally to our approach.

3 Data and Experiments

We conducted a study, where we collected data from 63 individuals, of whom
33 were healthy controls and 30 PD patients. Detailed description of the cohort
can be found in [2]. Each participant played the Motor-game two times; the
first one is a trial run to get familiar with the game. Motion tracking data was
collected during the playthroughs. A physician then evaluated the participants
on various rating scales, of which we are concerned with the results from the
Simpson-Angus-Scale (SAS) [14], in particular, item 4, which involves elbow
rigidity. Furthermore, the PD patients were evaluated on the Movement Disorder
Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [12]. On MDS-
UPDRS we are most focused on items 3.3b rigidity of right hand, 3.4a finger
tapping in the right hand and 3.5a hand movement for the right hand. We picked
out these items since they were a priori thought to have the most substantial
correspondence with the data from the Motor-game. Items from the rating scales
reflecting motor symptoms in hands and arms were included. Exclusion was made
if there were too few participants affected. See Fig. 2 for prevalence and severity
of the observed motion conditions in the data. We refer to the ratings as clinical
scores. A more detailed description of the dataset and the Motor-game can be
found in [2].

For analyzing the movements of the participants, we used the tracked position
of their wrists, we denote xij as the position at timepoint j in task i. For the
first 11 tasks, we used the avatar screen coordinate vertical position for the
right wrist. The choice of this coordinate is because the avatar has been scaled
according to an initial estimate of the player’s arm length, making on-screen
positions comparable between players. For the following 11 tasks, we used the
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Fig. 2. Prevalence of labels in the dataset for the conditions we focus on. The first three
plots from the left correspond to MDS-UPDRS items 3.3b rigidity right arm, 3.4a finger
tapping right hand and 3.5a hand movement right. The final item corresponds to elbow
rigidity on the SAS scale.

corresponding coordinates for the left wrist. For each of the 22 tasks, we used
measurements for the first second of play. The first second of the game is enough
for the person to respond and start moving. We can see the contrast between
a fast and slow reacting participant in Fig. 3. This yields, in the end, a total of
p = 20 × 22 = 440 variables per participant. We denote miS as the mean of the
first three measurements for task i and miE as the average for the last three
measures for task i.

x̃ji :=
xji − miS

|miS − miE | (3)

We further scale the j-th measurement xji from task i as depicted in Eq. 3. Due
to variation in the end and starting position, this scaling ensures that the data
is more robust to reactions of the participants.

We normalize the data before applying sparse ordinal regression by subtract-
ing the mean for each variable and scaling the standard deviation to one. We
report the balanced accuracy for leave one cross-validation, where we allow the
regularization parameters λ1 and λ2 from Eq. 1 to be in the set {0.1, 0.01, 0.001}.
We perform this experiment for the four labels shown in Fig. 2. Note that the

Fig. 3. Data used for the experiment, vertical position of two subjects’ hands over the
first second of the 22 tasks. On the left we have a participant that generally reacts fast,
on the right we have a more slow reacting individual.
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three variables for MDS-UPDRS were only measured for the Parkinson patients;
thus the controls were assumed to have a score of zero.

4 Results

The leave one out cross-validation balanced-accuracy ranged from 38.8% for
hand movement right to 48.1% for elbow rigidity. The corresponding confusion
matrices are shown in Table 1. We can see that the predictions are somewhat
accurate, although the LOO-CV most likely overestimates the real accuracy.
Note that the best forecasts for class zero are in MDS-UPDRS 3.4a and SAS-4.
We assume that the controls have a score of zero in the MDS-UPDRS variables
since they were not measured, this may not be entirely correct, a few individuals
in the control group had a score of one for SAS-4.

Table 1. Confusion matrices for predictions (with best performing regularization
parameters) from the item left out in the leave one out cross-validation. Most of the
predictions are concentrated around the correct label, but most of them have difficulties
with the higher labels.

3.3b True

0 1 2 3

P
re
di
ct
ed 0 22 2 4 1

1 13 9 3 0
2 4 1 0 0
3 1 1 0 2

3.4a True

0 1 2 3

P
re
di
ct
ed 0 26 2 4 2

1 13 6 1 4
2 1 0 3 0
3 0 0 0 0

3.5a True

0 1 2 3

P
re
di
ct
ed 0 20 3 6 1

1 11 4 3 0
2 8 2 1 1
3 1 0 1 1

SAS-4 True

0 1 2 3
P
re
di
ct
ed 0 23 1 4 1
1 11 9 3 1
2 1 4 1 0
3 2 0 0 2

5 Conclusions

We have presented a novel approach for assessing the severity of upper body
motor symptoms in PD. The novelty lies in the game-like environment, which
has been proven to work both in the clinic, or in the patient’s home and the
sparse ordinal regression for prediction the severity of motion disturbances. Lon-
gitudinal studies are needed to establish further the potential of this approach.
Monitoring the movement in correspondence with the presence of pre-movement
related symptoms has potential to create novel tools for early detection of PD.

Acknowledgements. Gudmundur Einarson’s PhD is funded jointly by the Lundbeck
Foundation and the Technical University of Denmark. The study has received grants
from The Capital Region of Denmark, Research Fund for Health Promotion and The
Capital Region of Denmark, Mental Health Services Research Fund.
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Abstract. Autism spectrum disorder (ASD) is a complex neurodevelop-
mental syndrome. Early diagnosis and precise treatment are essential for
ASD patients. Although researchers have built many analytical models,
there has been limited progress in accurate predictive models for early
diagnosis. In this project, we aim to build an accurate model to predict
treatment outcome and ASD severity from early stage functional mag-
netic resonance imaging (fMRI) scans. The difficulty in building large
databases of patients who have received specific treatments and the high
dimensionality of medical image analysis problems are challenges in this
work. We propose a generic and accurate two-level approach for high-
dimensional regression problems in medical image analysis. First, we per-
form region-level feature selection using a predefined brain parcellation.
Based on the assumption that voxels within one region in the brain have
similar values, for each region we use the bootstrapped mean of vox-
els within it as a feature. In this way, the dimension of data is reduced
from number of voxels to number of regions. Then we detect predictive
regions by various feature selection methods. Second, we extract vox-
els within selected regions, and perform voxel-level feature selection. To
use this model in both linear and non-linear cases with limited training
examples, we apply two-level elastic net regression and random forest
(RF) models respectively. To validate accuracy and robustness of this
approach, we perform experiments on both task-fMRI and resting state
fMRI datasets. Furthermore, we visualize the influence of each region,
and show that the results match well with other findings.

Keywords: fMRI · ASD · Predictive model

1 Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental syndrome character-
ized by impaired social interaction, difficulty in communication and repetitive
behavior. ASD is most commonly diagnosed with a behavioral test [1], however,
c© Springer Nature Switzerland AG 2018
I. Rekik et al. (Eds.): PRIME 2018, LNCS 11121, pp. 9–17, 2018.
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the behavioral test is insufficient to understand the mechanism of ASD. Func-
tional magnetic resonance imaging (fMRI) has been widely used in research on
brain diseases and has the potential to reveal brain malfunctions in ASD.

Behavior based treatment is a widely used therapy for ASD, and Pivotal
Response Treatment (PRT) is empirically-supported [2]. PRT addresses core
deficits in social motivation to improve social communication skills. Such thera-
pies require large time commitments and lifestyle changes. However, an individ-
ual’s response to PRT and other behavioral treatments vary, yet treatment is
mainly assigned by trial and error. Therefore, prediction of treatment outcome
during early stages is essential.

fMRI measures blood oxygenation level dependent (BOLD) signal and
reflects brain activity. Recent studies have applied fMRI in classification of ASD
and identifying biomarkers for ASD [3]. Although some regions are found to
have higher linear correlations with certain types of ASD severity scores, the
correlation coefficient is typically low (below 0.5). Moreover, most prior studies
apply analytical models, and lack predictive accuracy.

The goal of our work is to build accurate predictive models for fMRI images.
To deal with the high dimensionality of the medical image regression problem,
we propose a two-level modeling approach: (1) region-level feature selection, and
(2) voxel-level feature selection. In this paper, we demonstrate predictive models
for PRT treatment outcomes and ASD severity, and validate robustness of this
approach in both task fMRI and resting state fMRI datasets. Furthermore, we
analyze feature importance and identify potential biomarkers for ASD.

2 Methods

2.1 Two-Level Modeling Approach

Dimensionality of medical images (i.e., the number of voxels) is far higher than
the number of subjects in most medical studies. The high dimensionality causes
inaccuracy in variable selection and affects modeling performance. However,
medical images are typically locally smooth, and voxels are not independent
of each other. This enables us to perform the following two-level feature selec-
tion as shown in Fig. 1. The proposed procedure first selects important features
at the region level, then performs feature selection at the voxel level. Our generic
approach can be used with both linear and non-linear models.

Region-Level Modeling and Variable Selection. Based on brain atlas
research, we assume that voxels within the same region of a brain parcellation
have similar values. Therefore, we use the bootstrapped (sample with replace-
ment) mean for each region as a feature, reducing dimension of data from number
of voxels to number of regions. Then we can perform feature selection on this
new dataset, where each predictor variable represents a region.

Beyond dimension reduction, representing each region with the bootstrapped
mean of its voxel values decreases correlation between predictor variables.
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Another potential benefit is to increase sample size. We can generate many
artificial training examples from one real training example by repeatedly boot-
strapping each region. Since this generates correlated training samples, repeated
bootstrapping can only be used in models that are robust to sample correlation.

Fig. 1. Flowchart of the proposed approach. Each column represents a stage of the
approach, region-level and voxel-level models. Top row shows linear models (e.g. elastic
net regression), bottom row shows non-linear models (e.g. random forest).

Voxel-Level Modeling and Variable Selection. Region-level feature selec-
tion preserves predictive regions. However, representing all voxels within a region
as one number is too coarse, and may affect model accuracy. Therefore, we
extract all voxels within the selected regions, perform spatial down-sampling by
a factor of 4, and apply feature selection on voxels.

Pipeline Repetition. Due to the randomness in bootstrapping for region level
modeling, we repeat the whole process. For each of the four models (linear and
non-linear models at region-level and voxel-level respectively), we average out-
comes to generate stable predictions.

2.2 Linear and Non-linear Models

We can apply any model in the approach proposed in Sect. 2.1. To instantiate
a generic approach for both linear and non-linear cases, we train elastic net
regression and random forest (RF) independently, both trained at two levels.

Variable Selection with Elastic Net Regression. Elastic net is a linear
model with both l1 and l2 penalty to perform variable selection and shrink-
age regularization [4]. Given predictor variables X and targets y, the model is
formalized as

β̂ = argminβ

{||y − Xβ||2 + λ
[
α||β||1 + (1 − α)||β||2]} (1)
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where 0 ≤ α ≤ 1, α controls the proportion of regularization on l1 and l2
term of estimated coefficients, and λ controls the amplitude of regularization.
l2 penalty is shrinkage regularization and improves robustness of the model. l1
penalty controls sparsity of the model. By choosing proper parameters, irrelevant
variables will have coefficients equal to 0, enabling variable selection.

Variable Selection with Random Forest. Random forest is a powerful
model for both regression and classification problems and can deal with interac-
tion between variables and high dimensionality [5]. Although random forest can
handle medium-high dimensional problems, it’s insufficient to handle ultra-high
dimensional medical image problems. Therefore, two-level variable selection is
still essential.

Conventional variable selection technique for random forest builds a pre-
dictive model with forward stepwise feature selection [6]. For high dimensional
problems, it is computationally intensive. Therefore, we use a similar thresh-
olding method to perform fast variable selection as in [7] (Fig. 2). We generate
noise (“shadow”) variables from a Gaussian distribution independent of target
variables. Shadow variables are added to the original data matrix, and a random
forest is trained on the new data matrix. The random forest model calculates the
importance of each variable. A predictive variable should have higher importance
than noise variables. A threshold is calculated as:

Thres = median(V Ishadow
i ) s.t. V Ishadow

i > 0, i = 1, 2, ...n (2)

where n is the total number of shadow variables, and V Ishadow
i is the importance

measure for the ith shadow variable. We use permutation accuracy importance
measure [6] in this experiment. The threshold is calculated using positive shadow
variable importance because permutation accuracy importance can be negative.
We use the median to make a conservative threshold, because even noise variables
can have high importance in high-dimensional problems, due to randomness of
the model. After variable selection, we build a gradient boosted regression tree
model based on selected variables.

Fig. 2. Flowchart of variable selection with random forest and “shadow” method.
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2.3 Visualization of Each Variable’s Influence

To achieve both predictability and interpretability, we use the following methods
to visualize influence of each region in the brain. For linear models, we plot the
linear coefficients map.

For non-linear models, we visualize the influence based on the partial depen-
dence plot. The partial dependence plot shows the dependence between target
and predictor variables, marginalizing over all other features [8],

Dl(zl) = Ex(F̂ (x)|zl) =
∫

F̂ (x)p(z\l|zl)dz\l (3)

where Dl(zl) is the partial dependence function for variable zl, F̂ (x) is the trained
model, z\l is the set of variables except zl, p(z\l|zl) is the distribution of z\l given
zl. Each Dl(zl) is calculated as a sequence varying with zl in practice.

The influence of each variable is stored in a sequence. For visualization, we
summarize the influence of a variable (Influencel) by calculating the variance of
Dl(zl) to measure the amplitude of its influence, and the sign of its correlation
with zl to show if it has a positive or negative influence on targets:

Influencel = Sign
(

corr
(
Dl(zl), zl

))
Var

(
Dl(zl)

)
. (4)

3 Experiments and Results

3.1 Task-fMRI Experiment

Ninteen children with ASD participated in 16 weeks of PRT treatment, with pre-
treatment and post-treatment social responsiveness scale (SRS) scores [9], and
pre-treatment autism diagnostic observation schedule (ADOS) [10] scores mea-
sured. Each child underwent a pre-treatment baseline task fMRI scan (BOLD,
TR = 2000 ms, TE = 25 ms, flip angle = 60◦, slice thickness = 4.00 mm, voxel
size 3.44 × 3.44× 4 mm3) and a structural MRI scan (T1-weighted MPRAGE
sequence, TR = 1900 ms, TE = 2.96 ms, flip angle = 9◦, slice thickness =
1.00 mm, voxel size = 1 × 1 × 1 mm3) on a Siemens MAGNETOM Trio TIM
3T scanner.

During the fMRI scan, coherent (BIO) and scrambled (SCRAM) point-light
biological motion movies were presented to participants in alternating blocks
with 24 s duration [11]. The fMRI data were processed using FSL v5.0.8 in the
following pipeline: (a) motion correction with MCFLIRT, (b) interleaved slice
timing correction, (c) BET brain extraction, (d) grand mean intensity normal-
ization for the whole four-dimensional data set, (e) spatial smoothing with 5 mm
FWHM, (f) denoising with ICA-AROMA, (g) nuisance regression for white mat-
ter and CSF, (h) high-pass temporal filtering.

The timing of the corresponding blocks (BIO and SCRAM) was convolved
with the default gamma function (phase = 0 s, sd = 3 s, mean lag = 6 s) with
temporal derivatives. Participant-level t-statistics for contrast BIO > SCRAM
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were calculated for each voxel with first level analysis. This 3D t-statistic image
is the input to the proposed approach. The input image is parcellated into 268
regions using the atlas from group-wise analysis [12].

We tested the approach on three target scores using leave-one-out cross
validation: pre-treatment SRS score, pre-treatment standardized ADOS score
[13], and treatment outcome defined as the difference between pre-treatment
and post-treatment SRS score. For elastic net regression, we used nested cross-
validation to select parameters (λ ∈ {0.001, 0.01, 0.1}, α ranging from 0.1 to
0.9 with a stepsize of 0.1). Other parameters were set according to computation
capability. For random forest models, we set tree number as 2000. For region
level modeling, each region was represented as the mean of 2000 bootstrapped
samples from its voxels. For gradient boosted tree model after feature selection
with random forest, the number of trees was set as 500. The whole process was
repeated 100 times and averaged. All models were implemented in MATLAB,
with default parameters except as noted above. Neurological functions of selected
regions were decoded with Neurosynth [14]. For each experiment, results (linear
correlation between predictions and measurements r, uncorrected p-value, root
mean square error RMSE) of the best model are shown in Figs. 3 and 4.

Fig. 3. Results for various scores predicted from task fMRI, red lines are reference lines
of perfect prediction y = x. (Color figure online)

3.2 Resting State fMRI Experiment

We performed similar experiments on the ABIDE dataset [15] using the UM and
USM sites with five-fold cross validation. We selected male subjects diagnosed
with ASD, resulting in 51 patients from UM and 13 patients from USM. We built
models to predict the ADOS Gotham total score from voxel-mirrored homotopic
connectivity images [16]. We set parameters the same as in Sect. 3.1. Results are
shown in Fig. 5.

3.3 Result Analysis

Training and validation datasets were independent for all experiments. The pro-
posed two-level approach accurately selected predictive features, while elastic
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net and RF directly applied to the whole-brain image failed to generate pre-
dictive results in all experiments (correlation between predictions and measure-
ments <0.1). The proposed approach generated very high predictive accuracy
on various datasets and different scores, achieving better accuracy than state-
of-the-art.

For SRS scores, we found no predictive models in the literature. Kaiser et al.
reported regions of correlation r = 0.502 [11] in analytical modeling, while our
predictive model achieved r = 0.45 (Fig. 3(a)).

For standardized ADOS score, the best result in literature achieves r = 0.51
between predictions and measurements with 156 subjects based on cortical thick-
ness [17]. Our model achieved r = 0.50 with 19 patients (Fig. 3(c)) based on
fMRI.

Fig. 4. Regions are colored in red for positive influence and blue for negative influence.
(a–c): Influence of regions for various scores based on task fMRI. (d): Functions decoded
by Neurosynth. (Color figure online)

Fig. 5. Left: Results of region-level elastic net regression model for resting-state fMRI
experiment. Middle: Linear coefficients of model. Right: Functions decoded by Neu-
rosynth, red for positive regions, blue for negative regions. (Color figure online)
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For raw ADOS score, Björnsdotter et al. found no significant correlation with
brain responses in fMRI scan [18]. Predictive models based on structural MRI
achieved correlation of r = 0.362 between predictions and measurements [19].
In our experiment with resting-state fMRI, we achieved correlation r = 0.40
(Fig. 5).

To predict treatment outcome from baseline fMRI scan, Dvornek et al.
achieved correlation r = 0.83 between predictions and measurements [20]. We
achieved r = 0.71 (Fig. 3(b)). However, the study by Dvornek et al. takes pre-
selected regions as input and loses interpretability because it does not perform
region selection. In contrast, our proposed approach takes a whole-brain image
as input and can select predictive regions for interpretation and biomarker selec-
tion. Furthermore, the proposed approach is generic and any non-linear model
(including Dvornek’s method) can be applied.

Neurosynth decoder results (Figs. 4(d) and 5 right figure) show that selected
regions match the literature [11]. The selected regions are slightly different across
experiments due to different tasks, datasets and target measures. Many regions
are shared across experiments, such as prefrontal cortex and visual cortex.

4 Conclusion

We propose a generic approach to build predictive models based on fMRI images.
To deal with high-dimensionality, we perform two-level variable selection: region-
level modeling, and voxel-level modeling. This generic approach includes elas-
tic net and random forest models to fit both linear and non-linear cases. The
proposed approach is tested on both task-fMRI and resting-state fMRI, and
validated on different scores. The proposed predictive approach achieves higher
correlation than state-of-the-art predictive modeling in many experiments. Over-
all, the proposed approach is generic, accurate, and achieves both predictability
and interpretability.

Acknowledgement. This research was funded by the National Institutes of Health
(NINDS-R01NS035193).
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Abstract. Perivascular spaces (PVS) in the human brain are related to
various brain diseases or functions, but it is difficult to quantify them in
a magnetic resonance (MR) image due to their thin and blurry appear-
ance. In this paper, we introduce a deep learning based method which
can enhance a MR image to better visualize the PVS. To accurately
predict the enhanced image, we propose a very deep 3D convolutional
neural network which contains densely connected networks with skip
connections. The densely connected networks can utilize rich contextual
information derived from low level to high level features and effectively
alleviate the gradient vanishing problem caused by the deep layers. The
proposed method is evaluated on seventeen 7T MR images by a two-
fold cross validation. The experiments show that our proposed network
is more effective to enhance the PVS than the previous deep learning
based methods using less layers.

Keywords: Perivascular spaces · Enhancement
Deep convolutional neural network · Densely connected network
Skip connections

1 Introduction

Perivascular spaces (PVS) are thin fluid-filled spaces in the human brain.
Recently, studies have shown that increasing the PVS number and thickening
the PVS are associated with brain diseases [1]. Also, it is revealed that the PVS
enlargement is related to cognitive abilities of healthy elderly men [2]. To demon-
strate these hypotheses, it is necessary to quantify the relationship between the
thickness, length, distribution of PVS and the brain diseases or functions.

However, the PVS are not clearly visible in magnetic resonance (MR) images
acquired by traditional 1.5T, 3T or even by 7T MR scanners. Accordingly, Bouvy
et al. [3] and Zong et al. [4] proposed novel acquisition parameters of 7T MR
scanner that make the PVS more visible. However, it is difficult to find the
c© Springer Nature Switzerland AG 2018
I. Rekik et al. (Eds.): PRIME 2018, LNCS 11121, pp. 18–25, 2018.
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parameters which can improve only the PVS while reducing the noisy in back-
ground. Thus, distinguishing small PVS is still difficult although several methods
have been proposed to segment the PVS from MR images [5,6].

Accordingly, instead of carefully looking for a certain specific parameter of
MR scanner, several studies have been proposed to enhance the PVS by using
image processing methods after the MR images are acquired. For example,
Uchiyama et al. [7] used the white top hat transform to highlight the tubu-
lar structures and proved that this enhancement is effective to detect the PVS.
Hou et al. [8] proposed a method which improves the intensity of thin tubu-
lar structures using a nonlinear mapping function in Haar domain, and then
removes noisy in background by using the block matching filtering. Although
these methods help to extract the PVS by enhancing the intensity of PVS, they
require heuristic parameter tuning such as controlling the filter size or defining
the parameters of nonlinear mapping function according to the image.

In this paper, we propose an end to end PVS enhancement method which does
not require the heuristic parameter tuning and the additional processing steps
for distinguishing the PVS from noisy. Specifically, we suggest a very deep 3D
neural network consisting of 39 convolution layers which are densely connected
by skip connections. The proposed network using the dense skip connections
effectively improves the prediction accuracy by utilizing rich contextual infor-
mation derived from low level to high level features and alleviating the gradient
vanishing problem. The prediction accuracy of our proposed network was eval-
uated on seventeen 7T MR images. Experimental results show that our deep
network is more effective to enhance the PVS than the state-of-the-art deep
learning based image enhancement methods.

1.1 Related Works

Deep learning based methods have achieved the best performance for the super
resolution problem which converts a low resolution image into a high resolution
image. For example, Dong et al. [9] proposed a method using three convolution
layers and achieved better prediction results than the previous methods using
sparse coding and regression. After that, several studies using deeper network
[10,11] have been proposed to utilize higher level contextual features. Specifically,
Kim et al. [10] proposed a recursive neural network to reflect a large contextual
information without additional weight parameters and Tong et al. [11] proposed
a network using densely connected blocks with skip connections to reflect the
various levels of features for the prediction.

In this paper, we apply the deep neural networks, mainly have been applied
to the super resolution of 2D images, to the enhancement of PVS in 3D MR
images. The PVS are thin and oriented at different angles in three dimensions,
and thus it is difficult to distinguish the PVS from noisy in a 2D image. In
addition, since the difference between a MR image and its enhanced MR image
is relatively larger (see Fig. 2) than that between the low resolution image and
the high resolution image in super resolution, sophisticated contextual features
need to be learned. Therefore, we design a very deep 3D network including six
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dense blocks and dense skip connections to reduce the feature redundancy and
utilize the rich contextual information in three dimensions. Although several 3D
networks [12–14] recently have been proposed for the super resolution of MR
images, those models use shallow structures while our model includes six dense
blocks and skip connections between them. The closest model to our proposed
network is the network proposed by Tong et al. [11], but our model consists of
3D layers and there are some differences in the structure such as not using a
deconvolution layer. To the best of our knowledge, this is the first work to use
the deep learning based method for the PVS enhancement.

2 Method

We introduce a deep learning based method which generates an enhanced 7T
MR image from a 7T MR image. Learning a deep network that maps the whole
3D MR image is infeasible due to memory limitations. Thus, if an image is given,
we sample 3D patches at a regular interval, and then perform the prediction in
each patch using a deep 3D convolutional neural network, and finally generate
the whole enhanced image by merging the predictions on the 3D patches. Since
the predictions near the boundary of patch may not be accurate, the predictions
on the central region are collected to generate the whole enhanced image. The
sampling interval is determined so that the prediction is obtained in every voxel.

In the training step, we sample the 3D patches from 7T MR images and those
from their enhanced 7T MR images in a training set, and then learn the deep 3D
convolutional neural network which learns the relationship between patches. The
proposed network consists of an initial convolution layer for learning low level
features, several dense blocks for learning middle level to high level features, a
bottleneck layer for reducing the number of feature maps, and a prediction layer
for generating the enhanced 3D patch. Figure 1 shows the proposed network and
detailed descriptions follow in the subsections.

Fig. 1. The proposed deep 3D convolutional neural network for PVS enhancement.
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2.1 Densely Connected Deep Neural Network

The proposed network learns the relationship between the patch X sampled from
a 7T MR image and the patch Y from its enhanced 7T MR image. The rele-
vance is parameterized by weights w = [w1, ..., wN ] and residuals b = [b1, ..., bN ]
between layers where N is the number of convolution layers, and X is trans-
formed into P (X,w,b) by those parameters. In training, the parameters w
and b are updated by an optimizer so that the mean squared error between
P (X,w,b) and Y is minimized.

The proposed network consists of 39 convolution layers (N = 39). First, the
input patch X is passed through a convolution layer and then six dense blocks
where each dense block consists of 6 convolution layers to produce low level to
high level feature maps. Specifically, 8 kernels with a size 3 × 3 × 3 is used for
the convolution layers and a rectified linear unit (ReLU) layer is connected for
nonlinear mapping behind each convolution layer.

In each dense block, as proposed by Huang et al. [15], the feature maps
generated in previous layers are concatenated and pass through a convolution
layer to generate new feature maps. The new feature maps are also concatenated
to the previous feature maps and then pass through the next convolution layer.
Thus, the number of feature maps linearly increased by the number of kernel.
Since we use six convolution layers with 8 kernels, the number of feature maps
increased by 8 in six times and the dense block generates 48 feature maps. The
concatenation of the feature maps not only reduces the number of parameters
but also alleviates the vanishing gradient problem. Finally, the 8 feature maps
generated from the last layer are used as the input of the next dense block.

After passing through all six dense blocks, the prediction can be performed
by using the feature maps from the 6th dense block. However, in this way, the
low level and middle level features extracted by the initial layer and the initial
dense blocks are rarely reflected in the prediction. Thus, to use all levels of
information for the prediction, we use skip connections between the following
layer and the initial convolution layer and six dense blocks. Specifically, 8 feature
maps obtained from the initial convolution layer and all 288 (= 48 × 6) feature
maps from six dense blocks are connected to the following layer in the network.

Connecting all these feature maps to the prediction layer for predicting a
single channel output at once (i.e., 296 to 1) is computationally inefficient and
hard to keep the model compactness. Therefore, a 1×1×1 convolution layer with
16 kernels is utilized as the bottleneck layer between the 6th dense block and the
prediction layer to reduce the number of feature maps. Finally, the 16 feature
maps generated from the bottleneck layer are passed through the prediction layer
to predict the final output (i.e., 296 to 16, and then 16 to 1). With through the
bottleneck layer, prediction can be more accurate and efficient, since this layer
use all feature map from low to high levels and reduce the number of feature
map in computationally efficient way.
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2.2 Implementation Details

Most PVS are located in the white matter and the non-brain region is large in
a MR image. Thus, it is inefficient to sample the training patches in the whole
image. We extracted the brain region by using the brain extraction tool [16] and
then sampled 3D patches which contain a part of brain region for training. The
patch size was determined as 60 × 60 × 60 by considering the receptive field of
our network. In testing, we similarly extracted the brain region using [16], and
then estimated the enhanced image by performing the prediction on 60×60×60
3D patches containing the brain region and merging them.

Regarding the proposed network, the weights w were initialized by the
method proposed in [17] and the biases b were initialized to 0. ReLU was used
for the activation function and the batch size was set as 5. The Adam opti-
mizer was used to minimize the mean squared error between P (X,w,b) and Y .
The learning rate was initially set as 0.0001 and then decreased by 2 × 10−7

for each epoch. The experiment was ended up to 500 epochs. The method was
implemented using Tensorflow and all training and testing were performed on a
workstation with NVIDIA Titan XP GPU.

3 Experimental Results

3.1 Evaluation Setting

Seventeen 7T MR images were used for the experiment. For training and valida-
tion, we made those enhancement images by using the Hou et al.’s method [8].
The enhanced images were used for computing the mean square error in train-
ing, while used for evaluating the prediction accuracy in testing. We divided the
images into two subsets and then performed a two-fold cross validation.

The prediction accuracy was measured by PSNR and SSIM between the pre-
dicted images and the enhanced images. The PSNR and SSIM were measured in
the white matter as well as in the whole brain region since most PVS were in the
white matter. The white matter was extracted by an brain tissue segmentation
method [18].

To demonstrate the superiority of the proposed network (DCNN6+SC+B)
using the six dense blocks, skip connections (SC), and bottleneck layer (B), we
compared this with SRCNN [9] using three convolution layers with the kernel
sizes 9, 5, and 5 and DCNN [13] using only one dense block for the prediction.
To demonstrate the effect of skip connections between the dense blocks and the
bottleneck layer, we provide the results obtained by the deep networks without
the skip connections and the bottleneck layer (DCNN6 and DCNN6+SC). In
addition, to demonstrate the effect of network depth related to the number of
parameters and the size of receptive field, we provide the results obtained by
using the proposed networks with two and four dense blocks (DCNN2+SC+B
and DCNN4+SC+B, respectively) instead of six dense blocks.

For a fair comparison, we modified 2D SRCNN [9], which was proposed for
the image super resolution problem, to the 3D network to address the PVS
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enhancement problem. Also, we modified the kernel size and the number of
layers of DCNN [13], which was proposed for the super resolution of a brain MR
image, to be comparable with our network.

Table 1. Mean PSNR (dB) and SSIM scores between the predictions and the enhanced
images, and the training time for each method. The scores were measured in the white
matter (WM) and in the brain region (Brain), respectively. SC represents the skip
connections, B represents the bottleneck layer, and bold indicates the highest score.

PSNR-WM PSNR-Brain SSIM-WM SSIM-Brain Time (hour)

SRCNN [9] 36.373 30.957 0.962 0.924 4.5

DCNN [13] 37.647 31.951 0.971 0.942 2.5

DCNN6 38.518 32.825 0.975 0.950 12

DCNN6+SC 38.636 32.918 0.975 0.951 14.5

DCNN2+SC+B 38.040 32.386 0.973 0.947 4

DCNN4+SC+B 38.420 32.718 0.975 0.949 8

DCNN6+SC+B 38.739 33.015 0.976 0.951 12.5

3.2 Result

Table 1 shows the mean PSNR and SSIM measured from the results obtained
by the proposed method and the comparison methods, and the computational
times for training. The result obtained by SRCNN was the worst since the small
number of hidden layers could not produce the high level features useful for
prediction. DCNN achieved better performances than SRCNN with less com-
putations. The deeper network and the skip connections between convolution
layers helped to use relatively high level features while reducing the number of
parameters. Likewise, DCNN6 composed of approximately six times more layers
achieved much better results since the deeper network could learn the higher
level features on a large receptive field which could not be considered in DCNN.

The method using the dense skip connections (DCNN6+SC) further
improved the performance by predicting the enhanced image with the low level to
high level features together on a large receptive field. Using the bottleneck layer
also helped to improve the performance slightly while reducing the computa-
tion (DCNN6+SC+B). According to the results obtained by DCNN2+SC+B,
DCNN4+SC+B, and DCNN6+SC+B, we could confirm that the performance
was improved as the depth of network deepened.

Figure 2 shows the qualitative results obtained by SRCNN, DCNN, and the
proposed method. SRCNN or DCNN improved the PVS, but noises near the
PVS were not suppressed effectively. On the other hand, the prediction results
obtained by our proposed method were very similar to the enhanced images.
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Fig. 2. Visual comparison between the proposed method and the comparison methods
on several local regions. (a) Regions in original images, (b) the results obtained by
SRCNN [9], (c) the results by DCNN [13], (d) the results by our proposed method
(DCNN6+SC+B), and (e) regions in the enhanced images.

4 Conclusion

We have proposed a novel PVS enhancement method using a deep dense network
with skip connections. We have demonstrated that the deep learning techniques
usually used for the super resolution problem can be used for the PVS enhance-
ment problem. The proposed method does not require empirical parameter tun-
ing and additional processing such as denoising. The proposed deep network has
outperformed the state-of-the-art deep learning networks and it has been proved
that using various levels of features is helpful to improve the prediction accuracy.
In the future, we will perform several experiments to prove how the proposed
method can help in PVS segmentation and quantitative analysis.
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Abstract. New positron emission tomography (PET) tracers could have a
substantial impact on early diagnosis of Alzheimer’s disease (AD) and mild
cognitive impairment (MCI) progression, particularly if they are accompanied
by optimised deep learning methods. To realize the full potential of deep
learning for PET imaging, large datasets are required for training. However,
dataset sizes are restricted due to limited availability. Meanwhile, most of the
AD classification studies have been based on structural MRI rather than PET. In
this paper, we propose a novel application of conditional Generative Adversarial
Networks (cGANs) to the generation of 18F-florbetapir PET images from cor-
responding MRI images. Furthermore, we show that generated PET images can
be used for synthetic data augmentation, and improve the performance of 3D
Convolutional Neural Networks (CNN) for predicting progression to AD. Our
method is applied to a dataset of 79 PET images, obtained from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database. We generate high quality
PET images from corresponding MRIs using cGANs, and we evaluate the
quality of generated PET images by comparison to real images. We then use the
trained cGANs to generate synthetic PET images from additional MRI dataset.
Finally we build a 152-layer ResNet to compare the MCI classification per-
formance using both traditional data augmentation method and our proposed
synthetic data augmentation method. Mean Structural Similarity (SSIM) index
was 0.95 ± 0.05 for generated PET and real PET. For MCI progression clas-
sification, the traditional data augmentation method showed 75% accuracy while
the synthetic data augmentation improved this to 82%.

Keywords: Alzheimer’s disease � Mild cognitive impairment
Data augmentation � Generative adversarial network � Deep learning
PET � MRI

1 Introduction

In recent years, amyloid positron emission tomography (PET) imaging has been
applied in some medical imaging problems such as Alzheimer’s disease classification
and detection of amyloid plaques [1, 2]. The first PET tracer used to image b-amyloid
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plaques was 11C-Pittsburgh-Compound-B (PiB) [3]. Due to the limited availability of
11C-PiB with its short half-life, 18F-labelled alternatives have been developed, which
allow off-site production and regional distribution. 18F-flutemetamol, 18F-florbetapir
and 18F-florbetaben have recently been approved by the US Food and Drug Admin-
istration (FDA) for clinical use. Abnormal uptake in grey matter causes a disruption of
the characteristic white matter pattern caused by non-specific white matter binding [4].
These scans are generally interpreted visually.

A separate group from healthy volunteers (HV) and patients with probable Alz-
heimer’s disease (pAD), mild cognitive impairment (MCI) is an intermediate cognitive
state between normal aging and dementia. Subjects with MCI, especially MCI
involving memory problems, are more likely to develop AD and other dementias [5].
According to this progression, MCI subjects can subsequently be classified as pro-
gressive MCI (pMCI) or stable MCI (sMCI) [6].

Many deep learning methods have been proposed to classify different AD stages
based on high dimensional features extracted from various neuroimaging biomarkers.
Meanwhile, the focus for AD classification has gradually evolved from classification
between healthy control and disease patients to classification between pMCI and sMCI.
In a recent paper on MCI classification, Kim et al. developed a deep learning-based
method for classifying tau-pet imaging patterns. MCI subjects were split into three
subgroups with the Louvain method. This method discriminated subgroups 1 and 2
with accuracy 90.91%, and 80.49% for subgroups 2 and 3 [7].

A big challenge in the medical imaging field is how to cope with small datasets and
limited amount of annotated samples [8]. One promising solution inspired by game
theory for image synthesis is known as Generative Adversarial Networks (GANs) [9].
The method is based on the idea of training two networks, a generator and a dis-
criminator simultaneously with competing losses. In the past few years, different
variations of GANs have been applied to generate realistic natural images, and recently,
the popularity of using GANs to generate medical images have also increased [10]. For
example, Frid et al. [11] proposed a CNN based classification framework to classify
different CT images, where GANs was used to generate high quality 2D liver lesion
ROIs from a vector of 100 random numbers. The classification performance using only
traditional data augmentation yielded 78.6% sensitivity and 88.4% specificity. By
adding the synthetic data augmentation the results increased to 85.7% sensitivity and
92.4% specificity. Recently, Madani et al. [12] used a GAN to generate the 2D chest
X-ray images from random noise, and the generated data were subsequently used to
train a CNN to classify images for cardiovascular abnormalities.

In general, the availability of MRI is much higher than PET for a number of
reasons. PET scanners are expensive to buy and operate, and thus less common. PET
scans require subjects are exposed to ionising radiation during the test. More impor-
tantly, the number of test datasets is very limited when newly developed PET tracers
are being tested. In this case, we aim at compensating this imbalance between available
MRI and PET images by using a limited dataset.

To the best of our knowledge, direct generation of 3D amyloid PET imaging from
structural MR has not yet been attempted. In this study, we focus on the application of
conditional GANs to generate high quality volumetric florbetapir PET images from
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corresponding MRI images. In this way, we expect the natural variability in MRI scans
and the image characteristics in PET to be combined. We also build a 152-layer ResNet
classification model to distinguish pMCI and sMCI subjects, and quantify the differ-
ence in performance caused by the addition of this synthetic datasets in training. The
summary of data generation model in this work is shown in Fig. 1.

2 Materials and Methods

2.1 Data and Pre-processing

All image data were acquired from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). ADNI aims to improve clinical trials for the
prevention and treatment of Alzheimer’s disease. To date, over 1000 scientific publi-
cations have used ADNI data. ADNI has been running since 2004 and is currently
funded until 2021.

In this study, 50 sMCI and 29 pMCI florbetapir images with corresponding T1 MRI
were obtained from the ADNI database (set A). A second group of 29 T1 MRI images
(21 of them with corresponding PET) from a different pMCI group were also down-
loaded (set B) and used independently. More details about the use of these datasets in
training/validating/testing the cGANs and ResNet are provided in the relevant sections
below. All the florbetapir images were pre-processed: MRI and PET scans from each
subject were co-registered, and the PET scan was then reoriented into a standard
160 � 160 � 96 voxel image grid, comprising 1.5 mm cubic voxels. This image grid
was oriented such that the anterior-posterior axis of the subject is parallel to the AC-PC
line. The MRI images have dimensions 256 � 256 � 196 with a voxel size of
1 mm � 1 mm � 1.2 mm.

Fig. 1. Summary of data generation procedure using a conditional GANs
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2.2 Amyloid PET Generation with Conditional Adversarial Training

GANs are generative networks that learn a mapping from random noise to output
image. They are composed of two networks, a generator and a discriminator, trained in
an adversarial way. The goal of the generator is to generate synthetic images, while the
discriminator, evaluates them for authenticity. In conditional GANs, the generator
learns a mapping between an input and an output image [13]. In this study, the gen-
erator is a U-Net based convolutional neural network with skip connections [14]. The
discriminator is a convolutional Markovian discriminator (PatchGAN), which only
penalizes structure at the scale of image patches. During the GANs training process, the
generated PET was paired with the corresponding MRI and entered into the discrim-
inator. The loss function of the conditional GANs is:

LcGAN G;Dð Þ ¼ Ex;y logD x; yð Þ½ � þEx logð1� D x;G xð Þð ÞÞ½ � ð1Þ

where x are MRI images and y are PET images. The first term is maximized when
D x; yð Þ ¼ 1, and the second is maximized when the D x; G xð Þð Þ ¼ 0, while it is
minimised when D x; G xð Þð Þ ¼ 1, i.e. discriminator is not able to distinguish the
generated images and real images. The generator G tries to minimize this objective
against an adversarial discriminator D that tries to maximize it. In addition, conditional
GANs also add an L1 loss term:

LL1 Gð Þ ¼ Ex;y y� G xð Þk kð Þ ð2Þ

Therefore the complete form of loss function is:

Ltotal G;Dð Þ ¼ LcGAN G;Dð Þþ eLL1 Gð Þ ð3Þ

where e is used to adjust the contribution of L1 loss, and it is set to 100 in the
experiments reported here.

In order to measure the similarity between generated PET and real PET, We used
SSIM due to its combination of errors in image contrast and overall structure [15, 16].
The structural similarity index (SSIM) was calculated as:

SSIM x; yð Þ ¼ 2lxly þC1
� �

2rxy þC2
� �

l2x þ l2y þC1

� �
r2x þ r2y þC2

� � ð4Þ

where lx, ly, rx, ry, rxy are the local means, standard deviations, and cross-covariance
for images x, y. C1 and C2 are regularization constants determined by pixel value
range. The SSIM = 1 meaning that the two images are identical.

In this work, we used the 29 paired PET and MRI images from the pMCI group in
set A to train the conditional GANs, and subsequently apply the mapping to the unseen
29 MRI images in set B to generate 29 synthetic PET images, thus doubling the size of
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the pMCI dataset. In set B, 21 subjects had available PET scans, which we used to test
the cGANs by calculating SSIM values. For the implementation of the cGANs
architecture we used the Keras framework. The experiment was conducted on computer
cluster equipped with NVIDIA GeForce GTX 1080 Ti GPU.

2.3 MCI Progression Classification Architecture Using 3D ResNet

Deep Residual Network (ResNet) [17] is arguably one of the most important devel-
opments in the deep learning area in the last few years. ResNet makes it possible to
train up to thousands of layers and still achieves competitive performance with fast
convergence. The core concept of ResNet is introducing an identity shortcut connection
that skips one or more layers.

ResNet have been used successfully for 3D image segmentation as in VoxResNet,
where the authors use identity mappings as skip connections [18]. In our work, the
ResNet architecture was modified based on the identity mappings version [19] that
refines the residual block with a pre-activation variant.

The main difference between our network and the identity mappings version is the
number of dimensions of convolutional kernels and pooling. Our ResNet architecture
has 152 layers containing 50 3-layer blocks. The three layers are 1�1�1, 3�3�3,
1�1�1 convolutions, where the 1�1�1 layers are responsible for reducing and then
increasing dimensions, leaving the 3�3�3 layer a bottleneck with smaller input and
output dimensions, as detailed in Table 1. Down-sampling is performed by conv3_1,
conv4_1, conv5_1 with a stride of 2.

We trained our classification model using 50 sMCI and 29 pMCI real florbetapir
images from set A. A 10-fold cross-validation was applied to the whole dataset. We
tested three scenarios. In the first one only real images were used with no

Table 1. 152-ResNet architecture for pMCI and sMCI classification

Layer name 152-layer

Conv1 7 � 7 � 7, 64, stride 2
Conv2_x 3 � 3 � 3 max pool, stride 2

1� 1� 1 64
3� 3� 3 64
1� 1� 1 256

2
4

3
5 � 3

Conv3_x 1� 1� 1 128
3� 3� 3 128
1� 1� 1 512

2
4

3
5 � 8

Conv4_x 1� 1� 1 256
3� 3� 3 256
1� 1� 1 1024

2
4

3
5 � 36

Conv5_x 1� 1� 1 512
3� 3� 3 512
1� 1� 1 2048

2
4

3
5 � 3

Average pool, 2-d fc, softmax
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augmentation. The second one included traditional augmentation, which was done at
each epoch. Specifically, the random rotation range is set to 20°, and images will be
randomly flipped horizontally and vertically. These two experiments used 65 samples
for training, 6 for validation, and 8 for testing. The third experiment used our cGANs
augmented dataset, including the additional 29 PET images generated from the MRI
scans in set B, resulting in 89 samples for training, 8 for validation, and 11 for testing.
For training we used a batch size of 1 with a learning rate of 0.0001 for 100 epochs. We
used Keras to implement our MCI classification framework. The experiment was
performed on computer cluster with NVIDIA GeForce GTX 1080 Ti GPU.

3 Results and Discussion

3.1 Data Generation

In this study, we used volumetric MRI images to generate 3D PET images to enlarge
pMCI group. Examples of real and generated PET images, with their corresponding
SSIM values, are shown in Fig. 2. As can be seen from Fig. 2, the generated PET and
real PET contain similar signal patterns. The mean SSIM obtained was 0.95 � 0.05.
Figure 3 shows generated PET images obtained from MRI scans for which the cor-
responding real PET was not available.

3.2 Classification Results

Classification results for pMCI against sMCI using 152-ResNet are shown in Table 2.
We computed both the area under the receiver operating characteristic curve
(AUC) and the accuracy (ACC). Three different cases are compared: classification with
a network trained using only the real images, with no augmentation (top row); with a
network trained using traditional augmentation (middle row) and using our synthetic
images based augmentation method (bottom row).

As can be seen from Table 2, the classification score for sMCI against pMCI using
real PET images achieved accuracy 0.63, and with the aid of traditional data aug-
mentation, the accuracy raised to 0.75. As we expected, the highest accuracy was
obtained by using our proposed synthetic augmentation method, achieving an
improvement of 7% over the traditional augmentation.

Table 2. Classification ROC AUC and accuracy (mean ± std) with 152-ResNet

AUC ACC

sMCI vs pMCI (real images) 0.71 � 0.08 0.63 � 0.11
sMCI vs pMCI (traditional augmentation) 0.77 � 0.11 0.75 � 0.09
sMCI vs pMCI (real + generated images) 0.81 � 0.07 0.82 � 0.12
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4 Conclusion

We developed a model for generating florbetapir PET from structural MR using deep
generative networks, with generated data showing a high similarity to real corre-
sponding PET. The generated data were then used for data augmentation for MCI
classification on a limited dataset. We compared the synthetic augmentation method
with a traditional augmentation method, and the synthetic augmentation outperformed
the traditional augmentation. Future work will focus on using multi-modality imaging
biomarkers for CNN classification.

Fig. 2. Examples of real PET and generated PET images presented in different axial slices with
SSIM score

Fig. 3. Examples of unseen MRI and corresponding generated PET, corresponding real PET is
not available
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Abstract. The major cause of deafness and hearing impairment around
the globe is hearing loss. Hearing loss has become very common among
young adults and kids due to the genetic disorder, temporary or perma-
nent hearing impairments, aging, and exposure to noise. Meanwhile, the
possibilities of treating hearing loss are very limited. It can be reduced
by taking proper precautionary measures if diagnosed on time. In this
paper, we study the possibility of preventing hearing loss based on the
auditory system responses. The auditory perception is highly correlated
with the human age. Consequently, predicting a big gap between the
real age and the perceived one can be an indicator of hearing loss. Our
predictive model of human age is very robust with an RMSE value of
4.1 years and an EER value of 4%, indicating the applicability of our
proposed method for predicting the hearing loss.

Keywords: Computer-aided · Healthcare technology
Predictive model · Hearing loss · Auditory perception

1 Introduction

Since many decades, research aims to study and analyze the reasons for the
human hearing loss. Military and occupational physicians declared an index to
decide for an individual to be at risk of hearing loss in the early age due to
exposure to noise [11].

Hearing loss is the fifth leading reason for living with disability according to
the World Health Organization [1]. It may lead to several diseases if not treated
on time, such as cognitive decline [2], inclined incidence of dementia [3], social
isolation [4], depression [5] and including falls [6]. Cognitive decline and hear-
ing loss indicate a common cause on the brain and auditory pathway. Likewise,
cognitive competence reduces cognitive resources for the auditory perception
that increases the effect of hearing loss which is directly proportional to increas-
ing age. In 2012 it was reported that at the age of 65 years and above, 164.5
million people suffered from hearing loss [7] and the number of individuals are
increasing with a high ratio than the younger age [8]. Bringing this into account,
c© Springer Nature Switzerland AG 2018
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experts concern about the precautionary measures for hearing loss [9,10]. In fact,
hearing loss related to age has multi-factorial pathogenesis. Some pathogenetic
elements are identified in microvascular disorders like hypertension, diabetes,
and atherosclerosis. Hearing loss reduces the efficiency of cognitive skills related
to age. To investigate the hearing loss, it requires a proper arrangement and
cannot be possible for a subject to conduct by him/herself such as tympanom-
etry, Audiogram, Auditory Brain Stem Response (ABR), Otoacoustic Emission
(OE), and Auditory Steady State Response (ASSR). In tympanometry, a doctor
inspects visually the ear with the help of otoscope, then a probe is placed in the
ear. The probe generates an air pressure on the ear canal, changing pressures
effects the eardrums and could be recorded for further processing. Audiogram
also helps a physician to predict the hearing loss and the patient should physically
appear for the test in the hospital. ABR measures the response along the audi-
tory pathway by taking measurements from electrodes on the head. OE consist
of measuring low-intensity sounds, generated by the cochlea. It can be measured
with or without acoustic stimulation using a microphone. ASSR is often done in
combination with the ABR test. This test also measures the brain response to
sound. All the proposed test needs to be done in the hospital and is not possible
to achieve without a physician. In this paper, we study the correlation between
hearing loss and auditory perception. Thus, we present for the first time a new
approach for predicting hearing loss based on auditory perception [11].

2 Related Work

A variety of research work explored the causes of hearing loss which are subdi-
vided into two main categories:

Nonmodifiable risk factors comprise genetics, age, race, and gender.
Among all these aspects, age plays a vital role. Hearing loss is directly pro-
portional to increasing age. As the age increases, the value of hearing loss also
increases. Nearly 23% of the population is suffering from partial or full hearing
loss between the age of 65 and 75 years. The value of hearing loss increased to
40% for the age above 75 years and resulted in deafness and hearing impairment
[12]. Recent studies show that hearing impairment and temporary threshold shift
are increasing among children and teenagers. Around 12% of children from 6 to
12-years-old are suffering from hearing loss [13]. In parallel to that, the teenager
and young adults are suffering from hearing impairment and tinnitus [14]. Stud-
ies have also shown that right and left ear respond separately to hearing loss.
It is a proof of the genetic variance to respond to a sound [15]. The chances of
hearing loss and impairment increase with individuals having blood group O.
Research proves that boys have more chances of hearing loss as compared to
females due to more involvement of activities [b]. There is a correlation between
the higher level of noise and hearing loss, such that maximum noise exposure
results in a severe hearing loss.

Modifiable Risk Components. Many modifiable components are related
to hearing loss such as non-use of hearing protection, lack of exercise, smoking,
unbalanced diet, diabetes.



36 M. Ilyas et al.

Protection of ear can reduce the chances of hearing loss which is related to
noise exposure. Most of the people, mainly teenagers do not take measures when
required. Lack of knowledge, discomfort, safety measures and design pushes an
individual to face hearing loss [16]. Smoking is also a cause of many health
issues including hearing loss. Smokers are exposed to many toxic substances
which efficiently effect hearing with loud noises. Nearly 3700 adults are reported
to have hearing loss due to smoking. Nonsmoker sitting in the environment of
smokers may also suffer from hearing loss [17]. Physical fitness and nutrition
are also related to hearing loss. Having proper exercise teenagers and young
adults can improve hearing capability and cardiovascular fitness [18]. Physical
fitness and exercises can reduce temporary hearing loss which results because
of noise exposure. Researchers suggest that with physical fitness, the inner ear
gets more oxygen-rich blood, which reduces hearing loss and strengthens hearing
[19]. Cognitive impairment related to hearing loss mesmerized researchers in the
past decade. Evidence shows that hearing loss results in dementia. To assess
and understand hearing is a tough job. Some clinical outlines can refer and
indicate the assessment of hearing loss. There is very few web-based application
for hearing loss detection [20,21] and all of them are complicated and time-
consuming. As compared to the existing approaches, our approach is providing
an alert system to predict and prevent hearing loss. It can help to reduce the
cost, labor work, and time for early prediction of hearing loss.

3 Motivations

Auditory perception is the ability to interpret and identify the information that
reaches the ears. Auditory perception plays a vital role in our daily life, being
used almost in every task. It creates a link to interact with the outer environment,
make us enjoy and responsive to probable threats.

The capabilities of the auditory system decrease with age. At 16 years old, the
highest audible frequency is around 18000 Hz, while at 30 years old, it decreases
to around 15000 Hz. Thus, there is a correlation between the auditory perception
and the human age. Predicting the human age based on the auditory system
responses provides a perceived age. When the perceived age is not close to the
real age of the person, there is probably a hearing loss problem. It is, for this
reason, we considered that there is a correlation between age and hearing loss.
Thus, considering this as a factor, we proposed a computer-aided prediction of
hearing loss based on the auditory perception.

The rest of the paper is organized as follows. In Sect. 4, we proposed auditory
perception based prediction of hearing loss method. In the Sect. 5, the results
and the evaluations of the proposed approach are discussed. Finally, in the last
Sect. 6, we conclude this work and we deliver a set of perspectives and paths for
our future works.
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4 Proposed Approach

The proposed approach presents three main steps. First, the auditory system
is stimulated using a dynamic frequency sound. Later on, the set of auditory
system, responses are fed to the predictive model for age estimation. In case of
a significant positive difference between the estimated age and the actual age, it
will be considered that the test person may have a hearing loss. The flow diagram
of our proposed approach as shown in Fig. 1. The protocol of the stimulation of
the auditory system is presented in Sect. 4.1. The predictive model of Human
age is presented in Sect. 4.2.

Fig. 1. Flow diagram of our proposed approach

4.1 Acoustical Simulation

The human auditory system is stimulated by generating a dynamic sound. The
used protocol present a bilateral stimulation with the speaker. Our system
required real-time interaction. Thus, the user should interact and respond to
the system. For better accuracy, two tests are to be conducted:

– First test: the sound is generated from lower frequency to higher frequency
(20 Hz to 20,000 Hz), and the user has to respond through keyboard action
when he/she stops hearing. The correspondent audible frequency F1 is saved.

– Second test: the sound is generated from a higher frequency to lower fre-
quency (20,000 to 20 Hz), and the user has to respond when he/she starts
hearing. The correspondent audible frequency F2 is saved.

The human auditory system is stimulated by generating dynamic sound
waves as shown in Fig. 2 according to the following model:

x(t) = A0.sin(2π.φ(t).t) (1)

where φ(t) = α.t + φ0, A0 stands for sound amplitude, t stands for time, φ0 is
the initialization frequency, and α stands for the increasing/decreasing frequency
speed.

The two audible frequencies F1, F2 and the mean of both of them are saved
and fed to the predictive model for age estimation.
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Fig. 2. Protocol of stimulation

4.2 Predictive Model of Human Age Based on Auditory Perception

The predictive model for age estimation is a regression model. Different regres-
sion models are compared to find the best one for age estimation using the
auditory system responses. They are the Regression Forest (RF), the Support
Vector Regression (SVR), the Adaboost regression and the Neural Network (NN)
regression. For all the proposed regression models, we considered 10-fold cross-
validation technique.

RF generates a forest of decision trees and uses average or majority voting to
aggregate results over the set of trees. It is based on kernel functions by apply-
ing nonparametric algorithms for classification and regression. SVR minimize the
error and increase the margin by finding the optimal hyperplanes. For AdaBoost,
the experiments are done with backpropagation as “weak” learning algorithm.
Adaboost techniques enhance the performances of machine learning algorithms
for both classification (binary class, or multiclass) and regression. Neural Net-
works (NN) are used most of the time for classification and regression in both
supervised and unsupervised learning.

5 Experiments

5.1 Dataset Collection

In this experiment, 156 healthy subjects participated to conduct the test as
shown in Fig. 3. The dataset is balanced and which included subjects within a
range of 6 to 64 years old. The ratio of males was more than females where 87
males and 69 females successfully conducted the test. The proposed protocol
requires 2–3 min for a volunteer to conduct, successfully the test.

5.2 Correlation Between Auditory Perception and Hearing Loss

The performances of age estimation using machine learning techniques such as
RF, SVR, Adaboost, and Neural network are shown in Table 1.

10-fold cross validation using RF shows the highest accuracy among the
stated regression models. RF has a Root Mean Square Error value of 4.1 years
and standard deviation of 2.98 years. That proves that our prediction model is
very robust and shows a very a low error. Therefore, one can predict the hearing
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Fig. 3. Age distribution of the subjects

loss if the difference between the estimated age and the actual age �t is greater
to n years (Eq. 2).

� t = (σ1 − σ2) > n(years) (2)

with n = � + ε and ε = the minimum auditory distrust for subjects suffering
with hearing loss presented by a number of years.

where σ1 is actual age, σ2 is estimated age, and � is the error rate of the system.
The greater error rate indicates higher hearing loss.

Table 1. Age estimation regression models performances

Model Root mean square error (years) Standard deviation (years)

Random forest 4.1 2.98

SVR 5.9 4.01

Adaboost 12.3 10.9

Neural network 13.3 11.2

Fig. 4. ROC curve
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Performance Evaluation. To evaluate our approach, we considered the False
Acceptance Rate (FAR) and False Rejection Rate (FRR). We cannot evaluate
a system by just the values of FAR and FRR such that a lower FRR and higher
FAR performs better than a system having higher FRR and Lower FAR value.
Hence, we need the Equal Error Rate (EER) to be used to evaluate the per-
formance of a system. The lower is the EER, the higher is the performance of
the system. In Fig. 4 shows Receiver Operating Characteristic (ROC). It can be
noticed that the value of EER is 4% for 156 samples. Hence, this proves that
our system is robust by providing a minimum error value.

6 Conclusion and Future Work

In our work, we studied the possibility of predicting hearing loss based on audi-
tory perception. We demonstrate that auditory system responses are highly cor-
related with the age. Consequently, we built an accurate RF model that could
estimate the age of a person with an RMSE value of 4.1 years and the EER
value equal to 4%.

We are planning for future work to develop a computer-aided system to
predict and prevent hearing loss. We are planned to test the system with subjects
suffering from hearing loss to find the minimum auditory distrust. Our System
can provide economic, health-care and well-being benefits.
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Abstract. Adherence in medicine is a measure of how well a patient
follows their treatment. Not following the medication plan is actu-
ally a major issue as it was underlined in the World Health Orga-
nization’s reports (http://www.who.int/chp/knowledge/publications/
adherence full report.pdf). They indicated that, in developed countries,
only about 50% of patients with chronic diseases correctly follow their
treatments. This severely compromises the efficiency of long-term ther-
apy and increases the cost of health services.

In this paper, we report our work on modeling patient drug consump-
tion in breast cancer treatments. We test a statistic approach to predict
medication non-adherence with a special focus on the features relevant
for each approach. These characteristics are discussed in view of previous
results issued from the literature as well as the hypothesis made to use
this model.

Keywords: Adherence · Survival risk analysis · SNIIRAM

1 Introduction

During the last decades, patient-administered oral medications have become
more and more prevalent [5,13]. This shift in anticancer treatments has increased
the focus on adherence [14] defined as “the extent to which patients take their
medications as prescribed by their healthcare providers”.

A common solution is to set patient support programs that include, for exam-
ple, (1) providing information, patient counseling, (2) support and coaching ses-
sions delivered by nurses (by phone or face-to-face), and (3) sending information
to health professionals treating the patient. These programs have been shown to
be effective, for example, pharmacist coaching has improved adherence by 12%
[8] and an SMS based recall system showed a 10% improvement in adherence
[15]. Yet, there are two main limitations to these interventions: (1) The use of
human intervention is effective but very expensive limiting their reach, (2) The
use of digital technologies (notifications and explanations) is too generic and
sometimes too intrusive (daily reminders) which leads to patients losing inter-
est. To optimize the relevance of these interventions, we propose using machine
c© Springer Nature Switzerland AG 2018
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learning techniques on the consumption data of patients with breast cancer.
We aim to give to each of them a risk index reflecting their adherence to the
treatment. This allows us to predict the most appropriate moments to notify
the ones really needing help. Thus, people will benefit from support adapted to
their profiles and needs, and human interventions will be reserved for situations
that are really critical.

To determine the categories of patients at risk and the appropriate moments
to contact them, we develop predictive models built on anonymized data. These
predictive models are trained on the reimbursement data of the French Health
Insurance (SNIIRAM - the French National Health System).

In the rest of this paper, we first review previous approaches, then we intro-
duce our models and discuss our results.

2 Related Work

Given the importance of the phenomenon of non-observance, many surveys have
tried to identify their determining factors. This allows us to improve interven-
tions and, therefore, compliance with the treatment. The review of many observa-
tion based scientific publications provides an interesting quantitative assessment
of the research conducted on the subject [3,10]. This meta-analysis indicates
that the increasing age of patients, and the treatment complexity level (multi-
ple drugs, injections, . . . ) are essential factors of non-adherence. Similarly, low
education and, more importantly, low income are correlated with lower adher-
ence. Another study highlights the impact of patients’ mental health shows that
depressive episodes have a very negative impact on the patient’s compliance to
the prescriptions of health professionals [4].

Yet, other DiMatteo studies show that other factors also influence adherence.
For example, in distinguishing between the objective severity of the patient’s
illness and their awareness of the severity of their pathology, they point out that
the patient’s beliefs influences the level of compliance, and not the actual severity
of the condition. This enforces the importance of the role of patient education
in strengthening their adherence to their treatment. Similarly, other analyses
highlight the effects of modifiable factors in non-compliance. A meta-analysis
thus shows the influence of the patient’s entourage (support of their spouse,
family, relatives and the wider social environment) in the proper monitoring of
his treatments [2].

These studies provide a priori indications for detecting risk profiles of non-
adherence. At the same time, they highlight the interest of identifying and accom-
panying these patients in taking their medication.

However, Franklin et al. underline the difficulty to use this information to
predict adherence [6]. They evaluate different approaches, using logistic regres-
sion and boosted logistic regression, to define three categories of adherence pre-
dictors. Hence, they show that using census information or transaction data
leads to poor prediction. However, they point out that using adherence observa-
tions during the first month significantly increases the accuracy of the results.
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This nuance on the weight of each adherence prediction variable is confirmed in
[9]. They use random survival forests highlights to find patient specific adherence
thresholds to discriminate between hospitalization risks. Here again, the major
variables are linked to patient history and previous transactions.

We propose in this paper to explore these solutions to predict the risk of a
illegitimate stop during a treatment.

3 The SNIIRAM Database

3.1 Introduction

In order to optimize the use of human intervention and improve the use of
digital technologies, we propose the use of machine-learning techniques on breast
cancer patients’ consumption data. The goal is to categorize patients into risk
classes according to their characteristics. The long-term goal is to know the most
appropriate moments to contact them for support. Thus, people will benefit from
support adapted to their profile and their needs, and human interventions will
be reserved for the situations for which they are really necessary. To determine
these categories of patients at risk and these appropriate moments, we develop
predictive models built on anonymized data.

These predictive models are trained and tested on the reimbursement data of
the French Health System (SNIIRAM). SNIIRAM is one of the largest structured
databases of health data in the world. The use of this massive data allows the
application of complex models and the detection of weak signals. Useful data are,
for example, hospitalizations, drug purchases or contextual patient information
(age, government services, geographic information, . . . ). More details can be
found in [16]. Previous work has already shown the value of massive data mining
to aid diagnosis, either by taking all the information for a “static” approach [12],
or, more recently, by also incorporating dynamic information [11]. Other studies
have been conducted on the determinants of compliance, particularly for breast
cancer.

Our study focuses on women’s breast cancer on part of the SNIIRAM data.
The cohort of the study consists of 50% of women (drawn randomly) who meet
the following criteria:

– diagnosed with breast cancer
– having purchased at least one of the following molecules for the

studied period: Anastrozole, Capecitabine, Cyclophosphamide, Etoposide,
Everolimus, Exemestane, Lapatinib, Letrozole, Megestrol, Melphalan, Tamox-
ifen, Toremifene and Vinorelbine

Extraction concerns consumptions between 2013 and 2015 and is made up of
three main categories:

• Pharmacy transactions (molecule, number of doses, date, . . . )
• Hospitalizations (diagnosis, start date, end date, . . . )
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• Patient information (age, department, date of the diagnostic of eventual long-
term illness (referred as ALD), pathologies, . . . )

The aim of the study is to follow the entire care course, so the studied pop-
ulation must be representative. A discussion with the experts of the CNAMTS
(French National Fund for the Health Insurance of Employees) allowed to fix a
threshold: a period of 6 months without consumption of at least one of the target
molecules is sufficient to consider that the person was not receiving a treatment.

A preprocessing has been done on the ‘seniority of ALD’ variable which rep-
resents the number of days since the diagnosis of the disease (stated in ALD 30).
This variable has the characteristic of containing some extreme values, which
bias the estimation for models assuming a linear effect. Thus, a common loga-
rithm is used for the study to eliminate this bias. This still allows to keep the
order of magnitude of the duration (in days, weeks, months or years).

3.2 Phases of Treatment

The raw data has been reworked to show the different phases of the treatment.
A phase is a period of continuous intake of a molecule or hospitalizations for
chemotherapy or radiotherapy. This allows the reconstruction of the patient’s
care path.

The criterion for identifying an end of a phase is the existence of a period
of two months after the median time covered by the last purchase (or hospital-
ization) without a new purchase of the molecule (or hospitalization of the same
type). For medication, days of hospitalization are excluded from this period. For
example: the median time between two chemotherapies is three weeks. If there
is a period of 2 months and 3 weeks without chemotherapy, this is considered a
break in the phase.

The phase of treatment is regarded as censored by one of the legitimate stops
(death, switch of treatment, some kind of serious cardiac issue or beginning of
palliative care) if this event occurs less than two months after the date of the last
theoretical dose. For example, if a patient bought a box of 30 pills on January
1st, the event has to occur before March 31 (30 + 2 × 30). The date of the
last theoretical dose is obtained by calculating the median interval between two
purchases of the molecule or two hospitalizations of the same type: this median
behavior is considered to be in conformity with the posology. Thus, the median
time is 30 days between two box purchases of 30 doses of tamoxifen. The end
of this period after the last box purchased corresponds to the date of the last
theoretical take. The date of death is present in the initial data, the switches are
identified by the beginning of a new phase of treatment and palliative care as a
main diagnosis (which is spotted with a “Z515” tag in the database). Censorship
of data caused by the end of the extraction period (end of December 2015) is
also considered a legitimate stop. If the data extraction end date is less than
two months from the last theoretical consumption, then, in the same way as for
legitimate stops, the processing phase is considered censored.
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For each phase, the following data is calculated:

• Start and end dates, number of intakes or hospitalizations, molecule or type
of hospitalization

• End of treatment type (switch, death, stop, right censorship)
• Patient information (comorbidities, number of consultations in the first year

of treatment, age, . . . )
• Interventions on the breast (mastectomy) during the three months before the

studied phase

In this paper, we propose evaluating different ways to model whether the end
of a phase is legitimate or not. We focus on the consumption of Tamoxifen as
it is the most used molecule. In addition, this molecule is prescribed for up to
10 years, so no patient is supposed to have stopped their treatment during the
observation period (3 years) because due to the end of their prescription.

4 Our Model: Survival Analysis

To measure the rate of non-persistence over time, we use the Kaplan-Meier esti-
mator [7]. This estimator uses non-parametric statistic to evaluate the survival
function on a state takes. For example, it is used to estimate the amount of
patients living for an amount of time after a treatment, the time-to-failure of
machine parts,. . . Its force is to take into account the censored data, in particular
by right censorship, each observation being weighted according to the number
of observations censored previously. The four factors of censorship are: switch,
death, palliative care and end of the extraction. The duration of ‘survival’ in
the treatment phase is thus estimated by taking into account censorship factors
such as legitimate end of treatment as well as censorship linked to the end of
extraction (end of 2015).

The Fig. 1 shows the variations of the hazard function representing the treat-
ment dropout rates as a function of time. There is a high drop-out rate at the
beginning of the phase, during the first 150 days. During the first 5 months,
the curve is significantly higher than the rest of the values. This period of high
risk will therefore be the most beneficial period to help patients. Kaplan-Meier
estimator allows us to analyze survival but we need to use a regression model to
examine the factor influence of the different variables.

We use a Cox model [1] to identify the characteristics related to poor adher-
ence. The Cox regression estimates a fixed effect of each variable in relation to
the patients’ average behavior. It is based on two strong assumptions:

(1) the expected effect of each variable is linear
(2) the effect of each variable does not vary over time. An example in our case

is that, if the weight found for the CMU-C variable is 1.40, we assume that
a person who benefits from CMU-C has 40% more risk to discontinue their
treatment than someone who doesn’t benefit from CMU-C
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Fig. 1. Kaplan-Meier hazard function for Tamoxifen which represents the rate of failure
(here drug drop-out) at time t. The plain curve represents the estimated value and the
dotted ones represent the 95% confidence intervals (computed with bootstrapping).

The explanatory variables in the Cox model are characteristics of the phase,
the patient pathway and patient profile. In order to extract the most signifi-
cant variables and to robustly estimate the associated coefficient, the model was
estimated with the following iterative process:

• estimation of the coefficients for the set of variables,
• selection of the variables having a p-value lower than threshold of 0.05
• new estimation of the coefficients for the model limited to the selected vari-

ables

The most influential coefficients are presented in Table 1. The characteristics
highlighted by the literature are found to be influential to the patient’s adherence
to their treatment. We can then evaluate the impact of the age, social support,
or previous illness (psychiatric, mastectomy, . . . ). We also underline that the
treatment preceding the current phase has a major influence.

This prompted us to analyze this value in particular. The Fig. 2 shows the
different lifelines depending on the treatment preceding the current Tamoxifen
phase. We see three types of influences. First, the classic pathway: a hospitaliza-
tion (here chemotherapy or radiotherapy) preceding the current phase shows the
lowest risk of abandonment. Second, a hormonotherapy other than Tamoxifen
was used, corresponds to a switch of treatment and shows a higher risk. Third
a Tamoxifen phase was used before the current phase. This case suggests that
an illegitimate stop has happened before the current phase, and could explain
the highest risk this case has. Nevertheless, this underlines the interest of our
model to find additional information to predict the evolution of Tamoxifen intake
phases. As illustrated in the Fig. 3. We can use the background information of
the patient to compute a score at the beginning of a Tamoxifen phase. Then, we
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Table 1. Weights computed with the Cox-regression showing their different influence.
The odd ratio indicates the impact of the variable on the average risk (1.5 means
50% more risk of non-adherence). The first ones are indicators of income (CMU-C
(Supplementary universal health cover) and ACS (Assistance with the acquisition of
supplementary health insurance) and their p-value show their influence.

Cox computed
coefficient

Odd ratio
(exp(coefficient))

p-value

CMU-C 3.84e−01 1.47e+00 6.62e−04

ACS 4.16e−01 1.52e+00 1.87e−03

Time since ALD status (log) 7.88e−02 1.08e+00 3.91e−02

Number of medical consultation −5.70e−03 9.94e−01 1.19e−02

Psychiatric illness 1.78e−01 1.19e+00 9.31e−03

Recent hospitalization with
diagnostic C50: Malignant
neoplasms of breast

−3.83e−01 6.82e−01 3.59e−07

Last treatment - tamoxifen 9.12e−01 2.49e+00 <1e−10

Last treatment - radiotherapy −7.09e−01 4.92e−01 <1e−10

Last treatment - chemotherapy −8.62e−01 4.22e−01 <1e−10

Menopause 1.17e−01 1.12e+00 2.76e−02

select the most accurate survival function which gives the probability of aban-
donment during the specific number of days of treatment, which allows us to
predict the abandon risk over time.

Yet, we based our model on the strong assumption that the effect of each
variable does not vary over time as explained in (2). This proportional hazard
assumption can be checked with a Schoenfeld individual test and visualized with
the log-log plot of survival displayed in the Fig. 4. Using Schenfeld residual, we
obtain p-values that verify this hypothesis except for the assumption concerning
the previous treatment. This indicates that the previous treatment has different
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Fig. 2. Kaplan-Meier plot of Tamox-
ifen survival function for each previ-
ous treatment phase (hospitalization are
chemotherapy or radiotherapy)
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influences over the duration of the current phase and that our assumption was
too strong for this variable. However, the Fig. 4 illustrates whether the hazards
are approximatively proportional throughout. We can see that this assumption
remains valid after the 20 first days. This analysis gives us insights to improve
our model with a special focus to put on the beginning of the phase.

The next step of this study is to challenge our model with machine-learning
approaches and other statistical models to improve our predictions.
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Fig. 4. Log-log plot of survival for each previous treatment. We observe a validation
of our model after the 20 first days

5 Conclusion and Future Work

In this paper, we show the importance of the survival function analysis to predict
the adherence of a patient to their treatment during of a phase of medication.
The study of explanatory variables gives more insights about the different cases
of patient courses. We applied this method to the study of Tamoxifen: we vali-
dates our approach by retrieving information in agreement with the literature.
We also found other explanatory variables that we can use to compute more
accurate risk estimations for patients. These risks could trigger alerts that indi-
cate the patient’s need of support. With an appropriate response, this could lead
to improve the patient’s adherence to their treatment.

This predictive model allows us to validate the possibility of evaluating the
risk of abandonment during a phase of the treatment. We plan to challenge this
approach with other algorithms, especially sequence-mining and deep-learning
which are very suitable to the amount of data provided by SNIIRAM. One
major advantage to our statistic-based approach is that they are less parameters
to fine tune compare to machine-learning approaches. We are planning to survey
these different kind of analysis to provide a meta-comparison of this tools to the
community.
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Abstract. It is vital to identify Mild Cognitive Impairment (MCI) sub-
jects who will progress to Alzheimer’s Disease (AD), so that early treat-
ment can be administered. Recent studies show that using complemen-
tary information from multi-modality data may improve the model per-
formance of the above prediction problem. However, multi-modality data
is often incomplete, causing the prediction models that rely on complete
data unusable. One way to deal with this issue is by first imputing the
missing values, and then building a classifier based on the completed
data. This two-step approach, however, may generate non-optimal classi-
fier output, as the errors of the imputation may propagate to the classifier
during training. To address this issue, we propose a unified framework
that jointly performs feature selection, data denoising, missing values
imputation, and classifier learning. To this end, we use a low-rank con-
straint to impute the missing values and denoise the data simultaneously,
while using a regression model for feature selection and classification. The
feature weights learned by the regression model are integrated into the
low rank formulation to focus on discriminative features when denois-
ing and imputing data, while the resulting low-rank matrix is used for
classifier learning. These two components interact and correct each other
iteratively using Alternating Direction Method of Multiplier (ADMM).
The experimental results using incomplete multi-modality ADNI dataset
shows that our proposed method outperforms other comparison
methods.

1 Introduction

Alzheimer’s Disease (AD) is the most common type of dementia, where the brain
neurons are degenerated progressively, causing the affected patients to gradually
lose memory, cognitive and motor abilities. As AD is irreversible and has caused
enormous economic and social burden to the community, it is therefore vital to
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detect its prodromal stage, called Mild Cognitive Impairment (MCI) as early as
possible, so that the patients can be treated to potentially slow down or stop
the disease progression. A lot of AD biomarkers have been developed, including
measurements derived from neuroimaging data (i.e., magnetic resonance imag-
ing (MRI) and flurodeoxglucose positron emission tomography (FDG-PET)),
and from biological data like the cerebruspinal fluid (CSF). Recent studies have
shown that the complementary information from different data modality can
improve the accuracy of the multi-modality based AD prediction model [14].
Unfortunately, samples with complete multi-modality data are limited, e.g., in
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, only about 1

4 of
its total samples contains complete MRI, PET and CSF data at baseline.

The easiest way to deal with missing data perhaps is by discarding the sam-
ples with missing values in any of their modalities. Though convenient, this
approach discards a huge amount of useful information and leaves a smaller sub-
set of data for analysis. To use all the samples for analysis, we can impute the
missing data [4,6,11] based on the available information from other samples, and
subsequently perform classification based on the completed dataset. However, as
shown in various studies [8,10,13], most imputation methods are not accurate
for block-wise missing data as in our case, and this error may propagate to the
subsequent classifier and cause unstable performance. In addition, as this is a
2-step approach, there is no way for the classification step to feedback to the
imputation step for focusing on discriminative features.

To address the above issues, we propose a novel diagnostic model (using
incomplete multi-modality data) that simultaneously imputes the missing values
(while also denoises the data) and learns a classifier (while also selects discrim-
inative features). To this end, we assume our data is low-rank (i.e., similar to
previous works in [1,4,5,9,10]) and incorporate a low-rank matrix completion [4]
algorithm to impute the missing values, while also denoising the features matrix.
Furthermore, we use linear classification model to learn the mapping between
the denoised feature matrix and their corresponding labels. These two processes
are optimized intertwinely in a single optimization objective, so that they can
correct each other to obtain a more robust prediction model. For instance, the
missing values are imputed based not only on the peer samples, but also in a
way that they can be classified properly, while the classifier weights will be cor-
rected based on the denoised and imputed data. In addition, we also regularize
the weight vector of the classifier (e.g., �1 or �2 norm regularization), to control
how specific features contribute in building the classifier [1,13].

2 Method

2.1 Notation

Let X ∈ R
N×d denotes the feature matrix of N subjects (i.e., samples), each

containing d-dimensional features from MRI, PET and clinical score data. As not
all the subjects have complete multi-modality data, this matrix is incomplete,
i.e., feature values of some modalities from some subjects are missing. We use
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Ω to denote the index set of known (or observed) values, and Ω̄ to denote
its complement, i.e., index set of the missing values. The corresponding target
output is given as Y ∈ {1,−1}N×c, where c is the number of target outputs,
i.e., 1 in our case for pMCI/sMCI classification. We use (xi ∈ R

1×d,yi ∈ R
1×c)

to denote the feature-target pair for the i-th sample.

2.2 Preliminaries

1. Low-rank matrix completion (LRMC) has been proposed to recover miss-
ing data from a limited number of samples. Assuming a noise-free incomplete
data X, its formulation is given as {minZ ‖Z‖∗, s.t. PΩ(Z) = PΩ(X)}, where
Z is the completed version of X, and P is the orthogonal projection so that
the (i, j)-th element of PΩ(Z) is equal to Zij if (i, j) ∈ Ω and zero otherwise.
In the presence of noise, we relax the equality constraint, and modify the
optimization problem to [4]

min
Z

‖Z‖∗ + λ‖PΩ(Z) − PΩ(X)‖2F , (1)

where ‖ · ‖F denotes the Frobenius norm, and λ is a positive trade-off param-
eter that can be determined by the noise level in the data.

2. Robust principal component analysis (RPCA) assumes that the noisy
data can be decomposed into two components – a low-rank component Z,
which represents the clean data, and the error component E, which represents
the data noise. Its formulation is given as {minZ,E ‖Z‖∗ + λ‖E‖1, s.t. X =
Z + E}, where ‖ · ‖1 denotes the �1-norm, assuming sparse noise in X. With
the presence of missing data, this formulation can be rewritten as [7]

min
Z,E

‖Z‖∗ + λ‖PΩ(E)‖1, s.t. PΩ(X) = PΩ(Z + E). (2)

Note that if we use Frobenius norm for the error matrix (i.e., assuming Gaus-
sian noise in X), and substitute E = Z−X in Eq. (2), it will be equivalent to
Eq. (1). Thus, RPCA with missing data can be seen as a matrix completion
problem, with more robustness to the data noise, as it explicitly models the
noise as an error term. Without loss of generality, we can assume PΩ̄(X) = 0,
and make PΩ̄(E) to be any value that satisfies PΩ̄(X) = PΩ̄(Z + E). This
will simplify Eq. (2) to an easier problem as

min
Z,E

‖Z‖∗ + λ‖PΩ(E)‖1, s.t. X = Z + E, (3)

where we call this formulation as incomplete data version of RPCA (IRPCA).
3. Classifier can be trained to map data sample xi to the target output yi

by learning a coefficient matrix W ∈ R
dxc. The general formulation for a

classifier (e.g., linear regression model) is given as

min
W

L(X,Y,W) + Reg(W), (4)
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where L(·) is the classifier loss function, and Reg(·) is the regularizer for
W, e.g., �2,1-norm for joint sparse feature learning. We use least square loss
function in this study, i.e., L(·) = ‖Y−XW‖2F . This classification formulation
requires all values in X to be known, and becomes unusable if X is incomplete.
Thus, we propose to combine Eqs. (3) and (4) to impute the missing values
in the feature matrix, denoise the data, and learn the classifier jointly.

2.3 Proposed Method

Given an incomplete input matrix X and its corresponding target matrix Y,
we propose to concurrently impute the missing values in X and learn a clas-
sifier coefficient matrix W based on the completed data. More specifically, we
employ the IRPCA formulation (i.e., Eq. (3)) to decompose X into low-rank
and error components, and learn the classifier based on the low-rank denoised
data. We call our method “Joint Robust Imputation and Classification (JRIC)”.
Figure 1 shows the overview of our method. Note that X = [Xtr;Xte] is the
concatenation of training input data Xtr and testing input data Xte. X could
be incomplete, as shown by the white boxes in X, and after applying IRPCA,
it will be transformed into Z = [Ztr;Zte], where the data are denoised and the
missing feature values are imputed. Then, we train a classifier using (Ztr, Ytr) by
learning a classifier weight W, which could be sparse. Besides, we also feedback
W to IRPCA to focus on reducing the reconstruction error of discriminative
features, while relaxing the reconstruction error of redundant or noisy features.
Note that the above learning are formulated in an unified framework, so that
each component of the formulation can correct each other iteratively until the
algorithm converges. Our proposed JRIC formulation is given as:

min
Z,E,W

μ‖Z‖∗ + λ1‖PΩW
(E)‖p + L(Ztr,Ytr,W) + λ2Reg(W), s.t. X = Z + E,

(5)
where μ, λ1, λ2 are the regularization parameters. The first two terms in (5)
together with the constraint term compose the IRPCA component (i.e., Eq. (3)),
while the last two terms compose the classifier component (i.e., Eq. (4)). More
specifically, the first term is a nuclear norm, which encourages Z to be low rank,
assuming that the “clean” data is low rank. The second term is the reconstruction
error term, to ensure that the low rank matrix Z not too much differs from the
original matrix X. The third term is the classifier loss function, which could be
linear regression loss, logistic loss, hinge loss, etc., to learn a classifier weight W
(which is a vector if there is only one column in Y, and a matrix otherwise). The
fourth term is the regularizer of W, to ensure that classifier is not overtrained,
and to select discriminative features if sparse constraint (e.g., l1 or l21-norm) is
used. Note that we have used ΩW instead of Ω in the second term of Eq. (5)
to include the information from W when computing the reconstruction loss. We
define ΩW as the index set of discriminative non-missing feature values in X,
where the discriminative features are determined via detecting non-zero rows
in W.
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Fig. 1. Overview of the proposed JRIC framework, which denoises data, imputes miss-
ing feature values and learns a classifier jointly.

We use Alternating Direction Method of Multiplier (ADMM) [2] to solve (5).
In ADMM, a complex optimization problem is simplified by introducing some
auxiliary variables, so that it can be decomposed into several smaller convex
optimization problems that can be solved efficiently. Specifically, we introduce
an auxiliary variable J:

min
J,Z,E,W

μ‖J‖∗ + λ1‖PΩW
(E)‖p + L(Ztr,Ytr,W) + λ2Reg(W), (6)

s.t. X = Z + E, Z = J.

The augmented Lagrangian function for (6) is given as:

min
J,Z,E,W,U1,U2

μ‖J‖∗ + λ1‖PΩW
(E)‖p + L(Ztr,Ytr,W) + λ2Reg(W)

+
ρ

2
(‖X − Z − E + U1‖2F + ‖Z − J + U2‖2F

)
,

(7)

where U1 and U2 are the Lagrangian multipliers, and ρ is a trade-off parameter,
controlling the rate of convergence. We then solve Eq. (7) by solving the following
optimization subproblems iteratively, until one of the convergence criteria is met.

1. Update J:

Jk = arg min
J

λ1‖J‖∗ +
ρ

2
(‖(Z + U2) − J‖2F

)
. (8)

The solution for this problem is given by singular value thresholding shrinkage
operator [3], Sλ1

ρ
(Z + U2) = GRλ1

ρ
(Σ)HT , where GΣHT is the singular

value decomposition (SVD) of (Z + U2), and Rτ (·) is a shrinkage operator
defined as Rτ (x) = sign(x)max(|x| − τ, 0).

2. Update Z:

Zk = arg min
Z

L(Ztr,Ytr,W)+
ρ

2
‖Z−(X−E+U1)‖2F +

ρ

2
‖Z−(J−U2)‖2F , (9)
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where we define L(Ztr,Ytr,W) = ‖Ytr −ZtrW‖2F as a linear regression loss
function. We solve Ztr and Zte separately for this subproblem. To solve for
Zte, the first term in Eq. (9) is irrelevant, and thus its solution depends only
to the other two terms in Eq. (9). Let S = X − E + U1 + J − U2, then it is
easy to show that the solution for Zte is given as Ste. For Ztr, the closed-form
solution is given as

(
YtrWT + ρ

2 (Str)
)
(WWT +ρI)−1, where I is the identity

matrix. Then, Zk = [Ztr;Zte]. Note that, other classifier loss functions can be
used, and as long as the classifier loss function is differentiable, this problem
can always be solved using subgradient descent method.

3. Update W:

Wk = arg min
W

L(Ztr,Ytr,W) + Reg(W), (10)

where this problem can be solved using the current classifier solver.
4. Update ΩW: Remove indices in Ω corresponding to zero-value rows in W.
5. Update E:

Ek = arg min
E

λ2‖PΩW
(E)‖p +

ρ

2
‖(X − Z + U1) − E‖2F . (11)

When p = 1, we can use a shrinkage operator to solve for E, given as Rλ2
ρ

(X−
Z+U1), for ΩW locations of E. For Ω̄W locations of E, the solution is given
as X − Z + U1.

6. Update U1,U2 : Uk
1 = U1 + X − Z + E, Uk

2 = U2 + Z − J.
7. Stopping criteria: Step 1 to 5 above are iterated until a convergence con-

dition is achieved, e.g., when the changes of Z are negligible.

We summarize our algorithm in Algorithm 1. After the training we will obtain
the denoised and imputed testing data and also the classifier weight W. The
prediction for the testing data is thus given by sign(Zte.W)

Data: X = [Xtr;Xte],Y = [Ytr,Yte]
1 Intialization: XΩ̄ = 0, Z = X, U1,U2 = 0, ΩW = Ω ;
2 for k ← 1 to maxiter do

3 Update Jk in Eq. (8) ;

4 Update Zk in Eq. (9) ;

5 Update Wk in Eq. (10) ;

6 Update Ωk
W ;

7 Update Ek in Eq. (11) ;

8 Update Uk
1 ,Uk

2 ;
9 if converges then

10 stop
11 end

12 end
13 return W ∗,Z

Algorithm 1: Joint Robust Imputation Classifier
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3 Experiment

3.1 Data

In this study, we use multi-modality data (i.e., MRI, PET and clinical scores)
from ADNI baseline dataset (http://adni.loni.ucla.edu). Only subjects that were
categorized as MCI at baseline are used in this study, and we define progressive
MCI (pMCI) subjects as MCI subjects that will progress to AD within 2 years,
and define stable MCI (sMCI) subjects as otherwise. Based on this definition,
we have 124 pMCI and 118 sMCI subjects. Each MRI image is processed using
the following steps: AC-PC alignment, N3 intensity inhomogeneity correction,
skull stripping, tissue segmentation, registration to a template with 93 ROIs
[12], and used the normalized Gray matter (GM) volumes from the 93 ROIs
as MRI features. We also affinely aligned each PET image to its corresponding
MRI image, and used the mean ROI intensity values as a PET features. Besides,
clinical scores (e.g., ADAS, CDR, MMSE, etc.) are also used in this study.

3.2 Experimental Results and Discussions

We compare our method with 2-step imputation-based classification methods,
i.e., we first use IRPCA to impute and denoise the data, and then use sparse least-
squared regression (IRPCA-sparse), and linear SVM (IRPCA-SVM) to classify
the data. Besides, we also compare our method with two state-of-the-art methods
that were designed for incomplete multi-modality dataset, i.e., low-rank matrix
completion method (LRMC) [10], and incomplete data sparse feature learning
(iMSF) method (that uses least-squared loss function) [13]. Besides, we conduct
our experiments using different modality combinations of MRI, PET and clinical
scores (Cli), to show the performance of each method for each modality combi-
nation. For more robust comparison, we also conduct our experiments using 10
repetitions of 10-fold cross validations and report the average accuracies as the
performance measures. The hyper-parameters of all the methods are determined
via nested cross validation using the training data. The classification results are
shown in Fig. 2.

From Fig. 2, it can be seen that the proposed method JRIC outperforms other
comparison methods for most of the modality combinations, i.e., MRI+PET,
MRI+Cli and MRI+PET+Cli. The classification performance of our method
using single modality (i.e., MRI) is comparable with IRPCA-SVM and LRMC.
This is probably because we use a simple least square loss function to train our
classifier, while IRPCA-SVM and LRMC use more advanced loss functions, i.e.,
hinge loss and logistic loss functions, respectively. This indicates that if the data
is complete, as in single modality case, we should use more advanced classifiers to
get the better classification performance. Nevertheless, comparing the results of
IRPCA-sparse (which trains classifier using the denoised data) and iMSF (which
trains classifier using the original data) also reveals that using the denoised data
may have better chance of getting better classification accuracy.

http://adni.loni.ucla.edu
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The advantage of using our proposed method becomes more significant when
using multi-modality data, especially when some data is missing, e.g., when using
MRI+PET data. This is probably due to the use of intertwining the learning of
IRPCA and sparse classifier in our proposed method, which enables both compo-
nents to correct each other for better classifier performance. Besides, the feedback
from the classifier also enables the IRPCA to have more low-rank smoothing
on redundant and non-discriminative features, and lower reconstruction error
for discriminative features. This will prevent the IRPCA from over smoothing
(denoising) the data via low-rank constraint which may cause the loss of impor-
tant information from discriminative features.

MRI MRI+PET MRI+Cli MRI+PET+Cli
0.6

0.65

0.7

0.75

0.8

A
cc
ur
ac
y

IRPCA-Sparse
IRPCA-SVM
iMSF
LRMC
JRIC

Fig. 2. Accuracy of pMCI/sMCI classification using MRI, PET and clinical scores
data. Error bars: standard deviations.

4 Conclusion

In this paper, we introduce a robust classifier for dementia diagnostic prob-
lem using incomplete multi-modality data. Our proposed method JRIC jointly
imputes the missing value, denoises the data and trains a classifier. We formulate
our proposed framework in a general way, so that it can be adapted to different
types of classifier easily. For fast implementation, we show case our proposed
framework using sparse classifier with least-squared loss function. Our experi-
mental results show that our proposed methods outperforms other comparison
methods, implying the benefit of iterative learning of matrix completion and
classification.
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Abstract. In this work, we identify meaningful latent patterns in MR
images for patients across the Alzheimer’s disease (AD) continuum. For
this purpose, we apply Projection to Latent Structures (PLS) method
using cerebrospinal fluid (CSF) biomarkers (t-tau, p-tau, amyloid-beta)
and age as response variables and imaging features as explanatory vari-
ables. Freesurfer pipeline is used to compute MRI surface and volumet-
ric features resulting in 68 cortical ROIs and 84 cortical and subcortical
ROIs, respectively. The main assumption of this work is that there are
two main underlying processes governing brain morphology along the AD
continuum: brain aging and dementia. We use two different and orthogo-
nal PLS models to describe each process: PLS-aging and PLS-dementia.
To define PLS-aging model we use normal aging subjects and age as pre-
dictor and response variables, respectively, while for PLS-dementia we
only use demented subjects and biomarkers as response variables.

Keywords: PLS · Preclinical AD · Latent model

1 Introduction

Human brains are constantly evolving throughout life, changing their neurobi-
ological structure according to an uncountable number of factors, ranging from
genetics or hormonal to vascular factors [1,3]. Hence, we can define multiple
interdependent processes occurring at the same time in each subject’s brain.
One key factor to describe brain’s condition is subject’s real age leading to nor-
mal aging processes that describe similar changes in groups of subjects with
similar age. Often, in elderly subjects, other processes related to dementia occur
in parallel and eventually result in cognitive or memory decline. The etiology of
those processes is still unknown but a large literature of promising research can
be found in the literature [2], specifically for the Alzheimer’s disease, the most
common type of dementia. In that sense, cerebrospinal fluid (CSF) biomarkers

c© Springer Nature Switzerland AG 2018
I. Rekik et al. (Eds.): PRIME 2018, LNCS 11121, pp. 60–67, 2018.
https://doi.org/10.1007/978-3-030-00320-3_8
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obtained by lumbar puncture (extracellular amyloid depositions and intracellu-
lar accumulation of t-tau and p-tau proteins) show an acceptable sensitivity and
specificity for diagnostic purposes and can be used as a measure of progression
along the AD continuum [4]. Moreover, the use of high-field MR imaging provide
detailed brain anatomical information that could be used to analyze brain condi-
tions related to each of these factors. In this work we relate brain morphometry
measurements, to other factors from the same observations like age and CSF
biomarkers describing brain aging and brain dementia processes, respectively.

Structural brain changes are heterogeneous among subjects and may not be
uniform across the brain, specially if related to dementia. However, we hypoth-
esize that these changes can be described by a small set of underlying processes
that define common morphological patterns across all subjects and we build
different latent models to find specific patterns for both processes (aging and
dementia). Moreover, we constrain both subspaces to be orthogonal to each
other in order to disentangle aging effects and gain better understanding of the
dementia process. We use Projection to Latent Structures (PLS) to jointly model
the variation of MRI measurements as predictor variables (X) and age and CSF
biomarkers as response variables (Y).

Related to our work, PLS is used to model brain aging accounting for different
sources of variability in [5], while in [6] it is used to jointly model age and clinical
scores from brain shape features. A latent model for preclinical Alzheimer’s
disease stage using clinical and cognitive variables is shown in [7].

2 Methods

In this work, we aim to describe brain aging and brain dementia processes by
means of few underlying latent structures. We use Projection to Latent Struc-
tures (PLS) for that purpose. Two different PLS models are built for aging
and dementia processes, using imaging features as predictors and age and CSF
biomarkers (amyloid-beta (Aβ), t-tau and p-tau proteins) as response variables
for each process, respectively.

2.1 PLS: Projection to Latent Structures

PLS is a linear latent variable model that finds a set of components (called latent
vectors) by performing a simultaneous decomposition of a predictor matrix X ∈
RNxK and a response matrix Y ∈ RNxM with the constraint of maximizing the
covariance between X and Y [8]. Here N stands for the number of subjects, while
K and M define the number of predictors and response variables, respectively.
For a single latent dimension (L = 1) PLS finds the underlying representations
t = Xw, u = Y c such that

maximize cov(Xw,Y c) = E {(t − t0)(u − u0)} (1)

s.t wTw = 1, cT c = 1



62 A. Casamitjana et al.

where w, c are the weights for X, Y variables respectively. Rewriting Eq. 1, PLS
can also be seen as looking for the latent space that best explains the variation
in X-space and Y-space and the correlation between both spaces.

maximize cov(Xw,Y c) = σt · corr(t, u) · σu (2)

s.t wTw = 1, cT c = 1

where corr() is the correlation coefficient. Solving Eq. 2 using Lagrange multi-
pliers, weight vectors have the following analytical expression:

w =
1√

uTXXTu
XTu, c =

1√
tTY Y T t

Y T t (3)

For a latent space of dimension L > 1, each latent factor is computed by
iterating over the same optimization process (i.e. Eq. 3). However, at each step
PLS uses deflated versions of X and Y as new predictors and response variables,
forcing successive latent directions to be orthogonal to previous ones and hence,
maximizing the input variance explained.

Xd = X − tpT = (I − ttT

tT t
)X, where p =

XT t

tT t
(4)

Yd = Y − tqT = (I − ttT

tT t
)Y, where q =

Y T t

tT t

Due to continuous deflation of input spaces, weight matrices (W,C) do not
directly relate input (X,Y) and latent (T,U) spaces. Accounting for that, rotation
matrices, Rx, Ry, are defined:

Rx = W · (PT · W )−1, Ry = C · (QT · C)−1, T = X · Rx, U = Y · Ry (5)

where T ∈ RNxL, U ∈ RNxL are the latent factors found at each iteration and
W ∈ RKxL, C ∈ RMxL, P ∈ RKxL, Q ∈ RMxL are the matrices containing
weights and loadings. Finally, PLS modeling can also be used for linear regression
using the coefficient matrix B:

B = Rx · QT → Y = TQT + E = X · Rx · QT + E = X · B + E (6)

2.2 PLS Orthogonalization and Coupling

In order to disentangle the effects of normal brain aging and dementia, a PLS
orthogonalization method is proposed. To this purpose, separate models are esti-
mated imposing an orthogonality constraint between them, similarly to [9]. For
brain aging process it is sufficient to use only non-demented subjects (i.e. healthy
control subjects). For dementia process, we use subjects in the AD pathophysi-
ological path and constrain the underlying latent space to be orthogonal to the
brain aging model. Finally, we need to merge both models in a single latent space.
We first model brain aging using PLS-aging and thereafter use a deflated version
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of brain morphology features to model brain dementia using PLS-dementia. The
final latent space is built by concatenating the latent factors of each model, as
well as the coefficients and rotation matrices.

PLS-aging is found by solving Eq. 1 for Lage-dimensional subspace with
weights wagei for i = 1 : Lage. The modified PLS dementia model is as fol-
lows:

maximize cov(Xd0w, Y c) = E {(t − t0)(u − u0)} (7)

s.t wTw = 1, cT c = 1, wTwagei = 0 i = 1 : Lage

where wagei are the columns of the aging PLS rotation matrix Rxage
and Xd0 =

X−TPT the deflated version of X using PLS-aging. Using Lagrange multipliers,
the resulting weights can be expressed as:

wj = XT
dj

u −
Lage∑

i=1

wageiX
Tu

wT
ageiwagei

wagei ⇒ w =
w

||w|| (8)

cj = Y T
dj

u ⇒ c =
c

||c|| j = 1 : Ldementia (9)

where Xdj
and Ydj

are the deflated version of Xd0 and Ydj
at jth iteration. The

full PLS model is build by concatenating latent scores and rotation matrices from
both models: t = concat(tl) and R = concat(Rl) where l = 1, ..., Lage, ..., Lage +
Ldementia

2.3 Outcome Measures

The outcome measures of interest using the aforementioned PLS model are: (i)
the effect strength ρl(s), defined as the pearson correlation of the lth latent factor
and the response variable s (e.g. CSF biomarkers, age) and (ii) the effect type,
νl defined as the projection from input X-space to its related latent space.

ρl(s) =
cov(tl, ys)
σtl · σys

=
νT
l · X/(N − 1)

σtl · σyl

νl = Rl (10)

3 Experimental Analysis

3.1 Data

In our experiments we use the publicly available dataset from the Alzheimer’s
Disease Neuroimaging Initiative1. We build a sample of N = 802 subjects:
NHC = 189 healthy controls, NPC = 136 on the preclinical stage of AD, NMCI =
330 subjects labeled as mild cognitive impairment (MCI) and NAD = 147 sub-
jects diagnosed with AD. MCI and AD subjects are diagnosed following the

1 http://adni.loni.usc.edu.

http://adni.loni.usc.edu
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standard criteria used in ADNI while for preclinical subjects we select asymp-
tomatic subjects with positive amyloid-beta (Aβ < 192). All subjects have asso-
ciated a T1-weighted MRI preprocessed using FreeSurfer2 extracting region of
interest (ROI) global averages of gray matter cortical thickness and cortical and
subcortical volumetric information. Thus, ROI-level measurements are used as
predictor variables X, while age and CSF biomarkers (Aβ, p-tau, t-tau) are used
as response variables Y. A normalized CSF index as diagnostic metric for disease
progression (AD-CSF, [4]) is also used in its two versions to assess the correlation
with the latent factors: (i) AD-CSF1 that involves p-tau protein and Aβ and (i)
AD-CSF2 that involves t-tau and Aβ.

We use the linear regression model in Eq. 6 to define the dimension of each
latent space by evaluating the total mean absolute error (MAE) of the predicted
response variables in a cross-validation framework. To model brain aging we use
only HC subjects (Lage = 2), while for modeling brain dementia (Ldem = 4)
we use PC, MCI and AD subjects to build the latent space. We investigate the
latent factors found and their correlation with the response variables as well as
the brain patterns associated with the scores. Finally, we show the predictive
power for each model.

3.2 Results and Discussion

Using a single model for all disease stages, we assume that the effect type of
dementia is preserved throughout the AD continuum while the effect strength
changes at each stage. To better understand the latent factors tk at each stage
we will first analyze their effect strength ρl(s) with s = age, CSF biomarkers and
the two AD-CSF indices. Afterwards, we show the effect type νl related to them.

Figure 1 shows the correlation between each latent variable and the respec-
tive indicators for different AD stages using volumetric and cortical thickness
features. Brain aging factors are most correlated with HC subjects, even though
they are relevant for early stages of AD (PC, MCI). On the other hand, the brain
dementia model finds patterns (t2, t3) significantly correlated with t-tau and p-
tau in early stages of AD, specially for the later during the preclinical stage.
The relationship between Aβ and the latent model is higher for volumetric data
and t2. On the other hand, disease related factors at AD stage seem to be more
correlated with age rather than CSF biomarkers and have low effect strength in
HC subjects.

Interesting patterns are found for the brain aging model. We observe that the
first latent variable involves global volume atrophy (Fig. 2) or cortical thickness
reduction (Fig. 3) except for choroid plexus and most of the cingulate regions,
respectively. Interestingly, when using a combination of both volume and corti-
cal thickness, the second latent variable of the aging model describes a global
cortical thickness increase together with global volume atrophy except for a few
insignificant regions.

2 https://surfer.nmr.mgh.harvard.edu/.

https://surfer.nmr.mgh.harvard.edu/


Shared Latent Structures Between Imaging Features and Biomarkers 65

(a) Volume (b) Cortical Thickness

Fig. 1. Absolute correlation with several indicators: age (black), amyloid-beta (red),
p-tau (green), t-tau (blue), AD-CSF-1 (magenta), AD-CSF-2 (cyan). Latent variables
are shown in the x-axis: brain aging (0,1) and brain dementia (2,3,4,5). (color figure
online)

(a) tV0

(b) tV2

Fig. 2. Volumetric patterns (a, b) related to brain aging and brain dementia models,
respectively.
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(a) Cortical Thickness: tCT
0

(b) Cortical Thickness: tCT
2

Fig. 3. Cortical thickness patterns (a, b) related to the brain aging and brain dementia
models, respectively.

Table 1. Predictive error of response variables for each diagnosis label and feature
type using a single model for all AD continuum.

Features Diagnosis Age Aβ p-tau t-tau

Volume HC 0.49 (± 0.05) 1.91 (± 0.16) 0.74 (± 0.09) 0.71 (± 0.07)

PC 0.68 (±0.11) 0.46 (±0.06) 0.72 (±0.13) 0.63 (±0.09)

MCI 0.67 (±0.09) 0.4 (±0.04) 0.7 (±0.05) 0.72 (±0.08)

AD 0.85 (±0.09) 0.37 (±0.05) 0.88 (±0.18) 0.94 (±0.08)

Cortical Th HC 0.55 (±0.06) 1.94 (±0.16) 0.7 (±0.08) 0.63 (±0.08)

PC 0.76 (±0.16) 0.48 (±0.07) 0.68 (±0.12) 0.66 (±0.11)

MCI 0.77 (±0.06) 0.42 (±0.03) 0.69 (±0.04) 0.72 (±0.08)

AD 0.91 (±0.06) 0.38 (±0.04) 0.87 (±0.19) 0.88 (±0.19

On the other hand, effect types of brain dementia model are positively cor-
related with t-tau and p-tau (t2, t3) and consist of a combination of different
effects in each ROI, mostly characterized by a reduction of the enthorinal cor-
tex (tCT

2 ), shrinkage of the parahippocampal combined with an increase of the
precuneus thickness (tCT

3 ), atrophy in the hippocampus, fusiform and inferior
temporal combined with increasing volume for the precentral region (tV2 ) and
a volume increase in the choroid plexus regions combined with atrophy in the
temporal pole (tV3 ).

Finally, we evaluate the predictive power of the latent factors found for both
real age and CSF biomarkers. Table 1 shows the normalized predictive error for
each class using cortical thickness and volumetric data. High Aβ errors are due to
the initial difference in mean between HC and other stages of the continuum: PC,
MCI and AD. Volumetric data better fits real age while both behave similarly
for predicting biomarkers. The combination of both features provides similar
performance.
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4 Conclusions

We present a multivariate analysis that finds a shared latent space between
imaging features and relevant factors (age and CSF biomarkers) and describes
two different processes that may occur simultaneously in elderly subjects: brain
aging and brain dementia. Relevant and specific patterns related to neuropatho-
logical conditions are found for different stages of the AD continuum by imposing
orthogonality constraints between both processes. One limitation of the model is
that localized interpretations of condition effects (e.g. aging, dementia) in inde-
pendent ROIs is not possible and the only conclusion that can be drawn is related
to the overall morphometric patterns found. Future work may involve modeling
separately each stage of AD to study their different characteristics, with special
focus on preclinical stage. Other imaging modalities can be incorporated in the
study.
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Abstract. In clinical practice one often encounters a situation when
a quantity of interest cannot be measured routinely, for reasons such as
invasiveness, high costs, the need for special equipment, etc. For instance,
research showed that early cognitive decline can be predicted from vol-
ume (atrophy) of the nucleus basalis of Meynert (NBM), however its
small size makes it difficult to measure from brain magnetic resonance
(MR) scans. We treat NBM volume as an unobservable quantity in a sta-
tistical model, exploiting the structural integrity of the brain, and aim to
estimate it indirectly based on one or more interdependent, but possibly
more accurate and reliable compartmental brain volume measurements
that are easily accessible. We propose a Bayesian approach based on the
previously published reference-free error estimation framework to achieve
this aim. The main contribution is a novel prior distribution parametriza-
tion encoding the scale of the distribution of the unobservable quantity.
The proposed prior is more general and better interpretable than the
original. In addition to unobservable quantity estimates, for each observ-
able we calculate a figure of merit as an individual predictor of the unob-
servable quantity. The framework was successfully validated on synthetic
data and on a clinical dataset, predicting the NBM volume from volumes
of the whole-brain and hippocampal subfields, based on compartmental
segmentations of structural brain MR images.

Keywords: Bayesian inference · Markov Chain Monte Carlo
Validation · Brain segmentation · Clinical dataset
Magnetic resonance imaging

1 Introduction

Computational analysis of medical images is increasingly used for extracting
quantitative imaging biomarker (QIBs)—scalar measurements that characterize
c© Springer Nature Switzerland AG 2018
I. Rekik et al. (Eds.): PRIME 2018, LNCS 11121, pp. 68–75, 2018.
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a certain morphological or functional aspect of the anatomy of interest. In certain
diseases there exist QIBs that allow for disease diagnosis at an early stage, well
before clinical symptoms appear. For instance, recent research showed that early
cognitive decline can be predicted by measuring volume (atrophy) of nucleus
basalis of Meynert (NBM)[4], however its small size makes it a difficult target
for computational or even manual segmentation on resolution–limited magnetic
resonance (MR) brain images.

Based on the integrity of the brain, one may treat the difficult to measure
NBM as an unobservable quantity and model it in terms of one or several inter-
dependent observed routine compartmental brain volume measurements. Two
questions are then of interest: (a) which observed quantities are the best “pre-
dictors” of the unobservable quantity and (b) what are the likely values of the
unobservable quantity given the observed ones?

To answer these questions we propose a novel Bayesian approach based on
the reference-free error estimation framework [3]. The original framework was
designed to compare measurement method (MMs) for the same quantity and
has assumptions specific to MMs that are necessary for model identification (see
Sect. 2.1). We lift these assumptions by using additional information about the
distribution of the unobservable quantity (Sect. 2.2) and use the reference-free
estimates to answer the questions (a) and (b) for a synthetic and a clinical
dataset (Sect. 3).

2 Reference-Free Error Estimation

Let q denote the unobservable quantity in patient p, p = 1..N . Assume that
we have M easy-to-measure observables, indexed with m, m = 1..M . Let ypm

be the value of m-th observable in patient p defined by the value of a certain
deterministic function gm(qp), corrupted by random noise ε:

ypm = gm(qp) + εpm (1)

Assuming that gm are analytic and we are dealing with values of qp from a
finite interval [qp, qp], we may approximate gm with a K − th degree polynomial
representing truncated Taylor series about a point qo ∈ [qp, qp]:

ypm =
K∑

k=0

bkm(qp − q0)k + εpm =
K∑

k=0

bkmxk
p + εpm (2)

where notation xp � qp − q0 is introduced for brevity. Multivariate Gaus-
sian(MVG) distribution is assumed for random errors:

εp ∼ N (0, Σ) (3)

where εp = (εp1, ..., εpM )� and Σ is a covariance matrix.
From (2) and (3) the likelihood of observing yp � [yp1, ..., ypM ] is:

lp � f(yp | B,Σ, xp) = N (Bχ, Σ) (4)
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where f denotes probability density, B � [bkm] ∈ R
KM and χ �

[1, xp, x
2
p, . . . , x

K
p ]. The likelihood for the entire set of observations is then:

l � f(Y | θ) =
N∏

p=1

lp (5)

where Y = [ypm] ∈ R
N×M , θ = {B,Σ,x}, x = [x1, ..., xN ]. By Bayes’ Theorem

the posterior probability density of θ given the observed values Y is:

f(θ | Y ) ∝ l · f(θ) (6)

where f(θ) is the prior probability density of model parameters. When both
l and f(θ) are specified, one can draw samples from f(θ | Y ) using Markov
chain Monte-Carlo (MCMC). The samples allow estimation of marginal posterior
expectations of quantities of interest with associated uncertainties. For instance
the quantity

Fm � max
q∈[qp,qp]

| g′
m(q) |
σm

(7)

can be shown to be equal to the reciprocal of the smallest possible (over q ∈
[qp, qp]) root mean square error (RMSE) of qp estimates, obtained from ypm for
a particular m by inversion of gm. In other words, it is the reciprocal value of
the smallest error one would make if one used only the m-th observable (with
known gm) to estimate q. Quantity in (7) can be interpreted as a figure of merit
of the m-th observable as a predictor of q, thereby providing an answer to the
question (a), while the estimates of qp provide an answer to the question (b), as
posed in the Introduction.

2.1 Priors in Previous Works

The likelihood l can be shown to be degenerate. This means that, in order
to identify the model, the priors must be sufficiently informative. In previous
research, uniform priors on qp were used in conjunction with peaked informative
priors on bkm:

qp ∼ U(qp, qp), ∀p, (8)

b1m ∼ N (1, σb1), ∀m, (9)

bkm ∼ N (0, σbk), ∀m, k �= 1, (10)

where qp and qp are either physical or physiological bounds on qp and σbk =
ck(qp − qp)−k, ck ≈ 1. Such priors are based on the assumption that ymp are
(imperfect) measurements of qp and therefore gm are close to identity at least
in the vicinity of q0. To parametrize the covariance matrix a noise variance-
correlation separation strategy [1] based on the following decomposition was
applied:

Σ = SRS (11)
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where S = diag([σ1, ..., σM ]) is a diagonal matrix of random error standard
deviation (STDs) and R = [rij ] a symmetric correlation matrix. Then, STDs
were assigned truncated Jeffreys priors:

f(σm) =

{
1

σm
, σm < σm < σm

0, otherwise
(12)

Truncation guaranteed that the posterior was proper, σm was set to measurement
resolution, while σm was set to (max

p
ypm −min

p
ypm). The correlation matrix was

assigned LKJ priors [2] with η = 1.
This approach was successfully validated on a clinical in vivo dataset and

several synthetic datasets [3]. Despite the usefulness of informative priors on
bkm in the context of MM comparison, these priors are not applicable for general
gm(q).

2.2 Proposed Prior

The main contribution in this paper is a novel encoding of prior distribution that
lifts assumptions on bkm that constrain gm to be close to identity. Instead, the
novel prior draws on additional information about the scale of qp distribution
to identify the model. The additional information required is (i) an interval of
likely values of the minimum and maximum (over p) points in the xp sample
encoded as the following conditions:

min
p

qp ≤ qp + ε

max
p

qp ≥ qp − ε
(13)

where ε, ε > 0 are a priori limits on how far the minimum and the maximum
values of qp might reside from the boundaries of the specified uniform prior on
qp, defining the magnitude of the scale of qp distribution; and (ii) a pair of indices
(p, p) for which it is known that qp > qp, disambiguating the sign of the scale of
qp distribution and determining the order of qp estimates w.r.t. their true values.
The points p and p need not coincide with the minimum and maximum points.
Polynomial coefficients bkm are assigned flat priors, while the priors on Σ are
left unchanged as per (11) and (12).

3 Validation

The capability of the proposed framework to estimate the values of an unob-
servable quantity based on several related and interdependent quantities was
validated on datasets of synthetic and clinical scalar measurements.

We focus on the ability of the framework to estimate Fm in (7) and qp. Each
plot of Fm also reports correlation coefficient ρ w.r.t. the reference values:

ρ �
∑M

m=1(F̃m − 〈F̃m〉)(F ∗
m − 〈F ∗

m〉)
∑M

m=1(F̃m − 〈F̃m〉)2(F ∗
m − 〈F ∗

m〉)2
, (14)
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where F̃m is the posterior estimate and F ∗
m is the value obtained by least squares

regression against known reference values of q, used in validation. Plots for qp

also provide the RMSE of the estimates:

A �

√√√√
n∑

p=1

q2p/N (15)

and the smallest RMSE one would obtain if he or she used only the best predictor
with known polynomial coefficients:

A1 � min
m

1/F ∗
m. (16)

3.1 Synthetic Data

Experiment with synthetic data was conducted to demonstrate the ability of
the framework to estimate the model parameters with highly non-linear gm that
would otherwise have invalidated the assumptions of the original reference-free
error estimation scheme [3]. We have generated N = 30 points from U(0, 55)
and, at those points, evaluated polynomials with coefficients given in table 1. The
obtained values were then perturbed with MVG noise with standard deviations
σm and correlation matrix R from table 1.

Table 1. Parameters used to generate synthetic data.

The parameters of the prior were setup as follows: qp = 0, qp = 55, ε = ε = 5,
σm = 0.001, σm = 55, indices p and p were picked at random. K was set to 2,
q0 was set to 0.

Results are given in Fig. 1. Figure of merit estimates are in agreement with
the true values and as such allow to answer the question (a). The unobservable
quantity estimates are very close to the known true values and can thus be
used to answer the question (b). Although A > A1, it must be understood that
A is actual RMSE calculated over [qp, qp], while A1 assumes that q is in the
optimal region for the particular predictor that produces the smallest value of
this quantity.
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Fig. 1. Reference-free estimates of the unobservable variable q and the figure of merit
Fm compared to corresponding known true values for the synthetic dataset. Red and
green points were used to disambiguate the slope sign in regression model (see Sect. 2.2).
See Sect. 3 for definitions of A, A1 and ρ. Dashed identity lines correspond to a perfect
match between the estimates and the true values. (Color figure online)

3.2 Clinical Data

Structural T1-weighted MR scans of a group of 40 patients, including 20
healthy elderly and 20 with mild cognitive impairment, the prodromal stage
of Alzheimer’s disease were analysed. Data for analysis consisted of volumet-
ric measurements of whole-brain, hippocampus and its subfields, obtained using
Freesurfer and DARTEL segmentation tools. These data were used to attempt
to predict the NBM volume.

The NBM is a small region that is not routinely measured, yet it is associated
with cognitive health and implicated in various neurodegenerative disorders. For
validation purposes, the NBM volume was extracted using a detailed stereotactic
atlas. All volumetric measurements were normalized to the total intracranial
volume to account for the differences in head size between subjects.

The minimum and the maximum points were determined from normalized
reference NBM volumes and provided indices p and p, based on which the remain-
ing parameters of the prior were setup: ε and ε were set to 0.02, while qp and
qp were set so that the respective minimum and maximum values were approxi-
mately at qp + ε/2 and qp + ε/2. K was set to 1, q0 was set to (qp + qp)/2.

The resulting estimates in Fig. 2 show good agreement with the reference. The
RMSE was slightly lower as compared to the RMSE obtainable from a single
predictor, thus successfully answering the question (b). Generally, estimates of
Fm were in good agreement with those obtained using least squares on reference
values, taking into account the associated uncertainty, and therefore enable one
to answer question (a).
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Fig. 2. Top: estimates of normalized NBM volume from volumes of hippocampal sub-
fields for each hemisphere plotted against reference values. Green and red points denote
p and p (Sect. 2.2). Bottom: figure of merit Fm estimates of hippocampal subfields as
predictors for MBM volume plotted against the estimates obtained by least squares
regression with respect to reference values. See Sect. 3 for definitions of A, A1 and ρ.
Dashed identity lines correspond to the perfect match between the estimates and the
reference. (Color figure online)

4 Discussion

Results show that the proposed priors for the reference-free error estimation
framework produce valid estimates of the unobservable quantity (NBM) and
identify best easy-to-measure predictors of this quantity. The proposed priors
are more general, but at the same time are more practical and objective than
the original ones [3]. Instead of vague guesses about coefficients of Taylor expan-
sion one has to provide interpretable, clearly defined parameters: span of the
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unobservable quantity, its uncertainty in the form of tolerance parameters and
a pair of point indices with known value ordering.

For many biomarkers these parameters can be measured or inferred. For
example, lower bound of the biomarker distribution may be defined exactly by
including a healthy control subject into the dataset. If the patient with the
highest value of the biomarker can be identified, then by a single application of
a (possibly expensive) gold standard MM, the uncertainty of the upper bound
can be reduced to the level of the method’s nominal accuracy. To specify the
pair of order-defining indices one may again use controls: for a large class of
biomarkers a healthy control subject will have the value of the biomarker equal
to zero, which is guaranteed to be less than that of a patient who has the relevant
medical condition. Another possibility is to use up to two applications of a gold
standard MM.

Whenever applicable, reference-free error estimation provides significant sav-
ings of time and costs normally associated with reference measurements: those
of human operators, non-standard protocols, high-end acquisition equipment,
material costs (e.g. contrast agents, materials of phantoms), instrumentation
(frames, fiducial markers), administrative overhead, patient recovery and side
effects from invasive measurements, making it an invaluable analytical tool.

Acknowledgments. The authors acknowledge the financial support from the Slove-
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Abstract. Recent studies have shown that fusing multi-modal neu-
roimaging data can improve the performance of Alzheimer’s Disease
(AD) diagnosis. However, most existing methods simply concatenate fea-
tures from each modality without appropriate consideration of the corre-
lations among multi-modalities. Besides, existing methods often employ
feature selection (or fusion) and classifier training in two independent
steps without consideration of the fact that the two pipelined steps are
highly related to each other. Furthermore, existing methods that make
prediction based on a single classifier may not be able to address the
heterogeneity of the AD progression. To address these issues, we pro-
pose a novel AD diagnosis framework based on latent space learning
with ensemble classifiers, by integrating the latent representation learn-
ing and ensemble of multiple diversified classifiers learning into a unified
framework. To this end, we first project the neuroimaging data from dif-
ferent modalities into a common latent space, and impose a joint sparsity
constraint on the concatenated projection matrices. Then, we map the
learned latent representations into the label space to learn multiple diver-
sified classifiers and aggregate their predictions to obtain the final clas-
sification result. Experimental results on the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset show that our method outperforms
other state-of-the-art methods.

1 Introduction

Alzheimer’s disease (AD) impairs patients’ memory and other cognitive functions
and is often found in people over 65 years old [1]. As there is no cure for AD,
timely and accurate diagnosis of AD and its prodromal stage (i.e., Mild Cognitive
Impairment (MCI)) is highly desirable in clinical practices.

Neuroimaging techniques including Magnetic Resonance Imaging (MRI) and
Positr-on Emission Topography (PET) have been widely used to investigate the
neurophysiological characteristics of AD [15,18]. As neuroimaging data are very
c© Springer Nature Switzerland AG 2018
I. Rekik et al. (Eds.): PRIME 2018, LNCS 11121, pp. 76–84, 2018.
https://doi.org/10.1007/978-3-030-00320-3_10
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high-dimensional, existing methods often use Region-Of-Interest (ROI) based
features instead of the original voxel based features for analysis [4,17]. Recently,
many studies have been proposed to fuse the complementary information from
multi-modality data for accurate AD diagnosis [10,14,19]. For example, Zhu
et al. [19] use Canonical Correlation Analysis (CCA) to first transform multi-
modality data into a common CCA space, and then use the transformed features
for classification. Hinrichs et al. [8] use Multiple Kernel Learning (MKL) to
fuse multi-modality data by learning an optimal linearly combined kernels for
classification.

Most of the multi-modality data based AD studies in the literature are based
on the 2-step strategy, where feature selection or fusion is first performed, and
then a classifier (e.g., Support Vector Machine (SVM)) is learned [10,19]. Because
the features selected in the first step may not be best to the classifier in the
second step, which will degrade the final classification performance. Further,
most methods [10,19] also focus on learning a single classifier for AD diagnosis,
which is difficult to address the heterogeneity of complex brain disorder. To
deal with this disease heterogeneity issue, it is more reasonable to train a set of
diversified classifiers and ensemble them (instead of training a single classifier),
which has been shown effective in previous studies [2,5].

To this end, we propose a novel multi-modal neuroimaging data fusion via
latent space learning with ensemble classifier for AD diagnosis framework, which
can seamlessly perform latent space learning and ensemble of diversified classi-
fiers learning in a unified framework. Specifically, we first project neuroimaging
data from different modalities (i.e., MRI and PET) into a common latent space,
to exploit the correlation between MRI and PET features, and learn the latent
representations. Concurrently, we also select a subset of discriminative ROI-
based features from both modalities jointly, by imposing a cross-modality joint
sparsity constraint on the concatenated projection matrices (as shown in Fig. 1).
This is based on the assumption that, both the structure and function of an ROI
could be affected by the disease progression, hence it is intuitive to select the
same ROI based features for MRI and PET data in the latent space. Further,
we learn multiple diversified classifiers by mapping the latent representations
into the label space, and use an ensemble strategy to obtain the final result.
Note that we integrate all the above learning tasks into a unified framework, so
that all components can work together to achieve a better AD diagnostic model.
We have verified the effectiveness of our method on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset.

2 Methodology

Latent Space Learning with Cross-Modality Joint Sparsity. Given a
multi-modality data set X = {X1, · · · ,XM}, where Xm ∈ R

dm×n denotes the
feature matrix for the m-th modality with dm features and n subjects, and M is
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Latent 
space

MRI PET

Label space

Label space

Label space

Joint sparsity guided latent space learning

Label space

Ensemble of diversified classifiers
...

Diversity

ClassifierEnsemble

V1 V2
Fig. 1. A flow diagram of our proposed AD diagnosis framework. We project multi-
modality data (i.e., MRI and PET in our case) into a common latent space to exploit the
correlation among multi-modal neuroimaging data. Besides, a joint sparsity constraint
(denoted by the dashed red rectangles) is imposed on different modalities, to encourage
the selection of same ROIs from MRI and PET data. Furthermore, multiple classifiers
with diversity constraint are trained and an ensemble strategy is used to obtain the
final classification result.

the number of modalities. To exploit the correlations among different modalities,
we project different modalities into a common latent space as follows:

min
Vm,H

∑M

m=1

(
‖VT

mXm − H‖2F + γ‖Vm‖2,1
)
, (1)

where Vm ∈ R
dm×h is a projection matrix, H ∈ R

h×n is a matrix of latent
representation, γ is the regularization parameter, and h is the dimension of

the latent space. We use �2,1-norm regularizer (i.e., ‖V‖2,1 =
∑d

i=1

√∑h
j=1 v

2
ij ,

where V ∈ R
d×h) in Eq. (1) to enforce row-wise sparsity in Vm, by penalizing the

coefficients in each row of Vm together. In other words, the �2,1-norm encourages
the selection of useful (ROI-based) features from Xm during the latent space
learning. To encourage cross-modality joint sparsity, assuming the features from
different modalities are related, the objective function in Eq. (1) is extended to
the following formulation:

min
Vm,H

∑M

m=1
‖VT

mXm − H‖2F + γ‖[V1 · · ·VM ]‖2,1, (2)

where a joint sparsity constraint is imposed on the concatenated projection
matrices. In our case, ROI-based features are used for both the MRI and PET
data, thus Eq. (2) will enforce the features from the same ROI to be selected for
multi-modalities. This is based on the assumption that both the brain structure
(quantified by MRI features) and function (quantified by the PET features) will
be degraded for the same AD-affected ROIs. In this way, the correlations among
multi-modality data can effectively be exploited.
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It is worth noting that the Frobenius norm in Eq. (2) is sensitive to sample
outliers. To address this issue, we reformulate Eq. (2) as:

min
Vm,Em,H

∑M

m=1
‖Em‖1 + γ‖[V1 · · ·VM ]‖2,1,

s.t. H = VT
mXm + Em,m = 1, . . . , M,

(3)

where an error term Em ∈ R
h×n is introduce to model the reconstruction error

(i.e., the first term in Eq. (2)), and use �1-norm to penalize Em.

Ensemble of Diversified Classifiers Learning. After obtaining the latent
representations from multi-modality data, we regard the new representations in
the latent space as input to train a classifier. As SVM is a widely used classifier
due to its promising performance in many applications [13], we incorporate the
latent space learning and classifier learning into a unified framework as follows:

min
Vm,Em,w,H,b

∑n

i=1
f(yi,hT

i w + b) + λΨ(w)

+ β
∑M

m=1
‖Em‖1 + γ‖[V1 · · ·VM ]‖2,1

s.t. H = VT
mXm + Em,m = 1, . . . ,M,

(4)

where hi ∈ R
h×1 is the latent representation of the i-th sample (i.e., i-th column

of H), yi ∈ {−1, 1} is the corresponding label, and w and b denote the weight
vector and bias of the classifier, respectively. Besides, f(·) in Eq. (4) is the
classifier loss function, while the second term in Eq. (4) is the regularizer for w
(e.g., �1 or �2-norm of w). If we use hinge loss function for f(·), the first term in
Eq. (4) can be given as:

∑n

i=1
f(yi,hT

i w + b) =
∑n

i=1
(1 − (hT

i w + b)yi)
p
+, (5)

where the operation (x)+ := max(x, 0) keeps x unchanged if it is non-negative,
and returns zero otherwise, and p is a constant with either value 1 or 2 to have
physical meaning. In Eq. (4), only a classifier is trained, which may not be able to
address the heterogeneity of AD progression. In addition, some studies have also
indicated that ensembling multiple classifiers may result in a more robust and
accurate classifier. Thus, following the work in [6], we replace the loss function
in Eq. (4) with the loss functions from multiple classifiers, as follows:

min
Vm,Em,W,H,b

∑C

c=1

∑n

i=1
(1 − (hT

i wc + bc)yi)
p
+ + λΨ(W)

+ β
∑M

m=1
‖Em‖1 + γ‖[V1 · · ·VM ]‖2,1,

s.t. H = VT
mXm + Em,m = 1, . . . ,M,

(6)

where W = [w1 · · ·wC ] ∈ R
h×C is a matrix with each of its column denoting the

weight vector for one classifier, b = [b1 · · · bC ] ∈ R
C×1 is the corresponding bias
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vector, and C is the number of classifiers. To ensure that we have a diversity of
classifiers rather than redundant classifiers, we minimize the exclusivity function
between each pair of classifier weight vectors, given as {min ‖wi◦wj‖0, i �= j} [6],
where ◦ denotes Hadamard product, and ‖ · ‖0 denotes �0-norm. This constraint
will ensure the column weight vectors in W be exclusive and orthogonal to each
other, thus giving us diversified classifiers.

However, as this constraint is too strong and difficult to optimize, we choose
to minimize the relaxed exclusivity function instead, i.e., given by {min ‖wi ◦
wj‖1 = min

∑
k |wi(k)| · |wj(k)|, i �= j}, where wi(k) denotes the k-th element

in wi, and | · | denotes the absolute operator. Following the work in [6], we use
the following regularizer as a diversity constraint to encourage the learning of
diversified classifiers. The regularizer is given as:

Ψ(W) =
1
2
‖W‖2F +

∑
i,j �=i

‖wi ◦ wj‖1

=
1
2

∑K

k=1
(
∑C

c=1
|wc(k)|)2 =

1
2
‖WT ‖21,2.

(7)

The derivation details for the above equation can be found in [6].

Unified AD Diagnosis Framework. By integrating the latent space learning
and ensemble learning of diversified classifiers into a unified framework, the final
objective function of our proposed model is given as:

min
Vm,Em,W,H,b

∑C

c=1

∑n

i=1
(1 − (hT

i wc + bc)yi)
p
+ +

λ

2
‖WT ‖21,2

+ β
∑M

m=1
‖Em‖1 + γ‖[V1 · · ·VM ]‖2,1,

s.t. H = VT
mXm + Em,m = 1, . . . ,M.

(8)

2.1 Optimization and Prediction

The objective function in Eq. (8) is not jointly convex with respect to all
variables. Therefore, we utilize the Augmented Lagrange Multiplier (ALM)
[11] algorithm to solve Eq. (8) efficiently and effectively. After we train our
model and obtain W and b, we can obtain the ensemble classifier weight and
bias via w = 1

C

∑C
c=1 wc, and b = 1

C

∑C
c=1 bc. Then, for a testing sample

Xtest = {Xtest
1 , . . . ,Xtest

M }, the corresponding testing label ytest is estimated
by using ytest = sign(hT

testw + b), where htest = 1
M

∑M
m=1 V

T
mXtest

m , denoting
the latent representation of the testing sample.

3 Experiments

3.1 Subjects and Neuroimage Preprocessing

In this study, we select 379 subjects from the ADNI cohort (www.adni-info.org)
with complete MRI and PET data at baseline scan, including 101 Normal Con-
trol (NC), 185 MCI, and 93 AD. In our experiments, we used ROI-based features

http://www.adni-info.org
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from both MRI and PET images (i.e., M=2 in our study). Then, we further pro-
cessed the MR images using a standard pipeline including the following steps: (1)
intensity inhomogeneity correction, (2) brain extraction, (3) cerebellum removal,
(4) tissues segmentation, and (5) template registration. After that, the processed
MR images were divided into 93 pre-defined ROIs [9], and the gray matter vol-
umes in these ROIs were computed as MRI features. For PET data, we aligned
the PET images to their corresponding MR images by using affine registration,
and calculated the average intensity value of each ROI as PET features. Thus,
we have 93 ROI-based features from both the MRI and PET data, respectively.

3.2 Experimental Setup

We evaluated the effectiveness of the proposed model by conducting the fol-
lowing two binary classification experiments: i.e., AD vs. NC and MCI vs. NC
classifications. We used classification accuracy (ACC) and Area Under Curve
(AUC) as evaluation metrics.

We compared our proposed framework with the following comparison meth-
ods: (1) baseline method (“ORI”), which concatenates MRI and PET ROI-based
features into a long vector for SVM classification, (2) Lasso based feature selec-
tion method [16], which selects features from both modalities using �1-norm, (3)
CCA [7] and MKL [8] based multi-modality fusion methods; and (4) Deep learn-
ing based feature representation method, i.e., Stacked Auto-encoder (SAE) [12].

ACC AUC
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0.7

0.75

0.8 ORI Lasso CCA MKL SAE Ours_s Ours

ACC AUC
0.85

0.9

0.95

1
ORI Lasso CCA MKL SAE Ours_s Ours

Fig. 2. Comparison of classification results using two evaluation metrics (i.e., ACC and
AUC) for two classification tasks: AD/NC (top) and MCI/NC (bottom).
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Note that all the above comparison methods are based on 2-step strategy, where
feature selection and feature fusion (or feature learning) are first performed,
before using SVM (from LIBSVM toolbox [3]) for classification. We performed
10-fold cross validation for all the methods under comparison, and reported
the means and standard deviations of the experimental results. For parame-
ter setting of our method, we determined the regularization parameter values
(i.e., {λ, β, γ} ∈ {10−5, . . . , 102}) and the dimension of the latent space (i.e.,
h ∈ {10, . . . , 60}) via an inner cross-validation search on the training data, and
searched the number of classifiers C in the range {5, 10, 15, 20}. We also used
inner cross-validation to select hyper-parameter values for all the comparison
methods. Besides, we further determined the soft margin parameter of SVM
classifier via grid search in the range of {10−4, . . . , 104}.

Figure 2 shows the classification performance of all the competing methods.
From Fig. 2, it can be clearly seen that our proposed method performs con-
sistently better than all the comparison methods in terms of ACC and AUC.
Compared with the Lasso based feature selection method, which fuses multi-
modality data without effective consideration of the correlation between MRI
and PET, our method performs significantly better. In addition, our method
also outperforms SAE, which uses high-level features learned from auto encoder
for classification. This is probably due to the fact the SAE is an unsupervised
feature learning method that does not consider label information. In addition,
to verify the effectiveness of ensemble of diversified classifiers, we also compare
the performance of our proposed method for the cases of using single classifier
and multi-classifiers, with “Ours s” denoting the results of our proposed method
using a single classifier. From the results shown in Fig. 2, our proposed method
using the ensemble of diversified classifiers performs better than the case of using
only a single classifier.

To analyze the benefit of multi-modalities fusion, Fig. 3 illustrates the perfor-
mance comparison of different methods using independent modality (i.e., MRI
or PET). Note that, multi-modality fusion methods (i.e., CCA and MKL) are
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(a) AD/NC
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Fig. 3. Comparison of results for two classification tasks (i.e., (a) AD/NC and (b)
MCI/NC) using two different modalities: MRI (left) and PET (right).
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excluded in this comparison. From Fig. 3, it can be seen that our method still
outperforms other comparison methods. Besides, comparing Figs. 2 and 3, we
can see that all the methods perform better when using multi-modality data,
compared to the use of just the single modality data.

Fig. 4. Top selected regions for two classification tasks: AD/NC (top) and MCI/NC
(bottom).

Furthermore, we also identified the potential brain regions that can be used
as AD biomarkers. We ranked the ROIs based on their average weight values.
Figure 4 shows the top ranked ROIs by using our proposed method for different
tasks. Specifically, for AD/NC task, the top selected ROIs (common to both
MRI and PET data) are globus palladus right, precuneus right, precuneus left,
entorhinal cortex left, hippocampal formation left, middle temporal gyrus right,
and amygdala right. For MCI/NC task, the top selected ROIs are angular gyrus
right, precuneus right, precuneus left, middle temporal gyrus left, hippocam-
pal formation left, postcentral gyrus right, and amygdala right. These regions
are consistent with some previous studies [10,19] and can be used as potential
biomarkers for AD diagnosis.

4 Conclusion

In this paper, we have proposed an AD diagnosis model based on latent space
learning with diversified classifiers. This is different from the conventional AD
diagnosis models that often perform feature selection (or fusion) and classifier
training separately. Specifically, we project the original ROIs-based features into
a latent space to effectively exploit the correlations among multi-modality data.
Besides, we impose a cross-modality joint sparsity constraint to encourage the
selection of same ROIs for MRI and PET data, based on the assumption that the
degenerated brain regions would affect both brain structure and function. Then,
using the learned latent representations as input, we learn multiple diversified
classifiers and further use an ensemble strategy to obtain the final result, so that
the ensemble classifier is more robust to disease heterogeneity. Experimental
results on ADNI dataset have demonstrated the effectiveness of the proposed
method against other methods.
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Abstract. The Irregularity Age Map (IAM) for the unsupervised assess-
ment of brain white matter hyperintensities (WMH) opens several oppor-
tunities in machine learning-based MRI analysis, including transfer task
adaptation learning in the segmentation and prediction of brain lesion
progression and regression. The lack of need for manual labels is useful for
transfer learning. Whereas the nature of IAM itself can be exploited for
predicting lesion progression/regression. In this study, we propose the use
of task adaptation transfer learning for WMH segmentation using CNN
through weakly-training UNet and UResNet using the output from IAM
and the use of IAM for predicting patterns of WMH progression and
regression.

Keywords: Brain lesion’s progression/regression prediction
Brain MRI analysis · Task adaptation
Weakly supervised deep neural networks

1 Introduction

Magnetic Resonance Imaging (MRI) facilitates identifying brain pathologies.
However, variations in MRI acquisition protocols and scanner manufacturer’s
parameters lead to differences in the appearance of the clinical MRI features
making their automatic detection challenging. Although the widespread use of
MRI has produced large amount of datasets to be used in machine learning
approaches, the lack of expert labelled data limits their applicability.

A new method named Irregularity Age Map (IAM) has been recently pro-
posed for detecting irregular textures in T2-FLAIR MRI without requiring man-
ual labels for training [5]. The IAM indicates the degree in which the texture of
the neighbourhood around each pixel/voxel differs from the texture of the tis-
sue considered normal. Differently, most machine learning algorithms generate
c© Springer Nature Switzerland AG 2018
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a map indicating the probability of each pixel/voxel of belonging to a particular
class (e.g., normal white and grey matter, cerebrospinal fluid, lesions, etc.). We
believe that the unsupervised nature and the concept of IAM itself are useful for:
(1) task adaptation learning in assessing MRI abnormalities and (2) generation
of progression/regression patterns that can be used to predict the evolution of
these abnormalities. These two topics are the main contributions in this study.

2 Task Adaptation Transfer Learning in MRI

2.1 Current Approaches of Transfer Learning in MRI

Deep neural networks (DNN) architectures are considered the state-of-art
machine learning models in MRI data classification and segmentation as they
exhibit or surpass human-level performance on the task and domain they are
trained. However, when the domain changes (e.g. imaging protocol or sequence
type differ), or they are asked to perform tasks that are related to but not the
same task they were trained for (e.g. lesion segmentation vs. lesion assessment),
they suffer a significant loss in performance.

Transfer learning (TL) helps dealing with these novel scenarios, as enables
a model trained on one task to be re-purposed on a second related task. In
DNN the first few layers learn the general visual building of the image, such
as edges and corners, while the deeper layers of network learn more complex
task-dependent features [1]. Using TL, domain, task or distribution in training
and target processes can differ and be adjusted to fit the final purpose better.

Domain adaptation TL, where data domains in training and testing pro-
cesses differ, has been proven useful. In one study, TL improved Support Vec-
tor Machine’s performance in MRI segmentation using different distribution of
training data [9]. Another study pre-trained DNN using natural images for seg-
mentation of neonatal to adult brain images [10], and another study pre-trained
a DNN for brain lesion segmentation using MRI data from other protocols [1].

However, task adaptation TL, where tasks in training and testing processes
are different, has not been widely explored in medical image analysis. The newly
proposed unsupervised method of Limited One Time Sampling IAM (LOTS-
IAM) [5] has been reported to serve the purpose of white matter hyperintensities
(WMH) segmentation performing at the level of DNN architectures trained for
this specific purpose while executing a different task i.e., extracting irregular
brain tissue texture in the form of irregularity age map (IAM).

2.2 Weakly-Training CNN in MRI Using Age Map

In this study, we explore the use of adapting the task of WMH segmentation
on DNN, by using the IAM produced by LOTS-IAM as target instead of binary
mask of WMH manually generated by an expert. We evaluate how the DNN
recognition capabilities are preserved during the task adaptation TL process.

For our experiments we selected UNet [8] and UResNet [2] architectures used
in various natural/medical image segmentation studies. In this study we made
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two modifications to allow UNet and UResNet to learn IAM: (1) no non-linear
activation function (e.g., sigmoid, softmax or ReLU) is used in the last layer of
both architectures and (2) mean squared error loss function is used instead of
Dice similarity coefficient or binary cross entropy in both architectures. Detailed
flowchart of the proposed method is available on the GitHub page1.

3 Brain Lesion’s Progression and Regression

3.1 Prediction of Brain Lesion’s Progression/Regression

Brain lesion’s evolution over time is very important in medical image analy-
sis because it not only helps estimating the pathology’s level of severity but
also selecting the ’best’ treatment for each patient [7]. However, predicting brain
lesion’s evolution is challenging because it is influenced by various hidden param-
eters unique to each individual. Hence, brain lesions can appear and disappear
at any point in time [7] and the reasons behind it are still unknown.

Previous studies that have modelled brain lesion progression/regression, use
longitudinal (i.e., time-series) data to formulate lesion’s metamorphosis [3,7] by
estimating direction and speed of the lesion evolution over time. Hence, multiple
scans are necessary to simulate the evolution of the lesion.

In this study, we propose the use of IAM for simulating brain lesion evolution
(i.e., progression and regression) by using one MRI scan at one time point. This
is possible thanks to the nature of IAM which retains original T2-FLAIR MRI’s
complex textures while indicating WMH’s irregular textures. Compared to man-
ually produced WMH binary mask by experts or automatically produced proba-
bility masks by machine learning algorithms, information contained/retained in
IAM is much richer (see Fig. 1).

Fig. 1. Information density retained in each domain of the original T2-FLAIR, irreg-
ularity age map (IAM), probability mask and binary mask of WMH.

1 https://github.com/febrianrachmadi/iam-tl-progression.

https://github.com/febrianrachmadi/iam-tl-progression
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3.2 Proposed Brain Lesions’ Regression (Shrinkage) Algorithm

We predict the regression pattern of brain lesions by lowering the threshold value
of the IAM. This is possible as each IAM voxel contains different age value. It can
be observed in Fig. 1 where age values of brain lesion decrease gradually from the
border to the centre of each brain lesion. This is not possible using probability
masks produced by most machine learning algorithms or binary masks of WMH
produced manually by expert where most lesion voxels have flat value of 1.

The algorithm for predicting brain lesions’ regression is detailed in
Algorithm 1. To predict the brain lesions’ regression pattern, we generate
pseudo-healthy tissue of T2-FLAIR MRI first calculating the age map (Algo-
rithm 2). In IAM, the nearest neighbour patches of the original patches are
decided based on a distance value calculated using the distance function as per
Eq. 1.

Algorithm 1. Brain lesions regression (shrinkage) prediction algorithm
input : Original T2-FLAIR MRI
output: Age map and sequential time points of ”healthier” T2-FLAIR

1 t = 1;
2 age(t) = ageIAM = LOTS-IAM(T2-FLAIR);
3 load/make pseudo-healthy of T2-FLAIR (see Algorithm 2);
4 while t > 0 do
5 t = t − 0.05;
6 age(t) = ageIAM − (1 − t);
7 flair(t) = blend age(t) with pseudo-healthy T2-FLAIR;
8 save age(t) and flair(t);
9 end

Algorithm 2. Pseudo-healthy MRI generation algorithm
input : Original T2-FLAIR MRI
output: Pseudo-healthy T2-FLAIR MRI

1 ageIAM = LOTS-IAM(T2-FLAIR);
2 for each patch that has age value > 0.20 do
3 replace the original patch with the nearest neighbour brain’s normal

tissue patch (i.e., based on MSE of age values of the patch);
4 end

3.3 Proposed Brain Lesions’ Progression (Growth) Algorithm

Compared to the previous algorithm for predicting regression, the algorithm
for predicting brain lesions’ progression is more complex as it involves nearest
neighbour searching and patch replacement processes. The idea is simple; we
need to find similar (i.e., nearest neighbour) IAM patches for each original IAM
patch while the nearest IAM patch needs to have slightly higher age values
than the original IAM patch. Once the nearest IAM patch is found, the original
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IAM patch is then replaced. Once all patches are replaced by their nearest IAM
patches, a new T2-FLAIR MRI showing brain lesion progression can be produced
by blending the new IAM with the pseudo-healthy T2-FLAIR MRI.

The algorithm for predicting brain lesion progression is detailed in
Algorithm 3. It uses the pseudo-healthy T2-FLAIR MRI produced by
Algorithm 2. The distance function used in Algorithms 2 and 3 is defined below.
Let s be the original IAM patch and t be the candidate of nearest neighbour
patch, the distance d between the two patches is:

d = α · |max(s − t)| + (1 − α) · |mean(s − t)| . (1)

where α = 0.5. Whereas, the patch’s size used in this study is 4 × 4.

Algorithm 3. Brain lesions progression (growth) prediction algorithm
input : Irregularity age map of T2-FLAIR (ageIAM ) and pseudo-healthy

of T2-FLAIR (see Algorithm 2).
output: Generated age map and T2-FLAIR in each next time steps.

1 γ = 0.05 ; /* maximum increase of age value */
2 for t = 1.05 : 0.05 : 2.00 do /* progression by 0.05 at a step */
3 [patches] = find(ageIAM ≥ 0.16) ; /* patch’s size is 4 × 4 */
4 for patch in [patches] do
5 [patchstemp] = find(ageIAM > patch + 0.05 and

ageIAM ≤ patch + 0.05 + γ));
6 select 128 random patches from [patchstemp] as [candidates];
7 for candidate in [candidates] do
8 rotate candidate by 90◦ four times /* data augmentation */
9 end

10 calculate distance values between patch and [candidates] using
distance function (Equation 1);

11 select a nearest neighbour patch;
12 if age value in nearest neighbour > age value in patch then
13 replace age value;
14 end
15 end
16 save the new generated age map;
17 blend T2-FLAIR with the new generated age map and save;
18 end

4 MRI Data and Experiment Setup

A set of 60 T2-Fluid Attenuation Inversion Recovery (T2-FLAIR) MRI data
from 20 subjects was used. Each T2-FLAIR MRI volume has dimension of
256 × 256 × 35. Data used in this study were obtained from the ADNI [4] pub-
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lic database2. Training/testing and pre-processing steps are the same as in [6].
The Dice similarity coefficient (DSC) was used to evaluate performance of UNet
and UResNet segmenting WMH weakly-trained using IAM.

5 Results

5.1 Weakly-Training of UNet and UResNet Using IAM

Figure 2 shows the performance of the two algorithms evaluated in this study:
UNet(1) and UResNet(2) segmenting WMH in our sample. Figure 2A shows dis-
tribution of results (DSC) by both algorithms trained without TL(Aa) (i.e.,
manual WMH labels) and with TL(Ab) where IAM from LOTS-IAM was
thresholded3 at 0.18 (see [5]). Both DNN schemes could yield better results
if task-adaptation TL using IAM is performed. However, the IAM’s dependence
on pre-processing poses a risk for their use in TL, as it can also worsen DNN’s
performance.

Fig. 2. Performance of UNet(A1) and UResNet(A2) in WMH segmentation without
transfer learning(Aa) and using transfer learning(Ab, B and C).

In another experiment where UNet and UResNet are directly trained using
IAM as target3 (Fig. 2B), the peak mean performances are 0.2888 (0.0990)
for IAM-UResNet, 0.4409 (0.1410) for IAM-UNet and 0.4704 (0.1587) for the
LOTS-IAM. The UNet performs 15.21% better than the UResNet, which is
quite opposite to when TL is not used (see [5] and Fig. 2A). Our guess is that
residual blocks in UResNet perform poorly if it has to learn from real values
of IAM. Whereas, UNet learned IAM with minimal performance drops (i.e.,
2.95% from the LOTS-IAM and 6.21% from manual WMH labels as per [5]).
Although the performance of IAM-UResNet and IAM-UNet apparently follow
the LOTS-IAM’s performance at different thresholds in terms of DSC, a closer
look at the learning process shows these relationships are not linear. Figure 2C

2 Database can be accessed at http://adni.loni.usc.edu. A complete listing of
ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/
how to apply/ADNI Acknowledgement List.pdf.

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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shows the ratio between the mean DSC values of these DNN schemes and LOTS-
IAM output. The peak DSC performance is not achieved using exactly the same
threshold.

Fig. 3. Visualisation of brain lesion’s progression and regression prediction by manip-
ulating age values of IAM.

5.2 Results on Prediction of Brain Lesions’ Progression/Regression

Figure 3 shows an example of IAM and T2-FLAIR generated by using Algorithms
1, 2 and 3, from the original IAM and T2-FLAIR (centre with t = 1.00)(also
shown). The regression step of IAM and T2-FLAIR (2nd column with t = 0.50)
was generated by using Algorithm 1 whereas the progression steps of IAM and
T2-FLAIR (4th and 5th column with t = 1.25 and t = 1.50) were generated
by using Algorithm 3. On the other hand, the pseudo-healthy T2-FLAIR (1st

column with t = 0.00) was generated using Algorithm 2.
As Fig. 3 shows, prediction of brain lesions’ regression works really well for

WMH, but prediction of brain lesions’ progression shows a small unmatched
tessellation problem. This problem is common in computer graphics and should
be easy to fix as there have been many studies that have proposed different
solutions to this problem. Nevertheless, this experiment shows the suitability of
IAM for predicting brain lesions’ progression/regression.

6 Discussion

In this study, we have presented the use of a publicly available unsupervised
method (i.e. IAM produced by LOTS-IAM3) as target for weakly-training two
3 https://github.com/febrianrachmadi/lots-iam-gpu.

https://github.com/febrianrachmadi/lots-iam-gpu


92 M. F. Rachmadi et al.

DNN schemes, i.e., UResNet and UNet, and predicting brain lesions’ progres-
sion/regression. Performance of UNet weakly-trained using IAM was close to the
LOTS-IAM and UNet trained by using manual label of WMH and can some-
times be improved. In the future, we will widen our sample and investigate the
conditions under which TL improves/worsens the quality of the DNN outputs.

Furthermore, IAM has shown to be very useful for the prediction of brain
lesions progression/regression. There are still some problems in the prediction
of progression such as unmatched tessellation, T2-FLAIR contrast changes and
slightly higher computation time compared to predicting regression. However,
it does not change the fact that the use of IAM facilitates the prediction and
modelling of brain lesions’ progression/regression. Next steps in this research
topic would be fixing unmatched tessellation, avoiding the effect caused by con-
trast differences and the use of pre-trained DNN (e.g., UNet) for predicting brain
lesions’ progression/regression.
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Abstract. Several challenges emerged from the dataclysm of neuroimag-
ing datasets spanning both healthy and disordered brain spectrum. In par-
ticular, samples with missing data views (e.g., functional imaging modal-
ity) constitute a hurdle to conventional big data learning techniques which
ideally would be trained using a maximum number of samples across all
views. Existing works on predicting target data views from a source data
view mainly used brain images such as predicting PET image from MRI
image. However, to the best of our knowledge, predicting a set of target
brain networks from a source network remains unexplored. To fill this gap,
a multi-kernel manifold learning (MKML) framework is proposed to learn
how to predict multi-view brain networks from a source network to impute
missing views in a connectomic dataset. Prior to performing multiple ker-
nel learning of multi-view data, it is typically assumed that the source and
target data come from the same distribution. However, multi-view con-
nectomic data can be drawn from different distributions. In order to build
robust predictors for predicting target multi-view networks from a source
network view, it is necessary to take into account the shift between the
source and target domains. Hence, we first estimate a mapping function
that transforms the source and the target domains into a shared space
where their correlation is maximized using canonical correlation analy-
sis (CCA). Next, we nest the projected training and testing source sam-
ples into a connectomic manifold using multiple kernel learning, where
we identify the most similar training samples to the testing source net-
work. Given a testing subject, we introduce a cross-domain trust score to
assess the reliability of each selected training sample for the target predic-
tion task. Our model outperformed both conventional MKML technique
and the proposed CCA-based MKML technique without enhancement by
trust scores.

1 Introduction

Neurological disorders, such as Alzheimer’s disease and Schizophrenia, alter
brain connections in various ways across different brain views. Leveraging
c© Springer Nature Switzerland AG 2018
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https://doi.org/10.1007/978-3-030-00320-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00320-3_12&domain=pdf


Multi-View Brain Network Prediction from a Source View 95

multi-view connectomic data can provide complementary information on a dis-
order mechanism. These connectomic multi-view data can be derived from func-
tional magnetic resonance imaging (fMRI) or diffusion tensor imaging (DTI).
Recent works introduced multi-view morphological brain networks which quan-
tify changes in brain morphology using various morphological metrics across
pairs of anatomical brain regions. These showed promise in diagnosis and brain
connectional fingerprint identification [1–3] using multi-view brain network data
compared to single network views.

However, due to various reasons including high clinical costs, it is common
that in real medical practices, a subject does not complete all the scans and
thus have missing data points or missing modalities or brain views. For many
existing models, these incomplete subjects will have to be discarded. Moreover,
it can be difficult to handle cross-domain prediction, since all views come from
different distributions. To address this issue, several works focused on designing
methods for data imputation. For instance, the Cascaded Residual Autoencoder
(CRA) algorithm developed by [4] stacks autoencoders and grows iteratively
to model the residual between prediction and original data. Another study on
fMRI imputation is based on available case analysis, neighbor replacement and
regression [5]. However, all these papers were not applied to connectomic data,
i.e., brain networks.

To fill this gap, we design a prediction framework that maps a source brain
network into a target brain network. We base our method on a simple hypothe-
sis: if one can identify the best neighbors to a given testing subject in the source
domain, one can use a weighted average of their corresponding views in the tar-
get domain to predict the missing target network. To account for the domain
shift between the source and target domains, we use canonical correlation anal-
ysis to find a coupled source-target subspace where one assumes the existence of
a performing linear classifier on the two domains [6]. We bridge the distribution
shift by looking for the best coupled space that would nest projected source
and target data samples. Next, we learn a subject-to-subject similarity matrix
using multi-kernel connectomic manifold learning which models the relationships
between all training and testing samples in the coupled space. We then identify
the most similar training samples to the testing subject in the source domain for
prediction in the target domain. We further prune the selected closest training
samples by introducing a trust score which quantifies the cross-domain consis-
tency of selected samples. In essence, the trust score decides if a neighbor is
‘trustworthy’ by examining whether the nearest neighbors of a training subject
in source and target views highly overlap. To the best of our knowledge, this is
the first work to predict multiple brain views from a single source view using
connectomic data.
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Fig. 1. Pipeline of the proposed multi-view network predicting from input source network
view. Each training subject has a source network view (outlined in dashed view) and
target network views. We represent each view by a feature vector extracted by vectorizing
the off-diagonal upper triangular part of each network matrix. We stack training source
feature vectors in a training source matrix Ds and target feature vectors in different
training target matrices. Next, by fixing the training source matrixDs and pairing it with
a particular training target matrix Dv, we learn a coupled source-target subspace using
Canonical Correlation Analysis (CCA), where the correlation between both domains is
maximized. For a given testing subject, we used the trained CCA model to map its source
view onto the shared subspace. We then use multiple kernel manifold learning (MKML)
to learn a similarity matrix that models the relationship between all mapped training
and testing subjects in the shared subspace. For a specific target domain, we also learn a
target manifold that nests only mapped training subjects. To assess the reliability of the
identified most similar training samples in the shared domain, we introduce a trust score
which quantifies the cross-domain consistency of selected samples, thereby filtering out
‘untrustworthy’ samples. Ultimately, we used weighted averaging of the corresponding
target networks of the selected source training networks to predict the missing target
views for a new testing subject. (Color figure online)
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2 CCA-Based Multi-kernel Manifold Learning
for Predicting Multi-view Brain Networks
from a Source View

In this section, we present the key components of our proposed target multi-
view brain network prediction from a single network view using a multi-kernel
connectomic manifold learning in a learned coupled source-target subspace. We
denote matrices by boldface capital letters, e.g., X, and scalars by lowercase
letters, e.g., x. We denote the transpose operator and the trace operator as
XT and tr(X), respectively. We illustrate in Fig. 1 the key components of the
proposed pipeline, and which we detail below.

• Step 1: Feature extraction. Each brain is represented by a set of connectiv-
ity matrices defined in the source and target domains (Fig. 1). Each element
in a single matrix captures the relationship between two anatomical regions
of interest (ROIs) using a specific metric (e.g., correlation between neural
activity or similarity in brain morphology). We then vectorize each connec-
tivity matrix i to define a feature vector f i

s (resp. f i
t ) for a particular source

(resp. target) brain network view by concatenating the off-diagonal elements
in the upper triangular part of the input matrix. Hence, each brain network
view of size n × n is represented by a feature vector of size (n × (n − 1)/2).

• Step 2: Source to multi-target CCA mappings. Given a set of tar-
get brain network views, each capturing a unique and complex relationship
between different brain network regions, we aim to learn how to predict these
networks from a source brain network view (outlined in dashed blue in Fig. 1).
Since multi-view brain connectomic data might be drawn from different distri-
butions, investigating associations between these data samples without map-
ping them onto a space where their distributions are ‘aligned’ and where
they become comparable might mislead any learning method trained in orig-
inal source and target spaces. To solve this issue and motivated by the fact
that canonical correlation analysis is efficient in analyzing and mapping two
sets of variables onto a shared space [7,8], we fix the training source network
data and pair it with a particular training target network data. By multiple
source-target pairings, we generate multiple CCA mappings that align the
source data with target multi-view data, respectively. Given a training source
matrix Ds ∈ R

(N−1)×d comprising N − 1 training feature vectors, each of
size d, and a training target matrix Dk ∈ R

(N−1)×d, we estimate a source
transformation Ws and a target transformation Wk that map both onto the
couple source-target subspace. In the testing stage, we use the learned canon-
ical transformation matrices to map the source feature vector of a testing
subject onto the shared space, where we learn how to identify the most sim-
ilar training source feature vectors to the testing subject using multi-kernel
manifold learning (MKML).

• Step 3: Multi kernel learning of source and target manifolds. Fol-
lowing the CCA-based mapping of both source training and testing samples,
we learn how to nest all N samples into a manifold using the recent work of
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[9] where multiple kernels are learned to handle different data sample distri-
butions.
Each kernel K is Gaussian defined as The Gaussian kernel is expressed as

follows: K(f i, f j) = 1
εij

√
2π

e
(− |fi−fj |2

2ε2
ij

)
, where f i and f j denote the feature

vectors of the i-th and j-th subjects respectively and εij is defined as: εij =

σ(μi + μj)/2, where σ is a tuning parameter and μi =
∑

l∈KNN(fi) |f i−fj |
k ,

where KNN(f i) represents the top k neighboring subjects of subject i. The
learned similarity matrix Ss is estimated by optimizing the following energy
functional:
minS,L,w

∑
i,j −wlKl(f i, f j)Sij + β||S||2F + γtr(LT (In −S)L) + ρ

∑
l wllogwl

Subject to:
∑

l wl = 1, wl ≥ 0, LTL = Ic,
∑

j Sij = 1, and Sij ≥ 0 for all
(i, j), where:

1.
∑

i,j −wlKl(f i, f j)Sij refers to the relation between the similarity and
the kernel distance with weights wl between two subjects. The learned
similarity should be small if the distance between a pair of subjects is
large.

2. β||S||2F denotes a regularization term that avoids over-fitting the model
to the data.

3, γtr(LT (In − S)L): L is the latent matrix of size n × c where n is the
number of subjects and c is the number of clusters. The matrix (In − S)
denotes the graph Laplacian.

4. ρ
∑

l wllogwl imposes constraints on the kernel weights to avoid selection
of a single kernel.

To solve this problem, we adopt alternating convex optimization where each
variable is optimized while fixing the other variables until convergence [9].

• Step 4: Predicting multi-target views using trust score weight-
ing (TSW) strategy for training samples. In our designed prediction
pipeline, once the most similar source training samples to the testing sample
of the source view are identified, we identify their corresponding views in the
target domain, then use weighted average to predict the missing target views.
However, relying on the learned similarity matrix based on the mapped source
network data is disentangled from the target domain where most similar train-
ing subjects to the ‘ground truth’ missing target view might be different from
those identified using the source MKML. Hence, we define a ‘trust score’ for
each training sample i similar to the testing subject j based on the overlap of
their local neighborhoods in mapped source and target domains, respectively.
Following the learning of Ss using all samples in the mapped source domain
using Step 3, we identify the top K-closest training subjects to a given testing
subject. Next, for each training sample, we find its nearest neighbors using
Ss and St, learned in the mapped target domain using only training subjects
(Fig. 1).
The intuition behind this is that for a training subject k, the more shared
neighbors k has across views, the more reliable it is in predicting the target
view from the source view, and thus k is considered as ‘trustworthy’. We
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compute a normalized trust score (TS) for each closest training subject k
by (i) first identifying the list of its top m closest neighbors Ns in Ss and
Nt in St, then (ii) computing the normalized overlap between both lists as
TS(k) = Ns

⋂ Nt

m . The ultimate TSW (k) score is thus calculated as a soft
overlap between Nt and St weighted by Ss.

3 Results and Discussion

Multi-view Connectomic Dataset and Method Parameters. We used
leave-one-out cross-validation to evaluate the proposed prediction framework
on 186 normal controls (NC) from Autism Brain Imaging Data Exchange
(ABIDE I)1 public dataset, each with structural T1w MR image. We used
FreeSurfer [10] to reconstruct both right and left cortical hemispheres for each
subject from T1-w MRI, and then parcellated each cortical hemisphere into 35
cortical regions using Desikan-Killiany Atlas. For each subject, we generated
Nv = 3 cortical morphological brain networks using the technique proposed in
[2]: D1 denotes the maximum principal curvature brain view, D2 denotes the
mean sulcal depth brain view, and D3 denotes the mean of average curvature. For
MKML, we used a nested grid search on all views respectfully, fixing the number
of clusters c (1 ≤ c ≤ 5) and the number of top neighbors nb (3 ≤ nb ≤ 50). We
used 10 kernels. For prediction, we set the number of training source neighbors
to select to m = 5.

Fig. 2. Evaluating the prediction performance of our proposed CCA-based multi-kernel
manifold learning framework among all brain views applied on left and right hemi-
sphere respectively using Mean absolute error (MAE). MKML: multi-kernel manifold
learning. CCA-TS: CCA-based MKML using only Trust Score (TS) for training sam-
ple selections. CCA-TSW: CCA-based MKML combining our Trust Score Weighting
strategy.

1 http://fcon 1000.projects.nitrc.org/indi/abide/.
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Fig. 3. Comparison between the ground truth and predicted target networks from respec-
tively source views 1 and 2 of the left hemisphere for a representative testing subject by
the proposed CCA-based MKML framework. We display the residual matrices computed
using element-wise absolute difference between ground truth and predicted networks.
View 1: the maximum principal curvature. View 2: mean sulcal depth. View 3: average
curvature. Ground truth: the ground truth target view of a testing subject. CCA-TSW
prediction: prediction of target views using our purposed framework. Note that each
graph is scaled differently for the best display effect.

Evaluation and Comparison Methods. To compare the performance of our
multi-target view prediction framework, we benchmark our framework against
the baseline multi-kernel similarity learning method [9] using leave-one-out cross-
validation. We further evaluated the contribution of the proposed trust score
weighting strategy by comparing our results with those generated using TS with
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no additional weight derived from the learned source similarity learning. Our
CCA-based MKML integrating TSW strategy significantly outperformed both
conventional MKML and CCA-based MKML using TS for training sample selec-
tion (p − value < 0.001 using two tailed sample t-test) in left and right hemi-
spheres (LH and RH). Figure 2 shows the mean absolute error (MAE) for all
methods. Figure 3 displays the predicted target views from a source view along
with the residuals in both left and the right hemispheres for a representative
testing subject using the proposed method. Best result is given when predict-
ing LH View 2 (mean sulcal depth) from LH View 1 (the maximum principal
curvature) prediction, achieving the lowest MAE.

4 Conclusion

This paper presents a multi-view brain network prediction framework from
a source framework, which first bridges the gap between source and target
domains, then learns how to select the best training samples using a cross-domain
trust score weighting strategy. Specifically, for handling differences across brain
views, we performed canonical correlation analysis to map the data onto cou-
pled source-target correlated subspace. We then applied multi-kernel manifold
learning combined with the trust score weighting for prediction. Our method
achieved the best prediction performance in comparison with the baseline meth-
ods. In our future work, we will learn how to jointly map all target views into a
shared space using tensor CCA [11]. We will also evaluate our seminal pipeline
on larger datasets to predict other types of brain networks (e.g., functional brain
connectivity from structural connectivity).
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Abstract. In this study, we aim to predict emotional intelligence scores
from functional connectivity data acquired at different timepoints. To
enhance the generalizability of the proposed predictive model to new data
and accurate identification of most relevant neural correlates with differ-
ent facets of the human intelligence, we propose a joint support vector
machine and support vector regression (SVM+SVR) model. Specifically,
we first identify most discriminative connections between subjects with
high vs low emotional intelligence scores in the SVM step and then per-
form a multi-variate linear regression using these connections to predict
the target emotional intelligence score in the SVR step. Our method
outperformed existing methods including the Connectome-based Pre-
dictive Model (CPM) using functional connectivity data simultaneously
acquired with the intelligence scores. The most predictive connections
of intelligence included brain regions involved in processing of emotions
and social behaviour.

1 Introduction

Understanding how intelligence is encoded in the human brain wiring can help
boost the brain cognitive ability in solving new problems and build a more
resilient cognitive reserve to neurological disorders. Recently, there has been an
increasing interest in the emotional intelligence, which is defined as the ability
to monitor emotions (in self and others) to guide one’s thinking and behaviour
[1]. Emotional intelligence was also associated with job-related, academic and
life performance [2].

However, characterising the underlying brain connectivity associated with
emotional intelligence remains challenging. Some attempts have been made to
identify differences in the brain wiring based on statistical comparison between
groups of individuals with dissimilar behavioural scores. While typical correla-
tion and regression analyses are able to model the given dataset well, they lack
generalizability. In other words, neural correlates discovered to be significant
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in predicting intelligence from the connectomic data may not be universal, i.e.
applicable to the general population. [3] proposed a Connectome-based Predic-
tive Model (CPM); a cross-validated predictive model, which infers the presence
of brain-behaviour relationship on a training data and evaluates its performance
on the test data, leading to a more robust and generalizable approach.

In their proposed framework, first, the functional connections that are signif-
icantly correlated with the behavioural score are identified using training data.
These connections are divided into positively and negatively correlated with the
behavioural score. Then, the strengths of significantly correlated connections are
summed up for the positively and negatively correlated data, obtaining scalar
values for each subject. Finally, a linear regression model is built for positively
and negatively correlated features and for the combination of the two. These
models are then applied to the test subjects to infer their behavioural scores.
The main limitation of this work is that it sums up all positively (resp. nega-
tively) correlated connections with the target behavioral score to create a positive
(resp. negative) model. However, each sum may derive from brain connection
strengths of different signs (i.e., negative or positive functional connectivity),
thereby loosing interpretability of signed functional brain connectivitivies that
might be associated with the target score.

To address the above limitations, we propose a joint SVM+SVR method to
predict behaviour scores from connectomic data by first using a Support Vector
Machine (SVM) to identify features which maximally separate the training data
into subsets with high and low behavioural scores, thereby enabling a better
representation of subjects with extreme scores. Next, we use these features to
build a multi-variate regression model using Support Vector Regressor (SVR),
which encourages model simplicity for a better generalizability on new data
and easy utilizabiliy by clinicians. Further, we identify the top most relevant
connections that are associated with different intelligence scores. Additionally,
we consider multi-session (or longitudinal) connectomic data for our analysis to
investigate the importance of gathering neuroimaging and behavioural data in
close time proximity.

2 Methods

In this section we introduce our proposed framework to predict multiple emo-
tional intelligence scores based on the multi-session functional connectivity data
(Fig. 1). Each subject s is represented by a functional connectivity matrix X
estimated from functional magnetic resonance (fMRI) scans performed at t dif-
ferent timepoints and an intelligence score vector b = {b1, . . . , bN} recorded at
a single timepoint t. We first build our model using functional connectivity data
obtained at t = t1. Since the functional brain connectivity matrices are sym-
metric (Fig. 1-A), we extract features from each connectivity matrix by directly
concatenating the weights of all connectivities in each off-diagonal upper trian-
gular matrix. For each network of size n × n, we extract a feature vector of size
(n × (n − 1)/2), where each entry represents the strength of functional connec-
tion between two brain regions. This creates a high dimensional feature vector for
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Fig. 1. Pipeline of the proposed joint SVM+SVR framework to predict emotional intel-
ligence scores from the functional brain connectivity (A) Functional brain network
construction using multi-session fMRI. (B) In the feature selection step, features are
ranked according to their contribution to class separability between subjects with high
emotional intelligence score and subjects with low emotional intelligence score using
training data split at median value of the behavioural score. (C) We use these fea-
tures to predict the emotional intelligence score of the left-out testing subject within a
leave-one-out cross-validation and identify the most predictive functional connections.

each subject, which is particularly problematic in training a model that aims to
map a high-dimensional feature vector into a single score. To address this issue,
a feature selection method is required for dimensionality reduction, that would
preserve the most informative features, while avoiding underrepresentation of
subjects with behavioural scores at both tails of sample distribution.

Therefore, in our joint SVM+SVR framework, the features which maximise
the separation of subjects with low scores from subjects with high scores are
first identified. In the SVM step, a feature selection is used, which ranks features
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according to their contribution to class separability (Fig. 1-B). As a class sepa-
rability criterion, we use the area under the ROC curve and identify the features
which contribute most to maximising the area. Since this approach requires data
to be divided into 2 classes, we define a class with low intelligence scores and
high intelligence scores based on median split of the training data (≤ median
or < median, whichever gives a more balanced split) based on each behavioural
score b in b separately (Fig. 1-B).

Once the top most discriminative features are identified in the SVM step
using training data, these features can be used to build a predictive model by
training the SVR. As the performance of the regression model heavily depends
on the number of features used, we vary the number of input features for the
SVR model, i.e. multiple models are built, each using different number of input
features previously identified in the SVM step.

In the test step, the top features identified in the SVM step are used for
the test data and then the intelligence score of the test subjects is predicted
using multiple SVR models, each using a different number of input features.
At the end of the test stage, the performance of the joint SVM+SVR model is
assessed by computing the correlation between the predicted scores and the true
emotional intelligence scores of all the test subjects (Fig. 1-C). Connections most
predictive of the emotional intelligence are identified based on features identified
in the model with the best predictive performance. We applied the same steps
for each emotional intelligence score in b using functional connectivity data at
each available timepoint t.

3 Results and Discussion

Evaluation Dataset. We used leave-one-out (LOO) cross validation to evaluate
our proposed framework on 149 subjects (74 males, and 75 females, all within 17–
27 age range) with structural and functional MRIs using SLIM Dataset [4]. Each
MRI is parcellated into 160 regions of interest (ROIs) using Dosenbach Atlas [5].
For each subject, a 160× 160 functional connectivity matrix is constructed from
fMRI scans at 2 different timepoints: session 1 taking place at the same time
as the behavioural assessment and session 2 after 304 days interval on average.
Each entry in the connectivity matrix denotes the correlation between mean
blood oxygenation level-dependent (BOLD) signals measured in two ROIs. For
each subject four emotional intelligence scores are measured: (1) Monitor of
Emotions, (2) Social Ability, (3) Appraisal of Emotions, and (4) Utilization of
Emotions, as assessed by Schutte Self-Report Emotional Intelligence Scale [6].

Comparison Methods and Evaluation. For the regression task, we bench-
marked our joint SVM+SVR method against: (1) CPM [3] and (2) Correlational
SVR, which performs multi-variate linear regression using SVR on features hav-
ing the most statistically significant correlation with the emotional intelligence
score.

For evaluation, we report the R-score, representing the strength of the cor-
relation between the predicted score and the true intelligence score. Since, the
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Fig. 2. R-scores of our proposed joint SVM+SVR model and comparison regression
models. Left: Session 1. Right: Session 2. (A) Monitor of Emotions. (B) Social Abil-
ity. (C) Appraisal of Emotions. (D) Utilization of Emotions. Ours: joint SVM+SVR
model. Correlational SVR: SVR using features, which are the most significantly corre-
lated with the target emotional intelligence score. CPM [3]: univariate regression model
using the sum of all the connections that are significantly correlated with the target
emotional intelligence score. All: the model is build using connections that are posi-
tively and negatively correlated with the target emotional intelligence score. Positive:
only connections that are positively correlated. Negative: Only connections that are
negatively correlated.
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performance of regression models heavily depends on the number of input fea-
tures, for the joint SVR+SVR method and for the correlational SVR, we chose
a range of input features 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100,
125, 150, 175, 200, 300, 400, 500, 600, 700, 800, 900, 1000 to train the model.
For the joint SVM+SVR, the identified features were ranked highest based on
their contribution to the area under the ROC curve in the SVM classification
task. For the correlational SVR method, features that were most significantly
correlated with the target behavioural score were selected. Since CPM [3] used
all features significantly correlated with the target score instead of choosing dif-
ferent number of features, we addressed this limitation by exploring the range of
statistical significance thresholds in {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}
and used all significant features at a given threshold for the regression analysis
using CPM model [3]. For evaluation, we report the top R-score obtained across
different feature numbers (for joint SVM+SVR and correlational SVR) or signifi-
cance thresholds (for CPM [3]). Figure 2 shows the comparison between R-scores
obtained using our method and the benchmark methods for the four different
emotional intelligence scores using functional connectome data from sessions 1
and 2.

Our method outperformed benchmark methods in predicting all the emo-
tional intelligence scores using functional connectivity data from Session 1
of fMRI acquisition (Fig. 2). This was not the case for Session 2, where the

Fig. 3. The top 10 connections disentangling subjects with high emotional intelligence
scores and subjects with low scores. Left: Session 1. Right: Session 2. (A) Utilization of
Emotions. (B) Appraisal of Emotions. (C) Social Ability. (D) Monitor of Emotions.
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correlational SVR performed best for the Utilization of Emotions Fig. 2-D, Social
Ability Fig. 2-B and Monitor of Emotions Fig. 2-A, but not the Appraisal of Emo-
tions Fig. 2-C, for which our method still performed best. Our method generally
gave better results using a lower number of features as compared to the bench-
mark methods. It should be noted that the performance of the joint SVM+SVR
heavily depends on the training data distribution and the way the data is split
into classes. The more separable the subjects with high intelligence scores are
from the subjects with low intelligence scores, the bigger is the area under the
ROC curve obtained in the SVM classfication step. Hence, the more separable
the data is in the SVM step, the better is the SVR prediction performance.

Identified Functional Brain Connections Fingerprinting Intelligence.
Our Findings. For each emotional intelligence score using functional connec-
tivity from Session 1 and Session 2, we identified the top 10 features with the
highest average rank across subjects. The most predictive connections were iden-
tified based on the features used for predicting the emotional intelligence score
resulting in the best R-score. Figure 3 displays the top 10 features identified by
the joint SVM+SVR for each emotional intelligence score. Top most predictive
connections, that involved common brain regions across all the emotional intelli-
gence scores, included mid insula, basal ganglia, post cingulate, ventral anterior
prefrontal cortex and occipital lobe.

Insular cortex was proposed to facilitate social interaction and decision-
making by integrating information about uncertainty with sensory, affective and
bodily information [7]. Consistent with our findings, studies on insular lesion
found that insula plays role in emotional intelligence [8]. Further, basal ganglia
is involved in reward-stimulus processing and goal-directed bahaviour, specifi-
cally the subthalamic nucleus was suggected to integrate motor, congnitive and
emotional aspects of behaviour [9]. While the cingulate gyrus plays a role in
pain and emotion processing and a lesion study by [10] found decreased social
interactions and time spent with other individuals, showing role of cingulate in
emotion and social behaviour. The anterior prefrontal cortex is important for
emotional control during social interactions. In their study, [11] showed that
the anterior prefrontal cortex is required for coordination of action selection,
emotional conflict detection and inhibition of emotionally-driven responses.

Furthermore, connections to the occipital cortex were found to be a sig-
nificant predictor in case of all the emotional intelligence scores. This could
be explained by aspects uncontrolled for in the rs-fMRI data acquisition step,
such as low-frequency fluctuations occurring synchronously in functionally con-
nected brain regions, present especially in auditory, visual and motor areas [12].
However, some evidence exist for occipital lobe’s role in emotional information
processing [13].

Variability of Discovered Intelligence Connectivity Trends Across Scores and
Sessions. In our analysis, we found that the connections that are most pre-
dictive of the emotional inteligence scores are largely inconsistent between the
two sessions (Fig. 3). Given that fMRI for Session 2 was performed on aver-
age 304 days after Session 1, one could expect some changes in the individual’s
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functional connectivity. One explanation could be the difference in the conditions
under which the fMRI was aquired and the general instability of the functional
data [14].

In Fig. 2 the performance of the joint SVM+SVR model in predicting dif-
ferent emotional intelligence scores using a subset of connecions identified from
the functional connectivity data aquired during Session 1 and Session 2 can be
seen. While using a subset of connections from the functional connectivity data
from Session 1, collected at the same time as the intelligence scores, gave better
predictions for Monitor of Emotions and Social Ability, the connections chosen
by the joint SVM+SVR to predict the Appraisal of Emotions and Utilization of
Emotions perform similarly well using the functional data from Session 1 and
Session 2. It is possible that the Monitor of Emotions and the Social Ability and
their underlying neural correlates are more prone to changes over time than the
Appraisal of Emotions and Utilization of Emotions, which emphasises the need
to acquire fMRI data at the same time as intelligence scores for accurate predic-
tions. This should be further investigated. Since a reasonable predictive power
is obtained for the majority of intelligence scores using functional connectivity
data from both Session 1 and Session 2, it is possible that the longitudinal data
contains complementary information. Further studies could combine the func-
tional data from different timepoints to predict the target intelligence scores as
in [15], where a multi-task multi-linear regression model was proposed to pre-
dict infant cognitive scores from longitudinal neuroimaging data. For a more
holistic investigation of the brain intelligence construct, we will include morpho-
logical brain networks [16,17] and structural networks [18,19] into our future
brain-intelligence analyses.

4 Conclusion

We proposed a joint SVM+SVR model to predict emotional intelligence of indi-
viduals from their functional connectomic data. Our method outperformed the
benchmark methods using functional data acquired at the same time as the
target scores. The joint SVM+SVR benefits from model simplicity and inter-
pretability, which is of particular interest for clinicians. Functional brain con-
nections associated with intelligence identified by our model belonged to brain
regions involved in emotion processing and social behaviour, consistent with
previous research. Further studies could combine functional data acquired at
different timepoints for improved emotional intelligence predictions.
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Abstract. In this paper, we study the application of Recurrent Neural Networks
(RNNs) to discriminate Alzheimer’s disease patients from healthy control
individuals using longitudinal neuroimaging data. Distinctions between Alz-
heimer’s Disease (AD), Mild Cognitive Impairment (MCI), and healthy subjects
in a multi-modal heterogeneous longitudinal dataset is a challenging problem
due to high similarity between brain patterns, high portions of missing data from
different modalities and time points, and inconsistent number of test intervals
between different subjects. Due to these challenges, to distinguish AD patients
from healthy subjects, conventionally researchers use cross-sectional data when
applying deep learning methods in neuroimaging applications. Whereas we
propose a method based on RNNS to analyze the longitudinal data. After
carefully preprocessing the data to alleviate the inconsistency due to different
data sources and various protocols of capturing modalities, we arrange the data
and feed it into variations of RNNs, i.e., vanilla Long Short Term Memory
(LSTM) and Gated Recurrent Unit (GRU). The accuracy, F-score, sensitivity,
and specificity of our models are reported and are compared with the most
immediate baseline method, multi-layer perceptron (MLP).
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1 Introduction

Alzheimer’s disease (AD) is one of the most frequent types of dementia, which leads to
memory loss and other cognitive disabilities. As the majority cases of dementia fall in
the Alzheimer’s category, diagnosis and prognosis of this disease, especially in the
early stage, has exceptional importance [1–3]. Early diagnosis, before the occurrence of
the irreversible brain deformation, enables early treatment and plays a significant role
in patient care, prediction of the progression risks, and severity recognition [3–5].
However, regardless of enormous efforts, pinpointing the prodromal stage of mild
cognitive impairment is remained an open research field. Having incomplete samples in
the longitudinal medical studies is a common phenomenon, as many patients may miss
some of the tests and modalities in a time step or miss a complete visit within the
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study’s lifespan. Generally, missing values occur for a variety of reasons including
drop out of subjects from the study, insufficient resolution, image corruption, budget
limitation, etc. [5–7]. Many algorithms simply discard subjects with missing modalities
from further experiments, which indeed results in a considerable loss of valuable
information. Disease diagnosis accuracy might be improved if the missing parameters
could be estimated correctly from the rest of the available data or modalities. Fur-
thermore, to have a better understanding of the disease progression and to correctly
label a subject as Normal Control (NC), Mild Cognitive Impairment (MCI), or
dementia (i.e., AD), data from every visit should not be scrutinized independently from
the earlier steps. Currently, a majority of the classification algorithms focus on the
cross-sectional data and only analyze a specific interval’s biomarkers for the diagnosis
and disregard the former patient’s status for the decision making process. To address
this shortcoming, recent studies moved toward longitudinal data analysis and proposed
new methods to leverage valuable temporal data by considering the inherent correla-
tions of such data [6–8].

Effectively mining AD longitudinal data is a challenging task, owing to its
heterogeneous measurements, varying length of samples, missing modalities and tests,
and small sample size. In this study, for the first time (to the best of our knowledge), we
employ two RNN models, namely the Long Short Term Memory (LSTM) and the
Gated Recurrent Unit (GRU), to discover the regression patterns of the subjects from
the longitudinal data with missing variables and intervals, especially for the task of
classifying AD/MCI vs. NC, which is a challenging task only depending on the cross-
sectional dataset. The progression of the patients during time should be studied care-
fully to capture the correct status of the patient through the passage of time. Accord-
ingly, in this study, we conduct several experiments to investigate the effectiveness of
the RNNs in AD diagnosis. We compare the outcomes of the LSTM and GRU model
with Multi-Layer Perceptron (MLP) to evaluate the efficacy of the sequential models.

2 Dataset

The data used in this study is obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu/). ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether structural magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of MCI
and early AD. Recently the largest longitudinal dataset, which is a subset of ADNI
1/Go/2 cohorts, has been extracted from ADNI by Bruno M. Jedynak and Michael
Donohue to make a baseline for researchers in the field to propose and apply quanti-
tative templates for the progression of Alzheimer’s disease. This is an invaluable
baseline for accurate evaluation of the proposed algorithms.

The database has 1721 distinct subjects (521 NC, 864 MCI, and 336 AD) examined
every 6 months during 11 years’ period making 23 time points for a patient in the case
of performing all the test regularly every six month (i.e., baseline, 6 months,
12 months, …, 132 months). For every visit multiple outcomes provided including
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ADAS13, CDRSB, RAVLT.learning MMSE, FAQ, FDG PET, Amyloid PET, CSF,
ABETA, CSF TAU, CSF PTAU, FS WholeBrain, FS Hippocampus, FS Entorhinal, FS
Ventricles, FS MidTemp, FS Fusiform and the covariates: age, APOE4 (yes/no),
Gender, Education. The primary phenotype is the diagnostic group and Mini-Mental
State Examination (MMSE). Sample data-point curation pipeline in our work is pre-
sented in Fig. 1. This figure shows that the samples are composed of features extracted
from volumetric magnetic resonance imaging (MRI) including cortical thickness,
hippocampal volume and shape along with fluoro-2-Deoxy-D-glucose, florbetapir F18,
and PIB (which is radiotracer capable of highlighting deposits of beta-amyloid) from
PET imaging, and some other Cerebrospinal fluid (CSF) features, such as TAU, PTAU
and ABETA. Around 12 functional and behavioral assessment results such as Rey’s
Auditory Verbal Learning Test and Montreal Cognitive Assessment (MoCA) scores are
also measured and used as features in this dataset.

The volumetric MRI measurements provide the cortical thickness, volume and
shape of hippocampal or voxel-wise tissue probability [1–4] to measure the brain
atrophy; 18-Fluoro-DeoxyGlucose PET imaging (FDG-PET) estimates the glucose
hypometabolism in bilateral temporal, temporal, occipital areas or posterior cingulated
brain regions [5–7]. Furthermore, global cognitive impairment tests are used by clin-
icians for screening and measuring individuals who are at the risk of AD; or cere-
brospinal fluid (CSF) to measure the increase in t-tau, p-tau, or the decrease of amyloid-
b, which is a sign of cognitive declination. Therefore, in total 47 features are used to
represent each subject at each time point.

3 Models

In this section, we briefly overview the LSTM and GRU models used in our model and
then explain our model design using these architectures for classifying the subjects into
one of the AD, MCI, or NC categories from longitudinal data.

Fig. 1. Sample data point curation
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3.1 Long Short Term Memory Unit (LSTM)

RNNs with internal memory and feedback loop have previously been adopted mostly
for processing arbitrary input sequences, like in handwriting recognition, speech
recognition, natural language processing, and time series prediction applications. One
of the main challenges in applying RNNs to long sequential data is that the gradient of
some learnable weights become too small or too large if the network is unfolded for too
many time steps. These phenomena are called the exploding and vanishing gradients
problem [9]. LSTM was, hence, proposed by Hochreiter et al. for the first time in 1997
to solve the vanishing gradient problem through a gating mechanism [10]. An LSTM
has three gates. The first gate determines whether the information should be forgotten
or not. The second gate decides about updating the cell state, and the last gate is
responsible for the cell output. Since then, several variations of LSTM architecture
have been implemented especially with the utilization of Graphics Processing Units
(GPUs).

3.2 Gated Recurrent Unit (GRU)

To adaptively capture dependencies of different time scales in each recurrent unit, Cho
et al. [11] introduced a gated recurrent unit (GRU). Similar but not the same as LSTM
design, GRU has two gates, a reset gate r, and an update gate z. Intuitively, the reset
gate determines how to combine the new input with the previous memory, and the
update gate defines how much of the past memory to keep around. Having simpler
architecture than LSTM with a smaller number of parameters, GRU provides better
results in some applications [12] and is less prone to overfitting, especially in cases that
there are not enough training data.

3.3 Our Model

RNN models have achieved popularity due to their power in pattern recognition for the
time series and sequential data. While there are plenty of research papers on regression
and classification modeling of AD data with well-established and novel machine
learning techniques, along with many deep convolutional neural networks for 2D and
3D brain MRI classification, number of research works exploiting RNNs for finding the
patterns in the AD longitudinal data sets is limited [13–18]. Only a few papers recently
adopted them for regression analysis on the clinical medical data [19]. Here, we employ
RNN deep learning techniques for the classification of the subjects. All features are
normalized by subtracting the mean value of each feature and dividing the result by the
standard deviation of that feature in all samples (i.e., using their z-scores), before the
analysis. To deal with missing modalities, we simply replace them with zero values.
Since our goal is to showcase the usage of RNNs for longitudinal predictive analysis,
we leave extensive data imputation experiments for future works. A recent work also
models AD progression with RNN models [20]; however our work is different from
that in multiple aspects. We use not only MRI features but also PET, Cognitive tests,
and genetic features for modeling the disease. We also propose multiple approaches for
handling the missing intervals and compare the potential RNN models with each other.
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As described in Sect. 2, the dataset contains N = 1721 subjects each scanned in 24
different time points. Data from each time point is represented by n = 47 features.
Figure 2 overviews the data arrangement. A challenge in analyzing longitudinal data
sets is dealing with missing data at different time steps for some of the subjects. To
address this inconsistency in the data points and to be able to input the data to RNNs,
we define three settings: (1) In our first attempt, we fill the missing intervals with zero
to create a same input size data for all the subjects and compose a stack of 1721, 2D
matrices that all have a set of 47 biomarkers in the columns as features and all the
possible time steps in the rows as time steps. We refer to this arrangement as zero fill.
(2) In the second attempt, we buffer the data at every time point and replicate it in its
next missing interval. This scheme is named as replicate fill. (3) In the last configu-
ration we change the orientation of the input data and stack all the available intervals on
top of each other, disregarding the missing intervals and pad them to the maximum size
of the possible time steps, this is called padding.

One LSTM and GRU model with the memory of the maximum size of the available
time steps, which is 24, are designed to process this stack of data. Each subject’s time
point data is fed to the corresponding cell along with its final diagnosis label (i.e., AD,
MCI, or NC) allowing the model to learn the pattern of the change in the features for
each subject. Figure 3 represents this pipeline. In two different sets of experiments, we
replace the cells in this figure with LSTM and GRU sets and report the results.

Fig. 2. Data arrangement for the RRN model

116 M. Aghili et al.



4 Experiments

In all the experiments, we train and tune the RNN model with different configurations
of the hidden layers, percentages of drop out, various activation functions, loss, opti-
mizers and different combination of other hyperparameters to find the best setting of the
model through a grid search. We knowingly made the models as small as possible to
avoid overfitting, which can easily mislead the comparison. Data has been split into
70% training, 15% validation set and the rest for the testing set. The best configuration
of the LSTM and GRU is represented in Table 1.

For evaluations, we calculate the Accuracy, Sensitivity, Specificity, and F-score of
all models. The results of LSTM and GRU models for all arrangements of the data are
compared in Table 2, along with the results of their counterpart from non-recurrent
networks, i.e., Multi-Layer Perceptron (MLP). The data is flattened to a 1D long vector
and fed into the MLP once for each patient.

According to Table 2, LSTM and GRU models are superior to the MLP network in
most of the cases as they result in the highest accuracy and F-score. Our LSTM model
yields nearly 1% accuracy improvements over MLP in classifying AD patients from
NC subjects. Interestingly, the RNN models with the zero fill data arrangement for the
missing data yields consistently better results. The superiority is not significant, which
can be mainly due to the limited amount of data in this domain, besides the high portion
of the missing time points and modalities. These challenges prevented the vanilla
RNNs to find the appropriate patterns despite various input data arrangement. Second,
RNNs, especially the LSTM models, have a large number of trainable parameters,
which necessitate the model to be trained in a great corpse of sequential data and
despite having drop out layers in the architecture, they are still prone to overfitting to
the training data in this relatively small dataset. The third is the limited hand engineered
and structured feature set, used in this experiment. One of the main superiority of the
RNNs is their power in automatic feature learning from the raw data, which can be
further explored in the future.

Fig. 3. RNN model used in this study.
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5 Conclusion

In this paper, we introduced the applications of LSTM and GRUs to model prediction
tasks over the longitudinal data from the ADNI dataset. The proposed models can be
used for the diagnosis of Alzheimer’s disease. We also incorporated three different
strategies to deal with the incomplete and missing data (from time points and
modalities). Trying different variations of RNNs (i.e., LSTM and GRU), we found
slightly better performance using the LSTM model. Our model can classify AD vs. NC
with an accuracy of 95.9%, even with simple replicate and zero filling of the missing
data. It also performs better classification of AD vs.MCI and NC vs.MCI patients. As a
direction for future works, designing an end-to-end convolutional and LSTM model for
this longitudinal dataset can be of great interest, to accurately learn powerful image
features (from MRI and PET) and simultaneously learn the classifier parameters.

References

1. Glenner, G.G., Wong, C.W.: Alzheimer’s disease: initial report of the purification and
characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res.
Commun. 120(3), 885–890 (1984)

2. McKhann, G., Drachman, D., Folstein, M., Katzman, R.: Views & reviews clinical diagnosis
of Alzheimer’s disease. Neurology 34(7), 939 (1984)

Table 1. Model hyperparameters

Hidden units Activation function Layers Drop out

GRU 32 Softmax 1 0.3
LSTM 30 Softmax 1 0.4
MLP 20 Softmax 2 0.3

Table 2. Performance of the proposed models with three different data arrangements in
classification of ADNI subjects. Best results for each data arrangement are underlined, and the
best overall results of each column are in bold.

AD - NC AD - MCI NC - MCI
Method Accuracy F-score Sensitivity Specificity Accuracy F-score Sensitivity Specificity Accuracy F-score Sensitivity Specificity

ZERO FILL MLP 0.9467 0.9581 0.9626 0.9194 0.8474 0.8449 0.9405 0.7736 0.7729 0.7539 0.6207 0.9670

LSTM 0.9526 0.9622 0.9532 0.9516 0.8579 0.8492 0.9048 0.8208 0.7729 0.7793 0.7155 0.8462

GRU 0.9527 0.9630 0.9720 0.9194 0.8368 0.8360 0.9405 0.7547 0.7536 0.7536 0.6724 0.8571

REPLICATE
FILL

MLP 0.9467 0.9577 0.9533 0.9345 0.8529 0.8492 0.9048 0.8208 0.7005 0.6667 0.5345 0.9121

LSTM 0.9586 0.9674 0.9720 0.9355 0.8576 0.8498 0.9286 0.8225 0.7681 0.7757 0.7155 0.9352

GRU 0.9527 0.9626 0.9626 0.9345 0.8211 0.8211 0.9286 0.7358 0.7101 0.7000 0.6034 0.8462

PADDING MLP 0.9467 0.9577 0.9531 0.9355 0.8421 0.8295 0.8690 0.8208 0.7101 0.7609 0.6877 0.8423

LSTM 0.9527 0.9623 0.9533 0.9516 0.8468 0.8298 0.8810 0.8219 0.7585 0.7619 0.6897 0.8462

GRU 0.9408 0.9528 0.9439 0.9355 0.8158 0.8108 0.8929 0.7547 0.7101 0.7000 0.6034 0.8462

118 M. Aghili et al.



3. Cuingnet, R., et al.: Automatic classification of patients with Alzheimer’s disease from
structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2),
766–781 (2011)

4. Petersen, R.C.: Mild cognitive impairment as a clinical entity and treatment target. Arch.
Neurol. 62(7), 1160–1163 (2004). Discussion 1167

5. Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J.: Machine learning framework for
early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104, 398–
412 (2015)

6. Nie, L., Zhang, L., Meng, L., Song, X., Chang, X., Li, X.: Modeling disease progression via
multisource multitask learners: a case study with Alzheimer’s disease. IEEE Trans. Neural
Netw. Learn. Syst. 28(7), 1508–1519 (2017)

7. Zhou, J., Yuan, L., Liu, J., Ye, J.: A multi-task learning formulation for predicting disease
progression. In: Proceedings of the 17th ACM SIGKDD KDD, p. 814 (2011)

8. Zhang, D., Shen, D.: Multi modal multi task learning for joint prediction of multiple
regression and classification variables in Alzheimer’s disease. Neuroimage 59(2), 895–907
(2013)

9. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent
is difficult. IEEE Trans. Neural Nets 5(2), 157–166 (1994)

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

11. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical
machine translation. arXiv:1406.1078 (2014)

12. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for
multivariate time series with missing values, pp. 1–14 (2016)

13. Chen, Y., Shi, B., Smith, C.D., Liu, J.: Nonlinear feature transformation and deep fusion for
Alzheimer’s disease staging analysis. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds.)
MLMI 2015. LNCS, vol. 9352, pp. 304–312. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24888-2_37

14. Fang, C., Li, C., Cabrerizo, M., Barreto, A., Andrian, J., Loewenstein, D.: A novel Gaussian
discriminant analysis-based computer aided diagnosis system for screening different stages
of Alzheimer’s Disease. In: BIBE, pp. 279–284 (2017)

15. Shi, J., Zheng, X., Li, Y., Zhang, Q., Ying, S.: Multimodal neuroimaging feature learning
with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease.
IEEE J. Biomed. Heal. Inform. 2194 (2017)

16. Chaves, R., et al.: SVM-based computer-aided diagnosis of the Alzheimer’s disease using t-
test NMSE feature selection with feature correlation weighting. Neurosci. Lett. 461(3), 293–
297 (2009)

17. Zhu, X., Il Suk, H., Wang, L., Lee, S.W., Shen, D.: A novel relational regularization feature
selection method for joint regression and classification in AD diagnosis. Med. Image Anal.
38, 205–214 (2017)

18. Lebedev, A.V., et al.: Random Forest ensembles for detection and prediction of Alzheimer’s
disease with a good between-cohort robustness. Neuroimage (Amst) 6, 115–125 (2014)

19. Bange, S.-J., Wange, Y., Yange, Y.: Phased-LSTM based predictive model for longitudinal
EHR data with missing values (2016)

20. Cui, R., Liu, M., Li, G.: Longitudinal analysis for Alzheimer’s Disease diagnosis using
RNN. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),
Washington, DC, pp. 1398–1401 (2018)

Predictive Modeling of Longitudinal Data for AD Diagnosis 119

http://arxiv.org/abs/1406.1078
http://dx.doi.org/10.1007/978-3-319-24888-2_37
http://dx.doi.org/10.1007/978-3-319-24888-2_37


Towards Continuous Health Diagnosis
from Faces with Deep Learning

Victor Martin1,2(B) , Renaud Séguier1, Aurélie Porcheron2,
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Abstract. Recent studies show that health perception from faces by
humans is a good predictor of good health and healthy behaviors. We
aimed to automatize human health perception by training a Convolu-
tional Neural Network on a related task (age estimation) combined with
a Ridge Regression to rate faces. Indeed, contrary to health ratings,
large datasets with labels of biological age exist. The results show that
our system outperforms average human judgments for health. The sys-
tem could be used on a daily basis to detect early signs of sickness or
a declining state. We are convinced that such a system will contribute
to more extensively explore the use of holistic, fast, and non-invasive
measures to improve the speed of diagnosis.

Keywords: Health estimation · Non-invasive diagnosis
Convolutional Neural Network · Facial features

1 Introduction

Judgments of a person’s health based on facial appearance are a daily occur-
rence in social interactions. Understanding how we perceive health from a face is
important because this judgment drive a wide array of social behaviors. Looking
healthy has many positive real-life outcomes such as preferential treatment in
the professional context, in the justice system or in dating interactions [1–4].
Inversely, looking unhealthy is associated to lower self-esteem [5] and may lead
to a risk of social stigmatization and isolation [6]. A better understanding of how
health is perceived and which facial cues alter this perception is likely to help
reducing the negative social consequences which can follow.

Scientific recent evidences also show that facial healthy appearance is a good
predictor of healthy behaviors [7] and good health [8–10]. Faces with an increase
of oxygenated blood skin coloration are perceived healthier, and blood oxygena-
tion level is known to be associated with cardiovascular fitness [10]. People with
a healthy diet, such as daily consumption of fruits and vegetables, have a more
attractive skin color and are perceived healthier [7]. Sleep deprived people appear
less healthy compared with when they are well rested [11]. And people would
c© Springer Nature Switzerland AG 2018
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acutely detect signs of sickness from the face in an early phase after exposure
to infectious stimuli and potentially contagious people [12]. Figure 1 shows two
average faces of people perceived in good health and people perceived in bad
health. As health perception and age are known to be correlated [13], health
ratings are decorrelated with age.

Fig. 1. Average face of the 10 faces with the greatest perceived health to the left,
and with the lowest perceived health at right. Health ratings have been decorrelated
from age.

We aim to develop an automatic system able to imitate human judgments of
health. Such a technology, when used over the long term, could enable fast and
non-invasive detection of a declining state of a person. That’s why we introduce
the first system able to estimate health scores from faces.

To the best of our knowledge, we introduce in this paper the first work on
automatic health estimation from face. Lots of works have been made to estimate
age from faces [14–17].

More recently, some researchers have begun to study whether it is possi-
ble to estimate less common attributes from the face such as intelligence [18],
attractiveness [19–22] or social relation traits [23].

In view of the current state of art and our constraints, we use a Convolutional
Neural Network trained on biological age combined with a Ridge Regression to
assess health perception from faces (Sec. 2). Thereafter, we evaluate the system
performance on our database and we compare it with human performance on
the same database (Sec. 3).
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54 22 46 31 11 80

Fig. 2. An excerpt of the Internet Movie Database with their corresponding biological
age. As we see it above, the database contains faces with large variations in pose,
illumination and color distribution. Pictures are resized to 224× 224 before training.

2 Health Estimation

Based on the age estimation method of [17], we employ the Convolutional Neu-
ral Network VGG-16 pre-trained on the ImageNet database [24] to detect 1,000
classes of objects, and trained it on the Internet Movie Database (IMDb) of
celebrities (Fig. 2). We filtered the ≈ 500K images to keep only those contain-
ing faces with resolution greater than 120× 120 pixels, no more than one face
detected in each image, and only picture depicting people from 11 to 85 years
old. For each picture, we have the date of birth of the celebrity pictured and
the date of the photo acquisition, thus we can deduce the biological age of the
depicted person.

In addition, from the original VGG-16 architecture, we replace the final Multi
Layer Perceptron containing a large part of the parameters, by a lighter one with
one layer of 1024 units (Fig. 4) and an output layer of 120 units. The objective
of doing so is to shift the learning effort onto the convolutional layers because
the final Multi Layer Perceptron will be dropped as we want to estimate health
and not biological age – thus, having the fastest training with the lowest score
is not the main goal here.

Thus, the last 3 convolutional blocks and the fully connected layers has been
trained on IMDb with Stochastic Gradient Descent with a Learning Rate of 10−4

on 1000 epochs with 10 steps per epoch and a batch size of 16. The decrease of
the Mean Absolute Error for the training set and validation set can be seen in
Fig. 3.

After that, we have to develop our system of health estimation with only 140
images annotated with health scores (Fig. 5). We want to compute a represen-
tation of our faces from the newly trained ConvNet using only the convolutions
and pooling blocks, and use a regression to estimate health scores from repre-
sentations. The question remains, at which epoch can we stop the training for
health estimation? If we take the weights at an early epoch, the system will be
underfitted. In the same way, as we do not want to predict biological age, taking
the weights corresponding to an advanced epoch with a low MAE is not the
go-to choice to make.

We evaluate the suitability of ConvNet weights at each epoch for Health
Estimation with a simple Linear Regression trained with a 40-fold configuration.
We can see in Fig. 6 how the training on a different, but related, task can increase
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Fig. 3. Decrease of the Mean Absolute Error during the training for the train set and
the validation set.

Fig. 4. Our architecture takes a 224× 224 image and produces a probability distri-
bution over all possible ages. The blue part has not been modified from the original
VGG-16 architecture.

58.3 43.6 77.0 28.4 18.6 72.2

Fig. 5. An excerpt of our database with their corresponding perceived health scores.
Our database contains 140 photos of women faces with a neutral expression in a con-
trolled environment.
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Fig. 6. Variation of the Mean Absolute Error in function of the epoch at which the
weights are chosen. Epoch 0 corresponds to VGG-16 just trained on ImageNet. The
red curve has been Gaussian smoothed with σ = 25.

performance on our health estimation problem. At epoch 0, learning for biological
age hasn’t started yet and we get a relatively high MAE (9.0). In a second stage,
learning for biological age greatly decreases Mean Absolute Error from 9.0 to
6.2. Finally, as learning progresses and the model specializes in biological age
estimation, the error increases. An optimal period is found around epoch 60 to
take the weights for health estimation.

Now that we found the ConvNet weights to compute representations from
faces, we test several estimators to asses health scores from representations. For
each estimator, we evaluate a broad range of parameters and report those pro-
ducing the best performance in Table 1. In the table, the Multi Layer Perceptron
is composed of two layers containing n neurons for the first layer and 120 for the
output layer.

As we can see on Table 1, simple estimators as a Linear Regression or a Linear
Regression regularized with a low �2 penalty (Ridge Regression) can achieve the
best performance given our dataset and the feature extraction method we chose
earlier. We can explain the fact that simpler estimators perform better than
more complex estimators as Random Forests or Multi Layer Perceptron by the
scarce number of samples n = 140 in regard of the dimensionality of our features
d = 512∗7∗7 = 25088. The final architecture of our system is described in Fig. 7.
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Table 1. List of tested estimators. The estimator with the lowest Mean Absolute Error
is bolded.

Estimator MAE

Linear Regression 6.240

Ridge α = 10−3 6.232

Lasso α = 10−2 6.437

Linear SVR C = 103 6.355

RBF SVR C = 104, γ = 10−4 6.269

PLS Regression n = 100 14.64

Multi Layer Perceptron n = 2048 8.543

Extremely Randomized Trees n = 200 8.446

K-NN K = 15 8.778

Fig. 7. The whole computation chain. The blue part and the green part are trained
separately on different datasets.

3 Experiment: System Versus Human Performance

We have 140 images of faces and each of them had been rated by 74 judges.
For every picture, we asked them to evaluate health and to give a score from
0 to 100; 0 being perceived in very bad health and 100 being perceived in very
good health. Finally, for each image, we took the average of the 74 ratings to
determine a reliable perceived health score. In this database, the health scores
obtained are 60% correlated with biological ages.

Exploiting the previously described system, we trained the Ridge Regression
in a 140-fold manner to assess its performance.

As we can see on Fig. 8, we can achieve good performance on our dataset
with a scarce amount of data. Using mean absolute error MAE, coefficient of
determination R2 and Pearson correlation PC, Table 2 shows that our system
estimates health more accurately than an average human working on the same
dataset.

In addition, among the 74 judges, one judge with the lowest MAE (i.e. small-
est difference in average between his ratings and the average ratings) is selected
and placed in the table below under the name Best Human.

As an additional note, we can observe that health scores are 60% correlated
with biological ages, and health estimates outputted by our system are 90%
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Fig. 8. Left: The predictions of our system compared to the perceived health scores,
which is the average health ratings from humans. Right: all individual ratings from
humans in function of average ratings. This 2nd graph shows the relatively high variance
of human ratings for each image.

Table 2. Performance of our health estimation system compared to human perfor-
mance.

MAE PC R2

System 6.21 90.4% 0.817

Average Human 18.4 64.7% −0.387

Best Human 9.37 81.3% 0.637

correlated with health scores. Hence, we confirm that our system estimates health
from faces, and not just biological age.

4 Conclusion

This paper describes how we manage to develop an automatic system able to
imitate human judgments of health. We trained a Convolutional Neural Network
to estimate biological age and we used representations produced by the network
of our scarce database to train a simpler estimator. We observed a very good
performance of the system when we compared it to human judgments of health.

Nevertheless, we identified several areas of improvement.
First, the use of a Linear Regression to rank the different ConvNet weights

(Fig. 6) tends to favor this type of estimators in the next step where we compare
the performance of different estimators (Table 1). We could have ranked the
different weights using a multitude of estimators.

Moreover, by using more images annotated with health ratings, we could
improve the performance of our system and make it more robust to variations
in pose and illumination.
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Additional work will be necessary to test its performance on other demo-
graphic groups such as other ethnicities and men.

To conclude, we developed the first automatic health estimation system able
to reproduce human judgments. Such a system could be used in institutions
such as hospitals or retirement homes to automatically predict a potential future
sickness from earlier visual signs present in a face. Similarly, it could be used for
the remote monitoring of patients, to detect a sudden drop in health perception
and prevent behaviors that negatively impact health.
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Abstract. Magnetic resonance imaging (MRI) can generate multi-
modal scans with complementary contrast information, capturing various
anatomical or functional properties of organs of interest. But whilst the
acquisition of multiple modalities is favourable in clinical and research
settings, it is hindered by a range of practical factors that include cost
and imaging artefacts. We propose XmoNet, a deep-learning architec-
ture based on fully convolutional networks (FCNs) that enables cross-
modality MR image inference. This multiple branch architecture oper-
ates on various levels of image spatial resolutions, encoding rich feature
hierarchies suited for this image generation task. We illustrate the util-
ity of XmoNet in learning the mapping between heterogeneous T1- and
T2-weighted MRI scans for accurate and realistic image synthesis in a
preliminary analysis. Our findings support scaling the work to include
larger samples and additional modalities.

Keywords: Fully convolutional networks · MRI · Multimodal
Image generation

1 Introduction

Magnetic resonance imaging (MRI) is the key imaging technology used to aid
the diagnosis and management of a wide range of diseases. Visual character-
istics of tissues of interest can be acquired via a variety of MR modalities
(e.g. T1-weighted, T2-weighted, FLAIR, diffusion-weighted and diffusion-tensor
imaging), each offering complementary contrast mechanisms. For instance in
neuro-oncology, T1-weighted scans are favourable for observing brain structures
whereas T2-weighted scans can provide rich information for tumour localisation.
However, a number of factors impede acquisition of multimodal scans in clinical
settings; particularly cost, limited availability of scanning time and patient dis-
comfort [7]. In research settings and imaging clinical trials, it is common to face
c© Springer Nature Switzerland AG 2018
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heterogeneous or incomplete datasets due to similar reasons, as well as acquisi-
tion artefacts and data corruption. This has motivated various efforts in the MR
literature that can broadly be divided into two categories: (i) improving image
acquisition and reconstruction strategies, and (ii) synthesising a target modality
given a separate source modality; also known as cross-modality generation.

Cross-modality generation has attracted the attention of the medical image
computing community in recent years. Work by D. H. Ye et al. [14] investi-
gated a modality propagation approach, where for each point in the target
image a patch-based search is carried out across a database of images, utilis-
ing nearest neighbours’ information for estimating target modality values. The
work was motivated by the observation that local and contextual similarities
observed in one modality can often extend to other modalities. Evaluation of
the approach illustrated effectiveness in synthesising T2-weighted and DTI sig-
nals given a source T1-weighted input, including successful application on brain
tumour scans. Y. Lu et al. [10] proposed a novel distance measure that used
patch based intensity histogram and Weber Local Descriptor features to search
the most similar patch from the database for modality synthesis.

Recently, Y. Huang et al. [7] proposed a weakly supervised technique that
requires only a few registered multi-modal image pairs for effective cross-
modality generation. The technique works through mapping different image fea-
tures of the underlying tissues, preserving global statistical image properties
across modalities, and subsequently refining the features to ensure local geo-
metrical structures are preserved within each modality. Additionally, manifold
matching is used to select target-modality features from the most similar source-
modality subjects; thus complementing unpaired data with the original training
pairs. Effectiveness of the technique was illustrated in cross modality generation
between T1- and T2-weighted scans, as well as T2- and PD-weighted scans.

Fig. 1. The proposed XmoNet enables cross-modality MR image inference, as demon-
strated here with an example. The architecture takes as input a T1-weighted slice in
(a) and predicts the corresponding T2-weighted slice in (c). Ground-truth T2-weighted
slice is shown in (b) for reference. Visual inspection of (b) and (c) illustrates practical
utility of XmoNet in achieving cross-modality mapping, along with generation of areas
which have missing ground-truth data; a high-value application in clinical and research
settings.
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Deep learning algorithms, particularly Convolutional Neural Networks
(CNNs), have rapidly gained widespread adoption within the medical image
computing community. Work by Bahrami et al. [2] studied the utility of CNNs
for mapping cross-domain scans, albeit for a resolution mapping problem (3T
to 7T MRI) as opposed to generation of missing modalities. In their earlier
work, Bahrami et al. [3] made use of high- and low-frequency visual features,
thus capturing variations among 3 T scans with various levels of quality. Eval-
uation was carried out on various paired MR datasets of healthy subjects, as
well as patients with epilepsy and MCI. A. Ben-Cohen et al. [4] combined a fully
convolutional network (FCN) with a conditional generative adversarial network
(GAN) to generate PET data from CT for improving automated lesion detec-
tion. Y. Hiasa et al. [5] proposed CycleGAN-based MR to CT orthopedic image
synthesis method in which the accuracy at the bone boundaries was improved
by adding the gradient consistency loss.

We contribute XmoNet, a deep learning architecture for rapid and accurate
cross(X)-MOdality learning; and carry out a preliminary analysis to examine
its effectiveness on heterogeneous MR data. The architecture is based on fully
convolutional networks (FCN) and utilises parallel pathways to encode low- and
high-frequency visual features, allowing mapping of rich feature hierarchies. Pre-
liminary analysis demonstrated accurate and realistic synthesis of target T2-
weighted images from source T1-weighted data (see Fig. 1); our findings support
scaling the work to include larger samples and additional modalities.

Fig. 2. Flowchart of the proposed XmoNet. The input T1-weighted slice is convolved
using multiple pathways at different resolutions. The output from each pathway is
upsampled with a deconvolution operation and then fed into a fusion layer. The multiple
higher resolution pathways allows high-frequency patterns to be preserved. Multiple
residual layers are added to the lowest resolution path, which ensures mapping of low-
frequency visual patterns from the source data.
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2 Proposed Method

Inspired by recent successes of fully convolutional networks (FCNs) [1,9,11] the
XmoNet utilises a FCN architecture that learns the cross-modality mapping from
T1- onto T2-weighted MR data. Figure 2 shows a flowchart of the proposed archi-
tecture. Given an input slice, the network utilises several strided-convolutional
layers to reduce spatial dimensionality whilst increasing the number of acti-
vation channels at every branch, following intuition from the well-established
VGG architecture [12]. Through the use of multiple pathways, we map differ-
ent frequency levels of visual features from the input scan. The use of multiple
pathways is inspired by FCN methods proposed for semantic segmentation [1,9],
and ensures capturing of high-frequency visual patterns. Merging with deconvo-
lution layers is carried out in order to spatially upsample the activations whilst
reducing the number of channels. These are followed by fuse layers for pathway
concatenation. Residual layers are also used for cross-modality mapping of low-
frequency visual patterns. The network uses 4, 8 and 16 filters in the first, second
and third convolutional pathways respectively. The two residual blocks use 16
filters each and the filters in the upsampling layers are reduced to 8 and 4 in the
first and second branch, respectively. L2 loss is used for the network training.

3 Experimental Analysis

3.1 Dataset

In this preliminary analysis we used the public MNI-HISUB25 dataset by
Kulaga-Yoskovitz et al. [8] which includes submillimetric, high-resolution T1-
and T2-weighted brain scans of 25 healthy subjects. The dataset is available
in NIfTI format and is labelled for hippocampal subfields. Resolutions are
0.6 × 0.6 × 0.6 mm2 and 0.45 × 0.45 × 2.0 mm2 for T1- and T2-weighted scans,
respectively. Kulaga-Yoskovitz et al. [8] pre-processed the captured scans for spa-
tial normalisation to MNI152-space as well as registration of the two modalities.
The final, pre-processed T1- and T2-weighted scans have a 0.4 × 0.4 × 0.4 mm3

resolution in MNI152-space which are used in our experiments.

3.2 Experimental Setup

We used the open-source med2image1 tool for MRI axial slice extraction. This
was then followed by extracting only those slices that contained hippocampi
since region around hippocampi is of high relevance to the diagnosis of brain
disorders such as Alzheimers’ disease. In total, 2431 slices (452 × 542 pixels)
contained hippocampi regions; these formed the data for our experiments. We
performed two experiments: (i) input to XmoNet was the whole T1-weighted
image (452×542 pixels), and (ii) input to XmoNet was a cropped region selected
around right hippocampus of the T1-weighted image (128 × 128 pixels).

1 https://github.com/FNNDSC/med2image. last access: 20072018.

https://github.com/FNNDSC/med2image
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T2-weighted images in the dataset failed to capture complete brain struc-
tures; most of them had zero-pixel regions in place of lower or/and upper parts
of the images (Fig. 1). Incorporating corrupted regions into the learning process
would obscure network training; we alleviated this through generating exclusion
masks obtained by detecting regions in the T2-weighted images where no signal
was present. A blob size threshold was used to ensure zero-pixel brain structures
were not included within the masks. Such masks were subsequently used dur-
ing model training, ensuring the loss is computed only for pixels within which
an anatomical signal was present. Similarly, the masks were used during the
validation stage when computing evaluation metrics.

3.3 Validation Protocol

(a) 80% of the data was selected (first 20 subjects; 1961 slices in total) for model
training. The remaining data (5 subjects; 470 slices) were completely unseen
during the training process but held out for evaluation. (b) Furthermore, we
performed k-fold cross-validation (k=5) to provide additional reassurance; each
fold contained an average of 485 slices representing the scans of 5 subjects. The
cross-validation loop consisted of model training over 4 folds and subsequent
testing on the remaining fold. An i7-CPU workstation with NVIDIA 1080 GTX
card installed was used for the analysis. The training process took place over 20
hours (approx. 5 hours per fold) for 5-fold validation. Observed testing rate was
48 slices per second.

3.4 Evaluation Metrics

Peak signal-to-noise ratio (PSNR) and structural similarity (SIMM) [13] metrics
are used in existing method [2,3,6] for the quantitative evaluation of recon-
structed images/patches, hence we used the same evaluation metrics. Given a
ground-truth X and a generated image Y both of height H and width W ; mean
square error (MSE) is first obtained:

MSE =
1

HW

H−1∑

i=0

W−1∑

i=0

[X(i, j) − Y (i, j)]2 (1)

PSNR (in dB) is then computed as follows (MAXX is the maximum possible
pixel intensity; 255 here):

PSNR = 10 log10

(
MAX2

X

MSE

)
(2)

SIMM measures the perceived change in Y relative to X and is computed as:

SIMM(x, y) =
(2μxμy + c1) (2σxy + c2)(

μ2
x + μ2

y + c1
) (

σ2
x + σ2

y + c2
) (3)
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where μx and μy are the mean, σx and σy are the variance and σxy are the covari-
ances of X and Y . c1 and c2 depend on the dynamic range of pixel intensities;
needed to stabilise division on weak denominators [13]. Increase in PSNR sug-
gests an improvement in signal to noise ratio i.e. lower noise and/or better image
generation. SIMM, on the other hand, captures the structural similarity between
a synthesised and a ground-truth image. PSNR and SIMM were computed for
only those pixels that lie outside the defined exclusion masks. Visual inspec-
tion was further carried out to assess realism of synthesised images, particularly
regions where no T2 ground-truth is available.

Table 1. Mean and standard deviation (Std) for PSNR and SIMM obtained via 5-
fold cross validation for synthesis of T2-weighted (i) complete images and (ii) right
hippocampus subregions.

fold# 1 2 3 4 5

Mean Std Mean Std Mean Std Mean Std Mean Std

Complete slice PSNR 30.48 0.58 30.74 0.56 30.98 0.67 30.96 0.53 31.11 1.21

SIMM 0.77 0.09 0.79 0.10 0.80 0.10 0.80 0.10 0.78 0.11

Hippocampi region PSNR 28.45 0.78 27.75 0.14 27.83 0.34 27.76 0.22 29.24 0.72

SIMM 0.60 0.12 0.61 0.13 0.61 0.12 0.60 0.13 0.63 0.14

4 Results and Discussion

Table 1 shows the result for the 5-fold validation for the complete and right-
hippocampus T2-weighted sub-region generation. Both PSNR and SIMM mea-
sures are higher for the complete T2-weighted image synthesis compared to the
T2-weighted sub-region synthesis as complete image synthesis managed to better
capture high resolution details resulting in relatively accurate and sharp image
generation. This is because the variance of each pixel in complete T2-weighted
image is low during training compared to the sub-region image.

Figure 3 shows a set of original images (T1-weighted network input and noisy
T2-weighted ground-truth) as well as synthesised T2-weighted images for 8 dif-
ferent subjects. The proposed XmoNet is capable of achieving cross-modality
mapping from T1 onto T2. Visual inspection of these figures suggests that syn-
thesised images better capture overall brain structures (with respect to source
T1-weighted images) than the original T2 scans; successful synthesis of regions
with heavily missing T2 signal is achieved (Fig. 3(d)–(f)).

A number of limitations exist in this study. Firstly, the generated brain
regions for which no T2 baseline exists require thorough validation and assess-
ment by medical experts. Additionally, network input-output is currently a T1-
T2 generation route; exploring the opposite scenario of T2-T1 generation was not
carried out. Furthermore, testing data used in the study was obtained from the
same source as the training/fine-tuning data; studying network’s generalisability
to different acquisition settings was not carried out.
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Fig. 3. Representative images of axial slices from six subjects (a)–(f); (a)–(c) sections
at the level of Pons showing missing frontal lobe parts in the T2 (ground-truth) scans,
(d)–(f) showing missing frontal and parietal lobe parts in the T2 (ground-truth) scans.
XmoNet automatically generated the missing parts as shown in T2 (predicted). For
each subject, upper row shows complete image synthesis while lower row shows results
on the hippocampus sub-region images.
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In addition to the above, validating XmoNet on larger datasets will drive our
future efforts. Additionally, rigorous comparison against performance of state-
of-the-art methods is crucial. An interesting application of the work is synthesis
of images of non-healthy regions e.g. brain tumours. Although the model was
designed for MR image generation, it can be adopted to incorporate non-MR
based modalities (e.g. CT). Moreover, cross modality inference in 3D images is
also of interest [6], hence adopting our model to 3D images can also be considered.

5 Conclusions

We proposed XmoNet, a CNN designed for the problem of cross-modality MR
image generation. The network utilises a fully convolutional architecture, where
multiple pathways are used to capture a hierarchy of low- and high-frequency
visual patterns. A preliminary analysis was carried out on brain MR scans of 25
healthy subjects. Quantitative evaluation and qualitative visual inspection illus-
trated the utility of XmoNet for accurate and realistic synthesis of T2-weighted
images from source T1-weighted data. Our findings support extending the anal-
ysis to incorporate larger datasets and additional modalities.
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Abstract. Alzheimer’s disease (AD) is the leading cause of dementia in the
elderly and the number of sufferers increases year by year. Early detection of
AD is highly beneficial to provide timely treatment and possible medication,
which is still an open challenge. To meet challenges of the early diagnosis of
AD and its early stage (e.g., progressive MCI (pMCI) and stable MCI (sMCI))
in clinical practice, we present a novel deep learning framework in this paper.
The proposed framework exploits the merits of 3D convolutional neural network
(CNN) and stacked bidirectional recurrent neural network (SBi-RNN). Specif-
ically, we devise simple 3D-CNN architecture to obtain the deep feature rep-
resentation from magnetic resonance imaging (MRI) and positron emission
tomography (PET) images, respectively. We further apply SBi-RNN on the
local deep cascaded and flattened descriptors for performance boosting.
Extensive experiments are performed on the ADNI dataset to investigate the
effectiveness of the proposed method. Our method achieves an average accuracy
of 94.29% for AD vs. normal classification (NC), 84.66% of pMCI vs. NC and
64.47% sMCI vs. NC, which outperforms the related algorithms. Also, our
method is simpler and more compact compared with the existing methods with
complex preprocessing and feature engineering processes.

Keywords: Alzheimer’s disease � 3D-CNN � SBi-RNN � Multi-modality

1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, which leads to
dementia in the elderly. Mild cognitive impairment (MCI) is a transitional state
between normal control (NC) and dementia, which is divided into progressive MCI
(pMCI) and stable MCI (sMCI) [1]. According to a report released by the international
Alzheimer’s Association, there are about 47 million AD patients worldwide, and this
number reaches 131 million in 2050 [2]. However, there is no cure for AD. If AD can
be diagnosed at an early stage, we can effectively prevent deterioration of patients.
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I. Rekik et al. (Eds.): PRIME 2018, LNCS 11121, pp. 138–146, 2018.
https://doi.org/10.1007/978-3-030-00320-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00320-3_17&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00320-3_17&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00320-3_17&amp;domain=pdf


Therefore, early diagnosis of AD/MCI is quite meaningful for patient care and future
treatment. Medical imaging techniques such as magnetic resonance images (MRI) and
positron emission tomography (PET) are effective to boost the diagnosis performance
by providing powerful imaging information. However, the early diagnosis of AD is not
trivial even for health care professionals. Furthermore, early diagnosis of AD via
human visual inspection is often subjective.

To tackle these issues, numerous automatic algorithms are proposed to discover the
anatomical and functional neural changes related to AD [3]. For example, Liu et al. [4]
extracted a set of latent features from regions of interest (ROI) of MRI and PET scans,
which trained several multi-layer auto-encoders to combine multimodal features for
classification. Gray et al. presented a multi-modal classification framework, which used
coordinates from this joint embedding via pairwise similarity measures derived from
random forest classifiers [5]. And Zhang et al. propose a Multi-Layer Multi-View
Classification approach, which regards the multi-view input as the first layer, and
constructs a latent representation to explore the complex correlation between the fea-
tures and class labels [6]. However, these traditional methods of extracting features are
limited since they require the complex preprocessing. The information is loss due to
feature reduction, which causes undesirable performance.

To solve this problem and further improve the performance, convolutional neural
network (CNN) is an effective way. CNN has witnessed great success especially in
natural image classification (e.g., ImageNet) and recently attracted much attention for
AD diagnosis. For example, Li et al. reduced a 3 layers 3D CNN to perform AD
diagnosis [7]. Liu et al. proposed a multi-modality classification algorithm based on
cascaded CNNs model that combined the multi-level and multi-modal features for AD
diagnosis [8]. Generally, CNN structure relies on stacked fully connected (FC) layers
and SoftMax classifier after getting the feature maps. However, the FC layers always
ignore the 2D information in the feature map.

To solve these problems, we take the feature map from CNN. The conventional
method focused on extracting higher-level semantic information through a 2D CNN
[8]. However, this feature map is very thin and long, because there are 400 features
after 7 convolutional layers and the size of each one is only 8. To handle it, we use the
sliding window of CNN to scan directly from one side to the other side. When using
2DCNN to process this feature map, the convolutional layer core will trace the feature
along the long side, which loses a lot of information from short side. As a powerful
neural sequence learning model, recurrent neural network (RNN) is designed for
sequence analysis. It processes input sequence one element at a time. It maintains a
“state” vector in their hidden units, which implicitly contains information of all past
elements of the sequence [9]. Compared with RNN, bidirectional recurrent neural
network (Bi-RNN) can access context in both directions [10] to explore the contextual
information hidden in features. Using Bi-RNN not only can get more information, but
also can avoid the influence of the choice of the scanning direction. Further, we also
raise the depth of Bi-RNN by stacking the RNN cell in Bi-RNN which can help us to
get deeper semantic information. For this reason, we use the stacked bidirectional
recurrent neural network (SBi-RNN) instead of the traditional RNN. Similar to the
scanner’s line-by-line method in RNN, it can effectively discover more information by
progressively learning.
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In summary, we propose a new method for the diagnosis of AD based on 3D CNN
and Bi-RNN. 3D CNN extracts the primary features of MRI and PET. The SBi-RNN is
used to learn the advanced semantic features from 3D CNN. The experimental results
show that the proposed method can achieve higher diagnosis accuracy than the existing
methods.

2 Methodology

Figure 1 shows our novel, compact, and efficient framework based on 3D- CNN and
SBi-RNN. We first obtain the preprocessed MRI and PET using two independent 3D
CNNs. Next, we cascade the features of MRI and PET into a 2D feature map and
normalize them. Last, we use SBi-RNN to get further advanced semantic information.
The final diagnosis results are obtained by the SoftMax classifier.

2.1 Data Preprocessing

Firstly, we preprocess the MRI images by applying the typical procedures of Anterior
Commissure (AC)–Posterior Commissure (PC) correction, skull-stripping, and cere-
bellum removal. Then, we segment the anatomical MRI images into three tissue types
of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) by using FAST
in FSL package7. Finally, we use a brain atlas already aligned with the MNI coordinate
space for normalizing the three tissues of MRI data into a standard space. It has been
confirmed that GM is highly related to AD/MCI compared with WM and CSF [11]. In
this regard, we choose GM for feature representation. For PET images, they are rigidly
registered to the respective MRI. Same as [12], we downsample both GM density maps
and PET images into 64 � 64 � 64 voxels, which reduces computational time and
memory cost without sacrificing the classification accuracy.

MRI

PET

a b c d

Fig. 1. The proposed framework for AD diagnosis. (a) MRI and PET input; (b) Dual CNN
architecture to get deep and normalized feature map; (c) SBi-RNN for feature enhancement;
(d) Classification by SoftMax classifier.
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2.2 Feature Learning with 3D CNN

CNN is a special multi-layer neural networks, which are trained with the backpropa-
gation algorithm. However, most of CNN architectures are designed for 2D image,
which is inefficient to encode the spatial information of 3D image. Therefore, we use
the 3D convolution kernel. The 3D convolution kernel is built by alternatively stacking
convolutional sub-sampling layers that can hierarchically learn the multi-level features.
Finally, we use FC and SoftMax classifier for classification.

Convolutional layer convolves the input image with the learned kernel filters. Then,
we add a bias term in the convolutional and a non-linear activation function. In this
work, we use the ReLU as activation function. Finally, we can get a series of feature
maps by each filter. The 3D convolutional operation is defined as:

ulkj x; y; zð Þ ¼
X

dx

X
dy

X
dz
Fl�1
k xþ dx; yþ dy; zþ dz

� ��Wl
kj dx; dy; dz
� �

; ð1Þ

where x, y and z denote the voxel positions for a given 3D data. Wl
kj dx; dy; dz
� �

is the j-
th 3D kernel weight, which connects the k-th feature map of the l-1 layer and the j-th
feature map of the l layer. Fl�1

k is the k-th feature map of the l-1 layer, the dx; dy; dz are
the kernel size corresponding to the x, y and z, respectively. The ulkj x; y; zð Þ is the
convolutional response of the kernel filter. After convolution, ReLU is used to the
activation function of each convolution layer:

Fl
j x; y; zð Þ ¼ max 0; blj þ

X
k
uljk x; y; zð Þ

� �
; ð2Þ

where blj is the bias term from the j-th feature map of the l-th layer. The Fl
j x; y; zð Þ is

obtained by summation of the response maps of different convolution kernels of the j-th
3D feature map.

After each convolutional layer, we add a pooling layer such as average or maxi-
mum pooling. In this paper, we use max pooling to obtain more compact and efficient
features. Max pooling replaces each cube with their maximum to reduce the feature
map along the spatial dimensions. It can keep the most important feature for dis-
crimination. In addition, the features become more compact from low-level to high-
level, which can achieve the robustness against some variations.

Apart from alternatively stacking 6 convolutional layers and 6 pooling layers, the
features of MRI and PET will be cascaded and flattened followed by 2 FC layers. Here,
we extract features from the last convolutional layer. All the features from the FC layer
are flattened into 1D vector. Finally, the features are imported in SoftMax classifier and
get the final result.

2.3 SBi-RNN Based Classification

Normally, the high-level reasoning in the CNN depends on FC layers. However, the FC
layer just simply connects all neurons, which are unable to fuse all the information
effectively. Therefore, we use the SBi-RNN instead of traditional FC layer.
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In a CNN model, layers are connected between layers. However, nodes between
hidden layers in RNN are linked, and the input of the hidden layer includes not only the
output of the input layer, but also the output of the hidden layer of the previous node.
Mathematically, each node is defined as st, which can be expressed as:

st ¼ f Uxt þWst�1ð Þ; ð3Þ

where xt is the input of the t-th unit, U is the weight from the input layer to the hidden
layer, and W is the connection weight from previous unit to current unit. The is
activation function. We choose the tanh as the activation function in this paper. After
getting all the st, SoftMax is used to get the final result (ot):

ot ¼ SoftMax Vstð Þ: ð4Þ

The V is the weights from the hidden layer to the output layer. Then, the calculation
process for the entire RNN is illustrated in the following sections.

2.3.1 Forward Calculation
For an input x of length T, the network has I input unit, hidden units, and K output
units. Defining xti as the i-th input at time t. Let atj and btj represent the input of network
element j at time t and the output of the nonlinear identifiable activation function of
element j at time t, respectively. For the complete sequence of implicit units, we can
start with t = 1 and get it by recursively calling the following formula:

ath ¼
XI

i¼1
wihx

t
i þ

XH

h0¼1
wh0hb

t�1
h0 ; ð5Þ

bth ¼ h ath
� �

: ð6Þ

Meanwhile, the output unit for the network can also be calculated as:

atk ¼
XH

h¼1
whkb

t
n: ð7Þ

2.3.2 Backward Calculation
For RNNs, the objective function depends on the activation function of the hidden
layer (not only by its effect on the output layer, but also on its impact on the next time
step hidden layer), that is:

@o
@atj

¼ h0 ath
� � XK

k¼1
dtkwhk þ

XH

h0¼1
dtþ 1
h0 whh0

� �
: ð8Þ
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Finally, the weights of the inputs and outputs of the hidden layer units are the same
in each step. We sum this sequence to obtain the derivative of each network weight:

@o
@wij

¼
XT

t¼1

@o
@atj

@atj
@wij

¼
XT

t¼1
dtjb

t
j; ð9Þ

2.3.3 Constitute SBi-RNN
The basic idea of a Bi-RNN assumes that each training sequence is forward and
backward via two RNNs, which are connected to one output layer. This structure
provides complete previous and future contextual information for each point in the
output layer. The SBi-RNN is used to obtain deeper information by superimposing a
basic RNN in both forward and backward RNN of Bi-RNN. For the hidden layer of
SBi-RNN, forward calculation is the same as RNN except that the input sequence is
opposite to the two hidden layers. The output layer does not update until all hidden
sequences have processed all the input sequences. SBi-RNN’s backward estimation is
similar to RNN’s inverse propagation through time except that all output layer d terms
are first calculated and then returned to two hidden layers in different directions.

3 Experimental Setting and Results

3.1 Dataset and Implementation

In this paper, we use the Alzheimer’s Disease Neuroimaging Initiative (ADNI) publicly
available dataset (http://adni.loni.usc.edu/). We only consider the baseline MRI data
and 18-Fluoro-DeoxyGlucose PET data acquired from 93 AD, 76pMCI, 128sMCI and
100 NC. To alleviate the overfitting problem, ten percent neurons are randomly cut off
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Fig. 2. Results of different methods and modalities. The upper half is the ROC curve for
different classification tasks, the under is the Acc bar chart results of the different classification.
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during training. In order to speed up training, we use root mean square prop to train
SBi-RNN. For evaluating the classification performance, we use different performance
metrics. These metrics include the accuracy (Acc), the area under receive operation
curve (AUC), the sensitivity (Sen) and the specificity (Spec) to compare the experi-
ments. Here, 10-fold evaluation is performed 10 times to avoid any bias. All the
experiments are conducted on a computer with GPU NVIDIA TITAN Xt and imple-
mented using Keras library in Python.

3.2 Results

Firstly, we test the results of the proposed method based on the different modalities. For
the single modality, we use a 14 layers CNN architecture to get the deep features. Then,
the flatten feature is utilized as the input of the SBi-RNN, while the output is the final
prediction result. For the multi-modality, we add the fusion and flattening between
CNN and SBi-RNN to maximize the use of data.

The results are listed in Table 1 and the receivers of curves (ROC) are illustrated in
Fig. 2. From these results, it is clear that the multi-modality performs better than single
modality. The results also show that our MRI has better result than PET. Because the
MRI can capture structural information of brain regions and the information of
structural and subject’s mental state at the time of testing may not be unified.

Then, we compare the proposed multimodal classification algorithm by SBi-RNN
to other multimodal methods. One combination method is the direct concatenation,
which is the baseline method. The combination method via the average between two
modal features can enhance the multi-modal representation. We use the fisher vector
(FV) to encode the feature and use support victor machine (SVM) as classifier, which
can get advanced semantic information from two modalities [13].

Also, we use the RNN, Bi-RNN and SBi-RNN for encoding and classification. The
results are shown in Table 1 and Fig. 2. From these results, the Full Connection
performs better than each individual modality. The results also show that in our model,
the MRI can have better results compared with the PET. Experiments show that our
proposed method can get better result than other methods.

Table 1. Comparison of classification performance on different methods (%).

Method AD vs. NC pMCI vs. NC sMCI vs. NC
Acc Sen Spec Acc Sen Spec Acc Sen Spec

MRI 88.60 92.77 85.45 77.27 80.00 75.86 54.82 58.17 48.00
PET 82.78 83.33 82.52 74.43 70.13 77.78 53.51 55.61 40.63
Muti-modality 89.64 90.11 89.22 76.70 78.69 75.65 55.70 58.60 49.30
Average 89.13 90.00 88.35 77.84 80.33 76.52 52.63 56.76 45.00
FV-SVM 92.75 94.38 91.35 82.39 83.58 81.65 64.04 65.54 61.25
RNN 92.23 97.56 88.29 83.52 79.01 87.37 62.28 68.10 56.25
Bi-RNN 93.76 95.51 92.31 83.52 81.33 85.15 62.72 68.38 56.76
Ours 94.29 96.59 92.38 84.66 83.56 85.44 64.47 70.43 48.41
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Finally, we compare the performance of the proposed method with other multi-
modal methods, and the result is shown in Table 2. We find that our method can get
better results than the existing methods especially [8], which uses 2D CNN to extract
advanced semantic information from joint feature maps. The reason is that the SBi-
RNN with progressive scans is more effective than direct convolution using 2D con-
volution kernels to identify the informative features.

4 Conclusion

In this paper, we propose a new hybrid framework for AD diagnosis based on 3D CNN
and SBi-RNN. We get deep features via 3D-CNN from MRI and PET images and
exploit Bi-RNN to obtain discriminative features. The focus of this paper is to explore
obtaining the joint information after CNN feature extractions, which can be retrained to
be more useful. The simple FC layer completely ignores 2D feature information. Our
proposed method outperforms the related algorithm and achieves good results on the
public ADNI dataset. In future, we will focus on improving the diagnostic performance
for early MCI with more advanced deep learning techniques such as convolutional
RNN.
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Abstract. Magnetic Resonance Angiography (MRA) has become an
essential MR contrast for imaging and evaluation of vascular anatomy
and related diseases. MRA acquisitions are typically ordered for vascular
interventions, whereas in typical scenarios, MRA sequences can be absent
in the patient scans. This motivates the need for a technique that gen-
erates inexistent MRA from existing MR multi-contrast, which could be
a valuable tool in retrospective subject evaluations and imaging studies.
We present a generative adversarial network (GAN) based technique to
generate MRA from T1- and T2-weighted MRI images, for the first time
to our knowledge. To better model the representation of vessels which the
MRA inherently highlights, we design a loss term dedicated to a faithful
reproduction of vascularities. To that end, we incorporate steerable filter
responses of the generated and reference images as a loss term. Extend-
ing the well-established generator-discriminator architecture based on
the recent PatchGAN model with the addition of steerable filter loss,
the proposed steerable GAN (sGAN) method is evaluated on the large
public database IXI. Experimental results show that the sGAN outper-
forms the baseline GAN method in terms of an overlap score with similar
PSNR values, while it leads to improved visual perceptual quality.

Keywords: MR angiography · GANs · Steerable filters
Image synthesis

1 Introduction

Due to recent improvements in hardware and software technologies of Magnetic
Resonance Imaging (MRI) the use of MRI has become ubiquitous in examination
and evaluation of patients in hospitals. Non-Contrast Enhanced (NCE) time-
of-flight (TOF) MR Angiography (MRA) has become an established modality
for evaluating vascular diseases throughout intracranial, peripheral, abdominal,
renal and thoracic imaging procedures [3,8]. In a majority of the MRI exami-
nations, T1- and T2-weighted MRI contrast sequences are the main structural
imaging sequences. Unless specifically required by endovascular concerns, MRA
images are often absent due to lower cost and shorter scan time considerations.
c© Springer Nature Switzerland AG 2018
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When a need for a retrospective inspection of vascular structures arises, gener-
ation of the missing MRA contrast based on the available contrast could be a
valuable tool in the clinical examinations.

Recent advances in convolutional neural networks (CNNs), particularly deep
generative networks have started to be successfully applied to reconstruction
[16], image generation and synthesis problems [1] in medical imaging. The main
purpose of this work is to employ those image generative networks to synthesize
a new MRI contrast from the other existing multi-modal MRI contrast. Our
method relies on well-established idea of generative adversarial networks (GANs)
[2]. The two main contributions of this paper can be summarized as follows:

– We provide a GAN framework for generation of MRA images from T1 and
T2 images, for the first time to our knowledge.

– We present a dedicated new loss term, which measures fidelity of direc-
tional features of vascular structures, for an increased performance in MRA
generation.

2 Related Works

We refer to relatively recent techniques based on convolutional deep neural net-
works.

Image synthesis, which is also termed as image-to-image translation, relied
on auto-encoders or its variations like denoising auto-encoders [14], variational
auto-encoders [7]. Those techniques often lead to blurry or not adequately realis-
tic outputs because of their classical loss measure, which is based on the standard
Euclidean (L2) distance or L1 distance between the target and produced output
images [12]. Generative adversarial networks (GANs) [2] address this issue by
adding a discriminator to the network in order to perform adversarial training.
The goal is to improve the performance of the generator in learning a realistic
data distribution while trying to counterfeit the discriminator.

Recently, inspired from the Markov random fields [11], PatchGAN technique,
which slides a window over the input image, evaluates and aggregates realness of
patches, is proposed [4]. Isola et al ’s PatchGAN method, also known as pix2pix,
is applied to various problems in image-to-image translation.

Medical image synthesis is currently an emerging area of interest for
application of the latest image generation techniques mentioned above. Wolterink
et al. [15] synthesized Computed Tomography (CT) images from T1-weighted
MR images using the cyclic loss proposed in the CycleGAN technique [17]. Nie
and Trullo et al. [13] proposed a context-aware technique for medical image
synthesis, where they added a gradient difference as a loss term to the generator
to emphasize edges. Similarly, [1] utilized CycleGAN and pix2pix technique
in generating T1-weighted MR contrast from T2-weighted MR contrast or vice
versa.

In this paper, we create a pipeline for generating MR Angiography (MRA)
contrast based on multiple MRI contrast, particularly the joint T1-weighted and
T2-weighted MRI using pix2pix framework. As MRA imaging mainly targets
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visualization of vasculature, we modify the pix2pix in order to adapt it to the
MRA generation by elucidating vessel structures through a new loss term in
its objective function. We are inspired from the steerable filters which arose
from the idea of orientation selective excitations in the human visual cortex.
Steerable filters involve a set of detectors at different orientations [9]. In our
work, the addition of the steerable filter responses to the GAN objective tailors
the generator features to both reveal and stay faithful to vessel-like structures,
as will be demonstrated.

Fig. 1. The sGAN architecture. ResNet generator takes concatenation of T1- and T2-
weighted MR images and transforms them into an MRA image slice.

3 Method

The proposed method for generating a mapping from T1- and T2- weighted MRI
to MRA images, which is named as steerable filter GAN (sGAN), is illustrated
in Fig. 1. The generator and the discriminator networks are conditioned on T1-
and T2-weighted MRI, which are fed to the network as two channels of the input.
The details of the proposed architecture are described next.

3.1 Network Architecture

As illustrated in Fig. 1, our architecture consists of a generator and a discrim-
inator network. A generator network which is similar to architecture in [6] is
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adopted for our setting. In generator network, we used 3 down-sampling lay-
ers with strided convolutions of stride 2, which is followed by 9 residual blocks.
In residual blocks, the channel size of input and output are the same. At the
up-sampling part, 3 convolutions with fractional strides are utilized.

In a GAN setting, the adversarial loss obtained from the discriminator net-
work D forces the generator network G to produce more realistic images, while
it updates itself to distinguish real images from synthetic images. As shown in
[4], the Markovian discriminator (PatchGAN) architecture leads to more refined
outputs with detailed texture as both the input is divided to patches and the
network evaluates patches instead of the whole image at once. Our discrimina-
tor architecture consists of 3 down-sampling layers with strides of 2 which are
followed by 2 convolutional layers.

3.2 Objective Functions

In sGAN, we employ three different objective functions to optimize parameters
of our network.

Adversarial loss, which is based on the GAN framework, is defined as:

LGAN (G,D) = Ex,y[log D(x, y)] + Ex[log(1 − D(x,G(x))] (1)

where G is generator network and D is discriminator network, x is the two chan-
nel input consisting of T1-weighted and T2-weighted MR images, G(x) is the
generated MRA image, and y is the reference (target) MRA image, respectively.
We utilize the PatchGAN approach, where similarly, the adversarial loss evalu-
ates whether its input patch is real or synthetically generated [4]. The generator
is trained Ladv which consists of the second term in Eq. 1.

Reconstruction loss helps the network to capture global appearance char-
acteristics as well as relatively coarse features of the target image in the recon-
structed image. For that purpose, we utilize the L1 distance, which is we term
as Lrec = ||y − ŷ||1, where y is the target, ŷ = G(x) is the produced output.

Steerable filter response loss is another metric in our work for better
MR Angiography (MRA) generation. Since MRA specifically targets imaging
of the vascular anatomy, faithful reproduction of vessel structures is of utmost
importance. We design additional loss term for emphasizing vesselness properties
by incorporating with steerable filters by comparing filters responses of target
image and the synthesized output through a Huber loss function 3:

Lsteer =
1
K

K∑

k=1

ρ(fk ∗ y, fk ∗ ŷ) (2)

where ∗ denotes the convolution operator, K is the number of filters, fk is the
kth steerable filter kernel. The Huber function with its parameter set to unity is
defined as:

ρ(x, y) =
{

(x − y)2 ∗ 0.5 if |x − y| ≤ 1
|x − y| − 0.5 otherwise

(3)
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Fig. 2. Top two rows: generated steerable filter kernel weights (5 × 5); Bottom row:
two examples of steerable filter responses (k=7, 18) to the input MRA image on the
left.

Figure 2 depicts the K = 20 steerable filters of size 5 × 5. We also show sam-
ple filter responses to an MRA image to illustrate different characteristics high-
lighted by the steerable filters.

In the sGAN setting, the overall objective is defined as follows:

L = λ1Ladv + λ2Lrec + λ3Lsteer (4)

where Ladv,Lrec,Lsteer refer to Eqs. 1, 3.2 and 2, respectively, with correspond-
ing weights λ1, λ2, λ3.

4 Experiments and Results

4.1 Dataset and Experiment Settings

We used 440 subjects from IXI dataset (http://brain-development.org/ixi-
dataset). 400 images used for training, randomly selected 40 images are used
for testing. The parameters used in the model are: learning rate 0.0002, loss
term constants λ1 = 0.8, λ2 = 0.005 and λ3 = 0.145 in Eq. 4.

4.2 Evaluation Metrics

We utilize two different measures for performance evaluation. First one is the
peak signal-to-noise ratio (PSNR) which is defined by 10 log10

(max y)2

1
n

∑n
i (yi−ŷi)2

,

where n is the number of pixels in an image. The PSNR is calculated between
the original MRA and the generated MRA images.

In the MRA modality generation, it is important to synthesize vessel struc-
tures correctly. We utilize Dice score as the second measure in order to highlight

http://brain-development.org/ixi-dataset
http://brain-development.org/ixi-dataset
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the fidelity of the captured vascular anatomy in the synthesized MRA images.
The Dice score is defined by 2|y∩ŷ|

|y|+|ŷ| . In order to calculate the Dice score, the seg-
mentation maps are produced by an automatic vessel segmentation algorithm
presented in [5] over both the original MRA images and the generated MRA
images using the same set of parameters in the segmentation method.

4.3 Quantitative and Qualitative Results

To our knowledge, no previous works attempted synthetic MRA generation.
To evaluate our results, we compare the generated MRA images corresponding
to the baseline, which is the PatchGAN with ResNet architecture against the
sGAN, which is the baseline with added steerable loss term. The PSNR and Dice
scores are tabulated in Table 1.

Table 1. Performance measures (mean PSNR and mean Dice scores) on the test set:
first row corresponds to the baseline PatchGAN; second row shows the sGAN results.

Method PSNR (dB) Dice score (%)

Baseline: Ladv + Lrec 29.40 74.8

sGAN: Ladv + Lrec + Lsteer 29.51 76.8

We show sample visual results of representative slices in Fig. 3. Sample 3D
visual results are given as surface renderings of segmentation maps in Fig. 3.

5 Discussion and Conclusion

The presented sGAN method is a data-driven approach to generation of MRA
contrast, from the multi-contrast T1- and T2-weighted MRI, which are based on
spin-lattice and spin-spin relaxation effects. The sGAN relies on the recent popu-
lar pix2pix framework as the baseline. In the adaptation of the baseline method
to MRA generation, the steerable-filter response based loss term included in
the sGAN method highlights the directional features of vessel structures. This
leads to an enhanced smoothing along vessels while improving their continuity.
This is demonstrated qualitatively through visual inspection. In quantitative
evaluations, the sGAN performs similarly with a slight increase (statistically
insignificant) in PSNR values compared to those of the baseline. However, it is
well-known that PSNR measure does not necessarily correspond to perceptual
quality in image evaluations [10,12]. In terms of the vascular segmentation maps
extracted from the generated MRAs and the original MRA, the sGAN improves
the overlap scores by 2% against the baseline. This is a desirable output, as the
MRA targets imaging of vascular anatomy. The proposed sGAN has the poten-
tial to be useful in retrospective studies of existing MR image databases that
lack MRA contrast. Furthermore, after extensive validation, it could lead to cost
and time effectiveness where it is needed, by construction of the MRA based on
relatively more common sequences such as T1- and T2-weighted MR contrast.
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Baseline GAN sGAN Ground Truth

Fig. 3. Top three rows: visual comparison of generated 2D MRA axial slices to the
original MRA slices by both the baseline and the sGAN methods.
Bottom three rows: visual comparison of segmentation maps over generated MRA to
those over the original MRA in surface rendering format using both the baseline and
the sGAN methods. Arrows indicate the increased fidelity in vessel structure with new
loss term.
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C.A.T., Išgum, I.: Deep MR to CT synthesis using unpaired data. In: Tsaftaris,
S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557,
pp. 14–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6 2

16. Yang, G., et al.: Dagan: deep de-aliasing generative adversarial networks for fast
compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–
1321 (2017)

17. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593
(2017)

http://arxiv.org/abs/1802.01221
http://arxiv.org/abs/1312.6114
https://doi.org/10.1007/978-3-319-46487-9_43
https://doi.org/10.1007/978-3-319-46487-9_43
http://arxiv.org/abs/1511.05440
https://doi.org/10.1007/978-3-319-66179-7_48
https://doi.org/10.1007/978-3-319-68127-6_2
http://arxiv.org/abs/1703.10593


Diffusion MRI Spatial Super-Resolution
Using Generative Adversarial Networks

Enes Albay(B), Ugur Demir, and Gozde Unal

Istanbul Technical University, Istanbul 34469, Turkey
{albay,ugurdemir,gozde.unal}@itu.edu.tr

Abstract. Spatial resolution is one of the main constraints in diffusion
Magnetic Resonance Imaging (dMRI). Increasing resolution leads to a
decrease in SNR of the diffusion images. Acquiring high resolution images
without reducing SNRs requires larger magnetic fields and long scan
times which are typically not applicable in the clinical settings. Currently
feasible voxel size is around 1 mm3 for a diffusion image. In this paper, we
present a deep neural network based post-processing method to increase
the spatial resolution in diffusion MRI. We utilize Generative Adversarial
Networks (GANs) to obtain a higher resolution diffusion MR image in the
spatial dimension from lower resolution diffusion images. The obtained
real data results demonstrate a first time proof of concept that GANs
can be useful in super-resolution problem of diffusion MRI for upscaling
in the spatial dimension.

Keywords: Magnetic resonance imaging (MRI)
Diffusion MRI (dMRI) · Super resolution
Generative adversarial networks (GANs)

1 Introduction

Water molecules undergo random movement and diffuse in an environment due
to second law of thermodynamics. Diffusion phenomenon enables us to map
fibrous substances using principles of magnetic resonance imaging (MRI). Diffu-
sion magnetic resonance imaging (dMRI) takes advantage of signal attenuation
that takes place due to diffusion of water molecules in a tissue that is being
imaged. Although the signal attenuates isotropically in a free water environment,
the signal shows varying attenuations in a restricted environment. This gives an
opportunity of in vivo imaging of the internal structure of the human brain white
matter, which contains fibrous material that restricts water molecules movements
in some directions while water molecules move freely in other directions [10].

Even though dMRI allows microscopic imaging of the white matter at very
high magnetic fields, spatial resolution of dMRI is restricted clinically because
with the current technology, very high magnetic fields cannot be used ante-
mortem. Furthermore, long scan times are not clinically feasible for microscopic
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resolution. At lower magnetic fields, signal to noise ratio (SNR) becomes prob-
lematic for small voxel sizes. Currently, for diffusion image volumes, clinically
applicable voxel size is about 1 mm3 [11], which is relatively coarse with respect
to underlying microstructure of brain tissue. Diameter of neuronal axons in brain
white matter is at most 30 µm [7], therefore, a typical voxel contains thousands of
fiber populations, possibly lying along different directions with crossings, splay-
ing, or kissing architectures. Hence, increasing both spatial resolution and angu-
lar resolution of dMRI using post-processing techniques is desirable and would
aid in post-analysis of dMRI data.

In this paper, we present a post-processing method to generate higher spatial
resolution dMRI volumes based on an end-to-end generative adversarial network
(GAN) framework [5]. GANs learn a mapping from low resolution diffusion MRI
data to synthesize a high resolution counterpart. Its main difference from con-
ventional methods is that GANs learn a non-linear model from pairs of low
resolution-high resolution data rather than performing a blind interpolation.

2 Related Works

Only a few spatial super resolution methods for diffusion MRI were presented
in the literature. Conventional methods for super resolution are typically based
on up-sampling with interpolation of low resolution data. An early super reso-
lution approach to diffusion data is based on combination of two shifted images
to create an up-sampled image [14], which led to blurry results. Alternatively, a
track density approach was presented to obtain super resolution in white matter
fiber tracts based on tractography information, however, this method does not
up-sample the underlying spatial structure of the diffusion images [1]. A Markov
chain Monte Carlo method, the Metropolis-Hastings algorithm is utilized by [19]
to create a generative model of local information and sharpens images according
to local structure while increasing spatial resolution. This is different from our
approach as it does not actually directly learn the data distribution. A recently
suggested method proposes using RGB image enhancement method with diffu-
sion images, however, not leading to clear results [18]. It is observed that diffusion
weighted images are blurry and ODFs are corrupted with respect to the ground
truth data. Recent studies on texture synthesis have shown that convolutional
neural networks and adversarial training can be successfully applied to super-
resolve images at high upscale factors [3,12]. This was the motivation of our
method, which is presented next.

3 Method

We introduce a deep GAN based single slice super-resolution model that takes
a down-sampled low resolution dMRI axial slice ILR and synthesizes its high
resolution counterpart ÎHR. Each down-sampled axial slice from a brain volume
is upscaled to the desired resolution with a certain scale factor through bi-cubic
interpolation, which is called Ibc

LR. In this paper, we exemplify the spatial super
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resolution model with an up-sampling factor of two. The generative model takes
Ibc
LR, and tries to expose the high frequency details by exploring the context of

low-resolution image. The trained network resolves the blurriness and generates
sharp images filled with estimated missing details. Overall flow of our method is
depicted in Fig. 1.

Fig. 1. General structure of architecture. Input slices are x2 upscaled by bi-cubic
interpolation. Generator network takes input IbcLR images and synthesizes “fake” high-
resolution slices IHR. Discriminator network evaluates artificially generated slices and
produces an adversarial loss.

During training of the generative model, an adversarial training [5] approach
is used in order to produce more realistic looking outputs. Training procedure
intends to minimize the combination of an adversarial loss produced by the
discriminator network, and a pixel-wise reconstruction loss (an L2 Loss) to con-
ditionally generate samples from the high resolution image distribution. Details
of this procedure are described next.

3.1 Generative Adversarial Networks

GANs have been used to figure out distribution of the input data by learning a
mapping from a noise variable to the data space [5]. Recent studies show that
once the distribution is learned, the model can be used to generate realistic look-
ing samples [6,12]. Apart from sample generation, GANs are also used to learn
a mapping between contextually paired two images [6]. In our super-resolution
problem, low resolution image Ibc

LR is given as a condition to the generator and
it is expected that our model learns a mapping G that translates Ibc

LR to IHR.
There are two different neural networks in the adversarial training phase. The

generative network G corresponds to mapping function between the input and
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the output. The purpose of the discriminator network D is distinguishing the
real images from the artificially synthesized ones. While the network G aims to
fool D, at the same time, D is trained to improve its accuracy. This optimization
problem corresponds to a minimax game, which can be formulated as:

min
θG

max
θD

E[log D(IHR)] + E[log(1 − D(G(Ibc
LR)))]. (1)

As long as D successfully classifies its input, G benefits from the gradient pro-
vided by the D network via its adversarial loss.

Generator Network. The architecture of the generative network is ResNet,
which is composed by following the guidelines described in [8]. It consists of
down-sampling layers, residual blocks and up-sampling layers. There are two
down-sampling layers and each one consists of a convolution layer with stride
set to 2, batch normalization layer and Leaky ReLU (LReLU) activation. There
are six residual blocks in the architecture. The up-sampling blocks recover spatial
resolution of the activation maps in order to reach desired height and width for a
slice. An up-sampling layer contains resized convolution [13], batch normalization
and LReLU activation. Additionally, a 7 × 7 convolution layer with a Tanh
activation is added to end of the network.

Discriminator Network. We utilize a patch based discriminator network
PatchGAN [6] design which evaluates local patches of the generated image and
gives an average score as a measure instead of considering the whole input. This
gives more robust results than the vanilla GAN. Our patch based discriminator
has 6 convolution layers followed by batch normalization except the first and the
last layers. First 5 layers have LReLU activation and the last convolution layer
pass its outputs to Sigmoid activation.

3.2 Training Objective

The main objective function is formed by combining the reconstruction and
adversarial losses. The total loss function is optimized with back-propagation by
using Adam optimizer [9]. L2 pixel-wise distances between the synthesized image
and the ground truth are used as reconstruction loss. Even though it forces the
network to produce a blurry output, it guides the network to roughly predict
texture colors and low frequency details. Discriminator network computes a score
according to quality of the generator outputs and, and is used as an adversarial
loss as described in Eq. 1.

Total loss function defines the objective used in the training phase. Each
component of the total loss function is governed by a coefficient λ:

L = λ1Lrec + λ2Ladv. (2)

where Lrec is reconstruction loss and Ladv is adversarial loss.
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4 Experiments

4.1 Dataset

A diffusion dataset obtained from the Human Connectome Project (HCP) is
used [17], where 29 diffusion subjects are randomly selected, and 25 are used to
train the network and four of them are used in testing. HCP diffusion images
are multi-shell, from which a single shell is extracted for each subject, which
resulted in 108 diffusion volumes per subject. It was shown that the best b-value
with an SNR of 30 for a non-diffusion weighted volume is between 3000 and
4000 s/mm2 [16]. As the SNR of the HCP data is greater than 30 for the non-
diffusion weighted volume, a single shell that has b-value 2000 s/mm2 is selected.
DIPY [4] library is used in all the analysis. All 108 diffusion-weighted volumes
including non-diffusion weighted volumes are used in training the network, and
the super resolution model is applied for up-sampling of all diffusion volumes in
the test stage. In Fig. 2, sample visual results for diffusion-weighted images with
Ibc
LR, ÎHR and IHR from a selected subject are shown. It can be seen that Ibc

LR is
blurry and our network produces ÎHR image with a success.

Fig. 2. Diffusion-weighted images for IbcLR, ÎHR and IHR of selected one subject,
respectively.

4.2 SNR Comparison and FA (Fractional Anisotropy) Maps

SNR values of Ibc
LR, ÎHR and IHR are compared to measure how image generation

introduced noise to diffusion data. The same ROI is used to compare each of the
images. SNR values are computed according to most signal attenuation direction
approach [2].

Corpus Callosum (CC) is segmented automatically using fractional
anisotropy (FA) values. SNR values in the CC region in x, y ad z-directions
are compared for four different subjects in Table 1. It can be observed that ÎHR

shows closer SNR values to IHR than those of the Ibc
LR.

As a second quantitative evaluation, FA histograms are calculated for each
subject. Figure 3 depicts the histograms for two of the subjects. The histograms
show that IHR and ÎHR exhibit very similar distributions for FA values that are
greater than 0.4. Other two subjects displayed similar distributions.

The generated FA maps and color FA maps are shown in Fig. 4 for one of the
subjects. It can be observed that IHR and ÎHR have similar FA and color FA
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Table 1. SNR values comparison in the various directions. Generated output has
similar SNR values with the ground truth.

Subject 1 Subject 2 Subject 3 Subject 4

Direction IbcLR ÎHR IHR IbcLR ÎHR IHR IbcLR ÎHR IHR IbcLR ÎHR IHR

b0 76.05 62.64 50.19 72.52 63.04 51.02 40.8 37.26 29.1 113.47 92.87 83.51

x-dir 12.15 10.92 9.2 12.39 11.59 10.3 5.99 4.62 5.24 16.08 12.82 14.29

y-dir 39.27 32.14 27.44 36.05 34.21 28.7 18.91 16.35 15.25 52.0 43.43 45.52

z-dir 33.75 25.79 25.99 31.44 26.42 27.95 18.78 14.12 15.89 56.57 43.44 49.33

(a) Subject 1 (b) Subject 2

Fig. 3. FA distributions for two subjects. Green shows IHR distribution, blue shows
ÎHR and red shows IbcLR (Color figure online)

Fig. 4. Color FA maps are shown for IbcLR, ÎHR and IHR images respectively. Red
indicates right-left axis, green for anterior-posterior axis and blue for inferior-superior
axis diffusion. (Color figure online)

maps while the baseline bi-cubic interpolation introduces attenuation and blur
in the FA maps.

4.3 Tensor and ODF Analysis

For further evaluation of the quality of the reconstructed high resolution diffusion
volumes, the diffusion tensor models are constructed for ÎHR, Ibc

LR and IHR.
Figure 5 shows the results for one of the subjects. Similar tensor orientations
and strengths at the crossing points of CC and corticospinal tracts (CST) are
observed for the ÎHR and IHR of test subjects.

The orientation distribution functions (ODFs) are generated using con-
strained spherical deconvolution (CSD) [15] over the high resolution diffusion vol-
umes. In Fig. 6, reconstructed ODFs are shown for one subject. It was observed
that Ibc

LR has bigger artifactual side lobes.
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Fig. 5. Reconstructed tensors of diffusion image for one selected subject. Leftmost
image is a general coronal view. Other views show IbcLR, ÎHR and IHR images at the
area of crossing between CC and CST, respectively. Red indicates right-left axis, green
for anterior-posterior axis and blue for inferior-superior axis diffusion. (Color figure
online)

Fig. 6. Reconstructed ODFs over high resolution diffusion images. Leftmost image is a
general coronal view. Crossing between CC and CST is shown in the yellow rectangle.
Other views show ODFs of IbcLR, ÎHR and IHR images at the area of crossing between
CC and CST, respectively. (Color figure online)

5 Conclusions

In this paper, for the first time, an end-to-end super-resolution method based on
GANs is presented for dMRI data. This approach does not assume any model,
does not simply interpolate existing data but learns a data-driven generative
mapping. The experimental quantitative results such as distribution of FA values
and SNR as well as qualitative results such as FA maps, color FA maps, recon-
structed tensors and ODFs demonstrate that GANs produce promising results
to create higher resolution data using low resolution dMRI input. Although our
work shows a preliminary proof of concept with GANs to increase the spatial
resolution of dMRI twofold, our future work investigates further tuning of net-
works with larger training sets, increasing the resolution to triple, quadruple, or
higher scale factors, and extending our work to angular up-sampling.
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Abstract. Recently, many researchers have attempted to apply deep neural
networks to detect Atrial Fibrillation (AF). In this paper, we propose an
approach for prediction of AF instead of detection using Deep Convolutional
Neural Networks (DCNN). This is done by classifying electrocardiogram
(ECG) before AF into normal and abnormal states, which is hard for the car-
diologists to distinguish from the normal sinus rhythm. ECG is transformed into
spectrogram and trained using VGG16 networks to predict normal and abnormal
signals. By changing the time length of abnormal signals and making up their
own datasets for preprocessing, we investigate the changes in F1-score for each
dataset to explore the right time to alert the occurrence of AF.

Keywords: Atrial fibrillation � Arrhythmia � Deep neural networks
Convolutional neural networks

1 Introduction

Atrial Fibrillation (AF) is one of the common cardiac arrythmia in patients, which is
usually accompanied by other serious symptoms such as stroke [1]. This irregular heart
rhythm also increases the chance of occurrence of heart failures and mortality in
arrythmia patients [2]. Then, it is crucial to detect and predict AF as early as possible.
Many machine learning approaches have been used to classify normal sinus rhythm
and cardiac arrythmias from electrocardiogram (ECG) [3–5]. Recently, deep learning
has reported its successful contributions to various areas such as image classification
[6–9]. Many researchers have applied deep neural networks to monitor the occurrence
of AF. Among which, convolutional neural networks (CNN) and recurrent neural
networks (RNN) have been popular in feature extraction to detect AF and other
arrythmias [10–13]. However, they have been focused on detection and not prediction
of AF. A few researches have challenged to predict AF before it happens using
machine learning and neural networks [14, 15]. In this paper, we propose a new AF
prediction algorithm to explore the prelude of AF that is difficult for the cardiologists to
identify using Deep Convolutional Neural Networks (DCNN). The ECG signals before
AF are divided into normal and abnormal signals, and the time length of each of these
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I. Rekik et al. (Eds.): PRIME 2018, LNCS 11121, pp. 164–171, 2018.
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two classes are different. Then, we train VGG16 networks [16] and measure F1-scores
for each different label case to check the dynamics of ECG before AF.

2 Scenario of Prediction to AF

Figure 1 shows the scenario of predicting normal and abnormal states from ECG. To
predict prelude of AF, we divide the ECG signals (before the occurrence of AF) into
normal signal and abnormal signal. Normal signal is the same as regular sinus rhythm,
however, abnormal signal is difficult to be distinguished from normal signal with
human eye. The goal of the scenario is to alert arrythmia patients 4–5 min ahead the
possibility of occurrence of AF by monitoring their ECG continuously.

3 Data Preprocessing

3.1 Dataset

We use single-lead ECG dataset provided by Keimyung University Dongsan Medical
Center (KUDMC), which is private and anonymized. We use ECG signals that are
about 10 min long to predict normal and abnormal signals before AF to predict normal
and abnormal signals as mentioned in Fig. 1. We choose to train each patient’s data
separately because hemodynamic response i.e. the average rhythm and characteristic of
the heart beat is unique to each patient [2]. So, the dataset for patient-dependent model
requires long sequences of each patient which contains both normal sinus rhythm and
AF. From the restricted condition, we choose ECG signals of three patients because
ECG records have very few cases of the continuation of normal and AF signals. To
provide more experiments, we additionally use two records of paroxysmal AF
(PAF) from PhysioNet dataset [15, 17]. Table 1 illustrates the number of obtained
spectrograms from ECG signals, duration of ECG, and data source.

Fig. 1. Scenario for prediction of AF. ECG signal is divided into normal and abnormal signals
before occurrence of AF. DCNN learns and predicts if the signal is in normal state or in abnormal
state.
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3.2 Preprocessing

Figure 2 shows the preprocessing of ECG signals. Since ECG is a time-series data, we
transform ECG into spectrograms to be used as the input for CNN. Spectrograms are
generated using short-time Fourier transform of every 30 s ECG signals with an
overlap of 1 s [14].

3.3 VGG16

To classify very similar but different signals, i.e. normal and abnormal states, we
utilizes DCNN because it is considered as the powerful algorithm in image processing
field for its successful performance to image classification in ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) in 2012 [7]. VGG16 network is one of the
DCNN which consists of 13 convolution and pooling layers and 3 fully-connected
layers [16]. In this paper, VGG16 is considered to predict normal and abnormal states
since it has a deep architecture with good performance for image classification. We use
VGG16 networks implemented with Keras [18]. To overcome the paucity of data
samples, pretrained weights from ImageNet [7] are considered and fine-tuned for
normal and abnormal classes. The architecture of VGG16 is as shown in Fig. 3.

Table 1. Dataset information

Patients # of spectrograms Duration of ECG [minutes] Source of data

Patient 1 1879 23 KUDMC
Patient 2 272 9 KUDMC
Patient 3 363 10 KUDMC
Patient 4 299 30 PhysioNet
Patient 5 299 30 PhysioNet

Fig. 2. Preprocessing of the ECG signals convert to spectrograms. P1, P2 are patients. From
their ECG records, we divide normal and abnormal periods. The divided ECG signals are
transformed in to spectrograms to use them as input to CNN. Each patient’s dataset is used to
train its own subject specific model.
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3.4 Training Configuration

The input of VGG16 is spectrograms obtained from ECG of size 256 � 256. The
output is two classes with normal ([1 0]) and abnormal ([0 1]) signals. Optimizer is
ADAM [19]. We applied dropout [20] and batch normalization [21] to fully-connected
layers to stabilize training and validation loss.

Fig. 3. Architecture of VGG16 network. To solve AF prediction problem, we modified fully
connected layers and the dimension of the output layer.
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4 Experiments

Not only to predict normal and abnormal ECG signals but also to find proper time to
alert the occurrence of AF, we make up abnormal states as 4, 5, and 6 min before AF.
By varying abnormal periods, we obtain 3 cases of datasets for each patient as shown in
Fig. 4.

We train VGG16 network for each dataset and every patient. We measure the F1-
scores after the training process and test the accuracies to investigate the discrimination
of each case of abnormal states. Each F1-score is the average of F1-scores calculated
from three times experiments with the same training and test set. We additionally
prepare several baseline models to compare them to VGG16. Since Multi-Layer Per-
ceptron (MLP) and Support Vector Machine (SVM) are not suitable for high dimen-
sional data i.e. spectrograms, we consider standard CNN and Long-Short Term
Memory (LSTM) networks [22] as baseline models. The simple CNN consists of two
convolution layers, one max pooling layer, and fully connected layers. The LSTM
model has 1 LSTM cell and fully connected layers.

4.1 Model Performance

For each case of abnormal state, we measure F1-scores of each model as shown in
Table 2. VGG16 reports higher F1-scores compared to standard CNN and LSTM.
LSTM fails to learn the data for patient 3, 4 and 5 with low F1-scores as mentioned in
Table 2, whereas standard CNN and VGG16 converge their train losses. The better F1-
scores of VGG16 shows that the deeper CNN architecture is good for learning our
datasets.

As shown in the table, every patient shows different F1-scores. The diversity in
dynamics of F1-score is considered since patients can have their own hemodynamic
consequences in their ECG records [2]. The lower F1-score indicates that normal and
abnormal states are hard to believe the prediction results by the DCNN. Whereas, the
higher F1-score indicates that normal and abnormal states are easy to distinguish with
high reliability. In Fig. 4, Patient 1 and 5 show a monotonic decrease of F1-scores.

Fig. 4. Varying the length of abnormal states to explore proper alert time for AF.
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It indicates that the 4-min case has higher discrimination compared to 5 and 6-min
cases. Patients 4 is the opposite case of Patient 1 and 5, which means that the prediction
accuracy is more believable through time. For Patients 2 and 3, the prediction of AF is
more believable in 4 and 6 min. Those results show that the change in F1-scores
implies the relative reliability of prediction results for existence of abnormal state
before AF happens.

4.2 Application to Alert the Occurrence of AF

Figure 5 shows the change of test accuracies and F1-scores for datasets which have
different length of abnormal states for each patient. In each figure, the markers indicate
the highest accuracy and F1-score to predict test data as normal or abnormal signals.

Table 2. F1-scores of VGG16 and baseline models (standard CNN and LSTM) for various case
of abnormal states

Model Case of Abnormal states
[minutes]

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

VGG16 4 0.6 0.76 0.57 0.65 0.72
5 0.57 0.57 0.41 0.69 0.62
6 0.54 0.70 0.61 0.72 0.56

CNN 4 0.5 0.56 0.36 0.42 0.57
5 0.4 0.54 0.46 0.55 0.53
6 0.44 0.59 0.39 0.4 0.42

LSTM 4 0.46 0.6 0.33 0.33 0.33
5 0.36 0.52 0.38 0.33 0.33
6 0.6 0.49 0.33 0.33 0.33

Fig. 5. Change of test accuracies and F1-scores for 4, 5, 6 minute-dataset for patients. The
Markers in each figure indicate the highest accuracy and F1-score for its abnormal section.
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Since F1-score considers both precision and recall unlike the accuracy, the dynamics
between accuracies and F1-scores looks different for each patient as shown in Fig. 5.
By considering the abnormal periods from the highest accuracy verified by its F1-score
as the confidence for the prelude of AF, it has chance for application to alert the
occurrence of AF to both doctors and patients to determine if AF could happen.

5 Conclusion and Future Works

Prediction of AF is a crucial task to save the patient’s life because AF could lead to
fatal diseases. In this paper, we attempted to predict the prelude of AF using DCNN.
We trained VGG16 network to predict normal sinus rhythm and abnormal signals, and
measured F1-scores for different length of abnormal states. The F1-score range of
patients showed that it had subject specific discriminant patterns. DCNN suggests that
there are some abnormal signals before AF that are difficult to distinguish from normal
signals.

For future work, it is possible to analyze wider range of abnormal sections to
explore F1-score dynamics and additional experiments with more patients can be
considered. Also, we are considering a new DCNN learning algorithm to detect very
sensitive variation of AF signals in normal and abnormal conditions. Finally, the
research to automate the exploration of proper alert time is recommended.
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