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Abstract. In this paper, we present a novel multi-party protocol to
facilitate the privacy-preserving detection of trade chains in the context
of bartering. Our approach is to transform the parties’ private quotes into
a flow network such that a minimum-cost flow in this network encodes
a set of simultaneously executable trade chains for which the number of
parties that can trade is maximized. At the core of our novel protocol is a
newly developed privacy-preserving implementation of the cycle cancel-
ing algorithm that can be used to solve the minimum cost flow problem
on encrypted flow networks.

1 Introduction

Bartering refers to the direct exchange of goods or services for other goods or
services [9]. Nowadays, traded goods and services include books, rental cars,
apartments, production surpluses, or idle times of employees. The attractiveness
of bartering stems from the fact that it does not suffer from shortcomings of
currencies such as foreign exchange problems, inflation, liquidity problems of
banks, or concentration of economic power.

Today, a large fraction of bartering transactions is carried out via centralized
(online) platforms which support their users in finding suitable trade partners.
Since bartering involves sensitive personal data (e.g., negotiation ranges), a main
objective of prior work [14–16] is to replace these central platforms by decen-
tralized privacy-preserving protocols which allow a fixed number of parties to
privately barter their commodities thus eliminating the risk that a platform
operator may not only learn sensitive personal data but (to some extent) can
also control and manipulate which parties eventually trade their commodities.

Specifically, in the considered bartering setting, the privacy-preserving multi-
party protocols of [14–16] allow each party to specify a quote that includes an
offered and a desired commodity along with the corresponding quantity ranges
at which a party is willing to trade. The protocols then obliviously detect a
trade which consists of disjoint trade cycles (of lengths greater than or equal to
two). These trade cycles encode how the parties can exchange their commodities
(in a cyclic fashion) such that each one of the trade partners is satisfied with the
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trade. From participating in such a protocol, a party only learns its local view
of a trade, i.e., its direct trade partners and what to exchange with them. Yet a
party’s quote remains private at all times.

Besides trade cycles, a trade chain is another exchange structure which is
widely studied in the literature (see, e.g., [4,5]). Specifically, trade chains are
of importance when so-called donor parties are considered which are altruistic
parties that give their offered commodity away for free (i.e., without receiving
another commodity in return). Analogously to a trade cycle, a trade chain indi-
cates how the parties can exchange their commodities, with the difference that
the first party in a chain is a donor party and the last party in the trade chain
does not have to give away its offered commodity. The analysis of the impact
of considering trade chains (instead of considering only trade cycles) in the con-
text of conventional (i.e., non privacy-preserving) bartering is an active field of
research (see, e.g., [4,5]). Recent results show that considering trade chains can
lead to a significant increase of the overall number of parties that can trade.
However, to the best of our knowledge, to date there is no privacy-preserving
bartering protocol yet that was explicitly designed for the detection of trade
chains (or a combination of trade chains and trade cycles).

In this paper, we present a first step to close this gap by introducing an
efficient bartering protocol that enables the distributed detection of trade chains
in a privacy-preserving fashion. Our protocol detects an optimal set of simulta-
neously executable trade chains so that the number of parties that can trade is
maximized while the parties’ quotes are kept private at all times. Furthermore,
we formally prove that from participating in our novel protocol, a party only
learns its direct trade partners and what to exchange with them. At the core
of the protocol is a novel privacy-preserving protocol implementing the cycle
canceling algorithm that allows multiple parties to solve the minimum cost flow
problem on encrypted flow networks.

2 Preliminaries

Let e ←$ S indicate that e is drawn uniformly at random from S and let Nb :=
{1, . . . , b}. For a logical statement B (e.g., 0∧1 or 5 < 6), the Iverson Bracket [B]
evaluates to 1 if B is true and to 0 otherwise. The index set of parties P1, . . . , Pι

(ι ∈ N) that participate in a multi-party protocol is defined as P := {1 . . . , ι}.
A directed graph is a graph G = (V,E) where each edge (v, w) ∈ E with

v, w ∈ V is directed from v to w. For a directed graph G = (V,E), a tuple
(v1, v2, . . . , vl) with vi ∈ V and (vi, vi+1) ∈ E (∀i ∈ Nl−1) is referred to as
path (of length l). If additionally (vl, v1) ∈ E, tuple (v1, v2, . . . , vl) is referred
to as cycle (of length l). A (directed) graph G = (V,E) is often represented by
means of an adjacency matrix A := (ai,j)|V |×|V | where for all i, j ∈ V ai,j = 1 if
(i, j) ∈ E and ai,j = 0 otherwise.

Let G = (V,E) be a directed graph and let h : E → S be a function that
maps each edge (v, w) ∈ E to a value in S. For convenience, we sometimes encode
h as a matrix H := (hi,j)|V |×|V | where for all i, j ∈ V hi,j = h(i, j) if (i, j) ∈ E
and hi,j = 0 otherwise.
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The following definitions are based on [6] (extended by a cost function) and
are essential for the formalizing of our approach for the detection of trade chains.

Definition 1 (Flow Network). A flow network is a directed graph G = (V,E)
with a capacity function u : V ×V → R

≥0 and a cost function c : V ×V → R such
that u(v, w) = c(v, w) := 0 in case that (v, w) /∈ E. Furthermore, if (v, w) ∈ E
then (w, v) /∈ E. A flow network has one so-called source node and one so-called
sink node where the source s ∈ V has no incoming edges and the sink t ∈ V has
no outgoing edges.

Definition 2 (Flow). A flow f in a flow network G = (V,E) with capacity
function u(v, w) and cost function c(v, w) is a function f : V ×V → R such that
0 ≤ f(v, w) ≤ u(v, w) and for all w ∈ V \{s, t} ∑

v∈V f(v, w) =
∑

v∈V f(w, v).
The value of a flow f is defined as |f | :=

∑
v∈V f(s, v). A maximum flow

f is a flow in G where |f | is maximized. The cost of a flow f is given by∑
(v,w)∈E c(v, w)·f(v, w). A minimum cost flow f is a flow with minimized cost.

Definition 3 (Residual Network). Given a flow network G = (V,E) and a
flow f , the residual network Gf = (V,Ef ) with residual capacity uf and residual
cost cf is defined as Ef := {(v, w) ∈ V × V : uf (v, w) > 0} and

uf (v, w) :=

⎧
⎨

⎩

u(v, w) − f(v, w) if (v, w)∈E
f(w, v) if (w, v)∈E
0 otherwise

, cf (v, w) :=

⎧
⎨

⎩

c(v, w) if (v, w)∈E
−c(v, w) if (w, v)∈E
0 otherwise

2.1 Paillier Threshold Cryptosystem

Our privacy-preserving bartering protocol for trade chain detection relies on
the additively homomorphic Paillier cryptosystem which has been proven to
be semantically secure [12]. More precisely, we make use of the (τ, ι) threshold
variant of the Paillier cryptosystem from [10] where the private key is distributed
among ι parties such that at least τ parties have to cooperate in order to decrypt
a ciphertext. Figure 1 gives a brief overview of the corresponding key generation
procedure, the encryption function, and some homomorphic properties. In the
remainder of this paper, we omit the public and private key from our notation,
define �m� := E(m), and represent negative integers by the upper half [�n/2	,
n − 1] of the plaintext space P (cf. Fig. 1). With C we denote the corresponding
ciphertext space (see Fig. 1). For convenience, we write the encryption of a matrix
A = (ai,j)m×n as �A� := (�ai,j�)m×n and define �A[i, j]� = �ai,j�.

2.2 Secure Multi-Party Computation

Secure multi-party computation (SMPC) allows a set of ι parties to compute an
ι-input functionality F such that each party only learns its prescribed output and
what can be deduced from it in combination with its private input—even in the
presence of an adversary. In this paper, we consider a semi-honest adversary that
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Key Generation:
Generate two primes p = 2p′ + 1, q = 2q′ + 1 of bit length k/2 s.t. p′, q′ are also primes
Set n := pq, n′ := p′q′ and select β ←$ Z

∗
n, (a, b) ←$ Z

∗
n × Z

∗
n

Set g := (1 + n)a · bn mod n2 and Θ := an′β mod n
Public key: (g, n, Θ), Private key: (τ, ι) sharing of βn′

Plaintext space: P := Z
∗
n, Ciphertext space: C := Z

∗
n2

Encryption:
m ∈ P, r ←$ Z

∗
n, E(m) := gmrn mod n2

Homomorphic Properties:
E(m1) +h E(m2) := E(m1) · E(m2) = E(m1 + m2) (homomorphic addition)

shorthand notation:
l∑

h
i=1

E(m)×ha := (E(m))a = E(a·m) and E(m)×h0 := E(0) with a∈Z\{0} (hom. scalar mult.)
E(m1) h E(m2) := E(m1) +h (E(m2)) 1 = E(m1 m2) (homomorphic subtraction)

Fig. 1. Overview of the threshold Paillier variant from [10].

corrupts and controls a fixed set of parties following the protocol specifications
but trying to learn as much as possible about the inputs of the honest parties.

Let x := (x1, . . . , xι) and let F : ({0, 1}∗)ι → ({0, 1}∗)ι, x 
→
(F1(x), . . . , Fι(x)) be a multi-party functionality where P� (� ∈ P) provides
input x� and obtains output F�(x). Furthermore, let π be an ι-party protocol
allowing to compute F . With I := {i1, . . . , iκ} ⊂ P we denote the index set of
1 ≤ κ < ι corrupted parties controlled by the semi-honest adversary.

Informally, party P�’s view on the execution of a protocol π on input x con-
sists of the messages received during the protocol execution as well as the party’s
internal random coin tosses. Let xI and FI(x) denote the κ-tuples (xi1 , . . . , xiκ

)
and (Fi1(x), . . . , Fiκ

(x)), respectively. A protocol π is said to securely (i.e.,
correctly and privately) compute functionality F if there exists a probabilis-
tic polynomial time simulator S which on input I, xI , and FI(x) simulates a
protocol transcript that is computationally indistinguishable from the view of
the corrupted parties resulting from an actual protocol execution. For the sake
of clarity, we enclose simulated values with angle brackets 〈·〉.

A gate ρ (resp., a gate functionality G) is a special type of protocol (resp.,
functionality) which obtains encrypted input and/or returns encrypted output.
In general, these ciphertexts come from a higher-level protocol (resp., function-
ality) and the corresponding plaintext values are not known to any party. We
write (o) ← G(x) (resp., (o) ← ρ(x)) to indicate that all parties provide the
same input and obtain the same output.

3 Overview

3.1 Bartering Related Terminology

We consider multiple parties P1, . . . , Pι where each party specifies one offered
and one desired commodity. In particular, given a finite set C of commodities
c1, . . . , c|C |, each party P� (� ∈ P) specifies one quote q(�) := (o(�),d(�)) where
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P offer demand
P1 (A, 8) (λ, 0)
P2 (B, 10) (λ, 0)
P3 (C, 5) (A, 7)
P4 (A, 6) (C, 4)
P5 (D, 6) (A, 5)
P6 (D, 5) (B, 8)

→
Def.5

s

d1 o1

d2 o2

d3 o3 d4 o4
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Fig. 2. Example for transforming a set of quotes Q into an exchange network. The
source and the sink are represented by square nodes, the offer and the demand of
donor parties are represented by diamond nodes, and the offer and the demand of ordi-
nary parties are represented by round nodes. Each edge is annotated with its capacity
(above) and its cost (below).

o(�) refers to P�’s offer and d(�) refers to P�’s demand. The offer o(�) := (c(�)o , q
(�)
o )

indicates that P� offers a quantity of at most q
(�)
o ∈ N of commodity c

(�)
o ∈ C .

Similarly, the demand d(�) := (c(�)d , q
(�)
d ) of P� specifies the minimum quantity

q
(�)
d at which it desires commodity c

(�)
d ∈ C . A quote q(�) indicates that party P�

is willing to give at most q
(�)
o units of commodity c

(�)
o iff it receives a least q

(�)
d

units of commodity c
(�)
d . We distinguish a special type of a party P�, called

donor party, with quote q(�) := ((c(�)o , q
(�)
o ), (λ, 0)) that is willing to give away at

most q
(�)
o units of commodity c

(�)
o where symbol λ indicates the absence of P�’s

demand. A party P� is referred to as endowed party in case that P� receives a
specific quantity of its desired commodity without having to give away anything
to another party in return. The quotes q(�) = (·,d(�)) and q(�′) = (o(�), ·) of two
parties P� and P�′ (� �= �′) are partially compatible iff for d(�) = (c(�)d , q

(�)
d ) and

o(�′) = (c(�
′)

o , q
(�′)
o ) it holds that [(c(�)d = c

(�′)
o ) ∧ (q(�)d ≤ q

(�′)
o )] = 1. The set of

quotes of all parties P1, . . . , Pι is denoted as Q := {q(1), . . . ,q(ι)}.

Definition 4 (Trade Chain). For parties P1, . . . , Pι and their corresponding
set of quotes Q, a trade chain of length m is a tuple (P�1 , P�2 , . . . , P�m

) (with
�i �= �j for i �= j) such that q(�1) = (o(�1), (λ, 0)) and q(�2) = (·,d(�2)) as well
as q(�i) = (o(�i), ·) and q(�i+1) = (·,d(�i+1)) are partially compatible (i = 2, . . . ,
m − 1). Two trade chains are called disjoint and are simultaneously executable
in case they have no parties in common.

3.2 Approach

The goal of this work is to design an efficient privacy-preserving bartering pro-
tocol to determine an optimal set of disjoint trade chains (that when executed
simultaneously maximize the number of parties that can trade). Our approach is
to first transform the parties’ private quotes into a special type of flow network,
referred to as exchange network (see Fig. 2).
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Definition 5 (Exchange Network). For a given set of ι parties P and the
corresponding set of quotes Q, an exchange network is a flow network GEN =
(V,E) with two nodes d�, o� ∈ V for each party P� (� ∈ P) representing its
demand and offer. Furthermore, (d�, o�) ∈ E with u(d�, o�) := 1 and c(d�, o�) :=
−1 as well as (o�, d�′) ∈ E with u(o�, d�′) := 1 and c(o�, d�′) := 0 in case that
q(�) = (o(�), ·) and q(�′) = (·,d(�′)) are partially compatible (�, �′ ∈ P). In
addition, GEN has a source and a sink node s, t ∈ V where (s, d�) ∈ E iff q(�) =
(·, (λ, 0)) with u(s, d�) := 1 and c(s, d�) := 0 as well as (o�, t) with u(o�, t) := 1
and c(o�, t) := 0 (∀o� ∈ V ). GEN ∼ Q indicates that GEN is deduced from Q.

A maximum flow of minimum cost f in GEN = (V,E) encodes an opti-
mal set of disjoint trade chains for P1, . . . , P� where an edge (o�, d�′) ∈ E with
f(o�, d�′) = 1 indicates that a party P� has to give away some specific amount (to
be negotiated after all parties learned their trade partners) of its offered commod-
ity to party P�′ (�, �′ ∈ P). A sequence S of edges (s, d�1), (d�1 , o�2), . . . , (o�m

, t)
in GEN with f(v, w) = 1 (∀(v, w) ∈ S) encodes a single trade chain correspond-
ing to (P�1 , P�2 , . . . , P�m

) where �1, �2, . . . , �m ∈ P. This correlation is due to
the construction of an exchange network: Each party P� is represented by two
nodes in GEN (with an edge of capacity 1 in between) where one node is associ-
ated with P�’s demand and the second node is associated with P�’s offer.1 This
ensures that there is at most a flow of 1 “through” each party enforcing that
each party is involved in at most one trade chain. There are directed edges of
capacity 1 between the source node and the demand nodes of all donor parties
to ensure that each trade chain is initiated by a donor party. Furthermore, there
are directed edges of capacity 1 between the sink node and the offer nodes of
all parties so that in principle each party can become the end of a trade chain.
Our cost encoding is motivated by the fact that for each additional party that is
added to a trade chain, the cost of the flow is decreased by one such that deter-
mining a maximum flow of minimum cost f in GEN is analogous to determining
a set of disjoint trade chains maximizing the number of parties that can trade.

The problem of computing a (maximum) flow of minimum cost is known as
the minimum cost flow problem (for a maximum flow).

Definition 6 (Minimum Cost Flow Problem). Given a flow network G =
(V,E), a capacity function u, a cost function c, and a maximum flow f in G, the
minimum cost flow problem is to find a flow f ′ of minimum cost with |f | = |f ′|.
One direct and efficient approach for solving the minimum cost flow problem (for
a maximum flow) is to use the cycle canceling algorithm [11] (cf. Algorithm 1).
This algorithm takes a flow network G = (V,E), a capacity function u, as well
as a cost function c as input and first computes a (maximum) flow f in G. Then,
it iteratively eliminates directed cycles with negative cost (i.e., cycles for which
the sum of the costs associated with its edges is negative) in the residual network
arising from G (together with u and c) and f . To this end, the flow along the
1 Note that there is also a demand node for each donor party in order to ensure that

no information about them (e.g., the number of all donor parties) is leaked in our
privacy-preserving bartering protocol.
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Algorithm 1. Cycle Canceling Algorithm for Minimum Cost Flow.
Input : Flow network G = (V,E) with capacity function u and cost function c.
Output: A maximal flow f in G with minimum cost.

Initialization Phase
1 f ← MaximumFlow(G, u);
2 if |f | = 0 then
3 return ⊥
4 (Gf , uf , cf ) ← ResidualNetwork(G, u, c, f);

Main Phase
5 N ← NegativeCostCycle(Gf , uf , cf );
6 while N exists do
7 u∗ ← min{uf (e) : e is an edge of N};
8 f ← AugmentFlow(G, f,N, u∗);
9 (Gf , uf , cf ) ← ResidualNetwork(G, u, c, f);

10 N ← NegativeCostCycle(Gf , uf , cf );

11 return f ;

negative cost cycle is augmented by the minimum value of the residual capacities
of the edges belonging to the cycle. This operation does not change |f |. The
algorithm terminates once all negative cost cycles are eliminated. According to
the negative cycle optimality condition [2], this approach allows the computation
of a maximum flow with minimum cost.

The maximum flow f in G (Step 1, Algorithm 1) can be computed by using
the push-relabel algorithm (see, e.g., [6]). A negative cost cycle (Steps 5 and 10,
Algorithm 1) can be computed by an extension of the Bellman-Ford algorithm
(see, e.g., [6]) that not only determines whether a negative cost cycle exists but
also computes the edges belonging to such a cycle. After computing the negative
cost cycle N , the minimum residual capacity u∗ in the cycle is determined and
the flow is augmented accordingly (Step 8, Algorithm1).

At the core of our novel privacy-preserving bartering protocol for the detec-
tion of an optimal set of disjoint trade chains (Sect. 5) is a newly developed
privacy-preserving implementation of the cycle canceling algorithm.

4 Gates

In the following, we review gates secure against semi-honest adversaries which
are used as building blocks for our novel privacy-preserving bartering protocol.

4.1 Secure Basic Operations

Definition 7 (GMult: Secure Multiplication). Let P1, . . . , Pι hold cipher-
texts �x� and �y�. Then, gate functionality GMult is given by (�x · y�) ←
GMult((�x�, �y�)).
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A gate ρMult implementing GMult for the semi-honest model can be derived
from the multiplication gate presented in [7,8] which has communication and
round complexities in O(ιk) and O(1), respectively, where k refers to the security
parameter of the Paillier cryptosystem.

Definition 8 (GLT: Secure Less Than Comparison). Let P1, . . . , Pι hold
ciphertexts �x� and �y�. Then, gate functionality GLT is given by (�b�) ←
GLT((�x�, �y�)) with b := [x < y].

A gate ρLT implementing GLT for the semi-honest model has been presented
in [13]. This gate has communication and round complexities in O(ιk) and O(ι),
respectively. Based on gate ρLT it is straight-forward to derive the corresponding
greater than (GT), less than or equal (LTE), greater than or equal (GTE), and
equality test (ET) variants as sketched, e.g., in [13].

4.2 Secure Negative Cost Cycle Computation

We use an adaptation of the Bellman-Ford algorithm (see, e.g., [6]) for the com-
putation of negative cost cycles in exchange networks.

In general, the Bellman-Ford algorithm can be used to solve the single-source
shortest-paths problem on a weighted directed graph G = (V,E) for a given
source node s ∈ G where the weights of the edges are defined by a cost function
c : E → R (cf. [6]). The single-source shortest-paths problem is to find a shortest
path (i.e., the path with the lowest cost) from the source node to all other
nodes in G. Since the Bellman-Ford algorithm supports negative edge costs,
there can be negative cost cycles in G implying that no shortest path can be
found. In this case, the Bellman-Ford algorithm indicates that no solution exists.
Otherwise, the algorithm provides a solution to the single-source shortest-paths
problem. In particular, the Bellman-Ford algorithm iterates |V | times over all
edges (v, w) ∈ E and for each node maintains the current lowest cost from the
source node as well as the associated predecessor node. In case that the current
solution can still be improved in the |V |-th iteration step, then G contains at least
one negative cost cycle. Since we are not only interested in learning whether a
negative cost cycle exists in G but also have to determine the edges of a negative
cost cycle, the Bellman-Ford algorithm has to be slightly adapted such that, e.g.,
the node for which the last cost update is obtained is used in combination with
the currently stored predecessors for all nodes to find the nodes of the negative
cost cycle that induced the last cost update.

Definition 9 (GNCC: Secure Negative Cost Cycle Computation). Let
P1, . . . , Pι hold the encrypted adjacency matrix �A� ∈ C

|V |×|V | of a directed
graph G = (V,E) and the encrypted cost matrix �C� ∈ C

|V |×|V | encoding the cost
function of G. The index of the source node s of G is publicly known. Then, gate
functionality GNCC is given by �N � ← GNCC((�A�, �C�, s)) where �N � ∈ C

|V |×|V |

is an encrypted adjacency matrix encoding a negative cost cycle in G.
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In [3], a secure protocol implementing the Bellman-Ford algorithm is pro-
posed. It is straight-forward to modify this protocol to additionally extract the
encrypted adjacency matrix �N � encoding a negative cost cycle in G. The com-
munication and round complexities of the adapted protocol from [3] are in O(ι4k)
and O(ι4) where k refers to the security parameter of the Paillier cryptosystem.

5 Protocol

In this section, we now present our novel privacy-preserving bartering protocol
for the detection of trade chains.

Definition 10 (FOTCD: Optimal Trade Chain Detection). Let P� hold
private input q(�) (∀� ∈ P). Then, protocol functionality FOTCD is given by
(T (1), . . . , T (ι)) ← FOTCD(q(1), . . . ,q(ι)) where T (�) := (T (�)

send, T
(�)
rec ) refers to the

indices of P�’s direct trade partners w.r.t. the detected trade chains derived from
a maximum flow f∗ with minimum cost in GEN ∼ Q := {q(1), . . . ,q(ι)} where f∗

is chosen uniformly at random from all maximum flows of minimum cost in GEN.

5.1 Intuition

Intuitively, our novel protocol πOTCD (securely implementing functionality
FOTCD in the semi-honest model) can be divided into four phases (see Algo-
rithm2). In the first phase, the parties compute the encrypted capacity
matrix �U� and the cost matrix �C�, encoding the capacity function and the cost
function of the private exchange network GEN = (V,E) ∼ Q. These matrices
are computed in an oblivious fashion such that no party learns any informa-
tion about the quote of another party. In the second phase, a maximum flow
f (not necessarily having minimum cost) is computed in an oblivious fashion
where the result is encoded in an encrypted matrix �F�. Based on �F�, the
encrypted capacity matrix of the residual network of GEN is computed in an
oblivious fashion. The third phase uses gate ρNCC (see Sect. 4) to iteratively find
a negative cost cycle (where in ρNCC the order of the edges to be processed
is chosen uniformly at random) in the current residual network of GEN in a
privacy-preserving fashion. In order to eliminate the negative cost cycles, the
flow as well as the residual capacities are updated by performing homomorphic
operations on �F� and �Uf �. At the end of the third phase, a maximum flow f∗

with minimum cost is encoded by means of �F� (which in turn represents an
optimal set of trade chains). In the fourth phase, the parties jointly extract the
identifiers T

(�)
send, T

(�)
rec of the trade partners of each party P� from �F� such that

a party only learns its own trade partners as prescribed by Definition 10. The
identifiers indicate that party P� has to give away some quantity of its offered
commodity to party P

T
(�)
send

(receiver) and is to receive some quantity of its desired
commodity from party P

T
(�)
rec

(sender). An identifier of value 0 is used to indicate

that a sender (resp., receiver) does not exist. For example, T
(�)
rec = 0 for a donor

party P� and T
(�′)
send = T

(�′)
rec = 0 for a party P�′ that is not part of a trade chain.
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The main challenge of designing a protocol that securely implements func-
tionality FOTCD is to keep the parties’ quotes Q (and with that the structure of
the resulting exchange network GEN ∼ Q) private. Consequently, it is necessary
to design a data oblivious protocol (i.e., the protocol flow is independent of the
parties private input) that provides individualized output (i.e., each party only
learns its local view of the detected trade chains). Algorithm 1 (see Sect. 3.2) is
not data oblivious because the while loop in the main phase terminates once
there are no further negative cost cycles. Furthermore, it cannot be used to pro-
vide individualized output as it is designed to operate on a public flow network.
By fixing the number of iterations for finding negative cost cycles to |ι|, we
ensure that all negative cost cycles are found while the protocol flow becomes
data oblivious. In case that there are no further negative cost cycles, our pro-
tocol obliviously operates on encrypted dummy cycles that do not influence the
already computed encrypted maximum flow of minimum cost. Finally, we adopt
a technique from [16] to extract the local view of each party from the com-
puted optimal set of trade chains represented by the encrypted maximum flow
of minimum cost.

5.2 Protocol Description

In the following, we present the details of protocol πOTCD. For convenience, we
associate the 2�-th and the (2� + 1)-th row (resp., column) of the encrypted
adjacency matrices used for the protocol specification of πOTCD with node d�

and node o� of GEN (∀� ∈ P), respectively. The first and the last row (resp.,
column) are associated with the source node s and the sink node t, respectively.

1. Exchange Network Construction Phase: The purpose of the first phase is to
compute the encrypted matrices �U�, �C� ∈ C

|V |×|V | with |V | = 2ι + 2 in an
oblivious fashion. These matrices encode the capacity and the cost function of
the exchange network GEN = (V,E) resulting from the parties’ private input
quotes Q (see Definition 5) and represent GEN ∼ Q.

First, P1 initializes the entries at position (2�, 2� + 1) of the matrices �U�
and �C� which encode the directed edge from nodes d� to o� representing the
demand and offer of party P� (∀� ∈ P). In particular, P1 sets these entries in �U�
to �1� and in �C� to �−1�. Additionally, the entries �C[2� + 1, 2�]� representing
the corresponding reverse edges from o� to d� (which are not in GEN but may
exist in the residual network) are set to �1� for later use. Furthermore, party P1

sets the capacity of the edges from each node o� (∀� ∈ P) to the sink node t
appropriately by �U [2� + 1, t]� := �1�. All other entries of �U� and �C� are set to
�0� before they are broadcasted by P1 (see Steps 1–6, Algorithm 2). Subsequently,
all parties obliviously determine the donor parties and update the capacities of
the edges between the source node and the demand nodes of the donor parties in
�U� to �1�. Finally, for all pairs of parties (P�, P�′) with �, �′ ∈ P it is obliviously
checked whether q(�) = (o(�), ·) and q(�′) = (·,d(�′)) are partially compatible. If
this is the case, the encrypted capacity matrix is obliviously updated by setting
�U [2� + 1, 2�′]� := �1� (see Steps 7–10, Algorithm 2).
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Algorithm 2. πOTCD for optimal trade chain detection.
Input : Quote q(�) of party P� (∀� ∈ P ).

Output: Tuple T (�) ∈ P ∪ {0} × P ∪ {0} for party P� (∀� ∈ P ).

Exchange Network Construction Phase

1 Party P1:
2 Initialize �U�, �C� of size |V |×|V |, |V |:=2ι+2 by �U [v, w]�=�C[v, w]�:=�0� ∀v, w∈V ;
3 foreach � ∈ P do
4 Set �U [2�, 2� + 1]� := �1� and �U [2� + 1, t]� := �1�;
5 Set �C[2�, 2� + 1]� := �−1� and �C[2� + 1, 2�]� := �1�;

6 Broadcast �U�, �C�;

7 foreach � ∈ P all parties do Jointly compute (�U [s, 2�]�) ← ρET((�c
(�)
d �, �λ�));

8 foreach �, �′ ∈ P (� 
= �′) all parties do

9 Jointly comp. (�cond1�)←ρET((�c(�)
o �, �c

(�′)
d �)),

(�cond′
1�)←ρGTE((�q(�)

o �, �q(�′)
d

�));

10 Jointly compute (�U [2� + 1, 2�′]�) ← ρMult((�cond1�, �cond′
1�));

Flow Initialization Phase
11 Party P1:
12 Initialize �F�, �Uf � of size |V | × |V | by �F [v, w]� = �Uf [v, w]� := �0� ∀v, w ∈ V ;
13 foreach � ∈ P do Set �F [s, 2�]� = �F [2�, 2� + 1]� = �F [2� + 1, t]� := �U [s, 2�]�;
14 Broadcast �F�, �Uf �;

15 foreach v, w ∈ V (v 
= w) all parties do
16 Jointly compute (�cond2�) ← ρET((�F [v, w]�, �1�));
17 Jointly compute (�Uf [v, w]�) ← ρMult((�cond2�, �U [v, w]� −h �F [v, w]�))

+h ρMult((�1� −h �cond2�, �Uf [v, w]�));
18 Jointly compute (�Uf [w, v]�) ← ρMult((�1� −h �cond2�, �Uf [w, v]�)) +h �cond2�;

Cycle Canceling Phase

19 Repeat ι many times
20 All parties jointly compute �N � ← ρNCC((�Uf �, �C�, t));
21 foreach v, w ∈ V (v 
= w) all parties do
22 Jointly compute (�cond3�) ← ρMult((�N [v, w]�, �U [v, w]�));

23 Jointly compute (�cond′
3�) ← ρMult((�N [v, w]�, �U [w, v]�));

24 Jointly compute (�F [v, w]�) ← ρMult((�cond3�, �F [v, w]� +h �1�))
+h ρMult((�1� −h �cond3�, �F [v, w]�));

25 Jointly compute (�F [w, v]�) ← ρMult((�cond′
3�, �F [w, v]� −h �1�))

+h ρMult((�1� −h �cond′
3�, �F [w, v]�));

26 foreach v, w ∈ V (v 
= w) all parties do
27 Jointly compute (�cond4�) ← ρET((�F [v, w]�, �1�));
28 Jointly compute (�Uf [v, w]�) ← ρMult((�cond4�, �U [v, w]� −h �F [v, w]�))

+h ρMult((�1� −h �cond4�, �Uf [v, w]�));
29 Jointly compute (�Uf [v, u]�) ← ρMult((�1� −h �cond4�, �Uf [v, u]�)) +h �cond4�;

Output Extraction Phase

30 foreach � ∈ P do
31 Party P�:

32 Compute �T
(�)
send� :=

ι∑
h

i=1

(i ×h �F [2�+1, 2i]�), �T (�)
rec � :=

ι∑
h

i=1

(i ×h �F [2i+1, 2�]�);

33 Broadcast �T
(�)
send�, �T (�)

rec �;

34 All parties jointly decrypt �T
(�)
send� and �T (�)

rec � s.t. only P� learns the result;

35 Party P� sets T (�) := (T
(�)
send, T (�)

rec );

36 Party P� outputs T (�);
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2. Flow Initialization Phase: The purpose of the second phase is to obliviously
compute a maximum flow f in GEN which is encoded by the encrypted matrix
�F� ∈ C

|V |×|V |. Based on �F�, the residual capacities of GEN are initialized and
encoded by the encrypted matrix �Uf � ∈ C

|V |×|V |. Instead of using a (privacy-
preserving) variant of the push-relabel algorithm for computing a maximum flow
in GEN(see Sect. 3.2), we follow a more efficient approach that exploits GEN’s
particular structure: A flow of value 1 is sent from source node s to each demand
node associated with a donor party. Then, the flow continues on to the corre-
sponding offer node of the donor party and from there on directly to the sink
node t. Note that such a flow is maximal since the maximum flow in GEN is upper
bounded by the number of donor parties. Furthermore, from the construction of
an exchange network (see Definition 5) it follows that there always is such a flow
in GEN. In protocol πOTCD, party P1 obliviously determines this flow locally by
setting �F [s, 2�]� = �F [2�, 2� + 1]� = �F [2� + 1, t]� := �U [s, 2�]� (∀� ∈ P). In
Steps 15–18 of Algorithm 2, the parties jointly compute the entries of �Uf � based
on �U� and �F�. More precisely, in Step 16 it is obliviously checked whether or
not there is a flow between two nodes v, w (∀v, w ∈ V , v �= w). Based on the
result, �Uf � is obliviously updated according to Definition 3 (see Steps 17–18).

3. Cycle Canceling Phase: In the conventional cycle canceling algorithm (see
Algorithm 1), the while loop in the main phase is executed until all negative cost
cycles are eliminated. In order to leak no information on the structure of the
private exchange network GEN, protocol πOTCD has to be data oblivious and
thus the number of searches for negative cost cycles has to correspond to the
upper bound of necessary searches (to eliminate all negative cost cycles) which
is equal to ι := |P| (see Theorem 1).

At the beginning of each iteration of the cycle canceling phase (see Step 20,
Algorithm 2) gate ρNCC is used to obliviously compute a negative cost cycle in the
residual network of GEN. In gate ρNCC, the order of the edges to be processed is
chosen uniformly at random. First, assume that such a cycle exists. This cycle is
encoded by the encrypted matrix �N � ∈ C

|V |×|V | which constitutes the output of
gate ρNCC. In Steps 21–25, for each edge (v, w) ∈ E that is part of the determined
negative cost cycle, the flow is obliviously updated in the following way: In
case that the edge under consideration is part of the exchange network, the
corresponding entry in �F [v, w]� is obliviously incremented by one (see Step 24,
Algorithm 2). Otherwise, the edge results from a residual flow over (w, v) and
thus entry �F [w, v]� is obliviously decreased by one (see Step 25, Algorithm 2).
Based on the updated flow �F�, in Steps 26–29, the residual capacities �Uf � are
updated analogously to the flow initialization phase.

In case that there is no (further) negative cost cycle before the end of the
ι-th iteration, then all entries of �N � correspond to a fresh encryption of 0 and
thus the privacy-preserving computations performed on �F� and �Uf � are just re-
randomizations of the existing encrypted entries. Consequently, in each iteration
of the cycle canceling phase it is kept private whether a (further) negative cost
cycle exists.
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4. Output Extraction Phase: At the end of the cycle canceling phase, the
encrypted matrix �F� encodes a maximum flow of minimum cost in GEN that in
turn represents an optimal set of trade chains for the participating parties. The
purpose of the output extraction phase is to extract the parties’ local views w.r.t.
the computed trade chains from �F�. In particular, party P� (∀� ∈ P) locally
computes the encryption of T

(�)
send (resp., T

(�)
rec ) as the homomorphic sum of the

�-th row (resp., �-th column) where each encrypted entry is multiplied with the
corresponding column (resp., row) index by using the homomorphic scalar mul-
tiplication operation of the underlying cryptosystem (see Step 32, Algorithm2).
Party P� broadcasts the resulting encrypted values �T

(�)
send� and �T

(�)
rec � which are

jointly decrypted by all parties in such a way that only P� learns the indices of
its direct trade partners.

Complexity. The complexity of the exchange network construction phase is dom-
inated by the O(ι2) calls of gates ρET, ρGTE, and ρMult (see Steps 8–10, Algo-
rithm2). The flow initialization phase has the same communication and round
complexity which results from the iteration over all pairs of nodes in GEN in
order to compute the residual capacities (see Steps 15–18). The ι executions of
gate ρNCC dominate the cycle canceling phase since the communication com-
plexity (resp., round complexity) of protocol ρNCC is in O(ι4k) (resp., O(ι4)).
Finally, the output extraction phase has a communication complexity (resp.,
round complexity) in O(ιk) (resp., in O(1)). The overall complexity of proto-
col πOTCD is dominated by the cycle canceling phase, i.e., the communication
complexity (resp., round complexity) of πOTCD is in O(ι5k) (resp., in O(ι5)).

Theorem 1. Let party P� hold private input q(�) (∀� ∈ P). Then, proto-
col πOTCD securely computes functionality FOTCD in the semi-honest model.

Proof. Correctness (sketch): In the following, we show that on input Q =
{q(1), . . . ,q(�)}, protocol πOTCD computes functionality FOTCD (see Defini-
tion 10).

In the exchange network construction phase, Q is obliviously transformed
into an exchange network GEN ∼ Q represented by the encrypted matrices �U�
and �C�. These matrices are constructed according to Definition 5 based on local
as well as distributed computations on the parties’ private input quotes.

In the flow initialization phase, an initial maximum flow (not necessarily with
minimum cost) from the source node through the donors’ demand and offer nodes
to the sink node is computed locally by party P1. This flow (with a flow value
equal to the number of donor parties) always exists due to the construction of an
exchange network (see Definition 5). This flow is also maximal since each edge
(with capacity 1) leaving the source node is incident to a donor’s demand node.
The capacity of the residual network of GEN w.r.t. to the initial flow is computed
according to Definition 3 (the cost function of the residual network was already
set during the exchange network construction phase).

The correctness of the cycle canceling phase can be reduced to the correct-
ness of Algorithm 1 and the correctness of gate ρNCC. This phase essentially
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implements Steps 5–10 of Algorithm 1 in a privacy-preserving fashion. After
determining a negative cost cycle in the current residual network of GEN by
using gate ρNCC, the flow along the negative cost cycle is augmented by 1 and
the residual network is updated accordingly. Unlike Algorithm1, the number of
iterations of the while loop (see Step 6, Algorithm1) in Algorithm 2 is fixed to
ι in order to achieve data obliviousness. First, it is important to note that ι
iterations are sufficient to eliminate all negative cost cycles because there are ι
edges with negative costs in GEN and in each iteration the flow along at least
one edge with negative cost is increased by 1. Furthermore, in case that there
are no negative cost cycles before the last iteration of the loop has terminated,
the encrypted adjacency matrix �N � (see Step 20, Algorithm 2) merely consists
of fresh encryptions of 0 and the maximum flow of minimum cost in GEN that
is already computed and encoded by �F� is not modified by the operations per-
formed in Steps 21–29 of Algorithm2.

The last phase of protocol πOTCD extracts each party’s trade partners from
�F� which encodes an optimal set of trade chains. In Step 32 of Algorithm2,
�T

(�)
send� (resp., �T

(�)
rec �) corresponds to the encryption of index 2i (resp., index

2i + 1) of the (2� + 1)-th row (resp., 2�-th column) where �F [2� + 1, 2i]� := �1�
(resp., �F [2i + 1, 2�]� := �1�). From the computation of �F� it follows that
T (�) = (T (�)

send, T
(�)
rec ) provides party P� (∀� ∈ P) with the indices of its trade

partners w.r.t. the computed optimal set of trade chains.
Privacy (sketch): In the following, we describe a simulator S which, given

q(i1), . . . ,q(iκ) and (T (i1)
send , T

(i1)
rec ), . . . , (T (iκ)

send , T
(iκ)
rec ), simulates the view of the cor-

rupted parties Pi1 , . . . , Piκ
(I := {i1, . . . , iκ} ⊂ P) that are controlled by a

semi-honest adversary.
The initialization of �U� and �C� which is computed and broadcasted by P1

in Steps 1–6 (Algorithm 2) can be computed in the same way by S. The follow-
ing steps of the exchange network construction phase are simulated by using
the subsimulators of ρET, ρGTE, and ρMult and by setting 〈�C[s, 2�]�〉 ←$ C,
〈�cond1�〉 ←$ C, 〈�cond′

1�〉 ←$ C, and 〈�C[2� + 1, 2�′]�〉 ←$ C. The flow initial-
ization phase can be simulated analogously to the first phase of protocol πOTCD.
In order to simulate the ι iterations of the cycle canceling phase, S uses the
subsimulator of ρNCC and sets 〈�N �〉 ←$ C

|V |×|V |. The remaining steps can
be simulated in the same way as described for the exchange network construc-
tion phase. The broadcasts sent in the output extraction phase (see Step 33,
Algorithm 2) are simulated as 〈�T (�)

send�〉 ←$ C and 〈�T (�)
rec �〉 ←$ C, respectively.

The output of the individual decryption operations is simulated based on the
corrupted parties’ protocol output which is given to S as input.

6 Related Work and Discussion

To the best of our knowledge, in the literature there are only privacy-preserving
multi-party protocols that allow the detection of trade cycles:

The authors of [15] propose a privacy-preserving bartering protocol (secure
in the semi-honest model) by means of which multiple parties can compute a
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set of trade cycles based on their private input quotes. In this protocol, the
parties’ private quotes are transformed into logical formulae which are evaluated
in an oblivious fashion. From participating in the protocol, a party only learns
its direct trade partners. The protocol in [15] has two interesting features: First,
it allows to put arbitrary restrictions on the lengths of the trade cycles to be
detected. Depending on the bartering context an upper bound on the trade
cycle lengths is essential in order to reduce the impact of a dropout and to
facilitate simultaneous exchanges preventing that a party gives away its offered
commodity but does not receive its desired commodity in return (cf. [1,4]).
Second, the protocol supports the integration of arbitrary selection strategies
for the detection of trade cycles (e.g., a strategy that maximizes the number
of parties that can trade their commodities). However, the complexity of the
protocol can grow exponentially in the number of participating parties which is
inevitable as soon as a restriction on the trade cycle length (greater than 2) is
supported because the underlying decision problem is NP-complete [1].

Another privacy-preserving bartering protocol for the detection of trade
cycles has been presented in [16]. This protocol follows a completely different
approach compared to the protocol from [15]. The parties’ private quotes are
transformed into a private weighted bipartite graph. At the core of the proto-
col is a privacy-preserving variant of the Hungarian algorithm which is used
to obliviously compute a maximum weight matching in the weighted bipartite
graph which encodes an optimal set of trade cycles maximizing the number of
parties that can trade. The communication and the round complexities of this
protocol are in O(ι6k) and O(ι6), respectively. A restriction of the trade cycle
lengths is not supported and thus the number of applications is limited.

In contrast to trade cycles, there is no need to restrict the length of trade
chains in order to prevent that a party gives away its offered commodity without
receiving its desired commodity: By conducting the trades in the order specified
by a trade chain (starting with the donor party), in the worst case the trade
chain is just aborted prematurely. Obviously, it is possible to reduce the problem
of the privacy-preserving detection of trade chains to the privacy-preserving
detection of trade cycles by setting the demand of a donor party to a dummy
entry that matches with all offers. Then, it is straight-forward to use the protocol
from [16] for the privacy-preserving detection of trade chains in time polynomial
in the number of participating parties. However, using our novel direct approach
(see Sect. 5) it is possible to reduce the communication complexity (resp., the
round complexity) from O(ι6k) (resp., O(ι6)) to O(ι5k) (resp., O(ι5)). Based on
these theoretical results, we expect that our novel protocol yields a significant
performance improvement over the existing (more general) protocols for the
privacy-preserving detection of trade chains.
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