
Data Oblivious Genome Variants Search
on Intel SGX

Avradip Mandal1(B), John C. Mitchell2, Hart Montgomery1, and Arnab Roy1

1 Fujitsu Laboratories of America, Sunnyvale, CA, USA
2 Stanford University, Stanford, CA, USA

avradip@gmail.com

Abstract. We show how to build a practical, private data oblivious
genome variants search using Intel SGX. More precisely, we consider the
problem posed in Track 2 of the iDash Privacy and Security Workshop
2017 competition, which was to search for variants with high χ2 statistic
among certain genetic data over two populations. The winning solution of
this iDash competition (developed by Carpov and Tortech) is extremely
efficient, but not memory oblivious, which potentially made it vulnerable
to a whole host of memory- and cache-based side channel attacks on SGX.
In this paper, we adapt a framework in which we can exactly quantify
this leakage. We provide a memory oblivious implementation with rea-
sonable information leakage at the cost of some efficiency. Our solution
is roughly an order of magnitude slower than the non-memory oblivious
implementation, but still practical and much more efficient than naive
memory-oblivious solutions–it solves the iDash problem in approximately
5min. In order to do this, we develop novel definitions and models for
oblivious dictionary merging, which may be of independent theoretical
interest.

1 Introduction

A trusted execution environment (TEE) is a secure area of a main processor. In
particular, a TEE attempts to simulate a ‘black box’ environment: users (even
with physical access) of the main processor may only see the inputs to and
outputs from the TEE, and learn nothing about the data or processes inside the
TEE. This ‘black box’ premise potentially allows for private, secure distributed
or cloud-based computations on data that previously were only known to be
possible from very heavyweight, impractical cryptography (or even not known
to be possible!).

Examples of TEEs available today include Intel’s SGX (Software Guard
Extensions), ARM’s TrustZone, AMD’s Secure Execution Environment, and
Apple’s Secure Enclave. There are many different types of TEE in existence
today, but in this work we will focus on SGX, which is currently the most stud-
ied TEE.

TEEs are particularly exciting for applications where we want third parties
to perform computations on secret data. For instance, if we assume a secure
c© Springer Nature Switzerland AG 2018
J. Garcia-Alfaro et al. (Eds.): DPM 2018/CBT 2018, LNCS 11025, pp. 296–310, 2018.
https://doi.org/10.1007/978-3-030-00305-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00305-0_21&domain=pdf

Data Oblivious Genome Variants Search on Intel SGX 297

TEE, it is known how to build many powerful cryptographic primitives that run
with very small overhead when compared to native computations: fully homo-
morphic encryption [SCF+15], functional encryption [FVBG17], and even obfus-
cation [NFR+17] are all known to be practical with trusted hardware. Coupled
with other cryptographic techniques, these primitives implicitly allow a vast
range of functionality for TEEs: things like secure linux containers [ATG+16],
oblivious multi-party machine learning [OSF+16], and blockchain smart contract
messaging techniques [ZCC+16] are possible and efficient when TEEs are used.

iDash Competition. To further illustrate the power of TEEs, consider the follow-
ing scenario: suppose a medical research institution wants to outsource aggrega-
tion and statistical computation on genome data to a TEE based cloud server.
Individuals would send their encrypted genome to the cloud server. TEE would
decrypt the encrypted data, perform statistical computation and send back the
end result to the research institute. With traditional cryptography, to achieve
comparable security we would require functional encryption for very compli-
cated functions, which is only known from indistinguishability obfuscation (and
is extremely inefficient). This scenario almost exactly describes the ‘track 2’
problem given in this past year’s iDash competition [iDa17], which is a privacy
and security workshop devoted to using cryptographic techniques to help solve
problems in computational biology and genetics. In Sect. 3 we will describe the
problem in details. Among proposed solution, the best solution was due to Car-
pov and Tortech [CT18], which performed the computation on 27.4 GB of data
in only 65 s of client-side preprocessing time and 7 s of enclave time.

Side Channels. Unfortunately, it is easy to see that there are many ways a
potential adversary can learn about computations in the TEE–even if the TEE
is ‘perfectly’ secure, as long as it has finite computational power, finite memory,
and connections to other outside systems, there are ways for an adversary to learn
things about secret information. For instance, an adversary could measure the
time that a particular computation takes and use that to infer things about secret
information involved in the computation. Often, the TEE does not have enough
internal memory to store all of the data needed for a particular computation. In
this case, it must store (encrypted) data in outside locations, like regular memory
or hard disks. When this happens, an adversary can observe the memory access
patterns of the program running inside the TEE and also potentially learn secret
information.

These kinds of attacks are called side channel attacks and have been
widely known in the cryptographic community since Paul Kocher’s famous
paper [Koc96] which long predates modern trusted hardware. The history
of side channel attacks include things like observing how long a computa-
tion takes [Koc96], tracking the memory access patterns of a particular pro-
gram [KSWH98,Pag02], and measuring power consumption at given times when
the program is run [MDS99].

Side channel attacks on SGX and other TEEs have been proposed for almost
as long as the TEEs themselves have existed. Most of the side channel attacks on

298 A. Mandal et al.

SGX have focused on the cache [GESM17,BMD+17]–in other words, the lack
of ‘memory obliviousness’ of programs–but there have been other side chan-
nel attacks, including attacks based on timing [WKPK16]. In addition, there
has been a lot of research done with the goal of mitigating these side chan-
nel attacks. Many techniques, like oblivious RAM (ORAM) [Gol87] or path
ORAM [SvDS+13b] are very general and can do a lot to mitigate these side
channel attacks. In fact, there has been quite a bit of research lately on prevent-
ing certain classes of side channel attacks in SGX [SLKP17,SCNS16,SLK+17].
Unfortunately, the generality of many of these techniques typically implies a large
overhead, and thus the resulting TEE-based schemes are not very efficient. Obliv-
ious B+ tree implementations using shuffle index are also well known [VFP+15].
However, as described in Sect. 3.1, in our context the optimal data structure is
dictionary or hash table.

Our Contributions. Like many other SGX-based protocols, all of the submissions
in ‘Track 2’ of the past year’s iDash competition were potentially vulnerable to
side channel attacks. In this paper, we show how to build a provably side channel
resistant variant of the fastest (and winning) submission [CT18]. We employ a
number of techniques, including oblivious shuffles and dictionary merging, as
well as clever cache management, in order to provide provable resistance to side
channel attacks.

While our side channel resistant construction massively outperforms what
generic solutions like ORAM would give, it is still not quite as efficient as the
native solution in [CT18]. While the solution of [CT18] takes 65 s of preprocessing
time and 7 s of enclave computation time, our memory oblivious solution which
only leaks aggregate intersection sizes among input data (see Sect. 6 for details)
takes 28 s of preprocessing time and about 5 min of enclave computation time–
significantly less efficient than the non-memory oblivious solution, but certainly
practical.

In order to achieve memory obliviousness, we construct new definitions and
models for oblivious dictionary merging. These models help us to formally state
properties about memory obliviousness and may be of independent theoretical
interest.

Outline. The rest of the paper is as follows: in Sect. 2, we discuss the security
model we use around SGX. We next define the genomic search problem from
the iDash Track 2 that we have alluded to earlier in Sect. 3. We also explain the
(non-side channel resistant) winning solution in this section. In Sect. 4, we discuss
how to make the previously discussed solution memory oblivious (and thus, side
channel resistant). Then, in Sect. 5, we discuss how to merge dictionaries in a
memory-oblivious way, which is a critical component for our overall solution. We
discuss our experimental results in Sect. 6.

Data Oblivious Genome Variants Search on Intel SGX 299

2 Security Model of SGX

A program is called data oblivious if its memory access trace can be simulated by
a simulator with access to only some observable information. In theory, one can
use Oblivious RAM implementations to make a program data oblivious. How-
ever, generic application of ORAM [SVDS+13a] techniques with small amount
of trusted memory has a large overhead, compared to native running time. But
what is trusted memory inside an SGX enclave? A conservative approach might
be to consider only the CPU registers as trusted memory. On the other end
of the spectrum, an optimistic approach can assume all available enclave mem-
ory (about 96 MB) as trusted memory. Taking this optimistic approach authors
in [EZ17,ZDB+17] showed many SQL like database operations can be performed
in an data oblivious manner with very little performance overhead.

A reasonable model of trusted memory lies somewhere in between. All data in
the Last Level Cache (LLC) remain unencrypted. So it’s quite natural to assume
the LLC is part of the trusted memory. However, the size of the LLC available
to the enclave program is controlled by the adversary with a 4KB (cache line)
granularity.

To be reasonably conservative, in this paper we assume that all memory
accesses are visible to the adversary. In particular, we follow the model of Chan
et al. [CGLS18], who introduced the notion of adaptive strongly oblivious sim-
ulation security for arbitrary stateless functionalities and Oblivious Random
Access Machines (ORAM). Given a stateless functionality f , some leakage func-
tion leakagef , Algf obliviously implements f with leakage leakagef if

– Algf correctly computes the same function f except with negligible proba-
bility for all inputs,

– the sequence of addresses requested (and whether each request is read or
write) by Algf do not reveal more information than the allowed leakage.

Formally,

Definition 1. Algf , obliviously implements the functionality f with leakage
function leakagef , iff there exists a p.p.t. simulator Sim, such that for any
non-uniform p.p.t. adversary A, A’s view in the following two experiments are
indistinguishable or equivalently ‖Pr[breal = 1] − Pr[bsim = 1]‖ is negligible in
terms of security parameter λ.

Algorithm 1. Real Experiment

procedure Expt
real,Algf
A (1λ)

A → I
out, addresses ← Algf (I)
A(out, addresses) → breal ∈

{0, 1}
end procedure

Algorithm 2. Simulated Experiment

procedure Expt
sim,Algf
A (1λ)

A → I
out ← f(I)
addresses ← Sim(leakagef (I))
A(out, addresses) → bsim ∈ {0, 1}

end procedure

Here addresses in the real experiment denotes the sequence of addresses
requested by Algf along with the information whether each access is read or
write.

300 A. Mandal et al.

Case Study: Oblivious Sort. Traditional implementations of sort typically
proceed by repetitively comparing two values and swapping them or doing noth-
ing depending on the result of the comparison. This induces them to produce
different access patterns based on the data values themselves, and as such they
are not oblivious. However, some algorithms such as bitonic sorting [Bat68] are
data independent, and hence oblivious. In addition, “swap or not”-based sort-
ing algorithms can be made oblivious by accessing the same memory locations
regardless of the comparison outcome. In Sect. 4, we will use oblivious sort prim-
itives for oblivious implementation of genome variants search.

Case Study: Oblivious Shuffle. Oblivious shuffle is a simple but important
stateless oblivious primitive. As the name suggests, the shuffle algorithm takes a
sequence of n elements as input and outputs a uniformly random permutation of
the sequence. Consequently, an oblivious shuffle is an algorithm whose memory
accesses can be simulated irrespective of the input and the output, and hence
also the actual permutation that was employed. A natural way to do an oblivious
shuffle is to pair each entry with a uniformly random number and then oblivious
sort the pairs with respect to the random numbers. Other efficient algorithms
which are not based on sorting also exist [OGTU14]. In Sect. 5, we will use
oblivious shuffle primitives for realizing oblivious dictionary merging.

3 Whole Genome Variants Search

In this section we provide a very short introduction to genomics and describe the
Genome Variants Search algorithm which identifies genes responsible for certain
hereditary diseases.

DNA (Deoxyribonucleic acid) is a chain of nucleotides with the shape of a
double helix. It carries genetic information in all living organisms. The complete
genetic material of an organism is called its genome, and DNA is identical in
every cell of our body. A very long DNA chain forms what is called a chro-
mosome. Humans have 23 pairs of chromosomes, and each pair has one chro-
mosome from the person’s father and one from the mother. Any two humans
share about 99.9% of their DNA. The remaining 0.1% DNA tracks the differ-
ence between two individuals. Most of these differences occur in the form of what
is called a Single Nucleotide Polymorphism (SNP). A SNP is a variation in a
single nucleotide that occurs at a specific position in the genome (compared to a
reference genome). Moreover, a SNP can be either heterozygous or homozygous,
depending on whether a set of homologous chromosomes (pairs of choromosomes
with one coming from the father, another from mother) differ or are identical on
that particular position, respectively.

One important aspect of modern day genomics is identifying genes or SNPs
responsible for certain diseases. Given SNPs from two groups of users–case
(individuals showing traits of the disease) and control (individuals representing
healthy population)–one can perform Pearson’s χ2 test of association to deter-
mine whether presence of certain SNP is associated to disease susceptibility or
not. SNPs with high χ2 statistic are thought to be responsible for the disease.

Data Oblivious Genome Variants Search on Intel SGX 301

3.1 Track 2 of the iDASH 2017 Challenge: χ2 Test for Whole
Genome Variants Search

The goal of Track 2 of the iDASH Privacy & Security Workshop 2017 compe-
tition [iDa17] was to develop a scalable and secure solution using SGX tech-
nology for whole genome variants search among multiple individuals. The input
data is Variant Call Format (VCF) files containing sensitive SNP information
from case and control groups of users. Logically, a single VCF file corresponds
to a single individual and is a collection of SNPs, along with the information
whether the SNPs are homozygous or heterozygous. Suppose we have n1 case
users and n2 control users. To evaluate χ2 statistic for a particular SNP s, one
needs to find out how many times it is present among case and control users
by single counting heterozygous occurrences and double counting homozygous
occurrences. Suppose as is the count of SNP s among case users and a′

s among
control users. Note, (2n1 − as) and (2n2 − a′

s) are the absence counts of SNP s
among case and control users. Now, for the SNP s observed frequencies Os, and
expected frequencies (assuming no association) Es can be stated as

Os = [as, a
′
s, 2n1 − as, 2n2 − a′

s]
Es = [r(as + a′

s), (1 − r)(as + a′
s), 2n1 − r(as + a′

s), 2n2 − (1 − r)(as + a′
s)],

where the ratio r = n1
n1+n2

. From the observed and expected frequencies the χ2

test statistic for SNP s can be calculated as
3∑

j=0

(Os[j] − Es[j])2

Es[j]
. (1)

The p-value for the SNP s is the probability that a random variable following
a χ2 distribution with degree of freedom one3 attains a value larger than the
computed test statistic. To find the top k most significant SNPs, one needs to
compute p-values for all SNPs present in the genome data set and output k SNPs
with least p-values or equivalently output k SNPs with highest χ2 test statistic.

In the iDash competition pre-processing and compression of individual VCF
files were allowed, with the constraint that any operation involving multiple VCF
files cannot be performed at the pre-processing stage. It must be done inside the
SGX enclave. This constraint correctly depicts the real life use case, where each
VCF file is owned by the corresponding human individual. They can pre-process
and compress their own information and send it to remote SGX enclave running
on a possibly adversarial computational server. Honest individuals following the
protocol are not expected to communicate among them, they are only supposed
to send their information to the SGX enclave running in the computational
server.

The computationally expensive step in the above calculation is finding out
‘count’ of every SNP among case and control users. The natural way to evaluate
these count values is as follows.
3 χ2 distribution with degree of freedom d is defined as sum of square of d independent

standard normal variables.

302 A. Mandal et al.

– represent individual VCF files as dictionaries (collection of (key, value) pairs)
as follows:

• For an user u belonging to the Case group, for all SNPs s present in its
VCF file we have

Dictu[s].Case =

{
1, if s is heterozygous for user u

2, if s is homozygous for user u

Dictu[s].Cont = 0

• For user v in the Control group it is exactly the opposite. That is for all
SNP s present in user v’s VCF file Dictv[s].Case = 0 and Dictv[s].Cont
is either one or two depending whether s is heterozygous or homozygous
for user u.

If we query the dictionary Dictu with any SNP not present in user u’s VCF
file, it returns zero in both case and control counters. In other words s′ �∈
Dictu.Keys, we have Dictu[s′].Case = Dictu[s′].Cont = 0.

– Merge all user dictionaries. Where the dictionary merging operation is defined
as follows. For all s ∈ DictA.Keys ∪ DictB .Keys,

(DictA ∪ DictB)[s].Case = DictA[s].Case + DictB [s].Case
(DictA ∪ DictB)[s].Cont = DictA[s].Cont + DictB [s].Cont

After merging we have the merged dictionary

DictMerge = ∪u∈case users∪control usersDictu

DictMerge contains count of SNPs among case and control users. After build-
ing the dictionary rest of the calculation is relatively straight–forward. The whole
process is described in Algorithm 3, where Merge is the functionality that takes
dictionaries (containing SNPs as keys and corresponding counter as value) as
input, and the merged dictionary as output. In other words

Merge(Dict1, · · · ,Dictn) → Dict1 ∪ · · · ∪,Dictn.

CalcChiSquare is a function that takes
(
number of case users,number of control users, (snp, (Case,Cont))

)

as input and outputs (snp, χ2-statistic) where χ2-statistic is calculated according
to Eq. (1). ForEachf (V) is a functionality which outputs the list {f(v) : v ∈ V}.

3.2 The Winning Solution of the iDash Track 2 Challenge [CT18]

The main challenge in the above computation is memory access optimization.
The input data size is in the order of tens of gigabytes, whereas SGX enclaves
are limited to about 96 MegaBytes of usable memory without paging. Moreover,
inside SGX enclaves, the last level cache (LLC) miss penalty is considerably

Data Oblivious Genome Variants Search on Intel SGX 303

Algorithm 3. Genome variants search to find top k SNPs
INPUT: : User set U = UCase ∪ UCont and SNP dictionaries Dictu for all u ∈ U , size

of case and control user groups.
OUTPUT: : Top k SNPs (snp1, · · · , snpk)
1: procedure GVS({Dictu : ∀u ∈ U}, n1 = ‖UCase‖, n2 = ‖UCont‖)
2: DictMerge ← Merge({Dictu : u ∈ U})
3: ListSNP ← ForEachCalcChiSquare(n1,n2,·)(DictMerge)
4: ListSNP .Sort() � Sorts the list in a decreasing order based on chisquare value
5: return ListSNP [1 : k].snp � Output top k SNPs
6: end procedure

higher compared to native execution because this requires an extra round of
encryption/decryption. This extra cost is by design, because in SGX architecture
the main random access memory (RAM) always remains encrypted.

In Algorithm 3 the size of the Dictcase and Dictcont dictionaries become the
bottleneck. Even if we compress the SNPs and keep a single dictionary with
separate case and control counters, we need at least 4 bytes to encode a SNP
and 2 + 2 = 4 bytes to store the two counters. However, in the sample data
set provided in the competition there were about 5.5 Million unique SNPs. This
means a trivial lower bound for the total size of the merged dictionaries is (4 +
4) ∗ 5.5 = 44 MB. Even though, this lower bound is well short of the 96 MB
limit to avoid page faults, this is far bigger than typical LLC size which is 6
or 8 MB. A typical memory efficient dictionary or hash-map implementation
usually involves a random memory access for each key access. This leads to an
almost mandatory cache fault for every dictionary access if we cannot fit the
dictionary inside the LLC. As a result, any SGX implementation of the Sect. 3.1
algorithm typically incurs about a factor of two slowdown compared to native
execution. To address this issue Carpov and Tortech [CT18] adopted an ingenious

Algorithm 4. Cache friendly Genome variants search to find top k SNPs
INPUT: : User set U = UCase ∪ UCont and SNP dictionaries Dictu,i for all u ∈ U and

i ∈ [1, n], size of case and control user groups.
OUTPUT: : Top k SNPs (snp1, · · · , snpk)
1: procedure GVS({Dictu,i : ∀u ∈ U , i ∈ [1, n]}, n1 = ‖UCase‖, n2 = ‖UCont‖)
2: ListSNP ← Φ
3: for all i ∈ [1, n] do
4: DictMerge,i ← Merge({Dictu,i : u ∈ U})
5: ListTemp ← ForEachCalcChiSquare(n1,n2,·)(DictMerge,i)
6: ListSNP .Insert(ListTemp)
7: ListSNP .Sort() � Sorts the list in a decreasing order based on chisquare

value
8: ListSNP ← ListSNP [1 : k] � Only keep top k elements of the list
9: end for

10: return ListSNP � Output top k SNPs
11: end procedure

304 A. Mandal et al.

yet simple horizontal partitioning technique to reduce the memory requirement
so that everything could be done within the LLC. The key observation is instead
of building the large dictionary containing all SNPs and then finding the top k
SNPs among them, we can partition the SNPs in various batches and process
each batch independently while updating a global list of the top k SNPs.

We can divide the key space K (all possible values of SNPs) of the dictionaries
into n disjoint parts K1, · · · ,Kn. This in turn divides each user dictionary Dictu
into n disjoint smaller dictionaries Dictu,1, · · · ,Dictu,n such that

Dictu = Dictu,1 ∪ · · · ∪ Dictu,n.

4 Oblivious Genome Variants Search

Algorithms described in the previous section are not memory oblivious in gen-
eral. In this section, we show under certain conditions the algorithms can be
implemented in a memory oblivious way. Non memory oblivious SGX imple-
mentations might leak some non trivial information such as number of common
SNPs among any two persons. Moreover, if some of the individuals are malicious
and they collude with the server they can figure out exactly which SNPs are
present in other individual’s VCF files. UCase be the set of users belonging to the
case group and UCont be the set of users belonging to the control group. Every
user u ∈ UCase∪UCont sends their input Iu to a centralized server S, which runs a
Genome Variants Search algorithm inside its SGX enclave. It’s worth mentioning
that every user u must

– perform a remote attestation with S, to ensure it is running the appropriate
executable inside SGX enclave and

– perform a key exchange with the enclave and send Iu by encrypting and
authenticating with the exchanged key,

to ensure the data can only be accessed by the enclave. Iu is some encoding
of the VCF data corresponding to user u. In Algorithm 3 we have Iu = Dictu,
where as in Algorithm 4 we have Iu = {Dictu,i : i ∈ [1, n]}. GV S be the function
which takes Iu’s as input and outputs top k SNPs.

From a high level perspective the Genome Variant Search algorithms
described in previous section have three distinct steps:

1. Merge input dictionaries to form a merged dictionary.
2. Calculate chi-Square statistic for each entry.
3. Sort the dictionary entries based on the chi-square statistic.

Chi-square statistic calculation is trivially memory oblivious (can be imple-
mented by an arithmetic circuit). There are many well known perfectly memory
oblivious sorting [AKS83,CGLS18,Bat68,Goo14] techniques which do not leak
any side information. In Sect. 5 we discuss how to obliviously implement the
dictionary Merge routine under various reasonable leakage functions. Once we
have oblivious implementations of the dictionary merge routine and sort routine,
next theorems show we can quantify the leakage in Algorithms 3 and 4.

Data Oblivious Genome Variants Search on Intel SGX 305

Theorem 1. If the Merge routine in Algorithm 3 is implemented obliviously
with leakage function leakageMerge and the Sort routine in line 3 is implemented
by some perfect oblivious sort implementation, then Algorithm 3 becomes an
oblivious implementation of GV S with leakage function leakageGV S, where

leakageGV S({Dictu : ∀u ∈ U})
=leakageMerge({Dictu : ∀u ∈ U}) ∪ {‖DictMerge‖, ‖UCase‖, ‖UCont‖}.

Proof Sketch. We construct a simulator for GV S, given a simulator for Merge,
given as Algorithm 5. We can show that the real algorithm is indistinguishable
from the simulator by hopping over a single hybrid. In the hybrid, we replace
the merging step with the corresponding simulator, which just takes the leakage
due to the merge as input. In the next hop, which is to the final simulator, we
sample Dictu from random, instead of using the real input Dictu. The sampling
is done as follows: first ‖DictMerge‖ number of unique keys are sampled from the
domain of keys. Then the values of Dictu at those keys are assigned arbitrarily.
We recall that the in construction of the merged list the input array is scanned
linearly and the number of positions scanned only depends on the number of
entries, i.e., ‖Dictu‖, and not their values. Hence the addresses utilized in this
part of the simulator would be indistinguishable from the hybrid.

Algorithm 5. Simulator for GV S

INPUT: leakageMerge({Dictu : ∀u ∈ U}) ∪ (‖DictMerge‖, n1 = ‖UCase‖, n2 =
‖UCont‖).

OUTPUT: addresses.
1: procedure SIM-GVS(leakageMerge({Dictu : ∀u ∈ U}) ∪ (‖DictMerge‖, n1, n2))
2: ListSNP ← ∅.
3: addresses-dict-merge ← SIM-MERGE(leakageMerge({Dictu : ∀u ∈ U}))
4: Sample DictMerge randomly, constrained by ‖DictMerge‖.
5: ListSNP ← ForEachCalcChiSquare(n1,n2,·)(DictMerge)
6: ListSNP .Sort() � Sorts the list in a decreasing order based on chisquare

value
7: addresses-extra ← Addresses used in Steps 5-6.
8: return addresses-dict-merge, addresses-extra � Output all addresses
9: end procedure

Theorem 2. If the Merge routine in Algorithm 4 is implemented obliviously
with leakage function leakageMerge and the Sort routine in line 6 is implemented
by some perfect oblivious sort implementation, then Algorithm 4 becomes an
oblivious implementation of GV S with leakage function leakageGV S, where

leakageGV S({Dictu,i : ∀u ∈ U , i ∈ [1, n]},)

=
(
leakageMerge({Dictu,1 : ∀u ∈ U}), · · · , leakageMerge({Dictu,n : ∀u ∈ U})

)

∪ {‖DictMerge,1‖, · · · , ‖DictMerge,n‖, ‖UCase‖, ‖UCont‖}

306 A. Mandal et al.

The proof of this theorem is fairly similar to the last one: instead of simulating
the merge monolithically, the simulation is done partition by partition. The
arguments for the rest of the algorithm carry over straightforwardly.

5 Oblivious Dictionary Merging

In the previous section, we showed that given a procedure to obliviously merge
multiple dictionaries we can obliviously implement the Genome Variants Search
algorithms. In this section show how oblivious dictionary merging can be done.

In Sect. 3.1, we defined the notion of dictionary merging in the context of
genome variants search. However, the algorithms described in this section work
for generic dictionary merging operations. A dictionary or associative array Dict
is a dynamic collection of (key, value) pairs, such that each possible key appears
only once in the collection. It usually supports insert, delete, update and
lookup operations based on the key. The operator [] is used as an access
operator. That is if (key, value) ∈ Dict, then Dict[key] returns a reference
to value. Let Dict.Keys denote the set of all keys in the dictionary. For any
key �∈ Dict.Keys,

– as rvalue Dict[key] returns Null. In other words value = Dict[key] sets the
variable value to Null.

– as lvalue Dict[key] inserts a pair (key, value) to the dictionary and returns
a reference to the variable value. In other words Dict[key] = value inserts
(key, value) into the dictionary Dict.

Let V be the set of all possible values excluding Null. ⊕ be a binary operator
over V. It can be naturally extended to V∪{Null} as follows. For any value ∈ V,

value ⊕ Null = value, Null ⊕ value = value, Null ⊕ Null = Null.

For the Genome Variants Search application described in Sect. 3.1, ⊕ operator
over (Case,Cont) pairs is defined as a ⊕ b = (a.Case + b.Case, a.Cont + b.Cont).
For any two dictionaries Dict1 and Dict2, the Merge operation (also repre-
sented by the operator ∪) is defined as follows. First (Dict1 ∪ Dict2).Keys =
Dict1.Keys ∪ Dict2.Keys. Second for all key ∈ (Dict1 ∪ Dict2).Keys, we have
(Dict1 ∪ Dict2)[key] = Dict1[key] ⊕ Dict2[key].

For more than two dictionaries the Merge operation is defined inductively.
For n ≥ 2, we have

Dict1 ∪ · · · ∪ Dictn = (Dict1 ∪ · · · ∪ Dictn−1) ∪ Dictn.

Dictionaries or hash tables are usually implemented either by chaining or by
open addressing. [Che17] is a short summary and comparison of various hash
table implementations. It suggests open address based hash table implemen-
tation Robin Hood [CLM85] is probably the fastest memory efficient imple-
mentation. For the purpose of this paper, we will assume the hash table mem-
ory is contiguous, which is the case for all open addressing based hash tables.

Data Oblivious Genome Variants Search on Intel SGX 307

This means we can sequentially access all elements of the hash table by a linear
sweep. The memory addresses accessed in this operation are independent of the
hash table content.

The location of any (key, value) pair in the contiguous memory is determined
by hash(key). We will assume the function hash is a random oracle [BR93], to
ensure that the pair (key, value) gets stored in a random location independent of
the variable key. The idea behind an almost ideal (in terms of leakage) dictionary
merging is pretty simple and can be described in three high level steps:

1. Sequentially access all (key, value) pairs of all input dictionaries Dict1,
· · · ,Dictn and store them in a large array Array of size ‖Dict1‖+· · ·+‖Dictn‖.

2. Obliviously shuffle Array and generate Array′.
3. Build the new dictionary DictMerge by sequentially traversing Array′.

The memory access pattern in first two steps are completely independent
of the input data. However, the last step leaks some non trivial information. A
resourceful adversary can track how the memory locations within the contiguous
storage are being accessed. The location of a dictionary entry corresponding to
key gets determined by hash(key). By the random oracle property of the hash
function, the location does not reveal anything about the content of key. Also,
because of the oblivious shuffle this address does not reveal from which input
dictionary Dicti the key is coming from. But the adversary can observe how
many times each address location is getting accessed. This in turn leaks the
collision distribution of the input dictionaries, which is essentially the following
information.

n∑

i=1

‖Dicti‖,
∑

1≤i<j≤n

‖Dicti ∩ Dictj‖,
∑

1≤i<j<k≤n

‖Dicti ∩ Dictj ∩ Dictk‖,

· · · , ‖Dict1 ∩ Dict2 ∩ · · · ∩ Dictn‖.

6 Experimental Results

For our experimental results, we use the public dataset available as part of the
iDash 2017 competition [iDa17]. The dataset consists of VCF files from two
groups of individuals, case group Case whose members show symptoms of some
particular disease and control group Cont consisting of healthy individuals. The
total size of the two thousand VCF files is about 27.4 GB. We ran our experiments
on an Intel NUC6i7KYK, which has 6 MB of LLC. In comparison, the platform
used in [CT18] had 8 MB LLC size. Our baseline implementation takes 28 s for
pre-processing (or total time for client side computation). In the baseline non
oblivious implementation of Algorithm 4, the computation time inside the SGX
enclave is 16 s. On the other hand, the winning candidate from [CT18] reports
about 65 s of pre-processing time and 7 s of enclave running time. The pre-
processing is mainly bounded by the SSD read write speed. Our pre-processing
is faster because we used a larger block size (every VCF file is divided only in

308 A. Mandal et al.

15 parts). On the other hand, [CT18]’s enclave running time is almost half that
of ours for two main reasons: first, our enclave is single threaded, as opposed to
8 threads in [CT18]. In fact, our dictionary implementation is not thread safe.
Second, we have only 6 MB of cache memory. [CT18] had 8 MB.

The oblivious dictionary merging algorithm described in Sect. 5 has a crucial
drawback. It requires oblivious shuffling of a very large array containing all the
input data. After compression the total size of input data is about 4.5 GB. In
the baseline implementation we partitioned the data in 15 parts, to fit individual
dictionaries inside the LLC. After this partitioning, the output of each Merge
call in Algorithm 4 fits well within the LLC, but the input is still large: about
4.5 GB /15 = 300 MB. For an efficient memory oblivious shuffle we needed to fit
the input data within LLC. To address this we can further partition the input
data and shuffle each partition independently. This partitioning actually leaks
more information, such as the collision patterns among different partitions. In
our implementation in every partition we take 256 SNPs each from 16 users and
shuffle them together. We used Batcher’s bitonic merge sort algorithm [Bat68] for
oblivious shuffling. We also used SipHash [AB12] as our choice of random oracle.
To our knowledge, this is the fastest known pseudorandom function for short
input sizes. In this parameter setting the enclave running time is about 5 minutes.
This shows even though memory oblivious implementation is practical if we are
willing to leak some amount of collision distributions, it is still considerably
slower than the non oblivious implementation. One thing to note is that the
performance of the scheme is dependent upon the choice of data partitioning and
hence information leakage. Finding a better data partitioning technique which
would allow minimal leakage and the fastest possible performance remains an
open problem.

References

[AB12] Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In:
Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668,
pp. 489–508. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34931-7 28

[AKS83] Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In:
15th Annual ACM Symposium on Theory of Computing, pp. 1–9, Boston,
MA, USA, 25–27 April 1983. ACM Press (1983)

[ATG+16] Arnautov, S., et al.: SCONE: secure Linux containers with Intel SGX.
OSDI 16, 689–703 (2016)

[Bat68] Batcher, K.E.: Sorting networks and their applications. In: Proceedings
of the April 30-May 2, 1968, Spring Joint Computer Conference, pp.
307–314. ACM (1968)

[BMD+17] Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S.,
Sadeghi, A.-R.: Software grand exposure: SGX cache attacks are practi-
cal. arXiv preprint arXiv:1702.07521, p. 33 (2017)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 93: 1st Con-
ference on Computer and Communications Security, pp. 62–73, Fairfax,
Virginia, USA, 3–5 November 1993. ACM Press (1993)

https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-642-34931-7_28
http://arxiv.org/abs/1702.07521

Data Oblivious Genome Variants Search on Intel SGX 309

[CGLS18] Chan, T.H.H., Guo, Y., Lin, W.-K., Shi, E.: Cache-oblivious and data-
oblivious sorting and applications. In: Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2201–2220.
SIAM (2018)

[Che17] Chern, F.: Writing a damn fast hash table with tiny memory
footprints (2017). http://www.idryman.org/blog/2017/05/03/writing-
a-damn-fast-hash-table-with-tiny-memory-footprints. Accessed 7 June
2018

[CLM85] Celis, P., Larson, P., Munro, J.I.: Robin Hood hashing (preliminary
report). In: 26th Annual Symposium on Foundations of Computer Sci-
ence, pp. 281–288, Portland, Oregon, 21–23 October 1985. IEEE Com-
puter Society Press (1985)

[CT18] Carpov, S., Tortech, T.: Secure top most significant genome variants
search: iDASH 2017 competition. Cryptology ePrint Archive, Report
2018/314 (2018). https://eprint.iacr.org/2018/314

[EZ17] Eskandarian, S., Zaharia, M.: An oblivious general-purpose SQL database
for the cloud. arXiv preprint arXiv:1710.00458 (2017)

[FVBG17] Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: IRON: func-
tional encryption using intel SGX. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 17: 24th Conference on Com-
puter and Communications Security, pp. 765–782, Dallas, TX, USA, 31
October–2 November 2017. ACM Press (2017)

[GESM17] Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache attacks on Intel
SGX. In: Proceedings of the 10th European Workshop on Systems Secu-
rity, EuroSec 2017, pp. 2:1–2:6. ACM, New York (2017)

[Gol87] Goldreich, O.: Towards a theory of software protection and simulation
by oblivious RAMs. In: Aho, A. (ed.) 19th Annual ACM Symposium on
Theory of Computing, pp. 182–194, 25–27 May 1987. ACM Press, New
York City (1987)

[Goo14] Goodrich, M.T.: Zig-zag sort: a simple deterministic data-oblivious sort-
ing algorithm running in O(n log n) time. In: Shmoys, D.B. (ed.) 46th
Annual ACM Symposium on Theory of Computing, pp. 684–693, 31
May–3 June 2014. ACM Press, New York (2014)

[iDa17] IDASH privacy & security workshop (2017). http://www.humangenome
privacy.org/2017/competition-tasks.html. Accessed 7 June 2018

[Koc96] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.
org/10.1007/3-540-68697-5 9

[KSWH98] Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanal-
ysis of product ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows,
C., Gollmann, D. (eds.) ESORICS 1998. LNCS, vol. 1485, pp. 97–110.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055858

[MDS99] Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power anal-
ysis attacks on smartcards. Smartcard 99, 151–161 (1999)

[NFR+17] Nayak, K., et al.: HOP: hardware makes obfuscation practical. In: ISOC
Network and Distributed System Security Symposium - NDSS 2017, San
Diego, CA, USA. The Internet Society (2017)

http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-tiny-memory-footprints
http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-tiny-memory-footprints
https://eprint.iacr.org/2018/314
http://arxiv.org/abs/1710.00458
http://www.humangenomeprivacy.org/2017/competition-tasks.html
http://www.humangenomeprivacy.org/2017/competition-tasks.html
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/BFb0055858

310 A. Mandal et al.

[OGTU14] Ohrimenko, O., Goodrich, M.T., Tamassia, R., Upfal, E.: The Melbourne
Shuffle: improving oblivious storage in the cloud. In: Esparza, J., Fraig-
niaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8573, pp. 556–567. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-43951-7 47

[OSF+16] Ohrimenko, O., et al.: Oblivious multi-party machine learning on trusted
processors. In: USENIX Security Symposium, pp. 619–636 (2016)

[Pag02] Page, D.: Theoretical use of cache memory as a cryptanalytic side-
channel. Cryptology ePrint Archive, Report 2002/169 (2002). http://
eprint.iacr.org/2002/169

[SCF+15] Schuster, F., et al.: VC3: trustworthy data analytics in the cloud using
SGX. In: 2015 IEEE Symposium on Security and Privacy, pp. 38–54, San
Jose, CA, USA, 17–21 May 2015. IEEE Computer Society Press (2015)

[SCNS16] Shinde, S., Chua, Z.L., Narayanan, V., Saxena, P.: Preventing page faults
from telling your secrets. In: Chen, X., Wang, X., Huang, X. (eds.) ASI-
ACCS 16: 11th ACM Symposium on Information, Computer and Com-
munications Security, pp. 317–328, Xi’an, China, 20 May–3 June 2016.
ACM Press (2016)

[SLK+17] Seo, J., et al.: SGX-shield: enabling address space layout randomization
for SGX programs. In: ISOC Network and Distributed System Security
Symposium - NDSS 2017, San Diego, CA, USA. The Internet Society
(2017)

[SLKP17] Shih, M.-W., Lee, S., Kim, T., Peinado, M.: T-SGX: eradicating
controlled-channel attacks against enclave programs. In: ISOC Network
and Distributed System Security Symposium - NDSS 2017, San Diego,
CA, USA. The Internet Society (2017)

[SVDS+13a] Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM
protocol. In: Proceedings of the 2013 ACM SIGSAC Conference on Com-
puter & Communications Security, pp. 299–310. ACM (2013)

[SvDS+13b] Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM
protocol. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 13:
20th Conference on Computer and Communications Security, pp. 299–
310, Berlin, Germany, 4–8 November 2013. ACM Press (2013)

[VFP+15] De Capitani, S., Vimercati, D., Foresti, S., Paraboschi, S., Pelosi, G.,
Samarati, P.: Shuffle index: efficient and private access to outsourced
data. ACM Trans. Storage (TOS) 11(4), 19 (2015)

[WKPK16] Weichbrodt, N., Kurmus, A., Pietzuch, P., Kapitza, R.: AsyncShock:
exploiting synchronisation bugs in Intel SGX enclaves. In: Askoxylakis,
I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS,
vol. 9878, pp. 440–457. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45744-4 22

[ZCC+16] Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an
authenticated data feed for smart contracts. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16:
23rd Conference on Computer and Communications Security, pp. 270–
282, Vienna, Austria, 24–28 October 2016. ACM Press (2016)

[ZDB+17] Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica,
I.: Opaque: an oblivious and encrypted distributed analytics platform.
In: NSDI, pp. 283–298 (2017)

https://doi.org/10.1007/978-3-662-43951-7_47
https://doi.org/10.1007/978-3-662-43951-7_47
http://eprint.iacr.org/2002/169
http://eprint.iacr.org/2002/169
https://doi.org/10.1007/978-3-319-45744-4_22
https://doi.org/10.1007/978-3-319-45744-4_22

	Data Oblivious Genome Variants Search on Intel SGX
	1 Introduction
	2 Security Model of SGX
	3 Whole Genome Variants Search
	3.1 Track 2 of the iDASH 2017 Challenge: 2 Test for Whole Genome Variants Search
	3.2 The Winning Solution of the iDash Track 2 Challenge carpovTortech18

	4 Oblivious Genome Variants Search
	5 Oblivious Dictionary Merging
	6 Experimental Results
	References

