q

Check for
updates

Blockchain-Based Fair Certified
Notifications

Macia Mut-Puigserver®™), M. Magdalena Payeras-Capella,
and Miquel A. Cabot-Nadal

Dpt. de Ciéncies Matematiques i Informatica, Universitat de les Illes Balears,
Ctra. de Valldemossa, km 7,5., 07122 Palma, Spain
{macia.mut,mpayeras,miquel.cabot}@uib.es

Abstract. Lots of traditional applications can be redefined thanks to
the benefits of Blockchain technologies. One of these services is the pro-
vision of fair certified notifications. Certified notifications is one of the
applications that require a fair exchange of values: a message and a non-
repudiation of origin proof in exchange for a non-repudiation of recep-
tion evidence. To the best of our knowledge, this paper presents the first
blockchain-based certified notification system. We propose two solutions
that allow sending certified notifications when confidentiality is required
or when it is necessary to register the content of the notification, respec-
tively. First, we present a protocol for Non Confidential Fair Certified
Notifications that satisfies the properties of strong fairness and transfer-
ability of the proofs thanks to the use of a smart contract and without
the need of a Trusted Third Party. Then, we also present a DApp for
Confidential Certified Notifications with a smart contract that allows a
timeliness optimistic exchange of values with a stateless Trusted Third
Party.

Keywords: Blockchain - Fair certified notifications - Smart contract
Confidentiality - Fairness + Cryptocurrencies + Certified electronic mail

1 Introduction

Blockchain technology provides an unalterable system of data registry that
enables new solutions for a wide range of traditional applications. One of these
traditional services that could benefit of the distinctive features of blockchain is
the provision of certified notifications, that is, a service that allows a sender to
prove that she has sent a message to a receiver or set of receivers. Thus, certified
notification services provide evidence that a receiver has access to a message
since a specific date/time. Certified notifications, along with other electronic
services, such as electronic signature of contracts, electronic purchase (payment
in exchange for a receipt or digital product) or certified mail, require a fair
exchange of items between two or more users. In order to create protocols that
allow carrying out these exchanges and, at the same time, maintain the security
© Springer Nature Switzerland AG 2018

J. Garcia-Alfaro et al. (Eds.): DPM 2018 /CBT 2018, LNCS 11025, pp. 20-37, 2018.
https://doi.org/10.1007 /978-3-030-00305-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00305-0_2&domain=pdf

Blockchain-Based Fair Certified Notifications 21

of communications, there are solutions that fall into the generic pattern named
fair exchange of values. A fair exchange always provides an equal treatment of
all users, and, at the end of each execution, either each party has the element
she wishes to obtain from the other party, or the exchange has not been car-
ried out successfully for no one (any party has received the expected item). In a
typical notification case, the element to be exchanged is the message along with
non-repudiation proof of origin and reception.

Fair exchange protocols proposed so far usually use TTPs [12,13,20], which
are responsible for resolving any conflict that arises as a result of interrupted
exchanges or fraud attempts. In addition to that, these protocols normally use
non-repudiation mechanisms in order to generate evidence that proves the behav-
ior of the actors of the protocol. Currently, with the advent of the blockchain
technology and smart contracts, TTPs can be replaced or complemented by this
new know-how, which opens a range of new possibilities to find effective solu-
tions to the electronic versions of the protocols that fulfil the generic pattern of
fair exchange of values. A method for designing new fair exchanges by means
of the Bitcoin network is to motivate parties to complete the protocol in order
to assure fairness by using a bond or a monetary penalty for dishonest parties
[4,10,15].

In addition to that, the Ethereum blockchain and its cryptocurrency Ether
offers an even richer functionality set than conventional cryptocurrencies such
as bitcoin, since they support smart contracts in a fully distributed system that
could lead, as we will see in this paper, to enable fair exchanges of tokens without
the involvement of a TTP (since smart contracts are self-applied and reduce the
need for trusted intermediaries or reputation systems that decrease transaction
risks). This new technology allows us to define transactions with predetermined
rules (written in a contract) in a programmable logic that can guarantee a fair
exchange between parties with an initial mutual distrust. This feature prevents
parties from cheating each other by aborting the exchange protocol and dis-
charges the need for intermediaries with the consequent reduction of delays and
commissions for their services.

The revealing power of the blockchain is further enhanced by the fact that
blockchains naturally incorporate a discrete notion of time, a clock that increases
each time a new block is added. The existence of a trusted clock/register is crucial
to achieve the property of fairness in the protocols. This feature can make the
cryptography model in the blockchain even more powerful than the traditional
model without a blockchain where the fairness is very difficult to guarantee
without the intervention of a TTP.

This paper aims to show how the blockchain technology and the smart con-
tracts can introduce a new paradigm to deal with the fair exchange problem. By
using this technology, we can reduce or even remove the role of the TTPs inside
such protocols. As far as we know, there are no previous works that deals with
blockchain-based fair certified notifications and smart contracts. Previous studies
on fairness using blockchain focus on fair purchase operations between a prod-
uct (or a receipt) in exchange of cryptocurrencies (usually bitcoin) [3,5,6,11].

22 M. Mut-Puigserver et al.

[16] uses a smart contract for the resolution of a purchase operation while [1]
uses smart contracts and trusted execution environments to guarantee the fair
exchange of a payment and the result of an execution.

We present two Blockchain-based Systems for Fair Certified Notifications,
the first proposal allows a non-confidential fair exchange of a notification mes-
sage for a non-repudiation of reception token with no involvement of any TTP.
The second one allows a confidential fair exchange of a notification for a non-
repudiation of reception token. It has the optimistic intervention of a stateless
TTP.

2 Ideal Properties of a Fair Certified Notification System.

Some requirements for fair exchange were stated in [2], and re-formulated in [21]:

1. Effectiveness. If two parties behave correctly, the exchange will take place
and all parties will receive the expected items.

2. Fairness. After completion of a protocol run, either each party receives the
expected item or neither party receives any useful information about the
others item. The fairness is weak if, by the end of the execution, both parties
have received the expected items or if one entity receives the expected item
and another entity does not, the latter can get evidence of this situation.

3. Timeliness. At any time, during a protocol run, each party can unilaterally
choose to terminate the protocol without losing fairness.

4. Non-repudiation. If an item has been sent from party A to party B, A can
not deny origin of the item and B can not deny receipt of the item.

5. Verifiability of Third Party. If the third party misbehaves, resulting in
the loss of fairness for a party, the victim can prove this fact in a dispute.

We can add, to this set of properties, some other interesting properties for
the case of certified notifications.

6. Confidentiality. Only the sender and the receiver of the notification know
the contents of the certified message.

7. Efficiency. An efficient protocol uses the minimum number of steps that
allow the effective exchange or the minimum cost.

8. Transferability of evidence. The proofs generated by the system can be
transferred to external entities to prove the result of the exchange.

9. State Storage. If the TTP that can be involved in the exchange is not
required to maintain state information then the system is stateless.

Some of the above properties cannot be achieved in the same protocol. The
authors of [9] enumerate the incompatibilities among the ideal features. Some
examples are Weak Fairness and Transferability of Evidence, Stateless TTP and
timeliness and Verifiability and transparenvy of the T'TP. in this paper we will see
that in a protocol that offers weak fairness a party cannot transfer the evidence
to an arbiter since the other party could have contradictory evidence.

Blockchain-Based Fair Certified Notifications 23

3 State of the Art of Fair Certified Notification Protocols

Fair certified notification follows the pattern of fair exchange of values. This
kind of exchange does not have a definitive and standardized solution in its
electronic version. The notifications can be done using electronic mail and, until
now, several proposals have been presented for this service. However, it is not
required that the certified notifications use electronic mail, as it will be discussed
in this paper. A certified notification includes an exchange of elements between
the sender and the receiver; the sender has to send a message to the receiver,
then the receiver is able to read it and, in exchange, the receiver has to send a
proof of reception to the sender.

To overcome reluctances between the parties and to assure fairness, almost
all the existing proposals use a TTP. This trusted third party can play and
important role, participating in each exchange or a more relaxed role in which
the TTP is only active in case of arising a dispute between the parties (optimistic
protocols).

Due to the incompatibility among some of the properties and the difficulty to
achieve simultaneously some other properties, we can find protocols that solve
the exchange in an efficient way with an optimistic TTP although achieving only
weak fairness [7], other systems focused in the achievement of specific features
as the transferability of evidences [14], the verifiability of the TTP [17], the
avoidance of the selective rejection based on the identity of the sender [19], the
flexibility to allow the delivery to multiple receivers [8] or the reduction of the
volume of state information that the TTP must maintain [18].

This paper proposes the use of blockchain-based technologies and the
Ethereum ecosystem to implement a DApp for certified notifications in a decen-
tralized way. This proposal does not require the use of electronic mail and,
depending on the desired application, it does not requiere neither the use of a
TTP to guarantee the fairness of the exchange. As far as we know, there are no
proposals to solve the problem of certified notification using blockchain-based
technologies. Only some papers about fair payments, very recently, refers to fair
exchange protocols over blockchain [5,16].

4 Conceptual Design of Two Blockchain-Based Systems
for Fair Certified Notifications

In this section we will analyse the possibilities of the use of blockchain-based tech-
nologies to provide a DApp for fair certified notifications reducing the involve-
ment of trusted third parties compared with traditional approaches. We present
a high level description of two solutions (the details of them will be presented in
Sects. 6 and 7, respectively). One of them is well suited for those notifications
that do not require the confidentiality of the message (or even it is required
that the message can be public and accessible to everybody). The other solution
allows the message to be hidden to others than the receiver. As it is showed in
the descriptions, in the first approach there is no need of a TTP in any step of

24 M. Mut-Puigserver et al.

the exchange nor in a dispute resolution phase while in the second proposal the
TTP will be involved only in the dispute resolution phase (optimistic protocol).
Moreover, it is not required that this TTP stores information of the state of any
transaction.

4.1 Non-confidential Notifications Without TTP

In this first proposal we consider that confidentiality is not required or even not
desired. The sender executes the first step of the protocol using the DApp to
register the hash of the notification message on the blockchain. At this point, the
receiver does not have access to the message, although the transaction remains
stored in the blockchain due to the fact that the registered value is the hash of
the message and not the message itself.

The sender will make a new transaction including the message in a third step,
provided that the receiver would have made a previous transaction manifesting
his desire to receive the notification.

The protocol for non-confidential certified notifications works as follows:

1. The sender, originator of the message, uses the smart contract to publish in
the blockchain the hash of the notification message. Other parameters of this
transaction are the address of the receiver and the deadline for the notification
to be completed. Moreover, a deposit can be required in this step. The amount
will be included in the transaction.

2. The receiver, if he accepts the reception of the notification, publishes a mes-
sage expressing his will.

3. Finally, before the expiration of the deadline, the sender can execute the
finish procedure to publish the message. As a consequence, the smart contract
publishes the non-repudiation proof. If the execution of the exchange requires
a deposit, the smart contract returns the amount to the sender.

After the deadline, if the three steps have not been executed properly, the
state of the exchange is not finish and then both parties can access a function
in the smart contract to request the cancellation of the transferred elements.
(a) Cancellation of reception, requested by the receiver if the sender does not
publish the message when the receiver has accepted the notification.
(b) Cancellation of delivery, requested by the sender, if the receiver has not
accepted the notification.
In both cases, the smart contract checks the identity of the user and the
deadline. The smart contract generates a transaction to point out that the
notification has been cancelled. In the first case, the sender will not receive the
refund of the deposit (this way, the deposit is useful to motivate the sender
to finish the exchange before the deadline).

Since the message is included in a transaction, it will be registered in the
blockchain, so the notification in this case is not confidential. This protocol
is executed entirely over Ethereum, so no off-chain communication between the
parties is required. This way, there is no need of communication channels between
the parties.

Blockchain-Based Fair Certified Notifications 25

4.2 Optimistic Confidential Notifications with Stateless TTP

This second proposal has been designed taking into account those notifications
that require confidentiality. That is, the blockchain has to preserve the fairness
of the exchange but the message cannot be stored in a publicly accessible block.
The main difference with the first proposal is that in this case the protocol
allows an optimistic exchange, that is, the exchange can be executed completely
without the intervention of the T'TP nor the blockchain. Another important
feature is that this proposal does not require a deadline and can be finished at
any moment. A stateless TTP can be used to resolve the disputes that can arise
between the parties.

The proposed protocol for confidential fair certified notifications is based in
the protocol described in [7], an optimistic protocol in three steps with a trusted
third party that is involved only in case of disputes between the parties. In [7]
both parties can contact the TTP who maintains state information. The three
steps of [7] are:

1. The sender A encrypts the message M with a simmetric key K, producing a
ciphertext c¢. The key K is encripted with the public key of the TTP (it means
that the TTP, who knows the correspondent private key, can decrypt it),
producing K;. A third element h 4 is the signature of A on the concatenation
of the hash of ciphertext ¢ and K}, part of the evidence of Non-Repudiation
of Origin for B. Then A sends the triplet ¢, k; and h 4.

2. B sends hp, a signature of B on the concatenation of the hash of ciphertext
¢ and ky, evidence of Non-Repudiation of Receipt for B, to A.

3. A sends k4, the key K enciphered with the private key of A, second part of
the Non-Repudiation of Origin evidence for B.

During this three steps protocol the parties exchange the Non-Repudiation
proofs together with elements that are useful in case of interruption of the
exchange. These elements, as Ky, are managed by the TTP during a dispute
resolution subprotocol. The execution of the dispute resolution subprotocol can
be requested by both A and B contacting the TTP.

In this new blockchain-based solution, the originator A and the recipient B
will exchange messages and non-repudiation evidences directly. Only as a last
resort, in the case they cannot get the expected items from the other party, the
smart contract or the TTP would be invoked, by initiating the cancel or finish
functions. In comparison with the protocol described in [7], in the blockchain-
based solution the role of the TTP has been reduced. The sender will never
contact the TTP. The TTP will answer only requests from the receiver B by
accessing to the smart contract that has been deployed. The TTP is totally
stateless and, in any case, it stores information about the state of any exchange.

The protocol for confidential certified notifications works as follows: The
parties, A (the sender) and B (the receiver) will execute a direct exchange in
three steps, using the DApp (the details of it will be presented in Sect. 7).

1. A sends an encrypted message to B using a session key. Moreover, A also
sends an element to B that could be useful in case of dispute, that is, if A

26 M. Mut-Puigserver et al.

does not follow the steps of the protocol (i.e.: the session key encrypted with

the public key of the TTP). The TTP is the responsible of the deployment

of the smart contract that will manage the exchange.
2. B sends the non-repudiation proof.
3. A sends the key to decipher the message.

If some party does not follow the protocol, the exchange can be resolved as

follows:

(a) If A does not receive the element of step 2., she can send a request to
the smart contract. If the state of the notification is ’Created’ (nor *Can-
celled’ neither 'Finished’), then the state will be changed to ’Cancelled’,
indicating that the notification has not been performed successfully.

(b) If B does not receive the message in step 3, B will contact the TTP pro-
viding the received elements in step 1 together with the non-repudiation
of reception proof. The TTP will access the smart contract to check the
state of the notification. If the notification has not been cancelled, the
TTP will publish in the blockchain a non-repudiation of reception proof
and the required elements for B to obtain the confidential message.

5 Smart Contracts Development Settings

In order to deploy smart contracts on the blockchain there are some frameworks
that help the developer manage the deployment on the network. To develop
the DApp we have interacted with the console of the Node JS platform!. This
modular platform provides us with the necessary components to develop, test
and deploy decentralized applications such as smart contracts. Functionalities
provided by Node JS are implemented by independent modules and packages.
In this way, we use NPM (Node Package Manager?) to easily install/uninstall,
configure and update the different modules and software packages of the platform
(called third-party modules).

An important configuration file is package.json. This is a JSON format file
that is stored in the application root folder. This file provides the specific aspects
to manage the module dependencies that the application requires. For instance,
the file states information like our application name, module versions (name and
version together work as an identifier that is assumed to be unique), license,
directories, version control repository and so on. Keeping in mind this struc-
ture, a smart contract ready to deploy will be stored inside a folder within the
solidity file that specifies the code of our application, the package.json and the
node modules folder with all the necessary packages. Inside the root directory
we have two more significant files: compile.js and deploy.js. Both are javascript
files that, while compile.js specifies the requirements to compile the smart con-
tract and the statement to compile it, the deploy.js file defines the tools used
to deploy the smart contract. In order to deploy the smart contract, we need
to have a connection to the Ethereum blockchain and to sign a transaction.

! https://nodejs.org/en.
2 https://www.npmjs.com/.

https://nodejs.org/en
https://www.npmjs.com/

Blockchain-Based Fair Certified Notifications 27

We have deployed the smart contract on the Rinkeby testnet®. Rinkeby is the
main Ethereum blockchain testnet that behaves similarly to the real Ethereum
blockchain. We can acquire Rinkeby Ether for our account from a faucet*. Of
course, before acquiring Ether we need to have an account that we can manage
with an Ethereum wallet. For this reason, we have installed the Metamask® add-
on in our browser. Metamask is an Ethereum browser that allows us to interact
with the blockchain and to run Ethereumm DApps. Metamask also implements
an Ether wallet that enables to sign blockchain transactions.

Therefore, the deploy.js file makes a call to the compile.js file to compile the
contract and then specifies the web3 connection (i.e. the bridge to the blockchain)
and the account needed to sign the transaction in order to deploy the contract.
For this reason, we introduced the HDWalletProvider from Truffle® to handle
the connection to the Ethereum network and sign the transaction. We have to
give our private key from the Metamask wallet to the HDWalletProvider so as
to sign the transactions.

However, to avoid setting up our own blockchain node, we have used the
Infura Ethereum node cluster’. This service enables us to run our transaction
on the blockchain without needing to establish our own blockchain node. To
work with this cloud-based Ethereum client we just need to sign up and then we
are provided with a token that enables us to connect to the Ethereum network
(with this service we can use the main Ethereum network, Rinkeby, Kovan or
Ropsten). The result of the execution of the deploy.js file is the address of the
new deployed smart contract.

At this point, we can easily interact with our deployed contract by using
Remix®. Remix is a browser-based solidity compiler that also supports testing
and debugging smart contracts. To run transactions on Remix we just have to
select the environment (Web3 Provider), our Ethereum account and the address
where the smart contract is deployed. The Metamask will always ask us confir-
mation before signing any transaction on the blockchain. Remix will show the
transaction in pending mode until it is validated.

In addition to that, we also have tested our smart contracts locally. Ganache?
implements a personal blockchain made by the Ethereum development of smart
contracts that runs in local. Besides, Ganache also simulates an Ethereum Virtual
Machine (EVM). After launching Ganache in our computer, a list with the private
and public key from ten recently created accounts is reported at the node console
in order to use them as test bank (each account has 100 ether in its balance). Now,
Ganache is ready to be used to deploy, run and test smart contracts without using
any public network. In Fig. 1 we have depicted our development configuration.

3 https://www.rinkeby.io.

* https://faucet.rinkeby.io/.

5 https://metamask.io.

5 http://truffleframework.com.

" https://infura.io.

8 https://remix.ethereum.org.

9 http:/ /truffleframework.com /ganache/.

https://www.rinkeby.io
https://faucet.rinkeby.io/
https://metamask.io
http://truffleframework.com
https://infura.io
https://remix.ethereum.org
http://truffleframework.com/ganache/

28 M. Mut-Puigserver et al.

ﬂ BROWSER

DEVELOPER
|

Node.js Console (Node-CLI)

ne d o .
@ Package Manager for Javascript ‘

METAMASK

Compile.js Deploy.js

Package JSON @ rermix
[’[rb Web3.js
TRUFFLE
RPC Layer
RINKEBY
GANACHE e 8

Fig. 1. Smart Contract Development Architecture

6 Development of the Non-Confidential Blockchain-Based
Fair Certified Notifications Protocol Without TTP

6.1 Smart Contract

We have designed and implemented the smart contract for non-confidential noti-
fications. For this proposal, a new instance of the smart contract will be created
by the sender and it will manage all the steps of the exchange. It has been pro-
grammed using Solidity'® and it has been deployed over an Ethereum network.
Ethereum addresses have been assigned to both the sender A and the receiver B.
Both A and B will interact with the blockchain using Web3.js interfaces (Fig. 4).

Figure 3 shows the smart contract that manages the non-confidential noti-
fications. The constructor of the smart contract includes variables to store the
addresses of the sender and the receiver, the hash of the notification message,
the instant of execution of the first step of the exchange and the value of the
execution period (the deadline). The contract includes five functions: to initiate
the notification (the constructor), to accept a notification, to deliver the mes-
sage, to cancel the exchange and to inquiry about the state of the exchange. The
certified notification is created by the sender, who specifies the receiver, the hash
of the message and the maximum duration of the exchange. The smart contract
also has an attribute to store the content of the message.

10 https:/ /solidity.readthedocs.io/en/v0.4.21/.

https://solidity.readthedocs.io/en/v0.4.21/

accept() _ . < :

ACCEPTED

FINISHED

Blockchain-Based Fair Certified Notifications

NonConfidentialNotification()

C——

—> sender

receiver

29

Fig. 2. Possible states of the exchange in the Non-Confidential Notifications Protocol.

pragma solidity ~0.4.24;

contract Notification {

address public sender; // Parties involved
address public receiver;

bytes32 public messageHash; // Message
string public message;

uint public term; // Time limit (in seconds)
uint public start; // Start time

enum State {created, cancelled, accepted, finished } // Possible states

State public state;

event StateInfo(State state);

constructor (address _sender, address _receiver, bytes32 _messageHash, uint _term)

public payable {

require (msg.value>0); // Requires sender deposits minimum 1 wei (>0 wei)

sender = _sender;
receiver = _receiver;
messageHash = _messageHash;
start = now; // now = block.timestamp
term = _term;
state = State.created;
emit StateInfo(state);
}
function accept() public {

require (msg.sender==receiver && state==State.created);

state = State.accepted;
emit StateInfo(state);

function finish(string _message) public {

require(now < start+term); // It's not possible to finish after deadline
ender &% state==State.accepted);
keccak256 (_message)) ;

require (msg.sender=:
require (messageHas|
message = _message;

sender.transfer(this.balance); // Sender receives the refund of the deposit

state = State.finished;
emit StateInfo(state);
}

function cancel() public {

require(now >= start+term); // 1It's not possible to cancel before deadline

require((msg.sender==sender && state==State.created) ||

(msg.sender==receiver && state==State.accepted));
if (msg.sender==sender &% state==State.created) {
sender.transfer(this.balance); // Sender receives the refund of the deposit

state = State.cancelled;
emit StateInfo(state);

Fig. 3. Smart Contract for the Non-Confidential Notifications Protocol.

30 M. Mut-Puigserver et al.

The contract also manages a Solidity event to follow the progress of the
exchange. This event stateInfo allows the parties to see the evolution of the
state of the exchange (created, accepted, finished or cancelled).

Functions Accept and Finish check the identity of the address that throws
the transaction. The address of the receiver and the sender are verified before
updating the state. Function Cancel also checks the addresses. In this case, both
sender and receiver can execute the function, depending on the state of the
exchange. Moreover, all the functions that can cause any change in the state of
the exchange check the value of the variable State. Function Finish requires that
the present time does not exceed the deadline before executing its code. Also,
function Cancel verifies that the current time is greater than the deadline before
carrying on with the execution of it.

The smart contract will manage the publication on the blockchain of all the
values of the required variables to maintain the fairness of the exchange following
the protocol described in Sect. 4.1.

6.2 Properties

The non-confidential certified notifications protocol allows the fair exchange of
a message and non-repudiation proofs. The main properties achieved by the
protocol are analyzed in this section.

— Strong Fairness. A will not receive the non-repudiation proof of reception
provided by the smart contract unless she executes the transaction to register
the message in the blockchain (case State=finished). On the other hand, B will
not have access to the message unless he executes the transaction to accept
the notification (State=Accepted). At any moment, the smart contract does
not generate alternative cancellation or finalization proofs that could create
any situation where one of the parties can have contradictory proofs (leading
the exchange to weak fairness), as can be seen in Fig. 3.

— Total absence of TTP. Substitution by an smart contract. This pro-
posal does not require an external party acting as a TTP. The parties execute
the functions of the smart contract creating the associate transactions and
there is no need of dispute resolution.

— Transferability of the proofs. Since the parties cannot obtain contradic-
tory proofs in any way, the generated proofs can be presented as evidence
to an external entity. Moreover, its transferability is easy, since the results
of the exchange are stored in the blockchain. Due to the immutability of the
blockchain, the content of the notification cannot be modified so the system
provides integrity to the notification. The moment that the notification takes
place can be derived from the timestamp of the block where the transaction
is included.

— Weak Timeliness. The protocol is not asynchronous. If one of the parties
delays its intervention in the exchange, the other party will not be able to
resolve it until the deadline. However, after the deadline both parties can
request the finalization of the exchange. Moreover, the protocol wants to

Blockchain-Based Fair Certified Notifications 31

motivate the sender to conclude the exchange before the timeout blocking an
amount of money in the smart contract. This amount will only be refunded
to the sender if she concludes before the deadline.

— Non Repudiation. The protocol achieves non-repudiation of origin together
with non-repudiation of receipt after the execution of the exchange. A cannot
deny having sent the message since there is a transaction on the blockchain
from her address containing the message and another one related with the
same message including the address of the receiver and the hash of the mes-
sage. B cannot deny having received the notification since there is a transac-
tion from his address in the blockchain accepting the reception of the message
and the State of the exchange is Finished, so the message is publicly accessible
in the blockchain.

7 Development of the Confidential Blockchain-Based
Fair Certified Notifications Protocol

7.1 Smart Contract

We have designed and implemented a DApp that allows the optimistic exchange
between the parties and a smart contract for the resolution of disputes. The
smart contract has been programmed in Solidity and deployed over the Ethereum
network (see Sect. 5). Ethereum addresses have been assigned to the sender A,
the receiver B and the TTP. In comparison with the protocol described in [7],
the role of the TTP has been reduced. The sender will never contact the TTP.
The TTP will answer only requests from the receiver B by accessing to the
smart contract that has been deployed. The TTP is totally stateless and, in
any case, it stores information about the state of any exchange. Both A and B
can interact with the blockchain if it is necessary through the Web3.js interface.
For this reason, we have also designed a web service where the web client can
connect using TLS protocol. This web service is used the off-chain communica-
tion exchanges between sender and recipient described in the protocol. In order
to implement the cryptographic operations, we have used Stanford Javascript
Crypto Library!'!. This enables us to use AES for the symmetric encryption oper-
ation, EC-ElGammal for the asymmetric encryption operations and ECDSA for
the signature functions. However, the implementation of a PKI and the secure
exchange of public keys are beyond the scope of this work. Figure5 shows the
smart contract that will manage the possible disputes between the parties after
the execution of the exchange described in Sect. 4.2 for confidential notifications.
This smart contract is deployed by the TTP, who defines the identities of the
sender and the receiver. The smart contract manages the variable state in order
to keep track of the state of each exchange (Fig.2).

The event statelnfo allows the tracking of the evolution of each exchange
state. The function Cancel checks the identity of the address that throws the
transaction, which must be the address of the sender, together with the value

Y http://bitwiseshiftleft.github.io/sjcl/.

http://bitwiseshiftleft.github.io/sjcl/

32 M. Mut-Puigserver et al.

‘ 3-STEPS OPTIMISTIC NOTIFICATION .
[)
CANGEL ﬂ FINISH

REQUEST

FINISH @

Fig. 4. Interaction between the actors.

of the variable state. This function can be executed only by the sender. The
function Finish checks the identity of the party that sends the transaction, that
is, the TTP, together with the value of the variable state. The TTP will execute
this function if it receives a request from the receiver. The smart contract is
responsible for the publication in the blockchain of the values of the elements
used to maintain the fairness of the exchange following the protocol described
in Sect. 4.2. In function Finish, if the conditions are fulfilled, the smart contract
publishes in the blockchain both the non repudiation of reception proof (hB)
and the session key encrypted with B’s public key (hBt).

7.2 Properties

The main properties achieved by the confidential certified notifications protocol
are analysed in this section.

— Weak Fairness. The protocol does not allow that any of the parties receive
the expected item if the other party does not receive it. However, the inter-
venction of the TTP can lead to a situation in where one of the parties pos-
sesses contradictory evidence. A malicious A can have the non-repudiation
proof received directly from B and also the cancellation proof generated by
the smart contract after a cancellation request from A. For these reason, the
fairness will be weak and the generated proofs are non transferable. Com-
paring this feature with the version of the protocol without blockchain, this
protocol does not require that the arbitrator consults both parties to resolve
the final state of the exchange. It is enough to check one of the parties and
then match this version with the contents of the blockchain.

— Optimistic. The parties can finalize the exchange without the need to con-
tact with a TTP or execute any function of the smart contract. If the parties
do not follow the protocol and the execution of the smart contract is required,
the gas necessary for its operation would be reduced compared with the pro-
tocol for non-confidential notifications protocol.

Blockchain-Based Fair Certified Notifications 33

pragma solidity ~0.4.11;
contract ConfidentialNotifications {

//Parties involved
address sender;
address receiver;
address ttp;

string hB; //NRR proof
string hBt; //Intervention proof

//Possible states
enum State { created, cancelled, finished }
State public state;

function ConfidentialNotification (address _sender, address _receiver){
ttp = msg.sender;
sender = _sender;
receiver = _receiver;
state = State.created;
}

event stateInfo(
State state
);

function Cancel() returns (string) {
if(msg.sender==sender){

if(state==State.created){
state=State.cancelled;
//return abort token
stateInfo(state);

}else if (state == State.finished){
return hB;

}

function Finish(string _hB, string _hBt) returns (State) {
if (msg.sender==ttp){
if(state==State.cancelled){
return state;

Yelse{
hB=_hB;
hBt=_hBt;

state=State.finished;

}
function getState() returns (string){
if(state==State.cancelled) return "cancelled";

if(state==State.created) return "created";
if(state==State.finished) return "finished";

Fig. 5. Smart Contract for Confidential Notifications.

— Stateless TTP. When the TTP is involved in the exchange, it can resolve
the exchange through the use of the smart contract. The TTP does not need
to store any kind of state information of the exchange.

— Timeliness. The parties can finish the exchange at any moment accessing the
smart contract (sender A) or contacting the TTP (receiver B). The duration
of the resolution will depend of the block notification treatment. The protocol
can assume that the transactions are valid immediately (zero confirmation)
or wait until the block is confirmed in the chain (fully confirmation).

— Non repudiation. The protocol achieves non-repudiation of origin together
with non-repudiation of receipt after the execution of the three step exchange

34 M. Mut-Puigserver et al.

or the finalization using the smart contract. A cannot deny having sent the
message since B has the element received in the third step or the state of the
smart contract is Finished. B cannot deny having received the notification
since A has the elements sent by B in the second step of the protocol.

— Confidentiality. If the exchange is finished through the execution of the
three step exchange protocol, then no other entity is involved in the exchange,
and the message remains confidential. If the TTP is involved or the functions
of the smart contract are executed, then the TTP will process the received
elements and will make a transaction including the element that will allow B
to decrypt the message but the plain message is not included in the trans-
action so it will not be included in a block of the blockchain to preserve the
confidentiality.

8 Comparison and Conclusions

Previous solutions for fair certified notifications are mainly based on the inter-
vention of a TTP that acts as an intermediary between sender and receiver. In
this model of fair exchange, both parties obtain the expected item from the other
or neither obtains what was expected. That is, either the issuer has received a
non-repudiation of reception evidence and the recipient has received the message,
or neither party obtains the desired item, the TTP can intervene to guarantee
the fairness of the exchange if some participant misbehaves.

This paper presents two alternatives for sending certified notifications on a
blockchain-based fairness. On the one hand, the first solution (see Sect. 6) allows
users to send non-confidential notifications, the new DApp supports the sending
and receiving of certified messages and guarantees the fairness of the exchange
without requiring the intervention of any TTP to guarantee the security proper-
ties of the exchange since the actions of the different actors are recorded in the
blockchain and, in the event that any actor does not fulfil the protocol, the smart
contract will generate the corresponding evidence to preserve fairness. This pro-
posal also preserves the properties of limited Timeliness (involved parties can
be certain that the protocol will be completed at a certain finite point in time
[16]), Transferability of proofs and Non-repudiation as it is stated in Sect. 6.2.

On the other hand, the second solution (see Sect. 7) is a fair exchange protocol
that allows users to send confidential notifications and introduce an optimistic
TTP (its intervention is only required if a party does not fulfil the protocol) to
guarantee fairness. Thanks to the usage of a blockchain and a smart contract,
the TTP can be stateless (i.e. the TTP does not need to store the state of
the exchange regarding any protocol execution because all the information of
each exchange is stored in the blockchain by using the smart contract). This
solution assures the fair exchange (weak fairness, see Sect. 7.2). Like the first
solution, this proposal also preserves Timeliness and Non-repudiation properties.
However, Transferability of proofs is not strictly provided because anyone who
want to verify the correctness of the exchange not only has to check the provided
evidence by the parties but also has to check the blockchain. Table 1 compares

Blockchain-Based Fair Certified Notifications 35
Table 1. Comparasison of Properties
Property Non Confidential Notifications | Confidential Notifications
Non-repudiation YES YES
Fairness STRONG WEAK
Timeliness LIMITED YES
Effectiveness YES YES
TTP NO OPTIMISTIC/STATELESS
Evidence Transferibility | YES NO
Confidentiality NO YES

Table 2. GAS per execution of the Non-Confidential Contract.

Non-Confidential Notifications
Deployment 1086913
Accept 43644
Finish 59835
Cancel (created) 53011
Cancel (accepted) | 30443

Table 3. GAS per execution of the Confidential Contract.

Confidential notifications
Deployment 800433
Finish (Cancelled) | 26388
Finish 88387
Cancel 44698
Cancel (Finished) 24772

the properties of both solutions while Tables 2 and 3 present the gas required for
the execution of each function, for both protocols.

9 Future Work

There are some points to be studied to improve the proposed protocols. Thus,
as further works we are going to:

— Test the smart contracts on real-like networks, checking confirmation delay
time of transactions and possible undesired effects caused by these delays.
Also we would like to obtain and evaluate an accurate register of the perfor-
mance of our smart contracts in these real-like scenarios.

— Modify smart contracts to allow them to manage more than just one notifica-
tion. This can be done with a contract that can create notification structs or

36

M. Mut-Puigserver et al.

other new contracts that represent a notification exchange, and storing them
into an array.

Modify the confidential notification smart contract so that the TTP can create
a main contract, and from this, multiples notifications can be created by the
senders.

Improve the use of events. Users can receive notifications, but they need the
address of the smart contract in order to be subscribed to them. For this
reason, the subscription to events can be also improved using only one smart
contract that manages multiple notifications.

In Tables 2 and 3 we have evaluated the necessary amount of gas to execute the
contracts. However, we have left for further works a deeper analysis in order
to find possible improvements to the code so as to reduce the commissions
paid for using the blockchain.

The systems presented in this article show different sets of properties, so the
choice of one system will depend basically on the needs of each exchange. As a
future work, it is proposed to reformulate the system of confidential notifications
to achieve strong fairness. The use of the blockchain for the diffusion of each of
the executed steps and the full confirmations will be the element used to obtain
this property.

Acknowledgments. This work has been partially financed by AccessTur TIN2014-
54945-R AEI/FEDER UE and the network Consolider ARES TIN2015-70054-REDC
projects.

References

1.

Al-Bassam, M., Sonnino, A., Krél, M., Psaras, I.: Airtnt: Fair Exchange Pay-
ment for Outsourced Secure Enclave Computations, CoRR, volume abs/1805.06411
2018

(Asoka)n, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair
exchange. In: Proceedings of the IEEE Symposium on Research in Security and
Privacy, pp. 8699, Oakland, CA, May 1998

Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399—414.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_29
Bentov, 1., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421-439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_24
Delgado-Segura, S., Perez-Sola, C., Navarro-Arribas, G., Herrera-Joancomarti, J.:
A fair protocol for data trading based on Bitcoin transactions. Future Gener. Com-
put. Syst. (2017)

Ethan H., Baldimtsi, F., Alshenibr, L., Scafuro, A., Goldberg, S.: TumbleBit: An
Untrusted Tumbler for Bitcoin-Compatible Anonymous Payments. In: Network
and Distributed System Security Symposium (NDSS) (2017)

Llufs Ferrer-Gomila, J., Payeras-Capella, M., Huguet i Rotger, L.: An efficient
protocol for certified electronic mail. In: Goos, G., Hartmanis, J., van Leeuwen,
J., Pieprzyk, J., Seberry, J., Okamoto, E. (eds.) ISW 2000. LNCS, vol. 1975, pp.
237-248. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44456-4_18

https://doi.org/10.1007/978-3-642-32946-3_29
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/3-540-44456-4_18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Blockchain-Based Fair Certified Notifications 37

Ferrer-Gomila, J.L., Payeras-Capelld, M., Huguet-Rotger, L.: A realistic protocol
for multi-party certified electronic mail. In: Chan, A.H., Gligor, V. (eds.) ISC
2002. LNCS, vol. 2433, pp. 210-219. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45811-5_16

Ferrer-Gomilla, J., Onieva, J., Payeras-Capella, M., Lopez, J: Certified electronic
mail: properties revisited. Comput. Secur. 29(2), 167-179 (2010)

Goldfeder, S., Bonneau, J., Gennaro, R., Narayanan, A.: Escrow protocols for
cryptocurrencies: how to buy physical goods using bitcoin. In: Kiayias, A. (ed.)
FC 2017. LNCS, vol. 10322, pp. 321-339. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70972-7_18

Heilman, E., Baldimtsi, F., Goldberg, S.: Blindly signed contracts: anonymous on-
blockchain and off-blockchain bitcoin transactions. In: Clark, J., Meiklejohn, S.,
Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol.
9604, pp. 43-60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53357-4_4

Huang, Q., Yang, G., Wong, D., Susilo, W.: A new efficient optimistic fair exchange
protocol without random oracles. Int. J. Inf. Secur. 11(1), 53-63 (2012). ISSN
1615-5270

Huang, Q., Wong, D.S., Susilo, W.: P2OFE: privacy-preserving optimistic fair
exchange of digital signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol.
8366, pp. 367-384. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
04852-9_19

Kremer, S., Markowitch, O.: Selective receipt in certified e-mail. In: Rangan, C.P.,
Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 136-148. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45311-3_14

Kiipgii, A., Lysyanskaya, A.: Usable optimistic fair exchange. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 252-267. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11925-5_18

Liu, J., Li, W., Karame, G., Asokan, N.: Towards Fairness of Cryptocurrency
Payments. In: IEEE Security and Privacy (2017)

Mut-Puigserver, M., Ferrer-Gomila, J., Huguet-Rotger, L.: Certified e-mail pro-
tocol with verifiable third party. In: Proceedings of the 2005 IEEE International
Conference on e-Technology, e-Commerce and e-Service, pp. 548-551 (2005)
Onieva, J., Zhou, J., Lopez, J.: Enhancing certified email service for timeliness and
multicast. In: Fourth International Network Conference, pp. 327-335 (2004)
Payeras-Capella, M., Mut-Puigserver, M., Ferrer-Gomila, J., Huguet-Rotger, L.:
No Author Based Selective Receipt in an Efficient Certified E-mail Protocol. In:
PDP 2009, pp. 387-392 (2009)

Shao, Z.: Fair exchange protocol of Schnorr signatures with semi-trusted adjudi-
cator. Comput. Electric. Eng. (2010)

Zhou, J., Deng, R., Bao, F.: Some remarks on a fair exchange protocol. In: Imai,
H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 46-57. Springer, Heidelberg
(2000). https://doi.org/10.1007/978-3-540-46588-1 4

https://doi.org/10.1007/3-540-45811-5_16
https://doi.org/10.1007/3-540-45811-5_16
https://doi.org/10.1007/978-3-319-70972-7_18
https://doi.org/10.1007/978-3-319-70972-7_18
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-319-04852-9_19
https://doi.org/10.1007/978-3-319-04852-9_19
https://doi.org/10.1007/3-540-45311-3_14
https://doi.org/10.1007/978-3-642-11925-5_18
https://doi.org/10.1007/978-3-642-11925-5_18
https://doi.org/10.1007/978-3-540-46588-1_4

	Blockchain-Based Fair Certified Notifications
	1 Introduction
	2 Ideal Properties of a Fair Certified Notification System.
	3 State of the Art of Fair Certified Notification Protocols
	4 Conceptual Design of Two Blockchain-Based Systems for Fair Certified Notifications
	4.1 Non-confidential Notifications Without TTP
	4.2 Optimistic Confidential Notifications with Stateless TTP

	5 Smart Contracts Development Settings
	6 Development of the Non-Confidential Blockchain-Based Fair Certified Notifications Protocol Without TTP
	6.1 Smart Contract
	6.2 Properties

	7 Development of the Confidential Blockchain-Based Fair Certified Notifications Protocol
	7.1 Smart Contract
	7.2 Properties

	8 Comparison and Conclusions
	9 Future Work
	References

