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Abstract. Privacy-preserving record linkage (PPRL) supports the inte-
gration of person-related data from different sources while protecting
the privacy of individuals by encoding sensitive information needed for
linkage. The use of encoded data makes it challenging to achieve high
linkage quality in particular for dirty data containing errors or inconsis-
tencies. Moreover, person-related data is often dense, e.g., due to frequent
names or addresses, leading to high similarities for non-matches. Both
effects are hard to deal with in common PPRL approaches that rely on
a simple threshold-based classification to decide whether a record pair
is considered to match. In particular, dirty or dense data likely lead to
many multi-links where persons are wrongly linked to more than one
other person. Therefore, we propose the use of post-processing meth-
ods for resolving multi-links and outline three possible approaches. In
our evaluation using large synthetic and real datasets we compare these
approaches with each other and show that applying post-processing is
highly beneficial and can significantly increase linkage quality in terms
of both precision and F-measure.
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1 Introduction

Privacy-preserving record linkage (PPRL) is the task of identifying records across
different data sources referring to the same real-world entity, without revealing
sensitive or personal information [47]. In contrast to traditional record linkage
(RL), PPRL has to protect sensitive data to ensure the privacy and confiden-
tiality of the entities, usually representing persons [43]. PPRL techniques are
required in many areas, for instance in medical and health care applications. A
typical use case is the integration of patient-related data from different sources,
i.e., hospitals, registries and insurance companies, to allow comprehensive anal-
ysis and research about certain diseases or treatments [13,23,25,29]. Other use
cases for PPRL techniques include epidemiological or demographical studies as
well as marketing analysis [47].
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To preserve the privacy of represented entities, PPRL techniques have to
ensure that no personal identifiers or other sensitive information is revealed dur-
ing or after the linkage process. For an adversary it should be impossible to iden-
tify a person or to infer any sensitive information, like a person’s state of health.
Therefore, the data needed for analysis, e.g., medical data, is separated from the
data required for linkage. Record linkage is conducted by comparing commonly
available attributes, called quasi-identifiers (QIDs), like first and last name or
date of birth. Since such QIDs also contain private information, these attributes
are encoded (masked) for PPRL to preserve privacy. Consequently, such data
encodings have to be highly secure while still allowing linkage, i.e., they still
have to enable efficient similarity calculations between records. Real-world data
often contains errors or inconsistencies [15,36]. Hence, encoding techniques for
PPRL have to support approximate matching to achieve high linkage accuracy.

A high linkage quality is essential for practical applicability of PPRL, espe-
cially in the medical domain. Ideally, a PPRL approach should find all matches,
despite possible data quality problems in the source databases. On the other
hand, false matches should be strictly avoided, as otherwise (medical) conclu-
sions based on incorrect assumptions could be made.

Classification models are used to decide whether a record pair represents a
match or a non-match. For traditional RL sophisticated classification models
based on supervised machine learning approaches, e.g., support vector machines
or decision trees, can be used to achieve highly accurate linkage results [4]. More-
over, linkage results could be manually reviewed to increase final quality or to
adjust parameter configurations. In contrast, currently most PPRL approaches
only apply threshold-based classification based on a single threshold, as training
data is usually not available in a privacy-preserving context [43]. In general, it
is also not feasible to manually inspect actual QID values of records because
this would give up part of the privacy. Finally, recent encoding techniques often
aggregate all attribute values into a single binary encoding making it hard to
deploy attribute-wise or rule-based classification [43,47]. All these effects likely
reduce linkage quality of PPRL, indicating the demand for refined classification
techniques [8].

In this paper, we study post-processing methods for improving linkage qual-
ity of PPRL in terms of precision. By using simple threshold-based classification
approaches, only low linkage accuracy is likely achieved in PPRL scenarios deal-
ing with dirty or dense data. Dirty data such as missing or erroneous attribute
values can lead to a low similarity between matching records that are thus easily
missed with a higher similarity threshold. Another problem case are dense data
where many non-matching records can have a high similarity. For example, mem-
bers of a family often share the same last name and address leading to a high
similarity for different persons. Datasets focusing on a specific city or region also
tend to have many persons with similar addresses. For such dense data there can
be many non-matching record pairs with a similarity above a fixed threshold.
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A key drawback of classification approaches based on a single threshold is
that they often produce multi-links, i.e., one record is linked (matched) to many
records of another source, and moreover, each record pair exceeds the similarity
threshold. But, assuming deduplicated source databases, each record can at most
match to one record of another source. Hence, the linkage result should exclu-
sively contain one-to-one links as otherwise precision is deteriorated. Therefore,
we analyze methods that can be executed after any (threshold-based) classifi-
cation to clean multi-links, i.e., to transform the linkage result such that only
one-to-one links occur in the final result. In particular, we make the following
contributions:

– We study three post-processing strategies for the cleaning of multi-links, or
selection of match candidates respectively, to increase the overall linkage qual-
ity of PPRL, especially when dealing with dense or dirty data.

– We evaluate the different post-processing approaches using large synthetic and
real datasets showing different data characteristics and difficulty levels.

– In our evaluation, we consider both linkage quality in terms of recall, precision
and F-measure, as well as efficiency in terms of runtime.

In Sect. 2, we outline the basic PPRL process and discuss related work in the
field of PPRL. Then, we formalize the multi-link cleaning problem that we want
to address with post-processing (Sect. 3) and describe approaches for solving
it (Sect. 4). In Sect. 5, we evaluate selected approaches in terms of quality and
efficiency. Finally, we conclude.

2 Background and Related Work

In this section we describe the overall PPRL process and discuss related work.

2.1 PPRL Process

A PPRL pipeline contains multiple steps which are shown in Fig. 1. Following
previous work, we assume a three-party protocol, where a (trusted) third party,
called linkage unit (LU), is required [43]. The LU conducts the actual linkage of
encoded records from two or more database owners (DBOs). While we focus on
only two DBOs with their respective databases DA and DB the PPRL process
can be extended to multiple DBOs. In the following, each step of the PPRL
process is described and relevant techniques are discussed. It is assumed that
general information and parameters are exchange in advance between the DBOs.

Data Pre-processing: At first, the source databases to be linked need to be
pre-processed by the DBOs. Pre-processing includes deduplication, data cleaning
and standardization. In each individual database, duplicate records may occur
due to inconsistent or repetitive recording processes. Therefore, the DBOs have
to internally link and deduplicate their databases to ensure that a record from
one data source can only be linked to at maximum one record from another data
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Fig. 1. Outline of the basic PPRL process under a three-party protocol. Steps in dotted
boxes are optional. Steps with a lock symbol process encoded data.

source. Furthermore, data cleaning and standardization is required since real-
world data often contain erroneous, missing, incomplete, inconsistent or outdated
data [15]. Data cleaning techniques aim at curating or weakening such errors,
e.g., by filling in missing data or removing unwanted values [4]. Moreover, dif-
ferent data sources often use different formats and structures to represent data.
Hence, standardization techniques are used to overcome heterogeneity by trans-
forming data into well-defined and consistent forms [36]. Ideally, all DBOs con-
duct the same pre-processing steps to reduce heterogeneity thereby facilitating
high linkage quality. However, even extensive pre-processing may not resolve all
quality issues, as inconsistencies, like contradicting or outdated values, are hard
to detect.

Encoding: We focus on RL with the additional challenge to preserve the privacy
of referenced entities. Consequently, each record needs to be encoded to protect
sensitive data. A widely-used approach is to encode each record into a Bloom
filter (BF) [43,47]. A BF [1,39,40] is a bit array of fixed size m where initially
all bits are set to zero. k independent cryptographic hash functions are used
to map a set of record features into the BF. Each hash function takes as input
every feature from the feature set and produces a value in [0,m − 1]. Then,
the bits at the resulting k positions are set to one for every feature. The set of
features can be extracted in several ways from the record attributes. In general,
for each record attribute a function is defined, which takes as input the attribute
value and outputs a set of feature values. Typically, all QID values of a record are
represented as string and then split into a set of q-grams (substrings of length q),
where q is equal for each attribute. Several BF variants have been proposed for
PPRL to either improve quality [20,44,45] or privacy properties [8,35,38,40,41].
Multiple studies have analyzed attacks on BF variants and respective hardening
techniques [5,24,26,27,35].
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Blocking/Filtering: The trivial approach to link two databases is to compare
every possible record pair of the two data sources. To overcome this quadratic
complexity blocking or filtering techniques are used to reduce the number of
record comparisons [4]. This is achieved by pruning record pairs not fulfilling
defined blocking or filter criteria and are hence unlikely considered to be a match.
The output of this step are candidate record pairs that need to be further com-
pared. Blocking and filtering can be executed on encoded or uncoded data. Most
privacy-preserving approaches perform blocking or filtering at the LU side on
encoded data (bit vectors) [47]. State-of-the-art blocking techniques can signif-
icantly reduce the search space by applying blocking based on locality-sensitive
hashing (LSH) [8,21,22] or performing filtering based on multibit-trees [3,38] or
pivot-based filtering for metric distance functions [42].

Comparison: Each candidate pair is compared in detail by using (binary) sim-
ilarity measures, mainly the Jaccard or Dice similarity [43]. The output of this
step are candidate pairs with their respective similarity score. The similarity
score is a numerical value in [0, 1] determining how similar two records are.

Classification: Most PPRL approaches use a single similarity threshold which
is used to classify candidate record pairs into matches, i.e., records representing
the same real-world entity, and non-matches [43]. A second threshold can be
used to add a third class consisting of possible matches where no clear decision
is possible. Another common approach is the probabilistic method developed by
Fellegi and Sunter [4,10].

Finally, the match result, e.g., the IDs of matching record pairs, is returned to
the DBOs. However, by using simple threshold-based classification approaches,
multi-links occur in the final match result. Since commonly deduplicated data-
bases are assumed, the desired outcome should be a linkage result consisting of
only one-to-one links between records. We address this problem by introducing a
post-processing step after classification to clean multi-links in the linkage result.
The main problem in the post-processing step is to decide which candidates
should be selected leading to only one-to-one links and high linkage quality.

2.2 Related Work

PPRL and RL have been addressed by numerous research studies and approaches
as summarized in several surveys and books [4,9,43,47]. The key challenge of
PPRL is to achieve high linkage quality and scalability to potentially large
datasets while preserving the privacy of represented entities by using secure
encodings and protocols. In order to achieve a high linkage quality previous
work mostly focuses on developing or optimizing encoding techniques to support
approximate matching, attribute weighting or different data types [19,43,45,46].
Besides, efficient blocking and filtering techniques have been proposed that do
not compromise linkage quality outcome [47].
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The problem of post-processing corresponds to weighted bipartite graph
matching problems [48]. In fact, applying a one-to-one matching restriction, i.e.,
to clean multi-links, is highly related to problems in graph theory like the assign-
ment problem (AP) or the stable marriage problem (SMP). Various algorithms
have been developed to solve such kind of problems [17,48]. The most prominent
approaches are variants of the Hungarian algorithm (Kuhn-Munkres algorithm)
[34] for solving AP as well as variants of the Gale-Shapley algorithm [12,14,16,31]
for solving SMP.

For PPRL, post-processing methods have only been studied to a limited
extent so far: Though several approaches were considered for RL, they were not
comparatively evaluated in a PPRL context [2,4,8,9,28]. As a consequence, it is
unknown to which degree post-processing is useful and which method is suited
best for PPRL. Note that privacy restrictions only allow simple approaches for
match classification so that the need for post-processing is increased for PPRL.

A similar post-processing problem, namely selecting the most probable corre-
spondences from a mapping, has been studied in the field of schema [7,30,33] and
ontology matching [32]. In [7,33] best match selection strategies, called MaxN or
Perfectionist Egalitarian Polygamy, are used to enforce a one-to-one cardinality
constraint by selecting only candidates offering the best similarity scores. Addi-
tionally, algorithms for solving the maximum weighted bipartite graph matching
problem and the SMP have been considered as selection strategies [30,32].

3 Problem Definition

After the classification step (see Sect. 2) all candidate record pairs C are classified
into matches CMatch and non-matches CNon−Match. We assume, that a simple
threshold-based approach is used for classification. Thus, the class of matches
CMatch contain all candidate record pairs with a similarity score sim(·, ·) above
a single predefined similarity threshold t, i.e., CMatch = {(a, b)|a ∈ DA, b ∈
DB , sim(a, b) ≥ t}. We also assume that the databases to be linked are dedupli-
cated before linkage.

The set of matches CMatch constitutes a weighted bipartite linkage or sim-
ilarity graph G = (VA,VB,L). Let VA and VB be two partitions consisting
of vertices representing records (entities) from database DA or database DB

respectively, which occur in the linkage result, i.e., are part of a record pair
classified as match. Thus, VA = {a ∈ DA | ∃b ∈ DB : (a, b) ∈ CMatch} and
VB = {b ∈ DB | ∃a ∈ DA : (a, b) ∈ CMatch}. L denotes the set of edges rep-
resenting links between two records classified as match. Each edge (link) has a
property for the similarity score of the record pair. Between records of the same
database no direct link exists. An example linkage graph is depicted in Fig. 2.

After classification it is still possible that the linkage graph contains multi-
links, i.e., one-to-many, many-to-one or many-to-many links. Since deduplicated
databases are assumed, only one-to-one links should be present in the final link-
age result. Hence, the aim of post-processing is to find a matching (match map-
ping) over G. A matching M ⊆ L is a subset of links such that each record
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in V = VA ∪ VB appears in at most one link, i.e., contributes to at most one
matching record pair. As a consequence, post-processing applies a one-to-one
link (cardinality) restriction on the set of classified matches CMatch.

Fig. 2. Example linkage graph
containing several multi-links.

Fig. 3. Types of matchings.

In general, several matchings over G can be found. Thus, the challenge of
post-processing is to select the matching yielding the best linkage quality in
terms of either recall, precision or F-measure. Ideally, no true-match should be
pruned (no loss of recall) while resolving all multi-links to improve precision.
Links providing high similarity scores should be favored over those with a low
similarity, e.g., near t, as very high similarities typically indicate definite matches.
Also other link features, like link degree, can be used for link prioritization [37].

A matching can be selected in such a way that it fulfills certain properties.
Basic types of matchings are trivial, maximal, maximum and perfect match-
ings [48]. A matching M is called maximal, if any link not in M is added to M,
then M would be no longer a matching. If a matching is not maximal then it
is a trivial matching. Furthermore, if a matching contains the largest possible
number of edges (links) then it is a maximum matching. Each maximum match-
ing is also maximal but not vice versa. Finally, a perfect matching is defined as
a matching where every vertex of the graph is incident to exactly one edge of
the matching. Every perfect matching is maximum and hence maximal. How-
ever, not for every linkage graph a perfect matching exists. The different types
of matchings are illustrated in Fig. 3.

Since PPRL is confronted with potentially large datasets containing millions
of records [47], post-processing approaches need to be scalable and efficient.
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4 Post-processing Strategies for PPRL

We now present post-processing strategies for PPRL to enable a one-to-one
link restriction on the linkage result. We chose three frequently used approaches
known from schema matching for obtaining matchings in bipartite graphs. The
approaches are described in detail below.

4.1 Symmetric Best Match

At first, we consider a symmetric best match strategy (SBM) as proposed in
[7,33]. The basic idea is that for every record only the best matching record of
the other source is accepted. A record a ∈ VA may have links to several records
b ∈ VB . From these links only the one with the highest similarity score, called best
link, is selected. This approach is equivalent to a MaxN strategy which extracts
the maximum N correspondences for each record setting N = 1 (Max1).

To obtain a matching M over a linkage graph G for every record of both
partitions VA and VB the best link is extracted. Thus, two sets LMax1

A and
LMax1
B are build containing the best links for each record of the respective

partition, e.g., LMax1
A = {(a, b) ∈ L | ∀b′ ∈ VB : (b �= b′ ∧ (a, b′) ∈ L) →

(sim(a, b′) ≤ sim(a, b))}. Then, the final matching is obtained by building the
intersection of these two sets, i.e., MSMB = MMax1-both = LMax1

A ∩LMax1
B . Since

the best links from both partitions are considered this strategy is also called
Max1-both.

In Fig. 4(a) Max1-both is applied on the linkage graph from Fig. 2. It is
important to note that the obtained matching is not maximal. Since only record
pairs with a common best link are accepted, other record pairs are excluded from
the matching even if they do not violate the one-to-one link restriction and have
a relative high similarity.

4.2 Stable Marriage and Stable Matchings

The stable marriage problem (SMP) [12] is the problem of finding a stable match-
ing (SM) between two sets of elements given an (strictly) ordered preference list
for each element. A matching is defined as stable, if there are no two records of
the different partitions who both have a higher similarity to each other than to
their current matching record. Used as post-processing method for PPRL several
extensions to the classic SMP need to be considered [17,31]:

Unequal Sets: Usually, an SMP instance consists of two sets of elements having
the same cardinality. The partitions of the linkage graph are in general of different
size, i.e., |VA| �= |VB |, as not every record may have a duplicate in the other
source.

Incomplete Preference Lists with Ties: In traditional SMP each element
has a preference list that strictly orders all members of the other set. Since
blocking or filtering techniques are used for PPRL not every record a ∈ VA has
a link to a record b ∈ VB and vice versa. Moreover, a record may have two



Post-processing Methods for High Quality PPRL 271

Fig. 4. Illustration of the resulting linkage graph from Fig. 2 after applying different
post-processing methods. For Max1-both (a) the link a4–b6 is removed since the best
link for a4 is to b5. In contrast, for SM (b) the link a4–b6 is included as it does not
violate the one-to-one-link restriction nor the stable property. For the MWM (c), the
links a3–b4 and a4–b5 are included in the matching as the sum of their similarities is
higher than for a3–b5 and a4–b6. However, the MWM is not stable due to the links
a3–b4 and a4–b5, as a3 and b5 prefer each other over their current matching records.

links with the same similarity score to two different records of the other source,
called tie or indifference [16], e.g., sim(a, b1) = 0.9 and sim(a, b2) = 0.9 where
a ∈ VA and b1, b2 ∈ VB. The simplest way to handle indifference is to break ties
arbitrary [16]. Also secondary link features can be used for resolving ties [37].

Symmetry: For SMP it is not required that two elements prefer each other the
same (asymmetric preference). In our case, the SMP instance is symmetric since
the similarity of a record pair is symmetric.

To obtain a SM the Gale-Shapley algorithm [12] or one of its variants taking
the described extensions into account [16,17,31] can be used. A simple approach
is to order all links (or candidate pairs) based on their similarity score to process
them iteratively in descending order. The current link is added to the final
matching if it does not violate the one-to-one-link restriction. The algorithm
stops if all links have been processed [30]. In Fig. 4(b) a SM for the linkage
graph from Fig. 2 is depicted. In contrast to matchings obtained by the SBM
strategy, SMs are maximal. In general, multiple SMs may exists for a linkage
graph.

4.3 Maximum Weight Matchings

As third method we consider to find a maximum weight matching (MWM). A
MWM is a matching that has maximum weight, i.e., that maximizes the sum of
the overall similarities between records in the final linkage result. This problem
corresponds to the assignment problem (AP) which consists of finding a MWM
in a weighted bipartite graph. To solve the AP on bipartite graphs in polyno-
mial time the Hungarian algorithm (Kuhn-Munkres algorithm) can be used [34].
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For the linkage graph from Fig. 2 the corresponding MWM is depicted in
Fig. 4(c). Each MWM is maximal, but does not have to be stable.

5 Evaluation

In this section we evaluate the introduced post-processing methods in terms
of linkage quality and efficiency. Before presenting the evaluation results we
describe our experimental setup as well as the datasets and metrics we use.

5.1 Experimental Setup

All experiments are conducted on a desktop machine equipped with an Intel
Core i7-6700 CPU with 8×3.40GHz, 32 GB main memory and running Ubuntu
16.04.4. and Java 1.8.0 171.

5.2 PPRL Setup

Following previous work, we implemented the PPRL process as three-party pro-
tocol utilizing BFs as privacy technique as proposed by Schnell [40]. To overcome
the quadratic complexity we make use of LSH-based blocking utilizing the family
of hash functions which is sensitive to the Hamming distance (HLSH) [8]. The
respective hash functions are used to build overlapping blocks in which similar
records are grouped. For HLSH-based blocking mainly the two parameters Ψ ,
determining the number of hash functions used for building a blocking key, and
Λ, defining the number of blocking keys, are important for high efficiency and
linkage quality outcome [11]. Based on [11] we empirically set Ψ and Λ individual
for each dataset as outlined in Table 1 leading to high efficiency and effectiveness.
Finally, we apply the Jaccard similarity to determine the similarity of candidate
record pairs [18].

5.3 Datasets

For evaluation we use synthetic and real datasets containing one million records
with person-related data. An overview about all relevant dataset characteristics
and parameters is given in Table 1. The synthetic datasets G1 and G2 are gen-
erated using the data generator and corruption tool GeCo [6]. We customized
the tool by using lookup files containing German names and addresses with real-
istic frequency values drawn from German census data1. Moreover, we extended
GeCo by a family and move rate used for G2. The family rate determines how
many records of a dataset belong to a family. All records of the same family
agree on their last name and address attributes. The size of each family is cho-
sen randomly between two and five. To simulate moves we added a move rate
that defines in how many records the address attributes are altered. The move

1 https://www.destatis.de/DE/Methoden/Zensus /Zensus.html.

https://www.destatis.de/DE/Methoden/Zensus_/Zensus.html
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rate does not introduce data errors like typos, instead it simulates inconsisten-
cies between data sources. A generated dataset D consists of two subsets, DA

and DB , to be linked with each other. While the original tool requires all records
of DB to be duplicates to records of DA we changed the tool to support arbi-
trary degrees of overlaps between DA and DB . As a consequence, records in
both DA and DB may have no duplicate which is more realistic. We also use
a refined model to corrupt records by allowing a different number of errors per
record instead of a fixed maximum number of errors for all records. We may
thus generate duplicates such that 50% of the duplicates contain no error, 20%
one error and 10% two errors while the remaining 20% have an address change
(move rate). For the real dataset N, we use subsets of two snapshots of the North
Carolina voter registration database (NCVR) at different points in time.2

Table 1. Dataset characteristics and used parameters.

Characteristic G1 G2 N

Type Synthetic (GeCo) Real (NCVR)

|DA| 800 000 700 000 500 000
|DB | 200 000 300 000 500 000
|DA ∩ DB | 200 000 (100%) 150 000 (50%) 250 000 (50%)

Attributes
First name, last name, city,

zip, date of birth
First Name, middle name,

last name, city, year of birth
q-grams q = 2 (bigrams), no character padding
g 28 25

|Errors|/record 2

0 - 2 :
0 (40%)
1 (30%)
2 (10%)

|Errors|/attr 0 - 1 0 - 2
Moves 20 %
Families 25 %

m 1024
k 26 29
BF type CLK with random hashing [40,41]

HLSH key length Ψ 16
HLSH keys Λ 20 30

5.4 Evaluation Metrics

To asses the linkage quality we measure recall, precision and F-measure. Recall
measures the proportion of true-matches that have been correctly classified as
matches after the linkage process. Precision is defined as the fraction of classified
matches that are true-matches. Finally, F-measure is the harmonic mean of recall
and precision. To evaluate efficiency we measure the execution times of the post-
processing methods in seconds.

2 http://www.ncsbe.gov/.

http://www.ncsbe.gov/
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Fig. 5. Quality results for the datasets G1, G2 and N .

5.5 Evaluation Results

In order to analyze the impact of post-processing on the linkage quality we
compare the three strategies described in Sect. 4 to the standard PPRL without
post-processing. The aim of post-processing is to optimize precision while recall
is ideally preserved. The results in Fig. 5 show the obtained linkage quality for
datasets G1, G2 and N .

Dataset G1 is based on settings of the original GeCo tool with 100% over-
lap and a fixed error rate. We observe that a high linkage quality is achieved
even if post-processing is disabled with near-perfect recall for t ≤ 0.8 and near-
perfect precision for t ≥ 0.7. The three post-processing methods achieve very
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similar results for G1: While recall remains stable, precision and consequently
F-measure can be significantly improved to almost 100% even for low thresholds
t ≤ 0.7. This is due to the high overlap of the two subsets making false-matches
after post-processing only possible if a record has a higher similarity to a record
having no duplicate than to its actual true-match. Despite this best-case situa-
tion simulated with G1, only low precision is achieved for low threshold values
without post-processing.

For datasets G2 and N overall a lower linkage quality is obtained since the
data is more dense making it harder to separate matches and non-matches. Sim-
ilar to G1, precision significantly decreases for G2 using lower threshold values.
All post-processing strategies can again improve precision for lower threshold
values. The best results are achieved for Max1-both outperforming both SM
and MWM. SM yields slightly better results than MWM. For the synthetic dat-
sets G1 and G2, post-processing does not increase the top F-measure but the
best linkage quality is reached with a wider range of threshold settings thereby
simplifying the choice of a suitable threshold.

The post-processing methods are most effective for the real dataset N . Here
a higher recall can only be achieved for lower threshold values t ≤ 0.7 but
precision drops dramatically in this range without post-processing due to a high
number of multi-links. As a result, the best possible F-measure is limited to
only 67%. By contrast, the use of post-processing can maintain a high precision
even for lower thresholds at only small decrease in recall compared to disabled
post-processing. As a result, the top F-measure is substantially increased to
around 80% underlining the high effectiveness and significance of the proposed
post-processing. Again, the use of Max1-both is most effective followed by SM.

Additionally, we comparatively evaluated the post-processing strategies in
terms of runtime. The results depicted in Fig. 6 show that Max1-both achieves
the lowest execution times even for low thresholds. The extended Gale-Shapley
algorithm we used for SM shows a significant performance decrease for lower sim-
ilarity thresholds, most notably for dataset N and t ≤ 0.7. For higher thresholds
t > 0.7 the runtimes are very similar to those of Max1-both. The computation of
the MWM by using the Hungarian algorithm incurs a high computational com-
plexity and massive memory consumption. As a consequence, we were not able
to obtain a MWM for low threshold values (compare Fig. 5). Hence, we consider
the MWM approach as not scalable enough for large datasets with millions of
records.

In conclusion, both Max1-both and SM are able to significantly improve the
linkage quality of PPRL, especially for low thresholds, while showing good per-
formance. In our setup, the execution of the entire PPRL process takes only a
few minutes. Hence, introducing post-processing taking a few seconds for execu-
tion does not affect the overall performance. In general, Max1-both can achieve
the best linkage quality in terms of precision and F-measure. For applications
favoring recall over precision, a SM should be applied.
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Fig. 6. Runtime results for the datasets G1, G2 and N .

6 Conclusion

We evaluated different post-processing methods for PPRL to restrict the link-
age result to only one-to-one links. Our evaluation for large synthetic and real
datasets containing one million records showed that without post-processing
only low linkage quality is achieved, especially when dealing with dense or dirty
data. In contrast, using a symmetric best match strategy for post-processing is a
lightweight approach to raise the overall linkage quality. As a side effect, by using
post-processing the similarity threshold used for classification can be selected
lower without compromising linkage quality. Since in practical applications a
appropriate threshold is hard to define, this fact becomes highly beneficial.

In future, we plan to investigate further post-processing strategies using fur-
ther link features and other heuristics. We also plan to analyze post-processing
methods for multi-party PPRL where more than two databases need to be linked.
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