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Abstract. Proof-of-work (PoW) is used as the consensus mechanism in
most cryptocurrencies. PoW-based puzzles play an important part in the
operation and security of a cryptocurrency, but come at a considerable
energy cost. One approach to the problem of energy wastage is to find
ways to build PoW schemes from valuable computational problems. This
work proposes calibration of public key cryptographic systems as a suit-
able source of PoW puzzles. We describe the properties needed to adapt
public key cryptosystems as PoW functions suitable for decentralised
cryptocurrencies and provide a candidate example.
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1 Introduction

Proof-of-work (PoW) mechanisms are an integral part of modern cryptocurren-
cies, such as Bitcoin and the numerous altcoin variants [20], where they are
used to maintain consensus. Despite their successful employment for this task,
a source of contention for proofs-of-work is the energy wastage associated with
their use [14,16]. On the other hand, the developers of Bitcoin claim that the
waste of energy is analogous to the energy expenditure of other financial insti-
tutions, such as banks and credit card companies [20]. Even so, the high energy
consumption of PoW systems is a concern, and one that is not easily avoided. A
main purpose of PoW is to manage the Sybil vulnerability problem [7]. Devising
an authority-free decentralised cryptocurrency, that does not suffer from Sybil
vulnerabilities and does not use PoW, remains an open problem.

The approach of this work is to design a PoW mechanism that is useful
outside of the cryptocurrency it is intended to support. While the energy expen-
diture would still continue, there would at least be some other value in the
execution of the PoW function. The intention is to provide insight into the con-
struction of PoW functions from arbitrary computational puzzles. To illustrate
the applicability of this idea, a particular focus is placed on public-key schemes.

Adapting public-key schemes for use as PoW has potential advantages:

1. It can incentivise calibration techniques in software and hardware through
the reward structure.
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2. It can provide data points to more accurately set safe parameter choices for
public key schemes.

3. It can be used for specific public-key schemes to encourage their analysis.

While some public key schemes have undergone considerable practical anal-
ysis in the past, this is not true in general. The level of scrutiny applied to any
specific scheme is sometimes unclear, especially when the underlying problem has
been recently introduced, as in the case of the ring learning with errors prob-
lem [5]. Public, large-scale analysis of cryptosystems is not without precedent.
RSA Laboratories famously offered cash prizes for factoring large composite
numbers [17]. The approach was relatively successful, as many of the challenges
remain un-factored, and general understanding of factoring algorithms increased.

Building PoW puzzles from public key schemes has the potential to increase
the awareness and level of scrutiny applied to them, and to encourage analysis
– both valuable to the cryptographic community. In fact, using a market-driven
approach, inherent in competitive proof-of-work schemes, can have the effect of
incentivising clever cryptanalytic techniques as well as smart specific hardware
designs that target weaknesses in a given scheme. If public key based puzzles
stand up to scrutiny for a period of time, without major speedups or break-
throughs, the level of confidence in the scheme’s security will grow.

Related Work. The idea of utilising the computational work carried out in
PoW schemes for some useful purpose has been around for a while and was first
proposed by Dwork and Naor [8]. Despite useful puzzles being addressed early
on, there are still relatively few candidates. It seems that a significant problem
lies in finding candidate puzzles that can be moulded into a PoW puzzle.

The cryptocurrency Primecoin [11] uses the search for Cunningham Prime
Chains as the PoW function. This example demonstrates the possibility to find
puzzles that satisfy some of the conditions for adaptability into a proof-of-work
mechanism. Gridcoin [22] rewards users for their attempts to solve @home puz-
zles, for example folding@home [21]. But Gridcoin does not offer decentralisation,
equating to simply handing out tokens for the effort of solving certain puzzles.
Ball et al. [1] demonstrate the adaptability of specific problems, known as the
Orthogonal Vectors and 3SUM problems, into a PoW framework. They rely on a
distributed problem board, where specified delegated parties issue problems that
can be used to create challenges. We aim to devise authority free, decentralised,
proofs-of-work, and so no delegated party or problem board is required.

There are other works that examine the energy expenditure problem in
PoW systems. Most solutions rely on removing the competitive computational
aspect of proof-of-work, replacing it with some different method, such as proof-
of-stake [10], proof-of-activity [2] or proof-of-commitment [6]. Tschorsch and
Scheuermann [19] give a concise overview of these alternatives.

Contributions. The primary goal is to give some insight into the possibil-
ity of adapting generic computational puzzles into a PoW framework. This is
achieved by stating and explaining the reasoning behind the requirements for this
adaptation, and providing definitions and formalism where necessary. Using the
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Schnorr signature scheme as an example, a transformation into a PoW scheme
is described.

2 Puzzles and Their Properties

Most decentralised cryptocurrencies use a consensus mechanism which relies on
the partial pre-image resistance of a chosen hash function.

A notable gain in understanding from the use of the SHA-256 hash function
in Bitcoin is that, despite the speedups and development of efficient hardware,
there is no evidence of a solution finding method that is any better than brute
force search. Another useful insight gained is the ability to quantify the time it
would take to find a full preimage of a message digest. This ability is crucial
when selecting the difficulty parameter for cryptocurrencies that use PoW.

In order to derive such benefits for more general problems, we need to fit them
into a cryptocurrency PoW framework. Puzzles used for Bitcoin-like consensus
have certain characteristics which are fundamental to the smooth operation of
the cryptocurrency. In order to use alternative puzzles for the PoW mechanism,
it is necessary to construct them with these characteristics in mind. We would
like to retain the Bitcoin structures, such as blocks and transactions, and identify
the abstract interface to the PoW puzzle. We start by defining a puzzle set.

Definition 1 (Puzzle Set). A puzzle set PS is a tuple of three efficient algo-
rithms Setup, GenPuz, FindSol and a deterministic algorithm VerSol. Let λ be
the setup parameter, D the difficulty space, Str the message space, P the puzzle
space and Sol be the solution space.

1. Setup(1λ) : Select D,Str,P,Sol and return (D,Str,P,Sol).
2. GenPuz(d ∈ D,m ∈ Str) : Return p ∈ P or ⊥.
3. FindSol(m ∈ Str, p ∈ P, t ∈ N) : Return s ∈ Sol after at most t steps.
4. VerSol(m ∈ Str, p ∈ P, s ∈ Sol) : Return true or false.

A puzzle set may be defined without a solution finding algorithm. It is
included here only for completeness. From now on the FindSol algorithm is pur-
posefully omitted. If a solution finding algorithm is included, then there is a cor-
rectness requirement as follows: Let params ← Setup(1λ) and p ← GenPuz(d,m),
where d ∈ D and m ∈ Str, then there exists t ∈ N where

Pr[VerSol(m, p, s) = true | s ← FindSol(m, p, t)] = 1.

The Bitcoin puzzle fits the structure of Definition 1 where: D is the set of
valid difficulty levels; Str is the combination of hash of the previous block header
and the set of valid user inputs (nonce, transactions and other parameters); P
is just the concatenation of the difficulty and valid input strings; and Sol is the
set of hash inputs that hash below the current target.

A new puzzle must have the interfaces of Definition 1, but must also satisfy
some properties to ensure that the incentive properties of Bitcoin are retained.
We call these fairness requirements (FRs). It is not possible to prove what are the
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correct fairness requirements without extensive real-world trials, because they
depend on human behaviour. Thus we define properties based on the perceived
critical properties of the Bitcoin puzzle. We can also take guidance from previ-
ous efforts to define puzzle properties, including those of Miller et al. [12,13],
Narayanan et al. [14], and Biryukov and Khovratovich [3].

FR.1 Creator Free: Finding a solution to one puzzle must not give any advantage
in solving of any other.

Once a Bitcoin puzzle is solved, the solution is distributed to all participants
and used to form a new puzzle. Specifically, the header information from a pre-
vious block is used as input to the next block. The header data is unpredictable
until a solution is found, so even the solver will have no extra information to
help make a start on finding the next puzzle solution.

In essence, this requirement aims to ensures that no party has an advantage
in finding the solution to the new puzzle, even if they have solved the previous
one. We note however, that this is not satisfied in existing implementations. It
has been shown that it is possible to perform selfish mining [9,18], where the
solver of the previous block does not distribute the solution immediately in order
to gain some time advantage on solving the next one.

To formally define FR.1 we first describe two security experiments in Fig. 1.
In both experiments the goal of the adversary A is to solve any one of the set of
puzzles defined using the inputs mi = (m1,i,m2,i). The difference between the
two experiments is that in the first A selects both m1,i and m2,i for input into
the GenPuz algorithm, and in the second m1,i is selected at random from the Str
set. This reflects the Bitcoin puzzle set where the input string consists of two
parts: one coming from the previous block and one which can be influenced by
the miner. The ability to influence the first part should not help an adversary.

ExpPzSol
A,d,n,t :

m1,1, m1,2, . . . , m1,n ← A
m2,1, m2,2, . . . , m2,n ← A
{mi = (m1,i, m2,i)|∀i ∈ {1, 2, . . . , n}}
p1 ← GenPuz(d, m1), p2 ← GenPuz(d, m2), . . . , pn ← GenPuz(d, mn)
s ← A
return (mi, pi, s) for some i ∈ {1, 2, . . . , n}

ExpPzSolR
A,d,n,t :

m1,1, m1,2, . . . , m1,n
$←− Str

m2,1, m2,2, . . . , m2,n ← A
{mi = (m1,i, m2,i)|∀i ∈ {1, 2, . . . , n}}
p1 ← GenPuz(d, m1), p2 ← GenPuz(d, m2), . . . , pn ← GenPuz(d, mn)
s ← A
return (mi, pi, s) for some i ∈ {1, 2, . . . , n}

Fig. 1. Creator free experiments
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For the experiments in Fig. 1 we define the game G to win, for some diffi-
culty d, fixed n, for some efficient A returning (mi, pi, s), i ∈ {1, 2, . . . , n} and
running in at most time t, if VerSol(mi, pi, s) returns true. Succinctly we write
ExpG

A,d,n,t = 1, else we write ExpG
A,d,n,t = 0.

Definition 2 (Creator Free). Let PS be a puzzle set with setup parameter
λ. We say that PS is creator free if for any d, n and any efficient A running
in time t we can define an efficient B running in approximately the same time
t′ ≈ t, such that

Pr[ExpPzSol
A,d,n,t = 1] − Pr[ExpPzSolR

B,d,n,t′ = 1] ≤ negl(λ).

FR.2 Puzzle independence: It should not be possible to use the effort expended
to solve one puzzle, to solve another.

Puzzle independence requires that even if you can create multiple puzzles, all
the effort expended towards solving any specific one of them will not give any
advantage in solving another distinct puzzle. In Bitcoin, puzzles are indepen-
dent as one cannot use the work directed towards solving one block, to help
with the solution to another. This is because each new puzzle is formed by an
unpredictable pseudo-random string each time, for each block.

ExpPzIndR
A,d,n,t :

m1,1, m1,2, . . . , m1,n
$←− Str

m2,1, m2,2, . . . , m2,n ← A
{mi = (m1,i, m2,i)|∀i ∈ {1, 2, . . . , n}}
p1 ← GenPuz(d, m1), p2 ← GenPuz(d, m2), . . . , pn ← GenPuz(d, mn)
return (mi, pi, si)∀i ∈ {1, 2, . . . , n}

Fig. 2. Puzzle independence experiment

For Fig. 2, as in Fig. 1, we define the game G to win, for some difficulty
d, fixed n, for some algorithm A returning (mi, pi, si), ∀i ∈ {1, 2, . . . , n} and
running in at most time t, if VerSol(mi, pi, si) returns true for every i.

Definition 3 (Puzzle Independence). Let PS be a puzzle set with setup
parameter λ. We say that PS has puzzle independence if for any d, n and any
efficient A running in time t we can define an efficient B running in at most
time t′/n, where t′ ≈ t such that

|Pr[ExpPzIndR
A,d,n,t = 1] − (Pr[ExpPzIndR

B,d,1,t/n = 1])n| ≤ negl(λ).

FR.3 Chance to win: Every participant should have some non-negligible chance
of solving a puzzle before any other.
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In Bitcoin, the probability of being the first to solve the puzzle is directly pro-
portional to one’s share of the computational power directed towards the puzzle
at a given time. Note that FR.3 only asks for some non-negligible chance that a
participant can win, it does not require any specific probability distribution. Pre-
vious authors [3,14] have proposed a related property called progress-free which
states that solving a puzzle should be a Poisson process. Such a definition may
be too strict; it excludes some useful examples, while the concrete parameters
used will determine what is sufficient incentive for a small user to participate.

In addition to the fairness requirements, there are practical requirements
(PRs) that can be identified to ensure that any new puzzle is useable in a real
system. We mostly give these informally, since usability is not easy to quantify.

PR.1 Linkable puzzles: A previous puzzle solution can be used to form a new
puzzle.

The security of transactions within a PoW based distributed ledger relies on
encoding the transactional data along with the puzzle. For this data to persist,
the solution of each puzzle is used to form a new puzzle, so the puzzle solution
acts as a pointer to the previous transactions. This forms the ledger. Specifically
in Bitcoin, each new block contains information relating to the previous block.

Definition 4 (Linkable). Let PS be a puzzle set with setup parameter λ, then
we say that a PS is linkable if Sol ⊆ Str.

PR.2 Efficiently Verifiable: The solution must be efficient and quick to verify
by all parties.

PR.3 Tunable: The difficulty, or expected number of computational steps, of
finding a puzzle solution must be adjustable in order to increase and
decrease the difficulty of finding a solution to a puzzle.

PR.4 Valuable: Puzzles should provide some useful function in the finding of
their solution, other than their purpose within the PoW scheme.

3 Generic Bitcoin-Like Construction

We can now describe a generic construction for a Bitcoin-like puzzle in Defini-
tion 5. This is an abstract version of the Bitcoin puzzle construction, where each
puzzle instance is generated by a hash output where the input has two parts, in
addition to a difficulty parameter.

Definition 5 (Bitcoin-like puzzle). A Bitcoin-like puzzle generation algo-
rithm is a puzzle set, described by three algorithms:

– Setup(1λ) : D = Z,Str = {0, 1}∗,P = {0, 1}n1 ,Sol = {0, 1}n2 for some
n1, n2 ∈ N.

– GenPuz(d,m = (m1,m2)) computes p̃ ← H(m1||m2)||d for H : {0, 1}∗ →
{0, 1}n3 , where H is a pseudo-random function with n3 ∈ N, and returns
p ← CreatePuz(p̃)||p̃, where CreatePuz is a deterministic algorithm, with
running time parameterised by λ.
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– VerSol(m, p, s) returns true if p = p′ ← GenPuz(d,m) and CheckSol(p, s)
returns true, else it returns false, where CheckSol is a deterministic
boolean algorithm.

The next result shows that any Bitcoin-like puzzle satisfies FR.1 and FR.2.
The proof is omitted due to space constraints.

Theorem 1. Let PS be a Bitcoin-like puzzle generation algorithm with setup
parameter λ. If H is a random oracle, then for a fixed d ∈ D, a fast and efficient
GenPuz algorithm, PS is creator free and is linkable.

Moreover, PS is efficiently verifiable if both H and CheckSol combined ter-
minate in time significantly less than the time required to find a solution. The
puzzle set PS is tunable if when d is increased, it takes on average more com-
putational steps to find a corresponding puzzle and solution p, s that satisfies
VerSol, and vice-versa.

Figure 3 further describes the puzzle chaining process. This process explicitly
defines the solution to a previous puzzle as part of the message, which is used
to generate the next puzzle. This links the puzzles and the solutions together.
Figure 3 is in practice how one would expect a PoW mechanism to operate,
though there may be different variations.

Bitcoin-like Chained Puzzle:
Let PS be a Bitcoin-like puzzle generation algorithm as in Defn. 5. For any i > 0, i ∈ N,
with predefined constant s0 ∈ Sol, the Bitcoin-like chained puzzle is defined by:

1: s = si−1.

2: ai = input(). \\collect auxiliary inputs

3: m = (s, ai).

4: pi = GenPuz(d, m).

5: si = input(). \\attempts to find the puzzle solution

6: -If: VerSol(m, pi, si) returns true, s = si,goto 2.

7: Else: goto 5.

Fig. 3. Bitcoin-like chained puzzle

4 Schnorr Signature Puzzles

The Schnorr signature scheme public key generation procedure, as described by
Boneh [4], selects random primes p and q such that q|p − 1, an element g ∈ Z

∗
p

of order q, an element a ∈ Zq and computes y = ga ∈ Z
∗
p. The scheme also

uses some public hash function H : {0, 1}∗ → Zq. The public parameters are
(p, q, g, y,H), with a as the private key.

The goal is to create Bitcoin-like puzzles by describing a method for generat-
ing random public keys, without corresponding private keys. The puzzle is then
to find a corresponding private key, or otherwise form a signature on the input
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Setup(1λ) :
1: Return: D = N, Str = {0, 1}∗, P = (Z4, H : Str → Z), Sol = Z

2,

for some pseudo-random function H.

GenPuz(d ∈ D, m ∈ Str) :
1: Select: m̂.

2: Return: p = m̂||d.

VerSol(m ∈ Str, p ∈ P, s ∈ Sol) :
1: Input: (m, F (p), s = (σ, γ)).

2: –If: p = p′ ← GenPuz(d, m), continue, else return false.

3: Run: v = gσy−γ mod Zp.

4: –If: H(m||v) = γ, π = true, else π = false.

5: Return: π.

Fig. 4. Schnorr signature puzzle algorithms

message. A puzzle set for the Schnorr signature forgery puzzle is described in
Fig. 4.

To complete the puzzle definition, we need to define the function F used in the
VerSol algorithm of Fig. 4. Due to space constraints we omit the details, but the
general idea is to use a deterministic version of the parameter generation process
from the FIPS digital signature standard [15, Appendix A]. Using the value m̂ as
the parameter seed, first q, then p, then g and finally the public verification key y,
are all generated. This method generates the public key without a corresponding
secret key. Finding the secret key, or otherwise signing the message m becomes
the PoW challenge. By relying on the randomness provided by the hash function
H, this puzzle set is linkable and creator free by Theorem 1.

We are not able to prove that puzzle independence (FR.2) holds for the
Schnorr puzzle due to the nature of the puzzle generation algorithm. If two
distinct puzzles are generated with the same initial primes p and q, then this
could give an advantage to a potential solver who has retained some computation
for the number field sieve algorithm. We conjecture that in practical cases the
puzzles will have the FR.2 property, since selecting a p and q that have been
used before is very unlikely.

5 Conclusion

An abstract puzzle construction has been demonstrated as well as describing how
the Schnorr signature scheme can be used for a stand-in PoW scheme. Moreover,
the parameter generation is applicable to DSA and ElGamal signatures with
only minor alterations. The clear route for future work is to adapt different
types of public-key schemes, or puzzles in general, for use in PoW systems using
the requirements here. A wider variety of puzzles may not only prove to be
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more valuable in terms of the actual puzzle, but could also potentially help with
resistance to the design of ASICs for specific fixed puzzles.
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