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Abstract. The recently growing tokenization process of digital and
physical assets over the Ethereum blockchain requires a convenient trade
and exchange mechanism. Sealed-bid auctions are powerful trading tools
due to the advantages they offer compared to their open-cry counter-
parts. However, the inherent transparency and lack of privacy on the
Ethereum blockchain conflict with the main objective behind the sealed-
bid auctions. In this paper, we tackle this challenge and present a smart
contract protocol for a succinctly verifiable sealed-bid auction on the
Ethereum blockchain. In particular, we utilize various cryptographic
primitives including zero-knowledge Succinct Non-interactive Argument
of Knowledge (zk-SNARK), Multi-Party Computation (MPC), Public-
Key Encryption (PKE) scheme, and commitment scheme for our app-
roach. First, the proving and verification keys for zk-SNARK are gen-
erated via an MPC protocol between the auctioneer and bidders. Then,
when the auction process starts, the bidders submit commitments of
their bids to the smart contract. Subsequently, each bidder individually
reveals her commitment to the auctioneer using the PKE scheme. Then,
according to the auction rules, the auctioneer claims a winner and gen-
erates a proof off-chain based on the proving key, commitments which
serve as public inputs, and their underlying openings which are consid-
ered the auctioneer’s witness. Finally, the auctioneer submits the proof
to the smart contract which in turn verifies its validity based on the
public inputs, and the verification key. The proposed protocol scales effi-
ciently as it has a constant-size proof and verification cost regardless of
the number of bidders. Furthermore, we provide an analysis of the smart
contract design, in addition to the estimated gas costs associated with
the different transactions.

Keywords: Ethereum · Smart contract · Sealed-bid auction
zk-SNARK

1 Introduction

The unprecedented growing deployment of assets on Ethereum has created a
remarkable market for assets exchange [1] which imposes a high demand for var-
ious trading tools such as verifiable and secure auctions. Auctions are platforms
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for vendors to advertise their assets where interested buyers deposit competitive
bids based on their own monetary valuation. Commonly, the auction winner is
the bidder who submitted the highest price, however, there are a variety of other
rules to determine the winner. Additionally, auctions have also been known to
promote many economic advantages for the efficient trade of goods and services.
According to [18], there exist two types of sealed-bid auctions: (i) First-price
sealed-bid auctions (FPSBA) where the bidders submit bids in sealed envelops
to the auctioneer. Subsequently, the auctioneer solely opens them to determine
the winner who submitted the highest bid, and (ii) Vickrey auctions, which are
similar to FPSBA with the exception that the winner pays the second highest
bid instead.

Arguably, the main objective behind concealing the losing bids in sealed-
bid auctions is to prevent the use of bidders’ valuations against them in future
auctions. Therefore, bidders are motivated to cast their bids without worrying
about the misuse of their valuations. Nonetheless, when auctioneers collude with
malicious bidders, the aforementioned advantage is easily broken. Consequently,
the auctioneer has to be trusted to preserve bids’ privacy and to correctly claim
the auction winner. Therefore, various constructions of sealed-bid auctions utilize
cryptographic protocols to ensure the proper and secure implementation without
harming the privacy of bids.

Ethereum is the second most popular blockchain based on its market capital-
ization that exceeds $53 billion USD as of May 2018 [4]. Ethereum allows running
decentralized applications in a global virtual machine environment known as
Ethereum Virtual Machine (EVM) [28] without depending on any third-party.
From a practical viewpoint, the EVM is a large decentralized computer with
millions of objects (known as smart contracts) that can maintain an internal
database, execute code, and interact with each other. As a result, the EVM
substantially simplifies the creation of blockchain applications on its platform
rather than building new application-specific blockchain from scratch.

The code executed in the EVM is commonly known as a smart contract
which lies dormant and passive until its execution is triggered by transactions.
It inherits strong integrity assurance from the blockchain, even its creator cannot
modify it once it has been deployed. In Ethereum, computation is expensive as
transactions are executed and verified by the full-nodes on Ethereum network.
Therefore, Ethereum defines a gas metric to measure the computation efforts
and storage cost associated with transactions. In other words, each transaction
has a fee (i.e., consumed gas) that is paid by the transaction’s sender in Ether
(Ethereum currency). With the help of the consensus protocol, the smart con-
tract is also guaranteed to execute precisely as its code dictates. Although many
other blockchains such as Bitcoin [24] offer the capability to run smart con-
tracts, they are often very limited to a specific set of instructions. Conversely,
the instructions on EVM theoretically allow running any Turing-complete pro-
gram. However, there is a block gas limit that defines the maximum amount of
gas that can be consumed by all transactions combined in a single block. The
current block gas limit is around is 8-million gas as of May 2018 [2]. Therefore,



Succinctly Verifiable Sealed-Bid Auction Smart Contract 5

smart contracts cannot include very expensive computations that exceed the
block gas limit.

In addition, despite the flexible programming capability in Ethereum smart
contracts, they still lack transactional privacy. In fact, the details of every trans-
action executed in the smart contract are visible to the entire network. Moreover,
these details are eventually stored in the Ethereum blockchain which also gives
the ability to review past transactions as well. Consequently, the lack of transac-
tional privacy is a major challenge towards the deployment of sensitive financial
applications. Usually, individuals and organizations prefer to preserve the pri-
vacy of their transactions. For example, an organization may not want to post
how much it spent on the purchase of some arbitrary assets.

Our contribution, we present a protocol for a sealed-bid auction smart
contract that utilizes a set of cryptographic primitives to provide the following
properties:

1. Bids’ Privacy. The submitted bids are not visible to competitors during the
bidding phase of the auction in the presence of malicious adversaries.

2. Posterior privacy. The losing bids are not revealed to the public assuming
a semi-honest auctioneer.

3. Bids’ Binding. Bidders cannot deny or change their bids once they are
committed.

4. Public Verifiability. Any individual can verify the correctness of the auction
winner proof.

5. Fairness. Rational parties are obligated to follow the proposed protocol to
avoid being financially penalized.

6. Non-Interactivity. The smart contract, on behalf of the bidders, verifies
the auction winner proof submitted by the auctioneer.

7. Scalability. The verification cost of the auction winner is nearly constant
regardless of the number of bidders.

We have also created an open-source prototype for a Vickrey auction smart
contract and made it available on Github 1 for researchers and community to
review it. The rest of this paper is organized as follows. Section 2 provides a
review of privacy-preserving protocols and sealed-bid auctions on the blockchain.
In Sect. 3, we present the cryptographic primitives and tools utilized in designing
the proposed Vickrey auction smart contract. Then, In Sect. 4, we provide the
design of the auction contract together with an analysis of the estimated gas cost
of relevant transactions. Finally, we present our conclusions and suggestions for
future work in Sect. 5.

2 Related Work

Our proposal depends on utilizing zk-SNARK and distributed ledger
(blockchain) technology to build an efficient (i.e., succinct proof with a rela-
tively small verification cost) sealed-bid auction on Ethereum. Therefore, we
1 https://github.com/hsg88/vickreyauction.

https://github.com/hsg88/vickreyauction
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provide a review of state-of-the-art research papers that utilize zk-SNARK in
building different cryptographic protocols on the blockchain, besides to papers
that provide solutions to building sealed-bid auctions on top of blockchains.

A variety of privacy-preserving protocols are built on top of blockchain
technology [5,10,11,15–17,19,20,22]. They combine cryptocurrency with crypto-
graphic primitives such as MPC protocols, commitment schemes, and ZK proofs
to achieve fairness in different adversary models. In a nutshell, initially, the proto-
col participants locks an arbitrary amount of cryptocurrency in an escrow smart
contract. Subsequently, they proceed to engage in the various steps of the proto-
col. Finally, once the protocol reaches its final state, the escrow smart contract
refunds the deposits back to the honest participants. Consequently, financially
rational participants are obligated to adhere to the protocol rules in order to
avoid the financial penalty.

One prominent example of the privacy-preserving protocol that has been
deployed on Bitcoin is Zero-Knowledge Contingent Payment [22]. It allows a
buyer and a seller to fairly trade an arbitrary digital good in exchange for bitcoins
payment. Fairness is achieved without the need for a trusted party. In essence,
by the end of the protocol, either the exchange completes with every participant
receiving what they are expecting, or none of the participants gains an advantage
over another one. Despite the limited flexibility of Bitcoin scripting language, the
authors managed to provide a solution by depending on hash-lock transactions
that allow someone to pay an arbitrary amount of bitcoins to anyone who can
provide a preimage x such that y = SHA-256(x), for a publicly known value
y. We describe a simple version of ZKCP for the sake of illustration purposes.
Suppose that a seller Bob wants to trade a digital item p in exchange for v
bitcoins. First, Bob encrypts the item p using a symmetric encryption algorithm
to obtain c = Encx(p) using a key x. Then, Bob computes the hash value of
the key y = SHA-256(x). Subsequently, he sends (c, y) along with a ZK proof
that claims c = ENCk(p) and y = SHA-256(x). After that, if Alice is interested
in that item, she creates a hash-lock transaction to pay v bitcoins to anyone
who reveals the preimage x such that y = SHA256(x). Finally, Bob receives the
payment v bitcoins by revealing x which also means that Alice can decrypt c to
get the digital good p.

Campanelli et al. [15] took a step further to propose Zero-Knowledge Contin-
gent Service Payments (ZKCSP) on top of Bitcoin. The main goal is to permit a
fair exchange of services and payments over the Bitcoin blockchain. The authors
argue that previous constructions of ZKCP [22] are not suitable for the exchange
of digital service and payments. They utilized zk-SNARK proof systems [7] to
build practical proofs for complex arguments. As an example, they built a proto-
type for Proofs of Retrievability (PoR) where a client Bob has stored some data
on a cloud server and he wants to verify whether the server still keeps and stores
his data correctly. In this case, the server offers a digital service rather than a
digital good where the server’s owner Alice wants to be certain that there is a
payment at the end of successful verification of PoR. Moreover, Bob does not
want to pay in advance. Therefore, ZKCSP tackles this situation. Also, ZKCSP
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can be viewed to be more general than ZKCP as it allows for the trade of goods
as well as services.

On the area of smart contract frameworks, Kosba et al. [17], presented Hawk,
a framework for writing smart contracts that preserves the privacy of financial
transactions on the blockchain. The main advantage is to allow programmers
without knowledge of cryptographic protocols to build a secure and privacy-
preserving smart contract. To this end, the framework includes a compiler that
utilizes various cryptographic primitives in generating the smart contracts. A
Hawk program source code is composed of public and private parts. The public
part is responsible for the logic that does not deal with the sensitive data or the
money flow. On the other hand, the private part is responsible for hiding the
information about data and input currency units. The compiler translates the
Hawk program into three pieces that define the cryptographic protocol between
users, manager, and the blockchain nodes. Up to our knowledge, the framework
has not been released yet and we could not find a deployed smart contract on
Ethereum blockchain built by Hawk.

On the subject of sealed-bid auctions, Blass and Kerschbaum [11] proposed
Strain, a protocol to build sealed-bid auctions, on top of blockchain technology,
that preserve bids privacy against malicious participants. Strain uses a two-party
comparison protocol to compare bids between pairs of bidders. Then, the com-
parison’s outcome is submitted to the blockchain which serves as a secure bulletin
board. Additionally, since bidders initially submit commitments to their bids,
Strain utilizes ZK proof to verify that the submitted comparison’s result corre-
sponds to the committed bids. Furthermore, Strain uses reversible commitment
scheme such that a group of bidders can jointly open the bid commitment. The
objective of this scheme is to achieve fairness against malicious participants who
prematurely abort or deviate from the protocol. As the authors reported in their
work, Strain has an obvious flaw that reveals the order of bids, similar to Ordered
Preserving Encryption (OPE). Furthermore, running protocols involving MPC
on blockchain is not efficient due to extensive computations and the number of
rounds involved. Meanwhile, our protocol does not suffer from Strains flaws, and
it utilizes zk-SNARK to generate a proof that can be efficiently verified with a
feasible cost on Ethereum.

Furthermore, Galal and Youssef [16] presented a protocol for running sealed-
bid auctions on Ethereum. The protocol ensures the public verifiability, privacy
of bids, and fairness. Initially, bidders submit Pedersen commitments of their
bids to a smart contract. Subsequently, they reveal their commitments individu-
ally to the auctioneer using RSA encryption. Finally, the auctioneer determines
the winning bid and claims the winner of the auction. There are two major issues
in this protocol. First, for each losing bid, the auctioneer has to engage into a
set of interactive commit-challenge-verify protocol to prove that the winning bid
is greater than the losing bid. In other words, the number of interactions is pro-
portional to the number of bidders. Second, current techniques for generating a
secure random number on blockchains are not proven to be secure due to min-
ers’ influence; therefore, the random numbers used in a commit-challenge-verify
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proof can be compromised. The approach proposed in our paper overcomes these
challenges by utilizing zk-SNARK which requires a single proof-verification for
the whole auction process. Moreover, it is a non-interactive protocol that does
not require random numbers to be generated on the blockchain.

3 Preliminaries

In this section, we briefly introduce the cryptographic primitives that are utilized
in the design of our proposed protocol for the sealed-bid auction smart contract.

3.1 Commitment Scheme

Recall that in sealed-bid auctions, the bidders initially submit their bids in sealed
envelops for a fixed period of time. Then, the auctioneer opens these envelopes
to determine the winner. In other words, we need a tool to hide the bids tem-
porarily, yet with the ability to reveal them later. This task can be easily fulfilled
by a cryptographic primitive known as commitments schemes. Typically, a com-
mitment scheme involves two parties: a sender (Alice) and a receiver (Bob).
Additionally, it provides two security properties, namely, hiding and binding.
Simply, let us denote for an abstract commitment scheme by the public algorithm
c = Com(x, r) which takes a value x, a random r, and produces a commitment
c. In the reveal phase, Alice simply reveals the values x′ and r′, then Bob checks
whether these two values produces the same original commitment c. The hiding
property implies that it is infeasible for Bob to learn the value x given the com-
mitment c. Likewise, the binding property implies that it is infeasible for Alice
to reveal with different values x′ and r′ that produces the same commitment c.
such that when Alice commits to an arbitrary value x and sends the commit-
ment c to Bob. Although there are commitment schemes with strong security
properties (e.g., information-theoretic hiding) such as Pedersen commitment, we
instead use a relaxed one based on collision-resistant hash function due to its
flexible integration with zk-SNARK.

To be precise, we choose SHA-256 to be the public algorithm for our com-
mitment scheme. In order for Alice to commit to a bid x, she sends to Bob the
commitment c = SHA-256(s) where s = (x||r), r is a k-bit randomness, and ||
denotes the concatenation operation. Later on, to decommit c, she sends the
value s′ to him. Subsequently, Bob verifies that c = SHA-256(s′). Then, on suc-
cessful verification, he strips off the least significant k-bits from s′ to recover the
bid x.

3.2 zk-SNARK

ZK-SNARK is essentially a non-interactive zero-knowledge (NIZK) proof system.
There are several constructions of zk-SNARK especially in the field of verifiable
computations. In this paper, we follow the construction proposed by Sasson
et al. [9] to verify computations compatible with Von Neumann architecture.
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More precisely, to verify the correctness of the auctioneer’s computations in
determining the auction’s winner.

Typically, any NIZK proof system about NP-language L consists of the fol-
lowing three main algorithms:

1. Key generation: crs ← K(1λ, L) which takes a security parameter λ, a
description of the language L, and outputs the common reference string crs.

2. Proof generation: π ← P (crs, s, w) which takes a crs, a statement s, a
witness w such that (s, w) ∈ L, and outputs a proof π.

3. Proof verification: {0, 1} ← V (crs, π, s) which takes a proof π, the previ-
ously generated crs, a statement s, and outputs 0 or 1 to denote accept or
reject.

In general, any NIZK proof is simply a bulk of data that can be verified
at any time without prior interactions between the prover and the verifier. A
key requirement though is the proper generation of common reference string
(CRS). If there is any trapdoor in the generation of CRS, then the prover is
able to generate a fraudulent proof. Likewise, a malicious verifier can exploit the
trapdoor to extract information about the witness. Therefore, the generation of
CRS is of utmost importance to the security of NIZK proof. The zk-SNARK
construction [9] provides the following security properties:

1. Perfect Completeness. An honest prover with a valid witness can always
convince an honest verifier. More formally, given (s, w) ∈ L, crs ←
K(1λ, L), π ← P (crs, s, w), then V (crs, π) = 1.

2. Computational Soundness. A polynomial-time adversary can convince a
verifier that an invalid statement is true with a negligible probability. More
formally, given crs ← K(1λ, L), π ← A(crs, s), s /∈ L, then Pr[V (crs, π, s) =
1] ≈ 0.

3. Computational Zero-Knowledge. It is computationally infeasible for any
polynomial-time adversary to reveal any information about the witness from
the proof. More formally, there exists a simulator S = (K′, P ′) that outputs
a transcript that is computationally indistinguishable from the one produced
by (K,P ) in a proof π without knowing a witness.

4. Succinctness. A NIZK is said to be succinct if an honestly generated proof
has Poly(λ)- bits and the verification algorithm V (crs, π, s) runs asymptoti-
cally in O(|s| · Poly(λ)).

Recall that the key generation algorithm in zk-SNARK takes as an input a
representation of the language L. Therefore, we want to find a suitable repre-
sentation for the auction winner problem. Sasson et al. [9] proposed a general-
purpose circuit generator that takes a C-code and translates it into an arith-
metic circuit. Simply, arithmetic circuits are acyclic graphs with wires and
mathematical operation gates as edges and node, respectively [23]. More pre-
cisely, an arithmetic circuit is a function C : F

m× F
n →F

l which essentially
takes (m + n)-inputs and generates l-outputs. The arithmetic circuit C is said
to have a valid assignment tuple (a1, ..., aN ) where N = m + n + l when
C(a1, ..., ax+y) = (ax+y+1, ..., aN ).
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4 Auction Contract Design

In this section, we present the protocol for running a Vickrey auction as a smart
contract on top of Ethereum. Our protocol is composed of six phases, where
the first two phases are responsible for initializing the zk-SNARK proof system,
while, the remaining four phases deal with the auctioning process itself.

4.1 Arithmetic Circuit Generation

Recall that before we can use the first algorithm in zk-SNARK, namely key
generation, we need an arithmetic circuit that represents the function we want
to provide a proof about its correct execution. Practically, creating an arith-
metic circuit for complex arguments is a tedious and error-prone task, especially
when the arguments involve operations that are intrinsically depending on log-
ical operators such as the comparison operation and SHA-256 transformation.
For this reason, we utilize the general-purpose circuit generator [3,9] to translate
a program code into an arithmetic circuit.

Arguably, using a general-purpose arithmetic circuit generator often yields
an inefficient circuit with a large number of gates. However, the computation
problem of Vickrey auction, as shown in Algorithm1, is not complex to the
degree we worry about the performance of the generated circuit. Moreover, it is
reported in [9] that the size of the generated arithmetic circuits scales additively
rather than multiplicatively with respect to the size of the translated code.

Algorithm 1. Find highest and second-highest bids and verify commitments
1: function Auction(C, U, V )
2: highest ← 0, secondHighest ← 0, status ← 0, i ← 0
3: success ← true
4: while i < N do � N is the constant number of bidders
5: if C[i] �= SHA-256(U [i], V [i]) then � check if commitment is valid
6: success ← false
7: return [success, highest, secondHighest]
8: end if
9: if highest < bid then

10: secondHighest ← highest
11: highest ← bid
12: end if
13: i ← i + 1
14: end while
15: success ← true
16: return [success, highest, secondHighest]
17: end function

While the auctioneer might be tempted to omit commitments to let a col-
luding bidder win the auction, doing so will result in a failed verification by
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the smart contract. In other words, the algorithm does not check whether the
auctioneer supplies all commitments as part of the public inputs. On the other
hand, the verification which is carried out by the smart contract does supply all
commitments. As a consequence, there will be a difference between the public
parameters used by the auctioneer to generate the proof, and the public param-
eters used by the smart contract to verify the proof. Therefore, the verification
will fail, and the auctioneer will be penalized if he cannot supply a valid proof
that uses the same public parameters as the smart contract.

4.2 Generation of CRS

The outputs of the CRS generation algorithm are the proving and verification
keys which are used by the prover and verifier, respectively. It is a mandatory
requirement in any NIZK proof system including zk-SNARK to ensure the proper
generation of CRS in order to preserve the zero-knowledge and soundness prop-
erties. Commonly, the CRS is usually generated by a trusted party. However,
this is against the whole premise of the blockchain as a decentralized platform
that does not require a trusted party. Moreover, it is sufficient to generate the
CRS only one-time as long as the problem statement does not change. In other
words, we can initially generate the CRS for the Vickrey auction. Then, we can
utilize the resultant CRS in multiple Vickrey auctions.

To avoid the need for a trusted party, various MPC protocols have been
proposed to generate the CRS. Bowe et al. [13] presented an MPC protocol to
generate CRS for the Zcash cryptocurrency. For the sake of simplicity, let us
consider that the CRS is composed of a single element s · g where s ∈ F

∗
p and g

is the generator for a group G written in the additive notation. Consider that,
a prover Alice and a verifier Bob want to generate the CRS such that none of
them has knowledge of its discrete log. The protocol runs as follows:

1. Alice chooses a uniform number s1 ∈ F
∗
p and sends the element s1 · g to Bob.

2. Bob chooses a number s2 ∈ F
∗
p and sends the element s2s1 · g to Alice.

3. Finally, Alice and Bob use the element s2s1 · g as the CRS.

The problem with this simple protocol is that Bob can maliciously choose s2 in a
way that affects the final output of s. Therefore, the authors in [8,13] proposed a
pre-commitment step where each participant first picks a secret number si then
sends a commitment to it. Later on, they follow the same steps as above but
with providing a ZK proof that they used the same secret number corresponding
to their commitments. A major problem with this protocol is that the pre-
commitment step requires a pre-selection of participants. Moreover, there is an
overhead with generating the commitments and verifying the associated ZK
proofs.

We follow the MPC protocol for CRS generation in [14] for a number of
reasons. First, it does not require a pre-selection of parties to participate in the
MPC protocol. Therefore, instead of trusting a specific group of people with the
generation of the CRS, any individual can actively join to be assured that a
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valid CRS is generated even when the rest of participants are malicious. Second,
It is more scalable and efficient than the previous construction as it is only
a two-round protocol. The basic idea is to use random beacons to eliminate
the step of pre-commitment in [13]. Fortunately, Ethereum is the second most
popular blockchain, which implies that a large number (i.e., more than 51%) of
the miners in the network are reasonably assumed to act honestly. Therefore,
we can leverage the blockchain itself as a source of random beacons [12] without
worrying about the influence of malicious miners. Hence, the MPC protocol for
CRS generation proceeds as follows:

1. Alice chooses a uniform number s1 ∈ F
∗
p and sends the element s1 · g to Bob.

2. Similarly, Bob chooses a uniform number s2 ∈ F
∗
p and sends the element

s2s1 · g to the smart contract.
3. A beacon s3 is read from the blockchain, and the element s3s2s1 · g is used

as CRS.

Assuming that no malicious miner can affect the beacon s3 in a way that
makes finding the discrete log of s3s2s1.g an easy problem, then we can safely
say that the generated CRS has no trapdoor that compromises the security of
a zk-SNARK proof. We also note that it is an optional task for the bidders to
participate in the CRS generation. In other words, the integration of the random
beacon in the MPC protocol is sufficient to ensure that the auctioneer cannot
control the trapdoor of the generated CRS. Obviously, the achieved security is
much stronger when at least one honest bidder participates in the MPC protocol.

1. T1, T2, T3 define the periods using block numbers for the following phases:
commitments of bids, opening the commitments, and proof generation and
verification, respectively. Note that, T refers to the current block number.

2. N is the maximum number of bidders.
3. F defines the financial deposit of ethers to guarantee fairness against financial

rational malicious participants.
4. Apk is the auctioneer’s public key of an asymmetric encryption scheme.
5. V key is the verification key part of the generated CRS.

Create: {T1, T2, T3, N, F,Apk, V key} : from auctioneer A
Set state := INIT, bidders := {}
Set highestBid := 0, secondHighestBid := 0
Store N,F,Apk, V key
Store T1, T2, T3
Assert T < T1 < T2 < T3 < T4
Assert ledger[A] >= F
Set ledger[A] := ledger[A] − F
Set deposit := deposit+ F

Fig. 1. Pseudocode for Vickrey auction smart contract constructor
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4.3 Smart Contract Deployment

The auctioneer deploys the smart contract that runs the Vickrey auction on top
of Ethereum. The deployment is basically a transaction that carries the com-
piled EVM bytecode as a payload and triggers the execution of the constructor.
The constructor is responsible for initializing the state of variables in the smart
contract. In Fig. 1, we show a pseudocode to illustrate the initialization of the
state variables based on the parameters received from the auctioneer.

4.4 Submission of Bids

In this phase, the bidders create transactions to pay F -ethers and submit com-
mitments of their bids as described in Sect. 3 to the function Bid which stores
the commitments on the smart contract as shown in Fig. 2.

Bid: {commitB} from a bidder B:
Assert T < T1
Assert ledger[B] > F
Set ledger[B] := ledger[B] − F
Set deposit := deposit+ F
Set bidders[B].Commit := commitB

Fig. 2. Pseudocode for the submission of bid commitment

We also note that at the end of this phase, if the number of the submitted
commitments is less than the maximum number of bidders N , then the auction-
eer has to submit the remaining number of commitments with an underlying bid
value equals to zero. The reason behind this step is due to technical limitation
in the general-purpose arithmetic circuit generator [9]. More precisely, the trans-
lated code is not allowed to have loops with variable number of iterations, so we
have to fix the loop counter to the maximum number of bidders N . Basically, the
circuit generator flattens and unrolls the loop iterations, therefore, the number
of iterations has to be known in advance.

4.5 Opening the Commitments

In this phase, each bidder Bi encrypts the pair (xi, ri) by the public key Apk,
where xi is the bid value, and ri is a random number. Then, the ciphertext is
sent to the function Open on the smart contract as shown in Fig. 3.

Arguably, paying for a transaction that stores the ciphertext on the smart
contract seems to be an unnecessary task at the first glance. However, we chose
to store the ciphertext rather than sending them off-chain to the auctioneer so we
can avoid the following attack scenario. Suppose a malicious auctioneer pretends
that an arbitrary bidder Bob has not submitted a ciphertext of the correct
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Open: {ciphertextB} from a bidder B:
Assert T1 < T < T2
Assert B ∈ bidders
Set bidders[B].Ciphertext := ciphertextB

Fig. 3. Pseudocode for the Open function

opening values of his associated commitment. In this case, Bob has no chance
of denying this false claim. However, if Bob’s ciphertext is stored on the smart
contract, then the transaction that carried Bob’s ciphertext of his commitment’s
opening values sufficiently defeats this false claim. Furthermore, as it is shown
in the pseudocode Fig. 3, the ciphertext is stored in a mapping bidders[Bob] as
part of a structure that also contains the sealed-bid (commitment) with senders
address as a key. When the auctioneer tries to claim that Bob’s ciphertext does
not contain the valid openings of his commitment, then Bob is alerted to submit
the opening values as plaintext to the smart contract. Subsequently, based on
these values, the smart contract recomputes the commitment and the ciphertext,
then it compares them against the commitment and ciphertext which are stored
in the mapping bidders[Bob]. In the case, they are found to be equal, then the
protocol terminates by penalizing the auctioneer and refunding the initial deposit
to all bidders. Otherwise, Bob is penalized and his commitments and ciphertext
are discarded from further processing steps.

4.6 Proof Generation and Verification

In this phase, the auctioneer reads the ciphertext stored on the smart contract
and decrypts them off-chain. As a result, the auctioneer has a knowledge of
the necessary witness (i.e., openings of commitments), highest-bid, and second-
highest bid to generate a proof. Hence, the auctioneer creates a transaction to
pass the highest and second-highest bids as part of the public inputs, and the
generated proof as shown in Fig. 4.

Prove: {bid1, bid2, proof} from auctioneer A:
Assert T2 < T < T3
Assert state = init
Set highestBid := bid1
Set secondHighestBid := bid2
Set params := {bid1, bid2, bidders.commits, true}
Assert V erify(V key, proof, params)
Set state := valid

Fig. 4. Pseudocode for the Reveal function
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The function Verify checks the validity of the submitted proof based on
the verification key V key and the public inputs params. It utilizes the pre-
compiled contracts EIP-196 [27] and EIP-197 [26] to perform the necessary
elliptic-curve pairing operations required for zk-SNARK proof verification [9].
Finally, it returns a boolean output to indicate whether to accept the proof or
reject it.

Once the verification of zk-SNARK proof has passed successfully, the auc-
tioneer creates a transaction to finalize the auctioning process. Basically, the
auctioneer reveals to the smart contract the openings associated with the auc-
tion winner commitment as shown in Fig. 5. Then, the smart contract checks
whether the winner’s bid value equals to the highest bid, and it also checks that
the commitment of the opening values is equivalent to one of the previously sub-
mitted commitments by the bidders. Finally, the smart contract determines the
address associated with the auction winner, and it begins to refund the deposit
F to the losing bidders and the auctioneer. However, the winner deposit is not
refunded until she fulfills the payment of the second-highest bid.

Finalize: {bidw, randomw} from auctioneer A:
Assert T2 < T < T3
Assert state = valid
Assert highestBid = bidw
Set commitw := SHA256(bidw, randomw)
Assert commitw ∈ bidders.commits
Set winner := Find(bidders, commitw)
Set ledger[A] := ledger[A] + F
Set deposit := deposit − F
For b ∈ bidders − {winner}

Set ledger[b] := ledger[b] + F
Set deposit := deposit − F

Set state := finalized

Fig. 5. Pseudocode for the Finalize function

As shown in Fig. 6, there is one more function in the smart contract called
Dispute. The objective of this function is to counter a possible malicious behavior
by the auctioneer. Let us assume the auctioneer refuses to carry out the proof
generation and verification task. This will certainly result in a permanent lock
of the deposits paid by the bidders. Therefore, any bidder can call this function
that checks if the state variable on the smart contract is still equal to init after
the block number T3 has been mined, then it refunds the deposits back to the
bidders. Consequently, only the auctioneer ends up being financially penalized
since there is no way to refund his deposit.
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Dispute: Assert T > T3
Assert state = init
For b ∈ bidders

Set ledger[b] := ledger[b] + F
Set deposit := deposit F

Fig. 6. Pseudocode for the Dispute function

4.7 Gas Cost Analysis

We have implemented a prototype for the proposed protocol and smart contract,
We have also made it open-source and published it on Github repository 2. To
experiment with our prototype, we have created a local Ethereum blockchain
using the Geth client version 1.8.10. The genesis file that is responsible for the ini-
tialization of the local blockchain contains the following attribute in order to sup-
port the pre-compiled contracts EIP-196 and EIP-197: {“byzantiumBlock ′′ : 0}.
In our experiment, we created test-case with the number of bidders N = 100,
respectively. Table 1 shows the gas cost and the corresponding price in USD for
the deployment and functions calls on the smart contract. At the time of car-
rying out our experiment, May 30th, 2018, the ether exchange rate is 1 ether
= 583$ and the median gas price is approximately 20 Gwei = 20 × 10−9 ether.

Table 1. Gas cost associated with the various functions in the smart contract

Function Transaction cost Price

Deployment 1346611 15.70

Bid 115583 1.35

Open 44176 0.52

Prove 3395077 39.58

Finalize 92362 1.07

Dispute 47112 0.55

The smart contract deployment cost is a little bit expensive as it involves the
deployment of helper contracts and libraries that are responsible for verifying
zk-SNARK proof. However, this cost can be significantly reduced if the helper
contracts and libraries are already deployed beforehand. Also, the cost of the
Prove function is constant due to the fixed cost of the elliptic-curve operations
performed during the verification of the zk-SNARK proof. Arguably, this cost
might be not convenient for relatively cheap auctioned assets. However, our work
scales much better and more efficiently than previous auctions constructions on
blockchain [11,16,25].
2 https://github.com/hsg88/VickreyAuction.

https://github.com/hsg88/VickreyAuction
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Although we mimic the real-world behavior of sealed-bid auctions where the
auctioneer gains knowledge of the sealed-bids, we still guarantee a verifiable com-
putation of the auction winner. One may argue that the auctioneer may abuse
the information she gained in future auctions to increase her revenues. We are
currently investigating the integration of Trusted Execution Environment (TEE)
such as Intel Software Guard eXtensions (SGX) into our protocol. Briefly speak-
ing, the role of the auctioneer is replaced by a code that runs inside an enclave
that protects it from modification and prevents disclosure of its state by the
operating system or any other application. Hence, it provides the confidential-
ity of data which the blockchain lacks. Additionally, the enclave can issue proof
which is also known as attestation of computation correctness.

4.8 Checking for Potential Security Bugs

The Vickrey auction smart contracts are implemented in Solidity which is the
de-facto programming language for writing smart contracts on Ethereum. Due
to the sensitive nature of the smart contracts especially when they involve oper-
ations to send or receive money, we have to properly assess their security before
deployment. Recall that, once a smart contract is deployed, there is no way to
modify it to patch a bug. Therefore, we utilize security analysis tools to check
for potential bugs such as the famous Re-entry [6] bug found in DAO smart
contracts that eventually caused hard-fork on Ethereum to mitigate the attack.
Precisely, we use Oyente3 [21] to ensure that the Vickrey auction smart contract
does not contain any vulnerabilities to known critical security issues. The results
from running Oyente on the Vickrey auction protocol are shown in Fig. 7. Also,
we have utilized unit-testing to detect errors in the Solidity code, and the applied
tests are included in the repository for further inspection by the community.

5 Conclusions

In this paper, we showed how zk-SNARK can be utilized to build Vickrey auction
on top of Ethereum blockchain. The proposed protocol achieves many desirable
properties such as bids privacy where the information about the bids is kept
hidden from competitors. Additionally, the auction smart contract, on behalf of
the bidders verifies the correctness of the auction winner claimed by the auction-
eer. Moreover, the proposed protocol is scalable as the cost of the verification
transaction is constant regardless of the number of bidders. Furthermore, the
proposed protocol is in the favor of bidders with relatively low-processing power
devices, since there are only two simple interactions with the smart contract
involving the submission of commitments of bids, and revealing the underlying
openings. For future work, we will investigate other approaches applicable to the
blockchain where we can also protect the privacy of bids from all parties includ-
ing the auctioneer by integrating TTE into our protocol. More precisely, we are

3 We used the online Oyente tool available on https://oyente.melon.fund.

https://oyente.melon.fund
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Fig. 7. Results from running Oyente online tool on the smart contract

exploring the feasibility of alternative approaches to building sealed-bid auction
on top of the Enigma protocol [29]. Additionally, we will continue improving
our prototype and apply formal verification techniques on our code to detect
potential flaws and vulnerabilities.
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