
Joaquin Garcia-Alfaro
Jordi Herrera-Joancomartí
Giovanni Livraga · Ruben Rios (Eds.)

 123

LN
CS

 1
10

25

ESORICS 2018 International Workshops, DPM 2018  
and CBT 2018, Barcelona, Spain, September 6–7, 2018 
Proceedings

Data Privacy Management, 
Cryptocurrencies and  
Blockchain Technology



Lecture Notes in Computer Science 11025

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Joaquin Garcia-Alfaro • Jordi Herrera-Joancomartí
Giovanni Livraga • Ruben Rios (Eds.)

Data Privacy Management,
Cryptocurrencies and
Blockchain Technology
ESORICS 2018 International Workshops, DPM 2018
and CBT 2018, Barcelona, Spain, September 6–7, 2018
Proceedings

123



Editors
Joaquin Garcia-Alfaro
Télécom SudParis
Evry
France

Jordi Herrera-Joancomartí
Enginyeria de la Informacio I de les Com
Universitat Autonoma de Barcelona
Bellaterra
Spain

Giovanni Livraga
Università degli Studi di Milano
Crema
Italy

Ruben Rios
Universidad de Málaga
Málaga
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-00304-3 ISBN 978-3-030-00305-0 (eBook)
https://doi.org/10.1007/978-3-030-00305-0

Library of Congress Control Number: 2018953831

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2018
Chapters 28 and 30 are licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the
chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-7453-4393
http://orcid.org/0000-0002-4935-4681
http://orcid.org/0000-0003-2661-8573
http://orcid.org/0000-0002-6251-4897
http://creativecommons.org/licenses/by/4.0/


Foreword from the CBT 2018 Program Chairs

This volume contains the proceedings of the Second International Workshop on
Cryptocurrencies and Blockchain Technology (CBT 2018) held in Barcelona during
September 6–7, 2018, in conjunction with the 23rd European Symposium on Research
in Computer Security (ESORICS) 2018.

In less than ten years, cryptocurrencies and blockchain technology have taken a
central position in the IT world. The capitalization marked for cryptocurrencies is
bigger than 300 billion dollars and other promising applications of blockchain tech-
nology range from personal identification and good tracking to distributed autonomous
organizations. Since security is probably the main objective behind all such proposals,
a careful analysis should be performed on those proposals before they reach the mass
market. To that end, the CBT workshop aims to provide a forum for researchers in this
area to carefully analyze current systems and propose new ones in order to create a
scientific background for the solid development of this new area.

In response to the call for papers, we received 39 submissions that were carefully
reviewed by the Program Committee (PC), comprising 19 members, and by additional
reviewers. Each submission received at least three reviews. The PC selected seven full
papers and eight short papers for presentation at the workshop. The selected papers
cover aspects about smart contracts, second layer and off-chain transactions, trans-
parency, performance, attacks, and privacy.

Furthermore, the workshop will be enhanced with a keynote talk sponsored by the
Research Institute (cf. https://researchinstitute.io/), complemented by sponsoring from
BART (Blockchain Advanced Research & Technologies), Inria Saclay, Institut
Mines-Télécom, Universitat Autónoma de Barcelona, and SAMOVAR (URM 5157 of
CNRS).

A special thank you goes to all the authors, who submitted papers to CBT 2018, as
well as the PC and additional reviewers, who worked hard to review the submissions
and discussed the final program. Last but not least, we would like to thank the ESO-
RICS organizers, especially Sokratis Katsikas (ESORICS Symposium Steering Com-
mittee Chair), Miquel Soriano (ESORICS 2018 General Chair), Javier Lopez
(ESORICS 2018 Program Chair), Josep Pegueroles-Valles (ESORICS 2018 Organi-
zation Chair), Marcel Fernandez and Jose Luis Muñoz Tapia (ESORICS 2018 Web-
masters), for all their help and support during the organization of CBT 2018.

July 2018 Joaquin Garcia-Alfaro
Jordi Herrera-Joancomartí

https://researchinstitute.io/
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Foreword from DPM 2018 Program Chairs

This volume contains the proceedings of the 13th International Workshop on Data
Privacy Management (DPM 2018), which was held in Barcelona, Spain, during
September 6–7, 2018, in conjunction with the 23rd European Symposium on Research
in Computer Security (ESORICS 2018).

The aim of DPM is to promote and stimulate international collaboration and research
exchange in areas related to the management of privacy-sensitive information. This is a
very critical and important issue for organizations and end users. It poses several
challenging problems such as translation of high-level business goals into system-level
privacy policies, administration of sensitive identifiers, data integration, and privacy
engineering, among others.

In response to the call for papers, 36 submissions were received and each of them
was evaluated on the basis of significance, novelty, and technical quality. The Program
Committee, comprising 35 members, performed an excellent task and with the help of
additional reviewers all submissions went through a careful anonymous review process
(3 reviews per submission). The Program Committee’s work was carried out
electronically, yielding intensive discussions. Among the submitted papers, the
Program Committee accepted 11 full papers (resulting in an acceptance rate of 30.5%)
and 5 short papers for presentation at the workshop.

The success of DPM 2018 depends on the volunteering effort of many individuals,
and there is a long list of people who deserve special thanks. We would like to thank all
the members of the Program Committee and all the external reviewers for all their hard
work in evaluating the papers in a short time window and for their active participation
in the discussion and selection process. We are very grateful to all people who gave
their assistance and ensured a smooth organization process: the DPM Steering
Committee for the guidance and support in the organization of the workshop; Enrico
Bacis for taking care of publicity; the ESORICS Symposium Steering Committee and
its chair, Sokratis Katsikas, for all the arrangements that made the satellite events
possible; Joaquin Garcia-Alfaro (ESORICS 2018 Workshop Chair), Miguel Soriano
(ESORICS 2018 General Chair), and Josep Pegueroles (ESORICS 2018 Organization
Chair) for their support in the workshop organization and logistics. We would also like
to thank the keynote speakers for accepting our invitation and for their enlightening
talks. We also express our gratitude for the support received from the UNESCO Chair
in Data Privacy, sponsor of the workshop.

Last but certainly not least, our thanks goes to all the authors who submitted papers
and to all the attendees of the workshop. We hope you find the program of DPM 2018
interesting, stimulating, and inspiring for your future research.

July 2018 Giovanni Livraga
Ruben Rios
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Succinctly Verifiable Sealed-Bid Auction
Smart Contract

Hisham S. Galal(B) and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, QC, Canada

h galal@encs.concordia.ca

Abstract. The recently growing tokenization process of digital and
physical assets over the Ethereum blockchain requires a convenient trade
and exchange mechanism. Sealed-bid auctions are powerful trading tools
due to the advantages they offer compared to their open-cry counter-
parts. However, the inherent transparency and lack of privacy on the
Ethereum blockchain conflict with the main objective behind the sealed-
bid auctions. In this paper, we tackle this challenge and present a smart
contract protocol for a succinctly verifiable sealed-bid auction on the
Ethereum blockchain. In particular, we utilize various cryptographic
primitives including zero-knowledge Succinct Non-interactive Argument
of Knowledge (zk-SNARK), Multi-Party Computation (MPC), Public-
Key Encryption (PKE) scheme, and commitment scheme for our app-
roach. First, the proving and verification keys for zk-SNARK are gen-
erated via an MPC protocol between the auctioneer and bidders. Then,
when the auction process starts, the bidders submit commitments of
their bids to the smart contract. Subsequently, each bidder individually
reveals her commitment to the auctioneer using the PKE scheme. Then,
according to the auction rules, the auctioneer claims a winner and gen-
erates a proof off-chain based on the proving key, commitments which
serve as public inputs, and their underlying openings which are consid-
ered the auctioneer’s witness. Finally, the auctioneer submits the proof
to the smart contract which in turn verifies its validity based on the
public inputs, and the verification key. The proposed protocol scales effi-
ciently as it has a constant-size proof and verification cost regardless of
the number of bidders. Furthermore, we provide an analysis of the smart
contract design, in addition to the estimated gas costs associated with
the different transactions.

Keywords: Ethereum · Smart contract · Sealed-bid auction
zk-SNARK

1 Introduction

The unprecedented growing deployment of assets on Ethereum has created a
remarkable market for assets exchange [1] which imposes a high demand for var-
ious trading tools such as verifiable and secure auctions. Auctions are platforms
c© Springer Nature Switzerland AG 2018
J. Garcia-Alfaro et al. (Eds.): DPM 2018/CBT 2018, LNCS 11025, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-030-00305-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00305-0_1&domain=pdf


4 H. S. Galal and A. M. Youssef

for vendors to advertise their assets where interested buyers deposit competitive
bids based on their own monetary valuation. Commonly, the auction winner is
the bidder who submitted the highest price, however, there are a variety of other
rules to determine the winner. Additionally, auctions have also been known to
promote many economic advantages for the efficient trade of goods and services.
According to [18], there exist two types of sealed-bid auctions: (i) First-price
sealed-bid auctions (FPSBA) where the bidders submit bids in sealed envelops
to the auctioneer. Subsequently, the auctioneer solely opens them to determine
the winner who submitted the highest bid, and (ii) Vickrey auctions, which are
similar to FPSBA with the exception that the winner pays the second highest
bid instead.

Arguably, the main objective behind concealing the losing bids in sealed-
bid auctions is to prevent the use of bidders’ valuations against them in future
auctions. Therefore, bidders are motivated to cast their bids without worrying
about the misuse of their valuations. Nonetheless, when auctioneers collude with
malicious bidders, the aforementioned advantage is easily broken. Consequently,
the auctioneer has to be trusted to preserve bids’ privacy and to correctly claim
the auction winner. Therefore, various constructions of sealed-bid auctions utilize
cryptographic protocols to ensure the proper and secure implementation without
harming the privacy of bids.

Ethereum is the second most popular blockchain based on its market capital-
ization that exceeds $53 billion USD as of May 2018 [4]. Ethereum allows running
decentralized applications in a global virtual machine environment known as
Ethereum Virtual Machine (EVM) [28] without depending on any third-party.
From a practical viewpoint, the EVM is a large decentralized computer with
millions of objects (known as smart contracts) that can maintain an internal
database, execute code, and interact with each other. As a result, the EVM
substantially simplifies the creation of blockchain applications on its platform
rather than building new application-specific blockchain from scratch.

The code executed in the EVM is commonly known as a smart contract
which lies dormant and passive until its execution is triggered by transactions.
It inherits strong integrity assurance from the blockchain, even its creator cannot
modify it once it has been deployed. In Ethereum, computation is expensive as
transactions are executed and verified by the full-nodes on Ethereum network.
Therefore, Ethereum defines a gas metric to measure the computation efforts
and storage cost associated with transactions. In other words, each transaction
has a fee (i.e., consumed gas) that is paid by the transaction’s sender in Ether
(Ethereum currency). With the help of the consensus protocol, the smart con-
tract is also guaranteed to execute precisely as its code dictates. Although many
other blockchains such as Bitcoin [24] offer the capability to run smart con-
tracts, they are often very limited to a specific set of instructions. Conversely,
the instructions on EVM theoretically allow running any Turing-complete pro-
gram. However, there is a block gas limit that defines the maximum amount of
gas that can be consumed by all transactions combined in a single block. The
current block gas limit is around is 8-million gas as of May 2018 [2]. Therefore,
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smart contracts cannot include very expensive computations that exceed the
block gas limit.

In addition, despite the flexible programming capability in Ethereum smart
contracts, they still lack transactional privacy. In fact, the details of every trans-
action executed in the smart contract are visible to the entire network. Moreover,
these details are eventually stored in the Ethereum blockchain which also gives
the ability to review past transactions as well. Consequently, the lack of transac-
tional privacy is a major challenge towards the deployment of sensitive financial
applications. Usually, individuals and organizations prefer to preserve the pri-
vacy of their transactions. For example, an organization may not want to post
how much it spent on the purchase of some arbitrary assets.

Our contribution, we present a protocol for a sealed-bid auction smart
contract that utilizes a set of cryptographic primitives to provide the following
properties:

1. Bids’ Privacy. The submitted bids are not visible to competitors during the
bidding phase of the auction in the presence of malicious adversaries.

2. Posterior privacy. The losing bids are not revealed to the public assuming
a semi-honest auctioneer.

3. Bids’ Binding. Bidders cannot deny or change their bids once they are
committed.

4. Public Verifiability. Any individual can verify the correctness of the auction
winner proof.

5. Fairness. Rational parties are obligated to follow the proposed protocol to
avoid being financially penalized.

6. Non-Interactivity. The smart contract, on behalf of the bidders, verifies
the auction winner proof submitted by the auctioneer.

7. Scalability. The verification cost of the auction winner is nearly constant
regardless of the number of bidders.

We have also created an open-source prototype for a Vickrey auction smart
contract and made it available on Github 1 for researchers and community to
review it. The rest of this paper is organized as follows. Section 2 provides a
review of privacy-preserving protocols and sealed-bid auctions on the blockchain.
In Sect. 3, we present the cryptographic primitives and tools utilized in designing
the proposed Vickrey auction smart contract. Then, In Sect. 4, we provide the
design of the auction contract together with an analysis of the estimated gas cost
of relevant transactions. Finally, we present our conclusions and suggestions for
future work in Sect. 5.

2 Related Work

Our proposal depends on utilizing zk-SNARK and distributed ledger
(blockchain) technology to build an efficient (i.e., succinct proof with a rela-
tively small verification cost) sealed-bid auction on Ethereum. Therefore, we
1 https://github.com/hsg88/vickreyauction.

https://github.com/hsg88/vickreyauction
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provide a review of state-of-the-art research papers that utilize zk-SNARK in
building different cryptographic protocols on the blockchain, besides to papers
that provide solutions to building sealed-bid auctions on top of blockchains.

A variety of privacy-preserving protocols are built on top of blockchain
technology [5,10,11,15–17,19,20,22]. They combine cryptocurrency with crypto-
graphic primitives such as MPC protocols, commitment schemes, and ZK proofs
to achieve fairness in different adversary models. In a nutshell, initially, the proto-
col participants locks an arbitrary amount of cryptocurrency in an escrow smart
contract. Subsequently, they proceed to engage in the various steps of the proto-
col. Finally, once the protocol reaches its final state, the escrow smart contract
refunds the deposits back to the honest participants. Consequently, financially
rational participants are obligated to adhere to the protocol rules in order to
avoid the financial penalty.

One prominent example of the privacy-preserving protocol that has been
deployed on Bitcoin is Zero-Knowledge Contingent Payment [22]. It allows a
buyer and a seller to fairly trade an arbitrary digital good in exchange for bitcoins
payment. Fairness is achieved without the need for a trusted party. In essence,
by the end of the protocol, either the exchange completes with every participant
receiving what they are expecting, or none of the participants gains an advantage
over another one. Despite the limited flexibility of Bitcoin scripting language, the
authors managed to provide a solution by depending on hash-lock transactions
that allow someone to pay an arbitrary amount of bitcoins to anyone who can
provide a preimage x such that y = SHA-256(x), for a publicly known value
y. We describe a simple version of ZKCP for the sake of illustration purposes.
Suppose that a seller Bob wants to trade a digital item p in exchange for v
bitcoins. First, Bob encrypts the item p using a symmetric encryption algorithm
to obtain c = Encx(p) using a key x. Then, Bob computes the hash value of
the key y = SHA-256(x). Subsequently, he sends (c, y) along with a ZK proof
that claims c = ENCk(p) and y = SHA-256(x). After that, if Alice is interested
in that item, she creates a hash-lock transaction to pay v bitcoins to anyone
who reveals the preimage x such that y = SHA256(x). Finally, Bob receives the
payment v bitcoins by revealing x which also means that Alice can decrypt c to
get the digital good p.

Campanelli et al. [15] took a step further to propose Zero-Knowledge Contin-
gent Service Payments (ZKCSP) on top of Bitcoin. The main goal is to permit a
fair exchange of services and payments over the Bitcoin blockchain. The authors
argue that previous constructions of ZKCP [22] are not suitable for the exchange
of digital service and payments. They utilized zk-SNARK proof systems [7] to
build practical proofs for complex arguments. As an example, they built a proto-
type for Proofs of Retrievability (PoR) where a client Bob has stored some data
on a cloud server and he wants to verify whether the server still keeps and stores
his data correctly. In this case, the server offers a digital service rather than a
digital good where the server’s owner Alice wants to be certain that there is a
payment at the end of successful verification of PoR. Moreover, Bob does not
want to pay in advance. Therefore, ZKCSP tackles this situation. Also, ZKCSP
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can be viewed to be more general than ZKCP as it allows for the trade of goods
as well as services.

On the area of smart contract frameworks, Kosba et al. [17], presented Hawk,
a framework for writing smart contracts that preserves the privacy of financial
transactions on the blockchain. The main advantage is to allow programmers
without knowledge of cryptographic protocols to build a secure and privacy-
preserving smart contract. To this end, the framework includes a compiler that
utilizes various cryptographic primitives in generating the smart contracts. A
Hawk program source code is composed of public and private parts. The public
part is responsible for the logic that does not deal with the sensitive data or the
money flow. On the other hand, the private part is responsible for hiding the
information about data and input currency units. The compiler translates the
Hawk program into three pieces that define the cryptographic protocol between
users, manager, and the blockchain nodes. Up to our knowledge, the framework
has not been released yet and we could not find a deployed smart contract on
Ethereum blockchain built by Hawk.

On the subject of sealed-bid auctions, Blass and Kerschbaum [11] proposed
Strain, a protocol to build sealed-bid auctions, on top of blockchain technology,
that preserve bids privacy against malicious participants. Strain uses a two-party
comparison protocol to compare bids between pairs of bidders. Then, the com-
parison’s outcome is submitted to the blockchain which serves as a secure bulletin
board. Additionally, since bidders initially submit commitments to their bids,
Strain utilizes ZK proof to verify that the submitted comparison’s result corre-
sponds to the committed bids. Furthermore, Strain uses reversible commitment
scheme such that a group of bidders can jointly open the bid commitment. The
objective of this scheme is to achieve fairness against malicious participants who
prematurely abort or deviate from the protocol. As the authors reported in their
work, Strain has an obvious flaw that reveals the order of bids, similar to Ordered
Preserving Encryption (OPE). Furthermore, running protocols involving MPC
on blockchain is not efficient due to extensive computations and the number of
rounds involved. Meanwhile, our protocol does not suffer from Strains flaws, and
it utilizes zk-SNARK to generate a proof that can be efficiently verified with a
feasible cost on Ethereum.

Furthermore, Galal and Youssef [16] presented a protocol for running sealed-
bid auctions on Ethereum. The protocol ensures the public verifiability, privacy
of bids, and fairness. Initially, bidders submit Pedersen commitments of their
bids to a smart contract. Subsequently, they reveal their commitments individu-
ally to the auctioneer using RSA encryption. Finally, the auctioneer determines
the winning bid and claims the winner of the auction. There are two major issues
in this protocol. First, for each losing bid, the auctioneer has to engage into a
set of interactive commit-challenge-verify protocol to prove that the winning bid
is greater than the losing bid. In other words, the number of interactions is pro-
portional to the number of bidders. Second, current techniques for generating a
secure random number on blockchains are not proven to be secure due to min-
ers’ influence; therefore, the random numbers used in a commit-challenge-verify
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proof can be compromised. The approach proposed in our paper overcomes these
challenges by utilizing zk-SNARK which requires a single proof-verification for
the whole auction process. Moreover, it is a non-interactive protocol that does
not require random numbers to be generated on the blockchain.

3 Preliminaries

In this section, we briefly introduce the cryptographic primitives that are utilized
in the design of our proposed protocol for the sealed-bid auction smart contract.

3.1 Commitment Scheme

Recall that in sealed-bid auctions, the bidders initially submit their bids in sealed
envelops for a fixed period of time. Then, the auctioneer opens these envelopes
to determine the winner. In other words, we need a tool to hide the bids tem-
porarily, yet with the ability to reveal them later. This task can be easily fulfilled
by a cryptographic primitive known as commitments schemes. Typically, a com-
mitment scheme involves two parties: a sender (Alice) and a receiver (Bob).
Additionally, it provides two security properties, namely, hiding and binding.
Simply, let us denote for an abstract commitment scheme by the public algorithm
c = Com(x, r) which takes a value x, a random r, and produces a commitment
c. In the reveal phase, Alice simply reveals the values x′ and r′, then Bob checks
whether these two values produces the same original commitment c. The hiding
property implies that it is infeasible for Bob to learn the value x given the com-
mitment c. Likewise, the binding property implies that it is infeasible for Alice
to reveal with different values x′ and r′ that produces the same commitment c.
such that when Alice commits to an arbitrary value x and sends the commit-
ment c to Bob. Although there are commitment schemes with strong security
properties (e.g., information-theoretic hiding) such as Pedersen commitment, we
instead use a relaxed one based on collision-resistant hash function due to its
flexible integration with zk-SNARK.

To be precise, we choose SHA-256 to be the public algorithm for our com-
mitment scheme. In order for Alice to commit to a bid x, she sends to Bob the
commitment c = SHA-256(s) where s = (x||r), r is a k-bit randomness, and ||
denotes the concatenation operation. Later on, to decommit c, she sends the
value s′ to him. Subsequently, Bob verifies that c = SHA-256(s′). Then, on suc-
cessful verification, he strips off the least significant k-bits from s′ to recover the
bid x.

3.2 zk-SNARK

ZK-SNARK is essentially a non-interactive zero-knowledge (NIZK) proof system.
There are several constructions of zk-SNARK especially in the field of verifiable
computations. In this paper, we follow the construction proposed by Sasson
et al. [9] to verify computations compatible with Von Neumann architecture.
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More precisely, to verify the correctness of the auctioneer’s computations in
determining the auction’s winner.

Typically, any NIZK proof system about NP-language L consists of the fol-
lowing three main algorithms:

1. Key generation: crs ← K(1λ, L) which takes a security parameter λ, a
description of the language L, and outputs the common reference string crs.

2. Proof generation: π ← P (crs, s, w) which takes a crs, a statement s, a
witness w such that (s, w) ∈ L, and outputs a proof π.

3. Proof verification: {0, 1} ← V (crs, π, s) which takes a proof π, the previ-
ously generated crs, a statement s, and outputs 0 or 1 to denote accept or
reject.

In general, any NIZK proof is simply a bulk of data that can be verified
at any time without prior interactions between the prover and the verifier. A
key requirement though is the proper generation of common reference string
(CRS). If there is any trapdoor in the generation of CRS, then the prover is
able to generate a fraudulent proof. Likewise, a malicious verifier can exploit the
trapdoor to extract information about the witness. Therefore, the generation of
CRS is of utmost importance to the security of NIZK proof. The zk-SNARK
construction [9] provides the following security properties:

1. Perfect Completeness. An honest prover with a valid witness can always
convince an honest verifier. More formally, given (s, w) ∈ L, crs ←
K(1λ, L), π ← P (crs, s, w), then V (crs, π) = 1.

2. Computational Soundness. A polynomial-time adversary can convince a
verifier that an invalid statement is true with a negligible probability. More
formally, given crs ← K(1λ, L), π ← A(crs, s), s /∈ L, then Pr[V (crs, π, s) =
1] ≈ 0.

3. Computational Zero-Knowledge. It is computationally infeasible for any
polynomial-time adversary to reveal any information about the witness from
the proof. More formally, there exists a simulator S = (K′, P ′) that outputs
a transcript that is computationally indistinguishable from the one produced
by (K,P ) in a proof π without knowing a witness.

4. Succinctness. A NIZK is said to be succinct if an honestly generated proof
has Poly(λ)- bits and the verification algorithm V (crs, π, s) runs asymptoti-
cally in O(|s| · Poly(λ)).

Recall that the key generation algorithm in zk-SNARK takes as an input a
representation of the language L. Therefore, we want to find a suitable repre-
sentation for the auction winner problem. Sasson et al. [9] proposed a general-
purpose circuit generator that takes a C-code and translates it into an arith-
metic circuit. Simply, arithmetic circuits are acyclic graphs with wires and
mathematical operation gates as edges and node, respectively [23]. More pre-
cisely, an arithmetic circuit is a function C : F

m× F
n →F

l which essentially
takes (m + n)-inputs and generates l-outputs. The arithmetic circuit C is said
to have a valid assignment tuple (a1, ..., aN ) where N = m + n + l when
C(a1, ..., ax+y) = (ax+y+1, ..., aN ).
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4 Auction Contract Design

In this section, we present the protocol for running a Vickrey auction as a smart
contract on top of Ethereum. Our protocol is composed of six phases, where
the first two phases are responsible for initializing the zk-SNARK proof system,
while, the remaining four phases deal with the auctioning process itself.

4.1 Arithmetic Circuit Generation

Recall that before we can use the first algorithm in zk-SNARK, namely key
generation, we need an arithmetic circuit that represents the function we want
to provide a proof about its correct execution. Practically, creating an arith-
metic circuit for complex arguments is a tedious and error-prone task, especially
when the arguments involve operations that are intrinsically depending on log-
ical operators such as the comparison operation and SHA-256 transformation.
For this reason, we utilize the general-purpose circuit generator [3,9] to translate
a program code into an arithmetic circuit.

Arguably, using a general-purpose arithmetic circuit generator often yields
an inefficient circuit with a large number of gates. However, the computation
problem of Vickrey auction, as shown in Algorithm1, is not complex to the
degree we worry about the performance of the generated circuit. Moreover, it is
reported in [9] that the size of the generated arithmetic circuits scales additively
rather than multiplicatively with respect to the size of the translated code.

Algorithm 1. Find highest and second-highest bids and verify commitments
1: function Auction(C, U, V )
2: highest ← 0, secondHighest ← 0, status ← 0, i ← 0
3: success ← true
4: while i < N do � N is the constant number of bidders
5: if C[i] �= SHA-256(U [i], V [i]) then � check if commitment is valid
6: success ← false
7: return [success, highest, secondHighest]
8: end if
9: if highest < bid then

10: secondHighest ← highest
11: highest ← bid
12: end if
13: i ← i + 1
14: end while
15: success ← true
16: return [success, highest, secondHighest]
17: end function

While the auctioneer might be tempted to omit commitments to let a col-
luding bidder win the auction, doing so will result in a failed verification by
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the smart contract. In other words, the algorithm does not check whether the
auctioneer supplies all commitments as part of the public inputs. On the other
hand, the verification which is carried out by the smart contract does supply all
commitments. As a consequence, there will be a difference between the public
parameters used by the auctioneer to generate the proof, and the public param-
eters used by the smart contract to verify the proof. Therefore, the verification
will fail, and the auctioneer will be penalized if he cannot supply a valid proof
that uses the same public parameters as the smart contract.

4.2 Generation of CRS

The outputs of the CRS generation algorithm are the proving and verification
keys which are used by the prover and verifier, respectively. It is a mandatory
requirement in any NIZK proof system including zk-SNARK to ensure the proper
generation of CRS in order to preserve the zero-knowledge and soundness prop-
erties. Commonly, the CRS is usually generated by a trusted party. However,
this is against the whole premise of the blockchain as a decentralized platform
that does not require a trusted party. Moreover, it is sufficient to generate the
CRS only one-time as long as the problem statement does not change. In other
words, we can initially generate the CRS for the Vickrey auction. Then, we can
utilize the resultant CRS in multiple Vickrey auctions.

To avoid the need for a trusted party, various MPC protocols have been
proposed to generate the CRS. Bowe et al. [13] presented an MPC protocol to
generate CRS for the Zcash cryptocurrency. For the sake of simplicity, let us
consider that the CRS is composed of a single element s · g where s ∈ F

∗
p and g

is the generator for a group G written in the additive notation. Consider that,
a prover Alice and a verifier Bob want to generate the CRS such that none of
them has knowledge of its discrete log. The protocol runs as follows:

1. Alice chooses a uniform number s1 ∈ F
∗
p and sends the element s1 · g to Bob.

2. Bob chooses a number s2 ∈ F
∗
p and sends the element s2s1 · g to Alice.

3. Finally, Alice and Bob use the element s2s1 · g as the CRS.

The problem with this simple protocol is that Bob can maliciously choose s2 in a
way that affects the final output of s. Therefore, the authors in [8,13] proposed a
pre-commitment step where each participant first picks a secret number si then
sends a commitment to it. Later on, they follow the same steps as above but
with providing a ZK proof that they used the same secret number corresponding
to their commitments. A major problem with this protocol is that the pre-
commitment step requires a pre-selection of participants. Moreover, there is an
overhead with generating the commitments and verifying the associated ZK
proofs.

We follow the MPC protocol for CRS generation in [14] for a number of
reasons. First, it does not require a pre-selection of parties to participate in the
MPC protocol. Therefore, instead of trusting a specific group of people with the
generation of the CRS, any individual can actively join to be assured that a
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valid CRS is generated even when the rest of participants are malicious. Second,
It is more scalable and efficient than the previous construction as it is only
a two-round protocol. The basic idea is to use random beacons to eliminate
the step of pre-commitment in [13]. Fortunately, Ethereum is the second most
popular blockchain, which implies that a large number (i.e., more than 51%) of
the miners in the network are reasonably assumed to act honestly. Therefore,
we can leverage the blockchain itself as a source of random beacons [12] without
worrying about the influence of malicious miners. Hence, the MPC protocol for
CRS generation proceeds as follows:

1. Alice chooses a uniform number s1 ∈ F
∗
p and sends the element s1 · g to Bob.

2. Similarly, Bob chooses a uniform number s2 ∈ F
∗
p and sends the element

s2s1 · g to the smart contract.
3. A beacon s3 is read from the blockchain, and the element s3s2s1 · g is used

as CRS.

Assuming that no malicious miner can affect the beacon s3 in a way that
makes finding the discrete log of s3s2s1.g an easy problem, then we can safely
say that the generated CRS has no trapdoor that compromises the security of
a zk-SNARK proof. We also note that it is an optional task for the bidders to
participate in the CRS generation. In other words, the integration of the random
beacon in the MPC protocol is sufficient to ensure that the auctioneer cannot
control the trapdoor of the generated CRS. Obviously, the achieved security is
much stronger when at least one honest bidder participates in the MPC protocol.

1. T1, T2, T3 define the periods using block numbers for the following phases:
commitments of bids, opening the commitments, and proof generation and
verification, respectively. Note that, T refers to the current block number.

2. N is the maximum number of bidders.
3. F defines the financial deposit of ethers to guarantee fairness against financial

rational malicious participants.
4. Apk is the auctioneer’s public key of an asymmetric encryption scheme.
5. V key is the verification key part of the generated CRS.

Create: {T1, T2, T3, N, F,Apk, V key} : from auctioneer A
Set state := INIT, bidders := {}
Set highestBid := 0, secondHighestBid := 0
Store N,F,Apk, V key
Store T1, T2, T3
Assert T < T1 < T2 < T3 < T4
Assert ledger[A] >= F
Set ledger[A] := ledger[A] − F
Set deposit := deposit+ F

Fig. 1. Pseudocode for Vickrey auction smart contract constructor
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4.3 Smart Contract Deployment

The auctioneer deploys the smart contract that runs the Vickrey auction on top
of Ethereum. The deployment is basically a transaction that carries the com-
piled EVM bytecode as a payload and triggers the execution of the constructor.
The constructor is responsible for initializing the state of variables in the smart
contract. In Fig. 1, we show a pseudocode to illustrate the initialization of the
state variables based on the parameters received from the auctioneer.

4.4 Submission of Bids

In this phase, the bidders create transactions to pay F -ethers and submit com-
mitments of their bids as described in Sect. 3 to the function Bid which stores
the commitments on the smart contract as shown in Fig. 2.

Bid: {commitB} from a bidder B:
Assert T < T1
Assert ledger[B] > F
Set ledger[B] := ledger[B] − F
Set deposit := deposit+ F
Set bidders[B].Commit := commitB

Fig. 2. Pseudocode for the submission of bid commitment

We also note that at the end of this phase, if the number of the submitted
commitments is less than the maximum number of bidders N , then the auction-
eer has to submit the remaining number of commitments with an underlying bid
value equals to zero. The reason behind this step is due to technical limitation
in the general-purpose arithmetic circuit generator [9]. More precisely, the trans-
lated code is not allowed to have loops with variable number of iterations, so we
have to fix the loop counter to the maximum number of bidders N . Basically, the
circuit generator flattens and unrolls the loop iterations, therefore, the number
of iterations has to be known in advance.

4.5 Opening the Commitments

In this phase, each bidder Bi encrypts the pair (xi, ri) by the public key Apk,
where xi is the bid value, and ri is a random number. Then, the ciphertext is
sent to the function Open on the smart contract as shown in Fig. 3.

Arguably, paying for a transaction that stores the ciphertext on the smart
contract seems to be an unnecessary task at the first glance. However, we chose
to store the ciphertext rather than sending them off-chain to the auctioneer so we
can avoid the following attack scenario. Suppose a malicious auctioneer pretends
that an arbitrary bidder Bob has not submitted a ciphertext of the correct
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Open: {ciphertextB} from a bidder B:
Assert T1 < T < T2
Assert B ∈ bidders
Set bidders[B].Ciphertext := ciphertextB

Fig. 3. Pseudocode for the Open function

opening values of his associated commitment. In this case, Bob has no chance
of denying this false claim. However, if Bob’s ciphertext is stored on the smart
contract, then the transaction that carried Bob’s ciphertext of his commitment’s
opening values sufficiently defeats this false claim. Furthermore, as it is shown
in the pseudocode Fig. 3, the ciphertext is stored in a mapping bidders[Bob] as
part of a structure that also contains the sealed-bid (commitment) with senders
address as a key. When the auctioneer tries to claim that Bob’s ciphertext does
not contain the valid openings of his commitment, then Bob is alerted to submit
the opening values as plaintext to the smart contract. Subsequently, based on
these values, the smart contract recomputes the commitment and the ciphertext,
then it compares them against the commitment and ciphertext which are stored
in the mapping bidders[Bob]. In the case, they are found to be equal, then the
protocol terminates by penalizing the auctioneer and refunding the initial deposit
to all bidders. Otherwise, Bob is penalized and his commitments and ciphertext
are discarded from further processing steps.

4.6 Proof Generation and Verification

In this phase, the auctioneer reads the ciphertext stored on the smart contract
and decrypts them off-chain. As a result, the auctioneer has a knowledge of
the necessary witness (i.e., openings of commitments), highest-bid, and second-
highest bid to generate a proof. Hence, the auctioneer creates a transaction to
pass the highest and second-highest bids as part of the public inputs, and the
generated proof as shown in Fig. 4.

Prove: {bid1, bid2, proof} from auctioneer A:
Assert T2 < T < T3
Assert state = init
Set highestBid := bid1
Set secondHighestBid := bid2
Set params := {bid1, bid2, bidders.commits, true}
Assert V erify(V key, proof, params)
Set state := valid

Fig. 4. Pseudocode for the Reveal function
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The function Verify checks the validity of the submitted proof based on
the verification key V key and the public inputs params. It utilizes the pre-
compiled contracts EIP-196 [27] and EIP-197 [26] to perform the necessary
elliptic-curve pairing operations required for zk-SNARK proof verification [9].
Finally, it returns a boolean output to indicate whether to accept the proof or
reject it.

Once the verification of zk-SNARK proof has passed successfully, the auc-
tioneer creates a transaction to finalize the auctioning process. Basically, the
auctioneer reveals to the smart contract the openings associated with the auc-
tion winner commitment as shown in Fig. 5. Then, the smart contract checks
whether the winner’s bid value equals to the highest bid, and it also checks that
the commitment of the opening values is equivalent to one of the previously sub-
mitted commitments by the bidders. Finally, the smart contract determines the
address associated with the auction winner, and it begins to refund the deposit
F to the losing bidders and the auctioneer. However, the winner deposit is not
refunded until she fulfills the payment of the second-highest bid.

Finalize: {bidw, randomw} from auctioneer A:
Assert T2 < T < T3
Assert state = valid
Assert highestBid = bidw
Set commitw := SHA256(bidw, randomw)
Assert commitw ∈ bidders.commits
Set winner := Find(bidders, commitw)
Set ledger[A] := ledger[A] + F
Set deposit := deposit − F
For b ∈ bidders − {winner}

Set ledger[b] := ledger[b] + F
Set deposit := deposit − F

Set state := finalized

Fig. 5. Pseudocode for the Finalize function

As shown in Fig. 6, there is one more function in the smart contract called
Dispute. The objective of this function is to counter a possible malicious behavior
by the auctioneer. Let us assume the auctioneer refuses to carry out the proof
generation and verification task. This will certainly result in a permanent lock
of the deposits paid by the bidders. Therefore, any bidder can call this function
that checks if the state variable on the smart contract is still equal to init after
the block number T3 has been mined, then it refunds the deposits back to the
bidders. Consequently, only the auctioneer ends up being financially penalized
since there is no way to refund his deposit.
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Dispute: Assert T > T3
Assert state = init
For b ∈ bidders

Set ledger[b] := ledger[b] + F
Set deposit := deposit F

Fig. 6. Pseudocode for the Dispute function

4.7 Gas Cost Analysis

We have implemented a prototype for the proposed protocol and smart contract,
We have also made it open-source and published it on Github repository 2. To
experiment with our prototype, we have created a local Ethereum blockchain
using the Geth client version 1.8.10. The genesis file that is responsible for the ini-
tialization of the local blockchain contains the following attribute in order to sup-
port the pre-compiled contracts EIP-196 and EIP-197: {“byzantiumBlock ′′ : 0}.
In our experiment, we created test-case with the number of bidders N = 100,
respectively. Table 1 shows the gas cost and the corresponding price in USD for
the deployment and functions calls on the smart contract. At the time of car-
rying out our experiment, May 30th, 2018, the ether exchange rate is 1 ether
= 583$ and the median gas price is approximately 20 Gwei = 20 × 10−9 ether.

Table 1. Gas cost associated with the various functions in the smart contract

Function Transaction cost Price

Deployment 1346611 15.70

Bid 115583 1.35

Open 44176 0.52

Prove 3395077 39.58

Finalize 92362 1.07

Dispute 47112 0.55

The smart contract deployment cost is a little bit expensive as it involves the
deployment of helper contracts and libraries that are responsible for verifying
zk-SNARK proof. However, this cost can be significantly reduced if the helper
contracts and libraries are already deployed beforehand. Also, the cost of the
Prove function is constant due to the fixed cost of the elliptic-curve operations
performed during the verification of the zk-SNARK proof. Arguably, this cost
might be not convenient for relatively cheap auctioned assets. However, our work
scales much better and more efficiently than previous auctions constructions on
blockchain [11,16,25].
2 https://github.com/hsg88/VickreyAuction.

https://github.com/hsg88/VickreyAuction
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Although we mimic the real-world behavior of sealed-bid auctions where the
auctioneer gains knowledge of the sealed-bids, we still guarantee a verifiable com-
putation of the auction winner. One may argue that the auctioneer may abuse
the information she gained in future auctions to increase her revenues. We are
currently investigating the integration of Trusted Execution Environment (TEE)
such as Intel Software Guard eXtensions (SGX) into our protocol. Briefly speak-
ing, the role of the auctioneer is replaced by a code that runs inside an enclave
that protects it from modification and prevents disclosure of its state by the
operating system or any other application. Hence, it provides the confidential-
ity of data which the blockchain lacks. Additionally, the enclave can issue proof
which is also known as attestation of computation correctness.

4.8 Checking for Potential Security Bugs

The Vickrey auction smart contracts are implemented in Solidity which is the
de-facto programming language for writing smart contracts on Ethereum. Due
to the sensitive nature of the smart contracts especially when they involve oper-
ations to send or receive money, we have to properly assess their security before
deployment. Recall that, once a smart contract is deployed, there is no way to
modify it to patch a bug. Therefore, we utilize security analysis tools to check
for potential bugs such as the famous Re-entry [6] bug found in DAO smart
contracts that eventually caused hard-fork on Ethereum to mitigate the attack.
Precisely, we use Oyente3 [21] to ensure that the Vickrey auction smart contract
does not contain any vulnerabilities to known critical security issues. The results
from running Oyente on the Vickrey auction protocol are shown in Fig. 7. Also,
we have utilized unit-testing to detect errors in the Solidity code, and the applied
tests are included in the repository for further inspection by the community.

5 Conclusions

In this paper, we showed how zk-SNARK can be utilized to build Vickrey auction
on top of Ethereum blockchain. The proposed protocol achieves many desirable
properties such as bids privacy where the information about the bids is kept
hidden from competitors. Additionally, the auction smart contract, on behalf of
the bidders verifies the correctness of the auction winner claimed by the auction-
eer. Moreover, the proposed protocol is scalable as the cost of the verification
transaction is constant regardless of the number of bidders. Furthermore, the
proposed protocol is in the favor of bidders with relatively low-processing power
devices, since there are only two simple interactions with the smart contract
involving the submission of commitments of bids, and revealing the underlying
openings. For future work, we will investigate other approaches applicable to the
blockchain where we can also protect the privacy of bids from all parties includ-
ing the auctioneer by integrating TTE into our protocol. More precisely, we are

3 We used the online Oyente tool available on https://oyente.melon.fund.

https://oyente.melon.fund
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Fig. 7. Results from running Oyente online tool on the smart contract

exploring the feasibility of alternative approaches to building sealed-bid auction
on top of the Enigma protocol [29]. Additionally, we will continue improving
our prototype and apply formal verification techniques on our code to detect
potential flaws and vulnerabilities.
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Abstract. Lots of traditional applications can be redefined thanks to
the benefits of Blockchain technologies. One of these services is the pro-
vision of fair certified notifications. Certified notifications is one of the
applications that require a fair exchange of values: a message and a non-
repudiation of origin proof in exchange for a non-repudiation of recep-
tion evidence. To the best of our knowledge, this paper presents the first
blockchain-based certified notification system. We propose two solutions
that allow sending certified notifications when confidentiality is required
or when it is necessary to register the content of the notification, respec-
tively. First, we present a protocol for Non Confidential Fair Certified
Notifications that satisfies the properties of strong fairness and transfer-
ability of the proofs thanks to the use of a smart contract and without
the need of a Trusted Third Party. Then, we also present a DApp for
Confidential Certified Notifications with a smart contract that allows a
timeliness optimistic exchange of values with a stateless Trusted Third
Party.

Keywords: Blockchain · Fair certified notifications · Smart contract
Confidentiality · Fairness · Cryptocurrencies · Certified electronic mail

1 Introduction

Blockchain technology provides an unalterable system of data registry that
enables new solutions for a wide range of traditional applications. One of these
traditional services that could benefit of the distinctive features of blockchain is
the provision of certified notifications, that is, a service that allows a sender to
prove that she has sent a message to a receiver or set of receivers. Thus, certified
notification services provide evidence that a receiver has access to a message
since a specific date/time. Certified notifications, along with other electronic
services, such as electronic signature of contracts, electronic purchase (payment
in exchange for a receipt or digital product) or certified mail, require a fair
exchange of items between two or more users. In order to create protocols that
allow carrying out these exchanges and, at the same time, maintain the security
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of communications, there are solutions that fall into the generic pattern named
fair exchange of values. A fair exchange always provides an equal treatment of
all users, and, at the end of each execution, either each party has the element
she wishes to obtain from the other party, or the exchange has not been car-
ried out successfully for no one (any party has received the expected item). In a
typical notification case, the element to be exchanged is the message along with
non-repudiation proof of origin and reception.

Fair exchange protocols proposed so far usually use TTPs [12,13,20], which
are responsible for resolving any conflict that arises as a result of interrupted
exchanges or fraud attempts. In addition to that, these protocols normally use
non-repudiation mechanisms in order to generate evidence that proves the behav-
ior of the actors of the protocol. Currently, with the advent of the blockchain
technology and smart contracts, TTPs can be replaced or complemented by this
new know-how, which opens a range of new possibilities to find effective solu-
tions to the electronic versions of the protocols that fulfil the generic pattern of
fair exchange of values. A method for designing new fair exchanges by means
of the Bitcoin network is to motivate parties to complete the protocol in order
to assure fairness by using a bond or a monetary penalty for dishonest parties
[4,10,15].

In addition to that, the Ethereum blockchain and its cryptocurrency Ether
offers an even richer functionality set than conventional cryptocurrencies such
as bitcoin, since they support smart contracts in a fully distributed system that
could lead, as we will see in this paper, to enable fair exchanges of tokens without
the involvement of a TTP (since smart contracts are self-applied and reduce the
need for trusted intermediaries or reputation systems that decrease transaction
risks). This new technology allows us to define transactions with predetermined
rules (written in a contract) in a programmable logic that can guarantee a fair
exchange between parties with an initial mutual distrust. This feature prevents
parties from cheating each other by aborting the exchange protocol and dis-
charges the need for intermediaries with the consequent reduction of delays and
commissions for their services.

The revealing power of the blockchain is further enhanced by the fact that
blockchains naturally incorporate a discrete notion of time, a clock that increases
each time a new block is added. The existence of a trusted clock/register is crucial
to achieve the property of fairness in the protocols. This feature can make the
cryptography model in the blockchain even more powerful than the traditional
model without a blockchain where the fairness is very difficult to guarantee
without the intervention of a TTP.

This paper aims to show how the blockchain technology and the smart con-
tracts can introduce a new paradigm to deal with the fair exchange problem. By
using this technology, we can reduce or even remove the role of the TTPs inside
such protocols. As far as we know, there are no previous works that deals with
blockchain-based fair certified notifications and smart contracts. Previous studies
on fairness using blockchain focus on fair purchase operations between a prod-
uct (or a receipt) in exchange of cryptocurrencies (usually bitcoin) [3,5,6,11].
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[16] uses a smart contract for the resolution of a purchase operation while [1]
uses smart contracts and trusted execution environments to guarantee the fair
exchange of a payment and the result of an execution.

We present two Blockchain-based Systems for Fair Certified Notifications,
the first proposal allows a non-confidential fair exchange of a notification mes-
sage for a non-repudiation of reception token with no involvement of any TTP.
The second one allows a confidential fair exchange of a notification for a non-
repudiation of reception token. It has the optimistic intervention of a stateless
TTP.

2 Ideal Properties of a Fair Certified Notification System.

Some requirements for fair exchange were stated in [2], and re-formulated in [21]:

1. Effectiveness. If two parties behave correctly, the exchange will take place
and all parties will receive the expected items.

2. Fairness. After completion of a protocol run, either each party receives the
expected item or neither party receives any useful information about the
others item. The fairness is weak if, by the end of the execution, both parties
have received the expected items or if one entity receives the expected item
and another entity does not, the latter can get evidence of this situation.

3. Timeliness. At any time, during a protocol run, each party can unilaterally
choose to terminate the protocol without losing fairness.

4. Non-repudiation. If an item has been sent from party A to party B, A can
not deny origin of the item and B can not deny receipt of the item.

5. Verifiability of Third Party. If the third party misbehaves, resulting in
the loss of fairness for a party, the victim can prove this fact in a dispute.

We can add, to this set of properties, some other interesting properties for
the case of certified notifications.

6. Confidentiality. Only the sender and the receiver of the notification know
the contents of the certified message.

7. Efficiency. An efficient protocol uses the minimum number of steps that
allow the effective exchange or the minimum cost.

8. Transferability of evidence. The proofs generated by the system can be
transferred to external entities to prove the result of the exchange.

9. State Storage. If the TTP that can be involved in the exchange is not
required to maintain state information then the system is stateless.

Some of the above properties cannot be achieved in the same protocol. The
authors of [9] enumerate the incompatibilities among the ideal features. Some
examples are Weak Fairness and Transferability of Evidence, Stateless TTP and
timeliness and Verifiability and transparenvy of the TTP. in this paper we will see
that in a protocol that offers weak fairness a party cannot transfer the evidence
to an arbiter since the other party could have contradictory evidence.
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3 State of the Art of Fair Certified Notification Protocols

Fair certified notification follows the pattern of fair exchange of values. This
kind of exchange does not have a definitive and standardized solution in its
electronic version. The notifications can be done using electronic mail and, until
now, several proposals have been presented for this service. However, it is not
required that the certified notifications use electronic mail, as it will be discussed
in this paper. A certified notification includes an exchange of elements between
the sender and the receiver; the sender has to send a message to the receiver,
then the receiver is able to read it and, in exchange, the receiver has to send a
proof of reception to the sender.

To overcome reluctances between the parties and to assure fairness, almost
all the existing proposals use a TTP. This trusted third party can play and
important role, participating in each exchange or a more relaxed role in which
the TTP is only active in case of arising a dispute between the parties (optimistic
protocols).

Due to the incompatibility among some of the properties and the difficulty to
achieve simultaneously some other properties, we can find protocols that solve
the exchange in an efficient way with an optimistic TTP although achieving only
weak fairness [7], other systems focused in the achievement of specific features
as the transferability of evidences [14], the verifiability of the TTP [17], the
avoidance of the selective rejection based on the identity of the sender [19], the
flexibility to allow the delivery to multiple receivers [8] or the reduction of the
volume of state information that the TTP must maintain [18].

This paper proposes the use of blockchain-based technologies and the
Ethereum ecosystem to implement a DApp for certified notifications in a decen-
tralized way. This proposal does not require the use of electronic mail and,
depending on the desired application, it does not requiere neither the use of a
TTP to guarantee the fairness of the exchange. As far as we know, there are no
proposals to solve the problem of certified notification using blockchain-based
technologies. Only some papers about fair payments, very recently, refers to fair
exchange protocols over blockchain [5,16].

4 Conceptual Design of Two Blockchain-Based Systems
for Fair Certified Notifications

In this section we will analyse the possibilities of the use of blockchain-based tech-
nologies to provide a DApp for fair certified notifications reducing the involve-
ment of trusted third parties compared with traditional approaches. We present
a high level description of two solutions (the details of them will be presented in
Sects. 6 and 7, respectively). One of them is well suited for those notifications
that do not require the confidentiality of the message (or even it is required
that the message can be public and accessible to everybody). The other solution
allows the message to be hidden to others than the receiver. As it is showed in
the descriptions, in the first approach there is no need of a TTP in any step of
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the exchange nor in a dispute resolution phase while in the second proposal the
TTP will be involved only in the dispute resolution phase (optimistic protocol).
Moreover, it is not required that this TTP stores information of the state of any
transaction.

4.1 Non-confidential Notifications Without TTP

In this first proposal we consider that confidentiality is not required or even not
desired. The sender executes the first step of the protocol using the DApp to
register the hash of the notification message on the blockchain. At this point, the
receiver does not have access to the message, although the transaction remains
stored in the blockchain due to the fact that the registered value is the hash of
the message and not the message itself.

The sender will make a new transaction including the message in a third step,
provided that the receiver would have made a previous transaction manifesting
his desire to receive the notification.

The protocol for non-confidential certified notifications works as follows:

1. The sender, originator of the message, uses the smart contract to publish in
the blockchain the hash of the notification message. Other parameters of this
transaction are the address of the receiver and the deadline for the notification
to be completed. Moreover, a deposit can be required in this step. The amount
will be included in the transaction.

2. The receiver, if he accepts the reception of the notification, publishes a mes-
sage expressing his will.

3. Finally, before the expiration of the deadline, the sender can execute the
finish procedure to publish the message. As a consequence, the smart contract
publishes the non-repudiation proof. If the execution of the exchange requires
a deposit, the smart contract returns the amount to the sender.

After the deadline, if the three steps have not been executed properly, the
state of the exchange is not finish and then both parties can access a function
in the smart contract to request the cancellation of the transferred elements.
(a) Cancellation of reception, requested by the receiver if the sender does not

publish the message when the receiver has accepted the notification.
(b) Cancellation of delivery, requested by the sender, if the receiver has not

accepted the notification.
In both cases, the smart contract checks the identity of the user and the
deadline. The smart contract generates a transaction to point out that the
notification has been cancelled. In the first case, the sender will not receive the
refund of the deposit (this way, the deposit is useful to motivate the sender
to finish the exchange before the deadline).

Since the message is included in a transaction, it will be registered in the
blockchain, so the notification in this case is not confidential. This protocol
is executed entirely over Ethereum, so no off-chain communication between the
parties is required. This way, there is no need of communication channels between
the parties.
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4.2 Optimistic Confidential Notifications with Stateless TTP

This second proposal has been designed taking into account those notifications
that require confidentiality. That is, the blockchain has to preserve the fairness
of the exchange but the message cannot be stored in a publicly accessible block.
The main difference with the first proposal is that in this case the protocol
allows an optimistic exchange, that is, the exchange can be executed completely
without the intervention of the TTP nor the blockchain. Another important
feature is that this proposal does not require a deadline and can be finished at
any moment. A stateless TTP can be used to resolve the disputes that can arise
between the parties.

The proposed protocol for confidential fair certified notifications is based in
the protocol described in [7], an optimistic protocol in three steps with a trusted
third party that is involved only in case of disputes between the parties. In [7]
both parties can contact the TTP who maintains state information. The three
steps of [7] are:

1. The sender A encrypts the message M with a simmetric key K, producing a
ciphertext c. The key K is encripted with the public key of the TTP (it means
that the TTP, who knows the correspondent private key, can decrypt it),
producing Kt. A third element hA is the signature of A on the concatenation
of the hash of ciphertext c and Kt, part of the evidence of Non-Repudiation
of Origin for B. Then A sends the triplet c, kt and hA.

2. B sends hB , a signature of B on the concatenation of the hash of ciphertext
c and kt, evidence of Non-Repudiation of Receipt for B, to A.

3. A sends kA, the key K enciphered with the private key of A, second part of
the Non-Repudiation of Origin evidence for B.

During this three steps protocol the parties exchange the Non-Repudiation
proofs together with elements that are useful in case of interruption of the
exchange. These elements, as Kt, are managed by the TTP during a dispute
resolution subprotocol. The execution of the dispute resolution subprotocol can
be requested by both A and B contacting the TTP.

In this new blockchain-based solution, the originator A and the recipient B
will exchange messages and non-repudiation evidences directly. Only as a last
resort, in the case they cannot get the expected items from the other party, the
smart contract or the TTP would be invoked, by initiating the cancel or finish
functions. In comparison with the protocol described in [7], in the blockchain-
based solution the role of the TTP has been reduced. The sender will never
contact the TTP. The TTP will answer only requests from the receiver B by
accessing to the smart contract that has been deployed. The TTP is totally
stateless and, in any case, it stores information about the state of any exchange.

The protocol for confidential certified notifications works as follows: The
parties, A (the sender) and B (the receiver) will execute a direct exchange in
three steps, using the DApp (the details of it will be presented in Sect. 7).

1. A sends an encrypted message to B using a session key. Moreover, A also
sends an element to B that could be useful in case of dispute, that is, if A
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does not follow the steps of the protocol (i.e.: the session key encrypted with
the public key of the TTP). The TTP is the responsible of the deployment
of the smart contract that will manage the exchange.

2. B sends the non-repudiation proof.
3. A sends the key to decipher the message.

If some party does not follow the protocol, the exchange can be resolved as
follows:
(a) If A does not receive the element of step 2., she can send a request to

the smart contract. If the state of the notification is ’Created’ (nor ’Can-
celled’ neither ’Finished’), then the state will be changed to ’Cancelled’,
indicating that the notification has not been performed successfully.

(b) If B does not receive the message in step 3, B will contact the TTP pro-
viding the received elements in step 1 together with the non-repudiation
of reception proof. The TTP will access the smart contract to check the
state of the notification. If the notification has not been cancelled, the
TTP will publish in the blockchain a non-repudiation of reception proof
and the required elements for B to obtain the confidential message.

5 Smart Contracts Development Settings

In order to deploy smart contracts on the blockchain there are some frameworks
that help the developer manage the deployment on the network. To develop
the DApp we have interacted with the console of the Node JS platform1. This
modular platform provides us with the necessary components to develop, test
and deploy decentralized applications such as smart contracts. Functionalities
provided by Node JS are implemented by independent modules and packages.
In this way, we use NPM (Node Package Manager2) to easily install/uninstall,
configure and update the different modules and software packages of the platform
(called third-party modules).

An important configuration file is package.json. This is a JSON format file
that is stored in the application root folder. This file provides the specific aspects
to manage the module dependencies that the application requires. For instance,
the file states information like our application name, module versions (name and
version together work as an identifier that is assumed to be unique), license,
directories, version control repository and so on. Keeping in mind this struc-
ture, a smart contract ready to deploy will be stored inside a folder within the
solidity file that specifies the code of our application, the package.json and the
node modules folder with all the necessary packages. Inside the root directory
we have two more significant files: compile.js and deploy.js. Both are javascript
files that, while compile.js specifies the requirements to compile the smart con-
tract and the statement to compile it, the deploy.js file defines the tools used
to deploy the smart contract. In order to deploy the smart contract, we need
to have a connection to the Ethereum blockchain and to sign a transaction.
1 https://nodejs.org/en.
2 https://www.npmjs.com/.

https://nodejs.org/en
https://www.npmjs.com/
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We have deployed the smart contract on the Rinkeby testnet3. Rinkeby is the
main Ethereum blockchain testnet that behaves similarly to the real Ethereum
blockchain. We can acquire Rinkeby Ether for our account from a faucet4. Of
course, before acquiring Ether we need to have an account that we can manage
with an Ethereum wallet. For this reason, we have installed the Metamask5 add-
on in our browser. Metamask is an Ethereum browser that allows us to interact
with the blockchain and to run Ethereumm DApps. Metamask also implements
an Ether wallet that enables to sign blockchain transactions.

Therefore, the deploy.js file makes a call to the compile.js file to compile the
contract and then specifies the web3 connection (i.e. the bridge to the blockchain)
and the account needed to sign the transaction in order to deploy the contract.
For this reason, we introduced the HDWalletProvider from Truffle6 to handle
the connection to the Ethereum network and sign the transaction. We have to
give our private key from the Metamask wallet to the HDWalletProvider so as
to sign the transactions.

However, to avoid setting up our own blockchain node, we have used the
Infura Ethereum node cluster7. This service enables us to run our transaction
on the blockchain without needing to establish our own blockchain node. To
work with this cloud-based Ethereum client we just need to sign up and then we
are provided with a token that enables us to connect to the Ethereum network
(with this service we can use the main Ethereum network, Rinkeby, Kovan or
Ropsten). The result of the execution of the deploy.js file is the address of the
new deployed smart contract.

At this point, we can easily interact with our deployed contract by using
Remix8. Remix is a browser-based solidity compiler that also supports testing
and debugging smart contracts. To run transactions on Remix we just have to
select the environment (Web3 Provider), our Ethereum account and the address
where the smart contract is deployed. The Metamask will always ask us confir-
mation before signing any transaction on the blockchain. Remix will show the
transaction in pending mode until it is validated.

In addition to that, we also have tested our smart contracts locally. Ganache9

implements a personal blockchain made by the Ethereum development of smart
contracts that runs in local. Besides, Ganache also simulates an Ethereum Virtual
Machine (EVM). After launching Ganache in our computer, a list with the private
and public key from ten recently created accounts is reported at the node console
in order to use them as test bank (each account has 100 ether in its balance). Now,
Ganache is ready to be used to deploy, run and test smart contracts without using
any public network. In Fig. 1 we have depicted our development configuration.

3 https://www.rinkeby.io.
4 https://faucet.rinkeby.io/.
5 https://metamask.io.
6 http://truffleframework.com.
7 https://infura.io.
8 https://remix.ethereum.org.
9 http://truffleframework.com/ganache/.
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Fig. 1. Smart Contract Development Architecture

6 Development of the Non-Confidential Blockchain-Based
Fair Certified Notifications Protocol Without TTP

6.1 Smart Contract

We have designed and implemented the smart contract for non-confidential noti-
fications. For this proposal, a new instance of the smart contract will be created
by the sender and it will manage all the steps of the exchange. It has been pro-
grammed using Solidity10 and it has been deployed over an Ethereum network.
Ethereum addresses have been assigned to both the sender A and the receiver B.
Both A and B will interact with the blockchain using Web3.js interfaces (Fig. 4).

Figure 3 shows the smart contract that manages the non-confidential noti-
fications. The constructor of the smart contract includes variables to store the
addresses of the sender and the receiver, the hash of the notification message,
the instant of execution of the first step of the exchange and the value of the
execution period (the deadline). The contract includes five functions: to initiate
the notification (the constructor), to accept a notification, to deliver the mes-
sage, to cancel the exchange and to inquiry about the state of the exchange. The
certified notification is created by the sender, who specifies the receiver, the hash
of the message and the maximum duration of the exchange. The smart contract
also has an attribute to store the content of the message.
10 https://solidity.readthedocs.io/en/v0.4.21/.

https://solidity.readthedocs.io/en/v0.4.21/
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Fig. 2. Possible states of the exchange in the Non-Confidential Notifications Protocol.

Fig. 3. Smart Contract for the Non-Confidential Notifications Protocol.
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The contract also manages a Solidity event to follow the progress of the
exchange. This event stateInfo allows the parties to see the evolution of the
state of the exchange (created, accepted, finished or cancelled).

Functions Accept and Finish check the identity of the address that throws
the transaction. The address of the receiver and the sender are verified before
updating the state. Function Cancel also checks the addresses. In this case, both
sender and receiver can execute the function, depending on the state of the
exchange. Moreover, all the functions that can cause any change in the state of
the exchange check the value of the variable State. Function Finish requires that
the present time does not exceed the deadline before executing its code. Also,
function Cancel verifies that the current time is greater than the deadline before
carrying on with the execution of it.

The smart contract will manage the publication on the blockchain of all the
values of the required variables to maintain the fairness of the exchange following
the protocol described in Sect. 4.1.

6.2 Properties

The non-confidential certified notifications protocol allows the fair exchange of
a message and non-repudiation proofs. The main properties achieved by the
protocol are analyzed in this section.

– Strong Fairness. A will not receive the non-repudiation proof of reception
provided by the smart contract unless she executes the transaction to register
the message in the blockchain (case State=finished). On the other hand, B will
not have access to the message unless he executes the transaction to accept
the notification (State=Accepted). At any moment, the smart contract does
not generate alternative cancellation or finalization proofs that could create
any situation where one of the parties can have contradictory proofs (leading
the exchange to weak fairness), as can be seen in Fig. 3.

– Total absence of TTP. Substitution by an smart contract. This pro-
posal does not require an external party acting as a TTP. The parties execute
the functions of the smart contract creating the associate transactions and
there is no need of dispute resolution.

– Transferability of the proofs. Since the parties cannot obtain contradic-
tory proofs in any way, the generated proofs can be presented as evidence
to an external entity. Moreover, its transferability is easy, since the results
of the exchange are stored in the blockchain. Due to the immutability of the
blockchain, the content of the notification cannot be modified so the system
provides integrity to the notification. The moment that the notification takes
place can be derived from the timestamp of the block where the transaction
is included.

– Weak Timeliness. The protocol is not asynchronous. If one of the parties
delays its intervention in the exchange, the other party will not be able to
resolve it until the deadline. However, after the deadline both parties can
request the finalization of the exchange. Moreover, the protocol wants to
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motivate the sender to conclude the exchange before the timeout blocking an
amount of money in the smart contract. This amount will only be refunded
to the sender if she concludes before the deadline.

– Non Repudiation. The protocol achieves non-repudiation of origin together
with non-repudiation of receipt after the execution of the exchange. A cannot
deny having sent the message since there is a transaction on the blockchain
from her address containing the message and another one related with the
same message including the address of the receiver and the hash of the mes-
sage. B cannot deny having received the notification since there is a transac-
tion from his address in the blockchain accepting the reception of the message
and the State of the exchange is Finished, so the message is publicly accessible
in the blockchain.

7 Development of the Confidential Blockchain-Based
Fair Certified Notifications Protocol

7.1 Smart Contract

We have designed and implemented a DApp that allows the optimistic exchange
between the parties and a smart contract for the resolution of disputes. The
smart contract has been programmed in Solidity and deployed over the Ethereum
network (see Sect. 5). Ethereum addresses have been assigned to the sender A,
the receiver B and the TTP. In comparison with the protocol described in [7],
the role of the TTP has been reduced. The sender will never contact the TTP.
The TTP will answer only requests from the receiver B by accessing to the
smart contract that has been deployed. The TTP is totally stateless and, in
any case, it stores information about the state of any exchange. Both A and B
can interact with the blockchain if it is necessary through the Web3.js interface.
For this reason, we have also designed a web service where the web client can
connect using TLS protocol. This web service is used the off-chain communica-
tion exchanges between sender and recipient described in the protocol. In order
to implement the cryptographic operations, we have used Stanford Javascript
Crypto Library11. This enables us to use AES for the symmetric encryption oper-
ation, EC-ElGammal for the asymmetric encryption operations and ECDSA for
the signature functions. However, the implementation of a PKI and the secure
exchange of public keys are beyond the scope of this work. Figure 5 shows the
smart contract that will manage the possible disputes between the parties after
the execution of the exchange described in Sect. 4.2 for confidential notifications.
This smart contract is deployed by the TTP, who defines the identities of the
sender and the receiver. The smart contract manages the variable state in order
to keep track of the state of each exchange (Fig. 2).

The event stateInfo allows the tracking of the evolution of each exchange
state. The function Cancel checks the identity of the address that throws the
transaction, which must be the address of the sender, together with the value
11 http://bitwiseshiftleft.github.io/sjcl/.

http://bitwiseshiftleft.github.io/sjcl/
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Fig. 4. Interaction between the actors.

of the variable state. This function can be executed only by the sender. The
function Finish checks the identity of the party that sends the transaction, that
is, the TTP, together with the value of the variable state. The TTP will execute
this function if it receives a request from the receiver. The smart contract is
responsible for the publication in the blockchain of the values of the elements
used to maintain the fairness of the exchange following the protocol described
in Sect. 4.2. In function Finish, if the conditions are fulfilled, the smart contract
publishes in the blockchain both the non repudiation of reception proof (hB)
and the session key encrypted with B’s public key (hBt).

7.2 Properties

The main properties achieved by the confidential certified notifications protocol
are analysed in this section.

– Weak Fairness. The protocol does not allow that any of the parties receive
the expected item if the other party does not receive it. However, the inter-
venction of the TTP can lead to a situation in where one of the parties pos-
sesses contradictory evidence. A malicious A can have the non-repudiation
proof received directly from B and also the cancellation proof generated by
the smart contract after a cancellation request from A. For these reason, the
fairness will be weak and the generated proofs are non transferable. Com-
paring this feature with the version of the protocol without blockchain, this
protocol does not require that the arbitrator consults both parties to resolve
the final state of the exchange. It is enough to check one of the parties and
then match this version with the contents of the blockchain.

– Optimistic. The parties can finalize the exchange without the need to con-
tact with a TTP or execute any function of the smart contract. If the parties
do not follow the protocol and the execution of the smart contract is required,
the gas necessary for its operation would be reduced compared with the pro-
tocol for non-confidential notifications protocol.
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Fig. 5. Smart Contract for Confidential Notifications.

– Stateless TTP. When the TTP is involved in the exchange, it can resolve
the exchange through the use of the smart contract. The TTP does not need
to store any kind of state information of the exchange.

– Timeliness. The parties can finish the exchange at any moment accessing the
smart contract (sender A) or contacting the TTP (receiver B). The duration
of the resolution will depend of the block notification treatment. The protocol
can assume that the transactions are valid immediately (zero confirmation)
or wait until the block is confirmed in the chain (fully confirmation).

– Non repudiation. The protocol achieves non-repudiation of origin together
with non-repudiation of receipt after the execution of the three step exchange
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or the finalization using the smart contract. A cannot deny having sent the
message since B has the element received in the third step or the state of the
smart contract is Finished. B cannot deny having received the notification
since A has the elements sent by B in the second step of the protocol.

– Confidentiality. If the exchange is finished through the execution of the
three step exchange protocol, then no other entity is involved in the exchange,
and the message remains confidential. If the TTP is involved or the functions
of the smart contract are executed, then the TTP will process the received
elements and will make a transaction including the element that will allow B
to decrypt the message but the plain message is not included in the trans-
action so it will not be included in a block of the blockchain to preserve the
confidentiality.

8 Comparison and Conclusions

Previous solutions for fair certified notifications are mainly based on the inter-
vention of a TTP that acts as an intermediary between sender and receiver. In
this model of fair exchange, both parties obtain the expected item from the other
or neither obtains what was expected. That is, either the issuer has received a
non-repudiation of reception evidence and the recipient has received the message,
or neither party obtains the desired item, the TTP can intervene to guarantee
the fairness of the exchange if some participant misbehaves.

This paper presents two alternatives for sending certified notifications on a
blockchain-based fairness. On the one hand, the first solution (see Sect. 6) allows
users to send non-confidential notifications, the new DApp supports the sending
and receiving of certified messages and guarantees the fairness of the exchange
without requiring the intervention of any TTP to guarantee the security proper-
ties of the exchange since the actions of the different actors are recorded in the
blockchain and, in the event that any actor does not fulfil the protocol, the smart
contract will generate the corresponding evidence to preserve fairness. This pro-
posal also preserves the properties of limited Timeliness (involved parties can
be certain that the protocol will be completed at a certain finite point in time
[16]), Transferability of proofs and Non-repudiation as it is stated in Sect. 6.2.

On the other hand, the second solution (see Sect. 7) is a fair exchange protocol
that allows users to send confidential notifications and introduce an optimistic
TTP (its intervention is only required if a party does not fulfil the protocol) to
guarantee fairness. Thanks to the usage of a blockchain and a smart contract,
the TTP can be stateless (i.e. the TTP does not need to store the state of
the exchange regarding any protocol execution because all the information of
each exchange is stored in the blockchain by using the smart contract). This
solution assures the fair exchange (weak fairness, see Sect. 7.2). Like the first
solution, this proposal also preserves Timeliness and Non-repudiation properties.
However, Transferability of proofs is not strictly provided because anyone who
want to verify the correctness of the exchange not only has to check the provided
evidence by the parties but also has to check the blockchain. Table 1 compares
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Table 1. Comparasison of Properties

Property Non Confidential Notifications Confidential Notifications

Non-repudiation YES YES

Fairness STRONG WEAK

Timeliness LIMITED YES

Effectiveness YES YES

TTP NO OPTIMISTIC/STATELESS

Evidence Transferibility YES NO

Confidentiality NO YES

Table 2. GAS per execution of the Non-Confidential Contract.

Non-Confidential Notifications

Deployment 1086913

Accept 43644

Finish 59835

Cancel (created) 53011

Cancel (accepted) 30443

Table 3. GAS per execution of the Confidential Contract.

Confidential notifications

Deployment 800433

Finish (Cancelled) 26388

Finish 88387

Cancel 44698

Cancel (Finished) 24772

the properties of both solutions while Tables 2 and 3 present the gas required for
the execution of each function, for both protocols.

9 Future Work

There are some points to be studied to improve the proposed protocols. Thus,
as further works we are going to:

– Test the smart contracts on real-like networks, checking confirmation delay
time of transactions and possible undesired effects caused by these delays.
Also we would like to obtain and evaluate an accurate register of the perfor-
mance of our smart contracts in these real-like scenarios.

– Modify smart contracts to allow them to manage more than just one notifica-
tion. This can be done with a contract that can create notification structs or
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other new contracts that represent a notification exchange, and storing them
into an array.

– Modify the confidential notification smart contract so that the TTP can create
a main contract, and from this, multiples notifications can be created by the
senders.

– Improve the use of events. Users can receive notifications, but they need the
address of the smart contract in order to be subscribed to them. For this
reason, the subscription to events can be also improved using only one smart
contract that manages multiple notifications.

– In Tables 2 and 3 we have evaluated the necessary amount of gas to execute the
contracts. However, we have left for further works a deeper analysis in order
to find possible improvements to the code so as to reduce the commissions
paid for using the blockchain.

The systems presented in this article show different sets of properties, so the
choice of one system will depend basically on the needs of each exchange. As a
future work, it is proposed to reformulate the system of confidential notifications
to achieve strong fairness. The use of the blockchain for the diffusion of each of
the executed steps and the full confirmations will be the element used to obtain
this property.
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Abstract. Validation of Bitcoin transactions rely upon the success-
ful execution of scripts written in a simple and effective, non-Turing-
complete by design language, simply called script. This makes the val-
idation of closed scripts, i.e. those associated to actual transactions and
bearing full information, straightforward. Here we address the problem
of validating open scripts, i.e. we address the validation of redeeming
scripts against the whole set of possible inputs, i.e. under which general
conditions can Bitcoins be redeemed? Even if likely not one of the most
complex languages and demanding verification problems, we advocate
the merit of formal verification for the Bitcoin validation framework. We
propose a symbolic verification theory for open script, a verifier tool-
kit, and illustrate examples of use on Bitcoin transactions. Contributions
include (1) a formalisation of (a fragment of script) the language; (2)
a novel symbolic approach to script verification, suitable, e.g. for the
verification of newly defined and non-standard payment schemes; and (3)
building blocks for a larger verification theory for the developing area of
Bitcoin smart contracts. The verification of smart contracts, i.e. agree-
ments built as transaction-based protocols, is currently a problem that
is difficult to formalise and computationally demanding.

1 Introduction

The Bitcoin framework [15] enables monetary transactions of a virtual currency
amongst untrusted individuals. The construction relies on a novel interpretation
of distributed consensus for the validation of a decentralised ledger recording
the Bitcoin transactions. Interestingly, the validation of transactions in terms of
their correctness, e.g. no double spending and proper ownership of the virtual
coins, is demanded to the successful execution of cryptography-fenced scripts
associated to transactions. Replicated execution of scripts is supported by a
network of peers, whose consensus guarantees the validity of transactions.
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Striving for correctness, robustness and efficiency in such an unconven-
tional and constrained execution model, the scripting language script has been
designed according to minimality principles, e.g. it is not Turing complete, has
no recursion, cycles or procedure calls, has an execution cost proportional to
the length of the code, and “dangerous” operations like multiplication are not
allowed. However, even if most transactions exploit standard payment schemes
based on simple scripts believed to be robust, free and more complex payment
schemes are allowed, new standard schemes can be introduced, and, interest-
ingly, a whole area of protocols and smart contracts based on transactions are
being developed [6,14].

Despite the apparent simplicity of script, complex behavior is expressible
through payment schemes wherein multiple transactions are linked. Such a sce-
nario calls for formal verification of critical scripts validating financial trans-
actions, which in the case of Bitcoin alone have a market cap of about 100B
USD (2018 - about half the GDP of a country like Greece). Other approaches
have been proposed, e.g. [8,9] amongst others, based on correctness by construc-
tion/specification. However we believe that having a formal validation of the
consequences of a script program is valuable in itself.

The general validation scheme is composed by two scripts, an input script
in charge of providing data and credential to authorise the transaction, and an
output script, whose structure defines the validation scheme and is in charge of
checking that the data provided do actually enable the transaction. The two
scripts communicate by means of a shared stack. The input script is executed
first.

We address the problem of the satisfiability of “open” output scripts, i.e. under
which general conditions an input script exists capable of providing the right
information to let the output script successfully terminate and the transition be
validated?

Although the simulation and execution of closed scripts present no problems
and many tools and simulators are available, we observe that verification frame-
works for satisfiability of open scripts are not so widespread and we believe that
there are opportunities for further research in the area.

We introduce a symbolic verification framework which simulates the execu-
tion of an output script accumulating minimal constraints, akin to a lazy eval-
uation approach, for its successful termination. This helps, intuitively speaking,
with possibly infinite datasets, e.g. integers, or cryptographic secrets that may
become further specified as the execution proceeds. For each successful sym-
bolic evaluation, returned constraints, if satisfiable, specify one (or more) input
scripts that redeem the transaction.1 This is true “up to cryptography”: a possi-
ble constraint could require an inverse image of a hash. Deciding at which extent
constraints can be fulfilled defines different possible attacker’s models (but this
is scope for future work). In this paper, the most general set of constraints is

1 More precisely, constraints specify the required state of the stack for successful ter-
mination, after the execution of the input script. If constraints are satisfiable, a
trivial input script pushing expected data on the stack always exists.
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returned, e.g. including a request for cryptographic secrets, which could be ful-
filled by a very powerful attacker, able for instance to guess certain keys.

The contributions of this paper are:
(1) a (yet to be completed, but including major constructs) formal description

of the script language, which has otherwise been mostly presented informally
and by code releases. We have focussed on salient features for the correctness of
validation, often digging in the code for clarity;

(2) the novel, to the best of our knowledge, symbolic framework allowing
us to derive a correct and (ongoing research) complete specification of all the
possible, and possibly unintended, ways to redeem transactions. Beyond the
simplicity by construction of script, complex “non-standard” payment scheme
can and have been provided, worth being clearly analysed. Besides, new payment
schemes can be defined and accepted as standard by the community, for instance
to overcome existing limitations, similarly to P2PkH improving over the P2Pk
scheme (i.e. revealing the hashed public key instead of the public key itself of
the Bitcoin’s owner in the output script). In such cases, a clear understanding
of the implications of the scheme in use and the novel ones is desirable;

(3) valid transactions are being used to define more articulated protocols in
the context of smart contracts over the Bitcoin blockchain, e.g. self-enforcing
agreements in the form of executable code [16]. We envisage the framework here
presented as a building block of a larger verification framework aimed at the extra
level of complexity introduced by smart contracts, whose verification is currently
a difficult to formalise and computationally demanding open research problem.
It is worth reminding how this area is prone to “simple”, and supposedly well-
understood, security failures, which easily lead to consistent financial loss, e.g.
for a different scripting language the recent overflow-based case of the Parity
wallet [13].

In this paper we introduce the symbolic verification framework, SCRIPT
ANALYSER, an open source application supporting the presented symbolic ver-
ification, and discuss two examples of non-standard transactions that appeared
in the Bitcoin blockchain, which are slightly more complex than a typical stan-
dard payment scheme, and, we believe, illustrate how the proposed symbolic
verification can support a better understanding of the solidity of Bitcoin’s vali-
dation machinery.

For the sake of space, while we strived for a comprehensive presentation, a
fully formal presentation is demanded to a forthcoming extended paper.

2 Bitcoin’s Blockchain and Transactions

A quick review of the most relevant aspects of the design of Bitcoin are recapped
here. The interested reader is referred to the SOK paper [10] for details.

The Bitcoin blockchain consists of a data structure implementing
a distributed ledger. This can be understood, informally speaking, as
an append only, and therefore immutable, list of blocks of data maintained by a
peer-2-peer network. The blockchain is freely accessible and anyone can be a node
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(Bitcoin is a permission-less blockchain). Each node stores an identical copy of
the ledger. Main innovation is that the ledger is decentralised, i.e. the responsi-
bility for certifying the correctness of the ledger is shared amongst all the nodes,
no one being in charge, and guaranteed by a cryptographically-supported dis-
tributed consensus, currently the proof-of-work. The whole network guarantees
correctness, and at least half of the computational power in the network is needed
in order to alter the ledger.

The ledger records payments amongst accounts, i.e. addresses, based on PKI:
the address can be derived from the public key and the private key is used to
prove ownership of the address and the crypto-money therein.

Transactions move Bitcoins from one address to another. Each transaction
has potentially multiple inputs, i.e. it draws Bitcoins from multiple addresses,
and delivers the drawn Bitcoins over potentially multiple outputs, i.e. pays multi-
ple recipient addresses. Once moved into an address, Bitcoins are redeemable by
a suitable subsequent transaction. Each input of a subsequent redeeming trans-
action needs to provide suitable credential in order to “spend” Bitcoins. This
is done by an input script, or SigScript, whose execution provides credentials,
which are then validated by the output script associated to the output of the pre-
vious transaction. The format of the output script is, in principle, free, although
a few standard output scripts are commonly used. The successful execution of
the input and then the unspent Bitcoin’s output script makes the transaction
valid and it can be recoded on the ledger.

Bitcoin architecture uses hash functions, i.e. a mapping from an unbounded
domain to a fixed domain, which is straightforward to compute but practically
impossible to invert. A hash is often used to prove properties or validate a piece
of information. Addtionally, digital signatures are used, based on public key
cryptography. A signature, used to validly sign a message, proves that the signer
authorized the message. Alteration of the message invalidates the signature.
Generating a valid signature is straightforward when owning the private key,
and generally infeasible otherwise. Verifying the validity of the combination of
signature, public key and message is straightforward.

3 Related Work

Delmonino et al. [12], and Bartoletti and Pompianu [7], empirically analyse com-
mon patterns in designs of smart contracts. The authors show that some of the
design patterns, though they are commonly applied, are actually undesired prac-
tices due to high odds of bug introducement. Increased risk of faults in (smart)
contracts decreases their trustworthiness, as any fault possibly enables unex-
pected side effects (e.g. enabling a malicious party to claim, i.e. steal, honestly
invested currency). As such, these results highlight the importance of improving
smart contract design and verification practices.

Delgado-Segura et al. [11] present a tool (STATUS) for analysing
Bitcoin’s set of unspent transaction outputs (or UTXO). They present results
from running this tool on the UTXO at block 491,868 of Bitcoin’s blockchain
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(appended at October 26th, 2017). The UTXO was introduced to improve
efficiency of validating new transactions. STATUS’s main purpose is to anal-
yse efficiency of the UTXO implementation approach, whereas our work aims to
enable verification of certain properties of output scripts.

Andrychowicz et al. [6] introduce some interesting smart contracts and show
through application of formal models that they are applicable in Bitcoin’s ledger.
In [5] they extend on this with a framework that captures the possible interaction
sequences that may occur following a smart contract. Specifically, their approach
enables automatic security verification by manually modeling the smart contract
using timed automata. We propose a method which possibly enables automati-
cally deriving a model, e.g. expressed in timed automatas, from only the output
scripts of transactions. A generated model may then be further analysed, e.g.
automatically following the approach in [6].

Lande and Zunino [14] propose a formal model to express smart contracts.
They then use this formal model to survey and compare the smart contracts
currently employed via Bitcoin’s ledger. Furthermore, they propose designing
Bitcoin scripts using a high level language DSL that can guarantee security. We
on the other hand attempt to derive security properties directly from scripts.
Ultimately our goals, to increase quality of smart contracts, are similar however.

Bartoletti and Zunino [8] present BitML, a high level DSL for designing smart
contracts that are applicable through Bitcoin’s ledger. The symbolic expressions
that form an instance of BitML are easier to analyse than a Bitcoin’s script
instance. Furthermore, they show that these BitML instances can be compiled
to Bitcoin scripts.

Bhargavan et al. [9] propose verifying smart contracts written in Solidity
(Ethereum’s [17] primary smart contract language), by first either compiling
Solidity code to F*, or decompiling EVM (Ethereum’s virtual machine) bytecode
to F*. It is then possible to verify whether the F* smart contract variant meets
certain criteria by embedding these criteria into F*’s type and effect system.

4 script - A Fragment of

The script programming language consists of a stack-based programming lan-
guage, called script. It is not Turing-complete by design. It does not allow
for cycles and has a restricted set of instructions. Furthermore, complexity of
script is also limited by transaction fees that are typically proportional to the
space occupied by a transaction in a block, and hence to the length of its scripts.
Successful execution reverts to termination, leaving the stack in a true state.

We provide here an informal description of the semantics of the language.
Full details on the language can be found, e.g., in [1] by directly inspecting the
source code of the Bitcoin Core client, or in [3] where the semantics of script’s
instructions are informally described following the Core client’s implementation.

The fragment of script considered in this paper is described next, start-
ing from the syntax in Fig. 1. A program S in script is either a sequence of
stack operations (cmd) or the terminated program �. Trailing and prefixed � are
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generally omitted or absorbed, respectively. Commands manipulate dynamically
typed data on the stack, with automated type coercion. According to the exe-
cution model, operations are sequentially executed and may alter the stack by
popping/pushing data. Operations may fail on missing data and mismatching
or non-coercible types, causing a runtime error, immediately stopping the exe-
cution in a failed state. For instance, OP RETURN fails by default, while ADD
fails if there are not two integers on top of the stack. The script succeeds if all
the operations are successfully executed, i.e. they do not fail, and the (top of
the) stack is true.

Commands are represented by mnemonic codes in Fig. 1, while script actu-
ally uses numeric opcodes. Some other abstractions have been introduced in the
syntax that simplify the semantic presentation without altering its correctness
- an example is the treatment of IF statements. The Bitcoin Core client pro-
vides fine tuning flags, mostly affecting the set of possible checks during the
execution of scripts, which may affect the semantics2. Furthermore, we assume
that arguments specifying the amount of provided signatures and the amount of
provided public keys to the multiple signatures operation are constants in the
output script.

Constants operations push data on the stack, e.g. OP TRUE or OP n which
push the values True and n, and never fail.

Fig. 1. The syntax of script.

Flow control includes a branching command IF S, representing the condi-
tional execution of the program S if the top stack value is true (it is popped
when checked). script would actually write it as the sequence IF; S; ENDIF.
Analogously for the if-then-else construct IFE. Branching constructs may fail
on empty stack when testing the condition, or, in our representation, because
one of the commands in S fails. VERIFY pops the stack and then fails if the

2 In this paper we refer to the settings where flags MANDATORY SCRIPT
VERIFY FLAGS and SCRIPT VERIFY DERSIG are enabled and all other flags
are disabled.
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popped top of the stack was not true. OP RETURN fails and, as a side effect,
allows a limited amount of data to be recorded in the transaction, and hence
permanently stored in the blockchain.

Stack operators work as expected. DUP, SWAP and DROP fail on empty
stack. PUSH adds data on the stack.

script operates on a stack with a 520-byte word. A byte stream bs is a
sequence of bytes such that |bs| ∈ [0, 520] (| | is the length in bytes of a type),
with ε the empty bs - which, e.g., can be successfully popped from the stack. bsi

represents a byte stream of length i, e.g. the result of a fixed-dimension hash
operation.

A boolean (Bool) is a sequence of bytes with |Bool| ∈ [0, 520] and 0, −0 and ε
representing False.3 An integer (int) is a 32-bit signed integer with |int| ∈ [0, 4].
� is the most generic type (|�| ∈ [0, 520]). A key (key) is a sequence of bytes
such that |key| ∈ [9, 73]. A public key pk can only be such that |pk| = 65
or |pk| = 33 (in the latter it is in compressed format). Some operations may
have further requirements on keys, which will be modelled in the corresponding
semantic rules4 5. The type hierarchy is represented by (the transitive closure
of) the following diagram, with solid lines for being subtype of and dotted ones
representing allowed coercions under the constraint that bytestring lengths are
respected, e.g. b ∈ Bool can be successfully used as an integer only if |b| ≤ 4. �,
bs and Bool are actually equivalent, while int and key disjoint. We introduced
separate type entities for readability, and this hierarchy might be useful for more
strictly typed variants of script.

A type B can be automatically coerced to a type A (A � B):

|Bool | ≤ 4
int � Bool

B2i
|�| ≤ 4
int � � T2i

|bs| ≤ 4
int � �bs

bs2i
|bs| ∈ {33, 67}

key � bs
bs2k

3 Although there are multiple values equal to false and multiple values equal to true,
the Bitcoin Core client always instantiates these as ε and [0x01] respectively. Our
symbolic verifier assumes the same representations.

4 It is important to remark here that some type definitions, and other features, may
depend on how the Bitcoin client is initialised. For instance, checking the dimension
of a key depends on an initialisation parameter. We assume in this paper that the
checking is done. We defer the verification against different possible initialisations
to future work, noting that it must be addressed as different settings can affect
correctness in different ways.

5 Some operations may be more restrictive on the length of accepted keys, as well as
their format. We will model this in the specific rules defining such operations, as
appropriate. See Sect. 5.2.
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Arithmetical operators ADD and SUB pop two int values from the stack and
push the result r. It is worth noting that over/underflow may cause |r| = 5,
which may cause a subsequent type error, and the choice of some constants may
be implementation-dependent, e.g. 0 can be ε, 04, 03, −04, . . . . Arithmetical
operators fail on lack of data or type error, e.g. an incoercible bs10.

Boolean operators work similarly, as expected, and fail on lack of data on the
stack (any data can be interpreted as a boolean). VERIFY pops a boolean value
from the stack, and verifies that it is equal to true. If this constraint is not met
evaluation of the script fails. It is worth remarking here that some operators
amongst those that push a boolean result to the stack have a VERIFY variant,
the so-called verify operators, such as EQ VERIFY, CHKSIG VERIFY. These
variants are semantically equivalent to appending VERIFY after the original
operator. For example, EQ VERIFY is semantically equivalent to EQ;VERIFY.

Cryptographic operators check signatures, multi-signatures and push com-
puted hash values to the stack. CHKSIG pops a signature sk and a public key
pk from the stack, and checks if sk is a valid signature of pk combined with
the hash of (part of) the transaction’s data. It pushes the result of this check,
i.e. true or false, to the stack. The non-VERIFY variant fails on lack of data
and on type error. Note that performing CHKSIG without a VERIFY does not
enforce prior operations (including those defined by the input script) to reach a
matching signature check. This is only enforced when the result of CHKSIG is
constrained to true by a subsequent VERIFY operation. CHKMSIG checks the
validity of a list of signatures against a list of public keys. First, an integer nsk is
popped, defining the number of provided signatures. Then nsk signatures (sks)
are popped. Similarly, an integer npk determining the number of provided pub-
lic keys and npk public keys (pks) are popped. As a result, CHKMSIG pushes
true to the stack if each signature is valid for a public key combined with the
hash of (part of) the transaction, i.e. ∀sk ∈ sks.∃pk ∈ pks such that CHKSIG
on (sk, pk) is true6. Otherwise, false is pushed to the stack. The non-VERIFY
variant fails on lack of data and on type error. HASH operators pop a value from
the stack and push the hash of this value to the stack. Hashes fail on lack of
data.

Locktime operators add time constraints to redeeming Bitcoins. We mention
them here for the sake of a more complete overview of script but do not address
them in this work.

Example 1. The script program

DUP;DROP;DROP;DUP

requires a top element in the stack, duplicates it, then pops the two copies,
and then requires the presence of a second element initially on the stack and
duplicates it.

6 With the added note that matching public keys must be provided in the same order
as the signatures they match with. Additionally, each provided public key can at
most be matched with one signature.
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Example 2. As an example of an unredeemable output script, consider the
program

PUSH 0xFB15AC2030FB; ADD

ADD will require two int values, one of which must be pushed to the stack by
the input script. However, regardless of what stack is left by the input script,
ADD will always fail on type error as the first value it pops (originating from the
PUSH operation in the output script) is of type bs6, which cannot be coerced to
int.

5 Symbolic Evaluation of script Programs

Given the script code of an output script, its execution is simulated from an
empty stack. Required data on the initial stack for a successful computation
is defined via a lazy approach returning the weakest constraints on data for
successful termination.

5.1 The Execution Stack Model

A symbolic stack SK is an infinite (in both directions) list of indexed typed data,
with indexes in [−∞,∞] that uniquely identify a position and a datum in the
stack:

[. . . di+1, di, di−1 . . . ]

di = (xi, t), with xi a variable used to accumulate constraints on the expected
data in the i − th position, and t a type.

Two extra indexes associated to SK delimit the segment of significant data
in SK: the head index h identifies the current top of the stack, and the floor
index f denotes the first available position where data can be provided by the
input script, that is the first position below the current bottom of the significant
segment in SK. Initially, each di is undefined (and irrelevant) and h = 0 and
f = 0, i.e. the top element is at position 0 and the first position where the input
script could have provided data for operations in the output script is also 0. Such
“inital” state is called the empty stack and denoted as SKε. Note that f can only
decrease. Each command may further specify requirements on data by accumu-
lating constraints on the associated variable. At the end of the computation, data
of interest will be represented by the constraint store associated to the variables
in (f, 0], i.e. the data required to be provided by the input script for successful
termination of the output script, if any. Symbolic expressions exp in the stack
consist of constants d, variables xi, operations op ∈ {+,−, <,≤,=,≥, >,∧,∨}:

exp :: = exp op exp | xi | d | hash exp | sig exp exp | multisig [exp] [exp] | size exp
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Table 1. An example of symbolic stack (left) and the input types (ty1, ty2, ty3) and
result type (tyr) for some script operators (right).

Example 3. Considering informally the computation of the output script from
Example 1, Table 1(left) shows the effect of command execution on SK. Each
row shows the transformation from ST to ST ′, with ST the symbolic state prior
to, and ST ′ the symbolic state post the symbolic computation of the in bold
printed command.

5.2 Symbolic Simulation of script Computations

The possible symbolic executions of an output script S are defined by a symbolic
transition system, whose states represent the computation still to be executed
and the current state of the associated symbolic state. Commands operate on
typed data, type errors cause a runtime error, which stops the execution in a
failed state, modelled here as standard as a non-terminal state (not �) with no
outgoing transitions. Table 1(right) reports examples of typed operations.

Definition 1. A symbolic state for a script program S is a tuple (S, SK, h, f),
with SK a symbolic stack and h and f its head and floor indexes.

Definition 2. A symbolic transition system for a script program S is a rela-
tionship between symbolic states, and a constraint store Γ , written as

Γ � (S1, SK1, h1, f1) → (S2, SK2, h2, f2)

and read as Γ justifies the transition from (S1, SK1, h1, f1) to (S2, SK2, h2, f2).
Γ is a constraint store over the variables xf2+1, . . . , x−1, x0.
→ is the transition relation amongst states.
Both Γ and → are defined by the structural operation semantics rules in
Figs. 2, 3 and 4.

Γ may contain constraints like {(xi, int), xi ≤ 100}: xi is an integer variable
whose value must be less than 100. We use juxtaposition of constraint stores for
their union. For the sake of space we do not enter in the details of the definition



48 R. Klomp and A. Bracciali

of the constraint language and solver, as they are standard techniques over the
domain of interest.

Γ � (S1, SK1, h1, f1) → (S2, SK2, h2, f2) reads as the program S1 with
the stack (SK1, h1, f1) can do a computation step, transform the stack into
(SK2, h2, f2), and become the program S2, under the conditions in Γ . The
intended use of transactions is to define Γ through the semantic rules for a
computation step of a given S1 and (SK1, h1, f1).

The union of the Γ s along a computation made of several steps defines the
minimal requirements on the initial stack to make that computation happen.
Such a union for a successful execution trace defines one (or more) of the possible
outputs of the input script that makes the transition redeemable. It is important
to remark that one condition for success is that the top of the stack holds true.
In order to validate such condition we

1. add a VERIFY operation at the end of the output script under consideration,
which will cause the constraint eh = True to be added to Γ - see Fig. 3, and

2. resolve successful termination as Γ satisfiability (and script’s termination).

Definition 3. Let SKε be the empty stack. A successful trace for a program S
is a finite sequence

Γ0 � (S, SKε, 0, 0) → (S1, A1) . . . Γn � (Sn−1, An−1) → (�, SKn, hn, fn)

with Ai symbolic stacks, and such that Γ0 . . . Γn−1 (i.e. the union of Γi over the
trace) is satisfiable.

Γ satisfiability means that there exists an assignment γ such that Γγ, i.e. the
grounding of Γ through γ, is consistent. Interestingly, γ defines xf+1, . . . , x0, the
stack variables that have been identified by Γ and need to be to instantiated by
the input script.
Rules in Fig. 2a model auxiliary operations (

pop�−−→
xf

) transforming symbolic stacks,

hereafter ranged over by A,B,C, . . . . These operations are used by many of
the other semantics rules and may define constraints for the constraint store.
Worth noting the rule s pop: data is expected (to have been provided by the
input script) but the stack is empty: a new symbolic variable xf is allocated in
the first available position on the stack, i.e. f , and added to Γ with �, i.e. no
requirements, as type.

Rules for constants and stack ops are straightforward, examples are in Fig. 2b
(with d is a t expressing that d is of type t).

Arithmetic and boolean ops follow a common scheme: data are popped from
the stack and, if types are correct, the respective computation is pushed to
the stack in symbolic expression syntax. Figure 2c shows the scheme for the
operations that take two arguments, most of which are defined in Table 1. Similar
schemes for operations that take less, or more, arguments follow analogously.

Flow control is described in Fig. 3. Rule seq is the core of a small-step seman-
tics: a sequence of commands is unfolded one at the time. itet checks the value
popped from the stack: if it is, or can be assumed to be a Bool according to type
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Fig. 2. Semantic rules I. (With n ∈ [1..16])

coercion rules, then ITE reduces to its if branch under the (minimal) assump-
tions that the type is a Bool and the value is True. Note that, as a general rule,
a type error prevents that application of the rule, not allowing termination and
therefore a successful trace. itef follows straightforwardly, as well as the omit-
ted rules for IF, and the (only) one for VERIFY - not Bool or false prevent
termination.

The crypto ops are in Fig. 4. h256 (and the omitted h160) describes the
hashing of the top value in the stack. Similarly, chksig pops a signature and a
public key and pushes a symbolic expression of validating the (signature, public
key, transaction message) pair. Analogously, chkmsig pops a number nsk, pops
nsk signatures, pops a number npk, pops npk public keys, pops 1 irrelevant
value7 and pushes a symbolic expression of validating the multiple signatures
with multiple public keys to the stack.

7 This is conforming to the Bitcoin Core client, which contains a bug resulting in this
additional stack entry to be popped from the stack.
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Fig. 3. Semantic rules II

Theorem 1 (Soundness). Let

Γ0 � (S, SKε, 0, 0) → (S1, A1) . . . Γn � (Sn−1, An−1) → (�, SKn, hn, fn)

be a successful trace for the script S, i.e. Γ0 . . . Γn−1 is satisfiable.
Then there exist a script I and an assignment γ such that Γγ is consis-

tent, and the execution of I from the empty stack provides the stack Xγ =
[x(fn+1), . . . , x0] and the actual execution of I;S is successful from the empty
stack.

Proof. Sketch! We prove the stronger result: if

Γ0 � (S0,SK0,h0, f0) → (S1, SK1, h1, f1) . . . Γn � (Sn−1, An−1) → (�, SKn, hn, fn)

Fig. 4. Semantic rules III
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is a successful trace then exists I such that I;S0 is successful starting from a
ground instance SK0, f0 ≤ 0 and h0 = |SK0|−f0, according to Γ . By induction
on the trace length n:

Case n = 1. S0 consists of the added VERIFY operation (S was initially
empty), the only constraint is that I is able to provide an xh = True value on
the stack, which define I = OP TRUE, and trivially I;S0 is successful.

Case n ⇒ n + 1. For each single semantic rule r that can be applied to S,
let us consider the step

Γ0 � (S0, SK0, h0, f0) → (S1, SK1, h1, f1)

By construction a successful trace for S1 of length n − 1 exists (it goes to �
and Γ1 . . . Γn is satisfiable if Γ0 is), and by induction I ′ exists such that I ′;S′ is
successful. Depending on the rule r applied, it is possible to show that I exists,
such that I;S is successful.

Case r = d − push. We take SK1 as the stack after the execution of
PUSH d from (SK0, h0, f0). By induction, since a successful trace exists for
(S1, SK1, f1, h1) of length n−1, then I ′ exists such that I ′;S1 is successful from
(S1, SK1, f1, h1), with SK1 equal to SK0 with on top the pushed datum d, and
f1 = f0 and h1 = h0 + 1.

It follows that I ′; PUSH d;S1 is successful from (SK0, h0, f0), indeed we will
have a suitable ground instance of SK0 (given that Γ is satisfiable) after the con-
crete computation of I ′, the execution of PUSH d will yield (a ground instance
of) SK1 from which we know that S1 is successful.

Case r = dup. We take SK1 as the stack after the execution of DUP from
(SK0, h0, f0). By induction, since a successful trace exists for (S1, SK1, h1, f1)
of length n−1, then I ′ exists such that I ′;S1 is successful from (S1, SK1, h1, f1),
with

– if h0 �= f0 then the stack’s element to be duplicated is present in SK0, thus:
SK1 will be equal to SK0 with on top the pushed duplicate of the head entry
of SK0, h1 = h0 + 1 and f1 = f0. It follows that I ′; DUP;S1 is successful
from S0 assuming that Γ0 is satisfiable.

– if h0 = f0 then the stack’s element to be duplicated is not present in SK0 (i.e.
SK0 = ε), in which case a constraint in Γ0 will require xf0 to be provided
before I ′, thus: SK1 will be [xf0 , xf0 ], h1 = h0 + 1 and f1 = f0 − 1. It
follows that PUSH xf0 ; I

′; DUP;S1 is successful from S0 assuming that Γ0 is
satisfiable.

Other cases can be solved analogously. ��

5.3 Implementation

The presented symbolic verification framework has informed the implementa-
tion of script analyser, an open source application implemented in Haskell,
available at https://github.com/RKlompUU/SCRIPTAnalyser.

https://github.com/RKlompUU/SCRIPTAnalyser
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Given an output script S, the current version of the tool returns all the exist-
ing satisfiable Γ for each successful computation of S. Such Γ s are specifications
of (all the possible) input scripts I which can be used to redeem the associated
transaction. script analyser works by an exhaustive traversal of the space of
successful traces, as soon as an error or inconsistency in Γ is detected, the trace
is abandoned.

Satisfiability of Γ is done by application of well-known Finite Domain Con-
straint Solvers. The current version of the tool uses the solver embedded in
swi-prolog [4]. Other solvers, e.g. GNU Prolog [2], will be experimented with.

An extensive experimentation over the non-standard transactions that have
appeared in the blockchain is being carried out.

6 Two Non-standard Transactions

We present the analysis of two relatively complex output scripts from the
blockchain. These scripts have been chosen as complex enough examples to make
non-trivial the precise understanding of their intended meaning and the full con-
ditions for redeemability. As such, any introduced bugs during development of
script programs like these would arguably be difficult to notice without formal
verification. Figure 5a shows the output script of a transaction8 that was inserted
into the Blockchain’s 269,760th block. Following the symbolic rules, there are
two different Γ s derivable:

Fig. 5. Two output script examples.

8 With ID: 75bb6417afc7500a6389201a67bfc2428a1241170a214bbf6833a389191036fe.
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Γ0 := Sig x−1 bsline: 17 ∧
(

Hash x0 == bsline: 8 ∧
Size x0 < 67 ∧
Size x0 >= 64

) ∧
...omitted type constraints...

Γ1 := Sig x−1 bsline: 17 ∧
Sig x0 bsline: 14 ∧
¬(

Hash x0 == bsline: 8 ∧
Size x0 < 67 ∧
Size x0 >= 64

) ∧
...omitted type constraints...

Solving for the former (Γ0) implies that the true-branch of the IF instruction is
taken, and the latter (Γ1) implies that the false-branch is taken. For both Γ s
the input script must instantiate variables {x0, x−1} and x−1 must be a valid
signature. If the transaction is redeemed following Γ0’s constraints, x0 must be
a valid hash input such that the result is equal to some constant byte string
and its type is constrained by the Size constraints to [64, 67). Whereas, if the
transaction is redeemed following Γ1’s constraints, x0 must be a valid signature.

Figure 5b shows the output script of a transaction9 that was inserted into
the Bitcoin’s 290,456th block. Again, since both branches of the IF instruction
produce valid constraint sets, the tool finds two solutions for Γ :

Γ0 := x−4 = true ∧
MultiSig [x−2, x−1][bsline: 3, bsline: 4] ∧
x0 = true ∧
(x−3, �) ∧
...omitted type constraints...

Γ1 := x−4 = true ∧
MultiSig [x−2, x−1][bsline: 9, bsline: 11] ∧
x0 = false ∧
(x−3, �) ∧
...omitted type constraints...

For both Γ0 and Γ1 variables x−4, .., x0 must be instantiated by the input
script. Depending on the value of x0, the true-branch is taken (Γ0, when x0 =
true) or the false-branch is taken (Γ1, when x0 = false). x−1 and x−2 must be
valid signatures for both Γ s. However, note that the public keys these variables
must match with are different depending on which Γ is solved by the input script.
This shows that there exist two identity pairs that may redeem the transaction.
x−3 is in both Γ s popped from the stack due to the bug in CHKMSIG, and must
only be present but is not further used and hence constrained. Additionally, in
both Γ s, x−4 must be some value equal to true. It can be argued that the
inclusion of this constraint on variable x−4 is a minor bug of this output script
that is caused by the VERIFY variant of CHKMSIG that is applied as the final
operation (following both the true-, as well as the false-branch). We consider this

9 With ID: cd2dacbd05389580cb569985b3a8b1db67ea6cc84371223590e241a5026d0a8a.
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a bug since it necessarily increases the redeeming transaction’s fee, as it imposes
the presence of an additional PUSH operation in the input script, increasing the
transaction’s size. Though the trained eye should have no trouble spotting this
bug in the code, it is clear that the constraints generated by our prototype tool
better highlight the bug’s presence.

7 Future Work

By setting up multiple linked transactions (partially) via offchain communica-
tion, parties can establish smart contracts that are automatically enforced by
the Bitcoin ledger. Consider for example the following communication pattern
that establishes a smart contract wherein party A provides a deposit for a pre-
specified duration to party B10. Messages sent to BC represent transmissions to
the Blockchain.

A → B : PkA

B → A : PkB

A → B : hashed tx1

B → A : tx2

A → BC : tx1

A → BC : tx′
2

With PkA and PkB public keys belonging to A and B respectively, tx1 a trans-
action with A placing bitcoins inside a fresh address and locking these until
provided correct signatures by A and B, tx2 a transaction that partially signs
tx1 with B’s signature and unlocks the locked bitcoins after the specified dura-
tion (enabling A to reclaim the deposit), and tx′

2 fully signing tx1. Through
application of this contract, B is guaranteed that A indeed deposited currency,
and A is guaranteed that the deposit will be reclaimable after the prespecified
duration.

Ultimately, we are interested in deriving, from the communication sequence in
conjuction with the output scripts, all possible behaviors (i.e. the range of effects)
of the smart contract that the participants can trigger with the knowledge they
each have after each communication step. This information can then be used to
verify that the designed smart contract will indeed behave as expected.

8 Conclusions

We introduced a symbolic analysis of open script. An open script is an incomplete
program, i.e. the output scripts in Bitcoin’s transactions. These can be closed by
prepending a set of instructions, i.e. the input scripts in Bitcoin’s transactions.
Through application of the symbolic evaluation rules, the constraints expressed

10 Source: https://en.bitcoin.it/wiki/Contract.

https://en.bitcoin.it/wiki/Contract
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by an output script, which are the ones that must be met by the input script, can
be derived automatically, and be further analysed, either manually or (partially)
automatically. We have shown that these constraints can, for example, show the
non existence of a redeeming input script, e.g. due to type error(s) in the output
script, or contradiction(s) in the constraints imposed by the output script. Results
have been presented of analyses on two relatively complex non-standard output
scripts. Such results have been obtained automatically by means of an open
source application that we developed. Such results, beyond confirming that the
two output scripts are redeemable, clarify by means of the generated constraints
the required encrypted knowledge.

Currently, the evaluation rules and the prototype tool cover a relevant portion
of script’s language. Interesting research for future work involves extending
both, e.g. starting by the inclusion of locktime operations. On a longer term, we
are planning to extend the symbolic evaluation to the analysis of smart contracts
that are defined with multiple linked transactions in conjunction with off-chain
communication, à la cryptographic protocol analysis.
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Abstract. Turing-completeness of smart contract languages in
blockchain systems is often associated with a variety of language features
(such as loops). On the contrary, we show that Turing-completeness of a
blockchain system can be achieved through unwinding the recursive calls
between multiple transactions and blocks instead of using a single one.
We prove it by constructing a simple universal Turing machine using a
small set of language features in the unspent transaction output (UTXO)
model, with explicitly given relations between input and output trans-
action states. Neither unbounded loops nor possibly infinite validation
time are needed in this approach.

Keywords: Smart contracts · Turing-completeness
Blockchain · Cellular automata

1 Introduction

Blockchain technology has become widely adopted after the introduction of Bit-
coin by Nakamoto [10]. This peer-to-peer electronic cash ledger drew the enor-
mous attention from the public, which resulted in rapid development of the
technology and appearance of hundreds of alternative cryptocurrency projects.
It also turned out that the blockchain applications expand quite far beyond the
simple ledger niche. The rules of transaction validation can incorporate com-
plicated logic, which is the essence of so-called smart contracts. In the case of
Bitcoin the logic is implemented in the special-purpose Script language, which
is believed not to be Turing complete. This belief stimulated the development
of other smart contract platforms with the emphasis on the language universal-
ity. Particularly, in Ethereum [5] the jump opcode was introduced in a virtual
machine assembly language in order to incorporate unlimited loops. In prac-
tice this resulted in various vulnerabilities and DoS attacks [3] since transaction
computation cost (so-called gas) can only be calculated in runtime. Moreover,
Turing-completeness of Ethereum is still a subject of debates mostly due to
c© Springer Nature Switzerland AG 2018
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the undecidability of the halting problem in combination with a bounded block
validation time. The gas limit is often viewed as a fundamental component pre-
venting Turing-completeness [9].

A Turing-complete programming language is a language which allows descrip-
tion of a universal Turing machine. A universal Turing machine is the Turing
machine which can simulate any other Turing machine; its existence is one of the
main results of the Turing theory [12]. The study of Turing machines is strongly
motivated by the Church—Turing thesis, which states that any computation in
the intuitive sense can be performed on a Turing machine. The thesis is often
viewed as a definition of computation and computability [13]. The set of known
computation devices and models was rapidly growing during the twentieth cen-
tury, and the methods of their analysis were improved as well. The usual way of
proving the Turing-completeness of a system, a device or a language is by using
it to emulate a system that is already proven to be Turing complete. A system
which we are using in this work is one-dimensional cellular automaton Rule 110.
It was conjectured to be Turing complete by Wolfram [16]. The conjecture was
proven by Cook [7] based on previous works by Post [11].

The utter simplicity of Rule 110 makes it an appealing basis for proving
Turing-completeness. In the present work we construct Rule 110 automaton
algorithm for UTXO blockchain and implement it in ErgoScript smart contract
language [6]. We require neither loops, nor jump operator, nor recursive calls
inside a transaction. Instead, we treat the computation as if it is occurring
between the transactions (or maybe blocks). In this context transaction chaining
and replication furnishes us with potentially infinite loops and recursion, while
a combination of outputs for multiple transactions yields analog of a potentially
infinite tape. The underlying idea of complexity growth is similar to the one
expressed in [14,15].

This paper is structured as follows: in Sect. 2, we first describe a naive imple-
mentation of Rule 110 using a simple Bitcoin-like scripting language. Then we
discuss the pitfalls arising from compliance with blockchain properties, and show
a way to overcome them. Section 3 describes an implementation for the real-
world blockchains, and also sketches a discussion on the nature of computation
in the framework of blockchain scripting and validation rules. In AppendixA we
describe a structure of a general-purpose guarding script for an output which can
be transformed into an actual algorithm along with a transformation procedure.

2 Rule 110 Implementation

In this section we describe an implementation of Rule 110 cellular automaton.
The automaton is transforming one-dimensional string of zeros and ones by
applying evolution rules. One step of evolution for one bit is defined by its value
c together with the values of the two neighboring bits—the left one � and the
right one r, along with a transition rule defined in Algorithm1 (“⊕” stands for
XOR operation).
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Algorithm 1. Transition function of the Rule 110 automaton
1: function calcBit(�, c, r)
2: return (� ∧ c ∧ r) ⊕ (c ∧ r) ⊕ c ⊕ r
3: end function

For automaton implementation in a blockchain we use Bitcoin-like trans-
actions consisting of inputs and outputs. Every output consists of a guarding
script and a payload , while an input is a reference to an output from a previous
transaction. We assume that the current state of the automaton is stored in the
transaction output’s payload . The general idea is to use the next transaction as
a single step of the system evolution. In order to achieve this, two main condi-
tions must be satisfied. First, the payload of at least one newly generated output
should contain the updated state of the automaton. Second, this output must
contain exactly the same script. These conditions require the transaction input
to have access to the output’s scripts and payloads. It is implicitly present in
the vast amount of existing blockchains, since in most cases scripts verify the
signature of the spending transaction, which is constructed over the byte array
containing the new outputs. However, this way of accessing output’s data may
be hardly exploitable. In the paper we assume that the guarding script of an
input has direct access to the spending transaction outputs.

Keeping all these in mind, we come to the following validation script:

Algorithm 2. Script, that ensures that the transaction performs correct rule
110 transformation keeping the same rules for further iterations
1: function validate(in, out)
2: function isRule110(inLayer, outLayer)
3: function procCell(i)
4: � ← inLayer[i − 1 mod inLayer.size]
5: c ← inLayer[i]
6: r ← inLayer[i + 1 mod inLayer.size]
7: return calcBit(�, c, r)
8: end function
9: return outLayer = inLayer.indices.map(procCell)

10: end function
11: return isRule110(self.payload, out[0].payload) ∧ (self.script = out[0].script)
12: end function

The script performs two checks. First, it takes the payload of a current input
and ensures, that the result of Rule 110 application equals to the payload of the
first output. Second, it checks that the guarding script of the first output is the
same as a script of the input. The full implementation of this script in the smart
contract language of an existing UTXO blockchain Ergo is provided at [2].

With this script, the cellular automaton evolution may be started by chaining
transactions in a blockchain. Figure 1 shows three transactions (on the left), each
one representing the iteration of the automaton (on the right).
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Fig. 1. Transaction chain following Rule 110. See Algorithm 2 for the script field
description.

Potentially infinite evolution of a cellular automaton, which is required for
Turing-completeness, can be modeled by chaining potentially infinite number of
transactions in the blockchain. However, there is a pitfall left. Size of the data
stored in output must have an upper-bound, and validation time for a transaction
must be bounded as well, otherwise blockchain is losing its security properties1.

The natural workaround is to split the automaton state between transactions
once it becomes too large. As an extreme case one can make a transaction out-
put play a role of a single bit of the automaton. While being inefficient, this
implementation keeps the logic simple and complies with the requirements of

Fig. 2. Evolution of the cellular automaton described in Algorithm 3. Every non-
boundary transaction spends three outputs, and generates three new ones with identical
bit values. Hatching indicates “mid” flag being unset. Numbers in the cells on the right
pane correspond to the transaction numbers on the left.

1 For example, in the Bitcoin backbone protocol model from [8], block validation
should happen within finite and a-priori known round duration.
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the blockchain and of potentially infinite evolution in space and time. The pseu-
docode of the corresponding script is provided in the Algorithm3 and its imple-
mentation in ErgoScript contract language is provided at [1]. Figure 2 schemati-
cally shows the sequence of transactions (on the left), that corresponds to some
area evaluation (on the right) of the automaton run.

The script works as follows. Every output’s payload contains its bit value
val, the column index x, and the minimal x index at the current step n. As the
grid expands by one at every step, −n also serves as the row number. By default,
the transaction spends three inputs (corresponding to the three neighboring bits

Algorithm 3. Validation script for the output representing the single bit, and
the unbound grid
1: function verify(in, out) � “in” and “out” are lists of inputs and outputs
2: function outCorrect(out, script) � output structure check
3: scriptCorrect ← out[0].script = script
4: isCopy1 ← out[1] = out[0].copy(mid← true)
5: isCopy2 ← out[2] = out[0].copy(mid← false)
6: return (¬out[0].mid) ∧ scriptCorrect ∧ isCopy1 ∧ isCopy2
7: end function
8: function correctPayload(in, out) � output payload check
9: � mid flag is only set for the middle input

10: inMidCorrect ← in[1].mid ∧ ¬(in[0].mid ∨ in[2].mid)
11: � input positions are correct; n is the index of leftmost column
12: inYCorrect ← (in[1].n = in[0].n) ∧ (in[2].n = in[0].n)
13: inXCorrect ← (in[1].x = in[0].x+1) ∧ (in[2].x = in[1].x+1)
14: � bits satisfy Rule 110
15: inValCorrect ← out[0].val=calcBit(in[0].val, in[1].val, in[2].val)
16: � output position matches the input one
17: outPosCorrect ← out[0].x = in[1].x ∧ (out[0].n = in[0].n−1)
18: return inValCorrect ∧ inXCorrect ∧ inYCorrect ∧

inMidCorrect ∧ outPosCorrect ∧ in.size=out.size=3
19: end function
20: if in[0].x=in[0].n ∧ in.size=1 then � leftmost — add 2 zeros to the left
21: middle ← in[0].copy(x←in[0].n−1, val←0, mid← true)
22: left ← in[0].copy(x←in[0].n−2, val←0, mid← false)
23: realIn ← left ++ middle ++ in
24: else if in[0].x=in[0].n ∧ in.size=2 then � next to leftmost — add 0 to the left
25: left ← in[0].copy(x←in[0].n−1, val←0, mid← false)
26: realIn ← left ++ in
27: else if in[0].x=−1 ∧ in.size=2 then � rightmost — add 0 to the right
28: right ← in[0].copy(x← 1, val←0, mid← false)
29: realIn ← in ++ right
30: else � normal cell
31: realIn ← in
32: end if
33: return correctPayload(realIn, out) ∧ outCorrect(out, in[0].script)
34: end function
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from the previous row), and creates three outputs with the same bit value by
the automaton rule. One output flagged by mid is supposed to be spent for
new value with the column number x, and another two—for the columns x ± 1
(see Fig. 2). In case the transaction creates the boundary cells, either one or two
inputs are emulated to have zero bit values (lines 20–32). The overall validation
script checks the correctness of the positions of inputs (lines 12 and 13) and
outputs (line 17), correspondence of the bit values (line 15), the correctness of
the mid flag assignment for inputs (line 10) and the fact that all outputs are
identical except the mid flag, which is set only once (lines 2–7).

Since the Turing-completeness of Rule 110 was proven in [7], we conclude
that even though the scripting language itself does not allow loops, Turing-
completeness of the system can be achieved by combining multiple transactions
together. Note that our language requirements are not very demanding, just
about bit operations, comparisons, assignments, and by-index access.

3 Discussion

The crucial move in our work is unwinding recursive calls by means of transaction
chaining, although the language we use contains neither cycles nor recursion. By
doing this we let a program to be executed over a sequence of transactions and
blocks. This approach allows us to run programs in potentially infinite time on
top of the blockchain while there is a strict upper-bound for block validation
time.

A single transaction in the blockchain approximately corresponds to a single
step of a computing machine. The step may be as complex as language built-ins
allow; however, for security reasons it should be possible to estimate its running
time before the actual evaluation.

One can wonder how evolving data structures (a blockchain and a correspond-
ing UTXO set) along with programmable validation rules constitute a Turing
machine. Obviously, we do need to include clients, forming transactions, and
honest majority of miners, including transactions into blocks, as a component
of the machine as well—their efforts are making the input tape of the machine.
The same is true for Ethereum and other blockchains with smart contracts: the
blockchain as a data structure does not endorse any computations—they should
be initialized by a client.

Our approach can be used for Turing-completeness proofs of various smart
contract languages in general. For example, it might be possible to prove that
smart contracts of Waves platform [4] are actually Turing complete, although the
authors claimed the opposite. Rule 110 implementation is not required for prac-
tical cases, it just guarantees that any algorithm can be potentially implemented.
Despite existence of this guarantee, efficient usage of self-reproducing coins in
practice may require new machinery, including development environments and
high-level smart contract languages for the multiple-transactions computations.

Acknowledgments. Authors thank Manuel Chakravarty, Oksana Klimenko, and
Georgy Meshkov for the discussions and helpful comments on early drafts of this paper.
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A Appendix

This section addresses a question of guarding script conversion into the proce-
dure being executed by a client or a miner. Note that the guarding script itself
does not explicitly prescribe the course of computational actions needed to pro-
duce a valid transaction. It rather describes the algorithm of telling whether the
result of the actions is correct or not. As an example, one could set a guarding
script in the form 5out[0].x mod 23 = 13. This script structure is admissible, but
it is hard to say that it describes an actual program of discrete logarithm calcu-
lation. In our particular case the solution is simple. If the guarding script is of
the form (out[0].x = f(in)) ∧ (something) with f being some function, then in
order to satisfy the condition one can replace the equality check with a variable
assignment. Hence if we require the script to be conjunction of equality checks
containing the fields of the outputs solely on the left hand sides, and functions of
the inputs on the right hand sides, then it actually defines the program (assum-
ing that the inputs are fixed). It is fully present in the Algorithm2. Another
problem is collecting the right set of inputs for the transaction. Suppose one
wants to spend in[0]. If the condition for in[1] is conjunction of the expressions
of type in[1].x = f(in[0]), then finding the suitable in[1] is the lookup over the
possible inputs with field x being the key. Therefore, if the guarding script can
be represented in the form

(∧
i

∧
j(out[i].xj = fij(in))

)
∧

(
∧

i in[1].xi = g1i(in[0])) ∧ (
∧

i in[2].xi = g2i(in[0], in[1])) ∧ . . . , (1)

it can be efficiently converted to the transaction generation algorithm:
Here the last if-statement is the consistency check. Note that both

Algorithms 2 and 3 can be represented as the desired form (1) with the length
checks.

Algorithm 4. Transaction creation algorithm
1: for in[0] ← UTXO do
2: i ← 0
3: while scripts of in[0]...in[i] have rule g() for in[i + 1] do
4: in[i+1] ← UTXO(g(in[0]...in[i]))
5: i ← i+1
6: end while
7: j ← 0
8: while scripts of in[0]...in[i] have rule f() for out[j] do
9: out[j] ← f(in[0]...in[i])

10: j ← j+1
11: end while
12: if tx(in,out).isValid then return tx
13: end if
14: end for
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Abstract. Traditional blockchain systems, such as Bitcoin, focus on
transactions in which entire amount is transferred from one owner to the
other, in a single, atomic operation. This model has been re-used in the
context of payment networks such as Lightning network. In this work,
we propose and investigate new payment model, called split payments,
in which the total amount to be transferred is split into unit-amounts
and is transferred independently through the same or different routes. By
splitting the payments this way, we achieve an improved total liquidity of
the payment network, simplify the route advertising, reduce the amount
of funds needed to be locked in the channels, and improve the privacy
properties.

1 Introduction

The scalability problem of Bitcoin has received considerable attention by the
community. Various solutions have been proposed [1–3] and one of the most
promising is the utilization of off-chain transactions, for example through the
Lightning network [4]. Off-chain payment network is based on the concept of
state channels that can operate offline, consulting the blockchain only when
opening or closing a channel. The state channels form a payment network which
allows for peer-to-peer instantaneous transactions.

The payment networks ultimately solve the inherent blockchain scalability
limitation, however, the payment networks themselves are limited in many ways.
They require careful consideration and appropriate balancing of multiple, often
competing, trade offs. Many properties of the network will depend on the way
the network organizes itself. Implementation choices will make a great difference.
In this paper we demonstrate how to better organize the network. In particular,
we suggest to abandon the idea of single atomic payments and to embrace the
concept of money flows, and the use of split payments. We show that splitting
payments into a number of unit payments improves a number of important
properties, such as liquidity, funds lock-in, and privacy.

2 Background and Past Work

The Lightning network is a payment protocol built on top of the Bitcoin proto-
col. It allows for transaction throughput scaling by keeping and updating Bit-
coin transactions off-chain. A Lightning network transaction is processed within
c© Springer Nature Switzerland AG 2018
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Lightning channels which are actually Bitcoin transactions. The idea is that two
users mutually fund a Bitcoin transaction, the Funding transaction, and spend it
returning the invested funds with the Commitment transaction. They both sign
the commitment transactions, but only publish the funding transactions on the
blockchain. Once a channel is established, i.e. the funding transaction reaches the
blockchain, funds can be moved within the channel (up to the channel capacity)
by simply updating the commitment transaction. When any participant wants
to spend funds outside the payment network, the channel is closed by publishing
the current state of the commitment transaction to the blockchain.

One can route a payment through intermediate nodes. For example, if there
is a channel between Alice and Bob and a channel between Bob and Charlie,
Alice can send funds to Charlie through Bob. The technique that makes payment
routing possible is called Hashed Timelock Contract (HTLC). For more details
on its implementation the reader should refer the original paper [4].

Payment networks are not a new concept. They are studied under different
variations of the notion – trust networks [5–7], credit networks [8], path-based
transaction (PBT) networks [9] and Payment-Channel Networks (PCN) [10].

There were efforts undertaken to improve the Lightning network. Flare [11]
suggests maintaining routing tables to be able to discover paths in the network.
Roos et al. [9] proposed an alternative routing scheme that is privacy preserving.
Grunspan and Pérez-Marco [12] put forward an idea of ant routing where path
lookup requests are passed from node to node in the network. Decker et al. [13]
suggested an improvement over the Lightning transaction update mechanism.
Malavolta et al. [14] studied the mechanism which binds transactions together,
so they can be routed. Another paper from this research group [10] demon-
strated a rather surprising trade off between privacy and concurrency in PCNs,
and impossibility to achieve both simultaneously. In the later parts of this article,
we will show that our proposed mechanism addresses and mitigates the prob-
lem. Piatkivskyi et al. [15] brought attention to the problem of colluding nodes
and discussed how it influences forensics of the Lightning network. Herrera-
Joancomarti et al. [16] gave an overview on the state of the art in privacy issues
of payment networks.

3 Split Payments

3.1 Payment Splitting Proposal

The core idea of our proposal is to split payments into a number of smaller
sub-payments of equal amounts, i.e. a number of payments of unit amounts,
and send them independently, not preserving the atomicity property. There are
various ways to split payments up. One way of doing so is amounts of the orders
of 10. If a user wants to pay 23 k satoshi, she splits the payment into 2 sub-
payments of 10 k satoshi and 3 sub-payments of 1 k satoshi.

Split payments are to be sent independently. At the moment of payment ini-
tiation, the sender calculates the cheapest path and begins establishing HTLCs
by that path starting with the larger sub-payments. If at any point of time an
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HTLC establishment fails, or the sender receives a fee update, she suspends the
sub-payments for which HTLCs have not yet been established and re-calculates
the cheapest path again. Then the suspended sub-payments are resumed to be
sent by the new cheapest path. It may happen that for some larger sub-payment
there is no path of needed capacity. In such a case the sub-payment has to be
further split. If there is no capacity to route any payments in the needed direc-
tion, the whole sub-payment queue is suspended for a timeout. After the timeout
is elapsed, an attempt to send the sub-payment is repeated. This process could
continue indefinitely until the payment is complete. The user sets a time frame
within which the payment is expected to execute. We call such parameter time
to live (TTL). Obviously, some payments have to be carried out instantly,
while other can wait. It will make a trade off between the time it takes to com-
plete a payment and the fee paid for that payment. A payment is considered
successful if all sub-payments are successfully delivered within the set TTL. If a
payment has not been delivered within the set TTL, it is marked as failed, even
though it could have been partially sent. Such payments are not sent back, con-
sequentially failed payments change the balances of the nodes en route. Partial
transitions are further discussed in the following sections.

3.2 Atomic Multi-path Payments

Atomic multi-path payments (AMP) [17] are the implementation of the concept
of flows in a flow network. There are number of principal differences that sets
AMP and split payments apart. The main difference is that the whole AMP
flow executes atomically, that is either all of the sub-payments are sent at once
or none. For that, each extended sub-payment remains pending until all sub-
payment flows are extended. That increases the duration of funds being locked.

The superiority of split payments success rate comes from the fact that an
AMP fails if maximum flow between two nodes is less than the payment amount.
Split payments still attempt to execute. As sub-payments are timely spread,
there is a chance that within the execution window some payments will pass
in the opposite direction increasing the maximum amount that can be sent.
A substantial disadvantage is that a payment can be only partially executed.
Notwithstanding the transaction acknowledgement complications, we deem par-
tial payments harmless as the rest of the payment can be sent on-chain using
splicing [18], if to be sent from a Lightning channel. We stress that partially exe-
cuted payments do not introduce additional inconvenience. If a payment cannot
be executed, it has to be sent in any other way anyway. The non-executed part
of a payment can be sent the very same way the whole failed payment would
have to be sent.
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3.3 Network Analysis

Privacy. The privacy benefits of the proposed strategy are many. First of all,
there is no need for routing nodes to disclose current channel capacities. Instead,
the paying node, knowing the static topology, can simply request unit pay-
ments. The probability that a particular path is able to route a payment is
relatively high, given the small unit payment amount. Besides, the fact that all
the payments could only be of a certain unit amount makes the payment cor-
relation analysis difficult. Timing analysis will be significantly complicated as
there expected to be a large number of such unit payments in the network.

Security. In our proposal the collateral risk is relatively low with split payments
because all the actual payments are of unit amount only. If a sub-payment gets
stuck, the sender stops using the routing node that failed. Moreover, as there
exists a threat of losing money to colluded receiver and a node en route [15],
the maximum loss is limited by the amount of the largest sub-payment. If the
sender loses money to the colluding nodes, it can simply stop casting the flow.

Concurrency. Split payments transform the problem of possible occurrence of
a deadlock into a performance bottleneck. While deadlocks are still theoretically
possible, for it to happen a number of sub-payments totaling to the channel
capacity have to conglomerate simultaneously at two nodes. We consider the
chance of such a deadlock negligible, resolving the trade-off between privacy and
concurrency in payment networks described in [10].

Lower fees. The described use of network will presumably yield lower fees for
transactions. First of all, it may happen that the cheapest path is not able to
process the whole payment due to capacity limitation. Secondly, since payments
are sent sequentially, it may happen that a cheaper path will appear some time
after the payment has been issued. Most importantly, the more efficient network
will naturally drive the transaction cost down.

4 Simulation

A massive effort have been invested into developing a Lightning network simula-
tor called Blyskavka (a Ukrainian word for Lightning). The simulator is meant to
be open source, yet making it public requires certain preparations which hinders
the release. Blyskavka is a multi-agent simulator that was built for general pur-
pose payment network simulations. It is written in java and uses MASON [19] as
a simulation engine. Blyskavka simulates the Lightning network operation rather
than the Lightning network itself, meaning it does not simulate the actual trans-
actions being signed and the blockchain communication. It does open and close
channels that are modelled as graph edges. It also simulates HTLC’s by blocking
and then releasing amounts on the path.
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The simulation works with the Newman-Watts–Strogatz model of the small-
world network family, the uniform random graph model and a custom model
that we call peripheral. The peripheral graph model differentiates between the
core network that consists of routing nodes and the wallet nodes that connect
to the core network — the peripheral network. The core network is generated
following any other model. Having generated the core network, the wallet nodes
are added, choosing randomly K routing nodes to connect to.

The simulation is discrete event based. Each simulation step a node decides
what to do—whether to send a payment or not. In all the experiments the
payment frequency for each node is once every 25 simulation steps. If a node
decides to transfer money, it randomly with uniform distribution selects the
destination node and the payment amount within the set range—between 0.1
and 20. As a result, nodes create uniform and symmetric traffic in the network.
As payments can be delayed, they are scheduled as well. Each step a payment
makes an attempt to execute itself – atomic payments at once, split payments
a unit amount sub-payment at a time. If a payment cannot be executed, it is
scheduled for the next step until it is out of time to live (TTL). The simulation
is flexible on what metrics it can take measurements of. For the purpose of the
described research, only success rate was of interest.

For this research we generate both, hub-and-spoke and organic topologies.
Hub-and-spoke topology correspond to the peripheral graph model, organic
topology is described by either the Newman-Watts–Strogatz model or by the
uniform random graph model.

In our experiments we study networks of 1000 and 10000 nodes with different
level of connectivity, defined by the parameter K. The small network size is
dictated by the poor scalability of the simulator. Hub-and-spoke network has the
core network consisting of 20 nodes for the network size of 1000 nodes and 50
nodes for the network size of 10000 nodes. The numbers are chosen deliberately
so that the success rate starts low enough to show its increase with TTL value.
Each node, regardless if it is a routing or wallet node, has K channels with initial
capacity of 5 on each side. For this research channel cost is disregarded.

Intuitively, and then proven experimentally, the organic topology efficiency
grows with the number of channels in the network. Organic topology with K=2
is very inefficient, hence we set K=4. To match the total funds invested into
the hub-and-spoke network under scrutiny, the initial channel capacities should
remain 5. We also generate higher connectivity networks with K=4 for hub-
and-spoke network and K=8 for organic network.

5 Experiments

It is hard to study the effects a change of a variable causes in the various net-
work properties. For that, all variables that could also affect the success rate of
the network have to be fixed, while still conserving the adequate liveliness and
soundness of the network. To reduce the number of confounding variables, we
randomly generate an instance of a particular network topology, with a given
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fixed properties. Any comparison is done then for exactly the same network
configuration.

In the experiments described in this article TTL is an independent variable,
i.e. we study the dependency of success rate on the TTL value. For that, TTL
is being varied from 50 simulation steps (where slight TTL increase brings a
considerable difference in success rate) to 2000 simulation steps (where there is
no longer any substantial increase in success rate with growing value of TTL).
That demonstrates how the network improves with longer TTL.

The experiments were performed within a strictly defined framework. Each
run lasts at least N = 3 ∗ TTL simulation steps and repeated multiple times
to investigate the variance across runs. Furthermore, network topologies were
generated randomly and for the same configuration there were generated multiple
instances of the same topology, to compensate for a particular instance favouring
one or the other model, just out of pure chance of the connectivity of a given
instance.

The ultimate benchmark for the network we deem the success rate. To ade-
quately measure it, we run the simulation for a number of steps N , but stop
accounting transactions into statistics TTL steps before it finishes. This leaves
each transaction enough time to either complete or fail. The transactions in
the network, however, are continuously generated and they continue creating
traffic (Fig. 1).

5.1 Split payments vs. AMP

The core of the experiments was focused on the comparison of split payments
and AMPs. The first thing to notice is the striking difference the splitting makes
across all charts, particularly in case of the organic topology. With TTL > 1000,
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Fig. 1. A 20-1k hub-and-spoke network.
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the difference is above 35%. The hub-and-spoke network also shows a signifi-
cant improvement which is more constant and makes up over 10% improvement,
reaching 20% difference for TTL > 1000. Those experimental results demon-
strate the superiority of split payments when it comes to liquidity. Apart from
proving the better performance of split payments these graphs provide hints
about what network configurations are more efficient. Even though promising,
those hints are not to be considered facts and need to be verified in a more
rigorous manner.

Better connectivity networks. In all of the experiments we keep the amount
invested in the network at the same level to make the comparisons meaningful.
Therefore, when increasing the number of channels K twofold, we divide the
average channel capacity by 2. All the figures suggest that it is better to invest
less in a single channel and have more channels established. In other words, the
more interconnected the network the greater its performance.

Hub-and-spoke topology efficiency. Hub-and-spoke topology is by far out-
performing the organic topology, even when the latter has twice as many chan-
nels (of half capacity, so the total investment in the network remains constant).
Important to note that wallet nodes in the hub-and-spoke topology are not con-
sidered when routing. If they take part relaying payments, the efficiency, hence
the liquidity, grows considerably. This suggests that in spite of all the shortcom-
ings, some form of centralization will be present as it constitutes a major factor
to the network efficiency.

High intensity traffic. Having the same core network, but increased number
of wallet nodes increases the success rate in the hub-and-spoke network. The
organic network, on the other hand, suffers from the growing number of nodes.
On the other hand, the splitting strategy shows the best efficiency for larger
organic topologies making the difference of about up to 65%, taking up 34%
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success rate of atomic multi-path payments to 99% of split payments. This is a
rather considerable improvement over the atomic baseline.
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Fig. 3. Networks of 10000 nodes.

6 Conclusions

We have introduced the area of research focusing on payment networks and
money flows. We have investigated an improvement in the design of the pay-
ment network, based on the split payment model. The new strategy has been
experimentally demonstrated to substantially increase the liquidity of payment
network. We have investigated what payment network topological characteristics
tend to yield better liquidity. Another important contribution is the Lightning
network simulator, named Blyskavka, that has been designed to be general-
purpose and we expect it to be used in the future research work on payment
networks.
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16. Herrera-Joancomart́ı, J., Pérez-Solà, C.: Privacy in bitcoin transactions: new chal-
lenges from blockchain scalability solutions. In: Torra, V., Narukawa, Y., Navarro-
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Abstract. Payment channels are the most prominent solution to the
blockchain scalability problem. We introduce the problem of network
design with fees for payment channels from the perspective of a Pay-
ment Service Provider (PSP). Given a set of transactions, we examine
the optimal graph structure and fee assignment to maximize the PSP’s
profit. A customer prefers to route transactions through the PSP’s net-
work if the cheapest path from sender to receiver is financially interest-
ing, i.e., if the path costs less than the blockchain fee. When the graph
structure is a tree, and the PSP facilitates all transactions, the problem
can be formulated as a linear program. For a path graph, we present
a polynomial time algorithm to assign optimal fees. We also show that
the star network, where the center is an additional node acting as an
intermediary, is a near-optimal solution to the network design problem.

Keywords: Blockchain · Layer 2 · Channels · Lightning protocol

1 Introduction

Scaling the transaction throughput on blockchain systems, such as Bitcoin [12]
and Ethereum [1], is a fundamental problem and an active research direction [4].
Many solutions have been proposed, in particular sharding [8,10], sidechains [3]
and channels [2,5,9,13]. Channels seem to be the most promising solution since
they allow transactions to occur securely off-chain, and use the blockchain only
for resolving disputes.

We study the problem from the viewpoint of a Payment Service Provider
(PSP). The PSP wants to establish an alternative payment network for cus-
tomers to execute transactions. We assume a PSP can open a channel between
two parties without acting as an intermediate node; this can be done using three-
party channels. The two parties and the PSP join a three-party channel funded
only by the PSP who then loans money to the other parties. We assume that
the PSP will eventually get his money back in fiat currency as he provides a
service similar to credit cards (the risk lies to the PSP). Furthermore, the PSP
signs each new state if and only if the fees have the correct value. This way he
enforces the fee assignment on the channels.

Initially, a PSP will compete with the blockchain: customers only prefer the
alternative network if the total fees cost less than the blockchain. We introduce
c© Springer Nature Switzerland AG 2018
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the network design problem for the PSP, whose goal is to decide the graph
structure and the fee assignments in order to maximize its profit.

Our contributions are as follows. First, we provide a linear program formu-
lation for the problem on trees when the PSP wants to facilitate all transac-
tions, proving that this problem variation is in the complexity class P. Then,
we show that the optimal fee assignment for any path has only 0/1 values on
the fees, assuming 1 is the cost of posting a transaction on the blockchain, and
we present an efficient dynamic programming algorithm to compute the optimal
fees. In addition, we prove that the star network is a near-optimal solution of the
general network design problem, when we allow an additional node to be added
as a payment hub and assume the optimal network is connected. This implies
that a PSP can achieve almost maximum profit by creating a payment hub, the
construction of which has already been studied in [6,7].

2 Preliminaries and Notation

In this section, we define the Channels Network Design with Fees (CNDF) prob-
lem. We assume the PSP can renew the channels and change the network struc-
ture in specific epochs to avoid timing attacks; hence, we only consider a limited
set of transactions corresponding to an epoch. Now, given a set of transactions
between a fixed number of participants, we wish to create a payment network
and assign fees to its channels to maximize the profit for the PSP. To formally
define the problem, we introduce the following notation.

We define a channel network as a graph G = (V,E) with a set of vertices V
and a set of edges E. Each node v ∈ V denotes one of n participants wishing
to use our network, hence |V | = n. An edge e ∈ E between two nodes i and j
represents an open channel Cij , with |E| = m. Thus, the set of edges E represents
the open channels of our network. For simplicity, we assume that all edges of the
graph are undirected, as we assume the capacity of every channel to be infinite,
in other words, the PSP has deep pockets and is able to fund channels with a
significant amount of capital. Further, we define the cost of each edge in the
network to be 1. This represents the cost of opening a channel by submitting a
funding transaction to the blockchain as described in [5,13].

Given a sequence of transactions for n participants, we can define a trans-
action matrix T ∈ N

n×n. An entry T [i, j] denotes the number of transactions
from i to j and back. Note that matrix T is symmetric since the transactions’
direction do not matter. If there are no transactions for a pair (i, j) of nodes,
then the corresponding matrix entry is 0. Transactions where sender and receiver
are identical are meaningless, thus the diagonal entries of the matrix are 0.

For each edge e ∈ E we can assign a fee fe ∈ R. We require every fee to be
non-negative. Moreover, we require the fees to be at most 1, which is the cost of
any transaction on the blockchain. Allowing the fee on an edge to be more than
1 is equivalent to deleting this edge from the network, since the customers will
always prefer to use the blockchain where the transaction fee is 1. We denote by
fE a fee assignment for the set of edges E.
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To measure the value of a network we introduce a profit function. The profit
of a payment network depends on the structure of the underlying graph, the
fee assignments and the transactions carried out between participants in the
network. Given a transaction matrix T , we define the profit of a graph G = (V,E)
as follows:

p(G,T, fE) = −m +
∑

i,j∈V

∑

e∈path(i,j)

fe · Xij · T [i, j],

where Xij =

⎧
⎪⎨

⎪⎩

1, if the participant chooses to use the network,
i.e.

∑
e∈path(i,j) fe ≤ 1

0, otherwise

where path(i, j) denotes the set of edges of the shortest path (cheapest sum of
fees on edges) from sender i to receiver j in the graph G.

We include a pair of nodes (i, j) in the profit calculation only if this sum of
fees on the shortest path is at most 1. Finally, we subtract from the profit the
number of edges m, since each transaction that opens a channel costs 1 in the
blockchain.

Now, we formally define the problem as follows.

Definition 1 (CNDF). Given a transaction matrix T ∈ N
n×n, return a graph

G = (V,E) with |V | = n, and fee assignments on edges fE, such that the profit
function p(G,T, fE) is maximized.

In the following two sections we study a relaxed version of the problem, where the
network structure is given. Our goal is to calculate the optimal fee assignments.
Specifically, in Sect. 3 we examine trees; trees are very natural as they connect
a set of nodes with a minimal number of edges, and opening each edge costs
a blockchain transaction. In addition we want all customers to prefer the PSP
network, thus all paths in a given tree must cost less than 1.

3 A Linear Program for Trees

In this section, we find a solution to CNDF restricted to trees. We assume that
every transaction makes sense in the tree, i.e., the sum of the fees on the path of
every transaction is at most 1. Therefore, by the model stated above, every user
of the payment network will always use the network, and no transaction goes
directly on the blockchain. It turns out this problem can be solved efficiently, as
stated by the following result.

Theorem 1. Given any tree and any transaction matrix, there exists a polyno-
mial time algorithm to optimize the profit if every transaction can connect using
the payment network.
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Proof. To solve this variation of the problem, we can use linear programming to
find the optimal profit along with an optimal assignment of fees. In order to do
so for some given tree G = (V,E) and a given transaction matrix T , we need to
first determine the objective function that we want to maximize. Moreover, we
need to specify suitable inequality constraints.

We compute the objective function by analyzing how many times each trans-
action uses each edge in the network. This gives us an objective function

f(x) =
m−1∑

i=0

ci · xi.

The argument of the objective function, a vector x = (x0, · · · , xm−1) with m =
|E| components represents the fees of the edges that we wish to maximize, and
ci denotes the number of times the edge i is used by transactions. Then, to
determine the inequality constraints which are imposed by the constraint that
each transaction must have a total fee of at most 1, we define one inequality for
every transaction t:

m−1∑

i=0

ei · xi ≤ 1,

where ei = 1 if edge i was used for transaction t, and 0 otherwise. Solving this
linear program (in polynomial time) finds the optimal vector x of fees. ��
In the following section, we remove the additional assumption that all the trans-
actions should be facilitated by the PSP’s network. The problem, now, is more
complicated since the selection of transactions cannot be expressed as a linear
program (but only as an ILP). Thus, we study the problem in more restricted
graph structure: paths.

4 Dynamic Program for Paths

In this section we present Algorithm 1, a polynomial-time dynamic program that
achieves optimal profit in chain networks. We prove that the optimal solution
has only fees that are either 0 or 1. First we compute tensor M , where M [i, j, k]
is the profit from all transactions in the interval [i, k] when the fee of edge j is
1 and every other fee is 0. Then, we compute matrix P , the maximum entry of
which is the optimal profit. P [lastX, x − 1] denotes the maximum profit when
setting the fee of the edge with index lastX to 1 (it is possible that more edges
have a fee of 1 before that, but lastX is the last edge where this is the case) and
only using the edges up to x−1. M [lastX +1, x, y] denotes the profit from edges
in the interval [lastX + 1, y] while the x-th edge’s fee is 1. For some fixed x, y
we iterate over all possible profits of the preceding part of the graph, add it to
the profit of the corresponding current interval and only consider the maximal
profit (if larger that setting the x-th edge’s fee to 1).

To retrieve a fee assignment that has optimal profit, we can do the following:
We define an additional matrix E, where the entries of each row are initialized
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Algorithm 1. Dynamic Program for Paths

Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n = number of nodes, m = number of edges, i.e., n − 1
Set all entries of M [m,m,m] to 0
Set all entries of P [m,m] to 0

Compute tensor M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 for every 1 ≤ i ≤ j ≤ k ≤ m:
2 p = 0
3 for every entry T[u,v] in T :
4 if u ≤ j < v:
5 p = p + T [u, v]

6 M [i, j, k] = p

Compute the dynamic programming table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 for every 1 ≤ x ≤ y ≤ m:
8 P [x, y] = M [1, x, y]
9 for lastX = 1 to x − 1:

10 if P[lastX,x-1] + M[lastX+1,x,y] >P[x,y] :
11 P [x, y] = P [lastX, x − 1] + M [lastX + 1, x, y]
12 Store edges with a fee of 1, i.e., x and edges that have a fee of

1 for P [lastX, x − 1]

13 profit = maximum entry in P
14 fee assignment = edges with a fee of 1 stored for the maximum table entry

with the number of the row. Now, every time we update an entry P [x, y], we
set E[x, y] = [x,E[lastX, x − 1]]. These denote the edges that are assigned a fee
of 1 to attain the calculated profit. When the algorithm has ended, we read the
entry E[x′, y′], where x′, y′ are the indices of the maximum value in P , and set
the fee of the edge contained in E[x′, y′] to 1 in the optimal fee assignment.

Correctness and Runtime. We prove the correctness of Algorithm 1 and analyze
its time complexity. In Algorithm 1, an edge is either assigned a fee of 1 or 0.
The following lemma states that these are indeed the only two values we need
to consider.

Lemma 1. For every given path and for every set of transactions, the optimal
profit can always be achieved by assigning edges a fee 0 or 1.
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Proof. Assume that we are given some optimal fee assignment f =
(f1, f2, . . . , fm) on the path of length m, and but this assignment may use other
values, not only 0 or 1. We show that only using 0 and 1 one also can reach the
same (or even more) profit.

Based on the given fee assignment f , we compute the set S of all maximal
intervals (i.e., there does not exist a pair of intervals (i, j) and (i′, j′) such that
i ≤ i′ and j ≥ j′) where the sum of the fees on the edges in that interval is
less or equal to 1. That is, an interval (i, j) is in S if and only if it satisfies that∑j

k=i fk ≤ 1 and
∑j

k=i−1 fk > 1 (or i = 1) and
∑j+1

k=i fk > 1 (or j = m). The
optimal profit can be obtained by solving a linear program. It is well known that
every linear program reaches its optimal at the vertex of the feasible region.
Hence, we only need to show that every entry of every vertex of the feasible
region defined above is either 0 or 1. Equivalently, we show that every feasible
solution is a convex combination of vectors with only 0 and 1.

We prove this by induction on the length of the path. For the base case, when
the length is 1, i.e., a single edge, it is trivial. Now assume that this result holds
for paths of length smaller than m, and we prove that it also holds for length
equals to m. The key observation is that, for any path, there always exists an
assignment f ′ with only 0 and 1 such that

∑j
k=i f

′
k = 1 for every (i, j) ∈ S, as

follows:

1. Let f ′
k = 0 for all k.

2. For k from 1 to m, consider all intervals (i, j) in S such that i ≤ k ≤ j. If all
such intervals (i, j) satisfy

∑j
t=i f

′
t = 0, then let f ′

k = 1.

We define K := {k : f ′
k = 1} and let θ := min{fk : k ∈ K}. Now we write f as a

convex combination f = θ ·f ′+(1−θ)·f ′′. Since
∑j

k=i f
′
k = 1 for every (i, j) ∈ S,

it follows that
∑j

k=i f
′′
k ≤ 1 for every (i, j) ∈ S. By the definition of θ, we know

that there exists at least one index t such that f ′′
t = 0 (ft = θ). According to

these two facts, f ′′ can be considered as a feasible solution for the path of length
n−1, which by the induction hypothesis is also a convex combination of vectors
with only 0 and 1. The lemma is proved. ��

The above lemma is useful in pruning search space, but it is still exponential
(2m) if we do a brute force search. Our dynamic programming method makes
the search space polynomial in m, which is shown in the following theorem.

Theorem 2. Algorithm 1 returns the optimal solution and the time complexity
of the algorithm is O(n5).

Proof. Let OPT (x, y) denote the profit of the sub-path from edge 1 up to and
including edge y where we set the fee of edge x (x ≤ y) to 1. We claim that
OPT (x, y) fulfills the following recurrence:

OPT (x, y) = max

{
M [1, x, y] (Case 1)
P [lastX, x − 1] + M [lastX + 1, x, y] (Case 2)
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If OPT (x, y) is equal to (Case 1), this means that we reach the maximum profit
in the subgraph from edge 1 to y by only setting the fee of edge x to 1 in the
entire subgraph. Consequently, every transaction, that only uses edges from this
subgraph, can generate profit.

Otherwise, if OPT (x, y) happens to be (Case 2), we know that there are at
least two edges with a fee of 1 in the subgraph from edge 1 to y, namely on
edge x and on edge lastX. Therefore, profit is generated by transactions in the
first part of the subgraph, i.e. from edge 1 to x − 1, and at the same time in the
second part, that is from lastX + 1 to y. However, no transactions, which use
edges in both parts of the subgraph, can generate profit, as such a transaction
would then cross both edges with a fee of 1.

Because of this, we can iterate over every possible sum of the profits of
P [lastX, x − 1] and M [lastX + 1, x, y] and choose the maximum thereof. Note,
that we do not necessarily choose the maximum for both terms, but instead pick
the maximal sum or otherwise we might only obtain a locally optimal solution.
This method can be used, since we were able to split the subgraph from 1 to y
in two parts as explained above. Moreover, we have already precomputed both
terms: M [lastX + 1, x, y] was computed at the very beginning of the algorithm
and P [lastX, x − 1] is always an entry of the table that was the result of a prior
computation with exactly the same recurrence.

The tensor M can be computed in time O(n5). The computation of the table
P can be accomplished in time O(n3), since we have 3 loops that iterate over
parts of the edge indices. Therefore, the complete algorithm can be implemented
with runtime O(n5). ��

5 Payment Hub: A Near-Optimal Solution

In this section, we present a near-optimal solution to the CNDF problem. Please
note that the optimal solution is not always a tree. For example, if we consider
three nodes with many transactions between every pair, the optimal payment
network is the triangle with a fee of 1 on each edge. A tree will connect the three
nodes with a two-edge path, hence none of the trees achieve maximum profit. We
show that if the optimal network is connected, then the star graph, where the
center is an additional node acting as a payment hub, is a near optimal solution.

We denote opt(T ) the profit, Gopt the graph and fEopt
the fee assignment

of the optimal solution for a given transaction matrix T . Moreover, we denote
S = (VS , ES) the star graph that includes all nodes V and an additional one, c, as
the center of the star. We assign uniform fees to all the edges, fe = 0.5,∀e ∈ ES .

Theorem 3. If Gopt is connected, then p(S, T, fES
) ≥ opt(Gopt, T, fEopt

) − 1.

Proof. If Gopt is one connected component, then |Eopt| ≥ n − 1. For the star
graph S, we have VS = V + c and |ES | = n ≤ Eopt +1. Furthermore, the sum of
fees on all shortest path is equal to 1 due to the uniform fees equal to 0.5 and
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the star structure. The profit function maximizes its value when all transactions
go through the graph Gopt with total fee equal to 1, hence

opt(Gopt, T, fEopt
) ≤

∑

i,j∈V

T [i, j] − |Eopt| ≤
∑

i,j∈V

T [i, j] − |ES | + 1 = p(S, T, fES
) + 1

The last equality holds since the sum on every shortest path equals to 1. ��
Discussion on network connectivity. In a monetary system we expect some nodes
to be highly connected, representing big companies that transact with many
nodes on the network. These highly connected nodes assist in connecting the
entire network in one big connected component, as we initially assumed.

6 Related Work

The Lightning Network [13] for Bitcoin [12] and the Raiden Network [2] for
Ethereum [1] are the most prominent implemented decentralized path-based
transaction networks for payment channels, even though similar proposals
existed earlier [5].

Recent work has mainly focused on designing routing algorithms for these
networks. The goal of these algorithms is to efficiently find a route in the network
that has enough capital to facilitate the current transaction. Prihodko et al.
introduced Flare [14], a routing algorithm for the Lightning network. Flare can
quickly discover routes but nodes need to collect information on the Lightning
network topology. The IOU credit network SilentWhispers [11] utitizes landmark
routing to discover multiple paths and then performs multiparty computation to
decide how many funds to send along each path. A more recent work by Roos et
al. [15] introduces SpeedyMurmurs, which uses embedding-based path discovery
to find routes from sender to receiver. In all these algorithms, the task is to
find a route to facilitate a customer’s transaction through the payment network.
Routing very much is orthogonal to our goal of finding the right fees.

Heilman et al. [7] propose a Bitcoin-compatible construction of a payment
hub for fast and anonymous off-chain transactions through an untrusted inter-
mediary. Green et al. present Bolt [6] (Blind Off-chain Lightweight Transactions)
for constructing privacy-preserving unlinkable and fast payment channels. Both
protocols focus on constructing anonymous and private systems that can act
as payment hubs. We show that constructing a payment hub is a near optimal
strategy with respect to a PSP’s profit.

7 Conclusion

To the best of our knowledge, we are the first to introduce a framework for
network design with fees on payment channels. We present algorithms that cal-
culate the optimal fee assignments given a path or a tree as a graph structure.
Furthermore, we prove the star is a near-optimal solution when we allow adding
an extra node to act as an intermediary for the customers. This implies that the
construction of payment hubs is an almost optimal strategy for a PSP.
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Abstract. Public Blockchains on their own are, by definition, inca-
pable of keeping data private and disclosing it at a later time. Control
over the eventual disclosure of private data must be maintained outside
a Blockchain by withholding and later publishing encryption keys, for
example. We propose the Atomic Information Disclosure (AID) pattern
based on threshold encryption that allows a set of key holders to govern
the release of data without having access to it. We motivate this pattern
with problems that require independently reproduced solutions. By keep-
ing submissions private until a deadline expires, participants are unable
to plagiarise and must therefore generate their own solutions which can
then be aggregated and analysed to determine a final answer. We outline
the importance of a game-theoretically sound incentive scheme, possible
attacks, and other future work.

Keywords: Consensus · Off-chain construction · Atomic disclosure

1 Introduction

Decentralised consensus systems like Bitcoin and Ethereum brought with them
the prospect of widespread disintermediation. However, it was soon realised that
not every interaction could feasibly be recorded on a Blockchain. By using off-
chain constructions, a Blockchain can still serve as coordinator and final arbiter,
thus maintaining all the security guarantees, while minimising the space and
effort required for permanent records.

Recently, off-chain mechanisms have been used to execute tasks that are too
complex for the Blockchain, or rather the Smart Contract execution environ-
ment [11]. A prominent example of this concept is TrueBit [15]. However, there
is a class of problems that are not well suited for systems like TrueBit. These
problems follow the concept of a seminal paper by Ken Thompson on trust [16],
namely that they are best approached through independent reproduction and
verification [17] rather than individual and sequential challenges.

To facilitate independence in producing and reproducing solutions to a given
task, the disclosure of said solutions is crucial. After all, if a solution is known,
c© Springer Nature Switzerland AG 2018
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then actually performing work to reproduce the same result or just copying it
without performing any work is indistinguishable for an outside observer. To
preempt this problem, we propose the use of threshold encryption to allow an
arbitrary number of submissions to be disclosed atomically. By that we mean that
participants can publicly commit to a solution, without revealing it to anyone,
in such a way that all submissions will be disclosed simultaneously.

The remainder of this position paper is structured as follows. The subsequent
Sect. 2 opens with motivating examples for the application for the proposed
pattern and follows with related work from various fields of research. In Sect. 3,
we outline the Atomic Information Disclosure (AID) pattern and discuss it in
Sect. 4, in which we also enumerate future work and conclude the paper.

2 Problem Motivation and Related Work

In this section, we describe three examples for the application of the AID pattern
and outline how previous works relate to our approach.

Compilation of Software. As mentioned previously, Ken Thompson famously
described how compilers could be compromised to embed flaws into binaries
compiled with them, without leaving any indications for said compromise in the
source code of the compiler [16]. As a countermeasure, Wheeler presents the
concept of Diverse Double-Compiling [17], where the outputs of a potentially
compromised and a trustworthy compiler are compared against each other to
determine a correct build. In lieu of a single trusted compiler, we can use the
AID pattern to generalise the concept by Wheeler to an arbitrary number of
compilers in the hopes that the majority of them are not compromised. An
interesting pitfall specific to this example stems from the fact that benign and
malicious versions of the same binary can be very hard to distinguish. Making
use of similarity metrics when analysing the results of multiple independent
compilations could therefore cause more harm than good. We address this further
in Sect. 4.

Verification of Software. Similar to the first example, we can also look towards
the verification of software that has already been compiled for a possible appli-
cation of the AID pattern. Asking a single company to check a given piece of
software for certain (security) properties leaves one open to the possibility of
fraud. The company could simply certify that every property is fulfilled, with-
out actually performing any work. The AID pattern can be used to pit several
companies against each other, forcing them to perform their duties faithfully.

Experimental Science. Lastly, we also note similarities between the func-
tionality of the AID pattern and the scientific process regarding experiments.
Reproducibility of results is one of the hallmarks of science. Contrary to the
current model of publishing results and expecting others to either reproduce
or refute them, which is open to plagiarism, a lack of reproduction, and other
issues, a methodology based on atomic disclosure would preempt these problems
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by enabling independent groups of scientists to perform experiments in parallel
and disclose their results simultaneously.

There are some similarities between these use cases that deserve explicit
mention. In all cases, the effort necessary to produce and reproduce results is
significant and comparable to each other. There is also an entire set of possible
results from which a final answer is to be selected. And lastly, the trustworthi-
ness or reliability of results grows with independent reproduction. As mentioned
previously, it is the independence of reproduced solutions that we aim to achieve
through the AID pattern.

Now, we will go over previous works from rather different areas of research
that our approach is related to.

With Bitcoin [12], the feasibility of a Blockchain-based consensus system was
first demonstrated. Ethereum [5] later generalised this concept to build a global
state machine complete with a programmatic method for interacting with it,
namely Smart Contracts [14].

Both in Bitcoin and in Ethereum, miners compete against each other to verify
transactions submitted by users and publish them in newly mined blocks that
are appended to the Blockchain. The miner that finds a new block is rewarded
by the system for providing an integral service1. The remaining miners are then
expected to check the newly published block for validity and to decide whether
to build upon this new block, thereby proclaiming their accordance with it, or
fork the Blockchain by building on top of the previous block in the event that
they disagree with the new block. This verification of published blocks is not
rewarded in any way, but is nevertheless a critical requirement to ensure the
security properties of the Blockchain.

In the case of Bitcoin, the verification of new blocks is negligible compared
to the process of mining. In Ethereum, however, this is not necessarily the case
considering that arbitrarily complex Smart Contracts have to be executed in
order to check the validity of any given block. Luu et al. [11] demonstrated that
honest miners can be presented with a verifier’s dilemma if the verification of
published blocks requires non-negligible effort: If the miners choose to perform
the verification, they put themselves at a disadvantage with regard to finding
new blocks; if they forgo the verification, they risk mining on an invalid branch
of the Blockchain. To combat this, Ethereum limits the amount of computation
that can be executed and that must be verified within a block.

In general, it would seem that Blockchain-based consensus systems with
mutual verification inevitably place an upper bound on the complexity of compu-
tations that can be executed and on whose results the system provides consensus.
To circumvent these limitations, several mechanisms have been proposed in the
past that allow processes to run off-chain while still relying on the Blockchain
as the coordinator and final arbiter in case of dispute. Eberhardt and Tai [9]
present an overview of common off-chain patterns. While their list was compiled

1 Note that this reward requires the agreement of other miners. If they fork the
Blockchain and the block in question becomes stale, then the miner in question
will not receive any reward.
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from past experiences, we look towards a new set of problems with our approach
that has not been tackled yet.

Similar to off-chain patterns, in the sense that they enable the circumven-
tion of the previously mentioned complexity bound, but vastly larger in terms
of scale, are entire platforms like TrueBit [15]. In order to ensure the validity of
outsourced computations, TrueBit employs a verification game, where a solver
and a verifier narrow down the point of contention in the outsourced computa-
tion until it can be executed by Ethereum miners who subsequently resolve the
dispute. While TrueBit would appear quite suitable for the problems at hand,
we note that problems with a set of valid solutions could be challenged ad infini-
tum. Concurrently and independently generated solutions appear to be a valid
approach to overcome this problem.

As previously mentioned, we propose to use a threshold encryption scheme
to facilitate the submission of solutions in such a way that they become pub-
lic simultaneously, thus allowing each solver to work independently. Threshold
encryption was first introduced by Desmedt [7,8] and later improved by Ped-
ersen [13] and Boneh [4]. Broadly speaking, threshold encryption enables the
sharing of decryption capabilities among a group of parties such that t of them,
called a threshold, have to cooperate in order to perform the decryption. The
contribution by Pedersen [13] is especially noteworthy for demonstrating that
a threshold encryption scheme can be constructed without a trusted dealer
who would generate and distribute the individual key shares. Boneh [4] then
improved the efficiency of threshold encryption schemes without trusted dealers
to the point where an Ethereum Smart Contract could potentially verify the cor-
rectness of the setup and later perform decryption operations if enough parties
publish their respective key share. The necessary operations fall within integer
arithmetic that should be practical within Smart Contracts.

Very recently, Kokoris-Kogias et al. [10] have also employed threshold encryp-
tion to achieve distributed access control on a public ledger. While their con-
struction of One-Time Secrets appears functionally similar to the AID pattern,
their architecture requires the sender of a secret to be the trusted dealer in
the threshold encryption setup. Our approach, by contrast, requires a dealerless
threshold encryption scheme so that multiple senders can encrypt their secrets
into one atomically disclosable pile. Our more open use-case also necessitates an
incentive scheme and other security mechanisms.

In a way, the AID pattern could be classified as a form of pseudonymous
voting on a correct solution to a given task. Voting on Blockchains is a com-
paratively young but quite fruitful area of research [1,2,18]. In a similar vein,
but related to a very different area of computer science, one could also draw
parallels between our pattern and MapReduce [6], with the Map phase being the
off-chained computation and the Reduce step as the election of a final solution
by a Blockchain.
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3 Atomic Information Disclosure Pattern

In this section, we describe an off-chain pattern to solve a resource-intensive
problem that requires parallel, independent reproduction of solutions through
the use of threshold encryption. An overview of this pattern is presented in Fig. 1.
The general idea of our pattern is to have an arbitrary number of participants
generate solutions to a given task which are then published to a Blockchain where
a final solution is elected from the candidates based on the number of times it was
reproduced independently. Threshold encryption keeps the submissions private
until the submission phase is over.

Fig. 1. Sequence diagram of our off-chain pattern. Threshold encryption is abbreviated
as TE.

It is at this point important to note that we only discuss the general app-
roach in this position paper. Crucial components such as the incentive scheme
or implementation details are left as future work, see Sect. 4.
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Setup Phase. Initially, a task giver defines a Smart Contract that includes:

– The problem to be solved,
– A schedule for the subsequent phases,
– The logic for selecting a final solution from the submitted candidates.

This initial problem statement also includes integrity preserving references
to any required data. In order to facilitate the independent generation of solu-
tions, submissions need to be kept private until the stated submission deadline
is expired. Since a public Blockchain is, by definition, incapable of executing this
task, the privilege of revealing submissions has to be kept outside the respective
Blockchain system.

While individual commitments by the participants could be used in this
scenario, this would allow for a plethora of problems related to the opening of
said commitments. For example:

– Participants could fail to open their commitments entirely due to crashes or
human error, leading to ambiguity when it comes to electing the final result
or at least wasted effort.

– Due to the sequential opening of commitments, participants may choose to
not open theirs, erroneously assuming that they reached an incorrect solution
that would not affect the outcome.

We propose to utilise threshold encryption to delegate and decentralise the
privilege of disclosure without granting any party premature read access to the
submissions to circumvent these issues. After the aforementioned problem state-
ment is published on a Blockchain, a set of key holders is established through vol-
untary application and random selection. Alternatively, trustworthy key holders
could also be vetted and hard-coded, similar to a permissioned Blockchain. We
elaborate on this further in Sect. 4. These key holders then initialise a threshold
encryption scheme among themselves, for instance the one presented by Boneh
and Franklin [4], and prove the success of this setup to the Smart Contract
by providing decryption shares to a predefined challenge, like the address of
the coordinating Smart Contract. The Smart Contract can then check that all
decryption shares are valid by attempting to combine them into a correct decryp-
tion. Note that decryption shares are distinct from key shares. If t is the thresh-
old parameter of the underlying encryption scheme, any t decryption shares can
be combined to decrypt a particular message whereas any t key shares can be
combined to reconstruct the underlying private key which can subsequently be
used to decrypt any message encrypted with this scheme, both past and future.
We will employ the latter in the last phase of our pattern. Once the setup is
complete, the key holders generate and publish a public key on the Blockchain
that can be used to encrypt submissions. Note at this point that a threshold
encryption scheme without a trusted dealer is essential for this application, as
the dealer would otherwise be able to read all submissions and could therefore
subvert the entire process.

Submission Phase. Once the key holders have successfully initialised the
threshold encryption scheme, participants can construct submissions by using the
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corresponding public key to encrypt their individual results. Depending on the
expected number of submissions, they can either be recorded on the Blockchain
itself or directed to off-chain storage like Ethereum Swarm or IPFS [3]. Keep in
mind that participants could have started the necessary computation immedi-
ately after the task was published, parallel to the setup of the threshold encryp-
tion scheme. The submission phase lasts as long as the task giver specified in
the beginning.

Finalisation Phase. To begin the finalisation phase, the key holders are
expected to publish their respective key share. This also serves as an irrevo-
cable termination of the submission phase. If at least t key holders do this, all
submissions will become readable to the public simultaneously. It is worth point-
ing out that once t − 1 key holders publish their key shares, the remaining key
holders gain read access to the submissions. While this is certainly an advanta-
geous position, it is very fleeting, since only one more key share suffices to extend
read access to the public, and it is not very exploitable, as no new submissions
by the key holders would be accepted at this point. The now public submissions
can then be analysed and a final result can be elected based on the logic defined
in the initial Smart Contract.

4 Discussion and Future Work

The purpose of this position paper is mainly to propose the use of threshold
encryption in conjunction with Blockchains, especially those supporting Smart
Contracts, to facilitate the concurrent and independent solving by multiple par-
ties of certain problems that benefit from it. This benefit lies mainly in the
increased certainty about the correctness of the solution. As such, several key
aspects are left for future work. In this section, we elaborate on these and high-
light possible pitfalls.

Probably the most crucial component after the functionally necessary prim-
itives is the incentive scheme. Without a reason to both participate and to pro-
duce correct solutions, the whole scheme is futile. This issue becomes somewhat
circular, given that we attempt to determine a correct solution through the pro-
cess we try to incentivise based on the correctness of submitted solutions. Fur-
thermore, the incentive scheme has to deal with possible collusions and bribery
of task givers, participants, and key holders. This is doubly relevant since we
do not enforce these roles to be disjoint. A task giver may also be a key holder
and may also provide a solution. We intend to construct and game-theoretically
analyse an incentive scheme in a future work.

Related to the incentive scheme but best viewed separate are possible attacks
against the AID pattern. In general terms, we expect attacks that pursue any
combination of these three goals:

– Influence the selection of the accepted solution
– Gain rewards disproportionate to the exerted effort
– Prevent the pattern from working entirely (Denial of Service)
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Established off-chain mechanisms, like the Challenge-Response pattern men-
tioned by Eberhardt [9], may prove useful in stifling some of these attacks. One
technique that deserves special mention at this point is sybil attacks. Without
a widely adopted identity scheme, it is up to the incentive scheme to discour-
age participants from submitting the same solution multiple times though sybil
accounts to either sway the final election or reap greater rewards compared
to only submitting once. Similarly, a sybil attack on the threshold encryption
scheme could enable the attacker to gain premature read access on the submis-
sions. A collusion between sufficiently many key holders can accomplish the same
goal without producing evidence on-chain. Here, a mechanism for rewarding the
betrayal of such a collusion on-chain could be used as a countermeasure. The
parametrisation of the encryption scheme and the selection of key holders is
therefore a crucial line of defence. When deciding the parameters of the encryp-
tion scheme, availability and collusion resistance have to be weighed against
each other carefully since they can be seen as opposing goals. The easier it is for
the key holders to complete the protocol (availability), the lower might be the
resistance to collusion, and vice versa.

The system used to store submissions is also a crucial component to mention
at this point. During the entire process, it has to be available in addition to
ensuring the integrity of submitted solutions. It would also be useful if the system
could employ size and rate limits to impede denial of service attacks.

Lastly, we plan to put our pattern into practice with a functional prototype.
Of primary interest in this regard are the costs for its execution and the strain
we put on the selected Blockchain system relative to the number of participants.

One interesting pitfall we have already identified is the use and abuse of simi-
larity metrics when electing final solutions. If the concrete application allows for
such a metric to be defined in the initial Smart Contract, one might be inclined
to use it to cluster submissions together in order to not require exact replica-
tion. This way, a more robust and reliable selection process might be possible
compared to just looking for the number of reproductions. However, we must
remark that the opposite is also possible. Since the metric is part of the ini-
tial Smart Contract, and therefore public, an attacker might construct malicious
submissions that are similar, in terms of the metric, to the likely majority solu-
tion but functionally nefarious. The aforementioned clustering mechanism could
then lend credence to such a malicious solution and increase the chances of its
election as the final answer. This example serves to demonstrate how crucial the
selection logic in the coordinating Smart Contract is.

In conclusion, we believe that the combination of threshold encryption and
Blockchain-based consensus systems holds great potential for various applica-
tions that have not been feasible before. The ability to delegate the disclosure
of data not to a singular third party but to a collective of key holders without
granting premature read access promises to find application in various contexts.
The off-chain pattern we outlined here is hopefully only a first step.
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Abstract. Transparency is crucial in security-critical applications that
rely on authoritative information, as it provides a robust mechanism
for holding these authorities accountable for their actions. A number of
solutions have emerged in recent years that provide transparency in the
setting of certificate issuance, and Bitcoin provides an example of how
to enforce transparency in a financial setting. In this work we shift to a
new setting, the distribution of software package binaries, and present a
system for so-called “binary transparency.” Our solution, Contour, uses
proactive methods for providing transparency, privacy, and availability,
even in the face of persistent man-in-the-middle attacks. We also demon-
strate, via benchmarks and a test deployment for the Debian software
repository, that Contour is the only system for binary transparency that
satisfies the efficiency and coordination requirements that would make it
possible to deploy today.

1 Introduction

Systems that require a large degree of trust from participants can be made
accountable through transparency, where information about the decisions within
the system are made globally visible, thus enabling any participant to check for
themselves whether or not the decisions comply with what they perceive to be
the rules.

One of the technical settings in which the idea of transparency has been
most thoroughly—and successfully—deployed is the issuance of X.509 certifi-
cates. This is partially due to the many publicized failures of major certificate
authorities (CAs) [14,19]. A long line of recent research [3,7,16,18,20,21,25,28]
has provided and analyzed solutions that bring transparency to the issuance
of both X.509 certificates (“certificate transparency”) and to the assignment of
public keys to end users (“key transparency”).

Many of these systems share a fundamentally similar architecture [5]: after
being signed by CAs, certificates are stored by log servers in a globally visible
append-only log; i.e., in a log in which entries cannot be deleted without detec-
tion. Clients are told to not accept certificates unless they have been included in
such a log, and to determine this they rely on auditors, who are responsible for
checking inclusion of the specific certificates seen by clients. Because auditors
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are often thought of software running on the client (e.g., a browser extension),
they must be able to operate efficiently. Finally, in order to expose misbehavior,
monitors (inefficiently) inspect the certificates stored in a given log to see if they
satisfy the rules of the system.

To detect log equivocation, these systems use gossiping protocols [6,24],
where the auditor and monitor periodically exchange information on their cur-
rent and previous views of the log, which allows them to detect whether or not
their views are consistent, and thus whether or not the log server is misbehav-
ing by presenting “split” views of the log. If such attacks are possible, then the
accountability of the system is destroyed, as a log server can present one log
containing all certificates to auditors (thus convincing it that its certificates are
in the log), and one log containing only “good” certificates to monitors (thus
convincing them that all participants in the system are obeying the rules).

While gossiping can detect this misbehavior, it is ultimately a retroactive
mechanism—i.e., it detects this behavior after an auditor has already accepted
a certificate as valid and it is too late—and is thus most effective in settings
where (1) no persistent man-in-the-middle (MitM) attack can occur, so the line
of communication between an auditor and monitors remains open, and (2) some
form of external punishment is possible, to sufficiently disincentivize misbehavior
on the basis of detection. Specifically for (1), if an auditor has no means of
communication that is not under an adversary’s control for the foreseeable future
(a scenario we refer to as a persistent MitM attack), then the adversary may
block all gossip being sent to and from the auditor, and thus monitors may never
see evidence of log servers misbehaving.

Various systems have been proposed recently that use proactive transparency
mechanisms designed to operate in settings where these assumptions cannot be
made, such as Collective Signing [27] (CoSi), but perhaps the most prominent
example of such a system is Bitcoin (and all cryptocurrencies based on the idea
of a blockchain). In Bitcoin, all participants have historically played the simul-
taneous role of log servers (in storing all Bitcoin transactions), auditors, and
monitors (in checking that no double-spending takes place). The high level of
integrity achieved by this comes at great expense to the participants, in terms of
computational resources (the Bitcoin blockchain is currently over 100GB). CoSi
[27] achieves this property by allowing a group of witnesses to collectively sign
statements to indicate that they have been “seen,” but assumes the setup and
maintenance of a Sybil-free set of witnesses, which introduces a large coordina-
tion effort.

Because of the effectiveness of these approaches, there has been interest in
repurposing them to provide not only transparency for certificates or monetary
transfers, but for more general classes of objects (“general transparency” [8]).
One specific area that thus far has been relatively unexplored is the setting
of software distribution (“binary transparency”). Bringing transparency to this
setting is increasingly important, as there are an increasing number of cases in
which actors target devices with malicious software signed by the authoritative
keys of update servers. For example, the Flame malware, discovered in 2012, was
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signed by a rogue Microsoft certificate and masqueraded as a routine Microsoft
software update [14]. In 2016, a US court compelled Apple to produce and sign
custom firmware in order to disable security measures on a phone that the FBI
wanted to unlock [11].

Challenges of Binary Transparency. Aside from its growing relevance,
binary transparency is particularly in need of exploration because the techniques
described above for both certificate transparency and Bitcoin cannot be directly
translated to this setting. Whereas certificates and Bitcoin transactions are small
(on the order of kilobytes), software binaries can be arbitrarily large (often on
the order of gigabytes), so cannot be easily stored and replicated in a log or
ledger.

Most importantly, by their very nature software packages have the ability to
execute arbitrary code on a system, so malicious software packages can easily
disable gossiping mechanisms, and we cannot assume that the auditor always has
a means of communication that is not under an adversary’s control. Specifically,
as discussed earlier a malicious adversary may perform a MitM attack to prevent
gossip while presenting an auditor a malicious view of the log, and the log may
itself contain a malicious software update that executes code to disable gossip-
ing. This makes retroactive methods for detecting misbehavior uniquely poorly
suited to this setting, in which clients need to know that a software package
has been inspected by independent parties before installing it, not after. Binary
transparency systems relying on such retroactive methods, based on Certificate
Transparency, are currently being proposed for Firefox [1].

Our Contributions. We present Contour, a solution for binary transparency
that utilizes the Bitcoin blockchain to proactively prevent clients from installing
malicious software, even in the face of long-term MitM attacks. Concretely, we
contribute a realistic threat model for this setting and demonstrate that Con-
tour is able to meet it; we also show, via comparison with previous solutions,
that Contour is currently the only solution able to satisfy these security proper-
ties while still maintaining efficiency and a minimal level of coordination among
the various participants in the system. We also provide a prototype implemen-
tation that further demonstrates the efficiency of Contour, and finally provide
an argument for its practicality via a test deployment for the Debian software
repository. Putting everything together, we view Contour as a solution for binary
transparency that is ready to be deployed today.

2 Related Work

There is a significant volume of work on the idea of transparency, particularly
in the settings of certificates and keys. While Contour uses similar techniques to
previous solutions within these other contexts, to the best of our knowledge it
is the first full deployable solution in the context of binary transparency.

In terms of certificate transparency, AKI [16] and ARPKI [3] provide a dis-
tributed infrastructure for the issuance of certificates, thus providing a way to
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prevent rather than just detect misbehavior. Certificate Transparency (CT) [18]
focuses on the storage of certificates rather than their issuance, Ryan [25] demon-
strated how to handle revocation within CT, and Dowling et al. [7] provided a
proof of security for it. Eskandarian et al. [9] propose how to make some aspects
of gossiping in CT more privacy-friendly using zero-knowledge proofs. CONIKS
[21] focuses instead on key transparency, and thus pays more attention to privacy
and does not require the use of monitors (but rather has users monitor their own
public keys).

In terms of solutions that avoid gossip, Fromknecht et al. [12] propose a
decentralized PKI based on Bitcoin and Namecoin, and IKP [20] provides a way
to issue certificates based on Ethereum. EthIKS [4] provides an Ethereum-based
solution for key transparency and concurrently with our work, Catena [28] pro-
vides one based on Bitcoin. While both Catena and Contour utilize similar recent
features of Bitcoin to achieve efficiency, they differ in their focus (key vs. binary
transparency), and thus in the proposed threat model; e.g., they dismiss eclipse
attacks [26] on the Bitcoin network, whereas we consider them well within the
scope of a MitM attacker. Chainiac [23] is a system for proactive software update
transparency based on a verifiable data structure called a skipchain. Chainiac
uses a consensus mechanism based on Collective Signing (CoSi) [27], leading to
the need for an authority to maintain a Sybil-free set of nodes. CoSi [17,27] is
a general consensus mechanism that shares our goal of providing transparency
even in the face of MitM attacks and thus avoids gossiping, but requires setting
up a distributed set of “witnesses” that is free of Sybils. This is a deployment
overhead that we avoid.

3 Background

3.1 Software Distribution

Software distribution on modern desktop and mobile operating systems is man-
aged through centralized software repositories such as the Apple App Store, the
Android Play Store, or the Microsoft Store. Most Linux distributions such as
Debian also have their own software repositories from which administrators can
install and update software packages using command-line programs.

To reduce the trust required in these repositories, efforts such as deterministic
builds allow users to verify that a compiled binary corresponds to the published
source code of open-source software. While this prevents developers from insert-
ing malicious code into the compiled binaries, it does not address the targeted
malware threat that Contour aims to solve, in which the source code (or binary)
for one targeted set of users is different from the copy received by everyone else.

3.2 Distributed Ledgers

Briefly, the Bitcoin [22] blockchain is (literally) a chain of blocks. Each block
contains two components: a header and a list of transactions. In addition to
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other metadata, the header stores the hash of the block (which, in compliance
with the proof-of-work consensus mechanism, must be below some threshold
in order to show that a certain amount of so-called “hashing power” has been
expended to form the block), the hash of the previous block (thus enabling the
chain property), and the root of the Merkle tree that consists of all transactions
in the block.

On the constructive side, Bitcoin transactions can store small amounts of
arbitrary data. One mechanism to do this is the script opcode OP RETURN, which
can be used to embed up to 80 bytes of arbitrary data.

Another aspect of Bitcoin that enables additional development is the idea of
an Simple Payment Verification (SPV) client. Rather than perform the expen-
sive verification of every Bitcoin transaction, these clients check only that a
given transaction has made it into some block in the blockchain. As this can
be achieved using only the root hashes stored in the block headers, such clients
can store only these headers (which are small) and verify only Merkle proofs of
inclusion obtained from “full” nodes (which is fast), and are thus significantly
more efficient than their full node counterparts.

On the destructive side, various attacks have been demonstrated that under-
mine the security guarantees of Bitcoin. In eclipse attacks [2,13,15], an adversary
exploits the topology of the Bitcoin network to interrupt, or at least delay, the
delivery of announcements of new transactions and blocks to a victim node.
More expensive “51%” attacks, in which the adversary controls more than half
of the collective hashing power of the network, allow the adversary to fork the
blockchain, and it has been demonstrated [10] that such attacks can in fact be
carried out with far less than 51% of the hashing power.

4 Threat Model and Setting

We consider a system with five types of actors, described below.

Service: The service is responsible for producing actions, such as the issuance
of a software update. In order to have these binaries authorized, they must
be sent to the authority.
Authority: The authority is responsible for publishing statements that
declare it has received a given software binary from a service. These state-
ments also claim that the authority has published these binaries in a way that
allows them to be inspected by the monitor. The authority is also responsible
for placing its statements into a public audit log, where they can be efficiently
verified by the auditor.
Monitor: The monitor is responsible for inspecting the binaries published
by the authority and performing out-of-band tests to determine their validity
(e.g., to ensure that software updates do not contain malware).
Auditor: The auditor is responsible for checking specific binaries against the
statements made by the authority that claim they are published.
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Client:The client receives software updates from either the authority or the
service, along with a statement that claims the update has been published
for inspection. It outsources all responsibility to the auditor, so in practice
the auditor can be thought of as software that sits on the client (thus making
the client and auditor the same actor, which we assume for the rest of the
paper).

As discussed in the introduction, it is especially crucial in the setting of
binary transparency to consider adversaries that can perform persistent man-in-
the-middle attacks, as it is realistic that they would be able to compromise the
client’s machine. We do not need to make the contents of the audit log private,
as binaries are assumed to be public information, but we do need to guarantee
privacy for the specific binaries that a client downloads, as this could reveal
that a client has a software version susceptible to malware. Finally, even though
binaries are typically large, we need to nevertheless provide a solution efficient
enough to be deployed in practice.

Keeping these requirements in mind, we aim in all our security goals to defend
against the specified attacks in the face of malicious authorities that, in addition
to performing all the usual actions of the authority, can also perform man-
in-the-middle attacks on the auditor’s network communications. If additional
adversaries are considered we state them explicitly.

S1: No split views. We should prevent split-view attacks, in which the infor-
mation contained in the audit log convinces the auditor that the authority
published a binary, and thus it is able to be inspected by monitors, whereas
in fact it is not and only appears that way in the auditor’s “split” view of the
log.
S2: Availability. We should prevent attacks on availability, in which the
information contained in the audit log convinces the auditor that a binary
is available to be inspected by monitors, when in fact the authority has not
published it or has, after the initial publication, lost it or intentionally taken
it down.
S3: Auditor privacy. We should ensure that the specific binaries in which
the auditor is interested are not revealed to any other parties. We thus con-
sider how to achieve this not only in the face of malicious authorities, but in
the case in which all parties aside from the auditor are malicious.

5 Design of Contour

Contour and its security properties make use of a blockchain, whose primary
purpose—as we see in Sect. 6—is to provide an immutable ledger that prevents
split-view attacks. Because the Bitcoin blockchain is currently the most expen-
sive to attack, we use it here and in our security analysis in Sect. 6, but observe
that any blockchain could be used in its place. An authority must initially estab-
lish a known Bitcoin address that Contour commitments are published with. As
knowledge of the private key associated with the Bitcoin address is required to
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Fig. 1. The overall structure of Contour. Dashed lines represent steps that are required
only if archival nodes are used.

sign transactions to spend transaction outputs sent to the address, this acts as
the root-of-trust for the authority. This address can be an embedded value in the
auditor software. An initial amount of coins must be sent to the Bitcoin address
to enable it to start making transactions from the address.

5.1 Logging and Publishing Statements

To start, the authority receives information from services; i.e., software binaries
from the developers of the relevant packages (Step 1 of Fig. 1). As it receives such
a binary, it incorporates its hash as a leaf in a Merkle tree with root hT . The root,
coupled with the path down to the leaf representing the binary, thus proves that
the authority has seen the binary, so we view the root as a batched statement
attesting to the fact that the authority has seen all the binaries represented in
the tree. Once the Merkle tree reaches some (dynamically chosen) threshold n
in size, the authority runs the commit algorithm (Step 2 of Fig. 1) as follows:

commit(hT ): Form a Bitcoin transaction in which one of the outputs embeds
hT by using OP RETURN. One of the inputs must be a previous transaction
output that can only be spent by the authority’s Bitcoin address (i.e. a
standard Bitcoin transaction to the authority’s address). The other outputs
are optional and may simply send the coins back to the authority’s address,
according to the miner’s fees it wants to pay. (See Sect. 7 for some concrete
choices.) Sign the transaction with the address’s private key and publish to
the Bitcoin blockchain and return the raw transaction data, denoted tx.

Crucially, the commit algorithm stores only the root hash in the transac-
tion, meaning its size is independent of the number of statements it repre-
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sents. Furthermore, if the blockchain is append-only—i.e., if double spending
is prevented—then the log represented by the commitments in the blockchain is
append-only as well.

5.2 Proving Inclusion

After committing a batch of binaries to the blockchain, the authority can now
make these binaries accessible to clients. When a client requests a software
update, the authority sends not only the relevant binary, but also an accom-
panying proof of inclusion, which asserts that the binary has been placed in the
log and is thus accessible to monitors (Step 3 of Fig. 1).

To generate this proof, the authority must first wait for its transaction to
be included in the blockchain (or, for improved security, for it to be embedded
k blocks into the chain). We denote the header of the block in which it was
included as headB . The proof then needs to convince anyone checking it of two
things: (1) that the relevant binary is included in a Merkle tree produced by
the authority and (2) that the transaction representing this Merkle tree is in
the blockchain. This means providing a path of hashes leading from the values
retrieved from the blockchain to a hash of the statement itself.

For a given binary bin, the algorithm prove incl thus runs as follows:

prove incl(tx, headB , bin): First, form a Merkle proof for the inclusion of tx
in the block represented by headB . This means forming a path from the root
hash stored in headB to the leaf representing tx; denote these intermediate
hashes by πtx. Second, form a Merkle proof for the inclusion of bin in the
Merkle tree represented by tx (using the hash hT stored in the OP RETURN
output) by forming a path from hT to the leaf representing bin; denote these
intermediate hashes by πbin. Return (headB , tx, πtx, πbin).

5.3 Verifying Inclusion

To verify this proof, the auditor must check the Merkle proofs, and must also
check the authority’s version of the block header against its own knowledge of the
Bitcoin blockchain. This means that the auditor must first keep up-to-date on
the headers in the blockchain, which it obtains by running an SPV client (Step 4
in Fig. 1). By running this client, the auditor builds up a set S = {headBi

}i of
block headers, which it can check against the values in the proof of inclusion.
This means that, for a binary bin, check incl (Step 5 in Fig. 1) runs as follows:

check incl(S, bin, (headB , tx, πtx, πbin)): First, check that headB ∈ S; output
0 if not. Next, extract hT from tx (using the hash stored in the OP RETURN
output), form hbin ← H(bin), and check that πbin forms a path from the leaf
hbin to the root hT . Finally, form htx ← H(tx), and check that πtx forms a
path from the leaf htx to the root hash in headB . If both these checks pass
then output 1; otherwise output 0.
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As well as verifying the inclusion proof, the auditor must also check that
the address that the proof’s transaction was sent from matches the authority’s
address (i.e. one of the transaction inputs must be a previous transaction output
that can only be spent by the authority’s address).

5.4 Ensuring Availability

Independently of auditors, monitors must retrieve all commitments associated
with the authority from the blockchain and mirror their binaries (Steps 6 and 7
of Fig. 1). This means get commits runs as follows:

get commits(): Retrieve all transactions in the blockchain sent with the
authority’s address, and return the hashes stored in the OP RETURN outputs.

After checking the binaries against their commitments, the monitors then
inspect them—to, e.g., ensure they are not malware—in ways we consider outside
of the scope of this paper.

While the system we have described thus far functions correctly and allows
monitors to detect if an authority has committed to a binary but not published
it, in order to make the binaries themselves available for inspection, we assume
the monitors can mirror the authority’s logs. It therefore fails to satisfy our goal
of availability in the event that the authority goes down at some point in time.

We thus consider the case where the authority commits binaries to the
blockchain, but—either intentionally or because it loses the data sometime in the
future—does not supply the data to monitors. While this is detectable, as mon-
itors can see that there are commitments in the blockchain with no data behind
them, to disincentive this behavior requires some retroactive real-world method
of punishment. More importantly, it prevents the monitor from pinpointing spe-
cific bad actions, such as malicious binaries, and thus from identifying potential
victims of the authority’s misbehavior.

Because of this, it is thus desirable to not only enable the detection of this
form of misbehavior, but in fact to prevent it from happening in the first place.
One way to achieve this is to have auditors mirror the binary themselves and
send it to monitors before accepting it, to ensure that they have seen it and
believe it to be benign. While this would be effective, and is arguably practi-
cal in a setting such as Certificate Transparency (modulo concerns about pri-
vacy) where the objects being sent are relatively small, in the setting of software
distribution—where the objects being sent are large binaries—it is too inefficient
to be considered.

Instead, we propose a new actor in the ecosystem presented in Sect. 4: archival
nodes, or archivists, that are responsible for mirroring all data from the authority
(Steps 8 and 9 in Fig. 1). To gain the extra guarantee that the data is available
to monitors, auditors may thus use any archival nodes of which they are aware
to check their state (i.e., the most recent block header for which they have data
from the authority) and ensure that they cover the block headers relevant to the
proofs they are checking (Step 10 in Fig. 1). This means adding the following
interaction:
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get arch state(a): The auditor (optionally) runs this function to obtain the
state of an archivist a of which it is aware. This is simply the latest block
header for which the archival node has mirrored the data behind the commit-
ments held within.

Using archival nodes makes it possible to continue to pinpoint specific bad
actions in the past (e.g., the publication of malware), even if the authority loses
or stops providing this data, but we stress that their usage is optional and affects
only availability. Essentially, archival nodes allow for a more granular detection of
the misbehavior of an authority, but do come at the cost of requiring additional
nodes to store a potentially large amount of data. If such granularity is not
necessary, or if the system has no natural candidates with the necessary storage
requirements, then archival nodes do not need to be used and the system still
remains secure. In Sect. 8 we explore the role of the archival nodes in the Debian
ecosystem and discover that, while the storage costs are indeed expensive, there
is already at least one entity playing this role.

6 Evaluation

No Split Views (S1). In order to prevent split views, we rely on the secu-
rity of the Bitcoin blockchain and its associated proof-of-work-based consensus
mechanism. If every party has the same view of the blockchain, then split views
of the log are impossible, as there is a unique commitment to the state of the log
at any given point in time. The ability to prevent split views therefore reduces
to the ability to carry out attacks on the Bitcoin blockchain.

If the adversary cannot carry out an eclipse attack, then it can perform a
split-view attack only if it can fork the Bitcoin blockchain. This näıvely requires
it to control 51% of the network’s mining power, which, using the formula for the
probability of finding a block based on the network target1, has an estimated cost
of roughly 120K USD per hour in electricity and 2043M USD in hardware costs
as of December 2017’s mining difficulty level2, assuming the cost of electricity
is 0.10 USD per kilowatt hour, and the mining hardware used is the Antminer
S9 (14 TH/s), which retails at 2400 USD3. Regardless of the exact number, it is
generally agreed that carrying out such an attack is prohibitively expensive.

If an eclipse attack is possible, due to the adversary’s MitM capability, the
adversary can “pause” the auditor at a block height representing some previous
state of the log, and can prevent the auditor from hearing about new blocks past
this height. It is then free to mine blocks at its own pace, and so performing a
split-view attack would be significantly cheaper. As a key distinguishing property
of Contour’s threat model is that split-view attacks should be prevented even
in the face of an adversary that can carry out such attacks, it is important to

1 https://en.bitcoin.it/wiki/Generation Calculator.
2 blockchain.info/charts/hash-rate.
3 www.amazon.com/Antminer-S9-0-10W-Bitcoin-Miner/dp/B01GFEOV0O.

https://en.bitcoin.it/wiki/Generation_Calculator
http://www.blockchain.info/charts/hash-rate
www.amazon.com/Antminer-S9-0-10W-Bitcoin-Miner/dp/B01GFEOV0O
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consider the nuances and costs of this attack, especially as we are not aware of
any previous literature considering the costs of eclipse attacks on Bitcoin nodes.

The cost of performing an eclipse attack depends on how much time the
adversary has to perform a split-view attack, as the hash rate depends on the
number of mining rigs available. As an estimate, if auditors consider a Bitcoin
transaction to be confirmed after 6 blocks (the standard for most Bitcoin wal-
lets), then as of December 2017 the attack would cost 95K USD in electricity and
8.3M USD in hardware costs if the adversary wants to perform the attack within
a week, using the same electricity and hardware cost assumptions as before. This
would mean, however, that the auditor would receive a new block only every 1.4
days, which would be detectable as an eclipse attack. If auditors conservatively
require that new blocks arrive in intervals of up to three hours before assuming
that they are the victim of an eclipse attack, then as of December 2017 an attack
would cost roughly 91.8M USD in hardware costs (the electricity cost remains
at 95K USD, as the number of average hashing attempts needed remains the
same).

Availability (S2). While the decentralized (and thus fully replicated) nature
of the blockchain can guarantee availability, it guarantees these properties only
with respect to the commitments to statements made by the authority, rather
than with respect to the statements—and thus the binaries—themselves. As
discussed in Sect. 5.4, the use of the blockchain thus does not guarantee that
binaries are actually available for inspection, or will be in the future.

Even just using monitors, Contour can already detect that an authority com-
mitted a statement without making the statement data (i.e., the actual bina-
ries) available. Using the archival nodes introduced in Sect. 5.4, we can achieve a
stronger notion of availability—in which as long as the binaries have been pub-
lished at some point they can be retrieved indefinitely into the future—as long
as these nodes are honest about whether or not they have mirrored the data.

In binary transparency, many ISPs and hosting providers already provide
their customers local mirrors of Debian repositories. We therefore envision that
ISPs can act as archival nodes on behalf of their hosting clients, which creates a
decentralized network of archival nodes. We elaborate on the overheads required
to do so in Sects. 7 and 8.

Auditor Privacy (S3). As the auditor receives pre-formed proofs of inclusion
from the authority (as opposed to having to request them for specific binaries,
as they would in all certificate and key transparency systems), retrieves com-
mitments directly from the blockchain, auditors do not engage in any form of
gossip with monitors, and receives the latest block hash from archival nodes
without providing any input of its own. We thus achieve privacy by design, as
at no point does the auditor reveal the statements in which it is interested to
any other party.

One particular point to highlight is that Contour achieves auditor privacy
despite the fact that auditors run SPV clients, which are known to potentially
introduce privacy issues due to the use of Bloom filtering and the reliance on full
nodes. This is because the proofs of inclusion contain both the raw transaction
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data and the block header, so the auditor does not need query a full node for
the inclusion of the transaction and can instead verify it itself (and, as a bonus,
saves the bandwidth costs of doing so).

7 Implementation and Performance

To test Contour and analyze its performance, we have implemented and provided
benchmarks for a prototype Python module and toolset that developers can use.
We have released the implementation as an open-source project.

Set of developer APIs and corresponding command-line tools. We used SHA-
256 as the hashing algorithm to build Merkle trees, and a Python-based Bit-
coin library pycoinnet (https://github.com/richardkiss/pycoinnet/) in order to
develop the SPV client.

To evaluate the performance of our implementation, we tested all the oper-
ations listed above on a laptop with an Intel Core i5 2.60 GHz CPU and 12GB
of RAM, that was connected to a WiFi network with a connection of 5 Mbit/s.
We also assume that a batch to be committed contains 1 million statements.

Number of Transactions Per Block. The overhead of both generating and
verifying a proof of inclusion is dependent on the number of transactions in a
Bitcoin block. To capture the worst-case scenario, we consider the maximum
number of transactions that can fit into a block. Currently, the Bitcoin block
size limit is 1MB, up to 97 bytes of which is non-transaction data. The minimum
transaction size is 166 bytes, so the upper bound on the number of transactions
in a given block is 6,023. While this is higher than the number of transactions
that Bitcoin blocks currently contain,4 we use it as a worst-case cost and an
acknowledgment that Bitcoin is evolving and blocks may grow in the future.

Authority Overheads. To run commit and prove incl, an authority must
have access to the full blocks in the Bitcoin blockchain, as well as the ability
to broadcast transactions to the network. Rather than achieve these by running
the authority as a full node, our implementation uses external blockchain APIs
supplied by blockchain.info and blockcypher.com. This decision was based on
the improved efficiency and ease of development for prototyping, but it does
not affect the security of the system: authorities do not need to validate the
blockchain, as invalid blocks from a dishonest external API simply result in
invalid inclusion proofs that are rejected by the auditor.

To run commit, an authority must first build the Merkle tree containing its
statements. Sampled over 20 runs, the average time to build a Merkle tree for
1M statements was 5.9 s (σ = 0.29 s). After building the tree, an authority next
embeds its root hash (which is 32 bytes) into an OP RETURN Bitcoin transac-
tion to broadcast to the network. Sampled over 1,000 runs, the average time to
generate this transaction—in the standard case of one input and two outputs,
one for OP RETURN and one for the authority’s change—was 0.03 s (σ = 0.007 s).

4 https://blockchain.info/charts/n-transactions-per-block.

https://github.com/richardkiss/pycoinnet/
http://blockchain.info
http://blockcypher.com
https://blockchain.info/charts/n-transactions-per-block
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The average total time to run commit was thus 5.93 s, and it resulted in 235
bytes (the size of the transaction) being broadcast to the network.

Next, to run prove incl, the authority proceeds in two phases: first con-
structing the Merkle proof for its transaction within the block where it eventually
appears, and next constructing the Merkle proof for each statement represented
in a transaction. The time for the first phase, averaged over 1M runs and for
a block with 6,023 transactions (our upper bound from Sect. 7), was 8.5µs.
This only needs to be done once per batch. The time for the second phase, aver-
aged over 1M runs, was 12µs for each individual statement Generating inclusion
proofs for all the statements in the batch would thus take around 12 s. In terms
of bandwidth and storage, a block up to 1MB in size needs to be downloaded in
order to generate the inclusion proof from the block’s transaction Merkle tree. In
terms of the memory costs, the size of the Merkle tree for 1M leaves in memory
is 649MB.

Additionally, in order to ensure that its transaction makes it into a block
quickly, the authority may want to pay a fee. The recommended rate as of
December 5 2017 is 154 satoshis/byte (https://bitcoinfees.info), so for a 235-byte
transaction the authority can expect to pay 36,190 satoshis. As of December 5
2017, this is roughly 4.21 USD. We stress, however, that the Bitcoin price is
notoriously volatile (for example, the same transaction would have cost only
0.28 USD at the beginning of 2017), so this and all other costs stated in fiat
currency should be taken with a grain of salt.

Auditor Overheads. For the auditor, we considered two costs: the ini-
tial cost to retrieve the necessary header data (sync), and the cost to ver-
ify an inclusion proof (check incl). We do not provide benchmarks for the
Auditor.get arch state call, as this is a simple web request that returns a sin-
gle 32-byte hash.

To run sync, auditors use the Bitcoin SPV protocol to download and verify
the headers of each block, which are 80 bytes each. As of December 5 2017, there
are 497,723 valid mined blocks, which equates to 39.8MB of block headers.
Once downloaded, however, the auditor needs to keep only the 32-byte block
hash, so only 15.9MB of data needs to be stored on disk. Going forward, the
Bitcoin network generates approximately 144 blocks per day, so the amount
of downloaded data will be 11.5 kB daily, and the amount of stored data will
increase by 4.6 kB daily.

To verify the validity of the block headers in the chain, the client must
perform one SHA-256 hash per block header; averaged over five runs, it took
us 116 seconds for the Python SPV client to download and verify all the block
headers. This process needs to be performed only once per auditor.

To run check incl, we again use our upper bound from Sect. 7 and assume
every block contains 6,023 transactions. This means the inclusion proof contains:
(1) an 80-byte block header; (2) the raw transaction data, which is 235 bytes; (3)
a Merkle proof for the transaction, which consists of log(6023)−1 32-byte hashes
(the root hash is already provided in the block header); and (4) a Merkle proof
for the statement, which consists of log(1000000) − 2 32-byte hashes (the root

https://bitcoinfees.info
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hash is already provided in the transaction data, and the auditor computes the
statement hash itself). The total bandwidth cost is therefore around 1275 bytes.
Averaged over 1M runs, the time for the auditor to verify the inclusion proof
was 224µs (σ = 62.14µs).

Monitor Overheads. Monitors must run a Bitcoin full node in order to get
a complete uncensored view of the blockchain. As of December 2017, running a
full node requires 145GB of free disk space, increasing by up to 144MB daily.
It took us around three days to fully bootstrap a full node and verify all the
blocks, although this operation needs to be performed only once per monitor.

Archival Nodes Overheads. Like monitors, archival nodes need to run a
Bitcoin full node. Additionally, archival nodes must download and store all the
data from the authority. The costs here are entirely dependent on the number
and size of the statements; we examine the costs for Debian in Sect. 8.

In order for archival nodes to know which statement data to download from
authorities to independently rebuild the Merkle tree roots committed in Bitcoin
transactions and check that they match with the data provided, authorities must
point the archival nodes to the location of the data. Again, this is dependent on
the mechanism that the authority uses to make the data available.

As in Debian, however, archives use statements that represent files. We may
therefore expect that, in addition to a Merkle tree, authorities would use meta-
data files to link each leaf in the tree to a file on the server that archival nodes
then mirror; this would be particularly useful in a setting—like Debian—where
it would be undesirable to reorganize files that are already stored. The meta-
data file would consist of a mapping of 32-byte hashes to filenames. The average
Debian package filename is 60 bytes, so including such a metadata file would
introduce an average storage overhead, for both authorities and archival nodes,
of 92 bytes per statement.

8 Use Case: Debian

To go beyond basic benchmarks and analyze the operation of Contour on a
real system, we used it to audit software binaries in the Debian repository. Our
results show that, as desired, Contour provides a way to add transparency to
this repository without major changes to the existing infrastructure and with
minimal overheads.

We extracted the software package metadata for all processor architectures
and releases of Debian from the Debian FTP archive over a one-week period from
January 20–27 2017. The archive is updated four times a day. At the beginning
of this period there were 976,214 unique software binaries available for download
from the Debian software repositories, constituting 1.7TB of data, and by the
end there were 980,469.

To initiate the system, we first committed to all the existing 976,214 software
packages. The Debian package metadata already contains the SHA-256 hashes
for these packages, so we only needed to build a Merkle tree from these hashes
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(rather than compute them ourselves first). This took approximately 6 seconds
(which is in line with the benchmarks in 7).

As the archive was updated, we kept track of the package hashes being added
and created a new batch for each update. The average batch size was 1,040, and
the average time to build a Merkle tree for the batch was 0.0052 seconds. Recall
from Sect. 7 that committing one transaction to the blockchain costs roughly
0.28 USD in fees, so this would cost 1.12 USD per day.

In terms of overhead for archival nodes, to fully satisfy availability they must
store all the data from the authority, as well as deleted packages (which should
be monitored as well). This means storing 1.7TB, and an additional average of
11GB per day, or 4TB per year. There are already 269 Debian mirrors hosting
the full 1.7TB data set,5 and at least one mirror hosting all the deleted packages
too, effectively acting as an archival node.6 This is by far the highest overhead
incurred by our system, and we expect that only a small number of mirrors
would have the storage capacity to run an archival node.

As discussed in Sect. 7, we can also enable archival nodes to rebuild Merkle
trees with minimal changes to the existing Debian archive infrastructure. This
requires storing only an additional 84 kB metadata file per batch (containing
the mapping from hashes to filenames), and an initial 79MB metadata file.
These metadata files consist of a mapping of hashes of software packages to
their filenames in the Debian archives.

Finally, the proof of inclusion of each software package would need to be
added to the software package (.deb) files as metadata when downloaded by a
Debian device using a command such as apt install. At 980 K software pack-
ages, this would require a maximum of 1.3 kB of extra storage and bandwidth
for end-user devices per package downloaded. Given that the average package
size is 1337 kB, this is only a 0.1% overhead. 1.3GB of extra storage is required
for Debian repository mirrors to store the proofs of inclusion, which is only a
0.07% overhead.

9 Conclusion

We have proposed a system that provides proactive transparency and does not
require the initial coordination of forming a Sybil-free set of nodes. We have
demonstrated that, even for attackers that are capable of performing persistent
man-in-the-middle attacks, compromising the integrity of the system requires
millions of dollars in energy and hardware costs. We also saw that Contour could
be applied today to the Debian software repository with relatively low overhead
to existing infrastructure, and with no changes or coordination required for any
participant who does not wish to opt in.
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5 www.debian.org/mirror/list.
6 snapshot.debian.org/.
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Abstract. With billions of dollars spent on blockchain, there clearly is
a need to determine if this technology should be used, as demonstrated
by the many proposals for decision schemes. In this work we rigorously
analyze 30 existing schemes. Our analysis demonstrates contradictions
between these schemes – so clearly they cannot all be right – and also
highlights what we feel is a more structural flaw of most of them, namely
that they ignore alternatives to blockchain-based solutions. To remedy
this, we propose an improved scheme that does take alternatives into
account, which we argue is more useful in practice to decide an optimal
solution for a particular use case.

1 Introduction

Ever since the invention of blockchain in 2008 [46], this technology has piqued
the interest of industry, and many blockchain initiatives have arisen. Over a
1000 patents [1] in this technology were filed, and it is estimated that blockchain
global spending reaches 2 billion US dollar in 2018 [15].

Following the blockchain hype [48], many initiatives discovered that
blockchain as it is used in for example Bitcoin and Ethereum is not a panacea.
Instead, alternative blockchain technologies have been proposed that fit better.
To be able to determine if, and if so which blockchain is needed in a particular
scenario, various decision models have been proposed. However, there are signif-
icant differences between such schemes. In fact, some schemes provide different
answers for the same scenario. This raises the question: Which decision scheme
should you use? This paper addresses that question and makes the following
contributions:

– We perform a critical analysis of decision schemes in Sect. 3. Our analysis
demonstrates some contradictions between schemes and suggests that none
of the schemes is complete, in that they do not take current limitations of
blockchain technology into account and ignore what alternative database tech-
nologies besides blockchain there are.
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– To repair this omission, we propose a new scheme in Sect. 4, which does take
these alternatives into account. With our scheme the need for blockchain of for
alternative technologies can be determined. We discuss our scheme in Sect. 5.
Given the global interest and financial resources spend on blockchain, our
scheme can be used as a sanity check for blockchain initiatives.

Section 6 discusses future work and we summarize our conclusions in Sect. 7.

2 Background

Blockchain technology underlying cryptocurrencies such as Bitcoin and
Ethereum offers a unique property. Namely, it allows for reaching agreement
on a single state of a shared ledger by a consortium of unknown participants
[50]. Transaction sets, called blocks, are proposed at frequent time intervals,
where each block includes the cryptographic hash of its predecessor block. This
creates a chain of blocks, which explains the term blockchain. Two important
characteristics of this technology, as it is originally used in e.g. Bitcoin, are that
the blockchain is permissionless and public. Permissionless means that anyone
may join or leave the network at will. Public means that anyone, in principle,
may propose a new state of the ledger.

However, there currently are several issues with this technology. First, it per-
forms poorly regarding transaction scalability. For example, Ripple, a technology
that is not blockchain-based [9,28], claims to be able to scale to 50.000 trans-
actions per second (tps) [27], whereas Bitcoin can handle 7 tps and Ethereum
14 tps. Second, although a blockchain is a form of database, it is currently not
suited to store large amounts of transaction data.

Furthermore, some authors [51,52,55] claim that blockchain is an immutable
ledger. However, this is a misconception, as blockchains are mutable. First of all,
an important purpose of this technology is that state changes are made possible.
Therefore, state stored on the blockchain is by default mutable. Mutability may
also refer to the stored transactions on the ledger. Again, these transactions are
also mutable, although they are much harder to change than state. For example,
anyone with over half of Bitcoin’s network resources can rewrite the ledger’s
history [35], which is also called mutable-by-hashing-power [38]. Recent work
suggests that even a quarter of the resources is sufficient to ultimately achieve
the same goal [39]. Another example that further illustrates the mutability of
blockchains is the hard fork of Ethereum after the DAO hack, where 50 million
dollars worth of Ether was stolen through a bug in a smart contract. The current
ledger called Ethereum Classic left the funds stolen. However, a new ledger
(called Ethereum) was created, returning the stolen funds, thus undoing the
hack and rewriting history. Although blockchains are mutable, in most cases it
is hard to rewrite history. However, there are scenarios where easy mutability is
a requirement, for example, because of the need to correct accidental mistakes.
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To overcome these blockchain issues (scalability, performance, hard to alter
history), alternative database technologies may be more useful. For example,
permissioned and public database technology can be found in Ripple [27], which
uses a distributed ledger [28]. Here, anyone may join the network and read from
the ledger, but only a limited set of participants may propose new ledger states.
Also, permissioned and private database technologies have been proposed, for
example in R3 Corda [25]. Here, participation in the network is by invitation
only, and also a limited number of the participants may propose new states.

Following these types of database technologies, initiatives have to decide
which technology is appropriate for a particular scenario. To support this deci-
sion making process, decision schemes for database technologies, and in par-
ticular blockchain, have been proposed. However, the decision schemes are not
always clear in what is meant with blockchain.

2.1 Blockchain Terminology

We observed that the term blockchain is used arbitrarily in the schemes. Indeed,
Birch et al. [34] and Maull [45] also state that many authors use the term
blockchain in different ways. Interestingly, in the original work by Nakamoto
[46] the term blockchain is not used, but the term distributed time-stamp server
is used. Pahl [47], Birch et al. [34] and Lin [43] state that blockchain is a dis-
tributed ledger. Pahl [47] also calls blockchain is a distributed database, while
Birch et al. [34] use the term ‘shared ledger’. Wüst and Gervais distinguish per-
missionless and permissioned blockchains, and provide examples for each type.
Their Corda example, however, can be considered a decentralized database [22].
Although Corda is heavily inspired by blockchain systems [26], Corda does not
use a chain of blocks. These examples show that, indeed, various terms are used
interchangeably and are not always correctly.

The terminology for the different solutions we use in this paper is illustrated
in Fig. 1 and explained below. We distinguish two types of databases: central
databases (DBs) and distributed databases. In a central database, data is cen-
trally stored. Following this, a central ledger is a central database with the
inclusion of transaction interaction. Transaction interaction [12] refers to the
interdependency of transactions of different participants. For example, a Bitcoin
account with a balance of 0 can only create a valid transaction after it receives
a transaction that increases its current balance. Additionally, a shared central
ledger can be used when multiple writers are present.

A distributed database stores data across multiple locations, and provides
read and write access to participants. Following this, a distributed ledger is a
distributed database with the inclusion of transaction interaction. We consider
blockchain (BC) to be particular form of distributed ledger technology (DLT),
as here unknown participants can read from and write to the ledger, and reach
consensus on the state of the ledger.
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Fig. 1. Our classification of database technologies

3 Evaluation of Decision Schemes

In this section we analyze 30 blockchain decision schemes, listed in Table 1.
We classify the schemes by type, based on the question(s) they answer. We also
classify the choices that the schemes involve, listed in Table 2, and we investigate
contradictions between some of the schemes.

3.1 An Overview of Schemes

We found 30 decision schemes in the literature and on the web, and included
all schemes found; see Table 1. Five schemes are represented as a questionnaire,
indicated by a ‘Q’ in Table 1. The remaining 25 schemes are represented by a
flow diagram, indicated by an ‘F’ in Table 1, where a sequence of binary choices
lead to an end state that provides the optimal solution for a given scenario.
We observe that all schemes can be classified in (a combination of) three models,
where each model addresses a primary question:

– Model 1: Determine if blockchain should be used. Schemes that aim to
determine if you should use a distributed ledger or, more specific, blockchain.

– Model 2: Determine blockchain type. These schemes aim to determine
which type of blockchain fits best to a particular problem.

– Model 3: Determine alternative technologies. The third model suggests
alternative technologies such as traditional databases.

A classification of each scheme towards these three models can be found in
Table 1 (column: Model). Additionally, we counted the number of end states
(column: #ES) for each decision scheme. This already shows that there exists a
difference between similar scheme types and number of end states. Furthermore,
we grouped the various end state descriptions (column: End states), according
to our terminology definition in Sect. 2, in the columns below. Typically, in the
literature blockchains are classified in three categories:

– Permissionless (anyone may write to the ledger) and public (anyone may read
from the ledger).
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– Permissioned and private (only a limited set of participants may read from
the ledger).

– Permissioned and public.

From these columns we also note various levels of granularity of end state descrip-
tions. For example, it is not clear if end state B.1.a (public BC) is permission-
less (similar to B.1.c) or permissioned (similar to B.3.b). Also, Birch et al. [34]

Table 1. An overview of decision schemes

No. DS name Ref. F/Q Model #ES End states

1 CapGemini [7] Q 1 2 A.1.a; A.2.a

2 Cooke [19] F 1 2 A.1.a; A.2.a

3 Gardner [16] F 1 2 A.1.a; A.2.a

4 Lixar [20] F 1 2 A.1.a; A.2.a

5 Meunier [29] Q 1 2 A.1.a; A.2.a

6 Nandwani [18] F 1 1 A.1.b

7 PWC [24] Q 1 2 A.1.a; A.2.a

8 Verslype [17] F 1 2 A.1.b; A.2.a

9 Birch [34] F 2 4 B.1; B.2; B.3; B.4

10 Saiko [8] F 2 3 B.1.a; B.3.c; B.4.a

11 Bico [5] F 1,2 4 A.2.a; B.4.a; B.3.c; B.1.a

12 Chand [21] F 1,2 3 A.2.a; B.4.a; B.1.a

13 Hyperledger [13] F 1,2 3 A.2.a; B.1.a; B.3.a

14 Ico [32] F 1,2 3 A.2.a; B.3.a; B.1.a

15 Lin [43] F 1,2 4 A.2.a; B.4.a; B.3.c; B.1.a

16 Meuller [31] F 1,2 3 A.2.a; B.1.a; B.3.a

17 Pahl [47] F 1,2 5 A.1.a; A.2.a; B.1.c; B.3.b; B.4.b

18 Peck [49] F 1,2 3 A.2.a; B.3.a; B.1.a

19 Suichies [4] F 1,2 4 A.2.a; B.1.a; B.3.c; B.4.a

20 WEF [33] F 1,2 5 A.2.a; A.3 (x2); A.1.a (x2)

21 Wüst [56] F 1,2 4 A.2.a; B.1.b; B.3.b; B.4.b;

22 DHS [29] F 1,3 7 C.1.d; C.1.a (x3); C.1.b; C.1.c; A.1.a

23 Greenspan [12] Q 1,3 3 A.1.a; A.2.a; C.1.a

24 IBM [14] F 1,3 2 A.1.b; C.1

25 Lewis [2] F 1,3 3 A.2.b; A.1.a; C.1.a

26 Xu [57] F 1,3 2 C.1; A.1.a

27 Deloitte [10] Q 1,2,3 4 A.1.a; C.1; B.1.b; B.3.a

28 Henkel [6] F 1,2,3 5 A.1.a; A.2.a; B.1.a; B.3.a; B.4.a

29 Maull [45] F 1,2,3 4 A.2; B.1; B.3; B.4

30 Quindazzi [23] F 1,2,3 5 A.2.a; C.1; B.1; B.3; B.4
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introduce new terminology, such as the public double permissionless DLT (B.2).
This includes the reward mechanism of writing to the ledger which, when intrin-
sic to the consensus process, is called double permissionless. An extrinsic mech-
anism where a writer receives a physical reward (e.g. cash) is called permission-
less [34].

A. Model 1 end states

1. DLT is a good fit.
(a) Use BC.
(b) Let’s talk.

2. DLT is not a good fit.
(a) Don’t use BC.
(b) Problem of standards.

3. BC may be a good solution.

C. Model 3 end states

1. Consider alternative approaches.
(a) Central database. suitable
(b) Encrypted DB.
(c) Managed DB.
(d) Consider email/spreadsheets.

B. Model 2 end states

1. Public permissionless DLT.
(a) Public BC.
(b) Permissionless BC.
(c) Public permissionless BC.

2. Public double permissionless DLT.
3. Public permissioned DLT.

(a) Permissioned BC.
(b) Public permissioned BC.
(c) Hybrid BC.

4. Private permissioned DLT.
(a) Private BC.
(b) Private permissioned BC.

5. Private double permissioned DLT.

3.2 Model 1 Scheme End States

Model 1 schemes aim to determine if you should use a blockchain. Several
schemes, for example Pahl, Gardner, and Greenspan, give a clear yes-or-no
answer whether a blockchain should used or not. Other schemes are more con-
servative. For example Peck, Meuller, and DHS, only say that blockchain may
be an option. Typically, these schemes do not elaborate what further conditions
have to be met to determine if blockchain should (or should not) be used.

3.3 Model 2 Scheme End States

Model 2 schemes aim to determine which type of blockchain is needed. Typically,
these schemes also answer the question whether you should you a blockchain or
not, so they are also model 1 schemes.

Both Saiko and Birch et al. propose a type 2 scheme only. Interestingly, Saiko
considers three types of blockchains, although uses the terms blockchain and
ledger interchangeably. In contrast, Birch et al. consider four distributed ledger
types, although in their work they do provide examples that include blockchain.
The main difference between the two schemes is that Birch et al. suggest two
types of public ledgers and two types of private ledgers, whereas Saiko suggests
a single public ledger and two types of private ledgers. Here, again, we observe
a difference in schemes, similar to model 1 schemes.

However, we consider blockchain variants not a viable option, as better, alter-
native technologies are available. We will discuss this further in Sect. 5.
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3.4 Model 3 Scheme End States

Model 3 schemes also consider alternative technologies other than blockchain.
One of the outcomes of IBM’s scheme is ‘consider alternative approaches’, but
it does not say what these alternatives might be. The scheme by DHS does
suggest some concrete alternatives, such as a database or a managed database.
Quindazzi refers to the traditional ledger (as in the current banking system) as
an alternative to other types of ledgers. However, these suggestions are generic
and do not point out which type of database should be used. Clearly, the end
states of which type of database to use can be refined in these models.

3.5 Scheme Questions

In this section we analyze all schemes, and group and classify the questions
that are used to determine an end state; see Table 2. To be able to reach any
of the three model end states (as discussed in the previous section), each ques-
tion should lead to an answer which holds a (database) technology property. In
particular, we are interested in questions that differentiate between technologies
[41], which we label ‘T’. For our scheme we currently consider the remaining
questions as not relevant. We classified the questions as follows:

1. Our first question type refers to determining which database type is needed.
We label these as ‘T’.

2. Also, there exist questions that address the current limitations of blockchain,
which we label as ‘L’.

3. A particular set of questions focus on the system design, instead of technologi-
cal properties. For example ‘(do you need) censorship resistance’ and ‘where is
consensus determined’ are design questions. These scheme questions consider
this to be a prerequisite for the use of a technology. We do not consider these
questions for our scheme, as they do not distinguish between technologies
from a technical perspective. We label these questions as ‘E’.

4. We label our fourth question type as process questions, ‘P’. The answers to
these questions also do not in particular differentiate between technologies.
Therefore, these questions types in the schemes are irrelevant for determining
if, and if so, which database technology can be used. For example, the ques-
tions ‘aiming to remove third parties?’, ‘looking to reduce costs?’, and ‘can
participants adopt?’ are process related questions. We do not include these
questions in our scheme, see Sect. 4.
Also, some schemes (e.g. Cooke, Suichies, WEF) include the question ‘Are
writers interests unified?’ to determine the appropriateness of blockchain,
and consider that if this is indeed true, no blockchain is needed. However, the
interests of the honest participants may be aligned, but not the interests of a
malicious participant. The point here being that when choosing a particular
technology, the basic issues (such as the double spend attack in blockchain)
should be considered as part of the system. Therefore, the interests of partic-
ipants by default are not aligned, which is why we consider this question not
to be relevant for our scheme.
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5. Two questions stand out because these are the questions that we aim to
answer, namely if, and if so which blockchain is needed in a particular sce-
nario. These two questions, which we label ‘D’, are ‘Traditional approach
results in consistency loss?’, and ‘Can other technologies offer a solution?’.
Again, we exclude these particular questions from our scheme, as they do not
differentiate between technologies.

Including the Questionnaires. The questionnaires consist of a list of ques-
tions that must be answered affirmatively to determine if blockchain may be
a suitable solution However, only the schemes by Greenspan and Deloitte state
that all questions must be answered affirmatively for this technology to be useful.
Therefore, because of the schemes boolean end states, these can be considered a
flow diagram, too. The questionnaires by Capgemini, PWC and Meunier provide
an approximation of the number of questions that must be answered affirmative,
making it unclear when exactly blockchain is useful.

From all questionnaires we can conclude that there are two end states, sim-
ilar to scheme model 1. Although the questionnaires do not follow a particular
flow, their questions can be classified, similar to the questions made in the flow
diagrams. Therefore, we include their questions in Table 2, too.

Summary. From Table 2 we observe that most questions are process questions.
Moreover 25 out of the 30 schemes contain questions that do not contribute to the
overall question the scheme aims to answer. Furthermore, none of the schemes
address all tech type questions. This suggests the need for a new scheme.

3.6 Inconsistency Between Schemes

There are clear contradictions between some of the schemes: these schemes come
to different conclusions based on identical answers to the questions used in the
schemes. Below we give some examples of contradictions we observed.

Comparison 1: Cooke vs. Gardner. We present our results in Table 3. From
this table we observe that making similar decisions in the schemes may lead to
different answers. The difference can be explained by the additional question by
Cooke, namely ‘are writers interests unified?’. Cooke considers this a relevant
question, whereas Gardner’s scheme omits this question. As discussed in the pre-
vious paragraph, we consider this question not to be relevant for deciding which
scheme to use as one must assume that writers interest always are misaligned.

Comparison 2: Wüst vs. Hyperledger. In Table 4 we compare the two
schemes of Hyperledger and Wüst in deciding which type of blockchain could be
used. In this comparison a difference in terminology appears, as the scheme by
Wüst is more fine-grained. Whereas Wüst uses a combination of two axis (per-
missionless/permissioned, and, public/private) to describe blockchain, Hyper-
ledger uses only two terms (either permissioned, or public). Here, the Hyper-
ledger scheme could be improved by using similar end states as Wüst.
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Table 2. Scheme questions classification

No. Question Class.

1 Traditional approach is insufficient? [6,10,17,21] D

2 Can other technologies offer a solution? [2,6,31,49] D

3 Aiming to remove third parties? [24,33,57] P

4 Are you working with digital assets? [7,33] P

5 Where is consensus determined? [4,5,8,19,23,24,29,43,45] P

6 Do you need censorship resistance? [49] E

7 How is the incentive structure determined? [34] E

8 Are there contractual relations? [6,14,31,33,45] P

9 Rules of tx do not change frequently? [13] P

10 Sensitive identifiers stored? [2,11,14,21] P

11 Requires a market approach? [14] P

12 Looking to reduce costs? [14] P

13 Looking to improve discoverability? [14] P

14 Is there a real (business) problem? [2,6,31] P

15 Can participants adapt? [2,6,29] P

16 Do the benefits justify the cost of adoption? [2] P

17 Is this a ‘blockchains are free’ play? [2] P

18 Need an immutable log? [11,13,29,32] E

19 Are there relative simple business rules? [14,17,29] P

20 Many participants transacting? [29,31] P

21 Is data integrity required? [7] P

22 Do you need to share operational data? [7] P

23 Are there transaction rules set? [12] P

24 Who stands behind the assets? [12] P

25 Can the project be open sourced? [21] P

26 Participants trust each other? [4,5,7,8,12,16,20,23,29,33,45,49,56] P

27 Participants interests aligned? [4,5,8,13,18,23,31–33,43] P

28 Need a database? [4,5,7,8,10–13,16,18,20,23,24,32,33,43,45,47,56] T

29 Can you use a TTP? [2,4,5,8,10–12,16,17,20,21,23,29,31,33,34,43,45,56,57] T

30 Shared write access? [4,5,8,10–14,16–18,24,33,34,43,47,49,56] T

31 Participants known? [4–6,8,12,18,23,31,33,34,45,47,56] T

32 Need to control functionality? [4,8,19,23,33,43,45,49] T

33 Public transactions? [2,4,5,7,8,14,17–19,21,29,32,33,43,45,47,49] T

34 Is there transaction interaction? [10,12,21,24] T

35 Do you need high transaction throughput? [14,17,21,24,29,31,33,45] L

36 Do you need to store large transactional data? [21,33] L
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Table 3. Comparing scheme choices of Cooke, and Gardner

Cooke Gardner

Question Answer

Do you need a database? Yes Yes

Are there multiple writers? Yes Yes

Are writers trusted? Yes Yes

Conclusion Undetermined You don’t need a blockchain

Table 4. Scheme end state comparison between Wüst and Hyperledger

Wüst Hyperledger

Transaction visibility: Yes Yes

Leads to: Public permissioned blockchain Public blockchain

Transaction visibility: No No

Leads to: Private permissioned blockchain Permissioned blockchain

Comparison 3: IBM vs. Verslype. The IBM scheme suggests that working
with complex business logic may be an argument for using a blockchain. In
contrast, Verslype suggests that simple business rules may be an argument for
using a blockchain. Clearly, these two schemes contradict each other. It is not
clear which scheme is correct, as there is a lack of description of what this specific
question means. A possible explanation for the apparent contradiction is that
the two schemes consider different types of blockchain. Complex business rules
can be, to some extent, captured by smart contracts. Therefore, the IBM scheme
is probably considering a blockchain similar to Ethereum that supports smart
contracts. However, not all blockchains can deal with complex smart contracts;
for instance, Bitcoin does not. Therefore, the scheme by Verslype is probably
considering a blockchain as used in Bitcoin.

Summary. These comparisons show that inconsistencies between schemes may
be explained by several factors. First, the comparison between the schemes of
Cooke and Gardner show clear contradictions. Second, the comparison between
Wüst and Hyperledger shows that there is a difference in granularity of the end
state description. Finally, some inconsistencies between schemes may explained
by the schemes considering different types of blockchain solutions, as we assume
is the case in the contradiction between IBM and Verslype.
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4 A New Scheme

In this section we propose a new scheme that is based on the three scheme models
identified in Sect. 3. Our scheme aims to answer three questions:

1. Should you use a blockchain? (scheme model 1).
2. If so, which type of blockchain is best? (scheme model 2).
3. If not, which alternative database technology is best? (scheme model 3).

We include alternative technologies in our scheme, and we focus only on the
questions that differentiate between technologies. Because of this, our scheme
aims to replace all 30 schemes.

4.1 Scheme Questions and End States

In explaining our scheme, we use our terminology from Sect. 2. Our new scheme
starts with the need for storing state (1, see Fig. 2). If indeed a database is
needed and there exists only a single writer (2) that performs state updates, a
central database (end state II, see Fig. 2) can be used.

If, however, there are multiple writers (2) and there exists the need to control
functionality (3) by a specific party a shared central database (III) should be
used. Here we assume that there exists such a specific party, and that the writers
trust this party. Controlling database functionality may include setting the rules
on how database permissions are set (such as create, store, delete), how the data
is stored in the database (a relational database or an object oriented database),
or how the database can be queried (e.g. ServerSQL, or MySQL). Similarly,
if all participants agree that a third party (4) provides states updates, also a
shared central database should be used. Note that we omit the question ‘Is
public verifiability required?’, in contrast to, for example, Wüst and Gervais
[56], as we consider this to be a design question. In particular for blockchain,
this question is inherent to the technology. For all other technologies some form
of public verifiability could be present, for example by giving auditors access to
the ledger.

Thus, so far we consider that there is a need to store state and multiple
participants are present that do not wish to use a single party for state updates.

The next question is about transaction interaction. If no transaction interac-
tion (5) is required, a distributed database could be used, for example the cloud
storage network Storj (IV) [30].

If transaction interaction is required, participants are known (e.g. through
a certificate authority) (6), and anyone can join the network (7), again a dis-
tributed ledger could be used, for example Ripple (V). When a form of access con-
trol (7) is in place, still, a distributed ledger can be used, for example Corda (VI).
Note that, in principle, a blockchain could be used in these cases (IV, V, VI).
However, other technologies are present that do not lack the current drawbacks
of blockchain. As one of the anonymous reviewers pointed out: “Blockchains are
often sufficient but not often necessary”.
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If participants are unknown, then blockchain may provide a solution. Here,
our scheme is in line with Perlman [50] who states that a blockchain can achieve
consensus amongst a consortium of unknown participants. Our scheme also takes
some of the current limitations of blockchain into account. Currently, blockchain
is limited in processing a large number (a ball park figure is greater than 2000
transactions per second) of transactions (8). and is not fit for storing large
amounts (e.g. Tera-bytes) of transactional data (9). Although current research
in scalability has shown significant improvements, for example Omniledger [42],
there are currently no real life implementations on a global scale. Then, according
to our scheme, there is currently no solution available (VII). However, if these
two properties do not matter, then a public permissionless blockchain (VIII)
should be used.

5 Discussion

Following our scheme, blockchain is only needed where there exists a group of
unknown participants that wish to reach consensus. Blockchain could be used in
any case where there exists a need for a database. This may give rise to the notion
of public permissioned blockchains and private permissioned blockchains, which
are in essence a shared database [3,45]. However, using blockchain in those cases
where alternative technologies are suggested in our scheme may not be the best
choice, considering the issues blockchain currently has, as discussed in Sect. 2.
This is why our scheme includes only one type of blockchain, namely the ‘classic’
public and permissionless blockchain.

Schemes closely related to our work, for example Wüst and Gervais, Peck,
Pahl, and Lin et al., address the question ‘do you need a blockchain?’. Their
schemes suggest either to use a type of blockchain, or not to use a blockchain.
This, however, is misleading as the scheme suggests that blockchain is needed,
whereas other technologies are available. Such technologies do not have the cur-
rent limitations of blockchain. In fact, these technologies have been tested over
time and have proven to provide a functionality that is desired. We argue that
the end states of decision schemes should at least include technologies that pro-
vide the desired functionality, and where possible without the limitations of
blockchain. Therefore, we argue that the schemes that do not include alterna-
tive technologies are incomplete and hence wrong.

Also, in our analyses we labeled a large number of scheme questions as ‘pro-
cess’, as these questions do not contribute to the overall question the scheme
aims to answer, as discussed in Sect. 3. The questions labeled ‘process’, there-
fore, should not be included in these decision making schemes. Additionally, we
labeled 9 questions as ‘tech’ meaning that these in fact do contribute to any of
the scheme goals. We used these 9 questions and created a new scheme, together
with the end states of alternative technologies, see Fig. 2. As our scheme includes
all relevant questions of the identified schemes and questionnaires, includes
end states that suggest alternative technologies, and our scheme determines if
blockchain should be used, we argue that our scheme can replace the identified
30 schemes.
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Fig. 2. Scheme for determining which type of database is appropriate



126 T. Koens and E. Poll

6 Future Work

Our scheme can be used for determining if blockchain is needed from a techni-
cal perspective. Our scheme can be extended with non-technical questions that
drive the adoption of blockchain, for example philosophical beliefs and economic
incentives. Furthermore, our scheme provides an overview of various types of
distributed ledger technologies. This could be expanded with more distributed
ledger technologies. Additionally, our scheme could be expanded by including
current issues of distributed ledgers. Additionally, a further analysis on the con-
sensus between the schemes can be made.

The concept of trust also merits further research. Trust is a important concept
which is not really considered in our scheme (except in the question ‘can you use
a third party?’). It is clear that trust shifts with the introduction of blockchain.
Indeed, replacing trust with cryptographic proofs was one of the motivations
behind Bitcoin. Still, introducing a blockchain does not remove all need for
trust, as it may also introduces new types of trust.

7 Conclusion

With a growing global interest in blockchain, many decision schemes have been
proposed to determine if blockchain is suitable, and if so which type. This paper
analyzed 30 of such schemes. We classified these schemes based on which of the
following three questions they try to answer: Should you use a blockchain? If so,
which blockchain variant is best? If not, which alternative is best?

Our analysis of these schemes shows that over half of the schemes contain
questions that do not contribute to the goal of the scheme. Furthermore, many
schemes are biased in favor of blockchain-based solutions, as their end states only
consider some type of blockchain. Such schemes seem to disregard alternative
solutions and suggest that blockchain is needed in most scenarios – incorrectly
in our opinion, if one takes into account that these alternatives lack some of the
drawbacks and limitations of blockchain-based solutions. Of course, we are not
the first to argue that for many proposed applications blockchain-based solutions
are not the best solution, or not even suitable at all [12,36,37,40,44,49,50,53,54].

Furthermore, like Birch et al. [34] and Maull [45], we observe that there exists
a Babylonian confusion with regards to the term blockchain. This is why we
put the term blockchain into perspective alongside other database technologies,
before our analysis of the schemes.

Our analysis shows that there are inconsistencies between the schemes, where
the same decisions lead to different outcomes, or, conversely, similar outcomes
can be reached with opposing decisions. There clearly is a need to improve these
decision schemes.
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We argued that if one uses a blockchain-based solution, only a public per-
missionless blockchain really makes sense. Although other blockchain types could
be used in some scenarios, alternative technological solutions are then always a
better choice as they lack some of the downsides and limitations of blockchain.
Finally, our scheme is a practical guide for blockchain initiatives that need to
determine which technology is suitable for a particular scenario.

Acknowledgements. We would like to thank the anonymous reviewers for their con-
structive feedback.
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Abstract. Proof-of-work (PoW) is used as the consensus mechanism in
most cryptocurrencies. PoW-based puzzles play an important part in the
operation and security of a cryptocurrency, but come at a considerable
energy cost. One approach to the problem of energy wastage is to find
ways to build PoW schemes from valuable computational problems. This
work proposes calibration of public key cryptographic systems as a suit-
able source of PoW puzzles. We describe the properties needed to adapt
public key cryptosystems as PoW functions suitable for decentralised
cryptocurrencies and provide a candidate example.

Keywords: Proof-of-work · Useful computation · Blockchain

1 Introduction

Proof-of-work (PoW) mechanisms are an integral part of modern cryptocurren-
cies, such as Bitcoin and the numerous altcoin variants [20], where they are
used to maintain consensus. Despite their successful employment for this task,
a source of contention for proofs-of-work is the energy wastage associated with
their use [14,16]. On the other hand, the developers of Bitcoin claim that the
waste of energy is analogous to the energy expenditure of other financial insti-
tutions, such as banks and credit card companies [20]. Even so, the high energy
consumption of PoW systems is a concern, and one that is not easily avoided. A
main purpose of PoW is to manage the Sybil vulnerability problem [7]. Devising
an authority-free decentralised cryptocurrency, that does not suffer from Sybil
vulnerabilities and does not use PoW, remains an open problem.

The approach of this work is to design a PoW mechanism that is useful
outside of the cryptocurrency it is intended to support. While the energy expen-
diture would still continue, there would at least be some other value in the
execution of the PoW function. The intention is to provide insight into the con-
struction of PoW functions from arbitrary computational puzzles. To illustrate
the applicability of this idea, a particular focus is placed on public-key schemes.

Adapting public-key schemes for use as PoW has potential advantages:

1. It can incentivise calibration techniques in software and hardware through
the reward structure.

c© Springer Nature Switzerland AG 2018
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2. It can provide data points to more accurately set safe parameter choices for
public key schemes.

3. It can be used for specific public-key schemes to encourage their analysis.

While some public key schemes have undergone considerable practical anal-
ysis in the past, this is not true in general. The level of scrutiny applied to any
specific scheme is sometimes unclear, especially when the underlying problem has
been recently introduced, as in the case of the ring learning with errors prob-
lem [5]. Public, large-scale analysis of cryptosystems is not without precedent.
RSA Laboratories famously offered cash prizes for factoring large composite
numbers [17]. The approach was relatively successful, as many of the challenges
remain un-factored, and general understanding of factoring algorithms increased.

Building PoW puzzles from public key schemes has the potential to increase
the awareness and level of scrutiny applied to them, and to encourage analysis
– both valuable to the cryptographic community. In fact, using a market-driven
approach, inherent in competitive proof-of-work schemes, can have the effect of
incentivising clever cryptanalytic techniques as well as smart specific hardware
designs that target weaknesses in a given scheme. If public key based puzzles
stand up to scrutiny for a period of time, without major speedups or break-
throughs, the level of confidence in the scheme’s security will grow.

Related Work. The idea of utilising the computational work carried out in
PoW schemes for some useful purpose has been around for a while and was first
proposed by Dwork and Naor [8]. Despite useful puzzles being addressed early
on, there are still relatively few candidates. It seems that a significant problem
lies in finding candidate puzzles that can be moulded into a PoW puzzle.

The cryptocurrency Primecoin [11] uses the search for Cunningham Prime
Chains as the PoW function. This example demonstrates the possibility to find
puzzles that satisfy some of the conditions for adaptability into a proof-of-work
mechanism. Gridcoin [22] rewards users for their attempts to solve @home puz-
zles, for example folding@home [21]. But Gridcoin does not offer decentralisation,
equating to simply handing out tokens for the effort of solving certain puzzles.
Ball et al. [1] demonstrate the adaptability of specific problems, known as the
Orthogonal Vectors and 3SUM problems, into a PoW framework. They rely on a
distributed problem board, where specified delegated parties issue problems that
can be used to create challenges. We aim to devise authority free, decentralised,
proofs-of-work, and so no delegated party or problem board is required.

There are other works that examine the energy expenditure problem in
PoW systems. Most solutions rely on removing the competitive computational
aspect of proof-of-work, replacing it with some different method, such as proof-
of-stake [10], proof-of-activity [2] or proof-of-commitment [6]. Tschorsch and
Scheuermann [19] give a concise overview of these alternatives.

Contributions. The primary goal is to give some insight into the possibil-
ity of adapting generic computational puzzles into a PoW framework. This is
achieved by stating and explaining the reasoning behind the requirements for this
adaptation, and providing definitions and formalism where necessary. Using the
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Schnorr signature scheme as an example, a transformation into a PoW scheme
is described.

2 Puzzles and Their Properties

Most decentralised cryptocurrencies use a consensus mechanism which relies on
the partial pre-image resistance of a chosen hash function.

A notable gain in understanding from the use of the SHA-256 hash function
in Bitcoin is that, despite the speedups and development of efficient hardware,
there is no evidence of a solution finding method that is any better than brute
force search. Another useful insight gained is the ability to quantify the time it
would take to find a full preimage of a message digest. This ability is crucial
when selecting the difficulty parameter for cryptocurrencies that use PoW.

In order to derive such benefits for more general problems, we need to fit them
into a cryptocurrency PoW framework. Puzzles used for Bitcoin-like consensus
have certain characteristics which are fundamental to the smooth operation of
the cryptocurrency. In order to use alternative puzzles for the PoW mechanism,
it is necessary to construct them with these characteristics in mind. We would
like to retain the Bitcoin structures, such as blocks and transactions, and identify
the abstract interface to the PoW puzzle. We start by defining a puzzle set.

Definition 1 (Puzzle Set). A puzzle set PS is a tuple of three efficient algo-
rithms Setup, GenPuz, FindSol and a deterministic algorithm VerSol. Let λ be
the setup parameter, D the difficulty space, Str the message space, P the puzzle
space and Sol be the solution space.

1. Setup(1λ) : Select D,Str,P,Sol and return (D,Str,P,Sol).
2. GenPuz(d ∈ D,m ∈ Str) : Return p ∈ P or ⊥.
3. FindSol(m ∈ Str, p ∈ P, t ∈ N) : Return s ∈ Sol after at most t steps.
4. VerSol(m ∈ Str, p ∈ P, s ∈ Sol) : Return true or false.

A puzzle set may be defined without a solution finding algorithm. It is
included here only for completeness. From now on the FindSol algorithm is pur-
posefully omitted. If a solution finding algorithm is included, then there is a cor-
rectness requirement as follows: Let params ← Setup(1λ) and p ← GenPuz(d,m),
where d ∈ D and m ∈ Str, then there exists t ∈ N where

Pr[VerSol(m, p, s) = true | s ← FindSol(m, p, t)] = 1.

The Bitcoin puzzle fits the structure of Definition 1 where: D is the set of
valid difficulty levels; Str is the combination of hash of the previous block header
and the set of valid user inputs (nonce, transactions and other parameters); P
is just the concatenation of the difficulty and valid input strings; and Sol is the
set of hash inputs that hash below the current target.

A new puzzle must have the interfaces of Definition 1, but must also satisfy
some properties to ensure that the incentive properties of Bitcoin are retained.
We call these fairness requirements (FRs). It is not possible to prove what are the
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correct fairness requirements without extensive real-world trials, because they
depend on human behaviour. Thus we define properties based on the perceived
critical properties of the Bitcoin puzzle. We can also take guidance from previ-
ous efforts to define puzzle properties, including those of Miller et al. [12,13],
Narayanan et al. [14], and Biryukov and Khovratovich [3].

FR.1 Creator Free: Finding a solution to one puzzle must not give any advantage
in solving of any other.

Once a Bitcoin puzzle is solved, the solution is distributed to all participants
and used to form a new puzzle. Specifically, the header information from a pre-
vious block is used as input to the next block. The header data is unpredictable
until a solution is found, so even the solver will have no extra information to
help make a start on finding the next puzzle solution.

In essence, this requirement aims to ensures that no party has an advantage
in finding the solution to the new puzzle, even if they have solved the previous
one. We note however, that this is not satisfied in existing implementations. It
has been shown that it is possible to perform selfish mining [9,18], where the
solver of the previous block does not distribute the solution immediately in order
to gain some time advantage on solving the next one.

To formally define FR.1 we first describe two security experiments in Fig. 1.
In both experiments the goal of the adversary A is to solve any one of the set of
puzzles defined using the inputs mi = (m1,i,m2,i). The difference between the
two experiments is that in the first A selects both m1,i and m2,i for input into
the GenPuz algorithm, and in the second m1,i is selected at random from the Str
set. This reflects the Bitcoin puzzle set where the input string consists of two
parts: one coming from the previous block and one which can be influenced by
the miner. The ability to influence the first part should not help an adversary.

ExpPzSol
A,d,n,t :

m1,1, m1,2, . . . , m1,n ← A
m2,1, m2,2, . . . , m2,n ← A
{mi = (m1,i, m2,i)|∀i ∈ {1, 2, . . . , n}}
p1 ← GenPuz(d, m1), p2 ← GenPuz(d, m2), . . . , pn ← GenPuz(d, mn)
s ← A
return (mi, pi, s) for some i ∈ {1, 2, . . . , n}

ExpPzSolR
A,d,n,t :

m1,1, m1,2, . . . , m1,n
$←− Str

m2,1, m2,2, . . . , m2,n ← A
{mi = (m1,i, m2,i)|∀i ∈ {1, 2, . . . , n}}
p1 ← GenPuz(d, m1), p2 ← GenPuz(d, m2), . . . , pn ← GenPuz(d, mn)
s ← A
return (mi, pi, s) for some i ∈ {1, 2, . . . , n}

Fig. 1. Creator free experiments
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For the experiments in Fig. 1 we define the game G to win, for some diffi-
culty d, fixed n, for some efficient A returning (mi, pi, s), i ∈ {1, 2, . . . , n} and
running in at most time t, if VerSol(mi, pi, s) returns true. Succinctly we write
ExpG

A,d,n,t = 1, else we write ExpG
A,d,n,t = 0.

Definition 2 (Creator Free). Let PS be a puzzle set with setup parameter
λ. We say that PS is creator free if for any d, n and any efficient A running
in time t we can define an efficient B running in approximately the same time
t′ ≈ t, such that

Pr[ExpPzSol
A,d,n,t = 1] − Pr[ExpPzSolR

B,d,n,t′ = 1] ≤ negl(λ).

FR.2 Puzzle independence: It should not be possible to use the effort expended
to solve one puzzle, to solve another.

Puzzle independence requires that even if you can create multiple puzzles, all
the effort expended towards solving any specific one of them will not give any
advantage in solving another distinct puzzle. In Bitcoin, puzzles are indepen-
dent as one cannot use the work directed towards solving one block, to help
with the solution to another. This is because each new puzzle is formed by an
unpredictable pseudo-random string each time, for each block.

ExpPzIndR
A,d,n,t :

m1,1, m1,2, . . . , m1,n
$←− Str

m2,1, m2,2, . . . , m2,n ← A
{mi = (m1,i, m2,i)|∀i ∈ {1, 2, . . . , n}}
p1 ← GenPuz(d, m1), p2 ← GenPuz(d, m2), . . . , pn ← GenPuz(d, mn)
return (mi, pi, si)∀i ∈ {1, 2, . . . , n}

Fig. 2. Puzzle independence experiment

For Fig. 2, as in Fig. 1, we define the game G to win, for some difficulty
d, fixed n, for some algorithm A returning (mi, pi, si), ∀i ∈ {1, 2, . . . , n} and
running in at most time t, if VerSol(mi, pi, si) returns true for every i.

Definition 3 (Puzzle Independence). Let PS be a puzzle set with setup
parameter λ. We say that PS has puzzle independence if for any d, n and any
efficient A running in time t we can define an efficient B running in at most
time t′/n, where t′ ≈ t such that

|Pr[ExpPzIndR
A,d,n,t = 1] − (Pr[ExpPzIndR

B,d,1,t/n = 1])n| ≤ negl(λ).

FR.3 Chance to win: Every participant should have some non-negligible chance
of solving a puzzle before any other.
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In Bitcoin, the probability of being the first to solve the puzzle is directly pro-
portional to one’s share of the computational power directed towards the puzzle
at a given time. Note that FR.3 only asks for some non-negligible chance that a
participant can win, it does not require any specific probability distribution. Pre-
vious authors [3,14] have proposed a related property called progress-free which
states that solving a puzzle should be a Poisson process. Such a definition may
be too strict; it excludes some useful examples, while the concrete parameters
used will determine what is sufficient incentive for a small user to participate.

In addition to the fairness requirements, there are practical requirements
(PRs) that can be identified to ensure that any new puzzle is useable in a real
system. We mostly give these informally, since usability is not easy to quantify.

PR.1 Linkable puzzles: A previous puzzle solution can be used to form a new
puzzle.

The security of transactions within a PoW based distributed ledger relies on
encoding the transactional data along with the puzzle. For this data to persist,
the solution of each puzzle is used to form a new puzzle, so the puzzle solution
acts as a pointer to the previous transactions. This forms the ledger. Specifically
in Bitcoin, each new block contains information relating to the previous block.

Definition 4 (Linkable). Let PS be a puzzle set with setup parameter λ, then
we say that a PS is linkable if Sol ⊆ Str.

PR.2 Efficiently Verifiable: The solution must be efficient and quick to verify
by all parties.

PR.3 Tunable: The difficulty, or expected number of computational steps, of
finding a puzzle solution must be adjustable in order to increase and
decrease the difficulty of finding a solution to a puzzle.

PR.4 Valuable: Puzzles should provide some useful function in the finding of
their solution, other than their purpose within the PoW scheme.

3 Generic Bitcoin-Like Construction

We can now describe a generic construction for a Bitcoin-like puzzle in Defini-
tion 5. This is an abstract version of the Bitcoin puzzle construction, where each
puzzle instance is generated by a hash output where the input has two parts, in
addition to a difficulty parameter.

Definition 5 (Bitcoin-like puzzle). A Bitcoin-like puzzle generation algo-
rithm is a puzzle set, described by three algorithms:

– Setup(1λ) : D = Z,Str = {0, 1}∗,P = {0, 1}n1 ,Sol = {0, 1}n2 for some
n1, n2 ∈ N.

– GenPuz(d,m = (m1,m2)) computes p̃ ← H(m1||m2)||d for H : {0, 1}∗ →
{0, 1}n3 , where H is a pseudo-random function with n3 ∈ N, and returns
p ← CreatePuz(p̃)||p̃, where CreatePuz is a deterministic algorithm, with
running time parameterised by λ.
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– VerSol(m, p, s) returns true if p = p′ ← GenPuz(d,m) and CheckSol(p, s)
returns true, else it returns false, where CheckSol is a deterministic
boolean algorithm.

The next result shows that any Bitcoin-like puzzle satisfies FR.1 and FR.2.
The proof is omitted due to space constraints.

Theorem 1. Let PS be a Bitcoin-like puzzle generation algorithm with setup
parameter λ. If H is a random oracle, then for a fixed d ∈ D, a fast and efficient
GenPuz algorithm, PS is creator free and is linkable.

Moreover, PS is efficiently verifiable if both H and CheckSol combined ter-
minate in time significantly less than the time required to find a solution. The
puzzle set PS is tunable if when d is increased, it takes on average more com-
putational steps to find a corresponding puzzle and solution p, s that satisfies
VerSol, and vice-versa.

Figure 3 further describes the puzzle chaining process. This process explicitly
defines the solution to a previous puzzle as part of the message, which is used
to generate the next puzzle. This links the puzzles and the solutions together.
Figure 3 is in practice how one would expect a PoW mechanism to operate,
though there may be different variations.

Bitcoin-like Chained Puzzle:
Let PS be a Bitcoin-like puzzle generation algorithm as in Defn. 5. For any i > 0, i ∈ N,
with predefined constant s0 ∈ Sol, the Bitcoin-like chained puzzle is defined by:

1: s = si−1.

2: ai = input(). \\collect auxiliary inputs

3: m = (s, ai).

4: pi = GenPuz(d, m).

5: si = input(). \\attempts to find the puzzle solution

6: -If: VerSol(m, pi, si) returns true, s = si,goto 2.

7: Else: goto 5.

Fig. 3. Bitcoin-like chained puzzle

4 Schnorr Signature Puzzles

The Schnorr signature scheme public key generation procedure, as described by
Boneh [4], selects random primes p and q such that q|p − 1, an element g ∈ Z

∗
p

of order q, an element a ∈ Zq and computes y = ga ∈ Z
∗
p. The scheme also

uses some public hash function H : {0, 1}∗ → Zq. The public parameters are
(p, q, g, y,H), with a as the private key.

The goal is to create Bitcoin-like puzzles by describing a method for generat-
ing random public keys, without corresponding private keys. The puzzle is then
to find a corresponding private key, or otherwise form a signature on the input
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Setup(1λ) :
1: Return: D = N, Str = {0, 1}∗, P = (Z4, H : Str → Z), Sol = Z

2,

for some pseudo-random function H.

GenPuz(d ∈ D, m ∈ Str) :
1: Select: m̂.

2: Return: p = m̂||d.

VerSol(m ∈ Str, p ∈ P, s ∈ Sol) :
1: Input: (m, F (p), s = (σ, γ)).

2: –If: p = p′ ← GenPuz(d, m), continue, else return false.

3: Run: v = gσy−γ mod Zp.

4: –If: H(m||v) = γ, π = true, else π = false.

5: Return: π.

Fig. 4. Schnorr signature puzzle algorithms

message. A puzzle set for the Schnorr signature forgery puzzle is described in
Fig. 4.

To complete the puzzle definition, we need to define the function F used in the
VerSol algorithm of Fig. 4. Due to space constraints we omit the details, but the
general idea is to use a deterministic version of the parameter generation process
from the FIPS digital signature standard [15, Appendix A]. Using the value m̂ as
the parameter seed, first q, then p, then g and finally the public verification key y,
are all generated. This method generates the public key without a corresponding
secret key. Finding the secret key, or otherwise signing the message m becomes
the PoW challenge. By relying on the randomness provided by the hash function
H, this puzzle set is linkable and creator free by Theorem 1.

We are not able to prove that puzzle independence (FR.2) holds for the
Schnorr puzzle due to the nature of the puzzle generation algorithm. If two
distinct puzzles are generated with the same initial primes p and q, then this
could give an advantage to a potential solver who has retained some computation
for the number field sieve algorithm. We conjecture that in practical cases the
puzzles will have the FR.2 property, since selecting a p and q that have been
used before is very unlikely.

5 Conclusion

An abstract puzzle construction has been demonstrated as well as describing how
the Schnorr signature scheme can be used for a stand-in PoW scheme. Moreover,
the parameter generation is applicable to DSA and ElGamal signatures with
only minor alterations. The clear route for future work is to adapt different
types of public-key schemes, or puzzles in general, for use in PoW systems using
the requirements here. A wider variety of puzzles may not only prove to be
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more valuable in terms of the actual puzzle, but could also potentially help with
resistance to the design of ASICs for specific fixed puzzles.
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Abstract. This paper discusses a potentially serious attack against
public crypto-currency mining pools. By deliberately introducing errors
under benign miners’ names, this attack can fool the mining pool admin-
istrator into punishing any innocent miner; when the top miners are
punished, this attack can significantly slow down the overall production
of the mining pool. We show that an attacker needs only a small frac-
tion (e.g., one millionth) of the resources of a victim mining pool, which
makes this attack scheme very affordable by a less powerful competing
mining pool. We experimentally confirm the effectiveness of this attack
scheme against a few well-known mining pools such as Minergate and
Slush Pool.

Keywords: Crypto currency · Mining pool · Invalid share
DoS attack · Stratum protocol

1 Introduction

The emergence of bitcoin in 2009 [24] paves the way for many other crypto-
currencies like monero, litecoin, and etherium. Crypto-currency is the crypto-
graphically protected digital currency that is built upon the blockchain plat-
form. Blockchain is like a public ledger that keeps track of all transactions in
each crypto-currency. Blockchain is shared across all users of a specific crypto-
currency. Before adding any transaction to the blockchain, the transaction needs
to be verified, which is called mining. The person or group of people who is ver-
ifying the transaction is called miner. For the verification of a transaction, the
miner receives a reward in the form of crypto-currency where the mining is
performed.

In order to verify a transaction, miners have to solve a cryptographic puzzle.
Since the task of solving the cryptographic puzzle is computation-intensive, the
more computation power a miner has, the more likely he/she can solve the puzzle.
If miners follow mining protocol honestly, they can increase their mining power
in two ways: (1) solo mining, in which a miner can buy new resources and deploy
those to mine transactions, and (2) pool mining, in which miners form a pool
and share their resources to solve the cryptographic puzzle. In pool mining, the
reward is distributed among the pool members based on their contributions. Solo
c© Springer Nature Switzerland AG 2018
J. Garcia-Alfaro et al. (Eds.): DPM 2018/CBT 2018, LNCS 11025, pp. 140–154, 2018.
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mining is almost obsolete now due to the increasing difficulty of crypto-currency
mining and the emergence of task specific hardware like ASICs. Instead, pool
mining has become a more promising way of mining due to the trade-off between
revenue gain and power usage by resources.

One important design issue of pool mining is the accurate measurement of
member contributions. To achieve this, two methods have been proposed: Proof
of Work (PoW) and Proof of Stake (PoS). PoW has been used in bitcoin sys-
tem to reach consensus on the blockchain status and to defend against double-
spending attacks: each worker’s computational power is calculated based on the
shares he submits to the pool. Under PoS, each pool member’s capability of
creating the next block is proportional to the amount of coin ages he has, and
the coin age is defined as currency amount times holding period [11,20].

The reward provided by the crypto-currency network encourages miners
to increase their mining power through illegal means, represented in multiple
kinds of attacks. One such way is hijacking benign users’ machines and using
them to mine on behalf of the attacker, e.g., botnet mining [17] and drive-by-
cryptocurrency mining [4]. A second major type of attack is DDoS [16]. There are
two incentives to perform those DDoS attacks. Firstly, slowing down the mining
task of a pool through DDoS attack might give an unfair decisive advantage to
other pools to win the race for the next bundle of crypto-currency rewarded for
verifying a transaction. Secondly, delayed operation of a pool may discourage
future users to join victim pool and current users might leave the pool for a
better one.

We propose a way of indirect DDoS attack on the mining or crypto-currency
protocol or implementation. Although there have been some attacks [27] using
implementation or protocol vulnerability of mining and crypto-currency, no pre-
vious work used indirect DDoS on the user and pool at the same time. Our
attack is mainly focused on PoW (Proof of Work) based pool mining.

More specifically, we propose to degrade the productivity of a target mining
pool by poisoning its members’ mining results, which causes the pool server to
penalize its benign miners. This attack is enabled by two factors: (1) a lack of
miner authentication and (2) the invalid share policy of the mining pools. The
first factor allows an attacker to submit invalid shares on behalf of a benign
miner, and when the number of invalid shares reaches certain threshold, they
trigger penalty or ban of benign members of the mining pool based on the
second factor. Since the ban or penalty to benign pool members are imposed
inadvertently by the pool manager, we consider our attack technique indirect and
subtle. This attack can be employed by one mining pool to lower the expected
success outlook of a competing mining pool. The essence of our attack is to turn
the invalid shares policy of mining pools against themselves.

We make the following contributions:

– We propose a novel attack scheme that can fool the mining pools into pun-
ishing their productive members.

– We implement a prototype of attack tool that can submit a large number of
invalid shares using the Stratum protocol.
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– We evaluate the effectiveness of our attack against Slush Pool and Minergate.

The rest of this paper is organized as follows. Section 2 gives technical back-
ground information about pool-based crypo-currency mining and invalid share
policy adopted by mining pools. Section 3 describes the details of our attack
method. Section 4 presents both theoretical and empirical evaluation of our
attack scheme against Minergate and Slush Pool. Section 5 discusses possible
remediation of the attack. Related work is mentioned in Sect. 6, and Sect. 7 con-
cludes the paper.

2 Technical Background

Most of the crypto-currencies currently available on the market are distributed
and decentralized in nature. Those crypto-currency ecosystems consist of users,
miners, blockchain, and mining pools. Users use crypto-currency in the form of
transaction. Miners verify the transaction and append the verified transaction to
the publicly shared ledger called blockchain. Miners are rewarded by the crypto-
currency network for verifying each transaction, which gives them incentives.

2.1 Blockchain and Mining Pool

Blockchain is a public ledger that records all of the verified transactions. Miners
add new transactions to the blockchain after verification. Verification of transac-
tion is called mining, which is to solve a cryptographic puzzle. The cryptographic
puzzle to solve is generating a hash that is smaller than a set value provided by
the network. The set value is called difficulty of the network. For bitcoins, this
difficulty value is adjusted dynamically such that blocks are generated at an
average rate of one every ten minutes [1]. Different cryto-currency use different
hashing algorithms. For example, bitcoin and bitcoincash uses SHA-256 hashing
algorithm, Litecoin and Dogecoin uses Scrypt hashing algorithm, Dash (DASH)
and CannabisCoin (CANN) uses X11 hashing algorithm, Monero and Bytecoin
uses Cryptonight algorithm and, ethereum and ethereum classic use Ethash algo-
rithm.

Since solving the cryptographic puzzle is a computation intensive task, it
became increasingly difficult task for solo miners to solve the puzzle. To solve
this problem mining pool has emerged. In a mining pool, all members work
together to mine each block and share their revenues when one of them mines a
block. Although joining a pool does not change a miner’s expected revenue, it
decreases the variance and makes the monthly revenues more predictable.

Popular mining pools consist of thousands of miners. For example, btc.com
mining pool has around 56k workers for bitcoin and around 31k workers for
bitcoin cash crypto-currency. The hashrate of this pool is 8.7 EH/s for bitcoin
and 401.9 PH/s for bitcoin cash. Here, pool hashrate is the aggregation of all
workers’ hashrate. Each worker’s hashrate is calculated based on the valid shares
that he submits. For example, if a worker submits one share of difficulty one, it

https://btc.com/
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means that this worker checks 2number of trailing zeros in target value hash values
to generate the valid share. Again, submitting one share of difficulty two is like
submitting two shares of difficulty one.

Moreover, mining pools often offer variable share difficulty, in which the pool
assigns share targets to miners adaptively based on their computational ability.
The purpose of adaptive share difficulty is to make sure that the task is neither
too difficult, thus enabling miners to prove work is done, nor too easy, thus
reducing the overhead on the pool to verify submitted shares.

2.2 Cryptographic Puzzle

The cryptographic puzzle to solve is to find a hash using data from assigned
job that is less than a provided target value. For bitcoin, the puzzle consists
of a target value and a tuple, F = (block version number || hash of previous
block || root of merkle tree || timestamp || Nbits), here || denotes concatenation.
target and all fields of tuple F will be proved in the assigned job. Nbits is the
encoded share difficulty. Extranonce2 is changed by the miners by incrementing
it in addition to incrementing nonce, so that there are more possible hashes that
can be tried with a given set of transactions. Given the target and tuple F, the
miners will try to find a pair iterating over Extranonce2 and nonce such that it
satisfies the following equation

H2(nonce||F ) < target (1)

Here, H2 means double SHA-256 hashing operation for bitcoin.

2.3 Stratum-Mining Pool Communication Protocol

Stratum is a clear text communication protocol built over TCP/IP using JSON-
RPC format [6]. Although there is no official documentation for this protocol,
biticoinwiki [2] provides details about the protocol. In this section we provide
an overview of Stratum protocol implemented by Slushpool [6] as observed in
captured packets of mining in slushpool.

Subscription of Miner. In order to register in a mining pool that sup-
ports Stratum protocol, the miner first subscribes through a subscription con-
nection message [Mining.subscribe, params], which describes the miner’s capa-
bility through params. The mining pool server will respond with a subscrip-
tion response message in the following format [subscription, extranonce1, extra-
nonce2 size]. Here, subscription is an array of 2-item tuples, each with name of
subscribed notification and subscription ID. extranonce1 is a hex-encoded, per-
connection unique string that will be used for creating generation transactions
later, and extranonce2 size is the number of bytes that the miner uses for its
Extranonce2 counter.
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Authorization of Miner. After each connection subscription request, the
miner authenticates with the pool through a miner authorization request mes-
sage in the following format: [Mining.authorize, username, password]

Here, the username has two parts: miner’s username and worker id to autho-
rize multiple workers. The password field is provided in clear text, and it is
optional for most mining pools.

Share Difficulty Notification. Following a successful authorization of miner,
the pool server sends a share difficulty notification with the minimum share
difficulty the pool server is willing to accept using Mining.set difficulty.

Assignment of Job. Since the Stratum mining protocol works in publish-
subscribe manner, all of the subscribed and authorized miners will be notified
when a new job is available in the pool and will be assigned using different
parameters in the following format: [Mining.notify, job id, params, clean jobs].
Here, the params field contains all of the puzzle parameters such as the fields of
tuple F mentioned in Sect. 2.2. clean jobs is a Boolean which indicates whether
a miner should drop all previous jobs and work exclusively on the current one.

Submission of Shares. Once a miner finds a solution that satisfies the require-
ment provided in Mining.set difficulty method using all of params from Min-
ing.notify job assignment response and miner’s calculated nonce and extra-
nonce2, it will send the solution to the pool for verification and credit in the
following format [Mining.submit, user id, job id, time, nonce, extranonce2].

Here, user id is obtained from the response of Mining.authorize request,
job id is obtained from the Mining.notify response. nonce and extranonce2 is
the puzzle solution which meets the difficulty provided in Mining.set difficulty.
The pool server will use these values to reconstruct the F value mentioned in
Sect. 2.2 and verify that Relation 1 is satisfied. The pool server will respond with
a status message denoting accepted or rejected. A share can be rejected for two
reasons: stale share which is submitted too late, and bad share which does not
satisfy the difficulty requirement.

In summary, as shown in Fig. 1, after the subscription and authorization
of miner by pool server through mining.subscribe and mining.authorize API,
the pool server will send the share difficulty and multiple new jobs to solve
through mining.set difficulty and mining.notify API. Now, the miner has to find
a nonce and extranonce2 for every job it wants to solve that will satisfy the
share difficulty set by the pool server and submit it to the pool server through
mining.submit API.

2.4 Invalid Share Policy

From our study, crypto-currency mining pools have to face the issue of cheat-
ing by pool members (i.e., those who do not do the job but just submit invalid
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Fig. 1. Interaction between miner and mining pool server

shares). Therefore, they establish various penalty policies for such participants.
For example, the Minergate policy [23] mentions: “Open source pools by default
ban users if the percentage of invalid shares is bigger than 25%. However, Min-
erGate does not allow hackers to cheat the pool and follow certain policies for
invalid share. For sending invalid share user gets penalty and his unconfirmed bal-
ance decreases, sending multiple invalid shares will lead to negative unconfirmed
balance. This will prevent cheaters from having funds in confirmed balance.” In
Table 1, we summarize the negative impact of submitting invalid shares to sev-
eral public mining pools. We can see that misbehaving users are often banned
to some extent and their wallets can even be locked.

As we mention in Sect. 2.3, password is not required at most mining pools
when authorizing miners, which means that anyone can impersonate other min-
ers during crypto-currency mining. Therefore, an adversary can leverage this
fundamental “vulnerability” of the mining pool protocol for an effective attack,
in which the attacker’s goal is to cause the mining pool administrator to mis-
takenly penalize innocent miners.

3 Attack Method

In this paper, we propose a way to attack mining pools using the publicly avail-
able information about the mining pool, miners and mining APIs. This attack
will decrease the hashrate of a mining pool in two ways. First, since the pool
server will have to validate invalid shares submitted by the attacker, it will add
workload to the pool server. Second, decreasing pool hashrate will decrease the



146 M. Ahmed et al.

Table 1. The negative impact of submitting invalid shares

Mining site Banned Payouts locked Balance reduced

moneroocean.stream Temporary (1–10 min) No No

xmrpool.net Yes No No

supportxmr.com Yes Yes No

www.viaxmr.com Temporary No No

minergate.com No No Yes

slushpool.com Yes No No

moriaxmr.com Temporary (10 min) No No

ratchetmining.com Temporary (10 min) No No

earning of the pool, which will discourage new miners to join the pool and encour-
age affected miners to leave the pool. Third, since this attack submits invalid
shares on behalf of top benign miners and the pool policy imposes penalty like
ban of miners or penalizing balance, which can greatly reduce the productivity
of the pool and encourage affected members of the pool to leave.

In this section, we outline steps to perform an attack on mining pools. Each
step will be elaborated in subsequent subsections. The steps as shown in Fig. 2
are given below:

1. Collect mining pool and miner information
2. Collect mining API information
3. Submit invalid shares to attack miner reputation
4. Check attack results

(a) if the pool marks the submitted shares as invalid we are successful and
exit

(b) otherwise restart from step 1 by collecting new information about pool,
miner and API

In the following, we describe the details of how an attacker can collect miner
account information in Sect. 3.1 and mining API information in Sect. 3.2. Then
we discuss the actual attack scheme in Sect. 3.3.

3.1 Collecting Mining Pool and Miner Information

Collecting the mining pool and miner information is the first step of our attack.
Based on the available resources to perform the attack, we can select the appro-
priate pool. In the case of bitcoin, BTC.com provides a list of pools and their
hash rate distribution (Fig. 3 and [3]). Using this list, we can decide which pool(s)
can be attacked successfully with the available resources. Since all of the mining
pools publicly share their server addresses for each supported crypto-currency,
mining pool server addresses can be collected from the targeted pool’s website.
Miner’s username and contribution to a specific pool can be collected in two

https://moneroocean.stream/
https://xmrpool.net/
https://www.supportxmr.com/
https://www.viaxmr.com/
https://minergate.com/
https://slushpool.com/
https://moriaxmr.com/
http://ratchetmining.com/
https://btc.com/
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Fig. 2. The flowchart of proposed approach

ways. First, some pools like sluspool.com and minergate.com share information
about the top contributors [7,25] of the pool and the corresponding user names
of the miners. Second, since the communication between the mining pool and
miners happens through the Stratum protocol, a clear-text JSON format, we
can figure out the mining pool’s top contributors by traffic analysis if we know
the miner or mining pool’s address as described in [27]. For slushpool [25], the
top 100 miners contribute more than 90% hashrate of the pool. Therefore, sub-
mitting invalid shares on behalf of these top contributors will trigger the pool
policy to penalize the miners, which will encourage the top miners to leave the
pool. Additionally, departure of attacked miners will drastically decrease the
hashrate of the pool. For our analysis, we used publicly available information
about miners and mining pools.

3.2 Collecting Mining API Information

Most of the mining pools follow standard API name provided by Stratum pro-
tocol [2,6]. However, some of the mining pools like Minergate [5] do not follow
the standard API name. These pools use customized API name instead. Thus,
lack of standard Stratum protocol API name calls for network traffic analysis
to discover API name used by the corresponding mining pool. To get the API
name used by a specific mining pool, we can mine in the pool using their mining
application (e.g., [8–10]) as a benign user and capture the network traffic of the
mining application. Since Stratum is a clear text JSON format protocol, the
captured traffic will reveal the API name used by the mining pool.

In our analysis, Minergate [5] mining pool does not follow the Stratum pro-
tocol standard [6]. However, mining as a benign user using Minergate’s mining
application [10] and capturing the mining traffic from the application reveal the
API name used by the Minergate pool server. For the subscription and autho-
rization of miner, Minergate’s API name is “login” wheres the standard Stratum

https://slushpool.com/
https://minergate.com/
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Fig. 3. Hash rate distribution of mining pools

API name is “subscribe” and “authorize”. Captured traffic of Minergate appli-
cation for miner authorization is given below:
{"id":"1","jsonrpc":"2.0","method":"login","params":{"agent":
"MinerGateMac/6.9","login":"iden1930@gmail.com", "pass":""}}

Similarly, traffic analysis of Minergate application also tells us the structure
of the JSON-RPC method to submit shares:
{"id":"2","jsonrpc":"2.0","method":"submit","params":{"id":"id
corresponding to username returned in login response", "job id":
"Job id corresponding to job returned in login response", "nonce":
"Random value", "result":"Random value"}}

3.3 Attacking Miners’ Reputation

After getting a victim miner’s username by the approach described in Sect. 3.1,
our next step is to mine badly on behalf of this miner. We cannot use the official
mining software because it is designed to mine honestly. Therefore, we have to
create a special tool that speaks the mining pool language in order to interact
with the pool server but actually does not do any real mining.

We build a tool to carry out our scheme. First we need to know the protocol
to login to the pool server, get new jobs, and submit results, including method
names and the parameters.

We obtain the above necessary information by analyzing the official mining
software (e.g., [8–10]). From the documentation provided by mining pools, we
learn the command line arguments needed to run the mining executable, such as
the username, mining pool address, and port number. Next, we apply the traffic
analysis discussed in Sect. 3.2 to learn the mining API.
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Using what we learned from software analysis and traffic analysis, we can now
form the login request and submit it to the pool server using a TCP connection.
In response to the login request, the pool server returns data containing job data,
job id, target, time to live and user id corresponding to the username. At that
point, the task of a legitimate miner is to find a nonce and extranonce2 that
will generate a hash of job data concatenated with a nonce and extranonce2
that is less than the provided target. As our goal is not to help the legitimate
miner, we will not generate the hash, instead we randomly generate a nonce,
extranonce2, and the result. It is less likely to get a valid share from random
selection as getting a good share is a difficult task. Now, we submit the random
nonce, random extranonce2, and result to the pool server which will most likely
recognize it as an invalid share. We have developed a tool that can send a large
number of invalid shares to the pool server in a short period of time.

4 Evaluation

4.1 Feasibility of the Attack in Terms of Required Resources:
Theoretical Analysis

We will show that an attacker needs only a small fraction of the resources of a
top miner in order to successfully attack the top miner, i.e., to cause the mining
pool administrator to mistakenly penalize the top miner.

Since a top miner submits valid shares at a very high rate, the attacker also
has to submit invalid shares at a very high rate in order to make the percentage
of invalid shares of the top miner reach the threshold to be punished. This seems
to imply that the attacker would also need significant amount of resources, which
increases the cost of the attack and if the cost is too high, the attack would not
be worth it. However, our analysis below shows that the attacker can reach the
required submission rate of invalid shares at a much lower cost (e.g., 1 millionth
of) than the top minor. This is due to the fact that the top miner has to perform
a large number of (e.g., 232) hashing operations between share submissions, while
the attacker does not have to.

Specifically, the same amount of resource can be used to submit invalid shares
at a much higher rate than to mine and then submit valid shares. As an illustra-
tion, let’s consider a concrete case. Based on empirical data provided in [27], the
average time for a miner with hashrate 4096 GH/s to find a share with difficulty
1024 is

1024 ∗ 232

4096 ∗ 230
= 1 (2)

seconds. In other words, such a miner can submit one (1) valid share per second.
On the other hand, suppose the network bandwidth between the miner and

the pool server is 640 Mbps or 80M bytes per second, since the average size of
network packets containing the shares is 80 bytes, a bad miner can send up to

80M/80 = 220 = 1, 048, 576 (3)
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invalid shares per second. Here we assume that the bad miner can utilize the
entire network bandwidth in the ideal case.

Based on the above two equations, the share submission rate difference
(invalid vs valid) is 1,048,576 times. In other words, to reach the same share
submission rate, an attacker requires one millionth of resources that a benign
miner would need.

The above analysis of attack cost is still an over-estimation because the
attacker does not need to submit the same number of invalid shares as the top
miner in order to succeed. This is because the percentage threshold of invalid
shares to punish a miner is much lower than 50%. Formally, suppose the attacker
and the top miner use the same kinds of mining nodes, the share submission rate
difference between malicious nodes (MNs) and honest nodes (HNs) is n times,
the percentage threshold to punish a miner is r, and one MN can beat x HNs,
we can compute x as follows. In one time unit, the MN can produce n invalid
shares, while the x HNs produce x valid shares, so the invalid share percentage is
n

x+n ; when the threshold is reached, i.e., n
x+n = r, we have x = n

r −n = 1−r
r ∗n.

For example, if n = 1,000,000 and r = 0.2, one MN can beat 1−0.2
0.2 ∗1, 000, 000 =

4, 000, 000 HNs. This means that an attacker can use much less resource to get
a benign miner punished.

4.2 Experimental Evaluation

We have experimentally confirmed the feasibility of getting a victim miner penal-
ized by mining badly on his behalf.

To validate our approach, we create a user account at Minergate. Now, our
tool uses this account username to submit invalid shares to Minergate pool server
following the procedure described in Sect. 3.3. After submitting around 40,000
invalid shares, the account balance decreases from 0.00002398 to 0.00001973,
which follows the invalid share policy of Minergate pool. Figures 4 and 5 show
the change in our account state before and after we ran our tool.

We also perform the same actions using one existing miner’s username at
Minergate, and the response from the mining pool server indicates that it detects
the submitted shares as invalid. Although we are not able to check whether
the pool administrator penalizes the victim miner (because we do not know
that miner’s password), the Minergate invalid share policy mentions that the
pool administrator should penalize the miner for every invalid share. As the
pool administrator penalizes our account for submitting invalid shares, it should
penalize the victim miner as well for submitting invalid shares. For ethical con-
sideration, we did not carry out a large-scale and sustained attack against the
victim miner’s account. In reality, it is quite likely that a determined attacker
would launch a serious attack in order to bring down the productivity of a victim
mining pool.
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Fig. 4. Account status before mining for Aeon Coin

Fig. 5. Account status after submission of 40,000 invalid shares for Aeon Coin

4.3 Responsible Disclosure

Due to the potential serious damage that our attack scheme can inflict to public
mining pools and the pool-based mining ecosystem in general, we have initi-
ated the process to notify affected mining pools. We have contacted Slush Pool
through their Twitter account (@slush pool) and the Twitter account of the
CEO and co-founder Jan Capek. Jan has expressed great interest in our pro-
posed attack, and the discussion between Slush Pool and us is still going on. We
also contacted Minergate through its customer service email.

5 Possible Remediation of the Attack

The poisoning attack described in this paper would be defeated if the mining
pool server enforces miner authentication. Since the attacker would not know
the password of the innocent miner, she will not be able to authenticate and
then mine on behalf of the victim miner. The Stratum protocol, which is used by
many popular mining pools, already supports user authentication (see Sect. 2.3).
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Unfortunately, this feature is often not used at those mining pools, perhaps
to minimize the performance overhead. Therefore, we highly recommend that
mining pools enforce miner authentication.

We also recommend that pool mining protocols adopt encryption (e.g.,
HTTPS). Currently, mining protocols such as Stratum is clear text based,
which is susceptible to Man-in-the-Middle (MITM) attacks. Basically, an MITM
attacker can eavesdrop on the communication between an innocent miner and a
mining pool server to steal security credentials and session tokens, and then use
them to inject bogus messages that translate to submissions of invalid shares on
behalf of innocent miners. Adding encryption would raise the bar for the MITM
attackers.

6 Related Work

As [13] points out, a mining pool might be able to increase its revenue by attack-
ing other pools. Eyal et al. propose Selfish Mining [14], an attack against the
Bitcoin mining protocol that allows colluding miners to obtain a revenue larger
than their fair share.

Mining pools have been constant targets of DDoS attacks. According to
empirical studies [16], mining pools are the second-most targeted Bitcoin ser-
vice after currency exchanges. Among 49 mining pools, 12 encountered DDoS
attacks, and at least one mining pool (Altcoin.pw) had to shut down because
of DDoS attacks. However, most of these DDoS attacks are performed actively
by isolating targeted pool from other parts of the network or making it unavail-
able to the pool members. Most of those DDoS attacks can be detected using
current DDoS detection tools like cloudFire since the attackers are using the
network, not the mining or crypto-currency protocol or implementation to per-
form those attacks. Moreover, [18] presents a game-theoretic analysis of DDoS
attacks against bitcoin mining pools.

Most of the existing attacks [15,19,21,22,26] against mining pools are at the
network level, not at the protocol level. In [15,19,26], the authors discuss an
eclipse attack on bitcoin network that is at the network level. [21] proposes the
fork after withholding attack in which miner’s dilemma [13] does not hold. [12]
discusses the block withholding attack and the corresponding attacker’s strate-
gies based on the mining consensus protocol. In [13], Eyal presents a 51% attack
using 51% resources of the network, which can be achieved using our proposed
attack scheme.

7 Conclusion

The increasing popularity of crypto-currency has encouraged the formation of
large and collaborative mining pools. Unfortunately, the huge economic impact
of crypto-currency mining has also brought forth various attacks against mining
pools. In this paper, we identify a serious attack scheme that can significantly
slow down the production rate of a mining pool. The attacker can cause innocent
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and productive miners of a pool to be punished by submitting invalid mining
results on behalf of the victim miners. This attack essentially takes advantage of
a combination of the lack of miner authentication and the penalty policy estab-
lished by mining pools with respect to invalid shares. We present a theoretical
analysis to show that an attacker needs only a small fraction (e.g., millionth) of
the resources of a victim miner to succeed, making the attack very affordable.
We also experimentally confirm the feasibility of our attack against Slush Pool
and Minergate. Our study strongly suggests that we should rethink the design
of pool mining protocols.
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Abstract. Abrupt changes in the miner hash rate applied to a proof-of-
work (PoW) blockchain can adversely affect user experience and security.
Because different PoW blockchains often share hashing algorithms, min-
ers face a complex choice in deciding how to allocate their hash power
among chains. We present an economic model that leverages Modern
Portfolio Theory to predict a miner’s allocation over time using price
data and inferred risk tolerance. The model matches actual allocations
with mean absolute error within 20% for four out of the top five miners
active on both Bitcoin (BTC) and Bitcoin Cash (BCH) blockchains. A
model of aggregate allocation across those four miners shows excellent
agreement in magnitude with the actual aggregate as well a correlation
coefficient of 0.649. The accuracy of the aggregate allocation model is
also sufficient to explain major historical changes in inter-block time
(IBT) for BCH. Because estimates of miner risk are not time-dependent
and our model is otherwise price-driven, we are able to use it to antici-
pate the effect of a major price shock on hash allocation and IBT in the
BCH blockchain. Using a Monte Carlo simulation, we show that, despite
mitigation by the new difficulty adjustment algorithm, a price drop of
50% could increase the IBT by 50% for at least a day, with a peak delay
of 100%.

Keywords: Economic modeling · Performance · Cryptocurrencies

1 Introduction

Understanding how and why miners apply their hash rate to a given proof-of-
work (PoW) blockchain is critical to understanding both the security and user
experience of that chain. In this paper, we show that miner hash rate allocations
among blockchains can be largely explained by miner risk tolerance and fiat trade
price movements in the coins minted by those chains. Our aim is not to establish
causation, but we find that abrupt changes in the price of one coin relative to
the others is correlated with an abrupt change in miner hash rate allocations.
Such rapid drops in hash rate on a given blockchain present a security risk in
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that the probability of a double-spend attack increases inversely proportional to
the work applied to the chain [15]. A sudden drop in hash rate can also result
in a temporary increase in inter-block time, which constitutes a lapse in user
experience. Such a direct link between trade price and service quality is without
precedent among conventional financial services. It is analogous to credit card
transactions being processed more slowly whenever the stock price of Visa Inc.
drops.

Miners typically invest in ASICs, which are hardware implementations of a
particular PoW algorithm. Therefore, they can easily shift or reallocate their
hash rate between blockchains that share the same PoW algorithm. Currently,
the two largest blockchains, by market cap, that share the same algorithm are
Bitcoin (BTC) and Bitcoin Cash (BCH). It is broadly acknowledged that the
price of BCH relative to BTC is a strong determinant of miner allocation [3–
5]. But direct comparison of prices is problematic. For example, the difficulty
adjusted reward index (DARI) is a popular measure of the relative profitability
of mining on BTC versus BCH [6]. However, according to the DARI, one coin is
always more profitable than the other— so why does each miner typically divide
its hash rate allocation between chains? In the present work, we show how the
allocation can be explained by miners’ tolerance to variance in coin prices.
Contributions. Our primary contribution is an economic model for miner hash
rate allocation, which we develop as an application of the Modern Portfolio The-
ory of Markowitz [13]. We show that the model is capable of accurately explaining
the hash rate allocations of four out of the top five mining pools mining both
BTC and BCH over a six and a half month period1. During that timespan, the
model’s mean absolute error is at or less than 20% for those four miners, and the
predicted aggregate allocation demonstrates a Pearson correlation coefficient of
0.649 when compared to actual. In contrast, estimates of allocations based only
on short-term price changes or the DARI result in correlation coefficients of just
0.298 and 0.165, respectively. Our second contribution is demonstrating that
the hash rate allocation resulting from the economic model is capable of accu-
rately predicting major changes in the inter-block time (IBT) for BCH. Over
the same time interval, the IBT predicted by our economic model shows a Pear-
son correlation coefficient of 0.849 with the actual IBT. Because our predictions
are based primarily on the volatility of historical prices, the implication of this
strong agreement is that deviation in IBT can be largely explained by the risk
associated with fluctuations in coin prices. Finally, we use synthetic price data
and hash rate allocations from our economic model in simulation to shows how
the IBT would be affected by large fluctuations in the price of BCH. We find
that even with the new difficulty adjustment algorithm employed by BCH, a
price drop of 50% could increase the IBT by 50% for at least a day, with a peak
delay of 100%.

1 Data is available from http://traces.cs.umass.edu.

http://traces.cs.umass.edu


Using Economic Risk to Model Miner Hash Rate Allocation 157

2 Background

Mining Markets. Nearly every blockchain project uses a proof-of-work (PoW)
algorithm that is common to other projects. For example, of the top 50 cryp-
tocurrencies by market capitalization2, eight use SHA256 [15] including Bitcoin
Cash and Bitcoin, seven use Ethash [2] including Ethereum and Ethereum Clas-
sic, and 11 use Scrypt [16] including Litecoin and Dogecoin. For PoW algorithms
common to multiple currencies, miners are able to apportion their hardware
among them, and can also rapidly change this allocation. Miners began man-
ufacturing ASICs for SHA256 in 2013 [7], and ASICs for the Scrypt algorithm
became available in 2014 [1]. ASICs for the Ethash algorithm were also intro-
duced recently [20]. Mining with ASICs requires a large capital expenditure to
purchase the hardware, and that investment has the effect of locking miners into
a specific PoW algorithm in the medium-term. As a result, blockchain projects
that share the same PoW algorithm form multi-chain mining markets comprised
of miners who possess ASICs suitable for that algorithm.
Profitability of Mining. Although mining markets have existed for several
years, a miner’s choice of hash rate distribution among blockchains, which we
term allocation, remains somewhat mysterious [8]. A complicating factor is that
most miners participate via a mining pool, which aggregates the hash power
of its constituents and distributes mining rewards according to their hash rate.
The allocation represented by a mining pool depends on that pool’s policy. Most
allow individual miners to either choose the blockchain on which they wish to
mine, or follow the pool’s choice of the most profitable chain [4,5]. However, it’s
not always obvious how to determine profitability [3]. What seems clear is that
the choice of allocation is related to short-term profitability [6]. But long-term
financial and idealogical concerns likely also play an important role.

Ignoring idealogical and long-term financial determinants, there are several
factors that contribute to the relative profitability of mining between blockchains
in the same mining market, including: (i) the relative fiat trade value of each coin;
(ii) any hinderances to converting mining profits into fiat currency (e.g., poor
coin liquidity); and (iii) the relative difficulty in mining the coins. The question of
relative difficulty is particularly interesting from a technical standpoint because
generally each blockchain in a mining market implements a different difficulty
adjustment algorithm (DAA). The update frequency and accuracy of each DAA,
relative the others, plays a critical role in how profitability changes over time.
Difficulty Adjustment Algorithms. In this paper, we present an in-depth
analysis of mining profitability in the SHA256 mining market where Bitcoin
(BTC) and Bitcoin Cash (BCH) together comprise 99% of the market cap;
together these two comprise 67% of the market cap of all cryptocurrencies. In
BTC, the difficulty is recalibrated every 2016 blocks by adjusting it either up
or down inversely proportional to the deviation in mean inter-block time from
optimal3. Since the hard fork on November 13, 2017, BCH performs a similar

2 https://minethecoin.com.
3 http://github.com/bitcoin/bitcoin/blob/master/src/pow.cpp#L49.
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158 G. Bissias et al.

adjustment except that it occurs every block and covers a window of 144 prior
blocks4. Prior to the November 13 hard fork, BCH used the same DAA as BTC
except that it also implemented an Emergency Difficulty Adjustment algorithm
(EDA) [18]. The EDA simply cut the difficulty by 20% any time that it took
more than 12 h to mine the last six blocks.

3 Related Work

There are several past works related to our contributions. To the best of our
knowledge, we are the first work to evaluate, in a multi-blockchain market, the
link between prices, hash rate allocation, and system performance. Most past
work related to mining efficiency has focused on mining on a single blockchain.
Rosenfeld [17] was one of the first authors to explore financial incentives in
mining pools. He detailed several payout schemes and showed how they fare
against several types of miner behavior. One particularly interesting behavior is
called pool hopping, which involves a miner switching between pools mining the
same coin in order to gain higher profits. This behavior is the single-blockchain
analog to the multi-blockchain mining we analyze in this paper. Fisch et al. [12]
conducted an analysis of pool payout strategies for mining on a single blockchain
using discounted utility theory. They found that the geometric pay pool—in
which rewards are concentrated at the winning block and decay exponentially
over the preceding shares—achieves the optimal equilibrium utility for miners.
Our focus is not on payout strategies for pools.

Meshkov et al. [14] considered miners switching between multiple blockchains.
They argued that it is profitable for a miner to hop between blockchains with
the same PoW algorithm, causing oscillations in difficulty that the miner can
use to boost profit. The paper calculates the expected additional reward for the
miner and shows that under this scheme the expected average inter-block time
(IBT) on both chains exceeds the target time. The work is similar to ours in that
it considers the profitability of moving hash rate between blockchains—however,
it stops short of developing an economic model of hash rate allocation. In par-
ticular, the authors do not account for the influence of coin price on allocation;
nor do they attempt to determine an equilibrium allocation. Moreover, it is not
clear that chain hopping is currently pervasive in blockchains. For example, if
miners do commonly engage in chain hopping on BCH, then the results from the
paper predict that IBT should substantially exceed the target of 600 seconds,
but we find the mean IBT to be 604 seconds since the November 13, 2017 hard
fork.

Several authors have formulated economic models of the mining ecosystem
in an effort to predict or explain coin price. In contrast, we are not attempting
to discover what drives price, but rather how price drives system performance.
For example, Cocco and Marchesi [10] used an agent-based model of the mining
process to show its relationship to Bitcoin price. The model had some success in
4 http://github.com/bitcoincashorg/bitcoincash.org/blob/master/spec/nov-13-hard-

fork-spec.md.
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Fig. 1. Fraction of miner hash rate allocated to the BCH blockchain instead of the BTC
blockchain (left) and square root of risk tolerance (right). Shown here are only the top
five miners that historically mine on both chains. In the right plot, risk tolerance is in
units of the USD price of BTC + BCH at the given time.

predicting large price peaks as well as some statistical properties of the Bitcoin
ecosystem. Chiu et al. [9] developed a general equilibrium monetary model for
Bitcoin and similar cryptocurrencies. A major consequence of the model is that
cryptocurrencies must trade off between immediacy and finality of settlements.

4 Miner Hash Allocation

In this section, we develop a theory of how and why, in economic terms, miners
distribute their hash power among competing blockchains. The recent split of
Bitcoin Cash (BCH) from Bitcoin (BTC) provides an important case study for
us: each currency is highly valued and both rely on the same PoW algorithm.
As a result, it is trivial for miners to distribute their hash power among the
two blockchains as they see fit. This presents a conundrum for us: at any given
time, it is almost always more profitable to mine exclusively on one chain or the
other; yet, among miners that participate in mining on both chains, hash rate
allocation is typically divided between the two. Figure 1 (left) plots the history
of several mining pools’ allocation of hash rates to BCH as a fraction of their
respective total resources. Thus, it appears that miners are not actually acting
in purely greedy fashion, and we require a model that accounts for this nuance.

We hypothesize that miners are acting in a manner so as to maximize their
profit subject to a particular risk tolerance. That is to say, miners seek greater
profits, but they are also sensitive to the high volatility of holding cryptocurren-
cies. The exposure to this volatility is quantifiable: most blockchains impose a
multi-block cooldown period during which miners are not allowed to spend their
newly minted coins. For example, in both BTC and BCH, miners are required to
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hold their mined coins for a minimum of 101 blocks (roughly 17 h)5. Thus, miners
hold a short-term portfolio of the cryptocurrencies that they mine6. The Modern
Portfolio Theory (MPT) of Markowitz [13], a seminal result in economics, pro-
vides a framework for determining the best allocation of assets with respect to
profit expected value and volatility. We next develop a model of optimal miner
hash rate allocation using the MPT framework.

4.1 An Economic Model

Consider a set of distinct blockchains C = [C1, . . . , Cn] that share the same PoW
algorithm, and let vector π denote the miner profit for each. For miner j, define
wj = [w1j , . . . , wnj ] to be the allocation of this hash rate to the blockchains C.
And let vector h = [h1, . . . , hm] denote the total hash rate for each miner across
all blockchains. The aggregate allocation among all miners is given by

w =
∑

j

wj
hj

eT h
, (1)

where e is the vector of all ones. Aggregate allocation captures the overall dis-
tribution of mining power among all blocks chains C.

We pause here to illustrate the definitions above. Suppose that miner M1

produces 5E total hashes per second (where “E” denotes Exahash) and allo-
cates 30% of his hash rate to BTC and 70% to BCH. Meanwhile miner M2

produces 3E hashes per second and allocates 10% and 90% of her hash rate to
BTC and BCH, respectively. In terms of the notation above, we let C1 and C2,
respectively, denote the BTC and BCH blockchains. Vectors w1 = [0.3, 0.7] and
w2 = [0.1, 0.9] are the allocations for miners M1 and M2, respectively. And the
total hash rate vector is h = [5E, 3E]. Finally, the aggregate allocation is given
by w = [0.3 5

8 + 0.1 3
8 , 0.7 5

8 + 0.9 3
8 ] = [0.225, 0.775].

Next, define Σ = Cov(π), or the covariance of π, which we call the volatility
matrix. For a miner’s allocation wj , the risk is given by wj

T Σwj . And the risk
tolerance of miner j, given by ρj , is defined as his maximum allowable risk. MPT
predicts that a rational miner j seeking to maximize expected profits will solve
the following problem (although perhaps not explicitly):

PROBLEM MaxProfit(j):
Maximize: E[wj

T π]
Subject to: wj

T Σwj = ρj , wj
T e = 1,

and e = [1, . . . , 1]

5 http://github.com/bitcoin/bitcoin/blob/master/src/consensus/consensus.h#L19,
http://github.com/BitcoinUnlimited/BitcoinUnlimited/blob/release/src/
consensus/consensus.h#L31.

6 Note that miners can conceivably sell their coins to another party before the end of
the cooldown period, but because the purchasing party must assume the associated
risk, we expect that the transaction price must also take into account the volatility
of the coin.

http://github.com/bitcoin/bitcoin/blob/master/src/consensus/consensus.h#L19
http://github.com/BitcoinUnlimited/BitcoinUnlimited/blob/release/src/consensus/consensus.h#L31
http://github.com/BitcoinUnlimited/BitcoinUnlimited/blob/release/src/consensus/consensus.h#L31
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We solve MaxProfit using Lagrange multipliers in similar fashion to
Dhrymes [11]. However, in our formulation we do not allow for a portion of
the portfolio to be allocated at the risk-free rate of return because we assume
that miners are locked into their investment in mining hardware. Thus, we
solve the system of equations associated with the critical points of the following
Lagrangian:

Lj = wj
T E[π]+

λj1(ρj − wj
T Σwj )+

λj2(1 − wj
T e),

(2)

which yields the following solution.

wj = Σ−1 E[π ]−λj2e
2λj1

λj1 = 1
2 (b − aλj2)

λj2 = b
a ±

√
(b2−ac)(1−aρj)

a(1−aρj)

a = eT Σ−1e

b = eT Σ−1E[π]

c = E[π]T Σ−1E[π].

(3)

4.2 Profit and Volatility in Multi-chain Mining

In a typical portfolio optimization problem [13], the profit for an asset, π, is
defined as the change in asset value over a given period of time Δt. However,
miners are creating assets as opposed to merely acquiring them, so their profit
should nominally account for the full fiat trade value of each coin that they
mine. Still, miners contribute hash power to each blockchain, which amounts to
an associated cost. Therefore, the ideal measure of profit is one that normalizes
the fiat price of cumulative coinbase rewards by the relative difficulty.

Another complication is that miners can change their allocation at any time
and for little-to-no cost. Thus, we hypothesize that they will re-evaluate Prob-
lem MaxProfit at every instant t. Hence, we seek parameterized representa-
tions of the profit vector and volatility matrix: π(t) and Σ(t). To that end, let
R = [R1(t), . . . , Rn(t)] be a vector representing the fiat value of coinbase reward
for each blockchain at time t (fees are ignored in this model). And define
D = [D1(t), . . . , Dn(t)] to be the associated difficulties for those chains at the
same time. We define the profit at time t by

π(t) = R(t)/D(t)
eT D(t)
eT R(t)

, (4)

where “/” denotes component-wise division and e is the vector of all ones. Note
that our definition for π(t) is equivalent to the Difficulty Adjusted Reward Index
(DARI), a popular mining profitability metric [6], except that we ignore fees and
normalize by the aggregate fiat value of all chains, eT R(t), and total difficulty,
eT D(t). Normalizing by eT R(t) is necessary because cryptocurrency prices can
fluctuate significantly over short periods, and normalization allows us to more
directly compare profits at different times. Similarly, normalizing by eT D(t)
allows us to ignore the effect of fluctuations in total hash rate on miner profit.
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Given our definition for π(t), the expected profit vector, E[π(t)], can be
approximated by the sample mean over all π from time (t − Δt) until t. For
volatility, we hypothesize that miners are concerned about price changes only
over the short cooldown period Δc that extends from the time a coin is mined
until the time it can be traded for fiat currency. Thus, we seek to capture relative
changes in profit between all blockchains during Δc. For simplicity, we assume
that Δc is the same for all chains. Finally, we define the volatility matrix by
Σ(t) = Cov(π(t) − π(t − Δc)). Σ(t) can be approximated by the sample covari-
ance over the set of vectors: {π(x) − π(x − Δc) | t − Δt ≤ x ≤ t}.

5 Model Validation and Parameter Fitting

In general, a miner’s choice in hash rate allocation results from a complex combi-
nation of economically rational profit seeking and more subtle idealogical consid-
erations. As such, we do not expect that the solution to Problem MaxProfit can
fully predict miner allocations; however, in this section we seek to demonstrate
that it is capable of explaining much of their behavior. To do so, we analyzed
approximately 6.5 months of price and blockchain data from BCH and BTC
between November 14, 2017 and June 1, 2018. We intentionally omit data prior
to the BCH hard fork on November 13, 2017, which introduced a new DAA.
Prior to the fork, both BCH block times and prices were exceptionally irregular
due to high price volatility as well as rampant manipulation of the EDA [19].
As a result, it is very difficult to accurately estimate actual miner allocations or
infer their risk tolerance during the EDA time period.

For each blockchain, we calculated the time-parameterized profit vector and
volatility matrix as described in Sect. 4.2 using hourly price data from the
Bitfinex exchange. We chose unique but fixed values for lookback Δt and risk tol-
erance ρ for each miner using the techniques described in Sects. 5.1 and 5.2. For
both BTC and BCH chains, we set Δc = �101/6� hours to match their 101-block
cooldown period. We analyzed each of the top five mining pools on BCH that
are also active on BTC, excluding the mining by pools that do not claim blocks.
We determined the actual allocations for each miner, wj(t), by first calculat-
ing the average fraction of blocks produced per hour on each blockchain using
an exponentially weighted moving average with a half-life of 10 h. Estimating
hash allocation from mined blocks is very noisy, and using a weighted average
of recent blocks allowed us to arrive at a more smooth estimate. These aver-
age block rates were translated into allocations after normalizing by the relative
difficulty of each chain.

5.1 Inferred Miner Risk

Our economic model predicts that each miner allocates her hash rate based
on the historical profit for each coin as well as her personal risk tolerance. A
miner’s risk can be inferred from her current allocation and volatility matrix
Σ(t). According to the model, we assume that any given miner will exhibit a
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consistent risk tolerance. Furthermore, for a given risk tolerance, we anticipate
that the actual allocation chosen by miners will match the economic allocation
produced by the model.

Risk ρj is measured in units of squared deviation in profit. And because
profit is normalized by the sum of fiat prices of each chain in C (see Sect. 4.2),
the square root of risk, or root risk, also has units of BTC + BCH (which we
write as BTC+, for short). Therefore, the root risk can be interpreted as the
maximum deviation in profit, in units of BTC+, that is tolerated by the miner
during the cooldown period Δc. For example, when 1 BTC trades for 10 BCH
(BCH/BTC = 0.1), a miner with root risk 0.043, who is allocated entirely to
BCH, will tolerate a decrease to BCH/BTC = 0.05 during Δc.

Figure 1 (right) shows the root risk for each of the top five mining pools that
mine both BTC and BCH. The relative risk tolerance among miners remains
very consistent over time. The Bitcoin.com mining pool exhibits the highest
risk tolerance, while BTC.com shows the lowest. ViaBTC maintains root risk
roughly between 0.01 and 0.1 BTC+, while AntPool and BTC.TOP typically
range from 0.003 to 0.03 BTC+, and BTC.com fluctuates between 0.001 and 0.01
BTC+. In absolute terms, Bitcoin.com also demonstrates the largest variation
in risk tolerance, showing a high of 0.3 BTC+ at the end of November and
recent low near 0.06 BTC+. From Fig. 1 (left) we can see that differences in risk
tolerances are roughly reflected by the choice in miner allocations. For example,
Bitcoin.com is mostly allocated to mining BCH, while BTC.com mines BTC
almost exclusively.

Fig. 2. Risk and price juxtaposed. The top two facets show the risk for BTC and
BCH associated with allocating all hash rate to either the BTC or BCH blockchain,
respectively. The bottom facet shows the price ratio of BCH to BTC; the price for each
was drawn from the Bitfinex exchange where it was quoted in terms of USD.

Figure 2 juxtaposes the risk associated with mining exclusively on the BTC or
BCH blockchains with the BCH/BTC trade price ratio taken from USD quotes
on the Bitfinex exchange. The risks for each blockchain were calculated using
a lookback of Δt = 48. Problem MaxProfit utilizes information from all three

https://www.bitcoin.com/
https://btc.com/
https://btc.com/
https://www.bitcoin.com/
https://www.bitcoin.com/
https://btc.com/
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facets to derive the economic allocation. There are several notable features in
these curves. First, from Fig. 1 (right), we can see that risk rose sharply for
miners allocated to BCH near the end of 2017. The top two facets of Fig. 2
indicate that this was a period where risk in mining BCH rose far faster than for
BTC, while the bottom facet shows that BCH simultaneously made major gains
on BTC in terms of price. We hypothesize that this indicates that miners are
willing to relax their risk tolerance at times when they anticipate major gains for
one coin over another (in this case BCH over BTC). Second, not all major price
movements will result in increased risk for the current allocation. Because it was
gradual, the increase in the price of BCH relative to BTC at the end of April is
not accompanied by a large rise in risk for either blockchain. Nevertheless, we
do see from Fig. 1 (left) that mining pools BTC.TOP and AntPool substantially
increased their BCH allocation during this time. As a result, their risk rose
accordingly.

Despite the tendency for risk tolerance to fluctuate during abrupt price move-
ments, Fig. 1 (right) still reflects overall consistency in inferred root risk for most
miners except Bitcoin.com. For the remaining miners, we believe that a single
risk tolerance ρj chosen for each miner j is sufficient to describe much of that
miner’s behavior, and therefore our economic model may provide a reliable pre-
diction of their allocation of hash power. In order to choose ρj for a given miner,
we tested 8 equally spaced risk values falling between the 25th and 75th per-
centiles of the historical inferred risk values for that miner. For each risk value,
and each possible lookback chosen from the set described in Sect. 5.2, we cal-
culated the economic allocations using our model and compared them to the
actual allocations chosen by the miner using the Kolmogorov-Smirnov test for
goodness-of-fit. We selected the value for ρj that yielded the best fit of the
economic allocation to the actual. Results are shown in Table 1.

5.2 Determining Miner Lookback Period Δt

Risk is only one factor used to determine the optimal allocation. Another impor-
tant factor is the lookback period Δt. This period dictates how much historical
data will be used to calculate expected profit and volatility. For miners there
is a tradeoff between accuracy and immediacy. On one hand, using the entirety
of historical data will yield the most accurate estimate of the overall value of
the statistics. But on the other hand, older data is likely to be less relevant,
particularly when market characteristics can change abruptly.

We determined the optimal Δtj for miner j by testing the following values.

S = {4-22 in increments of 6} + {24-144 in increments of 24}
+{168-1344 in increments of 168} (5)

For each Δtj ∈ S and each potential risk value ρj (chosen according to the
procedure described in Sect. 5.1), we determined the optimal economic allocation
by solving MaxProfit using statistics E[π(t)] and Σ(t), which were formed as
described in Sect. 4.2. We then chose the values for Δtj and ρj for miner j

https://www.bitcoin.com/
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Table 1. Optimal lookback (hours) and risk parameters and mean absolute error for
the top 5 miners who mine both BTC and BCH based on observable data.

Mining Pool Lookback Risk Mean error

ViaBTC 144 6.42 e-04 20.0%

BTC.TOP 16 8.54 e-05 20.7%

Bitcoin.com 1,008 2.40 e−03 36.0%

AntPool 10 3.33 e-05 17.0%

BTC.com 4 3.81 e−06 14.4%

corresponding to the economic allocation that yielded the best fit relative to the
actual allocation according to the Kolmogorov-Smirnov test. Table 1 shows the
chosen values for Δtj and ρj for the top five miners. We use these values in the
remainder of our analysis.

Fig. 3. Actual and economic hash rate allocations for the two largest pools that mine
both BTC and BCH: ViaBTC (left) and Bitcoin.com (right). In each figure, the actual
allocation (blue) is compared to the optimal economic allocation (orange), the latter
of which is formed using parameters chosen from Table 1 for each miner.

5.3 Comparing Actual to Optimal Allocations

Figure 3 compares actual allocations to allocations from our risk and price-driven
economic model for the two largest pools participating in both BTC and BCH
mining: ViaBTC and Bitcoin.com. We determined the optimal economic alloca-
tions by selecting the parameters from Table 1 and solving Problem MaxProfit.
Figure 3 shows strong agreement between economic and actual allocations for
ViaBTC. On the other hand, the economic allocation for Bitcoin.com shows
very poor agreement with actual during the months prior to April, 2018. As a
result, we hypothesize that there do not exist any single values for risk toler-
ance and lookback that can describe the hash rate allocation of Bitcoin.com over

https://www.bitcoin.com/
https://btc.com/
https://www.bitcoin.com/
https://www.bitcoin.com/
https://www.bitcoin.com/
https://www.bitcoin.com/
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the entire time period. This hypothesis is corroborated by Fig. 1 (right), which
shows that inferred root risk has been decreasing rapidly since late November
2017. For this reason, we omit the Bitcoin.com mining pool from the remainder
of our analysis, as its allocations are not described well by our economic model.

Figure 4 shows the absolute error and aggregate allocation for the top four
pools (excluding Bitcoin.com) that participate in mining on both BTC and BCH.
Together, these pools constitute approximately 48% of the total hash rate for
BCH. From the plot of absolute error, we can see that economic and actual
allocations are typically quite close for the four mining pools; Table 1 shows that
their mean error is at or below 20%. The low error results in strong agreement
between the actual and economic aggregate allocations, shown in Fig. 4 (right).
We used Eq. 1 for aggregating both actual and economic allocations.

For comparison, we also plot two other price-driven allocations: D(BCH)
/ (D(BCH) + D(BTC)) and P (BCH) / (P (BCH) + P (BTC)). The function
D denotes the DARI, which is the value of the given chain’s coinbase in USD
divided by the current difficulty (we ignore fees). And the function P denotes the
USD trade price. Neither the relative DARI nor relative price show strong agree-
ment with actual allocations. Their Pearson correlation coefficients are 0.165 and
0.298, respectively, and the magnitudes of the allocations are also quite different
than actual. In contrast, the economic allocation provided by our model shows
strong agreement with the actual allocations both in terms of correlation coeffi-
cient, 0.649, as well as general similarity in the magnitude of the allocation. For
this reason we believe that it is valid to employ our economic model in describing
the aggregate behavior of the top four mining pools, excluding Bitcoin.com.

Fig. 4. Absolute error between economic and actual allocations (left) and aggregate
allocation (right) for the top four pools (excluding Bitcoin.com) mining both BTC and
BCH.

6 Using Risk to Explain Change in Inter-Block Time

Based on the economic model introduced in Sect. 4.1, we hypothesize a direct
relationship between short-term price fluctuations and deviation in inter-block
time (IBT). In particular, we hypothesize that a large change in the expected

https://www.bitcoin.com/
https://www.bitcoin.com/
https://www.bitcoin.com/
https://www.bitcoin.com/


Using Economic Risk to Model Miner Hash Rate Allocation 167

profit E[π(t)] will lead to a large change in a miner’s hash rate allocation wj(t),
which will propagate to the aggregate allocation w(t) defined by Eq. 1, and
ultimately impact IBT until the difficulty is adjusted.

Let T = [T1, . . . , Tn] denote the target IBT for each blockchain. If we assume
that the elapsed time δt was short enough that no blockchain has yet substan-
tially updated its difficulty, then the expected IBT will have changed by

δT = w(t)/w(t + δt) ◦ T , (6)

where “◦” and “/” denote element-wise vector multiplication and division.
Prediction of Change in IBT. Equation 6 provides a means of using our
economic model to predict the change in IBT from only historical price data and
miner risk tolerances. We analyzed historical data from November 14, 2017, until
June 1, 2018 using the aggregate economic allocation (with parameters chosen
from Table 1) to estimate the change in IBT for the BCH blockchain from one
6 h period to the next (non-overlapping) 6 h period. The experiment used the
top four mining pools, excluding Bitcoin.com, which constitute approximately
48% of the total hash rate on BCH during that time. Figure 5 shows the result of
these predictions compared to actual change in IBT using a 7-day rolling average
for both curves.

Despite being quite noisy, the figure shows a strong correlation between pre-
dicted and actual IBT change throughout the six and a half month timeframe.
The Pearson correlation coefficient between predicted and actual IBT is 0.849.
In addition to correlation, the predicted change in IBT also echoes the mag-
nitude of changes in actual IBT. However, the predicted result does appear to
consistently under-estimate the extent of change by as much as 0.05. There are
two possible reasons for this inaccuracy. First, our price data is accurate only
to the nearest hour, so it is possible that the full extent of large price shocks
is not reflected in the economic allocation. And second, ignoring the effects of
the DAA introduces a subtle bias. The DAA is much better at compensating for
an IBT that is too short as opposed to too long. When the IBT is short, more
blocks are arriving, so the algorithm has more opportunities to adjust the diffi-
culty. In contrast, when the IBT is very long, few adjustments are made since
the difficulty cannot be changed between blocks. Thus, IBT change less than 1
tends to be minimal while change greater than 1 tends to be exaggerated. Indeed
changes below 1 are small enough that the 7 day rolling average of the actual
IBT eliminates them entirely. But because the predicted IBT does not model
the effects of the DAA, it treats drops in allocation identically to spikes.

7 DAA Susceptibility to Price Shocks

In this section, we use our economic model to quantify how specific price changes
affect inter-block times (IBTs) via changes in hash rate allocation. We show that
even with a proactive controller that adjusts the difficulty every block, like the
DAA currently implemented for BCH, large enough price shocks can still lead to
long delays in IBT with affects being felt for a day or more. In reality, prices and

https://www.bitcoin.com/
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Fig. 5. Predicted (blue) and actual (pink) change in BCH inter-block time during one
6 h period compared to the next (non-overlapping) 6 h period. Predicted change in
block time is calculated using Eq. 1 and solving Problem MaxProfit with parameters
chosen from Table 1. (Color figure online)

their volatility are not the only determinants of miner behavior, but in Sects. 5
and 6 we presented evidence that these economic factors are often sufficient for
accurately explaining real world miner allocations and ultimately IBT.

Blockchains compensate for changes in hash rate with an algorithmic change
in difficulty. Ideally, the difficulty is changed so that IBT remains at a desired
mean, which is 600 seconds per block for BCH. Below, we quantify how a price
shock—a single, sudden rise or drop in price of BCH compared to BTC—can
change IBT given the current BCH difficulty adjustment algorithm (DAA). We
begin by characterizing typical price changes in BCH relative to BTC using
price data from November 2017 through May 2018. We then quantify how var-
ious changes in BCH price can affect allocation and IBT under a simplifying
assumption that all miners are applying the economic model.
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Fig. 6. The fraction of a given hour’s price to the price 24 h earlier, where price is
defined as BCH/(BTC+BCH). 98% of the time, the fraction is between 0.8 and 1.2.



Using Economic Risk to Model Miner Hash Rate Allocation 169

Figure 6 shows, for each hour, the fraction change in price from the previ-
ous 24-h period to the next (non-overlapping) 24-h period. Price is defined as
BCH/(BTC+BCH). As the plot shows, 98% of the time, daily price changes are
no greater than 20%. However, eight times the price changed approximately 30%
or more and once it changed by 80%. Thus, there exists historical precedence
for a maximum 24-h change of nearly 100%.

Section 6 argued that the aggregate allocation given by solving Problem
MaxProfit and applying Eq. 1 can be used to roughly predict actual IBT changes
even without taking into account the effect of the DAA on block time regulariza-
tion. We speculated that our failure to take the effect of the DAA into account
was a major cause of the downward bias in the prediction. Regardless of the
reason for the bias, Fig. 5 shows that the aggregate economic allocation can
accurately predict major changes in IBT, and if anything, might tend to under-
estimate the extent of increases in IBT. Thus, we believe that our economic
allocation provides a sufficiently accurate estimate of actual miner allocations to
be used to predict the effect of a price shock on IBT.
Price Shock Experiment. To quantify the effects of various price shocks, we
ran a block-generation simulator that updated the synthetic coin price every
block. All prices for BCH were initially set to p, the mean USD value for BCH
between November 2017 through May 2018. Each experiment introduced exactly
one shock x ∈ (0, 4], which set all prices subsequent to this shock block to px.
Thus, the BCH prices for each experiment formed a step function with a step
up in price after the shock block when x > 1 and a step down when x < 1. To
establish baseline volatility, we also added uniform random noise in the range
[−0.1p, 0.1p] to all prices. Prices for BTC were generated similarly except that no
shock was introduced and the base price p was set to BTC’s mean USD price over
the same time period. For each experiment, corresponding to a separate shock,
we ran at least 180 trials of the following Monte Carlo (MC) simulation. (i)
We formed the aggregate economic allocation for the top four miners (excluding
Bitcoin.com) by solving Problem MaxProfit using the synthetic prices for the
given experiment and parameters from Table 1 and substituting the result into
Eq. 1. (ii) The difficulty was initially set to an arbitrary value and allowed to
reach equilibrium at the pre-shock price. (iii) We stepped through the generation
of each block, adjusting the allocation every block according to the economic
allocations to determine the hash rate for the mining process. (iv) After each
block, we ran the DAA to adjust the difficulty according to the IBT of the mined
blocks.

Figure 7 (Top) shows the median change in economic allocation over all sim-
ulation trials that results from a single price shock x given by the value shown
in the legend. Figure 7 (Bottom) shows the corresponding changes in mean IBT.
Overall, we see that, even with compensation from the DAA, a drop in price
of as little as 50% can increase mean IBT by more than 50% for an entire day,
while a drop to 10% of the original value can double the mean IBT for at least a
day. Similarly, a rapid price increase by 50% is expected to raise the mean IBT

https://www.bitcoin.com/
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Fig. 7. The change in allocations (Top) and therefore inter-block time (Bottom) that
results from a single price shock that is larger than typical. The price shock is deter-
mined by a multiplier, shown in the legend. Allocations decrease as volatility increases,
which causes inter-block time to rise. For example a shock of 1.5 increases the price by
50% on day 1 and from there the price does not change. (From Monte Carlo simulation,
risk and lookback parameters from the top four BCH miners excluding Bitcoin.com.)

by 50% for at least a day, and an 800% price increase could more than double
the mean IBT for a day or more.

It is somewhat counterintuitive that both price drops (left plots) and
increases (right plots) result in lower economic allocations initially, and in the
long run, allocations actually stabilize to higher values after a price drop and
lower values after a spike. Allocations drop immediately after the shock date
because volatility has risen for BCH relative to BTC, regardless of the direction
of the shock. Essentially the economic allocation follows the maxim, “what goes
up must come down”. However, it is reasonable to question how realistic this
aspect of the economic model is during a price spike for BCH. Indeed, Figs. 1
(left) and 2 indicate that all of the top five miners except Bitcoin.com increased
their allocation in BCH after it massively gained in price on BTC at the end of
2017, despite the commensurate rise in risk. On the other hand, both ViaBTC
and Bitcoin.com reduced their allocation after the price (and risk) increase at the
end of May. The long-term rise in allocation after a price drop is simply due to
the fact that the baseline volatility relative to BTC becomes slightly lower after
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prices have stabilized and cleared every miner’s lookback period. The opposite
is true for the relative volatility after a price spike.

Another feature of the price shock simulation is the delayed after-shock
observed approximately seven days later. Mathematically, this is the result of
the expiration of the longest lookback period, corresponding to ViaBTC (see
Table 1). Prior to the date in question, there exist prices in the lookback from
both before and after the shock. Thus, the volatility remains high relative to
the baseline. However, once the last pre-shock price has cleared the lookback
period, volatility abruptly returns to baseline, causing a substantial increase in
allocation to BCH and a corresponding decrease in IBT. Over the course of
approximately one day, the DAA returns the IBT to normal. Although we do
believe that it is plausible that miners use price data from the recent past to
determine their current allocation, it is perhaps unlikely that they implement
such a hard cutoff as to produce a sudden shift in allocation. For that reason we
regard the aftershock as a modeling idiosyncrasy.

8 Conclusions

We have presented an economic model of miner hash rate allocation inspired
by Modern Portfolio Theory. The model is sufficient to explain, with low error,
the individual allocations of four of the top five mining pools active on both
BTC and BCH blockchains. Taken together, they form a very accurate model
of aggregate miner allocation between BTC and BCH using only historical price
data, a single risk value, and a single lookback period for each miner. Using this
aggregate allocation alone, it is possible to correctly predict major changes in
actual inter-block time (IBT). Our model is also capable of analyzing theoretical
price scenarios. It predicts that either a 50% drop or increase in the price of BCH
relative to BTC can increase BCH inter-block times by 50% for a day or more.
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Abstract. Payment transaction channels are one of the main proposed
approaches to scaling cryptocurrency payment systems. Recent work by
Malavolta et al. [7] has shown that the privacy of the protocol may con-
flict with its concurrent nature and may lead to deadlocks. In this paper
we ask the natural question: can payments in routing networks be routed
so as to avoid deadlocks altogether? Our results show that it is in gen-
eral NP-complete to determine whether a deadlock-free routing exists in
a given payment graph. On the other hand, Given some fixed routing,
we propose another way to resolve the problem of deadlocks. We offer a
modification of the protocols in lightning network and in Fulgor [7] that
pre-locks edges in an order that guarantees progress, while still main-
taining the protocol’s privacy requirements.

1 Introduction

Bitcoin is a digital cryptocurrency network and a worldwide payment system.
Bitcoin transactions are maintained in a public ledger known as the blockchain,
a database replicated among mutually distrusted users, who update it by means
of a global consensus algorithm based on proof-of-work [9].

The nature of the Bitcoin protocol limits the scalability of the network to
only tens of transactions per second. To overcome this issue, a system of off-chain
payment channels have been proposed [11]. In that system a pair of users adds
a single opening transaction to the blockchain where they lock their bitcoins
in a deposit secured by a Bitcoin script. Then they can perform mutual off-
chain payments by agreeing on the distribution of the deposit balance. To close
the channel, the users can broadcast a new transaction of the final balances to
the blockchain. This approach can be expanded to open channel paths between
users, thus creating a payment-channel network that enables a higher number of
payments with only few interactions with the underlying blockchain.

Any payment network must offer solutions to many issues, among these, the
privacy of transacting participants, and concurrency problems. In a recent paper
Malavolta et al. [7] formalize the privacy standards and analyze the trade-off
between privacy and concurrency in payment channel networks. They demon-
strate that payment networks that enforce non-blocking progress inevitably
reduce the anonymity set for sender and receiver of a payment, thereby weaken-
ing privacy guarantees.
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In this work we further explore issues related to the concurrency problem in
off-chain payment networks. First, we describe the network model and define a
deadlock in this model. We then show that finding a deadlock free routing for
several flows in a payment network is NP-hard. Lastly, we propose a modification
to the payment protocol in payment networks which enables both privacy and
concurrency.

1.1 Related Work

Blockchain scalability is a major issue today with many different approaches
to scaling. Payment channels constitute one of the main approaches, and come
in several versions and with various extensions [2]. The Lightning network is
the prominent proposition for Bitcoin [11] and Raiden [3] for Ethereum. Other
solutions have been proposed such as Plasma offering a scalable framework of
smart contracts that will work as a second layer for Ethereum [10]. Miller et al. [8]
propose payment channels that reduce the time coins are locked in intermediate
channels along a payment path.

‘Teechan’ has been proposed by Lind et al. [6] offering a full-duplex pay-
ment channel framework that can be deployed without having to modify existing
blockchain protocols, but relying strongly on secure hardware.

Payment channels networks face many challenges such as routing, liquidity,
privacy, concurrency and many more. Prihodko et al. [12] Offer an algorithm
for routing in the lightning network. Dandekar et al. [4] study the question of
liquidity in payment networks showing the similarity to general flow networks.

Rohrer et al. [13] offer an algorithm to find multiple payment routes in a pay-
ment channel network, based on general flow-networks algorithms which elevates
concurrency. Roos et al. [14] propose a new algorithm for routing in the network
which ensure privacy, efficiency and scalability. In these algorithms the route is
found based on a general algorithm, unlike in our setting in which the sender
decides on the route according to his criterion.

2 Background

2.1 Payment Channels

A payment channel is a framework that allows two users: u1, u2, to execute
many small transfers without committing them all to the Bitcoin blockchain.
The users add an opening transaction to the blockchain where they deposit
bitcoins into a multi-signature address controlled by both users. They can then
update the balance of the deposit using smart contracts that ensure that both
users agree on a re-distribution of the payments. Each individual is able to
commit the aggregate of all transfers to the blockchain in case the other party
stops cooperating or leaves [5,11].
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The channel’s capacity is limited in each direction as the amount of funds in
the joint channel is finite. More specifically, the amount of money u1 can pay u2

is limited to the amount of money that is ascribed to u1 in the multi-signature
address.

When the channel is no longer needed, or when it has reached its capacity’s
limit, a closing transaction is included in the blockchain in which each user
receives the amount of bitcoins according to the most recent distribution.

2.2 Payment Channel Networks

The single-channel framework can be leveraged to create a more connected net-
work of payment channels: A sender s can send money to a receiver t even if
they do not have an open channel between them. This is done by finding a path
of open channels from sender to receiver p = (s = u0, u1, ..., un = t), such that
the capacity in each channel is larger or equal to the amount of money that is
being transferred. Once a path if found, s can send b bitcoins to u1, u1 sends it
to u2 and so on, until finally t receives his money.

To ensure that an intermediate user ui in the path does not lose bitcoins in
the process a hashed timelock contract [1] is used. With a HTLC, the receiver
can claim the payment only if he can provide a pre-image of a cryptographic
hash, that he obtains if money was taken by the next node in the path. Such
evidence that the node can retrieve funds from the channel must be provided
within a certain deadline. Otherwise, the money returns to the sender.

In a payment path in the classic payment-channel set up, t creates a random
key R and computes its hash value h = H(R). He then sends h to s, and now
s can set up a HTLC with u2 which is dependent on R and expires after time
T . A HTLC is then set at each payment channel in the path to t such that the
expiration time is decreasing. When a HTLC is set between un−1 and t, t can
reveal R to claim his money. Every user in the path from t back to the source
of the payment can then fulfill the contract and receive his bitcoins. Since the
timeout of the HTLC between ui and ui+1 is smaller than the timeout of the
HTLC between ui−1 and ui, ui will have time to pull his bitcoins after R is
revealed to him and his money has been transferred to ui+1 [11]. In bidirec-
tional payment channels, additional mechanisms must be combined with these
described here to ensure that no node replays an old message that represents
an outdated allocation of the funds within the channel (an allocation that may
award this node a higher payment).

3 Network Model

In our model the payment channel network is represented as a directed weighted
graph G = (V,E), where the set V of vertices represents the users in the network
and the set E of edges are the open channels between users. The weight of each
edge c(u, v) denotes the channel’s capacity limit, that is the amount of coins user
u can pay user v.



178 S. Werman and A. Zohar

In this model, a bi-directional channel is represented by two directed edges,
one in each direction. This is sufficient for our discussion, since the amount
of money that can be transferred in one direction may be different than the
amount that can be transfered in the opposite direction. If a transfer of b bitcoins
along an edge from u to v is executed, the capacity of the edge is updated:
c(u, v) = c(u, v)−b. The capacity of the edge in the opposite direction is similarly
increased.

A valid transfer of b bitcoins from a sender s to a receiver t is a path P =
(s = u0, u1, ..., un = t) from s to t, such that ∀1 ≤ i ≤ n − 1, c(ui, ui+1) ≥ b. We
will assume that the network utilizes source routing, i.e., that the source node
s chooses the path through which payments are routed to the target t. Since a
user’s objective is to minimize the cost of the fees in a transfer, we can assume
there are no cycles in transfer routes.

Finally, we define the individual payment routing problem, which is the prob-
lem of selecting a route between a single source and target (this is the problem
faced by the individual payer in the network):

Definition 1 (Individual Payment Routing Problem). The individual
payment routing problem is a tuple (G, c, s, t, b) where G = (V,E) is a directed
graph representing the nodes and payment channels, c : E → R+ is a function
assigning capacities to the channels, s, t ∈ V are a source and target destination
respectively, and b is the amount of bitcoins to send from s to t.

The solution to this problem is a path P in the graph.

Definition 2 (Individually Feasible Solution). In the context of an indi-
vidual payment routing problem, We say that a certain path P is an individually
feasible solution to the routing problem if P is a simple path, from s to t, and
the capacity c(e) of every edge e = (ui, ui+1) between users in the path is larger
or equal to b.

Furthermore we define the fully clearing payment set as follows:

Definition 3 (Fully Clearing Payment Set). The fully clearing payment
set is a set of individually feasible payments in a network that have an order of
execution that ensures that they can all be carried out.

4 Routing and Deadlocks in Payment Channel Networks

4.1 Opening a Payment Route

Intuitively, the basic construction of a payment route is based on setting up a
sequence of channels, and revealing a secret to the last node in the path. The
secret allows the last node to retrieve money from the last payment channel
in the path, but would also reveal the secret to the preceding node, which will
enable it too to pull money from the channel leading to it. Hence, each node that
loses money, can ensure that it regains it by pulling money from the previous
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node in the path. The payment thus propagates back to the initial node which
is the source of the payment.

To be more precise, We describe a path set up as proposed in [7] using multi-
hop HTLC. First of all, the sender s creates a key for each pair of users in the
path by sampling n strings xi and for each pair (ui, ui+1) defining the hash value
of yi = H(

⊕n
j=i xj) Where H is an arbitrary hash function. He also generates

a proof πi to guarantee that each yi is well-formed, without having to reveal all
of the xj . He then sends (xi, yi, πi, zi), where zi is a timeout parameter, to each
user ui in the path through a direct communication channel. We refer the reader
to [7] for more details.

After verifying that all the values are correct, each pair of users (ui, ui+1)
starting from the sender, establish a HTLC as described in Sect. 2.2. Once the
HTLC between (un−1, t) is established, the receiver can release xn, and pull
his money. Then in reverse order each intermediate user can produce the key⊕n

j=i xj and is able to pull his money.
Notice, that once a HTLC has been established between ui and ui+1 as

part of a payment path the money is locked. If ui wants to cancel the HTLC’s
distribution he needs ui+1’s consent for creating a new commitment transaction.
This might result in money loss for ui+1, since he has an open HTLC with ui+2,
making it problematic for him to forgo the old contract.

4.2 Deadlocks in Payment Channel Networks

A deadlock in a payment network is a situation in which several simultaneous
payments share edges in their paths in such a manner that none of the payments
can go through. That is, while each payment is individually feasible, together
they may not be able to send money through edges that lack capacity. Further
more, each payment is holding up an edge that does not have enough capacity
for all transfers and each payment is waiting for an edge that is being held up
by another payment request.

Indeed, in payment networks the channel capacity is limited, so if two pay-
ment routes contain the same edge, they may not be able to pass through at the
same time. Furthermore, paths are composed of several edges that are acquired
(via the HTLC setup) one after the other. A payment can then block an edge
with an established HTLC and wait for another edge that is being held up by
another transfer etc. This can happen only if there is a cycle in the network’s
graph. Such situations can in fact result in a deadlock.

In our model we assume that when several payments are executed concur-
rently, the edges between the users in the paths are being taken up one edge at
a time, in a certain order which respects the inner ordering of each path. For
example, let us suppose two payments occur concurrently: payment 1 composed
of edges p1 = (e1, .., en) and payment 2 composed of edges p2 = (e′

1, .., e
′
m). Then

the edges are being taken up by each path in a certain order: (r1, ..., rn+m), where
for each edge ei ∈ p1 there is j such that rj = ei and is associated only with it
and similarly for each edge e′

i ∈ p2 there is k such that rk = e′
i and is associated

only with it. Furthermore if for i < j, ri, rj are both associated with edges from
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path p1 or are both associated with edges from path p2, then ri is before rj in
p1 or in p2 respectively. A concrete example of a deadlock in a payment network
is depicted in Fig. 1.

Proposition 1. Every deadlock problem between a set of individually feasi-
ble payments has an equivalent deadlock problem between a fully clearing pay-
ment set.

Proof. Given a set of individually feasible payments through paths p1, ..., pn:
{(p1, b1), ..., (pn, bn)}, we extend the set with flows {(p̄1, b1), ..., (p̄n, bn)}. Where
p̄i is a flow along the reverse of the path pi.

Notice that if the flow along pi is executed, and then the reverse flow along
p̄i follows, then the network capacities are effectively reset. As all flows are
originally individually feasible, other flows can proceed.

We additionally extend each path pi and its inverse, with a single edge of
capacity bi exactly that can be used initially only in the direction of pi. This
ensures that p̄i can be executed only after pi, hence, if all original flows are dead-
locked, none of the inverse flows can proceed, and the new setting is deadlocked
as well. ��
From now on, when we refer to a deadlock between an arbitrary set of individu-
ally feasible payments, we will assume that the set is the equivalent fully clearing
set without specifying so.

Fig. 1. Illustration of two blocking payments: payment 1 from s1 to t1 and payment
2 from s2 to t2. Each payment is of 1 bitcoin and the capacity of each edge is 1.
The capacity of the edge in the opposite direction is 0. The order of the execution is:
(a1, d2, b1, e2, c1, f2, e1, b2), where for each x ∈ {a, ..., f}, x1 is associated with edge x
in path 1, and similarly x2 is associated with edge x in path 2. The inverse payments’
edges come after that. Each edge is labeled with the label of the payment that has
reached it first (payment 1 in a dashed line, payment 2 in a solid line). Payment 1 is
unable to acquire edge e, and payment 2 is unable to acquire edge b, thus they are
deadlocked. Notice that if the ordering was different, such that payment 1 was carried
out fully, then its inverse and then payment 2 and its inverse, all payments would have
been able to go through.
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A well established method for detecting possible deadlocks is to use the
resource allocation graph. Here we define a similar notion: the edge allocation
graph for payment networks, which is a graph that keeps track of which resources
(edges) are needed for each payment.

Definition 4 (Edge Allocation Graph). Given a set P = {pi}mi=1 of indi-
vidually feasible solutions to a set of payment routing problems {(G, c, pi)}mi=1,
we can derive the edge allocation graph G′ = (V ′, E′) as follows:

There are two types of vertices in V ′: v1, ..., vm represent the payment paths
in P. For each i, vi = pi. vm+1, ..., vn represent the edges E, between the users
that are part of each payment path. For each j, vj = ej.

The graph has an associated vertex weight function w : V ′ → R+. For the path
vertices v1, ..., vm, w(vi) denotes the transfer amount bi, and for edge vertices
vm+1, ..., vn, w(vj) denotes the capacity of that edge c(ej).

Proposition 2. A deadlock in a payment channel network can occur (under
some ordering) iff its associated allocation graph contains a simple cycle and for
each edge vertex ej in the cycle, w(ej) < w(pi−1)+w(pi), where pi−1 and pi are
ej’s neighbors in G′ that are in the cycle.

Proof. If there is a deadlock in the graph in a certain ordering then there is a
path p1 which is holding up edge e1 and waiting for edge en, p2 is holding up
e2 and waiting for e1 etc. In the associated allocation graph there will be an
edge between vertex p1 and e1, between e1 and p2 etc. Finally there will be an
edge between en and p1. So the graph contains a cycle: (p1, e1, p2, e2,..., pn, en,
p1). Also notice that in the original graph, each edge ei in the deadlock does
not have enough capacity for both paths’ pi−1 and pi transfer amounts, which
means that in G, c(ei) < bi−1 + bi. So in G′, w(ei) < w(pi−1) + w(pi).

If there is a cycle in the allocation graph, denote it by (e1, p1, en, pn, en−1,
pn−1,..., p2, e1) and for each i, w(ei) < w(pi−1) + w(pi). Then we can set the
following ordering: (e1−p1, e2−p2, ..., en−pn,
e1−pn, ..., en−p1). Notice that in this ordering, path p1 held up edge e1 before
path p2 and there was not enough capacity for both and so on. So under this
ordering there is a deadlock between paths p1,...,pn in G. ��

4.3 The Safe Routing Problem

While in routing networks each individual sender picks their own route, it is
possible to wonder if there is a way to prescribe a route for each sender such
that deadlocks are avoided and progress is guaranteed. A trivial example, is a
complete graph (a clique) where we can assign any payment from u to v a direct
route on the edge u, v. In this case there would be no deadlocks. Can we do so
for other graphs?

In this section we show that even a centralized coordinating node will in
general need to solve a hard computational problem in order to find individually
feasible routes. We begin by defining the Safe Routing Decision Problem.
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Definition 5 ((G, c,K) Safe Routing Decision Problem). The (G, c,K)
safe routing problem is the problem of deciding whether there exist indi-
vidually feasible paths connecting the k given pairs of vertices K =
{(s1, t1, b1), .., (sk, tk, bk)} such that the routing solution is deadlock-safe, and
feasible with edge capacities c.

Proposition 3. (G, c,K) Safe Routing Problem ∈ NP .

Proof. There is a polynomial verifier for (G, c,K). Given a graph, routing and
its associated ordering we will create its resource allocation graph in polynomial
time:

First we will create vertices for all edges and payment paths and assign them
the applicable weights. Then we will go over each path and stretch an edge from
the path vertex to all of it’s edges’ associated edge vertices.

At the end of this process we will search for a cycle in G′ such that the edge
vertices ej in the cycle satisfy: w(ej) < w(pi−1) + w(pi), where pi−1 and pi are
ej ’s neighbors in the cycle. If such a cycle is found the verifier will return false,
otherwise it will return true. As we have shown, the allocation graph contains a
cycle in which all edge vertices’ weights satisfy the above inequality iff there is
a deadlock in the network. ��
Proposition 4. (G, c,K) Safe Routing Problem ∈ NP Complete.

Proof. We show a polynomial reduction from 3-SAT to the (G, c, k) safe routing
problem.

Given a 3CNF boolean expression, composed of variables x1, ..., xn and
clauses c1, ..., cm, we construct an instance of the (G, c,K) safe routing prob-
lem such that each payment is of 1 bitcoin, and the capacity of each edge is 1. It
will consist of a directed graph G, and m terminal pairs, (sc1, tc1), ..., (scm , tcm).
We shall prove that there is a individually feasible deadlock free routing in G if
and only if the boolean expression is satisfiable.

To describe our construction, we need a gadget Xj defined for each variable xj

as follows: Xj consists of two incoming vertices xin
j , x̄in

j , two outgoing vertices
xout
j , x̄out

j and 4 additional vertices. The vertices are connected as a cycle as
depicted in Fig. 2.

Now the graph G is constructed as follows: for each clause ci we add a
terminal pair (sci, tci). Then we connect the terminal pair to each variable gadget
ci is composed of. If ci consists of a variable xj we will stretch an edge from sci
to xin

j and from xout
j to tci. If it consists of its negation we will stretch an edge

from sci to x̄in
j and from x̄out

j to tci. See Fig. 2 for more details.
This completes the construction of G. All together G contains 2m + 8n ver-

tices, 6m + 8n edges and m terminal pairs, thus it can be constructed in poly-
nomial time from a boolean expression, composed of n variables and m clauses.
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Now suppose that there is an assignment to the variables that will make the
entire given expression true. Then we can find a deadlock free routing of G as
follows:

Fig. 2. Example of reduction graph for 3 − SAT = c1 ∧ c2 where c1 = (x̄1 ∨ x̄2 ∨ x3)
and c2 = (x2 ∨ x̄3 ∨ x̄4). Each clause has two associated vertices: sc1 and tc1 for c1
which are connected to gadgets x1, x2, x3 and sc2 and tc2 for c2 which are connected
to gadgets x2, x3, x4.

For each clause ci, at least one of the literals is true, so for a path from sci
to tci we will choose the corresponding edge from sci to that variable’s gadget,
pass through 3/4 of the cycle, and go through the gadget’s outgoing edge to
tci. Notice that the only edges in terminals’ paths that can be shared, are the
edges that are in a variable’s gadget. Since the assignment can not give the same
variable true and false, if two clause terminals paths share a gadget, they will
both enter and exit through the same vertices according to the assignment and
thus no deadlock can occur.

Conversely, suppose that G has a non-deadlock routing. Each path from a
source vertex sci has to pass through a gadget Xj in order to get to tci. So we
will assign the corresponding variable xj true if sci is connected to xin

j and false
otherwise. If there are gadgets with no routes passing through, we will assign the
corresponding variable true. Notice that if two paths share a gadget then they
both have to enter through the same vertex, otherwise the routing will cause
a deadlock. Thus each variable in the boolean expression will be assigned only
true or false, and so the described assignment is legal. Clearly, for each clause
at least one literal is true, so the entire boolean expression it true. ��
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5 A Deadlock-Free Payment Network Protocol

In [7] two algorithms have been proposed: Rayo, which provides non-blocking
progress but reduces the privacy guarantees, and Fulgor, which maintains privacy
but is a blocking protocol. In this section we propose a modification of the Fulgor
algorithm that resolves deadlocks, thus showing that a protocol maintaining
both privacy and concurrency can be achieved. We assume for our protocol that
vertices in the payment network have IDs. We thus propose that each edge e in
the network will have a unique ID associated with it, denoted id(e). This ID can
be set, e.g., using the IDs or IP addresses of the edge’s vertices. When s tries to
create a payment path he will lock edges in order dictated by the lexicographic
ordering of the identifiers of the edges.

We propose that when s wants to send b bitcoins through a path of open
channels, he will first send a request to all edges in the path to lock b bitcoins
for T amount of time. The requests will be sent in lexicographic order according
to the edges’ IDs.

The time span T sent to a node in the path should be long enough to enable
a request to be sent to all nodes in the path, but not long enough as to allow an
attack on the network. A time span that is too long can be exploited for attacks
by allowing a malicious user to lock edges for a long time thus delaying transfers
and preventing payments to go through. This is a challenge that all time based
protocols such as HTLC face.

If an edge receives a locking request and does not have enough capacity, it
should abort the payment by sending an abort message to the sender (through
the open communication channel). If it can accept the request, it should send an
accepting message to the sender and lock b bitcoins. If an edge receives a new
request within the time range of a previous request and it does not have enough
capacity for both, it should abort the new request.

If all edges accepted the request, s should proceed as described before: he
sets up a HTLC with u1, u2 then sets a HTLC with u3 and so on. That is, he
creates the HTLC, but this time ordering edges according to their order in the
path (this is required so that money is not stolen from one of the intermediate
nodes).

5.1 Protocol Description

In the following we will describe in detail the set-up operations. We assume
that each edge has an internal state e.lockedCoins which stores the amount of
locked coins in the edge and the timeout for each value. This information can
be maintained in a list of tuples.

initialize path(P,b,T): The sender sorts the list P of edges in the path to t
according to the lexicographic order of their IDs. Then he sends a request to the
tail node of the edge with the minimal ID to set aside b bitcoins for T time. See
Algorithm 1 for more detail.
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Algorithm 1. initialize path(P, b, T )
1: P ← sort(P ) � sort P by id’s of edges in P
2: u ← tail of edge P [1] = (u, v)
3: v ← head of edge P [1] = (u, v)
4: lock request(u, v, b, T ) � Send u a request to lock b bitcoins in the channel to v for

T time.

receive lock request(m): Upon receiving a request message m to lock b bit-
coins, the intermediate node u checks if it has enough capacity in the edge to
v. If it doesn’t it sends 0 to abort the payment. Then u checks the edge (u, v)’s
internal mode to verify that the sum of the new payment with the amount of
locked coins which timeout has not passed does not exceed the capacity. If it
does, u aborts the payment. If it decides to proceed with the payment it sends
1 through the communication channel and adds (b, T ) to u.lockedCoins. See
Algorithm 2 for more detail.

Algorithm 2. receive lock request(m)
1: if c(u,v) < b then
2: Send(m sender, 0)
3: return
4: locked sum ← 0
5: for (b′, T ′) in (u, v).lockedCoins do
6: if T ′ has not passed then
7: locked sum ← locked sum + b′

8: else
9: delete (b′, T ′)

10: if c(u,v) < b + locked sum then
11: Send(m sender, 0)
12: return
13: (u, v).lockedCoins.append(b, T )
14: Send(m sender, 1)
15: return

Algorithm 3. receive lock resp.
(m,P )
1: if m is 0 then
2: return
3: find i such that P [i] tail = u
4: if P[i+1] != null then
5: u′ ← tail of edge P [i + 1]
6: v′ ← head of edge P [i + 1]
7: lock request(u′, v′, b, T )
8: else
9: call Fulgor

receive lock response(m, P): Upon receiving a response m from an interme-
diate user u, s checks its value. If it’s 0, s does not continue to build the path
and the coins in the path that have already been locked will be released after
the timeout has passed. If it’s 1, s finds the edge with the following ID and sends
its tail node a request. If u was the last hop in the path, s proceeds to execute
the Fulgor algorithm. See Algorithm3 for more detail.
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5.2 Protocol Properties

We will now show that the protocol maintains the following properties:

Lemma 1. Balance security is maintained. An intermediated node can not lose
money.

Proof. Notice that no money is actually set aside before the HTLC is estab-
lished. As explained above, hash time locked contracts (HTLC) ensure balance
security [1]. ��
Lemma 2. Privacy is maintained. The set-up maintains the anonymity set for
sender and receiver of a payment.

Proof (sketch). As shown in the algorithm descriptions in Sect. 5.1 the protocol
can be executed using the Fulgor algorithm described in [7], with a slight addition
of locking bitcoins before the actual setup. This addition does not affect the
privacy guarantees since it only requires another message from the sender to
an intermediate user and an acceptance message from the intermediate user to
the sender. These messages can be sent through the communication channels
which are used for sending the HTLC set-up and they do not require additional
exposure. As proven in [7] Fulgor maintains the privacy requirements. ��
Lemma 3. Progress is maintained. This set-up enables non-blocking progress.

Proof. Assume by way of contradiction that there is a routing of transfers which
contains a circular wait. Namely there is a sequence of paths p1, ..., pn with
senders s1, ..., sn, such that p1 is holding edge e1 = (u1, v1) which is part of p2’s
route, p2 is holding edge e2 = (u2, v2) which is part of p3’s route, etc., and lastly
pn is holding edge en = (un, vn) which is part of p1’s route.

As described in Algorithm 1, when initializing a path the sender sorts the
edges in the path according to the lexicographic order of their IDs and sends
the request for locking coins one by one by that order. Notice that if sn did not
succeed in locking edge en−1 he would have received a negative response from
un−1 and would not continue to build the path, as shown in Algorithm3. Since
he is holding up edge en that means that sn sent a request to lock coins to
un by sending lock request and received a positive response. So we can deduce
that sn sent the request for edge en before edge en−1 which means that id(en) >
id(en−1). Through that same logic id(en−1) > id(en−2),...,id(e2) > id(e1), id(e1)
> id(en). Contradiction!

⇒ A circular wait can not occur in this setup. ��

6 Conclusions

Off-chain payment channels networks have to deal with many challenges such as
liquidity, concurrency, privacy and many more. In [7] it has been proposed that
there is no routing algorithm offering non-blocking progress and full privacy.
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In this work we have shown that assigning routes for a group of payments
in the current network protocol such that there is no deadlock in the system
is an NP-complete problem. We further proposed a new protocol that ensures
deadlock free routings while preserving the desired privacy properties.
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Abstract. Privacy in block-chains is considered second to functionality,
but a vital requirement for many new applications, e.g., in the industrial
environment. We propose a novel transaction type, which enables pri-
vacy preserving trading of independent assets on a common block-chain.
This is achieved by extending the ring confidential transaction with an
additional commitment to a colour and a publicly verifiable proof of
conservation. With our coloured confidential ring signatures, new token
types can be introduced and transferred by any participant using the
same sized anonymity set as single-token privacy aware block-chains.
Thereby, our system facilitates tracking assets on an immutable ledger
without compromising the confidentiality of transactions.

Keywords: Coloured coins · Privacy · Confidential ring signature
Commitments

1 Introduction

Trading is a basic human trait that extends to the digital world. Individual
trading without the need of intermediaries is enabled by block-chain technology.
Participants of a block-chain reach a global consensus on which trades are valid
and in which order. To achieve this, all transactions must be validated by peers
and checked for violations of conservation rules, e.g., creating an asset out of
thin air. The basic approach is to use plain-text transaction receipts, visible for
everyone which makes validation of the transactions straightforward.

The issue with these plain-text receipts is, that trades often include valuable
information for other parties, using the knowledge for their leverage. Indepen-
dent research [6,9] realised, that privacy in block-chain systems is important to
support the same features as analogue trades. Monero therefore introduced ring
confidential transactions to hide the sender identity (using ring signatures), the
recipient identity (using one-time payment addresses), and the amount trans-
ferred (using commitments) from the public, while maintaining the possibility
to verify the conservation. The real sender is indistinguishably concealed within
a set of decoys. To prove ownership of an asset, which is attached to a public key,
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a ring signature is used instead of a regular digital signature. The verifier of a
ring signature can check that the signer knows at least one of the corresponding
private keys, but not which one. To prevent double spending of the same asset,
the ring signature has to include a specific tag, which stores the identity of the
signer in an encrypted form. If two signatures have the same tag, they can be
linked and the second signature is invalid. Thus, no two assets can belong to the
same public key. This requirement demands for one-time recipient addresses,
which, in addition, serve the purpose of hiding the recipient from the public.
Therefore, a one-time key is derived from the long-term recipient public key, for
which only the recipient can derive the correct one-time private key. These one-
time addresses prevent multiple transaction outputs to be linked to a common
owner. This works well, if all transaction inputs are of equal value. However,
transaction inputs with different values, still allow for deducing the real sender
by comparing the transaction in- and outputs. In order to prevent this kind
of sender derivation and to add privacy, the transaction value is hidden inside
a commitment. Additively homomorphic Pedersen commitments [7] allow the
sender to prove that the input minus the output of a transaction is zero, thereby
proving the conservation without disclosing the amount. A detailed description
of the techniques used is summarised by Alonso et al. [1].

The added privacy compared to fully visible transaction receipts restricts
features, such as Turing complete smart contracts, which are common on non-
privacy aware block-chains. Smart contracts are recipients, whose behaviour is
governed by code. A prominent use-case of smart contracts is the management of
tokens. These tokens can be sub-currencies or used to track assets independent
of the block-chain’s native currency.

In this paper, we introduce an extension to the ring confidential transaction to
support sub-currencies with the benefit of privacy aware trading. Our construc-
tion features multiple coexisting asset types, also known as colours. A transaction
can transfer exactly one colour, but the decoy inputs can be from any colour,
having the same anonymity set as single-colour privacy aware block-chains. The
colour of the transaction is only known to the interacting parties (sender and
recipient of the current transaction), but not to anyone else, achieving a fully
privacy aware verification of colour conservation from inputs to outputs.

With the help of our new transaction type, all participants of the block-chain
can introduce new token types for their own purposes. The consensus verifies
that a new colour does not yet exist to prevent unauthorised issuance of existing
tokens. All the new tokens will benefit from the privacy aware transactions with-
out the barrier of creating an independent chain per colour. A new block-chain
per colour reduces the opportunities for decoys in a transaction which negatively
impacts the privacy of the whole system. On top, multiple colours on a single
block-chain facilitate future on-chain atomic swap operations between colours.

2 Preliminaries

Our contribution extends the ring confidential transaction (ringCT), which is
prominently used in Monero for the RCTTypeFull, to support a colour attribute



190 F. Engelmann et al.

for in- and outputs of a transaction. In this section, we describe the required
building blocks, an additively homomorphic commitment scheme and a linkable
ring signature, which are the same as for the ringCT. In addition to this, a
full ringCT requires range proofs, but as our extension does not require an
adaptation thereof, we refer the reader to the work of Noether et al. [6] for the
full construction.

We use elliptic curve cryptography for our commitments and signatures. An
elliptic curve is a group with the possibility to add an element, also called point,
to another or itself resulting in a new point on the curve. This allows for the
multiplication of a scalar x to a point. A curve standardises a base point G,
which is the generator of a preferably large subgroup. Elliptic curves are suited
for cryptography, as calculating x given P = xG is hard, known as the discrete
logarithm problem. This property can be used to generate private-public key
pairs (sk = x,pk = xG).

2.1 Pedersen Commitments

To hide a value a in an Elliptic Curve Pedersen commitment [7] requires two
points, where one can be the base point G and the second point H = ψG
must be created, such that ψ is unknown to anyone. A nothing up my sleve
generation of H can be generated by hashing the base point with a hash function
H mapping from a point to another point with H = H(G). G and H are the
public parameters of the given system. To build a commitment to a value a, a
secret, random blinding factor x is generated and then combined to

C(a, x) = xG + aH.

Pedersen commitments are perfectly hiding and computationally binding under
the discrete logarithm assumption. A commitment C(0, x) = xG is binding but
not hiding. By publishing the point C(a, x), the sender commits to the value
a, and can only change the choice by brute-force searching for a different pair
x′, a′ satisfying C(a, x) = xG + aH = x′G + a′H which has a negligible chance
of success.

The Pederson commitment has the desirable property, that finding the value
y with C(a, x) = yG for a �= 0 and x �= 0 is difficult according to the discrete
logarithm problem. However, given that a = 0, the commitment is reduced to
C(0, x) = xG + 0H = xG. Then the private key to the committed point is x
which is used to sign the commitment and thus proving knowledge of x.

An additional feature of the commitments are their homomorphicity in regard
to addition. Three commitments C1(5, x1), C2(3, x2), C3(2, x3) can be summed
together like C1−(C2+C3) = x1G+5H−(x2G+3H+x3G+2H) = (x1−x2−x3)G
resulting in a commitment to zero C0 with secret key x1 − x2 − x3. Whoever
can sign the sum of the commitments proves knowledge of all the components
and proves that the sum of values is 0. For values which should be in plain-text,
but which are needed to perform calculations, a commitment can be opened, by
immediately disclosing a and x.
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2.2 Multilayered Linkable Spontaneous Ad-Hoc Group Signature

The second building block we require for our colour extension is the Multilayered
Linkable Spontaneous Ad-Hoc Group Signature (MLSAG). This is a modifica-
tion of the Fujisaki-Suzuki (FS) [3] and the Liu-Wei-Wong (LWW) [4] signatures
to increase their space efficiency. It provides a signature where the signer can
prove knowledge of a set of private keys which are embedded in a larger set of
decoys. The verifier can not deduce for which subset the signer knows the private
keys. If any one of the private keys is reused, the two resulting signatures can
be linked together, preventing double spending of a single output. The keygen,
sign, verify and link algorithms are described according to Noether et al. [6].

(P j , xj) ← ML.Keygen(1λ): Generate a vector of m private keys xi for i =
1, . . . ,m with the corresponding public keys P i = xiG.

(P j
i , Ij) ←ML.Keyselect(P j): Select a set of n − 1 vectors, each containing m

public keys {P j
i }j=1,...,m

i=1,...,n from other users. For a secret index π, correspond-
ing to the signer, all the secret keys xj must be known, such that xjG = P j

π

and let Ij = xjH(P j
π) for j = 1, . . . ,m.

σ ←ML.Sign(m, P j
i , xj , Ij): Let m be the message to sign. For j = 1, . . . ,m and

i = 1, . . . , π − 1, π + 1, . . . , n draw sj
i and αj as secure, random scalars. With

a hash function h : {0, 1}∗ → Zq, compute Lj
π = αjG and Rj

π = αjH(P j
π)

for j = 1, . . . ,m. Continue with the vector i = π + 1 as

cπ+1 = h(m, L1
π, R1

π, . . . , Lm
π , Rm

π )

Lj
π+1 = sj

π+1G + cπ+1P
j
π+1 and Rj

π+1 = sj
π+1H(P j

π+1) + cπ+1Ij

and calculate L and R for each increment of i mod n until i = π − 1 like

cπ−1 = h(m, L1
π−2, R

1
π−2, . . . , L

m
π−2, R

m
π−2)

Lj
π−1 = sj

π−1G + cπ−1P
j
π−1 and Rj

π−1 = sj
π−1H(P j

π−1) + cπ−1Ij .

Given cπ = h(m, L1
π−1, R

1
π−1, . . . , L

m
π−1, R

m
π−1), we calculate sj

π with αj = sj
π

+cπxj mod l (modulus curve order l) and the output consists of

σ = (c1, s11, . . . , s
m
1 , s12, . . . , s

m
2 , . . . , s1n, . . . , sm

n , I1, . . . , Im). (1)

0/1 ←ML.Verify(m, σ, P j
i ): Starting with i = 1 and c1, calculate Lj

i and Rj
i for

all i and j. If cn+1 = c1, the signature is valid and 1 is returned, 0 otherwise.
0/1 ←ML.Link(σ, σ′): If the signatures σ and σ′ share an Ij , they used the

same private key xj in the signing process and 1 is returned, 0 otherwise.

The MLSAG signature scheme must satisfy the the following correctness condi-
tions: For every λ,m ∈ N, every n ∈ N\{1}, every (P j , xj) ← ML.Keygen(1λ),
and every m, it holds with high probability that

ML.Verify(m, σ ← ML.Sign(m, P j
i ← ML.Keyselect(P j), xj , Ij), P

j
i ) = 1.
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The MLSAG satisfies the following security properties which are proven in the
original LWW signature description [4] and the construction by Noether et al. [6]:

– Unforgeability: negligible probability of producing a valid signature without
knowledge of all private keys in one vector.

– Linkability: negligible probability of being able to produce two different sig-
natures using the same private key in both.

– Signer Ambiguity: negligible additional probability of guessing the secret
index, even by knowing private keys of decoy inputs.

3 Our Coloured Ring Confidential Transaction

Having explained the necessary building blocks, we proceed with a detailed
description of the RCTTypeFull ringCT and highlighted the additional elements
required for our extension in red.

In- and Outputs. Our transaction requires inputs, which are outputs of pre-
vious transactions. The sender selects m inputs to be used. Depending on how
many decoys per input (n − 1) the sender wants to include in the transac-
tion, additional m · (n − 1) inputs are selected. Each input contains a pub-
lic key P j

i , which was generated as a one-time payment address. The amount
a each input holds is stored in a Pedersen commitment Cj

i (a, b) with blind-
ing factors b. The sender only knows aj,in and bj,in and xj for the inputs
(P j

π = xjG,Cj
π(aj,in, bj,in)) under its control. All real inputs make up one vector

{(P 1
π , C1

π(a1,in, b1,in)), . . . , (Pm
π , Cm

π (am,in, bm,in)}
at the secret index π. The decoy vectors at i = 1, . . . , π − 1, π + 1, . . . , n are
assembled equally, with neither knowledge of the private keys for P j

i nor of the
blinding factors and amounts of the commitments Cj

i .
We introduce the colour property as an additional commitment in each

input. Colours are defined as scalars fi. Each input gets an additional com-
mitment F j

i to a colour. For the sender owned inputs, the colours fj,in and
blinding factors uj,in of the commitments F j

π(fj,in, uj,in) are known. An input
(P j

π , Cj
π(aj,in, bj,in), F j

π(fj,in, uj,in)) is now composed of the recipient one-time
key and two commitments. The q outputs of a transaction are also represented as
a tuple of three elements (Pk, Ck(ak,out, bk,out), Fk(fout, uk,out)) for k = 1, . . . , q
with the blinding factors bk,out and uk,out randomly drawn and secret.

Conservation. The sum of amounts of all inputs into a transaction must always
be greater or equal to the sum of all output amounts, so the plain-text equation∑m

j=1 aj,in − ∑q
k=1 ak,out = 0 translates to a commitment equation

m∑

j=1

Cj
i −

q∑

k=1

Ck = Ci
0 (2)
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resulting in a commitment Ci
0 to zero. For i = π in Eq. (2), the signer knows all

amounts aj,in and blinding factors bj,in, which make up the private key to Cπ
0 .

This conservation ensures, that no asset is created in a transaction.
To ensure, that the real inputs are all from the same colour, the colour

commitments F j
i are checked in pairs to the colour commitment of the first

output F1. Again we can use a commitment to zero F j
i − F1 = F i,j

0 , which
does not disclose the colour. Unlike the summation of the amounts, comparing
aggregate commitments utilising the homomorphic property is not secure and
could lead to the following attack. An attacker creates a transaction with two
input colours fin − ε and fin + ε and an output fout. If we only verify that
fin − ε + fin + ε = 2fout the inputs are not necessarily from the same colour.
This conservation rule only supports one colour per transaction. Transactions
with multiple colours involved, maintaining the signer ambiguity is supported
by an extended version of our scheme currently in development.

Signature. The n commitments from the amounts and n ·m commitments from
the colour checks can now be signed by an MLSAG from Sect. 2.2. To bind a zero
commitment to the originating spend key, and to have independent link tags,
the public key is added to the commitment. As the sender knows the private
key xj to the spend key P j

π and the components of the commitments to colour
and value, it can still sign the sum of commitment and P j

π with xm+1+j =
xj + fj,in − f1,out. The following set of vectors is used as key input P j

i into the
ML.sign(m, P j

i , xj , Ij) algorithm with Ij from the ML.Keyselect algorithm:

P :=

[{

P 1
1 , . . . , Pm

1 ,

m∑

j=1

(P j
1 + Cj

1) −
∑

k

Ck, P 1
1 + F 1

1 − F1, . . . , P
m
1 + Fm

1 − F1

}

,

. . . ,

{

P 1
π , . . . , Pm

π ,
m∑

j=1

(P j
π + Cj

π) −
∑

k

Ck, P 1
π + F 1

π − F1, . . . , P
m
π + Fm

π − F1

}

,

. . . ,

{

P 1
n , . . . , Pm

n ,

m∑

j=1

(P j
n + Cj

n) −
∑

k

Ck, P 1
n + F 1

n − F1, . . . , P
m
n + Fm

n − F1

}]

.

Output Proofs. The amounts are values modulus the curve order l, so overflows
can be used to create new assets in a transaction. To counter this, the ringCT
uses range proofs [2,5] to confine the output amounts to the interval [0, 264].
Our extension has to make sure, that all outputs are commitments to the same
colour. We achieve this by appending q − 1 signatures for the zero commitments
F1 − Fk = F k

0 for k = 2, . . . , q.

Public Verification. The complete transaction with the references of the
inputs and outputs and the ring signature σ is broadcast and anyone is able
to verify the transaction and the conservation of assets. Therefore the vec-
tors of public keys P j

i are read from the referenced inputs together with the
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amount and colour commitments. The points for checking the conservation
are calculated. The transaction is accepted if ML.Verify(σ,m, P j

i ) = 1 and
ML.Link(σ, σ′) = 0 for all other transactions σ′.

4 Discussion

In this section we evaluate the theoretical impact of our extension and discuss
its implications on the privacy of the whole system.

Correctness. The correctness of the proposed scheme, is satisfied by the avail-
ability of a rightful owner of an output and it’s corresponding key to transfer
the funds of one colour to another address. This is given under the correctness
of the non-colour aware ringCT. The restriction of real in- and outputs being of
the same colour only separates the transactions into different asset types, but
within each of them, funds can be transferred.

Size and Performance Overhead. The MLSAG signature size increases sig-
nificantly compared to a RCTTypeFull transaction. The current MLSAG signa-
ture (Eq. (1)) requires (n(m + 1) + 1 + m)32 + ε Bytes, with ε being the size of
variable length encoded positions of the ring members. In addition to this, the
q outputs require q(1 + 64 · 2 + 64)32 Bytes for the Borromean range proofs [5]
including signatures and commitments proving a range of 64 bit.

Our extension depends on longer vectors because of the colour equivalency
proofs. The signature size then increases by n · m additional random values
s1,m+2, . . . , s1,m+1+m, . . . , sn,m+2, . . . , sn,m+1+m to (n(m + 1 + m) + 1 + m)32+
ε Bytes. The range proofs for the amount stay exactly the same. To prove that
the colours of the outputs are all the same, we need additional q − 1 signatures
for pairwise commitments to zero.

The range proofs use most of the space of the current transactions, so that
our increase in signature size is quite negligible. Only for a high number of inputs,
the impact is significant. Comparing only the signature sizes, our new approach
requires approximately twice the space. With the introduction of bullet proofs [2]
the range proof size will no longer increase linearly, but logarithmically leading
to a greater influence of the colour overhead.

Security Analysis. Our construction uses the MLSAG and Pedersen com-
mitments in a unmodified version as black-boxes and can therefore rely on the
guarantees provided by these primitives.

The addition of a token colour provides a second attribute with which trans-
actions can be related. In a transaction with multiple inputs, an attacker who
knows that referenced inputs have different colours can discard these from the
anonymity set. Assuming a worst-case uniform distribution over colours of trans-
actions the probability of selecting a complete decoy vector with the same colour
is 1

χm and vanishing with the number of inputs m and a total of χ colours.
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For a more likely distribution of transaction frequencies modelled by a power
law, with most outputs in the native colour, the probability to find a one-colour
decoy is higher. A Zipf distribution results in a probability of approximately one
in each 20 decoy vectors having 2 equal colours for a transaction with two inputs
and a reasonable 200 colours in total.

Initial Colour Creation. The ability to transfer privacy aware coloured tokens
requires a token issuing protocol to begin with. A simple way is to allow an
additional output in a transaction granting the output address a defined number
of tokens in a new colour. With an open colour commitment, the transaction is
only valid, if the colour is new with respect to all previous colour initiation
transactions. Depending on the usage of the new token type, the amount can be
an open commitment, to publicly announce the total supply of the token, or, if
not needed, be confidential.

5 Related Work

Confidential Assets. Poelstra et al. [8] created a protocol to hide transaction
values and allow the transaction of multiple assets on the same block-chain. They
use Pedersen commitments to store the amount of each UTXO and because of it’s
homomorphic properties, can publicly verify the conservation. To mark different
assets, a asset tag in the form of a commitment to a curve point is added to
each output. These asset tags must be generated, such that no factor in any pair
of assets is known to anyone. By the discrete logarithm assumption it is hard
to verify that no such factors exist for newly introduced assets. While this is
no limitation of block-chains with a predefined number of different assets, the
dynamic addition of new asset types by untrusted participants can introduce
asset which might have a nontrivial factor to an existing one. Moreover their
scheme does not support sender set anonymity.

Hidden in Plain Sight: Transacting Privately on a Blockchain. Oleg
Andreev at Chain Inc. also proposed a multi asset transaction1 with the same
fundamental techniques as the confidential assets. They also represent different
assets as orthogonal curve points and need to verify that the factors between
assets are not known to anyone. As the work before, sender anonymity can not
be satisfied by hiding the real transaction input in an anonymity set.

6 Conclusion

We introduced an extension to the ring confidential transaction to support mul-
tiple colours of tokens to coexist on one block-chain. The transaction is publicly

1 https://blog.chain.com/hidden-in-plain-sight-transacting-privately-on-a-blockchain-
835ab75c01cb.

https://blog.chain.com/hidden-in-plain-sight-transacting-privately-on-a-blockchain-835ab75c01cb
https://blog.chain.com/hidden-in-plain-sight-transacting-privately-on-a-blockchain-835ab75c01cb
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verifiable to transfer only assets in a single colour, without disclosing it. To
achieve a high grade of anonymity, the decoy inputs can be of any token colour.
Thereby, we allow for an easy issuance of privacy preserving tokens which benefit
from each other by disguising themselves with each other. On top, our approach
can use all the existing privacy preserving mechanisms in place, such as an
anonymous peer to peer network, to maintain the privacy of the participants.
Compared to contending solutions, we only require a small adaptation of an
existing protocol.
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Abstract. The increasing number of cryptocurrencies, as well as the ris-
ing number of actors within each single cryptocurrency, inevitably leads
to tensions between the respective communities. As with open source
projects, (protocol) forks are often the result of broad disagreement. Usu-
ally, after a permanent fork both communities “mine” their own business
and the conflict is resolved. But what if this is not the case? In this paper,
we outline the possibility of malicious forking and consensus techniques
that aim at destroying the other branch of a protocol fork. Thereby, we
illustrate how merged mining can be used as an attack method against a
permissionless PoW cryptocurrency, which itself involuntarily serves as
the parent chain for an attacking merge mined branch of a hard fork.

1 Introduction

Merged mining is already known for posing a potential issue to the child cryp-
tocurrencies, as for example demonstrated in the case of CoiledCoin1, however
so far no concrete example that merged mining can also pose a risk to the par-
ent chain has been given. Since, (parent) cryptocurrencies can not easily prevent
being merge mined2, an attack strategy using this approach would be applica-
ble against a variety of permissionless PoW cryptocurrencies. In this paper, we
describe a scenario where merged mining is used as a form of attack against a
parent chain in the context of a hostile protocol fork.

1.1 System Model and Attack Goals

For our attack scenario, we assume a permissionless PoW based cryptocurrency
B, whose miners cannot agree whether or not to change the consensus rules.
1 cf. https://bitcointalk.org/index.php?topic=56675.msg678006#msg678006.
2 The inclusion of a hash value within a block to provably attributed it to the creator

of the proof-of-work (PoW) is enough to support merged mining [7].
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Some of the miners want to adapt the consensus rules in a way such that newly
mined blocks may not be valid under the old rules, i.e., perform a hard fork.
Thereby, we differentiate between the following actors:

– Backward compatible miners (B): The fraction of miners (with hash rate
β) in a currently active cryptocurrency B which does not want to change the
consensus rules of B.

– Change enforcing miners (C): The fraction of miners (with hash rate α)
in a currently active cryptocurrency B which wants to change the consensus
rules, i.e., perform a hard fork. Moreover, they want to make sure, that only
their branch of the fork survives.

– Neutral miners (N ): The set of miners (with hash rate ω) that has no
hard opinion on whether or not to change the consensus rules. They want
to maximize their profits and act rationally to achieve this goal, with the
limitation that they want to avoid changes as far as possible. If there is
no immanent need which justifies the implementation costs for adapting to
changes, they will not react3.

For our example, we assume that C wants to increase the block size, while B does
not want to implement any rule change. The goal of the attackers in C is twofold:
(1) Enforce a change of the consensus rules in the respective cryptocurrency. (2)
Destroy the other branch of a fork which uses the same PoW and does not follow
the new consensus rules.

1.2 Background

For this paper, we are only interested in forking scenarios that are not bilateral.
In a bilateral fork, conflicting changes are intentionally introduced to ensure
that two separate cryptocurrencies emerge [16]. An example for such a scenario
would be the changed chain ID between Ethereum and Ethereum Classic. It
is commonly believed that in a non-bilateral forking event, the only reliable
possibility to enforce a change requires that the majority of the mining power
supports the change. Thereby, two main cases can be distinguished according
to [16]:

If the introduced change reduces the number of blocks that are considered
valid under the new consensus rules, all new blocks are still considered valid
under the old rules, but some old blocks are no longer considered valid under
the new rules. An example for such a scenario would be a block size decrease. In
this case the first goal (enforce) of our attack is easy to achieve if α > β+ω holds,
since any fork introduced by α will eventually become the longest chain and be
adopted by β and ω because of the heaviest chain rule. If B decides to continue
a minority branch, they have to declare themselves as a new currency B′ and
change their consensus rules to permanently fork off the main chain in B such
that larger blocks are again possible. Therefore, the goal to enforce is clearly
3 This should capture the observation that not all miners immediately perform merged

mining if it is possible, even though it would be rational to do so [7].
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reached in such a case. However, the destroy goal cannot be reached directly if
B forks to a new cryptocurrency B′.

If the introduced change expands the set of blocks that are considered valid
under the new consensus rules, then some blocks following the new rules will
not be considered valid under the old rules. Therefore, any mined block that is
only valid under the new rules will cause a fork. An example for such a scenario
would be a block size increase4. In this case a permanent hard fork will only
occur if the chain containing blocks following the new rules grows faster, i.e.,
α > β+ω holds. The result would be that the forking event creates two different
currencies: Cryptocurrency C, which includes big blocks, and cryptocurrency B,
which forked from the main chain after the first big block. Therefore, again the
destroy goal cannot be reached directly. To reach the goal destroy, some miners
in C could be required to switch to the new currency B and disrupt its regular
operation, e.g., by mining empty blocks. This of course has the drawback that the
respective attacking miners that switched from C to B do not gain any profits
in C, and their rewards in B will be worthless if they succeed in destroying the
B fork.

The pitchfork attack method proposed in this paper aims to achieve both
attack goals simultaneously, even in cases where α < β + ω holds.

2 Pitchfork Attack Description

The basic idea of a pitchfork attack is to use merged mining as a form of attack
against the other branch of a fork, in a permissionless PoW Cryptocurreny, that
is the result of a disputed consensus rule change. The pitchfork should reduce
the utility of the attacked branch to such an extent, that the miners abandon
the attacked branch and switch to the branch of the fork which performs merged
mining and follows the new consensus rules. We call the cryptocurrency up to
the point of the fork ancestor cryptocurrency B̄. After the forking event, the
backward compatible cryptocurrency, which still follows the same rules, is denoted
as B, whereas the change enforcing cryptocurrency branch that uses merged
mining and the new consensus rules is denoted as C.

To execute the attack, the new merge mined branch C accepts valid empty
blocks of B as a PoW for C. In the nomenclature of merged mining the chain B,
which should be attacked, is called the parent chain and chain C is called the
child chain. For a valid parent block b of B, the following additional requirements
need to be satisfied: (i) The block b has to be empty. Therefore, the contained
Merkle tree root in the header of the respective block must only include the
hash of the (mandatory) coinbase transaction. Given the corresponding coinbase
transaction, it can then be verified that b is indeed empty. (ii) The coinbase
transaction of b must include the hash of a valid block c for C. The header of
block c contains a Merkle tree root with the actual transactions performed in C.

4 Our example, in which C wants to increase the block size and B does not want to
implement any rule change, would resemble such an expanding protocol change.
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Fig. 1. Example of blocks mined in the two chains B and C after the forking event.

Figure 1 shows the two cryptocurrencies after the fork. The last block in the
ancestor cryptocurrency B̄ before the forking event is b0. The first empty block
that is merge mined is b1 in this example. This block (b1) is valid under the old
rules and fulfills the difficulty target in B. Moreover, the block b1 was mined by
a miner in C, which happens with probability α, and contains the hash of block
c1 in its coinbase. Therefore b1 serves as a valid PoW for C as well. Block b2 was
not mined by a miner in C, which happens with probability 1− α, and therefore
it is not empty and does not contain a hash for a valid block for C in its coinbase.
This shows that the two chains are not necessarily synchronized regarding their
number of blocks. The block interval in C depends on the difficulty target of C.
Since we assume that the attacker does not control the majority of the hash rate
(α < β + ω), the difficulty d in C should be lower than in B at the beginning of
the attack, i.e., dC < dB holds. If the difficulty has been adjusted in C, then the
overall number of blocks should be approximately the same for both chains. In
such a case, there might be empty blocks such as b′

4, which do fulfill the difficulty
target for C, but not for B. Still, if dC < dB holds, then over time a fraction of
all blocks in B, corresponding to α, will be mined by a miner in C. If we assume
that α ≈ 0.34 then approximately every third block in B should be empty.

Side Note Regarding Difficulty: Theoretically it would be possible that chain
C requires the same, or an even a higher difficulty than chain B. If dC ≥ dB ,
then chain C would contain less blocks than chain B, this of course would have a
negative effect on the latency in chain C, i.e., the time it takes till a transaction is
confirmed. However any merge mined blocks that meet the difficulty requirement
dC will be considered valid in B. For example, when dC = dB , the number of
blocks in C relative to B would only correspond to the fraction of the hash rate
(α) that performs merged mining. Nevertheless, since chain C increased the block
size, the throughput could theoretically remain the same or even be higher than
in chain B (depending on the actual implementation). Some examples regarding
an increased block size are discussed in [3,6]. Alternatively, Bitcoin-NG [4] could
also be applicable. The latter approach would have the added benefit that the
negative impact on latency and confirmation times is mitigated. To illustrate
our attack, it is not of particular relevance which adaptation is used to increase
the throughput in C.
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2.1 Effects of the Attack

In the simplest case, if no counter measures are taken by the chain under attack, a
pitchfork reduces the utility of the target chain B by the number of empty blocks,
corresponding to the hash rate of the attackers (α). Considering the limited
block size in B and past events in Bitcoin5, where the number of unconfirmed
transactions in the mempool peaked at around 175, 000 in December 2017, a hash
rate of α ≈ 0.34 would likely have a non negligible impact on the duration of such
periods, and hence transaction fees and confirmation times. This could sway both
users and miners in N to switch to the attacking chain C, which further reinforces
the attack. Two other advantages of the attack are, that it is pseudonymous and
that the risk in terms of currency units in B is parameterizable.

Pseudonymous: Since the pitchfork attack is executed by miners through pro-
ducing new blocks that are, in addition, merge mined with the attacking chain,
it is in theory possible to hide the identities of the attackers because no unspent
transaction outputs need to be involved in the attack that could have a traceable
history. However, additional care needs to be taken by these miners to ensure
that their identity is not inadvertently revealed through their behavior [7].

Parameterizable: The attack is not an all-in-move and its costs, in terms of cur-
rency units in B, can be parameterized. The goal of the attack is to destroy
the original chain B, but if this fails the attackers may not lose much. Due to
merged mining the main costs of a failed attack result from the forgone profits
from transaction fees that are not collected in chain B. Additional costs created
by merged mining, i.e., running and additional full node for chain B, can be
negligible compared to the overall costs related to mining [12]. Moreover, even
a failed attack on B can still be profitable for the attacking miners, since the
attackers in C are early adopters of C. If the value of the newly created cryp-
tocurrency C increases enough, the additional income may not only compensate
the reduced income from mining empty blocks in B, but could even create a
surplus for the miners in C. In addition, the attack can be made compatible with
other available cryptocurrencies that can be merge mined with B. Therefore,
additional revenue channels from existing merge mined cryptocurrencies are not
affected by the pitchfork and can even help to subsidize the attack.

As a further parameterization for the attack, it is also possible to execute
it in stages. To test whether there is enough support for chain C, it is possible
to first start with relatively low risk to the attackers by not requiring them to
mine empty blocks and instead only demand the creation of smaller blocks which
can still include high fee transactions. From there, the attackers can reduce the
number of permissible transactions step by step. At a final stage, all coins earned
through mining empty blocks in B can also be used to fund additional attacks,
such as triggering additional spam transactions in B as soon as the 100 blocks
cooldown period has passed. For instance, splitting the coinbase rewards into
many individual outputs of a high enough value with different lock times and
5 https://blockchain.info/charts/mempool-count?timespan=1year.

https://blockchain.info/charts/mempool-count?timespan=1year
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rendering the output scripts as anyone can spend can lead to a large influx of
additional transactions, as users (and miners) compete to scoop up these free
currency units. This is easy to verify as an additional rule in C, however more
complex attack scenarios such as those outlined in [1,10,14] may also be included
as additional consensus rules.

3 Countermeasures

In this section we outline some countermeasures that can be taken by B.

Fork away empty blocks in B: The miners in B can decide to fork off empty
blocks and just build on top of blocks containing transactions. This requires the
coordinated action of all miners in B. If β > α + ω this approach will work in
general. A possible counter reaction by the attackers in C would be to introduce
dummy transactions to themselves in their blocks in B. Therefore, it has to
be ensured that those transactions are indeed dummies. For example: All used
output addresses of every transaction belong to the same entity, but this must not
be correlated given just the block bn in B. One way to achieve this, is to require
that all output addresses in a block have been derived from the miner’s public
key of the respective block, like in an Hierarchically Deterministic (HD) Wallet6

construction. The master public key property of such a construction allows that
future ECDSA public keys can be derived from current ones. This is done by
adding a multiplication of the base point with a scalar value to the current public
key. The corresponding secret key is derived in the same manner, but can only
be computed by its owner. If it is not possible to perform a transaction to an
address for which the miner does not have the corresponding private key, the
utility of every transaction in the block is very limited. To check this condition
on an arbitrary block bn, the public key of the miner as well as the scalar value
for the multiplication is required. These values can be added to the coinbase
transaction of the corresponding block cn in C.

If such dummy transactions are used, the miners of B would be required
to monitor the chain C to deduce which block in B has been merge mined
with C and includes only dummy transactions. If B finds such a block they
then can still cause a fork in B to ignore it. Besides being more complex, this
also poses a potential risk for all transactions in B. Since the block bn could
be released before cn, there is no way to tell whether or not bn was indeed
merged mined and hence includes a hash to cn before cn has been published in
C. With this knowledge, miners in C can intentionally create forks in B when
releasing cn. By slightly relaxing the rules for dummy transaction and allowing,
for example, one transaction output address that is not required to be derivable
by the HD construction, double spends can be executed more easily in B. In this
particular case miners of merged mined blocks can include a regular transaction
that they want to double spend in their block, being assured that this block will

6 cf. BIP32 https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki.

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
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get excluded in retrospect by all miners β in B if cn is released. Therefore, more
fine grained exclusion rules on transaction level would be necessary.

These examples illustrate, that it is non-trivial to change the consensus rules
in B such that the effects of a pitchfork attack are mitigated. Every change of the
defender leads to an arms race with the attacker. Moreover, excluding all merge
mined blocks in B requires active monitoring of C to detect them. Therefore,
at least the miners in B have to change their individual consensus rules – which
they wanted to avoid in the first place.
Use mining power to launch a counter-attack on C: Miners in B can use their
mining power to stall the attacking chain C. However, this has several limita-
tions: Since every block in C requires an empty parent block in B as part of its
PoW, miners cannot create empty merge mined blocks in C while at the same
time creating full blocks in B. To stall chain C, at least a fraction of β, e.g.,
βa ≤ β has to mine empty blocks in B to create empty merge mined blocks for
C. Thereby, the counter-attackers would actually help the pitchfork attack. For
our analysis, we assume that the difficulty target in C is indeed lower than in
B, i.e., dC < dB holds. To clearly overtake the pitchfork chain C, the counter-
attacking miners need to have more than 50% of the hash rate in C. If not,
the lost throughput, caused by empty blocks in C, might be compensated by the
increased block size. This introduces the first constraint for the counter-attackers
that the hash rate βa they dedicate to the counter-attack must follow βa ≥ α.
However, the counter-attackers must also take care not to push the total hash
rate dedicated towards attacking B to over 50% in B, otherwise more destructive
attack rules than mining empty blocks, such as requiring non-empty blocks to be
ignored, may be rendered effective. If the defenders are able to reliably identify
all attackers’ blocks they can try to fork them away in B. However the disad-
vantages of any (additional) attack rules, such as anyone-can-spend transactions
or fork-away-non-empty blocks, still apply and can cause damage to B through
their own blocks mined by βa. The second constraint hence requires that for a
counter attack, the bound α + βa < 0.5 for the share of blocks in the heaviest
chain of B holds.

Depending on the exact implementation of merged mining in C, the counter-
attackers have some options to avoid that their empty blocks in B, which they
are required to provide as PoW, further reduce the utility of B. For example,
in a näıve approach they could only submit PoW solutions to C that fulfill the
difficulty target for C but not for B. This has the marked disadvantage that any
blocks meeting the difficulty target of B also cannot be submitted as solutions
in C, effectively reducing the counter-attackers’ hash rate βa in C by a factor
dependent on the particular difference in difficulty between C and B. A better
counter-attack can be achieved if the defenders intentionally construct blocks for
the parent chain B that are unlikely to end up in the main chain, yet are still
accepted as a valid proof-of-work in C. For instance, stale branches in B could be
created and extended, however this is only effective if the freshness requirements
for parent blocks in C are not too tight. In both cases, since βa is no longer
contributing toward the effective hash rate of B, its remaining honest miners
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ω + β − βa must still retain a hash rate that exceeds that of the adversary to
ensure that honest blocks constitute a majority of the heaviest chain. Therefore,
the original attacker gains an advantage from merged mining since he can use his
full hash rate in both chains at the same time. Moreover, the counter-attacking
fraction of the miners would forgo their rewards in B for the duration of the
counter-attack.

Figure 2 shows the hash rates achievable by the defender/counter-attacker
on the respective chains B and C for different values for the hash rate α of
the pitchfork attacker. In this figure the simplified assumption is made that the
total hash rate of neutral miners ω is zero and hence the total hash rate of the
defender/counter-attacker (β = 1 − α) can be split between the two chains B
and C arbitrarily. In this case, an attacker with α > 1

3 total hash rate cannot
be countered on both chains simultaneously without losing the majority β < 0.5
on one of the chains.

Fig. 2. Calculation for the hash rates of the defender/counter-attacker in the respective
chains B and C for different values of pitchfork attacker hash rate α

4 Related Work

In [7] it is argued that merged mining could also be used as an attack vec-
tor against the parent chain, however no concrete examples are given. Differ-
ent forking techniques in the context of cryptocurrencies are described in [16].
The focus is placed on a non-malicious forking technique called velvet fork, ini-
tially proposed in [8]. Different methods that can be used in hostile blockchain
takeovers are described in [2], placing the focus on attacks where the attacker
has an extrinsic motivation to disrupt the consensus process, i.e., Goldfinger
attacks [9]. The example given in the paper at hand is a concrete instance of
such a situation. Therefore, most of the described methods can be used in con-
junction with our proposed attack. The same holds true for the large body of
work on bribing [1,11] and incentive attacks that distract the hash rate of par-
ticipants [14,15]. Furthermore, selfish mining and its variants [5,13] may be used
in combination with pitchfork attacks.
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5 Discussion and Future Work

In this paper, we outline that merged mining can be used as an attack method
against a PoW cryptocurrency in the context of a hostile protocol fork. The
general idea of such an offensive consensus attack is, that the participants of the
offensive system are required to provably attack a different system as part of the
consensus rules. We show that such attacks are theoretically possible and can
lead to an arms race in which defenders are forced to adapt their consensus rules.
Still, the consequences as well as the economic and game theoretic incentives of
such attacks have yet to be analyzed in greater detail to better understand if
they are practicable, and if so, how to protect against them.
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Abstract. Privacy Impact Assessments (PIAs) play a crucial role in
providing privacy protection for data subjects and supporting risk man-
agement. From an engineering perspective, the core of a PIA is a risk
assessment, which typically follows a step-by-step process of risk identifi-
cation and risk mitigation. In order for a PIA to be holistic and effective,
it needs to be complemented by an appropriate privacy risk model that
considers legal, organisational, societal and technical aspects. We propose
a data-centric approach for identifying and analysing potential privacy
risks in a comprehensive manner.

1 Introduction

It is widely recognised that the potential impacts of data-processing activities
need to be proactively assessed in the early stages of the design process [12].
This has led to the emergence of the concept of a Privacy Impact Assessment
(PIA)—a process that identifies and mitigates the impact of an initiative on
privacy with stakeholders’ participation [19]. In order for a PIA to be holistic
and effective, it is necessary for it to be complemented by an appropriate privacy
risk model that considers legal, organisational, societal and technical aspects.

Privacy is a multifaceted concept that requires multidisciplinary consider-
ations [8]. Privacy engineering, therefore, requires a sufficiently robust privacy
risk model to identify potential privacy risks. The identified risks can then be
addressed through risk management approaches, which include the selection and
application of risk controls. We extend prior work by referring to fundamentals
from the broader literature to underpin the main concepts of PIAs along with
their meanings and properties. We present a data-centric approach that illus-
trates the main steps of identifying and analysing potential privacy risks in a
meaningful manner. Through a realistic case study, we demonstrated the useful-
ness and applicability of this approach in a specific context. We argue that this
contribution lays the foundation for systematic and rigorous PIA methodologies.

c© Springer Nature Switzerland AG 2018
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2 Background and Motivation

Ensuring that the processing of personal data is conducted fairly and lawfully is
one of the main challenges in the context of data protection. This challenge has
raised concerns over data-processing activities that may lead to privacy viola-
tions or harms. Privacy by Design (PbD) [7] has been advocated as a response [8].

To realise the concept of PbD in the system development lifecycle (SDLC),
potential privacy risks need to be proactively analysed and their potential harms
need to be appropriately assessed [15]. In some jurisdictions, ‘legal compliance
checks’ [15] or ‘prior checking’ [9] are the most commonly used privacy assess-
ment procedures. These procedures are often not conducted by engineers; rather,
auditors, lawyers or data protection authorities utilise a check-list to check com-
pliance with legal frameworks [15]. With the advent of information and commu-
nication technologies, holistic and effective impact assessments are considered as
complements to, or replacements for, these assessment procedures [15]. This has
contributed to the emergence and wide use of the concept of PIAs.

A PIA is an ongoing process that begins at the earliest possible stages [20].
As such, PIAs are considered as a key means to address one of the main concerns
of embedding privacy into the early stages of the design process, which is the
manifestation of PbD [11]. Existing PIA processes strive to achieve the aim of
PbD by applying its foundational principles [15].

The core of a PIA is a risk assessment, which typically follows a step-by-step
process of risk identification and risk mitigation [15]. While PIAs are expected
to follow the same philosophy, existing PIA processes largely fall short in this
regard [15]. These limitations leave a number of open questions: (1) How can
we develop a privacy risk model that defines and/or refines key concepts and
assessable risk factors, as well as the relationships among the factors? ; (2) How
can we identify potential privacy risks in a contextual and comprehensive manner
to ensure the provision of end-to-end privacy protection? ; and (3) What is the
appropriate level of detail for such a model?

3 An Analysis of PIA Processes

To identify data-processing activities that may lead to privacy violations or
harms, it is essential to represent these activities in a way that is amenable to risk
analysis and compliance checking. Rigorous data models need to be adopted to
support the management and traceability of the processing and flow of personal
data, as well as to help support identifying the planned, actual and potential data
flows and processing. Such data models are expected to represent data-processing
activities in a comprehensive manner and at an appropriate level of abstraction.
This includes: personal data items, data-processing activities, involved actors,
and their roles and responsibilities. Such information helps establish the context
in which personal data is processed and identify system boundaries.

Some PIA processes, such as the BSI IT-Grundschutz [5], apply security risk
analysis to privacy principles, which are typically given at a high level of abstrac-
tion, instead of relying upon a set of concrete protection goals. This, in turn,
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reduces privacy protection to the concepts of anonymity, pseudonymity, unob-
servability and unlinkability [4,15]. Thus, targets of evaluation—i.e. personal
data and data-processing activities—need to comply with legal frameworks and
standards, and ensure that they will not lead to potential privacy violations and
harms. These targets define the scope of PIAs. As privacy principles are semanti-
cally different from concrete data-processing activities, it is difficult to use them
for assessing these activities and describing design decisions at an architectural
level. Accordingly, privacy principles need to be translated into concrete and
auditable protection goals to aid engineers in specifying design strategies.

In order to conduct an appropriate privacy risk analysis that goes beyond a
traditional security analysis, it is essential to develop a risk model that defines
the key risk factors that have an impact on privacy risks, and to establish a con-
ceptual relationship among these factors [12]. Existing PIA guidance documents,
however, are not accompanied with proper guidelines or conceptual models that
describe key risk factors to sufficiently support privacy risk assessment [15].

PIAs need to be complemented by an appropriate privacy risk model that
goes beyond traditional security risk models. Such a model needs to consider not
only legal and organisational aspects, but also societal and technical aspects.
The model needs to refer to fundamentals from the legal privacy literature to
underpin the main concepts, the key risk factors and the conceptual relationship
between these factors. This addresses the first question of Sect. 2 (“How can
we develop a privacy risk model that defines and/or refines key concepts and
assessable risk factors, as well as the relationships among the factors?”).

Importantly, a privacy risk model needs to adopt a sufficiently robust model
that facilitates end-to-end privacy protection and serves as the basis for the
identification, analysis and assessment of potential privacy risks in a proactive,
comprehensive and concrete manner. Such a robust model needs to sufficiently
and contextually represent data-processing activities in a way that is amenable
to risk analysis and compliance checking. This addresses the second question of
Sect. 2 (“How can we identify potential privacy risks in a contextual and com-
prehensive manner to ensure the provision of end-to-end privacy protection?”).

In addition, an appropriate analysis approach needs to be adopted to system-
atically describe how combinations of risk factors are identified to be analysed.
Such an approach needs to consider the appropriateness of the starting points of
risk assessment and the level of abstraction in the context of privacy and data
protection. This addresses the third question of Sect. 2 (“What is the appropriate
level of detail for such a model?”).

4 A Privacy Risk Model

We review two privacy risk analysis methodologies [10,12] upon which we build
by refining the concepts, risk factors and relationships among these factors. We
have chosen these models as they define and distinguish the key notions, risk
factors and relationships among these factors in the context of privacy and data
protection. To compare, we refer to fundamentals from the legal privacy litera-
ture to underpin the key concepts and risk factors along with their meanings,
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properties and relationships. In particular, we refer to the boundaries of privacy
harm [6] to understand the specific characteristics and categories of privacy
harms. In addition, we refer to Solove’s taxonomy [16] to understand the specific
characteristics of adverse privacy events and associated categories. Finally, we
leverage the concept of contextual integrity [13] to understand the main charac-
teristics of appropriate flow of personal data with reference to context-relative
informational norms, from which vulnerabilities can be derived.

We define and/or refine the basic concepts used in conducting risk assess-
ments to be appropriately applied in the context of privacy and data protection.

A threat is an event or action with the potential for privacy violation, or which
might adversely impact the privacy of data subjects through the processing of
personal data via inappropriate collection, retention, access, usage, disclosure
or destruction. In our risk model, the threat concept can be decomposed into a
threat source and a threat event.

A threat source is an entity with the capability to process (lawfully or unlaw-
fully, fairly or unfairly) data belonging to a data subject and whose actions may
instantly and/or eventually, accidentally or deliberately manifest threats, which
may lead to privacy violations or harms. Each type of a threat source can be
characterised by: type (insider or outsider; individual, institution or government;
human or non-human), motives (stemming from the value of personal data),
resources (including skills and background knowledge that helps re-identify data
subjects), role (the way in which a concerned entity participates in processing
operations), and responsibility. The specified attributes of a threat source are
used to assess the capability of exploiting vulnerabilities. As such, a threat source
is more relevant to vulnerability analysis than impact assessment. We use the
concept of a threat source to ensure that it can be used appropriately for mod-
elling actors with malicious and benign purposes. Joyee De and Le Métayer [12]
use the concept of risk source to refer both to unauthorised entities process-
ing personal data and to entities with legitimate processing capabilities. In [10],
risk sources are those who act, accidentally or deliberately, on the supporting
assets, on which the primary assets rely. Accordingly, threat sources who act,
accidentally or deliberately, on the primary assets are not modelled. As such, we
refine these concepts to be used appropriately at an appropriate level of abstrac-
tion. With regards to threat sources who act on the supporting assets, we refine
the standard definition of threat action. A threat action is an intentional act
(actively or passively) through which a threat source exploits the vulnerabilities
of the supporting assets. It is important to separate the concept of the threat
action to engage with the supporting asset and the threat event when a threat
source acts against the primary asset.

A threat event is a technical event that may happen at specific points in
time which has an effect, consequence or impact, especially a negative one, on
the privacy of data subjects. Such events involve adverse actions justified by
reference to personal data. A threat event is a possible source of privacy viola-
tions or harms: it occurs as a result of a successful exploitation of one or more
vulnerabilities by one or more sources. Each type of threat event can be char-
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acterised by: nature (continuous or discrete; excessive or necessary; anticipated
or unanticipated), scope (an individual, a specific group of individuals or whole
society), and category (according to the taxonomy of privacy). Joyee De and Le
Métayer [12] and the CNIL methodology [10] use the concept of ‘feared events’.
By referring to them as feared events, we may limit those to internal and unpleas-
ant emotions and perceptions caused by the threat. As such, we use the notion
of ‘threat events’ to describe harmful or unwanted events that may not be antic-
ipated by data subjects. Since these events not only describe the data subject’s
perceptions, we prefer to use threat events to describe unwanted, unwarranted
or excessive processing activities that will lead to actual adverse consequences.
They refer to a non-exhaustive list of common categories of feared events that
an analyst should consider. However, we prefer to consider a well-known classi-
fication of such events. For the purpose of this paper, we consider only technical
threats that are processing-related. In particular, we focus on data-processing
activities, which are composed of adverse actions that are justified by reference
to personal data, and events that cause the performance of these actions, which
can and do constitute privacy violations or create privacy harms.

A privacy vulnerability is a weakness or deficiency in personal data mod-
elling, the specification or implementation of processing operations, or privacy
controls, which makes an exploitation of an asset more likely to succeed by one
or more threat sources. Successful exploitations lead to threat events that can
result in privacy violations or harms. In our context, assets can be classified
into primary assets and supporting assets [10]. The former refers to personal
data that is directly concerned with processing operations, as well as processes
required by legal frameworks and standards. The latter refers to system compo-
nents on which the primary assets rely. For the purpose of this paper, we focus
on the primary assets and associated vulnerabilities. Each type of vulnerability
can be characterised by exploitability and severity. These are used to estimate
the seriousness of a vulnerability.

The CNIL methodology [10] uses the concept of vulnerability, which refers to
a characteristic of a supporting asset that can be used by risk sources and allow-
ing threats to occur. In contrast, Joyee De and Le Métayer [12] use the concept of
‘privacy weakness’ to refer to a weakness in the data protection mechanisms. By
using this concept, they aim to include weaknesses that may not be considered
by using the concept of vulnerability, such as inappropriate functionality from
which privacy harms may stem. As such, we use the concept of vulnerability with
a broader view to not identify them only within data protection mechanisms.
Privacy vulnerabilities can be found in the implemented privacy controls and
the specified processing operations along with required personal. In addition, we
use the classification of assets of [10].

A privacy violation is an unfair and/or unlawful action that accidentally or
deliberately breaches privacy-related laws, regulations, unilateral policies, con-
tracts, cultural norms or principles. Such actions are triggered by occurrences
of threat events that result from the successful exploitation of one or more vul-
nerabilities. In reality, inappropriate processing of personal data may lead to
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privacy violations, which may involve a variety of types of activities that may
lead to privacy harms [16]. Importantly, the presence of a privacy violation does
not mean that it will necessarily create an actual privacy harm. Further, privacy
harms can occur without privacy violations [6]. Each type of privacy violation
can be characterised by: type (unlawful or unfair), degree (excessive or limited),
and scope (an individual, a group of individuals or whole society).

Joyee De and Le Métayer [12] and the CNIL methodology [10] do not distin-
guish between privacy violations and harms.

A privacy harm is the adverse impact (incorporeal, financial or physical) of
the processing of personal data on the privacy of a data subject, a specific group
of data subjects or society as a whole, resulting from one or more threat events.
A widely held view conceptualises a privacy harm as the negative consequence
of a privacy violation [6]. However, privacy harms are related to, but distinct
from, privacy violations. This implies that it is not necessary for an actor to
commit a privacy violation for a privacy harm to occur and vice versa. Each
privacy harm can be characterised by: type (subjective or objective), category
(incorporeal, financial or physical), adverse consequences (last for a short time,
last for a certain length of time or last for a long time), and affected data subjects
(a data subject, a specific group of data subjects, or whole society). Subjective
privacy harm represents the perception of inappropriate processing of personal
data that results in unwelcome mental states, such as anxiety, embarrassment or
fear, whereas objective privacy harm represents the actual adverse consequence,
such as identity theft that stems from the potential or actual inappropriate
processing of personal data [6].

The CNIL methodology [10] uses the concept of prejudicial effect to assess
how much damage would be caused by all the potential impacts. As such, feared
events are ranked by estimating their severity based on the level of identification
of personal data and the prejudicial effect of these potential impacts. To identify
potential impacts of feared events, consequences on the identity and privacy
of data subjects and human rights or civil liberties need to be identified. This
means that it does not characterise privacy harms to facilitate their identification
and analysis. In contrast, Joyee De and Le Métayer [12] use the concept of
privacy harms with specific attributes and categories. In our approach, we use
the same concept with more details to identify privacy harms at a detailed level
of abstraction according to the properties and boundaries identified in [6].

5 An Analysis Approach

Risk analysis approaches differ with respect to the starting points of risk assess-
ments and levels of abstraction. In order for risk assessments to be effective,
they need to synthesise multiple analysis approaches to identify the key factors
of risk. Potential privacy risks need to be identified, analysed and assessed in a
systematic manner. As such, our approach consists of four steps.

Step 1: Context Establishment. Establishing the context in which per-
sonal data is processed plays a crucial role in understanding the scope under
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consideration by identifying all the useful information for privacy risk analysis.
This includes the types of personal data to be processed (primary assets that
need to be protected), along with its sources; the purposes for, and the manner
in which, this data is processed; involved actors and their assigned roles and
responsibilities; relevant legal frameworks and standards; and domain-specific
constraints.

As discussed in Sect. 4, primary assets are classified into personal data and
processes. As such, personal data, associated processes and involved actors need
to be represented in a way that is amenable to analysis. While describing sys-
tems in multiple views is important [15], we emphasise the importance of data-
management models that represent data and associated processing activities
at a detailed level of abstraction. We believe that data lifecycles are better at
describing processing activities in a detailed level of abstraction.

The Abstract Personal Data Lifecycle (APDL) Model [2] was developed to
represent data-processing activities in a way that is amenable to analysis and
compliance checking. It represents the personal data lifecycle in terms of lifecycle
stages, along with associated activities and involved actors. It can be used to
complement a PIA for describing the planned, actual and potential processing of
personal data, which, in turn, helps facilitate the management and traceability
of the flow of personal data from collection to destruction [2].

Accordingly, we adopt the APDL model to represent the primary assets,
along with involved actors. Personal data is represented in the DataModelling
stage. This stage represents the relevant objects, associated properties, rela-
tionships and constraints for the purpose of specifying the minimum amount of
required personal data. Processes are abstractly represented in eight stages: Initi-
ation, Collection, Retention, Access, Review, Usage, Disclosure and Destruction.
In each stage, data-processing activities and those required by legal frameworks
and standards are concretely represented in StageActivity, StageEvent and Stage-
Action. In addition, involved actors and the way in which they participate in
processing activities are represented in LifecycleRole and LifecycleActor. We use
the UML [14] profile for the APDL model proposed in [1] to represent personal
data, associated processes and involved actors.

Step 2: Vulnerability Analysis. We assume that identifying and analysing
vulnerabilities of the supporting assets is part of security risk analysis to ensure
availability, integrity or confidentiality of the primary assets. We focus only on
vulnerabilities of the primary assets to protect the privacy of data subjects and
ensure the contextual integrity.

The first step is to define a baseline model of processing that describes the
targets of evaluation (primary assets) at an appropriate level of abstraction. To
this end, we adopt the concept of contextual integrity [13], which was developed
to bring the social layer into view by identifying four main elements: contexts,
attributes, actors and transmission principles. These elements constitute context-
relative informational norms, which govern the flow of information in a particular
context to ensure its appropriateness. From a technical perspective, these norms
can be adapted by including processing activities as an element to consider both
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the flow of personal data and the processing of this data (we refer to the adapted
norms as context-relative processing norms). In so doing, contextual integrity is
about the appropriate flow and processing of personal data.

In order to comprehensively identify and analyse all possible vulnerabilities
of the primary assets, a baseline model, which describes personal data, asso-
ciated processes and involved actors, needs to be represented in a way that is
amenable to analysis. As such, the baseline model of processing can be described
in terms of context-relative processing norms. We adopt the APDL model as a
source to capture and represent personal data, associated processing activities,
involved actors and their assigned roles in each stage of the lifecycle. In addi-
tion, processing principles—which can be derived from legal frameworks, stan-
dards or domain-specific constraints—are represented as constraints for each
data-processing activity in each stage of the data lifecycle. We use the UML
profile for the APDL model to describe the context-relative processing norms in
a widely-used modelling notation.

Once the context-relative processing norms, which constitute a complete
baseline model, are established, vulnerabilities can be derived from how these
norms would be breached or disrupted to violate contextual integrity. Crucially,
each element of each processing norm (data attributes, data-processing activi-
ties, actors and processing principles) need to be considered separately to ensure
that: the data attributes are sufficient to fulfil the data-processing activity; the
data-processing activity is assigned to authorised actors according to their roles
and responsibilities; and the constraints (pre and post-conditions) are modelled
in a way that ensures the data-processing activity is specified in conformity with
the processing principles. Improper data model and a lack of data minimisation
are examples of weaknesses for the elements of attributes and processing princi-
ples respectively. These vulnerabilities may be exploited by a threat source and
lead to the identification of a data subject as a threat event. For each vulnerabil-
ity, its exploitability and severity need to be identified and estimated in relation
to the attributes of Sect. 4.

Step 3: Threat Analysis. In order to identify all possible threat sources,
it is necessary to establish the context in which personal data is collected and
processed (as per Step 1). The context helps support engineers in understand-
ing the scope of analysis, multiple stakeholders, the nature and sensitivity of
the processed data. Once the context is established, a list of actors involved in
the processing of personal data can be identified, along with assigned roles and
responsibilities. In particular, the Initiation stage can be used to concretely iden-
tify the types of personal data to be collected and processed, and to abstractly
identify involved actors and their roles and responsibilities. In order to identify
involved actors at a detailed level of abstraction, we use the basic types of life-
cycle roles (data modeller, data subjects, data controllers, data processors and
third parties) in each stage of the lifecycle as a source of such details. A lifecy-
cle role is a set of logically related activities that are expected to be conducted
together and assigned to different actors as responsibilities according to their
capabilities. In addition, a list of entities with interests or concerns in the value
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of these types of personal data can be identified. All such entities are poten-
tial threat sources. For each threat source, its type, motives, resources, role and
responsibilities need to be identified in relation to its attributes.

Once the context is established, and vulnerabilities and threat sources are
identified, a list of threat events with the potential to adversely impact the pri-
vacy of data subjects can be identified. We adopt the taxonomy of privacy [16]
as a means for characterising adverse privacy events. The taxonomy helps facil-
itate the identification of these events in a comprehensive and concrete manner.
It classifies the most common adverse events into four basic groups: informa-
tion collection, information processing, information dissemination and invasions.
Adverse events are arranged with respect to a model that begins with the data
subject, from which various entities collect personal data. Data holders process
the collected data. They may also disseminate or release the processed data to
other entities. The progression from collection through processing to dissemina-
tion is indicative of the personal data moving further away from the control of
the data subject. In the last group of adverse events (invasions) the progression
is toward the data subject and does not necessarily involve personal data [16].

The taxonomy was developed to serve as a framework for the future devel-
opment of the field of privacy law. In our approach, however, we focus only on
data-driven adverse events that are more related to primary assets than support-
ing assets. From a technical perspective, these adverse events need to be arranged
around a widely used model in the field of systems engineering for describing
the processing of data. The taxonomy classifies the most common adverse events
into four basic groups that to a certain extent are arranged around a well-known
processing model: the input-process-output (IPO) model. The first three groups
(information collection, information processing and information dissemination)
represent the input, process and output stages of the model respectively. The
fourth group (invasions) is not related to that model as invasions are not only
caused by technology and invasive adverse events do not always involve personal
data; rather they directly affect data subjects. As such, we consider only some
aspects of these events that involve personal data throughout the collection and
disclosure stages of the lifecycle. We use the IPO model as a starting point
towards describing these events at a detailed level of abstraction. As such, we
adopt the APDL as a model around which we arrange these events. We map the
basic groups of adverse events onto the stages of the data lifecycle. Additional
detail about the conceptual relationship between the categories of the taxonomy
of privacy and the stages of the APDL model is illustrated in [3]. Each type of
an adverse threat event can be characterised by a set of attributes according to
the nature of a processing operation in each stage of the lifecycle that reflects
the manner in which personal data is collected, processed and disseminated.

Step 4: Privacy Harm Analysis. Once privacy vulnerabilities, threat
sources and threat events are identified, privacy violations can be identified as
illegitimate or unanticipated data-processing activities that may result from the
occurrence of threat events without negative consequences on data subjects. In
particular, for each possible exploitation, privacy violations are activities that
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can be conducted without adverse actions taken against data subjects, as well
as without their knowledge. For each type of privacy violation, its degree and
scope need to be identified in relation to its attributes.

Once privacy vulnerabilities, threat sources and threat events are identified,
privacy harms can be derived from these events as potential adverse conse-
quences on the privacy of data subjects. We use the categories of privacy harms
of [12] that have been identified in previous attempts from a legal perspec-
tive [13,16]. In particular, privacy harms are classified into: physical; economic
or financial harms; mental or psychological harms; harms to dignity or repu-
tation; and societal or architectural harms [12]. We arrange these categories of
harms around the APDL model according to its lifecycle stages, associated data-
processing activities and their corresponding threat events. Additional detail
about mapping these categorises onto the stages of the APDL model is illus-
trated in [3]. For each type of privacy harm, its type, adverse consequences and
affected data subjects need to be identified in relation to its attributes.

6 A Case Study

6.1 Overview

The European Electronic Toll Service (EETS) aims to support interoperability
between electronic road toll systems at a European level to calculate and collect
road-usage tolls. The main actors involved in the EETS are service providers,
toll chargers and users. EETS providers are legal entities that grant access
to EETS to road users [18]. Toll chargers are public or private organisations
that are responsible for levying tolls for the circulation of vehicles in an EETS
domain [18]. A user is an individual who subscribes to an EETS provider in
order to get access to EETS [18]. By signing a contract, a user is required to
provide a set of personal data specified by a responsible toll charger, as well as to
be informed about the processing of their personal data in relation to applicable
law and regulations. Accordingly, the EETS provider provides the user with an
On-Board Unit (OBU) to be installed on-board a vehicle to collect, store, and
remotely receive and transmit time, distance and location data over time. This
data, together with the user’s and vehicle’s parameters, are specified to declare
the toll of circulating a vehicle in a specific toll domain [17].

Due to space limitations, we do not provide an exhaustive list of vulnerabil-
ities, etc. Rather, we give examples to illustrate the usability and applicability
of our approach in this particular context.

6.2 Context Establishment

All useful information that helps establish the context has been already captured
by the APDL model in [1]. The establishment of the context in which personal
data is collected and processed consists of three steps. The first step is to spec-
ify the types of personal data along with their attributes (captured by classes
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stereotyped by «PersonalData») and the main purpose for which this data is
collected and processed (captured by a class stereotyped by «Purpose» along
with its lawfulness, fairness and proportionality). With reference to the APDL
model, the main purpose is to ‘electronically calculate and collect road-usage
tolls’ and the types of personal are:

– Identification and contact data—EETSUser: user ID, name, billing address
(collected from the EETS user, whether the user is the driver, owner, lesser
or fleet operator of the vehicle)

– Vehicle classification parameters—Vehicle: licence plate, classification code
(collected from the EETS user)

– Location data—LocationData: time, distance, place (collected by OBUs)

The second step is to specify or model both actual data-processing activi-
ties and privacy-related processes required by legal frameworks and standards
in each stage of the APDL model. These processes are abstractly captured from
classes stereotyped by «Initiation», «Collection», etc. With a focus on loca-
tion data, we illustrate a data-processing activity in the collection stage of the
APDL model: it is abstractly captured from the CollectingUsageData class,
which is stereotyped by «Collection». The stereotyped class also captures other
important details: location data sources (OBUs), available choices (the user is
entitled to subscribe to EETS with the EETS providers of their choice among
other choices: the national or local manual, automatic or electronic toll ser-
vices), collection method (OBUs using satellite positioning systems), consent
type (implicit by signing a contract) and relevant GPS principles (Collection
Limitation). In addition, processes are concretely captured from classes stereo-
typed by «StageActivity», «StageAction» and «StageEvent». Each stage activity
contains a set of actions that represent its executable steps and a set of events
that cause the execution of these actions. The data-processing activity is con-
cretely captured from the CollectingLocationData class, which is stereotyped
by «StageActivity». At this level of detail, it aims to collect road-usage data
to be used for tolls declaration and calculation. The stereotyped class also cap-
tures other important details in terms of constraints: pre-conditions (the privacy
notice is communicated to EETS users at or before the collection time in a clear
and concise manner; their implicit consent is obtained at or before the collection
time in an informed manner by subscribing to the service; and the minimum
necessary amount of location data is modelled to fulfil the stated purpose); and
post-conditions (the road-usage data has been successfully collected). This activ-
ity is decomposed into two classes: CollectLocationData and Collect , which
are stereotyped by «StageAction» and «StageEvent» respectively. CollectLoca-
tionData class captures the time of usage, the covered distance and the place
on which the vehicle is circulating on a particular toll domain for tolls declara-
tion and calculation. The Collect class captures the occurrence of circulating a
vehicle on a particular toll domain to collect location data.

The third step is to specify or model involved actors (captured by classes
stereotyped by «LifecycleRole» and «LifecycleActor»). Each lifecycle stage
includes a number of lifecycle roles, each of which is played by different actors
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according to their capabilities and responsibilities. With reference to the APDL
model, CollectionAgent is a type of data processor role that consists of logi-
cally related activities for collecting road usage data, and ServiceProvider is
a type of involved actors who are capable of, and responsible for, performing the
activities of the collection agent as a role to which are assigned. Responsibilities
are captured from stage activities in which a lifecycle actor participates and to
which a lifecycle role is associated.

Establishing the context in which personal data is collected and processed
requires specifying or modelling ‘personal data’, ‘data-processing activities’ and
‘involved actors’ along with their roles and responsibilities. The APDL model
has served as a preliminary acquisition step to capture all required data that
support privacy risk analysis and compliance checking.

6.3 Vulnerability Analysis

In our approach the focus is on vulnerabilities of primary assets to protect
the privacy of data subjects and ensure contextual integrity. The first step of
vulnerability analysis is to develop a baseline model of the processing of personal
data. The baseline model captures all appropriate data-processing activities in
all stages of the APDL model. In order to develop a baseline model, we need
to establish a context-relative processing norm for each data-processing activity.
The main elements that constitute these norms are captured from stage activities
in the established context. Due to space limitations, we identify only a context-
relative processing norm for the CollectingLocationData activity:

In the context of EETS, the collection of a certain type of personal data
(location data: time, distance, place) about an EETS user (acting as a data
subject) by an EETS provider (acting as a data processor on behalf of a
toll charger) is governed by processing principles derived from applicable
legal frameworks. . . and standards. . .

In this case, legal framework principles—for example, DIRECTIVE 95/46/EC—
are as follows. Personal data must be: processed fairly and lawfully; collected for
specified, explicit and legitimate purposes; adequate, relevant and not excessive;
and accurate and up to date. In addition, the relevant GPS principle is Collec-
tion Limitation. Importantly, principles of legal frameworks and standards are
modelled as pre- and post-conditions for each stage activity.

Once all context-relevant processing norms are defined in relation to the
APDL model, a complete baseline model can be developed to serve as the basis
for deriving privacy vulnerabilities. The second step of vulnerability analysis is
to derive all possible vulnerabilities of the primary assets from the identified
context-relevant processing norms. They can be derived by examining all the
main elements that constitute each processing norm—i.e. any possible breach
of a processing norm can be derived as a vulnerability. With reference to the
above processing norm, a possible vulnerability with regards to attributes, as
an element, is ‘an improper data model’ (PV.1) that directly or indirectly links
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location data to users’ IDs. Another possible vulnerability with regards to pro-
cessing principles, as an element, is ‘a lack of data minimisation’ (PV.2) that
facilitates inadequate, irrelevant and excessive collection of location data in an
interval basis, which is not necessary for the main purpose. Additional examples
of privacy vulnerabilities are listed in [3].

6.4 Threat Analysis

Threat Sources. In reference to the established context, EETS providers (TS.1)
are involved in the processing of ‘identification and contact data’ and ‘loca-
tion data’ by playing the role of data processors who grant access to EETS to
EETS users. They may act accidentally or deliberately as threat sources while
they process personal data lawfully to calculate and communicate personalised
fees (road-usage tolls) for each EETS user by the end of the tax period—or
unlawfully for further processing with the motivation of profiling EETS users,
discriminatory social sorting or providing better services. The utility of ‘loca-
tion data’ and ‘identification and contact data’ in this context makes such data
highly valuable to EETS providers. The value of this data stimulates the motives
of EETS providers to exploit vulnerabilities of the primary assets. In particular,
it has a market value when it is exploited by EETS providers for administrative
and commercial purposes—for example, it gives an EETS provider a competi-
tive advantage with respect to their competitors. According to the attributes of
a threat source, EETS providers are insiders and institutions. EETS providers
have technical skills and detailed background knowledge about conceptual, log-
ical and physical data models, as well as about the processing operations. It
also implies that they have legitimate privileges to collect and process location-
related data according to their roles and responsibilities. Based on these, they
have access rights to both the ‘fine-grained location data’ and ‘identification and
contact data’. They also have reasonable resources (both technical and financial)
to get benefit from the values of the collected data by creating comprehensive
and identifiable profiles. Additional examples of threat sources are listed in [3].

Threat Events. In a straightforward implementation of the EETS architec-
ture, the calculation of road-usage tolls is performed remotely at EETS providers’
back-office systems. The OBU collects, stores, and remotely receives and trans-
mits time, distance and place over time to the EETS provider’s back-office sys-
tems. These systems are in charge of processing location data to calculate per-
sonalised road-usage tolls and communicate the final premium to EETS user at
the end of the tax period. As mentioned, a threat event occurs as a result of
a successful exploitation of one or more vulnerabilities by one or more threat
sources. With reference to the identified vulnerabilities and threat sources, we
identify the most significant threat events with the potential to adversely impact
the privacy of EETS users that may happen at specific points in time. The iden-
tification of these events needs to be conducted according to the stages of the
data lifecycle.

In the collection stage, for example, threat events that may lead to privacy
violations or harms are related to the manner in which personal data is collected.
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By exploiting PV.2, TS.1 may use OBUs to excessively collect irrelevant loca-
tion data (TE.1) in a fine-grained manner about EETS users. With reference to
the adapted taxonomy of adverse privacy events, this threat event is a type of
‘surveillance’. It is characterised as continuous, overt and extensive: continuous
via the collection of location data over time; overt via informing the EETS user
about the manner in which location data will be collected when signing the con-
tract; and extensive via the excessive collection of location data in a fine-grained
manner throughout national and international toll domains. Surveillance outside
toll domains compromises reasonable expectations of privacy as it may reveal
hidden details that would not ordinarily be observed by others. Additional exam-
ples of threat events, along with the corresponding threat sources and privacy
vulnerabilities, are listed in [3].

6.5 Harm Analysis

Privacy Violations. In the collection stage, for example, ‘passive collection of
location data outside toll domains’ is a privacy violation that may result from
the occurrence of the threat event ‘excessive collection of location data’, which
results from the successful exploitation of ‘a lack of data minimisation’ by EETS
providers. Its degree is excessive as it collects fine-grained location data outside
toll domains, whether they are national or international. Its scope is individuals
who are subscribed to EETS. This privacy violation is considered as an illegiti-
mate and unanticipated data-processing activity without adverse consequences.
In particular, fine-grained location data is collected in ways EETS users would
not reasonably expect; also, this data is collected passively without the knowl-
edge and consent of EETS users. In addition, the collection of location data
outside toll domains does not have legitimate grounds as they are irrelevant and
inadequate for the purposes for which location data is collected. Most impor-
tantly, this privacy violation is assumed to be without adverse actions against
EETS users.

Privacy Harms. Privacy harm analysis is the most important step of any
privacy risk-analysis approach. Harms are derived from the undesirable conse-
quences of threat events as potential adverse actions taken against data subjects.
In this paper, we consider only the objective category of privacy harms as the
subjective category is mainly about the perception of unwanted observation.

For each stage of the data lifecycle, the potential undesirable consequences
of each threat event need to be identified. Then, these consequences need to be
analysed to determine whether they can partially contribute to, or completely
lead to a negative action that uses personal data against the data subject in
an unanticipated or coerced manner. Most broadly, a privacy harm may result
from a series of adverse consequences of multiple threat events. In the collection
stage, for example, the main undesirable consequence of TE.1 is gathering a
large amount of fine-grained location data that has been collected over time as
comprehensive driving records (UC.1), which may include complete driving his-
tory or driving history for a specific period for EETS users. Additional examples
of undesirable consequences are listed in [3].
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By analysing the identified undesirable consequences, together with the rel-
evant privacy vulnerabilities and threat sources, we can derive a reasonable set
of privacy harms. For example, the privacy harm ‘increased car insurance pre-
mium’ (PH.1) occurs as EETS providers can make excessive inference to derive
EETS users’ driving patterns and share anonymised patterns with car insur-
ance providers (TS.7). Insurance providers may make inference to re-identify
current and potential customers with the aim of calculating car insurance pre-
mium based on the types of vehicle use and health conditions, which are derived
from their driving patterns. Additional examples of privacy harms, along with
associated threat sources, privacy vulnerabilities, threat events and undesirable
consequences of these events, are listed in [3].

7 Conclusion

We have presented an approach that helps support engineers in identifying and
analysing potential privacy risks in a comprehensive and contextual manner. It
refers to fundamentals from the legal privacy literature to refine key concepts
and assessable risk factors, as well as the conceptual relationships among these
factors. Such fundamentals help support the distinction between privacy harms
and violations and their main sources by providing boundaries and properties of
privacy harms. In addition, fundamentals bring the legal and social layers into
consideration by defining context-relative processing norms. They also facilitate
the identification of adverse events in a systematic manner by providing a tax-
onomy of harmful activities and their corresponding harms. They also support
the taxonomy by providing two main principles: (1) the limiting principle to
help protect against reduction of the concept of privacy, and (2) the rule of
recognition to support the identification of novel privacy harms as they emerge.

We limit our approach to a risk model and analysis approach that describes
how combinations of risk factors are identified and analysed at a consistent
level of detail. In order to propose a complete risk-assessment methodology, an
assessment approach that associates values with the risk factors needs to be
developed to functionally combine the values of those factors and estimate the
levels of the identified risks.
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Abstract. Privacy risk assessments aim to analyze and quantify the
privacy risks associated with new systems. As such, they are critically
important in ensuring that adequate privacy protections are built in.
However, current methods to quantify privacy risk rely heavily on expe-
rienced analysts picking the “correct” risk level on e.g. a five-point scale.
In this paper, we argue that a more scientific quantification of privacy
risk increases accuracy and reliability and can thus make it easier to
build privacy-friendly systems. We discuss how the impact and likelihood
of privacy violations can be decomposed and quantified, and stress the
importance of meaningful metrics and units of measurement. We suggest
a method of quantifying and representing privacy risk that considers a
collection of factors as well as a variety of contexts and attacker models.
We conclude by identifying some of the major research questions to take
this approach further in a variety of application scenarios.

Keywords: Privacy risk metrics · Privacy impact assessment

1 Introduction

A privacy impact assessment (PIA) is the process of identifying and mitigating
privacy risks in an existing or planned system. During a privacy impact assess-
ment, organizations identify possible privacy risks, then quantify and rank these
risks, and finally take decisions on whether and how to reduce, remove, transfer,
or accept the risks. “PIA” also refers to the document produced in this process,
and it is generally seen as a living document in systems development. This is
because privacy risks can change over time: as a result of choices made dur-
ing design and implementation; as a result of evolution of the system and its
data governance; and as a result of developments in processing technology and
availability of related information in the system’s environment.

PIAs are an essential component of Privacy by Design [5], an approach to
dealing with privacy in a proactive rather than reactive way. They have been rec-
ommended by national data protection authorities for more than 5 years already
[6,13]. In the new European data protection regulation GDPR (General Data
Protection Regulation) [11], PIAs (called “data protection impact assessments”)
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are mandated for some cases, including surveillance, data sharing, and new tech-
nologies. This is relevant worldwide because of the GDPR’s global reach. As
PIAs include consultation with stakeholders, they are also a useful mechanism
for obtaining their buy-in in what might otherwise be seen as “creepy” data
processing processes.

However, the wider application and impact of PIAs may be limited because
privacy risk assessments currently rely heavily on experience, analogy and imag-
ination, that is, risk assessment more closely resembles an art than a science.
We argue that a more scientific approach to risk assessment can improve the
outcomes of privacy impact assessments by making them more consistent and
systematic. Beyond the use to measure and communicate an individual privacy
risk, we envision uses of these privacy risk metrics for at least five more purposes:
to quantify the effect of privacy controls, to compare the effects of different con-
trols, to analyze trends in privacy risk over time, to compute a system’s aggregate
privacy risk from its components, and to rank privacy risks.

Contributions. In this paper, we investigate how to quantify privacy risk
systematically with the aim of moving privacy risk assessment from being an
art closer to being a science. We focus on data driven privacy (i.e. the impact of
data decisions, possibly outside the data sphere) because this is the scope of the
GDPR, currently the strongest driver of PIAs. In line with the common decom-
position of risk into impact and likelihood, we discuss quantification of impact
and likelihood separately and suggest possible metrics for each (Sects. 4 and 5).
We then discuss how metrics for impact and likelihood can be combined to form
privacy risk metrics that can be used directly in privacy impact assessments and
privacy requirements engineering (Sect. 6). We illustrate an initial approach to
measuring and representing privacy risk in a case study with two typical known
privacy risks (Sect. 7). Finally, we highlight open issues in the area of privacy
risk quantification and set out an agenda for further research.

2 State of the Art

Before we discuss the benefits and building blocks of a more scientific method for
quantifying privacy risk, we briefly describe the state of the art in risk assessment,
privacy risk assessment, and privacy measurement.

Risk Assessment. Risk is commonly calculated as some function of like-
lihood and impact. Several proposals exist to determine the risk of security
threats, for example the NIST guidelines [18] or the OWASP Risk Rating
Methodology [20]. These are often cited in the privacy literature because security
risks can be quite close to privacy risks. An important difference between security
and privacy risk, however, is that harm to individuals is a primary consideration
for privacy risk (even if organizations may translate that into reputational and
regulatory risks), whereas it is of secondary importance for security risk.

Both NIST and OWASP rate impact and likelihood on Likert scales, e.g.
from “very low” to“very high”, with no clear guidelines on how to determine
the position on this scale. For example, the NIST guidelines [18] list examples of
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adverse impacts, such as harm to operations, assets, or individuals, and explain
how the expected extent of each impact should be mapped to the Likert scale:
“significant” financial loss, for example, is a moderate impact, while“major”
financial loss is high impact. Likelihood is split into the likelihood that a threat
event occurs, and the likelihood that an adverse impact results from the threat
event. The ratings for likelihood and impact are then combined according to a
table that indicates the resulting risk rating for each combination of the separate
Likert scale ratings. For example, “low” impact and“very high” likelihood result
in a “low” overall risk. These impact and likelihood ratings are subjective, i.e.,
they may be rated differently by different people, and the resulting risk ratings
may not be accurate or reliable. In addition, while these tables allow to distin-
guish between the lowest and highest risks, they only give a partial ordering of
risks. For example, it may not be possible to decide the ordering of one risk with
low impact and high likelihood and another with high impact and low likelihood.

Privacy Risk Assessment. The OWASP top-10 list of privacy risks in web
applications [24] ranks privacy risks by their ratings for impact and likelihood.
Likelihood is measured as the frequency with which the risk occurs in exist-
ing websites (determined via a survey of web developers and privacy/security
experts), with a score of 0 indicating under 25%, and 3 indicating 75% or above.
Impact is measured in five dimensions as limited (1), considerable (2), or dev-
astating (3): two dimensions for organizational impact (reputation, finance) and
three dimensions for impact on individuals (reputation, finance, freedoms). The
final impact score is the average of the five scores.

Recently superseded guidance on privacy risk management by the French
data protection regulator CNIL [7] assesses risk severity, which is based on the
possible prejudicial effects – similar to impact – and on the level of identifiability
of data. The latter includes aspects of impact, i.e., the loss of highly identifiable
data is more impactful, as well as aspects of likelihood, i.e., the ease of exploiting
a data loss as a privacy attack depends on the level of identifiability of the targets
in the data set. Albakri et al. [1] employ this notion to abstract from attackers’
motivation and capacity, by assessing both privacy and security risks on the
basis of exploitability rather than likelihood.

Several bodies have published lists of known privacy risks, for example data
protection authorities [8], researchers [9], and regulators. Although these lists
can serve as starting points for privacy impact assessments, they typically do
not include a quantification or ranking of specific privacy risks.

Privacy Measurement. Most privacy metrics that have been proposed
in the literature [28] focus on measuring the amount of privacy that a privacy
enhancing technology can provide against some adversary, for example expressed
as the adversary’s error, uncertainty, or information gain. Some privacy metrics
focus on the adversary’s success rate and may thus be suitable to quantify the
likelihood of a privacy violation (see Sect. 5). Very few privacy metrics measure
risk directly, for example, the privacy score in social networks [16] is computed as
the sensitivity of profile items multiplied by their visibility. However, this metric



228 I. Wagner and E. Boiten

has limited applicability because of its focus on social networks, and because it
does not consider harm to individuals.

3 Benefits and Building Blocks for Privacy Risk Metrics

We see four important benefits that can be achieved through the increased accu-
racy and reliability of a more scientific and systematic way of measuring privacy
risk. First, when building new systems, risk metrics could allow to compare the
risks associated with different ways of building the system. In particular, for
systems that are composed of smaller building blocks, risk could be measured
on the level of building blocks, and composition rules would allow to compute
the overall risk. In effect, such risk metrics allow to rationalize and substantiate
decisions about how systems that affect privacy are built and evaluated.

Second, risk metrics are also needed in privacy requirements engineering [9],
which is a similar process to privacy impact assessment (PIA), but with the goal
of deriving formal privacy requirements and identifying suitable protections in
the form of privacy-enhancing technologies. The privacy requirements engineer-
ing process can identify many risks and thus needs a way to prioritize risks.
For example, the LINDDUN method [9] uses risk scores, but does not state
specifically how these scores should be determined.

Third, risk metrics can also allow to set thresholds for when the regulator
needs to be consulted (e.g., as per GDPR guidance by the UK’s Information
Commissioner’s Office [14]), and thresholds for when privacy risks are too high
to permit data collection or processing. Thresholds can also play an important
role in organizations’ decisions to accept certain risks – for example, in large
organizations often risks need to associated with million dollars’ damages before
they warrant the board’s attention. Even vaguely defined metrics can support a
triage process on an identified collection of risks to determine the risks’ priorities
based on their severities.

Fourth, companies that offer cyber insurance benefit from accurate risk met-
rics to correctly determine insurance premiums. With their past experiences of
incidents that they have already paid given amounts out on, there is no doubt
that they already hold the largest vault of monetary valuations of privacy risks,
but are unlikely to share this, for commercial reasons.

Building Blocks for a More Scientific Risk Quantification. An impor-
tant foundation of a more scientific approach is the ability to measure and predict
the relevant quantities, i.e. the likelihood (Sect. 5) and impact (Sect. 4) of privacy
violations.

To make the measurement of privacy risk more systematic, we decompose
the impact and likelihood of privacy risk into more fine-grained components. As
Fig. 1 shows, we decompose impact into the four components scale, sensitivity,
expectation, and harm, and decompose likelihood into the likelihoods of attack,
of adverse effect, and exploitability. Because these components are more specific
than the high-level concepts of impact and likelihood, it should be easier to find
meaningful metrics for them.
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Fig. 1. Components of privacy risk.

However, measuring these quantities is complicated by the fact that the
measurement necessarily relies on information known in the present. Future
data sharing or future technologies available to adversaries, such as advanced
re-identification algorithms, can significantly increase the privacy risk (but typi-
cally do not decrease the risk). Function creep – the repurposing of collected data
with the intent of realizing new functions – is also associated with an increase of
privacy risk. Any present-day measurement of privacy risk should therefore be
treated as a lower boundary on the real privacy risk.

Units of measurement are important to make risk metrics more understand-
able and manageable. Risks measured using the same unit can be meaningfully
aggregated, for example when computing the total privacy risk from contribut-
ing risk factors, and directly compared, for example when considering different
technical alternatives or when triaging and prioritizing risks. When units differ,
or when there is no unit at all (e.g., in Likert scales), such operations become
more difficult or fundamentally dubious.

In business, financial value may be acceptable as the ultimate unit which
is used to quantify direct costs – even reputation and human lives. However,
certainly the public sector does not operate on a competitive or financial basis,
and may prefer units that more closely relate to the concept of privacy risk.

4 Impact Quantification

To make the measurement of privacy impact more systematic, privacy impact
metrics should be based on four key components (see Fig. 1): scale, sensitivity,
user expectations, and harm. Because of the intangible nature of some of these
components, we expect that their quantification will have to use proxy measures
instead of measuring the component directly.
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4.1 Scale

The scale of a privacy violation roughly corresponds to the number of people
potentially affected by it. Everything else being equal, a violation that affects
one person is less severe than one that affects a hundred. This scale of privacy
violations is widely reported in the news when privacy breaches become public.
For example, there have been prominent instances of companies underestimating
the scale of privacy breaches when they are first reported, possibly to reduce neg-
ative impact on their reputation and hence on their share value. This underlines
the fact that companies treat the scale of a privacy violation as a meaningful
metric.

4.2 Sensitivity

The sensitivity of the affected data indicates the type and extent of possible
harm to individuals. The sensitivity of data is not necessarily fully aligned with
the GDPR’s categories of personal data and special category data – credit card
data are classified as personal data, but can cause direct financial harm, whereas
trade union membership is classified as special category data, but its exposure
would not be seen as harmful in many countries.

Importantly, if the privacy of more than one type of data is breached, then
the overall sensitivity may be higher than a linear combination of individual
sensitivities. For example, the information that a given person was at a location
(e.g. a celebrity at a nightclub) may not be that sensitive, but the combination
of that information with another person being at the same location at the same
time may produce sensitive evidence of a meeting between the two.

The sensitivity of data is thus difficult to quantify. Metrics from information
theory could be used to measure the amount of information (in bits) revealed by
a privacy breach; this will often be indicative of the level of identifiability, but
amount does not fully coincide with sensitivity. Another approach that is useful
when users can choose their individual privacy settings is to compute sensitivity
statistically from the privacy settings of a large number of users [16].

4.3 Expectation

The expectation individuals have of how their data will be treated, and how much
a privacy violation deviates from this expectation, indicates as how “creepy” a
privacy violation will be perceived. For example, users usually expect that their
data will be handled according to their personal privacy settings. Users may also
have expectations where their data is stored, for example, the leak of electronic
health records from a third party server located in a foreign country would be
unexpected because people may not expect that the storage of health records is
outsourced abroad. Depending on social norms, there may also be a reasonable
expectation of privacy in public places [19]. The GDPR makes it explicit that
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the legality of data processing may depend on user expectations1. An approach
to quantify this deviation from expectation may be to first state the expectation
in terms of Solove’s taxonomy of privacy [23], i.e. to state which aspects of infor-
mation collection, information processing, information dissemination, or invasion
are expected by individuals. Then, a specific privacy violation can be analyzed
with respect to the number of aspects that differ from the stated expectation.

4.4 Harm

The harm to affected individuals can be financial, but can also be harm to their
reputation, harm caused by discrimination, distress, or anxiety, and harm due
to breaches of the individual’s rights and freedoms. These privacy harms are all
covered by (European) data protection legislation2 and it was established before
the GDPR came in that individuals can sue for damages even where harms are
not material [12].

An important contributing factor in this is what has actually happened to
the data: has it been exposed, modified, processed non-transparently, or used to
make a decision affecting individuals? If exposed, to whom and what harms could
and would they cause, given existing and potential future information available
to the receivers of the data?

Similarly to sensitivity, harm may be cumulative. For example, a single data
disclosure may not be very harmful on its own, but a series of disclosures over a
period of time may finally allow an adversary to link data and cause serious harm.
This also means that it can be hard to attribute privacy harm to a single privacy
breach, which may lead to a dissolution of corporate responsibility, especially
when privacy breaches occur along the supply chain.

Harm can also encompass organizational harm, for example reputation dam-
age after the discovery of a privacy breach, or financial damage through loss of
customers or regulatory fines.

Finally, individuals may have different perceptions of the harm itself, espe-
cially non-financial harm. As a result, harm is difficult to quantify. A useful proxy
measure may be to estimate the amount of damages a court would be likely to
grant. However, not everything can be measured in money, and expressing harm
in monetary terms may not do justice to the extent of the harm caused. In this

1 For example, Recital 47 on the legal basis of “legitimate interest” requires“taking into
consideration the reasonable expectations of data subjects based on their relationship
with the controller.”

2 See GDPR Recital 75: “The risk to the rights and freedoms of natural persons, of
varying likelihood and severity, may result from data processing which could lead
to physical, material or non-material damage, in particular: where the processing
may give rise to discrimination, identity theft or fraud, financial loss, damage to
the reputation, loss of confidentiality of personal data protected by professional
secrecy, unauthorized reversal of pseudonymization, or any other significant economic
or social disadvantage; where data subjects might be deprived of their rights and
freedoms or prevented from exercising control over their personal data” [11].
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case, a Likert scale could be used to estimate the extent of each type of harm
affected by a privacy breach.

5 Likelihood Quantification

Quantifying the likelihood of a privacy violation is somewhat more tangible than
quantifying the impact. Quantifying likelihood is particularly important because
most privacy controls affect the likelihood of a privacy violation instead of its
impact. The NIST guide on privacy engineering [3] focuses on the likelihood of
“problematic data actions.” However, we believe that a thorough quantification
of likelihood needs to take into account three aspects of likelihood: the likelihood
of an attack, the likelihood of an adverse effect, and exploitability.

5.1 Likelihood of Attack

The likelihood of an attack focuses on the adversary’s motivation to cause a
privacy violation. This is very difficult to quantify because it may depend on
specific circumstances. For example, an adversary may be more motivated to
breach medical data privacy when a celebrity has recently been admitted to a
specific hospital. The arrival of the celebrity may even cause a perfectly innocent
staff member at the hospital to turn into an adversary who misuses their access
to patient records.

Instead of attempting to estimate this likelihood directly, we believe that
it is reasonable to assume that a motivated attacker is present (i.e., assume a
likelihood of 1), and to focus on quantifying the other aspects of likelihood.

5.2 Likelihood of Adverse Effect

The likelihood that an adverse effect actually materializes can similarly depend
on specific circumstances, and adverse effects may be very rare or not easily
attributable to a single privacy violation. The focus on harm to the individual
that is required to assess privacy risk means that it is not sufficient to assess
the typical case, but that the worst case also needs to be considered. Therefore,
instead of estimating the exact probability distribution for the occurrence of
adverse effects, we believe that it is more beneficial to assess privacy impact
for three distinct points on this distribution: the impact on the typical user,
the impact on the individual who would be affected worst, and the impact that
would be caused if the adversary didn’t have any additional information, i.e.,
the impact caused if this was a single, isolated privacy violation.

5.3 Exploitability

Exploitability focuses on the adversary’s ability to cause a privacy violation.
Specifically, a systematic quantification should focus on the probability that a
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specific privacy violation occurs against an adversary with specific aims, capa-
bilities and additional knowledge that corresponds with a realistic attack model.
Considering possible adversaries explicitly is necessary to make the likelihood
quantification meaningful and highlights the assumptions made during the pri-
vacy risk assessment.

An adversary is any party that is interested in private data, whether within
the organization that holds the data, a connected organization such as a service
provider, or an external third party [10]. Privacy risks can exist even in the
absence of attacks, for example through human error and accident. Both can
be modeled as attacks by non-malicious insider adversaries. Privacy risks can
occur as a collateral effect even if the adversary is not primarily driven by a
privacy-related motivation. For example, an adversary targeting critical national
infrastructure may gather information for a spear-phishing attack, and in the
process cause privacy harms, even though this is not the primary goal.

There is a wide variety of adversary models considered in the literature (see
[28] for an overview). For adversaries that aim to breach privacy it is especially
important to consider inference algorithms that allow the adversary to learn
private information from public observations as well as the adversary’s prior
knowledge because combining data types can increase both likelihood and impact
of a privacy breach.

An important factor in exploitability is identifiability: many privacy attacks
are based on knowledge of sensitive information about an identified person. A
re-identification attack, in itself an abstract privacy attack, can be the essen-
tial stepping stone in this, for example starting from “anonymized information
or“big data”. Quantification of re-identification risk is difficult [2], not least
because there may be large differences between the possibilities of re-identifying
a specific individual (such as Governor Weld by Latanya Sweeney [26]), any indi-
vidual of choice, or all individuals in a given data set. The GDPR [11, Recital
26] nevertheless requires an explicit assessment of what an adversary may “rea-
sonably likely” use in attempting to re-identify information.

The result of modeling possible adversaries is a set of probability distributions
that indicate how likely it is for each adversary to succeed in breaching privacy.

6 Privacy Risk Metrics

Similarly to security risk metrics, a privacy risk metric could be defined as a
combination of metrics for impact and likelihood of privacy violations. However,
our discussion in the previous sections has shown that both the impact and the
likelihood of privacy risk are composed of several components that are not easily
integrated. For impact, using our suggested metrics above, we would need to
combine the number of people affected, the differences in user expectations, bits
of information revealed, and the (monetary equivalent of) harm to individuals.
Ideally, this combination should result in a metric with a meaningful unit, and
not just an arbitrary number. For likelihood, we need to consider both the like-
lihood of adverse effects and the exploitability for different kinds of adversaries.
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As a result, the typical method of adding or multiplying Likert scores does not
appear suitable for privacy risk.

In the Introduction, we argued that privacy risk metrics are needed for five
purposes: to quantify the effect of privacy controls, to compare the effects of dif-
ferent controls, to analyze trends in privacy risk over time, to compute a system’s
aggregate privacy risk from its components, and to rank privacy risks. Each of
these purposes has a minimal requirement for the scale of measurement [25]
used by the privacy risk metric. For example, we need at least an ordinal scale
to rank privacy risks, and a ratio scale to analyze aggregate privacy risk in com-
plex systems. To analyze trends in privacy risk and to compare different privacy
controls, an ordinal scale is strictly speaking sufficient, but may not be fine-
grained enough to give meaningful or informative results. We show which scale
of measure is required to support each of the five purposes in Table 1.

Table 1. Measurement scales required for different purposes of privacy risk metrics

Purpose Scale of measure

Effectiveness of privacy controls Ordinal

Comparison of privacy controls Ordinal

Trends in privacy risk Ordinal

Calculation of system risk from components Ratio

Ranking of privacy risks Ordinal

We can see that Likert scores (ordinal, but coarse-grained) can be sufficient
for some purposes. However, they are not suitable to analyze the aggregate pri-
vacy risk in a complex system, and they are not desirable because, as we have
argued, they depend on subjective judgment and may therefore differ depend-
ing on who is performing the risk assessment. In some cases, however, it seems
unavoidable to use an ordinal scale, for example to express that an individual’s
freedoms have been infringed, or the level of distress experienced by an individ-
ual.

In these cases, it is unclear how two or more ordinal measures, e.g., for differ-
ent types of harm, should be combined because the commonly used operations
– addition and multiplication – are not defined for ordinal scales [25]. The usual
method of adding or multiplying impact and likelihood scores assigns numerical
scores to the levels on the ordinal scale, thus creating a false sense of an interval
or ratio scale, for which addition or multiplication would be permitted.

To achieve a clean combination of impact and likelihood metrics, we suggest
to measure the individual components separately and combine them visually.
For example, as shown in the case studies in Sect. 7 (Figs. 2 and 3), the impact
metrics can be combined in a radar plot, and the likelihoods for each adversary
type can be indicated with probability density functions or summarized in box
plots. This approach respects the essential multidimensionality of privacy risk
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and allows to choose appropriate scales for each type of impact. For example,
employment-related harms could be assessed using a 5-point Likert scale ranging
from“annoying day” to“off with stress” to “fired/end of career,” whereas the
scale of the privacy violation could be assessed using the number of individuals
affected.

7 Case Study: Privacy Risks in a Flashlight App

To illustrate how a privacy risk assessment can analyze and visualize the com-
ponents of privacy risk that we have presented so far, we analyze an example
application for a mobile device, focusing on two privacy threats from the OWASP
top-10 list of privacy risks in web applications [24].

We consider a mobile application that allows users to use their phone as a
flashlight. During installation, the app has requested permission to geolocate the
user [22], and during usage the app displays advertisements [17].

7.1 Collection of Data Not Required for Primary Purpose

The threat that an application collects data that is not required for its primary
purpose is rated on the OWASP list as the sixth-highest risk, with high impact
and very high frequency.

Assuming that the app stores phone identifiers and user locations in a
database, a privacy violation can be expected to affect all users of the app.
Correspondingly, the radar plot in Fig. 2 shows that the scale is 100% in all
cases.

The sensitivity of the data can be classified as very high because geolocation
data can allow inferences about behaviors, employment, health, and beliefs. This
is especially the case if the app can run in the background and continue to record
location data even when not in use.

The expectation of users is that a flashlight app does not collect, process,
or share geolocation information [15]. However, because the example app does
collect and process location data, the expectation differs from reality in two
aspects.

The app can cause harm to individual users in terms of reputation damage,
financial harm, distress, and a threat to life.

Reputational harm could be caused if, for example, it became public knowl-
edge that an individual regularly located in the red light district. In the worst
case, this could have severe consequences for employment or personal relation-
ships. The typical user may not have visited particularly sensitive locations, and
therefore the typical reputational harm would be much less severe.

Financial harm could be caused if an insurance company obtained the data,
determined that some customers were regularly located at a fast-food restaurant,
and decided that these customers should be paying higher insurance premiums.
In the worst case, the financial harm could therefore equal the additional yearly
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cost of insurance to these users, whereas the typical user might not suffer any
financial harm.

Harm in terms of distress could be caused if the data revealed a user’s home
location and patterns of their absence from home. As a result, users might
become afraid of burglaries. In the worst case, a user might happen to be a
stalking victim and may now have to relocate to avoid the stalker.

Harm as a threat to life could be caused if the app was used in a critical
environment such as a warzone. In the worst case, a soldier using the flashlight
app – maybe because the traditional flashlight has failed – might be targeted
by an enemy drone or hand grenade because the app has leaked the soldier’s
location [21].

We can estimate the likelihood of a privacy violation in terms of exploitability
for three cases. First, if the data has been collected but never used, an external
adversary would be limited to sniffing network traffic, which would be a rela-
tively difficult attack. Second, if the data has been leaked to the public, or if
an insider adversary has misused their access privileges, then re-identification
attacks are much easier to perform. Third, the data is most easily exploited if
an adversary has additional information that allows to link phone identifiers to
real user identities.

Fig. 2. Privacy risk caused by collection of data not required for primary purpose.

7.2 Sharing of Data with Third Party

The threat that an application shares data with a third party is the seventh-
highest risk on the OWASP list, with high impact and high frequency. We assume
that the flashlight app shares data with an advertising network, and that the ad
network also uses device fingerprinting to track user activity across all of their
applications. Figure 3 visualizes the impact and exploitability for this risk.
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Similarly to the first example, the privacy violation can affect all users. How-
ever, in some cases, users may have fewer or less interesting interactions with
their phones, or may be using ad blockers. In these cases, the scale in terms of
the number of affected users would be reduced.

The sensitivity of the data can vary depending on the type of activities
that a user performs. In the worst case, these can allow far-reaching inferences
about the user’s behaviors, purchases, and social life, but we expect that possible
inferences in the typical case will be somewhat more limited.

The expectation of users is that a flashlight app does not collect, process,
or share device fingerprints, all of which happen in this example. The reality
therefore differs from expectation in three aspects.

The primary harms caused by sharing of data with a third party are two
abstract types of harm: the violation of basic rights, and the loss of control over
data. The violation of rights is relatively limited, with the exception of children,
who are afforded more protection and whose rights are thus affected to a higher
degree. In contrast, the loss of control is fairly severe because the user not only
loses control over their data, but is also not informed of the data sharing.

The secondary harms caused by data sharing concern how the third party
uses the data, and can be grouped in distress, financial harm, and reputational
harm. Harm in terms of distress can be caused by targeted advertising, which is
typically a rather low-level annoyance. However, device fingerprinting increases
an individual’s identifiability, which, in the worst case, might lead to the identi-
fication of specific individuals as criminals.

Fig. 3. Privacy risk caused by sharing of data with third party.

Financial harm can be caused by differential pricing, that is, the case when
users are offered higher prices for products or services based on their profile.

Harm in terms of reputation damage can be caused, for example, if ads
targeted to one user appeared on other users’ devices that were falsely attributed
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to the targeted user, for example the spouse’s phone. In a typical case, this may
only ruin birthday surprises, but in the worst case could lead to more severe
consequences for relationships or employment.

We can estimate the exploitability of this privacy risk for three types of adver-
saries. First, the ad network itself is similar to the insider adversary in the first
example, but may be more easily able to exploit the risk because it already has
additional data from tracking the user across applications. Second, an external
adversary who can only sniff network traffic would be somewhat more limited
than the external adversary in the first example because behavioral profiling
data is less easily recognizable than geolocation data. Finally, an adversary with
the ad network’s knowledge plus additional information that can be linked to
specific users is similarly powerful as in the first example.

7.3 Discussion

We have considered two significant and well-known abstract privacy risks in a
concrete scenario, with significant differences on the outcomes in several dimen-
sions of privacy risk as well as in the adversary profiles. Considering the separate
factors and adversaries has led to a deeper understanding and more detailed
representation of the risks. Quantitative information mostly remained on Likert
scales, which means that not all questions we might ask of these scenarios, such
as “which risk is worse”, have received precise answers.

The OWASP list puts these risks at the same impact level. However, our
analysis shows that the impact in the first example is likely to be higher due to
the universally acknowledged sensitivity of location data and the potential worst-
case outcomes. This illustrates the additional insights created by our separate
analysis of factors for privacy risk.

8 Conclusion

This paper set out a research agenda of assessing privacy risk through decompos-
ing privacy risk into separate factors for both impact and likelihood. We showed
how these can be used on relatively coarse ordinal scales, and illustrated how
this can already be used to achieve better insight into specific privacy risks.

The next step would be to refine these metrics, measuring the factors directly,
or through proxy measures – into finer-grained and potentially rational scales;
and to look at ways of integrating such metrics that recombine the various dimen-
sions into single values. Inspiration for this may be found in research on multi-
dimensional optimization. Such recombination of dimensional metrics becomes
essential for several of the potential uses of privacy risk measurement that we
indicated above.

The spectrum of metrics that may arise from such refinements and combina-
tions of elementary measurements is likely to be rich. This means that validation
of the alternatives becomes essential, in the first place through considering mul-
tiple extensive scenarios with rich collections of privacy risks, for example in the
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contexts of smart cities or educational data analytics. It has been shown that the
strength of privacy metrics can differ between scenarios, and that many metrics
have weaknesses at least in some scenarios [27].

There are also mathematical criteria for evaluating privacy metrics. One of
these is monotonicity, i.e. that metrics should indicate lower privacy for stronger
adversaries [27]. In addition, it may be helpful to calibrate new privacy risk
metrics against a database of cases with known privacy risk, for example past
cases where the impact is not speculative anymore, in particular with regard to
privacy expectation and non-financial harm.

Finally, as with all rigorous methods supporting systems development, we
should also take an economical aspect into account. In privacy risk measure-
ment, we should avoid the false economy of accuracy, noting that “the time cost
of accuracy quite often outweighs the benefits for the organization” [4]. The
GDPR should increase the uptake of privacy impact assessment in general, but
it should not lead to a perception of the process as so complex that it becomes
a compliance tool for which cutting corners is desirable.
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Abstract. Establishing initial trust between a new user and an online
service, is being generally facilitated by centralized social media plat-
forms, i.e., Facebook, Google, by allowing users to use their social profiles
to prove “trustworthiness” to a new service which has some verification
policy with regard to the information that it retrieves from the profiles.
Typically, only static information, e.g., name, age, contact details, num-
ber of friends, are being used to establish the initial trust. However, such
information provides only weak trust guarantees, as (malicious) users
can trivially create new profiles and populate them with static data fast
to convince the new service.

We argue that the way the profiles are used over (longer) periods of
time should play a more prominent role in the initial trust establishment.
Intuitively, verification policies, in addition to static data, could check
whether profiles are being used on a regular basis and have a convinc-
ing footprint of activities over various periods of time to be perceived as
more trustworthy.

In this paper, we introduce Timeline Activity Proofs (TAP) as a new
trust factor. TAP allows online users to manage their timeline activities
in a privacy-preserving way and use them to bootstrap online trust, e.g.,
as part of registration to a new service. In our model we do not rely
on any centralized social media platform. Instead, users are given full
control over the activities that they wish to use as part of TAP proofs.
A distributed public ledger is used to provide the crucial integrity guar-
antees, i.e., that activities cannot be tampered with retrospectively. Our
TAP construction adopts standard cryptographic techniques to enable
authorized access to encrypted activities of a user for the purpose of pol-
icy verification and is proven to provide data confidentiality protecting
the privacy of user’s activities and authenticated policy compliance pro-
tecting verifiers from users who cannot show the required footprint of
past activities.

1 Introduction

Social interactions have always been guided by the trust between the parties
involved. The problem with setting initial trust arises when there exists no pre-
established relationship between the entities. In this case they need to trust some
third party to facilitate the initial communication.
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In the online environment, many existing social media platforms, e.g., Face-
book, Google, LinkedIn, act as identity providers for their users and offer what
is called a social login service. This service, often realised based on the Open
ID Connect framework [14], is widely used as a trust anchor upon the initial
registration of a new user to an online service, and can also be used for subse-
quent authentication procedures. As part of the social login, a user can authorize
other parties, e.g., mobile applications, online services, to access data kept in the
user’s social profile such as contact information, number of connections, posts,
comments, photographs, etc.

At the moment, upon registration, many applications and online services are
using only static data such as the user’s name, age, contact details, total number
of connections/friends, etc. The initial trust is thus established through a limited
snapshot of the profile. This, however, offers only weak trust guarantees. Due to
the ease of setting up social profiles, only little time would be needed to setup a
“fake” profile and populate it with snapshot data to satisfy the checks that an
online service performs on new users. The main reason is that such snapshots
lack the historic perspective and cannot be used to decide whether a profile has
been used frequently over a longer period of time.

One way to reduce the possibility of creating fake profiles fast is to con-
sider the longevity and frequency of the profile’s online interaction. This can
be done by looking into the user’s timeline activities such as posts, comments,
photographs, and other interactions, and using them as an additional trust fac-
tor. There are, however, a number of privacy challenges associated with timeline
activities in existing centralized social networks. First, users typically do not have
full control over which activities can be accessed by authorised third parties. The
access is defined by the settings of the social login provider and is often based on
the “all-or-nothing” sharing approach. Users would be forced to directly modify
their timeline, e.g., remove some of their activities, to be able to restrict what
type of information they wish to release to third parties. More importantly, users
are not aware of the amount of information that is stored or shared by the social
service provider. After the Cambridge Analytica scandal [11], Facebook offered
a better understanding about the data they collect [17], i.e., the received and
declined friend requests, entire conversations or files exchanged via the Facebook
messenger, and history of calls and messages on mobile phones. There is also the
lack of transparency over the information which third parties acquire from the
social service provider [16].

The above shows a more general problem with centralized social services for
using timeline activities to facilitate online trust establishment, namely the need
to trust the social service provider to protect the privacy of user’s activities. The
lack of trust naturally leads to the following question: Can timeline activities be
fully controlled by the users (without reliance on any centralized service provider)
and used as an additional trust factor in online interactions?

The main challenge behind putting users in full control of their activities is
the integrity. Note that in order to be used as a trust factor that reduces the
risk of fast creation of fake profiles it is important to guarantee that activities
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cannot be tampered with. In case of centralized social services, the integrity of
the timeline activities is guaranteed by the social service provider and in most
cases users are not allowed to introduce new activities retrospectively, but can
still remove them if needed. A decentralized system where timeline activities
are fully controlled by the users would need to achieve similar guarantees with
respect to their integrity.

Distributed public ledgers can be a solution, such that users can keep foot-
prints of their timeline activities, and authorize third parties to access them.
The integrity of activities would be ensured by the properties of the ledger that
acts as an append-only list, and where previous activities can be updated by
introducing new activities that would be linked to them. The ability of users
to remove an activity depends on how the data is stored and how it is linked
with the ledger. We anticipate a hybrid approach, where sensitive data will be
encrypted and stored in an external database, such that hashes to this encrypted
data are committed to the public ledger.

Such a system would enable users to authorize third parties to access their
activities at any level of granularity and over different periods of time, thus
offering higher flexibility to define verification policies.

Our Contribution. In this paper we propose Timeline Activity Proofs (TAP)
allowing users to establish trust with online parties based on user’s activities
and without relying on any centralized service provider. TAP can be used as a
building block that adds a new trust factor—timeline activities—to an online
trust establishment process. TAP keeps the user’s timeline activities by storing
pairs of (time, entry) in a distributed public ledger, with the user computing the
entry from the activity, and the ledger appending a timestamp prior to record-
ing it. A stored entry can contain public descriptors of the activity, i.e., name
and additional keywords (tags), and a ciphertext of the actual activity data.
Furthermore, the entry is linked to the user who owns the activity via a digital
signature. TAP uses symmetric encryption to preserve privacy of the activity
data. A dedicated key management ensures that independent symmetric keys
are pseudo-randomly derived for each activity record. Such key derivation app-
roach also enables granular disclosure of activities to verifiers as part of the proof
protocol that is performed between the user and the verifier on input of a public
activity-based verification policy. For the proofs in TAP we define two secu-
rity properties: data confidentiality, an indistinguishability property protecting
privacy of the activity data from unauthorised access, and authenticated policy
compliance, a soundness property ensuring that only legitimate owners of activ-
ities can use them for proofs and that verification policies can be passed only if
the user has committed suitable activities that can satisfy them into the public
ledger.

Related Work. Prior works have also focused on ensuring privacy in social net-
works, by following two main directions in eliminating the need for a central ser-
vice provider. The first by distributing the functionalities of the social network,
e.g., Safebook [5] that provides a distributed privacy-preserving social media
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platform. The second by realizing diverse functionalities of the centralized social
network in a distributed manner using cryptographic techniques [1,9]. Both of
these approaches (and specifically their realization) are focused on achieving pri-
vacy for the user and his data, and less on the user’s behavior. This has integrity
implication for ensuring trust, as users can alter at any time their activity and
make any claim they wish, i.e., in Safebook [5] integrity means protection against
unauthorized tampering, with the user being authorized at any time to change
his data.

A concept for establishing initial trust based on activities is the approach
used by China’s Social Credit System, called Sesame Credit [13]. There, the
social activities of an individual are used to compute a “social score” that is
used as a trust factor in the online environment. However, this is done without
any privacy and under the control of a central authority where the user has no
control of which social activities are stored.

2 Modeling Timeline Activity Proofs

2.1 Entities and Their Roles

Users. Each user owns a digital identity, that we model by using a secret-public
key pair (sk, pk). The public key pk is used as the public identifier in our system,
and any statement made by a user will be accompanied by this public key. They
can create multiple digital identities by generating multiple secret-public key
pairs.

Users are in charge of submitting their online activities, and can do so with
any of the digital identities they posses. Furthermore, they have full control over
which activities would be submitted, and what information should they include.

Users create activities that are stored in a ledger. Later, they would be used
to prove statements about the users that submitted them. These activities are
bound to users via public keys and appropriate authenticators. When an activity
is added to the ledger, a timestamp with the time of the submission is appended
to it; the user has no control over this time. Later, this time can be used as
historic evidence of users performing these actions at a particular time.

In practice, users can be ordinary people, businesses (online shops, services,
etc.), or any other organizations with an online presence.

Public Ledger. We use a distributed public ledger to maintain a list of activities.
The ledger is assumed trusted, and offers protection for the integrity of the data.
This core functionality of the ledger is modeled by considering an append-only
list. Moreover, the types of entries that can be introduced are restricted to a
clear entry format that has to be respected, via a validation mechanism for the
data in the entry.

The ledger is tasked with maintaining the timeline for the data. More pre-
cisely, the ledger will have a tamper-proof time mechanism, and add timestamps
to each entry. The method for registering time to each entry is simplified by
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assuming there exists no delay between the time an entry is received and the
time it gets added.

In its essence a public ledger is just a secure append-only database. This
narrow view of the storage format, allows for more complex search queries. One
can define a search mechanism that considers the certain constraints on the
information from the entry and the time it was added. Then, apply this search
to all entries in an efficient manner, and extract only those that satisfy the search
condition.

Formally, the public ledger PL(data, val, clock) = (Setup, (GetTime,
GetInterval),Append,Search) consists of an information type data, an evaluation
mechanism val for the validity of the information, an internal clock, and the
following algorithms:

• Setup(λ) : pp. Given as input the security parameter λ, it generates a list
of public parameters pp that contains an empty append-only list for storing
entries. In addition, it initializes the clock.

• (GetTime,GetInterval) : (time, i). GetTime() outputs the current time value of
clock. GetInterval(time) returns the interval i for a given time.

• Append(data) : (time, data)∪{⊥}. Given some data as input, it returns either
an entry (time, data) that has been registered in the append-only list, or an
error symbol ⊥. First, it evaluates data based on the val mechanism, and
aborts with ⊥ if it fails. Then, it calls time ← GetTime(), creates an entry
(time, data) and appends it to the append-only list. If this last operation
succeeds, it returns the entry, otherwise it returns the same error symbol ⊥.

• Search(Q) : L. Given a search query Q, it returns a (possibly empty) list of
valid entries L from the ledger that satisfy the search conditions. The search
query Q can depend on the information in data and its time.

Remark 1 (Instantiations). There are a number of existing implementations for
distributed public ledgers with the most notable being Bitcoin [12] and Ethereum
[18]. Both offer a secure timestamping system that records the time when each
entry was processed. The search functionality is not native to these systems, but
recent results, i.e., smartbit [15], do offer a method for searching. However, these
two solutions impose a limitation on the size of the data that can be stored.

Public Ledger with External Database. In general, a public ledger offers an ide-
alized approach for the integrity of data, with no method of data removal, even
for the user who submitted that data. In practice, one would like to consider
scenarios where users would want to remove their activity data. In light of this,
it is natural to apply a hybrid approach with the data being stored in a separate
(distributed) database, and use periodic commitments, similar to the approach
in [7] suggested for decentralized anonymous credentials. The link between the
records in the database and the entries in the ledger can be maintained by a
unique id recid of an activity record. We can extend the definition of public
ledgers to consider an external (distributed) database with records of the form
(recid, data), and adapt the format for the entries in the ledger to consider com-
mitments to that record: (time, recid,H(data, recid)), where H is a cryptographic
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hash function. The following changes to the algorithms defined for the public
ledger would account for the use of the database: Setup, in addition to initializa-
tion of the ledger, would also initialize the database; Append would record the
data in the database, prior to adding its commitment to the ledger; and Search
would first look in the database, and then filter invalid records based on the
commitments in the ledger. The following algorithm would then allow users to
remove their activity data from the database:

• Remove(data) : recid ∪ {⊥}. If the record (recid, data) has been removed from
the database it returns recid; otherwise it returns the error symbol ⊥.

Remark 2 (Time Delays). The time a data entry is recorded in the ledger, can be
used to construct a correct timeline that later can be used to evaluate statements
about the user. Due to how current ledgers are implemented there exists a delay
between the time a transaction is sent and the time it is added to the ledger,
even more so in the case of hybrid approaches. This time difference may lead
to situations where statements that should hold (based on the time they were
submitted) would not.

One can deal with this situation by first defining a fixed bound on the delay
that one may expect when submitting entries to the ledger. Then, either relax the
verification policy to consider time intervals for activities (that may depend on
this delay) instead of a fixed time, or consider two timestamps with one provided
by the user and an other introduced by the ledger. For the latter solution, we
can include verification over the difference between these two timestamps w.r.t
the expected delay.

Verifiers. Verifiers can define policies over timeline activities. Through inter-
action with a user a verifier can check whether this user satisfies their policy
based on the user’s activities submitted to the ledger. First, the verifier extracts
from the ledger records that they deem relevant for their verification, i.e., based
on the type of activity, the time it was submitted, and user’s public key. Then,
they request authorization from the user to open these entries and assert if they
satisfy the verifier’s policy.

2.2 Modeling Timeline Activities

Timed Activities. Activities model online actions performed by a user. They
serve as historic evidence of trust, and are defined based on the following tem-
plate:

〈pk, atime, aname, count, adata, [tags]〉

– pk is the public identity of the user who created this activity;
– atime is the time the activity was submitted;
– aname describes the type of activity created, e.g. photo, address, email. They

are predefined and each user can select only one type for each activity.
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– count identifies an activity among other activities of the same type submitted
within the same time interval;

– adata is the actual activity data. This information is never added directly to
the ledger, only an encrypted version, denoted cdata, is added;

– [tags] is an optional field that introduces additional information not cap-
tured by the name of activity. It is a set of name-value pairs (tname, tvalue),
e.g., a photo may contain the tags {(people, John), (location,New York),
(date, 2017-01-01)}.

Remark 3. In our TAP construction the tags remain in clear. This feature allows
verifiers to search more efficiently and identify which entries in the ledger could
be used for verification. Further extensions may include symmetric searchable
encryption techniques, e.g., [4], to additionally protect the privacy of the tags.

The activities must follow a predefined public format that contains the set
of allowed activity names aname ∈ ANames, and the set of optional permitted
tag names tname ∈ TNames. Such format is needed for independent formulation
of verification policies.

Each activity can uniquely be identified by a tuple (pk, atime, aname, count),
with count being a unique counter value assigned to activities of the name type
aname in the time interval GetInterval(atime), for the user pk.

Activities can be separated based on the number of occurrences of the same
type that the user can create:

– static. This type of activity should appear once, e.g., date of birth, name at
birth, unique social security number, etc.

– dynamic. There is no restriction on the number of activities of this type, e.g.,
posting pictures on Facebook, change of email or post address, etc.

Policies and Verification of Timeline Activities. Activities are submitted with
the purpose of building some historic evidence that would later be used to prove
certain statements about their owners. This verification is modeled using a policy
Ψ over a set of activities A, and outputs whether they satisfy Ψ , i.e., Ψ(A) =
1. The policy Ψ is not specific to any particular user, and doesn’t use the pk
component of the activity.

We consider two categories of policies based on the information required from
the input activities:

• meta-data policy, where only information from the public components of the
activities, i.e., the name, time, counter, and tags, used to evaluate the policy;
and

• data-dependent policy, where information from the actual data of the activities
is required, in addition to some of the meta-data.

The former type of policy can be easily evaluated by verifiers regardless the
information contained in the data. While the latter can only be evaluated with
an evaluation mechanism over that activity data, i.e., directly checking whether a
photograph contains certain elements/keywords. We assume the policy includes
such mechanism.
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Example 1. Consider an online method that verifies the documents needed for
opening a bank account, before setting an in-person interview. Some of the
requirements include a valid identification document, i.e., passport or id card,
and the address with a proof of living there for the past 3 months. The user pkU

that applies to this verification on May 2017, has the following activities stored
in the ledger that could be used.

< pkU , 2017-01-01T01:01:01, id card, . . . >
< pkU , 2017-01-02T03:04:05,utility bill, . . . >
< pkU , 2017-02-03T04:05:06,utility bill, . . . >
< pkU , 2017-03-04T05:06:07,utility bill, . . . >

The verifier extracts these entries form the ledger by looking at the public
key of the user, and the activity name and time. Then, interacts with the user
to obtain the authorization needed to see the information from the id card and
bills. If he can confirm the bills are under the user’s real name (obtained from
the id card), and that the address on those bills is the same as the one the user
has provided, the verification succeeds (returns true) and the verifiers makes an
appointment for this user.

2.3 Linking Timeline Activities with the Public Ledger

We map the abstract ledger to the type of information required to store user
activities, and specify the condition that define validity of data. Entries in the
ledger contain plain information like user, activity type, counter, the optional
tags, and a ciphertext of the activity data. Every entry is also accompanied by
an authenticator to certify that the entry has been submitted by the user pk. In
our construction we use digital signatures as authenticators. The validity check
ensures that the authenticator can be verified with the public key.

• data = (pk, aname, count, cdata, [tags], σ) with pk the user public key, aname
the type of activity, count the counter for the same type of activity, cdata the
encrypted version of adata, [tags] the optional tags, and σ the authenticator
that this submitted activity belongs to user pk.

• val(pk, aname, count, cdata, [tags], σ) returns true if the authenticator σ verifies
for the statement (aname, count, cdata, [tags]) using pk; otherwise it returns
false.

To make the entries in the ledger consistent with the format of activities,
described in Sect. 2.2, we view the components (time, data) of an entry as

(pk, time, aname, count, cdata, [tags], σ).

Typically, verifiers that evaluate a policy for users are assumed to already
have the relevant inputs through some prior interaction with the user. Due to
the outsourcing of data by the user to the ledger, we have a search mechanism
allowing the policy verifier to extract needed information. We model the ledger
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as a database and use queries to search for entries that satisfy conditions used
in the policy. These queries are generated based on the conditions the policy
imposes over the activities. The conditions in the query can only look at the
following components of an activity: public key, name, time, counter, and tags.
The output of this type of search is more general than the one described by
the conditions in the policy. The user is then tasked with providing a proof
that a subset of those entries (that the verifier has found in the ledger) contain
activities that satisfy the policy. We detail in the next section how our model of
TAP realizes this.

Example 2. Consider the policy Ψ used in Example 1, and a public ledger
that contains entries (pk, atime, aname, count, cdata, [tags]). We define our search
query as a select command that looks for the latest entries that have the user’s
public key, an activity name in {id card, passport}, and 3 activities that point to
a fixed address in the last 3 months. As the address can be realized by a number
of different activities, we need to look for entries that contain { phone bill, utility
bill, tax . . .}.

2.4 Timeline Activity Proofs: Definition

Definition 1 (Timeline Activity Proofs). TAP = (Setup,KGenU,SubmitU,
IProofU, IProofV) with access to PL(data, val) defined in Sect. 2.3, consists of the
following algorithms:

• Setup(λ) : pp. This algorithm is run by a trusted third-party and generates all
public parameters required by the system. This includes the predefined activity
names ANames, and tag names TNames. Furthermore, it calls PL.Setup to
initialize the ledger and create an empty append-only list, and start the clock.

• KGenU(pp) is a user run algorithm that returns either a valid secret-public
key pair (sk, pk), or an error symbol ⊥ to symbolize that it failed. It creates
locally a secret-public key pair (sk, pk). The term secret key is used generically
to contain all secret information that the user would require in the system,
i.e. signing keys and the seed for activity based encryption key derivation.
Moreover, it is possible for users to call this algorithm multiple times and
register multiple public identities/pks that can be used in the system.

• SubmitU(pp, sk, (aname, adata, [tags])) is an algorithm run by user (sk, pk) that
wants to submit the activity (aname, adata, [tags]), to the public ledger PL. It
returns either an entry (pk, atime, aname, count, cdata, [tags], σ) that has been
successfully added to PL, or an error symbol ⊥ if the submission failed. If
required, there may exist some prior interaction with the ledger PL, where the
user could for instance synchronize the time or authenticate to the system.
The user performs the following steps. First, he computes the counter count
based on the activity name and time, an encryption cdata of adata, and the
authenticator σ. Then, following an successful interaction with PL by calling
Append(pk, aname, count, cdata, [tags], σ) at time atime, an entry is added to
the ledger. Without loss of generality we can trivially extend this algorithm
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to take as input a list of activities, each generating individual entries in the
ledger.

• IProof is an interactive protocol between a user (sk, pk) and a verifier to check
whether the user satisfies the policy Ψ . Both parties have access to PL, and
can easily search and extract information from the public ledger.
– IProofU(pp, sk, Ψ) is an algorithm run by the user that interacts with

IProofV to authenticate the user and prove its compliance with the policy
Ψ . The algorithm completes successfully with succ or aborts with abort.

– IProofV(pp, pk, Ψ) is an algorithm run by a verifier to assess if the user
with pk satisfies Ψ . It searches through the ledger, by calling PL.Search(Q),
for a search query Q built from Ψ for user pk. Using the obtained list of
valid entries, it interacts with IProofU to ensure the user proves that he
satisfies the policy Ψ . The output of this algorithm is a boolean value that
is set to true if the user can be authenticated and he satisfies the policy;
and false otherwise.

The system satisfies the following correctness property:

〈succ, true〉 ← 〈IProofU(pp, (pk, sk), Ψ), IProofV(pp, pk, Ψ)〉 ,

that holds for any policy Ψ , any pp ← Setup(λ), and any user (sk, pk) ←
KGenU(pp), if there exists A such that Ψ(A) = 1 and :

A =

⎧
⎪⎪⎨

⎪⎪⎩

(atime, aname, count,
adata, [tags])

∣
∣
∣
∣
∣
∣
∣
∣

user (sk, pk) has added entry
(pk, atime, aname, count, cdata, [tags], σ)

to PL by making the call
SubmitU(pp, sk, (aname, adata, [tags]))

⎫
⎪⎪⎬

⎪⎪⎭

.

Remark 4 (TAP with external database). We can extend Definition 1 to account
for the removal of the activity data by the user. For this we can introduce
the algorithm Remove that calls PL.Remove(pk, aname, count, cdata, [tags], σ)
defined in Sect. 2.1. Since the commitments to all records remain in the public
ledger, users can also temporary remove their activity records from the external
database if they do not want to delete them completely.

2.5 Security Properties

In this section we introduce the security properties TAP schemes should satisfy.
They are centered around the confidentiality of activity data, and the policy
verification of authenticated users.

Oracles for A. The adversary A has access to the list of entries in the public
ledger PL and can interact with it to add or search for entries. Furthermore, he
has access to the functionalities of TAP and can submit activities in the name of
some honest user, for which he does not know the secret key, and play the role
of any of the participants in the interactive proof protocol. All oracles are based
on the algorithms in PL and TAP:
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• Append(·): It calls PL.Append(·), and returns its output;
• Search(Q): It calls PL.Search(Q), and returns its output;
• Cor(pk): It returns the sk correspond to the pk used in the two experiments;
• Submit(·, ·, [·]): It returns the output of TAP.SubmitU(pp, sk, (·, ·, [·])), for the

user (sk, pk) generated in the main body of the two experiments;
• IProofU(·): The adversary plays the role of a malicious verifier in the interac-

tive IProof protocol with an honest user - that calls TAP.IProofU(pp, sk, ·);
• IProofV(·): The adversary plays the role of a malicious prover in the

interactive IProof protocol with an honest verifier - that calls algorithm
TAP.IProofV(pp, pk, ·).

Fig. 1. Data confidentiality experiment

Data Confidentiality. A fundamental property of TAP is the privacy of data that
ensures no information concerning the data of an activity is leaked by the entry
in the ledger for that activity, except the information provided from the name,
counter and tags assigned to it. This is formalized in Fig. 1, where we consider
a PPT adversary A that is required to distinguish between two private data
values by seeing an entry in the ledger of one of them. The activity data that is
transformed in an entry, is independent of the adversary and we parametrize the
experiment with a random bit β to mark this. Moreover, this entry is attributed
to a user for which the adversary doesn’t know the secret key. The adversary can
use oracle access to submit activities in the name of this user, or ask for proofs
for policies that do not contain the entry he is challenge on. This restriction is
needed to remove trivial attacks where the adversary can win the game by asking
for a policy that checks if there exists an entry that contains one of the private
data. In addition to entries made for this user pk, the adversary can introduce
in the ledger entries for other users which he controls (knows their secret key).
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Definition 2 (Data Confidentiality). A TAP scheme satisfies data confiden-
tiality, if no PPT adversary A can distinguish between Expdc,0A,TAP and Expdc,1A,TAP

defined in Fig. 1, i.e., the following advantage is negligible in λ:

AdvdcA,TAP =
∣
∣
∣Pr

[
Expdc,0A,TAP(λ) = 1

]
− Pr

[
Expdc,1A,TAP(λ) = 1

]∣
∣
∣ .

Authenticated Policy Compliance. This property ensures only authorized users
can prove to an honest verifier they satisfy the verifier’s policy. It requires the
adversary A to “forge” this authorization by either impersonating a user that
may satisfy the policy and for which the adversary doesn’t know the secret key,
or by faking the evidence for activities he did not put into the ledger (even if he
knows the secret key). To evaluate if the adversary is capable of providing fake
evidence when he does not satisfy the policy, we need to apply the policy over
all activities that have been submitted for a single user. As the activity data is
relevant in establishing if a policy is satisfied, we restrict the adversary to provide
evidence only for policies that consider activities added by Submit. Furthermore,
the policy that is verified must be valid, ¬Ψ(∅), that is it must not return true
independent of the input. We formalize these conditions in Fig. 2, where we
consider a PPT adversary that submits entries to the ledger and wins if he can
convince an honest verifier to return true. Because of the interactive nature of
the algorithm in IProof we restrict the adversary to not call the verification oracle
IProofV in the same time an instance of IProofU is opened.

Definition 3 (Authenticated Policy Compliance). A TAP scheme ensures
authenticated policy compliance, if no PPT adversary A can win the experiment
ExpapcA,TAP defined in Fig. 2, i.e., the following advantage is negligible in λ:

AdvapcA,TAP = Pr
[
ExpapcA,TAP(λ) = 1

]
.

3 Our TAP Construction

In this section we describe our general construction and analyze its security
properties. We start with standard cryptographic primitives [10] that are used
as building blocks, and the method to compute encryption keys that hide the
activity data.

3.1 Building Blocks

Our construction relies on a pseudo-random function PRF : {0, 1}λ × {0, 1}� →
{0, 1}poly(λ) [8], and an existentially unforgeable digital signature scheme DS =
(KGen,Sign,Verify) [6]. We rely further on a symmetric encryption scheme
SE = (KGen,Enc,Dec) with two security requirements: indistinguishability under
chosen plaintext attack (IND-CPA), and wrong-key detection (WKD) [2]. The
WKD property is not standard and has been introduced to bound the winning
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Fig. 2. Authenticated policy compliance experiment

probability of an adversary in successfully decrypting a ciphertext with two dif-
ferent keys. More precisely, any efficient adversary has a negligible probability
to win the game where he computes different keys k 
= k′ s.t. the expression
Dec(k′,Enc(k,m)) 
= ⊥ holds, for all messages m. The WKD property is used in
Lemma 2, see also Remark 6.

3.2 Key Management

Activities are submitted directly by users who control the type of information
they add to the ledger. For each activity (pk, atime, aname, count, adata, [tags]),
the activity data adata is private, and is never stored in plain. This component
in the activity is encrypted with a symmetric encryption scheme SE before being
appended to the ledger. The encryption keys are an important part of the policy
verification proof, and as such the user is required to store them securely.

Our solution for key management is to use the PRF to derive the encryp-
tion keys on demand, and reduce the amount of storage space on the user’s
side. For each user, a random seed s ∈ {0, 1}λ is chosen, and time interval keys
tki = PRFs(pk, i) are derived for the time interval i first. These are then used
to derive activity type keys akj = PRFs(tki, j) for some activity name anamej

in time interval i. Finally, the activity record keys rkk = PRFs(akj , countk) are
derived and used by the user to encrypt the activity data. During the submis-
sion process of an activity (algorithm SubmitU in Fig. 3), first the time interval
is defined by i ← PL.GetInterval(atimei), followed by the computation for the
record key

rkk = PRFs(PRFs(PRFs(pk, i), anamej), countk),

given the activity (pk, atimei, anamej , countk, adata, [tags]).
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An interesting and useful feature of this key management approach is that all
activity record keys are overwhelmingly unique. This is ensured by the pseudo-
randomness of the PRF, and the uniqueness of the inputs.

3.3 Generic Construction

In the following we provide a high-level intuition behind our construction, which
is specified in Figs. 3 and 4. A trusted third-party initializes the public ledger PL
and creates public parameters which includes the initialization of the append-
only list, and the clock. Moreover, he defines the set of allowed activity names
and tags.

Users generate their own signing/verification key pair (sigk, pk) for the digital
signature scheme DS. Additionally, they generate a seed s that is used to derive a
time-dependent key hierarchy for submitting activities. The pk is used as public
identifier for the user in the system, while sk = (sigk, s) should be stored securely.
The user may have multiple identities in our system, by generating new signing
keys and a new seed.

Activities (aname, adata, tags) are submitted directly by users who control
what type of information is added to the ledger. Each data adata is stored
encrypted with a unique key that follows the procedure described in the Sect. 3.2.
To authenticate the activity, the user provides a signature before appending it
to the ledger.

The verification of historic evidence is performed interactively between a user
(sk, pk) with sk = (sigk, s) and a verifier w.r.t the policy Ψ . We formalize this
interaction in Fig. 4, where both parties communicate over an authenticated and
confidential channel. Both the user and the verifier have access to the public
ledger PL. The verifier searches PL for entries that match the descriptors from
the policy for this user, and returns false if any of them are invalid. Then, it
sends to the user the list L obtained from the search with a fresh nonce c. The
user checks if the list of entries he received is identical to what he has retrieved
from the ledger, and aborts if they do not match. The user re-computes the
activity record keys for the records in L, and gives them as part of the key set
K to the verifier together with a signature over the nonce received. The verifier
returns true, if upon successful decryption using the received keys the activities
satisfy Ψ , and the signature verifies.

Remark 5 (Correctness). The correctness of TAP is ensured by the method in
which activity record keys are computed. The keys derived upon submission
of activity data in Line 6 of SubmitU, in Fig. 3, are identical with the activity
record keys computed by the user in Fig. 4. Because the PL.Append in Line 9 of
SubmitU in Fig. 3 calls internally atime′ ← GetTime(), it is important that atime
and atime′ map to the same interval i.

3.4 Security Analysis

Lemma 1. The TAP construction in Figs. 3 and 4 offers data confidentiality if
SE is IND-CPA and PRF is pseudo-random.
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Fig. 3. The setup, user key generation, and submission of activities for TAP.

Proof. All ciphertexts in the ledger are encrypted with unique keys derived via
PRF using unique public key-seed (pk, s) pair and a unique triple composed of
the activity name, time frame, and counter. Using the pseudo-random property
of PRF and the fact that s is kept secret from the adversary, we can be sure the
adversary obtains only a negligible advantage, by just looking at entries in the
ledger for this user pk.

Our construction provides this unique key per activity as proof in the inter-
active IProof protocol, when the adversary plays the role of a verifier and calls
the oracle IProofU(pp, sk, ·, ·, [·]). First, we show that the adversary has negligible
advantage to obtain the key used for the challenge ciphertext - that encrypts
adataβ .

Before the challenge, the adversary may call the IProofU oracle and ask for
keys of (valid) entries in the ledger. Even if the adversary can predict what
input the PRF will take, i.e., name, time and counter for an activity, A1 obtains
only negligible information due to the pseudo-randomness property of PRF. The
component A2 is restricted to not ask this exact key from the IProofU queries.
Moreover, all subsequent proofs - keys, that may be linked to the key used
to encrypt the challenge also produce a negligible advantage via the pseudo-
randomness property of PRF. Therefore, the adversary only obtains a negligible
advantage w.r.t the encryption key for the challenge.

We conclude this proof by using the IND-CPA security of the symmetric
encryption scheme SE that encrypted the challenge, as the adversary doesn’t
have access to the encryption/decryption key.

Lemma 2. The TAP construction in Figs. 3 and 4 ensures authenticated policy
compliance, if DS is existentially unforgeable, SE is WKD, and PRF is pseudo-
random.

Proof. We upper bound the advantage of the adversary in winning this game
by the following two probabilities, with all of them restricting the adversary
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Fig. 4. The interactive protocol IProof for TAP. It is assumed that the user and verifier
are communicating over an authenticated and confidential channel.

not to run IProofU when running the particular instance of IProofV used in the
experiment outcome:

• Exp1: the adversary convinces a honest verifier to return true when he doesn’t
ask for the secret key. This is defined exactly as experiment in Fig. 2 where
we remove the second part of the disjunction in the return.

• Exp2: the adversary convinces a honest verifier to return true when he doesn’t
satisfy the policy. This is defined exactly as experiment in Fig. 2 where we
remove the first part of the disjunction in the return.

Bound on Exp1. The secret key of a user contains a signing key sigk and a
seed s. We use the fact the adversary does not know sigk, and can not provide
real signed messages with this key when impersonating the user. To convince
the verifier to return true (on any adversarial policy) the adversary needs to
sign the message that gives the encryption keys. This message is a new message
in the system for which there should exists no signature, as it contains a fresh
commitment given by IProofV. Therefore, the adversary must forge a signature
and break the existential unforgeability of DS. To complete that reduction to
the security of DS we are using the fact the adversary can not run a man-in-the-
middle attack where he uses IProofU to create proofs for this verifier.

Bound on Exp2. The adversary to “show” he satisfies a policy when in fact
he doesn’t, must claim that an entry corresponds to an activity different than
the one he has actually submitted. This claim is with respect to the data in
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the activity, otherwise he would have directly satisfied the policy if the data
was not required. More precisely, the adversary needs to provide a decryption
key such that he obtains a valid decryption different from the one submitted.
The WKD property of SE ensures that if the adversary uses a decryption key
different from the one used to encrypt, then the ciphertext would not decrypt
to anything valid. As such the adversary would need to compute a decryption
key that coincides with the encryption key, and this is deemed improbable by
the pseudo-randomness property of PRF.

Remark 6. While the wrong-key detection property is required for the proof of
Lemma 2, we observe that in practice this requirement can be lifted. This is
because, for current practical symmetric encryption schemes, e.g. AES based, if
a different key is used, then the message would look random, and make it unlikely
to obtain something meaningful. Therefore, the policy would not succeed given
such random-looking messages.

4 Conclusion and Future Directions

Timeline Activity Proofs (TAP) proposed in this work allow users to store their
online interactions and build a timeline of their activities. These can later be used
by users to prove statements that consider past activities and by this increase the
trustworthiness of their online identities (e.g. profiles). Additionally, we propose a
construction that gives access to plain data to verifiers capturing today’s method
for social login. As a future research direction it would be interesting to see if
TAP can be extended with functionalities that allow for certain statements to
be proven without disclosing the decryption keys. This brings us closer to the
zero-knowledge techniques used in (decentralized) anonymous credentials [3,7].

Another possible research direction is to consider a feedback mechanism.
Currently, users self-issue activities and trust is ensured by the amount of infor-
mation the user is providing. Using a feedback mechanism to rate these activi-
ties, e.g., the one used by Amazon, eBay to rate sellers, could increase the trust
guarantees further.
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Abstract. Privacy-preserving record linkage (PPRL) supports the inte-
gration of person-related data from different sources while protecting
the privacy of individuals by encoding sensitive information needed for
linkage. The use of encoded data makes it challenging to achieve high
linkage quality in particular for dirty data containing errors or inconsis-
tencies. Moreover, person-related data is often dense, e.g., due to frequent
names or addresses, leading to high similarities for non-matches. Both
effects are hard to deal with in common PPRL approaches that rely on
a simple threshold-based classification to decide whether a record pair
is considered to match. In particular, dirty or dense data likely lead to
many multi-links where persons are wrongly linked to more than one
other person. Therefore, we propose the use of post-processing meth-
ods for resolving multi-links and outline three possible approaches. In
our evaluation using large synthetic and real datasets we compare these
approaches with each other and show that applying post-processing is
highly beneficial and can significantly increase linkage quality in terms
of both precision and F-measure.

Keywords: Record linkage · Post-processing · Privacy
Linkage quality

1 Introduction

Privacy-preserving record linkage (PPRL) is the task of identifying records across
different data sources referring to the same real-world entity, without revealing
sensitive or personal information [47]. In contrast to traditional record linkage
(RL), PPRL has to protect sensitive data to ensure the privacy and confiden-
tiality of the entities, usually representing persons [43]. PPRL techniques are
required in many areas, for instance in medical and health care applications. A
typical use case is the integration of patient-related data from different sources,
i.e., hospitals, registries and insurance companies, to allow comprehensive anal-
ysis and research about certain diseases or treatments [13,23,25,29]. Other use
cases for PPRL techniques include epidemiological or demographical studies as
well as marketing analysis [47].
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To preserve the privacy of represented entities, PPRL techniques have to
ensure that no personal identifiers or other sensitive information is revealed dur-
ing or after the linkage process. For an adversary it should be impossible to iden-
tify a person or to infer any sensitive information, like a person’s state of health.
Therefore, the data needed for analysis, e.g., medical data, is separated from the
data required for linkage. Record linkage is conducted by comparing commonly
available attributes, called quasi-identifiers (QIDs), like first and last name or
date of birth. Since such QIDs also contain private information, these attributes
are encoded (masked) for PPRL to preserve privacy. Consequently, such data
encodings have to be highly secure while still allowing linkage, i.e., they still
have to enable efficient similarity calculations between records. Real-world data
often contains errors or inconsistencies [15,36]. Hence, encoding techniques for
PPRL have to support approximate matching to achieve high linkage accuracy.

A high linkage quality is essential for practical applicability of PPRL, espe-
cially in the medical domain. Ideally, a PPRL approach should find all matches,
despite possible data quality problems in the source databases. On the other
hand, false matches should be strictly avoided, as otherwise (medical) conclu-
sions based on incorrect assumptions could be made.

Classification models are used to decide whether a record pair represents a
match or a non-match. For traditional RL sophisticated classification models
based on supervised machine learning approaches, e.g., support vector machines
or decision trees, can be used to achieve highly accurate linkage results [4]. More-
over, linkage results could be manually reviewed to increase final quality or to
adjust parameter configurations. In contrast, currently most PPRL approaches
only apply threshold-based classification based on a single threshold, as training
data is usually not available in a privacy-preserving context [43]. In general, it
is also not feasible to manually inspect actual QID values of records because
this would give up part of the privacy. Finally, recent encoding techniques often
aggregate all attribute values into a single binary encoding making it hard to
deploy attribute-wise or rule-based classification [43,47]. All these effects likely
reduce linkage quality of PPRL, indicating the demand for refined classification
techniques [8].

In this paper, we study post-processing methods for improving linkage qual-
ity of PPRL in terms of precision. By using simple threshold-based classification
approaches, only low linkage accuracy is likely achieved in PPRL scenarios deal-
ing with dirty or dense data. Dirty data such as missing or erroneous attribute
values can lead to a low similarity between matching records that are thus easily
missed with a higher similarity threshold. Another problem case are dense data
where many non-matching records can have a high similarity. For example, mem-
bers of a family often share the same last name and address leading to a high
similarity for different persons. Datasets focusing on a specific city or region also
tend to have many persons with similar addresses. For such dense data there can
be many non-matching record pairs with a similarity above a fixed threshold.
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A key drawback of classification approaches based on a single threshold is
that they often produce multi-links, i.e., one record is linked (matched) to many
records of another source, and moreover, each record pair exceeds the similarity
threshold. But, assuming deduplicated source databases, each record can at most
match to one record of another source. Hence, the linkage result should exclu-
sively contain one-to-one links as otherwise precision is deteriorated. Therefore,
we analyze methods that can be executed after any (threshold-based) classifi-
cation to clean multi-links, i.e., to transform the linkage result such that only
one-to-one links occur in the final result. In particular, we make the following
contributions:

– We study three post-processing strategies for the cleaning of multi-links, or
selection of match candidates respectively, to increase the overall linkage qual-
ity of PPRL, especially when dealing with dense or dirty data.

– We evaluate the different post-processing approaches using large synthetic and
real datasets showing different data characteristics and difficulty levels.

– In our evaluation, we consider both linkage quality in terms of recall, precision
and F-measure, as well as efficiency in terms of runtime.

In Sect. 2, we outline the basic PPRL process and discuss related work in the
field of PPRL. Then, we formalize the multi-link cleaning problem that we want
to address with post-processing (Sect. 3) and describe approaches for solving
it (Sect. 4). In Sect. 5, we evaluate selected approaches in terms of quality and
efficiency. Finally, we conclude.

2 Background and Related Work

In this section we describe the overall PPRL process and discuss related work.

2.1 PPRL Process

A PPRL pipeline contains multiple steps which are shown in Fig. 1. Following
previous work, we assume a three-party protocol, where a (trusted) third party,
called linkage unit (LU), is required [43]. The LU conducts the actual linkage of
encoded records from two or more database owners (DBOs). While we focus on
only two DBOs with their respective databases DA and DB the PPRL process
can be extended to multiple DBOs. In the following, each step of the PPRL
process is described and relevant techniques are discussed. It is assumed that
general information and parameters are exchange in advance between the DBOs.

Data Pre-processing: At first, the source databases to be linked need to be
pre-processed by the DBOs. Pre-processing includes deduplication, data cleaning
and standardization. In each individual database, duplicate records may occur
due to inconsistent or repetitive recording processes. Therefore, the DBOs have
to internally link and deduplicate their databases to ensure that a record from
one data source can only be linked to at maximum one record from another data
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Fig. 1. Outline of the basic PPRL process under a three-party protocol. Steps in dotted
boxes are optional. Steps with a lock symbol process encoded data.

source. Furthermore, data cleaning and standardization is required since real-
world data often contain erroneous, missing, incomplete, inconsistent or outdated
data [15]. Data cleaning techniques aim at curating or weakening such errors,
e.g., by filling in missing data or removing unwanted values [4]. Moreover, dif-
ferent data sources often use different formats and structures to represent data.
Hence, standardization techniques are used to overcome heterogeneity by trans-
forming data into well-defined and consistent forms [36]. Ideally, all DBOs con-
duct the same pre-processing steps to reduce heterogeneity thereby facilitating
high linkage quality. However, even extensive pre-processing may not resolve all
quality issues, as inconsistencies, like contradicting or outdated values, are hard
to detect.

Encoding: We focus on RL with the additional challenge to preserve the privacy
of referenced entities. Consequently, each record needs to be encoded to protect
sensitive data. A widely-used approach is to encode each record into a Bloom
filter (BF) [43,47]. A BF [1,39,40] is a bit array of fixed size m where initially
all bits are set to zero. k independent cryptographic hash functions are used
to map a set of record features into the BF. Each hash function takes as input
every feature from the feature set and produces a value in [0,m − 1]. Then,
the bits at the resulting k positions are set to one for every feature. The set of
features can be extracted in several ways from the record attributes. In general,
for each record attribute a function is defined, which takes as input the attribute
value and outputs a set of feature values. Typically, all QID values of a record are
represented as string and then split into a set of q-grams (substrings of length q),
where q is equal for each attribute. Several BF variants have been proposed for
PPRL to either improve quality [20,44,45] or privacy properties [8,35,38,40,41].
Multiple studies have analyzed attacks on BF variants and respective hardening
techniques [5,24,26,27,35].
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Blocking/Filtering: The trivial approach to link two databases is to compare
every possible record pair of the two data sources. To overcome this quadratic
complexity blocking or filtering techniques are used to reduce the number of
record comparisons [4]. This is achieved by pruning record pairs not fulfilling
defined blocking or filter criteria and are hence unlikely considered to be a match.
The output of this step are candidate record pairs that need to be further com-
pared. Blocking and filtering can be executed on encoded or uncoded data. Most
privacy-preserving approaches perform blocking or filtering at the LU side on
encoded data (bit vectors) [47]. State-of-the-art blocking techniques can signif-
icantly reduce the search space by applying blocking based on locality-sensitive
hashing (LSH) [8,21,22] or performing filtering based on multibit-trees [3,38] or
pivot-based filtering for metric distance functions [42].

Comparison: Each candidate pair is compared in detail by using (binary) sim-
ilarity measures, mainly the Jaccard or Dice similarity [43]. The output of this
step are candidate pairs with their respective similarity score. The similarity
score is a numerical value in [0, 1] determining how similar two records are.

Classification: Most PPRL approaches use a single similarity threshold which
is used to classify candidate record pairs into matches, i.e., records representing
the same real-world entity, and non-matches [43]. A second threshold can be
used to add a third class consisting of possible matches where no clear decision
is possible. Another common approach is the probabilistic method developed by
Fellegi and Sunter [4,10].

Finally, the match result, e.g., the IDs of matching record pairs, is returned to
the DBOs. However, by using simple threshold-based classification approaches,
multi-links occur in the final match result. Since commonly deduplicated data-
bases are assumed, the desired outcome should be a linkage result consisting of
only one-to-one links between records. We address this problem by introducing a
post-processing step after classification to clean multi-links in the linkage result.
The main problem in the post-processing step is to decide which candidates
should be selected leading to only one-to-one links and high linkage quality.

2.2 Related Work

PPRL and RL have been addressed by numerous research studies and approaches
as summarized in several surveys and books [4,9,43,47]. The key challenge of
PPRL is to achieve high linkage quality and scalability to potentially large
datasets while preserving the privacy of represented entities by using secure
encodings and protocols. In order to achieve a high linkage quality previous
work mostly focuses on developing or optimizing encoding techniques to support
approximate matching, attribute weighting or different data types [19,43,45,46].
Besides, efficient blocking and filtering techniques have been proposed that do
not compromise linkage quality outcome [47].
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The problem of post-processing corresponds to weighted bipartite graph
matching problems [48]. In fact, applying a one-to-one matching restriction, i.e.,
to clean multi-links, is highly related to problems in graph theory like the assign-
ment problem (AP) or the stable marriage problem (SMP). Various algorithms
have been developed to solve such kind of problems [17,48]. The most prominent
approaches are variants of the Hungarian algorithm (Kuhn-Munkres algorithm)
[34] for solving AP as well as variants of the Gale-Shapley algorithm [12,14,16,31]
for solving SMP.

For PPRL, post-processing methods have only been studied to a limited
extent so far: Though several approaches were considered for RL, they were not
comparatively evaluated in a PPRL context [2,4,8,9,28]. As a consequence, it is
unknown to which degree post-processing is useful and which method is suited
best for PPRL. Note that privacy restrictions only allow simple approaches for
match classification so that the need for post-processing is increased for PPRL.

A similar post-processing problem, namely selecting the most probable corre-
spondences from a mapping, has been studied in the field of schema [7,30,33] and
ontology matching [32]. In [7,33] best match selection strategies, called MaxN or
Perfectionist Egalitarian Polygamy, are used to enforce a one-to-one cardinality
constraint by selecting only candidates offering the best similarity scores. Addi-
tionally, algorithms for solving the maximum weighted bipartite graph matching
problem and the SMP have been considered as selection strategies [30,32].

3 Problem Definition

After the classification step (see Sect. 2) all candidate record pairs C are classified
into matches CMatch and non-matches CNon−Match. We assume, that a simple
threshold-based approach is used for classification. Thus, the class of matches
CMatch contain all candidate record pairs with a similarity score sim(·, ·) above
a single predefined similarity threshold t, i.e., CMatch = {(a, b)|a ∈ DA, b ∈
DB , sim(a, b) ≥ t}. We also assume that the databases to be linked are dedupli-
cated before linkage.

The set of matches CMatch constitutes a weighted bipartite linkage or sim-
ilarity graph G = (VA,VB,L). Let VA and VB be two partitions consisting
of vertices representing records (entities) from database DA or database DB

respectively, which occur in the linkage result, i.e., are part of a record pair
classified as match. Thus, VA = {a ∈ DA | ∃b ∈ DB : (a, b) ∈ CMatch} and
VB = {b ∈ DB | ∃a ∈ DA : (a, b) ∈ CMatch}. L denotes the set of edges rep-
resenting links between two records classified as match. Each edge (link) has a
property for the similarity score of the record pair. Between records of the same
database no direct link exists. An example linkage graph is depicted in Fig. 2.

After classification it is still possible that the linkage graph contains multi-
links, i.e., one-to-many, many-to-one or many-to-many links. Since deduplicated
databases are assumed, only one-to-one links should be present in the final link-
age result. Hence, the aim of post-processing is to find a matching (match map-
ping) over G. A matching M ⊆ L is a subset of links such that each record
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in V = VA ∪ VB appears in at most one link, i.e., contributes to at most one
matching record pair. As a consequence, post-processing applies a one-to-one
link (cardinality) restriction on the set of classified matches CMatch.

Fig. 2. Example linkage graph
containing several multi-links.

Fig. 3. Types of matchings.

In general, several matchings over G can be found. Thus, the challenge of
post-processing is to select the matching yielding the best linkage quality in
terms of either recall, precision or F-measure. Ideally, no true-match should be
pruned (no loss of recall) while resolving all multi-links to improve precision.
Links providing high similarity scores should be favored over those with a low
similarity, e.g., near t, as very high similarities typically indicate definite matches.
Also other link features, like link degree, can be used for link prioritization [37].

A matching can be selected in such a way that it fulfills certain properties.
Basic types of matchings are trivial, maximal, maximum and perfect match-
ings [48]. A matching M is called maximal, if any link not in M is added to M,
then M would be no longer a matching. If a matching is not maximal then it
is a trivial matching. Furthermore, if a matching contains the largest possible
number of edges (links) then it is a maximum matching. Each maximum match-
ing is also maximal but not vice versa. Finally, a perfect matching is defined as
a matching where every vertex of the graph is incident to exactly one edge of
the matching. Every perfect matching is maximum and hence maximal. How-
ever, not for every linkage graph a perfect matching exists. The different types
of matchings are illustrated in Fig. 3.

Since PPRL is confronted with potentially large datasets containing millions
of records [47], post-processing approaches need to be scalable and efficient.
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4 Post-processing Strategies for PPRL

We now present post-processing strategies for PPRL to enable a one-to-one
link restriction on the linkage result. We chose three frequently used approaches
known from schema matching for obtaining matchings in bipartite graphs. The
approaches are described in detail below.

4.1 Symmetric Best Match

At first, we consider a symmetric best match strategy (SBM) as proposed in
[7,33]. The basic idea is that for every record only the best matching record of
the other source is accepted. A record a ∈ VA may have links to several records
b ∈ VB . From these links only the one with the highest similarity score, called best
link, is selected. This approach is equivalent to a MaxN strategy which extracts
the maximum N correspondences for each record setting N = 1 (Max1).

To obtain a matching M over a linkage graph G for every record of both
partitions VA and VB the best link is extracted. Thus, two sets LMax1

A and
LMax1
B are build containing the best links for each record of the respective

partition, e.g., LMax1
A = {(a, b) ∈ L | ∀b′ ∈ VB : (b �= b′ ∧ (a, b′) ∈ L) →

(sim(a, b′) ≤ sim(a, b))}. Then, the final matching is obtained by building the
intersection of these two sets, i.e., MSMB = MMax1-both = LMax1

A ∩LMax1
B . Since

the best links from both partitions are considered this strategy is also called
Max1-both.

In Fig. 4(a) Max1-both is applied on the linkage graph from Fig. 2. It is
important to note that the obtained matching is not maximal. Since only record
pairs with a common best link are accepted, other record pairs are excluded from
the matching even if they do not violate the one-to-one link restriction and have
a relative high similarity.

4.2 Stable Marriage and Stable Matchings

The stable marriage problem (SMP) [12] is the problem of finding a stable match-
ing (SM) between two sets of elements given an (strictly) ordered preference list
for each element. A matching is defined as stable, if there are no two records of
the different partitions who both have a higher similarity to each other than to
their current matching record. Used as post-processing method for PPRL several
extensions to the classic SMP need to be considered [17,31]:

Unequal Sets: Usually, an SMP instance consists of two sets of elements having
the same cardinality. The partitions of the linkage graph are in general of different
size, i.e., |VA| �= |VB |, as not every record may have a duplicate in the other
source.

Incomplete Preference Lists with Ties: In traditional SMP each element
has a preference list that strictly orders all members of the other set. Since
blocking or filtering techniques are used for PPRL not every record a ∈ VA has
a link to a record b ∈ VB and vice versa. Moreover, a record may have two



Post-processing Methods for High Quality PPRL 271

Fig. 4. Illustration of the resulting linkage graph from Fig. 2 after applying different
post-processing methods. For Max1-both (a) the link a4–b6 is removed since the best
link for a4 is to b5. In contrast, for SM (b) the link a4–b6 is included as it does not
violate the one-to-one-link restriction nor the stable property. For the MWM (c), the
links a3–b4 and a4–b5 are included in the matching as the sum of their similarities is
higher than for a3–b5 and a4–b6. However, the MWM is not stable due to the links
a3–b4 and a4–b5, as a3 and b5 prefer each other over their current matching records.

links with the same similarity score to two different records of the other source,
called tie or indifference [16], e.g., sim(a, b1) = 0.9 and sim(a, b2) = 0.9 where
a ∈ VA and b1, b2 ∈ VB. The simplest way to handle indifference is to break ties
arbitrary [16]. Also secondary link features can be used for resolving ties [37].

Symmetry: For SMP it is not required that two elements prefer each other the
same (asymmetric preference). In our case, the SMP instance is symmetric since
the similarity of a record pair is symmetric.

To obtain a SM the Gale-Shapley algorithm [12] or one of its variants taking
the described extensions into account [16,17,31] can be used. A simple approach
is to order all links (or candidate pairs) based on their similarity score to process
them iteratively in descending order. The current link is added to the final
matching if it does not violate the one-to-one-link restriction. The algorithm
stops if all links have been processed [30]. In Fig. 4(b) a SM for the linkage
graph from Fig. 2 is depicted. In contrast to matchings obtained by the SBM
strategy, SMs are maximal. In general, multiple SMs may exists for a linkage
graph.

4.3 Maximum Weight Matchings

As third method we consider to find a maximum weight matching (MWM). A
MWM is a matching that has maximum weight, i.e., that maximizes the sum of
the overall similarities between records in the final linkage result. This problem
corresponds to the assignment problem (AP) which consists of finding a MWM
in a weighted bipartite graph. To solve the AP on bipartite graphs in polyno-
mial time the Hungarian algorithm (Kuhn-Munkres algorithm) can be used [34].
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For the linkage graph from Fig. 2 the corresponding MWM is depicted in
Fig. 4(c). Each MWM is maximal, but does not have to be stable.

5 Evaluation

In this section we evaluate the introduced post-processing methods in terms
of linkage quality and efficiency. Before presenting the evaluation results we
describe our experimental setup as well as the datasets and metrics we use.

5.1 Experimental Setup

All experiments are conducted on a desktop machine equipped with an Intel
Core i7-6700 CPU with 8×3.40GHz, 32 GB main memory and running Ubuntu
16.04.4. and Java 1.8.0 171.

5.2 PPRL Setup

Following previous work, we implemented the PPRL process as three-party pro-
tocol utilizing BFs as privacy technique as proposed by Schnell [40]. To overcome
the quadratic complexity we make use of LSH-based blocking utilizing the family
of hash functions which is sensitive to the Hamming distance (HLSH) [8]. The
respective hash functions are used to build overlapping blocks in which similar
records are grouped. For HLSH-based blocking mainly the two parameters Ψ ,
determining the number of hash functions used for building a blocking key, and
Λ, defining the number of blocking keys, are important for high efficiency and
linkage quality outcome [11]. Based on [11] we empirically set Ψ and Λ individual
for each dataset as outlined in Table 1 leading to high efficiency and effectiveness.
Finally, we apply the Jaccard similarity to determine the similarity of candidate
record pairs [18].

5.3 Datasets

For evaluation we use synthetic and real datasets containing one million records
with person-related data. An overview about all relevant dataset characteristics
and parameters is given in Table 1. The synthetic datasets G1 and G2 are gen-
erated using the data generator and corruption tool GeCo [6]. We customized
the tool by using lookup files containing German names and addresses with real-
istic frequency values drawn from German census data1. Moreover, we extended
GeCo by a family and move rate used for G2. The family rate determines how
many records of a dataset belong to a family. All records of the same family
agree on their last name and address attributes. The size of each family is cho-
sen randomly between two and five. To simulate moves we added a move rate
that defines in how many records the address attributes are altered. The move

1 https://www.destatis.de/DE/Methoden/Zensus /Zensus.html.

https://www.destatis.de/DE/Methoden/Zensus_/Zensus.html
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rate does not introduce data errors like typos, instead it simulates inconsisten-
cies between data sources. A generated dataset D consists of two subsets, DA

and DB , to be linked with each other. While the original tool requires all records
of DB to be duplicates to records of DA we changed the tool to support arbi-
trary degrees of overlaps between DA and DB . As a consequence, records in
both DA and DB may have no duplicate which is more realistic. We also use
a refined model to corrupt records by allowing a different number of errors per
record instead of a fixed maximum number of errors for all records. We may
thus generate duplicates such that 50% of the duplicates contain no error, 20%
one error and 10% two errors while the remaining 20% have an address change
(move rate). For the real dataset N, we use subsets of two snapshots of the North
Carolina voter registration database (NCVR) at different points in time.2

Table 1. Dataset characteristics and used parameters.

Characteristic G1 G2 N

Type Synthetic (GeCo) Real (NCVR)

|DA| 800 000 700 000 500 000
|DB | 200 000 300 000 500 000
|DA ∩ DB | 200 000 (100%) 150 000 (50%) 250 000 (50%)

Attributes
First name, last name, city,

zip, date of birth
First Name, middle name,

last name, city, year of birth
q-grams q = 2 (bigrams), no character padding
g 28 25

|Errors|/record 2

0 - 2 :
0 (40%)
1 (30%)
2 (10%)

|Errors|/attr 0 - 1 0 - 2
Moves 20 %
Families 25 %

m 1024
k 26 29
BF type CLK with random hashing [40,41]

HLSH key length Ψ 16
HLSH keys Λ 20 30

5.4 Evaluation Metrics

To asses the linkage quality we measure recall, precision and F-measure. Recall
measures the proportion of true-matches that have been correctly classified as
matches after the linkage process. Precision is defined as the fraction of classified
matches that are true-matches. Finally, F-measure is the harmonic mean of recall
and precision. To evaluate efficiency we measure the execution times of the post-
processing methods in seconds.

2 http://www.ncsbe.gov/.

http://www.ncsbe.gov/
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Fig. 5. Quality results for the datasets G1, G2 and N .

5.5 Evaluation Results

In order to analyze the impact of post-processing on the linkage quality we
compare the three strategies described in Sect. 4 to the standard PPRL without
post-processing. The aim of post-processing is to optimize precision while recall
is ideally preserved. The results in Fig. 5 show the obtained linkage quality for
datasets G1, G2 and N .

Dataset G1 is based on settings of the original GeCo tool with 100% over-
lap and a fixed error rate. We observe that a high linkage quality is achieved
even if post-processing is disabled with near-perfect recall for t ≤ 0.8 and near-
perfect precision for t ≥ 0.7. The three post-processing methods achieve very
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similar results for G1: While recall remains stable, precision and consequently
F-measure can be significantly improved to almost 100% even for low thresholds
t ≤ 0.7. This is due to the high overlap of the two subsets making false-matches
after post-processing only possible if a record has a higher similarity to a record
having no duplicate than to its actual true-match. Despite this best-case situa-
tion simulated with G1, only low precision is achieved for low threshold values
without post-processing.

For datasets G2 and N overall a lower linkage quality is obtained since the
data is more dense making it harder to separate matches and non-matches. Sim-
ilar to G1, precision significantly decreases for G2 using lower threshold values.
All post-processing strategies can again improve precision for lower threshold
values. The best results are achieved for Max1-both outperforming both SM
and MWM. SM yields slightly better results than MWM. For the synthetic dat-
sets G1 and G2, post-processing does not increase the top F-measure but the
best linkage quality is reached with a wider range of threshold settings thereby
simplifying the choice of a suitable threshold.

The post-processing methods are most effective for the real dataset N . Here
a higher recall can only be achieved for lower threshold values t ≤ 0.7 but
precision drops dramatically in this range without post-processing due to a high
number of multi-links. As a result, the best possible F-measure is limited to
only 67%. By contrast, the use of post-processing can maintain a high precision
even for lower thresholds at only small decrease in recall compared to disabled
post-processing. As a result, the top F-measure is substantially increased to
around 80% underlining the high effectiveness and significance of the proposed
post-processing. Again, the use of Max1-both is most effective followed by SM.

Additionally, we comparatively evaluated the post-processing strategies in
terms of runtime. The results depicted in Fig. 6 show that Max1-both achieves
the lowest execution times even for low thresholds. The extended Gale-Shapley
algorithm we used for SM shows a significant performance decrease for lower sim-
ilarity thresholds, most notably for dataset N and t ≤ 0.7. For higher thresholds
t > 0.7 the runtimes are very similar to those of Max1-both. The computation of
the MWM by using the Hungarian algorithm incurs a high computational com-
plexity and massive memory consumption. As a consequence, we were not able
to obtain a MWM for low threshold values (compare Fig. 5). Hence, we consider
the MWM approach as not scalable enough for large datasets with millions of
records.

In conclusion, both Max1-both and SM are able to significantly improve the
linkage quality of PPRL, especially for low thresholds, while showing good per-
formance. In our setup, the execution of the entire PPRL process takes only a
few minutes. Hence, introducing post-processing taking a few seconds for execu-
tion does not affect the overall performance. In general, Max1-both can achieve
the best linkage quality in terms of precision and F-measure. For applications
favoring recall over precision, a SM should be applied.
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Fig. 6. Runtime results for the datasets G1, G2 and N .

6 Conclusion

We evaluated different post-processing methods for PPRL to restrict the link-
age result to only one-to-one links. Our evaluation for large synthetic and real
datasets containing one million records showed that without post-processing
only low linkage quality is achieved, especially when dealing with dense or dirty
data. In contrast, using a symmetric best match strategy for post-processing is a
lightweight approach to raise the overall linkage quality. As a side effect, by using
post-processing the similarity threshold used for classification can be selected
lower without compromising linkage quality. Since in practical applications a
appropriate threshold is hard to define, this fact becomes highly beneficial.

In future, we plan to investigate further post-processing strategies using fur-
ther link features and other heuristics. We also plan to analyze post-processing
methods for multi-party PPRL where more than two databases need to be linked.
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2. Böhm, C., de Melo, G., Naumann, F., Weikum, G.: LINDA: distributed web-of-
data-scale entity matching. In: ACM CIKM, pp. 2104–2108 (2012)

3. Brown, A.P., Borgs, C., Randall, S.M., Schnell, R.: Evaluating privacy-preserving
record linkage using cryptographic long-term keys and multibit trees on large med-
ical datasets. BMC Med. Inf. Decis. Making 17(1), 83 (2017)

4. Christen, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31164-2

5. Christen, P., Schnell, R., Vatsalan, D., Ranbaduge, T.: Efficient cryptanalysis of
bloom filters for privacy-preserving record linkage. In: Kim, J., Shim, K., Cao, L.,
Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp.
628–640. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7 49

6. Christen, P., Vatsalan, D.: Flexible and extensible generation and corruption of
personal data. In: ACM CIKM, pp. 1165–1168 (2013)

https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-319-57454-7_49


Post-processing Methods for High Quality PPRL 277

7. Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching
approaches. In: VLDB, pp. 610–621 (2002)

8. Durham, E.A.: A framework for accurate, efficient private record linkage. Ph.D.
thesis, Vanderbilt University (2012)

9. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a
survey. IEEE TKDE 19(1), 1–16 (2007)

10. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. JASA 64(328), 1183–1210
(1969)

11. Franke, M., Sehili, Z., Rahm, E.: Parallel privacy preserving record linkage using
LSH-based blocking. In: IoTBDS, pp. 195–203 (2018)

12. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

13. Gibberd, A., Supramaniam, R., Dillon, A., Armstrong, B.K., OConnell, D.L.: Lung
cancer treatment and mortality for Aboriginal people in New South Wales, Aus-
tralia: results from a population-based record linkage study and medical record
audit. BMC Cancer 16(1), 289 (2016)

14. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, Cambridge (1989)

15. Hernández, M.A., Stolfo, S.J.: Real-world data is dirty: data cleansing and the
merge/purge problem. Data Min. Knowl. Discovery 2(1), 9–37 (1998)

16. Irving, R.W.: Stable marriage and indifference. Discrete Appl. Math. 48(3), 261–
272 (1994)

17. Iwama, K., Miyazaki, S.: A survey of the stable marriage problem and its variants.
In: IEEE ICKS, pp. 131–136 (2008)

18. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11(2),
37–50 (1912)

19. Karapiperis, D., Gkoulalas-Divanis, A., Verykios, V.S.: Distance-aware encoding of
numerical values for privacy-preserving record linkage. In: IEEE ICDE, pp. 135–
138 (2017)

20. Karapiperis, D., Gkoulalas-Divanis, A., Verykios, V.S.: FEDERAL: a framework
for distance-aware privacy-preserving record linkage. IEEE TKDE 30(2), 292–304
(2018)

21. Karapiperis, D., Verykios, V.S.: A distributed framework for scaling up LSH-based
computations in privacy preserving record linkage. In: Proceedings of the BCI
(2013)

22. Karapiperis, D., Verykios, V.S.: A fast and efficient hamming LSH-based scheme
for accurate linkage. KAIS 49(3), 861–884 (2016)

23. Kho, A.N., Cashy, J.P., Jackson, K.L., Pah, A.R., Goel, S., Boehnke, J., Humphries,
J.E., Kominers, S.D., Hota, B.N., Sims, S.A., et al.: Design and implementation
of a privacy preserving electronic health record linkage tool in Chicago. JAMIA
22(5), 1072–1080 (2015)

24. Kroll, M., Steinmetzer, S.: Automated cryptanalysis of bloom filter encryptions of
health records. In: ICHI (2014)

25. Kuehni, C.E., et al.: Cohort profile: the Swiss childhood cancer survivor study. Int.
J. Epidemiol. 41(6), 1553–1564 (2012)

26. Kuzu, M., Kantarcioglu, M., Durham, E., Malin, B.: A constraint satisfaction
cryptanalysis of bloom filters in private record linkage. In: Fischer-Hübner, S.,
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and Javam C. Machado1(B)
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Abstract. Numerous real world applications continuously publish data
streams to benefit people in their daily activities. However, these appli-
cations may collect and release sensitive information about individuals
and lead to serious risks of privacy breach. Differential Privacy (DP)
has emerged as a mathematical model to release sensitive information of
users while hindering the process of distinguishing individuals’ records on
databases. Although DP has been widely used for protecting the privacy
of individual users’ data, it was not designed, in essence, to provide its
guarantees for data streams, since these data are potentially unbounded
sequences and continuously generated at rapid rates. Consequently, the
noise required to mask the effect of sequences of objects in data streams
tend to be higher. In this paper, we design a new technique, named
δ-DOCA, to publish data streams under differential privacy. Our app-
roach provides a strategy to determine the sensitivity value of DP and
reduces the necessary noise. Our experiments show that the application
of δ-DOCA to anonymize data streams not only reduced significantly
the necessary noise to apply differential privacy, but also allowed for the
output data to preserve the original data distribution.

Keywords: Data privacy · Data stream · Differential privacy

1 Introduction

Data streams are unbounded sequences of data objects, continuously generated
at rapid rates. In general, due to the physical limitations of the computational
resources in streaming data processing, there is no control over the order in which
data is received and, furthermore, data elements must be discarded or archived
after processing. These characteristics force stream algorithms to be incremen-
tal and to maintain fast processing with low complexity, to deal with memory
and time limitations [14]. Data collected and published by applications like sen-
sor networks, financial applications and moving object tracking can be used to
benefit individuals. For instance, moving object tracking allows optimal route
c© Springer Nature Switzerland AG 2018
J. Garcia-Alfaro et al. (Eds.): DPM 2018/CBT 2018, LNCS 11025, pp. 279–295, 2018.
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computation since the number of cars per area is released in real-time. However,
these applications may collect sensitive information about these individuals and
lead to severe risks of privacy breach.

Differential privacy (DP) [5] has emerged in the last decade as a new
paradigm to release sensitive information while giving a statistical guarantee
for privacy. It has received considerable attention from the privacy community
due to its inherent characteristic of being independent of background knowledge
or even computational power. DP ensures that the addition or removal of an
individual will not substantially affect the outcome of any statistical analysis
performed in the dataset. Differential privacy is a definition satisfied by a ran-
domized algorithm, usually called a mechanism. It provides privacy introducing
randomness to prevent the identification of an individual. The Laplace mecha-
nism is the most common and simple method to achieve differential privacy. A
mechanism which achieves differential privacy is associated with a sensitivity,
which measures how much difference an individual will make in a dataset. As
the value of sensitivity grows, the addition of noise required to mask the effect
of all the individuals of the datasets tends to be higher [7].

Although differential privacy has been widely used as a strong model for pro-
tecting the privacy of individual users’ data, it was not designed, in essence, to
provide its guarantees for streaming data. There are some challenges in publish-
ing data streams under differential privacy, especially when dealing with the pub-
lishing of a dataset in its original format, with full records, in a non-interactive
context. In this context, the data holder publishes an anonymized version of the
data [5]. Since data streams are unbounded sequences of data objects, it is not
possible to determine the exact value of sensitivity, which depends on the data
domain, because such characteristic is not known at first in streaming data. Also,
even if the sensitivity value could be calculated in a specific domain, it would
tend to be higher in a non-interactive context, demanding thus a high volume
of noise to protect the data.

Applying differential privacy to protect the privacy of individuals’ informa-
tion, in the context of streaming data, is a valuable issue that needs to be
addressed. Hence, in this paper we address the problem of publishing data
streams under differential privacy while maintaining higher data utility. In par-
ticular, the main contributions of this paper are:

1. We define a restrictive domain of a data streaming adjusted to a specific
parameter δ, allowing for determining the sensitivity value of differential
privacy.

2. We develop a solution for enhancing data utility when applying differential
privacy considering a known domain in streaming data.

3. We conduct an extensive empirical evaluation of three different real datasets
showing that our approach is suitable and effective for streaming data.

The remainder of this paper is organized as follows. Section 2 presents a brief
discussion of related work in different publishing contexts. After that, Sect. 3
introduces δ-DOCA, an approach that takes place in two stages for publishing
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a data stream protected by differential privacy. Section 4 reports the results
obtained in the experimental evaluation with three real datasets. Finally, Sect. 5
presents conclusions and indicates future research directions.

2 Related Work

In the literature, solutions for privacy are mainly divided into two contexts [5]:
(i) the interactive context, in which it is provided an interface, whereby queries
can be submitted on the dataset and the answers are anonymized; (ii) the non-
interactive context, where an anonymized version of the data is published.

Differential Privacy was initially designed with the purpose of protecting the
results of interactive queries [5]. However, non-interactive publishing allows for
more flexibility for data analysis since it does not assume any premises of how
the data will be used after the release. In non-interactive publishing, items are
generated from the original dataset applying a differentially private mechanism
to form a new dataset, on which the queries are run.

Studies related to non-interactive publishing generally present useful solu-
tions for statistic analyses and works often focus on counting queries. For
instance, the work in [2] generates an anonymized dataset capable of answer-
ing questions such as “which data fraction satisfies a given predicate?”, where
no restrictions upon the predicate are made. In [18] there is a solution for private
publishing of histograms and [9] proposes an algorithm to release a dataset for
specific statistic queries. This dataset is created based on a distribution, which is
privately generated to represent the original dataset, being continuously adjusted
for new queries. Nonetheless, they present specific restrictions to the publishing
format, which limits other types of data usage.

In more recent works, there are solutions for publishing private datasets that
present the same format of the original data. A method called PrivBayes was
proposed in [19] to deal with the issue of high-dimensional data publishing,
which may demand a high volume of noise to protect data. PrivBayes consists
in constructing a model based on Bayesian networks to generate samples from
this model. [1] also offers a solution that generates samples from a model, but,
in this case, publishing is based on the concept of plausible deniability, which, in
order to publish a record generated from a model, verifies if it could have been
generated from, at the most, k original records.

Closer solutions to δ-DOCA can be found in [15,16], in which data publishing
follows a process of perturbation added with the DP noise on a microaggregated
version of the original data. [16] combines k-anonymity syntactic model [17]
with the more robust privacy guarantees offered by DP. The approach generates
microaggregation clusters to satisfy the k-anonymity model, in which its cluster
centroid represents each individual. The authors argue that this reduces the
distortion caused when adding DP noise. The noise is computed by the Laplace
mechanism with sensitivity Δf = n

k ∗ Δ(X)
k , where X is the original dataset and

n is the number of individuals records, so n
k represents the number of clusters.
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Considering such formula, one can notice that sensitivity depends upon the size
n and the knowledge on the X domain.

The authors in [15] follow the same line of thought of [16], i.e., it performs
a stage of microaggregation before adding noise. However, the restriction of
minimum size for clusters is moderated with the aim of reducing the impact
of an individual on the group, and, consequently, on the sensitivity value. The
sensitivity for publishing a group in this work is Δc = ΔD/|C|, where D is
the original dataset and ΔD is the greatest possible variation of a record in
D. Notice that, in this work, the sensitivity depends on the knowledge of the
domain D and the cluster size, but not on the dataset size. The noise for each
group is obtained through the Laplace mechanism with scale Δc/ε.

The works mentioned so far only deal with the publishing of static datasets,
and their solutions do not apply directly to the context of data streaming. Some
attention has, however, been devoted to the protection of data published out of
data streaming [4,6]. The solution applied in [4], for instance, protects results
from persistent counting queries in the context of IoT for an individual’s state
in a given logic time. From this results, it is possible to derive other persistent
queries, for example, the number of connected users at each monitored access
point. It is also possible to monitor if a given temporal event occurs, e.g., verify
if the number of connections in an access point is greater than a threshold.
However, to the best of our knowledge, no work in the context of data streaming
performs publishing of the full record type.

The δ-DOCA approach designed in this paper works in the full records pub-
lishing context of works [15,16], but also attacking the context of the continuous
release of data streaming.

3 δ-DOCA

δ-DOCA (Differential Privacy Online Clustering and Anonymization with
Domain Bounded by δ) is a data stream publishing approach differentially pri-
vate for numerical and univariate data. Given a proportion of publishing δ,
differential privacy is applied to a non-interactive context. Thus, an anonymized
version of the data in the original format (full record) is obtained, as it occurs
with the microaggregated publishing of syntactic models, e.g., k-anonymity [17].
This type of publishing is generally more suitable for analysis [15], since it does
not assume any premise of data use, whereas the interactive scenario of dif-
ferential privacy allows for only a limited number of queries [16]. Additionally,
the δ-DOCA approach provides a strategy to decrease the sensitivity in noise
addition, maintaining data utility without compromising individual privacy.

In this context, there are two main problems to be addressed: (i) due to
the unpredictability of data values and their continuous flow, it is not possible
to specify a domain a priori and, therefore, a sensitivity value for differencial
privacy application; (ii) even with a established domain, the sensitivity to pub-
lish data in a non-interactive manner must be high to protect them entirely,
i.e., the necessary noise level to protect individuals’ privacy is very high and,
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consequently, published data do not reflect original data, having no utility for
analytical purposes.

To tackle the aforementioned problems, we have designed δ-DOCA, which
acts in two different stages. The first stage, so-called Domain Bounding by δ,
defines the domain of a data streaming with low information loss or suppression,
regulated by a parameter δ. The greater the delta, the fewer the data items to be
suppressed. δ-DOCA applies the streaming data domain to calculate the value of
the sensitivity for differential privacy. Considering the high volume issue in the
context of non-interactive publishing, the second stage, called DOCA, presents
a solution to enhance utility, which is based upon an online microaggregation
prior to adding noise to data. The improvement of utility relies on the assump-
tion that the necessary noise to protect the microaggregated value of the group
is reduced to an extent that compensates the information loss caused by the
microaggregation per se [15,16].

3.1 Domain Bounding by δ

The primary purpose of this stage is to define a restrictive domain of a data
streaming S, allowing for determining the differential privacy sensitivity (Δf)
for a specific δ. Without such restriction, this domain would be immeasurable,
considering the features of unpredictability and continuous flow of potentially
unlimited data streaming. The parameter δ establishes the proportion of data to
be published and falls within the interval [0, 1], where 1 indicates that all records
should be published, and 0 the opposite, i.e., no record should be published.
Hence, complement 1 − δ points out the suppression level.

In order to calculate both limit inferior and limit superior of the domain
D = [vlow, vsup] capable of reaching the publishing level specified by δ, we apply
an online quantile [8] updated continuously with each new item originated from
S. The values vlow and vsup are defined as follows: vlow = ((1 − δ)/2)-quantile
and vsup = ((δ + 1)/2)-quantile. They are calculated every time a new item is
generated from S until reaching the stability D. Figure 1 presents an overview
of our strategy. Once this condition is met, this stage stops being executed, gen-
erating the domain D, with limit inferior vlow and superior vsup, at the moment
the stability validation of the domain is reached.

The idea behind this stage is that D eventually becomes stable, that is, the
variation in vlow and vsup is non-significant. Notice that, in the definition of
the sensitivity of DP [5,7], the sensitivity is given by the maximum possible
variation of a single individual. Considering the stable domain D, the greatest
possible difference is then given by the absolute difference between the superior
and inferior values of the interval. Thus, it is possible to calculate the differential
privacy sensitivity Δf = |vlow − vsup|.

In order to stabilize the range D, we advocate the use of a symmetrical asymp-
totic two-sided confidence interval distribution-free conservative with 100(δ)%
confidence, δ ∈ (0, 1), which is given by [X�n((1−δ)/2)�;X�n((δ+1)/2)�], where
X(1) ≤ X(2) ≤ · · · ≤ X(n) denoting the order statistics of the sample. For
details, see for example [10]. Notice that as an asymptotic confidence interval
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Fig. 1. An overview of stage 1 – domain bounding by δ.

guarantees the stabilization, the greater the sample, the better is the defined
domain D, which should not be a problem, since this paper works in the con-
text of data streams, which are potentially infinite. However, in cases where the
sample is small or moderate in size, a resampling strategy, e.g., Bootstrap, can
be used to assure that the calculated domain D represents the stream’s actual
domain.

For the stability validation of D, the following definition is provided:

Definition 1. (Stable domain) Given the tolerance parameter λ and n as the
total number of records that arrived in the stream so far. Let li be the i-th value of
((1− δ)/2)− quantile and si the i-th value of ((δ +1)/2)− quantile. Let Xlow =
(ln−m+1, ..., ln) and Xsup = (sn−m+1, ..., sn) where m is the given number of
consecutive quantile values to be verified for the stabilization. Also let cv be the
coefficient of variation function (Eq. 1). If |Xlow| = m and cv(Xlow) ≤ λ and
the same conditions hold for Xsup, the domain D = [ln, sn] is considered stable.

cv(X) =
σ(X)
μ(X)

, where σ is the standard deviation and μ is the mean. (1)

Given the stable domain D = [vlow, vsup], this stage generates as output for
the next step all new items ri ∈ S such that vlow ≤ ri ≤ vsup, i.e., if ri ∈ D,
then ri will be anonymized and published in the following stages, otherwise ri

is suppressed.

Discussion. The domain bounding phase leads to the stability validation of D in
order to separate the tuples to be suppressed and the ones to be anonymized and
published. For the items to be suppressed, it is possible to apply anonymization
by naively using differential privacy, i.e., generating noise for each item with the
Laplace mechanism with the scale Δf/ε, where Δf = |vlow−vsup|. However, even
for small values of δ (high suppression), the sensitivity value to protect publishing
in a non-interactive context is still very high and, therefore, the amount of noise
required to protect data also becomes elevated. Consequently, it is necessary an
additional solution for enhancing utility.
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3.2 Online Clustering and Anonymization

This stage, so-called DOCA, presents a strategy for enhancing data utility when
applying differential privacy in the context of non-interactive publishing, consid-
ering the data streaming of a known domain. To this intent, our approach adapts
the process of anonymization established in [15], which presents a solution for dif-
ferentially private publishing in context of static datasets. This process performs
a microaggregation before noise is added from the Laplace mechanism. The noise
starts, therefore, to be generated for a cluster centroid after microaggregation,
instead of being obtained for the original value of each element.

Fig. 2. DOCA overview – online clustering and anonymization.

The contribution of DOCA is divided into two sub-phases according to the
overview presented in Fig. 2: (i) Online Clustering and (ii) Anonymization with
microaggregation and noise addition. To adapt the solution of [15], the first
sub-phase acts creating clusters for microaggregation in an online context, con-
tinuously generating groups that supply the next anonymization sub-phase.
The solution presented in Algorithm 1 (DOCA) meets the execution of these
two sub-phases and satisfies the execution restrictions in the context of data
streaming.

Online Clustering. The strategy of anonymization with utility improvement,
offered in [15], consists in performing microaggregation before adding noise to
data. In this strategy, the volume of noise depends on two factors other than
privacy budget ε: sensitivity and group size. The key to adapt this strategy to
the context of data streaming is thence the continuous formation of groups for
online microaggregation.

For the process of online microaggregation and anonymization, it is necessary
to take into account the data streaming characteristics that strongly impact this
process [14]: (1) data is potentially unlimited, which hinders its representation
in the memory as a whole; (2) the microaggregation algorithm must take lin-
ear time, at the most, to allow for online execution; (3) each item of the data
streaming is subject to a delay constraint between its input and output, which,
in DOCA is the maximum time from the input until its anonymized publishing.
For simplicity’s sake, the arrival of a new item in the data streaming was adopted
as the unit of time.
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Algorithm 1. DOCA

Input: S, Δf , β, m, ε, delay constraint
Output: Updates online clusters C
/* S: the continuously updated data stream */

/* Δf: the domain sensitivity, ε: privacy budget */

/* β: maximum number of clusters in memory */

/* m: maximum number of clusters used to calculate τ */

/* τ: info loss avg of the last m published clusters */

/* delay constraint: maximum number of interactions from the record

input until its output */

1 C = [ ], I = [ ], τ = 0, mint = +∞, maxt = −∞;
2 foreach new Record r ∈ S do
3 mint = min(r, mint); maxt = max(r, maxt);
4 Cluster c = BestSelection(r, C, τ , mint, maxt);
5 add r in c;
6 Record re = GetExpiringRecord(delay constraint);
7 if re is not Null then
8 Cluster ce = {ci ∈ C|re ∈ ci};
9 iloss = (max(ce) - min(ce)) / (maxt - mint);

10 add iloss in I;
11 τ = mean of the last m values ∈ I;

/* Anonymization and publishing of cluster ce */

12 Δc = Δf/size(ce);
13 η = ramdom sample from Laplace(0, Δc/ε);
14 χ = centroid value of ce;
15 foreach ri ∈ ce do
16 ri = χ + η;
17 publish ce;
18 remove ce from C;

The anonymization made by DOCA adds, besides the information loss gen-
erated by the microaggregation, the noise from the Laplace mechanism [7] to
guarantee Differential Privacy. This noise is directly proportional to sensitivity
(Δf) and inversely proportional to the group size to which it is applied. In order
to minimize noise, it is important that the solution adopted for online grouping
seeks the optimization of the following features simultaneously:

1. not to restrict group size, that is, the bigger the group, the lower the volume
of noise;

2. to guarantee representativity of centroids so that the volume of noise com-
pensates the information loss of the microaggregation.

To obtain groups that better suit the aforementioned characteristics, we
devise a new online clustering algorithm as a variation of the solution offered
by [3]. The online clustering is described in lines 3, 4 and 5, where the choice
of the best cluster for an item (line 4) is separated in Algorithm 2 for better
understanding. The clustering aims to minimize the information loss of a group
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Algorithm 2. BestSelection

Input: r, C, τ , mint, maxt

Output: Cluster cbest
1 Cmin = [ ], Cbest = [ ], emin = +∞;
2 foreach c ∈ C do
3 ei = GetEnlargment(r, c);
4 emin = min(emin, ei);

5 foreach c ∈ C do
6 ej = GetEnlargment(r, c);
7 if ej == emin then
8 add c in Cmin;
9 ctest = copy of c;

10 add r in ctest;
11 ilossTest = (max(ctest) - min(ctest)) / (maxt - mint);
12 if ilossTest < τ then
13 add c in Cbest;

14 if Cbest is ∅ then
15 if size of C < β then
16 cnew = new Cluster;
17 add cnew in C;
18 return cnew;

19 else
20 return a cluster from Cmin with smallest size;

21 else
22 return a cluster from Cbest with smallest size;

based on a threshold τ , continuously updated (Algorithm 1 line 11) as the aver-
age of information loss from the last m published groups. The updating process
of τ is performed this way to be automatic and based on the information loss
from the latest published clusters. Thus, the information loss of each published
group is computed in line 9 of Algorithm 1. Such information loss (iloss) seeks
to measure the cluster generalization in relation to the total generalization. The
total generalization, in its turn, consists of the maximum difference between the
items of greatest and smallest value until the current interaction. It is observed
that this value will equal to Δf in the worst scenario. As a result, the algorithm
aims to minimize the information loss of each cluster with the goal of generating
clusters with well-represented centroids. Besides that, a cluster will grow as long
as it keeps good representativity, or until a tuple within the cluster reaches the
delay constraint.

Anonymization. This sub-phase consists in verifying if there exists a tuple that
reached the delay constraint and, for this reason, must be published (Algorithm
1 line 6). To this intent, the group to which this tuple belongs to is published, i.e.,
the tuple together with the other tuples from the same group. The anonymization
steps of this group occur from lines 12 to 17 of Algorithm 1. To publish the group,
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its centroid value χ is calculated as the average of the elements of the group.
After that, the noise value η to be inserted in the group is computed, given by
a random sample obtained from the Laplace distribution with mean zero and
scale Δc/ε (line 12), as defined in [15]. Next, the value of all tuples in the group
is replaced by χ + η and the anonymized group is published. Finally, the group
with all its elements is removed from memory.

Notice that Δc does not depend upon the size of the dataset so that the
anonymization strategy can be directly applied to the context of microaggrega-
tion in data streaming. Furthermore, as argued in [15], a unique Laplace noise
sample must be generated for the whole group. Otherwise, if a different noise
were generated for each tuple, the amount of noise generated would be greater
than in the traditional approach, considering that in this manner, besides the
noise of the traditional approach, there would be information loss resulting from
the microaggregation step.

As δ-DOCA acts in the online context, it is important to mention that it
satisfies the memory limitation constraint, as well as the restriction of time
processing to the output. Given that DOCA treats the arrival of a new tuple as
a unit of time, consequently, there will never be more tuples in processing than
the value established for the delay constraint. Also, the complexity constraint for
online processing is satisfied, since the number of iterations for the clustering of a
new item (Algorithm 2) is limited by the input parameter β (maximum number
of clusters). The cost of calculating the centroid of the cluster and generating
the required Laplace noise takes constant time. The cost of anonymizing and
publishing a cluster (Algorithm 1 lines 12 to 18), in its turn, is linear on the
cluster size that in the worst case3 is limited by the delay constraint.

4 Experimental Evaluation

The two stages that compose δ-DOCA, i.e., Domain Bounding by δ and DOCA,
can be used independently. However, in the experiments, δ-DOCA is evaluated
as a whole, that is, the output from stage 1 is used as input for stage 2. In
our experiments, we show that in stage 1 the domain D became stable in an
acceptable number of interactions for datasets with different levels of skew. We
also demonstrate that the number of items outputted from stage 1 satisfies the
proportion specified by δ. As expected, the value of sensitivity, resulted from D,
is still very high and the naive anonymization gets no utility for analysis. After
performing Stage 2, we obtained a high utility improvement when compared to
the previous strategy.

In order to evaluate δ-DOCA, three real world datasets were used to sim-
ulate data streaming: CC [13], LOANS [12] and BACKBLAZE [11]. The main
characteristics of these datasets are detailed in Table 1. From CC, the attribute
Amount was used. The attribute loan amount was collected from LOANS. From
BACKBLAZE, it is used the attribute smart 9 raw from data collected in Jan-
uary 2017. The skew presented is measured by the asymmetry coefficient given
3 All elements in the same cluster.
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Table 1. Data sets characteristics.

Dataset CC LOANS BACKBLAZE

Data size 284,807 671,205 1,989,462

Unique values 32,767 479 42,762

min 0.0 25.0 1.0

max 25691.16 100000.0 66413.0

skew 16.9776 9.7954 0.7365

by 1
n∗s3

∑n
i=1(Xi − X̄)3, where n stands for the dataset size, s for the standard

deviation and X̄ for the mean.
Five executions of δ-DOCA were performed for each combination of param-

eters for each dataset. For each execution, the data were randomly shuffled to
simulate a data streaming. This strategy is used because, given the online nature
of δ-DOCA, the order in which data arrives can be relevant to the final result.
The result is presented as the average of the five executions. The number of exe-
cutions cannot be high to avoid biased results, because, when using the Laplace
mechanism, the average of results tend to approximate to the real answer.

4.1 Domain Bounding by δ Evaluation

Step 1 is evaluated with different proportions of publishing (δ) and also with
different levels of tolerance (λ) as detailed in Definition 1 with all combinations
between δ = {0.95, 0.9, 0.85, 0.8, 0.75, 0.70} and λ = {0.02, 0.01, 0.001}. These λ
values were chosen considering the metric adopted for stabilization (coefficient
of variation) that returns values in the range [0, 1], and as closest of zero, less
variation is accepted (see Eq. 1 for variation). To compute the stabilization from
Definition 1, we set m = 10, 000 for all the experiments. This value of m is
shown to be suitable for the different magnitudes and distributions skew of the
three datasets and cannot be considered high, as δ-DOCA is designed to work
with potentially unlimited data. The column begin of pub from Tables 2, 3 and 4
presents the moment when the data start to be published. Notice that, in most
cases, the values do not exceed m by more than three times.

Even for a high degree of publishing with δ equals to 0.95 (95% of the data),
in the less skewed dataset (BB) the domain was reduced by 33.7% in the small-
est reduction case. In the most skewed dataset (CC) the domain was reduced by
99.45%. Notice that, the lower the domain, the lower the sensitivity and, conse-
quently, the better the utility is. The reason why δ-DOCA is capable of reducing
the domain so significantly is that few extreme values push the domain to a high
range, even though almost all data can be represented in a very smaller range.

Tables 2, 3 and 4 show for the three datasets that the bounded domain of
the first stage of our contribution holds for almost all combination of parameters
δ and λ. We believe that the cases where the condition did not hold were due
to the limited size of the datasets; if the data streaming was long enough, the
condition would eventually hold, especially for datasets very skewed, like CC.
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Table 2. Stage 1 experimental results from CC [13].

Delta Lambda Begin of pub. Published Published % dom. reduc. %

0,95 0,02 21799,2 197567,8 75.1178 99.3580

0,01 16534,6 255858,2 95.3731 97.5749

0,005 22072,8 186689,2 71.0551 99.4536

0,9 0,02 11074,2 193831,2 70.8102 99.4617

0,01 13480,6 246092,6 90.7008 98.5732

0,005 29356,6 229708,2 89.9258 98.5828

0,85 0,02 14813,4 227114,6 84.1181 99.2128

0,01 12713,6 235644,4 86.6048 98.9762

0,005 17137,4 201337,6 75.2212 99.3588

0,8 0,02 33772 239106,8 95.2632 97.6473

0,01 17230,6 231569,6 86.5438 98.9823

0,005 31187,8 219492,4 86.5418 98.9820

0,75 0,02 17833,4 240934,2 90.2382 98.5928

0,01 11125,4 230379 84.1775 99.2081

0,005 17283,8 254200,8 95.0197 97.6565

0,7 0,02 16869,6 190175 70.9778 99.4559

0,01 40277,6 183363,2 74.9824 99.3623

0,005 24814 218439,8 84.0237 99.2162

4.2 δ-DOCA Evaluation

The stage 2 of our approach is evaluated regarding utility. In this step, there
is utility loss coming from two different sources: (i) microaggregation and (ii)
Laplace noise, added to achieve differential privacy. It is proportional to Δc =
Δf/|C|, where Δf is computed based on the output D from stage 1. δ-DOCA
is compared with the naive strategy of publishing the differential privacy data
without an online microaggregation step, just adding the Laplace noise with
mean zero and scale Δf/ε to each item. This Δf is also computed based on
the output D from step 1. From now on, this strategy will be called baseline.
For the experiments, we adopted the following parameters for Algorithm 1: delay
constraint = 1000, beta = 50, m = 100 and epsilon = 1.0. This comparison was
chosen because, to the best of our knowledge, there has been hitherto no work
published that considers the differential privacy publishing of a data streaming
in non-interactive scenarios.

Figure 3 shows the Mean Squared Errors (MSE) for δ-DOCA and baseline.
The horizontal axis shows each combination of δ and λ and the vertical axis
exhibits the MSE value. The results for each dataset are presented by pairs of
subplots. Figure 3a and b show the results for baseline and δ-DOCA, respectively,
for CC. Figure 3c and d are the results for LOANS as Fig. 3e and f presents the
results for BACKBLAZE. For all experiments, the MSE decreases around 99%
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Table 3. Stage 1 experimental results from LOANS [12]

Delta Lambda Begin of pub. Published Published % dom. reduc. %

0,95 0,02 12907,8 633694,2 96.2625 95.8090

0,01 20077 625925,4 96.1293 95.9290

0,005 30524,2 616722,4 96.2600 95.8090

0,9 0,02 11102,6 607629,6 92.0506 97.2343

0,01 19058 600012,4 92.0062 97.2243

0,005 26534,4 592551,8 91.9166 97.2593

0,85 0,02 12447,8 566115 85.9371 98.0095

0,01 16384 561783,6 85.7919 98.0445

0,005 30473,2 549678,4 85.7883 98.0445

0,8 0,02 11272,6 536792 81.3403 98.4146

0,01 16790,2 531772,4 81.2588 98.4296

0,005 31922,8 518465,8 81.1012 98.4546

0,75 0,02 12046 505711,4 76.7207 98.6997

0,01 10954,8 506528,6 76.7177 98.6997

0,005 11435,8 506152 76.7165 98.6997

0,7 0,02 16353,4 481473,4 73.5237 98.8447

0,01 15873,8 481508,8 73.4754 98.8497

0,005 27846,2 473205 73.5535 98.8447

when using δ-DOCA. As mentioned before, the baseline strategy has resulted in
almost no utility. It evidences that a utility improvement step is in fact necessary.
Notice that, since the differences of MSE are so high when comparing baseline
and δ-DOCA, the graphics in Fig. 3 are exhibited in the logarithmic scale. Still,
from Fig. 3, we can infer that the MSE error increases exponentially with the
linear increase of δ. It is also possible to see that λ has no substantial impact on
the noise volume.

So far, we have shown that the microaggregation step in δ-DOCA had a
significant decrease in the noise volume added when compared to baseline. How-
ever, it is also essential to show that the data anonymized by δ-DOCA can
represent well the original data distribution. To compare the two distributions,
we evaluated the histogram intersection between the original and anonymized
data, which is given by Eq. 2, where O is the histogram of original data, A is is
the histogram of anonymized data and n is the number of bins.

∑n
i=1 min(Oi, Ai)∑n

i=1 Ai
(2)



292 B. C. Leal et al.

Fig. 3. baseline x δ-DOCA MSE.

Fig. 4. Comparison between original data and anonymized data for BACKBLAZE
with δ = 0.95, λ = 0.02, 100 bins and 96.59% intersection area.

Table 5 displays the average intersection of all experiments for each dataset,
as well as the worst and best case obtained. In that case, 100 bins were adopted.
For all datasets, the anonymized data can represent the original data with high
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accuracy. The histogram intersection is also good to show visually the similarity
between the two distributions, as presented in Fig. 4 for one execution of δ-DOCA
to BACKBLAZE using δ = 0.95 and λ = 0.02.

Table 4. Stage 1 experimental results from BACKBLAZE [11].

Delta Lambda Begin of pub. Published Published % dom. reduc. %

0,95 0,02 16319,6 1873740,8 94.9624 33.8162

0,01 18855,4 1870190,8 94.9045 33.9267

0,005 25578,4 1866033,6 95.0174 33.7084

0,9 0,02 12240 1778105,4 89.9294 44.7085

0,01 24136 1768642,2 89.9922 46.2474

0,005 37828,4 1757087,6 90.0317 46.5320

0,85 0,02 11007,2 1682444,8 85.0384 53.0064

0,01 13980,2 1679558,8 85.0203 52.8570

0,005 16232,8 1674137,6 84.8426 53.2332

0,8 0,02 10631,2 1587354 80.2167 56.5741

0,01 13039,4 1581434,2 80.0149 57.0785

0,005 19703,2 1574487 79.9329 57.0689

0,75 0,02 10040,4 1484931 75.0184 61.0230

0,01 11494,2 1491345 75.3978 60.6981

0,005 14937 1475130,8 74.7082 61.1868

0,7 0,02 10365 1389293,6 70.1984 64.0360

0,01 11012,4 1386616,6 70.0860 64.2363

0,005 14495,4 1381876,6 69.9698 64.1113

Table 5. Histogram intersection: original data x δ-DOCA anonymized data.

Dataset Avg intersection % Intersection min % Intesection max %

CC 0.9492 0.9296 0.9616

LOANS 0.9419 0.9145 0.9688

BACKBLAZE 0.9616 0.9558 0.9682

5 Conclusion

This paper presented δ-DOCA, a strategy to anonymize data streams in a non-
interactive context, with the addition of noise directly on the data. To this
intent, at first, the data domain is defined and adjusted by a δ, obtaining the
sensitivity value of the differential privacy. Then, the stage of utility improvement
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is performed, which makes use of the Laplacian noise addition to online-defined
groups. The results of the experiments showed a significant reduction of the noise
added, while maintaining a high level of privacy, preserving the characteristics
of the original dataset.

Many future work opportunities arise from our results. They include: (i)
adapting δ-DOCA to support data streaming with multiple attributes; (ii) defin-
ing a model to adjust the parameters of the online microaggregation; and, (iii)
supporting multiple records from the same individual.
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Abstract. We show how to build a practical, private data oblivious
genome variants search using Intel SGX. More precisely, we consider the
problem posed in Track 2 of the iDash Privacy and Security Workshop
2017 competition, which was to search for variants with high χ2 statistic
among certain genetic data over two populations. The winning solution of
this iDash competition (developed by Carpov and Tortech) is extremely
efficient, but not memory oblivious, which potentially made it vulnerable
to a whole host of memory- and cache-based side channel attacks on SGX.
In this paper, we adapt a framework in which we can exactly quantify
this leakage. We provide a memory oblivious implementation with rea-
sonable information leakage at the cost of some efficiency. Our solution
is roughly an order of magnitude slower than the non-memory oblivious
implementation, but still practical and much more efficient than naive
memory-oblivious solutions–it solves the iDash problem in approximately
5min. In order to do this, we develop novel definitions and models for
oblivious dictionary merging, which may be of independent theoretical
interest.

1 Introduction

A trusted execution environment (TEE) is a secure area of a main processor. In
particular, a TEE attempts to simulate a ‘black box’ environment: users (even
with physical access) of the main processor may only see the inputs to and
outputs from the TEE, and learn nothing about the data or processes inside the
TEE. This ‘black box’ premise potentially allows for private, secure distributed
or cloud-based computations on data that previously were only known to be
possible from very heavyweight, impractical cryptography (or even not known
to be possible!).

Examples of TEEs available today include Intel’s SGX (Software Guard
Extensions), ARM’s TrustZone, AMD’s Secure Execution Environment, and
Apple’s Secure Enclave. There are many different types of TEE in existence
today, but in this work we will focus on SGX, which is currently the most stud-
ied TEE.

TEEs are particularly exciting for applications where we want third parties
to perform computations on secret data. For instance, if we assume a secure
c© Springer Nature Switzerland AG 2018
J. Garcia-Alfaro et al. (Eds.): DPM 2018/CBT 2018, LNCS 11025, pp. 296–310, 2018.
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TEE, it is known how to build many powerful cryptographic primitives that run
with very small overhead when compared to native computations: fully homo-
morphic encryption [SCF+15], functional encryption [FVBG17], and even obfus-
cation [NFR+17] are all known to be practical with trusted hardware. Coupled
with other cryptographic techniques, these primitives implicitly allow a vast
range of functionality for TEEs: things like secure linux containers [ATG+16],
oblivious multi-party machine learning [OSF+16], and blockchain smart contract
messaging techniques [ZCC+16] are possible and efficient when TEEs are used.

iDash Competition. To further illustrate the power of TEEs, consider the follow-
ing scenario: suppose a medical research institution wants to outsource aggrega-
tion and statistical computation on genome data to a TEE based cloud server.
Individuals would send their encrypted genome to the cloud server. TEE would
decrypt the encrypted data, perform statistical computation and send back the
end result to the research institute. With traditional cryptography, to achieve
comparable security we would require functional encryption for very compli-
cated functions, which is only known from indistinguishability obfuscation (and
is extremely inefficient). This scenario almost exactly describes the ‘track 2’
problem given in this past year’s iDash competition [iDa17], which is a privacy
and security workshop devoted to using cryptographic techniques to help solve
problems in computational biology and genetics. In Sect. 3 we will describe the
problem in details. Among proposed solution, the best solution was due to Car-
pov and Tortech [CT18], which performed the computation on 27.4 GB of data
in only 65 s of client-side preprocessing time and 7 s of enclave time.

Side Channels. Unfortunately, it is easy to see that there are many ways a
potential adversary can learn about computations in the TEE–even if the TEE
is ‘perfectly’ secure, as long as it has finite computational power, finite memory,
and connections to other outside systems, there are ways for an adversary to learn
things about secret information. For instance, an adversary could measure the
time that a particular computation takes and use that to infer things about secret
information involved in the computation. Often, the TEE does not have enough
internal memory to store all of the data needed for a particular computation. In
this case, it must store (encrypted) data in outside locations, like regular memory
or hard disks. When this happens, an adversary can observe the memory access
patterns of the program running inside the TEE and also potentially learn secret
information.

These kinds of attacks are called side channel attacks and have been
widely known in the cryptographic community since Paul Kocher’s famous
paper [Koc96] which long predates modern trusted hardware. The history
of side channel attacks include things like observing how long a computa-
tion takes [Koc96], tracking the memory access patterns of a particular pro-
gram [KSWH98,Pag02], and measuring power consumption at given times when
the program is run [MDS99].

Side channel attacks on SGX and other TEEs have been proposed for almost
as long as the TEEs themselves have existed. Most of the side channel attacks on



298 A. Mandal et al.

SGX have focused on the cache [GESM17,BMD+17]–in other words, the lack
of ‘memory obliviousness’ of programs–but there have been other side chan-
nel attacks, including attacks based on timing [WKPK16]. In addition, there
has been a lot of research done with the goal of mitigating these side chan-
nel attacks. Many techniques, like oblivious RAM (ORAM) [Gol87] or path
ORAM [SvDS+13b] are very general and can do a lot to mitigate these side
channel attacks. In fact, there has been quite a bit of research lately on prevent-
ing certain classes of side channel attacks in SGX [SLKP17,SCNS16,SLK+17].
Unfortunately, the generality of many of these techniques typically implies a large
overhead, and thus the resulting TEE-based schemes are not very efficient. Obliv-
ious B+ tree implementations using shuffle index are also well known [VFP+15].
However, as described in Sect. 3.1, in our context the optimal data structure is
dictionary or hash table.

Our Contributions. Like many other SGX-based protocols, all of the submissions
in ‘Track 2’ of the past year’s iDash competition were potentially vulnerable to
side channel attacks. In this paper, we show how to build a provably side channel
resistant variant of the fastest (and winning) submission [CT18]. We employ a
number of techniques, including oblivious shuffles and dictionary merging, as
well as clever cache management, in order to provide provable resistance to side
channel attacks.

While our side channel resistant construction massively outperforms what
generic solutions like ORAM would give, it is still not quite as efficient as the
native solution in [CT18]. While the solution of [CT18] takes 65 s of preprocessing
time and 7 s of enclave computation time, our memory oblivious solution which
only leaks aggregate intersection sizes among input data (see Sect. 6 for details)
takes 28 s of preprocessing time and about 5 min of enclave computation time–
significantly less efficient than the non-memory oblivious solution, but certainly
practical.

In order to achieve memory obliviousness, we construct new definitions and
models for oblivious dictionary merging. These models help us to formally state
properties about memory obliviousness and may be of independent theoretical
interest.

Outline. The rest of the paper is as follows: in Sect. 2, we discuss the security
model we use around SGX. We next define the genomic search problem from
the iDash Track 2 that we have alluded to earlier in Sect. 3. We also explain the
(non-side channel resistant) winning solution in this section. In Sect. 4, we discuss
how to make the previously discussed solution memory oblivious (and thus, side
channel resistant). Then, in Sect. 5, we discuss how to merge dictionaries in a
memory-oblivious way, which is a critical component for our overall solution. We
discuss our experimental results in Sect. 6.
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2 Security Model of SGX

A program is called data oblivious if its memory access trace can be simulated by
a simulator with access to only some observable information. In theory, one can
use Oblivious RAM implementations to make a program data oblivious. How-
ever, generic application of ORAM [SVDS+13a] techniques with small amount
of trusted memory has a large overhead, compared to native running time. But
what is trusted memory inside an SGX enclave? A conservative approach might
be to consider only the CPU registers as trusted memory. On the other end
of the spectrum, an optimistic approach can assume all available enclave mem-
ory (about 96 MB) as trusted memory. Taking this optimistic approach authors
in [EZ17,ZDB+17] showed many SQL like database operations can be performed
in an data oblivious manner with very little performance overhead.

A reasonable model of trusted memory lies somewhere in between. All data in
the Last Level Cache (LLC) remain unencrypted. So it’s quite natural to assume
the LLC is part of the trusted memory. However, the size of the LLC available
to the enclave program is controlled by the adversary with a 4KB (cache line)
granularity.

To be reasonably conservative, in this paper we assume that all memory
accesses are visible to the adversary. In particular, we follow the model of Chan
et al. [CGLS18], who introduced the notion of adaptive strongly oblivious sim-
ulation security for arbitrary stateless functionalities and Oblivious Random
Access Machines (ORAM). Given a stateless functionality f , some leakage func-
tion leakagef , Algf obliviously implements f with leakage leakagef if

– Algf correctly computes the same function f except with negligible proba-
bility for all inputs,

– the sequence of addresses requested (and whether each request is read or
write) by Algf do not reveal more information than the allowed leakage.

Formally,

Definition 1. Algf , obliviously implements the functionality f with leakage
function leakagef , iff there exists a p.p.t. simulator Sim, such that for any
non-uniform p.p.t. adversary A, A’s view in the following two experiments are
indistinguishable or equivalently ‖Pr[breal = 1] − Pr[bsim = 1]‖ is negligible in
terms of security parameter λ.

Algorithm 1. Real Experiment

procedure Expt
real,Algf
A (1λ)

A → I
out, addresses ← Algf (I)
A(out, addresses) → breal ∈

{0, 1}
end procedure

Algorithm 2. Simulated Experiment

procedure Expt
sim,Algf
A (1λ)

A → I
out ← f(I)
addresses ← Sim(leakagef (I))
A(out, addresses) → bsim ∈ {0, 1}

end procedure

Here addresses in the real experiment denotes the sequence of addresses
requested by Algf along with the information whether each access is read or
write.
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Case Study: Oblivious Sort. Traditional implementations of sort typically
proceed by repetitively comparing two values and swapping them or doing noth-
ing depending on the result of the comparison. This induces them to produce
different access patterns based on the data values themselves, and as such they
are not oblivious. However, some algorithms such as bitonic sorting [Bat68] are
data independent, and hence oblivious. In addition, “swap or not”-based sort-
ing algorithms can be made oblivious by accessing the same memory locations
regardless of the comparison outcome. In Sect. 4, we will use oblivious sort prim-
itives for oblivious implementation of genome variants search.

Case Study: Oblivious Shuffle. Oblivious shuffle is a simple but important
stateless oblivious primitive. As the name suggests, the shuffle algorithm takes a
sequence of n elements as input and outputs a uniformly random permutation of
the sequence. Consequently, an oblivious shuffle is an algorithm whose memory
accesses can be simulated irrespective of the input and the output, and hence
also the actual permutation that was employed. A natural way to do an oblivious
shuffle is to pair each entry with a uniformly random number and then oblivious
sort the pairs with respect to the random numbers. Other efficient algorithms
which are not based on sorting also exist [OGTU14]. In Sect. 5, we will use
oblivious shuffle primitives for realizing oblivious dictionary merging.

3 Whole Genome Variants Search

In this section we provide a very short introduction to genomics and describe the
Genome Variants Search algorithm which identifies genes responsible for certain
hereditary diseases.

DNA (Deoxyribonucleic acid) is a chain of nucleotides with the shape of a
double helix. It carries genetic information in all living organisms. The complete
genetic material of an organism is called its genome, and DNA is identical in
every cell of our body. A very long DNA chain forms what is called a chro-
mosome. Humans have 23 pairs of chromosomes, and each pair has one chro-
mosome from the person’s father and one from the mother. Any two humans
share about 99.9% of their DNA. The remaining 0.1% DNA tracks the differ-
ence between two individuals. Most of these differences occur in the form of what
is called a Single Nucleotide Polymorphism (SNP). A SNP is a variation in a
single nucleotide that occurs at a specific position in the genome (compared to a
reference genome). Moreover, a SNP can be either heterozygous or homozygous,
depending on whether a set of homologous chromosomes (pairs of choromosomes
with one coming from the father, another from mother) differ or are identical on
that particular position, respectively.

One important aspect of modern day genomics is identifying genes or SNPs
responsible for certain diseases. Given SNPs from two groups of users–case
(individuals showing traits of the disease) and control (individuals representing
healthy population)–one can perform Pearson’s χ2 test of association to deter-
mine whether presence of certain SNP is associated to disease susceptibility or
not. SNPs with high χ2 statistic are thought to be responsible for the disease.
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3.1 Track 2 of the iDASH 2017 Challenge: χ2 Test for Whole
Genome Variants Search

The goal of Track 2 of the iDASH Privacy & Security Workshop 2017 compe-
tition [iDa17] was to develop a scalable and secure solution using SGX tech-
nology for whole genome variants search among multiple individuals. The input
data is Variant Call Format (VCF) files containing sensitive SNP information
from case and control groups of users. Logically, a single VCF file corresponds
to a single individual and is a collection of SNPs, along with the information
whether the SNPs are homozygous or heterozygous. Suppose we have n1 case
users and n2 control users. To evaluate χ2 statistic for a particular SNP s, one
needs to find out how many times it is present among case and control users
by single counting heterozygous occurrences and double counting homozygous
occurrences. Suppose as is the count of SNP s among case users and a′

s among
control users. Note, (2n1 − as) and (2n2 − a′

s) are the absence counts of SNP s
among case and control users. Now, for the SNP s observed frequencies Os, and
expected frequencies (assuming no association) Es can be stated as

Os = [as, a
′
s, 2n1 − as, 2n2 − a′

s]
Es = [r(as + a′

s), (1 − r)(as + a′
s), 2n1 − r(as + a′

s), 2n2 − (1 − r)(as + a′
s)],

where the ratio r = n1
n1+n2

. From the observed and expected frequencies the χ2

test statistic for SNP s can be calculated as
3∑

j=0

(Os[j] − Es[j])2

Es[j]
. (1)

The p-value for the SNP s is the probability that a random variable following
a χ2 distribution with degree of freedom one3 attains a value larger than the
computed test statistic. To find the top k most significant SNPs, one needs to
compute p-values for all SNPs present in the genome data set and output k SNPs
with least p-values or equivalently output k SNPs with highest χ2 test statistic.

In the iDash competition pre-processing and compression of individual VCF
files were allowed, with the constraint that any operation involving multiple VCF
files cannot be performed at the pre-processing stage. It must be done inside the
SGX enclave. This constraint correctly depicts the real life use case, where each
VCF file is owned by the corresponding human individual. They can pre-process
and compress their own information and send it to remote SGX enclave running
on a possibly adversarial computational server. Honest individuals following the
protocol are not expected to communicate among them, they are only supposed
to send their information to the SGX enclave running in the computational
server.

The computationally expensive step in the above calculation is finding out
‘count’ of every SNP among case and control users. The natural way to evaluate
these count values is as follows.
3 χ2 distribution with degree of freedom d is defined as sum of square of d independent

standard normal variables.
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– represent individual VCF files as dictionaries (collection of (key, value) pairs)
as follows:

• For an user u belonging to the Case group, for all SNPs s present in its
VCF file we have

Dictu[s].Case =

{
1, if s is heterozygous for user u

2, if s is homozygous for user u

Dictu[s].Cont = 0

• For user v in the Control group it is exactly the opposite. That is for all
SNP s present in user v’s VCF file Dictv[s].Case = 0 and Dictv[s].Cont
is either one or two depending whether s is heterozygous or homozygous
for user u.

If we query the dictionary Dictu with any SNP not present in user u’s VCF
file, it returns zero in both case and control counters. In other words s′ �∈
Dictu.Keys, we have Dictu[s′].Case = Dictu[s′].Cont = 0.

– Merge all user dictionaries. Where the dictionary merging operation is defined
as follows. For all s ∈ DictA.Keys ∪ DictB .Keys,

(DictA ∪ DictB)[s].Case = DictA[s].Case + DictB [s].Case
(DictA ∪ DictB)[s].Cont = DictA[s].Cont + DictB [s].Cont

After merging we have the merged dictionary

DictMerge = ∪u∈case users∪control usersDictu

DictMerge contains count of SNPs among case and control users. After build-
ing the dictionary rest of the calculation is relatively straight–forward. The whole
process is described in Algorithm 3, where Merge is the functionality that takes
dictionaries (containing SNPs as keys and corresponding counter as value) as
input, and the merged dictionary as output. In other words

Merge(Dict1, · · · ,Dictn) → Dict1 ∪ · · · ∪,Dictn.

CalcChiSquare is a function that takes
(
number of case users,number of control users, (snp, (Case,Cont))

)

as input and outputs (snp, χ2-statistic) where χ2-statistic is calculated according
to Eq. (1). ForEachf (V) is a functionality which outputs the list {f(v) : v ∈ V}.

3.2 The Winning Solution of the iDash Track 2 Challenge [CT18]

The main challenge in the above computation is memory access optimization.
The input data size is in the order of tens of gigabytes, whereas SGX enclaves
are limited to about 96 MegaBytes of usable memory without paging. Moreover,
inside SGX enclaves, the last level cache (LLC) miss penalty is considerably
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Algorithm 3. Genome variants search to find top k SNPs
INPUT: : User set U = UCase ∪ UCont and SNP dictionaries Dictu for all u ∈ U , size

of case and control user groups.
OUTPUT: : Top k SNPs (snp1, · · · , snpk)
1: procedure GVS({Dictu : ∀u ∈ U}, n1 = ‖UCase‖, n2 = ‖UCont‖)
2: DictMerge ← Merge({Dictu : u ∈ U})
3: ListSNP ← ForEachCalcChiSquare(n1,n2,·)(DictMerge)
4: ListSNP .Sort() � Sorts the list in a decreasing order based on chisquare value
5: return ListSNP [1 : k].snp � Output top k SNPs
6: end procedure

higher compared to native execution because this requires an extra round of
encryption/decryption. This extra cost is by design, because in SGX architecture
the main random access memory (RAM) always remains encrypted.

In Algorithm 3 the size of the Dictcase and Dictcont dictionaries become the
bottleneck. Even if we compress the SNPs and keep a single dictionary with
separate case and control counters, we need at least 4 bytes to encode a SNP
and 2 + 2 = 4 bytes to store the two counters. However, in the sample data
set provided in the competition there were about 5.5 Million unique SNPs. This
means a trivial lower bound for the total size of the merged dictionaries is (4 +
4) ∗ 5.5 = 44 MB. Even though, this lower bound is well short of the 96 MB
limit to avoid page faults, this is far bigger than typical LLC size which is 6
or 8 MB. A typical memory efficient dictionary or hash-map implementation
usually involves a random memory access for each key access. This leads to an
almost mandatory cache fault for every dictionary access if we cannot fit the
dictionary inside the LLC. As a result, any SGX implementation of the Sect. 3.1
algorithm typically incurs about a factor of two slowdown compared to native
execution. To address this issue Carpov and Tortech [CT18] adopted an ingenious

Algorithm 4. Cache friendly Genome variants search to find top k SNPs
INPUT: : User set U = UCase ∪ UCont and SNP dictionaries Dictu,i for all u ∈ U and

i ∈ [1, n], size of case and control user groups.
OUTPUT: : Top k SNPs (snp1, · · · , snpk)
1: procedure GVS({Dictu,i : ∀u ∈ U , i ∈ [1, n]}, n1 = ‖UCase‖, n2 = ‖UCont‖)
2: ListSNP ← Φ
3: for all i ∈ [1, n] do
4: DictMerge,i ← Merge({Dictu,i : u ∈ U})
5: ListTemp ← ForEachCalcChiSquare(n1,n2,·)(DictMerge,i)
6: ListSNP .Insert(ListTemp)
7: ListSNP .Sort() � Sorts the list in a decreasing order based on chisquare

value
8: ListSNP ← ListSNP [1 : k] � Only keep top k elements of the list
9: end for

10: return ListSNP � Output top k SNPs
11: end procedure
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yet simple horizontal partitioning technique to reduce the memory requirement
so that everything could be done within the LLC. The key observation is instead
of building the large dictionary containing all SNPs and then finding the top k
SNPs among them, we can partition the SNPs in various batches and process
each batch independently while updating a global list of the top k SNPs.

We can divide the key space K (all possible values of SNPs) of the dictionaries
into n disjoint parts K1, · · · ,Kn. This in turn divides each user dictionary Dictu
into n disjoint smaller dictionaries Dictu,1, · · · ,Dictu,n such that

Dictu = Dictu,1 ∪ · · · ∪ Dictu,n.

4 Oblivious Genome Variants Search

Algorithms described in the previous section are not memory oblivious in gen-
eral. In this section, we show under certain conditions the algorithms can be
implemented in a memory oblivious way. Non memory oblivious SGX imple-
mentations might leak some non trivial information such as number of common
SNPs among any two persons. Moreover, if some of the individuals are malicious
and they collude with the server they can figure out exactly which SNPs are
present in other individual’s VCF files. UCase be the set of users belonging to the
case group and UCont be the set of users belonging to the control group. Every
user u ∈ UCase∪UCont sends their input Iu to a centralized server S, which runs a
Genome Variants Search algorithm inside its SGX enclave. It’s worth mentioning
that every user u must

– perform a remote attestation with S, to ensure it is running the appropriate
executable inside SGX enclave and

– perform a key exchange with the enclave and send Iu by encrypting and
authenticating with the exchanged key,

to ensure the data can only be accessed by the enclave. Iu is some encoding
of the VCF data corresponding to user u. In Algorithm 3 we have Iu = Dictu,
where as in Algorithm 4 we have Iu = {Dictu,i : i ∈ [1, n]}. GV S be the function
which takes Iu’s as input and outputs top k SNPs.

From a high level perspective the Genome Variant Search algorithms
described in previous section have three distinct steps:

1. Merge input dictionaries to form a merged dictionary.
2. Calculate chi-Square statistic for each entry.
3. Sort the dictionary entries based on the chi-square statistic.

Chi-square statistic calculation is trivially memory oblivious (can be imple-
mented by an arithmetic circuit). There are many well known perfectly memory
oblivious sorting [AKS83,CGLS18,Bat68,Goo14] techniques which do not leak
any side information. In Sect. 5 we discuss how to obliviously implement the
dictionary Merge routine under various reasonable leakage functions. Once we
have oblivious implementations of the dictionary merge routine and sort routine,
next theorems show we can quantify the leakage in Algorithms 3 and 4.
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Theorem 1. If the Merge routine in Algorithm 3 is implemented obliviously
with leakage function leakageMerge and the Sort routine in line 3 is implemented
by some perfect oblivious sort implementation, then Algorithm 3 becomes an
oblivious implementation of GV S with leakage function leakageGV S, where

leakageGV S({Dictu : ∀u ∈ U})
=leakageMerge({Dictu : ∀u ∈ U}) ∪ {‖DictMerge‖, ‖UCase‖, ‖UCont‖}.

Proof Sketch. We construct a simulator for GV S, given a simulator for Merge,
given as Algorithm 5. We can show that the real algorithm is indistinguishable
from the simulator by hopping over a single hybrid. In the hybrid, we replace
the merging step with the corresponding simulator, which just takes the leakage
due to the merge as input. In the next hop, which is to the final simulator, we
sample Dictu from random, instead of using the real input Dictu. The sampling
is done as follows: first ‖DictMerge‖ number of unique keys are sampled from the
domain of keys. Then the values of Dictu at those keys are assigned arbitrarily.
We recall that the in construction of the merged list the input array is scanned
linearly and the number of positions scanned only depends on the number of
entries, i.e., ‖Dictu‖, and not their values. Hence the addresses utilized in this
part of the simulator would be indistinguishable from the hybrid.

Algorithm 5. Simulator for GV S

INPUT: leakageMerge({Dictu : ∀u ∈ U}) ∪ (‖DictMerge‖, n1 = ‖UCase‖, n2 =
‖UCont‖).

OUTPUT: addresses.
1: procedure SIM-GVS(leakageMerge({Dictu : ∀u ∈ U}) ∪ (‖DictMerge‖, n1, n2))
2: ListSNP ← ∅.
3: addresses-dict-merge ← SIM-MERGE(leakageMerge({Dictu : ∀u ∈ U}))
4: Sample DictMerge randomly, constrained by ‖DictMerge‖.
5: ListSNP ← ForEachCalcChiSquare(n1,n2,·)(DictMerge)
6: ListSNP .Sort() � Sorts the list in a decreasing order based on chisquare

value
7: addresses-extra ← Addresses used in Steps 5-6.
8: return addresses-dict-merge, addresses-extra � Output all addresses
9: end procedure

Theorem 2. If the Merge routine in Algorithm 4 is implemented obliviously
with leakage function leakageMerge and the Sort routine in line 6 is implemented
by some perfect oblivious sort implementation, then Algorithm 4 becomes an
oblivious implementation of GV S with leakage function leakageGV S, where

leakageGV S({Dictu,i : ∀u ∈ U , i ∈ [1, n]}, )

=
(
leakageMerge({Dictu,1 : ∀u ∈ U}), · · · , leakageMerge({Dictu,n : ∀u ∈ U})

)

∪ {‖DictMerge,1‖, · · · , ‖DictMerge,n‖, ‖UCase‖, ‖UCont‖}



306 A. Mandal et al.

The proof of this theorem is fairly similar to the last one: instead of simulating
the merge monolithically, the simulation is done partition by partition. The
arguments for the rest of the algorithm carry over straightforwardly.

5 Oblivious Dictionary Merging

In the previous section, we showed that given a procedure to obliviously merge
multiple dictionaries we can obliviously implement the Genome Variants Search
algorithms. In this section show how oblivious dictionary merging can be done.

In Sect. 3.1, we defined the notion of dictionary merging in the context of
genome variants search. However, the algorithms described in this section work
for generic dictionary merging operations. A dictionary or associative array Dict
is a dynamic collection of (key, value) pairs, such that each possible key appears
only once in the collection. It usually supports insert, delete, update and
lookup operations based on the key. The operator [ ] is used as an access
operator. That is if (key, value) ∈ Dict, then Dict[key] returns a reference
to value. Let Dict.Keys denote the set of all keys in the dictionary. For any
key �∈ Dict.Keys,

– as rvalue Dict[key] returns Null. In other words value = Dict[key] sets the
variable value to Null.

– as lvalue Dict[key] inserts a pair (key, value) to the dictionary and returns
a reference to the variable value. In other words Dict[key] = value inserts
(key, value) into the dictionary Dict.

Let V be the set of all possible values excluding Null. ⊕ be a binary operator
over V. It can be naturally extended to V∪{Null} as follows. For any value ∈ V,

value ⊕ Null = value, Null ⊕ value = value, Null ⊕ Null = Null.

For the Genome Variants Search application described in Sect. 3.1, ⊕ operator
over (Case,Cont) pairs is defined as a ⊕ b = (a.Case + b.Case, a.Cont + b.Cont).
For any two dictionaries Dict1 and Dict2, the Merge operation (also repre-
sented by the operator ∪) is defined as follows. First (Dict1 ∪ Dict2).Keys =
Dict1.Keys ∪ Dict2.Keys. Second for all key ∈ (Dict1 ∪ Dict2).Keys, we have
(Dict1 ∪ Dict2)[key] = Dict1[key] ⊕ Dict2[key].

For more than two dictionaries the Merge operation is defined inductively.
For n ≥ 2, we have

Dict1 ∪ · · · ∪ Dictn = (Dict1 ∪ · · · ∪ Dictn−1) ∪ Dictn.

Dictionaries or hash tables are usually implemented either by chaining or by
open addressing. [Che17] is a short summary and comparison of various hash
table implementations. It suggests open address based hash table implemen-
tation Robin Hood [CLM85] is probably the fastest memory efficient imple-
mentation. For the purpose of this paper, we will assume the hash table mem-
ory is contiguous, which is the case for all open addressing based hash tables.
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This means we can sequentially access all elements of the hash table by a linear
sweep. The memory addresses accessed in this operation are independent of the
hash table content.

The location of any (key, value) pair in the contiguous memory is determined
by hash(key). We will assume the function hash is a random oracle [BR93], to
ensure that the pair (key, value) gets stored in a random location independent of
the variable key. The idea behind an almost ideal (in terms of leakage) dictionary
merging is pretty simple and can be described in three high level steps:

1. Sequentially access all (key, value) pairs of all input dictionaries Dict1,
· · · ,Dictn and store them in a large array Array of size ‖Dict1‖+· · ·+‖Dictn‖.

2. Obliviously shuffle Array and generate Array′.
3. Build the new dictionary DictMerge by sequentially traversing Array′.

The memory access pattern in first two steps are completely independent
of the input data. However, the last step leaks some non trivial information. A
resourceful adversary can track how the memory locations within the contiguous
storage are being accessed. The location of a dictionary entry corresponding to
key gets determined by hash(key). By the random oracle property of the hash
function, the location does not reveal anything about the content of key. Also,
because of the oblivious shuffle this address does not reveal from which input
dictionary Dicti the key is coming from. But the adversary can observe how
many times each address location is getting accessed. This in turn leaks the
collision distribution of the input dictionaries, which is essentially the following
information.

n∑

i=1

‖Dicti‖,
∑

1≤i<j≤n

‖Dicti ∩ Dictj‖,
∑

1≤i<j<k≤n

‖Dicti ∩ Dictj ∩ Dictk‖,

· · · , ‖Dict1 ∩ Dict2 ∩ · · · ∩ Dictn‖.

6 Experimental Results

For our experimental results, we use the public dataset available as part of the
iDash 2017 competition [iDa17]. The dataset consists of VCF files from two
groups of individuals, case group Case whose members show symptoms of some
particular disease and control group Cont consisting of healthy individuals. The
total size of the two thousand VCF files is about 27.4 GB. We ran our experiments
on an Intel NUC6i7KYK, which has 6 MB of LLC. In comparison, the platform
used in [CT18] had 8 MB LLC size. Our baseline implementation takes 28 s for
pre-processing (or total time for client side computation). In the baseline non
oblivious implementation of Algorithm 4, the computation time inside the SGX
enclave is 16 s. On the other hand, the winning candidate from [CT18] reports
about 65 s of pre-processing time and 7 s of enclave running time. The pre-
processing is mainly bounded by the SSD read write speed. Our pre-processing
is faster because we used a larger block size (every VCF file is divided only in
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15 parts). On the other hand, [CT18]’s enclave running time is almost half that
of ours for two main reasons: first, our enclave is single threaded, as opposed to
8 threads in [CT18]. In fact, our dictionary implementation is not thread safe.
Second, we have only 6 MB of cache memory. [CT18] had 8 MB.

The oblivious dictionary merging algorithm described in Sect. 5 has a crucial
drawback. It requires oblivious shuffling of a very large array containing all the
input data. After compression the total size of input data is about 4.5 GB. In
the baseline implementation we partitioned the data in 15 parts, to fit individual
dictionaries inside the LLC. After this partitioning, the output of each Merge
call in Algorithm 4 fits well within the LLC, but the input is still large: about
4.5 GB /15 = 300 MB. For an efficient memory oblivious shuffle we needed to fit
the input data within LLC. To address this we can further partition the input
data and shuffle each partition independently. This partitioning actually leaks
more information, such as the collision patterns among different partitions. In
our implementation in every partition we take 256 SNPs each from 16 users and
shuffle them together. We used Batcher’s bitonic merge sort algorithm [Bat68] for
oblivious shuffling. We also used SipHash [AB12] as our choice of random oracle.
To our knowledge, this is the fastest known pseudorandom function for short
input sizes. In this parameter setting the enclave running time is about 5 minutes.
This shows even though memory oblivious implementation is practical if we are
willing to leak some amount of collision distributions, it is still considerably
slower than the non oblivious implementation. One thing to note is that the
performance of the scheme is dependent upon the choice of data partitioning and
hence information leakage. Finding a better data partitioning technique which
would allow minimal leakage and the fastest possible performance remains an
open problem.
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Abstract. We present an overview of the Databox application devel-
opment environment or SDK as a means of enabling trusted IoT app
development at the network edge. The Databox platform is a dedicated
domestic platform that stores IoT, mobile and cloud data and executes
local data processing by third party apps to provide end-user control
over data flow. Key challenges for building apps in edge environments
concern (i) the complexity of IoT devices and user requirements, and
(ii) supporting privacy preserving features that meet new data protec-
tion regulations. We examine how the Databox SDK can ease the burden
of regulatory compliance and be used to sensitize developers to privacy
related issues in the very course of building apps.

Keywords: Internet of Things · Edge computing · Databox
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1 Introduction

The predominant paradigm for computing is centred in the cloud. However,
as the Internet of Things (IoT) emerges, the requirement to push increasing
volumes of data to the network for centralized storage and processing will impact
system resilience, network traffic, latency and privacy. An alternative approach
is to “extend the cloud to where things are” [1] and shift data storage and
processing to the edge of the network. In this model, nodes at the edge perform
the bulk of storage and processing, keeping data off the core network, reducing
latency and improving the potential for data privacy. The model has gained
significant traction in recent years, and the IDC [2] predicts investment in edge
infrastructure will reach up to 18% of total spend by 2020.
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The domestic space is seeing a growth in dedicated hardware that brings
more data storage and processing to the edge [3–7]. Many of these products
unify access to connected home devices and provide facilities (voice, web UIs,
apps) for automation and control. With new General Data Protection Regula-
tion (GDPR) in Europe [8], and growing concern amongst ordinary people about
the (ab)use of personal data, we anticipate this space will grow to include new
domestic platforms that take a more principled approach to exploiting personal
data generated by IoT devices, mobile and cloud services. The Databox platform
[9] provides one of several [10–12] instantiations of domestic ‘privacy-preserving’
edge-based solutions, running data processors (apps) within a sandboxed envi-
ronment where access to and use of data is constrained by user-negotiated con-
tracts.

The distinguishing feature of such platforms is that processing moves to the
data, rather than data to the processing, and data distribution is limited to the
results of local queries enabling the ‘data minimisation’ that is required under
GDPR. Developing apps that run on these platforms is challenging. There are
challenges that are already familiar to IoT developers: (i) processing data from an
increasingly heterogeneous range of data sources, (ii) across a wide variability of
domestic environments and (iii) competing systems with inconsistent patterns of
behaviour [13], plus (iv) the need to support multiple users with diverse require-
ments. There are also new challenges that come from the need to meet new data
protection regulation and (thereby) gain user trust. This requires that develop-
ers demonstrably respond to the requirements of data protection regulation in
the apps they produce [14]. Moreover ‘developers’ is a broad category including
makers, hobbyists, and enthusiasts. Development environments must therefore
enable data protection across a broad cohort while providing developers and
end-users alike with the tools they need to build the (often niche) functionality
that they require.

Our end-user development environment (SDK) has been designed to build
apps for the Databox platform and to: (i) simplify IoT app development for
domestic environments, in particular data processing across multiple devices
and sensors; (ii) open up development to a broad cohort of developers and (iii)
enable compliance with key features of GDPR. Though our SDK addresses all
of these challenges, this paper focuses exclusively upon (iii), i.e. how developers
can be supported when creating domestic IoT privacy preserving apps that are
compliant with the letter and spirit of GDPR.

This paper has two main contributions: (i) an assessment of the implica-
tions of GDPR upon the creation of edge-based personal data processing sys-
tems (ii) design and implementation of a development environment for building
GDPR compliant domestic apps. This latter contribution has relevance beyond
a description of design and implementation choices; it points to a new set of gen-
eral features we expect will be of value to any development environment geared
towards writing code that operates upon personal data.
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2 Related Work

We briefly consider 3 interconnected areas of work: (i) domestic smart hubs, (ii)
privacy preserving environments and (iii) developer support.

2.1 Domestic Smart Hubs

The multitude of different standards, network and data protocols employed
within the domestic IoT space has resulted in the emergence of IoT ecosys-
tems aimed at providing (i) interoperability across devices (ii) control interfaces
for device management, and (iii) support for home automation. Within the open
source community, many IoT systems have also been designed to run on local
hardware, whether ARM, x86 or embedded system such as Arduino and Rasp-
berry Pi [15–18]. These systems are aimed at technically competent users and
are underpinned by programming frameworks to support further extension.

There is also a highly competitive startup scene, with a range of products
on the market aimed at the general consumer [19–21], typically offering easy
integration with IoT devices and polished control interfaces. The most significant
inroads have been made by the large Internet companies. Amazon’s ‘Echo’ [3] is
installed in tens of millions of households, for example, and Google’s ‘Home’ [5]
is gaining market share as is Apple’s HomePod [4]. These systems perform some
local storage and processing as a means of reducing latency and reliance on an
upstream network, but still use companion cloud-based systems when needed.
However, the mechanisms and processes utilised by these cloud systems remain
opaque to the end user. Not only is there a lack of transparency around the flow
and use of data, there are notably few features enabling users to restrict data
flow or exploit it for individual purposes.

2.2 Privacy Preserving Environments

Personal Data Management Services, whether cloud-based [22] or at the edge [23]
store consumer data and provide explicit contracts to underpin data exchange.

The Databox platform is a privacy preserving domestic smart hub that per-
mits controlled access to a data subject’s personal data, set out in explicit user-
agreed contracts called Service Level Agreements (SLAs).

The system provides abstractions for data sources (IoT devices or cloud-
based services such as Twitter), drivers (privileged code that communicates with
datasources), datastores (local repositories of user data) and apps (code that
processes data). Apps are untrusted code, and can only ever communicate with
datastores (to read data or actuate a device) with explicit consent from a user.
All components (including apps) run in isolated Docker1 containers. Restrictions
are enforced through an arbiter. Figure 1 (1,2 and 3) shows the token exchange.
At app install time the SLA is parsed, and permissions granted (the arbiter is
informed app X can do action Y). Tokens are not minted until the app requests

1 https://www.docker.com.

https://www.docker.com
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Fig. 1. Databox platform architecture

one (usually just before it performs an action). Tokens have expiry dates and
can be cached and reused until expiry, after which a new one must be requested.
The wider Databox ecology consists of an app store; a repository of databox
apps that can be downloaded to an individual Databox, and an SDK; a web-
based development environment for constructing apps. Users interact with the
Databox through a web frontend, which provides a set of interfaces for installing
new apps (part of which will require users to review the app contract) and to
view/monitor/remove running apps. The platform is responsible for auditing all
accesses to datastores and enforcing SLAs.

2.3 Developer Support

The matter of developer support for IoT hubs is not straightforward. Commercial
and open source ecosystems provide development environments that support the
creation of new product integrations or bespoke functionality oriented around
a product’s features [6,24–26] and are typically targeted at competent and/or
professional programmers. However, Newman [27] has noted that the burgeoning
array of connected domestic devices makes it intractable for developers to build
applications to keep pace with the needs of users. He thus argues for the need to
support end-user programming to allow a diverse cohort of people to “compose
the functionality that they need”. Perhaps as a result of these observations, we
have seen a proliferation of graphical end-user programing environments [28–31]
aimed at masking device/service/protocol heterogeneity and helping connect IoT
and webservices in new and interesting ways. The most popular, IFTTT, enjoys
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a considerable user base [32]. However, given the focus upon technical simplicity,
privacy preserving features are given scant regard. Indeed [33] found that 50% of
the nearly 20,000 IFTTT ‘recipes’ they examined contained secrecy or integrity
violations that could lead to harm.

3 GDPR Compliance and Its Influence on Developers

In GDPR a data controller “determines the purposes and means of process-
ing personal data”. When developing applications that run upon IoT hubs, if
app developers receive personal data, they are controllers. Similarly, if develop-
ers create the app on behalf of a third party they must demonstrate ‘privacy
by design’ principles. Development environments, therefore, must take this into
account. Article 5(2) states: “the controller shall be responsible for, and be able
to demonstrate, compliance with the principles [of GDPR]”.

In working through the regulation we posit that IoT app developers are impli-
cated in two broad areas: (i) transparency and (ii) articulating and appropriately
reducing risk. GDPR explicitly mentions a requirement for risk assessment in
Article 35 (data protection impact assessments), though the mention of risk and
mechanisms for its reduction are sprinkled throughout various clauses. Article
25 (1) explicitly requires risk assessment and reduction is performed “at the time
of the determination of the means for processing”, i.e. at app development time.

GDPR’s risk concerns are oriented around data disclosure and automated
profiling. Other risks such as physical risk (e.g. switching on an empty ket-
tle, closing an automatic garage door), fall outside its scope, though clearly
must be given due consideration by developers. Automated profiling relates
to harms from unfair, inaccurate algorithmic decisions (whether deliberate
or unintentional) that have socially consequential outcomes (e.g. denial of
credit/employment/healthcare). This is a burgeoning area of research [34–36]
and we have begun early exploration with two new features in our SDK (see our
special purpose profiling node and runtime inspection interface in Sect. 4).

Transparency relates to adequate provision of information relating to the col-
lection, processing and use of personal data in order that users have information
to (i) provide informed consent and (ii) control (restrict, extend, halt) its use.
Transparency is in itself advocated in GDPR as a tool to reduce risk, and many
of the basic “rights” enshrined by the regulation are predicated upon it, i.e. the
right to object, the right to be informed and the right to restrict processing.

When considering the impact of GDPR upon developers, we assume the
platform (i.e. IoT hub, such as Databox) will take most responsibility for data
security, notification of breaches, ongoing data storage and access (Articles 5, 16,
17, 20, 25, 30, 32–34). That is not to disregard their importance or to suggest
that the developer can be disconnected from these concerns, only that they sit
outside the scope of this work.

Given this scope, Table 1 distils the 99 key parts of the Articles (5, 7, 12,
13, 21, 22, 25, 35) that implicate developers with regard to data disclosure risk
and/or transparency requirements. The 3rd column (R/T) marks each clause as
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Table 1. GDPR clauses relevant to developers

Art Relevant clauses R/T

5 (a) processed lawfully, fairly and in a transparent manner in relation to the
data subject (‘lawfulness, fairness and transparency’);

T

(b) collected for specified, explicit and legitimate purposes and not further
processed in a manner that is incompatible with those purposes;

T

(c) adequate,relevant and limited to what is necessary in relation to the
purposes for which they are processed (‘data minimisation’)

R

7 4. Where processing is based on consent, the controller shall be able to
demonstrate that the data subject has consented to processing of his or her
personal data

T

8. The data subject shall have the right to withdraw his or her consent at any
time. [. . .] It shall be as easy to withdraw consent as to give it

T

12 1. provide any information [. . .] relating to processing to the data subject in a
concise, transparent, intelligible and easily accessible form, using clear and plain
language

T

7. The information to be provided [..] may be provided in combination with
standardised icons in order to give in an easily visible, intelligible and clearly
legible manner a meaningful overview of the intended processing

T

13 2 (f) the existence of automated decision-making, including profiling, referred to
in Article 22(1) and (4) and, at least in those cases, meaningful information
about the logic involved, as well as the significance and the envisaged
consequences of such processing for the data subject

T

21 1. The data subject shall have the right to object, on grounds relating to his or
her particular situation, at any time to processing of personal data concerning
him or her which is based on points (e) or (f) of Article 6(1), including profiling
based on those provisions

T

22 1. The data subject shall have the right not to be subject to a decision based
solely on automated processing, including profiling, which produces legal effects
concerning him or her or similarly significantly affects him or her

R

2. Paragraph 1 shall not apply if the decision is: (c) based on the data subject’s
explicit consent

T

25 1. [..] the controller shall, both at the time of the determination of the means
for processing and at the time of the processing itself, implement appropriate
technical and organisational measures, such as pseudonymisation, [..] such as
data minimisation

R

2. The controller shall implement appropriate technical and organisational
measures for ensuring that, by default, only personal data which are necessary
for each specific purpose of the processing are processed

R

35 1. Where a type of processing in particular using new technologies, and taking
into account the nature, scope, context and purposes of the processing, is likely
to result in a high risk to the rights and freedoms of natural persons, the
controller shall, prior to the processing, carry out an assessment of the impact
of the envisaged processing operations on the protection of personal data

R
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either relating to risk (R) or transparency (T). Note that for the sake of brevity
we do not include Article 13’s list of information to be provided; interested
readers are directed to Article 13(1) in the full text [8]. A few clauses remain
open to interpretation and have garnered considerable debate in the legal and
academic communities. Nevertheless, it is our view that the spirit of GDPR is
clear and developer tools have a necessary role in helping meet requirements.

4 The Databox SDK

The SDK is a fully featured web-based environment for building Databox apps.
It provides facilities for testing, tools for data visualisation, context-sensitive
help, skeleton code generation, basic static type checking and code management
(Fig. 2).

The SDK models apps as information flows (inspired by the flow-based pro-
gramming paradigm [37]) and abstracts the Databox platform architecture into
four ‘node’ types: datastores, processors, profilers and outputs. Datastores repre-
sent all devices (or services) that generate data.Datastores are device independent,
i.e. a smart plug datastore will present a consistent data schema in the SDK, inde-
pendent of the specific device or manufacturer it maps to at runtime. Processor
nodes operate on data; it is here custom behaviours and logic are encoded. Pro-
cessor nodes typically consume one or more inputs and send results to one or more
outputs. Profiler nodes are a special category of processing node that infer new
information about a data subject. In treating profilers differently from process-
ing nodes, we aim (in subsequent iterations of the SDK) to sensitise developers
to GDPR’s more restrictive covenants around “automated profiling” by provid-
ing facilities to assess the fairness of profiling on target users [34]. Output nodes
perform an action, such as actuation, visualization, or data export.

Fig. 2. Inputs, processors, profilers and outputs
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When developers publish an app from the SDK, they are prompted for infor-
mation needed to construct the SLA (user-negotiated contract). Once deployed,
the app’s datasource nodes interact with the Databox platform API to request
permissions to access data according to the terms of the SLA. This functionality
is transparently provided by the SDK, insulating developers from the detail.

4.1 Features Enabling GDPR Compliance

In Sect. 3 we presented the set of GDPR clauses that will implicate developers
building apps for domestic IoT hubs. We scoped the problem into (i) assessing
and reducing disclosure risk and (ii) transparency on what/how/why personal
data is being processed.

Our SDK sensitizes developers to data disclosure risk by (i) providing ongoing
risk breakdowns as developers build apps (ii) tracking personal data as it moves
through an app. Our SDK addresses GDPRs requirements for transparency by
(i) creating GDPR compliant contracts that embed the information required for
data-subjects to provide informed consent, (ii) automatically providing facilities
for runtime data flow inspection. We expand on each of these in turn.

Provision of Ongoing Risk Breakdown. Our development environment gen-
erates an overall risk rating for apps, based on the aggregate risk of the nodes
from which it is composed.

Our environment also reflects risks that fall outside the remit of GDPR (such
as physical risks mentioned earlier). Each node in the development environment
has an in-built schema (provided by the environment, not the developer) that
provides, amongst other things, a risk score and breakdown based upon current
configuration (e.g., the hardware it works with, the proposed data rate, the
particular actuation to be performed). As configuration options are modified and

Fig. 3. SDK risk overview
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nodes are introduced or removed, the score and breakdown will update to reflect
the changes (Fig. 3). Those characteristics of a node that will most influence
the global risk score are currently (i) whether it exports any data off the box,
(ii) it triggers physical actuation, (iii) it utilizes insecure/leaky/non-compliant
hardware, (iv) it uses unverified code or libraries.

It may be reasonably argued that “risk” is a subjective concept that covers
an indeterminate number of possibilities, and will be influenced by more than
just an app’s construction and configuration (e.g., the deployment environment
can profoundly influence risk likelihood and harms). However we would counter
that in conceptualising even a crude notion of risk, the environment will sensitize
developers to important concerns in the course of building apps, i.e. at the point
where they are likely to enact change. We view our risk overview as a “place-
holder” and expect that further research and subsequent iterations will lead to
improved risk calculations.

Our final risk rating and breakdown is also made available to app store users
to further motivate and drive the development of low risk and even ‘no risk’ apps.

Tracking Personal Data. To help developers assess the risks of personal data
disclosure, at a minimum, we require they are able to (i) differentiate between
data that is personal, sensitive or neither and (ii) track the flow of personal
data, so that processing risk (e.g. inference attacks made possible by combining
data) and exposure risk (e.g. location data being exported off the box) can be
identified. Our goal is to help developers assess disclosure vulnerabilities prior
to deployment (i.e. statically) rather than at run-time; Databox has its own
mechanisms for managing dataflows at runtime.

All data that is output from a node has a corresponding personal data
schema. The schema allows developers not only to view the flow of personal
data through an app, but to reveal points within an app where further personal
inference is possible (e.g. when multiple items of personal data or profiling could
be combined to infer a new item of personal data). Take, for example, an algo-
rithm that processes a user’s gender, postcode and age. These three items may

Table 2. 6 personal data types

Label Type Ordinal Description Example

i1 Identifier Primary Data that directly identifies a

data subject

Full name, picture

i2 Identifier Secondary Data that indirectly identifies

a data subject

Mac address, username, (age,

postcode, birthplace)

p1 Personal Primary Data that is evidently personal Friends, mortgage, salary

p2 Personal Secondary Inferred personal data Gender, age, income (from

browsing data)

s1 Sensitive Primary GDPR special categories of

data

Criminal convictions, health

record

s2 Sensitive Secondary Inferred sensitive data Race (from postcode), sexuality

(from image)
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be enough, with minor effort, to infer a user’s identity (perhaps using an auxil-
iary public dataset). Less obviously, perhaps: an algorithm that utilises mobile
phone accelerometer data may be able, assuming a high enough sampling fre-
quency, to infer a user’s height, weight and gender [38] or smart metering data
may reveal personal habits [39] or occupancy [40]. As a start, inspired by GDPR,
our schema specifies six top-level personal data types (Table 2). In our schema
(Table 3), the (type, ordinal) attributes establish the top-level type and the cat-
egory, subtype and description attributes (originated by us) provide further con-
text. The schema has a required attribute to denote which attributes must be
present for a schema to apply. For example, if an IoT camera provides a times-
tamp, bitmap and light reading, only the bitmap attribute is required for the
data to be treated as personal.

Table 3. Personal data schema

Attribute Description

Type identifier | sensitive | personal
Ordinal primary | secondary
Category physical | education | professional | state | contact | consumption...

Subtype Sensitive will include biometric, health, sexual, criminal. Personal
includes education, profession, consumption.

Description Details of this particular item of personal data (and method of
inference if secondary)

Required List of attributes of this data that must be present in order for this
to constitute as personal data

The schema is extended for secondary (i.e. inferred) types, to specify the
conditions that must be satisfied to make an inference possible (Table 4). We
currently support two types of condition: (i) attributes – the additional set of
items of personal data items that, when combined could lead to a new inference;
(ii) granularity – the threshold sampling frequency required to make an inference.
When multiple attribute and/or granularity conditions are combined, all must
hold for an inference to be satisfied. Finally our status attribute distinguishes

Table 4. personal data schema

Attribute Description

Confidence An accuracy score for this particular inference, ranging from 0 to 1

Conditions List of granularity | attribute
Evidence Where possible, a set of links to any evidence that details a particular

inference method

Status Inferred | inferrable
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between personal data where (i) an inference has been made, and (ii) the data
is available to make inference possible. For example, browsing data and gender
may be enough to infer whether an individual is pregnant (i.e. these two items
combined make pregnancy inferable) but if a node makes an actual determination
on pregnancy, then the resulting data is inferred. We also make two additional
assumptions:

– When building a flow, the SDK assumes all data sources belong to the same
user. Our next version will formalize this.

– The schema permits data to be tagged as personal even if it is not associated
(directly or indirectly) with an individual. Although GDPR specifies that any
data that cannot be related to a “natural person” is not personal, we take the
view that any items of personal data may still, given the necessary context,
be used to identify an individual.

When making use of the schema in the SDK, datasources will define the personal
data that they generate, whereas processing and profiling nodes will generate
schemas based on the transforms they run on their input data. For example, the
combine processing node whose job is to merge attributes from its inputs, auto-
generates an output schema by combining the schemas of all input attributes to
be merged. Thus it is the SDK’s role and not the developer’s, to calculate how
schemas propagate through an app.

To illustrate a basic example in the SDK, consider Table 5 which outlines the
relevant parts of the accelerometer schema for the flows in Fig. 4.

Table 5. Part of the accelerometer datastore personal schema

Attribute Description

Type Personal

Subtype Gender

Ordinal Secondary

Required [x,y,z]

Conditions Type: granularity, threshold: 15, unit: Hz

In the left-hand flow, p2 is output from the accelerometer to show that per-
sonal data (i.e. a user’s gender) is inferable from the x, y, z components of its
data (it is semi-transparent to denote it is inferable rather than inferred). Simi-
larly, with the profile node, i1 is output to show fullname is a primary identifier.
When these are merged in the combine processor, the output schema will contain
the accelerometer’s p2, and the profile’s i1. In the right-hand flow, the combine
node is configured to only combine the x and y components of the accelerometer
data with the profile data. Since x, y and z are all marked as required (Table 5)
for a gender inference to be possible, the combine node’s output schema will
only contain i1 (and not p2).
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Fig. 4. Combining personal data in the SDK

The SDK will automatically recalculate and re-represent the flow of personal
data whenever a node or edge is removed, added or reconfigured. As flows get
more complex this becomes invaluable; it helps developers to quickly determine
how changes in configuration will alter the flow of personal data.

In tracking personal data the SDK also flags points in an app that may
require further attention. When downstream nodes use inferred data with a low
confidence score (provided by the schema), developers are warned that processing
is based on potentially incorrect data. When any personal data is being exported
off the box (i.e. connected to the export node), developers are reminded to ensure
data minimisation applies.

Creating GDPR Compliant Contracts. When a user installs an app on the
Databox they are presented with an SLA. The goal of the SLA is to provide
transparency and to fulfil the information to be provided to users when personal
data are collected (Articles 12–18). The SLA is a multi-layered notice that fur-
nishes the information in an easily readable format (see [41] for further details).
Where appropriate, SLAs enable end-users to exercise granular choice over data
sampling and the elements of an app’s processing they consent to. SLAs are not
static notices then, but dynamic, user-configurable consent mechanisms that sur-
face and articulate who wants to access which connected devices and what they
want to process personal data for. They are constructed from a manifest file
that sets out all possible configurations, and which is submitted alongside an
app when it is published. The SDK streamlines this process; given its knowledge
of an app’s construction it already knows the data sources being accessed (and
at which granularity), the processing taking place and the outputs, all of which
are automatically embedded in the manifest. At app publication time, when an
app uses multiple data sources, the developer is invited to mark each flow from
each source as compulsory or optional, which translates to a set of granular con-
sent options at install time. All that remains is for the developer to provide a
description of the app and its benefits, and the remaining statutory information
required by GDPR.
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Runtime Inspection. Though the development environment ensures that the
sources of data that an app operates on and what it outputs to are made trans-
parent, the way in which the app operates, i.e., how a decision is arrived at, or
how a data flows through an app remains opaque to a user at app runtime.

Fig. 5. App inspection interface

This becomes an important matter to surface under Article 13 of GDPR,
which requires that meaningful information about the logic involved in auto-
mated processing is provided to the data subject. All apps built in the SDK
record the path and state of all data as it moves through a flow. SDK apps
are all bundled with an interface that uses this path information to make apps
‘inspectable’ at runtime. By way of example, Fig. 5 shows part of an inspection
interface on the Databox UI for an app that processes browsing and shopping
data to send coupon requests to a third party. The top of the interface shows
of the app’s datastores, in this case, browsing and shopping. A user can select
any node in the path to get a real-time feed of the data entering and exiting
it. This is a nascent first step towards satisfying Article 13. More important at
this stage, is that data flow capture is built into apps to support user-inspection
interfaces. We are already seeing alternative representations in research [42]; one
interesting approach uses ‘comic strip’ visualisation techniques to communicate
the logic of automated processing to end users [43].

4.2 Future Research for the SDK

A number of interesting challenges have emerged which we are keen to explore
in greater detail and which are, we think, of broad relevance.

Algorithmic Intelligibility for Developers. Our work on making the oper-
ation and intent of apps intelligible to end-users is at an early stage and touches
on a rapidly expanding area of research. However research into how an app’s
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processing can be made intelligible to app creators (i.e. developers) is underrep-
resented in the literature. End-user oriented development environments reduce
the competencies necessary for creating apps and expand the cohort of poten-
tial app developers. In addition, access to machine learning toolkits such as
Google’s TensorFlow enable developers to utilise complex machine learning algo-
rithms whilst remaining divorced from all but a rudimentary understanding of
the models and logic involved. This makes it increasingly easy for developers
to make näıve use of machine-learning algorithms that lead to unfair, incorrect,
and ultimately harmful outcomes. Educating and sensitising developers to the
implications of the code they create is therefore a worthy goal. As [44] succinctly
state: “in many cases what the data subject wants is not an explanation – but
rather for the disclosure, decision or action simply not to have occurred”.

Articulating Risk. Our work on risk assessment in the SDK argues for sen-
sitising developers to the implications of their choices during app construction.
Yet, as discussed, our conception of risk is relatively simple. We aim to improve
upon this by representing risk as two metrics: likelihood (what is the probability
of occurrence?) and harm (what bad things will happen if it does occur?). To
make this tractable, the SDK will need to take into account the app’s intended
deployment context in addition to the personal data it operates on. For example,
an app that visualises a user’s browsing history on a screen at home will carry
different risks from one that exposes the same data to an employer.

5 Conclusion

The emergence of the IoT is driving a shift in data storage and processing to the
edge of the network to reduce traffic and latency and to improve resilience and the
potential for data privacy. We have argued that GDPR raises an unmet challenge
in supporting IoT app development that requires: (i) a broad cohort of developers
be provided with clear information on the risks that attach to the use of personal
data and (ii) that all necessary features and information are embedded in apps
in order that end-users are provided with the information they need to provide
informed consent and the facility to examine an app’s operation at runtime. We
have presented the design and implementation of a set of developer features (risk
breakdown, personal data tracking, compliant contracts and runtime inspection)
aimed at meeting these requirements. In doing so, we have taken a step towards
identifying how we can improve support for developers who write code to process
personal data.
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Abstract. In this paper, we present YaPPL—a Privacy Preference Lan-
guage explicitly designed to fulfill consent-related requirements of the
GDPR as well as to address technical givens of IoT scenarios. We ana-
lyze what criteria consent must meet in order to be legally sufficient and
translate these into a formal representation of consent as well as into
functional requirements that YaPPL must fulfill. Taking into account
further nonfunctional requirements particularly relevant in the IoT con-
text, we then derive a specification of YaPPL, which we prototypically
implemented in a reusable software library and successfully instantiated
in a proof of concept scenario, paving the way for viable technical imple-
mentations of legally sufficient consent mechanisms in the IoT.

Keywords: Privacy preference language · Internet of Things · Consent

1 Introduction

In a world pervaded by connected things, where mobile phones, wearables, envi-
ronmental sensors and smart home components constantly communicate with
backend infrastructures and, through these, are dynamically interconnected with
further services, it becomes increasingly challenging for device owners to keep
track and control of respective data transfers. Due to the foreseeably grow-
ing complexity of such IoT environments, technical mechanisms and tools will
become virtually indispensable for effectively exerting individual control over
ones data.

At the same time, the collection and provision of legally sufficient consent—
which is foundational for many realistic IoT applications—becomes increasingly
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difficult, given the strict requirements of the GDPR (General Data Protection
Regulation) on the one and the technical characteristics and constraints of IoT
environments on the other hand. Without proper ways for obtaining and actually
implementing legally sufficient consent, however, many practical IoT applications
and services would lack the necessary basis of lawfulness and could thus not be
implemented in a legally compliant way.

In this context, two core problems can be identified: First, individual consent
must be adequately specific with regard to utilizers and purposes in order to pro-
vide a legally sufficient basis for the collection and processing of personal data.
Current practices and technical approaches for consent provision—especially in
the IoT context with dynamically changing interconnections of devices and mul-
tiple services—do typically not meet this requirement but rather follow an app-
roach of overly “broad consent” instead. Second, consent must also fulfill form-
related obligations such as informedness or explicitness. Meeting these obliga-
tions requires appropriate interfaces, which IoT devices typically lack.

To solve these challenges and pave the way for viable technical implemen-
tations of legally sufficient consent mechanisms in the IoT context, we propose
a lightweight, tripartite approach consisting of (1) a policy specification service
running on edge devices with sufficient user interaction capabilities, (2) a pol-
icy provider persistently storing user-specified preferences and previous versions
thereof, and (3) a policy proxy applying the preferences to concrete, purpose-
specific data requests. All these components function and interact on the basis
of a preference language that is capable of codifying consent in line with GDPR
requirements.

Contributions: The design and specification of this preference language—named
YaPPL—is the primary subject of this paper. Through conscious integration of
legal requirements into the language design from ground up, YaPPL allows to
codify legally sufficient consent and thus provides a valuable basis for GDPR-
compliant consent management. In a nutshell, YaPPL is a message and file
format that, in combination with the proposed service architecture,

(a) fulfills legal requirements for technically mediated consent provision
(b) can act as an archive for expired preferences for auditing purposes
(c) provides an enhanced user-centric access control model for future or unfore-

seen data processing requests.

Furthermore, YaPPL is explicitly designed to suit constrained execution envi-
ronments like those typically present in the IoT context. Besides the specifica-
tion, we also implemented a prototypical YaPPL software library and, on this
basis, the three above-mentioned components. We then instantiated these com-
ponents in a concrete, realistic setting consisting of constrained IoT devices
and multiple cloud services. Preliminary experiments conducted in this setting
strongly point towards YaPPLs practical viability, vividly demonstrating the
potential of consequently designing technology to address currently unsolved
legal challenges.
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Structure: The remainder of this paper is organized as follows: In Sect. 2, we
analyze the requirements for legally sufficient consent, explore constraints given
by IoT environments and briefly sketch our assumed overall architecture. In
Sect. 3, we develop a formal representation of consent and identify functional as
well as non-functional requirements resulting from the previous considerations.
On this basis we then provide the language specification for YaPPL and explain
its core functionalities. Finally, we discuss YaPPL in the light of related work
(Sect. 4) and conclude.

2 Consent in the IoT Context

Consent is one of the cornerstones of modern privacy regulations, following the
idea that individuals should be able to determine who knows what about them
or, respectively, what facts about their private life are communicated to others
[27]. This fundamental understanding has not only influenced legislative proce-
dures [6], it is also reflected in numerous privacy principles [3], guidelines [2] and
frameworks/standards [4].

Under the legal regime of the GDPR, consent must fulfill certain criteria in
order to provide lawfulness for the collection or processing of personal data. To
establish a sound foundation for technically representing consent in a form that
satisfies legal requirements, we therefore briefly analyze these criteria below. In
addition, we shortly explore constraints given by IoT environments and sketch
a technical architecture facilitating the technically mediated provision of legally
sufficient consent in IoT scenarios for which the preference language to be devel-
oped herein shall serve as the underlying basis.

2.1 Legal Requirements for Consent

According to the Principles relating to processing of personal data provided in
Article 5 of the GDPR [6], “personal data shall be [. . . ] processed lawfully, fairly
and in a transparent manner [. . . ]”. Lawfulness can be assumed if “the data
subject has given consent to the processing of his or her personal data for one or
more specific purposes”. Article 7 (Conditions for consent) stipulates additional
conditions that consent has to fulfill in order to be legally sufficient. In particular,
given consent has to be easily retractable at any time and the party that initially
collects the personal data has to ensure that it is able to demonstrate that
a specific data subject has actually consented to the processing of his or her
data [6, Article 7 (1)].

Furthermore, the legal sufficiency of consent is subject to form-related
requirements. Besides the fact that it must be freely given, consent particularly
must be a “specific, informed and unambiguous indication of the data subject’s
wishes” and needs to be provided “by a statement or by a clear affirmative
action” according to Article 4 of the GDPR [6]. Specificity, the quality of being
informed, and the need for a clear affirmative action therefore deserve closer
examination.
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Specificity. In the GDPR itself it is not explicitly specified how “specific con-
sent” is to be interpreted. However, it is at least declared that consent has to be
given for “one or more specific purposes” [6, Article 6 (1 a)]. Furthermore, the
Article 29 Data Protection Working Party (Art. 29 WP) comments that con-
sent, to be specific, “should refer clearly and precisely to the scope [. . . ] of the
data processing. It cannot apply to an open-ended set of processing activities.
[. . . ] In other words, blanket consent without specifying the exact purpose of the
processing is not acceptable” [8]. If data should be processed for more than one
purpose, the controller “should provide a separate opt-in for each purpose, to
allow users to give specific consent” [10]. Any technical representation of consent
must therefore allow to codify specific purposes at a sufficient level of detail.

Informedness. There are clear explanations within the GDPR itself about the
meaning of “informed consent”. In recital 42 of the regulation [6], it is stated
that “[f]or consent to be informed, the data subject should be aware at least
of the identity of the controller and the purposes of the processing for which
the personal data are intended”. Thus, legally sufficient consent does at least
require that the data subject knows who intends to processes their personal
data for what reason. Again, any viable technical representation of (requested
and given) consent must allow to codify this information.

Clear Affirmative Action. Finally, a controller has to ensure that consent is
provided in an unquestionable manner. Acceptable forms, according to recital 32
of the GDPR [6], are oral or written statements, including by electronic means,
but also “ticking a box when visiting an internet website” or “choosing technical
settings for information society services”. As opposed to such clear affirmative
actions, “[s]ilence, pre-ticked boxes or inactivity should not therefore constitute
consent” [6, Recital 32]. Even though this requirement primarily regards user
interfaces, the explicitly mentioned choice of technical settings is of particular
relevance for us, as it allows for more technical approaches of consent provision,
which is particularly necessary in the IoT context.

2.2 IoT—Systems Perspective

As noted by the Article 29 Data Protection Working Party (Art. 29 WP) [9] the
Internet of Things raises several new challenges regarding the legally compliant
provision and withdrawal of consent. In particular, sensor devices like fitness
trackers or personal weather stations are often not designed to provide extensive
information by themselves and also do not contain any interfaces sufficient to
obtain individual consent.

Beside this lack of useful interfaces, components of an IoT environment are
often constrained in their computation, storage and communication capabili-
ties [22]. For our consent management architecture proposed in the next section,
we classify components into three different categories: (1) sensors devices, (2)
edge-devices and (3) cloud components.

Of these, sensor devices usually have none or only few computational
and storage capabilities. Interfaces for interacting with the device itself are
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also missing. Edge-devices, in contrast, offer resources to communicate with
users as well as with sensors and higher level services, to cache or store and
(pre-) process sensor data before sending them to the respective cloud service
components [24], but are semi-constrained with regard to their computational
power and/or storage space. Cloud components, in turn, have virtually unlimited
computational and storage capabilities.

Thus, from an IoT systems perspective, tasks involving substantial processing
and/or storing sensor or other data, like privacy preferences [23], can only be
performed either in the cloud or on the networked edge devices—bridging the
transfer of measured data between sensor devices and the cloud—considering
the semi-constrained characteristics of the latter ones.

2.3 Scenario and Architecture

Because of the lack of interaction possibilities on sensor devices, the provision or
revocation of consent needs to be performed on another device under the con-
trol of the sensor owner. In most cases, sensor devices use the owners’ desktop
computers, home routers or mobile computing devices to synchronize their data
with the cloud backends of associated service providers. These edge-devices are
therefore promising points of operation for the management of consent state-
ments [23].

The Art. 29 WP suggests the use of Privacy Proxies in the context of IoT
applications. By employing such a Privacy Proxy for “executing” technically cod-
ified consent statements, “data requests are confronted with predefined policies
governing access to data [. . . ]. By defining sensor and policy pairs, third parties
requests for collection or access to sensor data would be authorized, limited or
simply rejected” [9, p. 21, note 30].

Picking up the idea of edge devices as configuration points for a Privacy
Proxy governing access to personal data, Fig. 1 shows our generalized IoT archi-
tecture with sensors, edge-devices and cloud storage systems, supplemented by
a Policy Provider and a Policy Proxy. Users of sensor devices can specify their
preferences regarding the further use of their sensor data on their edge-device
before the upload to the cloud storage system of the respective service provider
is triggered. To avoid the necessity of a new consent provision for every new data
processing activity by the service provider, the Specification Service on the user-
controlled edge-device is used for “choosing technical settings” (see Sect. 2.1).
These are then stored in the form of policies by another service, the proposed
Policy Provider. For incoming requests regarding the sensor data, the Policy
Proxy ask the Policy Provider for an associated policy and answers the request
according to the rules and preferences stated by the sensor owner in the received
policy.

Thus, our architecture not only implements the recommendations of the Art.
29 WP regarding consent provision in IoT environments, it also can act as an
archive for expired preferences for auditing purposes as required by the GDPR.
Beyond that, it provides an enhanced user-centric access control model for future
or unforeseen data processing purposes. In this model, we give owners of sensor
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Fig. 1. IoT architecture with a user-controlled edge device running a Preference Spec-
ification Service. A Policy-Provider-Service and a Policy-Proxy-Service as a database
wrapper guarding the access to data.

devices full control but also the responsibility to manage preferences regard-
ing the future usage of their sensor data by shifting the Policy Administration
Point (PAP) as known from usual access control systems completely to the user.
While the proposed Policy Provider Service acts as a Policy Information Point
(PIP), the Policy Proxy Service substitutes the Policy Decision Point (PDP)
as well as the Policy Enforcement Point (PEP) from conventional access con-
trol architectures. If these services are implemented as micro-services, which
communicate through standardized interfaces (like REST), the integration into
different existing infrastructures is easily manageable. They could be integrated
into platforms [26] or deployed as independent distributed (micro-) services.

In order to enable such an architecture, we need (1) a standardized poli-
cy/preference specification language as well as (2) a respective message format
to make sure that the three services mentioned above can communicate on the
basis of a shared understanding of how to parse, create, evaluate and enforce the
policies containing the sensor owners’ data processing preferences. Taking into
account the legal requirements for consent outlined above, both will be developed
below.

3 YaPPL

In this section we will introduce the specification of YaPPL. We start with a
formalized representation of consent, formulate requirements and motivate our
design decisions to derive the internal structure of a YaPPL policy on that basis.
Afterwards we present a concrete example of a policy from our prototypical
implementation, illustrate the core functionalities of our software library and
discuss our evaluation.
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3.1 Formalization of Consent

As a first step towards our language, we need a formal representation of consent
in the sense of the GDPR as outlined above. Consent (C) as broadly assumed in
legal discussions can, on an abstract level, be interpreted as a relation that maps
a tuple containing a utilizer1 (U) and a data processing purpose (P) specified
by the utilizer onto data to be released. Interpreted as permission to process
(personal) data (D) related to a data subject (S), we get the following function,
whereat Dcol represents all collected data and Drel the data to be released :

c : Dcol × C → Drel =⇒ Dcol × U × P → Drel

c(dcol, u, p) :=

{
drel = dcol if consent is given by S
∅ if consent is revoked or not present

We strive for an understanding of consent that goes beyond this established
conception and allows data subjects to specify transformations T that reflect
their wishes for personal data relating to them to be preprocessed before disclo-
sure. The introduced transformation can be used to specify computational tasks
that have to be performed before the data is transferred. Examples are different
types of aggregation, pseudo-/anonymization, or cutting out certain data-points
from series of measurements. Thus, T is a transformation from data into other,
new data depending on the combination of utilizer and purpose:

t ∈ T : Dcol → Drel; =⇒ tup(dcol) = drel

We now can use the specification of t to reflect all kinds of possible consent.
If, e.g., consent should be revoked or not be given for certain data, we can
specify t in way that tup(dcol) = drel = ∅. If we generalize this approach towards
using transformations as a basic concept for a consent-based privacy preference
language, for every single datapoint or whole datasets, a 3-tuple containing a
utilizer u, a processing purpose p and a transformation t forms a resulting rule
r that describes which data may to what extent be transferred to the requesting
institution:

r : Dcol × U × P × T → Drel

r(dcol, u, p, t) = tup(dcol) = drel

Based on this approach, data subjects can define rules that exactly codify
their consent regarding which data can be released to a given set of utilizer
and purpose. On this formalized basis, we can now proceed defining our aspired
language, with rules that act as consent statements.

3.2 Requirements and Design Decisions

Besides the legal aspects outlined in Sect. 2.1, the requirements for the develop-
ment of a formal language designed to enable specifications of user preferences
1 In the understanding pursued herein, this is the institution that is aspires to collect

and/or process personal data – in legal terms: the controller and/or processor.
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can be divided into functional and nonfunctional factors. The motivation to
develop an own language is particularly rooted in the intention to give domain
experts—namely, in the case of a description language for consent-based usage
preferences, legal practitioners—the possibility to play a significant role in the
design, development, and maintenance of new systems in their domain [20].
For this reason, we consciously chose language constructs and abstract con-
cepts that also non-technologists can easily read, create, and—in the event of
audits—evaluate without further utilities. The following requirements will later
be addressed and explained in the design decisions section:

Functional Requirements

– Consent: distinct representation of consent statements as a combination of
processing purposes, potential utilizers and transformations.

– Purposes & Utilizers: representation of possible processing purposes and
potential utilizers as directed graph to emphasize relationships between enti-
ties as well as hierarchies.

– Transformations: distinct specification of domain specific transformation
functions

Nonfunctional Requirements

– Readability should be increased by the usage of appropriate formats that
are human- as well as machine readable

– Extendability regarding new purposes, utilizers and transformation func-
tions

– Efficiency regarding the memory and resource consumption on limited IoT
devices

Design Decisions. In our language, we address these functional and nonfunc-
tional requirements as follows:

Functional. As deduced in Sect. 3.1, any single preference rule has to contain
at least the three mentioned and obligatory components, utilizer, purpose, and
transformation. As they must be adjustable for different domain specific needs,
all of these are represented by plain strings within a rule. In our prototypi-
cal implementation, we codify the directed graphs containing available utilizers,
processing purposes, and generalized categories thereof in JSON configuration
files that are integrated at runtime, which allows to easily adjust the respective
available vocabularies to, e.g., domain-specific purpose hierarchies.

Since we want to be able to give and codify conditional consent for different
circumstances (like, e.g., “Utilizer A is allowed to process my data for purpose
X without any restrictions, but for utilizer B only weekly aggregates should be
released although it is for the same purpose X”), multiple independent rules
can be combined in a single preference. It is thus possible to assign different
transformations to be applied for different utilizers and/or purposes.
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To facilitate legally sufficient consent provision also for future and unfore-
seen purposes and utilizers, we allow the nested attributes “permitted” and
“excluded” to be provided for both, utilizer and purpose. With this extension,
it is possible to explicitly exclude purposes and utilizer, allowing to make state-
ments like “my data can be used for all future purposes except . . . ” or “my data
can be used by anybody except . . . ”.

Remark 1 (Conflicting Rules). Even if we can try to prevent the establishing
of conflicting rules by carefully checking the creation or update processes inside
the Preference Specification Service, one should be aware of conflicting rules.
Thus, in the Policy Proxy Service, which acts as a Policy Enforcement Point
(PEP), mechanisms have to be in place that ensure the proper execution. To
comply with the basic idea of a prohibition with a reservation of authorization,
which constitutes all data protection regulations, rules preventing data transfers
should always have higher priorities than the ones allowing them.

To address the fact that a single sensor device often collects multiple measur-
ands (e.g. smartwatches can record heart-rates, sleep phases, etc.), we designed
the transformation field of a rule as a list of transformation objects, each con-
taining a transformation function and the sensor attribute to which it refers.
So far, we only implemented simple examples — like an average and a minmax
function with the possibility to assign different time intervals — in our proto-
type. However, additional names of available transformation functions can be
subsequently added through configuration files as soon as they are specified and
implemented in the Policy Proxy Service to be enforced in operation.

Remark 2 (Revocation & Archiving). We decided to integrate two time-
stamps into each rule, represented by the ‘valid from’ and the ‘exp date’
attributes. The ‘valid from’ value is initialized with the current timestamp of
the moment the rule is created, whereas the ‘exp date’ value is initialized with a
zero value (“0000-00-00T00:00:00.00Z”). Thus, we can easily determine whether
a rule is (or was at a given time) valid by evaluating this attribute. The value
of ‘exp date’ is only changed under two conditions: (1) when the sensor owner
decides to delete the rule — which means withdrawing this specific consent state-
ment. In this case, the ‘exp date’ is set to the current timestamp and thus renders
the rule invalid. Noteworthily, invalidated rules are not deleted but rather kept
archived. The other case of ‘exp date’ being changed is (2) when a sensor owner
updates the rule with different values for utilizers, purposes or transformations.
In this case, the ‘exp date’ is also set to the current timestamp, the respective rule
renders invalid and thus is archived. Simultaneously, a new rule with the old val-
ues is created which can then be updated to the user’s changed intentions. This
procedure makes sure that it is always possible to track back the evolution of the
preference as a whole and thus to fulfill the legal requirement from Article 7 (1)
of the GDPR [6], which obligates a utilizer to be able to demonstrate that a
data subject has consented to the processing at a given moment.

Nonfunctional. To address the aforementioned nonfunctional requirements
regarding readability in combination with the efficiency criteria that has to be
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considered in IoT environments, we chose JSON2 both as file- and as message-
format, because policies in the JSON format are human- as well as machine-
readable. As an alternative, we also considered the more generic YAML3 for-
mat. Besides the pro-YAML-argument that YAML is slightly easier to ‘parse’
for humans [14], technical arguments led to the decision against YAML. In par-
ticular, benchmarks have shown that the processing time for serializing and
deserializing YAML files can be up to 10–20 times longer than the processing of
the same data codified in JSON [1,14]. Furthermore, because of the structure
of JSON messages, it is easy to decide if a data transmission has failed, as an
interrupted transmission will automatically render to invalid code. For a mes-
sage format to be used in communication between different web-services, this is
a significant advantage.

As a further alternative to JSON, we also considered XML because of its
also widespread use in the service domain. But if we take the requirements in
IoT contexts seriously and compare XML and JSON with regard to resource
consumption for parsing and evaluating data or the storage footprint of data
files, JSON is faster to process [21] and more efficient in resource consumption
both at rest and ‘on the wire’. Thus, JSON is the better fit in an IoT context [16].
Also with respect to human readability JSON has advantages over XML.

Remark 3 (Extendability). Regarding the last nonfunctional point we decided
that the fundamental structure of policies and rules has to be stable and con-
sistent. Besides the timestamps, every rule therefore must have declarations for
processing purposes, utilizers and transformation functions, as these are essential
for sufficient consent statements. However, and as already mentioned above, it is
possible to adapt our design to different domains just by adjusting or modifying
the options available for these three obligatory components into a domain-specific
variation simply by using different configuration files.

3.3 Policy Format Specification and Example

A YaPPL policy itself contains two first-level attributes: an id, which is used to
link specific sensor data to a corresponding policy, and a preference-block which
contains a list of one or more rules. These rules codify consent-based usage pref-
erences to regulate the access to the values measured by the respective sensor.
A rule consists of the three main building-blocks we have derived from our for-
malized consent model in Sect. 3.1, namely purpose, utilizer and transformation.
As delineated in the design decisions Sect. 3.2, the purpose part as well as the
utilizer part of a rule are both divided into a permitted and a excluded block.

In Listing 1.1 a snippet representing such a rule part of a policy is extracted
out of the complete BNF for YaPPL, which will be accessible online later on.
The aforementioned mandatory building-blocks of every rule (purpose, utilizer,
transformation) are complemented by a pair of additional attributes, which obvi-
ously are timestamps. The valid from value is set at (and to) the time of the rule
2 https://json.org/.
3 http://www.yaml.org/.

https://json.org/
http://www.yaml.org/
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creation, whereas the value of the exp date attribute is initialized with a “zero”
value and an alteration can be triggered for different reasons like the revocation
of the represented consent statement or the update of the respective rule with
new settings regarding purpose, utilizer or transformation, as illustrated in the
design decisions in Sect. 3.2.

Listing 1.1. “Rule” snippet from BNF Policy Specification
<ru le> : := ‘{ ’

<purpose> ‘ , ’
<u t i l i z e r > ‘ , ’
<t rans format ion> ‘ , ’
<va l id f rom> ‘ , ’
<exp date>
‘} ’

<purpose> : := ‘” ’ ‘ purpose ’ ‘” ’ ‘ : ’ ‘{ ’
<permitted purpose> ‘ , ’
<exc luded purpose>
‘} ’

<u t i l i z e r > : := ‘” ’ ‘ u t i l i z e r ’ ‘ ” ’ ‘ : ’ ‘{ ’
<p e rm i t t e d u t i l i z e r> ‘ , ’
<e x c l u d e d u t i l i z e r >
‘} ’

The policy shown in Listing 1.2 is an example from our prototypical imple-
mentation in an IoT testbed. It is used to specify user preferences regarding an
indoor environmental sensor which is capable to measure temperature, illumi-
nation, air pressure and light spectrum.

Listing 1.2. Example Policy with only one Rule
{

” i d ” : 4493 ,
” p r e f e r en c e ” : [

{
” ru l e ” : {

”purpose ” : {
” permitted ” : [ ” s t a t i s t i c s ” , ” p lano logy ” ] ,
” excluded ” : [ ” commercial ” ]

} ,
” u t i l i z e r ” : {

” permitted ” : [ ” wikimedia ” , ” t u b e r l i n ” ] ,
” excluded ” : [ ” netatmo ” , ” gate5 ” ]

} ,
” t rans fo rmat ion ” : [

{
” a t t r i bu t e ” : ” temperature ” ,
” t r f un c ” : ”minmax hourly”

}
] ,
” va l id f r om ” : ”2017−10−09T00 : 0 0 : 0 0 . 0 0Z” ,
” exp date ” : ”0000−00−00T00 : 0 0 : 0 0 . 0 0Z”

}
}

]
}

The ensuing transformation block is organized as a list of transformation objects,
which represents the conditions for the processing of specific values. Due to the
attribute field, it is possible to assign different transformation functions to each
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measurand of a multi sensor device. This is especially useful for the adoption
of YaPPL in the wearables sphere, where sophisticated swartwatches capture
multiple body- and health-related values like heartrate, sleep phases or the gps
route of the last training run. As examples for these transformation functions,
we implemented an average as well as a minmax function. While the first one
calculates the arithmetic average of a bulk of passed values, the latter returns
a minimum and a maximum value of the passed data. Both functions can be
triggered with different time intervals like daily, monthly and so on to aggregate
values as desired by the sensor owner.

3.4 Core Functionalities Based on YaPPL

On the basis of the aforementioned structure and characteristics of YaPPL poli-
cies, the implementation of services which enable consent-based data sharing
or data processing activities is straightforward. To showcase the possibilities of
YaPPL, we developed a prototypical software library that is integrated into the
three services mentioned above to manage legally sufficient consent provision in
an IoT testbed. Besides the necessary parser, a validator for the policies, and the
usual and obvious CRUD methods (Create, Read, Update and Delete) for rules,
this library provides two essential functionalities needed to fulfill the preferences
codified in a YaPPL policy: First, we need to know all excluded entities to pro-
hibit further data transfers, and second, we must be able to extract explicit
transformation rules in order to customize the sensor values according to the
wishes of the sensor owner.

getExcludedEntities. The excluded blocks in both, the purpose and the utilizer
part of the rules are intended to explicitly prevent data transfers to specific
institutions, generalized categories of potential utilizers (like, e.g., the military
or advertising companies), specific processing purposes or categories thereof (e.g.,
all commercial purposes). There are two methods in our YaPPL library which
return the respective lists by traversing all valid rules inside a given policy. If
the policy proxy receives a request from ‘Institution G’ to provide sensor values
for ‘Purpose R’, it fetches all respective policies from the policy provider and
decides if a transfer is allowed. If neither ‘Institution G’ nor ‘Purpose R’ is in
the returned lists, the proxy will extract the TransformationRules (as described
in the following section) to preprocess the sensor values according to the rules.

getTransformationRules. If a requesting institution with a specific data pro-
cessing purpose is not excluded from data transfer by the respective rules, the
policy proxy will extract a list of transformation objects, each containing a list
of (concrete or generalized categories of) permitted utilizers, a list of permitted
processing purposes and corresponding transformation functions. Thus, every
transformation object can be interpreted as a users consent to the processing
of her sensor data for the covered purposes by the contained utilizers under the
given conditions (aka. transformations). The proxy passes all original sensor data
to the appropriate transformation function, catches the aggregated results and
responds to the original request.
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3.5 Evaluation

To test our concept we have developed a library, as mentioned above, imple-
mented all components of the consent management architecture as introduced
in Sect. 2.3 and integrated the services into a real world IoT application. As this
application is a participatory sensing platform, we implemented the specification
service for adjusting preferences on a small sensor device that transfers the mea-
sured data — supplemented by an extra metadata field which contains the URL
of the respective policy — to the platform and sends the appropriate policies to
our policy provider, which runs inside a container on a cloud server. The privacy
proxy, also running on a cloud server, mirrors the API of the sensing platform
and monitors the requests. When values of a sensor with the aforementioned
metadata field are requested, the request is intercepted, the appropriate policy
is fetched from the policy provider and evaluated. If the data transfer is permit-
ted, the sensor values are pre-processed according to the transformation rules
and transferred to the requesting utilizer.

While performance considerations are left to future work, our prototype per-
forms well as a proof of concept and fulfills the requirements deduced in the
previous sections.

4 Related Work and Discussion

Some of the ideas presented herein are inspired from previous works on purpose
based access control [11,15,18]. The original concept of the division of purposes
into ‘prohibited’ and ‘intended’ purposes, which we also use for utilizers, was
proposed by Byun, Bertino and Li [11].

Furthermore a vast amount of languages for privacy-, security- and access
control-policies exists (see [19] for a comprehensive overview). The most promi-
nent one in the area of privacy policy languages regarding websites and -services
is P3P [13] and its companion for user preferences named APPEL [12]. P3P has
a limited vocabulary with predefined values for purposes and recipient. While
the predetermined purposes hinder an adaption to other or unforeseen process-
ing purposes, the preassigned values for potential recipients of the respective
data are not explicit but characterize the relation to the data controller that
originally collected the data. In addition, even if the P3P vocabulary is limited,
the correct formulation of user preferences in APPEL to match them with P3P
policies is difficult and error prone [7].

As a standard for the formulation of attribute based access control policies,
XACML [5] has been established over the last decade. Since it was designed
to be used by institutions to regulate the access to data and resources within
organizations or federations thereof, the usability as preference language for end
users seems at least questionable. Thus, while XACML is capable of representing
fine-grained access control policies, for the usage as preference language it needs
extensions: the PrimeLife Policy Language pursues a similar approach to specify
preferences for the future use of specific data like YaPPL. The idea of Down-
stream Usage describes the definition of conditions for the usage of data by third
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parties after the initial collection and storage. Also obligations are available as
a counterpart to YaPPL transformations [25]. But since it is an extension to
XACML, based on XML and with an extensive ruleset for the formulations of
policies, it inherits all the shortcomings mentioned in Sect. 3.2 and policies are
by far not human readable or auditable by legal practitioners without the help
of additional tools or technicians.

Besides these examples numerous other approaches for privacy preference
languages exits. Some are lightweight enough for the usage in IoT environments
but use strong compression or binary formats and are therefore not human read-
and auditable (e.g. [17]). Most others try to achieve human readability by using
XML dialects with the aforementioned drawbacks. Most importantly, however,
none of them is explicitly designed to fulfill the legal requirements regarding
the provision of consent, acts as an archive for expired preferences for auditing
purposes and provides an enhanced access control model for future or unforeseen
data processing requests.

While we worked on YaPPL, several open questions arose, which are out of
scope of a technical solution, but nonetheless important to discuss for real world
use cases. Some examples are:

– Who is responsible for the initial state of the utilizer and purpose graph?
– How should the extension of these graphs be organized?
– Who is responsible for adding new graph entries into appropriate categories?

Beside these more or less organizational problems, also operational questions
have to be answered. Dependent from the deployment of the proposed services
varied communication patterns have to be established. If, e.g., the Policy Proxy
Service is operated by another institution than the original service provider, a
transfer of all data to the proxy with a subsequent execution of the transforma-
tion functions is not feasible. In this case, the policy evaluation should lead to
a query modification. Thus, the proxy would not see any data not intended for
release. Such questions are strongly related to operator models and matters of
trust.

These and several further questions will need to be addressed during future
developments and, in particular, through implementing our concept in real use
cases with practitioners.

5 Conclusion and Outlook

As we have outlined in this paper, technical representations of consent must
meet certain requirements in order to be legally sufficient under the GDPR. In
particular, this regards the specificity in matters of utilizer and purpose as well
as form-related requirements for informedness and clear affirmative actions. In
the IoT context, especially the form-related requirements can, however, hardly
be met without novel mechanisms and approaches of technical support.

Based on a legal analysis and a formalization of consent, we therefore designed
and specified YaPPL, a Privacy Preference Language explicitly designed to fulfill
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consent-related requirements of the GDPR as well as to suit constrained execu-
tion environments like those typically present in the IoT context. We imple-
mented YaPPL in a reusable software library and successfully employed this
library to achieve technical consent awareness in a realistic IoT scenario, thus
demonstrating the practical viability of our approach. Besides legally sufficient
consent provision in IoT environments, the presented file- and message-format
in combination with the proposed architecture can also act as an archive for
expired preferences and provide a user-centric access control model for future or
unforeseen data processing purposes. YaPPL is therefore a valuable contribution
to paving the way for sustainable technical implementations of legally sufficient
consent mechanisms in the IoT context.

Beyond this, we explicitly foresee YaPPL and the underlying approach to
be also applied to IoT scenarios that do not fall under the GDPR but still call
for the possibility to technically represent and implement differentiated usage
preferences. For instance, this could refer to scenarios of participatory environ-
mental sensing, where participants might also be empowered to explicitly govern
the use of data provided by them with regard to utilizers and purposes based on
the technologies presented herein. The mere fact that certain data are not “per-
sonal data” in the sense of the GDPR does of course not invalidate the general
validity of consent principles materialized therein.

The YaPPL language specification as well as the mentioned library will
shortly be released under an open source license and can thus be used and
extended in other projects as well.
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Abstract. In the upcoming evolution of the Internet of Things (IoT),
it is anticipated that billions of devices will be connected to the Internet.
Many of these devices are capable of collecting information from individ-
ual users and their physical surroundings. They are also capable of taking
smart actions, which are usually from a backend cloud server in the IoT
system. While IoT promises a more connected and smarter world, this
pervasive large-scale data collection, storage, sharing, and analysis raise
many privacy concerns.

In the current IoT ecosystem, IoT service providers have full control
of the collected user data. While the original intended use of such data
is primarily for smart IoT system and device control, the data is often
used for other purposes not explicitly consented to by the users. We
propose a novel user privacy protection framework, PrivacyGuard, that
aims to empower users with full privacy control of their data. Privacy-
Guard framework seamlessly integrates two new technologies, blockchain
and trusted execution environment (TEE). By encoding data access pol-
icy and usage as smart contracts, PrivacyGuard can allow data own-
ers to control who can have what access to their data, and be able to
maintain a trustworthy record of their data usage. Using remote attes-
tation and TEE, PrivacyGuard ensures that data is only used for the
intended purposes approved by the data owner. Our approach repre-
sents a significant departure from traditional privacy protections which
often rely on cryptography and pure software-based secure computation
techniques. Addressing the fundamental problem of data usage control,
PrivacyGuard will become the cornerstone for free market of private
information.

1 Introduction

The emergence of the Internet of Things (IoT) is the result of rapid advancement
in technology in multiple fields. In the past two decades, we have witnessed an
explosive deployment of communications and networking technologies, especially
wireless technologies. At the same time, mobile devices have transformed from
limited embedded systems to highly capable general purpose computing plat-
forms. A variety of mobile devices with increased capability and intelligence are
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being introduced at a speed of approximately half a billion each year in recent
years [1]. New life-changing mobile apps are being introduced every day.

IoT promises a more connected and smarter world. However, as a wide variety
of things are increasingly embedded around us and more and more data about
us are collected, shared, and analyzed, there is an increased concern on privacy.
Individuals share personal information with people or organizations within a par-
ticular community for specific purposes. For example, individuals may share their
medical status with healthcare professionals, product preferences with retail-
ers, and real-time whereabouts with their loved ones. When information shared
within one context is exposed in another outside of the intended context, peo-
ple may feel a sense of privacy violation [2]. This contextual nature of privacy
implies that privacy protection techniques need to address at least two aspects:
(1) what kind of information can be exposed to whom, under what conditions;
and (2) what is the “intended purpose” or “expected use” of this information.

Much research has been done to address the first privacy aspect. There has
been a large body of research work on data access control that aims to ensure that
only authorized data consumers can access private user data [3–11]. Another line
of research is data anonymization that tries to ensure if sensitive data needs to be
published, it is published anonymously, i.e. the personal identifiable information
is removed from the data and the linkability between the published data and
individual users is carefully eliminated [12–16]. Only recently, there have been
a few works that attempted to address the second aspect of privacy, i.e., data
used only for the intended purposes [17,18]. In fact, with the current practice,
once an authorized user gains access to the data, how this user would use the
data, whether or not he/she would use the data for purposes not consented by
the user, or simply pass the data to another party (i.e., data monetization) is
up to this new “data owner.” Legal or regulatory measures may be taken to put
some constraints on this, but technical approaches that allow users to specify
and enforce the intended use of their data are lacking in general.

In this paper, we propose PrivacyGuard, a private data utilization framework,
to address this very challenging privacy problem in IoT – how to empower a data
owner in an IoT system to have full control over how his/her personal data is
used. The data owner should not only be able to control who can have what
access to his/her data, but also be ensured that the data is used only for the
intended purposes. To realize the envisioned functionality of PrivacyGuard, there
are three key requirements.

– User shall be able to define his/her own data access policy concerning to whom
she will share the data at what time for what purpose and at what price.
The framework shall also support rich encoding of different data utilization
conditions.

– There shall be strict enforcement on the data policy set forth by the data
owner. Each usage of the user data shall have a verified proof that it is com-
pliant with the policy and data content is well protected during the utilization.

– Each data usage shall be recorded on a platform that offers non-repudiation
and transparency.
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In PrivacyGuard, users’ privacy policies are embedded as smart contracts
on a blockchain platform. In recent years, blockchain, the technology behind
Bitcoin [19] and Ethereum [20], has emerged as a popular technology for dis-
tributed public repository of data. Bitcoin [19], exploiting the blockchain as a
public ledger to store cryptocurrency exchanges (called transactions), is the first
implementation of blockchain technology. Other emerging platforms also using
the blockchain are quickly gaining popularity, such as Ethereum [20], Hyper-
Ledger [21], IOTA [22]. Smart contract, a program that runs on the blockchain
and has its correct execution enforced by the consensus protocol, has seen fast
adoption and increased use in the Ethereum platform. In PrivacyGuard, smart
contracts are used to facilitate the transactions of private data utilization on the
private data market, providing access control, tamper-resistant record of data
utilization.

Smart contract provides a mechanism to ensure desired privacy protection
at the protocol level. However, when the program is running on a third party
computer (such as in the Cloud) which is not fully trusted by the data owner,
the confidentiality of user data as well as the faithful execution of the protocols
can no longer be guaranteed. Pure software-based approaches, such as homomor-
phic encryption and secure multi-party computation, for secure computation in
the cloud have been investigated extensively in the past decade. However, the
heavy overhead on generic constructions of secure computation makes practical
adoption infeasible with the current computing power. In this project, we take
a different approach to support generic computation. We will develop a system
level security mechanism exploiting Intel SGX enclave technology, which pro-
vides a hardware-isolated secure execution environment. In this third thrust, we
will focus on the system design of iDataAgent running in Intel SGX enclave so
that data confidentiality can be ensured and intended data usage is enforced
through secure contract execution in the cloud.

2 PrivacyGuard Overview: A Framework Enabling
User Control on IoT Data Usage

Things in IoT can take many different forms, from simple RFIDs attached to
merchandises, smart thermostats installed in the classrooms, to wearable medical
devices on patients and video cameras at home.

Some powerful devices, such as IP cameras and smart TVs, can connect
directly through the Internet to the backend application server in the cloud.
Some other IoT systems, such as Samsung smart things, make use of something
like a smart hub to orchestrate communications between heterogeneous things.
However, in most cases, the intelligence of the system is hosted at a cloud back-
end, therefore all the data generated from the system is stored within the vendor
cloud. Data collected by IoT devices could be used directly by the vendor IoT
applications. They could also be shared with other services, including various
big data analytics tasks.

The huge amount of data collected by IoT and the desire of broad information
sharing raise serious privacy concerns.
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– Confidentiality Protection on User Data When data is generated under
the current paradigm, it is stored in the vendor’s cloud storage. The data
is often stored in plaintext, and the access control on user data relies on
the vendor system. Even when the data is stored in an encrypted storage,
the user does not control the encryption key. When the data is less sensitive
such as video from a driveway camera, plaintext storage might be acceptable.
However, video from a camera in the bedroom can contain sensitive private
information and would require an appropriate level of protection, and such
data should not be exposed even to the service provider. Therefore, user-
controlled, rather than service provider-controlled, encryption/decryption is
fundamental in IoT data privacy.

– Verifiable User-controlled Fine-grained Data Access Under the cur-
rent paradigm, once the data is uploaded to the vendor cloud, it belongs to
the vendor under a service agreement. A user could grant access to his data
to someone. But there is no way for the user to find out who actually accessed
his private data, not to mention for what purpose. Lack of transparency and
verifiability on data access often prompts users to choose the most restrictive
data sharing agreement. This is evidential in a recent study on data sharing
practice among windows error reporting users, where most people choose not
to share data when they do not know how the data may be used. A public
service that keeps track of user data usage and makes it auditable by data
owners is therefore essential to not only protect user privacy but also promote
data sharing in the community.

– Provable Legal Binding on User Data Usage Service level agreements
and legal contracts are the only control over how data is stored, shared,
and mined under the current IoT ecosystem. As more and more devices are
connected to the network, we are witnessing an economic drive of intelligence
collected from mining the IoT data. On one hand, the intelligence reaped
from mining IoT data could help provide quality service, increase convenience,
lower the cost of operation, etc. On the other hand, misuse of such information
could lead to injustices, such as a patient being denied of health insurance
due to a health condition inferred from his medical IoT system. To realize
the grand vision of a more connected and smarter world, the capability to
provide flexible and provable legal binding over the use of user personal data
is the utmost capability our society needs in the era of Internet of Things.

2.1 PrivacyGuard Architecture

As shown in the left half of Fig. 1, an IoT system can be divided into four
layers based on the technical supports they provide. The lowest layer is the
Thing/Device layer, which is made up of various smart objects integrated with
sensors and actuators. This is the IoT system’s interface to the physical world.
The sensors and actuators will interact with their physical environment, allowing
real-time information to be collected and processed (mostly signal processing).
Layer 2 is the Network layer which provides interconnectivity of various wireless
access technologies, and supports routing functions. The highest is the Cloud
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Fig. 1. IoT system architecture and proposed PrivacyGuard framework

layer, which is where the backend services/applications reside. It is a data con-
centration point and where most of the data analytics happens.

Between the cloud layer and the network layer is what we call the Service
Support layer. This layer has more computation and storage capability and is
capable of carrying out some important information processing tasks, possible
through data analytics. From a security and privacy point of view, security
control and device management, process modeling and information flow control,
such as data filtering, aggregation, can all happen at this layer. The placement
of this layer depends on the network architecture of an IoT system. For a Cloud-
based IoT system, the layer would be in the Cloud. For an IoT system that
adopts a Device-Gateway-Cloud architecture by leveraging edge computing, this
layer could be at the edge node.

Figure 1 shows the system architecture of the proposed PrivacyGuard frame-
work. Although we have been using the term users to refer to individuals or
organizations who are using an IoT system, in what follows, we differentiate two
roles that an IoT user can take. We refer to the individual or organization that
owns the IoT devices and produces IoT data as data owner and the entity that
needs to access and use IoT data as data consumer.

Main Components. There are three main components in the PrivacyGuard
architecture.

– Blockchain: We employ an external blockchain (such as Ethereum) to enable
an accountable distributed data repository for publishing access policy and
facilitating data use recording. For data access control, a data owner can
encode the terms and conditions regarding the access to his/her personal
data as a smart contract. Data uses are recorded as transactions that interact
with the smart contract. Here the blockchain serves as a public, auditable,
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and irreversible data repository, thus providing transparency of user policies
as well as public verifiability of data usage.

– iDataAgent (an Enclave): iDataAgent is a trusted entity and is an instance
of the iDataAgent program running in a TEE. iDataAgent acts as a broker
for user data. Any data that goes in and out of the user data repository
will go through iDataAgent. Private user data collected by the IoT devices
will first be sent to the iDataAgent for processing. iDataAgent manages the
keys for the data owner and the data encryption/decryption for that user.
Sensitive data will be encrypted by the iDataAgent before pushed to the cloud
for storage. iDataAgent is also responsible to remotely attest the function
execution enclave in the data consumer before passing the data decryption
key to it.

– Encrypted Storage: Private user data will always be encrypted when they
are at rest in the cloud. This will ensure data confidentiality at rest against
the cloud service provider.

2.2 Workflow

In what follows we outline the workflow of the proposed PrivacyGuard. We sepa-
rate the workflow into three stages: data generation (encrypting user data), data
access binding generation (contract negotiation), and data utilization (contract
execution).

– Data Generation and Key Management In this stage, user data is col-
lected and uploaded to the cloud storage. We propose to build a trusted entity,
iDataAgent, at the service support level using Intel SGX secure enclave tech-
nology. The framework allows individual data owners to manage the keys
used to encrypt/decrypt their data before uploading to the cloud storage
through iDataAgent. A straightforward solution to initialize the master secret
between a data owner and his iDataAgent enclave is to bootstrap it when a
data owner first signs up for the service. Upon successful remote attestation
of the iDataAgent enclave, the data owner can transmit his secret key to
iDataAgent through the secure channel established along with the remote
attestation. This key can then be used to derive data encryption/decryption
and integrity check keys for this user. When the user data is generated, it is
transmitted to iDataAgent instead of directly to the service provider such as
Samsung smart home cloud. iDataAgent encrypts user data using the derived
keys before pushing them to the cloud for storage. There are multiple ways to
secure the communications between user IoT devices and iDataAgent. This
problem is not the focus of this project. To minimize the changes necessary
to the current IoT system implementation, we assume that the IoT devices
can be reconfigured to connect to iDataAgent rather than Samsung Smart
Home server, and rely on existing SSL/TLS implementations to establish the
secure channel.

– Policy Generation and Contract Negotiation Our framework allows a
data owner to define the access policy for the data he generated. The policy
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is encoded in a smart contract and committed to the blockchain. A smart
contract involves at least the following information, Policy = [data type, data
range, operation, consumer, expiration, cost], where the “intended use” of
data of certain type, range is coded as operation, which can be arbitrary
computer programs attestable by iDataAgent.

– Data Utilization - Contract Execution Smart contract, by design, can
only embed some simple logics (functions) and the trustworthy execution of
those functions is enforced by the consensus protocol. The “intended use”
of the data can be arbitrary computer programs. Thus, it is impractical
to embed them into a smart contract and have their trustworthy execution
results enforced by the consensus protocol. In PrivacyGuard, we propose to
use smart contract and blockchain for trustworthy bookkeeping of user access
policy, consumer data usage record, and secure payment transfer. We use the
trusted entity iDataAgent to ensure that only programs for the “approved
use” can have access to the data and that the program will be executed in a
remotely attested separate TEE for contract execution.

When a data consumer app requests the use of the data, iDataAgent remotely
attests the contract execution environment and the function to be executed
on data. Only when both the environment is trustworthy and the function
to be executed is as specified in the smart contract, will iDataAgent pass the
data decryption key to the contract execution enclave. Encrypted data can
be obtained by the execution enclave from the Cloud storage. Note that an
additional layer of defense can be built on the Cloud storage to grant access
only to encrypted data as specified in the data access contract. When the
contracted operation is finished, the contract execution enclave will commit
a transaction to the blockchain to certify that the contracted operation is
finished, thus finalizing the final transaction and recording the instance of
data usage. In addition, it will clean up all the key materials as well as data
inside the enclave to prevent data reuse.

3 Conclusion

In this position paper, we propose PrivacyGuard, a novel user privacy protection
framework that aims to empower data owners with full privacy control of their
data. Two important aspects of data privacy shall be addressed: (1) how to
allow data owners to control who can have what access to their data, and be
able to maintain a trustworthy record of their data usage; and (2) how to ensure
that data is only used for the intended purposes approved by the data owner.
To accomplish the afore-mentioned privacy goals, the proposed PrivacyGuard
framework seamlessly integrates two new technologies, blockchain and trusted
execution environment (TEE).

The proposed approaches are novel, representing a significant departure from
traditional privacy protection researches that rely on cryptography and pure
software-based secure computation techniques. Hardware-assisted approaches
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will provide a more powerful and more practical solution to the very challenging
privacy problem. The unique combination of blockchain and TEE technologies
will enable new privacy protection capabilities, i.e., verifiable data usage tracking
and data use compliance enforcement. We believe PrivacyGuard framework is a
foundational technology for user privacy control in the era of Internet-of-things
and data intelligence.
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Abstract. In recent years, Secure Multiparty Computation (SMC)
advanced from a theoretical technique to a practically applicable cryp-
tographic technology. Several frameworks were proposed of which some
are still actively developed.

We perform a first comprehensive study of performance characteris-
tics of SMC protocols using a promising implementation based on secret
sharing, a common and state-of-the-art foundation. We analyze its scal-
ability with respect to environmental parameters as the number of peers
and network properties – namely transmission rate, packet loss, network
latency – as parameters and execution time, CPU cycles, memory con-
sumption and amount of transmitted data as variables.

Our insights on the resource consumption show that such a solution is
practically applicable in intranet environments and – with limitations –
in Internet settings.
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1 Introduction

While the foundations for Secure Multiparty Computation (SMC) were laid
about forty years ago [30], the topic experienced a revival in the last decade:
Starting as mere theoretic considerations, improvements in hardware perfor-
mance made practical implementations and productive use of SMC possible. In
consequence, a number of SMC frameworks emerged and its practical application
was considered in research [8,9,12,32].

Most publications in this context have in common that they focus on sin-
gular events of orchestrated or manually triggered computations. With Smart
Buildings and the Internet of Things (IoT), a new type of use case for privacy-
preserving data processing becomes relevant: Recurrent and automated process-
ing of data streams will be carried out on commodity or even low-end hardware.
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Host nodes will be constrained devices and communication might happen via
restricted or unreliable connections. [23,24]

It is hence vital to understand the resource requirements and performance
characteristics of a productively usable SMC solution in order to assess it applica-
bility in this context. Our work provides these insights by performing a thorough
performance evaluation of a selected SMC framework based on secret sharing, a
common mathematical foundation.

The remainder of the paper is structured as follows: In Sect. 2, we give an
overview of SMC in general and argue for the framework we select for further
examination. Section 3 presents the related work regarding practical evaluation of
SMC. We present preliminary theoretical performance considerations for round
based SMC protocols in Sect. 4. Section 5 contains the description of our evalu-
ation setup; the results are presented and discussed in Sect. 6. We elaborate the
practical implications in Sect. 7 and conclude our paper with Sect. 8.

2 Secure Multiparty Computation

Secure Multiparty Computation enables multiple communicating parties to
collaboratively compute a function while being able to keep their respective
input value completely confidential. Yao initiated this field of research by pre-
senting the Millionaire’s Problem and the idea of Secure Function Evaluation
[30,31]. While many single purpose protocols were proposed, the main inter-
est was in the creation of a general purpose framework which allows the com-
putation of arbitrary functions. Basic concepts were identified which allowed
approaching this aim, most notably garbled circuits [31], homomorphic encryp-
tion [27] and secret sharing schemes [5,28]. Its theory flourished early in the
80’s (cf. [3,5,15,16,19,26]) while implementations have only been developed in
the last decade. Among them, many have been proposed as proof of concept but
were not publicly available [9] or have not been developed further since then [12]
[18] [4]. Currently, Sharemind [6], SPDZ-2 [17,20] and Fresco [1] constitute the
state-of-the-art of actively developed SMC frameworks1.

All of these solutions are secret sharing based. Hence, a similar performance
behavior depending on the investigated parameters can be expected. However,
for our use case we need a solution which is able to support computations with a
theoretically arbitrary number of participants. This is not given by Sharemind.
Furthermore, Sharemind is closed-source which further obstructs assessment.
SPDZ-2 is currently still work in progress on a level of fundamental changes and
consequently not ready for a thorough performance measurement. Our choice is
therefore Fresco, which aims for production-ready application:

Framework for Efficient Secure Computation. Fresco [1] aims for being a non-
prototypical, productively applicable generic SMC framework written in Java.

1 There are further frameworks for the special two-party case, but they are not appli-
cable in this multiparty context.
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At the time of writing, Fresco mainly supports the Ben-Or–Goldwasser–
Wigderson (BGW) [5] protocol based on Shamir’s secret sharing using poly-
nomials. This allows computations which are secure in the honest-but-curious
adversary model.

3 Related Work

The newly gained interest in SMC during the last years resulted in a multi-
tude of publications, which propose successive improvements or applications of
established approaches. By contrast, the body of research is missing thorough
performance measurements of SMC solutions.

Most of these publications do not provide performance data or merely a
single result for their exact setting of application [8–10,29]. Others typically
only evaluate overall execution time and to some lower degree transmitted bytes
measured while at most varying the number of parties and the amount of input
data [6,7,11,12,21,22,25,32]. Only few include further parameters like the trans-
mission rate [20] and technology-dependent factors like circuit size and depth [4]
and evaluate further parameters e.g. throughput.

For assessing feasibility in distributed systems and the Internet of Things, it
is necessary to perform more thorough measurements including further factors.
It is vital to understand the influences of the network characteristics and to
further examine the impact on host resources.

We aim to provide the necessary insights by assessing the parameters number
of peers, transmission rate, network latency, and packet loss, while measuring the
variables execution time, CPU cycles, stack and heap memory consumption, and
transmitted bytes.

4 Preliminary Execution Time Considerations

A computation model for secret sharing based SMC protocol foundations like
BGW “is a complete synchronous network of n processors” [5]. The protocol
itself is dissected into rounds. “In one round of computation each of the players
can do an arbitrary amount of local computation, send a message to each of the
players, and read all messages that were sent to it at this round” [5]. A message
typically contains a share of a private local value – e.g. a polynomial in the BGW
protocol – held by the sender.

From this point of view the protocol becomes an alternating sequence2 of
local computation and network communication:

comp1, comm1, . . . , compm−1, commm−1, compm (1)

The communication steps are also synchronization points providing shares
for the next computation step.
2 We consider recombining the shares to be the last step compm. Hence, there are only
m− 1 communication steps.
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We denote the time costs for a step compi as costcompi
. The message sent

from player Pk sent to Pl during commi is referred to as msgi,k→l. Two phases
are typical for all SMC protocols: During the input phase – a single round –
the own private input is transformed into shares and distributed among the
players. In the output phase the shares of the computed result are exchanged
among all players. Their recombination yields the plaintext result. In Fresco
this also takes a round3. The round complexity of the basic arithmetic opera-
tions in the BGW protocol varies. Addition does not need any communication.
Multiplication requires rerandomization of the polynomial and the reduction of
its degree [5]. This requires a step of communication, and hence, a round.

The communication cost of the ith round costcommi
depends on the number

of messages sent. As every player sends an individual share to every other player,
the overall number of shares sent is O(n2). Every player pi typically contributes
its own input vi for the computation. Hence, a single multiplication step normally
means that the product of all input values should be computed:

∏n
i=1 vi. In such

a case, n − 1 single multiplications are necessary; consequently the costs for
such an array multiplication are O(n3). However, analysis of Fresco shows
that sending and receiving for every player can happen in parallel4: Sending is
a non-blocking action for the computation layer which hands over the messages
to be sent to the communication layer of Fresco. Receiving is blocking on
the computation layer, however, the communication layer is able to receive all
messages simultaneously.

When a host has sent out every share and it has received all other players’
shares, the next computation step can be performed. So, in spite of the theo-
retical complexity and due to parallelization the communication cost per round
mainly depends on the slowest pair of hosts:

costcommi = max
1≤k,l≤n

costmsgi,k→l
(2)

While every round is practically performed in constant time, the number
of rounds per array multiplication increases linearly. A further approximative
simplification of the communication costs can be made: Communication between
two peers is always identically structured and of comparable length. Hence, we
can simplify that

∀i ∈ {1, . . . ,m − 1} : costcommi
= costcomm (3)

3 Some solution perform a resharing in order to make the final shares independent
from the shares obtained in the computation. This is, e.g., necessary when the shares
should be reused to perform further calculation. Then, another round becomes nec-
essary during this phase.

4 One exception is the initial input sharing phase. Here, sending of shares is only
performed by a single host at a time.



A Performance and Resource Consumption Assessment of SMC 361

Note that Eq. 3 does not hold for computation steps, as each phase per-
forms different tasks. Combining Eqs. 1 and 3 the overall costs of time can be
estimated by

costoverall =
m∑

i=1

costcompi
+ (m − 1) ∗ costcomm (4)

Applying the model of the alternating sequence, the influences on the dura-
tion are twofold: The computation performance depends in the properties of the
players, the communication performance depends on the properties of their net-
work links. Due to the synchronizing behavior of rounds, the costs of both sides
add up to the overall costs.

Performance Comparison

Conceptually, SMC replaces a Trusted Third Party (TTP) by providing a secure
protocol. Canetti [13] used this understanding to propose a now well-established
method to prove secrecy and correctness of SMC protocol designs.

We can also apply this understanding to assess the performance penalty that
SMC introduces. Using a TTP for computation can here be used as a perfor-
mance baseline. In fact, in today’s productively used systems, TTP solutions are
the established standard; hence, the comparison with a TTP is also practically
relevant. In order to do so, we align the necessary actions when using a TTP
with the phases of an SMC computation. In a TTP setting, the input phase can
be understood as providing the input data to the TTP. The output phase com-
prises sending the result from the TTP to the participants. Computation steps
can be directly adapted. The whole comparison applied to the BGW protocol is
shown in Table 1.5

Table 1. Performance comparison SMC vs. TTP. Computations are counted in basic
(arithmetic) operations, communication in number of messages.

Phase SMC TTP

Computation per host Communication

(overall)

Computation on

TTP

Communication

(overall)

Close Generation of

polynomial, calculation

of n shares

n2 − n — n

Addition n − 1 additions — n − 1 additions —

Multiplicationn − 1 multiplications,

CompClose , CompOpen

n2 − n n − 1 multiplications—

Open Lagrange interpolation n2 − n — n

5 Common computations are omitted: E.g. the running sum has to be turned into a
current average by a single division. As both solutions have to do the same step, it
is not reflected in the table.
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Presenting our results in Sect. 6, we add – where applicable – an estimation
how a TTP solution would perform. In these cases we approximate the commu-
nication performance as described before while neglecting the low influence of
the computation steps.

5 Evaluation Setup

In the following section we describe our test setup. We refer to a real-world use
case performed at our lab; the functionality being similar to other real-world
systems. In the methodology, we document the measurement environment in
terms of used software, hardware and measurement tools.

5.1 Scenario

Our scenario is inspired by MeasrDroid [14], a smartphone app which allows
insights into the sensor data of the device and comparison to other users. Assum-
ing a set of moving devices, a property of interest is their summed and averaged
travel distance. Without SMC, the functionality is realized as follows: Each client
derives a stream of distances from the GPS coordinates. They connect to a com-
mon trusted server which holds a running sum and transmit the travel distance
since their individual last connection. Anytime, the average distance can then
be computed by the server.

In order to apply Fresco, the input has to be organized in synchronous
sessions. In every session, each device contributes its distance since the last
session, whereas the statistics server inputs the current value of the running
sum (starting with 0). During computation, each host synchronously follows
the predefined algorithm. Between computation steps, messages are exchanged
between each pair of hosts (cf. Table 1). These messages exclusively contain secret
shares of intermediary computation results. The final result of each session is
saved by the statistics server.

With regard to the privacy of the system, it is uncritical that the total sum is
calculated privately while the division step to retrieve the average is performed
without SMC. Under the premise that the number of participants is known
(which is necessary to perform the sharing correctly) the total sum would always
be derivable from the average value. Consequently, the total sum does not leak
any more information than the average does.

Knowing that communication between the peers is the typical bottleneck
for SMC [32] [8] [11], the choice of the use case is beneficial for our performance
measurement: The computational part is comparatively low so that performance
effects caused by communication and their relationship to the named parame-
ters become clearly visible. This allows better assessment of the communication
bottleneck of SMC based solutions with negligible influence by the local compu-
tations.

Input Data: We used real world data retrieved from MeasrDroid, yielding five
traces consisting of 20000 GPS tuples each. Since the data itself does in no way
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influence the performance of the system, we could duplicate the inputs when
scaling beyond 5 parties without loss of application and closeness to reality.

5.2 Methodology

For our tests we had 15 physical hosts available. Each host has an Intel Xeon CPU
with eight cores at 2.50 GHz and a cache size of 8192 KB. They have 15.780 MB
RAM and a 1 Gbit networking interface each. They are arranged using a star
topology, all hosts are connected via a single switch. The default link latency
is around 0.18 ms and there is no packet loss. The test hosts use Debian Jessie
(8.5) and a 3.16 Linux kernel. Our Java application was executed by the Java
VM from the OpenJDK 1.8.0 111. For assessing influence of network latency we
added artificial delay to the communication round-trip while equally distributing
the delay to both hosts of each link using tc. For this purpose, tc delays every
outgoing packet by the half of the desired additional delay. Packet loss is also
simulated via tc.

We use an orchestration layer which configures all client-side parameters
and starts the target application. The Java application itself locally loads GPS
coordinates. In a preprocessing step the GPS coordinates are transformed into
travelling distances by calculating the distance between consecutive GPS loca-
tions. During each measurement, each peer p provides 1000 distance values vp,n
with 1 ≤ n ≤ 1000 and correspondingly 1000 computations are performed. Dur-
ing secure computation cn each peer p contributes vp,n as numerical input while
the host representing the statistics server provides the result of cn−1. The pro-
vided values are used to update the running average of the overall travelling
distances. Since every computation is short in time, its measured duration can
fluctuate randomly. In order to get stable results, 1000 computations are carried
out per measurement. Furthermore, each measurement itself has been repeated
50 times if not noted otherwise. The above described realization of the secure
computation stays identical over all measurement performed during this study.

Profiling is performed using perf from the linux-tools (version 3.16+63) for
counting CPU cycles, BTrace (version 1.3.8.3 (20160926)) for assessing memory
consumption and execution time and tshark (version 2.2.4) from wireshark for
collecting the raw transmitted data.

6 Results

In the next subsection we focus on the host resources heap memory and consumed
CPU cycles. Afterwards we analyze the amount of transmitted data representing
the network resource. Then the execution duration, most directly affecting the
user, is discussed.

6.1 Host Resources

In our context, RAM is separated in stack and heap memory. Our measurements
showed that stack memory constantly was between 16 and 20 MBytes. There-
fore, we focus completely on heap memory consumption. During our baseline
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Fig. 1. Impact of the number of peers on the maximum allocated heap memory. Heap
memory does not increase directly and proportionally with increasing peers but in
distinct plateaus which are shared among an interval of peer counts.

execution with 3 peers the standard memory consumption is around 69 MBytes.
This is only negligibly influenced by networking parameters. However, we iden-
tified a strong correlation when scaling the number of peers. Heap memory con-
sumption then gradually diverges step-wise (cf. Fig. 1): The application uses
around 70 MBytes during a computation with 3 to 5 peers, which increments
to 530 MBytes for 7 to 9 peers and increases again to 840 MBytes for 11 to 15
peers. The reason is that data about current connections as well as intermediate
results like the shares of all other participants are stored on the heap. We deduce
a linear trend from Fig. 1 where the notable amount of outliers at x=15 already
foreshadows the next step of heap increment. This factor rapidly becomes crit-
ical: With 15 peers, Fresco already starts exceeding the memory resources of
a Raspberry Pi [2] 3 B (1 GByte RAM) and uses a considerate amount of the
memory of a current smartphone (2–4 GByte).

During the CPU measurements we noticed that there are major differences
when comparing the values of different nodes of the same computation. This
difference is found in the setup phase of Fresco. In an initial step the hosts
have to establish connections with every other participant. This is achieved by
listening for incoming connections and performing own connection attempts to
other hosts in parallel, driven by busy waiting. Starting the application on all
hosts sequentially with a little delay between them, the first nodes performs
considerably more busy waiting than the last. This understanding is necessary
to interpret our results.

Our baseline is around 21.5 ∗ 109 cycles for the first and 16.5 ∗ 109 cycles
for the last node. When reducing network performance consumption drops to
approximately 12.5 ∗ 109. This effect is best depicted in Figs. 2 and 3. It can
be attributed to the startup phase: Impeded transmission slows down polling,
making it less CPU intensive. Additionally, Fig. 2 shows a slight increase in CPU
cycles when increasing the network latency further. As the number of instructions
did not increase during the same measurements, we expect this effect to be caused
by IO waiting time during the delayed protocol execution.
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Fig. 2. Impact of network latency on the CPU cycles. With increasing network latency,
CPU spends more time waiting for data, slightly increasing the amount of CPU cycles.
The high amount of CPU cycles when using 8 cores and having no additional latency
is an artifact of busy waiting as described in Sect. 6.1.

15

20

25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Packet loss [%]

C
P
U

cy
cl
es

[M
H
z]

Fig. 3. Impact of packet loss on the CPU cycles. Increased packet loss slows down the
busy waiting phase at connection setup. In consequence, the amount of CPU cycles
converges to the value actually needed for carrying out the secure computation.

On the side of number of participating nodes, the number of consumed CPU
cycles depends strictly linear on it. For the first node we get (mean squared error
(MSE): 2.9451)

(5.16 + 5.83556 ∗ n) ∗ 109

and for the last node (MSE: 1.74056)

(15.263 + 0.69823 ∗ n) ∗ 109

We see that the amount of CPU cycles used in the startup phase heavily out-
weighs the increase of participating nodes.

6.2 Network Resources

Our baseline of transmitted data for three peers is 5.35 MBytes per peer. We
identified that the amount of transmitted data per peer varies around 400 KBytes
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upon network changes. By package inspection a common reason could be found
in the network communication behavior of Fresco:

The communication layer of sender s receives and buffers a serialized object
or,1 from the computation layer to be sent to recipient r. The transmission of
or,1 happens only when r is prepared to accept the data. During that time, if
the sender does not have to wait for any further incoming data itself, it can
proceed with the next computation step. As a result it can already create and
prepare the next object or,2 to be sent to r. Given r did not request or,1 yet,
the communication layer will combine or,1 and or,2 into a single message. This
reduces the number of necessary packet headers. It is coincidence that this effect
is most useful in environments with constrained transmission, where it naturally
also happens most often.

The measurements of two network parameters reflect this behavior up to some
degree: When reducing the transmission rate to 1 MBit, a drop to 5.10 MBytes
can be detected. A similar behavior occurs when adding artificial network
latency, however, without a distinct trend.

While these deviations undercut the baseline, packet loss yields an increase
of transmitted data (cf. Fig. 4) due to retransmissions. With a maximum of 10%
packet loss, transmitted data was increased by approximately 400 KBytes.

Regarding the number of peers, the number of messages to be exchanged
between all peers depends quadratically on it. Our measurements support this
by showing that the amount of transferred bytes between a pair of hosts increases
linearly. In our setting, the increase follows the following regression line (MSE:
0.03332):

(−2.743 + 2.69419 ∗ n)MBytes

In other words, for each peer approximately 2 MByte of additional data is trans-
mitted per host.
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Fig. 4. Impact of packet loss on the transmitted KBytes. Packet loss makes retransmis-
sion of data necessary which in turn increase the overall amount of transmitted data.
Tests beyond 10% of packet loss could not be performed due to repeatedly dropping
connections.
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6.3 User Resource: Time

The computation duration is the most interesting variable from the user’s per-
spective. Our baseline is 5.35 s for 1000 calculations, i.e. each computation costs
around 5 ms, whereas the startup of the Java VM is not included.

Time is heavily and differently influenced by the evaluated parameters: The
increase in time is strictly linear when adding more participants, although the
number of exchanged messages increases quadratically. In Sect. 4 we already
elaborated how parallel execution of communication can reduce the complexity
by n. As a regression function (cf. Fig. 5) we yield (MSE: 0.24894):

(−1.086 + 2.01883 ∗ n)ms

As comparison, the communication delay of a TTP solution does not notably
depend on the number of participants since sending and receiving messages can
happen in parallel.

Network latency also causes a linear increase, which is notably stronger in
absolute terms. The following regression function (cf. Fig. 6) holds for three
participating peers (MSE: 15415.50432):

47.327ms + 4.61851 ∗ network latency

Execution inside an intranet takes around 4 s for 1000 computations. Via
the Internet (50 ms to 300 ms), the computations already cost 5 to 25 min. The
duration can be roughly estimated as follows: During the input phase with n = 3
participating hosts, n ∗ (n − 1) = 6 messages must be exchanged. Each partici-
pant sequentially waits for n−1 = 2 messages. The performed addition operation
is free of communication. During the output phase, again 6 messages must be
exchanged, while waiting in parallel6. Consequently, every participant sequen-
tially waits for n = 3 messages, which can consist of one to two packets each.
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Fig. 5. Impact of number of peers on the execution time. With increasing number
of peers, execution time increases strictly linearly in our use case. In comparison, a
solution using a trusted third party is practically independent from the number of
peers since communication can happen in parallel.

6 Using Eq. 2 we count this as a single message.



368 M. von Maltitz and G. Carle

4.189.1
292

1132.5

2314.8

0

1000

2000

0 100 200 300 400 500

Additional network latency per link [ms]

T
im

e
[s
] Execution type

SMC 3 nodes

TTP (est.)

Fig. 6. Impact of network latency on the execution time. A setup featuring SMC is
heavier influenced by network latency than a trusted third party. The reason is the
higher amount of messages sent during SMC, since each message is slowed down by
network latency. The full comparison is performed in Sect. 6.3.

While one packet costs a single network delay, two packets cost three network
delays as the second packet is only sent after receiving an acknowledgement. In
consequence, we gain an interval of [n ∗ network latency, 3n ∗ network latency]
per protocol execution.

With a TTP solution, all hosts send their data during a single network delay.
The computation itself is performed locally. Another network delay is added for
sending the results to all participants (in parallel). While it seems that the per-
formance of the SMC solution is acceptably worse in comparison, it is important
to note that the TTP does not depend on the number of peers as a factor at all
(cf. Fig. 5).

Packet loss implies repeated retransmissions. Due to this, we expect the exe-
cution time (Fig. 7) to constitute a geometric row and to increase hyperboli-
cally in the interval [0, 1[ of the packet loss probability ploss. However, the steep
increase only happens very late when ploss is near 1. The analyzed interval from
0% to 10% is at the beginning of the function’s domain, where only a linear
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Fig. 7. Impact of packet loss on the execution time. In the tested interval, packet loss
yielded linear increase of the execution time of the protocol.
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increase becomes visible. The sessions started failing due to timeouts at a packet
loss rate of 10%.

Comparatively weak constraints are given by the transmission rate (cf.
Fig. 8). A very low rate of 1 MBit influences execution time negatively, but
already between 10 MBit and 100 MBit all rate-induced impediments are
resolved. A transmission consists of an exchanged share, encompassing one to
maximally two packets, having only a length between 100 and 1000 Bytes each.
This is the reason why network latency has stronger influence than the trans-
mission rate.
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Fig. 8. Impact of transmission rate on the execution time. A low transmission rate
highly impacts execution time of SMC. However, already with 10 Mbit the bottleneck
of transmission is nearly resolved, so that further increase of transmission rate only
provides small improvements.

In conclusion, each single computation has a low duration; the overall dura-
tion increases linearly with the number of peers. While this influence is compara-
tively small, the network parameters have the highest influence on the execution
time. In the ranges of the practically relevant intervals we saw that the trans-
mission rate can influence the execution time by factor 5, packet loss has an
influence up to a factor of approximately 110 and network latency can slow
down the computation even by factor 550. These impediments already occur at
network configurations which are realistic on the Internet or the mobile Internet
at least.

7 Practical Implications

We showed that Fresco’s performance and resource utilization behavior allows
practical application. In intranet settings computations are efficient. The execu-
tion time is around 2 to 3 ms per session and peer. This allows batch processing of
data and interactive use cases. Performance might, however, not be sufficient for
the realization of real-time applications depending on the type of computation.
Regarding the host systems, memory consumption can become critical when a
multitude of peers participates in the computations. This must be considered
upon productive use. However, regarding all identified performance results, we
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deem the memory consumption to be more related to Java than to secret shar-
ing or SMC in general. With memory-constrained devices, a more economical
programming language might be necessary.

In wide area networks as the Internet and mobile Internet, network latency is
the most influential constraining factor. Execution time degrades strongly with
increasing latency. In these contexts, currently the only use case seems to be
batch processing: Given it is acceptable to wait several minutes for a computa-
tion result, SMC can be utilized. Further improvement of the situation would
require to reduce the amount of transmitted packets. This could be possible by
stricter orchestration of computations running in parallel, where packets between
different peers would be used for multiple sessions simultaneously.

8 Conclusion

This paper presents the results of thorough measurements to assess the fun-
damental practical applicability of Secure Multiparty Computation (SMC) in
real-world contexts.

We initially model SMC sessions as alternating sequence of local computa-
tion and communication between participating peers. This unveils the existence
of two individual performance bottlenecks whose delay is typically strictly sum-
mative during a single execution.

In our measurements, we examine how network latency, transmission rate
and packet loss, as well as the number of peers influence the execution time,
the CPU utilization, memory allocation and the amount of transmitted data.
Here, we focus on the communication overhead by choosing a scenario which is
computationally simple. This yields a baseline of performance behavior of secret
sharing based SMC.

Interpreting our findings, we conclude that SMC is practically applicable
with weak limitations in intranet settings. Here, requirements for participating
host systems are in ranges of today’s commodity hardware. Furthermore, SMC
seems to be applicable to some (lesser) degree in Internet settings. Here, network
latency has the biggest negative influence on performance. However, as perfor-
mance of SMC protocols continues to increase, we expect that feasibility of SMC
over the Internet will also improve in the next years.
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Abstract. In this paper, we present a novel multi-party protocol to
facilitate the privacy-preserving detection of trade chains in the context
of bartering. Our approach is to transform the parties’ private quotes into
a flow network such that a minimum-cost flow in this network encodes
a set of simultaneously executable trade chains for which the number of
parties that can trade is maximized. At the core of our novel protocol is a
newly developed privacy-preserving implementation of the cycle cancel-
ing algorithm that can be used to solve the minimum cost flow problem
on encrypted flow networks.

1 Introduction

Bartering refers to the direct exchange of goods or services for other goods or
services [9]. Nowadays, traded goods and services include books, rental cars,
apartments, production surpluses, or idle times of employees. The attractiveness
of bartering stems from the fact that it does not suffer from shortcomings of
currencies such as foreign exchange problems, inflation, liquidity problems of
banks, or concentration of economic power.

Today, a large fraction of bartering transactions is carried out via centralized
(online) platforms which support their users in finding suitable trade partners.
Since bartering involves sensitive personal data (e.g., negotiation ranges), a main
objective of prior work [14–16] is to replace these central platforms by decen-
tralized privacy-preserving protocols which allow a fixed number of parties to
privately barter their commodities thus eliminating the risk that a platform
operator may not only learn sensitive personal data but (to some extent) can
also control and manipulate which parties eventually trade their commodities.

Specifically, in the considered bartering setting, the privacy-preserving multi-
party protocols of [14–16] allow each party to specify a quote that includes an
offered and a desired commodity along with the corresponding quantity ranges
at which a party is willing to trade. The protocols then obliviously detect a
trade which consists of disjoint trade cycles (of lengths greater than or equal to
two). These trade cycles encode how the parties can exchange their commodities
(in a cyclic fashion) such that each one of the trade partners is satisfied with the
c© Springer Nature Switzerland AG 2018
J. Garcia-Alfaro et al. (Eds.): DPM 2018/CBT 2018, LNCS 11025, pp. 373–388, 2018.
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trade. From participating in such a protocol, a party only learns its local view
of a trade, i.e., its direct trade partners and what to exchange with them. Yet a
party’s quote remains private at all times.

Besides trade cycles, a trade chain is another exchange structure which is
widely studied in the literature (see, e.g., [4,5]). Specifically, trade chains are
of importance when so-called donor parties are considered which are altruistic
parties that give their offered commodity away for free (i.e., without receiving
another commodity in return). Analogously to a trade cycle, a trade chain indi-
cates how the parties can exchange their commodities, with the difference that
the first party in a chain is a donor party and the last party in the trade chain
does not have to give away its offered commodity. The analysis of the impact
of considering trade chains (instead of considering only trade cycles) in the con-
text of conventional (i.e., non privacy-preserving) bartering is an active field of
research (see, e.g., [4,5]). Recent results show that considering trade chains can
lead to a significant increase of the overall number of parties that can trade.
However, to the best of our knowledge, to date there is no privacy-preserving
bartering protocol yet that was explicitly designed for the detection of trade
chains (or a combination of trade chains and trade cycles).

In this paper, we present a first step to close this gap by introducing an
efficient bartering protocol that enables the distributed detection of trade chains
in a privacy-preserving fashion. Our protocol detects an optimal set of simulta-
neously executable trade chains so that the number of parties that can trade is
maximized while the parties’ quotes are kept private at all times. Furthermore,
we formally prove that from participating in our novel protocol, a party only
learns its direct trade partners and what to exchange with them. At the core
of the protocol is a novel privacy-preserving protocol implementing the cycle
canceling algorithm that allows multiple parties to solve the minimum cost flow
problem on encrypted flow networks.

2 Preliminaries

Let e ←$ S indicate that e is drawn uniformly at random from S and let Nb :=
{1, . . . , b}. For a logical statement B (e.g., 0∧1 or 5 < 6), the Iverson Bracket [B]
evaluates to 1 if B is true and to 0 otherwise. The index set of parties P1, . . . , Pι

(ι ∈ N) that participate in a multi-party protocol is defined as P := {1 . . . , ι}.
A directed graph is a graph G = (V,E) where each edge (v, w) ∈ E with

v, w ∈ V is directed from v to w. For a directed graph G = (V,E), a tuple
(v1, v2, . . . , vl) with vi ∈ V and (vi, vi+1) ∈ E (∀i ∈ Nl−1) is referred to as
path (of length l). If additionally (vl, v1) ∈ E, tuple (v1, v2, . . . , vl) is referred
to as cycle (of length l). A (directed) graph G = (V,E) is often represented by
means of an adjacency matrix A := (ai,j)|V |×|V | where for all i, j ∈ V ai,j = 1 if
(i, j) ∈ E and ai,j = 0 otherwise.

Let G = (V,E) be a directed graph and let h : E → S be a function that
maps each edge (v, w) ∈ E to a value in S. For convenience, we sometimes encode
h as a matrix H := (hi,j)|V |×|V | where for all i, j ∈ V hi,j = h(i, j) if (i, j) ∈ E
and hi,j = 0 otherwise.
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The following definitions are based on [6] (extended by a cost function) and
are essential for the formalizing of our approach for the detection of trade chains.

Definition 1 (Flow Network). A flow network is a directed graph G = (V,E)
with a capacity function u : V ×V → R

≥0 and a cost function c : V ×V → R such
that u(v, w) = c(v, w) := 0 in case that (v, w) /∈ E. Furthermore, if (v, w) ∈ E
then (w, v) /∈ E. A flow network has one so-called source node and one so-called
sink node where the source s ∈ V has no incoming edges and the sink t ∈ V has
no outgoing edges.

Definition 2 (Flow). A flow f in a flow network G = (V,E) with capacity
function u(v, w) and cost function c(v, w) is a function f : V ×V → R such that
0 ≤ f(v, w) ≤ u(v, w) and for all w ∈ V \{s, t} ∑

v∈V f(v, w) =
∑

v∈V f(w, v).
The value of a flow f is defined as |f | :=

∑
v∈V f(s, v). A maximum flow

f is a flow in G where |f | is maximized. The cost of a flow f is given by∑
(v,w)∈E c(v, w)·f(v, w). A minimum cost flow f is a flow with minimized cost.

Definition 3 (Residual Network). Given a flow network G = (V,E) and a
flow f , the residual network Gf = (V,Ef ) with residual capacity uf and residual
cost cf is defined as Ef := {(v, w) ∈ V × V : uf (v, w) > 0} and

uf (v, w) :=

⎧
⎨

⎩

u(v, w) − f(v, w) if (v, w)∈E
f(w, v) if (w, v)∈E
0 otherwise

, cf (v, w) :=

⎧
⎨

⎩

c(v, w) if (v, w)∈E
−c(v, w) if (w, v)∈E
0 otherwise

2.1 Paillier Threshold Cryptosystem

Our privacy-preserving bartering protocol for trade chain detection relies on
the additively homomorphic Paillier cryptosystem which has been proven to
be semantically secure [12]. More precisely, we make use of the (τ, ι) threshold
variant of the Paillier cryptosystem from [10] where the private key is distributed
among ι parties such that at least τ parties have to cooperate in order to decrypt
a ciphertext. Figure 1 gives a brief overview of the corresponding key generation
procedure, the encryption function, and some homomorphic properties. In the
remainder of this paper, we omit the public and private key from our notation,
define �m� := E(m), and represent negative integers by the upper half [�n/2	,
n − 1] of the plaintext space P (cf. Fig. 1). With C we denote the corresponding
ciphertext space (see Fig. 1). For convenience, we write the encryption of a matrix
A = (ai,j)m×n as �A� := (�ai,j�)m×n and define �A[i, j]� = �ai,j�.

2.2 Secure Multi-Party Computation

Secure multi-party computation (SMPC) allows a set of ι parties to compute an
ι-input functionality F such that each party only learns its prescribed output and
what can be deduced from it in combination with its private input—even in the
presence of an adversary. In this paper, we consider a semi-honest adversary that
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Key Generation:

Generate two primes p = 2p′ + 1, q = 2q′ + 1 of bit length k/2 s.t. p′, q′ are also primes
Set n := pq, n′ := p′q′ and select β ←$ Z

∗
n, (a, b) ←$ Z

∗
n × Z

∗
n

Set g := (1 + n)a · bn mod n2 and Θ := an′β mod n
Public key: (g, n, Θ), Private key: (τ, ι) sharing of βn′

Plaintext space: P := Z
∗
n, Ciphertext space: C := Z

∗
n2

Encryption:

m ∈ P, r ←$ Z
∗
n, E(m) := gmrn mod n2

Homomorphic Properties:

E(m1) +h E(m2) := E(m1) · E(m2) = E(m1 + m2) (homomorphic addition)

shorthand notation:
l∑

h
i=1

E(m)×ha := (E(m))a = E(a·m) and E(m)×h0 := E(0) with a∈Z\{0} (hom. scalar mult.)
E(m1) h E(m2) := E(m1) +h (E(m2)) 1 = E(m1 m2) (homomorphic subtraction)

Fig. 1. Overview of the threshold Paillier variant from [10].

corrupts and controls a fixed set of parties following the protocol specifications
but trying to learn as much as possible about the inputs of the honest parties.

Let x := (x1, . . . , xι) and let F : ({0, 1}∗)ι → ({0, 1}∗)ι, x 
→
(F1(x), . . . , Fι(x)) be a multi-party functionality where P� (� ∈ P) provides
input x� and obtains output F�(x). Furthermore, let π be an ι-party protocol
allowing to compute F . With I := {i1, . . . , iκ} ⊂ P we denote the index set of
1 ≤ κ < ι corrupted parties controlled by the semi-honest adversary.

Informally, party P�’s view on the execution of a protocol π on input x con-
sists of the messages received during the protocol execution as well as the party’s
internal random coin tosses. Let xI and FI(x) denote the κ-tuples (xi1 , . . . , xiκ

)
and (Fi1(x), . . . , Fiκ

(x)), respectively. A protocol π is said to securely (i.e.,
correctly and privately) compute functionality F if there exists a probabilis-
tic polynomial time simulator S which on input I, xI , and FI(x) simulates a
protocol transcript that is computationally indistinguishable from the view of
the corrupted parties resulting from an actual protocol execution. For the sake
of clarity, we enclose simulated values with angle brackets 〈·〉.

A gate ρ (resp., a gate functionality G) is a special type of protocol (resp.,
functionality) which obtains encrypted input and/or returns encrypted output.
In general, these ciphertexts come from a higher-level protocol (resp., function-
ality) and the corresponding plaintext values are not known to any party. We
write (o) ← G(x) (resp., (o) ← ρ(x)) to indicate that all parties provide the
same input and obtain the same output.

3 Overview

3.1 Bartering Related Terminology

We consider multiple parties P1, . . . , Pι where each party specifies one offered
and one desired commodity. In particular, given a finite set C of commodities
c1, . . . , c|C |, each party P� (� ∈ P) specifies one quote q(�) := (o(�),d(�)) where
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P offer demand
P1 (A, 8) (λ, 0)
P2 (B, 10) (λ, 0)
P3 (C, 5) (A, 7)
P4 (A, 6) (C, 4)
P5 (D, 6) (A, 5)
P6 (D, 5) (B, 8)

→
Def.5

s

d1 o1

d2 o2

d3 o3 d4 o4

d5 o5

t

o6d6

1
0

1
0

1
-1

1
-1

1
-1

1
-1

1
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1
-1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

Fig. 2. Example for transforming a set of quotes Q into an exchange network. The
source and the sink are represented by square nodes, the offer and the demand of
donor parties are represented by diamond nodes, and the offer and the demand of ordi-
nary parties are represented by round nodes. Each edge is annotated with its capacity
(above) and its cost (below).

o(�) refers to P�’s offer and d(�) refers to P�’s demand. The offer o(�) := (c(�)o , q
(�)
o )

indicates that P� offers a quantity of at most q
(�)
o ∈ N of commodity c

(�)
o ∈ C .

Similarly, the demand d(�) := (c(�)d , q
(�)
d ) of P� specifies the minimum quantity

q
(�)
d at which it desires commodity c

(�)
d ∈ C . A quote q(�) indicates that party P�

is willing to give at most q
(�)
o units of commodity c

(�)
o iff it receives a least q

(�)
d

units of commodity c
(�)
d . We distinguish a special type of a party P�, called

donor party, with quote q(�) := ((c(�)o , q
(�)
o ), (λ, 0)) that is willing to give away at

most q
(�)
o units of commodity c

(�)
o where symbol λ indicates the absence of P�’s

demand. A party P� is referred to as endowed party in case that P� receives a
specific quantity of its desired commodity without having to give away anything
to another party in return. The quotes q(�) = (·,d(�)) and q(�′) = (o(�), ·) of two
parties P� and P�′ (� �= �′) are partially compatible iff for d(�) = (c(�)d , q

(�)
d ) and

o(�′) = (c(�
′)

o , q
(�′)
o ) it holds that [(c(�)d = c

(�′)
o ) ∧ (q(�)d ≤ q

(�′)
o )] = 1. The set of

quotes of all parties P1, . . . , Pι is denoted as Q := {q(1), . . . ,q(ι)}.

Definition 4 (Trade Chain). For parties P1, . . . , Pι and their corresponding
set of quotes Q, a trade chain of length m is a tuple (P�1 , P�2 , . . . , P�m

) (with
�i �= �j for i �= j) such that q(�1) = (o(�1), (λ, 0)) and q(�2) = (·,d(�2)) as well
as q(�i) = (o(�i), ·) and q(�i+1) = (·,d(�i+1)) are partially compatible (i = 2, . . . ,
m − 1). Two trade chains are called disjoint and are simultaneously executable
in case they have no parties in common.

3.2 Approach

The goal of this work is to design an efficient privacy-preserving bartering pro-
tocol to determine an optimal set of disjoint trade chains (that when executed
simultaneously maximize the number of parties that can trade). Our approach is
to first transform the parties’ private quotes into a special type of flow network,
referred to as exchange network (see Fig. 2).
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Definition 5 (Exchange Network). For a given set of ι parties P and the
corresponding set of quotes Q, an exchange network is a flow network GEN =
(V,E) with two nodes d�, o� ∈ V for each party P� (� ∈ P) representing its
demand and offer. Furthermore, (d�, o�) ∈ E with u(d�, o�) := 1 and c(d�, o�) :=
−1 as well as (o�, d�′) ∈ E with u(o�, d�′) := 1 and c(o�, d�′) := 0 in case that
q(�) = (o(�), ·) and q(�′) = (·,d(�′)) are partially compatible (�, �′ ∈ P). In
addition, GEN has a source and a sink node s, t ∈ V where (s, d�) ∈ E iff q(�) =
(·, (λ, 0)) with u(s, d�) := 1 and c(s, d�) := 0 as well as (o�, t) with u(o�, t) := 1
and c(o�, t) := 0 (∀o� ∈ V ). GEN ∼ Q indicates that GEN is deduced from Q.

A maximum flow of minimum cost f in GEN = (V,E) encodes an opti-
mal set of disjoint trade chains for P1, . . . , P� where an edge (o�, d�′) ∈ E with
f(o�, d�′) = 1 indicates that a party P� has to give away some specific amount (to
be negotiated after all parties learned their trade partners) of its offered commod-
ity to party P�′ (�, �′ ∈ P). A sequence S of edges (s, d�1), (d�1 , o�2), . . . , (o�m

, t)
in GEN with f(v, w) = 1 (∀(v, w) ∈ S) encodes a single trade chain correspond-
ing to (P�1 , P�2 , . . . , P�m

) where �1, �2, . . . , �m ∈ P. This correlation is due to
the construction of an exchange network: Each party P� is represented by two
nodes in GEN (with an edge of capacity 1 in between) where one node is associ-
ated with P�’s demand and the second node is associated with P�’s offer.1 This
ensures that there is at most a flow of 1 “through” each party enforcing that
each party is involved in at most one trade chain. There are directed edges of
capacity 1 between the source node and the demand nodes of all donor parties
to ensure that each trade chain is initiated by a donor party. Furthermore, there
are directed edges of capacity 1 between the sink node and the offer nodes of
all parties so that in principle each party can become the end of a trade chain.
Our cost encoding is motivated by the fact that for each additional party that is
added to a trade chain, the cost of the flow is decreased by one such that deter-
mining a maximum flow of minimum cost f in GEN is analogous to determining
a set of disjoint trade chains maximizing the number of parties that can trade.

The problem of computing a (maximum) flow of minimum cost is known as
the minimum cost flow problem (for a maximum flow).

Definition 6 (Minimum Cost Flow Problem). Given a flow network G =
(V,E), a capacity function u, a cost function c, and a maximum flow f in G, the
minimum cost flow problem is to find a flow f ′ of minimum cost with |f | = |f ′|.
One direct and efficient approach for solving the minimum cost flow problem (for
a maximum flow) is to use the cycle canceling algorithm [11] (cf. Algorithm 1).
This algorithm takes a flow network G = (V,E), a capacity function u, as well
as a cost function c as input and first computes a (maximum) flow f in G. Then,
it iteratively eliminates directed cycles with negative cost (i.e., cycles for which
the sum of the costs associated with its edges is negative) in the residual network
arising from G (together with u and c) and f . To this end, the flow along the
1 Note that there is also a demand node for each donor party in order to ensure that

no information about them (e.g., the number of all donor parties) is leaked in our
privacy-preserving bartering protocol.
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Algorithm 1. Cycle Canceling Algorithm for Minimum Cost Flow.
Input : Flow network G = (V,E) with capacity function u and cost function c.
Output: A maximal flow f in G with minimum cost.

Initialization Phase
1 f ← MaximumFlow(G, u);
2 if |f | = 0 then
3 return ⊥
4 (Gf , uf , cf ) ← ResidualNetwork(G, u, c, f);

Main Phase
5 N ← NegativeCostCycle(Gf , uf , cf );
6 while N exists do
7 u∗ ← min{uf (e) : e is an edge of N};
8 f ← AugmentFlow(G, f,N, u∗);
9 (Gf , uf , cf ) ← ResidualNetwork(G, u, c, f);

10 N ← NegativeCostCycle(Gf , uf , cf );

11 return f ;

negative cost cycle is augmented by the minimum value of the residual capacities
of the edges belonging to the cycle. This operation does not change |f |. The
algorithm terminates once all negative cost cycles are eliminated. According to
the negative cycle optimality condition [2], this approach allows the computation
of a maximum flow with minimum cost.

The maximum flow f in G (Step 1, Algorithm 1) can be computed by using
the push-relabel algorithm (see, e.g., [6]). A negative cost cycle (Steps 5 and 10,
Algorithm 1) can be computed by an extension of the Bellman-Ford algorithm
(see, e.g., [6]) that not only determines whether a negative cost cycle exists but
also computes the edges belonging to such a cycle. After computing the negative
cost cycle N , the minimum residual capacity u∗ in the cycle is determined and
the flow is augmented accordingly (Step 8, Algorithm1).

At the core of our novel privacy-preserving bartering protocol for the detec-
tion of an optimal set of disjoint trade chains (Sect. 5) is a newly developed
privacy-preserving implementation of the cycle canceling algorithm.

4 Gates

In the following, we review gates secure against semi-honest adversaries which
are used as building blocks for our novel privacy-preserving bartering protocol.

4.1 Secure Basic Operations

Definition 7 (GMult: Secure Multiplication). Let P1, . . . , Pι hold cipher-
texts �x� and �y�. Then, gate functionality GMult is given by (�x · y�) ←
GMult((�x�, �y�)).
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A gate ρMult implementing GMult for the semi-honest model can be derived
from the multiplication gate presented in [7,8] which has communication and
round complexities in O(ιk) and O(1), respectively, where k refers to the security
parameter of the Paillier cryptosystem.

Definition 8 (GLT: Secure Less Than Comparison). Let P1, . . . , Pι hold
ciphertexts �x� and �y�. Then, gate functionality GLT is given by (�b�) ←
GLT((�x�, �y�)) with b := [x < y].

A gate ρLT implementing GLT for the semi-honest model has been presented
in [13]. This gate has communication and round complexities in O(ιk) and O(ι),
respectively. Based on gate ρLT it is straight-forward to derive the corresponding
greater than (GT), less than or equal (LTE), greater than or equal (GTE), and
equality test (ET) variants as sketched, e.g., in [13].

4.2 Secure Negative Cost Cycle Computation

We use an adaptation of the Bellman-Ford algorithm (see, e.g., [6]) for the com-
putation of negative cost cycles in exchange networks.

In general, the Bellman-Ford algorithm can be used to solve the single-source
shortest-paths problem on a weighted directed graph G = (V,E) for a given
source node s ∈ G where the weights of the edges are defined by a cost function
c : E → R (cf. [6]). The single-source shortest-paths problem is to find a shortest
path (i.e., the path with the lowest cost) from the source node to all other
nodes in G. Since the Bellman-Ford algorithm supports negative edge costs,
there can be negative cost cycles in G implying that no shortest path can be
found. In this case, the Bellman-Ford algorithm indicates that no solution exists.
Otherwise, the algorithm provides a solution to the single-source shortest-paths
problem. In particular, the Bellman-Ford algorithm iterates |V | times over all
edges (v, w) ∈ E and for each node maintains the current lowest cost from the
source node as well as the associated predecessor node. In case that the current
solution can still be improved in the |V |-th iteration step, then G contains at least
one negative cost cycle. Since we are not only interested in learning whether a
negative cost cycle exists in G but also have to determine the edges of a negative
cost cycle, the Bellman-Ford algorithm has to be slightly adapted such that, e.g.,
the node for which the last cost update is obtained is used in combination with
the currently stored predecessors for all nodes to find the nodes of the negative
cost cycle that induced the last cost update.

Definition 9 (GNCC: Secure Negative Cost Cycle Computation). Let
P1, . . . , Pι hold the encrypted adjacency matrix �A� ∈ C

|V |×|V | of a directed
graph G = (V,E) and the encrypted cost matrix �C� ∈ C

|V |×|V | encoding the cost
function of G. The index of the source node s of G is publicly known. Then, gate
functionality GNCC is given by �N � ← GNCC((�A�, �C�, s)) where �N � ∈ C

|V |×|V |

is an encrypted adjacency matrix encoding a negative cost cycle in G.
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In [3], a secure protocol implementing the Bellman-Ford algorithm is pro-
posed. It is straight-forward to modify this protocol to additionally extract the
encrypted adjacency matrix �N � encoding a negative cost cycle in G. The com-
munication and round complexities of the adapted protocol from [3] are in O(ι4k)
and O(ι4) where k refers to the security parameter of the Paillier cryptosystem.

5 Protocol

In this section, we now present our novel privacy-preserving bartering protocol
for the detection of trade chains.

Definition 10 (FOTCD: Optimal Trade Chain Detection). Let P� hold
private input q(�) (∀� ∈ P). Then, protocol functionality FOTCD is given by
(T (1), . . . , T (ι)) ← FOTCD(q(1), . . . ,q(ι)) where T (�) := (T (�)

send, T
(�)
rec ) refers to the

indices of P�’s direct trade partners w.r.t. the detected trade chains derived from
a maximum flow f∗ with minimum cost in GEN ∼ Q := {q(1), . . . ,q(ι)} where f∗

is chosen uniformly at random from all maximum flows of minimum cost in GEN.

5.1 Intuition

Intuitively, our novel protocol πOTCD (securely implementing functionality
FOTCD in the semi-honest model) can be divided into four phases (see Algo-
rithm2). In the first phase, the parties compute the encrypted capacity
matrix �U� and the cost matrix �C�, encoding the capacity function and the cost
function of the private exchange network GEN = (V,E) ∼ Q. These matrices
are computed in an oblivious fashion such that no party learns any informa-
tion about the quote of another party. In the second phase, a maximum flow
f (not necessarily having minimum cost) is computed in an oblivious fashion
where the result is encoded in an encrypted matrix �F�. Based on �F�, the
encrypted capacity matrix of the residual network of GEN is computed in an
oblivious fashion. The third phase uses gate ρNCC (see Sect. 4) to iteratively find
a negative cost cycle (where in ρNCC the order of the edges to be processed
is chosen uniformly at random) in the current residual network of GEN in a
privacy-preserving fashion. In order to eliminate the negative cost cycles, the
flow as well as the residual capacities are updated by performing homomorphic
operations on �F� and �Uf �. At the end of the third phase, a maximum flow f∗

with minimum cost is encoded by means of �F� (which in turn represents an
optimal set of trade chains). In the fourth phase, the parties jointly extract the
identifiers T

(�)
send, T

(�)
rec of the trade partners of each party P� from �F� such that

a party only learns its own trade partners as prescribed by Definition 10. The
identifiers indicate that party P� has to give away some quantity of its offered
commodity to party P

T
(�)
send

(receiver) and is to receive some quantity of its desired
commodity from party P

T
(�)
rec

(sender). An identifier of value 0 is used to indicate

that a sender (resp., receiver) does not exist. For example, T
(�)
rec = 0 for a donor

party P� and T
(�′)
send = T

(�′)
rec = 0 for a party P�′ that is not part of a trade chain.
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The main challenge of designing a protocol that securely implements func-
tionality FOTCD is to keep the parties’ quotes Q (and with that the structure of
the resulting exchange network GEN ∼ Q) private. Consequently, it is necessary
to design a data oblivious protocol (i.e., the protocol flow is independent of the
parties private input) that provides individualized output (i.e., each party only
learns its local view of the detected trade chains). Algorithm 1 (see Sect. 3.2) is
not data oblivious because the while loop in the main phase terminates once
there are no further negative cost cycles. Furthermore, it cannot be used to pro-
vide individualized output as it is designed to operate on a public flow network.
By fixing the number of iterations for finding negative cost cycles to |ι|, we
ensure that all negative cost cycles are found while the protocol flow becomes
data oblivious. In case that there are no further negative cost cycles, our pro-
tocol obliviously operates on encrypted dummy cycles that do not influence the
already computed encrypted maximum flow of minimum cost. Finally, we adopt
a technique from [16] to extract the local view of each party from the com-
puted optimal set of trade chains represented by the encrypted maximum flow
of minimum cost.

5.2 Protocol Description

In the following, we present the details of protocol πOTCD. For convenience, we
associate the 2�-th and the (2� + 1)-th row (resp., column) of the encrypted
adjacency matrices used for the protocol specification of πOTCD with node d�

and node o� of GEN (∀� ∈ P), respectively. The first and the last row (resp.,
column) are associated with the source node s and the sink node t, respectively.

1. Exchange Network Construction Phase: The purpose of the first phase is to
compute the encrypted matrices �U�, �C� ∈ C

|V |×|V | with |V | = 2ι + 2 in an
oblivious fashion. These matrices encode the capacity and the cost function of
the exchange network GEN = (V,E) resulting from the parties’ private input
quotes Q (see Definition 5) and represent GEN ∼ Q.

First, P1 initializes the entries at position (2�, 2� + 1) of the matrices �U�
and �C� which encode the directed edge from nodes d� to o� representing the
demand and offer of party P� (∀� ∈ P). In particular, P1 sets these entries in �U�
to �1� and in �C� to �−1�. Additionally, the entries �C[2� + 1, 2�]� representing
the corresponding reverse edges from o� to d� (which are not in GEN but may
exist in the residual network) are set to �1� for later use. Furthermore, party P1

sets the capacity of the edges from each node o� (∀� ∈ P) to the sink node t
appropriately by �U [2� + 1, t]� := �1�. All other entries of �U� and �C� are set to
�0� before they are broadcasted by P1 (see Steps 1–6, Algorithm 2). Subsequently,
all parties obliviously determine the donor parties and update the capacities of
the edges between the source node and the demand nodes of the donor parties in
�U� to �1�. Finally, for all pairs of parties (P�, P�′) with �, �′ ∈ P it is obliviously
checked whether q(�) = (o(�), ·) and q(�′) = (·,d(�′)) are partially compatible. If
this is the case, the encrypted capacity matrix is obliviously updated by setting
�U [2� + 1, 2�′]� := �1� (see Steps 7–10, Algorithm 2).
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Algorithm 2. πOTCD for optimal trade chain detection.
Input : Quote q(�) of party P� (∀� ∈ P ).

Output: Tuple T (�) ∈ P ∪ {0} × P ∪ {0} for party P� (∀� ∈ P ).

Exchange Network Construction Phase

1 Party P1:
2 Initialize �U�, �C� of size |V |×|V |, |V |:=2ι+2 by �U [v, w]�=�C[v, w]�:=�0� ∀v, w∈V ;
3 foreach � ∈ P do
4 Set �U [2�, 2� + 1]� := �1� and �U [2� + 1, t]� := �1�;
5 Set �C[2�, 2� + 1]� := �−1� and �C[2� + 1, 2�]� := �1�;

6 Broadcast �U�, �C�;

7 foreach � ∈ P all parties do Jointly compute (�U [s, 2�]�) ← ρET((�c
(�)
d �, �λ�));

8 foreach �, �′ ∈ P (� 
= �′) all parties do

9 Jointly comp. (�cond1�)←ρET((�c(�)
o �, �c

(�′)
d �)),

(�cond′
1�)←ρGTE((�q(�)

o �, �q(�′)
d

�));

10 Jointly compute (�U [2� + 1, 2�′]�) ← ρMult((�cond1�, �cond′
1�));

Flow Initialization Phase
11 Party P1:
12 Initialize �F�, �Uf � of size |V | × |V | by �F [v, w]� = �Uf [v, w]� := �0� ∀v, w ∈ V ;
13 foreach � ∈ P do Set �F [s, 2�]� = �F [2�, 2� + 1]� = �F [2� + 1, t]� := �U [s, 2�]�;
14 Broadcast �F�, �Uf �;

15 foreach v, w ∈ V (v 
= w) all parties do
16 Jointly compute (�cond2�) ← ρET((�F [v, w]�, �1�));
17 Jointly compute (�Uf [v, w]�) ← ρMult((�cond2�, �U [v, w]� −h �F [v, w]�))

+h ρMult((�1� −h �cond2�, �Uf [v, w]�));
18 Jointly compute (�Uf [w, v]�) ← ρMult((�1� −h �cond2�, �Uf [w, v]�)) +h �cond2�;

Cycle Canceling Phase

19 Repeat ι many times
20 All parties jointly compute �N � ← ρNCC((�Uf �, �C�, t));
21 foreach v, w ∈ V (v 
= w) all parties do
22 Jointly compute (�cond3�) ← ρMult((�N [v, w]�, �U [v, w]�));

23 Jointly compute (�cond′
3�) ← ρMult((�N [v, w]�, �U [w, v]�));

24 Jointly compute (�F [v, w]�) ← ρMult((�cond3�, �F [v, w]� +h �1�))
+h ρMult((�1� −h �cond3�, �F [v, w]�));

25 Jointly compute (�F [w, v]�) ← ρMult((�cond′
3�, �F [w, v]� −h �1�))

+h ρMult((�1� −h �cond′
3�, �F [w, v]�));

26 foreach v, w ∈ V (v 
= w) all parties do
27 Jointly compute (�cond4�) ← ρET((�F [v, w]�, �1�));
28 Jointly compute (�Uf [v, w]�) ← ρMult((�cond4�, �U [v, w]� −h �F [v, w]�))

+h ρMult((�1� −h �cond4�, �Uf [v, w]�));
29 Jointly compute (�Uf [v, u]�) ← ρMult((�1� −h �cond4�, �Uf [v, u]�)) +h �cond4�;

Output Extraction Phase

30 foreach � ∈ P do
31 Party P�:

32 Compute �T
(�)
send� :=

ι∑
h

i=1

(i ×h �F [2�+1, 2i]�), �T (�)
rec � :=

ι∑
h

i=1

(i ×h �F [2i+1, 2�]�);

33 Broadcast �T
(�)
send�, �T (�)

rec �;

34 All parties jointly decrypt �T
(�)
send� and �T (�)

rec � s.t. only P� learns the result;

35 Party P� sets T (�) := (T
(�)
send, T (�)

rec );

36 Party P� outputs T (�);
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2. Flow Initialization Phase: The purpose of the second phase is to obliviously
compute a maximum flow f in GEN which is encoded by the encrypted matrix
�F� ∈ C

|V |×|V |. Based on �F�, the residual capacities of GEN are initialized and
encoded by the encrypted matrix �Uf � ∈ C

|V |×|V |. Instead of using a (privacy-
preserving) variant of the push-relabel algorithm for computing a maximum flow
in GEN(see Sect. 3.2), we follow a more efficient approach that exploits GEN’s
particular structure: A flow of value 1 is sent from source node s to each demand
node associated with a donor party. Then, the flow continues on to the corre-
sponding offer node of the donor party and from there on directly to the sink
node t. Note that such a flow is maximal since the maximum flow in GEN is upper
bounded by the number of donor parties. Furthermore, from the construction of
an exchange network (see Definition 5) it follows that there always is such a flow
in GEN. In protocol πOTCD, party P1 obliviously determines this flow locally by
setting �F [s, 2�]� = �F [2�, 2� + 1]� = �F [2� + 1, t]� := �U [s, 2�]� (∀� ∈ P). In
Steps 15–18 of Algorithm 2, the parties jointly compute the entries of �Uf � based
on �U� and �F�. More precisely, in Step 16 it is obliviously checked whether or
not there is a flow between two nodes v, w (∀v, w ∈ V , v �= w). Based on the
result, �Uf � is obliviously updated according to Definition 3 (see Steps 17–18).

3. Cycle Canceling Phase: In the conventional cycle canceling algorithm (see
Algorithm 1), the while loop in the main phase is executed until all negative cost
cycles are eliminated. In order to leak no information on the structure of the
private exchange network GEN, protocol πOTCD has to be data oblivious and
thus the number of searches for negative cost cycles has to correspond to the
upper bound of necessary searches (to eliminate all negative cost cycles) which
is equal to ι := |P| (see Theorem 1).

At the beginning of each iteration of the cycle canceling phase (see Step 20,
Algorithm 2) gate ρNCC is used to obliviously compute a negative cost cycle in the
residual network of GEN. In gate ρNCC, the order of the edges to be processed is
chosen uniformly at random. First, assume that such a cycle exists. This cycle is
encoded by the encrypted matrix �N � ∈ C

|V |×|V | which constitutes the output of
gate ρNCC. In Steps 21–25, for each edge (v, w) ∈ E that is part of the determined
negative cost cycle, the flow is obliviously updated in the following way: In
case that the edge under consideration is part of the exchange network, the
corresponding entry in �F [v, w]� is obliviously incremented by one (see Step 24,
Algorithm 2). Otherwise, the edge results from a residual flow over (w, v) and
thus entry �F [w, v]� is obliviously decreased by one (see Step 25, Algorithm 2).
Based on the updated flow �F�, in Steps 26–29, the residual capacities �Uf � are
updated analogously to the flow initialization phase.

In case that there is no (further) negative cost cycle before the end of the
ι-th iteration, then all entries of �N � correspond to a fresh encryption of 0 and
thus the privacy-preserving computations performed on �F� and �Uf � are just re-
randomizations of the existing encrypted entries. Consequently, in each iteration
of the cycle canceling phase it is kept private whether a (further) negative cost
cycle exists.
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4. Output Extraction Phase: At the end of the cycle canceling phase, the
encrypted matrix �F� encodes a maximum flow of minimum cost in GEN that in
turn represents an optimal set of trade chains for the participating parties. The
purpose of the output extraction phase is to extract the parties’ local views w.r.t.
the computed trade chains from �F�. In particular, party P� (∀� ∈ P) locally
computes the encryption of T

(�)
send (resp., T

(�)
rec ) as the homomorphic sum of the

�-th row (resp., �-th column) where each encrypted entry is multiplied with the
corresponding column (resp., row) index by using the homomorphic scalar mul-
tiplication operation of the underlying cryptosystem (see Step 32, Algorithm2).
Party P� broadcasts the resulting encrypted values �T

(�)
send� and �T

(�)
rec � which are

jointly decrypted by all parties in such a way that only P� learns the indices of
its direct trade partners.

Complexity. The complexity of the exchange network construction phase is dom-
inated by the O(ι2) calls of gates ρET, ρGTE, and ρMult (see Steps 8–10, Algo-
rithm2). The flow initialization phase has the same communication and round
complexity which results from the iteration over all pairs of nodes in GEN in
order to compute the residual capacities (see Steps 15–18). The ι executions of
gate ρNCC dominate the cycle canceling phase since the communication com-
plexity (resp., round complexity) of protocol ρNCC is in O(ι4k) (resp., O(ι4)).
Finally, the output extraction phase has a communication complexity (resp.,
round complexity) in O(ιk) (resp., in O(1)). The overall complexity of proto-
col πOTCD is dominated by the cycle canceling phase, i.e., the communication
complexity (resp., round complexity) of πOTCD is in O(ι5k) (resp., in O(ι5)).

Theorem 1. Let party P� hold private input q(�) (∀� ∈ P). Then, proto-
col πOTCD securely computes functionality FOTCD in the semi-honest model.

Proof. Correctness (sketch): In the following, we show that on input Q =
{q(1), . . . ,q(�)}, protocol πOTCD computes functionality FOTCD (see Defini-
tion 10).

In the exchange network construction phase, Q is obliviously transformed
into an exchange network GEN ∼ Q represented by the encrypted matrices �U�
and �C�. These matrices are constructed according to Definition 5 based on local
as well as distributed computations on the parties’ private input quotes.

In the flow initialization phase, an initial maximum flow (not necessarily with
minimum cost) from the source node through the donors’ demand and offer nodes
to the sink node is computed locally by party P1. This flow (with a flow value
equal to the number of donor parties) always exists due to the construction of an
exchange network (see Definition 5). This flow is also maximal since each edge
(with capacity 1) leaving the source node is incident to a donor’s demand node.
The capacity of the residual network of GEN w.r.t. to the initial flow is computed
according to Definition 3 (the cost function of the residual network was already
set during the exchange network construction phase).

The correctness of the cycle canceling phase can be reduced to the correct-
ness of Algorithm 1 and the correctness of gate ρNCC. This phase essentially
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implements Steps 5–10 of Algorithm 1 in a privacy-preserving fashion. After
determining a negative cost cycle in the current residual network of GEN by
using gate ρNCC, the flow along the negative cost cycle is augmented by 1 and
the residual network is updated accordingly. Unlike Algorithm1, the number of
iterations of the while loop (see Step 6, Algorithm1) in Algorithm 2 is fixed to
ι in order to achieve data obliviousness. First, it is important to note that ι
iterations are sufficient to eliminate all negative cost cycles because there are ι
edges with negative costs in GEN and in each iteration the flow along at least
one edge with negative cost is increased by 1. Furthermore, in case that there
are no negative cost cycles before the last iteration of the loop has terminated,
the encrypted adjacency matrix �N � (see Step 20, Algorithm 2) merely consists
of fresh encryptions of 0 and the maximum flow of minimum cost in GEN that
is already computed and encoded by �F� is not modified by the operations per-
formed in Steps 21–29 of Algorithm2.

The last phase of protocol πOTCD extracts each party’s trade partners from
�F� which encodes an optimal set of trade chains. In Step 32 of Algorithm2,
�T

(�)
send� (resp., �T

(�)
rec �) corresponds to the encryption of index 2i (resp., index

2i + 1) of the (2� + 1)-th row (resp., 2�-th column) where �F [2� + 1, 2i]� := �1�
(resp., �F [2i + 1, 2�]� := �1�). From the computation of �F� it follows that
T (�) = (T (�)

send, T
(�)
rec ) provides party P� (∀� ∈ P) with the indices of its trade

partners w.r.t. the computed optimal set of trade chains.
Privacy (sketch): In the following, we describe a simulator S which, given

q(i1), . . . ,q(iκ) and (T (i1)
send , T

(i1)
rec ), . . . , (T (iκ)

send , T
(iκ)
rec ), simulates the view of the cor-

rupted parties Pi1 , . . . , Piκ
(I := {i1, . . . , iκ} ⊂ P) that are controlled by a

semi-honest adversary.
The initialization of �U� and �C� which is computed and broadcasted by P1

in Steps 1–6 (Algorithm 2) can be computed in the same way by S. The follow-
ing steps of the exchange network construction phase are simulated by using
the subsimulators of ρET, ρGTE, and ρMult and by setting 〈�C[s, 2�]�〉 ←$ C,
〈�cond1�〉 ←$ C, 〈�cond′

1�〉 ←$ C, and 〈�C[2� + 1, 2�′]�〉 ←$ C. The flow initial-
ization phase can be simulated analogously to the first phase of protocol πOTCD.
In order to simulate the ι iterations of the cycle canceling phase, S uses the
subsimulator of ρNCC and sets 〈�N �〉 ←$ C

|V |×|V |. The remaining steps can
be simulated in the same way as described for the exchange network construc-
tion phase. The broadcasts sent in the output extraction phase (see Step 33,
Algorithm 2) are simulated as 〈�T (�)

send�〉 ←$ C and 〈�T (�)
rec �〉 ←$ C, respectively.

The output of the individual decryption operations is simulated based on the
corrupted parties’ protocol output which is given to S as input.

6 Related Work and Discussion

To the best of our knowledge, in the literature there are only privacy-preserving
multi-party protocols that allow the detection of trade cycles:

The authors of [15] propose a privacy-preserving bartering protocol (secure
in the semi-honest model) by means of which multiple parties can compute a
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set of trade cycles based on their private input quotes. In this protocol, the
parties’ private quotes are transformed into logical formulae which are evaluated
in an oblivious fashion. From participating in the protocol, a party only learns
its direct trade partners. The protocol in [15] has two interesting features: First,
it allows to put arbitrary restrictions on the lengths of the trade cycles to be
detected. Depending on the bartering context an upper bound on the trade
cycle lengths is essential in order to reduce the impact of a dropout and to
facilitate simultaneous exchanges preventing that a party gives away its offered
commodity but does not receive its desired commodity in return (cf. [1,4]).
Second, the protocol supports the integration of arbitrary selection strategies
for the detection of trade cycles (e.g., a strategy that maximizes the number
of parties that can trade their commodities). However, the complexity of the
protocol can grow exponentially in the number of participating parties which is
inevitable as soon as a restriction on the trade cycle length (greater than 2) is
supported because the underlying decision problem is NP-complete [1].

Another privacy-preserving bartering protocol for the detection of trade
cycles has been presented in [16]. This protocol follows a completely different
approach compared to the protocol from [15]. The parties’ private quotes are
transformed into a private weighted bipartite graph. At the core of the proto-
col is a privacy-preserving variant of the Hungarian algorithm which is used
to obliviously compute a maximum weight matching in the weighted bipartite
graph which encodes an optimal set of trade cycles maximizing the number of
parties that can trade. The communication and the round complexities of this
protocol are in O(ι6k) and O(ι6), respectively. A restriction of the trade cycle
lengths is not supported and thus the number of applications is limited.

In contrast to trade cycles, there is no need to restrict the length of trade
chains in order to prevent that a party gives away its offered commodity without
receiving its desired commodity: By conducting the trades in the order specified
by a trade chain (starting with the donor party), in the worst case the trade
chain is just aborted prematurely. Obviously, it is possible to reduce the problem
of the privacy-preserving detection of trade chains to the privacy-preserving
detection of trade cycles by setting the demand of a donor party to a dummy
entry that matches with all offers. Then, it is straight-forward to use the protocol
from [16] for the privacy-preserving detection of trade chains in time polynomial
in the number of participating parties. However, using our novel direct approach
(see Sect. 5) it is possible to reduce the communication complexity (resp., the
round complexity) from O(ι6k) (resp., O(ι6)) to O(ι5k) (resp., O(ι5)). Based on
these theoretical results, we expect that our novel protocol yields a significant
performance improvement over the existing (more general) protocols for the
privacy-preserving detection of trade chains.
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Abstract. Deep Learning has recently become very popular thanks to
major advances in cloud computing technology. However, pushing Deep
Learning computations to the cloud poses a risk to the privacy of the data
involved. Recent solutions propose to encrypt data with Fully Homo-
morphic Encryption (FHE) enabling the execution of operations over
encrypted data. Given the serious performance constraints of this tech-
nology, recent privacy preserving deep learning solutions aim at first
customizing the underlying neural network operations and further apply
encryption. While the main neural network layer investigated so far is
the activation layer, in this paper we study the Batch Normalization
(BN) layer: a modern layer that, by addressing internal covariance shift,
has been proved very effective in increasing the accuracy of Deep Neural
Networks. In order to be compatible with the use of FHE, we propose to
reformulate batch normalization which results in a moderate decrease on
the number of operations. Furthermore, we devise a re-parametrization
method that allows the absorption of batch normalization by previous
layers. We show that whenever these two methods are integrated during
the inference phase and executed over FHE-encrypted data, there is a
significant performance gain with no loss on accuracy. We also note that
this gain is valid both in the encrypted and unencrypted domains.

Keywords: Fully Homomorphic Encryption · Privacy
Deep Learning · Encryption · Cryptography · Neural networks
Batch normalization

1 Introduction

Deep Learning has recently become increasingly popular mainly due to
the unprecedented computing capabilities promised by the cloud computing
paradigm and the exponential increase on the size and amount of available
datasets. Problems such as speech recognition, image classification, object detec-
tion/recognition or prediction have experienced major breakthroughs thanks to
the use of highly complex Deep Neural Networks (DNN). DNN have two differ-
ent phases: training, where a DNN model is optimized sequentially using large

c© Springer Nature Switzerland AG 2018
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amounts of known and categorized data, and inference (often referred to as
classification), where the optimized, trained DNN model is employed to process
new data. While training poses an open challenge for academic and industrial
actors alike, it is when performing inference that the real worth of DNN unfolds,
generating substantial added value to organizations using them. It is common
nowadays to reuse highly optimized DNN models by slightly adjusting them to
fit particular needs (also known as transfer learning and fine tuning [16]), and
then deploying them.

With the advent of cloud computing, the expensive computations required
by DNN are being pushed to the cloud. Nevertheless, such an outsourcing poses
a risk to the privacy and security of the data involved. When targeting problems
where sensitive data is used, such as predicting illness using a database of patients
or forecasting the likelihood of an individual to commit fraud by inspecting his
bank movements, both the input data and the outcome require data protection.

Traditional data encryption solutions unfortunately fall short in ensuring the
confidentiality of the data and taking advantage of cloud computing capabilities,
i.e. to apply the DNN model over encrypted data. While Fully Homomorphic
Encryption (FHE) [5] allows any operation over encrypted inputs, obtaining
the corresponding result in the encrypted domain, it unfortunately suffers from
serious performance limitations. Some efficient versions of FHE, for instance
Leveled Homomorphic Encryption (LHE) [3], have been later proposed encom-
passing additions and a limited number of multiplications, that is, low-degree
polynomials.

The use of LHE for DNN inference purposes, immediately preserves the pri-
vacy of input and output data. However, given that LHE only supports polynomi-
als, implementing DNN with LHE imposes the linearization of all the DNN oper-
ations or their approximations into low-degree polynomial equivalents. While
some of the DNN operations such as fully connected and/or convolution lay-
ers are already linear, other functions, namely activation functions, pooling and
batch normalization require some transformation in order to support LHE.

Most of recent privacy preserving neural networks mainly focus on the lin-
earization and, in fact, on the approximation of the sigmoid activation function
[4,6,13]. This paper studies the batch normalization layer which mainly consists
of subtraction of the mean and division by the standard deviation for interme-
diate values in the network. As also observed by [4], this additional layer sig-
nificantly improves the accuracy of the model. In this paper, we study this new
layer and show how to adapt it in order to compute inference in LHE-encrypted
inputs. In short, we observe that computations in the layers preceding batch
normalization (namely fully connected or convolution) can be easily tweaked
while remaining linear, and therefore propose to reformulate their parameters
in a way that these layers mathematically absorb the BN layer. Thus, during
the inference phase, instead of relying on two separate layers, the DNN only
implements a single layer that inherently applies batch normalization.
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This paper is organized as follows: Sect. 2 covers background knowledge on
Fully Homomorphic Encryption, Deep Neural Networks, and Batch Normaliza-
tion (BN). Section 3 reviews related work on privacy preserving neural networks
and further describes the conflict between BN and LHE. Section 4 describes the
details of the proposed re-parametrization method that allow convolution or fully
connected layer to absorb the batch normalization and hence support the use of
LHE. Section 5 analyzes the impact of the proposed method on accuracy and per-
formance. Finally, Sect. 6 provides conclusive remarks, exploring the implications
of this technique and foreseeing future research based on it.

2 Background

Notation. In the rest of this paper we use the following notation:

• v: Scalar,
• v: Vector,
• V: Matrix or higher dimension tensor,
• 〈d〉: Data d (scalar/vector/matrix) encrypted using FHE.

2.1 Fully Homomorphic Encryption (FHE)

Homomorphic encryption is the main cryptographic building block for outsourc-
ing/delegating data and computation to an untrusted third party such as the
cloud server. By definition, an encryption scheme Ek is defined as being “homo-
morphic” with respect to a function f , if given some inputs (x1, x2, .., xn), one
can obtain f(x1, x2, ..., xn) by performing some operations over the individually
encrypted inputs (c1, c2, .., cn) and decrypting the resulting value. While initial
homomorphic encryption schemes named as partially homomorphic encryption
schemes were supporting only additions [15] or multiplications [17], in 2009, Gen-
try introduced the first fully homomorphic encryption scheme (FHE) [5] which
allows the execution of any arbitrary function over encrypted inputs. Unfortu-
nately, this initial scheme and some of its subsequent improvements suffer from
poor computation efficiency and prohibitive growth of ciphertext size. There-
fore, researchers investigate leveled homomorphic encryption (LHE) solutions
[3] that can handle polynomials over encrypted inputs. The encryption opera-
tion includes some noise in the encrypted output, which grows when performing
some computations. Performance-wise, LHE slows down computations in a fac-
tor of 1000 or more. More concretely, while addition is rather fast and does not
increase the noise meaningfully, multiplication is slow and it increases the noise
considerably [7]. There is a limit on how many multiplications can be performed
over the encrypted data due to high noise. Above this limit decryption of the
ciphertext becomes impossible. A bootstrapping procedure can be used to con-
trol the noise growth and hence support higher degree polynomials. In that case,
the encryption scheme becomes fully homomorphic. The bootstrapping proce-
dure unfortunately remains very costly in terms of computation. LHE schemes
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which do not involve any bootstrapping operation but handle polynomials only,
remain much more efficient. To sum up, the two main requirements for LHE in
privacy preserving Deep Neural Networks are transforming all operations
into polynomials and avoiding as many multiplications as possible while
keeping high accuracy. The two popular libraries that implement leveled homo-
morphic encryption are “SEAL”1 and “HELib”2, which support additions and
multiplications over encrypted operands (〈a � b〉 = 〈a〉 � 〈b〉) and unencrypted
operands (〈a � b〉 = 〈a〉 � b).

2.2 Deep Neural Networks (DNN)

DNN are a particular type of machine learning techniques, where sequential
transformations called layers are applied to the input. Neural Networks fall into
the category of supervised learning, where the data used to train the model is
labeled: if the neural network is being trained to recognize handwritten digits
(e.g.: MNIST dataset3), then it requires the dataset with images containing the
handwriting samples and the corresponding real value (from 0 to 9). Modern
DNN are composed of several kinds of layers:

– Fully Connected (FC) is the classical layer present in legacy Neural Net-
works [2]. Also known as Dense layer, it consists of a vector to vector trans-
formation, where the input x is multiplied by a matrix W of weights and
subtracted a vector of biases b. Conventionally, each value in input and out-
put vectors is denominated as neuron. The FC layer is expressed as:

yFC ≡ FC(x) = x ∗ W − b (1)

– Convolutional Layer (Conv) applies spatial convolution to a matrix X
(Fig. 1), multiplying the values of a filter W to contiguous sub-regions in X
and then adding a bias B to the result. By convention, all values in B are the
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Fig. 1. Spatial convolution in conv layer

1 https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-
library.

2 https://github.com/shaih/HElib.
3 http://yann.lecun.com/exdb/mnist/.
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same. The spacing between sub-regions is named strides (s), and the border
appended to X in order to maintain the same size between X and Y is defined
as padding (p). The Conv layer is formulated as:

YConv ≡ Convs,p(X) = X ⊕ W + B (2)

Although the process of applying the filter to sub-regions is iterative and
slow, by appropriately vectorizing both the input X and the filter W, as well
as replicating the latter one, spatial convolution can be expressed as a matrix
multiplication (similar to FC layer). Alternatively, applying FFT to the whole
layer turns convolution into a multiplication.

– Activation Function is a mathematical function applied to individual val-
ues of a tensor, therefore it is easily parallelizable. It is generally non-linear,
constituting the main non-linearity of Deep Neural Networks: this allows DNN
to solve non-linear problems. Activation functions are located after FC and
Convolutional layers. The most common variants are sigmoid σ, hyperbolic
tangent tanh and Rectifier Linear Unit ReLU (see Fig. 2).

– Pooling layer (Pool) computes a reduction function over sub-regions of
the input image X, thus reducing its size while maintaining the number of
dimensions. Most typical reduction functions are max and average.

– Batch Normalization (BN). Due to its relative importance for this paper,
we will dive deep in its understanding in the next subsection.

Fig. 2. Common activation functions around their non-linearity at x = 0

2.3 Batch Normalization (BN)

Batch Normalization [11] is a layer that is trained over batches of input data. The
BN layer reduces internal covariance shift by ‘normalizing’ each data point with
respect to the batch B: subtracting mean of the batch and dividing by standard
deviation of the batch. It is generally applied before activation functions, since
it packs the values in a small interval around x = 0, obtaining a distribution



394 A. Ibarrondo and M. Önen

that makes smarter use of their non-linearities. This prevents the model training
from getting stuck in saturated modes, also helping to handle gradient explosion.
During the training phase, a BN is computed using the following operations over
each batch B of size m and each training step k:

Input →B = {x0, x1, ..., xm}

μB ← 1
m

i=1∑

m

xi

σ2
B ← 1

m

i=1∑

m

(xi − μB)2

x̂i ← xi − μB√
σ2
B + ε

yi ← γx̂i + β ≡ BNγ,β(xi)
Output →{y0, y1, ..., ym}

(3)

In a Batch Normalization layer there are two trainable parameters γ and β,
optimized using backpropagation. β is a shifting parameter, while γ is a scaling
parameter. Mean μB and variance σ2

B of each batch are calculated and stored.
To avoid zero division, BN also includes a very small constant ε ≈ 10−9.

Once the network has been trained, “the values of the mean and variance
are fixed during inference” (see [11] p. 4). This is accomplished computing the
unbiased estimators for μB and σ2

B across all N batches B of size m:

E(x) ≡ μT =
1
N

N∑

k=1

μBk Var(x) ≡ σ2
T =

m

m − 1
1
N

N∑

k=1

σ2
Bk

(4)

This allows inference to be performed with static parameters: no mean or
variance is calculated on this phase. The BN layer during inference uses μT and
σ2

T to perform the scalar transformation:

yBN ≡ BNγ,β,μT ,σ2
T
(x) = γ ∗ x − μT√

σ2
T + ε

+ β (5)

In practice, BN has become part of de-facto standard architectures such as
ResNet [9], and its contribution to accuracy improvement is more than estab-
lished in the Deep Learning community.

3 Problem Statement

3.1 Encrypting Deep Neural Networks

As mentioned in Sect. 1, our goal is to protect data when performing inference
using DNN. Indeed, the cloud who performs the inference operation, is con-
sidered as an honest-but-curious adversary. Hence data needs to be encrypted
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Applying FHE to encrypt data during inference phase leads to executing all
operations inside each layer over encrypted data. Regarding their compatibility
with LHE, DNN layers can be regrouped into two categories:

– Linear layers: their internal operations are intrinsically linear/polynomial.
FC and Conv layers fall within this category. Encrypting these layers using
LHE is completely straightforward:

〈yFC〉 ≡ 〈FC(x)〉 = 〈x ∗ W − b〉 = 〈x〉 ∗ 〈W〉 − 〈b〉
〈YConv〉 ≡ 〈Conv(X)〉 = 〈X ⊕ W − B〉 = 〈X〉 ⊕ 〈W〉 − 〈B〉 (6)

– Non-linear layers: Activation functions, pooling and Batch Normalization
are non-linear: They include non-polynomial functions/operations. In order
to be compatible with LHE, activation functions have been subject to many
previous research papers (see Sect. 3.2) which use techniques to approximate
them such as Taylor or Chebyshev polynomials. Furthermore, in [6], pooling
layers were proven to have decent approximations when substituting max and
mean functions by scaled mean. On the other hand, batch normalization (non-
linear due to division and square root) has not yet been studied to become
compatible with LHE. Authors in [4] mention this layer without giving further
information on how to adapt it to the encrypted domain.

3.2 Related Work

Existing solutions that ensure data privacy for neural networks usually are
based on either homomoprhic encryption [4,6] or secure two-party computa-
tion [13,14]. Early solutions such as the one in [1] leave the server with the
execution of the linear operations over encrypted data only and require the data
owner to locally perform the non-linear operations over intermediary decrypted
data. More recent solutions apply approximation of the non-linear functions (the
activation functions, like sigmoid or hyperbolic tangent) with low-degree poly-
nomials over which homomorphic encryption can be performed more efficiently.
Initially, Gilad-Bachrach et al. [6] proposed CryptoNets, a convolutional NN for
data encrypted with LHE and suggest to approximate the activation function
with x2 and the max pooling function with mean pooling. This inherently causes
some loss in terms of inference accuracy. Later on, solutions such as [4] mainly
focused on the improvement of this accuracy. On the other hand, [13,14] define
a two-server model whereby the data owners distribute the shares of their data
among two non-colluding servers that further perform classification on the joint
(but private) data using secure two-party computation.

Among LHE solutions approximating activation functions, Chabanne et al.
[4] attempt to improve the accuracy of the inference model by introducing a
batch normalization layer before activation functions, similarly to our work.
Unfortunately, the paper does not give any detail on the integration of this
function when combined with LHE. Our proposed solution not only makes use
of BN to improve the accuracy of the model but also integrates the underlying
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BN operations within FC or Conv in order to have linear operations only and
easily support FHE. Hence, BN is not considered as a separate layer, and we
show that the number of operations is noticeably reduced. Furthermore, this new
solution does not have any impact on the accuracy of the model and increases
the performance of the inference phase (see Sect. 5, for more details).

3.3 BN vs. LHE: How to Address Conflicting Requirements

The targeted problem is how to preserve privacy of data (input and output)
when performing inference in Deep Neural Networks. In a context where Deep
Learning is being pushed to the cloud, we consider a scenario where a data
owner initially gets his hands on a trained DNN model, either by training it
himself (be it from scratch, be it from applying transfer learning [16]) or by
obtaining an already trained model. Benefiting from cost savings, ubiquity and
high availability, this DNN model is then outsourced to the cloud to run the
inference phase. In order to ensure data privacy against the cloud while enabling
DNN inference calculation, data encryption becomes mandatory.

In our solution, as in previous solutions, this is achieved by applying LHE
thanks to its homomorphic nature. Notwithstanding that most layers (FC, Conv,
pooling and activation functions) have already been implemented in the LHE
encrypted domain, batch normalization remains outside the scope of LHE-
encrypted DNNs. The operations included in batch normalization include a divi-
sion and a square root, which cannot be directly implemented with LHE. In order
to linearize it, given that Taylor or other polynomial approximations are clearly
inefficient in the sense that they require several multiplications while yielding
poor approximations, we suggest a different approach: considering BN during
inference as a linear transformation, we first reformulate their parameters, and
then combine it with preceding linear layers (Fully Connected or Convolutional),
expressing the concatenated layers as a single layer.

We hereafter propose a re-parametrization trick for BN which allows batch
normalization layers to be included in privacy preserving DNN while remaining
linear and thus compatible with the use of LHE.

4 Solution

4.1 A First Approach: Reformulating Batch Normalization

Firstly, provided that σ2
T is the only parameter in BN layers that is operating

with functions other than sums and multiplications, we propose a small refor-
mulation inside BN layers for all the operations to be compliant with the two
requirements identified in Sect. 2, for the compatibility with LHE. We start with
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encrypting the formula in Eq. 5 which corresponds to the BN layer and we obtain
the following equation:

〈yBN 〉 ≡
〈
BNγ,β,μT ,σ2

T
(x)

〉
=

〈
γ ∗ x − μT√

σ2
T + ε

+ β

〉

= 〈γ〉 ∗ (〈x〉 − 〈μT 〉) ∗
〈

1√
σ2

T + ε

〉
+ 〈β〉

(7)

We cannot easily compute the square root and the division in the LHE
encrypted domain. However, we realize that we may not need to compute them
and instead, we take σ2

T from the freshly trained DNN and compute the inverse of
its square root over plaintext values. This newly transformed parameter denoted
by φ is stored to be used in encrypted inference. We can take advantage of:

φ ≡ 1√
σ2

T + ε
→ 〈yBN ′〉 ≡ 〈BNγ,β,μT ,φ(x)〉 = 〈γ〉 ∗ (〈x〉 − 〈μT 〉) ∗ 〈φ〉 + 〈β〉 (8)

We can push this reformulation even further, and minimize the number of
operations performed inside an encrypted BN layer by grouping parameters:

υ ≡ γ√
σ2
T+ε

τ ≡ β − μT ∗γ√
σ2
T+ε

⎫
⎬

⎭ → 〈yBN ′′〉 ≡ 〈BNυ,τ (x)〉 = 〈υ〉 ∗ 〈x〉 + 〈τ〉 (9)

This way, the batch normalization layer can be computed in the LHE-
encrypted domain by performing only one addition and one multiplication.

4.2 The Re-parametrization Trick: Absorbing BN Layer

Despite the reformulation of BN detailed in the previous section, BN still involves
some computations. We will now show how to make these computations com-
pletely disappear while keeping the effect of BN. We start with a trained DNN
with BN layers. Our only requirement for the DNN is to have a linear layer
(FC or Conv) right before the BN layers, which is indeed the standard case for
existing DNN architectures [8,10]. The idea is to absorb the BN operations using
the parameters from FC and Conv (W and b). With this setup, we can merge
FC/Conv Eqs. (1 and 2) with Batch Normalization (Eq. 5). For the FC layer we
would obtain:

yBN&FC ≡ BN(FC(x)) = BN(W ∗ x − b)

= γ ∗
(

(W ∗ x − b) − μT√
σ2

T + ε

)
+ β

(10)
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By rearranging all the parameters we obtain:

yBN&FC = γ ∗
(

(W ∗ x) − (b + μT )√
σ2

T + ε

)
+ β

= γ ∗
(

W ∗ x√
σ2

T + ε
− b + μT√

σ2
T + ε

)
+ β

=
γ ∗ W ∗ x√

σ2
T + ε

− γ ∗ (b + μT )√
σ2

T + ε
+ β

=

(
W ∗ γ√
σ2

T + ε

)
∗ x −

(
γ ∗ (b + μT )√

σ2
T + ε

− β

)

(11)

We now define the reparametrized weights and biases for the FC layer as
follows:

Wnew = W ∗ γ√
σ2

T + ε
bnew = (b + μT ) ∗ γ√

σ2
T + ε

− β (12)

With these new weights and biases we have absorbed the BN layer into the
preceding FC layer, while still performing mathematically equivalent operations:

yBN&FC ≡ BN(FC(x)) ≡ FCnew = Wnew ∗ x − bnew (13)

Since spatial convolution is also linear, the same reparametrization trick can be
applied to Conv layers followed by a BN layer:

YBN&Conv ≡ BN(Conv(X)) ≡ Convnew = Wnew ⊕ X − Bnew (14)

The re-parametrization trick allows us to completely absorb BN layers, whereas
reformulation of BN layers only reduced the number of operations. Applying
LHE to Eqs. 13 and 14 is just as straightforward as it was in Eq. 6.

4.3 Integration with Neural Networks

In this section, we finally study how the re-parametrization trick is integrated
within the actual neural network. As an overview, the training phase of the DNN
remains unmodified, allowing all previous DNN to be trained as they were before,
as well as obtaining already trained networks. Before using the trained DNN to
perform inference over encrypted data, we apply both the reparametrization
and the reformulation transformations. First of all, the blocks of [FC → BN ]
and [Conv → BN ] present in the DNN are reparametrized into FCnew and
Convnew respectively using Eq. 12. Secondly, for the remaining BN layers that
are not preceded by a FC/Conv layer, we reformulate them employing Eq. 9:
BNγ,β,μT ,φ(x) → BNυ,τ (x).
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Whilst the NN is transformed, the overall mathematical computations remain
equivalent, thus having theoretically zero impact on the accuracy of the DNN
while conserving the properties of BN layers. At this point we could perform
inference over LHE-encrypted data at the untrusted (honest-but-curious) cloud,
preserving privacy of data. The process is depicted in Fig. 3. Note that, when
deploying the model to the cloud, thanks to the available operations in the
LHE domain, we can choose to either encrypt the model (degrading perfor-
mance), or leave it as plaintext (unsafe but substantially faster for com-
putations). It should be noted that existing privacy preserving neural network
solutions consider that the cloud knows the model (the model is not encrypted)
but cannot discover the inputs and outputs of the inference phase (the data is
encrypted).

Fig. 3. Encrypted DNN inference with BN reformulation & reparametrization

5 Evaluation

5.1 Impact on Accuracy

In this section we test the zero impact of re-parametrization and reformulation on
the overall accuracy of the DNN during inference. In order to test the veracity
of this statement, we have implemented two unencrypted DNNs in Tensorflow4,
one with more than 15M parameters (Fig. 4, top) and one with less than 200k
parameters (Fig. 4, bottom). Both DNN possess one BN layer that could fuse
with a Conv layer and one BN that could fuse with a FC layer. In both cases we
use ReLU as activation function. Details can be found in Appendix I.
4 Code available in https://github.com/ibarrond/reparametrization-BN.git.

https://github.com/ibarrond/reparametrization-BN.git
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Fig. 4. DNNs with Batch Normalization after Conv and FC layers used for testing.

Using the MNIST dataset [12], we briefly trained each network (Adam opti-
mizer, 5 epochs with learning rate 0.01 and 5 epochs with learning rate 0.001),
then performing inference to obtain 99.02% and 98.80% of test accuracy respec-
tively. Afterwards, we applied the re-parametrization trick on [Conv +BN ] and
[FC + BN ] blocks, and re-evaluated the test accuracy. We observed that we
indeed obtained exactly the same results for both networks. Finally, we applied
the proposed reformulation technique to both BN layers and performed the test
again, obtaining the exact same accuracy scores. This validates our approach.

5.2 Performance Analysis

This section analyzes the performance of the new solution, revealing noticeable
computational savings with respect to a NN with standard BN.

Case with No Privacy. Empirically, we propose to measure the time taken to
perform inference over 10.000 images for the two networks described in Sect. 5.1.
We then compare it with the time that the re-parametrized and reformulated ver-
sions take. Table 1 shows the total inference time (in ms) for 10,000 images aver-
aged over 30 executions and in two different settings (with a CPU and a GPU).

As shown in this table, we can conclude that the proposed solution signifi-
cantly improves the performance of the inference within the plaintext domain.
Indeed, in average, reformulation of BN layers yields a 9% performance boost,
while re-parametrization with FC/Conv layers shows a 21% performance boost.
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Table 1. Performance of DNN with reparametrization and reformulation without any
privacy protection

Platform CPU Intel i7 6700HQ GPU Tesla V100
Network 15M par. 200K par. 15M par. 200K par

Original 48.1 ms 34.6 ms 11 ms 10.2 ms
Reformulated 43.2 ms 31.8 ms 10.1 ms 9.4 ms
Reparametrized 38.0 ms 27.2 ms 8.6 ms 7.93 ms

Case Where Data Is Encrypted with LHE. In order to evaluate the cost of
integrating privacy, we have followed an incremental approach. We have first con-
sidered that the model remains in plaintext and the data is encrypted only. Fur-
ther on, we have encrypted the model as well and applied it over the encrypted
data. We have used a small DNN and have implemented it with naive algorithms
each of the DNN layers using the LHE open source library HElib [7], an imple-
mentation of the BGV encryption scheme developed purely over CPU. Similarly
to existing solutions, we have used Taylor polynomials of degree 2 to approximate
ReLU activation functions around x = 0. We have performed inference over one
single image employing the trained 200k model. The results, shown in Table 2,
testify the large overhead present when dealing with LHE operations. Nonethe-
less, the performance gain observed in plaintext is still perceivable, although
it has decreased in magnitude: using re-parametrization, we observe a 14% of
increased performance with the unencrypted/plaintext model and a 12% with
the encrypted DNN model. This is due to the fact that we’re already avoiding
calculation of square root and division by applying the φ reformulation. Addi-
tionally, we also notice the x7 drop in performance when encrypting the DNN
model.

Table 2. Performance of DNN (LHE-encrypted or not) for inference over a single
encrypted image

DNN model 200K unencrypted model 200K LHE-encrypted model

Original (φ) 6.48 min 47.4 min
Reformulated (τ, υ) 6.16 min 45.2 min
Re-parametrized 5.54 min 41.7 min
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6 Conclusion

This paper has studied the problem of privacy preserving Deep Neural Networks
when the inference phase is outsourced to the cloud and is executed over data
encrypted with LHE. While existing work mostly focus on the compatibility
of activation functions with FHE/LHE, we investigated the batch normaliza-
tion layer and propose a new solution that is suitable to the use of LHE. We
hence propose to reformulate the BN layer, linearize the operations and further
integrate within the convolution or fully connected layers. The proposed tech-
niques show a performance gain of 21% over plaintext data, and 12%–14% over
encrypted data using an encrypted - unencrypted model respectively; all of this
without any drop in the model accuracy.

Thanks to the proposed solution, complex modern DNN models that make
heavy use of Batch Normalization are now compatible with FHE. This allows
the execution of inference models over encrypted data by an untrusted powerful
server such as a cloud service provider. Furthermore, even in the unencrypted
domain, the proposed re-parametrization shows significant performance results
and can be useful if data cannot be outsourced and therefore remain in plaintext.
Thus, the novelty and the performance gains of the proposed solution holds both
on the encrypted and on the plaintext domain.

As future work, we plan to implement reformulation and reparametriza-
tion tricks using well known Deep Learning frameworks such as Tensorflow or
PyTorch, automatizing its computation in order to apply it more efficiently.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable feedback and comments. This work was partly supported by the PAPAYA
project funded by the European Union’s Horizon 2020 Research and Innovation Pro-
gramme, under Grant Agreement no. 786767.

Appendix I: DNN architectures used for Sect. 5

– Input: 28× 28 greyscale images.
– Output: [0–9] Single digit with the class the image belongs to.
– Layers in order:

See Table 3.
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Table 3. DNN architectures used for performance study

DNN architecture 15 M 200k

Conv1 20 filters 5× 5, stride 1 5 filters 5× 5, stride 1
BN 20(β, γ, μ, σ2) 5 (β, γ, μ, σ2)
ReLU No parameters No parameters
Mean Pool - stride 2× 2
FC1 15684*1000 neurons 980*100 neurons
BN1 1000(β, γ, μ, σ2) 100 (β, γ, μ, σ2)
ReLU No parameters No parameters
FC2 1000*10 neurons 100*10 neurons
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Abstract. In this work we present an algorithm for k-anonymization
of datasets that are changing over time. It is intended for preventing
identity disclosure in dynamic datasets via microaggregation. It sup-
ports adding, deleting and updating records in a database, while keeping
k-anonymity on each release.

We carry out experiments on database anonymization. We expected
that the additional constraints for k-anonymization of dynamic databases
would entail a larger information loss, however it stays close to MDAV’s
information loss for static databases.

Finally, we carry out a proof of concept experiment with directed
degree sequence anonymization, in which the removal or addition of
records, implies the modification of other records.

Keywords: Big data privacy · k-anonymity · Graph anonymization
Geo-spatial data anonymization · Microaggregation
Dynamic data privacy

1 Introduction

Dynamic publication of databases and combining data from diverse sources
increases privacy risks, any privacy model must satisfy requirements such as link-
ability, composability and computability to be useful for big data anonymization
[1,2]. Composability means that the privacy guarantees of the model are pre-
served (possibly to a limited extent) after repeated independent application of
the privacy model. In [3], it was proved that linking two k-anonymous datasets
does not imply that the obtained data set is k-anonymous for any k > 1. That
is, k-anonymity in general does not guarantees composability.

However, in this paper we show that composability may be achieved con-
sidering that the data is managed by only one central holder as in the case of
a dynamic database. Thus, providing a general algorithm for k-anonymity of
dynamic data.

c© The Author(s) 2018
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The concept of k-anonymity was defined in [4] and [5]. This model assures
that any individual in the dataset is indistinguishable from at least other k − 1
individuals in terms of quasi-identifier attributes values (QI).

The definition of k-anonymity for graphs can be restated considering that
the attacker knows a specific property P of a graph, see [6]. In this case, the
structural property P of the graph is the equivalent to a QI in a database. An
example of this property P is the degree of the nodes [7].

Graph modifications to guarantee k-degree anonymity have additional
restrictions, for example, the k-anonymous degree sequences must be graphic,
i.e., they must correspond to the sequence of degrees of a graph. Some theoret-
ical conditions for degree sequences to be graphic and applications to k-degree
anonymization and edge randomization can be found in [8,9].

In this paper we provide a general algorithm based on microaggregation,
considering that the tuples of dynamic databases are represented as points in
metric spaces, and the databases are updated and published several times. We
present examples of the application of our algorithm for databases and degree
sequences of directed graphs.

1.1 Related Literature

There are several papers that provide k-anonymity for multiple publications of
databases by means of generalizations. In [10], k-anonymity is guaranteed on
incremental updates. The authors use generalization as the method for aggre-
gation of the records and reduce the generalization granularity as incremental
updates arrive. Their approach guarantees the k-anonymity on each release, and
also on the inferred table using multiple releases, by full-domain generalization,
using multidimensional partitioning with Mondrian algorithm [11].

Sequential anonymization of a given release T1 in the presence of a pre-
vious release T2 is considered in [12]. So, the authors consider the case when
releasing new attributes associated to same set of individuals. They use gener-
alization/specialization to guarantee (X,Y )-anonymity on sequential releases by
leveraging the fact that generalizing join attributes makes more matches, cf. [12].

Shmueli et al. [13] extended the framework that was considered in [12], con-
sidering also k-linkability and k-diversity, and achieve them by local recoding
(in contrast to Wang et al. global recoding). They expressed the constraints for
k-anonymization in sequential release with continuous data publishing scenario,
as an R-partite graph, where R is the number of releases. Then, to compute
properly the level of linkability or diversity, it is needed to identify all the
R-cliques that are part of a perfect matching in the R-partite graph. This was
shown to be NP-hard for R > 2 in [13].

These approaches were improved in [14] with the guarantee that an adversary
cannot link any quasi-identifier tuple with any sensitive value with probability
greater than 1/�. Their application scenario is of sequential release publishing
in which the set of tuples is fixed, while the set of attributes changes from one
release to another.
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Byun et al. [15] consider record insertions and provide guarantees of �-diversity,
by delayed publishing and maintaining published histories on dynamic databases.

The first study to address both record insertions and deletions in data re-
publication, is proposed in [16]. It proposes a new privacy notion called m-
invariance, if a record r has been published in subsequent releases R1, . . . , Ri,
then all QI groups containing r must have the same set of sensitive values. They
add “counterfeit tuples” and use generalization for anonymization. Moreover,
Bu et al. [17] show that the same guarantee of m-invariance, may be used for
attribute disclosure.

The problem of k-anonymization of data streams was studied in [18], in which
a data stream is modeled as an infinite append-only sequence of tuples with an
incremental order that stores also information about when the data have been
collected. In that case, the delay in which data is published is relevant, hence they
add a constraint that considers the maximum allowed time of a tuple staying in
memory before its output.

It is important to note that in all previous cases the method for anonymiza-
tion was based on generalization, while we will consider microaggregation, which
to our knowledge, has not been used before for k-anonymizing dynamic data,
except for k-anonymization of documents in [19]. Moreover, our method may be
used for additions, suppressions and updates.

2 Proposed Method

We represent by Dt the publication of database D at timestamp t.
To maintain the generality, we denote the elements of the database as pairs

(xj , t), in which xj represents the QIs of individual j at timestamp t. Thus, xj

are vectors in a metric space of QIs.
Our algorithm for dynamic anonymization (Algorithm 1) works as follows:
From database D we obtain a k-anonymous database D̃, by applying the

MDAV microaggregation method [20,21]. We obtain the groups C1, . . . , Cm with
k1, . . . , km elements (all ki ≥ k) and centroids c1, . . . , cm.

Now, each element x of the database D is represented by some ci with i ≤ m
in the anonymized database D̃. Since we are assuming that the space of QIs is
a metric space, then we can obtain the Voronoi tessellation of the set of points,
that is, we partition the space with respect to the points C = c1, . . . , cm as
follows: Pi = {x ∈ D : d(x, ci) ≤ d(x, cj) for all j ≤ m} therefore we obtain the
partition P = P1, . . . , Pm of the space D.

Starting from this partition, when modifying the database by adding a record
x in timestamp t, denoted as add(x, t), we calculate the centroid with minimum
distance to x, d(x, ci) ≤ d(x, cj), assign x to the corresponding set Pi, and update
the count ki to ki +1. If ki +1 equals 2k, then all the elements in Pi are used to
recalculate new cluster centroids c′

i and cm+1 to replace former centroid ci. Note
that, the other assignments of records in groups Pj �= Pi remain unchanged.

If a former element x ∈ D is removed on timestamp t, denoted remove(x, t)
= ∅, the count ki of the partition Pi that contained x is updated (ki = ki − 1),
whenever ki = 0 the centroid ci is removed.
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For updating an element at timestamp t, we are removing the original value
remove(x, t) and adding the updated value add(x, t). When making several
updates at the same time, the algorithm works in a similar way.

A simple example is depicted in Fig. 1. We consider k-anonymization of data
on two variables and k = 2. In this example, adding the green nodes allows us
to update the centers (red triangles) in the right partition. Note that the left
size center is not updated, otherwise this will give information about the newly
added point.
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Fig. 1. Improving utility by adding records

3 Empirical Evaluation

If an individual’s record belongs to multiple databases, even when it belongs to
k-anonymous groups on each of them, his anonymity may be reduced to a value
lower than k when the following property does not hold.

Property 1. In the case of multiple releases of the same database, if an indi-
vidual x is known to belong to a set S1 of k-elements on release t1 and is also
known to belong to a set S2 of k-elements on release t2, then x is known to belong
to a set of |S1 ∩S2| which may be less than |S1| and |S2|, unless S1 ⊂ S2 or vice
versa.

When we add records to a database, following our Dynamic algorithm we
guarantee that this property holds by assigning the new records to groups of at
least k records. Only when a set S1 has at least 2k elements, we can divide it
in sets S2, S3 ⊂ S1 without breaking Property 1. Hence, our Dynamic algorithm
maintains k-anonymity.

Deleting records may be more problematic because if a group has k records,
deleting one node and publishing the remaining would decrease the anonymity
set to k − 1, this is the reason of not deleting any node until the entire group of
k has been deleted in our approach.
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Algorithm 1. Algorithm for dynamic k-anonymity
Input: k-anonymous database D, centroids C = c1, . . . , cm, partitions

P = P1, . . . , Pm, counts K = k1, . . . , km, timestamp t, operation σ.
Output: k-anonymous database Dt, updated centroids Ct, and counts Kt

if σ = add((x, t), D) then
b = argminid(x, ci) (Add x to group Cb)
kb = kb + 1
if kb + 1 = 2k then

(P ′
b, Pm+1) = Apply MDAV to the points in Pb

C = C \ cb
C = C ∪ {c′

b, cm+1}
Pb = ∅

end

end
if σ = remove((x, t), D) then

b = argminid(x, ci) (assign b to buffer of removals Rb)
kb = kb − 1
if kb = 0 then

C = C \ cb
Rb = ∅

end

end
return (Dt, Ct, Kt, Pt)

For measuring the information loss, we use the average Euclidean distance
to the anonymized records:

IL(D, D̃) =
1
n

∑

1≤i≤n

d(xi, x̃i)

Here we are considering xi the original record, x̃i its corresponding
anonymized record, and d the Euclidean distance.

We apply our method to a database and a graph, to test it under two dif-
ferent assumptions, only adding records, or deleting and updating. Since there
is no other microaggregation algorithm for dynamic data, we must compare our
algorithm to MDAV that is designed for static data.

We use a subset of 4000 records from the census-income dataset from UCI
repository [22] which has 40 attributes. We choose these 4000 records such that
at least 5 of their 7 continuous attributes are different from 0. These 7 attributes
correspond to age, wage per hour, capital gains, capital losses, dividends from
stocks, number of persons that worked for employer and weeks worked in the
year.

We start with the first 2000 records, obtain a k-anonymous version of the
database and the centroids c1, . . . , cm. Then, we add the records one by one and
recalculate the information loss measure IL every time we add a record. In Fig. 2,
we plot dynamic k-anonymizations for k = 2, 5 and compare them to applying the
MDAV algorithm for the static dataset with 2000, 2250, 2500, . . . , 4000 records.
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Fig. 2. Comparison of MDAV and dynamic algorithms when adding or updating nodes
in a database and a graph

It is interesting to note that our Dynamic algorithm is not monotone since
the subdivision step happens only when 2k values have been gathered on the
same group, it increases the information loss locally until the subdivision, that
improves it, see Fig. 2.

Next, we apply our method to the degree sequence of the polblogs directed
network [23], which has 1490 nodes and 19090 edges, that represent political
blogs in the US. In this case, deleting a node implies that all its relations are
deleted, hence the degrees of its neighboring nodes are updated and consequently
their corresponding records. The degrees of the nodes are represented as points in
a 2-dimensional space where the coordinates represent the in-degree and the out-
degree, and it is this set of coordinates that we anonymize. We deleted iteratively
7 nodes, until deleting 700 and remaining with a graph with 790 nodes, and made
a comparison between MDAV and our algorithm for k = 5, see Fig. 2.

Note that the information loss is worse for Dynamic algorithm than for
MDAV as the updates may generate additional nodes. Using microaggrega-
tion for degree anonymization has additional subtleties, for example, not all
the degree sequences are graphic. More details and methods to obtain k-degree
anonymous directed graphs are explored in [24].

4 Conclusions

We defined a general dynamic k-anonymity algorithm, that uses microaggrega-
tion and guarantees k-anonymity in a database with additions, deletions and
updates of records. We compared our algorithm with the well-known MDAV
algorithm, and found out that MDAV performs slightly better, suggesting that
the restrictions of k-anonymity for dynamic databases, do not damage consider-
ably the information loss.

As future work, we will apply our dynamic k-anonymity algorithm for
anonymizing geolocated data and documents. Also, we would like to integrate
further constraints such as �-diversity or t-closeness to the algorithm.
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Abstract. In an anonymous invitation-based system, a user can join a
group by receiving invitations sent by current members, i.e., inviters, to
a server anonymously. This kind of system is suitable for social networks,
and a formal framework with the anonymity of inviters and the unforge-
ability of an invitation letter was proposed in DPM 2017. The main
concept of this previous system is elegant, but the formal security defini-
tions are insufficient and weak in a realistic application scenario. In this
paper, we revise formal security definitions as attacks representing a real-
istic scenario. In addition, we define a new aspect of the security wherein
an adversary maliciously generates an invitation letter, i.e., invitation
opacity, and the security for guaranteeing that an invitee with a valid
invitation letter can always join the system, i.e., invitation extractabil-
ity. A secure and useful construction can be expected by satisfying the
security definitions described above.

Keywords: Anonymous invitation-based system · Anonymity
Unforgeability · Opacity · Extractability · Formal definition
Social networks

1 Introduction

Backgrounds. An invitation-based system consists of a server, a group of mem-
bers, i.e., inviters, and a new member called invitee, who can join the system by
receiving invitations from a certain number of inviters. Invitation-based systems
provide many advantages; for example, a limited number of server resources can
cover an unlimited number of users and such systems can often resist registration
of fake users. Invitation-based systems have many historical examples, such as
Gmail and Google Wave, and have been discussed in some recent works [3–5],
but these do not consider the anonymity of users. To the best of our knowl-
edge, only the work of Boschrooyeh et al. [2] considered anonymity of users and
introduced an anonymous invitation-based system.

An anonymous invitation-based system mainly aims to preserve the privacy
of users. In general, when an invitee wants to join a system, he/she may ask an
invitation letter from a known current member of a system, e.g., friends or family.
However, in such scenario, the invitations may contain privacy risks that can leak
c© Springer Nature Switzerland AG 2018
J. Garcia-Alfaro et al. (Eds.): DPM 2018/CBT 2018, LNCS 11025, pp. 415–421, 2018.
https://doi.org/10.1007/978-3-030-00305-0_29
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affiliations and locations according to common features. To avoid this kind of
risks, Boschrooyeh et al. [2] formalized the security of an anonymous invitation-
based system and proposed a concrete construction called Inonymous. Their
main concept is elegant, but their security definitions are not defined well and
are far from realistic threats. Well-defined security definitions including realistic
threats are important because they can support in understanding the security
of our proposed protocol and of subsequent works.

In this paper, we reconsider the work of Boschrooyeh et al. and formal-
ize stronger security containing realistic attacks. We believe that our security
definitions can help create realistic and effective constructions of anonymous
invitation-based systems.

Contribution. In this paper, we formally define the security of an anonymous
invitation-based system that captures realistic threats by revisiting the secu-
rity of a previous anonymous invitation-based system. The previous definition
includes the anonymity of inviters, i.e., inviter anonymity, and the unforgeability
of invitation letters sent to a server, i.e., invitation unforgeability. In our defini-
tions, we give generation of secret information for each user and oracle access
for an adversary with respect to invitation letters. These definitions were not
captured in the previous system, and we are able to discuss the security even
against an adversary who obtains knowledge of invitation letters via our defini-
tions. Moreover, we define two new security definitions with respect to an invitee.
The first definition considers whether only an invitee can receive a valid invi-
tation letter, i.e., invitation opacity, allowing the discussion on security against
an adversary who maliciously generates invitation letters. The second definition
considers that an invitee can always join the system as long as he/she can obtain
a certain number of invitation letters, i.e., invitation extractability, allowing an
invitee to join the system correctly. This work is ongoing, and we leave the con-
struction of a concrete scheme following our definitions as an open problem and
future work.

2 Preliminaries

Threshold Secret Sharing. We recall a definition of a threshold secret shar-
ing scheme [6]. Let participants in this scheme be a set of n players. A set of
values (s1, · · · , sn) is said to be a (t, n)-threshold secret sharing of the value s if
the following conditions hold: any subset with k(< t) values does not reveal any
information about s; and there exists an efficient algorithm which takes any t
values from the set and outputs s.

Inonymous. We briefly recall the work of Boschrooyeh et al. [2] called Inony-
mous, which includes three entities, namely, a server, an invitee, and inviters.
When an invitee wants to join the system, he/she first requests a token for user
invitation from a server. The invitee then sends the token to inviters, who gen-
erate an invitation individually. If the invitee can receive invitations more than
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some threshold value specified in advance, then he/she can get an invitation let-
ter to join the system. Boschrooyeh et al. also defined the anonymity of inviters
and the unforgeability of an invitation letter. Our definitions are continuation
of the framework described above.

3 Anonymous Invitation-Based System

In this section, we formalize a syntax and new security notions. Boschrooyeh
et al. [2] did not provide a syntax although they proposed security definitions
of inviter anonymity and invitation unforgeability. Therefore, we first formally
define our syntax and then define new security definitions.

3.1 Our Syntax

An anonymous invitation-based system is defined as follows:

Setup Given a security parameter 1k as input, output a public parameter para.
ServerKeyGen Given para as input, output a pair (msk,mpk) of a master

secret key and a master public key.
UserKeyGen Given para and two security parameters (t, n) ∈ Z such that

t ≤ n as input, output shares si for (t, n)-secret sharing and its corresponding
user public key upk, where a secret recovered from at least t output shares si
is identical to a user secret key usk.

TokenGen Given para,msk,mpk, and an index j as input, output a token
token.

InKeyGen Given para as input, output a pair (isk, ipk) of an inviter secret
key and an inviter public key.

InvGen Given para, token, a share si for the ith user, mpk, upk, and ipk
as input, output an individual invitation Invi for the ith user or an error
symbol ⊥.

InvColl Given para, token,mpk, upk, isk, and t invitations {Invi}ni=1 as input,
output an invitation letter InvLet or an error symbol ⊥.

InvVer Given para, token,mpk, upk, and InvLet, output � or ⊥.

The correctness of the scheme is defined as follows: for any security param-
eters (1k, t, n), para ← Setup(1k), ({si}ni=1, upk) ← UserKeyGen(para),
token ← TokenGen(para,msk,mpk), and (isk, ipk) ← InKeyGen(para,
isk, ipk), we say the scheme is correct if the following equation holds:

� = InvVer

⎛
⎜⎝

para, token,mpk, upk,

InvColl

(
para, token,mpk, upk, isk

{InvGen (para, token, si,mpk, upk, ipk)}i∈U

)
⎞
⎟⎠ ,

where U is any subset of [1, n] such that |U | ≥ t.
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3.2 Inviter Anonymity

In Inonymous, inviter anonymity does not allow an adversary to access oracles
for invitations, i.e., invitation generation and invitation collection. The adver-
sary may obtain knowledge about inviters, and thus considering access to such
oracles is necessary. In addition, Inonymous’ inviter anonymity does not include
generation of shares while a pair of a master secret key and a master public
key is generated by an adversary. These information should be generated by a
challenger to prove the security clearly. We define a new security definition by
introducing these points. Our definition is a game-based definition between a
challenger C and an adversary A as follows:

Initial Phase Given security parameters 1k and (t, n) ∈ Z as input, a chal-
lenger C generates a pair (msk,mpk) of a master secret key and a master
public key via the setup algorithm, a pair of shares {si}ni=1 and a user pub-
lic key upk via the user key generation algorithm, and a pair of an inviter
secret key isk and an inviter public key ipk via the inviter key generation
algorithm. Then, C sets a set U of indexes such that |U | = n and initial-
izes a list Corr = ∅ for corrupted inviters. C then runs an adversary A with
(para,msk,mpk, upk, ipk) as input.

Corrupt Oracle A queries an index i ∈ U , and C sets Corr = Corr ∪ {i}. C
then returns si as a share for the inviter corresponding to i.

InvGen Oracle A generates a token token and chooses an index i ∈ U as an
inviter. C then generates an individual invitation invi for the inviter corre-
sponding to i.

InvColl Oracle A generates a token token and a set {invi}i∈U ′⊆U of indexes,
and then C returns an invitation letter InvLet.

Random Oracle A queries any input x to a hash function, and C returns the
response y of the hash function.

Challenge A generates token∗, a set {ini}i∈U∗⊂U where |U∗| = t − 1, and
chooses two indexes (u0, u1) ∈ U\(U∗ ∪Corr) as a challenge. Then, C chooses
b ∈ {0, 1} and generates an individual invitation invub

via the invitation
generation algorithm with token∗ and sub

. C then generates InvLet∗ via the
invitation collection algorithm with token∗, isk, and {invi}i∈U∗ ∪{invub

} and
returns InvLet∗.

Guess A outputs a guess b′ ∈ {0, 1} indicating which of the users u∗
0, u

∗
1 is used

as the inviter. A wins the game if b = b′ holds. Otherwise, C wins the game.

Definition 1. We say that an anonymous invitation-based system satisfies
(qr, qi, qc, qh, t, n, ε)-inviter anonymity if there is no probabilistic polynomial-time
adversary A who wins the game described above with a probability greater than
ε. Here, A can access the corrupt oracle at most qr times, the invitation gener-
ation oracle at most qi times, the invitation collection oracle at most qc times,
and a random oracle at most qh times, t is a threshold value, and n indicates
the number of users.
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3.3 Invitation Existential Unforgeability

We define invitation existential unforgeability below. In the invitation unforge-
ability of Inonymous, an adversary is not allowed to receive individual invita-
tions and verification results of invitation letters. Moreover, a token utilized by
an adversary for forging an invitation letter has to be designated in advance.
Our definition removes these restrictions for an adversary. Our definition is a
game-based definition between a challenger C and an adversary A as follows:

Initial Phase C generates (msk,mpk, {si}ni=1, upk, isk, ipk) and a set U of
indexes in a similar manner as in the game described in the previous section.
However, C owns two additional lists, T and IT , and initializes T = ∅ and
IT = ∅. C then runs A with (para,mpk, upk, isk, ipk) as input.

Corrupt Oracle This step is the same as in the game in the previous section.
TokenGen Oracle A chooses an index i ∈ U as user information, and C gen-

erates a token tokeni via the token generation algorithm with msk and i.
Then, C sets T = T ∪ {tokeni} and then returns tokeni.

InvGen Oracle A generates a token token and chooses an index i ∈ U . Then,
C sets IT = IT ∪{token} and generates an individual invitation invi via the
invitation generation algorithm with token and si. C then returns Invi for i.

Random Oracle This step is the same as in the game in the previous section.
Output A outputs a token token∗ and an invitation letter InvLet∗ as a

forgery. A wins the game if the following conditions hold: the invitation
verification algorithm with token∗ and InvLet∗ outputs �; token∗ ∈ T ,
|{token ∈ T |token = token∗}| + |Corr| ≤ t − 1; |Corr| ≤ t − 1; and
token∗ ∈ IT , |{token ∈ IT |token = token∗}| + |Corr| ≤ t − 1. Otherwise, C
wins the game.

Definition 2. We say that an anonymous invitation-based system satisfies
(qr, qt, qi, qh, t, n, ε)-invitation existential unforgeability if there is no probabilis-
tic polynomial-time adversary A who wins the game described above with a
probability greater than ε. Here, A can access the corrupt oracle at most qr
times, the token generation oracle at most qt times, the invitation generation
oracle at most qi times, and a random oracle at most qh times, t is a threshold
value, and n indicates the number of users.

3.4 Invitation Opacity

We define invitation opacity below. This definition guarantees that only an
invitee can generate an invitation letter from individual invitations gener-
ated by inviters. In this setting, an adversary can corrupt several inviters and
obtain tokens and invitation letters. In this definition, an adversary can be a
malicious inviter or an external attacker and its goal is to generate an invita-
tion letter for an invitee. Our definition is a game-based definition between a
challenger C and an adversary A as follows:
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Initial Phase C generates (msk,mpk, {si}ni=1, upk, isk, ipk), a set U of indexes,
and two lists, T and IT , similar to the game in the previous section. However,
C then runs A with (para,mpk, {si}ni=1, upk, ipk) as input.

TokenGen Oracle This step is the same as in the game in the previous section.
InvColl Oracle A generates a token token and a set {invi}i∈U ′⊆U of indexes,

and C generates an invitation letter InvLet. Then, C sets T = T ∪ {token}
and IT = IT ∪ {InvLet} and then returns InvLet.

Random Oracle This step is the same as in the game in the previous section.
Output A outputs a token token∗ and an invitation letter InvLet∗ as a forgery.

A wins the game if the following conditions hold: the invitation verification
algorithm with token∗ and InvLet∗ outputs �; token∗ 
∈ T ; and InvLet∗ 
∈
IT . Otherwise, C wins the game.

Definition 3. We say that an anonymous invitation-based system satisfies
(qt, qc, qh, t, n, ε)-invitation opacity if there is no probabilistic polynomial-time
adversary A who wins the game described above with a probability greater than
ε. Here, A can access the token generation oracle at most qt times, the invitation
collection oracle at most qc times, and a random oracle at most qh times, t is a
threshold value, and n indicates the number of users that generate an invitation
letter.

3.5 Invitation Extractability

We define invitation extractability below. This definition guarantees that the
invitation verification algorithm with an invitation letter always outputs � when
the invitation collection algorithm outputs the invitation letter. In this setting,
information that an adversary can obtain is the same as that in the game in
the previous section. However, the goal of the adversary is to output individual
invitations whose resultant invitation letter is rejected. Our definition is a game-
based definition between a challenger C and an adversary A as follows:

Initial Phase C generates (msk,mpk, {si}ni=1, upk, isk, ipk), a set U of indexes,
and a list T , but does not generate IT . Then, C runs A with
(para,mpk, {si}ni=1, upk, ipk) as input.

TokenGen Oracle This step is the same as in the game in the previous section.
InvColl Oracle This step is almost the same in the game in the previous

section, except that C sets only T = T ∪ {token}.
Random Oracle This step is the same as in the game in the previous section.
Output A outputs a token token∗ and a set {invi}i∈U∗⊆U of individual invita-

tions, where |U∗| ≥ t. A wins the game if the following conditions hold: the
invitation collection algorithm with token∗, {ini}i∈U∗⊆U , and upk outputs
InvLet∗; and the invitation verification algorithm with token∗ and InvLet∗

outputs ⊥. Otherwise, C wins the game.

Definition 4. We say that an anonymous invitation-based system satisfies
(qt, qc, qh, t, n, ε)-invitation extractability if there is no probabilistic polynomial-
time adversary A who wins the game described above with a probability greater
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than ε. Here, A can access the token generation oracle at most qt times, the
invitation collection oracle at most qc times, and a random oracle at most qh
times, t is a threshold value, and n indicates the number of users that generate
an invitation letter.

4 Conclusion

In this paper, we presented new security definitions of an anonymous invitation-
based system from four standpoints, namely, invitation anonymity, invitation
unforgeability, invitation opacity, and invitation extractability. The first two
definitions are presented in Inonymous [2] and we introduced oracle access related
to invitations. The last two definitions are for invitee’s security and have never
been discussed in previous work. We believe that a scheme that satisfies these
definitions can be used for many applications.

Although we did not discuss a specific construction in this paper, we consider
that a scheme may be constructed by combining verifiably encrypted signatures
(VES) [1] with Inonymous. VES are digital signatures wherein a signer encrypts
its signatures under a public key of a trusted third party to confirm that the
signer has truly signed a certain object. We consider that a trusted third party in
VES is similar to an invitee in our proposed system. We will construct a scheme
using such an approach and prove its security as future work.
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Abstract. Machine learning, data mining and statistics are used to ana-
lyze the data and to build models from them. Data privacy for big data
needs to find a compromise between data analysis and disclosure risk.
Privacy by design machine learning algorithms need to take into account
the space of models and the relationship between the data that generates
the models and the models themselves. In this paper we propose the use
of probabilistic metric spaces for comparing these models.

Keywords: Data privacy · Integral privacy
Probabilistic metric spaces

1 Introduction

Machine learning and statistics are powerful tools to extract knowledge from
data. Knowledge is expressed in terms of models or indices from the data. Never-
theless, as it is well known, these models and indices can compromise information
and can lead to disclosure [14].

Differential privacy [4] and integral privacy [13,16] are privacy models pro-
vided to avoid inferences from models and statistics. Other tools are to evaluate
the analysis of disclosure risk from models. For example, membership attacks
are about inferring the presence of a record in the database that was used to
generate a model.

Machine learning and statistics build models from data, which are analyzed
and compared by researchers and users, for example, with respect to their accu-
racy. Privacy by design machine learning algorithms [15] need to take into
account additional aspects. In particular, the space of models, and how these
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models are generated. We consider that there are two additional aspects to take
into account besides just applying an algorithm and deliver the resulting model.

One is the direct comparison of the models. For example, there are works
that study regression coefficients and how the regression coefficients are modified
when data is perturbed by a masking method (e.g., microaggregation [3,9] or
recoding [10] are applied to achieve k-anonymity [12]).

Another is the comparison of models with respect to the similarity of the
databases that have generated them. Up to our knowledge, this aspect has
not been studied in the literature until now. This topic is of relevance because
databases are dynamic and it is usual that changes are applied to them. Changes
can be due to different causes. E.g., the GDPR (e.g., right to rectification or dele-
tion) can require businesses to update their data. When databases change, we
may need to revise the models. Therefore, it is useful to know when two models
can be generated with similar databases. I.e., how changes in the database are
propagated to the models.

In this paper we propose the use of probabilistic metric spaces for modeling
the relationships between machine learning models and statistics. This type of
spaces define metrics in terms of a distance distribution function, which permits
us to represent randomness. We will define the distance between two models in
terms of distances between the databases that generate the models. Randomness
permits us to represent the fact that the possible modifications that are applied
to a database are not know. As we will see, in the context of data privacy, these
distances can be applied to measure similarities between models with respect to
their training set, or to define disclosure measures on anonymized models.

The structure of the paper is as follows. In Sect. 2 we discuss distances and
metrics. In Sect. 3 we introduce a definition of probabilistic metric spaces for
machine learning models. The paper finishes with a discussion.

2 Distances and Metrics

Metric spaces are defined in terms of a non-empty set and a distance function
or metric. Let (S, d) be a metric space, then d(a, b) for a, b ∈ S measures the
distance between the two elements a and b in S. It is known that d needs to satisfy
some properties: positiveness, symmetry, and triangle inequality. Also, that if
a and b are different then the distance should be strictly positive. Naturally,
triangle inequality is that d(a, b) ≤ d(a, c)+ d(c, b) for any a, b, c in S. When the
distance does not satisfy the symmetry condition, (S, d) is a quasimetric space. If
the distance does not satisfy the triangle inequality, (S, d) is a semimetric space.

2.1 Metrics for Sets of Objects

Given a metric space (S, d), its extension to a set of elements of S is not
trivial. Several distances have been defined on sets but not all of them sat-
isfy the triangle inequality, thus, do not lead to metrics. For example, with
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dm(x,A) = miny∈A d(x, y) we can define the Hausdorff distance, dH, and the
sum of minimum distances, ds, as

dH(A,B) = max{max
y∈A

dm(y,B),max
y∈B

dm(y,A)}

ds(A,B) =
1
2

⎛
⎝∑

y∈A

dm(y,B) +
∑
y∈B

dm(y,A)

⎞
⎠ .

However, these distances are not metrics (triangle inequality does not hold).
Eiter and Mannila [5] introduced a way to define a metric. It is based on

considering a finite sequence P = (P1, . . . , Pm) with m ≥ 2 and Pi ⊆ S for all
i ∈ {1, . . . , m}. The cost of such P is cd(P ) =

∑m−1
i=1 d(Pi, Pi+1). The distance

dw : ℘∅(S) × ℘∅(S) → R
+ is defined as follows where ℘∅(S) is the power set of

S without the emptyset, and P (A,B) denotes all paths between A and B.

dw(A,B) = min{cd(P ) : P ∈ P (A,B)}.

The authors prove in [5] that this definition is a metric when d is a distance.

2.2 Probabilistic Metric Spaces

Probabilistic metric spaces generalize the concept of a metric. Informally, they
are based on distribution functions. So, the distance is not a number but a
distribution on these numbers.

Definition 1. [11] A nondecreasing function F defined on R
+ that satisfies (i)

F (0) = 0; (ii) F (∞) = 1, and (iii) that is left continuous on (0,∞) is a distance
distribution function. Δ+ denotes the set of all distance distribution functions.

We can interpret F (x) as the probability that the distance is less than or equal
to x. In this way, this definition is a generalization of a distance.

We will use εa to denote the distance distribution function that can be said
to represent the classical distance a. This ε function is just a step function at a.

Definition 2. [11] For any a in R, we define εa as the function given by

εa(x) =
{

0, −∞ ≤ x ≤ a
1, a < x ≤ ∞

Probabilistic metric spaces are defined by means of distance distribution
functions. In order to define a counterpart of the triangle equality we introduce
triangle functions. They are defined as follows.

Definition 3. [11] Let Δ+ be defined as above, then a binary operation on Δ+

is a triangle function if it is commutative, associative, and nondecreasing in each
place, and has ε0 as the identity.
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Triangle functions has close links with t-norms [2]. If T is a t-norm, then
τT (F,G)(x) = T (F (x), G(x)) is a triangle function. See Def. 7.1.3 and Sect. 7.1
in [11]. The maximal triangle function is τmin.

We are now in conditions to define probabilistic metric spaces.

Definition 4. [11] Let (S,F , τ) be a triple where S is a nonempty set, F is
a function from S × S into Δ+, τ is a triangle function; then (S,F , τ) is a
probabilistic metric space if the following conditions are satisfied for all p, q, and
r in S:

– (i) F(p, p) = ε0
– (ii) F(p, q) �= ε0 if p �= q
– (iii) F(p, q) = F(q, p)
– (iv) F(p, r) ≥ τ(F(p, q),F(q, r)).

We will use Fpq instead of F(p, q) and, then, the value of the latter at x by the
expression: Fpq(x).

3 Probabilistic Metric Spaces for Machine Learning
Models

In this section we define a probabilistic metric space for machine learning models
based on the databases that permit to build these models. So, we are considering
two spaces. On the one hand we have the space of databases. In this space we can
consider transitions from one database to another. These transitions correspond
to changes in the database. Naturally, they correspond to record deletion, record
addition, and record modification. On the other hand we have the space of
models. Each model can be generated by one or more databases in the space of
databases. Figure 1 represent these two spaces and some relationships between
them.

Formally, the space of databases is a graph. Note that each possible database
can be considered the vertex or node in the graph; and that any type of database
transformation is represented in terms of an edge (transforms a database into
another one). In the figure, we only include directed edges that represent dele-
tions.

Definition 5. Let D represent the space of possible databases. I.e., db ∈ D are
the possible databases we may encounter. Let O represent the possible minimal
set of modifications. More particularly, O will typically include erasure of a single
record, addition of a single record, and rectification of a value of a variable in a
record. Then, given db ∈ D, we have that odb are the operations in O that are
valid for db. For each o ∈ odb, we have that o(db) ∈ D and o(db) �= db.

With these definitions, we can define the graph associated to a space of
databases as follows. We assume that the construction leads to a proper graph.
That is, there are no multiedges. Formally, o1(db) �= o2(db) for any o1, o2 ∈ O
with o1 �= o2.
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Fig. 1. Space of databases (top) and space of models (bottom) generated from the
databases (dotted lines). Some transitions between databases (DB) are represented in
the figure (arrows). For the sake of simplicity, we only consider directed transitions
(e.g., as the only allowed transition is deletion of a single record) between databases.

Definition 6. Let D be a space of databases, and O be the minimal set of con-
sidered modifications. Then, we define the graph for the space D inferred from
O as the graph GD,O = (V,E) with the set of vertices defined by V = D and the
set of edges defined by

E = ∪db∈D ∪o∈odb {(db, o(db))}.

We say that the set O is reversible if for any o ∈ O such that db′ = o(db)
with db ∈ D, we have an o′ ∈ O such that db = o′(db′). If O is reversible, the
graph GD,O = (V,E) can be seen as an undirected graph. When O contains only
deletions, it is not reversible; while with deletions and additions, it is reversible.

Given a space of databases and an algorithm that generates a model for each
database, we can build a space of models. The definition of the space of models
is based on a deterministic algorithm A. That is, the algorithm always returns
the same model when the same database is used.

Definition 7. Let D be a space of databases, and let A be a deterministic algo-
rithm that applied to any db ∈ D builds a model m. Then, MD,A is the space of
models that can be inferred from D using A. Naturally,

M = ∪db∈D{A(db)}.

Now, let us consider a pair of models. As stated above, our goal is to define a dis-
tance between pairs of models in terms of the similarities between the databases
that have generated them. Then, it is relevant to us how these models are con-
structed. In our context, this means finding pairs of databases that can generate
our pair of models. We formalize this below.

Given two models m1 and m2, we define t(m1,m2) as the pairs of databases
that permit us to transit from m1 to m2. That is, pairs of databases (db1, db2)
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such that m1 is the model generated from db1 and m2 is the model generated
by db2:

t(m1,m2) = {(db1, db2)|A(db1) = m1, A(db2) = m2}
Then, for each pair (db1, db2), we consider all paths from db1 to db2 and

the corresponding lengths. We define l(m1,m2) as the multiset of these lengths.
Let paths(db1, db2) represent all paths from db1 to db2. Then, l(m1,m2) is the
following multiset:

l(m1,m2) = {length(path)|path ∈ paths(db1, db2) for (db1, db2) ∈ t(m1,m2)}.

Note that this is a multiset as when there are several paths for a pair of
databases, it is possible that several of these paths have the same length. For
example, there are two paths of length two between DB1 and DB5 in Fig. 1.
When edges represent record deletion, we can find several paths between two
databases as records can be removed in different order.

Finally, we define l∗(m1,m2)(x) as the function that counts how many ele-
ments in l(m1,m2) are less or equal to x. That is,

l∗(m1,m2)(x) =
∑

d∈l(m1,m2)&d≤x

count(d). (1)

Here count(d) is the function that gives the number of occurrences of d in the
multiset. This function is also known as multiplicity.

We now introduce a distance distribution function.

Definition 8. Let D be the space of databases, and let O be the set of minimal
modifications. Let GD,O = (V,E) be the graph on D inferred from O. Let l∗ be
defined as in Eq. 1 above. Let K be a constant such that K > 0, then, we define
F as follows:

F (m1,m2)(x) =

{
ε0 if m1 = m2

min
(
1, l∗(m1,m2)(x)

K

)
if m1 �= m2

(2)

We can prove the following result.

Proposition 1. Let D be the space of databases, O be the set of minimal mod-
ifications, A be a deterministic algorithm, MD,A be the space of models inferred
from D and A, GD,O = (V,E) be the graph on D inferred from O, and let l∗ and
F defined as in Definition 8. Then, the following holds:

– F (m,m) = ε0 for all m ∈ M,
– F (m1,m2) �= ε0 for all m1,m2 ∈ M such that m1 �= m2,
– F (m1,m2) = F (m2,m1) when O is reversible.

Proof. The proof that F (m,m) = ε0 is by construction.
Let us now consider the proof of F (m1,m2) �= ε0 for m1 �= m2. In this case,

if m1 �= m2, we will have that there are at least two different databases db1 and
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db2 that generate m1 and m2, respectively, and db1 �= db2. Therefore, there will
be at least a path with a distance at least one between db1 and db2. Therefore,
if K > 0, F (m1,m2)(0) �= 1, which proves the equation.

Let us now consider the proof of the third condition. In this case, we have
that for each path path in paths(db1, db2) we will have a path in paths(db2, db1).
This naturally follows from the fact that if path = (db1 = db1, db2, . . . , db2 = dbr)
with oi = (dbi, dbi+1) ∈ O for i = 1, . . . , r−1, then by the reversibility condition
there are o′i = (dbi+1, dbi) ∈ O so that path′ = (db2 = dbr, . . . , db2, db1 = db1),
and path′ ∈ paths(db2, db1). 
�

As a corollary of this proposition, we have that the distance in Definition 8
leads to a probabilistic semimetric space when O is reversible.

Corollary 1. Given D,O, A, F as in Definition 8, then (MD,A, F ) is a proba-
bilistic semimetric space.

In general, (MD,A, F ) is not a probabilistic metric space because condition (iv) in
Definition 4 does not follow. A counterexample of this condition for three models
m1, m2 and m3 is as follows: Some databases generating m1 are connected to
databases generating to m3, and some generating m3 are connected to databases
generating m2. This implies that F (m1,m3)(u) + F (m3,m2)(v) is finite. When
there is no connection between databases generating m1 and those generating
m2, the direct distance will be ∞.

4 Discussion and Conclusions

Machine learning is about building models from data. Given a data set, the goal
is to find a model that represents the data in an appropriate way. This problem
is usually formulated as finding a model that has a good accuracy.

Nevertheless, this is not the only aspect taken into account in machine learn-
ing. As the bias-variance trade-off explains, one may have a high accuracy at the
expenses of over-fitting. To avoid this over-fitting, we may select a model with
less accuracy but with a good bias-variance trade-off.

In addition to that, other aspects are often taken into account. E.g., explain-
ability [8]. We may be interested in a model with less accuracy if decisions are
better explained. The same applies to fairness [7] and no-discrimination [6].

Within the privacy context, models need to avoid disclosure, and this require-
ment can be formally defined into different ways. Differential privacy [4] is one
way, that is that the model does not differ much whether a record is present
or not. Integral privacy [13,16] is another way, that is that the model can be
generated by a sufficiently large number of possible data sets. Resistant to mem-
bership attacks is another way. This means that we cannot infer that a particular
record was present in the training set.

Under this perspective, it is relevant to compare the models and their sim-
ilarities with respect to the training data sets. To do so, we need to define a
distance for models based on a distance on the training data sets. In this paper
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we have proposed the use of probabilistic metric spaces for this purpose. We
have proposed a first definition in this direction.

More broadly, in the privacy context, these distances can also be used to
define disclosure or information loss metrics (see e.g. [1]). By measuring the
differences between a privacy preserving model and the original model, one can
establish the information that has been lost in the anonymization process.

Further work is needed in this direction. Actual computation of distance
distribution functions can only be done easily for small data sets. So, we need to
develop solutions for larger data sets. Secondly, we have assumed in this work
that A is an algorithm that builds a model deterministically. This assumption
does not always apply. On the one hand there are machine learning algorithms
that include some randomness. This is the case, precisely, of some algorithms for
big data based on sampling. On the other hand, there are randomized algorithms
as the ones used in differential privacy. Appropriate models need to be developed
to deal with this situation.

We have shown that our distance does not satisfy Equation (iv) in Definition 4.
Definition of dw in Sect. 2.1 satisfies triangle inequality for a distance d, so dw

could lead to a probabilistic metric space (see Definition 8.4.1 in [2]), but we need
to explore if this distance is actually computable with actual data. Its cost, based
on the set of all paths P (A,B), seems too costly in our context.
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Abstract. Internet-based personal assistants are promising devices
combining voice control and search technologies to pull out relevant
information to domestic users. They are expected to assist in a smart
way to household activities, such as scheduling meetings, finding loca-
tions, reporting of cultural events, sending of messages and a lot more.
The information collected by these devices, including personalized lifelogs
about their corresponding users, is likely to be stored by well-established
Internet players related to web search engines and social media. This
can lead to serious privacy risks. The issue of protecting the identity of
domestic users and their sensitive data must be tackled at design time,
to promptly mitigate privacy threats. Towards this end, this paper pro-
poses a protection scheme that jointly handles the aforementioned issues
by combining log anonymization and sanitizable signatures.

1 Introduction

Most of the time, we use tools created by third parties to access the information
we need from the Internet. Traditionally, people have been using web search
engines, as the main gateway to the Internet. As time goes by, we can find
other alternatives. New proposals are trying to reduce the barriers to access
information even more, and to make it accessible to everyone. As a consequence of
these innovations, today we can find a multitude of technological tools that have
been developed precisely for this reason, leading towards Internet-based personal
assistants, consolidated by technologies such as smartphones, smartwatches and
smartgateways.

For reasons of economics of scale, the development of this type of devices is
only available to a few technological organizations [8]. These few organizations
can have access to all the data generated using their devices, such as user queries
and usage statistics [17]. It is often easy to forget that all of our usage data is
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stored on Internet servers. In this case, the situation is even more accentuated,
since the user is not in front of a computer. Users tend to establish more relaxed
relationship with the device, sometimes without even knowing if it is working
or sending information to another site, and mostly seeing it as a friend or an
extension of its person.

The reality is that these devices are usually interconnected to other services.
When we make a request to them, the organization that created them performs
an information request on their servers. Apart from fulfilling the request, several
other data gets registered in the form of a log. Anyone who uses these services
is constantly generating logs and providing personal information to the organi-
zation. Additionally, searches made on most modern devices often send the user
location and the local time as two additional parameters when it comes to find-
ing the most convenient information in each situation. Therefore, user, location
and local time are also registered in the logs of the servers.

Lifelogging, i.e., the recording of information about our everyday lives using
smart devices, involves the collection of a huge volume of sensitive information
[20]. It can lead to very serious privacy risks of personal data disclosure, as these
data can be exploited in isolation, as well as combining the information gener-
ated between several of these devices. In addition, the widespread development
of technologies such as Artificial Intelligence and Big Data, make the task of
extracting information or relevant relationships easier every day [6]. To protect
the identity and sensitive users’ data, there are some techniques that allow to
eliminate direct users’ identifiers. However, a specialized type of attack, called
Record Linkage attack, allows to link different user records, which contain seem-
ingly harmless information, but when all the data can be mapped, it can end up
revealing sensitive information from the users [15].

In this paper, we address the issue of transforming raw user’s data from
lifelogging data streams generated by Internet-based personal devices like Google
Home and Amazon Echo [13]. We study the relation of such devices with other
data information actors in terms of EU data protection directives and propose
a protection solution via anonymity transformation and malleable signatures.
Our proposal takes into account the role of the organizations and their needs
to monetize generated data. Our protection scheme aims at limiting the risk
of privacy disclosure, while maintaining an adequate level of data utility. The
paper is organized as follows. Section 2 reports related work. Section 3 provides
the background. Section 4 presents of our proposal. Section 5 closes the paper.

2 Related Work

Early methods to transform raw user’s information to a set of privacy protecting
data started with batch processing methods. Batch processing methods rely on
executing match processing techniques (e.g., via statistic or semantic matching
techniques) to remove the interactions that disclose user’s identity from a series
of stored user logs. Some methods would simply remove old sets of interactions
assuming that the logs will not be large enough to enable identity disclosure [5].
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This lead to flawed techniques given the likelihood of highly identifying inter-
actions. Even the removal of highly identifying data, such as credit cards or
addresses [4], are prone to record linkage attacks [2].

The use of statistical disclosure control methods can help to reduce the num-
ber of deleted records [12]. They group together sets of similar logs. Then, they
use prototypes of interactions, instead of the original interactions, making them
indistinguishable from each other. Users are still conserved and the interactions
are transformed to minimize the risk of information disclosure. Such methods
can be improved to include real-time processing, to minimize and avoid the stor-
age of large sets of data requiring a posteriori treatment. Open problems using
statistical disclosure control methods include data mining processing of large
network data streams [11].

The work presented in this paper extends an anonymization scheme for web
search logs using statistical de-identification [14]. The original scheme allows to
web search engine providers to share user’s raw data with third party organiza-
tions with a high degree of privacy and a relatively low decrease of data utility.
The extension allows more complex data structures based on lifelogging logs,
resulting on an increase of data attributes, such as spatial location of the queries
and the processing of user commands. It combines sanitizable signatures [1] with
probabilistic k-anonymity privacy preservation [14,19].

Sanitizable signatures are malleable mathematical schemes that allow a des-
ignated party, the sanitizer, to modify given parts of a ciphertext c, created
by the signer. The sanitizer can modify parts of c in a controlled way. The
signer divides c ∈ {0, 1}∗ into N blocks m1, · · · ,mN , and provides a subset
Adm⊆ {1, N} to the sanitizer. The subset Adm represents the description of
the admissible modifications. In the end, the signer signs c using a key related to
the sanitizer. Using the aforementioned key, the sanitizer is able to modify the
admissible parts of c defined in Adm, in a way that keeps the resulting signature
valid, under the public key of the signer. The scheme can satisfy unlinkability, to
guarantees that it is unfeasible to distinguish between sanitized signatures that
have been produced from the same ciphertext or by the same sanitizer. It is also
possible to limit the set of all possible modifications on one single block and to
enforce the same modifications on different messages blocks [3].

The combination of sanitizable signatures and probabilistic k-anonymization
in our approach satisfies indistinguishability and real-time (e.g., streaming) data
processing [10]. Indistinguishability in k-anonymity methods guarantees that
each record in the dataset that has been k-anonymized is indistinguishable
from at least k − 1 other records. Probabilistic k-anonymity relaxes the indis-
tinguishability requirement of k-anonymity and only requires that the proba-
bility of re-identification is the same as in k-anonymity, i.e., users cannot be
re-identified by record linkage attacks with a probability greater than 1/k. In
addition, anonymized logs are generated using real user queries, i.e., they are
not modified, but distributed among other users with similar interests, lead-
ing towards quasi-identifiers that get dispersed between several users and thus
preventing record linkage attacks, while maintaining data utility as well [14].
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Fig. 1. Architecture for existing Internet-based personal assistants. Users represent the
data subject, authorized to interact with the Personal Assistant devices, by submitting
queries and commands. Personal Assistant devices send those commands to the Main
Service that take the role of data collectors. Finally, Third Parties are the entities
acting as data processors. They represent the parties with interest on legitimately
accessing the anonymized logs.

3 Problem Statement

3.1 EU Data Protection Actors

EU Directive 95/46/EC, nowadays superseded by the new General Data Protec-
tion Regulation (GDPR) [16], to which we will refer during the rest of the paper,
defines different roles that are relevant to the protection of general-case lifelog-
ging environments. First, it defines the Data Controller as “the natural or legal
person, public authority, agency or any other body which alone or jointly with
others determines the purposes and means of the processing of personal data”
[7]. Lifelogging environments need to clearly identify who is the Data Controller,
since it determines which national law is applied. The data controller is respon-
sible to determine which data must be processed, which third parties can access
this data and when this data must be deleted.

Moreover, the figure of the Data Processor has the responsibility to ensure
the security in the processing of personal data. The directive states that it is the
“natural or legal person, public authority, agency or any other body that processes
personal data on behalf of the controller”. It is also necessary to determine the
Data Processor, as it also sets the national law to be applied. It is also necessary
to consider the Data Subject, as the person who is generating the data and from
which we need the consent. The directive also requires to guarantee a set of basic
rights to the Data Subject, such as the right to access their information or to
oppose to the data processing.

Figure 1 depicts a lifelogging environment which involves several actors,
namely: Users, Personal Assistant devices, remote Main Services and Third Par-
ties. Users represent the actors related to data subject, i.e., they represent the
entities that are authorized to interact with the Personal Assistant devices, by
submitting queries and commands. The Personal Assistant devices receive both
queries and commands from associated users. Queries and commands are sent
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and processed by the Main Services for customized results. The remote Main
Services take the role of data collectors. They have direct access to the original
queries and command and control logs, sent by the Personal Assistant devices.
Third Parties are the entities acting as data processors. They represent the par-
ties that express interest on legitimately accessing the anonymized query and
command logs, to eventually process and use them.

3.2 Data Structure

Personal Assistant devices may receive three different types of queries: (1) general
search queries, (2) location based queries and (3) commands. They are trans-
ferred to the Main Servers for processing. Hence, the Main Service stores all
the original logs for each Personal Assistant device with respect to its different
associated Users. Queries and commands are defined as follows:

– General search queries — Traditional web search-like queries. These
queries help users to find what they are looking for, from Internet websites.
Users just have to ask a question and the system returns the main result they
are looking for.

– Location based queries — Use of spatial and temporal data. They can be
classified on two main categories: elementary queries and derivative queries.
Navigation and search for Point of Interests are typical elementary location
based queries. Derivative queries are mainly processed for guiding or tracking
to provide customized results to users.

– Commands — Allow users to request direct actions that affect their own
environment. Actions are usually related to home automation, multimedia
control and alarms. Although these actions usually only have a local reper-
cussion, all the data they generate is also stored together with the rest of
the logs.

3.3 Privacy and Utility Trade-off

The proposed scheme aims at fulfilling two main requirements (scalability and
performance requirements will be addressed in future versions of the work).
First, privacy requirements, in terms of user data protection. Second, data util-
ity requirements, in terms of log monetization. These two requirements together
allow that non-sensitive user information can be sold to Third Parties, allowing
Third Parties to extract user characteristics from the data they acquire. Since
query and command logs together can reveal sensitive information, a trade-
off between anonymizing logs and keeping them useful to extract information
through data mining processes must be guaranteed. Therefore, the main chal-
lenge related to data utility is to anonymize sensitive user data removing as
few information as possible in order to have enough interesting information to
be analyzed. To do so, the proposed scheme aims to build fake logs and user
profiles, which should maintain users’ interests and break quasi-identifiers that
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could allow to identify a user. Queries should be anonymized to not relate sensi-
tive information to a user identity. It should be as difficult as possible to relocate
queries in order to build original user’s profile. In the end, the proposed system
should generate those fake logs and profiles with other users’ queries.

4 Our Proposal

We extend the initial architecture presented in Sect. 3 to handle the aforemen-
tioned goals in terms of privacy regulation, security and functional require-
ments. Figure 2 depicts the extended architecture. An entity named the Identity
Screener ensures the compliance with the legal constraints and requirements to
settle, e.g., privacy prevention algorithms, based on criteria set by EU regula-
tion directives [7,16]. It acts as a container of privacy filters to enforce data
protection and control any misuse between any other parties. A second entity,
the Auditor, acts as a dedicated agent which is responsible of auditing the Iden-
tity Screener and the Main Service activities, with respect to accountability and
users’ consent requirements. In the sequel, we describe more in depth the work-
ing properties of our extended architecture and its idealized Identity Screener
conducting sanitizable signatures and pre-anonymization of logs.

Fig. 2. Extended architecture. It includes an Identity Screener ensuring the compliance
of privacy; and an Auditor, responsible of auditing accountability and users’ consent
requirements.

4.1 Working Properties of the Extended Architecture

To elaborate on the operations of the extended architecture, we refine and exam-
ine more in depth the internal components that the full system requires to han-
dle requests and responses. Figure 3 depicts the proposed system. It shows the
interactions of a User and its Personal Assistant, and the eventual generation of
queries. The queries are sent through the network for treatment. Once treated,
the resulting logs become properly anonymized. Then, it becomes possible to
provide the anonymized logs to third parties, e.g., to monetize them. Next, we
describe the main steps performed at each stage.
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(a) (b)

Fig. 3. (a) Request architecture: a User interacts with its Personal Assistant, generat-
ing a series of queries that are sent through the Identity Screener (which sanitizes the
user identity) to a Main Service that anonymizes the queries, and redirect them back
through the Identity Screener to the Third Parties. (b) Response architecture: Main
Service creates and signs the response for the User, via the Identity Screener, which
restores the User identity and redirects the response to the Personal Assistant (i.e.,
decrypts and provides the result to the User).

1. System initialization — As a prior step to the start of the system execu-
tion, it shall be ensured the distribution of the key pairs to create and check
the User Sanitizable Signatures and the Service Sanitizable Signatures, as
well as the public key of the Main Service to all the Personal Assistants.

2. Query pre-processing — Two steps are conducted. First, in a local step,
the User sends a question to its Personal Assistant, which recognizes who
has formulated the question and transforms it into text. Once transformed,
the query is encrypted using the public key of the Main Service and gets
signed using the User Sanitizable Signature. The signature allows the Iden-
tity Screener to modify some data about the user (e.g., its real identity), but
keeps the remainder elements of the query. Second, the query is sent to the
Identity Screener (e.g., a distinct administrative entity than the Main Ser-
vice). A specific module replaces the original User identifier (cf. USER ID in
Fig. 3) with a pseudonymous (cf. PRIV ID), preventing the Main Service from
knowing the real identity of the user that generated the original query (the
Identity Screener does not have access to the original query, which remains
encrypted).

3. Anonymization — Procedures conducted at the Main Service:
– Request Decrypter: Verifies the signature of the query and decrypts

the body of the query with the Main Service private key.
– Request Classifier: Determines the log class (w.r.t. the three classes

in Sect. 3.2) and decides how the log shall be treated. General search
queries are redirected to the Query Anonymizer procedure [14], location-
based queries to the Query Generalizer procedure [18] and command-
based queries to the Command Generalizer procedure [9] (conducting
k-anonymity and data perturbation treatment tailored for each class).
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– Request Integrator: Unifies the anonymization results, adds a Service
Sanitizable Signature (to allow the Identity Screener to modify the User
field, but not the rest) and releases the logs.

4. Query post-processing — The Main Service releases the anonymized logs
to the Identity Screener, which checks the Sanitizable Signature Service. If
the check is validated, it restores the original USER ID, through the ID De-
anonymizer procedure. This way, the Third Parties can extract the interests
of users, while protecting the logs from record linkage attacks (since the text
of the query remains conveniently anonymized).

5. Audit — The auditing process is performed by a dedicated authority, mainly
relying on the verification process of Service Sanitizable Signature. That is,
the auditor has to verify the consistency of signed queries and responses,
generated by the User, the Identity Screener and the Main Service, such as:

– Identity Screener activities auditing — Verification of Identity
Screener signed queries consistency. Honestly generated signatures (using
signing correctness) and sanitized signatures (using sanitizing correct-
ness) have to be accepted by the verifier. Honestly generated proofs on
valid signatures (proof correctness) have to be accepted by the Service
Sanitizable Signature algorithms [1].

– Main Service activities — Verification of the consistency of signed
original queries’ responses and anonymized query logs, generated by the
Main Service. Each anonymized query has to be sent through the Identity
Screener in order to retrieve the USER ID query identifier, before trans-
mitting to Third Parties. Hence, the auditor may check the signatures
after the Main Service and the Identity Screener processing, as well as to
verify if transfer actions are allowed with regard to each user authoriza-
tion vector.

4.2 Discussion

Some limitations in our approach remain open. First, w.r.t. Users’s communica-
tion, it must be ensured that the Personal Assistant does not send information
to the Main Service directly, therefore escaping the treatment of the Identity
Screener. On the contrary, the communication with the Third Parties does not
have this problem. If they want to recover the original USER ID, all messages
must go through the Identity Screener. In this case, the possible privacy problem
would appear if any of the Third Parties send the data back to the Main Ser-
vice once it has been processed by the Identity Screener. If this situation arises,
the Main Service would have access to the anonymized query and the original
USER ID. If the Main Service stores the correspondence between the original
query and the anonymized query, it could fetch the original Query and User pair.
Solutions to handle these limitations are under investigation.
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5 Conclusion

Internet-based personal assistants can lead to serious privacy risks. They may
release sensitive information about the identity of domestic users and their sensi-
tive data. The issue must be tackled by jointly addressing anonymization by orga-
nizational roles in terms of Data Controller, Data Processor and Data Subject.
Towards this end, we have proposed an architecture that combines lifelogging
anonymization and sanitizable signatures, to promptly mitigate privacy threats.
Future work includes a more exhaustive analysis about the cooperation of the
different elements of our architecture, as well as to provide further investigations
about the current techniques included in the architecture with a specific brand
of Internet-based personal assistants. Ongoing code for the implementation of
our proposal is available at github (cf. http://j.mp/lps-ipa).
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