
Chapter 3
Learning Correlations

Abstract After a short introduction of the general concept of decision rule to relate
input and target features, this chapter describes some generic and most popular
methods for learning correlations over two or more features. Four of them pertain to
quantitative targets (linear regression, canonical correlation, neural network, and
regression tree), and seven to categorical ones (linear discrimination, support vector
machine, naïve Bayes classifier, classification tree, contingency table, distance
between partition and ranking relations, and the correspondence analysis). Of these,
classification trees are treated in a most detailed way including a number of theo-
retical results that are not well known. These establish firm relations between
popular scoring functions and bivariate measures—Quetelet indexes in contingency
tables and, rather unexpectedly, normalization options for dummy variables rep-
resenting target categories. Some related concepts such as Bayesian decision rules,
bag-of-word model in text analysis, VC-dimension and kernel for non-linear
classification are introduced too. The Chapter outlines several important charac-
teristics of summarization and correlation between two features, and displays some
of the properties of those. They are:

– linear regression and correlation coefficient for two quantitative variables (Sect. 3.2);
– tabular regression and correlation ratio for the mixed scale case (Sect. 3.8.3); and
– contingency table, Quetelet index, statistical independence, and Pearson’s

chi-squared for two nominal variables; the latter is treated as a summary correlation
measure, in contrast to the conventional view of it as just a criterion of statistical
independence (Sect. 3.6.1); moreover, a few less known least-squares based con-
cepts are outlined, including canonical correlation and correspondence analysis.

3.1 General: Decision Rules, Fitting Criteria,
and Learning Protocols

To specify a problem of learning correlation in a data table, one has to distinguish
between two parts in the feature set: predictor, or input, features and target, or
output, features. Typically, the number of target features is small, and in generic
tasks, there is just one target feature. Target features are usually difficult to measure

© Springer Nature Switzerland AG 2019
B. Mirkin, Core Data Analysis: Summarization, Correlation,
and Visualization, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-00271-8_3

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00271-8_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00271-8_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00271-8_3&amp;domain=pdf
https://doi.org/10.1007/978-3-030-00271-8_3


or impossible to know beforehand. This is why one would want to derive a decision
rule relating predictors and targets so that prediction of targets can be made after
measuring predictors only. Examples of learning problems include:

(a) chemical compounds: input features are of the molecular structure, whereas
target features are activities such as toxicity or healing effects;

(b) types of grain in agriculture: input features are those of the seeds, soil and
weather, and target features are of productivity and protein contents,

(c) industrial enterprises: input features refer to technology, investment and labor
policies, whereas target features are of sales and profits;

(d) postcode districts in marketing research: input features refer to demographic,
social and economic characteristics of the district residents, target features—to
their purchasing behavior;

(e) bank loan customers: input features characterize demographic and income,
whereas output features are of (potentially) bad debt;

(f) gene expression data: input features relate to levels of expression of DNA
materials in the earlier stages of an illness, and output features to those at later
stages.

A decision rule predicts values of target features from values of input features.
A rule is referred to as a classifier if the target is categorical and as a regression if
the target is quantitative. A generic categorical target problem is defined by spec-
ifying just a subset of entities labeled as belonging to the class of interest—the
correlation problem in this case would be of building such a decision rule that
would recognize, for each of the entities, whether it belongs to the labeled class or
not. A generic regression problem—the bivariate linear regression—is considered
in Sect. 3.1; its extension to the multivariate case is described in Sect. 3.3.

A decision rule is learnt over a dataset in which values of the targets are
available. These data are frequently referred to as the training data. The idea
underlying the process of learning is to look at the difference between predicted and
observed target feature values on the training data set and to minimize them over a
class of admissible rules. The structure of such a process is presented on the upper
part of Fig. 3.1.

The notion that it ought to be a class of admissible rules pre-specified emerges
because the training data is finite and, therefore, can be fit exactly by using a
sufficient number of parameters. However, this would be valid on the training set
only, because the fit would capture all the errors and noise inevitable in data
collecting processes. Take a look, for example, at the 2D regression problem on
Fig. 3.2 depicting seven points on (x,u)-plane corresponding to observed combi-
nations of input feature x and target feature u.

The seven points on Fig. 3.2 can be exactly fitted by a polynomial of 6th order
u = p(x) = a0+ a1x + a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. Indeed, they would lead to
7 equations ui = p(xi) (i = 1,…,7), so that, in a typical case, the 7 coefficients ak of
the polynomial can be exactly determined. Having N points observed would require
an (N-1)-th degree polynomial to exactly fit them.
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However, the polynomial, on which graph all the observations lie, has no pre-
dictive power both within and beyond the range. The curve may go either course
(like those shown) depending on small changes in the data. The power of a theory
—and a regression line is a theory in this case—rests on its generalization power,
which, in this case, can be cast down as the relation between the number of
observations and the number of parameters: the greater the better. When this ratio is
relatively small, statisticians would refer to this as an over-fitted rule. The over-
fitting normally produce very poor predictions on newly added observations. The
blue straight line fits none of the points, but it expresses a simple and very robust
tendency and should be preferred because it summarizes the data much deeper: the
seven observations are summarized here in just two parameters, slope and intercept,
whereas the polynomial line provides no summary: it involves as many parameters
as the data entities. This is why, in learning decision rules problems, a class of
admissible rules should be selected first. Unfortunately, as of this moment, there is

Input data            Rule               Predicted

Target data
Difference

Input data              Rule Predicted
data                         

Target data
Difference 

Fig. 3.1 Structure of a training/testing problem: In training, on the top, the decision rule is fitted
to minimize the difference between the predicted and observed target data. In testing, the bottom
part, the rule is used to predict so that no feedback to the rule is utilized

u 

x 

Fig. 3.2 Possible graphs of interrelation between x and u according to observed data points (black
circles)
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no model based advice, within the data analysis discipline, on how this can be done,
except very general ones like “look at the shapes of scatter plots”. If there is no
domain knowledge to choose a class of decision rules to fit, it is hard to tell what
class of decision rules to use.

A most popular advice relates to the so-called Occam’s razor, which means that
the complexity of the data should be balanced by the simplicity of the decision
rule. A British monk philosopher William Ockham (c. 1285–1349) made a claim:
“Entities should not be multiplied unnecessarily.” This is usually interpreted as
saying that all other things being equal, the simplest explanation tends to be the best
one. Operationally, this is further translated as the Principle of Maximum
Parsimony, which is referred to when there is nothing better available. In the format
of the so-called “Minimum description length” principle, this approach can be
meaningfully applied to problems of estimation of parameters of statistic distri-
butions (see Grünwald 2007). Somewhat wider, and perhaps more appropriate,
explication of the Occam’s razor is proposed by Vapnik (2006). In a slightly
modified form, to avoid mixing different terminologies, it can be put as follows:
“Find an admissible decision rule with the smallest number of free parameters to
explain the observed facts” (Vapnik 2006, p. 448). However, even in this format,
the principle gives no guidance about how to choose an adequate functional form.
For example, which of two functions, the power function f(x) = axb or logarithmic
one, g(x) = blog(x) + a, both having just two parameters a and b, should be pre-
ferred as a summarization tool for graphs on Fig. 3.3?

Another set of advices, not incompatible with those above, relates to the
so-called falsifiability principle by Popper (1902–1994), which can be expressed as
follows: “Explain the facts by using such an admissible decision rule which is
easiest to falsify” (Vapnik 2006, p. 451). In principle, to falsify a theory one needs
to give an example contradicting to it. Falsifiability of a decision rule can be
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Fig. 3.3 A graph of one out of two functions, f(x) = 65x0.3 and g(x) = 50log(x) + 30, both with
an added normal noise N(0,15), is presented on each of the plots. Can the reader give an educated
guess of which is which? (Answer: f(x) is on the right and g(x) on the left)
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formulated in terms of the so-called VC-dimension, a measure of complexity of
classes of decision rules: the smaller VC- dimension, the greater the falsifiability.

Let us explain the concept of VC-dimension for the case of a categorical target,
so that a decision rule to be would be a classifier. However many categorical target
features are specified, different combinations of target categories can be assigned
different labels, so that a classifier is bound to predict a label. A set of classifiers U
is said to shatter the training sample if for any possible assignment of the labels, a
classifier exactly reproducing the labels can be found in U. Given a set of admis-
sible classifiers U, the VC-dimension of a classifying problem is the maximum
number of entities that can be shattered by classifiers from U. For example, 2D
points have VC complexity 3 in the class of linear decision rules. Indeed, any three
points, not lying on a line, can be shattered by a line; yet not all four-point sets can
be shattered by lines, as shown on Fig. 3.4, the left and right parts, respectively.

The VC complexity is an important characteristic of a correlation problem
especially within the probabilistic machine learning paradigm. Under the conven-
tional conditions of the independent random sampling of the data, a reliable clas-
sifier “with probability a% will be b% accurate, where b depends not only on a, but
also on the sample size and VC-dimension” (Vapnik 2006).

The problem of learning correlation in a data table can be stated, in general
terms, as follows. Given N pairs (xi, ui), i = 1,…, N, in which xi are predictor/input
p-dimensional vectors xi = (xi1,…,xip) and ui = (ui1,…,uiq) are target/output q-
dimensional vectors (usually q = 1), find a decision rule

û ¼ FðxÞ ð3:1Þ

such that the difference between computed û and observed u is minimal over a
pre-specified class U of admissible rules F.

To specify a correlation learning problem one should specify assumptions
regarding a number of constituents including:

(i) Type of target
Two types of target features are considered usually: quantitative and cate-
gorical. In the former case, Eq. (3.1) is usually referred to as regression; in
the latter case, decision rule, and the learning problem is referred to as that of
“classification” or “pattern recognition”.

Fig. 3.4 Any two-part split of three points (not on one line) can be made by a line, but the
presented case of four points on the right cannot be split by a line
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(ii) Type of rule
A rule involves a postulated mathematical structure whose parameters are to
be learnt from the data. The mathematical structures considered further on
are:

– linear combination of features
– neural network mapping a set of input features into a set of target features
– decision tree built over a set of features
– partition of the entity set into a number of non-overlapping clusters

(iii) Criterion
Criterion of the quality of fitting depends on the framework in which the
learning task is formulated. Most popular criteria are: maximum likelihood
(in a probabilistic model of data generation), least-squares (data recovery
approach) and relative errors. According to the least-squares criterion, the
difference between u and û is measured with the average squared error,

E ¼ u� û; u� ûh i=N ¼ u� FðxÞ; u� FðxÞh i=N ð3:2Þ

which is to be minimized over all admissible F.
(iv) Training protocol

The rule F is to be learnt from a training dataset. The way the data become
available can be referred to as the learning protocol. Three popular training
protocols are: batch, random and on-line. The batch mode is the case when
all the training set is available and used at once, the other two refer to cases
when data entities come one by one so that the learning goes incrementally.
In the random protocol, the data are available at once, yet the learning
process is organized incrementally by picking up entities randomly
one-by-one, possibly many times each. In contrast, in an on-line protocol
each entity comes from an external source and can be seen only once.

3.2 Two-D Linear Regression and Special Cases

3.2.1 Case of Two Features

Let us first focus on a most illustrative case when only two quantitative features are
considered. Three most popular concepts are: scatter plot, correlation coefficient,
and regression.

We consider them in turn by using two features from the Market towns dataset,
Population Resident and Number of Primary Schools. The data are taken from
Table 1.4 (see below an extract for four towns out of 45):
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PopRes (x) PSchools (y) (x,y)-point
Tavistock 10,222 5 (10,222.5)
Bodmin 12,553 5 (12,553.5)
Saltash 14,139 4 (14,139.4)
Brixham 15,865 7 (15,865.7)

Scatter plot is a presentation of entities as 2D points in the plane of two
pre-specified features. On the left-hand side of Fig. 3.5, a scatter-plot of Market
town features PopRes (Axis x) and PSchools (Axis y) is presented.

One can think that these two features are approximately related by a linear
equation y = ax + b where a and b are some constant coefficients, referred to as the
slope and intercept, respectively, because the number of schools should be related
to the number of children which is related to the number of residents. This equation
is referred to as the linear regression of y over x. Obviously, most relations are not
necessarily that simple because they also depend on other factors such as school
sizes, population’s age, etc. It would be a miracle if one equation fitted well all 45
towns. The possible inconsistencies in the equation can be modeled as additive
errors, or residuals. The slope a and intercept b are taken in such a way that the
inconsistencies of the equation on the 45 towns are minimized.
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Fig. 3.5 Scatter plot of PopRes versus PSchools in Market town data. The right hand graph
includes a regression line of PSchools over PopRes
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When a linear regression equation is fitted, its validity should be checked.
A valid equation can be used for both (i) prediction and (ii) description.

The term “regression” relates to an episode in the long struggle by Francis
Galton for the recognition of his obsession with “inherited talent”. He thought, in
about 1888, like this: “Currently, I cannot measure the talent—why cannot I take a
feature, that I can measure, say, the height? The son’s height should be related to
the father’s height, adjusted by that of the mother, of course.” This thought was
possibly supported by the idea, rather relevant at that time, that the human’s height
may have an evolutionary dimension so that, in the UK, the taller people might
have had better chances of survival. The relation appeared to exist. However,
unexpectedly, it turned out to be rather counter-intuitive. The taller father’s son
was, on average, not as tall as his father, whereas, in contrast, the shorter fathers’
sons were relatively taller than their fathers. Galton considered that as a phe-
nomenon of regress to the mediocrity. And it took some time, to figure out that the
regress did not contradict the law of natural selection established by his cousin,
Charles Darwin.1

The Galton-Pearson theory of linear regression involves a useful and very
popular parameter, the correlation coefficient, that shows the extent of linearity in
the relation between two features. Its square, referred to as the determinacy coef-
ficient, can be used for a quick check of the validity of the regression: it shows the
proportion of the variance of y that is taken into account by the regression. The
correlation coefficient between the two features, PopRes and PSchools, is 0.909.
The correlation coefficient, in general, ranges between −1 and 1, and a value close
to 1 or −1 indicates a high extent of the linear relation between the features. In
physics or chemistry, a high value of the correlation coefficient is rather usual; in
social sciences, rather not—that is, the current features are highly related indeed.

Most other features in Market town data—such as the numbers of Post offices or
Doctors—are also highly related to Pop feature, but not the number of Farmers
markets. This latter feature appears to be binary here: a town either has a farmers
market or not. The low value of the correlation coefficient, just below 0.15, shows
that the size of the town does not much matter in this part of the world: a farmers
market is as likely in a small town as it is in a larger town.

A low or even zero value of the correlation coefficient does not necessarily mean
“no relation at all”, but rather just “no linear relation”. A zero correlation coefficient
may hide a different type of functional relation, as shown on Fig. 3.6, which pre-
sents three different cases of the zero correlation. Only one of these, that on the left,
case is genuine—there is no relation between x and y according to the picture
indeed. Each of the other two cases relates to a rather high association between
x and y. Specifically, the figure in the middle refers to a quadratic dependence and
the figure on the right, to a split between two subsamples of highly linear but
inverse relations.

1Both, Francis Galton and Charles Darwin, were grandsons of a celebrated medical doctor and
philosopher, Erasmus Darwin.
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Then the regression equation, estimated according to formulas (3.6)–(3.8) in
Sect. 3.2.3, is this:

PSchool ¼ 0:401 � PopResþ 0:072 ð3:3Þ

where Population resident (PopRes) is expressed in thousands to make the slope the
thousand times greater than it would be if population is expressed in the absolute
numbers. The slope expresses how much target changes when the input changes by
1. Because the target’s values are integers, the value of slope can be rephrased as
follows: the growth of population in a town by 2.5 thousand would lead, on
average, to building one more primary school.

3.2.2 Validity of the Regression

A regression function built over a data set should be validated. Three types of
validity checks can be considered:

(a) The proportion of the variance of target variable taken into account by the
regression, the determinacy coefficient: the greater the determinacy the better
the fit.

(b) The confidence intervals of regression parameters—their ranges can give an
idea of how stable the regression is.

(c) The direct testing of the accuracy of prediction both on data used for building
the regression and data not used for that.
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Fig. 3.6 Three scatter-plots corresponding to zero or almost zero correlation coefficient q; the
case on the left: no relation between x and y; the case in the middle: a non-random quadratic
relation y = (x − 2)2 + 5; the case on the right: two symmetric linear relations, y = 2x − 5 and
y = −2x + 3, each holding at a half of the entities
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Worked Example 3.1. Determinacy Coefficient
Consider feature PSchools as target versus PopRes as input, in Market Data
(Fig. 3.5). The correlation coefficient between them is 0.909. The determinacy
coefficient, in the case of linear regression, is its square, that is, 0.9092 = 0.826,
which shows that the linear dependence on PopRes decreases the variance of
PSchools by 83.6%, a rather high value.

If the determinacy coefficient is not that high, still the hypothesis of linear
relation may hold—depending on the distribution of residuals, that is, differences
between the observed values of PSchool and those computed from PopRes
according to Eq. (3.3). This distribution should be Gaussian or approximately
Gaussian, so that the principle of maximum likelihood and formulas derived from
that are appropriate. The distribution for the case under consideration is presented
on Fig. 3.7. It is similar to a Gaussian distribution indeed, at the 5 bin histogram.
The histogram with 10 bins is less so because it is somewhat dented—probably the
sample is too small for this level of granularity: on average, only 4–5 entities fall in
each of the bins.

A more straightforward validity test can be performed without any statistic
theory at all—by purely computational means using the so-called bootstrapping
which is a procedure for obtaining a multitude of random estimates of the
parameters of interest by using random samples from the dataset as illustrated in the
Worked Example 3.2.
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Fig. 3.7 Histograms of the residuals, the differences between values of PSchool as observed and
those computed from Pop by using Eq. (3.1), with 5 bins (on the left) and 10 bins (on the right).
The dents in the finer histogram can be attributed to the fact that the sample of 45 instances is too
small to use 10 bins
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Worked Example 3.2. Bootstrap Validity Testing
Consider the linear regression of PSchools over PopRes in Eq. (3.3) in the previous
section. How stable are its slope and intercept regarding change of the sample? This
can be tested by using an approach referred to as the bootstrap. One bootstrap trial
involves three stages:

1. Randomly choose, with replacement, as many entities as there are in the
sample—45 in this case. Here is the sequence of indices of the entities randomly
drawn with replacement while writing this text: r = {26,17,36,11,29,39,32,
25,27,26, 29,4,4,33,10,1,5,45,17,16, 13,5, 42,43,28, 26,35,2,37,44,6,39,33,
21,15, 11,33,1,44,30,26,25,5,37,24}. Some indices made it into the sample
more than once, most notably 26—four times, whereas many others did not
make it into the sample at all—altogether, 16 objects such as 3,7,8 are absent
from the sample. The proportion of the absent indices is 16/45 = 0.356, which is
rather close to the theoretic estimate 1/e = 0.3679 derived in Sect. 2.2.3.3, p. 102.

2. Take “resampled” versions of PopRes and PSchools as their values on the
elements drawn on step 1.

3. Find values of the slope and intercept for the resampled PopRes and PSchools
and store them.

The MatLab computation steps are similar to those in Sect. 2.2.3.3. After 400
trials the stored slopes and intercepts form distributions presented as 20 bin his-
tograms on Fig. 3.8 a and b, respectively. After 4000 trials, the respective his-
tograms are c and d. One can easily see the smoothing effect of the increased
number of trials on the histogram shapes—at 4000 trials they do look Gaussian.

The bootstrapping trials give a diversity needed for estimating the average values
of the slope and intercept. Moreover, one can draw confidence boundaries for the
values.
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Fig. 3.8 Histograms of the distributions of the slope, on the left, and intercept, on the right, found
at 400 (on top) and 4000 (bottom) bootstrapping trials on PopRes, expressed in thousands, and
PSchool features in Market town data
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How can one obtain, say, 95% confidence boundaries? According to the
non-pivotal method, lower and upper 2.5% quantiles are cut out from the distri-
bution in a symmetric way: 95% of the observations fall between the quantiles. For
the case of 400 trials, 2.5% equals 10, so that the lower quantile corresponds to 11th
and the upper quantile to 390th elements in the sorted set of values. For the case of
4000 trials, 2.5% equals 100: the quantiles correspond to 101st and 3900th elements
of the sorted sets. They are shown in Table 3.1 at both of the cases, 400 and 4000
trials. One can see that these provide consistent and rather tight boundaries for the
slope: it is between 0.303 and 0.488 in 95% of all trials, according to the 4000-trial
data, and more or less the same at the 400-trial data. The values of intercept are
distributed with a greater dispersion and provide for a worsened accuracy.
Symmetric 95% confidence intervals for the intercept are [−0.343,0.623] at 400
trials and [−0.400,0.594] at 4000 trials.

How a pivotal bootstrapping rule can be applied here? This would provide more
stable evaluations than empirical distributions. The standard deviations of the slope
and intercept are 0.0493 and 0.2606, respectively, at 400 bootstrapping trials; they
are somewhat smaller, 0.0477 and 0.2529, at the 4000 trials. Can one derive from
this a symmetric 95% confidence interval for the slope or intercept? Tip: in a
Gaussian distribution, 95% of all values fall within interval mean ±1.96 * std. This
is the so-called pivotal bootstrapping method.

Q.3.1. Can you give an estimate of the level of variance of the differences between
PSchool observed and computed values?

A final validity test of the regression equation is probably the toughest one—by
the prediction error (see Worked Example 3.3).

Worked Example 3.3. Prediction Error of the Regression Equation
Compare the observed values of PSchool with those computed through PopRes
according to Eq. (3.3). Table 3.2 presents a few examples taken from both ends of
the sorted PopRes feature.

On average, the predictions are close, but, in some cases, are less so. One can
easily estimate the relative error, which is [(1 − 0.89)/1] * 100 = 11% on the first
element, [(2 − 0.97)/2] * 100 = 51.5% on the second element, etc. The average
relative error of Eq. (3.3) on the set of all 45 towns is equal to 30.7%. Can it be made
smaller? On the first glance, no, it cannot, because Eq. (3.1) minimizes the error.

Table 3.1 Parameters of the linear regression of PopRes over PSchool found on the original set,
as well as on the bootstrap 400 and 4000 trials

Regression
parameters

Set 400 trials 4000 trials

Mean 2.5% 97.5% Mean 2.5% 97.5%

Slope 0.401 0.399 0.296 0.486 0.398 0.303 0.488
Intercept 0.072 0.089 −0.343 0.623 0.092 −0.400 0.594

The latter involves the average values, as well as the lower and upper 2.5% quantiles
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But, the error minimized by Eq. (3.1) is the average quadratic error, not the relative
error under consideration. The two errors do differ, and Eq. (3.1) is not necessarily
optimal with regard to the relative error.

The classical optimization theory has virtually nothing to propose for the min-
imization of the relative error—this criterion is neither linear, nor quadratic, nor
convex. Instead, the evolutionary optimization approach can be applied to the task.
This approach uses a population of solutions randomly evolving, iteration after
iteration, in the search for better solutions as explained in Project 3.2. Applying the
algorithm from that project to minimize the criterion of relative error, one can find a
different solution, in fact, a set of solutions each leading to the average relative error
of 26.4%, a reduction of 3.3 points, one seventh of the relative error of the
Eq. (3.3).

The new solution is PSchool = 0.28 * PopRes + 0.33 expressing a smaller rate
of increase in school numbers at the growth of population.

3.2.3 Fitting the Equation of Linear Regression

Let us derive parameters of linear regression. Given target feature y and predictor x
at N entities (x1,y1), (x2,y2),…, (xN,yN), we are interested at finding a linear equation
relating them so that

y ¼ axþ b ð3:4Þ

The exact fit can occur only if all pairs (xi,yi) belong to the same straight line on
(x,y)-plane, which is rather unlikely on real-world data. Therefore, Eq. (3.4) will
have an error at each pair (xi,yi) so that the equation should be rewritten as

yi ¼ axiþ bþ ei ði ¼ 1; 2; . . .;NÞ ð3:40Þ

where ei are referred to as errors or residuals. The problem is of determining the two
parameters, a and b, in such a way that the residuals are least-squares minimized,
that is, the average square error

Table 3.2 Observed
numbers of primary schools
versus those predicted from
the population resident data
on some market towns

PS
obs.

PS
comp.

Pop PS
obse.

PS
comp.

Pop

1 0.89 2040 2 3.35 5676
2 0.97 2230 2 3.9 7044
2 1.06 2452 4 3.12 10,092
2 1.19 2786 7 6.44 15,865
1 1.54 3660 4 7.05 17,390
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Lða; bÞ ¼ Rie
2
i =N ¼ Riðyi � axi � bÞ2=N; ð3:5Þ

reaches its minimum over all possible a and b, given xi and yi (i = 1, 2, …,N). This
minimization problem is easy to solve with the elementary calculus tools.

Indeed L(a, b) is a “bottom down” parabolic function of a and b, so that its
minimum corresponds to the point at which both partial derivatives of L(a, b) are
zero (the first-order optimality condition):

@L=@a ¼ 0 and @L=@b ¼ 0:

Leaving the task of actually finding the derivatives to the reader as an exercise,
let us focus on the unique solution to the first-order optimality equations defined by
the following formulas (3.6), for a, and (3.8), for b:

a ¼ qrðyÞ=rðxÞ ð3:6Þ

where

q ¼ Riðxi � mxÞðyi � myÞ
� �

= NrðxÞrðyÞ½ � ð3:7Þ

is the so-called correlation coefficient and mx, my are means of xi, yi, respectively;

b ¼ my � amx ð3:8Þ

By putting these optimal a and b into (3.5), one can express the minimum
criterion value as

Lmða; bÞ ¼ r2ðyÞð1� q2Þ ð3:9Þ

The Eq. (3.4) is referred to as the linear regression of y over x, index q in (3.6)
and (3.7) as the correlation coefficient, its square q2 in (3.9) as the determinacy
coefficient, and the minimum criterion value Lm in (3.9) is referred to as the
unexplained, or residual, variance.

3.2.4 Correlation Coefficient and Its Properties

The meaning of the coefficients of correlation and determinacy, in the data recovery
framework of data analysis, is provided by Eqs. (3.6)–(3.9). Here are some
formulations.

Property 1 Determinacy coefficient q2 shows the rate of decrease of the variance
of y after its linear relation to x has been taken into account by the regression
(follows from (3.9)).
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Property 2 Correlation coefficient q ranges between −1 and 1, because q2 is
between 0 and 1, as follows from the fact that value Lm in (3.9) cannot be negative
because the items in its expression (3.5) are all squares. The closer q to either 1 or
−1, the smaller are the residuals in the regression equation. For example, q = 0.9
implies that y’s unexplained variance Lm is 1 − q2 = 19% of the original value.

Property 3 The slope a is proportional to q according to (3.6); a is positive or
negative depending on the sign of q. If q = 0, the slope is 0: in this case, y and x are
referred to as not correlated.

Property 4 The correlation coefficient q does not change under shifting and
rescaling of x and/or y, which can be seen from Eq. (3.7). Its formula (3.7) becomes
especially simple if the so-called z-scoring has been applied to standardize both
x and y.

To perform z-scoring over a feature, its mean m is subtracted from all the values
and the results are divided by the standard deviation r:

x0i ¼ ðxi�mxÞ=rðxÞ and y0i ¼ ðyi � myÞ=rðyÞ; i ¼ 1; 2; . . .;N

Using the z-score standardization, formula (3.7) can be rewritten as

q ¼ Rix
0
iy
0
i=N ¼ x0; y0h i=N ð3:70Þ

where hx0; y0i denotes the inner product of vectors x0 ¼ ðx0iÞ and y0 ¼ ðy0iÞ.
The next property refers to one of the fundamental discoveries by K. Pearson,

interpretation of the correlation coefficient in terms of the bivariate Gaussian dis-
tribution. A generic formula for the density function of this distribution, in the case
in which the features have been pre-processed by using z-score standardization
described above, is

f ðu;RÞ ¼ C expf�uTR�1u=2g ð3:10Þ

where u = (x, y) is a two-dimensional vector of two variables, x and y, under
consideration and R is the so-called correlation matrix

R ¼ 1 q
q 1

� �
In formula (3.10), q is a parameter with a very clear geometric meaning.

Consider a set of points u = (x,y) on (x,y)–plane making function f(u, R) in (3.10)
equal to a pre-specified constant. Such a set makes the values of uTR−1u constant
too. That means that a constant density set of points u = (x, y) must satisfy equation
x2 − 2qxy + y2 = const. This equation defines a well-known quadratic curve, the
ellipsis. At q = 0 the equation becomes that of a circle, x2+ y2 = const, and the
greater the difference between q and 0, the more skewed is the ellipsis, so that at
q = ±1 the ellipsis becomes a bisector line y = ±x + b because the left part of the
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equation makes a full square, in this case, x2 ± 2xy + y2 = const, that is,
(y ± x)2 = const. The size of the ellipsis is proportional to the constant: the greater
the constant the greater the size.

Property 5 The correlation coefficient (3.7) is a sample based estimate of the
parameter q in the Gaussian density function (3.10) under the conventional
assumption that the sample points (yi, xi) are drawn from a Gaussian population
randomly and independently.

This striking fact is behind a longstanding controversy. Some say that the usage of
the correlation coefficient is justified only when the sample is taken from a Gaussian
distribution, because the coefficient has a clear-cut meaning only in this model. This
logic seems somewhat overly restrictive. True, the usage of the coefficient for esti-
mating the density function is justified only when the function is Gaussian. However,
when trying to linearly represent one variable through the other, the coefficient has a
very different meaning in the approximation context, which has nothing to dowith the
Gaussian distribution, as expressed above with Eqs. (3.6)–(3.9).

3.2.5 Linearization of Non-linear Regression

Non-linear dependencies also can be fit by using the same criterion of minimizing
the square error. Consider a popular case of exponential regression, that is, repre-
senting correlation between target y and predictor x as y = aebx where a and b are
unknown constants and e the base of natural logarithm. Given some a and b, the
average square error is calculated as

E ¼ y1 � a expðbx1Þ½ �2þ . . .þ yN � a expðbxNÞ½ �2
� �

=N ¼ Ri yi � a expðbxiÞ½ �2=N
ð3:11Þ

There is no method that would straightforwardly lead to a globally optimal
solution of the problem of minimization of E in (3.11) because it is too complex
function of the unknown values. This is why conventionally the exponential
regression is fit by what should be referred to as its linearization: transforming the
original problem to that of linear regression.

Indeed, let us take the logarithm of both parts of the equation that we want to fit,
y = aebx. The resulting equation is ln(y) = ln(a) + bx. This equation has the format
of linear equation, z = ax + b, where z = ln(y), a = b and b = ln(a). This leads to
the following idea. Let us take the target be z = ln(y) with its values zi = ln(yi). By
fitting the linear regression equation with data xi and zi, one finds optimal a and b,
so that the original exponential parameters are found as a = exp(b) and b = a.
These values do not necessarily minimize (3.11), but the hope is that they are close
to the optimum anyway. Unfortunately, this may be very wrong sometimes as the
material in Project 3.2. clearly demonstrates.
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Q.3.2. Find the derivatives of L over a and b and solve the first-order optimality
conditions.
Q.3.3. Derive the optimal value of L in (3.9) for the optimal a and b.
Q.3.4. Prove or find a proof in the literature that any linear equation
y = ax + b corresponds to a straight line on Cartesian xy plane, for which a is the
slope and b intercept.

Q.3.5. Find the inverse matrix R−1 for R ¼ 1 q
q 1

� �
.

A. R�1 ¼ 1 �q
�q 1

� �
=ð1� q2Þ:

3.2.6 Linear Regression: Computation

Regression is a technique for representing the correlation between x and y as a
linear function (that is, a straight line on the plot), y = slope * x + intercept where
slope and intercept are constants, the former expressing the change in y when x is
added by 1 and the latter the level of y at x = 0. The best possible values of slope
and intercept (that is, those minimizing the average square difference between real
y’s and those found as slope * x + intercept) are expressed in MatLab, according to
formulas (3.6) and (3.8), as follows:

�slope=corr(x,y)*std(y)/std(x);
�intercept=mean(y) - slope*mean(x);

Here corr(x,y) is the MatLab command for computing Pearson correlation
coefficient between x and y (3.7). There is another MatLab operation “corrcoef”
which leads to an estimate of the matrix R above.

Project 3.1. 2D Analysis, Linear Regression and Bootstrapping
Let us take the Students data table as a 100 � 8 array a in MatLab, pick any two
features of interest and plot entities as points on the Cartesian plane formed by the
features. For instance, take Age as x and Computational Intelligence mark as y:

�x=a(:,4); % Age is 4-th column of array “a”
�y=a(:,8); % CI score is in 8-th column of “a”

Then student 1 (first row) will be presented by point with coordinates x = 28 and
y = 90 corresponding to the student’s age and CI mark, respectively. To plot them
all, use command:
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�plot(x,y,‘k’)
% k refers to black colour, “.” dot graphics; ‘mp’ stands for magenta pentagram;
% see others by using “help plot”

Unfortunately, this gives a very tight presentation: some points are on the bor-
ders of the drawing. To make the borders stretched out, one needs to change the
axis, for example, as follows:

�d=axis; axis(1.2*d-10);

This transformation is presented on the right part of Fig. 3.9. To make both plots
presented on the same figure, use “subplot” command of MatLab:

�subplot(1,2,1)
�plot(x,y,′k.′);
�subplot(1,2,2)
�plot(x,y,′k.′);
�d=axis; axis(1.2*d-10);

Whichever presentation is taken, no regularity can be seen on Fig. 3.9 at all.
Let’s try then whether anything better can be seen for different occupations. To do
this, one needs to handle entity sets for each occupation separately:
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Fig. 3.9 Scatter plot of features “Age” and “CI score”; the display on the right is a rescaled
version of that on the left
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�o1=find(a(:,1)==1); % set of indices for IT
�o2=find(a(:,2)==1); % set of indices for BA
�o3=find(a(:,3)==1); % set of indices for AN
�x1=x(o1);y1=y(o1); % the features x and y at IT students
�x2=x(o2);y2=y(o2); % the features at BA students
�x3=x(o3);y3=y(o3); % the features at AN students

Now we are in a position to put, first, all the three together, and then each of
these three separately (again with the command “subplot”, but this time with four
windows organized in a two-by-two format, see Fig. 3.10).

�subplot(2,2,1); plot(x1,y1, ′*b′,x2,y2,′pm′,x3,y3,′.k′);% all three
�d=axis; axis(1.2*d-10);
�subplot(2,2,2); plot(x1,y1, ′*b′); % IT plotted with blue stars
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Fig. 3.10 Joint and individual displays of the scatter-plots at the occupation categories (IT star,
BA pentagrams, AN dots)

3.2 Two-D Linear Regression and Special Cases 181



�d=axis; axis(1.2*d-10);
�subplot(2,2,3); plot(x2,y2,′pm′); %BA plotted with magenta pentagrams
�d=axis; axis(1.2*d-10);
�subplot(2,2,4); plot(x3,y3,′.k′); % AN plotted with black dots
�d=axis; axis(1.2*d-10);

Of the three occupation groups, some potential relation can be seen only in the
AN group: it is likely that “the greater the age the lower the mark” regularity holds
in this group (black dots in the Fig. 3.10’s bottom right). To check this, let us utilize
the linear regression.

Linear regression equation, y = slope * x + intercept, is estimated by using
MatLab, according to formulas (3.4)–(3.6), as follows:

�cc=corrcoef(x3,y3);rho=c(1,2);% producing rho = -0.7082
�slope=rho*std(y3)/std(x3); % this produces slope=−1.33;
�intercept=mean(y3) - slope*mean(x3); % this produces intercept=98.2;

Since we are interested in group AN only, we apply these commands at
AN-related values x3 and y3 to produce the linear regression as y3 =
98.2 − 1.33 * x3. The slope value suggests that every year added to the age, in
general decreases the mark by 1.33, so that aging by 3 years would lead to the loss
of 4 mark points. Obviously, care should be taken to draw realistic conclusions.

Altogether, the regression equation explains rho^2 = 0.50 = 50% of the total
variance of y3—not too much, as is usual in social and human sciences.

Let us take a look at the reliability of the regression equation with bootstrapping,
the popular computational experiment technique for validating data analysis results
(see Sect. 2.2.3.3).

Bootstrapping is based on a pre-specified number of random trials, for instance,
5000. Each trial consists of the following steps:

(i) randomly selecting an entity N times, with replacement, so that the same
entity can be selected several times whereas some other entities may be never
selected in a trial. (As shown in Sect. 2.2.3.3, on average only 63% entities
get selected into the sample.) A sample consists of N entities because this is
the number of entities in the set under consideration. In our case, N = 31.
One can use the following MatLab command:

�N=31;ra=ceil(N*rand(N,1));
% rand(N,1) produces a column of N random real numbers, between 0 and 1
each.
% Multiplying this by N stretches them to (0,N) interval; the operation ceil
rounds the numbers up to integers.

(ii) the sample ra is assigned with their data values according to the original data
table:

�xt=xx(ra);yt=yy(ra);
% here xx and yy represent the predictor and target, respectively;
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% they are x3 and y3, respectively, which can be taken into account with
assignments
% xx=x3; and yy=y3.

so that coinciding entities get identical feature values.
(iii) a data analysis method under consideration, currently “linear regression”,

that basically computes the rho, the slope and the intercept, applies to this
data sample to produce the trial result.
To do a number of trials (5000, in this case), one should run (i)–(iii) in a
loop:

�for k=1:5000; ra=ceil(N*rand(N,1));

xt=xx(ra);yt=yy(ra);
cc=corrcoef(xt,yt);
rh(k)=cc(1,2);
sl(k)=rh(k)*std(yt)/std(xt); inte(k)=mean(yt)-sl(k)*mean(xt);

end
% the results are 5000-strong set of columns rh (correlations), sl (slopes)
% and inte (intercepts)

Now we can check the mean and standard deviation of the obtained distribu-
tions. Commands

�mean(sl); std(sl)

produce values: −1.33 and 0.23 for the mean and standard deviation, respectively.
That means that the original value of slope = −1.33 is confirmed with the boot-
strapping, but now we have obtained its standard deviation, 0.23, as well. Similarly
mean/std values for the intercept and rho are computed. They are, respectively,
98.2/9.0 and −0.704/0.095.

We can plot the 5000 values found as 30-bin histograms (see Fig. 3.11):

�subplot(1,2,1); hist(sl,30)
�subplot(1,2,2); hist(in,30)

The command subplot (1,2,1) creates a pane with one row consisting of two
windows for plots and puts the follow-up plot into the first window (that on the
left). Command subplot (1,2,2) moves the action into the second window which is
on the right of Fig. 3.11.

To derive the 95% confidence boundaries for the slope, intercept and correlation
coefficient, one may use both pivotal and non-pivotal methods.

The pivotal method uses the hypothesis that the bootstrap sample is indeed a
random sample from a Gaussian distribution. Parameters of this distribution for
slope are determined with the following commands:

�msl=mean(sl); ssl=std(sl);
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Since 95% of the Gaussian distribution fall within interval of ±1.96*std, the
95% confidence boundaries are derived, for the slope, as follows:

�lbsl=msl – 1.96*ssl; rbsl=msl+1.96*ssl

The non-pivotal estimates require no such a hypothesis and are based on the
bootstrap distribution as is. One just sorts all the values and takes 2.5% quantiles on
both extremes of the range:

�ssl=sort(sl); lbn=ssl(126);rbn=ssl(4875);

Indeed, we need to cut out 5% items from the sample, to make a 95% confidence
interval. Since 5% of 5000 is 250, conventionally divided in two halves, this
requires cutting off first 125 observations as well as the last 125 observations of the
presorted list of the bootstrap values, which brings us to ssl(126) and ssl(4875) as
the non-pivotal boundaries for the slope value.

All these estimates are presented in Table 3.3. The pivotal and non-pivotal
estimates do not fall too far apart. Either can be taken as parameters of the boundary
regressions.
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Fig. 3.11 30-bin histograms of the slope (left) and intercept (right) after 5000 bootstrapping trials

Table 3.3 Parameters of the bootstrap distributions, as well as pivotal and non-pivotal boundaries

Mean St. dev. Pivotal boundaries Non-pivotal
boundaries

Left Right Left Right

Slope
Intercept
Corr. coef.

−1.337
98.510
−0.707

0.241
9.048
0.094

−1.809
80.776
−0.891

−0.865
116.244
−0.523

−1.800
80.411
−0.861

−0.850
116.041
−0.493
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This all can be visualized by, first, defining the three regression lines, the regular
one and two corresponding to the lower and upper estimate boundaries, respec-
tively, with

�y3reg=slope*x3+intercept;
�y3regleft=lbsl*x3+lbintercept;
�y3regright=rbsl*x3+rbintercept;
and then plotting the four sets onto the same Fig. 3.12.

�plot(x3,y3,′*k′,x3,y3reg,′k′,x3,y3regleft,′r′,x3,y3regright,′r′)
% x3,y3,′*k′ presents student data as black stars; x3,y3reg,′k′ presents the
% real regression line in black
% x3,y3regleft,′g′ and x3,y3regright,′g′ for boundary regressions in green

The lines on Fig. 3.12 show the boundaries of the regression line for 95% of
trials.

Project 3.2. Non-linear and Linearized Regression: A Nature-Inspired
Algorithm
In many domains the correlation between features is not necessarily linear. For
example, in economics, processes related to the inflation over time are modeled by
using the exponential function. A similar way of thinking applies to the processes of
growth in biology. Variables describing climatic conditions obviously have a cyclic
character; etc. The power law in social systems is nonlinear too.

Consider, for example, a power law function y = axb where x is predictor and
y target variables whereas a and b are unknown constant coefficients. Given the
values of xi and yi on a number of observed entities i = 1,…, N, the power law
regression problem can be formulated as the problem of minimizing the summary
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Fig. 3.12 Regression of CI score over Age (black line) within occupation category AN with
boundaries covering 95% of potential biases due to sample fluctuations
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squared or absolute error over all possible pairs of coefficients a and b. There is no
method that would straightforwardly lead to a globally optimal solution of the
problem because minimizing a sum of many exponents is a complex problem. This
is why conventionally the power law regression is fit by transforming it into a linear
regression problem. Indeed, the equation of the power law regression, taken with no
errors, is equivalent to the equation of linear regression with log(x) being predictor
and log(y) the target: log(y) = blog(x) + log(a).This gives rise to the very popular
strategy of linearization of the problem. First, transform xi and yi to vi = log(xi) and
zi = log(yi) and fit the linear regression equation for given vi and zi; then convert the
found coefficients into those of the original exponential function. This strategy
seems especially suitable since the logarithm of a variable typically is much
smoother so that the linear fit is better under the logarithm transformation.

There is one caveat, however: the fact that found coefficients are optimal in the
linear regression problem does not necessarily imply that the converted exponents
are necessarily optimal in the original problem. This we are going to explore in this
project.

Nature-inspired optimization is a computational intelligence approach to mini-
mize a non-linear function. Rather than look and polish a single solution to the
optimization problem under consideration, this approach utilizes a population of
solutions iteratively evolving from generation to generation, according to rules
imitating a real-world evolutionary process and survival of the fittest. The rules
typically include: (a) random changes from generation to generation such as
“mutations” and “crossovers” in earlier, so-called “genetic”, algorithms, and
(b) policies for selecting and maintaining the best found solutions, the “elite”. After
a pre-specified number of iterations, the best solution among those observed in
computations is reported as the outcome.

To start the evolutionary optimization process, one should first define a restricted
area of admissible solutions so that no member of the population may leave the
area. This warrants that the population will not explode by moving solutions to the
infinity. There can be different ways for determining such an area. Let us follow
this. Under the hypothesis of a power law relation y = abx, for any two entities i and
j, the following equations should hold: zi = b * vi+ c and zj = b * vj+ c where
c = log(a), zi = log(yi) and vi = log(xi). From these, b and c can be expressed as
follows: b = (zi − zj)/(vi − vj), c = (vi * zj − vj * zi)/(vi − vj), which may lead to
different values of b and c at different i and j. Denote bm and bM the minimum and
the maximum of (zi − zj)/(vi − vj), and cm and cM the minimum and maximum of (vi
* zj − vj * zi)/(vi − vj) over those i and j for which vi − vj 6¼ 0. One would expect that
the admissible b and c should be within these boundaries, which means that the area
of admissible solutions should be defined by the inequalities (bm,cm) � (b,c) �
(bM,cM). Since the optimal values of (b,c) should be around the averages of the
ratios above, that is, lie deep inside the area between their maxima and minima, it
helps to speed up the computation if one takes only those pairs (i,j) at which the
values of vi, vj and zi, zj are not too close to 0 so that their logarithms are not that far
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away from 0, and, similarly, the differences between them should be neither that
small nor that high. This approach is implemented in MatLab code ddr.m in
Appendix A.3.

For the step of producing the next generation, let us denote the population’s
p � 2 array by f, at the current iteration, and by f′, at the next iteration. The
transition from f to f′ is done in three steps. First, take the row of mean values within
the columns of f and repeat it p times in a p � 2 array mf. Then make a Gaussian
random move:

fn ¼ fþ randnðp; 2Þ: �mf=20

Here randn(p,2) is a p � 2 array of (pseudo) random numbers generated
according to Gaussian distribution N(0,1) with 0 expectation and 1 variance. The
symbol .* denotes the operation of multiplication of corresponding elements in
matrices, so that (aij).*(bij) is a matrix whose (i,j)-th elements are products aij * bij.
This random matrix is scaled down by mf/20 so that the move accounts for about
5% (one twentieth) of the average f values.

Since the move is to be restricted within the admissibility area, any a-element
(first column of fn) which is greater than aM, is to be changed for aM, and any a-
element smaller than am is to be changed for am. Similar trimming applies to b-
elements. Denote the result by fr.

At the next step, take a p � 2 array el whose rows are the same stored elite
solution and arrive at the next generation f′ by using the following “elite mix”:

f 0 ¼ 0:7frþ 0:3el

The elite mix moves all population members in the direction of the best solution
found so far by 30%, which has been found work well in the examples of our
interest.

This procedure is implemented in MatLab code nlr.m that relies on ddr.m at step
1 and a subroutine, delta, for evaluating the fitness (see A.4 in Appendix).

Consider now this experiment. Generate predictor x as a 50-long vector of
random positive entries between 0 and 10, x = 10 * rand(1,50), and define
y = 2 * x1.07 with the normal additive noise 2 * N(0,1) where 0 is the mean and 1
the variance, which is suppressed when overly negative, according to the Matlab
code line

�for ii=1:50;yy=2*x(ii)^1.07 +2*randn;y(ii)=max(yy,1.01);end;

When using the conventional linearized regression model by linearly mapping
log(x) to log(y), to extract b and a (as the exponent of the found c) from this, the
program llr.m implementing this approach produces a = 3.0843 and b = 0.8011
leading to the averaged squared error y − axb equal to 3.41, so that the standard
error is 3.10, about 20% of the mean y value, 10.1168. It is not only that the error is
high, but also a wrong law is identified. The generated function y stretches x out
(b > 1), whereas the found function stretches x in (b <1).
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Here are the results. Minimization of the averaged squared error y − axb of the
original model directly by using the code nlr.m, that implements the nature-inspired
algorithm, the values are a = 3.0293 and b = 1.0760 leading to the average squared
error of 0.0003 and the standard error of 0.0180. In contrast to the values found at
the linearized scheme, the parameters a and b here are very close to those generated.

This obviously considerably outperforms the conventional procedure. Similar
results can be found at different values of the noise variance.

Case-Study 3.1. Growth of Investment
Let us apply a similar approach to the following example involving variables x and
y defined over a period of 20 time moments as presented in Table 3.4.

Variable x can be thought of as related to the time periods whereas y may
represent the value of a fund. In fact, the components of x are numbers from 1 to 20
divided by 10, and y is obtained from them in MatLab according to formula
y = 2 * exp(1.04 * x) + 0.6 * randn where randn is the normal (Gaussian) random
variable with the mathematical expectation 0 and variance 1.

Let us, first, try a conventional approach of finding the average growth of the
fund during all the period.

The average growth of the investment according to these data is conventionally
expressed as the root 19, or power 1/19, of the ratio y20/y01, that is, 1.13. This
estimates the average growth as 14% per period—which is by far greater than 4% in
the data generating model.

Let us now try to make sense of the relation between x and y by applying the
conventional linearization strategy to this data.

The strategy of linearization of the exponential equation outlined in Sect. 3.2.5
leads to values 1.1969 and 0.4986 for b and c, respectively, to produce a = ec =
1.6465 and b = 1.1969 according to formulas there. As one can see, these differ
from the original a = 2 and b = 1.04 by the order of 15–20%. The value of the
squared error here is E = 13.90. See Fig. 3.13 representing the data.

Let us now apply the nature inspired approach to the original non-linear
least-squares problem.

The program nlrm.m implementing the evolutionary approach described in
Project 3.2 found a = 1.9908 and b = 1.0573. These are within 1–3% of the error
from the original values a = 2 and b = 1.03. The summary squared error here is
E = 7.45, which is by far smaller than that found with the linearization strategy.

The two found solutions can be represented on the scatter-plot graph, see
Fig. 3.14. One can see that the linearized version has a much steeper exponent,
which becomes visible at later periods.

Table 3.4 Data of investment y at time moments x from 0.10–3.00

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y 1.3 1.82 3.03 3.29 3.3 3.9 3.84 3.24 3.23 6.5
x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 3
y 6.93 7.23 7.91 9.27 9.45 11.18 13.48 13.51 15.4 15.91
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Q.3.6. Consider a binary feature defined on seven entities so that it is category A on
the first three of them, and category B on the next four. Let us draw two dummy 1/0
variables, xA and xB, corresponding to each so that xA = 1 on the first three entities
and xA = 0 on the rest, whereas xB = 0 on the first three entities and xB = 1 on the
rest. What can be said of the correlation coefficient between xA and xB?
A. The correlation coefficient between xA and xB is -1 because xA + xB = 1 for all
entities so that xA = −xB + 1.
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Fig. 3.13 Plot of the original pair (x,y) in which y is a noisy exponential function of x (on the left)
and plot of the pair (x,z) in which z =ln(y). The plot on the right looks somewhat straighter indeed,
though the correlation coefficients are rather similar, 0.970 for the plot on the left and 0.973 for the
plot on the right
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Fig. 3.14 Two fitting exponents are shown, with stars and dots, for the data in Case-Study 3.1
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Q.3.7. Extend the nature-inspired approach to the problem of fitting a linear
regression with a nonconventional criterion such as the average relative error
defined by formula 1=N

PN
i¼1 ei=yij j.

Case-Study 3.2. Correlation Between Iris Sepal Length and Width
Take x and y from the Iris set in Table 1.1 as the Sepal’s length and width,
respectively.

A scatter plot of x and y is presented on the left part of Fig. 3.15. This is a loose
cloud of points which looks similar to that on the left part of Fig. 3.6, of no
correlation. Indeed the correlation coefficient value here is not only very small,
−0.12, but also negative, which is somewhat odd, because intuitively the features
should be positively correlated as reflecting the size of the same flower.

To see a particular reason for the low, and negative, correlation, one should take
into account that the sample is not homogeneous: the Iris set consists of 50 specimens
of each of three different taxa. When the taxa are separated (see Fig. 3.15 on the
right), the positive correlation is restored. The correlation coefficients are 0.74, 0.53
and 0.46 in taxon one, two and three, respectively. Here we see a nice example of the
negative effect of the non-homogeneity of the sample on the data analysis results.

3.3 Multivariate Linear Regression

3.3.1 Formulation

Let us extend the notion of linear regression from the bivariate case to a multivariate
case, when several features can be used as predictors for a target feature.
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Fig. 3.15 Scatter plot of Sepal length and Sepal width from Iris data set (Table 1.1), as a whole
on the left and taxon-wise on the right. Taxon 1 is presented by circles, taxon 2 by triangles, and
taxon 3 by dots
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The problem of multivariate linear regression can be formulated as a particular
case of the correlation learning problem with just one quantitative target variable
u and linear admissible rules so that

u ¼ w1x1þw2x2þ . . .þwpxpþw0

where w0, w1,…, wp are unknown weights, parameters of the model.
For any entity i = 1, 2, …, N, the rule-computed value of u

ûi ¼ w1xi1þw2xi2þ . . .þwpxipþw0

differs from the observed one by di ¼ ûi� uij j, which may be zero—when the
prediction is exact. To find w1, w2, …, wp, w0, one can minimize the summary
square error

D2 ¼ Rid
2
i ¼ Ri ui�w1 � xi1 � w2 � xi2 � . . .� wp � xip � w0

� 	2 ð3:12Þ

over all possible parameter vectors w = (w0, w1,…,wp).
To make the problem treatable in terms of linear operations, a fictitious feature x0

is introduced such that all its values are 1: xi0 = 1 for all i = 1, 2, …, N. Then
criterion D2 can be expressed as D2 ¼ Ri ui � hwi; xiið Þ2 using the inner products
hw; xii where w = (w0, w1,…,wp) and xi = (xi0, xi1, …, xip) are (p + 1)-dimensional
vectors of which all xi are known whereas w is not. From now on, the unity feature
x0 is assumed to be part of data matrix X in all correlation learning problems.

The criterion D2 in (3.12) is but the squared Euclidean distance between the
N-dimensional target feature column u = (ui) and vector û = Xw whose components
are ûii ¼ hw; xii. Here X is N�(p + 1) matrix whose rows are xi (augmented with
the component xi0 = 1, thus being (p + 1)-dimensional) so that Xw is the matrix
product of X and w. Vectors defined as Xw for all possible w’s form (p + 1)-
dimensional vector space, referred to as X-span.

Thus, the problem of minimization of (3.12) can be reformulated as follows:
given a target vector u, find its projection û in the X-span space. The global solution
to this problem is well-known: it is provided by a matrix PX applied to u:

û ¼ PXu ð3:13Þ

where PX is the so-called orthogonal projection operator, an N � N matrix,
defined as:

PX ¼ X XTX
� 	�1

XT ð3:14Þ
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so that

û ¼ XðXTXÞ�1XTu and w ¼ ðXTXÞ�1XTu: ð3:15Þ

Matrix PX projects every N-dimensional vector u to its nearest match in the
(p + 1)-dimensional X-span space. The inverse (XTX)−1 does not exist if the rank of
X, as it may happen, is less than the number of columns in X, p + 1, that is, if matrix
XTX is singular or, equivalently, the dimension of X-span is less than p + 1. In this
case, the so-called pseudo-inverse matrix (XTX)+ can be used as well. This is not a
big deal computationally: for example, in MatLab one just puts pinv(XTX) instead
of inv(XTX).

The quality of approximation is evaluated by the minimum value D2 in (3.12)
averaged over the number of entities and related to the variance of the target
variable. Its complement to 1, the determinacy coefficient, is defined by the
equation

q2 ¼ 1� D2=ðNr2ðuÞÞ ð3:16Þ

The determinacy coefficient shows the proportion of the variance of u explained
by the linear regression. Its square root, q, is referred to as the coefficient of
multiple correlation between u and X = {x0, x1, x2, …, xp}.

3.3.2 Case Studies

Case-Study 3.3. Linear Regression for Market Town Data
Consider feature Post expressing the number of post offices in Market towns
(Table 1.2 on p. 15) and try to relate it to other features in the table. It obviously
relates to the population. For example, towns with population of 15,000 and greater
are those and only those where the number of post offices is 5 or greater. This
correlation, however, is not as good as to give us more guidance in predicting Post
from the Population. For example, at the seven towns whose population is from
8000 to 10,000 any number of post offices from 1 to 4 may occur, according to the
table. This could be attributed to effects of services such as a bank or hospital
present at the towns. Let us specify a set of features in Table 1.2 that can be thought
of as affecting the feature Post, to include in addition to Population some other
features—PS—Primary schools, Do—General Practitioners, Hos—Hospitals, Ba—
Banks, Sst—Superstores, and Pet—Petrol Stations; seven features altogether, taken
as the set of input variables (predictors).
What we want is to establish a linear relation between this set and target feature
Post. A linear relation is an equation representing Post as a weighted sum of input
features plus a constant intercept; the weights can be any reals, not necessarily
positive. If the relation is supported by the data, it can be used for various purposes
such as analysis, prediction and planning.
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In the example of seven Market town features used for linearly relating them to
Post Office feature, the least-squares optimal weight coefficients are presented in
Table 3.5. Each weight coefficient shows how much the target variable would
change on average if the corresponding feature is increased by a unity, while the
others do not change. One can see that increasing population by a thousand would
give a similar effect as adding a primary school, about 0.2, which may seem absurd
in the example as Post Office variable can have only integer values. Moreover, the
linear function format should not trick the decision maker into thinking that
increasing different input features can be done independently: the features are
obviously not independent so that increase of, say, the population will lead to
respectively adding new schools for the additional children. Still, the weights show
relative effects of the features—according to Table 3.5, adding a doctor’s surgery in
a town would lead to maximally possible increase in post offices. The maximum
value is assigned to the intercept in this case. What this may mean? Is it the number
of post offices in an empty town with no population, hospitals or petrol stations?
Certainly not. The intercept expresses that part of the target variable which is
relatively independent of the features taken into account. It should be also pointed
out that the weight values are relative not to just feature concepts but specific scales
in which features measured. Change of a feature scale, say 10-fold, would result in
a corresponding, inverse, change of its weight (due to the linearity of the regression
equation). This is why in statistics the relative weights are considered for the scales
expressed in units of the standard deviation. To find them, one should multiply the
weight for the current scale by the feature’s standard deviation (see Table 3.6).

The standardized weights are well justified when input features are mutually
uncorrelated—indeed, they show the pair-wise correlation with the target feature.
Yet in a situation of correlated features, like this, they seem to have much less
definite interpretation, except for showing the changes of the target in units of the
standard deviations, although some claim that they also reflect feature’s correlation
with the target or even importance for predicting the target. An argument against
their usage as a correlation measure is that, in fact, a regression coefficient multi-
plied by the standard deviation loses its “purity” as a measure of correlation to the
target at constant levels of the other features because the standard deviation does
not pertain to constant features. An argument against their usage as measures of

Table 3.5 Weight
coefficients of input features
at Post Office as target
variable for Market
towns data

Feature Weight

Pop_Res 0.0002
PSchools 0.1982
Doctors 0.2623
Hospitals −0.2659
Banks 0.077
Superstores 0.0028
Petrol −0.3894
Intercept 0.5784

3.3 Multivariate Linear Regression 193



importance for prediction is that the standardized coefficient has nothing to do with
the change of the coefficient of determinacy when the corresponding feature is
removed from the equation of regression.

Bring (1994) proposes to kill two birds with one stone: to clean up the standard
deviations from the non-constancy of the other features, which are claimed to reflect
the changes in the coefficients of determinacy. Specifically, take the variance of a
feature and take off the proportion of it unexplained by the linear regression of it
through the other features. The square root of the result represents the partial
standard deviation, which is proportional to the so-called “t-value”, and, in the
original squared form, to the change of the coefficient of determinacy inflicted by
the removal of the feature from the list of the explanatory variables (Bring 1994).
Unfortunately, this is not that simple, as the next Case-Study 3.4 shows.

Case-Study 3.4. Using Feature Weights Standardized
Table 3.7 presents the feature weights standardized with both the original and
partial standard deviations as well as the absolute reductions of the original coef-
ficient of determinacy 0.8295 after removal of the corresponding variables. There is
a general agreement between the absolute values of the first column and those in the
third column, but the second column has little in common with either of them.

Table 3.6 Standardized weight coefficients of input features at Post Office as target variable for
Market towns

Feature Weights in natural
scales, w

Standard deviations, s Weights in standardized
scales, w *s

Pop_Res 0.0002 6193.2 1.3889
PSchools 0.1982 3.7344 0.5419
Doctors 0.2623 1.3019 0.3414
Hospitals −0.2659 0.58 −0.1542
Banks 0.077 3.384 0.3376
Superstores 0.0028 1.7242 0.0048
Petrol −0.3894 1.637 −0.6375

Table 3.7 Different indexes to express the idea of importance of a feature in the Post regression
problem

Feature Weights expressed in
standard deviations

Weights with partial
standard deviations

Determinacy
coefficient reduction

Pop_Res 1.3889 1603 0.0247
PSchools 0.5419 1.02 0.0077
Doctors 0.3414 0.64 0.0055
Hospitals −0.1542 0.41 0.0023
Banks 0.3376 3.27 0.0059
Superstores 0.0048 1.07 0
Petrol -0.6375 0.96 0.0251
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A general analysis of a simpler problem of relation between the regression coef-
ficients and correlation coefficients between the target and input features can be
found in Waller and Jones (2010).

Amazingly, the convenient standardization involves negative weights, specifi-
cally at features Petrols and Hospitals. This can be an artifact of the method, related
to the effect of “replication” of features. One can think of Hospitals being a double
for Doctors, and Petrol, for Superstores. Thus, before jumping to conclusions, one
should check whether the minus disappears if the “replicas” are removed from the
set of features. As Table 3.8 shows, not in this case: the negative weights remain,
though they slightly change, as well as other weights. This illustrates that the
interpretation of linear regression coefficients as weights should be cautious and
restrained.

In our example, coefficient of determinacy q2 = 0.83, that is, the seven features
explain 83% of the variance of Post Office feature, and the multiple correlation is
q = 0.91. Curiously, the reduced set of five features (see Table 3.8) contributes
almost the same, 83.4% of the variance of the target variable. This may make one
wonder whether just one Population feature could suffice for doing the regression.
This can be tested with the 2D method described in Sect. 3.1 or with the nD method
of this section.

According to the formulation of the multivariate linear regression method, the
estimated parameters must be feature weight coefficients—no room for an intercept
in the formula. To accommodate the intercept, a fictitious feature whose all values
are unities is introduced. That is, an input data matrix X with two columns is to be
used: one for the Population feature, the other for the fictitious variable of all ones.
According to (3.10), this leads to the slope 0.0003 and intercept 0.4015, though
with somewhat reduced coefficient of determinacy, which is q2 = 0.78 in this case.
From the prediction point of view this may be all right, but the reduced feature set
looses on interpretation.

Table 3.8 Weight
coefficients for reduced set of
features at Post Office as
target variable for Market
towns data

Feature Weight

POP_RES 0.0003
PSchools 0.1823
Hospitals −0.3167
Banks 0.0818
Petrol −0.4072
Intercept 0.5898
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3.4 Linear Discrimination and SVM

3.4.1 Linear Discrimination

Discrimination is an approach to address the problem of drawing a rule to distin-
guish between two classes of entity points in the feature space, a “yes” class and
“no” class, such as for instance a set of banking customers in which a, typically
very small, subset of fraudsters constitutes the “yes” class and that of the others the
“no” class. On Fig. 3.16, entities of “yes” class are presented by circles and of “no”
class by squares.

The problem is to find a function u = f(x) that would separate the two classes in
such a way that f(x) is positive for all entities in the “yes” class and negative for all
the entities in the “no” class. When the discriminant function f(x) is assumed to be
linear, the problem is of linear discrimination. It differs from that of the linear
regression in that aspect that the target values here are binary, either “yes” or “no”,
so that this is a classification rather than regression, problem.

The classes on Fig. 3.16 can be discriminated by a straight—dashed—line
indeed. The dotted vector w, orthogonal to the “dashed line” hyperplane, represents
a set of coefficients at the linear classifier represented by the dashed line. Vector
w also shows the direction at which function f ðxÞ ¼ hw; xi � b grows. Specifically,
f(x) is 0 on the separating hyperplane, and it is positive above, and negative beneath,
that. With no loss of generality, w can be assumed to have its length equal to unity.
Then, for any x, the inner product hw; xi would express the length of the projection
of vector x along the direction of w.

To find an appropriate w, even in the case when “yes” and “no” classes are
linearly separable, various criteria can be utilized. A most straightforward classifier
is defined as follows: put 1 for “yes” and −1 for “no” and apply the least-squares
criterion of linear regression. This produces a theoretically sound solution
approximating the best possible—Bayesian—solution in a conventional statistics
model. Yet, in spite of its good theoretical properties, least-squares solution may be

+ side  x1

x2

w
-

+ side x1

x2

-

(a)                                (b)

Fig. 3.16 A geometric illustration of a separating hyper-plane between classes of circles and
squares. The dotted vector w on a is orthogonal to the hyper-plane: its elements are hyper-plane
coefficients, so that it is represented by equation hw; xi � b ¼ 0. Vector w points at the direction:
at all points above the dashed line, the circles included, function f ðxÞ ¼ hw; xi � b is positive. The
dotted lines on, b show the margin, and the squares and circle on them are support vectors
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not necessarily the best at some data configurations. In fact, it may even fail to
separate the positives from negatives when they are linearly separable. Consider the
following example.

Worked Example 3.4. A Failure of Fisher Discrimination Criterion
Let there be 14 2D points that are presented in Table 3.9 (first line) and displayed in
Fig. 3.17a. Points 1,2,3,4,6 belong to the positive class (dots on Fig. 3.17a), and the
others to the negative class (stars on Fig. 3.17a). Another set, obtained by adding to
each of the components a random number, according to the normal distribution with
zero mean and 0.2 the standard deviation, is presented in the bottom line of
Table 3.9 and Fig. 3.17b. The class assignment for the disturbed points remains the
same.

The optimal vectors w according to formula (3.15) are presented in Table 3.10 as
well as that for the separating, dotted, line in Fig. 3.17d.

Note that the least-squares solution depends on the values assigned to classes,
leading potentially to an infinite number of possible solutions under different
numerical codes for “yes” and “no”. A popular discriminant criterion of minimizing
the ratio of a “within-class error” over “out-of-class error”, proposed by R. Fisher in
his founding work of 1936, in fact, can be expressed with the least-squares criterion
as well. Just change the target as follows: assign N/N1, rather than +1, to “yes” class
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Fig. 3.17 a and b represent the original and perturbed data. The least squares optimal separating
line is added in c and d shown by solid. Entity 5 is wrongly assigned to the “dot” class according
to the solid line in (d); a separating line is shown dotted there
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and −N/N2 to “no” class, rather than −1 (see Duda et al. 2001, pp. 242–243). This
means that Fisher’s criterion may also lead to a failure in a linearly separable
situation (see Fig. 3.17d).

By far the most popular set of techniques, Support Vector Machine (SVM),
utilize a different criterion—that of maximum margin. The margin of a point x, with
respect to a hyperplane, is the distance from x to the hyperplane along its per-
pendicular vector w (Fig. 3.17a), which is measured by the absolute value of inner
product hw; xi. The margin of a class is defined by the minimum value of the
margins of its members. Thus the criterion requires, like L∞, finding such a
hyperplane that maximizes the minimum of class margins, that is, crosses the
middle of line between the nearest entities of two classes. Those entities that fall
on the margins, shown by dotted lines on Fig. 3.17b, are referred to as support
vectors; this explains the method’s title.

It should be noted that the classes are not necessarily linearly separable;
moreover, in most cases they are not. Therefore, the SVM technique is accompa-
nied with a non-linear transformation of the data into a high-dimensional space
which is more likely to make the classes linear-separable. Such a non-linear
transformation is provided by the so-called kernel function. The kernel function
imitates the inner product in the high-dimensional space and is represented by a
between-entity similarity function such as that defined by formula (3.20) on p. 202.

The intuition behind the SVM approach is this: if the population data—those not
present in the training sample—concentrate around training data, then having a
wide margin would keep classes separated even after other data points are added
(see Fig. 3.18). One more consideration comes from the Minimum Description
Length principle: the wider the margin, the more robust the separating hyperplane

Table 3.10 Coefficients of
straight lines on Fig. 3.17

Coefficients at

x y Intercept

LSE at original data −1.2422 -0.8270 5.2857
LSE at perturbed data −0.8124 −0.7020 3.8023
Dotted at perturbed data −0.8497 −0.7020 3.7846

Fig. 3.18 Illustrative
example of 2D entities
belonging to two classes,
circles and squares. The
separating line in the space of
Gaussian kernel is shown by
the dashed oval. The support
entities are shown by black

3.4 Linear Discrimination and SVM 199



is and the less information of it needs to be stored. A criticism of the SVM
approach is that the support vector machine hyperplane is based on the borderline
objects—support vectors—only, whereas the least-squares hyperplanes take into
account all the entities so that the further away an entity is the more it may affect the
solution, because of the quadratic nature of the least-squares criterion. Some may
argue that both borderline and far away entities can be rather randomly represented
in the sample under investigation so that neither should be taken into account in
distinguishing between classes: it is some “core” entities of the patterns that should
be separated—however, there has been no such an approach taken in the literature
so far.

3.4.2 Support Vector Machine (SVM) Criterion

Another criterion would put the separating hyperplane just in the middle of an
interval drawn through closest points of the different patterns. This criterion pro-
duces what is referred to as the support vector machine since it heavily relies on the
points involved in the drawing of the separating hyperplane (as shown on the right
of Fig. 3.16). These points are referred to as support vectors. A natural formulation
would be like this: find a hyperplane H : hw; xi ¼ b with a normed w to maximize
the minimum of absolute values of distances hw; xii � bj j to H from points xi
belonging to each of the classes. This, however, is rather difficult to associate with a
conventional formulation of an optimization problem because of the following
irregularities:

(i) an absolute value to maximize,
(ii) the minimum over points from each of the classes, and
(iii) w being of the length 1, that is, normed.

However, these all can be successfully tackled. The issue (i) is easy to handle,
because there are only two classes, on the different sides of H. Specifically, the
distance is hw; xii � b for “yes” class and �hw; xiiþ b for “no” class—this removes
the absolute values. The issue (ii) can be taken care of by uniformly using
inequality constraints

hw; xii � b� k for xi in “yes” class and
�hw; xiiþ b� k for xi in “no” class

and maximizing the margin k with respect to these constraints. The issue (iii) can be
addressed by dividing the constraints by k so that the norm of the weight vector
becomes 1/k, thus inversely proportional to the margin k. Moreover, one can
change the criterion now because the norm of the ratio w/k is minimized when k is
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maximized. Denote the “yes” class by ui = 1 and “no” class by ui = −1. Then the
problem of deriving a hyperplane with a maximum margin can be reformulated,
without the irregularities, as follows: find b and w such that the norm of w or its
square, hw;wi, is minimum with respect to constraints

uiðhw; xii � b Þ� 1 ði ¼ 1; 2; . . .;NÞ ð3:17Þ

This is a problem of quadratic programming with linear constraints, which is
easier to analyze in the format of its dual optimization problem. The dual problem
can be formulated by using the so-called Lagrangian, a common concept in opti-
mization, that is, the original criterion penalized by the constraints weighted by the
so-called Lagrange multipliers that are but penalty rates. Denote the penalty rate for
the violation of i-th constraint by ai. Then the Lagrangian can be expressed as

Lðw; b; aÞ ¼ hw;wi=2 þRiai ui hw; xii � bð Þ � 1ð Þ; ð3:18Þ

where hw;wi has been divided by 2 with no loss of generality, just for the sake of
convenience. The optimum solution minimizes L over w and b, and maximizes
L over non-negative a. The first order optimality conditions require that all partial
derivatives of L are zero at the optimum, which leads to equations Riaiui ¼ 0 and
w ¼ Riaiuixi. Multiplying the latter expression by itself leads to equation
hw;wi ¼ Rijaiajuiujhxi; xji. The second item in Lagrangian L becomes equal to
Riaiuihw; xii � Riaiuib − Riai ¼ hw;wi � 0� Riai. This leads us to the following,
dual, problem of optimization regarding the Lagrangian multipliers, which is
equivalent to the original problem: Maximize criterion

Riai � Rijaiajuiujhxi; xji=2 ð3:19Þ

subject to Riaiui ¼ 0 and ai � 0.
Support vectors are defined as those xi for which penalty rates are positive,

ai > 0, in the optimal solution—only they contribute to the optimal vector
w ¼ Riaiuixi; the others have zero coefficients and disappear.

It should be noted that the margin constraints can be violated, which is not
difficult to take into account—by using non-negative values ηi expressing the extent
of violations:

uiðhw; xii � bÞ� 1� gi ði ¼ 1; 2; . . .;NÞ

in such a way that they are minimized in a combined criterion hw;wi=2þCRigi
where C is a large “reconciling” coefficient that is a user-defined parameter. The
dual problem for the combined criterion remains almost the same as above, in spite
of the fact that an additional set of dual variables, bi, needs to be introduced as
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corresponding to the constraints ηi � 0. Indeed, the Lagrangian for the new
problem can be expressed as

Lðw; b; a; bÞ ¼ hw;wi=2� Riai ui hw; xii � bð Þ � 1ð Þ�Rigiðaiþ bi � CÞ;

which differs from the previous expression by just the right-side item. This implies
that the same first-order optimality equations hold, Riaiui ¼ 0 and w ¼ Riaiuixi,
plus additionally ai +bi = C. These latter equations imply that C � ai � 0 because
bi are non-negative.

Since the additional dual variables are expressed through the original ones,
bi = C − ai, the dual problem can be shown to remain unchanged and it can be
solved by using quadratic programming algorithms (see Vapnik 2006; Schölkopf
and Smola 2005). Recently, approaches have appeared for solving the original
problem as well (see Groenen et al. 2008).

3.4.3 Kernels

Situations at which classes are linearly separable are very rare; in real data, classes
are typically well intermingled with each other. To attack these typical situations
with linear approaches, the following trick can be applied. The data are nonlinearly
transformed into a much higher dimensional space in which, because of both
nonlinearity and higher dimension, the classes may be linearly separable. The
transformation can be performed only virtually because of specifics of the dual
problem: dual criterion (3.19) depends not on individual entities but rather just inner
products between them. This property obviously translates to the transformed
space, that is, to the transformed entities. The inner products in the transformed
space can be computed with the so-called kernel functions K(x,y) so that in criterion
(3.19) inner products hxi; xji are substituted by the kernel values K(xi,xj). Moreover,
by substituting the expression w ¼ Riaiuixi into the original discrimination function
f ðxÞ ¼ hw; xi � b we obtain its different expression f ðxÞ ¼ Riaiuihx; xii � b, also
involving inner products only, which can be used as a kernel-based decision rule in
the transformed space: x belongs to “yes” class if RiaiuiKðx; xiÞ � b[ 0.

It is convenient to define a kernel function over vectors x = (xv) and y = (yv)
through the squared Euclidean distance d2(x,y) = (x1 − y1)

2+ …+(xV − yV)
2

because matrix (K(xi,xj)) in this case is positive definite—a defining property of
matrices of inner products. Arguably, the most popular is the Gaussian kernel
defined by:

Kðx; yÞ ¼ exp �d2ðx; yÞ� 	 ð3:20Þ
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Q.3.8. Consider a full set Bn of 2n binary 1/0 vectors of length n like those
presented by columns below for n = 3:

1 0 0 0 0 1 1 1 1

2 0 0 1 1 0 0 1 1

3 0 1 0 1 0 1 0 1

These columns can be considered as integers coded in the binary number system;
moreover, they are ordered from 0 to 7. Prove that this set shutters any subset of
n (or less) points.

A. Indeed, let S be a set of elements i1, i2,…, in in Bn that are one-to-one labeled by
numbers from 1 to n. Consider any partition of S in two classes, S1 and S3. Assign 0
to each element of S1 and 1 to each element of S3. The partition follows that vector
of Bn that corresponds to the assignment.
Q.3.9. Consider set Bn defined above. Prove that its rank is n, that is, there are
n columns in matrix Bn that form a base of the space of n-dimensional vectors.
A. Take, for example, n columns ep that contain unity at p-th position whereas other
n-1 elements are zero (p = 1, 2, …n). These obviously are mutually orthogonal and
any vector x = (x1,…,xn) can be expressed as a linear combination x ¼ Rpxpep,
which proves that vectors ep form a base of the n-dimensional space.
Q.3.10. What is VC-dimension of the linear discrimination problem at an arbitrary
dimension p � 2?
A. The VC = dimension in this case is p + 1, because each subset of p points can
be separated from the others by a hyperplane, but there can be such (p + 1)-point
configurations that cannot be shattered using linear separators.

Worked Example 3.5. SVM for the Iris Dataset
Consider Iris dataset standardized by subtracting, from each feature column, its
midrange and dividing the result by the half-range.

Take the Gaussian kernel in (3.20) to find a support vector machine surface
separating Iris class 3 from the rest. The resulting solution embraces 21 supporting
entities (see Table 3.11), along with their “alpha” prices reaching into hundreds
and even, on two occasions, to the maximum boundary 500 embedded in the
algorithm.

There is only one error with this solution, entity 78 wrongly recognized as
belonging to taxon 3. The errors increase when we apply a cross-validation tech-
niques, though. For example, “leave-all-one-out” cross-validation leads to nine
errors: entities 63, 71, 78, 82 and 83 wrongly classified as belonging to taxon 3
(false positives), while entities 127, 133, 135 and 139 are classified as being out of
taxon 3 (false negatives).
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Q.3.11. Why only 10, not 14, points are drawn on Fig. 3.17b?

A. Because each of the points 11–14 doubles a point 7–10.

Q.3.12. What would change if the last four points are removed so that only points
1–10 remain?

A. The least-squares solution will be separating again

3.5 Learning Correlation with Neural Networks

3.5.1 Artificial Neuron and Neural Network: Presentation

Neural network is one of the most popular structures used for predictions of target
features. It is a network of artificial neurons modeling the neuron cell in a living
organism. A neuron cell fires an output when its summary input becomes higher
than a threshold. Dendrites bring signal in, axons pass it out, and the firing occurs
via a synapse, a gap between neurons, that makes the threshold (see Fig. 3.19).

This is modeled in the concept of artificial neuron as follows (see Fig. 3.20).
A neuron model is drawn as a set of input elements connected to an output. The
connections are assigned with wiring weights.

The input signals are data features or other neurons’ outputs. The output element
receives a combined signal, the sum of feature values weighted by the wiring
weights. The output compares this with a firing threshold, otherwise referred to as a
bias, and fires an output depending on the result. Ideally, the output is 1 if the
combined signal is greater than the threshold, and −1 if it is smaller than that. This
is, in fact, what is called the sign function of the difference, sign(x), which is 1, 0 or
−1 if x is positive, zero or negative, respectively. This activation function is overly
straightforward sometimes. Instead, the so-called sigmoid and symmetric sigmoid

Table 3.11 List of support
entities in the problem of
separation of taxon 3 (entities
101 to 150) in Iris data set
from the rest (thanks to
V. Sulimova for the
computation)

N Entity Alpha N Entity Alpha

1 18 0.203 12 105 3.492
2 28 0.178 13 106 15.185
3 37 0.202 14 115 53.096
4 39 0.672 15 118 15.724
5 58 13.63 16 119 449.201
6 63 209.614 17 127 163.651
7 71 7.137 18 133 500
8 78 500 19 135 5.221
9 81 18.192 20 139 16.111

10 82 296.039 21 150 26.498
11 83 200.312
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functions are considered as smooth exponent-based counterparts to sign(x). Their
graphs are shown alongside with that for sign(x) on Fig. 3.21. Sometimes the output
element is assumed as doing no transformation at all, just passing the combined
signal as the neuron’s output, which is referred to as a linear activation function.

The firing threshold, or bias, hidden in the box in neuron on the left on Fig. 3.20,
can be made explicit if one more, fictitious, input is added to the neuron.

This input is always equal to 1 so that its wiring weight is always added to the
combined input to the neuron. It is assumed to be equal to minus the bias so that the
total sum is the difference between the combined signal and the bias. In the

Fig. 3.19 Scheme of a neural cell

w1    w2                  wp

x1    x2                                     xp 

w1    w2                wp    w0

x1     x2                         xp x0=1

w0

Fig. 3.20 A scheme of an artificial neuron, on the left. The same neuron with the firing threshold
shown as a wiring weight on the fictitious input always equal to 1 is on the right

(a)      (b) (c)Fig. 3.21 Graphs of sign (a),
sigmoid (b) and symmetric
sigmoid (c) functions
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remainder, we assume that the bias, with the minus sign, is always explicitly present
among the wiring weights in this way (see Fig. 3.20 on the right).

Artificial neurons can be variously combined in neural networks. There have
been defined many specific types of neural network structures, referred to as
architectures, of which the most generic is a three-layer structure with no feedback
connections, referred to as a feedforward neural network. Such a network is pre-
sented on Fig. 3.22. There are two outbound layers, the input and output ones, and
one intermediate layer which is referred to as a hidden layer. This is why such a
structure is referred to as a one hidden-layer neural network (NN).

Network on Fig. 3.22 is designed as a one-hidden-layer NN for predicting petal
sizes of Iris features from their sepal sizes. Recall that in Iris data set, each of 150
specimens is presented with four features which are the length and width of petals
(features w3 and w4) and sepals (features w1 and w2). It is likely that the sepal
sizes and petal sizes are related.

In fact, the further material can be used for building an NN for modeling cor-
relation between any inputs and outputs—the only possible difference, in numbers
of input and/or output units, plays no role in the organization of computations.

This neural network consists of the following layers:

(a) Input layer that accepts three inputs: a bias input x0 = 1 as explained above (see
Fig. 3.20 on the right) as well as sepal length and width; these are combined to
be inputs to each of the neurons at the hidden layer.

(b) Output layer producing an estimate for petal length and width with a linear
activation function. Its input is the output signals from the hidden layer. No
fictitious input x0 = 1 is assumed here because the activation function here just
passes the combined signal through without a threshold.

û1 û2

k                            Output  (linear)

v11     v12      
v21 v22      v31     v32

s.l. x1 s.w. x2 fict. x0 = 1                        Input  (linear)

III1 III2

II1 II2 II3

I1 I2 I3  

h Hidden (sigmoid)

w21              w22        w23
w11  w12      w13              w31   w32   w33

i 

Fig. 3.22 A feed-forward network with two input and two output features (no feedback loops).
Layers: Input (I, indexed by i), Output (III, indexed by k) and Hidden (II, indexed by h)
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(c) Hidden layer consisting of three neurons. Each of them takes a combined input
from the first layer and applies to it its sigmoid activation function. The output
signals of these three neurons constitute inputs to the output layer. The archi-
tecture allows for any number of hidden neurons with no changes in the
computations.

The one-hidden-layer structure is generic in NN theory. It has been proven, for
instance, that such a structure can exactly learn any subset of the set of entities.
Moreover, any pre-specified mapping of inputs to outputs can be approximated up
to a pre-specified precision with such a one-hidden-layer network, if the number of
hidden neurons is large enough (Haykin 1999). This property, for many years,
served as a justification for the specialists to consider one-layer neural networks
only. The past decade saw an explosion of research on deep neural networks, that
is, networks with a dozen or more layers (see, for example, LeCun et al. 2015). It
appears deep neural networks are capable to capture non-linear hidden features and,
in this way, dramatically improve precision of the neural network decision rules.
Deep learning is an area of intense research efforts which should bring novel
breakthroughs in machine learning. There is a caveat though. The hidden features
are hidden indeed. There is no way to explicitly describe relations between given
features and the hidden one. That brings forward the I. Asimov’s controversy
pointed to in his “I, Robot” series: unlike in data analysis, machine learning may
generate unexpected and unpredictable consequences.

3.5.2 Activation Functions and Network Function

Two popular activation functions, besides the sign function ůi = sign(ûi), are the
linear activation function, ůi = ûi and sigmoid activation function ůi = s(ûi) where

sðxÞ ¼ ð1þ e�xÞ�1 ð3:21Þ

is a smooth analogue to the sign function, except for the fact that its output is
between 0 and 1 rather than −1 and 1 (see Fig. 3.21b). To imitate the perceptron
with its sign(x) output, between −1 and 1, we first double the output interval and
then subtract 1 to obtain what is referred to as a symmetric sigmoid or hyperbolic
tangent:

thðxÞ ¼ 2sðxÞ � 1 ¼ 2ð1þ e�xÞ�1 � 1 ð3:210Þ

This function, illustrated on Fig. 3.21c, in contrast to sigmoid s(x), is symmetric:
th(−x) = −th(x), like sign(x), which can be useful in some contexts.

The sigmoid activation functions have nice mathematical properties; they are not
only smooth, but their derivatives can be expressed through the functions them-
selves, see Q.3.13 and (3.28) further on.
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Let us express now the function of the one-hidden-layer neural network pre-
sented on Fig. 3.22. Its wiring weights between the input and hidden layer form a
matrix W = (wih), where i denotes an input, and h a hidden neuron, h = 1, 2,…,
H where H is the number of hidden neurons. The wiring weights between the
hidden and output layers form matrix V = (vhk), where h denotes a hidden neuron
and k an output.

Layers I and III are assumed to be linear giving no transformation to their inputs;
all of the hidden layer neurons will be assumed to have a symmetric sigmoid as
their activation function.

To find out an analytic expression for the network’s output, let us work it out
layer by layer. Neuron h in the hidden layer receives, as its input, a combined signal

zh ¼ w1hx1þ w2hx2þw3hx0

which is h-th component of vector z ¼ Rixi � wih ¼ x �W where x is a 1�3 input
vector. Then its output will be th(zh). These constitute an output vector th(z) = th(x
* W) that is input to the output layer. Its k-th node receives a combined signal
Rjvjk � thðzjÞ which is k-th component of the matrix product th(z) * V, that is passed
as the NN output û. Therefore, the NN on Fig. 3.22 transforms input x into output û
according to the following formula

û ¼ thðx �WÞ � V ð3:22Þ

which combines linear operations of matrix multiplication with a nonlinear sym-
metric sigmoid transformation. If matrices W, V are known, (3.22) computes the
function u = F(x) in terms of th, W, and V. The problem is to fit this model with
training data provided, at this instance, by the Iris data set.

3.5.3 Learning a Multi-layer Network

Given all the wiring weights W, between the input and hidden layers, and wiring
weights V, between the hidden and output layers, as well as pre-specified hidden
layer activation functions, the NN on Fig. 3.22 takes an input of the sepal length
and width and transforms it into estimates of the corresponding petal length and
width.

The quality of the estimates can be measured by the average squared error. The
better adapted weights W and V are, the smaller the error. Where the weights come
from? They are learnt from the training data.

Thus, the problem is to estimate weight matrices W and V at the training data in
such a way that the average squared error is minimized.

The machine learning paradigm is based on the assumption that a learning
device adapts itself incrementally by facing entities one by one. This means that the
full sample is assumed to be never known to the device so that global solutions,
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such as the orthogonal projection used in linear discrimination, are not applicable.
In such a situation an optimization algorithm that processes entities one by one
should be applied. Such is the gradient method, also referred to as the steepest
descent.

This method relies on the so-called gradient of the function to be optimized (see
Sect. A.2 in Appendix). The gradient is a vector that can be derived or estimated at
any admissible solution, that is, matrices W and V. This vector shows the direction
of the steepest ascent over the optimized function considered as a surface. Its
elements are the so-called partial derivatives of the optimized function that can be
derived according to rules of calculus. The gradient is useful for maximizing a
criterion, but how one can do minimization with the steepest ascent? Easily, by
moving in the opposite direction, that is, taking minus gradient.

Assume, we have some estimates of matrices W and V as well as their gradients,
that is, matrices gW and gV, whose components express the steepest ascent
direction of changes in W and V. Then, according to the method of steepest descent,
the matrices V and W should be moved in the direction of −gW and −gV with the
control of the length of the step by a factor referred to as the learning rate. The
equations expressing the move from the old state to the new one are as follows:

VðnewÞ ¼ VðoldÞ � l � gV ;WðnewÞ ¼ WðoldÞ�l � gW ð3:23Þ

where l is the learning rate (step size). The importance of properly choosing the
step size is illustrated on Fig. 3.23.

The gradient of the criterion of squared error is defined by: (a) the matrices
W and V, (b) the error value itself, and (c) the input feature values. This is why it is
convenient to apply this approach when entities come in a sequence so that each
individual entity gives an estimate of the gradient and, accordingly, the move to a
new state of matrices W and V according to Eq. (3.23). The sequence of entities is
natural when the learning is done on the fly by processing entities in the order of
their arrival. In the situations when all the entities have been already collected in a
data set, as the Iris data set, the sequence is organized artificially in a random order.
Moreover, as the number of entities is typically rather small (as it is in the case of
just 150 Iris specimens) and the gradient process is rather slow, it is usually not
enough to process all the entities just once. The processing of all the entities in a

  old          new                        
W

Fig. 3.23 The importance of
properly choosing the step in
the steepest descent process:
if the leap is too big, the new
state may be worse than the
old one
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random order constitutes an epoch. A number of epochs need to be executed until
the matrices V and W are more or less stabilized.

Worked Example 3.6. Learning Iris Petal Sizes
Consider, at any Iris specimen, its two sepal sizes as the input and its two petal sizes
as the output. We are going to find a decision rule relating them in the format of a
one-hidden-layer NN.

At the Iris data, the architecture presented on Fig. 3.22 and program nnn.m
implementing the error back-propagation algorithm leads to the average errors at
each of the output variables presented in Table 3.12 at different numbers of hidden
neurons h. Note that the errors are given relative to feature ranges.

The number of elements in matrices V and W here are five-fold of the number of
hidden neurons, thus ranging from 15 at the current setting of three hidden neurons
to 50 when this grows to 10. One can see that the increase in the numbers of hidden
neurons does bring some improvement, but not that great—probably not worth
doing.

Here are a few suggestions for further work on this example:

1. Find values of E for the errors reported in Table above.
2. Take a look at what happens if the data are not normalized.
3. Take a look at what happens if the learning rate is increased, or decreased, ten

times.
4. Extend the table above for different numbers of hidden neurons.
5. Try petal sizes as input with sepal sizes as output.
6. Try predicting only one size over all input variables.

Worked Example 3.7. Predicting Marks at Student Dataset
Let us embark on an ambitious task of predicting student marks at the Students
data—we partially dealt with this in Sect. 3.3. The nnn.m program leads to the
average errors in predicting student marks over three subjects, as presented in
Table 3.13 at different numbers of hidden neurons h. Surprisingly, the prediction
works rather well: the errors are on the level of 3 points only, more or less inde-
pendently of the number of hidden neurons utilized.

Table 3.12 Relative error
values in the predicted petal
dimensions with full Iris data
after 5000 epochs

Number of hidden neurons Relative error, %

Petal length Petal width

3 5.36 8.84
6 3.99 8.40
10 3.98 8.15
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3.5.4 Steepest Descent for the Square Error Criterion
with Linear Rules

In machine learning, the assumption is that the decision rule is learnt incrementally
by using entities one by one. That is, the global solutions involving the entire
sample are not applicable. In such a situation an optimization algorithm that pro-
cesses entities one by one should be applied. The most popular is the gradient
method, also referred to as the steepest descent.

This method relies on the gradient of the function to be optimized. If we are to
minimize function f(x) over x spanning a subspace D of the n-dimensional vector
space Rn, we can utilize its gradient gf for this purpose. The gradient gf at x2D is a
vector consisting of the f’s partial derivatives over all components of x, under the
assumption that a full derivative, geometrically corresponding to the tangential
hyperplane, does exist. This vector shows the direction of the steepest ascent of f(x), so
that its opposite vector −gf shows the opposite direction which is considered as that of
the steepest descent of f(x). The method of steepest descent produces a sequence of
points x(0), x(1), x(2), … starting from an arbitrary x(0) by using recursive equation

xðtþ 1Þ ¼ xðtÞ�lt � gf xðtÞð Þ ð3:230Þ

where parameter lt denotes the length of the step to go from x(t) in the direction of
the steepest descent, referred to as the learning rate in machine learning. The
sequence x(t) is guaranteed to converge to the minimum point at a constant lt = l if
f(x) is strictly convex, so that there is a sphere of a finite radius such that f(x) is always
greater than its lower part, as shown on the right of Fig. 3.24 (see Polyak 1987).

Table 3.13 Average absolute error values in the predicted student marks over all three subjects,
with full Student data after 5,000 epochs

H |e1| |e2| |e3| #
param.

3 3.65 3.16 3.17 27
6 3.29 3.03 3.75 54
10 3.17 3.00 3.64 90

Fig. 3.24 A convex function, on the left and strictly convex function, on the right
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The process converges if f(x) is a convex function and lt tends to 0 when t grows
to infinity, but not too fast so that the sum of the series Rtlt is infinity. This
guarantees that the moves from x(t) to x(t + 1) are small enough to not over-jump
the point of minimum but not that small to stop the sequence short of reaching the
optimum by themselves.

If f(x) is not convex however, the sequence reaches just one of the local optima
depending on the starting point x(0) (see Fig. 3.25). Luckily, the square error in the
problem of linear discriminant analysis is strictly convex so that the steepest descent
sequence converges to the optimum from any initial point. This gives rise to the
algorithm described in the following section.

3.5.5 Learning Wiring Weights with Error
Back-Propagation

The problem of learning a neural network is to find weight matrices W and
V minimizing the squared difference between u observed and û computed:

E ¼ dðu; ûÞ ¼ hu� thðx �WÞ � V ; u� thðx �WÞ � Vi=2; ð3:24Þ

over the training entity set. The division by 2 is made to avoid factor 2 in the
derivatives of E.

Specifically, with just two outputs in Fig. 3.22, the error function is

E ¼ ðu1 � û1Þ2þðu2 � û2Þ2
h i

=2 ð3:240Þ

where u1 − û1 and u2 − û2 are differences between the actual and predicted values of
the two outputs.

Steepest descent equations (3.23) for learning V and W can be written
component-wise:

  x1 x2 x3 x4 x

f

Fig. 3.25 Points x1–x4 are points of local minimum for the function whose graph is drawn with
the line. The global minimum is only one of them, x4
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vhkðtþ 1Þ ¼ vhkðtÞ � l � @E=@vhk;
wihðtþ 1Þ ¼ wihðtÞ � l � @E=@wihði 2 I; h 2 II; k 2 IIIÞ ð3:25Þ

To make these computable, let us express the derivatives explicitly; first those at
the output, over vhk:

@E=@vhk ¼ � uk�ûkð Þ � @ûk=@vhk:

To advance, notice that ∂ûk/∂vhk = th(zh), since ûk ¼ RjthðzhÞ � vhk. Putting this
into equation above makes

@E=@vhk ¼ �ðuk�ûkÞ � thðzhÞ: ð3:26Þ

Regarding the second layer, of W, let us find the derivative ∂E/∂wih which
requires more chain-based derivations. Specifically,

@E=@wij ¼ Rk �ðuk� ûkÞ � @ûk=@wij
� �

:

Since ûk ¼ Rjth Rixi � wij
� 	 � vjk, this can be expressed as

@ûk=@wij ¼ vjk � th0 Rixi � wij
� 	 � xi:

The derivative th′(z) can be expressed through th(z) as explained in Q.3.13 later,
which leads to the following final expression for the partial derivatives:

@E=@wij ¼ �Rk �ðuk� ûkÞ � vjk
� � � 1þ thðzjÞ

� 	
1� thðzjÞ
� 	 � xi=2 ð3:27Þ

Equations (3.23), (3.26) and (3.27) lead to the following rule for processing an
entity, or instance, in the error back-propagation algorithm as applied to neural
network in Fig. 3.22.

1 Forward computation (of the output û and error). Given matrices V and W,
upon receiving an instance (x,u), the estimate û of vector u is computed
according to the neural network as formalized in Eq. (3.22), and the error
e = u − û is calculated.

2 Error back-propagation (for estimation of the gradient elements). Each neuron
receives the relevant error estimate, which is

– ek = −(uk − ûk), for (3.26) at output neurons k (k = III1, III2) or
– Rk ðuk�ûkÞ � vhk½ �, for (3.27) at hidden neurons h (j = II1, II2, II3) [the latter

can be seen as the sum of errors arriving from the output neurons according
to the corresponding synapse weights].
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These are used to adjust the derivatives (3.26) and (3.27) by multiplying them
with local data depending on the input signal, which is th(zh), for neuron k’s
source h in (3.26), and th′(zh)xi for neuron h’s source i in (3.27).

3 Weights update. Matrices V and W are updated according to formula (3.23).

What is nice in this procedure is that the computation can be done locally, so that
every neuron processes only the data that are available to this neuron, first from the
input layer, then backwards, from the output layer. In particular, the algorithm does
not change if the number of hidden neurons is changed from h = 3 on Fig. 3.22, to
any other integer h = 1, 2, …; nor does it change if the number of inputs and/or
outputs changed.

3.5.6 Error Back-Propagation: Computation

For a data set available as a whole, “offline”, due to the specifics of the binary target
variables and activation functions, such as th(x) and sign(x), which have −1 and 1 as
their boundaries, the data in the NN context are frequently pre-processed to make
every feature’s range to lie between −1 and 1 and the midrange to be 0. This can be
done by using the conventional shifting and rescaling formula for each feature v,
yiv = (xiv − av)/bv, at which bv is equal to the half-range, bv = (Mv − mv)/2, and shift
coefficient av, to the mid-range, av = (Mv+ mv)/2. Here Mv denotes the maximum
and mv the minimum of feature v.

The practice of digital computation, with a limited number of digits used for
representation of reals, shows that it is a good idea to further expand the ranges into
a [−10,10] interval by multiplying afterwards all the entries by 10: in this range,
digital numbers stored in computer arguably lead to smaller computation errors than
in the range [−1,1], if they are closer to 0.

The implementation of the method of gradient descent for learning neural net-
works cannot be straightforward because the minimized squared error depends both
on the wiring weight matrices V and W and input/output pairs (x,u), yet there is no
way to freely change the latter—the process is bound by the set of observations.
This is why the observed pairs (xi,ui), the instances, are used as triggers to the
steepest descent changes in matrices V and W. Specifically, given V and W, the
instances are put one by one, in a random order, to see what are the discrepances
between the observed u and computed û. When all of the instances have been
entered, their order is randomly changed and they are ready to be put all over
again—this is referred to as a new “epoch”. The matrices V and W are changed
either at each (xi,ui) instance, using the errors û–u locally, or after an epoch, using
the accumulated errors.

The error back-propagation algorithm, with the local changes of matrices V and
W, can be formulated as follows.
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A. Initialize weight matrices W = (wih) and V = (vhk) by using random normal
distribution N(0,1) with the mean at 0 and the variance 1.

B. Standardize data to [−10,10] ranges and 0 averages as described above.
C. Formulate halting criterion as explained below and run a loop over epochs.
D. Randomize the order of entities within an epoch and run a loop of the error

back-propagation instance processing procedure, below, in that order.
E. If Halt-criterion is met, end the computation and output results: W, V, û, e, and

E. Otherwise, execute D again.

The best halting criterion, according to the nature of the steepest descent process
should be at

(i) Matrices V and W stabilized. Unfortunately, in real world computations this
criterion requires by far too many iterations, so that in practice the matrices
fail to converge. Thus, other stopping criteria are used.

(ii) The difference between the average values (over iterations within an epoch)
of the error function becomes smaller than a pre-specified threshold, such as
0.0001.

(iii) The number of epochs performed reaches a pre-specified threshold such as
5000.

Instance Processing Procedure

Specifics of the NN structure and function provide for simple and effective rules
for processing individual entities in the procedure of the steepest descent. Before
updating the wiring weights according to Eqs. (3.23), two following steps are
executed:

1. Forward computation of the estimated output and its error. Upon receiving a
training instance input feature values, they are processed by the neural network
to produce an estimate of the output, after which the error is computed as the
difference between real and estimated output values.

2. Error back-propagation for estimation of the gradient. The computed error of
the output is back-propagated through the network. Each neuron of the output
layer corresponds to a specific output feature and, thus, receives the error in this
feature. Each neuron of the hidden layer receives a combined error signal from
all output neurons weighted by the corresponding wiring weights. These are
used to adjust the gradient elements by using the hidden neuron activation
function.

In the Appendix A.4, a Matlab code nnn.m is presented for learning NN weights
with the error back-propagation algorithm according to the NN of Fig. 3.22. Two
parameters of the algorithm, the number of neurons in the hidden layer and the
learning rate, are its input parameters. The output is the minimum level of error
achieved and the corresponding weight matrices V and W.
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The code includes the following steps:

1. Loading data. It is assumed that all data are in subfolder Data. According to the
task, this can be either iris.dat or stud.dat or any other dataset.

2. Normalizing data. This is done by shifting each column to its midrange with the
follow-up dividing it by the half-range, after which all data set is multiplied by
10, to have them in [−10,10] scale as described above.

3. Preparing input and output training sub-matrices. This is done after the decision
has been made of what features fall in the former and what features fall in the
latter categories. In the case of Iris data, for example, the target is petal data
(features w3 and w4) and input is sepal measurements (features w1 and w2) as
described. In the case of Students data, the target can be students’ marks on all
three subjects (CI, SP and OOP), whereas the other variables (occupation cat-
egories, age and number of children), input.

4. Initializing the network. This is done by: (a) specifying the number of hidden
neurons H, (b) filling in matrices W and V with random (0,1) normally dis-
tributed values, and (c) setting a loop over epochs with the counter initialized at
zero.

5. Organizing a loop over the entities. For setting a random order of entities to be
processed, the Matlab command randperm(n) for making a random permutation
of integers 1, 2,…, n can be used.

6. Forward pass. Given an entity, the output is calculated, as well as the error,
using the current V, W and activation functions. The program uses the sym-
metric sigmoid (3.21) as the activation function of hidden neurons.

7. Error back-propagation. Gradient matrices for V and W according to formulas
(3.26) and (3.27) are computed.

8. Weights V and W update. Having the gradients computed and learning rate
accepted as the input, updated W and V are computed according to (3.23).

9. Halt-condition. This includes both the level of precision, say 0.01, and a
threshold to the number of epochs, say, 5,000. If either is reached, the program
halts.

Q.3.13. Prove that the derivatives of sigmoid (3.21) or hyperbolic tangent (3.21)
functions appear to be simple polynomials of selves. Specifically,

s0ðxÞ ¼ ð1þ e�xÞ�1
� �0

¼ ð�1Þð1þ e�xÞ�2ð�1Þe�x ¼ sðxÞ 1� sðxÞð Þ; ð3:28Þ

th0ðxÞ ¼ 2 � sðxÞ � 1½ �0¼ 2 � sðxÞ0 ¼ 2 � sðxÞ � 1� sðxÞð Þ
¼ 1þ thðxÞð Þ � 1� thðxÞð Þ=2 ð3:280Þ

Q.3.14. Find a way to improve the convergence of the process, for instance, with
adaptive changes in the step size values.
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Q.3.15. Use k-fold cross validation to provide estimates of variation of the results
regarding the data change.
Q.3.16. Develop a scoring function for learning a category by using the contri-
bution of the partition to be built to the category.

3.6 Association Between Nominal Features: Elementary
and Linear Modeling

3.6.1 Elementary Analysis: Quetelet Index and Chi-Squared

3.6.1.1 Conceptual Relations from Statistics

To analyze interrelations between two nominal features, they are cross-classified in
the so-called contingency table. A contingency table has its rows corresponding to
categories of one feature and columns to categories of the other feature, while the
entries are counts of entities falling in the overlap of the corresponding row and
column categories. The contingency table’s structure may well serve for the anal-
ysis of association between the nominal features summarized in the table.

Worked Example 3.8. Contingency Table on Market Towns Data
To cross-classify features Banks and Farmer’s Market on Market towns data, we
first need to categorize the quantitative feature Banks. Consider, for example, the
four-category partition of the range of Banks feature at Market towns set presented
in Table 3.14.

These categories are cross-classified with FM “yes” and “no” categories in
Table 3.15. Besides the cross-classification counts, the table also contains summary
within category counts, the totals, on the margins of the table, the last row and last

Table 3.14 Definition of Ba
categories on the Market
towns dataset

Category Definition Notation

1 Ba � 10 10+
2 10>Ba� 4 4+
3 4>Ba� 2 2+
4 Ba = 0 or 1 1−

Table 3.15 Cross
classification of the Ba
categories with FM categories

FarmMarket Bank/building society
categories

Total

10+ 4+ 2+ 1−

Yes 2 5 1 1 9
No 4 7 13 12 36
Total 6 12 14 13 45
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column—this is why they are referred to as marginal frequencies. The total count
balances the sheet in the bottom-right corner.

The same contingency data converted to relative frequencies by relating them to
the total number of entities are presented in Table 3.16.

Q.3.17. Build a contingency table for features “Protocol-type” and “Attack type” in
Intrusion data. A. See Table 3.17

A contingency table can be used for assessment of correlation between two sets
of categories. The highest level of correlation is that of a conceptual association.
A conceptual association may exist if a row, k, has all its entries, not marginal of
course, except just one, say l, equal to 0, which would mean that all of the extent of
category k belongs to the column category l. The data, thus, indicate that the
category k may logically imply the category l.

Worked Example 3.9. Equivalence and Implication from a Contingency
Table
Such are rows “Udp” and “Icmp” in Table 3.17. There is a perfect match in this
table: a row category k = “Icmp” and a column category l = “Smurf”, that contains
the only non-zero count. No other combination (k, l′) or (k′, l) is possible according
to the table. In such a situation, one may claim that, subject to the sampling error,
category l may occur if and only if k does, that is, k and l are equivalent.

A somewhat weaker, but still very much valuable is the case of “Udp” row in
Table 3.17. It appears, Udp protocol implies “Norm” column category—a no-attack
situation, though there is no equivalence here because the “Norm” column contains
another positive count, in row “Tcp”.

Case-Study 3.5. Trimming Contingency Data: A Bad Option
Unfortunately, there are no zeros in Table 3.15, and thus, no conceptual relation
between the number of Banks and the presence of a Farmer’s market. But some of
the entries are really close to 0, which may make us tempted to trim the data a bit.
Imagine, for example, that in row “Yes” of Table 3.15, two last entries are 0, not 1s.

Table 3.16 BA/FM
cross-classification relative
frequencies, percent

FM | Ba 10+ 4+ 2+ 1− Total

Yes 3.44 11.11 3.22 3.22 20
No 8.89 15.56 28.89 26.67 80
Total 13.33 26.67 31.11 28.89 100

Table 3.17 Protocol/attack
contingency table for
Intrusion data

Category Apache Saint Smurf Norm Total

Tcp 23 11 0 30 64
Udp 0 0 0 26 26
Icmp 0 0 10 0 10
Total 23 11 10 56 100
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This would imply that a Farmers Market may occur only in a town with 4 or more
Banks. A logical implication, that is, a production rule, “If BA is 4 or more, then a
Farmer’s market must be present”, could be derived then from thus modified table.
One may try taking this path and cleaning the data of smaller entries, by removing
corresponding entities from the table, of course, to not obscure our “vision” of the
pattern of correlation. Thus trimmed Table 3.18 is obtained from Table 3.15 by
removing just 13 entities from “less popular” entries. This latter table expresses,
with no exception, a very simple conceptual statement “A town has a Farmer’s
market if and only if the number of Banks in it is 4 or greater”. However nice the
rule may sound, let us not forget the cost of the trimming which is the 13 towns,
almost 30% of the sample, that have been removed as those not fitting the stated
perspective. Such a data doctoring borders with forgery—one of the reasons for a
famous quip usually attributed to B. Disraeli, a celebrated British politician of XIX
century: “There are three gradations of lies: lies, damned lies and statistics.” The
issue of sample adjustment so far has received no reasonable solution, even with
respect to outliers—values falling way beyond the feature range one would expect
normally. Anyway, the conclusion of the trimming exercise is that one should try
finding ways of expressing conceptual relations without doctoring the sample.

3.6.1.2 Capturing Relationships with Quetelet Indexes

Quetelet index provides for a strategy for visualization of correlation patterns in
contingency tables without removal of “not-fitting” entities. In 1832, A. Quetelet
(1796–1874), a founding father of statistics, proposed to measure the extent of
association between row and column categories in a contingency table by com-
paring the local count with an average one.

Let us consider correlation between the presence of a Farmer’s Market and the
category “10 or more Banks” according to Table 3.15. We can see that their joint
probability/ frequency is the entry in the corresponding row and column: P(Ba = 10
+ & FM = Yes) = 2/45 = 4.44% (joint probability/frequency rate). Of the 20%
entities that fall in the row “Yes”, this makes the proportion of “Ba = 10+” under
condition “FM = Yes” equal to P(Ba = 10+ /FM = Yes) = P(Ba = 10+ &
FM = Yes)/P(FM = Yes) = 0.0444/0.20 = 0.222 = 22.2%. Such a ratio expresses
the conditional probability/rate.

Table 3.18 A trimmed BA/
FM cross classification
“cleaned” of 13 towns, to
sharpen the view

Number of banks/build,
societies

FMarket 10+ 4+ 2+ 1− Total

Yes 2 5 0 0 7
No 0 0 13 12 25
Total 2 5 13 12 32
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Is this high or low? Hard to tell without comparing this with the unconditional
rate, that is, with the frequency of category “Ba = 10+” in the whole dataset, which
is P(Ba = 10+) = 13.33%. Let us compute the (relative) difference between the two,
which is referred to as Quetelet index q:

qðBa ¼ 10þ =FM ¼ YesÞ ¼ P(Ba ¼ 10þ =FM ¼ YesÞ½
�PðBa ¼ 10þÞ�=PðBa ¼ 10þÞ
¼ ½0:2222� 0:1333�=0:1333 ¼ 0:6667 ¼ 66:7%:

That means that condition “FM = Yes” raises the frequency of the Bank cate-
gory by 66.7%.

This logic concurs with our everyday intuition. Consider, for example, the risk
of getting a serious illness, say tuberculosis, which may be, say, about 0.1%, one in
a thousand, in a given region. Take a condition such as “Bad housing” and count
the rate of tuberculosis under this condition, amounting to, say 0.5%—which is
very small by itself, yet a five-fold increase over the average tuberculosis rate. This
is exactly what Quetelet index measures: q(l/k) = (0.5 − 0.1)/0.1 = 400% to show
that the change of the average rate is 4 times.

Worked Example 3.10. Quetelet Index in a Contingency Table
Let us apply the general Quetelet index formula (3.29) to entries in Table 3.15. This
leads to Quetelet index values presented in Table 3.19. By highlighting positive
values in the table, we obtain the same pattern as on the “purified” data as in
Case-Study 3.5, but this time in a somewhat more realistic manner, keeping the
sample intact. Specifically, one can see that “Yes” FM category provides for a strong
increase in the probabilities, whereas “No” category leads to much weaker changes.

Q.3.18. Compute Quetelet coefficients for Table 3.17.
A. See Table 3.20 in which positive entries are highlighted in bold

Table 3.19 BA/FM Cross classification Quetelet coefficients, % (positive entries highlighted
using bold font)

FMarket 10+ 4+ 2+ 1−

Yes 66.67 108.33 −63.29 −61.54
No −16.67 −27.08 16.07 15.38

Table 3.20 Quetelet indices
for the protocol/attack
contingency Table 3.17, %;
positive values are
highlighted using bold font

Category Apache Saint Surf Norm

Tcp 56.25 56.25 −100.00 −16.29
Udp −100.00 −100.00 −100.00 78.57
Icmp −100.00 −100.00 900.00 −100.00
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Case-Study 3.6. Has There Been Any Bias in S’n’S’ Policy?
Take on the case of Stop-and-Search policy in England and Wales 2005 represented
according to race (B—black, A—Asian and W—white), by numbers in Table 1.12
in Sect. 1.3.2—these are overwhelmingly in category W. The criticism of this
policy came out of comparison of this distribution with the distribution of the entire
population. Such a distribution, according to the latest pre-2005 census 2001, can
be easily found on web. By subtracting from that the numbers of Stop-and-Search
occurrences, under the assumption that nobody has been subjected to this more than
once, Table 3.21 has been drawn. Its last column gives the numbers that were used
for the claim of a racial bias: indeed category B members have been subjects of the
policy six times more frequently than category W members. A similar picture
emerges when Quetelet coefficients are used (see Table 3.22). Category B is subject
to Stop-and-Search policy 400% more frequently than on average, whereas cate-
gory W, 15% less.

Yet some would consider drawing a table like Table 3.21, and of course the
derived Table 3.22, as something nonsensical, because it is based on an implicit
assumption that the Stop-and-Search policy applies to the population randomly.
They would argue that police apply the policy only when they deem it necessary, so
that the comparison should involve not all of the total population but only that
criminal. Indeed, the distribution of subjects to Stop-and-Search policy by race has
been almost identical to that of the imprisoned population of the same year.
Therefore, the claim of a racial bias by police should be declared incorrect, provided
that the system of justice is not biased overall.

Table 3.21 Distribution of stop-and-search policy cross-classified with race

S’n’S Not S’n’S Total S’n’S-to-Total

Black 131,723 1,377,493 1,509,216 0.0873
Asian 70,252 2,948,179 3,018,431 0.0233
White 676,178 46,838,091 47,514,269 0.0142
Total 878,153 51,163,763 52,041,916 0.0169

Table 3.22 Relative
Quetelet coefficients for
cross-classification in
Table 3.21, %

S’n’S Not S’n’S

Black 417.2 −7.2
Asian 37.9 −0.6
White −15.7 0.3
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3.6.1.3 Conditional Probabilities, Quetelet Indexes and Pearson’s
Chi-Squared

Consider two sets of disjoint categories on an entity set I, K and L. Using k = 1,…,
K (for example, occupation of individuals constituting I) and l = 1,…, L (say, family
or housing type) as category indices should not bring any confusion here. Both, K and
L, make a partition of the entity set I; these partitions are crossed to see if there is any
correlation between them. For a a pair of categories (k,l)2K � L, count the number of
entities that fall in both. The (k,l) co-occurrence count is denoted by Nkl. Obviously,
these counts sum to N because the categories are not overlapping and cover the entire
dataset. A table housing these counts, Nkl, or their relative values, relative frequencies
pkl = Nkl/N, is referred to as a contingency table or just cross-classification. The totals,
that is, within-row sums Nkþ ¼ RlNkl and within-column sums Nþ l ¼ RkNkl (as
well as their relative frequency counterparts) are referred to as marginals (because
they are located on the margin of the contingency table).

The (empirical) probability that category l occurs under condition k can be
expressed as P(l/k) = pkl/pk+ = Nkl/Nk+. The probability P(l) of the category l with
no condition is just p+l = N+l/N. Similar notation is used when l and k are swapped.
The relative difference between the conditional and unconditional probabilities is
referred to as the (relative) Quetelet index (Mirkin 2001):

qðl=kÞ ¼ Pðl=kÞ � PðlÞ
PðlÞ ð3:29Þ

where P(l) = N+l/N, P(k) = Nk+/N, P(l/k) = Nkl/Nk+. That is, Quetelet index
expresses correlation between categories k and l as the relative change in the
probability of l when k is taken into account.

With little algebra, one can derive a simpler—and symmetric—expression

qðl=kÞ ¼ ½Nkl=Nkþ � Nþ l=N�= Nþ l=Nð Þ
¼ NklN=ðNkþNþ lÞ�1 ¼ pkl

pkþ pþ l
� 1

ð3:290Þ

Highlighting high positive and negative values in a Quetelet index table, such as
Tables 3.19 and 3.22, visualizes the pattern of association between the two sets of
categories.

This visualization can be extended to a theoretically sound presentation. Let us
define the average Quetelet association index Q as the sum of pair-wise Quetelet
indexes weighted by their frequencies/probabilities:

Q ¼
XK
k¼1

XL
l¼1

pklqðl; kÞ ¼
XK
k¼1

XL
l¼1

pkl
pkl

pkþ pþ l
� 1

� �
¼
XK
k¼1

XL
l¼1

p2kl
pkþ pþ l

� 1

ð3:30Þ
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The right-hand expression for Q in (3.30) is popular in the statistical analysis of
contingency data. In fact, this Q is equal to the chi-squared correlation coefficient
proposed by Pearson (1900) in a very different context—as a measure of deviation
of the contingency table entries from the statistical independence.

To explain this in more detail, let us first introduce the concept of statistical
independence. The sets of k and l categories are said to be statistically independent
if pkl = pk+ p+l for all k and l. Obviously, such a condition is hard to fulfill in reality
K. Pearson suggested using relative squared errors to measure the deviations of
observed frequencies from the statistical independence. Specifically, he introduced
the following coefficient usually referred to as Pearson’s chi-squared association
coefficient:

X2 ¼ N
XK
k¼1

XL
l¼1

ðpkl � pkþ pþ lÞ2
pkþ pþ l

¼ N
XK
k¼1

XL
l¼1

p2kl
pkþ pþ l

� 1

 !
ð3:31Þ

The equation on the right can be proven with little algebra. Consider, for
example, this part of the expression on the left in (3.31):

XL
l¼1

ðpkl � pkþ pþ lÞ2
pkþ pþ l

¼
XL
l¼1

p2kl � 2pklpkþ pþ lþðpkþ pþ lÞ2
pkþ pþ l

¼
XL
l¼1

p2kl
pkþ pþ l

� 2
XL
l¼1

pklþ
XL
l¼1

pkþ pþ l ¼
XL
l¼1

p2kl
pkþ pþ l

� pkþ

The expression on the right in the above is derived by using equations Rlpkl ¼
pkþ and Rlpþ l ¼ 1. Summing all these equations over k will produce (3.31). On
the other hand, the expression on the right in (3.31) is obviously equal to
Rlpklqðl=kÞ so that

XL
l¼1

ðpkl � pkþ pþ lÞ2
pkþ pþ l

¼
XL
l¼1

pklqðl=kÞ ð3:32Þ

By comparing the right-hand parts of (3.30) and (3.31), it is easy to see that
X2 = NQ. The same follows from summing all the equations (3.32) over k.

The popularity of X2 index in statistics and related fields rests on the following
theorem proven by K. Pearson: if the contingency table is based on a sample of
entities independently drawn from a population in which the statistical indepen-
dence holds (so that all deviations are due to just randomness in the sampling), then
the probabilistic distribution of X2 converges to the chi-squared distribution (when
N tends to infinity) introduced by Pearson earlier for similar analyses. The proba-
bilistic chi-squared distribution (with p degrees of freedom) is defined as the dis-
tribution of the sum of squares of p random variables, each distributed according to
the standard Gaussian N(0,1) distribution.
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This theorem is not always of interest to a computational data analyst, because
they analyze data that are not necessarily random or not necessarily independently
sampled. However, Pearson’s chi-squared coefficient is frequently used just for
scoring correlation in contingency tables. The equation X2 = NQ gives a credible
support to this practice. According to this equation, the value of X2 is not only a
measure of deviation from the statistical independence. It also has a different
meaning as a measure of association between categories: that of the averaged
Quetelet coefficient. If, for example X2/N = 0.25, one may credibly claim that the
knowledge of L-category at an object improves the chance of its corresponding
K-category by 25% on average.

To get more intuition on the underlying correlation concept, let us take a look at
the extreme values that X2 can take and situations at which the extreme values are
reached (Mirkin 2001). It appears that at K � L, that is, if the number of columns
is not smaller than that of rows, X2 ranges between 0 and K − 1. It reaches 0 if
there is a statistical independence at all (k,l) entries so that all qkl = 0, and it reaches
K − 1 if each column l contains only one non-zero entry pk(l)l, which is thus equal to
p+l. Such a structure of the contingency table can be interpreted as an empirical
evidence that the logical implication l(k) ! k has place for all k = 1,2,…, K.

Representation of the chi-squared through Quetelet coefficients,

X2 ¼
XK
k¼1

XL
l¼1

Npklqðl=kÞ ð3:33Þ

amounts to decomposition of X2 into the sum of Nkl q(l/k) items and allows for
visualization of the items within the contingency table format, such as that pre-
sented in Table 3.23.

In fact, not only the total sum of these items coincide with that of the original
chi-squared items N(pkl − pk+p+l)

2/pk+p+l, but also the within-column and
within-row sums coincide too, as the derivation of (3.32) above clearly demon-
strates for the latter case.

However all the original chi-squared items in (3.31) are positive and cannot
show whether the correlation expressed by an individual entry is positive or neg-
ative. To overcome this shortcoming, another visualization of X2 is in use. That
visualization involves the square roots of the chi-squared items

rðk; lÞ ¼ pkl � pkþ pþ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkþ pþ l
p ð3:34Þ

Table 3.23 Four-fold
contingency table between
binary features

Feature Y Total

Yes No

Feature X Yes a b a + b

No c d c + d
Total a + c b + d N = a + b+c + d
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that are convenient to refer to as Pearson indexes. Obviously, X2 ¼ NRk;lrðk; lÞ2.
Pearson indexes indeed have the same signs as q(l/k), and in fact are closely related:
q(l/k) = r(k,l)[(pk+p+l)]

1/3. It is less clear what interpretation of its own the values
r(k,l) may have, although they are useful in the Correspondence analysis of con-
tingency tables (Sect. 3.6.3), see also normalized Laplacian in Sect. 5.2.

Q.3.19. Take two binary features presented as 1/0 variables and build their con-
tingency table, sometimes referred to as a four-fold table (Table 3.23) in which
symbols a, b, c, and d are used to denote the co-occurrence counts.

Prove that Quetelet coefficient q(Yes/Yes) expressing the relative difference
between a/(a + c) and (a + b)/N is equal to

qðYes=YesÞ ¼ ad � bc
ðaþ cÞðaþ bÞ ;

and the summary Quetelet coefficient Q, or Pearson’s X2/N, is equal to

Q ¼ ðad � bcÞ2
ðaþ cÞðbþ dÞðaþ bÞðcþ dÞ :

Q.3.20. Prove that the correlation coefficient between two 1/0 binary features can be
expressed in terms of the four-fold table as q = √Q, that is,

q ¼ ad � bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ cÞðbþ dÞðaþ bÞðcþ dÞp :

Q.3.21. Given a K � L contingency table P and a pair of categories, k 2 K and l 2
L, consider an absolute Quetelet index a(l/k) = P(l/k) − P(l) − the change from the
frequency of l 2 L on the whole entity set I to the frequency of l on entities falling in
category k 2 K. In terms of P, P(l) = p+l and P(l/k) = pkl/p+l. Prove that the sum-
mary Quetelet index A ¼ Rk;lpklaðl=kÞ ¼ Rk;lp2kl=pkþ � Rlp2þ l is equal to the fol-
lowing expression, an asymmetric analogue to Pearson chi-squared:

A ¼
XK
k¼1

XL
l¼1

ðpkl � pkþ pþ lÞ2
pkþ

ð3:35Þ

which also is the numerator of the so called Goodman-Kruskal “tau-b” association
index (Kendall and Stewart 1967).
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A. Indeed, by taking the square of the numerator, expression in (3.35) becomes equal
to Rk;lðp2kl � 2pklpkþ pþ lþ p2kþ p

2
þ lÞ=pkþ , which is Rk;lp2kl=pkþ � 2Rk;lpklpþ lþ

Rk;lpkþ p2þ l = Rk;lp2kl=pkþ � 2Rk;lp2þ lþRlp2þ l because Rkpkl ¼ pþ l and
Rkpkþ ¼ 1. This is obviously Rk;lp2kl=pkþ � Rlp2þ l ¼ Rk;lpklaðl=kÞ ¼ A, which
proves the statement.

Worked Example 3.11. Visualization of Contingency Table Using Weighted
Quetelet Coefficients
Let us multiply Quetelet coefficients in Table 3.19 by the frequencies of the cor-
responding entries in Table 3.15. Quetelet coefficients in Table 3.19 are taken
relative to unity, not per cent. This leads us to Table 3.24 whose entries sum to the
value of Pearson’s chi-square coefficient for Table 3.15, 6.86. Note that entries in
Table 3.24 can be both positive and negative; those with absolute value greater than
6.86/4 = 1.72 are highlighted in bold—they show the entries of an extraordinary
deviation from the average. Of them, column 4+ supplies the highest positive
impact and the highest negative impact.

Worked Example 3.12. A Conventional Decomposition of Chi-square
Coefficient
Let us consider a conventional way of visualization of contingency tables, by
putting Pearson indexes, the square roots r(k,l) of the chi-square coefficient items in
(3.34) as the table’s elements. These are in Table 3.25. The table does show a
similar pattern of positive and negative associations. However, it is not the entries
of the table that sum to the chi-square coefficient but rather the squares of the
entries. The fact that the summary values on the margins in Tables 3.24 and 3.25
are the same is not by chance: it exemplifies a mathematical property (see
Eq. (3.32)).

Table 3.24 BA/FM chi-squared (NQ = 6.86) and its decomposition according to (3.33); extreme
values are highlighted using bold font

FMarket 10+ 4+ 2+ 1− Total

Yes 1.33 5.41 −0.64 −0.62 5.48
No −0.67 −1.90 3.09 1.85 1.37
Total 0.67 3.51 1.45 1.23 6.86

Table 3.25 Square roots of the items in Pearson chi-squared (X2 = 6.86); the items themselves
are in parentheses; those positive are highlighted using bold font

FMarket 10+ 4+ 2+ 1- Total

Yes 0.73(0.53) 1.68(3.82) −1.08 (1.16) −0.99 (0.98) (5.49)
No −0.36 (0.13) −0.84 (0.70) 0.54 (0.29) 0.50 (0.25) (1.37)
Total (0.67) (3.52) (1.45) (1.23) (6.86)
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Q.3.22. In Table 3.24, all marginal values, the sums of rows and columns, are
positive, in spite of the fact that many within-table entries are negative. Is this just
due to specifics of the distribution in Table 3.15 or a general property?
A. A general property: the within-row or within-column sums of the elements,
Nlk q(l/k), must be positive, see (3.32).
Q.3.23. Find a similar decomposition of chi-squared for OOPmarks/Occupation in
Student data. Hint: First, categorize quantitative feature OOPmarks somehow: you
may use equal bins, or conventional boundary age points such as 35, 65 and 75, or
any other considerations.
Q.3.24. Can any logical production rules come from the columns of Table 3.17?
A. Yes, both Apache and Saint attacks may occur at the tcp protocol only.
Q.3.25. Of 100 Christmas shoppers in Q.2.25, 50 spent £60 each, 20 spent £100
each, and 30 spent £150 each. Those who spent £60 each are males only and those
who spent £100 each are females only, whereas among the rest 30 individuals half
are men and half are women. Build a contingency table for the two features, gender
and spending. Find and interpret the value of Quetelet coefficient for females who
spent £100 each.
A. The contingency table (of co-occurrence counts):

Spending, £

Gender 60 100 150 Total

Female 0 20 15 35
Male 50 0 15 65
Total 50 20 30 100

This table of absolute co-occurrence counts coincides with that of proportions
expressed per cent because the number of shoppers is 100.

Quetelet coefficient for (Female/£100) entry is

Q ¼ 100 � 20=ð20 � 35Þ � 1 ¼ 3:86� 1 ¼ 1:86

This means that being female in this category of spending is more likely than the
average, by 186%.

3.6.1.4 Different Association Measures

Given two nominal features represented by partitions S = {S1, S2,…, SK} and
T = {T1, T2,…., TL} of the entity set I, summarized in a K�L contingency table
P = (pkl) where pkl is the proportion of entities in Sk \ Tl. Let us describe a few
approaches to scoring the association between S and T that are used in popular data
analysis programs.

One idea for assessing the extent of association is to use a correlation measure
over the contingency table entries, such as averaged Quetelet coefficients, Q and A,
or chi-squared X2, as discussed above in Sect. 3.6.1.
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Seemingly another idea is to score the extent of reduction of uncertainty over
T obtained when S becomes available. This idea works like this: take a measure of
uncertainty of a feature, in this case partition, t(T), and evaluate it within each of S-
classes, t(T(Sk)), k = 1,…, K. Then the average uncertainty on these classes will bePK

k¼1 pkþ tðTðSkÞÞ, where pk+ are proportions of categories k, that is, classes Sk, so
that the total reduction of uncertainty is equal to

tðT=SÞ ¼ tðTÞ �
XK
k¼1

pkþ tðTðSkÞÞ ð3:36Þ

Of course, a function like (3.36) can be considered a measure of association over
the contingency table P as well, but a nice feature of this approach is that it can be
extended from nominal features to quantitative ones—by using an uncertainty index
over quantitative T-features.

Two very popular measures defined according to (3.36) are the so-called im-
purity function (Breiman et al. 1984) and information gain (Quinlan 1993).

The impurity function builds on Gini coefficient as a measure of variance (see
Sect. 2.3.1). Let us recall that Gini index for partition T is GðTÞ ¼ 1�PL

l¼1 p
2
l

where pl is the proportion of entities in Tl. If I is partitioned in clusters Sk, k = 1,…,
K, partitions T and S form a contingency table of relative frequencies P = (pkl). Then
the reduction (3.36) of the value of Gini coefficient due to partition S is equal to

DðT; SÞ ¼ GðTÞ �
XK
k¼1

pkþGðTðSkÞÞ: ð3:37Þ

This index D(T, S) is referred to as impurity of S over partition T. The greater the
impurity, the better the split S.

It is not difficult to prove that D(T, S) relates to Quetelet indexes from
Sect. 3.6.1. Indeed, D(T, S) = A(T, S) where A(T, S) is the average absolute
Quetelet index defined by Eq. (3.35) in Q.3.21. This implies indeed that DðT ; SÞ ¼P

l p
2
kl=pkþ �

P
l p

2
þ l; which proves the following statement: The impurity func-

tion is equal to the average absolute Quetelet index.
The information gain function builds on entropy as a measure of uncertainty (see

Sect. 2.3.1). Let us recall that entropy of partition T is HðTÞ ¼ �PL
l¼1 pl logðplÞ

where pl is the proportion of category l, that is, part Tl. If the entity set is partitioned
in clusters Sk, k = 1,…, K, partitions T and S form a contingency table of relative
frequencies P = (pkl). Then the reduction (3.36) of the value of entropy due to
partition S is equal to IðT ; SÞ ¼ HðTÞ �PK

k¼1 pkþHðTðSkÞ. This index I(T, S) is
referred to as the information gain due to S. In fact, it is equal to a popular
characteristic of the cross-classification of T and S, the mutual information defined
as I(T, S) = H(T) + H(S) − H(ST) where H(ST) is entropy of the bivariate distri-
bution represented by the contingency table P. Please note that the mutual infor-
mation is symmetric with regard to S and T, in contrast to the impurity function.
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To prove the statement let us just put forward the definition of the information gain
and use the property of logarithm that log(a/b) = log(a) − log(b):

IðT ; SÞ ¼ HðTÞ �
X

k
pkHðTðSkÞÞ ¼ HðTÞþ

X
k
pkþ

X
l
pkl logðpkl=pkþ Þ

¼ HðTÞ �
X

k
pkþ logðpkþ Þþ

X
k;l
pkl logðpklÞ ¼ HðTÞþHðSÞ � HðSTÞ;

which completes the proof.
The reduction of uncertainty measures are absolute differences that much depend

on the measurement scale and, also, on values of t(T) and t(S). This is why it can be
of advantage to use relative versions of the reduction of uncertainty measures
normalized by t(T) or t(S) or both. For example, the popular program C4.5
(Quinlan 1993) uses the information gain normalized by H(S) and referred to as the
information gain ratio.

3.6.2 Least-Squares Analysis of Association Between
Dummy Matrices

3.6.2.1 Linear Regression of One Dummy Matrix Over the Other One

Consider a nominal feature over an entity set I of cardinality N represented by
partition T = {Tl}, and another nominal feature represented by partition S = {Sk}.
This can be a cluster partition derived from available features to approximate
T. Rather than directly concentrating on their contingency table P = (pkl), let us take
a look at the association between T and S from a different perspective.

Let us define an N�L dummy matrix X corresponding to partition T by
assigning each category Tl with a binary variable xl, a dummy, which is just a
1/0 N-dimensional vector whose elements xil = 1 if i 2 Tl and xil = 0, otherwise
(l = 1,…, L). Similarly define an N�K dummy matrix Y whose columns yk are
0/1-vectors corresponding to categories k of S.

Let us consider linear regression of yk over set of all X-categories which is
achieved by using the orthogonal projector PX = X(XTX)−1XT, so that ŷk = PXyk. Let
us take a look at the components of the computed vector ŷk. Let us recall that the
projector’s matrix PX consists of diagonal blocks with (i,j)-th elements 1/Nl for i,j 2
Tl. whereas all the other elements are zero. Then the inner product of its i-th row
and vector is the number of unities in it multiplied by 1/Nl for that l for which i 2 Tl.
That is exactly Nlk/Nl where Nlk is the cardinality of intersection Sk \ Tl. In other
words, i-th element of ŷk is the conditional probability Nlk/Nl = p(k/l) where l is the
T-category of object i, i = 1,2,…, N.

This gives the structure of regression of the dummy matrix Y over dummy matrix
X, Ŷ = PXY in terms of the conditional frequency contingency table.
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Let us now standardize each feature yk by a scale shift ak and rescaling factor 1/
bk, according to the conventional formula y′k = (yk − ak)/bk. This will corre-
spondingly change the Ŷ-values, so that the conditional probabilities will change to
ckl = (p(k/l) − ak)/bk. In mathematical statistics, the issue of standardization is just a
routine transforming the probabilistic density function to a standardized format.
Things are different in data analysis, since no density function is assigned to data
usually. The scale shift is considered as positioning the data against a backdrop of
the “norm”, whereas the act of rescaling is to balance feature “weights” (see
Sect. 2.2 for discussion). Therefore, choosing the feature means as the ‘norm”
should be reasonable. The mean of feature yk is obviously the proportion of unities
in it, which is pk+ in notations related to the contingency table P. In fact, the
remainder of this section can be considered as another reason for using ak = pk+.
The choice of rescaling factors is somewhat less certain, though using all bk = 1
should seem reasonable too because all the dummies are just 1/0 variables measured
in the same scale. Incidentally, 1 is the range of any dummy. Some other values
related to yk′s dispersion could be used as well. Especially suitable is bk = (pk+)

1/2

which is the standard deviation of the Poisson distribution of a 1/0 variable (see
Sect. 2.3.3), as will be seen in the end of this section. With the scale shift value
specified, the standardized conditional probabilities in Ŷ can be expressed as

p0ðk=lÞ ¼ plk � pkþ pþ l

pþ lbk
ð3:38Þ

Let us compute the sum of squares of all the Ŷ-elements (3.38). Within the k-th
column, there are N+l values p(k/l) (3.38), which leads us to the value

Blk ¼ Nþ lp
0ðk=lÞ2 ¼ N

ðplk � pkþ pþ lÞ2
b2kpþ l

ð3:39Þ

as the contribution of (k,l)-pair to the sum of squares, hŶ 0; Ŷ 0i, where symbol ‘′’
refers to the fact that the data matrix Y has been pre-standardized.

Accordingly, the total contribution of partition S to the total scatter of the set of
standardized dummies representing partition T is equal to

BðS; TÞ ¼ bY0; bY0D E
¼
XL
l¼1

XK
k¼1

B2
lk ¼ N

XL
l¼1

XK
k¼1

ðplk � pkþ pþ lÞ2
b2kpþ l

ð3:40Þ

The term “contribution” comes from the regression model under consideration:

Y0 ¼ PXYþE ¼ bY0 þE;

which satisfies the Pythagorean decomposition property because of the orthogo-
nality of the projector PX:
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hY0;Y0i ¼ hbY0; bY0i þ hE;Ei;
so that hbY0; bY0i is the contribution indeed.

It should be noted that the value hE;Ei can be considered a measure of distance,
Euclidean squared, as usual, between partitions T and S corresponding to the
nominal features and their dummy matrices X and Y under consideration

dðX;YÞ ¼ hE;Ei ¼ Y0 � PXY0k k2 ð3:41Þ

This can be referred to as the dummy matrix regression distance.
The total contribution (3.40) reminds us of both the averaged relative Quetelet

coefficient Q in (3.30), as well as the impurity function D(T, S) in (3.37) and the
averaged absolute Quetelet coefficient in (3.35). The latter two indexes, up to
the constant N of course, emerge at the rescaling factors being unity, bk = 1. The
former emerges when rescaling factors bk ¼ ffiffiffiffiffiffiffiffi

pkþ
p

. The square root of the fre-
quency has an appropriate meaning—this is a good estimate of the standard
deviation in Poisson model of the variable: according to this model, Nk+ unities are
thrown randomly into the fragment of memory assigned for the storage of vector yk.
In fact, at this scaling system, B(T/S) = X2, the Pearson chi-squared!

Let us summarize the proven facts.

Statement 3.6.2.1 The impurity function in (3.37) can be equivalently expressed as

(a) The reduction of Gini uncertainty index of partition T when partition S is taken
into account;

(b) The averaged absolute Quetelet index aðl=kÞ ¼ pkl=pkþ � pþ l of the same
effect;

(c) The total contribution of partition S to the summary data scatter of the set of
dummy 1/0 features corresponding to classes of T and standardized by sub-
tracting the mean with no rescaling.

Statement 3.6.2.2 The Pearson chi-squared association index can be equivalently
expressed as

(a) A measure of statistical independence between partitions T and S;
(b) The averaged relative Quetelet index qðl=kÞ ¼ ðpkl=pkþ � pþ lÞ=pþ l between

partitions T and S;
(c) The total contribution of partition S to the summary data scatter of the set of

dummy 1/0 features xl corresponding to classes Tl and standardized by sub-
tracting the mean and dividing the result by bl ¼ ffiffiffiffi

pl
p

.

The claims of equivalence in Statements 3.6.2.1 and 3.6.2.2, although having
been described by this author earlier (see, for example Mirkin 1996, 2012) remain
virtually unknown, in spite of the fact that they point to useful relations between
different association measures and, as well, between statistical association measures
and preferred data normalization options.
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3.6.2.2 Canonical Analysis of Dummy Matrices: Dual Scaling,
“L’analyse Des Correspondences” and the Chi-Squared

Consider two nominal features over an entity set I of cardinality N represented by
partitions T = {Tl} and S = {Sk}. Define N�L dummy matrix X and N�K dummy
matrix Y corresponding to partitions T and S, respectively.

Consider the linear subspaces L(X) and L(Y) spanning matrices X and Y. The
problem of canonical correlation is to find in L(X) and L(Y) normed vectors x and y
maximally oriented towards each other so that hx; yi is maximum with respect to
x 2 L(X) and y 2 L(Y) such that hx; xi ¼ aTXTXa ¼ 1 and hy; yi ¼ bTYTYb ¼ 1. In
fact the problem is of finding vectors a and b maximizing aTXTYb such that
aTXTXa = 1 and bTYTYb = 1. Since matrices XTX and YTY are diagonal with
diagonal elements equal to N+l and Nk+, respectively, the normalizing constraints
can be reformulated as

XL
l¼1

Nþ lb
2
l ¼ 1;

XK
k¼1

Nkþ a2k ¼ 1;

A mathematical solution to this problem is described in Sect. A.3.3 of Appendix.
It is related to spectral analysis of the product PXPY where PX and PY are
N�N orthogonal projector matrices, defined as PX = X(XTX)−1XT, PY = Y(YTY)−1YT.

The general (i,j)-th element of PXPY is the inner product of i-th row of PX and j-th
row/column of PY. The former consists of 1/N+l for all the objects belonging to the
same l-th category of T as i, and zeros at other objects. The latter consists of 1/Nk+

for all the objects belonging to the same k-th category of S as j, and zeros at
other objects. Non-zero values meet at objects belonging to both T+l and Sk+, that is,
Sk \ Tl. Therefore the inner product is equal to Nkl/(Nk+N+l).

The spectrum of matrix PXPY is the same as of matrix AB where A =
(XTX)−1XTY, B = (YTY)−1YTX as defined in Sect. A.3.3. The matrices A and B are of
sizes L�K and K�L, respectively, and their entries are conditional probabilities. It
is easy to find out that (l,k)-th element of A is equal to Nlk/N+l, and (k,l)-th element
of B is equal to Nkl/Nk+. Here Nlk = Nkl is the number of objects in the intersection
Sk \ Tl.

A version of the power method for finding the maximum eigenvalue of PXPY or
of AB, which is the same, may be defined by using matrices A and B separately.
The method begins with any K-dimensional a = a(0) and finds L-dimensional
b′ = Aa(0), which is then normalized by computing b = (b′TYTYb′)1/2 and taking
b(1) = b′/b. Now next a-vector is computed as a′ = Bb(1) and then normalized
similarly as a(1) = a′/(a′TXTX a′)1/2. Next iterations run similarly. The convergence
is warranted if the maximal eigenvalue is greater than the other eigenvalues indeed.
The maximum eigenvalue is computed as the product of the norms of a′ and b′. The
corresponding eigenvectors a and b can be considered as the best numerical codes
for the categories; they are mutually oriented towards each other.
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Moreover, the total of the canonical eigenvalues is related to the Pearson
chi-squared coefficient between the two nominal variables. Since both spaces,
L(X) and L(Y), contain the bisector subspace of all N-dimensional vectors with
equal elements, this generates a trivial eigenvalue 1, which should not be taken into
account when considering the total of canonical eigenvalues. As is well known, the
sum of all eigenvalues of a square matrix is invariant under linear transformations
of the space; it is equal to the sum of the diagonal elements. As was shown above
the (i,i)-th element of matrix PXPY is equal to Nkl/(Nk+N+l), where k and l are
those indices for which i 2 Tl and i 2 Sk. The number of objects i such that i 2 Tl
and i 2 Sk, is equal to Nkl. Therefore, the total of diagonal elements in matrix PXPY

is equal to

XK
k¼1

XL
l¼1

Nkl
Nkl

NkþNþ l
¼
XK
k¼1

XL
l¼1

N2
kl

NkþNþ l
¼
XK
k¼1

XL
l¼1

pkl
pkþ pþ l

¼ X2=N þ 1;

according to Eq. (3.31). By subtracting the trivial eigenvalue 1, we conclude that
the total of non-trivial canonical eigenvalues is equal to X2/N.

The phenomenon of canonical correlation between nominal features has
attracted considerable attention of researchers. In particular, there are two tech-
niques of numerical analysis of nominal features based on the canonical correlation.
One is referred to as dual scaling (see Nishisato 2014); that utilizes a version of the
iterations according to the power method, as described above. Another, referred to
as the correspondence analysis, builds on the simultaneous consideration of both
spaces, L(X) and L(Y), and processes related to their interrelation (Benzecri 1992;
Greenacre 2017; Lebart et al. 1995). Specifically, an attention is given to equations
relating the canonical vectors, a = lBb and b = lAa, the so-called transition for-
mulas. Since elements of A and B are conditional probabilities p(k/l) = plk/p+l, and
p(l/k) = pkl/pk+, respectively, a and b appear to be averaged versions of each other
(up to the singular value l), which leads to a joint display of both S-categories and
T-categories.

This author developed a symmetric version of the correspondence analysis
which involves no dual spaces; this is described in the next Sect. 3.6.3.

3.6.3 Correspondence Analysis

3.6.3.1 Correspondence Analysis: Presentation

Correspondence Analysis is an extension of PCA to contingency tables taking into
account the specifics of co-occurrence data: they are not only comparable across the
table but also can be meaningfully summed together across the table. This leads to a
unique way of standardization of such data—by using the Quetelet coefficients
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rather than the original frequencies, which is an advantage over the common sit-
uations in which the data standardization is rather arbitrary.

Correspondence Analysis (CA) is a method for visually displaying both row and
column categories of a contingency table P = (pij), i 2 I, j 2 J, in such a way that
distances between the presenting points reflect the patterns of co-occurrences in
P. This method is usually introduced as a set of dual heuristics applied simulta-
neously to rows and columns of the contingency table (see, for example, Lebart
et al. 1995; Greenacre 2017). Yet there is a way for introducing CA as an
encoder-decoder based data recovery technique similar to that used for introducing
PCA above. According to this perspective (Lebart and Mirkin 1993; Mirkin 1996),
CA is a version of PCA differing from PCA due to the specifics of contingency
data, in the following aspects:

(i) The CA method obtains hidden factors representing the relative Quetelet
indexes rather than the original frequency data;

(ii) Both rows and columns are not equivalently contributing; each is assigned
with a weight reflecting its frequency; the greater the frequency, the greater
the weight. These weights are used in the approximation problem through-
out; both in the least-squares criterion and the mutual orthogonality
conditions;

(iii) Both rows and columns are visualized on the same display, thus referred to
as a biplot, in such a way that the geometric distances between the repre-
senting points reflect the so-called chi-square distances between row (or
column) conditional frequency profiles;

(iv) The data scatter is defined as the sum of squared entries weighted by the
products of the row and column weights, that is equal to the Pearson
chi-squared association coefficient.

Worked Example 3.13. Correspondence Analysis of a Theft/Age Contingency
Table
Consider Table 3.26, cross-classifying cases of attempted theft from shops and
supermarkets in the Netherlands 1979 from the book by Israëls 1987; see also
Lombardo et al. (2016).

Two classification bases are: categories of stolen goods and age groups of
perpetrators. There are 13 goods categories, from closing to household items to
perfumes; see the list in the left column of Table 3.26. There are 9 age groups (less
than 12 years old, 12–14 years old, 15–17, 18–20, 21–29, 30–39, 40–49, 50–64, 65
and over years old) coded accordingly in the first row of Table 3.26.

To apply the method to data in Table 3.26, we first transform that into Quetelet
coefficients format (see Table 3.27).

This standardization does make the data structure somewhat. It suffices to
mention pairs (tobacco, AGold) and (toys, AGmin) whose q-values exceed 200%
increase from the average. But the transformation p)q is not alone in CA. It is
coupled with the weighting of each row and column by its corresponding marginal
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probability so that the squared errors in the criterion are weighted by products of the
marginal probabilities. Moreover, the vector norm is weighted by them too.

Figure 3.26 represents a CA visualization of Table 3.26 derived as described
above, on the left, and PCA, on the right. The visualizations do not differ that much,
although the CA display gives a more clear picture. They clearly show which good
types an age group tends to steal. AGmin is close to toys, whereas AG16 is near
jewelry and records.

3.6.3.2 Correspondence Analysis: Formulation

Correspondence Analysis (CA) is a method for visually displaying both row and
column categories of a contingency table P = (pij), i 2 I, j 2 J, in such a way that
distances between the presenting points reflect the pattern of co-occurrences in
P. To be specific, let us take on the issue of visualization of P on a 2D plane so that
we are looking for just two approximating factors, u1 = (v1, w1) where v1 = (v1(i))
and w1 = (w1(j)) and u2 = (v2, w2) where v2 = (v2 (i)) and w2 = (w2(j)), with I [ J
as their domain, such that each row i 2 I is displayed as point u(i) = (v1(i), v2(i))
and each column j 2 J as point u(j) = (w1(j), w2(j)) on the plane as shown in
Fig. 3.26.

The |I|-dimensional vectors vt and |J|-dimensional vectors wt constituting
ut (t = 1, 2) are calculated to approximate the relative Quetelet coefficients
qij = pij/(pi+p+j)− 1 rather than the co-occurrencespij themselves, according to equations:

qij ¼ l1v1ðiÞw1ðjÞþ l2v2ðiÞw2ðjÞþ eij ð3:42Þ

where l1 and l2 are positive reals, by minimizing the weighted least-squares
criterion
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Fig. 3.26 Visualization of thefts/age contingency table in Table 3.26 using Correspondence
Analysis, on the left, and PCA, on the right. Squares stand for good types and stars for thief
categories
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E2 ¼
X
i2I

X
j2J

piþ pþ je2ij ð3:43Þ

with regard to lt, vt, wt, subject to conditions of weighted orthonormality:

X
i2I

piþ vtðiÞvt0 ðiÞ ¼
X
j2J

pþ jwtðjÞwt0 ðjÞ ¼ 1 if t ¼ t0

0 otherwise

�
ð3:44Þ

where t, t′ = 1, 2.
The weighted criterion E2 is equivalent to the unweighted least-squares criterion L2

applied to the matrix Rwith Pearson indexes rij = qij(pi+p+j)
½ = (pij − pi+p+j)/(pi+p+j)

½

as its entries. To be exact, let us consider model (3.42′) below:

rij ¼ a1f1ðiÞg1ðjÞþ a2f2ðiÞg2ðjÞþ eij ð3:420Þ

and try minimize the sum of squared residuals L2 ¼Pi;j e
2
ij. According to the SVD

theory, the solution to this problem is constituted by the two maximal singular
values a1 and a2 of matrix R = (rij) and corresponding pairs of the normed singular
vectors (f1, g1) and (f2, g2), respectively. Let us put rij = qij(pi+p+j)

½ in (3.42′) and
divide the equation by (pi+p+j)

½, which leaves it invariant:

qij ¼ a1f1ðiÞg1ðjÞ=ðpiþ pþ jÞ1=2þ a2f2ðiÞg2ðjÞ=ðpiþ pþ jÞ1=2þ eij=ðpiþ pþ jÞ1=2

This can be equivalently rewritten as:

qij ¼ a1v1ðiÞw1ðjÞþ a2v2ðiÞw2ðjÞþ eij ð3:4200Þ

where vt(i) = fit/(pi+
½), wt(j) = gjt/(p+j

½), and eij = eij/(pi+p+j)
½. Equation (3.42′′) is

similar to Eq. (3.42). What is about criterion? One can see that eij = eij(pi+p+j)
½.

Therefore, the L2 ¼ E2. That means that the a1 and a2 are the maximal singular
values of R, and the above definitions provide for the solutions of the problem in
(3.42), (3.43), and (3.44).

Therefore, the factors v and w are determined by the singular-value decompo-
sition of matrix R = (rij). More explicitly, the two maximal singular values lt and
corresponding singular vectors ft = (fit) and gt = (gjt) of matrix R, defined by
equations Rgt = ltft, R

Tft = ltgt (t = 1, 2) determine the optimal values lt and
optimal solutions to the problem of minimization of (3.43)–(3.44), according to
equations vt(i) = fit/(pi+

½) and wt(j) = gjt/(p+j
½).

The singular triplet equations can be rewritten in terms of vt and wt, as follows:X
j2J

pij
piþ

wtðjÞ ¼ ltvtðiÞ;
X
i2I

pij
pþ j

vtðiÞ ¼ ltwtðjÞ ð3:45Þ
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To prove the left-hand equation, take equation Rgt = ltft in its component-wise
form,

P
j2J rijgj ¼ lfi (index t omitted for the sake of convenience) and substitute

by vectors v and w defined above:
P

j2J rij
pþ j

piþ

� �1=2
wðjÞ ¼ lvðiÞ. This is equivalent

to
P

j2J
pij
piþ
� pþ j

� �
wðjÞ ¼ lvðiÞ. To complete the proof, equation

P
j pþ jwðjÞ ¼ 0

is to be proven. To do that, let us first prove that vector g0 whose components are
p+j

1/2 is a singular vector of R corresponding to singular value 0 (the other com-
ponent of the singular triplet is equal to f0 = (pi+

1/2)). Indeed,X
j2J rijp

1=2
þ j ¼ ð1=p1=2iþ Þ

X
j2J ðpij � piþ pþ jÞ ¼ ð1=p1=2iþ Þðpiþ � piþ Þ ¼ 0:

Then the equation
P

j pþ jwðjÞ ¼ 0 follows from the fact that all the singular
vectors are mutually orthogonal so that singular vector g corresponding to w is
orthogonal to g0, which proves the statement. The right-hand equation can be
proven in a similar way, from equation RTft = ltgt.

Equations (3.45) are referred to as transition equations and considered to justify
the joint display of rows and columns because the row-points vt(i) appear to be
averaged column-points wt(j) and, vice versa, the column-points appear to be
averaged versions of the row-points, up to the singular value of lt course.

The mutual location of the row-points is considered as justified by the fact that
between-row-point squared Euclidean distances d2(u(i), u(i′)) approximate the
chi-square distances between corresponding rows of the contingency table.
Specifically, chi-square distance is defined as a weighted squared Euclidean
distance:

v2ði; i0Þ ¼
X

j2J pþ jðqij � qi0jÞ2 ¼
X

j2J ðpij=piþ � pi0j=pi0 þ Þ2=pþ j: ð3:46Þ

Here u(i) = (v1(i), v2(i)) for v1 and v2 rescaled in such a way that their norms are
equal to l1 and l2, respectively. A similar property holds for columns j, j′. In fact, it
is the right-hand item in (3.46) which is used to define the chi-squared distance
between either columns or rows of a contingency table (Lebart et al. 1995), but the
definition in terms of Quetelet coefficients in the middle of (3.46) (Mirkin 1996)
looks more natural. The distance is dubbed chi-square distance because of its links
to the chi-square coefficient for the table P. First of all, if we take the weighted
chi-square summary distance to 0,

P
i2I piþ c

2ði; 0Þ where 0 is put instead of qi′j in
(3.46), it is easy to see that this is the Pearson chi-squared coefficient, without the
factor N of course, which is simultaneously the expression for the data scatter
according to criterion E2 in (3.43):X

i2I
piþ c2ði; 0Þ ¼

X
i2I

X
j2J

piþ pþ je
2
ij ¼ X2=N ð3:47Þ
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The weighted data scatter is equal to the scatter of R, the sum of its squared
entries T(R), which can be easily proven from the definition of R. Indeed,

TðRÞ ¼Pi2I
P

j2J pij � piþ pþ j
� 	2

=ðpiþ pþ jÞ = X2/N. This implies that

X2=N ¼ l21þ l22þ E2 ð3:48Þ

which can be seen as a decomposition of the contingency data scatter, expressed by
X2, into contributions of the individual factors, l21 and l22, and unexplained resid-
uals, E2. (Only two factors are considered here, but the number of factors to be
found can be raised up to the rank of matrix R with no other changes).

In a common situation, the first two singular values account for a major part of
X2, thus justifying the use of the plane of the first two factors for visualization of the
interrelations between I and J.

3.6.3.3 Correspondence Analysis: Computation

Given a contingency table P, the computation of correspondence analysis factors
can go in three steps: (a) computing Pearson index matrix R, (b) finding the singular
decomposition of R and the two first correspondence analysis factors, and (c) vi-
sualization of the joint display of rows and columns of P. Here are MatLab com-
mands for these.

(a) Computing Pearson index matrix R

�Pc=sum(P); Pr=sum(P′); total=sum(Pc);
�P=P/total; %relative frequencies
�Pc=Pc/total; %column relative frequencies
�Pr=Pr/total; %row relative frequencies
�Prod=Pr′*Pc; % matrix of products
� rProd=Prod.^(0.5); % square roots of products
� r=(P-Prod)./rProd; % Pearson index matrix

(b) Finding the correspondence analysis factors:

�[a,mu,b]=svd(r);
�% finding first factor
�x1=a(:,1)./sqrt(Pr′);
�y1 = b(:,1)./sqrt(Pc′);
�% finding second factor
�x2= a(:,2)./sqrt(Pr′);
�y2= b(:,2)./sqrt(Pc′);

As a bonus, one can estimate the proportion of data scatter, the chi-squared,
taken into account by the factors, and display it on the screen:

�yy=r.*r; chi=sum(sum(yy))% data scatter
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�ccn=(mu(1,1)^2+mu(2,2)^2)*100/chi;
%contribution of the first two
�disp(′Contribution of the solution:′); ccn

(c) Visualization of the joint display of rows and columns of P. The plot is easy to
do with command

�plot(x1,x2,′ks′, y1,y2,′kp′);

Yet to make the points annotated with row and column names, which are to be
available in a string cell termed say ‘names’, the joint set of rows and columns
should get their x-coordinate and y-coordinate vectors, z1 and z2 below:

�z1=[x1′ y1′]; z2=[x2′ y2′]; text(z1,z2,names);
�v=axis; axis(1.5*v);

The last line is to make the plot to look tighter by extending its boundaries.

3.6.4 Correlation Between Projection Matrices

Consider two nominal features over an entity set I of cardinality N represented by
partitions T = {Tl} and S = {Sk}. Define the N�L dummy matrix X and
N�K dummy matrix Y corresponding to partitions T and S, respectively.

Consider the linear subspaces L(X) and L(Y) spanning matrices X and Y, as well
as corresponding orthogonal projection matrices PX = X(XTX)−1XT and PX = Y
(YTY)−1YT. Such a matrix expresses the orientation of the space L(X) or L(Y) in a
concise way, like the normal vector a for a hyperplane defined by the equation
<a, x> = 0. Recall that the spaces L(X) or L(Y) overlap over the unidimensional
bisector line. To take this parasitic subspace out, one should subtract the parasitic
subspace from the matrices—by simply subtracting 1/N from all the elements of the
matrices, which transforms them to PX

−and PY
−.

The similarity between the corrected subspaces L(X)− and L(Y)− can be mea-
sured by the inner product, or even a correlation index, between PX

− and PY
−.

The inner product is equal to

hP�X ; P�Yi ¼
XK
k¼1

XL
l¼1

X
i2Sk

X
j2Tl

1
Nkþ

� 1
N

� �
1

Nþ l
� 1
N

� �

¼
XK
k¼1

XL
l¼1

X
i2Sk

X
j2Tl

1
NkþNþ l

� 1
NNþ l

� 1
NNkþ

þ 1
N2

� �
:

The latter expression is the result of multiplication of the expressions in the
parentheses in the former one. Let us figure out what are the summation results for
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each of the four items. The item 1/(Nk+N+l) appears in those (i,j) at which i 2 Sk and
j2Sl. that is, at those (i,j) at which both i,j 2 Sk \ Sl. That implies that the sum of

these items is equal to
PK

k¼1
PL

l¼1
N2
kl

NkþNþ l
. The second item does not depend on i, so

that there are N of them to sum. Within any category Tl, there are Nl items leading to
the summary value −1/N within each l = 1,2…, N. Summing these over l leads
to −1 as the total. Similarly, the total of summation of the third item is −1 as well.
The item number four, 1/(N2), summed N2 times, over all i and all j, will produce 1
as the total. Altogether, the inner product of the projection matrices is equal to

hP�X ;P�Y i ¼
XK
k¼1

XL
l¼1

N2
kl

NkþNþ l
� 1 ¼ Q: ð3:49Þ

That is, rather unexpectedly, the inner product of orthogonal projector’s matrices
is the average Quetelet index, or Pearson chi-squared related to N.

Q.3.26. Prove that the sum of elements of matrix P�X considered as an N�N vector
is 0; so is the mean of P�X .
Q.3.27. Prove that the sum of squares of elements of matrix P�X considered as an
N�N vector is K − 1 where K is the number of X-categories. Hint: Follow the way
of the previous paragraph. Consider the sum of all the elements of P�X to be
multiplied by themselves, in real, and see what are the results of summation of them
over all i,j = 1,…, N.

Now we are ready to see what is the correlation coefficient between matrices
P�X and P�Y :

qðP�X ;P�Y Þ ¼
QffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK � 1ÞðL� 1Þp ¼

PK
k¼1
PL

l¼1
ðNkl�NkþNþ lÞ2

NkþNþ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK � 1ÞðL� 1Þp ð3:50Þ

That is an interesting index. According to Kendall and Stewart (1967,
Eq. (33.64)), that is the squared value of the so-called Tschuprow association
coefficient. A. Tschuprow (1874–1926) proposed it in early 20th century based on
the fact that the product (K − 1)(L − 1) is the mean value for Pearson’s chi-squared
under the hypothesis that the features are statistically independent.

Q.3.28. Give an analytic expression for the quadratic distance between P�X and P�Y .
A. That is dðP�X ;P�Y Þ ¼ hP�X ;P�X iþ hP�Y ;P�Y i � 2hP�X ;P�Y i = K − 1+ L – 1 −
2Q = 2((K + L)/2 − 1 − Q) where Q is the average Quetelet coefficient. In the case
when K = L, this works fine. However, the greater the difference between L and K,
the greater the minimum value of d differs from 0, which perhaps correctly reflects
the mismatch between the two features.
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3.7 Distance Between Relations Corresponding to Tied
Rankings and Partitions

This material follows that by Mirkin and Fenner (2019). The topic of comparing
rankings was initiated by Charles Spearman (1863−1945) (a junior collaborator of
the founding fathers of multivariate statistics, Francis Galton and Karl Pearson), who
was hired to further pursue the golden dream of Galton, a proof that human talent is
inherited, mainly from one’s parents and, partly, from even more distant ancestors.
Although ranking is non-quantitative, Spearman proposed using ranks as numerical
values, so that the Pearson correlation coefficient could be employed. This is
straightforward when the observations being compared are linearly ordered.
However, different observations can sometimes be assigned the same numerical rank
value, which then led to the introduction of the term “tied observations”, subse-
quently replaced by “tied rankings”. Formally, a tied ranking can be represented as
an ordered partition R = (R1, R2, …, Rp), that is, a partition whose parts are linearly
ordered by their indices 1, 2,…, p. We say that an element i precedes an element j in
the ranking R if the part containing i precedes the part containing j. A clear-cut case
of an ordered partition is given by the rank features in social surveys. A ranked
feature asks respondents to classify alternatives using an ordered set of categories,
such as “strongly agree”, “agree”, “neutral”, “disagree”, “strongly disagree”. The
term ranking is used here as a synonym of the ordered partition; when considering a
series of objects with no ties, that is referred to as a strict ranking.

In 1938, a British statistician Maurice Kendall (1907–1983) introduced a dif-
ferent representation for rankings by using the relation of precedence between ranks
rather than the ranks themselves. Given a tied ranking R, we define a square
observation-to-observation matrix (the Kendall matrix) in which the (i, j) entry is +1
if i precedes j in R, 0 if i and j have the same rank, or −1 if j precedes i. The Kendall
rank correlation coefficient between two tied rankings is the Pearson correlation
coefficient between the corresponding Kendall matrices, considered as vectors in an
N�N-dimensional space.

In the 1950s, John Kemeny (1926–1992) approached the issue of comparing
rankings from a social consensus perspective. Given a set of ordered partitions, a
consensus ordered partition should represent the major tendency in the set.
A conventional approach, the majority rule, may fail when determined by voting on
pairs of alternatives.

Specifically, the so-called Condorcet paradox holds: if there are three parties at a
meeting, each supporting one of three cyclically related linear orderings of three
alternatives, say, (a) [i,j,k], (b) [j,k,i], and (c) [k,i,j], respectively, then the majority
rule would lead to a cycle in the precedence relation: i would precede j because this
is so for the majority, (a) and (c); similarly, j would precede k, and k would precede
i. This contradicts the requirement that the precedence relation corresponding to the
majority consensus ranking should be transitive. This paradox is a basis of the
celebrated “social choice impossibility theorem” by an American economist
Kenneth Arrow (1921–2017), a Nobel Prize winner.
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John Kemeny proposed a different definition for consensus ranking using a
distance measure between rankings. Rather than defining any specific distance
measure ab initio, he formulated four axioms that should hold for any admissible
distance measure. These axioms led Kemeny to derive the unique distance measure
satisfying them. The Kemeny distance turned out to be the L1-distance between the
Kendall matrices [see (Kemeny and Snell 1962) for a convincing exposition].

Here, we are going to describe a joint geometric space of ordered and unordered
partitions using the corresponding weak order and equivalence relations on the set
of observations (as it is done in (Mirkin 1979; Mirkin and Fenner 2019).

a. Weak orders and equivalence relations

Given a finite set I of N elements, a collection of its subsets R = {R1, R2, …,
Rp} is referred to as a partition if the subsets Rs are all non-empty, non-overlapping,
and cover the entire set I, so that each i 2 I belongs to a unique subset Rs,
1 � s � p. The subsets are called the parts of the partition R. A partition is said to
be ordered if there is a linear order relation of precedence between its parts, Rs < Rt,
that is transitive, anti-reflexive and complete. If the order coincides with the natural
order between indices 1, 2, …, p, we use parentheses to denote this, viz. R = (R1,
R2, …, Rp). In Decision Theory, an ordered partition is referred to as a ranking.

Each ordered partition R = (R1, R2, …, Rp) generates a binary preference
relation

q ¼ ði; jÞ : i 2 Rs; j 2 Rt; and s� tf g: ð3:51Þ

Usually, two non-overlapping binary relations are defined with respect to a
ranking R = (R1, R2, …, Rp): the strict preference relation P = {(i, j): i 2 Rs, j 2
Rt, and s < t} and the indifference relation E = {(i, j): i, j 2 Rs for some s}. The
indifference relation E here is transitive, reflexive and symmetric, thus E is the
equivalence relation corresponding to the unordered partition Ř having the same
parts as R. Obviously, q = P [ E, that is, q in (3.51) is a non-strict preference
relation in which the strict preference and indifference relations are merged toge-
ther. Usually, researchers try to avoid such a “mix”; but we will see later that there
is no problem with this merger. The next part of this section is a brief reminder of
some conventional concepts and facts about preference relations [see, for example,
(Steele and Stefánsson 2015)].

If q is a binary relation, its inverse q−1 is defined as q−1 = {(i, j): (j, i) 2 q}. If q
is the preference relation corresponding to a tied ranking R = (R1, R2, …, Rp), then
its inverse q−1 corresponds to the reverse tied ranking R−1 = (Rp, …, R2, R1). It is
easy to see that the indifference relation E corresponding to any tied ranking
R satisfies E = q \ q−1. Thus, the strict preference relation is the difference P = q
− E = q − q−1.

It is clear that q in (3.51) is

– Reflexive, that is, (i, i) 2 q for any i 2 I,
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– Transitive, that is, if (i, j) 2 q and (j, k) 2 q, then (i, k) 2 q for any i, j, k 2 A,
and

– Complete, that is, (i, j) 2 q or (j, i) 2 q, or both, for any i, j 2 A.

Of course, reflexivity can be considered as a special case of completeness for
which i = j. A binary relation satisfying these properties is usually referred to as a
weak order. In fact, a converse statement also holds: A preference relation q
corresponds to an ordered partition R if and only if it is a weak order.

To prove that, assume q to be a binary relation on the set I that is reflexive,
transitive and complete. Consider any i 2 I and define the subset q(i) = {j2 I: (i, j)
2 q}. Then, for any pair i, k 2 I, if (i, k) 2 q then q(k) 	 q(i). This holds because
whenever j 2 q(k), i.e. (k, j) 2 q, then (i, j)2 q also, because q is transitive.
Therefore, since q is complete, for any pair i, k 2 I, either q(k) 	 q(i) or q(i) 	
q(k), or both. It follows that the collection of sets q(i) is linearly ordered by
set-theoretic inclusion, so they can be ordered as a sequence of sets St for t = 1, 2,
…, p, where S1 
 S2 
… 
 Sp. Then the subsets Rt = St − St+1, t = 1, 2,…, p-1,
and Rp = Sp,, form a ranking R = (R1, R2, …, Rp). It is quite easy to check that its
corresponding preference relation (3.51) coincides with the given relation q. The
reverse implication, that the relation (3.51) corresponding to an ordered partition is
reflexive, transitive and complete, has already been established above. This com-
pletes the proof.

The subsets Rt = St − St+1 in the proof each satisfy Rt = q(i) \ q−1(i) for some i
2 I. This establishes that a binary relation q is a weak order if and only if its strict
part P is anti-reflexive and transitive, its indifference part E is an equivalence
relation, and P, P−1, E form a partition of the Cartesian product I�I.
b. Refinement and betweenness

A ranking R′ is a refinement of a ranking R if it is obtained from the latter by
subdividing some of its parts into smaller ones, and some ordering is defined
between the smaller parts of each subdivided part of R. The corresponding pref-
erence relations, q′ and q, are related by set-theoretic inclusion: A tied ranking R′ is
a refinement of a tied ranking R if and only if q′ � q.

Indeed, if R′ is a refinement of a tied ranking R then, for some pairs i, j of
elements of A such that both (i,j) 2 q and (j,i)2 q, only one of these holds for q′.
Conversely, suppose that q and q′ correspond to tied rankings R and R′, respec-
tively, and that q′ � q. Then q′(i) 	 q(i) for any i 2 I, and, moreover, the inclusion
is proper for some i 2 I. Consider any such i. Let {i1, i2, …, ik} be a maximal
subset of I such that q(i) 
 q′(i1) 
 q′(i2) 
 … 
 q′(ik). Then, by the previous
analysis, every equivalence class R′tu = q′(iu)\ q′−1(iu) will be part of the equiv-
alence class Rt = q(i) \ q−1(i), which completes the proof.

We say that q is coarser than q′, if q′ is a refinement of q.
A binary relation s on I is said to be between binary relations q and q′ if and only

if q \ q′ 	 s 	 q[q′. A ranking T is said to be between tied rankings R and R′ if,
for any i, j 2 I, the ordering between them in T is compatible with their ordering in
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both R and R′: that is, (i) if i precedes j in both R and R′ then i precedes j in T; (ii) if
i precedes j in one of R and R′, and i and j are indifferent in the other, then i either
precedes j or is indifferent to j in T; (iii) if i and j are indifferent in both R and R′,
then i and j are indifferent in T; lastly, (iv) if i precedes j in R but j precedes i in R′,
then anything can be true of the ordering between i and j in T: i may precede j, or j
may precede i, or i and j may be indifferent in T (Kemeny and Snell 1962). It is easy
to prove that T is between R and R′ if and only if the same is true for their weak
orders.

In the general case of two arbitrary tied rankings R and R′, the relation q \ q′
is a partial preference relation because there can be i, j ε I such that i strictly
precedes j in R, whereas j strictly precedes i in R′, so that neither (i, j) nor (j, i)
belongs to q \ q′.

Such a case, which is not uncommon, is exemplified by a proverbial question:
“What is better: being poor but healthy or being rich but ill?” (with a proverbial
answer that to be both rich and healthy is better indeed.)

What is appealing about q \ q′ is that its indifference relation is always an
equivalence relation, thus corresponding to the partition that is just the intersection
of the unordered partitions Ř and Ř′ that correspond to the ordered partitions R and
R′, respectively. The intersection Ř\Ř′ is the partition of I in which the parts are
the intersections Rs \ Rt′ of some part Rs of R and some part Rt′ of R′ for which Rs

and Rt′ are not disjoint.
Both ordered and unordered intersections can be visualized as a block matrix in

which the blocks are formed by the subsets of rows and columns corresponding to
the parts of the ordered partitions R′ and R, respectively (see Fig. 3.27). Of course,
the blocks of the intersections are only partially ordered so that, for example, blocks
R2′ \ R3 and R3′ \ R2 are not comparable. However, a linear order can be imposed
naturally by ordering the blocks first by rows and then by columns, so that any
block of the first row precedes the blocks in all other rows. This is the so-called
lexicographic product R′ * R introduced in (Mirkin 1979). Similarly, an alternative

R1 R2 R3 R4 R5

R1′∩R1 R1′∩R2 R1′∩R3 R1′∩R4 R1′∩R5

R2′∩R1 R2′∩R2 R2′∩R3 R2′∩R4 R2′∩R5

R3′∩R1 R3′∩R2 R3′∩R3 R3′∩R4 R3′∩R5

R4′∩R1 R4′∩R2 R4′∩R3 R4′∩R4 R4′∩R5

R1′

R2′

R3′

R4′

Fig. 3.27 A visual representation of the intersection of two rankings R ′\ R, where R′ relates to
rows and R to columns. It is assumed that the rows and columns are permuted according to the
rankings R′ and R, respectively
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lexicographic product R * R′ is defined by ordering blocks first by columns and
then by rows. Curiously, in the ordered series R′, R′ * R, R * R′ and R, the middle
term of each triplet is between the other two (Mirkin 1979). A similar statement
holds for the corresponding relations q′, q′ * q, q * q′ and q.

Q.3.29. Consider two rankings on an 8-element set, R′= (1–2–3–4, 5–6–7–8) and
R = (1–4–5, 2–3–7, 6–8). Here symbol – joins elements of the same part. Prove that
E′ \ E = {1–4, 2–3, 5, 7, 6–8} and give examples of rankings between R′and R.
A. For example, any ordering of E′ \ E which is compatible with both R and R′ as
well as its further aggregations, say, S = (1-4, 2-3, 5, 6-8,7) and T =
(1-4-2-3,5-6-8,7).

c. Correlation by Spearman and Kendall

Consider the Spearman rank correlation, that is, the Pearson correlation coeffi-
cient between ranks taken as numerical values. To deal with the case of tied
rankings, each element of an equivalence class of the indifference relation is
assigned with the average within-class rank. The average rank of the elements in
part Rs of the tied ranking R = (R1, R2, …, Rp) is L + (|Rs| + 1)/2, where L is the
cardinality of R1 [ R2 [ … [ Rs−1, and |�| denotes the number of elements in a
set. The Kendall rank correlation is based on the representation of tied rankings on
I by N�N matrices. Given a tied ranking R and the corresponding preference
relation q = P [ E, we now define a skew-symmetric matrix K = (kij), for i, j 2 I,
such that kij = 1 if (i, j) 2 P, kij = 0 if (i, j) 2 E, and kij = -1, if (j, i) 2 P. The
Kendall rank correlation coefficient between R and R′ is the correlation coefficient
between their Kendall matrices, K and K′, considered as vectors in an N2-dimen-
sional space. This is compatible with the non-quantitative nature of tied rankings,
especially since the mean of a skew-symmetric matrix is always 0.

It should be noted that, soon after the Kendall matrix was defined, a somewhat
similar skew-symmetric representation for quantitative features was proposed by
Daniels (1944), who proved that, given a quantitative feature x on I, the matrix
X = (xij), where xij = xi − xj, can be used to represent the feature in statistical
computations. For example, the inner product of the matrices X and X′ corre-
sponding to features x and x′ is proportional to the inner product of x and x′ after
they have been centered by subtracting their means, viz. hX;X0i ¼ 2Nhx�mðxÞ;
x0 �mðx0Þi, where m(x) is the mean of x. This implies that the correlation coef-
ficient between X and X′ is equal to the correlation coefficient between x and x′.
Therefore, the Spearman rank correlation coefficient can also be defined as the
Pearson correlation coefficient between the corresponding matrices of rank differ-
ences (rij), where rij = ri − rj. The Kendall matrix is then just the matrix of signs in
the Daniels matrix X = (xij), where xij = xi − xj.
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d. Kemeny distance

Rather than defining an ad hoc distance measure, Kemeny formulated four
axioms that should hold for any acceptable distance measure d(R, R′) between
rankings R and R′. These axioms require that the acceptable distance measures
should:

A1. Be mathematical metrics, that is, have the following properties:

(a) Symmetry: d(R, R′) = d(R′, R);
(b) Non-negativity and definiteness: d(R, R′) � 0 and d(R, R′) = 0 if and

only if R = R′;
(c) Strict triangle inequality: for any rankings R, R′ and R′′, d(R, R′′) � d(R,

R′) + (R′, R′′); moreover, equality holds if and only if R′ is between R and
R′′.

A2. If R′ is obtained from R by a permutation of the set I and S′ from S by the same
permutation, then d(R′, S′) = d(R, S).

To formulate the next axiom, let us say that a subset B � I is a segment of a tied
ranking R if its complement I − B 6¼ ∅ and each element i 2 I − B either precedes
all the elements of B or is situated after all the elements of B. The tied ranking
R restricted to a segment B will be denoted by RB.

A3. If R and R′ coincide on I − B and B is a segment of both R and R′, then d(R, R′) =
d(RB, RB′).

A4. Unit of scale: The minimum positive distance is equal to 1.

Kemeny proved that the only distance satisfying all four axioms is the L1-metric
between the corresponding skew-symmetric Kendall matrices divided by 2
(Kemeny 1959), namely:

kdðR;R0Þ ¼ 1
2

X
i;j2I

kij � k0ij
��� ��� ð3:52Þ

We see from (3.52) that the pairs of elements (i, j) in I can be divided into three
subsets:

(a) those contributing 1 to kd(R, R′): pairs (i, j) such that i precedes j in either R or
R′ while j precedes i in the other;

(b) those contributing ½ to kd(R, R′): pairs (i, j) such that i and j are indifferent in
either R or R′ whilst one precedes the other in the other ranking;

(c) those contributing 0 to kd(R, R′): pairs (i, j), that are similarly related in both
rankings—either i precedes j, or j precedes i, or i and j are indifferent.
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e. The mismatch distance between binary relations and the corresponding
binary matrices

Binary relations considered as subsets of the Cartesian product I�I may be
compared using any of the many measures of dissimilarity between subsets that
have been introduced over the years (Morlini and Zani 2012). One particularly
simple measure is the number of pairs for which they differ, the so-called mismatch
distance, i.e., the number of pairs in their symmetric difference:

dðq; q0Þ ¼ ðq� q0Þ [ ðq0 � qÞj j ð3:53Þ

The mismatch distance between unordered partitions was described in earlier
publications by B. Mirkin in Russian from 1969 onwards [see, for example, (Mirkin
and Cherny 1972)]; it is sometimes referred to as Mirkin’s distance (Meilă 2007).

We note that d(q, q′) is a metric on the space of all binary relations on I and
satisfies Axiom A1, including the strict triangle inequality, even for binary relations
that do not correspond to tied rankings.

The mismatch distance can easily be translated into a distance between N�N
matrices. Given a binary relation q 2 I�I, we define its binary matrix r = (rij) by:

rij ¼ 1 if ði; jÞ 2 q
0 if ði; jÞ 62 q

�
Then the mismatch distance between R and R′ is the mismatch (Hamming)

distance between the corresponding binary relations q and q′, and is thus given by:

dðR;R0Þ ¼ dðq; q0Þ ¼ ðq� q0Þ [ ðq0 � qÞj j
¼
X

i;j2I rij � r0ij
��� ��� ¼X

i;j2I rij � r0ij
� �2 ð3:54Þ

The right-hand equality allows the original L1-distance to be transformed into
the square of the more conventional, Euclidean or L2-distance because the absolute
differences are either 1 or 0.

Obviously, the mismatch distance (3.54) is much simpler than the Kemeny
distance (3.52) because the only possible non-zero contribution to d(R, R′) by an
ordered pair (i, j) is 1, and this only occurs when j precedes i in one of the tied
rankings but not in the other ranking. This happens when rij = 0 and rii′ = 1 or, vice
versa, rij′ = 0 and rij = 1. It may therefore be somewhat of a surprise that these two
distance measures are, in fact, equal, that is, the Kemeny distance (3.52) is equal to
the mismatch distance (3.54).

To prove that, let us first analyse the contributions of pairs of elements i, j 2 I to
the Kemeny distance between R and R′ depending on their relative positions in the
rankings R and R′; the various cases are shown in Table 3.28. We note that the
contribution of the pair (j, i) is exactly the same as that of the pair (i, j).
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Now we need to take into account a subtle difference between the concepts of
ranking and preference relation. The Kemeny distance is between two rankings—it
records disagreements in the relative positions between a pair of elements in the two
rankings; the symmetry between i and j accounts for the factor ½ in the expression
(3.52) for the Kemeny distance.

In contrast, the mismatch distance is between binary relations and counts the
disagreements between the relations in respect of ordered pairs of elements. We,
therefore, must distinguish between the ordered pair (i, j) and the inverse pair (j, i),
relative to the corresponding relation, q or q′. The various cases of the contributions
to the mismatch distance are shown in Tables 3.29 and 3.30, respectively.

Returning to the analysis of the interrelation between two elements i, j 2 I, we
need to combine Tables 3.29 and 3.30 by summing them, which produces
Table 3.31.

Table 3.28 The contribution of a pair (i, j) 2 I � I to the Kemeny distance (3.52) between R and
R′

R
Cases i precedes j i and j are indifferent j precedes i

R′ i precedes j 0 ½ 1
i and j are indifferent ½ 0 ½

j precedes i 1 ½ 0

Table 3.29 The contribution of the ordered pair (i, j) 2 I � I to the mismatch distance (3.54)
between R and R′

R
Cases i precedes j i, j are indifferent j precedes i

R′ i precedes j 0 0 1
i and j are indifferent 0 0 1
j precedes i 1 1 0

Table 3.30 The contribution of the ordered pair (j, i) 2 I � I to the mismatch distance (3.54)
between R and R′

R
Cases i precedes j i, j are indifferent j precedes i

R′ i precedes j 0 1 1
i and j are indifferent 1 0 0
j precedes i 1 0 0
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If we double the values in Table 3.28 to account for both ordered pairs (i, j) and
(j, i), we observe that the resulting entries are identical to those in Table 3.31, which
completes the proof.

Consider a simple example where I consists of three elements, 1, 2, and 3 that
are linearly ordered in R and all tied in R′, so that R = ({1}, {2}, {3}) and R′ = ({1,
2, 3}). Their respective Kendall matrices are

k ¼
0 1 1
�1 0 1
�1 �1 0

and k0 ¼
0 0 0
0 0 0
0 0 0

;

so that the Kemeny distance kdðR;R0Þ ¼ 6=2 ¼ 3:
On the other hand, their respective weak order matrices are

r ¼
1 1 1
0 1 1
0 0 1

and r0 ¼
1 1 1
1 1 1
1 1 1

;

so that the mismatch distance dðR;R0Þ ¼ 3 as well:

Q.3.30. Consider three rankings on a 7-element set I = {1,2,3,4,5,6,7}: R1 = (1–2–3,
4–5, 6–7), R2 = (2–3–6, 4, 1–5–7), and R3 = (1–2, 3–4, 5–6–7). Build their
relation and Kendall matrices, and compute mismatch and Kemeny distances
between all the three

f. The mismatch distance expressed in terms of the contingency table

Although the following results can be established directly, we now rely on
Axiom A1(c), which states that d(R, R′) = d(R, R′′) + d(R′′, R′) if and only if R′′
is between R and R′, that is q \ q′ 	 q′′ 	 q [ q′ for the corresponding preference
relations. By virtue of (3.5.4), we may use d(R, R′) and d (q, q′) interchangeably.

Let us first consider a tied ranking R and its reverse R−1. Obviously,
q \ q−1 = E, where E is the indifference relation of R, which is an equivalence
relation, stripped of all ranking information. Similarly, q [ q−1 = U, the universal
relation U = I�I, which contains all possible ordered pairs of elements of I. Both
E and U are, therefore, between q and q−1 for any weak order q.

Table 3.31 Summary contribution of the ordered pairs (i, j) and (j, i) to the mismatch distance
(3.54)

R
Cases i precedes j i, j are indifferent j precedes i

R′ i precedes j 0 1 2
i and j are indifferent 1 0 1
j precedes i 2 1 0
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Let Ns be the number of elements in part Rs of the tied ranking R = (R1, R2,…, Rp).
Then the mismatch distance between U and E is easily seen to be

dðE;UÞ ¼ N2 � RsN2
s ; ð3:55Þ

since the first term on the right is the number of ones in the binary matrix of U and
the second term is the number of ones in the binary matrix of E.

Curiously, the mismatch distance between U and R itself is exactly half the
distance in (3.55). That is, the mismatch distance between a tied ranking R and the
universal relation U is given by

dðR;UÞ ¼ 1=2 N2 � RsN2
s

� 	
: ð3:56Þ

To prove that, we first notice that d(R, U) = d(R−1, U) and d(R, E) = d(R−1, E).
Indeed, neither U nor E depend on the ranking information in R, and, moreover, the
number of pairs in q and q−1, which is the number of ones in their respective
matrices r and r−1, is the same. Since both U and E are between R and R−1, we
have: d(R, R−1) = d(R, U) + d(U, R−1) = 2d(R, U) and d(R, R−1) = d(R, E) +
d(E, R−1) = 2d(R, E).

This implies that d(R, U) = d(R, E). So, since R is between E and U, d(E, U) =
d(E, R) + d(R, U) = 2d(R, U). Equation (3.56) now follows from this and (3.55),
which completes the proof.

We also have proved that the distance d(R, R−1) is equal to d(E, U) given by
(3.55), whereas the distance d(R, E) is equal to d(R, U), given by (3.56).

Now we are in a position to prove a formula for the mismatch distance between a
ranking R and its arbitrary refinement R′. Like the previous results in this sub-
section, this does not depend on the ranking information.

Specifically, the mismatch distance between a ranking R = (R1, R2, …, Rp) and
its arbitrary refinement R′ = (R1′, R2′, …, Rq′), where q > p, is given by

d(R;R0Þ ¼ RsN2
s � RtN0 2t

� 	
; ð3:57Þ

where Ns and N′t are the numbers of elements in the parts Rs of R and Rt′ of R′,
respectively.

Indeed, since R is between R′ and U, we have d(R′, U) = d(R′, R) + d(R, U), so
d(R′, R) = d(R′, U) − d(R, U). Both distances d(R′, U) and d(R, U) are determined
by Eq. (3.56), adjusted for the corresponding parts of R′ and R, respectively. This
immediately yields (3.57), completing the proof.

Consider now two ordered partitions, R and R′, and their lexicographic products
R * R′ and R′* R. We shall show that the entire ranking component contributing to
the distance between R and R′ is accounted for by the distance between R * R′ and
R′ * R. First, consider the intersection R \ R′, as presented in Fig. 3.27.

Letting Nst = |Rs \ R′t|, for s = 1, 2, …, p and t = 1, 2, …, q, denote the
numbers of elements in the parts of the intersection, we can present these cardi-
nalities as a contingency table, or cross-classification, between R and R′.
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The distance between R * R′ and R′ * R is equal to half of the total of the
products of the cardinalities of those parts in the intersection R \ R′ for which the
orderings in R and R′ are contradictory:

dðR � R0;R0 � RÞ ¼ 1
2
Rs[ s0Rt[ t0NstNs0t0 ð3:58Þ

Considering the rankings R and R′ as unordered partitions, denoted above by Ř
and Ř′, respectively, the mismatch distance between the corresponding equivalence
relations, E and E′, can be expressed as

dðE;E0Þ ¼ RsN2
s þRtN0 2t � Rs;tN2

st ð3:59Þ

where Ns, N′t, and Nst are, as above, the numbers of elements in parts Rs of R, R′t of
R′ and Rs \ R′t of R \ R′, respectively. The mismatch distance between tied
rankings R and R′ can be decomposed into ranking and equivalence parts as
follows:

dðR;R0Þ ¼ 1
2
dðE;E0Þ þ dðR � R0;R0 � RÞ: ð3:60Þ

To prove that, consider the corresponding binary relations q, q′, and q \ q′.
Since the intersection q \ q′ is between q and q′, d(q, q′) = d(q, q \ q′) + d(q \
q′, q′). On the other hand, q * q′ is between q \ q′ and q, and q′ * q is between q
\ q′ and q′, so d(q, q \ q′) = d(q, q * q′) + d(q * q′, q \ q′) and d(q \ q′,
q′) = d(q \ q′, q′ * q) + d(q′ * q, q′). But q \ q′ is between q * q′ and q′ * q, so d
(q * q′, q′ * q) = d(q * q′, q \ q′) + d(q \ q′, q′ * q). Substituting these in the
equation d(q, q′) = d(q, q \ q′) + d(q \ q′, q′), we obtain

dðq; q0Þ ¼ dðq;q � q0Þ þ dðq � q0; q0 � qÞþ dðq0 � q; q0Þ:

Since q*q′ is a refinement of q, and q′ * q is a refinement of q′, d(q, q *
q′) = 1=2 RsN2

s � Rs;tN2
st

� 	
and d(q′ * q, q′) = 1=2 RtN0 2t � Rs;tN2

st

� 	
. This implies,

by (3.59), that d(q, q * q′) + d(q′ * q, q′) = ½d(E, E′). Together with the equation
above, this completes the proof.

This section can be looked at as an attempt to find some structure in the −1 entries
in the Kendall matrices occurring in the formula for the Kemeny distance between
tied rankings. These entries appear whenever a pair of elements, i and j, are inversely
related. First, we showed that the Kemeny distance can be expressed in terms of the
mismatch distance between the preference relations (weak orders) corresponding to
the rankings, in which no negative entries appear. The mismatch distance can be
properly defined in terms of the non-negative 0−1 matrices of weak orders, rather
than the Kendall matrices of the rankings, containing entries 1, 0 and −1.
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Q.3.31. What is the meaning of the mismatch distance between partitions?
A. This is the probability of two random objects to belong to a same part in one
partition and to different parts in the other partition.
Q.3.32. Frequently, when dealing with partitions, pairs of objects are considered as
subsets rather than elements of the cartesian square of the set of objects. Then the
number of pairs in set S is not |S|2, but rather what is called the binomial coefficient
|S|(|S|−1)/2, equal to the number of two-element subsets of S. Reformulate the
expression for the mismatch distance for this case.

3.8 Decision Trees

3.8.1 General

Decision tree is a structure used for learning and predicting quantitative or nominal
target features. In the former case it is referred to as a regression tree, in the latter,
classification tree. This structure can be considered a multivariate extension of
contingency tables in such a way that only meaningful combinations of feature
categories are involved.

As illustrated on Fig. 3.28, a decision tree recursively partitions the entity set
into smaller clusters by splitting a parental cluster over a single feature. The root of
a decision tree corresponds to the entire entity set. Each node corresponds to a
subset of entities, cluster, and its children are the cluster’s parts defined by values of
a single predictor feature x. Note that the trees on Fig. 3.28 are binary: each interior
node is split in two parts. This is a most convenient format, currently used in most
popular programs. Only binary trees are considered in this section.

Decision trees are built from top to bottom in such a way that every split is made
to maximize the homogeneity of the resulting subsets with respect to a desired
target feature. The splitting stops either when the homogeneity is enough for a
reliable prediction of the target feature values or when the set of entities is too small
to consider its splits reliable. A function scoring the extent of homogeneity to
decide of the stopping is, basically, a measure of correlation between the partition
of the entity set being built and the target feature.

Sector: Util/Man Retail          NSup < 4 4 or more 

EC:  No    Yes              ShareP > 30      < 30                                

A B

C

A B

C

Fig. 3.28 Decision trees for three product based classes of Companies, A, B, and C, made using
categorical features, on the left, and quantitative features, on the right
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When the process of building a tree is completed, each terminal node is assigned
with a value of the target that is determined to be characteristic for that node, and
thus should be predicted at the conditions leading to the node. For example, both
trees on Fig. 3.28 are precise—each terminal class corresponds to one and only one
product, which is the target feature, so that each of the trees give a precise con-
ceptual description of all products by conjunctions of the corresponding branch
values. For example, product A can be described as that which is not in Utility
sector, nor E commerce utilized in the production process (left-side tree) or as that
in which less than 4 suppliers are involved and the share price is greater than 30.
Both descriptions are fitting here since both give no errors at all.

Decision trees are very popular because they are simple to understand, use, and
interpret. However, one should use them properly, because the decision rules
produced with them can be overly simplistic and frequently imprecise. Their
effectiveness much depends on the features and samples selected for the analysis.
As always in learning correlation, a simpler tree is preferred to a complex one
because of the over-fitting problem: a complex tree is more likely to reflect noise in
the data rather than the true tendencies.

In the Sect. 3.6 we have described popular association indexes between parti-
tions. Many of them are used as homogeneity scoring functions (to be) utilized in
the process of classification tree building. This will be described next.

To build a binary decision tree, one needs the following information:

(a) a dataset of input features X,
(b) an output feature u over the set of objects,
(c) a scoring function W(S,u) that scores admissible partitions S against the output

feature,
(d) a rule for splitting a subset of objects, corresponding to the terminal node

under consideration, in more homogeneous clusters,
(e) split-stopping criterion
(f) rule for pruning long or unreliable branches, and
(g) rule for the assignment of u-values to terminal nodes.

Let us comment on each of these items:

(a) The input features are, typically, quantitative or nominal. Quantitative features
are handled rather easily by testing all possible splits of their ranges. More
problematic are categorical features, especially those with many categories
because the number of possible binary splits can be very large. However, this
issue does not emerge at all if categorical features are preprocessed into the
quantitative format of binary dummy variables corresponding to individual
categories (which is advocated in this text too, see more detail in Sect. 2.3.2).
Indeed, each of the dummy variables admits only one split—that separating the
corresponding category from the rest, which reduces the number of possible
splits to the number of categories—an approach advocated by Loh and Shih
(1997), among many others. A number of such splits can be done in sequence
to warrant that any combination of categories is admissible in this approach too.
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Since this approach involves one feature at a time only, missing values are not
of an issue here, because all the relevant information such as means and fre-
quencies can be reasonably well estimated from those values that are available
—this is a stark contrast with the other multivariate techniques.

(b) In principle, the decision tree format does not prevent from using multiple
target features—just single-target criteria should be summed when there are
several targets; this approach was successfully applied to sociology survey
mixed scale data by P. Rostovtsev and B. Mirkin back in seventies (Mirkin
1985). However, all current internationally available programs involve only
single target feature. Depending on the scale of the target feature, the learning
task may differ, as well as the terminology. Specifically, if the target feature is
quantitative, a decision tree is referred to as a regression tree, and if the target
feature is categorical, a decision tree is referred to as a classification tree. Yet
classification trees may differ with regards to the learning task: (a) learning a
whole partition, if the target is nominal, or (b) learning just a category. This
section focuses only on the task of learning a classification tree with a parti-
tional target.

(c) Given a decision tree, its terminal nodes (leaves) form a partition S, which is
considered then against the target feature u with a scoring function measuring
the overall correlation W(S,u). This suggests a context of the analysis of cor-
relation between two features. If the target u is quantitative, then a tabular
regression of u over S should be analyzed and scored. This approach involving
the concept of the correlation ratio, as a natural scoring function, is described in
the next section.
Unfortunately, in the data mining literature, this natural approach is not
appreciated; thus, the correlation ratio is not popular. In contrast, at a cate-
gorical target, two most popular scoring functions, Gini index and Pearson
chi-squared, fit perfectly in the framework of contingency tables and Quetelet
indexes as described in Sect. 3.6.2. Moreover, it is mathematically proven in
that section that these two can be considered as implementations of the same
approach of maximizing the contribution to the data scatter of the target cat-
egories—the only difference being the way the dummy variables representing
the categories are normalized: (i) no normalization to make it Gini index or
(ii) normalization by Poissonian standard deviations so that less frequent cat-
egories get more important, to make it Pearson chi-squared. This sheds a fresh
light on the criteria and suggests the user a way for choosing between the two
indexes depending on user’s preferences over the importance of being rare.

(d) Admissible partitions conventionally are obtained by splitting the entity subset
corresponding to one of the current terminal nodes over one of the features. To
make it less arbitrary, most modern programs do only binary splits. That means
that any node may be split only in two parts: (i) that corresponding to a
category and the rest, for a categorical feature or (ii) given an a, those “less than

256 3 Learning Correlations



a” and those “greater than a”, for a quantitative feature. This text attends to this
approach as well. All possible splits are tested and that split which leads to the
largest value of the criterion is actually made, after which the process is
reiterated.

(e) Stopping rule typically assumes a degree of homogeneity of sets of entities, that
is, clusters, corresponding to terminal nodes and, of course, their sizes: too
small clusters are not stable and should be excluded.

(f) Pruning: In some programs, the size of a cluster is unconstrained so that in the
process of splitting nodes over features, some split parts may become very
small and, thus, unreliable as terminal nodes. This makes it useful to prune the
tree after it is computed, usually by merging the small subset nodes into greater
agglomerations. This is typically done not according to the splitting criterion W
(S,u) but according to more local considerations such as testing whether pro-
portions of the target categories in a cluster are similar to those used at the
assignment of u values to terminal nodes or by removing nodes with small
chi-squared values (see, for a review, Esposito et al. 1997).

(g) Assigning a terminal node with a u category conventionally is done by just
averaging its values over the node entities if u is quantitative or according to the
maximum probability of an u category. Then the quality of quantitative pre-
diction is accessed, as usual, by computing the differences between observed
and predicted values of u, and their variance of course. In the nominal target
case, this leads to an obvious estimate of the probability of the error: unity
minus the maximum probability; these then are averaged over the terminal
nodes of the decision tree. To make the error’s estimate more robust,
cross-validation techniques are used. Consider, say, a tenfold cross validation.
The entity set is randomly divided into ten equal-sized subsets. Each of them is
used as a testing ground for a decision tree built over the rest: these errors are
averaged and given as the error’s estimate to the tree built over the entire entity
set. These techniques are beyond the scope of the current text.

It should be mentioned that the assignment of a category to a terminal cluster in
the tree can be of an issue in some situations: (i) if no obvious winning category
occurs in the cluster, (ii) if the category of interest is quite rare, that is, when u’s
distribution is highly skewed. In this latter case using Quetelet coefficients relating
the node proportions with those in the entire set may help by revealing some great
improvements in the proportions, thus leading to interesting tendencies discovered.

3.8.2 Three Approaches to Scoring Correlation
for Decision Trees

The process of building a classification tree is, basically, a process of splitting
clusters into smaller parts driven by a measure of correlation between the partition
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S being built and the target feature u. Since our focus here is the case of nominal u’s
only, the target feature is represented by a partition T which is known to us on the
training set.

How to define a function w(S,T) to score correlation between the target partition
T and partition S being built? Three possible approaches are:

1. A popular idea is to use a measure of uncertainty, or impurity, of a partition and
score the goodness of split S by the reduction of uncertainty achieved when the
split is made. If it is Gini index, or nominal variance, which is taken as the
measure of uncertainty, the reduction of uncertainty is the popular impurity
function utilized in a popular decision tree building program CART (Breiman
et al. 1984). If it is entropy, which is taken as the measure of uncertainty, the
reduction of uncertainty is the popular Information gain function utilized in
another popular decision tree building program C3.5 (Quinlan 1993).

2. Another idea would be to use a popular correlation measure defined over the
contingency table between partitions S and T such as Pearson chi-squared.
Indeed Pearson chi-squared is used for building decision trees in one more
popular program, SPSS (Green and Salkind 2003), as a criterion of statistical
independence criterion, though, rather than a measure of association. Yet
because Pearson chi-squared is equal to the summary relative Quetelet index
(see Sect. 3.6.2), it is a measure association, and it is in this capacity that
Pearson chi-squared is used in this text. Moreover, both the impurity function
and Information gain mentioned above also are correlation measures defined
over the contingency table as shown in the formulation part of this section.
Indeed, the Information gain is just the mutual information between S and T, a
symmetric function, and the impurity function, the summary absolute Quetelet
index.

3. One more idea comes from the discipline of analysis of variance in statistics: the
correlation can be measured by the proportion of the target feature variance
taken into account by the partition S. How come? The variance is a property of a
quantitative feature, and we are talking of a target partition here. The trick is that
each class of the target partition is represented by the corresponding dummy
feature, which is equal to 1 at entities belonging to the class and 0 at the rest.
Each of them can be treated as quantitative, as explained in Sect. 3.6, so that the
summary explained proportion would make a measure of correlation between
S and T. What is nice in this approach, that it is uniform across different types of
feature scales: both categorical and quantitative features can be treated the same,
which is not the case with other approaches. Although this approach has been
advocated by the author for a couple of decades already (see, for example,
Mirkin 1996, 2012), no computational program has come out of that so far.
There is a good news though: both the impurity function and Pearson
chi-squared can be expressed as the summary explained proportion of the target
variance, under different normalizations of the dummy variables course (see
Sect. 3.6). To get the impurity function (Gini index), no normalization is needed
at all, and Pearson chi-squared emerges if each of the dummies is normalized by
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the square root of its frequency. That means that Pearson chi-squared is
underlied by the idea that more frequent classes are less contributing. This might
suggest the user to choose Pearson chi-squared if they attend to this idea, or, in
contrast, the impurity function if they think that the frequencies of target cate-
gories are irrelevant to their case.

There have been developed a number of myths about classification tree building
programs and correlation scoring functions involved in them. The following
comments are purported to shed light on some of them.

Comment 1. Difference between CART and CHAID.

There is an opinion lurking in some comments on the web that of two popular
programs, CART (Breiman et al. 1984) and CHAID (Green and Salkind 2003), the
former is more oriented at prediction whereas the latter, at description. The reason
for this perhaps can be traced to the fact that CART involves the impurity function
that is defined as the reduction in uncertainty whereas CHAID involves Pearson
chi-squared as a measure of the deviation from statistical independence. Yet this
opinion is completely undermined by the fact that the measures have very similar
predictive powers shaped as the summary Quetelet indexes, the only difference
being that one of them involves the relative Quetelet indexes, and the other absolute
ones (see Statements 3.5.3.1(b) and 3.5.3.2(b)).

Comment 2. Difference between Pearson chi-squared index and impurity
function.

The difference between impurity function and Pearson chi-squared amounts to
just different scaling options for the dummy variables representing classes of the
target partition T (see items (c) in Statements 3.5.3.1 and 3.5.3.2). The smaller
T classes get rescaled to larger values, thus contributing more, when using Pearson
chi-squared.

Comment 3. Zeros in contingency tables.

Pearson chi-squared introduced to measure the deviation of a bivariate distri-
bution from the statistical independence, appears also to signify a purely geometric
concept, the contribution to the data scatter (see (a) and (c) in Statement 3.6.2.2 on
p. 231). This leads to a different advice regarding the zeros in a contingency table.
According to classical statistics, the presence of zeros in a contingency table
contradicts the hypothesis of statistical independence so that the data are to be
trimmed to avoid zeros. However, in the context of data scatter decompositions, the
chi-squared is just a contribution with no statistical independence involved so that
the presence of zeros is of no issue in this context: thus, no data trimming is needed.

Consider an entity set I with a pre-specified partition T = {Tl}—which can be set
according to categories l of a nominal feature—that is to be learnt by producing a
classification tree. At each step of the tree building process, a subset J 	 I is to be

3.8 Decision Trees 259



split into a partition S = {Sk} in such a way that S is as close as possible to
T(J) which is the overlap of T and J. The question is: how the similarity between S
and T(J) is to be measured? When S = T(J), there is no confusion between the two.
Otherwise, it is the contingency table between S and T(J), P = (pkl) where pkl is the
proportion of J- entities in Sk \ Tl, that expresses the confusion, which is why it is
frequently referred to as a confusion table in this context.

One idea for assessing the extent of similarity is to use a correlation measure
over the contingency table such as the averaged Quetelet coefficients, Q and A, or
chi-squared X2, as discussed in Sect. 3.6.2.

Seemingly another idea is to score the extent of reduction of uncertainty over
T(J) obtained when S becomes available. This idea works like this: take a measure
of uncertainty of a feature, in this case partition T(J), t(T(J)), and evaluate it at each
of S-classes, v(T(Sk)), k = 1,…, K. Then the average uncertainty on these classes
will be

PK
k¼1 pkþ tðTðSkÞÞ, where pk+ are proportions of entities in classes Sk, so

that the reduction of uncertainty is equal to

tðTðJÞ=SÞ ¼ tðTðJÞÞ �
XK
k¼1

pkþ tðTðSkÞÞ ð3:61Þ

Of course, a function like (3.61) can be considered a measure of correlation over
the contingency table P as well. One more nice feature of this approach is that it can
be extended from nominal features to quantitative ones—just with an uncertainty
index over quantitative T-features,

Two very popular measures defined according to (3.61) are the so-called im-
purity function and information gain. The impurity function builds on Gini coef-
ficient as a measure of variance (see Sect. 3.6). Let us recall that Gini index for
partition T is GðTÞ ¼ 1�PL

l¼1 p
2
l where pl is the proportion of entities in Tl. If J is

partitioned in clusters Sk, k = 1,…, K, partitions T and S form a contingency table of
relative frequencies P = (pkl). Then the reduction (3.61) of the value of Gini
coefficient due to partition S is equal to DðTðJÞ; SÞ ¼ GðTðJÞÞ �Pk pkGðTðSkÞÞ.
This index D(T(J),S) is referred to as impurity of S over partition T. The greater the
impurity the better the split S. As established in Statement 3.6.2.1 in Sect. 3.6.2.1,
D(T, S) = A(T, S) where A(T, S) is the summary absolute Quetelet index defined by
Eq. (3.35) in Q.3.21, p. 225.

Three functions discussed above, Gini index, Pearson chi-squared, and
Information gain can be coded as presented in columns of the box below where
input p is a contingency table. Due to a holistic nature of MatLab computation, it is
possible to organize the computation without looping through the matrix elements.
The subroutines gini, chi and ing in the box can be considered pseudocodes of the
functions for coding in any other language as well.
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Q.3.33. What is the formula of summary contribution B of partition S to the set of
dummy features representing partition T when they have been normalized by
dividing by their Bernoullian standard deviations bl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ lð1� pþ lÞ

p
?

Q.3.34. Consider a partition S = {Sk} (k = 1, 2,…, K) on J and a set of categorical
features v2V, each with a set of categories L(v). The category utility function
(Fisher 1987) scores partition S against the feature set according to formula:

uðSÞ ¼ 1
K

XK
k¼1

pk
X
v2V

X
l2LðvÞ

pðv ¼ l=SkÞ2 �
X
v2V

X
l2LðvÞ

pðv ¼ lÞ2
24 35 ð3:62Þ

The term in the square brackets is the increase in the expected number of
attribute values that can be predicted given a class, Sk, over the expected number of
attribute values that could be predicted without using the class. The assumed pre-
diction strategy follows a probability-matching approach. According to this
approach, entities arrive one-by-one in a random order, and the category l is pre-
dicted for them with the frequency reflecting its probability, P(l/k) if the class Sk is
known, or pk = Nk/N if information of the class Sk is not provided. Factors pk weigh
classes Sk according to their sizes, and the division by K takes into account the
differences in the numbers of clusters: the smaller the better. Prove that the category
utility function u(S) is the sum of impurity functions D(l,S) over all features
l2L related to the number of clusters, that is, uðSÞ ¼Pl2L Dðl; SÞ=K.
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3.8.3 Tabular Regression for Regression Trees
and the Correlation Ratio

This section concerns yet another invention by Karl Pearson, the concept of
piecewise constant regression and its version, tabular regression.

Consider x a categorical feature on the same entity set as a quantitative feature y,
such as Occupation and Age at Students data set, or when building a regression tree,
x being a partition to be built, and y, the target feature. The within-category dis-
tributions of y can be used to investigate the correlation between x and y.

The correlation between x and y is higher when the within-category spreads are
tighter because the tighter the spread within an x-category, the more precise is
prediction of the value(s) of y at it. Figure 3.29 illustrates an ideal case of a perfect
correlation—all within-category y-values are the same leading to an exact predic-
tion of Age when Occupation is known.

Figure 3.30 presents another extreme, when knowledge of an Occupation cat-
egory does not lead to a better prediction of Age than when the Occupation is
unknown.

IT                        BA                        AN           Occupation

Age 
 51 

20 

Fig. 3.29 In a situation of ideal correlation, with zero within-category variances, knowledge of
the Occupation category would provide an exact prediction of the age within it

IT                    BA                  AN          Occupation

Age 
51 

20 

Fig. 3.30 Wide within-category distributions: the case of full variance within categories in which
the knowledge of Occupation would give no information of age
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A simple statistical model extending that for the mean will be referred to as
tabular regression. The tabular regression of quantitative y over categorical x is a
table comprising three columns corresponding to:

(1) Category of x
(2) Within category mean of y
(3) Within category standard deviation of y.

The number of rows in the tabular regression thus corresponds to the number of
x-categories; there should be a marginal row as well, with the mean and standard
deviation of y on the entire entity set.

Worked Example 3.14. Tabular Regression of Age (Quantitative Target) Over
Occupation (Categorical Predictor) in Students Data
Let us draw a tabular regression of Age over Occupation in Table 3.32. The table
suggests that if we know the Occupation category, say IT, then we can safely
predict the Age as being 28.2 within the margin of plus/minus 5.6 years. With no
knowledge of the Occupation category, we could only say that the Age is on
average 33.7 plus/minus 8.5, a somewhat less precise estimate.

The table can be visualized in a manner similar to those in box-plots (see
Fig. 3.31).

Table 3.32 Tabular
regression of age over
occupation in Students data

Occupation Age mean Age Std

IT 28.2 5.6
BA 39.3 7.3
AN 33.7 8.7
Total 33.7 8.5

IT                        BA                          AN       Occupation

Age 
51 

20 

Fig. 3.31 Tabular regression visualized with the within-category averages and standard
deviations represented by the position of solid horizontal lines and vertical line sizes, respectively.
The dashed line’s position represents the overall average (grand mean)
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There is an integral characteristic of the tabular regression, the correlation ratio,
which is akin to the determinacy coefficient at linear regression. This coefficient
scores the extent at which the within group variance is smaller on average than the
variance of the feature on the set before the split—a determinacy coefficient for the
tabular regression.

Given a quantitative feature y, with no further information, its average,
�y ¼Pi2I yi= Ij j, would represent a proper summarization of the data. If, however, a
set of categories of another variable, x, is additionally present, a more detailed
summarization can be provided: the within category averages. Let Sk denote the set
of entities falling in k category of x, then the within-category averages are
�yk ¼

P
i2Sk yi= Skj j.

This can be considered the least-squares solution to the model of tabular
regression which extends the data recovery model for the average in Sect. 2.2.2 as
follows. Find a set of ck values such that the summary square error L ¼Pi2I e

2
i is

minimized, where ei = yi − ck according to equations

yi ¼ ck þ ei for all i 2 Sk ð3:63Þ

The equations underlie the tabular regression and are referred to sometimes as
the piece-wise constant regression. It is not difficult to prove that the optimal ck in
(3.61) is the within category average �yk , which implies that the minimum value of
L is equal to Lm ¼

PK
k¼1
P

i2Sk ðyi � �ykÞ2. By dividing and multiplying the interior
sum by the number of elements in Sk, |Sk|, we can see that in fact Lm = Nrw

2 where
rw
2 is the average within category variance defined as

r2w ¼
X
K

pks
2
k ð3:64Þ

where pk ¼ Skj j=N is the proportion of category k and rk
2 the variance of y within

Sk.
To further analyze this, consider equation

ðyi � �ykÞ2 ¼ y2i þ�y2k � 2yi�yk

and sum it over all i2Sk. This would lead to the summary right-hand item being
similar to that in the middle, thus producing

P
i2Sk ðyi � �ykÞ2 =

P
i2Sk y

2
i � Skj j�y2k .

Summing these equations over k and moving the right-hand item to the other side of
the equation, would lead to the following decomposition:

X
i2I

y2i ¼
XK
k¼1

Skj j�y2k þ
XK
k¼1

X
i2Sk
ðyi � �ykÞ2 ð3:65Þ
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Note that the right-hand item in (3.65) is the summary least-squares criterion of
model in (3.63) Lm. This allows us to interpret the Eq. (3.65) as a decomposition of
the scatter of variable y, the item on the left, in two parts on the right: the explained
part, in the middle, and the unexplained part Lm.

The explained part sums contributions of individual categories k, Skj j�y2k . The
value of the contribution is proportional to both the category frequency and its
squared value—the greater the better.

Another expression of decomposition (3.65) can be obtained under the
assumption that variable y is centered, so that its mean is 0, by relating it to N:

r2 ¼
XK
k¼1

pk�y
2
k þ

XK
k¼1

pkr
2
k ð3:66Þ

where r2 is the variance of y, the item on the right the minimum value Lm/N from
(3.64), and the item in the middle, the weighted summary squared distance between
the grand mean �y ¼ 0 and within-category means �yk.

Equation (3.66) is very popular in statistics as the decomposition of the variance
into the within-group variance, the item on the right, and the between-group
variance, the item in the middle, as the base of a popular method for comparison of
within-category means which is referred to as ANOVA (ANalysis Of VAriance). In
the context of the tabular regression model (3.65) viewed as a data recovery model,
the original decomposition (3.65) of the quantitative feature scatter into part
explained by the nominal feature and part remaining unexplained is more appro-
priate. Viewed in this light, decomposition (3.66) shows that the category k con-
tribution to the total variance of y is proportional to its frequency multiplied by the
squared difference between within-category mean �yk and grand mean �y ¼ 0.

The correlation ratio shows the relative drop in the variance of y when y is
predicted according to model (3.63) or, in other words, the relative proportion of the
explained part of the variance. The correlation ratio is usually denoted by η2 and
defined by the following formula:

g2 ¼ 1�r2w=r2 ð3:67Þ

The notation, η2, is well accepted in the literature, although some authors prefer
using the term, correlation ratio, for the squared root of η2, but most authors leave
the term as is.

The definition implies the following properties:

– The range of η2 is between 0 and 1.
– Correlation ratio η2 = 1 when all within-category variances rk

2 are zero (that is,
when y is constant within each group Sk).

– Correlation ratio η2 is about 0 when all rk
2 are of the order of rk

2.

3.8 Decision Trees 265



Case-Study 3.7. Is There Any Relation Between Correlation Coefficient and
Correlation Ratio?
Consider two quantitative features x and y. Divide the range of x in four equal-sized
bins to produce a categorical variable xc. Is there any relation between the correlation
coefficient between x and y and the correlation ratio coefficient between xc and y?

Some claim that η2 should be always greater than q because the correlation ratio
captures any type of functional relation whereas the correlation coefficient relates to
linear functions only.

In general, no relation between η2 and q can be claimed. The former can be
greater than the latter in some cases, and smaller in some others, as presented in
Fig. 3.32a at which η2 � q and 3.32b at which η2 
 q.

Q.3.35. Consider the variance to be an uncertainty measure for a quantitative
feature y. Define the uncertainty reduction measure according to formula (3.16),
with T changed for y of course, and prove that it is equal to the numerator of the
correlation measure—the part of variance of y explained by its tabular regression
over S.
A. The summary contribution of S to the data scatter is equal to B ¼PK

k¼1 c
2
k
Skj j =P

i2I y
2
i �

PK
k¼1 r

2
k
Skj j where r2k is the within-cluster variance of y (see (3.13) in

Sect. 3.2). Then B ¼ N r2 �PK
k¼1 pkr

2
k

� 	
where r2 is the variance of the stan-

dardized feature y (note that the mean of y is 0!) and pk the proportion of entities in
cluster Sk. The last equation clearly shows that the explained part of v is
B ¼ Nr2g2. If y has been z-score standardized so that r2 ¼ 1, B equals the cor-
relation ratio.

3.8.4 Building Classification Trees

Building of a classification tree is a recursive process: starting from the entire data
set, partition a cluster into a number of parts according to one of the features. To
make the partitions less arbitrary, only binary splits are involved in most of the

(a) (b)

Fig. 3.32 Different patterns of linear and piecewise constant association between features
corresponding to x-axis ad y-axis: almost perfect piecewise constant match against a highly
non-linear pattern in (a), and almost linear arrangement against a highly non-constant pattern in (b)
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update programs. That means that any node may be split only in two parts: (i) that
corresponding to a category and the rest, for a categorical feature, or (ii) given a
threshold a, those “less than or equal to a” and those “greater than a”, for a
quantitative feature. This approach naturally comes when the data are preprocessed
by “enveloping” categories into the corresponding “quantitative” dummy features,
that assign a unity to every object falling into the category, and a zero to all the rest.
Indeed, at a = 0, such a dummy feature would split the set in two parts—that for the
corresponding category and the rest. Given a cluster, the choice of feature and
threshold a for doing the split is driven by a correlation scoring function, be it
Information gain, Pearson chi-squared, Gini index or anything else.

A cluster is not to be split anymore if it is smaller than a user defined threshold
TS (TS = 10 is set further on) or is homogeneous enough. We use two different
homogeneity tests: (a) large enough proportion of a target category in the cluster,
say, above 80%, and (b) small enough value of the scoring function which is set to
be 0.03 for Gini index, 0.08 for Pearson chi-squared, and 0.15 for Information gain.
These levels of magnitude reflect the functions’ ranges: Gini index is very close to 0
hardly reaching 0.5 at all, Pearson chi-squared, related to N, changes between 0 and
1 because it cannot be greater than the number of split parts minus 1, and
Information gain can have larger values when the number of target categories is 3 or
more. This sets the stopping conditions.

Worked Example 3.15 Classification Tree for the Iris Dataset
At Iris dataset with its three taxa, Iris setosa and Iris versicolor and Iris virginica,
taken as target categories, all the three scoring functions—Impurity (Gini) function,
Pearson chi-squared and Information gain—lead to the same classification tree,
presented on Fig. 3.33.

The tree of Fig. 3.33 was found with program clatree.m. It comprises three leaf
clusters: A, consisting of all 50 Iris setosa specimens; B, containing 54 entities of
which 49 are of Iris versicolor and 5 of Iris virginica; C, containing 46 entities of
which 45 are of Iris virginica and 1 of Iris versicolor. Altogether, this misplaces 6
entities leading to the accuracy of 96%. Of course, the accuracy would somewhat
diminish if a cross-classification scheme is applied (see Loh and Shih 1997, who
draw a slightly different tree for Iris dataset).

Let us take a look at the action of each variable at each of the two splits in
Table 3.33. Each time features w3 and w4 appear to be most contributing, so that at

Ve Vir

S

Petal width:           
>0.6                ≤0.6

Petal width:   
≤1.7     >1.7

Fig. 3.33 Classification tree
for the three-taxon partition at
Iris dataset found by using
each of the Gini, Pearson
chi-squared and Information
gain scoring functions
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the first split, at which w3 and w4 give the same impurity value, w4 made it through
just because it is the last maximum, which is remembered by the program.

The tree involves just one feature, w4: Petal width, used for splitting twice, first
at w4 = 0.6 and then at w4 = 1.7. The Pearson chi-squared value (related to N of
course) is 1 at the first split and 0.78 at the second. The Impurity function grows by
0.33 at the first split and 0.39 at the second. The fact that the second value is greater
than the first one may seem to be somewhat controversial. Indeed, the first split is
supposed to be the best, so that it is the first value that ought to be maximum.
Nevertheless, this opinion is wrong: if the first split was at w4 = 1.7 that would
generate just 0.28 of impurity value, less than the optimal 0.33 at w4 = 0.6. Why?
Because the first taxon has not been extracted yet and grossly contributes to a
higher confusion (see the top part in Table 3.34).

Project 3.3. Prediction of the Learning Outcome at Student Data Using
Decision Trees
Consider the Student dataset and ask whether students’ learning successes can be
predicted from other features available (Occupation, Age, Number of children)? By
looking at Table 1.5, one hardly can expect that marks can be predicted in this way.
Therefore, let us divide students in three groups: I—not so good performers
(average mark is less than 50), II—good performers (average mark between 50 and
70 inclusive), and III—excellent performers (average mark higher than 70). To do

Table 3.33 Values of Gini index at the best split of each feature on the Iris dataset clusters in
Fig. 3.33

First split Second split

Feature Value Gini Value Gini

w1 5.4 0.228 6.1 0.107
w2 3.3 0.127 3.4 0.036
w3 1.9 0.333 3.7 0.374
w4 0.6 0.333 1.7 0.390

Table 3.34 Confusion tables between a split and target partition on the Iris dataset

Target partition classes Iris setosa Iris versicolor Iris virginica Total

Full set

w4 � 1.7 50 49 5 104
w4>1.7 0 1 45 46
Total 50 50 50 150
First cluster removed
w4 � 1.7 0 49 5 54
w4 > 1.7 0 1 45 46
Total 0 50 50 100
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this, we compute the average mark over the three subjects (SE, OOP, and CI) and
create a partition of students T as described; the distribution of T appears to be I-25,
II-58, III-17.

We have a 100�5 matrix X to explore the correlation between X and T, the three
columns, 1,2,3, being dummy variables for Occupation categories (IT, BA, AN),
column 4 for Age, and column 5 for Number of children. The two conventional
stopping criteria, the cluster’s size and prevalence of a target class, are not sufficient
at this data, because after one or two splits, the program just chips away small
fragments of clusters without much improving them. This corresponds to the sit-
uations at which the scoring function does not show much improvements either.
Therefore, we utilize one more criterion—the minimum value of the scoring
function, a threshold below which there is no splitting. Since the three scoring
functions we use have different ranges, the thresholds must be different too. At this
study, the threshold is set at 0.03 for the Gini index, 0.08 for the Pearson
chi-squared, and 0.15 for the Information gain. The minimum cluster size is taken at
10, and the prevalence of a target class is set at 80%.

The classification tree found with Gini index is presented on Fig. 3.34. The
distributions of target categories in clusters in Fig. 3.34 are presented in Table 3.35.
Bold font highlights four terminal clusters as well as high or low proportions of
target classes in clusters. High proportions here are those greater than 70% and low
proportions are those smaller than 5%.

Tree on Fig. 3.34 is driven by two features: AN Occupation, that structures the
set rather well—one split part, those of AN occupation, get more than 70% of
category I, and none of category III, and the other of category II. All further
divisions are over feature Age; the 12 students in cluster 8 are rather specific—these
are of AN occupation aged between 22 and 28, so that 75% of them are in category
I, an improvement over parental cluster 6. Cluster 4 of younger not-AN students
seems an attempt at drawing a cluster to predict category III—it has a highest jump
in its proportion, to 36.4% from 17% in the entire set (cluster 1). The 25 older
people among not-AN students are overwhelmingly, 92%, in category II. More
splits would have followed if we had decreased the minimum acceptable value of
Gini index, say from 0.03 to 0.01.

1: AN

6: Age

2: Age 

7: 18

3: Age

4: 44 5: 25

8: 12

No   Yes

≤35                           >35            ≤28                        >28  

 >21          

Fig. 3.34 Classification tree
on Students data, targeting
partition T of students in three
categories, found using Gini
index. The legend Number: A
presents, at a split cluster
labeled by Number, A as the
split variable or, at an unsplit
cluster, A as the size (the
number of students in it)
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How well this tree would fare at prediction? To address this question properly,
one should either conduct a cross-validation test or set aside a random testing set
before using the rest for building a tree, after which see the levels of errors on the
testing set.

Yet for the illustrative purposes, let us calculate the prediction error by using tree
on Fig. 3.34. This is done by using the terminal clusters 4, 5, 7, 8 comprising 44,
25, 18, 12 elements, respectively. They total to 99, not 100, because of chipping off
an element from cluster 6 to make it into cluster 7. That means: for students in AN
category aged 21 or less, no prediction of their learning success level will be made;
the classifier takes what is referred to as reject option (comprising approximately
1% of future cases if our sample is representative). According to the data in
Table 3.35, the optimal prediction rule would predict then category II at Cluster 4
(with error 100 − 61.4 = 38.6%), category II again, at cluster 5 (with error 100 −
92 = 8%), and category I at clusters 7 and 8 (with errors 23.2 and 25.0%,
respectively). The average error is the sum of the individual cluster errors weighted
by their relative sizes, (38.6 * 44 + 8 * 25 + 23.2 * 18 + 25 * 12)/99 = 26.2%.

What happens, if we use the parental cluster 6 instead of the chipped cluster 8?
First thing—no reject option is involved then. Second, the error somewhat increases
as should be expected: (38.6 * 44 + 8 * 25 + 23.2 * 18 + 30.8 * 13)/100 = 27.0%.

Figure 3.35 presents trees found by using the Pearson chi-squared (a) and
Information gain (b). In contrast to Gini index, decreasing the increment threshold

Table 3.35 Distributions of target classes in clusters of tree on Fig. 3.34, %

Target
categories

Clusters in tree on Figure 3.34

1 2 3 4 5 6 7 8

I 25.0 3.9 73.2 3.3 3.0 69.2 77.8 75.0
II 58.0 73.5 25.8 61.4 93.0 30.8 23.2 25.0
III 17.0 23.6 0 36.4 3.0 0 0 0
Gini index at

split
0.168 0.046 0.035 0.048

Cluster size 100 69 31 44 25 13 18 12

(a)                                                         (b)

1: AN

2: 69 3: 31

1: AN

2: Age 3: 31

4: 24 5: 45

No           Yes
No           Yes

≤30 >30

Fig. 3.35 Classification trees on Student dataset targeting partition T of students in the three
categories, defined above, found using Pearson chi-squared (a) and Information gain (b). The
legends are of format “Number: A” where “A”, at a split cluster, is the split variable or, at an
unsplit cluster, the cluster’s size
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does not much help at Information gain: chipping here and there rather than splits
will be added. The change of splitting Age value to 30 at cluster 2 on tree (a) does
lead to some improvements: the 45 older students are 83.2% in category II. Yet
among the 24 younger students, 45.8% belong to category III (leaving 53.2% in
category II and 0 in category I).

With this example, one can see that the 90–100% precision is not that easy to
achieve. That is, a terminal node may have rather modest proportions of target
categories, like cluster 5 on Fig. 3.35a: about 54% of II category and 46% of III
category. Conventional thinking would label the node as an II category predictor
because the share of II is greater than half.

However, one should note that, in fact, the proportion 54% is smaller than that,
58%, in the entire set, which means that in fact these conditions, Not_AN and
younger age, less than 31, wash out some of II category. It is a case when the style
of Quetelet’s thinking may produce a better description. This thinking goes beyond
proportions in the terminal node and requires comparing the category shares at the
node with that in the whole sample. In contrast to a reduction of II category, this
cluster boasts a dramatic increase of III category—from 17% in the entire set to
46% in the cluster, 29%. This difference would be picked up by using the absolute
Quetelet coefficient which is equal to Gini index. Even more dramatic would be the
relative increase, (45.8 − 17)/17 = 170%. It is this increase that has been picked up
by Pearson chi-squared scoring function, because it is driven by the relative
Quetelet coefficient.

Q.3.36. Drawing a lift chart in marketing research. Consider a marketing
campaign advertising a product. There is a 1000 strong sample from the set of
targeted customers whose purchasing behavior is known because of prior cam-
paigns. The sample is composed of clusters of a classification tree with different
response (that is, purchasing) rates (see Table 3.36). To plan an effective campaign,
marketing researchers use what is called a lift chart—a visual representation of the
response rate.

The x-axis of a lift chart shows the percentiles of the sample, say, from 10 to
100%. On y-axis, the so-called lifts are presented. Given a group of customers, the
lift is defined as the ratio of the group’s response rate to the baseline response rate,
which is the response rate for the entire sample. On the lift chart, the percentiles of
the sample are taken in the descending order of the lift. Both baseline and percentile
lifts are presented on the chart. Build a lift chart for the sample. A. First, we calculate
the baseline rate which is the average of the response rates in Table 3.36 weighted
by the cluster proportions: r = 0.1 * 30 + 0.4 * 10 + 0.25 * 4 + 0.25 * 0 = 8%.

Table 3.36 Proportions of four clusters in a sample of 1000 customers and their purchasing
behavior (response rate)

Cluster share, % 10 40 25 25
Response rate, % 30 10 4 0
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Now we take the most responsive 10% of the customers and calculate their lift
value: 30/8 = 3.75. Next, we take the most responsive 20% of the sample, that is
the first cluster plus a hundred customers from the second cluster and see their
response rate—there should be 30 customers from the first cluster plus 10 from the
second who have purchased the product, which gives 40/200 = 20% response rate
leading to the lift value of 20/8 = 3.5. Next percentile, 30% of the sample is
composed of the first cluster plus 200 customers from the second cluster leading to
50/300 = 17.7% response rate and lift 3.3. In this way, the chart presented on
Fig. 3.36 is computed.

3.8.5 Building Classification Trees: Computation

Consider an entity set I with a nominal target feature represented by partition T of
I as well as a set of quantitative input features X (some or all of X-features may
be binary dummy variables corresponding to categories). At each step of the pro-
cess of building a classification tree a cluster J 	 I is to be split according to a
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Fig. 3.36 Lift chart for data in Table 3.36
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feature xv from X in two clusters, S1 and S2 so that S1 = {i|i 2 J and xiv � a} and
S2 = {i|i 2 J and xiv> a} where a is a value of xv. The choice of xv and a is guided
by a scoring function W(S,T) defined over the contingency table P cross-classifying
T by S.

That implies that a cluster, as an element of the hierarchical structure being built,
should maintain at least the following data:

(i) its entity set,
(ii) its parental cluster,
(iii) feature xv over which it has been split,
(iv) splitting value a,
(v) the inequality, � or > , in the cluster defining predicate.

The process starts at the universal cluster consisting of the entire set I. The
process stops if either of two conditions holds:

(a) |J| < n, where n is a pre-specified threshold on the minimum number of entities
in a cluster, and

(b) if the frequency of a T-cluster is greater than a pre-specified threshold a. To
make testing of (b) easier, each cluster should bear one more feature

(vi) the distribution of T in it. One more useful piece of data supplied with a
cluster would be

(vii) a signal of whether it may or may not be split again.

The recursive nature of the process, as well as the presence of a set of data to
accompany each cluster, would make it a fitting subject of an object oriented code.
Yet since the object oriented part of MatLab is not quite native in it, a procedural
construction will be described in this section. This construction involves two parts,
provided that computing scoring function W(T,S) over contingency table P, has
been implemented: (A) finding the best split over a feature, and (B) building a
hierarchy of the best splits.

A pseudocode, or MatLab, function, msplit.m, takes in a column-feature x,
partition of the set of its indices, t, as a cell array of t-classes, and a string with the
name of a scoring method. It produces partition s, the feature splitting value y, and
the value of scoring function ma. The stages of computation are annotated within
the code.
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The computation is organized in code clatree.m printed in the appendix. Here are
just a few comments on its structure. Consider a set of ss clusters stored in a cell
structure indexed from 1 to ss; in the beginning, the structure stores just the uni-
versal cluster I and its features at ss = 1. Of these clusters, those in the end, starting
from index tt � ss are eligible for splitting. The newly split clusters are indexed by
index bb starting from bb = ss + 1. (Note that with this system of indexing, there is
no need to assign clusters with a label informing that they should not be split
anymore: the clusters to split can only be fresh ones!) After split parts are put in the
structure, the indices are updated.

There can be a number of stopping criteria that are to be set in the very beginning
of the program: it stops when no clusters eligible for splitting remain. In the current
version of program clatree.m, three types of stopping criteria are employed. First is
the number of entities, TS: a cluster with a smaller number of entities cannot make
it into the tree and of course cannot be split further. Second, the dominant pro-
portion of the target classes, ee: a cluster is not split anymore if this has been
reached. And the third stopping criterion is tin, a threshold on the scoring function
value: if it is less then tin at a split, the cluster is not split.

3.8.6 Random Forest Classifier

Although the decision tree structure is very good for interpretation, it is not as good,
in general, for prediction; I guess, because of its instability. This is why one of the
most prominent authors in the field proposed to diversify the tree structure by using
a large number of decision trees generated by the bootstrap (Breiman 2001). To be
more exact, let us specify a number P of bootstrap trials and generate, randomly
with resampling, P series of the length N of indices from 1 to N, where N is the
number of objects. Then we specify a number m < V where V is the number of
features and, for each of the P bootstrap series, generate a data table with objects
corresponding to the indices in the series and k features randomly taken from the
original V features. Then a decision tree is drawn based on each of the P data tables.
In a refined version, the k-element feature subset is randomly drawn at each con-
secutive splitting step. This set of decision trees is what is called a random forest.
Given an entity at which all the input variables are defined, one can decide over its
class, in a classification problem, as follows. Use every tree in the forest, identify
the location of the entity in the tree, and predict the target class accordingly. Count
the number of votes, that is, the trees, for each of the target classes and predict that
one with the largest number of votes. If the task at hand is not of classification but
rather of prediction of the quantitative feature values, that is, of regression, the
predicted outcome is the average of the values predicted by each of the regression
trees in the forest.

This procedure works quite well, so that the random forest voting has become
one of the most popular tools used by the practitioners.
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However, the random forest concept loses its interpretability while gaining in the
accuracy. This is why one needs a measure of feature importance according to a
random forest, to compensate the loss albeit partly.

Consider a most popular feature importance measure, the valence (Breiman
2001; Louppe et al. 2013), which can be defined for any measure of impurity of a
subset S with regard to a target feature u, c(S). (we skip the output partition in this
notation). Limiting ourselves to the classification problem, that can be any measure
considered in Sects. 3.6.1 and 3.6.2, as for example, Gini index. Then the impurity
loss at partitioning a node s of the tree being built in its left part, sL, and its right
part, sR, will be

DcðsÞ ¼ cðsÞ � pLcðsLÞ � pRcðsRÞ ð3:68Þ

where pL and pR are the proportions of S-entities in the left and right split parts, sL
and sR, respectfully.

The importance of a variable w for predicting u is scored by summing the
weighted impurity losses p(s)Δc(s), where p(s) is the proportion of objects at the
node s, for all nodes s at which w is used as the splitting criterion, averaged over all
the trees in the forest:

rvðwÞ ¼ 1
P

XP
t¼1

X
st w

pðstÞDcðstÞ ð3:69Þ

Here the symbol st←w denotes the fact that the t-th tree node st involves splitting
of the variable w, so that the second summation involves all the nodes st formed by
splitting the variable w (t = 1,2,…, P).

Assume that all the features, both the target u and input V, are categorical and the
decision trees in the ensemble are “fully developed and balanced” (see Louppe et al.
2013) so that all the divisions possible have been made—for the binary features that
would mean that all the branches involve all the V features so that the tree has 2V

leaves. Then the importance weights can be estimated according to the following
formulas. Given a subset W of k features, define

cðujWÞ ¼
X
w0

PðW ¼ w0ÞcðujW ¼ w0Þ

where P is the probability, and summation runs over all possible combinations w0
of the features in W. Given a feature v and subset of features W such that v 62 W,
define G(u|W + v) = c(u|W) − c(u|W + v). Then the following formula holds
(Louppe et al. 2013):

rcðwÞ ¼
XV�1

k¼0
1

ðV � kÞCk
V

X
W2P�vk

GðujW þ vÞ ð3:70Þ
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where P�vk is the set of all k-element subsets of features such that v is not among
them, and Ck

V is the binomial coefficient.

Case-Study 3.8. Importance of Digit Features
Consider Table 3.37 of the ten numeral digits characterized by the seven binary
features corresponding to the presence or absence of an edge in the numeral
drawing over the seven-line rectangle in Fig. 1.2 in Sect. 1.2.3. The numerals
themselves occupy the left-most column in the table.

The bottom rows contain the feature importance weights computed according to
f-la (3.70), as well as those estimated over a sample of 10,000 fully randomized
trees, generated at k = 1 and k = 4 according to the random forest algorithm,
against the target feature Numeral. As one can see, the sampling estimates at k = 1
follow the theoretical estimates rather closely.

3.9 Naïve Bayes Approach

3.9.1 Bayes Decision Rule

Consider a situation in which there is only one target, a binary feature labeling two
states of the world corresponding to “positive” and “negative” classes of entities.
According to Thomas Bayes (c. 1701–1761), all relevant knowledge of the world
should be shaped by the decision maker in the form of probability distributions.
Then, whatever new data may be observed, they may lead to changing the

Table 3.37 The table of digit-to-edge features e1–e7 according to the Fig. 1.2 in Sect. 1.2.3

Numeral e1 e2 e3 e4 e5 e6 e7

0 1 1 1 0 1 1 1
1 0 0 1 0 0 1 0
2 1 0 1 1 1 0 1
3 1 0 1 1 0 1 1
4 0 1 1 1 0 1 0
5 1 1 0 1 0 1 1
6 1 1 0 1 1 1 1
7 1 0 1 0 0 1 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1
(3.70) 0.412 0.581 0.531 0.542 0.656 0.225 0.372
K = 1 0.414 0.583 0.532 0.543 0.658 0.221 0.368
K = 4 0.309 0.757 0.489 0.445 0.810 0.122 0.387

The bottom rows contain the feature importance weights computed according to f-la (3.70), as well
as those estimated over a sample of 10,000 fully randomized trees, generated at k = 1 and k = 4,
against the target feature Numeral, see on the left, by Louppe et al 2013
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probabilities—hence the difference between prior probabilities and posterior,
data-updated, probabilities. Specifically, assume that, P(1) = p1 and P(2) = p2 are
prior probabilities of the two states so that p1 and p2 are positive and sum to unity.
Assume furthermore that there are two probability density functions, f1(x1, x2, …,
xp) and f2(x1, x2, …, xp), defining the generation of observed entity points x = (x1,
x2, …, xp) for each of the classes. That gives us, for any point x = (x1, x2, …, xp) to
occur, two probabilities, P(1&x) = p1f1(x) and P(2&x) = p2f2(x), of x being
generated at either class. Therefore, the total probability of x to occur is f(x) =
p1f1(x) + p2f2(x). If an x = (x1, x2,…, xp) is actually observed, it leads to a change in
probabilities of the classes, from the prior probabilities P(1) = p1 and P(2) = p2 to
posterior probabilities P(1/x) and P(2/x), respectively. These can be computed as
conditional probabilities

Pð1jxÞ ¼ p1f1ðxÞ=f ðxÞ and Pð2jxÞ ¼ p2f2ðxÞ=f ðxÞ: ð3:71Þ

The decision of which class the entity x belongs to depends on what value, P(1/
x) or P(2/x) is greater. The class is considered to be the positive if P(1/x)> P(2/x) or,
equivalently,

f1ðxÞ=f2ðxÞ[ p2=p1 ð3:72Þ

or, the negative, if the reverse inequality holds. This rule is referred to as Bayes
decision rule. Another expression of the Bayes rule can be drawn by using the
difference B(x) = P(1/x)-P(2/x) rather than the ratio: x is taken to belong to the
positive class if B(x) > 0, and the negative class if B(x) < 0. Equation B(x) = 0
defines the so-called separating surface between the two classes.

The proportion of errors admitted by the Bayes rule is 1 − P(1/x) when 1 is
predicted and 1 − P(2/x) when 2 is predicted. These are the minimum error rates
achievable when both within-class distributions f1(x) and f2(x) and priors p1 and p2
are known.

Unfortunately, the distributions f1(x) and f2(x) are typically not known. Then
some simplifying assumptions are to be made so that the distributions could be
estimated from the observed data. Among most popular assumptions are:

(i) Gaussian probability and
(ii) Local independence.

Let us consider them in turn:

(i) Gaussian probability

The class probability distributions f1(x) and f2(x) are assumed to be Gaussian, so
that each can be expressed as

fkðxÞ ¼ exp�ðx� lkÞTR�1k ðx� lkÞ=2
� �

= ð2pÞp Rkj j½ �1=2 ð3:73Þ
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where lk is the central point, Rk the p�p covariance matrix and Rkj j its determinant
(k = 1, 2).

The Gaussian distribution is tremendously popular. There are at least two rea-
sons for that. First, it is treatable theoretically and, in fact, may frequently lead to
the least squares criterion within the probabilistic approach. Second, some
real-world stochastic processes, especially in physics, can be thought of as having
the Gaussian distribution. This is justified theoretically with the so-called proba-
bility limit theorems. These theorems state that the sum of a multitude of inde-
pendent probabilistic distributions converges to a Gaussian distribution. Typical
shapes of a 2D Gaussian density function are illustrated on Fig. 3.37: that with zero
correlation on the left and 0.8 correlation on the right.

In the case at which the within-class covariance matrices are equal to each other,
the Bayes decision function B(x) is linear so that the separating surface B(x) = 0 is a
hyperplane.

(ii) Local independence (Naïve Bayes)

The assumption of local independence states that all variables are independent
within each class so that the within-cluster distribution is a product of
one-dimensional distributions:

fk x1; x2; . . .; xp
� 	 ¼ fk1ðx1Þfk2ðx2Þ. . .fkpðxpÞ ð3:74Þ

This postulate much simplifies the matters because usually it is not difficult to
produce rather reliable estimates of the one-dimensional density functions fkv(xv)
from the training data. Especially simple such a task is when features x1, x2, …, xp
are binary themselves. In this case the Bayes rule is referred to as a naïve Bayes rule
because in most cases the assumption of independence (3.74) is obviously wrong in
practical situations. Take, for example, the cases of text categorization or genomic
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analyses—constituents of a text or a protein, serving as the features, are necessarily
interrelated according to the syntactic and semantic structures, in the former, and
biochemical reactions, in the latter. Yet the decision rules based on the wrong
assumptions and distributions appear surprisingly good (see discussion in Manning
et al. 2008).

Combining the assumptions of local independence and Gaussian distributions in
the case of binary variables, one can arrive at equations expressing the conditional
probabilities through exponents of linear functions of the variables (as described in
Mitchell 2010) so that:

Pð1=xÞ ¼ 1
1þ expðc0þ c1x1þ . . .þ cpxpÞ ;

Pð2=xÞ ¼ expðc0þ c1x1þ . . .þ cpxpÞ
1þ expðc0þ c1x1þ . . .þ cpxpÞ

ð3:75Þ

Equations (3.75) express what is referred to as the logistic regression. Logistic
regression is a popular decision rule that can be applied to any data on its own right
as a model for the conditional probability, and not necessarily derived from the
restrictive independence and normality assumptions.

3.9.2 Naïve Bayes Classifier

Consider a learning problem related to data in Table 3.38 further on: there is a set of
entities, which are newspaper articles, divided into a number of categories—there
are three categories in Table 3.38 according to the three subjects: Feminism,
Entertainment and Household. Each article is characterized by its set of keywords
presented in the corresponding line. The entries are either 0—no occurrence of the
keyword, or 1—one occurrence, or 2—two or more occurrences of the keyword.

The problem is to form a rule according to which any article, including those
outside of the collection in Table 3.38, can be assigned to one of these categories
using its profile—the data on occurrences of the keywords in the corresponding line
of Table 3.38.

Consider the Naïve Bayes decision rule. It assigns each category k with its
conditional probability P(k/x) depending on the profile x of an article in question
according to equations in (3.71):

Pðk=xÞ ¼ pkfkðxÞ=f ðxÞ

where f ðxÞ ¼Pl plflðxÞ. According to the Bayes rule, the category k, at which
P(k/x) is maximum, is selected. Obviously, the denominator does not depend on
k and can be removed: that category k is selected, at which pkfkðxÞ is maximum.
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According to the Naïve Bayes approach, fk(x) is assumed to be the product of the
probabilities of occurrences of the keywords in category k. How can one estimate
such a probability? This is not that simple as it sounds.

For example, what is the probability of term “drink” in H category according to
Table 3.38? Probably, it can be taken as ¼—since the term is present in only one of
four members of H. But what’s about term “play” in H—it occurs thrice but in two
documents only; thus its probability cannot be taken ¾; yet 2/4 does not seem right
either. A popular convention accepts the “bag-of-words” model for the categories.
According to this model, all occurrences of all terms in a category are summed, to
produce 31 for category H in Table 3.38. Then each term’s probability in category
k would be its summary occurrence in k divided by the bag’s total. This would lead
to a fairly small probability of the “drink” in H, just 1/31. This bias is not that
important, however, because what matters indeed in the Naïve Bayes rule is the
feature relative contributions, not the absolute ones.

And the relative contributions are all right with “drink”, “fuel” and “play”
contributing 1/31, 6/31 and 3/31, respectively, to H. Moreover, taking the total
account of all keyword occurrences in a category serves well for balancing the
differences between categories according to their sizes.

There is one more issue to take care of: zero entries in the training data. Term
“equal” does not appear at all in H, leading thus to its zero probability in the
category. This means that any article with an occurrence of “equal” would not be
classed into H category, however heavy evidence from other keywords may be.
One could make a point of course that term “equal” has not been observed in H just
because the sample of four articles in Table 3.38 is too small, which is a strong
argument indeed. To make up for these, another, a “uniform prior” assumption is

Table 3.38 An illustrative database of 12 newspaper articles along with 10 keywords

Article Keyword

Drink Equal Fuel Play Popular Price Relief Talent Tax Woman

F1 1 2 0 1 2 0 0 0 0 2

F2 0 0 0 1 0 1 0 2 0 2

F3 0 2 0 0 0 0 0 1 0 2

F4 2 1 0 0 0 2 0 2 0 1

E1 2 0 1 2 2 0 0 1 0 0

E2 0 1 0 3 2 1 2 0 0 0

E3 1 0 2 0 1 1 0 3 1 1

E4 0 1 0 1 1 0 1 1 0 0

H1 0 0 2 0 1 2 0 0 2 0

H2 1 0 2 2 0 2 2 0 0 0

H3 0 0 1 1 2 1 1 0 2 0

H4 0 0 1 0 0 2 2 0 2 0

The articles are labeled according to their main subjects—F for feminism, E for entertainment, and
H for household
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widely accepted. According to this assumption each term is present once at any
category before the count is started. For the case of Table 3.38, this adds 1 to each
numerator and 10 to each denominator, which means that the probability of “drink”,
“equal”, “fuel” and “play” in category H will be (1 + 1)/(31 + 10) = 2/41, (0 + 1)/
(31 + 10) = 1/41, (6 + 1)/(31 + 10) = 7/41 and (3 + 1)/(31 + 10) = 4/41,
respectively.

To summarize, the “bag-of-words” model represents a category as a bag con-
taining all occurrences of all keywords in the documents of the category plus one
occurrence of each keyword, to be added to every count in the data table.

Table 3.39 contains the prior probabilities of categories, that are taken to be just
proportions of categories in the collection, 4 of each in the collection of 12, as well
as within-category probabilities of terms (the presence of binary features) computed
as described above. Logarithms of these are given too.

Now we can apply Naïve Bayes classifier to any entity presented in the format of
Table 3.38 including those in Table 3.38 itself (the training set). Because the
probabilities in Table 3.39 are expressed in thousands, we may use sums of their
logarithms rather than the probability products; this seems an intuitively appealing
operation. Indeed, after such a transformation the score of a category is just the
inner product of the row representing the tested entity and the feature scores cor-
responding to the category. Table 3.40 presents the logarithm scores of article E1
for each of the categories.

Q.3.37. Apply Naïve Bayes classifier in Table 3.39 to article X = (2 2 0 0 0 0 2 2 0
0) which involves items “drink”, “equal”, “relief” and “talent” frequently.
A. The category scores are: s(F/X) = 35.2, s(E/X) = 35.6, and S(H/X) = 29.4
pointing to Entertainment or, somewhat less likely, Feminism.
Q.3.38. Compute Naïve Bayes category scores for all entities in Table 3.38 and
prove that the classifier correctly attributes them to their categories.
A. See Table 3.41

It should be mentioned that the Naïve Bayes computations here, as applied to the
text categorization problem, follow the so-called multinomial model in which only
terms present in the entities are considered—as many times as they occur. Another
popular model is the so-called Bernoulli model, in which terms are assumed to be
generated independently as binomial variables. The Bernoulli model based com-
putations differ from these on two counts: first, the features are binary indeed so that
only binary information, yes or no, of term occurrence is taken, and, second, for
each term the event of its absence, along with its probability, is counted too (for
more detail, see Manning et al. 2008; Mitchell 2010).
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3.10 Metrics of Accuracy

Consider a generic problem of learning a binary target feature, so that all entities
belong to either class 1 or class 2. A decision rule, applied to an entity, generates a
“prediction” which of these two classes the entity belongs to. The classifier may
return some decisions correct and some erroneous. Let us pick one of the classes as
that of our interest, say 1, then there can be two types of errors: false positives (FP)—
the classifier says that an entity belongs to class 1 while it does not, and false
negatives (FN)—the classifier says that an entity does not belong to class 1 while it
does.

Let it be, for example, a lung screening device for testing against a lung cancer.
Whilst established in a hospital cancer ward, on a selected sample of 200 patients
sent by local surgeries for investigation, it may produce results that are presented in
Table 3.42. Its rows correspond to the diagnosis by the screening device and the
columns to the results of further, more elaborate and definitive, tests. This is a
cross-classification contingency table, and it is frequently referred to as a confusion
table.

There are 94 true positives TP and 98 true negatives TN in the table so that the
total accuracy of the device can be rated as (94 + 98)/200 = 0.96 = 96%.

Table 3.41 Naïve Bayes
category scores for the items
in Table 3.38 with maxima
highlighted using bold font

Articles Category scores

F E H

F1 37.7006 35.0696 29.3069
F2 28.9097 25.9362 21.5322
F3 23.9197 20.1271 13.8723
F4 38.276 33.6072 30
E1 33.2349 37.9964 33.3322
E2 37.244 43.1315 40.2435
E3 43.1957 43.5672 40.8398
E4 21.1663 23.9203 19.4367
H1 25.8505 29.394 33.5895
H2 33.929 40.4527 43.749
H3 29.9582 35.3573 38.3227
H4 23.7518 28.8344 33.8408

Table 3.42 Confusion table
of patients’ lung screening
test results

True lung
cancer

Total

Yes No

Device’s diagnosis Yes 94 7 101
Not 1 98 99

Total 95 105 200
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Respectively, the numbers of false positives FP = 7, and false negatives FN = 1
sum up to 8 leading to 4% error rate. Yet there are significant differences between
these two showing that the device is in fact better than the totals show. Indeed, the 7
FP are not that important, because patients with the suspected cancer will be
investigated further in depth anyway so that their No-status will be restored, with
the cost of further testing. In contrast, 1 FN may go out of the medical system and
get their cancer untreated with the potential loss of life because of the error. This is
an example of different costs associated with FP and FN errors. The device made
just one serious error out of 95 true cancer cases. The TP rate, the proportion of
correctly identified true cases, frequently referred to as recall or sensitivity,
94/95 = 98.9%, is impressive indeed. On the other hand, the precision, that is, the
proportion of the 94 TP cases related to all cancer predicted cases, 101, is somewhat
smaller, just 93% to reflect that FP rate is 7%. The difference between precision and
sensitivity is somewhat averaged in the value of accuracy rate, 96% in this case, so
that the accuracy rate works reasonably well here as a single characteristic of the
quality of the testing device.

Yet in a situation in which there is a great disparity in the sizes of Yes and No
classes, the accuracy rate fails to reflect the results properly. Consider, for example,
results of the same device at a random sample of 200 individuals who have not been
sent for the screening by doctors but rather volunteered to be screened from public
at large (Table 3.43).

The accuracy rate at Table 3.43 is even greater than that at Table 3.42,
(2 + 195)/200 = 98.5%. Yet both sensitivity, 2/3 = 66.7%, and precision,
2/4 = 50%, are quite mediocre. The high accuracy rate is caused by the very high
specificity, the proportion of correctly identified No cases, 195/197 = 98.9%, and
by the fact that there are very few Yes cases.

As to a single measure adequately reflecting sensitivity and precision, the one most
popular is their harmonic mean, the F-measure, which is equal to F = 2/(1/(2/3) +
1/(2/4)) = 2/(3/2 + 4/2) = 4/7 = 57.1%.

Case-Study 3.9. Prevalence and Quetelet Coefficients
If one looks at the record of the screening device according to Table 3.43, out of 4
cancer cases diagnosed, 2 are correct, and compares that with the prevalence of the
cancer at the sample, 3 cases of 200—the difference is impressive indeed. This
difference is exactly what is caught up in the concept of Quetelet coefficient q(l/k)
(see Sect. 3.6.1) at row k = 1 and column l = 1. This takes the relative difference
between the conditional probability P(1/1) = 2/4 and the average probability

Table 3.43 Contingency
table of volunteers’ lung
screening test results

True lung
cancer

Total

Yes No

Device’s diagnosis Yes 2 2 4
Not 1 195 196

Total 3 197 200
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P(l = 1) = 3/200 which is referred to sometimes as the prevalence: q(1/1) = (2/4-3/
200)/(3/200) = 2 * 200/(3 * 4) − 1 = 33.33 = 3333%, quite a change. This high
value probably explains the difference in sensitivity and specificity between
Tables 3.43 and 3.42.

Indeed, a similar Quetelet coefficient at Table 3.42 is q(1/1) = 94 * 200/(101 *
95) − 1 = 0.96 = 96%, a less than a 100% increase, which may convey the idea that
Table 3.42 is much more balanced than Table 3.43. The accuracy measure works
well at balanced tables and it does not at those that are not.

In general, the situation can be described by a confusion, or contingency, table
between two sets of categories related to the class being predicted (1 or not) and the
true class (1 or not), see Table 3.44 further on. Of course, if one changes the class
of interest, the errors will remain errors, but their labels will change: false positives
regarding class 1 are false negatives when the focus is on class 2, and vice versa.

Among popular indexes scoring the error or accuracy rates are the following:

FP rate = FP/(FP + TN)—the proportion of false positives among those not in 1;
1-FP rate is referred to sometimes as specificity—it shows the proportion of correct
predictions among other, not class 1, entities.
TP rate = TP/(TP + FN)—the proportion of true positives in class 1; in information
retrieval, this frequently is referred to as recall or sensitivity.
Precision = TP/(TP + FP)—the proportion of true positives in the predicted class 1.

These reflect each of the possible errors separately. There are indexes that try to
combine all the errors, too. Among them the most popular are:

Accuracy = (TP + TN)/N—the total proportion of accurate predictions. Obviously,
1—Accuracy is the total proportion of errors.
F-measure = 2/(1/Precision + 1/Recall)—the harmonic average of Recall and
Precision.

The latter measure is getting more popularity than the former because the
Accuracy counts both types of errors equally, which may be at odds with the
common sense in those frequent situations at which errors of one type are “more
expensive” than the others. Consider, for example, the case of medical diagnostics
in Tables 3.42, 3.43 and 3.44: a tumor wrongly diagnosed as malignant would cost
much less than the other way around when a deadly tumor is diagnosed as benign.
F-measure, to some extent, is more conservative because it, first, combines rates
rather than counts, and, second, utilizes the harmonic mean which tends to be close
to the minimum of the two, as can be seen from the statements in the next questions,
Q.3.39 and Q.3.40.

Q.3.39. Consider two positive reals, a and b, and assume, say that a < b. Prove that
the harmonic mean, h = 2/(1/a + 1/b) stays within the interval between a and
2a however large the difference b − a is.
A. Take b be b = ka at some k > 1. Then h = 2/(1/a + 1/(ka)) = 2ka/(1+ k). The
coefficient at a, 2k/(1+ k), is less than 2, which proves the statement.
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Q.3.40. Consider two positive real values, a and b, and prove that their mean,
m = (a + b)/2, and harmonic mean, h = 2/(1/a + 1/b), satisfy equation mh = ab.
A. Take the product mh = [(a + b)/2][2/(1/a + 1/b)] and perform elementary
algebraic operations.

More elaborate representation of errors of the two types can be achieved with the
so-called receiver operating characteristics (ROC) graph analysis (see, for example,
Fawcett 2006). ROC graphs are especially suitable in the cases of classifiers that
have a continuous output such as Bayes classifiers. ROC graph is a 2D Cartesian
plane plotting TP rate against FP rate so that the latter is shown on x-axis and the
former, on y-axis (see Fig. 3.38).

To be specific, let us take a Bayes classifier’s rule in (3.66) and change the ratio
p2/p1 for an arbitrary threshold d > 0. Take now d = d1 for a specific d1, so that the
rule now predicts class 1 if f1(x)/f2(x)> d1. Count the proportions of true and false
positives, tp1 and fp1, at this threshold and put the point (fp1, tp1) onto a ROC
graph. Then change d to d2 and count the rates, tp2 and fp2, at this threshold. If, say,
d2> d1, then the TP rate can only decrease, because the number of positive

Table 3.44 A statistical
representation of the match
between the true class and
predicted class. The entries
are counts of the numbers of
co-occurrences

True class

1 Not Total

Predicted
Class

1 True False TP + FP
Positives Positives

Not False True FN +
TNNegatives Negatives

Total TP + FN FP + TN N
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Fig. 3.38 ROC curves for two classifiers; that of a is superior to that of b
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predictions can only decrease. The FP rate, in a regular case, should increase at
d2> d1 so that point (fp2, ft2) would go to the right and above the former point on
the ROC plot. In this way, by step-by-step changing the threshold d, one can obtain
a ROC curve such as curves “a” and “b” on the plot of Fig. 3.38. Such a curve can
be utilized as a characteristic of the classifier under consideration that can be used,
for instance, for selection of suitable levels of TP and FP rates. In the case shown on
Fig. 3.38, one can safely claim that classifier “a” is superior to that of “b”, because
at each FP rate level, TP rate of “a” is greater than that of “b”.

There is a quantitative characteristic of the quality of a ROC, called the area
under the curve (AUC), which is indeed the area between the ROC and the
FP-rate-axis: the greater the AUC, the better the classifier. The AUC expresses the
probability that for a random pair of objects in which one is a “yes” and the second
a “no” object, the classifier correctly predicts their belongingness to the “yes” and
“no” classes. Experiments show that the AUC of 0.9 or greater can be considered an
excellent one.

3.11 Summary

The goal of this chapter is to present a significant variety of techniques for learning
correlation from data. Most popular concepts—regression, correlation, chi-squared,
discrimination, Bayes classifiers, decision trees, neural networks, support vector
machine, and correspondence analysis—are presented. Some of these are accom-
panied with concepts that are interesting on their own such as the bag-of-words
model or kernel. The description, though, is rather fragmentary, except perhaps the
classification trees for which a number of theoretical results is invoked to show their
firm relations to bivariate analysis: first, summary Quetelet indexes in contingency
tables and, second, normalization options for dummy variables representing target
categories.

Overall, the chapter contents reflect basics of the art of learning correlations from
data. Perhaps the subject is by far too complex and major advances are a matter of
the future rather than the past. One such advance, though, should be mentioned
here—deep learning based on neural networks with many layers (see, for example,
Schmidhuber 2015).

The Chapter outlines several important characteristics of summarization and
correlation between two features, and displays some of the properties of those. They
are:

– linear regression and correlation coefficient for two quantitative variables;
– tabular regression and correlation ratio for the mixed scale case; and
– contingency table, Quetelet index, statistical independence, and Pearson’s

chi-squared for two nominal variables.

They all are applicable in the case of multidimensional data as well.
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Some of the characteristics described here are rather unconventional. For
example, the concepts of tabular regression and correlation ratio are not terribly
popular in data mining. The Quetelet indexes are recognized by neither community,
the more so the idea that Pearson chi-squared is a summary correlation measure, not
necessarily a criterion of statistical independence.

Some examples of non-linear regression and nature-inspired approaches for
fitting that are outlined. Computational bootstrap based validation is considered.
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