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Preface to the Second Edition

This new edition inherits the feature of the first edition in its trying to explain the
“whys” and “whats”, rather than the “hows”, of data analysis. The book concen-
trates on in-depth explanation of a few methods to address core issues, rather than
presentation of a multitude of methods that are popular among the scientists. An
added value of this edition is in trying to address two features of the brave new
world that is materializing now, after the first edition was published in 2011. These
features are: (a) the emergence of “Data science” leading me to remove the word
“Concepts” from the title, and (b) changes in student cognitive habits according to
the currently enveloping process of global digitalization.

The birth of Data science gives me more opportunities in delineating the field of
data analysis. An overwhelming majority of both theoreticians and practitioners are
inclined to consider the notions of “data analysis” (DA) and “machine learning”
(ML) as synonymous. There are, however, at least two differences between the two.
There is a difference in perspectives. ML is to equip computers with methods and
rules to see through regularities of the environment—and behave accordingly. DA
is to enhance conceptual understanding. These goals are not inconsistent, which
explains a huge overlap between DA and ML. However, there are situations in
which these perspectives may be inconsistent indeed. For example, a robot may use
the deep learning approach to quickly switch off a device to prevent an explosion.
On the other hand, a lawyer must have a clear-cut explanation of their lawsuit
strategy, which deep learning networks cannot help so far to provide. Another
difference comes from the technical side. ML is concerned more with prediction
over newly appearing objects, whereas DA rather sticks to the available dataset.
Therefore, ML prefers the probabilistic part of mathematics, whereas DA is okay
with the mathematics of finite-dimensional vector spaces. The language of proba-
bilistic distributions is better suited to capture interrelations between features,
whereas the language of matrices is good for describing entities. Lack of proba-
bilities does not necessarily mean no mathematics at all—I put more mathematics
appropriate to the subject to strengthen the presentation of the theoretical side of
DA. In particular, I have added material on eigenvalues, including canonical
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correlations and use of them, as well as metric spaces of binary relations, including
consensus partitions and rankings.

Regarding the current students’ cognitive habits, I think they do not want to cope
with lengthy introductory materials anymore. Nowadays, students definitely prefer
to immediately get into the “thick of it”. Therefore, I removed the lengthy intro-
ductory Chapter on one- and two-dimensional cases altogether and streamlined the
presentation of multidimensional methods. These methods are now organized into
four Chapters, one of which presents correlation learning (Chap. 3). Three other
Chapters present summarization methods both quantitative (Chap. 2) and categor-
ical (Chaps. 4 and 5). Chapter 4 relates to finding and characterizing partitions by
using K-means clustering and its extensions. Chapter 5 relates to hierarchical and
separative cluster structures. Using encoder–decoder data recovery approach brings
forth a number of mathematically proven interrelations between methods that are
used for addressing such practical issues as the analysis of mixed scale data, data
standardization, the number of clusters, cluster interpretation, etc. An obvious bias
toward summarization against correlation can be explained, first, by the fact that
most texts in the field are biased in the opposite direction, and, second, by my
personal preferences. Categorical summarization, that is, clustering is considered
not just a method of DA but rather a model of classification as a concept in
knowledge engineering, which may justify, to an extent, the attention given to it
here. Also, in this edition, I somewhat relaxed the “presentation/formulation/
computation” narrative structure, which was omnipresent in the first edition, to be
able to describe things in one go.

Chapter 1 presents the author’s view on the DA mainstream, or core, as well as
on a few Data science issues of current interest. Specifically, I bring forward novel
material on the role of DA, including its successes and pitfalls (Sect. 1.4), and
classification as a special form of knowledge (Sect. 1.5). Overall, my goal is to
show the reader that Data science is not a well-formed part of knowledge as yet but
rather a piece of art-in-the-making. A taxonomy of main methods and concepts
presented in the book concludes the Table of Contents.

To somewhat lessen the burden of studying theoretical facts that are not of
immediate use by a student oriented toward practical applications, I put many
of them as questions Q. within the text (as a rule, with answers, A.); there are more
than 130 of them altogether and I urge the reader not to skip them over but rather
take a look at each. A lot of practical advice, especially regarding preprocessing and
post-processing issues, is presented in Working examples and Case studies, about a
hundred of them altogether. It is advisable to read—and try—them through within
the text; they are part of the teaching material rather than alien testing material.

Among prerequisites to this text is some knowledge of probability and mathe-
matical statistics, however rudimentary, in addition to basic calculus, set and graph
theory, and linear algebra, mentioned in the Preface to the 1st edition.

London, UK Boris Mirkin
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Preface to the First Edition

This is a textbook in data analysis. Its contents is heavily influenced by the idea that
data analysis should help in enhancing and augmenting knowledge of the domain as
represented by the concepts and statements of relation between them. According to
this view, two main pathways for data analysis are summarization, for developing
and augmenting concepts, and correlation, for enhancing and establishing relations.
Visualization, in this context, is a way of presenting results in a cognitively com-
fortable way. The term summarization is understood quite broadly here to embrace
not only simple summaries like totals and means, but also more complex summaries
such as the principal components of a set of features or cluster structures in a set of
entities.

The material presented in this perspective makes a unique mix of subjects from
the fields of statistical data analysis, data mining, and computational intelligence,
which follow different systems of presentation.

Another feature of the text is that its main thrust is to give an in-depth under-
standing of a few basic techniques rather than to cover a broad spectrum of
approaches developed so far. Most of the described methods fall under the same
least-squares paradigm for mapping an “idealized” structure to the data. This allows
me to bring forward a number of relations between methods that are usually
overlooked. Just one example: a relation between the choice of a scoring function
for classification trees and normalization options for dummies representing the
target categories (in Sect. 3.8).

Although the in-depth study approach involves a great deal of technical details,
these are encapsulated in specific fragments of the text termed “formulation” parts.
The main, “presentation”, part is written in a very different style. The presentation
involves no mathematical formulas and explains a method by actually applying it to
a small real-world dataset—this part can be read and studied with no concern for the
formulation at all. There is one more part, “computation”, targeted at a
computer-oriented reader. This part describes the computational implementation
of the methods, illustrated using the MatLab computing environment. I have arrived
at this three-way narrative style as a result of my experiences in teaching data
analysis and computational intelligence to students in Computer Science. Some
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students might be mainly interested in just one of the parts, whereas others might
try to get to grips with two or even all three of them.

One more device to stimulate the reader’s interest is a multilayer system of
proactive learning materials for class- and self-study:

– Worked examples provided to show how specific methods apply to particular
datasets;

– More complex problems solved, case studies, possibly involving a rule for data
generation, rather than a prespecified dataset, or an informal way of analyzing
results;

– Even more complex problems, projects, possibly involving uncharted terrain
and a small-scale investigation;

– A number of computational or theoretical problems, questions, formulated as
self-study exercises; answers are provided for most of them.

The text is based on my courses for full-time and part-time students in the MS
program in Computer Science at Birkbeck, University of London (2003–2010), in
the BS and MS programs in Applied Mathematics and Informatics at Higher School
of Economics, Moscow (2008–2010), and postgraduate School of Data Analysis at
Yandex, a popular Russian search engine, Moscow (2009–2010). The material
covers lectures and labs for about 35–40 lecture hours in advanced BS programs or
MS programs in Computer Science or Engineering. It can also be used in
application-oriented courses such as Bioinformatics or Methods in Marketing
Research.

No prerequisite beyond a conventional school background for reading through
the presentation part is required, yet some training in reading academic material is
expected. The reader interested in studying the formulation part should have some
background in: (a) basic calculus including the concepts of function, derivative, and
the first-order optimality conditions, (b) basic linear algebra including vectors, inner
products, Euclidean distances, and matrices (these are reviewed in the Appendix),
and (c) basic set theory notation such as the symbols for inclusion and
membership. The computation part is oriented toward those interested in coding for
computer implementation, specifically focusing on working with MATLAB as a
user-friendly environment.

viii Preface to the First Edition



Acknowledgements

To 1st Edition: Too many people contributed to the material of the book to list all
their names. First of all, my gratitude goes to Springer’s editors who were instru-
mental in bringing forth the very idea of writing such a book and in channeling my
efforts by providing good critical reviews. Then, of course, I thank the students at
my classes in MS programs in Computer Science at Birkbeck and, more recently, in
BS and MS programs in Applied Mathematics and Informatics at HSE. Here is a list
of people who directly contributed to this book with advice, and sometimes with
computation: I. Muchnik (Rutgers University), M. Levin (Higher School of
Economics Moscow), T. Fenner (Birkbeck University of London), S. Nascimento
(New University of Lisbon), T. Krauze (Hofstra University), I. Mandel
(Telmar Inc), I. Mirkin (Yext), V. Sulimova (Tula Technical University), and
V. Topinsky (Higher School of Economics Moscow). The HSE students
J. Askarova, K. Chernyak, O. Chugunova, K. Kovaleva, and A Kramarenko helped
in debugging the final version.

To 2nd Edition: My thanks go, first of all, to colleagues in the National Research
University Higher School of Economics Moscow RF, for permanent support. Two
of them should be mentioned here: Prof. Fuad Aleskerov, Head of Laboratory for
the Analysis and Choice of Decisions, and Prof. Sergei Kuznetsov, Head of
Laboratory for Intelligent Systems and Structural Analysis. Both Laboratories
are supported within the framework of the Russian Academic Excellence Project
“5–100”. HSE students of my classes in Data Analysis contributed to the correction
of mistakes and blunders.

ix



pr
oj

ec
to

r

D
iv

is
iv

e 

Ag
gl

om
er

at
iv

e

Ca
te

go
ric

al
G

oo
gl

e 
ra

nk
in

g

Si
m

ila
rit

y 
cl

us
te

rin
g

Co
m

pa
rin

g
ce

nt
er

s

Bo
ot

st
ra

p
va

lid
at

io
n

Pa
rt

iti
on

Fu
zz

y
 c

lu
st

er
s 

Ba
tc

h

K-
M

ea
ns

pa
rt

iti
on N

at
ur

e
in

sp
ire

d

Co
m

pl
em

en
ta

ry

In
te

rp
re

ta
tio

n

An
om

al
ou

s

iK
-m

ea
ns

M
et

ho
ds

 

Su
m

m
ar

iz
at

io
n 

Sc
aD

N
eu

ra
l

N
et

w
or

k

SV
M

N
ai

ve
 B

ay
es

 
Co

rr
el

at
io

n 

 D
ec

is
io

n 
Tr

ee
 

Fu
nc

tio
na

l r
ul

e

Re
gr

es
si

on
Tr

ee
Li

ne
ar

 
di

sc
rim

in
at

io
n

Er
ro

r b
ac

k
pr

op
ag

at
io

n

Cl
as

si
fic

at
io

n
Tr

ee

Li
ne

ar
 

re
gr

es
si

on
N

on
-li

ne
ar

 re
gr

es
si

on
 

N
at

ur
e

in
sp

ire
d

Ta
bu

la
r

 re
gr

es
si

on
 

Tw
o

cl
us

te
rs

Co
nt

rib
ut

io
n 

 

PC
AQ

ua
nt

ita
tiv

e

SV
D 

ba
se

d

Co
nv

en
tio

na
l

M
ix

tu
re

 o
f

Di
st

rib
ut

io
ns

Li
ns

tr
at

Bi
na

ry
 

re
la

tio
n 

 

Co
nt

in
ge

nc
y

ta
bl

e

Du
m

m
y

m
at

rix

Co
ns

en
su

s  
 

ra
nk

in
g 

Py
th

ag
or

ea
n

de
co

m
po

si
tio

n
M

at
ric

es
 fo

r
N

on
-n

um
er

ic
al

s

O
rt

ho
go

na
l 

Ca
no

ni
ca

l
co

rr
el

at
io

n
Co

rr
es

po
nd

en
ce

an
al

ys
is

Co
ns

en
su

s  
 

pa
rt

iti
on

Ch
i-

sq
ua

re
d Q
ue

te
le

t
in

de
x

Se
pa

ra
te

cl
us

te
r

M
od

ul
ar

ity

Su
m

m
ar

y
M

ST
 a

nd
 

Si
ng

le
 L

in
k

Sp
ec

tr
al

U
ni

fo
rm

M
od

ul
ar

ity

Su
m

m
ar

y 
Se

m
i-

Av
er

ag
e 

Ap
pr

ox
im

at
e

U
ni

fo
rm

Ke
rn

el

Se
m

i-A
ve

ra
ge

Su
m

m
ar

y

F
ig
.1

T
-C
O
D
A
:
A

ta
xo

no
m
y
of

m
ai
n
co
re

da
ta

an
al
ys
is
m
et
ho

ds
an
d
co
nc
ep
ts
de
sc
ri
be
d
in

th
e
te
xt

x Acknowledgements



Contents

1 Topics in Substance of Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Summarization and Correlation: Main Goals

of Core Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The Goals for Knowledge Enhancing . . . . . . . . . . . . . . . 1
1.1.2 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Structure of Data Analysis Problem . . . . . . . . . . . . . . . . 5
1.1.4 Teaching Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Case Study Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Quantitative Entity-to-Feature Data Tables . . . . . . . . . . . 11
1.2.2 Mixed Scale Entity-to-Feature Data Tables . . . . . . . . . . . 14
1.2.3 Similarity or Network Data . . . . . . . . . . . . . . . . . . . . . . 23

1.3 An Account of Data Visualization . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.2 Publicizing and Highlighting . . . . . . . . . . . . . . . . . . . . . 29
1.3.3 Integrating Different Aspects . . . . . . . . . . . . . . . . . . . . . 38
1.3.4 Narrating a Story . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.4 The Role of Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.4.1 Current Success of Data Analysis and Data Table . . . . . . 44
1.4.2 A Great Success Story: Kepler’s Planetary Motion . . . . . 48
1.4.3 Failures of Data Analysis: Counter-Intuitive Cases . . . . . . 51
1.4.4 Insubstantial Patterns and Their Causes . . . . . . . . . . . . . . 54

1.5 Knowledge Shaped as Classification . . . . . . . . . . . . . . . . . . . . . 59
1.5.1 Classification as Soft Knowledge . . . . . . . . . . . . . . . . . . 59
1.5.2 Goals of Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1.5.3 Forms of Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xi



2 Quantitative Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.1 Encoder–Decoder Data Summarization . . . . . . . . . . . . . . . . . . . . 77

2.1.1 Structure of a Summarization Problem . . . . . . . . . . . . . . 77
2.1.2 Least-Squares Data Summarization and Pythagorean

Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.2 Quantitative Features and Their Characteristics . . . . . . . . . . . . . . 82

2.2.1 Data Analysis Perspective: Scale Types, Minkowski
Distance and Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.2.2 Centers and Spreads: Minkowski Distance . . . . . . . . . . . 88
2.2.3 Probabilistic Perspective: Distributions, Centers

and Spreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.3 Categorical Features and Mixed Scale Data . . . . . . . . . . . . . . . . 105

2.3.1 Distribution and Its Characteristics . . . . . . . . . . . . . . . . . 105
2.3.2 Binary Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.3.3 Dummy Matrix; Spanning Subspace and Equivalence

Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.3.4 Quantification and Standardization of Mixed

Scale Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.4 Principal Component Analysis (PCA): Model, Method,

Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.4.1 A Multiplicative Decoder . . . . . . . . . . . . . . . . . . . . . . . . 123
2.4.2 Extension of the PC Encoder–Decoder to the Case

of Many Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
2.4.3 Conventional Formulation of PCA Using Covariance

Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
2.4.4 Computing Principal Components . . . . . . . . . . . . . . . . . . 129
2.4.5 Interpretation of Principal Components . . . . . . . . . . . . . . 130

2.5 SVD Based Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.5.1 PCA Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.5.2 Latent Semantic Analysis . . . . . . . . . . . . . . . . . . . . . . . . 136

2.6 Ranking in Feature Space and Networks . . . . . . . . . . . . . . . . . . 142
2.6.1 Scoring a Hidden Factor . . . . . . . . . . . . . . . . . . . . . . . . . 142
2.6.2 PCA and Ranking Network Nodes: PageRank . . . . . . . . . 154

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

3 Learning Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.1 General: Decision Rules, Fitting Criteria, and Learning

Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.2 Two-D Linear Regression and Special Cases . . . . . . . . . . . . . . . 168

3.2.1 Case of Two Features . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.2.2 Validity of the Regression . . . . . . . . . . . . . . . . . . . . . . . 171
3.2.3 Fitting the Equation of Linear Regression . . . . . . . . . . . . 175

xii Contents



3.2.4 Correlation Coefficient and Its Properties . . . . . . . . . . . . . 176
3.2.5 Linearization of Non-linear Regression . . . . . . . . . . . . . . 178
3.2.6 Linear Regression: Computation . . . . . . . . . . . . . . . . . . . 179

3.3 Multivariate Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 190
3.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
3.3.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

3.4 Linear Discrimination and SVM . . . . . . . . . . . . . . . . . . . . . . . . 196
3.4.1 Linear Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
3.4.2 Support Vector Machine (SVM) Criterion . . . . . . . . . . . . 200
3.4.3 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

3.5 Learning Correlation with Neural Networks . . . . . . . . . . . . . . . . 204
3.5.1 Artificial Neuron and Neural Network: Presentation . . . . . 204
3.5.2 Activation Functions and Network Function . . . . . . . . . . 207
3.5.3 Learning a Multi-layer Network . . . . . . . . . . . . . . . . . . . 208
3.5.4 Steepest Descent for the Square Error Criterion

with Linear Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
3.5.5 Learning Wiring Weights with Error

Back-Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
3.5.6 Error Back-Propagation: Computation . . . . . . . . . . . . . . . 214

3.6 Association Between Nominal Features: Elementary
and Linear Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
3.6.1 Elementary Analysis: Quetelet Index

and Chi-Squared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
3.6.2 Least-Squares Analysis of Association

Between Dummy Matrices . . . . . . . . . . . . . . . . . . . . . . . 229
3.6.3 Correspondence Analysis . . . . . . . . . . . . . . . . . . . . . . . . 233
3.6.4 Correlation Between Projection Matrices . . . . . . . . . . . . . 241

3.7 Distance Between Relations Corresponding to Tied Rankings
and Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

3.8 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
3.8.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
3.8.2 Three Approaches to Scoring Correlation

for Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
3.8.3 Tabular Regression for Regression Trees

and the Correlation Ratio . . . . . . . . . . . . . . . . . . . . . . . . 262
3.8.4 Building Classification Trees . . . . . . . . . . . . . . . . . . . . . 266
3.8.5 Building Classification Trees: Computation . . . . . . . . . . . 272
3.8.6 Random Forest Classifier . . . . . . . . . . . . . . . . . . . . . . . . 275

3.9 Naïve Bayes Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
3.9.1 Bayes Decision Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
3.9.2 Naïve Bayes Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 280

3.10 Metrics of Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Contents xiii



4 Core Partitioning: K-means and Similarity Clustering . . . . . . . . . . . 293
4.1 General: Clustering as Categorical Summarization . . . . . . . . . . . 294
4.2 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

4.2.1 Batch K-means Partitioning . . . . . . . . . . . . . . . . . . . . . . 296
4.2.2 Batch K-means and Its Criterion . . . . . . . . . . . . . . . . . . . 303
4.2.3 Incremental K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
4.2.4 Nature Inspired Algorithms for K-means . . . . . . . . . . . . . 311
4.2.5 Partition Around Medoids PAM . . . . . . . . . . . . . . . . . . . 316
4.2.6 Initialization of K-means: Conventional Approaches . . . . 318
4.2.7 Notes on Software for K-means . . . . . . . . . . . . . . . . . . . 321

4.3 Complementary Criterion for K-means: Spectral and
Anomalous Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
4.3.1 Complementary K-means Criterion . . . . . . . . . . . . . . . . . 323
4.3.2 The Complementary Criterion and Spectral Approach

to Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
4.3.3 Anomalous Pattern and Intelligent K-means . . . . . . . . . . 326

4.4 Cluster Interpretation Aids at Mixed Data Scales . . . . . . . . . . . . 338
4.4.1 Classical Statistics View at Interpretation of Partitions:

Tabular Regression and Correlation Ratio . . . . . . . . . . . . 338
4.4.2 Formulas for Cluster Interpretation Aids at Mixed

Scale Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
4.4.3 Data Analysis View of Cluster Interpretation Aids . . . . . . 344
4.4.4 Comparing Within-Cluster and Grand Means

Using Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
4.5 Extension of K-means to Different Cluster Structures . . . . . . . . . 354

4.5.1 Fuzzy K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . 355
4.5.2 Mixture of Distributions and EM Algorithm . . . . . . . . . . 358
4.5.3 Kohonen’s Self-Organizing Maps SOM . . . . . . . . . . . . . 362

4.6 Partitioning for Similarity Data . . . . . . . . . . . . . . . . . . . . . . . . . 363
4.6.1 Extending K-means to Similarity Data . . . . . . . . . . . . . . 363
4.6.2 Algorithms for the Semi-average Clustering Criterion . . . 366
4.6.3 Summary Similarity Clustering . . . . . . . . . . . . . . . . . . . . 372

4.7 Consensus Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

5 Divisive and Separate Cluster Structures . . . . . . . . . . . . . . . . . . . . . 405
5.1 Ward Divisive Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

5.1.1 Hierarchy and Dendrogram . . . . . . . . . . . . . . . . . . . . . . . 406
5.1.2 Square-Error Criterion and Ward Distance . . . . . . . . . . . . 408
5.1.3 Divisive Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
5.1.4 Conceptual Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 414

xiv Contents



5.2 Normalized Cut, Laplace Standardization and Spectral
Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
5.2.1 Normalized Cut and Laplace Transformation . . . . . . . . . . 420
5.2.2 Minimum Cut and Straight Spectral Clustering . . . . . . . . 426

5.3 Threshold Graph, Connected Component, Single Linkage
Clustering, and Maximum Spanning Tree MST . . . . . . . . . . . . . 431
5.3.1 Threshold Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
5.3.2 Maximum Spanning Trees and Connected

Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
5.3.3 Single Link Hierarchical Clustering by Using MST . . . . . 437

5.4 Separate Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
5.4.1 Anomalous Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
5.4.2 One-Cluster Summary Criterion and Its Properties . . . . . . 445
5.4.3 Approximate Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

5.5 Decomposing a Similarity Matrix Over Additive Clusters . . . . . . 458
5.5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
5.5.2 Additive Clusters One-by-One . . . . . . . . . . . . . . . . . . . . 467
5.5.3 Finding (Sub)Optimal Additive Clusters . . . . . . . . . . . . . 470

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Contents xv



Chapter 1
Topics in Substance of Data Analysis

Abstract This is an introductory chapter in which

(i) The goals of core data analysis as a tool helping to enhance and augment
knowledge of the domain are outlined. Since knowledge is represented by
the concepts and statements of relation between them, two main pathways for
data analysis are summarization, for developing and augmenting concepts,
and correlation, for enhancing and establishing relations.

(ii) A set of eight cases involving small datasets and related data analysis
problems is presented. The datasets are taken from various fields such as
monitoring market towns, computer security protocols, bioinformatics, and
cognitive psychology.

(iii) An overview of data visualization, its goals and some techniques, is given.
(iv) A general view of strengths and pitfalls of data analysis is provided.
(v) An overview of the concept of classification as a soft knowledge structure

widely used in theory and practice is given.

1.1 Summarization and Correlation: Main Goals of Core
Data Analysis

1.1.1 The Goals for Knowledge Enhancing

The term Data Analysis has been used for quite a while, even before the advent of
computer era, as an extension of mathematical statistics, starting from develop-
ments in cluster analysis and other multivariate techniques before WWII, bringing
forth the concepts of “exploratory” data analysis and “confirmatory” data analysis
in statistics (see, for example, Tukey 1977). The former was supposed to cover a set
of techniques for finding patterns in data, and the latter to cover more conventional
mathematical statistics approaches for hypothesis testing. “A possible definition of
data analysis is the process of computing various summaries and derived values
from the given collection of data” and, moreover, the process may become more
intelligent if attempts are made to automate some of the reasoning of skilled data
analysts and/or to utilize approaches developed in the Artificial Intelligence areas
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(Berthold and Hand 2003, p. 3). Overall, the term Data Analysis is usually applied
as an umbrella to cover all the various activities mentioned above, with an emphasis
on mathematical statistics and its extensions.

The situation can be seen as follows. Classical statistics takes the view of data as
a vehicle to fit and test mathematical models of the phenomena the data refer to.
The data mining and knowledge discovery discipline claims to use data so that new
knowledge is added. What is knowledge remains undefined. Knowledge of fact and
knowledge of God and knowledge of regularities in nature can be distinguished
though. It should be sensible then to look at those methods that relate to an
intermediate level and contribute to the theoretical—rather than any—knowledge of
the phenomenon. These would focus on ways for augmenting or enhancing theo-
retical knowledge of a specific domain which the data being analyzed relate to. The
term “knowledge” encompasses many diverse layers or forms of information,
starting from individual facts to those of literary characters to major scientific laws.
But when focusing on a particular domain the dataset in question comes from, its
“theoretical” knowledge structure can be considered as comprised of two main
types of elements: (i) concepts and (ii) statements relating concepts. Concepts are
terms referring to aggregations of similar entities, such as apples or plums, or
similar categories such as fruit comprising both apples and plums, among others.
When created over data objects or features, these are referred to, in data analysis,
as clusters or factors. Statements of relation between concepts express regular-
ities relating different categories. Two features are said to correlate when a
co-occurrence of specific patterns in their values is observed as, for instance, when
a feature’s value tends to be the square of another feature. The observance of a
correlation pattern can lead sometimes to investigation of a broader structure behind
the pattern, which may further lead to finding or developing a theoretical framework
from which the correlation follows. It is useful to distinguish between quantitative
correlations such as algebraic expressions involving data features and categorical
ones expressed in a non-quantitative way, for example, as logical production rules
or more complex structures such as decision trees. Correlations may be used for
both understanding and prediction. In applications, the latter has been until recently
by far more important. Moreover, the prediction problem is much easier to make
sense of operationally, hence machine learning has concentrated on this.

What is said above suggests that there are two main pathways for data analysis to
augment theoretical knowledge: (i) developing new concepts by “summarizing”
data and (ii) deriving new relations between concepts by analyzing “correlation”
between various aspects of the data. The quotation marks are used here to point out
that each of the terms, summarization and correlation, significantly extends its
conventional meaning. Indeed, while everybody would agree that the average mark
does summarize the marking scores on test papers, it would be more daring to see in
the same light derivation of students’ hidden talent scores by approximating their
test marks or finding a cluster of similarly performing students. Still, the mathe-
matical structures behind each of these three activities—calculating the average,
finding a hidden factor, and designing a cluster structure—are analogous, which
suggests that classing them all under the “summarization” umbrella may be
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reasonable. Similarly, the term “correlation” which is conventionally utilized in
statistics only to express the extent of linear relationship between two or more
variables, is understood here in its generic sense, as a supposed affinity between two
or more aspects of the same data that can be variously expressed, not necessarily by
a linear equation or by a quantitative expression at all. This is what is encompassed
further on as Core Data Analysis.

It would be useful to spell out that view of the data as a subject of computational
data analysis that is adhered to here. A dataset here is a table at which objects,
synonymously referred to as entities, are assigned to rows. Columns contain data of
the objects, usually in the form of feature values or similarity index values.
Typically, in sciences and in statistics, a problem comes first, and then the inves-
tigator turns to data that might be useful in advancing towards a solution. In
computational data analysis, it may also be the case sometimes. Yet the situation is
reversed frequently. There is a dataset related to this or that process or phenomenon.
There are many issues related to the process. Typical questions then would be: Take
a look at this data set—what sense can be made out of it?—Is there any structure in
the data set? Can these features help in predicting those? Can these features help in
addressing this or that issue? This is more reminiscent to a traveler’s view of the
world rather than that of a scientist. The scientist sits at his desk, gets reproducible
signals from the universe and tries to accommodate them into the great model of the
universe that the science has been developing. The traveler deals with what comes
on their way. Helping the traveler in making sense of data is the task of data
analysis. It should be pointed out that this view much differs from the conventional
scientific method in which the main goal is to identify a pre-specified model of the
world, and data is but a vehicle in achieving this goal. It is that view that underlies
the development of data science and its parts.

Any data set comprises two parts, data and metadata entries. Data entries are the
set of measurements taken, whereas metadata is a most straightforward relation
between knowledge and measurements. Metadata usually involve names for the
objects and features, as well as indications of the measurement scales for the latter.
Depending on the data domain, objects may be alternatively but synonymously
referred to as individuals, entities, cases, instances, patterns, or observations. Data
features may be synonymously referred to as variables, attributes, states, or char-
acters. Depending on the way they are assigned to objects, features can be of an
elementary structure [e.g., age, sex, or income of individual] or complex structure
[e.g., an image or a statement or a cardiogram]. Metadata may involve relations
between objects and other relevant information.

1.1.2 Other Approaches

The two-fold goal above clearly delineates the place of the data analysis core within
the set of approaches involving various data analysis tasks. Here is a list of some
popular approaches:
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• Artificial intelligence—this term applies to any activity oriented to development
of theoretical and/or practical devices, models, and methods that are supposed to
perform any intelligent activity of the human brain. This began during the
second half of the twentieth century, at first somewhat biased to the deductive
logics side, but currently it overlaps all the directions including machine
learning and data analysis.

• Big data—this term is used to embrace all the data analysis methods, software,
and practices specifically oriented at massive datasets relating different aspects
of phenomena. Big data usually come in distributed formats so that parallel
computations are frequently needed.

• Classification—this term applies to denote either a meta-scientific area of
knowledge handling via a set of separate classes to structure the phenomenon
and relate different aspects of it to each other, or a discipline of supervised
classification, that is, developing rules for assigning class labels to a set of
entities under consideration. Data analysis can be utilized as a tool for designing
the former, whereas the latter can be thought of as a problem in data analysis.

• Cluster analysis—is a discipline for obtaining (sets of) separate subsets of
similar entities or features or both from the data, one of the most generic
activities in data analysis.

• Computational intelligence—a discipline utilizing fuzzy sets, nature-inspired
algorithms, neural nets and the like to computationally imitate human intelli-
gence, which overlaps other areas of data analysis.

• Data mining—a discipline for finding interesting patterns in data stored in
databases, which is considered part of the process of knowledge discovery. This
has a significant overlap with computational data analysis. Yet data mining is
structured somewhat differently by putting more emphasis on fast computations
in large databases and finding “interesting” associations and patterns.

• Document retrieval—a discipline developing algorithms and criteria for
query-based retrieval of as many relevant documents as possible, from a doc-
ument base, which is similar to establishing a classification rule in data analysis.
This area has become most popular with the development of search engines over
the internet.

• Factor analysis—a discipline emerged in psychology for modeling and finding
hidden factors in data, which can be considered part of quantitative summa-
rization in data analysis.

• Genetic algorithms—an approach to globally search through the solution space
in complex optimization problems by representing solutions as a population of
“chromosomes” that evolves in iterations by mimicking micro-evolutionary
events such as “cross-over” and “mutation”. This can play a role in solving
optimization problems in data analysis.

• Knowledge discovery—a set of techniques for deriving quantitative formulas
and categorical productions to associate different features and feature sets, which
hugely overlaps with the corresponding parts of data analysis.

• Mathematical statistics—a discipline of data analysis based on the assumption
of a probabilistic model underlying the data generation and/or decision making
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so that data or decision results are used for fitting or testing the models. This
obviously has a lot to do with data analysis, including the idea that an adequate
mathematical model is a preferred knowledge format.

• Machine learning—a discipline in data analysis originally oriented at producing
classification rules for predicting unknown class labels at entities usually
arriving one by one in a random sequence. Currently it embraces all the aspects
of data analysis. The difference comes from the main goal: “Machine learning
addresses the question of how to build computers that improve automatically
through experience” (Jordan and Mitchell 2015), whereas data analysis is ori-
ented at enhancing knowledge.

• Neural networks—a technique for modeling relations between (sets of) features
utilizing structures of interconnected artificial neurons; the parameters of a
neural network are learned from the data. A neural network consists of an input
layer and an output layers, as well as a number of “hidden layers” Term “deep
learning” refers to the use of neural networks with relatively large numbers of
hidden layers.

• Nature-inspired algorithms—a set of contemporary techniques for optimization
of complex functions such as the squared error of a data fitting model, using a
population of admissible solutions evolving in iterations mimicking a natural
process such as genetic recombination or ant colony search for foods.

• Optimization—a discipline for analyzing and solving problems in finding
optima of a function such as the difference between observed values and those
produced by a model whose parameters are being fitted (error).

• Pattern recognition—a discipline for deriving classification rules (supervised
learning) and clusters (unsupervised learning) from observed data.

• Social statistics—a discipline for measuring social and economic indexes using
observation or sampling techniques.

• Text analysis—a set of techniques and approaches for the analysis of unstruc-
tured text documents such as establishing similarity between texts, text cate-
gorization, deriving synopses and abstracts, etc.

1.1.3 Structure of Data Analysis Problem

This text is oriented at a description of basic models and methods for enhancing
knowledge by finding in data either

(a) Correlation among features (Cor) or
(b) Summarization of entities or features (Sum),

in either of two ways, quantitative (Q) or categorical (C). Combining these two
bases makes four major groups of methods: CorQ, CorC, SumQ, and SumC that
form the core of data analysis. It should be pointed out that currently different
categorizations of tasks related to data analysis prevail: the classical mathematical
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statistics focuses mostly on mathematically treatable models (see, for example, Hair
et al. 2010), whereas the system of machine learning and data mining expressed in
the popular account by Duda et al. (2012) concentrates on the problem of learning
categories of objects, thus leaving such important problems as quantitative sum-
marization outside.

A correlation or summarization problem typically involves the following five
ingredients:

• Stock of mathematical structures sought in data
• Computational model relating the data and the mathematical structure
• Criterion to score the match between the data and structure (fitting criterion)
• Method for optimizing the criterion
• Visualization of the results.

Here is a brief outline of those that are used in this text:
Mathematical structures:

– linear combination of features;
– neural network mapping a set of input features into a set of target features;
– decision tree built over a set of features;
– cluster of entities;
– partition of the entity set into a number of non-overlapping clusters.

When the type of mathematical structure has been chosen, its parameters are to
be learnt from the data.

A fitting method relies on a computational model involving a function scoring
the adequacy of the mathematical structure underlying the rule—a criterion, and,
usually, visualization aids. The data visualization is a way to represent the found
structure to human eye. In this capacity, it is an indispensable part of the data
analysis, which explains why this term is in the subtitle of this text. We briefly
outline some aspects of visualization within the data analysis approach in Sect. 1.3.

A criterion measures either the deviation of the found structure from the target
(to be minimized) or goodness of fit to the target (to be maximized).

Currently available computational methods to optimize the criterion encompass
three major groups:

– global optimization, that is, finding the best possible solution, computationally
feasible sometimes for linear quantitative and simple discrete structures;

– local improvement using such general approaches as:

• gradient ascent and descent
• alternating optimization
• greedy neighborhood search (hill climbing)

– nature-inspired approaches involving a population of admissible solutions and
its iterative evolution, an approach involving relatively recent advancements in
computing capabilities, of which the following will be used in some problems:
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• genetic algorithms
• evolutionary algorithms
• particle swarm optimization.

It should be pointed out that currently there is no systematic description of all
possible combinations of problems, data types, mathematical structures, criteria,
and fitting methods available. Here we rather focus on a very few, most generic and
better explored problems in each of the four data analysis groups that can be safely
claimed as being prototypical within the groups:

Summarization Quantitative Principal component analysis
Categorical Cluster analysis

Correlation Quantitative Regression analysis
Categorical Supervised classification

The four approaches on the right have emerged in different frameworks and
usually are considered as unrelated. However, they are related in the context of core
data analysis. They can be unified within the so-called data-driven modeling,
together with the least-squares criterion, that is adopted for all main methods
described in this text. In fact, the criterion is part of a unifying data-recovery
perspective that has been developed in mathematical statistics for fitting proba-
bilistic models and then was extended to data analysis. In data analysis, this per-
spective is useful not only for supplying a nice fitting criterion but also because it
involves the decomposition of the data scatter into “explained” and “unexplained”
parts in all four approaches above. The data recovery approach takes in a type of
mathematical structure to model the data and proceeds in three stages:

(1) fitting a model representing the structure to the data (this can be referred to as
“encoding”),

(2) recovering data from the model in the format of the data used to build the model
(this can be referred to as “decoding”), and

(3) analyzing discrepancies between the observed data and those recovered from
the model. The smaller are the discrepancies, the better the fit—this is a
principle underlying the data-driven modeling approach.

Using the data recovery approach provided the author with tools for developing
and describing a number of relations, bringing together popular concepts considered
sometimes as being worlds apart (Mirkin 1996, 2012). Among them:

(a) Reinterpretation and visualization of Pearson chi-square contingency coefficient
as a summary association index rather than a statistical independence criterion
(see Sect. 3.6);

(b) Use of anomalous patterns, an extension of the principal component analysis to
clustering, for both initializing K-means and Ward clustering and setting the
number of clusters (see Sect. 4.3 and Sect. 5.1);
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(c) A multitude of different reformulations of the square-error clustering criterion
potentially leading to different clustering strategies (see Sects. 4.3.2, 4.6.1,
5.1.4 and 5.5);

(d) Interrelation between association measures utilized for building decision trees
and normalization of dummies representing categorical data (see Sect. 3.8); and

(e) A unified framework for network clustering including:

(i) a number of combinatorial clustering criteria (see Sects. 4.6, 4.7 and 5.5);
(ii) spectral clustering, a recent very popular approach (see Sects. 4.3, 5.2

and 5.4);
(iii) additive clustering, a less popular yet powerful paradigm (see Sect. 5.5).

1.1.4 Teaching Paradigm

There can be distinguished at least three different levels in studying a computational
data analysis method. A reader can be interested in learning of the approach at the
level of concepts only—what a concept is for, why it should be applied at all, etc.
A somewhat more practically oriented tackle would be of an information system/
tool that can be utilized so that no knowledge is needed beyond the input/output
structure. A more technically oriented way would be studying the method involved
and its properties. Each of these three levels has its comparative advantages and
disadvantages, pros and cons:

Pros Cons
Concepts Awareness Superficial
Systems Usable now

Simple
Short-term
Stupid

Techniques Workable
Extendable

Technical
Boring

Many in Computer Sciences rely on the Systems approach assuming that good
methods have been developed and put in there already. Although it is largely true
for well-defined mathematical problems, the situation is by far different in data
analysis because there are no well posed problems here—basic formulations are
intuitive and rarely supported by sound theoretical results. This is why, in many
aspects, intelligence of currently popular “intelligent methods” may be rather
superficial potentially leading to wrong results and decisions.

Consider, for instance, a very popular concept, the power law—many say that in
unconstrained social processes, such as those on the Web networks, this law,
expressed with formula y = ax−b where x and y are some features and a and b are
positive constant coefficients, dominates. Here are a few examples: the decay in the
numbers of people who read a news story on the web over time; the distribution of
page requests on a web-site according to their popularity; the distribution of website
connections, etc. According to a very popular recipe, to fit a power law (that is, to

8 1 Topics in Substance of Data Analysis



estimate a and b from the data), one needs to fit the logarithm of the power-law
equation, that is, log(y) = c – b * log(x) where c = log(a), which is much easier to
fit because it is linear. Therefore, this recipe advises: take logarithms of the x and y
first and then use any popular linear regression program to find the constants. The
recipe works well when the regularity is observed with no noise, which is not the
case in real world social processes. With the real-world noise, this recipe may lead
to big errors. For example, if x is generated randomly in the interval between 0 and
10 and y is related to x by the power law y = 2 * x1.07, which can be interpreted as
the growth with the rate of approximately 7% per time unit, with an added Gaussian
noise N(0,2) of the zero mean and the standard deviation equal to 2, the recipe can
lead to disastrous results. With the parameter values above, in the author’s com-
putations, the linear transformation led to estimates 3.08 for a and 0.8 for b, to
suggest that the process does not grow with x but rather decays. In contrast, when
an evolutionary optimization method was applied to the original non-linear prob-
lem, the estimates were realistic: a = 2.03 and b = 1.076.

This is a relatively simple data analysis example, at which a correct procedure
can be used. However, in more complex situations of clustering or categorization,
the very idea of a correct method seems rather debatable; at least, methods in the
existing systems can be of a rather poor quality.

One may compare the usage of an unsound data analysis method with that of
getting services of an untrained medical doctor or car driver—the results can be as
devastating indeed. This is why it is important to study not only How’s but What’s
and Why’s, which are addressed in this course by focusing on Concepts and
Techniques rather than Systems. Another, perhaps even more important, reason for
studying concepts and techniques is the constant emergence of new data types, such
as related to internet networks or bio-medicine, that cannot be tackled by existing
systems. However, concepts and methods are readily extensible to cover them.

This text is oriented towards a student in Computer Sciences or related disci-
plines and reflects my experiences in teaching students of this type. Most of them
prefer a hands-on rather than mathematical style of presentation. This is why some
parts are divided in three streams: presentation, formulation, and computation. The
presentation states the problem and approach taken to tackle it, and it illustrates the
solution at some data. The formulation provides a mathematical description of the
problem as well as a method or two to solve it. The computation shows how to do
that computationally with basic MatLab. The MatLab codes may be considered as
pseudocodes as well. Each of the streams can be read independently. In this way,
the reader can choose the way of using the book and adjust it to their individual
style.

To help the reader to study the material actively, the text is interlaced with
problems along with their solutions. Many of the problems are put as “worked
examples” to show how a specific method applies to a specific dataset. More
complex problems, “case studies”, may involve a rule for data generation rather
than a pre-specified data set or an informed way for looking at the results. Yet more
complex problems may involve uncharted terrain and an investigation, however
small,—these are referred to as “projects”. It should be pointed out that these are

1.1 Summarization and Correlation: Main Goals of Core Data Analysis 9



not just examples to illustrate the main text but parts of main text—they do not
necessarily repeat claims of the main text but rather introduce concepts and
approaches via examples rather than via general statements. Therefore, it is highly
advisable to work them through rather than just skip them.

There is a bias in the volumes of material devoted to correlation and summa-
rization subjects—the latter prevails rather considerably. This can be explained by
both personal and objective reasons. One of the reasons is that my main research
area lies in clustering, that is, summarization. Another reason is that correlation
problems are studied less thoroughly than those of summarization. The only rela-
tively well explored part of the correlation iceberg is related to the so-called
supervised learning, the case of predicting a feature using the others. Recently, this
was justly called “an icing on the cake, whereas unsupervised learning is the cake
itself” [see LeCun (2015); the quotation is not exact], so that summarization, as a
container of the unsupervised learning requires more attention indeed. One more
reason is that correlation problems, and their theoretical underpinnings, have been
already subjects of a multitude of monographs and texts in statistics, data analysis,
machine learning, data mining, and computational intelligence. In contrast, clus-
tering and principal component analyses—the main constituents of summarization
efforts, according to our system,—have received much less attention and usually are
described as heuristics, rather than methods having a solid theoretical base. This
text presents each of them as based on a model of data, which raises a number of
issues that are addressed here, including that of the theoretical structure of a
summarization problem. The concept of encoder–decoder is borrowed from the data
processing area to draw a theoretical framework in which summarization is con-
sidered as a pair of encoding/decoding activities so that the quality of the encoding
part is evaluated by the quality of decoding. Luckily, the theory of singular value
decomposition of matrices (SVD) can be safely utilized as a framework for
explaining the principal component analysis. A straightforward extension of the
SVD equations to binary scoring vectors provides a base for K-means clustering
and the like. This raises an important question of mathematical proficiency the
reader should have as a prerequisite. An assumed background of the reader inter-
ested in studying formulation parts should include:

(a) basics of calculus including the concepts of function, derivative and the
first-order optimality condition;

(b) basic linear algebra including vectors, inner products, Euclidean distances and
matrices (these are reviewed in the Appendix),

(c) basic probability/statistics theory including the concepts of density function,
conditional probability, hypothesis testing, and statistical independence, and

(d) basic set theory notation such as symbols for relations of inclusion and
membership.
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1.2 Case Study Problems

To be more specific, the presentation is illustrated using a number of small datasets
—the sizes allow the reader to see the data by naked eye, which is always a good
idea to do before engaging in analysis. The datasets and related problems are
selected in such a way that methods further described could be immediately
illustrated by using a relevant dataset from the collection. All the datasets are
presented as data tables—this is a generic format for both theoretical thinking and
practical computations in data analysis.

There will be three types of data tables presented: (I) Quantitative: those con-
taining quantitative data only; (II) Mixed: those containing both quantitative and
categorical features; (III) Similarity or network data. All the terms mentioned:
feature, quantitative, categorical, similarity, network—will be explained while
describing the data.

1.2.1 Quantitative Entity-to-Feature Data Tables

Case A. Iris
Iris is a well-known dataset collected by botanist E. Anderson and presented by
R. Fisher in his founding paper on discriminant analysis (1936). The data table,
Table 1.1, presents 150 Iris specimens, representing three taxa of Iris flowers, I Iris
setosa (diploid), II Iris versicolor (tetraploid) and III Iris virginica (hexaploid), with
50 specimens from each. Each specimen is measured over four morphological
variables: sepal length (w1), sepal width (w2), petal length (w3), and petal width
(w4) (see Fig. 1.1).
These variables constitute the four features in Table 1.1.

The concept of data table allows for a simple formalization of the concept of
feature. Indeed, entities are associated with the set I of row labels, or row indices
i = 1, 2, …, N, where N is the number of entities, so that I = {1, 2, …, N}; in our
case, N = 150.

A feature, x, then is a mapping from I to the set of its values. We say that feature
x is quantitative if not only the values x(i) are numbers but also that averaging them
makes sense.

Let us recall that the number x(J) is the average of x over a subset J � I if

xðJÞ ¼
P

i2J xðiÞ
Jj j

where |J| is the number of elements in J.
The taxa are defined by the genotype whereas the features are of the appearance

(phenotype). The question arises whether the taxa can be described, and indeed
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Table 1.1 Iris data: 150 Iris specimens measured over four features each

# I Iris setosa II Iris versicolor III Iris virginica

w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4

1 5.1 3.5 1.4 0.3 6.4 3.2 4.5 1.5 6.3 3.3 6.0 2.5
2 4.4 3.2 1.3 0.2 5.5 2.4 3.8 1.1 6.7 3.3 5.7 2.1
3 4.4 3.0 1.3 0.2 5.7 2.9 4.2 1.3 7.2 3.6 6.1 2.5
4 5.0 3.5 1.6 0.6 5.7 3.0 4.2 1.2 7.7 3.8 6.7 2.2
5 5.1 3.8 1.6 0.2 5.6 2.9 3.6 1.3 7.2 3.0 5.8 1.6
6 4.9 3.1 1.5 0.2 7.0 3.2 4.7 1.4 7.4 2.8 6.1 1.9
7 5.0 3.2 1.2 0.2 6.8 2.8 4.8 1.4 7.6 3.0 6.6 2.1
8 4.6 3.2 1.4 0.2 6.1 2.8 4.7 1.2 7.7 2.8 6.7 2.0
9 5.0 3.3 1.4 0.2 4.9 2.4 3.3 1.0 6.2 3.4 5.4 2.3
10 4.8 3.4 1.9 0.2 5.8 2.7 3.9 1.2 7.7 3.0 6.1 2.3
11 4.8 3.0 1.4 0.1 5.8 2.6 4.0 1.2 6.8 3.0 5.5 2.1
12 5.0 3.5 1.3 0.3 5.5 2.4 3.7 1.0 6.4 2.7 5.3 1.9
13 5.1 3.3 1.7 0.5 6.7 3.0 5.0 1.7 5.7 2.5 5.0 2.0
14 5.0 3.4 1.5 0.2 5.7 2.8 4.1 1.3 6.9 3.1 5.1 2.3
15 5.1 3.8 1.9 0.4 6.7 3.1 4.4 1.4 5.9 3.0 5.1 1.8
16 4.9 3.0 1.4 0.2 5.5 2.3 4.0 1.3 6.3 3.4 5.6 2.4
17 5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 5.8 2.7 5.1 1.9
18 4.3 3.0 1.1 0.1 6.6 2.9 4.6 1.3 6.3 2.7 4.9 1.8
19 5.5 3.5 1.3 0.2 5.0 2.3 3.3 1.0 6.0 3.0 4.8 1.8
20 4.8 3.4 1.6 0.2 6.9 3.1 4.9 1.5 7.2 3.2 6.0 1.8
21 5.2 3.4 1.4 0.2 5.0 2.0 3.5 1.0 6.2 2.8 4.8 1.8
22 4.8 3.1 1.6 0.2 5.6 3.0 4.5 1.5 6.9 3.1 5.4 2.1
23 4.9 3.6 1.4 0.1 5.6 3.0 4.1 1.3 6.7 3.1 5.6 2.4
24 4.6 3.1 1.5 0.2 5.8 2.7 4.1 1.0 6.4 3.1 5.5 1.8
25 5.7 4.4 1.5 0.4 6.3 2.3 4.4 1.3 5.8 2.7 5.1 1.9
26 5.7 3.8 1.7 0.3 6.1 3.0 4.6 1.4 6.1 3.0 4.9 1.8
27 4.8 3.0 1.4 0.3 5.9 3.0 4.2 1.5 6.0 2.2 5.0 1.5
28 5.2 4.1 1.5 0.1 6.0 2.7 5.1 1.6 6.4 3.2 5.3 2.3
29 4.7 3.2 1.6 0.2 5.6 2.5 3.9 1.1 5.8 2.8 5.1 2.4
30 4.5 2.3 1.3 0.3 6.7 3.1 4.7 1.5 6.9 3.2 5.7 2.3
31 5.4 3.4 1.7 0.2 6.2 2.2 4.5 1.5 6.7 3.0 5.2 2.3
32 5.0 3.0 1.6 0.2 5.9 3.2 4.8 1.8 7.7 2.6 6.9 2.3
33 4.6 3.4 1.4 0.3 6.3 2.5 4.9 1.5 6.3 2.8 5.1 1.5
34 5.4 3.9 1.3 0.4 6.0 2.9 4.5 1.5 6.5 3.0 5.2 2.0
35 5.0 3.6 1.4 0.2 5.6 2.7 4.2 1.3 7.9 3.8 6.4 2.0
36 5.4 3.9 1.7 0.4 6.2 2.9 4.3 1.3 6.1 2.6 5.6 1.4
37 4.6 3.6 1.0 0.2 6.0 3.4 4.5 1.6 6.4 2.8 5.6 2.1
38 5.1 3.8 1.5 0.3 6.5 2.8 4.6 1.5 6.3 2.5 5.0 1.9
39 5.8 4.0 1.2 0.2 5.7 2.8 4.5 1.3 4.9 2.5 4.5 1.7
40 5.4 3.7 1.5 0.2 6.1 2.9 4.7 1.4 6.8 3.2 5.9 2.3
41 5.0 3.4 1.6 0.4 5.5 2.5 4.0 1.3 7.1 3.0 5.9 2.1
42 5.4 3.4 1.5 0.4 5.5 2.6 4.4 1.2 6.7 3.3 5.7 2.5
43 5.1 3.7 1.5 0.4 5.4 3.0 4.5 1.5 6.3 2.9 5.6 1.8
44 4.4 2.9 1.4 0.2 6.3 3.3 4.7 1.6 6.5 3.0 5.5 1.8
45 5.5 4.2 1.4 0.2 5.2 2.7 3.9 1.4 6.5 3.0 5.8 2.2
46 5.1 3.4 1.5 0.2 6.4 2.9 4.3 1.3 7.3 2.9 6.3 1.8
47 4.7 3.2 1.3 0.2 6.6 3.0 4.4 1.4 6.7 2.5 5.8 1.8
48 4.9 3.1 1.5 0.1 5.7 2.6 3.5 1.0 5.6 2.8 4.9 2.0
49 5.2 3.5 1.5 0.2 6.1 2.8 4.0 1.3 6.4 2.8 5.6 2.2
50 5.1 3.5 1.4 0.2 6.0 2.2 4.0 1.0 6.5 3.2 5.1 2.0
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predicted, in terms of the features, or not. It is well known from previous studies
that taxa II and III are not well separated in the variable space. Some non-linear
machine learning techniques such as Neural Nets (Haykin 1999 and Sect. 4.6
further on) can tackle the problem and produce a decent decision rule involving
non-linear transformation of the features. Unfortunately, rules derived with Neural
Nets are typically not comprehensible to the human. The human mind needs a
somewhat less artificial logic that is capable of reproducing and extending bota-
nists’ observations, such as that the petal area, roughly expressed by the product of
w3 and w4, provides for much better resolution than the original linear sizes. Other
problems of interest: (a) visualize the data; (b) build a predictor of sepal sizes from
the petal sizes.

Case B. Market Towns
In Table 1.2 a set of Market towns in West Country, England is presented along
with features characterizing population and social infrastructure according to the
1991 census. For the purposes of social planning, it would be good to monitor a
smaller number of towns, each representing a cluster of similar towns. In the table,
the towns are sorted according to their population size. One can see that 21 towns
have less than 4000 residents. The value 4000 is taken as a divider since it is round
and, more importantly, there is a gap of more than thirteen hundred residents
between Kingskerswell (3672 inhabitants) and, subsequently, Looe (5022 inhabi-
tants). The next big gap occurs after Liskeard (7044 inhabitants), separating the
nine middle sized towns from two larger town groups containing six and nine towns
respectively. The divider between the latter groups is taken between Tavistock

Sepal

Petal

Fig. 1.1 Sepal and petal in
an Iris flower
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(10,222) and Bodmin (12,553). In this way, we get three or four groups of towns for
the purposes of social monitoring. Is this enough, regarding the other features
available? Are the groups, defined in terms of population size only, homogeneous
enough for the purposes of monitoring?

As further computations will show, the numbers of services on average do
follow the town sizes, but this set (as well as the complete set of about thirteen
hundred England Market towns) is much better represented with seven somewhat
different clusters: large towns of about 17–20,000 inhabitants, two clusters of
medium sized towns (8–10,000 inhabitants), three clusters of small towns (about
5000 inhabitants), and a cluster of very small settlements with about 2500 inhab-
itants. Each of the three small town clusters is characterized by the presence of a
facility, which is absent in two others: a Farm market or a Hospital or a Swimming
pool, respectively.

One may suggest that the only difference between these seven clusters and the
grouping over the town resident numbers would be just the difference in the
dividing points, since both are expressed in terms of the population size only.
However, one should not forget that the number of residents for the seven clusters is
a posterior selection—because of our knowledge of the clusters not prior to that.

The data in Table 1.2 involve the counts of the following 12 features from those
surveyed in the 1991 census:

Pop Population resident
PS Primary schools
D General Practitioners
Hos Hospitals
Ba Banks
Sst Superstores
Pet Petrol stations
DIY Do It Yourself shops
Swi Swimming pools
Po Post offices
CAB Citizen Advice Bureaus
FM Farmer markets

1.2.2 Mixed Scale Entity-to-Feature Data Tables

Case C. Company
There are eight companies and five features in Table 1.3:

(1) Income, $ Million;
(2) MarketShare—the proportion of market for the produced commodities con-

trolled by company, %;
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Table 1.2 Data of West Country England market towns 1991

Town Pop PS D Hos Ba Sst Pet DIY Swi Po CAB FM

Mullion 2040 1 0 0 2 0 1 0 0 1 0 0
So Brent 2087 1 1 0 1 1 0 0 0 1 0 0
St Just 2092 1 0 0 2 1 1 0 0 1 0 0
St Columb 2119 1 0 0 2 1 1 0 0 1 1 0
Nanpean 2230 2 1 0 0 0 0 0 0 2 0 0
Gunnislake 2236 2 1 0 1 0 1 0 0 3 0 0
Mevagissey 2272 1 1 0 1 0 0 0 0 1 0 0
Ipplepen 2275 1 1 0 0 0 1 0 0 1 0 0
Be Alston 2362 1 0 0 1 1 0 0 0 1 0 0
Lostwithiel 2452 2 1 0 2 0 1 0 0 1 0 1
St Columb 2458 1 0 0 0 1 3 0 0 2 0 0
Padstow 2460 1 0 0 3 0 0 0 0 1 1 0
Perranporth 2611 1 1 0 1 1 2 0 0 2 0 0
Bugle 2695 2 0 0 0 0 1 0 0 2 0 0
Buckfastle 2786 2 1 0 1 2 2 0 1 1 1 1
St Agnes 2899 1 1 0 2 1 1 0 0 2 0 0
Porthleven 3123 1 0 0 1 1 0 0 0 1 0 0
Callington 3511 1 1 0 3 1 1 0 1 1 0 0
Horrabridge 3609 1 1 0 2 1 1 0 0 2 0 0
Ashburton 3660 1 0 1 2 1 2 0 1 1 1 0
Kingskers 3672 1 0 0 0 1 2 0 0 1 0 0
Looe 5022 1 1 0 2 1 1 0 1 3 1 0
Kingsbridge 5258 2 1 1 7 1 2 0 0 1 1 1
Wadebridge 5291 1 1 0 5 3 1 0 1 1 1 0
Dartmouth 5676 2 0 0 4 4 1 0 0 2 1 1
Launceston 6466 4 1 0 8 4 4 0 1 3 1 0
Totnes 6929 2 1 1 7 2 1 0 1 4 0 1
Penryn 7027 3 1 0 2 4 1 0 0 3 1 0
Hayle 7034 4 0 1 2 2 2 0 0 2 1 0
Liskeard 7044 2 2 2 6 2 3 0 1 2 2 0
Torpoint 8238 2 3 0 3 2 1 0 0 2 1 0
Helston 8505 3 1 1 7 2 3 0 1 1 1 1
St Blazey 8837 5 2 0 1 1 4 0 0 4 0 0
Ivybridge 9179 5 1 0 3 1 4 0 0 1 1 0
St Ives 10092 4 3 0 7 2 2 0 0 4 1 0
Tavistock 10222 5 3 1 7 3 3 1 2 3 1 1
Bodmin 12553 5 2 1 6 3 5 1 1 2 1 0
Saltash 14139 4 2 1 4 2 3 1 1 3 1 0
Brixham 15865 7 3 1 5 5 3 0 2 5 1 0
Newquay 17390 4 4 1 12 5 4 0 1 5 1 0
Truro 18966 9 3 1 19 4 5 2 2 7 1 1
Penzance 19709 10 4 1 12 7 5 1 1 7 2 0
Falmouth 20297 6 4 1 11 3 2 0 1 9 1 0
St Austell 21622 7 4 2 14 6 4 3 1 8 1 1
Newton Abb 23801 13 4 1 13 4 7 1 1 7 2 0
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(3) NSup—the number of principal suppliers;
(4) E-C—Yes or No depending on the usage of e-commerce in the company;
(5) Sector—which sector of the economy: (a) Retail, (b) Utility, and (c) Manufacture.

These features are purely illustrative and should not be taken too seriously.
Examples of computational data analysis problems related to this data set:

– How to map companies to the screen with their similarity reflected in distances
on the plane? (Summarization)

– Would clustering of companies reflect the product? What features would be
involved then? (Summarization)

– Can rules be derived to make an attribution of the product for another company,
coming outside of the table? (Correlation)

– Is there any relation between the structural features, such as NSup, and market
related features, such as Income? (Correlation).

Q.1.1. Is the following statement true? “There is no data on the company products
within the table”.
A. Indeed: no “Product” feature is present in the table; the separating lines are not
part of the data. The first letters of the names are informative of the product; but
they are part of metadata, not data.

An issue related to Table 1.3 is that not all of its entries are quantitative.
Specifically, there are three conventional types of feature scales in it:

– Quantitative, that is, such a feature that the averaging of its values is considered
meaningful. In Table 1.3, these are: Income, ShareP and NSup;

– Binary, that is, a feature admitting one of two answers, Yes or No: this is E-C;
– Nominal, that is, a feature with a few disjoint (unordered) categories, such as

Sector in Table 1.3.

Table 1.3 Company: a set of eight companies characterized by mixed scale features

Company name Income, $ million Market Share, % NSup E-C Sector
Aversi 19.0 43.7 2 No Utility
Antyos 29.4 36.0 3 No Utility
Astonite 23.9 38.0 3 No Manufacture
Bayermart 18.4 27.9 2 Yes Utility
Breaktops 25.7 22.3 3 Yes Manufacture
Bumchist 12.1 16.9 2 Yes Manufacture
Civok 23.9 30.2 4 Yes Retail
Cyberdam 27.2 58.0 5 Yes Retail
The division of the table and company names reflect a fact not present in the data—product
affinities: the first three companies mostly adhere to product group A, the next three to product
group B, and the last two to product group C
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This is why the table is referred to as of a mixed scale data type. Most models
and methods presented in this text relate to quantitative data formats only—which
does not mean that categorical data are left on their own, just the opposite. The two
non-quantitative feature types, binary and nominal, can be meaningfully
pre-processed into a quantitative format too, as explained further on (see also
Sects. 2.3, 3.6 and 3.8, among others).

A binary feature can be recoded into 1/0 format by substituting 1 for “Yes” and 0
for “No”. In the author’s view, rather unconventionally, the recoded feature can be
considered quantitative, because its averaging is meaningful: the average value is
equal to the proportion of unities, that is, the frequency of “Yes” in the original
feature.

To quantitatively recode a nominal feature in a meaningful way, the feature is
first enveloped into a set of binary “Yes”/“No” features corresponding to individual
categories. In Table 1.3, binary features yielded by categories of feature “Sector”
are:

Is it Retail?
Is it Utility?
Is it Manufacture?

They are put as questions to make “Yes” or “No” as answers to them. These
binary features now can be converted to the quantitative format advised above, by
recoding 1 for “Yes” and 0 for “No”. Such a 1/0 version is frequently referred to in
statistics as a dummy variable.

This instruction can be applied to convert the Company data into a quantitative
format (see Table 1.4).

Q.1.2. Why column 1 in Table 1.3, the company names, cannot be considered a
feature, a nominal one?
A. A feature must bear information of a relation or relations on the entity set. Say,
category Manu in Table 1.4 informs of two equivalence classes on the set: one
class, entities 3, 5, 6 are in the Manufacture sector, the others are not. The only
information supplied by the company names towards the data is that they all are
different, which is analogous to the index to the list. Of course the names can bear
important information regarding class or origin of the companies. This however
should be counted where it belongs, in the metadata, not the data.

Case D. Student
In Table 1.5, an illustrative dataset is presented as imitating a typical set up for a
group of Birkbeck University of London part-time students pursuing Master’s
degree in Computer Sciences.

This dataset refers to a hundred students along with six features, three of which
are personal characteristics [1. Occupation (Oc): either Information Technology
(IT) or Business Administration (BA) or anything else (AN); 2. Age, in years;
3. Number of children (Ch)] and three are their marks over courses in 4. Software
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and Programming (SE), 5. Object-Oriented Programming (OO), and 6. Computational
Intelligence (CI).

Related questions are:

– Whether the students’ marks are affected by the personal features;
– Are there any patterns in marks, especially in relation to occupation?

Case E. Intrusion
With the growing range and scope of computer networks, security issues become an
urgent matter. An attack on a network results in its malfunctioning. The simplest
kind of attack is a denial of service (DoS). A DoS is caused by an intruder who
makes some resource—in computing, memory, or I/O such as network or disk—too
busy or too full to handle legitimate requests. Two of the DoS attacks are denoted as
‘apache2’ and ‘smurf’ in the data. Other types of attack include user-to-root attacks
and remote-to-local attacks.

The ‘apache2’ attack targets a popular open source web server, the
Apache HTTP Server, and results in denying services to a client by sending a
request with a large number of http headers, triggering buffer overflow vulnera-
bilities. A ‘smurf’ attack works by sending forged ICMP echo messages to a host.
An ICMP echo, also known as ping, is a message to a computer attached to an IP
network. On receipt of this message, the receiving computer will respond with an
ICMP echo reply back to the computer that sent the echo, as determined by the
source IP address of the echo request. However, there are techniques that can be
used to forge source IP addresses, in which case the echo reply will go to the forged
source. Further, it is possible to ping multiple machines by sending an echo request
to a network broadcast address. This causes every machine on that IP broadcast
domain to respond to the source address (which, in the attack case, is forged). In
such a way, it is possible to cause a very large number of computers across the
Internet to send echo replies to a single target host, overwhelming that host’s
processing or network connection. A probe looking for flaws might precede an
attack. One powerful probe software is SAINT—the Security Administrator’s
Integrated Network Tool, that uses a thorough deterministic protocol to scan

Table 1.4 Company data from Table 1.3 converted to the quantitative format by enveloping its
categories into binary dummy features

Code Income Markets NSup E-C Util Manu Retail
1 19.0 43.7 2 0 1 0 0
2 29.4 36.0 3 0 1 0 0
3 23.9 38.0 3 0 0 1 0
4 18.4 27.9 2 1 1 0 0
5 25.7 22.3 3 1 0 1 0
6 12.1 16.9 2 1 0 1 0
7 23.9 30.2 4 1 0 0 1
8 27.2 58.0 5 1 0 0 1
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Table 1.5 Student data in two columns

Oc Age Ch SE OO CI Oc Age Ch SE OO CI
IT 28 0 41 66 90 BA 51 2 75 73 57
IT 35 0 57 56 60 BA 44 3 53 43 60
IT 25 0 61 72 79 BA 49 3 86 39 62
IT 29 1 69 73 72 BA 27 2 93 58 62
IT 39 0 63 52 88 BA 30 1 75 74 70
IT 34 0 62 83 80 BA 47 0 46 36 36
IT 24 0 53 86 60 BA 38 2 86 70 47
IT 37 1 59 65 69 BA 49 1 76 36 66
IT 33 1 64 64 58 BA 45 0 80 56 47
IT 23 1 43 85 90 BA 44 2 50 43 72
IT 24 1 68 89 65 BA 36 3 66 64 62
IT 32 0 67 98 53 BA 31 2 64 45 38
IT 33 0 58 74 81 BA 31 3 53 72 38
IT 27 1 48 94 87 BA 32 3 87 40 35
IT 32 1 66 73 62 BA 38 0 87 56 44
IT 29 0 55 90 61 BA 48 1 68 71 56
IT 21 0 62 91 88 BA 39 2 93 73 53
IT 21 0 53 59 56 BA 47 1 52 48 63
IT 26 1 69 70 89 BA 39 2 88 52 58
IT 20 1 42 76 79 AN 23 0 54 50 41
IT 28 1 57 85 85 AN 34 0 46 33 25
IT 34 1 49 78 59 AN 33 0 51 38 51
IT 22 0 66 73 69 AN 31 0 59 45 35
IT 21 1 50 72 54 AN 25 0 51 41 53
IT 32 1 60 55 85 AN 40 0 41 61 22
IT 32 0 42 72 73 AN 41 0 44 43 44
IT 20 1 51 69 64 AN 42 0 40 56 58
IT 20 1 55 66 66 AN 34 0 47 69 32
IT 24 1 53 92 86 AN 37 0 45 50 56
IT 32 0 57 87 66 AN 24 0 47 68 24
IT 21 1 58 97 54 AN 34 0 50 63 23
IT 27 1 43 78 59 AN 41 0 37 67 29
IT 33 0 67 52 53 AN 47 1 43 35 57
IT 34 1 63 80 74 AN 28 0 50 62 23
IT 34 0 64 90 56 AN 28 0 39 66 31
BA 36 2 86 54 68 AN 46 0 51 36 60
BA 35 2 79 72 60 AN 27 0 41 35 28
BA 36 1 55 44 57 AN 44 0 50 61 40
BA 37 1 59 69 45 AN 47 0 48 59 32
BA 42 2 76 61 68 AN 27 0 47 56 47
BA 30 3 72 71 46 AN 27 0 49 60 58
BA 28 1 48 55 65 AN 21 0 59 57 51
BA 38 1 49 75 61 AN 22 0 44 65 47
BA 49 2 59 50 44 AN 39 0 45 41 25
BA 50 2 65 56 59 AN 26 0 43 47 24
BA 34 2 69 42 59 AN 45 1 45 39 21
BA 31 2 90 55 61 AN 25 0 42 31 32
BA 49 3 75 52 42 AN 25 0 45 33 53
BA 33 1 61 61 60 AN 50 1 48 64 59
BA 43 0 69 62 42 AN 33 0 53 44 21
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various network services for possible problems. Intrusion detection systems collect
information of anomalies and other patterns of communication such as compro-
mised user accounts and unusual login behavior. The data set Intrusion consists of a
hundred communication packages along with some of their features sampled from a
set of artificially created data publicly available on webpage of MIT Lincoln
Laboratory http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/
intex.html. Although the value of this specific data set as a source to analyze the
attacks is debatable, it does reflect the structure of the problem.

The features reflect the packet as well as activities of its source:

1. Pr, the protocol-type, which is either tcp or icmp or udp,
2. BySD, the number of data bytes from source to destination,
3. SH, the number of connections to the same host as the current one in the past

two seconds,
4. SS, the number of connections to the same service as the current one in the past

two seconds,
5. SE, the rate of connections (per cent in SH) that have SYN errors,
6. RE, the rate of connections (per cent in SH) that have REJ errors,
7. A, the type of attack (ap—apache, sa—saint, sm—smurf, and no attack).

Two of the seven features are nominal here, the type of attack and the type of
protocol.

Out of the hundred entities in the set, the first 23 are classified as attacking the
apache2 server, the 24–69 packets are normal, eleven entities 80–90 are consistent
with a SAINT probe, and the last ten, 91–100, appear to be smurf attacks
(Table 1.6).

These are examples of problems arising in relation to the Intrusion data:

– identify features to judge whether the system functions normally or is it under
attack (Correlation);

– is there any relation between the protocol and type of attack (Correlation);
– how to visualize the data reflecting similarity of the patterns (Summarization).

Case F. Base Stations
Table 1.7 presents data of 40 base stations in a real telephone network company.
Each telephone company is much concerned with the phenomenon called “cus-
tomers churn”—put simply, they do not like losing customers but rather prefer
keeping them happy and attracting new customers.

One of the most important factors in this is a healthy state of base stations.
Blocked or dropped calls or low data throughput are main reasons for customers
churn. Therefore, every station is to be subject to timely testing, maintenance, and
renovation operations—still keeping the cost of these auxiliary actions under
control. Therefore, they are loath to take too much care for stations that have too
few customers and too little revenue.
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Table 1.6 Intrusion data

Pr BySD SH SS SE RE A Pr BySD SH SS SE RE A
Tcp 62344 16 16 0 0.94 Ap Tcp 287 14 14 0 0 no
Tcp 60884 17 17 0.06 0.88 Ap Tcp 308 1 1 0 0 no
Tcp 59424 18 18 0.06 0.89 Ap Tcp 284 5 5 0 0 no
Tcp 59424 19 19 0.05 0.89 Ap Udp 105 2 2 0 0 no
Tcp 59424 20 20 0.05 0.9 Ap Udp 105 2 2 0 0 no
Tcp 75484 21 21 0.05 0.9 Ap Udp 105 2 2 0 0 no
Tcp 76944 22 22 0.05 0.91 Ap Udp 105 2 2 0 0 no
Tcp 59424 23 23 0.04 0.91 Ap Udp 105 2 2 0 0 no
Tcp 57964 24 24 0.04 0.92 Ap Udp 44 3 8 0 0 no
Tcp 59424 25 25 0.04 0.92 Ap Udp 44 6 11 0 0 no
Tcp 0 40 40 1 0 Ap Udp 42 5 8 0 0 no
Tcp 0 41 41 1 0 Ap Udp 105 2 2 0 0 no
Tcp 0 42 42 1 0 Ap Udp 105 2 2 0 0 no
Tcp 0 43 43 1 0 Ap Udp 42 2 3 0 0 no
Tcp 0 44 44 1 0 Ap Udp 105 1 1 0 0 no
Tcp 0 45 45 1 0 Ap Udp 105 1 1 0 0 no
Tcp 0 46 46 1 0 Ap Udp 44 2 4 0 0 no
Tcp 0 47 47 1 0 Ap Udp 105 1 1 0 0 no
Tcp 0 48 48 1 0 Ap Udp 105 1 1 0 0 no
Tcp 0 49 49 1 0 Ap Udp 44 3 14 0 0 no
Tcp 0 40 40 0.62 0.35 Ap Udp 105 1 1 0 0 no
Tcp 0 41 41 0.63 0.34 Ap Udp 105 1 1 0 0 no
Tcp 0 42 42 0.64 0.33 Ap Udp 45 3 6 0 0 no
Tcp 258 5 5 0 0 No Udp 45 3 6 0 0 no
Tcp 316 13 14 0 0 No Udp 105 1 1 0 0 no
Tcp 287 7 7 0 0 No Udp 34 5 9 0 0 no
Tcp 380 3 3 0 0 No Udp 105 1 1 0 0 no
Tcp 298 2 2 0 0 No Udp 105 1 1 0 0 no
Tcp 285 10 10 0 0 No Udp 105 1 1 0 0 no
Tcp 284 20 20 0 0 No Tcp 0 482 1 0.05 0.95 sa
Tcp 314 8 8 0 0 No Tcp 0 482 1 0.05 0.95 sa
Tcp 303 18 18 0 0 No Tcp 0 482 1 0.05 0.95 sa
Tcp 325 28 28 0 0 No Tcp 0 482 1 0.05 0.95 sa
Tcp 232 1 1 0 0 No Tcp 0 482 1 0.05 0.95 sa
Tcp 295 4 4 0 0 No Tcp 0 482 1 0.05 0.95 sa
Tcp 293 13 14 0 0 No Tcp 0 482 1 0.06 0.94 sa
Tcp 305 1 8 0 0 No Tcp 0 482 1 0.06 0.94 sa
Tcp 348 4 4 0 0 No Tcp 0 482 1 0.06 0.94 sa
Tcp 309 6 6 0 0 No Tcp 0 483 1 0.06 0.94 sa
Tcp 293 8 8 0 0 No Tcp 0 510 1 0.04 0.96 sa
Tcp 277 1 8 0 0 no Icmp 1032 509 509 0 0 sm
Tcp 296 13 14 0 0 no Icmp 1032 510 510 0 0 sm
Tcp 286 3 6 0 0 no Icmp 1032 510 510 0 0 sm
Tcp 311 5 5 0 0 no Icmp 1032 511 511 0 0 sm
Tcp 305 9 15 0 0 no Icmp 1032 511 511 0 0 sm
Tcp 295 11 25 0 0 no Icmp 1032 494 494 0 0 sm
Tcp 511 1 4 0 0 no Icmp 1032 509 509 0 0 sm
Tcp 239 12 14 0 0 no Icmp 1032 509 509 0 0 sm
Tcp 5 1 1 0 0 no Icmp 1032 510 510 0 0 sm
Tcp 288 4 4 0 0 no Icmp 1032 511 511 0 0 sm
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With no mastering of multivariate data analysis, the company makes mainte-
nance work for about 1/3 of the base stations, those that are subject to the heaviest
load, which is measured by the numbers of active users.

However, nowadays the company wants to develop a multivariate stratification
of their base stations by adding to the customers load some financial features to
reflect the revenue—the first stratum will clearly relate to those base stations that
need application of the maintenance efforts first.

The features in Table 1.7 are as follows:

Table 1.7 Base stations data (illustrative)

# AvNUser AvUsRev Inc_Meg
1 385.3 500.57 10.53
2 124.8 443.9 1.04
3 785.7 406.74 5.47
4 234.1 411.36 0.94
5 15.3 543.97 47.37
6 1580.1 525.33 19.49
7 243.9 448.36 19.39
8 1344.4 509.73 3.44
9 610.8 385.65 2.37
10 961.6 438.15 8.58
11 113.2 491.67 0.87
12 1637.2 447.04 9.08
13 81.3 418.78 0.77
14 0.4 460.32 8.11
15 82.7 424.93 2.57
16 1010.4 396.67 13.08
17 2203.4 525.37 21.26
18 175.3 578.02 10.79
19 2487.1 486.62 8.72
20 180.7 499.58 6.78
21 2284.5 375.44 4.38
22 119.1 378.25 1.58
23 2077.8 429.69 6.86
24 757 435.41 3.23
25 361.3 487.94 4.54
26 2401.5 402.6 11.64
27 1174.3 433.33 5.62
28 54.3 481.13 1.19
29 615.3 523.04 7.81
30 524.1 490.9 2.8
31 125.8 438.58 1.71
32 466.5 439.9 6.07
33 2305.1 419.05 12
34 395.2 424.58 2.97
35 655 416.37 6.43
36 674.2 442.18 16.26
37 1251.3 462.81 6.72
38 700.8 428.38 2.27
39 1112.7 609.03 17.84
40 353.4 551.38 1.76
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1. AvNUser—the average number of unique active users a day, in thousands;
2. AvUsRev—the average number of the median values of the average revenue per

customer a day;
3. IncMeg—the average income generated per a million bytes traffic.

All the measurements are taken over a year preceding the project. The income
here is fairly separated over both: customers, AvUsRev, and traffic, IncMeg, to
reflect the differences among the users. The average revenue per customer is rather
stable; it does not much differ at different base stations; the other two features,
however, may differ dramatically at different stations.

This dataset can be used to figure out which base stations should go first into
maintenance work.

1.2.3 Similarity or Network Data

In contrast to the entity-to-feature type of data involving two kinds of objects,
entities and features, with feature values occurring on the entities, similarity data
usually involve only one kind of objects such as companies, web pages or indi-
viduals. There is only one feature under consideration, a rather distinct one. Its
values are observed not on individual entities but on pairs of them. The feature
scores a measure of similarity or interaction or proximity between two entities. This
warrants that all the values in a similarity table are comparable across the table,
which was not the case for entity-to-feature tables. The latter assume comparability
only within a column related to the same feature.

Formerly, human judgement was the only supplier of similarity data; in this text,
Confusion data in Table 1.8 and Eurovision song contest data in Table 1.11 are of
this type. Currently, there are few more sources of similarity data:

(i) Similarity data from the analysis of complex objects such as sequences and
images; instead of developing features of such objects, one may wish to

Table 1.8 Confusion data: the entries characterize the numbers of those of the participants of a
psychological experiment who mistook the stimulus (row digit) for the response (column digit)

Stim Response

1 2 3 4 5 6 7 8 9 0
1 877 7 7 22 4 15 60 0 4 4
2 14 782 47 4 36 47 14 29 7 18
3 29 29 681 7 18 0 40 29 152 15
4 149 22 4 732 4 11 30 7 41 0
5 14 26 43 14 669 79 7 7 126 14
6 25 14 7 11 97 663 4 155 11 43
7 269 4 21 21 7 0 667 0 4 7
8 11 28 28 18 18 70 11 577 67 172
9 25 29 111 46 82 11 21 82 550 43
0 18 4 7 11 7 18 25 71 21 818
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compare them by mutually superimposing or aligning them—the alignments
results will be reported as similarity values (see data of amino acid substi-
tution rates in Table 1.9);

(ii) Data on interaction between web pages such as the number of times page
i visited page j at a given time period. This is frequently referred to as
network data assuming that this type of data can be treated within the
framework of graph theory;

(iii) Affinity data between geometric points—these are derived with the help of so
called kernel functions. A kernel function K(x,y) models inner product
between complex transformations of vectors x and y, w(x) and w(y), so that
K(x,y) = 〈w(x), w(y)〉. What is nice about it—in many cases, there is no need
in using the transformation w(x) itself—the kernel K(x,y) suffices. A function
K(x,y) is a kernel if and only if matrix of its values (K(xi,xj)) on any finite
sample of points {xi} (i 2 I) is positive semi-definite. Frequently, the
so-called Gaussian kernel is used to derive the affinity data according to
formula

aij ¼ e�dðxi;xjÞ=s

where d(x,y) = 〈x − y, x − y〉 is the squared Euclidean distance and s > 0, a
constant (see Sect. 3.4.4).

Case G. Confusion
Table 1.8 presents results of a psychological experiment on errors in human
judgement, specifically, on confusion of human operators between segmented
numerals (drawn on Fig. 1.2). In the experiment, a digit flashes for a short time on
screen before an individual (stimulus) who is to report then what digit they have
seen (response): (i,j)-th entry in Table 1.8 is the proportion of response j to stimulus
i (Keren and Baggen 1981). The confusion matrix is understandably not symmetric,
whereas its diagonal entries contain by far the larger proportions of observations,
which is typical for confusion data as well as switch data.

The problem: are there any patterns of confusion, especially if represented by
clusters? If yes, can any numeral shape features be found to describe the confusion
clusters more or less exclusively?

Case H. Amino Acid Substitution Rates
Table 1.9 is a symmetric table of the so-called amino acid substitution scores that
are used as weight coefficients at various schemes for alignment of protein amino
acid sequences. A protein amino acid sequence represents the protein prime
structure (in contrast to secondary, tertiary and, frequently, quaternary structures—
those relate to spatial foldings of protein molecules). This may change during the
process of evolution. The main assumption for studying the evolution is that each
two organisms share a common ancestry. The more similar their protein sequences
are, the more recent was their common ancestor. The likelihood of the event of
amino acid i substituted by amino acid j is estimated by using blocks of
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evolutionarily related protein sequences from various databases. These allow esti-
mation of probabilities p(i), p(j) and p(ij) of amino acids i, j and mutual substitution
of i and j. Given these probabilities, the substitution scores are defined as integers
proportional to logarithms of odd-ratios, log[p(ij)/(p(i)p(j))]. Elements of matrix in
Table 1.9 were derived by Henikoff and Henikoff (1992) using such protein
sequences from database BLOCK for which pair-wise alignments involve not more
than 62% of identity, which explains the name of the matrix.

This matrix leads to more reasonable results than other scoring matrices; prac-
titioners of protein alignment have selected this matrix as a standard. We consider
BLOSUM62 as a similarity matrix and are interested in finding clusters of amino
acids that tend to replace each other and looking at physical and chemical properties
explaining the groupings (Table 1.10).

Case H. Eurovision Song Contest Data
Table 1.11 presents the average scores given by each European country to their top
10 choices at the Eurovision song contests (up to year 2011); zero entries are
presented by empty cells. The author compiled this using public data at http://www.
escstats.com/. Each row of the table corresponds to one out of the nineteen selected
European countries, and assigns a non-zero score to those of the other eighteen that
have been among the 10 best choices of the country under consideration.

The cluster structure of the table should quantify to what extent the rumored
effects of cultural and ethnical links on voting occur, because the quality of songs
and performances may be considered random from year to year, so that in the ideal
case when no cultural preferences are involved at evaluations, the similarity matrix
should be of a random structure too. This brings forth a research question of
whether any meaningful cluster structure is present in this matrix at all.

e1

e3

e4

e2

e6e5

e7

Fig. 1.2 Simplified digit
numerals over a rectangle
with a line in the middle
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1.3 An Account of Data Visualization

1.3.1 General

Visualization can be a by-product of the model and/or method, or it can be utilized
by itself. The concept of visualization usually relates to the human cognitive
abilities, which are not yet well understood. Just for illustration of the role of color,
a feature rarely attracting attention of both researchers and practitioners, take a look
at the two double circles in Fig. 1.3.

Computationally meaningful studies of structures of visual image streams such
as in a movie or video began only recently. A most recent account of the devel-
opments in information visualization can be found in Machlis (2017) (see also
Mazza 2009; Ware 2012).

Table 1.10 Amino acids and their encoding as 3-letter and 1-letter symbolics from website http://
icb.med.cornell.edu/education/courses/introtobio

1-letter 3-letter Protein residue Codons
A Ala Alanine GCT, GCC, GCA, GCG
B Asp, Asn Asp. acid/asparagine GAT, GAC, AAT, AAC
C Cys Cysteine TGT, TGC
D Asp Aspartic acid (Aspartate) GAT, GAC
E Glu Glutam. acid/glutamate GAA, GAG
F Phe Phenylalanine TTT, TTC
G Gly Glycine GGT, GGC, GGA, GGG
H His Histidine CAT, CAC
I Ile Isoleucine ATT, ATC, ATA
K Lys Lysine AAA, AAG
L Leu Leucine TTG, TTA, CTT, CTC, CTA, CTG
M Met Methionine ATG
N Asn Asparagine AAT, AAC
P Pro Proline CCT, CCC, CCA, CCG
Q Gln Glutamine CAA, CAG
R Arg Arginine CGT, CGC, CGA, CGG, AGA, AGG
S Ser Serine TCT, TCC, TCA, TCG, AGT, AGC
T Thr Threonine ACT, ACC, ACA, ACG
V Val Valine GTT, GTC, GTA, GTG
W Trp Tryptophan TGG
X Xaa Any amino acid Any
Y Tyr Tyrosine TAT, TAC
Z Glu, Gln Glutamic acid–Glutamine GAA, GAG, CAA, CAG
* STOP Terminator TAA, TAG, TGA
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We are going to be concerned with presenting data as maps or diagrams or
digital screen objects in such a way that relations between data rows or columns or
both are reflected in distances or links, or other visual relations, between their
images. Among the more or less distinct visualization goals, beyond sheer pre-
sentation that appeals to the cognitive domination of the visual over the other
senses, we can distinguish between:

Table 1.11 A sample of results at the Eurovision song contests (up to year 2011)—the average
scores given by each European country to their top 10 choices

Az Be Bu Es Fr Ge Gr Is It Ne
Azerbajan 6.1 4.8
Belgium 3.8 3.9 4.0 4.7
Bulgaria 6.7 9.3
Estonia 4.1 4.3
France 3.7 4.3 5.6 4.7
Germany 3.4 3.7 3.5
Greece 5.4 8.0 4.1
Israel 5.0 4.3
Italy 10.0 5.4
Netherl. 3.9 4.6 3.8 4.5
Poland 8.4 4.3 3.9 9.0
Portugal 3.5 4.5 4.1 8.1
Romania 5.2 8.2 6.0
Russia 9.9 3.7 3.6
Serbia 5.3 7.3
Spain 7.8 5.1 4.5 7.4
Switzerl. 4.4 4.2 4.7
Ukraine 11.1
UK 3.6 3.9 3.8

Pol Por Ro Ru Se Sp Sw Ukr UK
Azerbajan 5.0 6.5 9.0
Belgium 3.4 4.2
Bulgaria 4.8 6.0 4.4
Estonia 8.8 4.3
France 5.4 8.0 4.1
Germany 5.5 7.0 4.2
Greece 4.0 8.0 4.4 3.8
Israel 6.6 7.4 5.0 6.2 4.3
Italy 12.0 6.5 5.2
Netherl. 7.0
Poland 8.2
Portugal 5.2 5.7 4.2 7.4 4.3
Romania 4.9 8.0 3.5
Russia 8.0 7.7
Serbia 4.4 4.4
Spain 4.3 7.9 4.7 4.6
Switzerl. 10.6 4.1 4.1
Ukraine 6.0 9.8 9.0
UK 3.7
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A. Publicizing and highlighting
B. Integrating different aspects
C. Narrating
D. Manipulating.

Of these, manipulating visual images of entities, such as in computer games,
seems an interesting area yet to be developed in the framework of data analysis.
There can be mentioned, though, operations of mild manipulation readily available
at various sites already such as scrolling, representing an overview with possibilities
of getting further details of individual fragments by zooming or windowing, and an
overview that allows focusing on specific fragments by enlarging them on the same
screen (Mazza 2009). The other three will be briefly discussed and illustrated in the
remainder of this section.

1.3.2 Publicizing and Highlighting

Given a quantitative feature, its most comprehensive and striking to the eye visu-
alization is the histogram. On the plane, one draws an x axis and the feature range
boundaries, that is, its minimum and maximum. The range is divided then into a
number of non-overlapping equal-sized sub-intervals, bins. Then the number of
objects that fall in each bin is counted, and the counts are reflected in the heights of
the bars over the bins, forming a histogram. Histograms of Population resident in
Market town dataset and Petal width in Iris dataset are presented in Fig. 1.4.

The shape of the histogram may depend on the number of bins. Then it is
tempting to think of an optimal number of bins. Unfortunately, no common goal for
this can be specified—there is no universally good method to choose the right
number of bins.

Fig. 1.3 Two colors, light-blue and red, at both parts of the figure, ideally complement each other.
However, the middle circle on the left is more or less flat, as well its red complement, whereas that
on the right “springs out” to the viewer’s eyes, according to R. Medny (2018) The Bible of Color
and Style, AST Publishers, Moscow, pp. 6–7
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Q.1.3. Why should the bins not overlap?
A. Each entity falls in only one bin if bins do not overlap, and the total of all bin
counts equals the total number of entities in this case. If bins do overlap, the
principle “one entity—one vote” will be broken.
Q.1.4.Why are the bar heights on the left greater than those on the right in Fig. 1.4?
A. Because bins on the right are twice as narrow as those on the left; therefore, the
numbers of entities falling within them must be smaller.
Q.1.5. Is it true that when there are only two bins covering the range, the divider
between them must be the midrange point?
A. Yes, because the bin sizes are equal to each other (see Fig. 1.5).

In Figs. 1.6 and 1.7 further on, two most popular types of histograms are presented.
The former corresponds to the so-called power law, sometimes referred to as Pareto
distribution. This type is frequent in social systems. According to numerous empirical
studies, such features as wealth, group size, productivity and the like are all distributed
according to a power law so that very few individuals or entities have huge amounts of
wealth or members, whereas very many individuals are left with virtually nothing.
However, they all are important parts of the same systemwith the have-nots creating the
environment in which the lucky few can strive. The power law density function is
p(x) � a/xk, where k reflects the steepness of the frequency’s fall (see Fig. 1.8 on the
left). Such a law expresses what is called the Matthew’s effect referring to the saying
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Fig. 1.4 Histograms of quantitative features in Iris and Market town data: the feature represented
on the x-axis and the counts on the y-axis. The histogram shapes depend on the number of bins
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Fig. 1.5 With just two bins covering the range, the divider is mid-range
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“He who has much, will get more; and he who has nothing, will lose even that little that
he has,” according toMatthew’s gospel. TheMatthew’s effect is expressed, for example,
in “the mechanism of preferential attachment”: the probability that a newweb surfer hits
a web-site is proportional to the site’s popularity, according to this mechanism.

Another type, which is frequent in physical systems, is presented in Fig. 1.7.
This type of histogram approximates the so-called normal, or Gaussian, law.

Distributions of measurement errors and, in general, features being results of small
random effects are thought to be Gaussian, which can be formally proven within a
mathematical framework.
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Fig. 1.6 A power law distribution
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Fig. 1.7 Gaussian type distribution (bell curve)
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Fig. 1.8 Density functions of the power law with k = −0.8, on the left, and normal distribution N
(2,1), on the right
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The normal, or Gaussian, law is p(x) = C exp[−(x − a)2/2r2], where C is a
constant, which is sometimes denoted as N(a,r). The parameters of this distribution,
a and r, have natural meaning: a expresses the expectation, or mean, and r2—the
variance, which naturally translates in data terms (see Fig. 1.8 on the right and
Sect. 2.2.3). It should be pointed out that the probability of a value x falling in the
interval a ± r according to the normal distribution is about 88%, and falling in the
interval a ± 3r about 99.7%, virtually unity, so that at modest sample sizes it is
highly unlikely that a value x can fall out of this interval, which is referred to
sometimes as the “three sigma rule”. The Gaussian distribution can be rescaled to
the standard N(0,1) form, with 0 expectation and 1 the variance, by shifting the
variable x to the mean, a, and normalizing it afterwards by the square root of r2.
This transformation, sometimes referred to as z-scoring, is expressed with formula
y = (x − a)/r, where y is the transformed feature. A mixture, that is, weighted sum,
of two normal density functions is presented in Fig. 1.9.

One more popular distribution is the uniform distribution, over a range [l,r]. Its
density is a constant function equal to p(x) = 1/(r − l), so that the probability of an
interval (a, b) within the range is just p = (b − a)/(r − l), proportional to the length
of the interval.

Q.1.6. Take a look at the distributions in Fig. 1.4. Can you see which of the two
types they are similar to?
A. The Population distribution is of power law type, and the Petal width is of
Gaussian law type, as one would expect.

Another popular visualization of distributions is known as a pie-chart, in which
the bin counts are expressed by the sizes of sectored slices of a round pie (see in the
middle of Fig. 1.10).

As one can see, histograms and pie-charts cater for perception of two different
aspects of the distribution; the former for the actual envelopment of the distribution
along the axis x, whereas the latter caters for the relative sizes of distribution chunks
falling into different bins. There are a dozen more formats of visualization of
distributions, such as bubble, doughnut and radar charts, easily available in
Microsoft Excel spreadsheet as well as in many other programs.
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A categorical feature differs from a quantitative one not just because its values
are strings, not numbers—they are coded by numbers anyway to be processed. The
average of a quantitative feature is always meaningful, whereas the averaging of
category labels, such as Occupations—BA, IT or AN—in Student data or Sector of
Economy—Retail, Utility or Industry—in Company data, makes no sense even
after they are coded by numbers. The applicability of the operation of averaging is
indeed a characteristic property of being quantitative. For example, one may claim
that a feature like the number of children, from the Student data (see Fig. 1.10), is
not quantitative because its values can only be whole numbers. Still, a statement
like “the average number of children per woman is 1.85” does make sense because
it can be easily made legitimate by moving to counting by hundreds: there are 185
children per every hundred women.

For categorical features, there is no need to define bins: the categories them-
selves play the role of bins. However, their histograms typically are visualized with
bars or stems, like on Fig. 1.11 that represents the distribution of categories IT, BA
and AN of Occupation feature in Student data.

The distribution of the feature can be expressed in absolute numbers of entities
falling in each of the categories, that is, D = (35, 34, 31), or on the relative scale, by
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Fig. 1.10 Distribution of the number of children at the Student data. The Child feature is
visualized as a 4-bin histogram on the left, pie-chart in the middle, and a bar set on the right—this
seems the most appropriate of the three at the case
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Fig. 1.11 The distribution of
categories IT, BA and AN of
occupation feature in student
data shown with bars on the
left and stems on the right
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using proportions found by dividing frequencies over their total, 35 + 34 +
31 = 100, which leads to the relative frequency distribution d = (0.35, 0.34, 0.31).

Recently, the so-called bubble chart format, developed for multidimensional
visualizations, has been applied to 1D distributions (see Fig. 1.12 at which the
distribution of most frequent causes of death in the USA is visualized with strips, on
the left, and bubbles, on the right). In this author’s opinion, the bubble chart is more
impressive. Also, it allows estimating the risk of death from a medical error, as
about 10% (251 out of 2597).

Case-Study 1.1. Has There Been a Bias in S’nS’ Policy?
In real life, many distributions are far from uniform. For example the distribution by
race of the 878,153 stop-and-search (stop-and-frisk in the USA) cases performed by
police in England and Wales was widely discussed in the media (see Table 1.12 and
BBC’s website http://news.bbc.co.uk/1/hi/uk/7069791.stmof29/10/07). This is far
from uniform indeed: the proportion of W category is thrice greater than of the
other two taken together. Yet it was a claim of racial bias because the proportion of
W category in the population is even higher than that (see Table 1.12).

Fig. 1.12 The distribution of causes of death in the USA, 2013, according to Makary and Daniel
(2016) by using strips, on the left, and bubbles (on the right). COPD is Chronic obstructive
pulmonary disease

Table 1.12 Race distribution of stop-and-search cases in England and Wales in 2005/6

Race Number of “Stop-and-Search” cases Relative frequency, %
Black (B) 131,723 15
Asian (A) 70,250 8
White (W) 676,180 77
Total 878,153 100
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At that time no statistics were available to rationally justify or reject the charge.
This author took an indirect way by comparing the stop-and-search case ethnic
distribution with that in prisons. Indeed, it is wrong to assume that police apply the
Stop-and-Search policy to the population randomly. They should apply the policy
only when they deem it necessary, so that the comparison should involve not all of
the total population but only the criminal population. The latter is unknown, but can
be likened to the population of prisons. Indeed, the distribution of subjects to
Stop-and-Search policy by race has been almost identical to that of the imprisoned.
Therefore, the claim of a racial bias could be declared incorrect under the
assumption that the court and indictment system is not biased.

For the time being both the government and police in England and Wales have
undertaken steps to much improve the Stop-and-Search policy by, first, defining
rather strict rules for application of the policy and, second, by targeting the policy to
a tangible action. The action may involve different measures from arrest to penalty
to just warning. Application of the rules have drastically decreased the number of
Stop-and-Search cases, as can be seen from Table 1.13 of application of the policy
in 2016/2017 year. (The source is on https://www.gov.uk/government/statistics/
police-powers-and-procedures-england-and-wales-year-ending-31-march-2017).
This Table reports of just about 250,000 Stop-and-Search cases versus almost
900,000 cases a decade ago. The former number is somewhat less than the real
number (about 300,000 cases) because some police reports, about 10% of the cases,
lack information of the ethnicity and about 10% of the cases report of mixed races
and are not reflected in the Table either.

The data in Table 1.13 differ from those in Table 1.12 by the fact that propor-
tions of the Stop-and-Search cases resulted in actions are reported, so that one can
see how the ethnicity affects the level of disorderly behavior. It appears the dif-
ferences in the proportions are not that high, 2–3% only.

To visually illustrate proportions, several formats have been proposed, of which
one of the most appealing is the so-called dot plot (Cleveland 1984). A version of
that is presented in Fig. 1.13. The scales chosen somehow show that the proportion
of reprimands received by blacks is much greater than those by other groups, which
is a bit misleading. In fact, the proportion of them, 32.1 is larger than the proportion
of action for Whites, 28.6, by a mere 3.5%.

If one compares this difference with the difference between relative proportions
of S-n-S cases for Blacks (24% vs. 3.3% in the population) and those for Whites

Table 1.13 Race distribution of stop-and-search cases in England and Wales in 2016/7

Race Total Resulted in action

Number of cases Relative frequency, % Number of cases Proportion, %
Black 55,140 24 17,703 32.1
Asian 28,897 11 8733 30.2
White 166,674 65 47,683 28.6
Total 256,711 100 74,119 28.9
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(65% vs. 86% in the population), one would not hesitate to conclude that the S-n-S
policy indeed applies to Blacks somewhat excessively. Of course one should not
take the cited proportions at the face value: relative frequencies in Table 1.12 sum
to 100 whereas those for the relative proportions of ethnicities to 96.8 only (Blacks
—3.3%, Asians—7.5%, Whites—86%), but the difference is quite small.

Q.1.7. What is the modal category in the distribution of Table 1.5? In Occupation
on Student data?
A. These are most likely categories, W in Table 1.13 and IT in Student data, Fig. 1.11.

The fact of distortion admitted in Fig. 1.13 can be beneficial sometimes—to
visually highlight a feature of an image. A local distortion of the original scale was
proposed back in 1906 by H. Beck to map the London tube scheme while greatly
enlarging the relative sizes of the Centre of London part. This made the center much
better and more conveniently presented to the eyes of passengers but was stone-
walled by the Tube authorities for about 30 years.

Such a distortion currently is a standard for metro maps worldwide (see
Fig. 1.14).

In fact, this line of thinking has been worked on in geography for centuries, since
the mapping of the Earth global surface to a flat sheet is impossible to do exactly.
Various proxy criteria have been proposed leading to interesting highlights way
beyond conventional geography maps, such as presented on Fig. 1.15 (Fullers’
projection) and Fig. 1.16 (August’s projection); see website http://en.wikipedia.org/
wiki/World_map for more.

More recently this idea was applied by Rao and Card (1994) to table data (see
Fig. 1.17); more on this can be found in Card et al. (1999) and Mazza (2009).

It should be noted that the disproportionate highlighting may lead to visual
effects bordering on cheating (or being just that). This is especially apparent when
relative proportions are visualized through proportions between areas, as in

Fig. 1.13 The distribution of proportions of stop-and-search cases in England and Wales 2016/
2017 resulted in a police action over ethnicity presented with a version of so-called dot plot
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Fig. 1.18. An unintended effect of the picture is that the decline by half in one
dimension is presented visually by the area of the doctor’s body, which is just not
half but one fourth of the initial size. This grossly biases the message.

Another typical case of unintentionally cheating is when the relative proportions
are visualized using bars that start not at the 0 point but an arbitrary mark, as is the
case presented in Fig. 1.19: a newspaper’s legitimate satisfaction with its success is
visualized using bars that begin at 500,000 mark rather than 0. Another mistake is
that the difference between the bars’ heights on the picture is much greater than the
reported 220,000. Altogether, the rival’s circulation bar is more than twice shorter
while the real circulation is less by mere 25%.

Fig. 1.14 A fragment of London tube map made after H. Beck; the central part is highlighted by a
disproportionate scaling

Fig. 1.15 The Fuller projection, or Dymaxion map, displays spherical data on a flat surface of a
polyhedron using a low-distortion transformation. Landmasses are presented with no interruption

1.3 An Account of Data Visualization 37



1.3.3 Integrating Different Aspects

We first describe aspects of visualization of bivariate data, that is, data with two
features. These are most naturally presented via the Cartesian plots studied in high
school throughout the world. Then we consider cases in which the visual image is
less straightforward.

We distinguish between nominal features and quantitative features. There can be
four combinations:

(i) both features are quantitative;
(ii) the target feature is quantitative, the input feature is nominal;

Fig. 1.16 A conformal map: the angle between any two lines on the sphere is the same between
their projected counterparts on the map; in particular, each parallel crosses meridians at right
angles; and also, the sizes at any point are the same in all directions

Fig. 1.17 The Table Lens
machine: highlighting a
fragment by disproportionally
enlarging it
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Fig. 1.18 A decline in relative numbers of general practitioner doctors in California in 70-es: the
2D image conveys a quadratic decline—not a half but a quarter of the size

Fig. 1.19 An unintended
distortion: a newspaper’s
report (July 2005) is
visualized with bars that grow
from mark 500,000 rather
than 0
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(iii) the target feature is nominal, the input feature is quantitative;
(iv) both features are nominal.

Here we cover cases (i) and (ii)—they are visualized rather straightforwardly;
case (iv) is left till Sect. 3.6 further on. Furthermore, we leave case (iii) for the
future: there is no visualization device specific to this case so far.

In the case that both features are quantitative, the data are represented as a scatter
plot. Take, for example, two features from the Market towns dataset: Population
Resident and Number of Primary Schools. The data are taken from Table 1.2 (see
below an extract for four towns out of 45):

Pop (x) PSchools (y) (x,y)-point
Tavistock 10,222 5 (10,222, 5)
Bodmin 12,553 5 (12,553, 5)
Saltash 14,139 4 (14,139, 4)
Brixham 15,865 7 (15,865, 7)

Scatter plot is a presentation of objects as 2D points in the plane of two
pre-specified features. On the left-hand side of Fig. 1.20 is a scatter-plot of two
Market town features, Pop (Axis x) and PSchools (Axis y).
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Fig. 1.20 Scatter plot of PopRes versus PSchools in Market town data. The right-hand graph
includes a regression line of PSchools over PopRes
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One can think that these two features are related by a linear equation y = ax + b,
where a and b are some constant coefficients, referred to as the slope and intercept,
respectively, because the number of schools should be related to the number of
children, which is related to the number of residents. This equation is referred to as
the linear regression of y over x. The corresponding straight line is presented on
Fig. 1.20. Of course, other relations are not necessarily that simple because they
may also depend on other factors such as school sizes, population’s age, etc. It
would be a miracle if one equation fitted well all 45 towns. The possible incon-
sistencies in the equation can be modeled as additive errors, or residuals. The slope
a and intercept b are taken in such a way that the inconsistencies of the equation on
the 45 towns are minimized.

A somewhat different outline is used to visualize interrelation between a cate-
gorical feature and a quantitative one. It is the so-called box-plot. To draw a
box-plot, the x-axis is divided in bins so that each category corresponds to its own
bin. Then a vertical line is drawn within each bin, and the feature’s minimum and
maximum within the corresponding category are shown with horizontal short lines,
called “whiskers” (see Fig. 1.21). Then the upper 25% and lower 25% quantiles of
the feature within the category are found. A 25% upper quantile is a cut-point
within the feature range such that 25% of the values lie above the point and 75%,
beneath. Similarly a 25% lower quantile is defined. Therefore, the cut-points are
endpoints of an interval at which 100 – 25 – 25 = 50% of all the within-category
feature values fall. Then this interval is expressed with a box drawn at the
end-points. A line within the box shows either the mean or median value of the
feature within the category. One may specify a box for values other than 50%. For
example, Fig. 1.21 illustrates the within-category range over 60%, not 50%, of its
contents by removing 20% off of both its top and bottom extremes.

IT BA AN Occupation

Age 

51 

20 

Fig. 1.21 Box-plot of the occupation-age relation with 20% quantiles; the box heights reflect the
age within-category 60% ranges, whiskers show the total ranges. Within-box horizontal lines are
for the within category averages
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With the quantile level specified at 40%, at the category IT, Age ranges between
20 and 39, but if we sort it and remove 7 entities of maximal Age and 7 entities of
minimal Age (there are 35 students in IT so that 7 makes 20% exactly), then the
Age range on the remaining 60% is from 22 to 33. Similarly, Age 60% range is
from 32 to 47 on BA, and from 25 to 44 on AN (see box heights on Fig. 1.21). The
whiskers reflect 100% within category ranges, which are intervals [20, 39], [27, 51]
and [21, 50], respectively.

The box-plot proved useful in studies of quantitative features too: one of the
features is partitioned into a number of bins that are treated then as categories.
Sometimes, a more precise representation of within-category distributions, called a
violin plot, is utilized—this is not covered in this text.

Now consider somewhat less trivial images. Combining different features of a
phenomenon into the same image can make perception easier. Figure 1.22 repre-
sents a scheme of a Smart Home in which various devices are interconnected in a
wireless environment so that the home center can switch on or out each of them
upon receiving a corresponding message.

The diagram in Fig. 1.23 visualizes relations between the features in Company
data (Table 1.3) as a decision tree to conceptually characterize their products. For
example, the left-hand branch distinctly describes Product A by combining “Not
retail” and “No e-commerce” edges (See Sect. 3.8 for more on decision trees.).

Fig. 1.22 Illustration of interrelations between home devices and gadgets, represented by
conventional infographics icons, in the concept of Smart Home according to web-site http://www.
communitymegaphone.com/gadgets-for-a-smart-home/ (accessed 26 January 2019)
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One more visual image, Fig. 1.24, depicts relations between the confusion
patterns of decimal numerals drawn over rectangle’s edges (Fig. 1.2) and their
descriptions in terms of combinations of edges of the rectangle with which they are
drawn. A description may combine both edges present and absent to distinctively
characterize a pattern, whereas a profile comprises edges that are present in all
elements of its pattern. The confusion patterns are derived from data in Table 1.8
according to clustering of numerals in Sect. 4.6 and Mirkin 2012.

1.3.4 Narrating a Story

In a situation in which data features involve a temporal and/or spatial aspects,
integrating them in one image may lead to a visual narrative of a story, with its
starting and ending dates, all on the same screen. Such a narrative of a military

Not Retail (Man./Util.) Retail 

  No Yes

 Sector 

ECom 
Product C 

Product BProduct A 

Fig. 1.23 Product decision tree for the company data in Table 1.3

Absence
Pesence

Patterns Descriptions Profiles

Fig. 1.24 Confusion patterns for numerals visualized from the patterns’ data analysis descriptions
in terms of edges being present or not. The right-hand part presents profiles of the common edges,
for comparison
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company from the rich history of Europe (Napoleon’s Grand army invading Russia
1812) is presented in Fig. 1.25. It shows a map of Russia, with Napoleon’s army
trajectory drawn forth, in white, and back, in black, so that the time is represented in
this static image via the trajectory. The directions are shown with arrows. The
trajectory’s width shows the army’s strength steadily declining in time on a dra-
matic scale, in the summer time and in the absence of major fighting.

Segel and Heer (2010) present a more general account for narrating a story with
data visualization, possibly using multiple pictures, including a system to involve
three divisions of features: genre, visual narrative tactics, and narrative structure
tactics. Lee et al. (2015) present a scenario for the process of translation from data
to storytelling.

All the images presented can be considered illustrations of a principle accepted
further on. According to this principle, to visualize data, one needs to specify first a
“ground” image, such as a map or grid or coordinate plane, which is supposed to be
well known to the user. Visualization, as a computational device, can be defined as
mapping data to the ground image in such a way that the analyzed properties of the
data are reflected in properties of the image. Of the goals considered, integration of
data will be the priority since no temporal aspect is considered in this text.

1.4 The Role of Data Analysis

1.4.1 Current Success of Data Analysis and Data Table

This author holds the view that data analysis is not just a convenient term to cover
all the data processing techniques that are known as mathematical statistics or
applied statistics or machine learning or data mining or, more recently, big data

Fig. 1.25 The white band represents the trajectory of Napoleon’s army moving to the east and the
black band shows it moving to the west, the band width being proportional to the army’s strength
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analysis or data analytics. The concept of data analysis, in this text, is focused on
such techniques and processing tools that are oriented toward enhancing theoretical
knowledge of the phenomenon to which the data refer. This may be considered akin
to the concept of “data analytics”, which, however, refers to techniques that lead
straightforwardly to conclusions, or even decisions, regarding the phenomenon in
question.

First of all, one should note that data analytics does not necessarily require a
serious data processing technique. Frequently, simple comparisons of frequencies or
means may bring immediate conclusions and corresponding decisions. Especially,
this refers to data of big or not so big organizations in which most difficulties are
related to the issues of data collection, rather than transformation. The worldwide
process of digitalization brings novel opportunities, leading to major transforma-
tions in production, economics and society. Consider, for example, a story of using
a computer system in a municipality of London UK (see https://www.logianalytics.
com/case-study/london-borough-of-islington-saves-800k-annually-with-logi/, vis-
ited 5 June 2017). This system includes all the traffic wardens in the municipality—
there are about 200 of them—and it shows their activities in real time. A few
immediate results:

– It appears, the performance, that is, the numbers of penalty tickets issued, of
traffic wardens go down after the lunch break (this was easily taken care of by
the corresponding orders).

– It has been determined which traffic wardens wrote tickets that were successfully
disputed by the motorists, and they have been retrained.

– Some places have been found to be administered so well they had no parking
violations. As there is no sense in sending wardens there, the number of wardens
could be reduced.

All these resulted in real economies and thus effectively increased the munici-
pality’s budget.

This example clearly shows that the effect here comes from acquiring a computer
system for data collection and processing rather than from applying a data analysis
method. The data analysis here pertains to specific issues and is not that compli-
cated. This is a feature of perhaps a great majority of real-life applications.

Consider a more challenging task—analysis and prediction of car traffic in a big
city. A Russian search engine, Yandex, runs such a service on-line for dozens of big
cities including Moscow, the capital of Russia. This service, called
“Yandex-Probki” (Yandex traffic jam), scores the speed of traffic within a city at a
hundred locations over main streets and avenues. This is done by collecting the
location signals from the GPS (Global Positioning System) devices used by car
drivers for orientation on the streets.

All the city is divided in subareas so that calculating the difference between the
time a car enters and the time it leaves a subarea, determines its average speed. The
level of traffic on a route in the subarea is related to the mean speed of individual
GPS devices: the smaller the speed the greater the traffic jam value. A random
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noise, such as the signal from a GPS device used by a pedestrian can be easily
filtered out by considering related data such as the period of time at which the GPS
has been switched on: pedestrians usually use GPS devices during very short time
periods. Even simpler approach, the averaging can be done over 95% of the signals
by removing 2.5% of both the slowest and fastest speeds—without trying to pen-
etrate what were the signaling objects. Matching a current map of speeds and
similar maps at the same weekday, at an appropriate time, under similar weather
conditions, it is not difficult to give a short-term forecast of the distribution of
speeds and even give recommendations for optimal routes. This is a good example
of “big data” analysis. How does this happen? The main causes of the success:

– huge speed of computing,
– huge memory,
– wireless connections to electronic devices, sensors and processors.

No sophisticated methods for data analysis are used—just ubiquitous networks
and very fast computation. Has someone cheated by stating in their CV that they
graduated from Harvard University? No need to collect various facts and infor-
mation here and there; no need for complex reasoning. Just make a search through
Harvard’s digital archive for the corresponding name.

This is the essence of the current movement generally referred to as “big data”—
in fact, rapidly merging together various information bits—this is the root of the
success. The issues of data processing and fusion are enormous, especially when
considering their dynamics. Reliable distributed systems and fast parallel compu-
tations are hence in great demand. However, this is outside the scope of this book.
This book is about producing meaningful statements from analysis of the data after
they have been arranged as a data table.

Examples of data tables have been given in Sect. 1.2—Almost all are just
entity-to-feature tables. When units of observation correspond one-to-one to enti-
ties, that is, rows of a corresponding data table, drawing a data table is not difficult
since the only problem remaining is to define appropriate features, corresponding
one-to-one with columns of the table. This is relatively easy in the case of a
categorical feature whose categories are not disjoint. Survey questions such as
“What languages can you speak?” or “List brand names of your cars” with answers
such as “English, German, Dutch” and “BMW, Ford, Toyota” are examples. In
these cases, each of the categories is assigned a “dummy” binary feature of its own
with the value 1, if the object falls in the category, or 0, if not. Less formal
considerations must be taken into account when the units of observation are protein
sequences or unstructured texts. Here one should think of features useful in relation
to a specific problem at hand such as “The proportion of hydrophobic residues in
the first half of the sequence” and “The number of occurrences of the word ‘go’ and
its derivatives (such as “went”, “gone”, etc.) in the text”.

The book by Levitt and Dubner (2005) gives a number of much inventive
examples of defining features related to socio-economic phenomena of common
interest.
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Q.1.8. A student of a Russian School of Data Analysis, Ivan Petrovich Sidorov,
took a data set of metro systems of the world according to the web-site
https://en.wikipedia.org/wiki/List_of_metro_systems (visited 8 June 2017)
and put a fragment of the data in a table like Table 1.14

He claimed that the table was a data table with the following features:

«System» Subway’s name (Nominal)
«City» City in which the Subway is located (Nominal)
«State» The country in which the Subway is located (Nominal)
«Continent» The continent in which the Subway is located (Nominal)
«Opened» The year in which the Subway was opened (Nominal/Ordinal)
«Lines» The number of lines in the system (Quantitative)
«Length» The total length of lines in kilometers (Quantitative)
«Stations» The total number of stations (Quantitative)

Would you agree with Mr. I. P. Sidorov?

A. Not exactly. First of all, the two columns on the left, Name of the system and
City, are not features because the number of categories in each of them is the same
as the number of objects; so they give no information about relations between the
objects except that all of them are different. Of course, one should also note that the
two columns are almost identical.

Then we have the column “State” which has different values for half the entity
set and thus yields no information on that half. This column should be thrown out
too or changed to a binary feature with categories “Russia” and “Not Russia”; the
latter embracing all the six cases of other states. One more dubious definition is
“Nominal/Ordinal” for the scale type of feature “Opened”. This feature in fact refers
to the timing and, therefore, should be counted as quantitative. Another thing is that
it could be categorized, for example, at “Before 1970” and “After 1970” categories.

Table 1.14 List of metro systems in the Former Soviet Union according to https://en.wikipedia.
org/wiki/List_of_metro_systems (visited 8 June 2017) and some data on them

# System City State Continent Opened Lines Length Stations

1 Baku metro Baku Azerb Asia 1967 3 36.7 25
2 Yerevan metro Yerevan Armenia Asia 1981 1 12.1 10
3 Minsk metro Minsk Belarus Europe 1984 2 37.3 29
4 Tbilisi metro Tbilisi Georgia Asia 1966 2 26.3 22
5 Almaty metro Almaty Kazakh Asia 2011 1 11.3 9
6 Moscow metro Moscow Russia Europe 1935 12 338.9 203
7 Petersburg

metro
Petersburg Russia Europe 1955 5 113.6 67

8 Nizhny
Novgorod
metro

N. Novgorod Russia Europe 1985 2 18.9 14

9 Novosibirsk
metro

Novosibirsk Russia Asia 1985 2 15.9 13

10 Samara metro Samara Russia Europe 1987 1 10.3 10
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But any quantitative feature can be categorized in this manner. Therefore, a proper
data table derived from Table 1.14 would be like Table 1.15.

The features in Table 1.15 are:

«State» The country in which the metro is located (Nominal, Russia or Other)
«Continent» The continent at which the metro is located (Nominal, Europe or Asia)
«Opened» The year at which the metro was opened (Quantitative)
«Lines» The number of lines at the metro system (Quantitative)
«Length» The total length of lines in kilometer (Quantitative)
«Stations» The total number of stations (Quantitative)

Sometimes the unit of observation differs from that of the data entity. For
example, when collecting data of villages one may survey features of families, or
households, or the school, or surgery to consider them, in a summarized form, as
village features. These are usually taken into account by the data collectors.

In the remainder of this section we give instructive examples of data analysis,
some successful, some not, to derive useful lessons for practical applications.

1.4.2 A Great Success Story: Kepler’s Planetary Motion

Here is an example of data analysis as we understand it in “big science”. Johannes
Kepler (1571–1630), a great astrologist and astronomer working at the court of the
Emperor Rudolf II in Prague, then the capital of a great Empire stretching from
Portugal on the West to Balkans on the East, gets hold of data meticulously col-
lected by his boss, Danish astronomer Tycho Brahe—because Tycho suddenly dies
while at a court function. Tycho’s data are of planet locations on the sky for a
40-years period. The task is, as usual, to find patterns or regularities in the data.
Some bits of knowledge which were already available at the time:

– Copernicus’ suggestion that all the planets revolve around Sun in circles (1543);
– All the orbits lie in (or close to) a plane, the ecliptic, known from the time

immemorial as the plane of the visible annual path of the Sun;

Table 1.15 Data of metro systems in the Former Soviet Union according to https://en.wikipedia.
org/wiki/List_of_metro_systems (visited 8 June 2017)—corrected

# City State Continent Opened Lines Length Stations
1 Baku Other Asia 1967 3 36.7 25
2 Yerevan Other Asia 1981 1 12.1 10
3 Minsk Other Europe 1984 2 37.3 29
4 Tbilisi Other Asia 1966 2 26.3 22
5 Almaty Other Asia 2011 1 11.3 9
6 Moscow Russia Europe 1935 12 338.9 203
7 Petersburg Russia Europe 1955 5 113.6 67
8 N. Novgorod Russia Europe 1985 2 18.9 14
9 Novosibirsk Russia Asia 1985 2 15.9 13
10 Samara Russia Europe 1987 1 10.3 10
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– The Pythagorean “music-of-spheres” view of the solar system, including that the
average distances of the six known planets from the Sun obey the “Platonic
solids law” (Kepler 1594; see also Kepler 2014).

First of all, Kepler found some constancy in planet motions including what is
currently known as Kepler’s 2rd Law of planetary motion: for any planet, the area
of the sector between Sun and the planet in its orbit, swept out in a unit of time, is
constant. Then Kepler proceeded to the analysis of deviations of the Mars orbit
from circularity, which culminated in establishing of the essence of Kepler’s 1st
Law: the planets revolve around the Sun in ellipses rather than circles. He found
these two laws in a short time. Then, after more than a dozen years, Kepler dis-
covered his 3rd Law of planetary motion, of the constancy between the period P
and the average distance D to Sun of planet orbits. It appears that it is not the ratio
P/D itself which is constant but rather the ratio of their, respectively, square and
cube:

P2

D3 ¼ const ð1:1Þ

How can one derive such an unintuitive formula from the data? The square of P
and, especially, the cube of D are beyond intuition. Some, including this author,
thought that J. Kepler did know of the law of gravitation (see further on in this
section), at least in this formulation: the Sun acts on the planets with a force
proportional to the inverse of squares of their distances to the Sun. The constancy of
the quotient above can be mathematically derived from that—this is how J. Kepler
could have come up with his third Law of planetary motion.

The others, in fact an overwhelming majority, said that they had no clue
regarding the source for the Kepler’s formula and they did not care. Recently one
more group emerged. This group thinks that J. Kepler arrived at the formula by the
way of data analysis, namely, by using the then recently invented concept of
logarithm: that was proposed by John Napier in Scotland in 1614, and J. Kepler
became aware of the concept in 1616.

The data of these two features, the period, P, and the average distance to Sun, D,
are presented in Table 1.16. As is clearly seen on Fig. 1.26, the planet points fit no
line.

But, if one takes a look at the points corresponding to the logarithms of the
features, they do not need to be a rocket scientist to figure out that the points do lie
on a line and, thus, do satisfy the Kepler’s equation—even if they had no prior
knowledge of that (Qin and Simon 1990). Since Kepler himself was a great
advocate of the concept of logarithm, of course he did it!—claim enthusiasts.
Figure 1.27 represents a scatter plot over logarithms of the features, log(P) and log
(D)—one cannot help but see that the points exactly fit a straight line with the
tangent of the angle between the line and x-axis equal to 3/2. That is exactly the
Kepler’s equation, with the constant = 1. The Kepler’s 3rd Law of Planetary
Motion says just that.

1.4 The Role of Data Analysis 49



Table 1.16 Data planetary
motion: the average distance
from the Sun, in Earth
distances, and the period, in
Earth periods

Planet Period Distance
Mercury 0.241 0.39
Venus 0.615 0.72
Earth 1 1
Mars 1.88 1.52
Jupiter 11.8 5.2
Saturn 29.5 9.54
Uranus 84 19.18
Neptune 165 30.06
Pluto 248 39.44
The fonts are boldfaced except for the three last rows referring to
a recent addition: these celestial bodies were not known in the
17th century
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What is so grand about the Kepler’s Laws? Well, a simple fact is that they all can
be mathematically derived from Newton’s universal gravitation law presented in
Fig. 1.28. The universal gravitation law is the most significant early result of
modern science. It claims that there is an invisible force, called gravitation, between
any two celestial bodies, that is proportional to the product of the bodies’ masses
and inversely proportional to the squared distance between them. Moreover, the
gravitation force is immediate, however far away from each other the bodies are,
with no delays. This law fits well with the classical mechanics.

One should not forget, though, that some other efforts by J. Kepler—along his
favorite line, the Pythagorean perspective of the affinity between sounds and
planetary motions—has the reader ever heard of “Music of Spheres”?,—even with
regularities found in relations between the planet’s number and its distance to Sun
such as the “Bode-Titius Law” for some planets, were largely unsuccessful and
remain outside of the body of science so far.

1.4.3 Failures of Data Analysis: Counter-Intuitive Cases

In many cases, patterns found with data analysis have no simple or useful expla-
nation. In some cases they contradict a tradition or “ground truth” knowledge and,
thus, fail in eyes of people. This author recalls, for example, results of the analysis
of a huge—at that time—data file collected, in a 50,000-strong survey, by a Russian
medical officer of health services V. Shanin, undertaken by the author and the late
Peter Rostovtsev (1950–2002) in a big research center near Novosibirsk, Russia, in
1981. V. Shanin was concerned with the respiratory diseases that were abundant
there at that time; some of them quite infectious. In accordance with the dominant
views of the period, he suspected that there were two major risk factors:
(a) smoking and (b) alcohol consumption; and he asked us to demonstrate that
convincingly by analyzing his data.

To that end, we developed a classification of two dozen respiratory diseases that
were present, in various combinations, in replies to the survey questionnaire. Since the
dataset was real huge—it did not fit within a single computer’s working memory—we
used an in-house decision tree technique by Mirkin and Rostovtsev (see Mirkin 1985)
for which the criterion was maximization of the association between the partition
being built and the binary features representing different respiratory diseases. An
account of the discovered partition is presented in Fig. 1.29; its major divisions were

Fig. 1.28 Gravity law
illustrated
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related to lungs, bronchi, and the nose, respectively. Then we looked at the association
tables between this partition and various features available either from data directly or
by combining answers to individual questions.

The results obtained are illustrated in Fig. 1.30. The suspected risk factors were
statistically independent—well, almost, in our computations, from the disease
partition both on the entire dataset and various tested parts of it. The only exception,
as far as I can remember, was the subset of relatively young women. It was a
positive association in that case: the moderate drinking associated with better
health. This, currently quite reasonable, result heavily contradicted the medical
dogmas of that time and was pronounced to be nonsensical.

Among the data miners, another story—to an extent, similar—is popular; the
story of the struggle by a local general practitioner doctor, John Snow, against an
outbreak of cholera in Soho district, London, 1854, by using data visualization.
Two weeks into the outbreak, Dr. Snow went over all houses in the vicinity and
made as many tics at their locations on his map as many deaths from cholera had

Respiratory

Lung
Bronchi

Nose

Fig. 1.29 The structure of hierarchical clusters obtained by B. Mirkin and S. Rostovtsev over two
dozen respiratory diseases occurring among respondents in south-west Siberia 1981 in various
combinations

Suspected risk factors Discovered risk factors  

Smoking Drinking Disease in family Poor housing

Fig. 1.30 Derived causes of respiratory diseases are on the right, wrongly suspected risk factors
are on the left
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occurred in that location (Figure 1.31 illustrates a fragment of Dr. Snow’s map).
The circles were densest near the water pump, which made Dr. Snow convinced
that the pump was the cholera source.

(In fact, Dr. Snow’s service in India predisposed him to the idea of contaminated
water flows transmitting the disease.) He discussed his findings with the priest of
the local parish, who then removed the handle of the pump, after which the deaths
stopped. This all is true. But there is more to this story. The death did stop—
because too few remained in the district, not because of the removal: the handle was
ordered back on the very next day after it had been removed. Moreover, in a later
discussion the borough council refused to accept Dr. Snow’s “water pump theory”
because it contradicted the then dominant theory that cholera progressed through
stench in the air rather than through water flow. More people died in Soho a decade
later in the next cholera outbreak. The water pump theory was not accepted until
much later, when the science of microbes had become developed. Specifically, Dr.
Koch in Germany 1883 discovered the cause and medium of infection—vibrio
cholerae. The story is instructive in both the power of visual insight and the fact that
data analysis results are not conclusive: a data based conclusion needs a reasonable
explanation to get accepted [A strange coincidence: in fact, the vibrio cholera was
first discovered by Filipo Pacini in Italy in the very same year, 1854, when John
Snow fought for his findings in the UK; but the discovery was then ignored by the
scientists as a kind of nonsense].

Fig. 1.31 A scheme of a fragment of Dr. Snow’s map demonstrating that indeed most deaths
(labeled by circles) had occurred near the water pump
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1.4.4 Insubstantial Patterns and Their Causes

In the first decade of the 21st century, the following pattern was discerned over
schools in the USA: the largest proportions of students with excellent marks were in
small schools rather than larger schools. Some parents decided then to put their
children into smaller schools. Wainer and Zwerling (2006) came up with an
explanation of the pattern as a feature of randomness rather than of any specific
conditions at smaller schools. Their explanation also implied that smaller schools
have larger percentages of students with low marks, too; so that there is no reason to
want to study in a small school. Since the data of relative numbers of poor and
excellent grades were not available, Wainer and Zwerling (2006) illustrated their
point on the data of cancer of kidney occurrences. Figure 1.32 clearly shows that
counties with the lowest and highest risks of getting cancer of kidney are in the
same states.

These states can be distinguished as those prevailingly rural, with small numbers
of residents, who are fervent supporters of the republican party, as they share the
Christian fundamentalists’ views and autarchic ideology. In principle, these are
enough to explain each of the maps. The lowest kidney cancer risks? Of course, the
rural life, clean air and water, simple fresh foods. The highest kidney cancer risks?
That is quite clear, too: poverty, fat foods, alcohol, and low medical help. The only
question remains: how can these incompatible explanations both be true?

In fact, they are both wrong. The reason is not the rural pattern of life. The
reason is low population density. The smaller the population, the greater the
probability of an unusual pattern. Take, for example 3 random balls from an urn
with equal quantities of white and black balls. The color of a ball can be either black
or white, with equal chances. Therefore, there are 8 possibilities for 3 balls, each
with a probability of 1/8. The event that one ball is white, and two are black, occurs
at each of the three combinations out of the eight: w-b-b, b-w-b, b-b-w. The event
that all the balls are black occurs at only one of the combinations, b-b-b; therefore,
its probability is 1/8. The same goes for the event at which all the three balls are
white. If one takes 4 balls, then the probability of an “unusual event” that all four
are black (or all four are white), is 1/16. If one samples 7 balls, then the probability

Fig. 1.32 Two copies of the map of the USA: on the left, counties at which the numbers of cancer
of kidney occurrences was the lowest are shown as black; on the right, the same is for counties
with the highest levels of cancer of kidney
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of the unusual event is even smaller, 1/128 for all black, and 1/128 for all white.
The greater the number of balls, the smaller is the probability of the unusual events.
Consider counties as the sampled balls, the high level of cancer—as all black color,
and the low level of cancer, as all white color. Then one may say that the proba-
bility of an unusual event is much greater in counties with smaller populations. That
is the phenomenon behind the patterns presented in Fig. 1.32.

This gives an important lesson in data analytics: even if data analysis produces a
pattern, one cannot immediately recommend that the user take advantage of the
pattern. One must take care that the recommended behavior indeed leads to
expected outcomes.

An insubstantial pattern may emerge not only by chance. There can be many
other causes, of which one should mention:

I. An unfortunate heterogeneity of the data set
II. The dataset being non-representative or biased
III. Correlation caused by unobserved features
IV. Correlation caused by the research in data collection itself.

Even more fallacies may emerge when comparing different populations using
sampling—but these are out of the scope of this text. It is even worse if the data
values themselves have been “adjusted”, “corrected” or plain changed.

Let us now give examples to each of the four fallacies above.

I. Heterogeneity of the data set

The effects of heterogeneity of datasets can be illustrated by what is called the
paradox of G. U. Yule (1871–1951), with an extract from his paper (Yule 1903).
The paradox concerns a sample with two binary attribute features. The sample
consists of two subsamples so that the attributes are statistically independent in each
of the subsamples. However, the attributes can appear highly related to an innocent
user who views the set as a whole and has no knowledge of the subsamples (see
Tables 1.17 and 1.18).

Consider an attribute which is inherited in neither female, nor male. Let, for
example, fathers and sons have a 50% chance to have the attribute, whereas only
10% of mothers and daughters have that. Then the distribution of the attribute in
each of the samples will be such as presented in Table 1.17.

Table 1.17 Illustrative data of an attribute which is inherited neither in men nor in women;
however, it is present in these two subpopulations differently—only 10% in mothers and 50% in
fathers

Father Son+ Son− Total Mother Daughter+ Daughter− Total
Father+ 25 25 50 Mother+ 1 9 10
Father− 25 25 50 Mother− 9 81 90
Total 50 50 100 Total 10 90 100
Signs are to indicate whether the attribute is present or not
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Assuming that the values in Table 1.17 are numbers of respondents, one can
build a combined table for parent-child inheritance just by adding the corresponding
numbers in two gender-related tables (see Table 1.18).

Let us compare the conditional probability for a child to have the attribute, 26/
60 = 0.433 and the probability for a person to have the attribute, 60/200 = 0.300.
The former is greater than the latter (26/60)/(60/200) = 52/36 = 1.444 times, that is,
by 44.4%. This is a rather high difference, which bears no sense.

A similar effect can be observed for a quantitative feature. At the dawn of
modern era, Karl Pearson proposed a simple example of two bivariate Gaussian
distributions, with zero correlation each, yet with a difference in means, so that the
resulting distribution had a significant correlation between the variables.

II. The dataset is non-representative

Incorrect conclusions out of unrepresentative samples can be stressful. Usually
no nation risks a significant error in determining its population by using surveys
rather than census at least once a decade. A famous case of unrepresentative fallacy
is the Literary Digest’s poll of telephone subscribers and automobile owners in
1936 USA asking their voting preferences and, in this way, predicting a landslide
victory of Mr. Alf Landon against the incumbent president Roosevelt on Election
Day in 1936.

When the real election results, greatly contradicting those of the poll, became
known, the poll organizers realized that the sample of better-off people were not
representative of the opinions of the entire population, most of whom were suffering
in the Great Depression. There are many other similar examples including the fact
that the overwhelming majority of forecasts predicted that the president Donald
Trump would lose in the US elections 2016.

III. Correlation caused by unobserved features

Examples of correlations manifesting a hidden explaining variable or two are
currently increasing because many e-services provide data series, which can be used
for matching other data series.

One of the latest services is Google Correlate. Given a keyword, it immediately
finds, over a thousand-day window, the set of queries containing this keyword and
computes the proportion of this set among all the queries. The series of proportions
is the profile of this keyword within the universe under consideration. Then Google
Correlate finds profiles of all other keywords it accumulated for the same thousand

Table 1.18 Summary inheritance data

Parent Child+ Child− Total
Parent+ 26 34 60
Parent− 34 106 140
Total 60 140 200
Signs are to indicate whether the attribute is present or not
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days, after which it computes correlation coefficients between the keyword profile
and those other profiles. Then it outputs 10 other keywords for which the corre-
lation coefficient is maximum, along with the values of the correlation coefficient.
An example of the output is presented in Table 1.19. It is striking how different are
profiles in the USA and the UK. Still, some of them seem reasonable while the
others seem perfect examples of “false correlation”. The case of profiles for “Data
analysis” may serve as an example of the former, whereas the UK’s profile for
“Machine learning” is an example of the latter.

Every statistics textbook contains a few examples of “false correlation”, that is, a
high correlation value between features which are apparently unrelated. Among
them one of the most popular is the correlation between the number of drowned
swimmers and quantities of ice-cream sold. These two things are not related by
themselves. However, their trends are highly affected by the weather: the hotter the
Sun, the greater crowds go to the beaches and the greater crowds eat ice-cream.

Another association, frequently reported, so far has received no similar natural
explanation, although popular beliefs do make it rather plausible. A high correlation
is frequently mentioned between the numbers of newborn babies and the numbers
of brooding pairs of storks allegedly observed in Sweden and Denmark in various
periods, although with no documented evidence. However, for the post-war
Germany, there is evidence of a drastic simultaneous decline in both (1965–1980),
see a figure and short comment by Helmut Sies in Science, 1988, 332, p. 495. A bit
less amazing but still quite valid correlation across 17 countries is noted by Robert
Matthews (Storks deliver babies, Teaching Statistics, 2000, 22, no. 2, 36–38).
A few more mysterious correlations:

– Social drinking and earnings—drinkers earn more money (see B. L. Peters and
E. Stringham (2006) No Booze? You May Lose: Why Drinkers Earn More
Money Than Nondrinkers, Journal of Labor Research, 27(3), 411–421).

– Chocolate consumption and the numbers of Nobel prize winners, both relative
to the population size (see F. H. Messerli (2012). Chocolate consumption,
cognitive function, and Nobel laureates, The New England Journal of Medicine,
367(16), 1562).

– The numbers of McDonald’s restaurants (per million residents) and the pro-
portion of overweight individuals (see A. Alheritiere, S. Montois, M. Galinski,
K. Tazarourte and F. Lapostolle (2013). Worldwide relation between the
number of McDonald’s restaurants and the prevalence of obesity. Journal of
internal medicine, 274(6), 610–611).

Several interesting correlations between features of countries are observed by
Roberts and Winters (2013) including a positive association between the linguistic
diversity of a nation and the numbers of road fatalities per 1000 habitants.

IV. Correlation caused by the data collection itself

Let us turn now to cases of correlation caused by the fact of data collection itself.
This phenomenon became apparent at first in quantum physics—as the so-called
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principle of complementarity leading to impossibility of simultaneously measuring,
say, both the location and velocity of nuclear objects. As N. Bohr has famously put
it: “A complete elucidation of one and the same object may require diverse points of
view which defy a unique description.” (N. Bohr (1934). Atomic theory and the
description of nature (Vol. 1). CUP Archive.). Such phenomena are readily
available in economics and sociology studies. One of the most interesting is the
case of the Great Depression crisis of world economics (1929–1933 or later), There
are self-consistent, and of course incompatible, explanations of that: (a) in terms of
the Keynesian demand-driven theory (the trigger: loss of confidence and, hence,
under-consumption); (b) in terms of monetarist approaches (the trigger: a wrong
policy of the Federal Reserve causing the money supply to shrink and, in this way,
a usual recession to slip into an overwhelming depression); (c) Marxist class war
views (trigger: a great wave of unemployment caused by the greediness of capi-
talists in the wake of technology revolution caused by the introduction of elec-
tricity), etc. Also, one of the well-known is the experimental study of the worker
productivity (1924–1932) in the Hawthorne Works in Illinois. It appeared that the
members of the control group changed their behavior because they learned of their
role in the experiment rather than because of conditions of the experiment (see a
review in Adair 1984). Quite famous, although short-lived, are cases of pre-election
polls predicting a party to win the ballot and, therefore, triggering the opposition to
come to ballot box in masses and turn the voting around to get it their way.

Summing up, the cases considered are yet another warning of caution when
turning the data analysis results into the data analytic recommendations. To make a
pattern to serve as a basis for recommendation, one should propose a mechanism
for the pattern emergence and functioning. The mechanism should be compatible
with the existing views of the phenomena in question. Otherwise, one should be
prepared to wait for the times when attitudes would change. This may take years or
dozens of years. The task of formulation of such a mechanism may require
knowledge of specifics of the phenomena under consideration. Therefore, spe-
cialists in the specifics of the phenomenon to which the data relate should partic-
ipate in the process of data analysis.

1.5 Knowledge Shaped as Classification

1.5.1 Classification as Soft Knowledge

At the time of writing the concept of knowledge is neither well understood, nor well
defined, even though it traces its origins thousands years back and was decisively
promoted through ages starting from two of the greatest ancient philosopher-
scientists, knowledge reformers, Pythagoras (c570–c495 BC) and Aristotle (384–
322 BC). The latter developed a theory of classification which remains relevant to
this day.
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Scientific theories in sciences such as mechanics or molecular chemistry are
examples of what can be called “hard” knowledge. Hard knowledge relies on
reproducible experimental observations and mathematical deductions. Much more
phenomena in the world are covered by what can be referred to as “soft” knowl-
edge. Soft knowledge includes observations of unreproducible phenomena
involving features whose role and associations are unclear such as in economics and
politics. Moreover, soft knowledge may include beliefs and subjective judgments.
Much of soft knowledge is shaped in the form of classification.

In Table 1.20, an example of soft knowledge is provided. A “vertical” three-fold
classification of the world phenomena is presented along with parallel divisions in
space, society, etc. It is claimed that the classification can be derived from images
and artifact remains attributed to the Scythians, a nomadic people roaming 25
centuries ago over the steppes surrounding the Black Sea in East Europe. The
classification, as well as our knowledge of it, is rather incomplete. Still, it can be of
interest to the modern-day human as a rationale for preferring three-fold classifi-
cations in our world-views.

Figure 1.33 presents another classification, much “harder” than the vertical
Scythian classification, a classification of quadratic algebraic equations x2 + px +
q = 0 according to the properties of their roots, that is, values x at which the
equation holds indeed, expressed in terms of the coefficients p and q. This classi-
fication summarizes 25 centuries of the development of mathematics completed by
the genius K. F. Gauss (1777–1855) who developed, among many things, a theory
of complex numbers. A parameter, crucial for distinguishing between the case at
which both roots are real and the case at which both roots are complex, is the sign

Table 1.20 The three-fold vertical world view top/middle/bottom by Scythians (VII–II centuries
BC) according to D. S. Rayevsky (1985) World Pattern in Scythian Culture, Nauka Publishers,
Moscow, 256 p. (in Russian)

Top Sky Leaders North World of Gods
Middle Earth Priests Midlands World of alive
Bottom Water Farmers South World of dead

 D>0 D<0

q>0 q=0   q<0 

p<0  p>0

All

2 real roots 2 complex roots

same sign one zero different signs

posi ve nega ve

Fig. 1.33 Classification of the roots of the quadratic equations x2 + px + q = 0 expressed in
terms of the coefficients p and q
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of discriminant D = p2 − 4q, since the equation x2 + px + q = 0 has two roots, x1
and x2, computed according to formulas x1 = (−p + D½)/2 and x2 = (−p − D½)/2
(at D = 0, the roots coincide, x1 = x2 = −p—this trivial case is omitted here from
the classification). Depending on the sign of q, the case of two real roots, D > 0, can
be distinguished at the next level of the tree on Fig. 1.33. Next layer is occupied by
the sign of p—this affects the common sign of two real roots at the branch defined
by conjunction D > 0 and q > 0.

Let us take a real-world classification—that of living organisms by Carl
Linnaeus (1707–1778) who classified plants and animals based on similarity
between their reproductive organs. In fact, he continued a long line of taxonomist
efforts starting probably with Aristotle himself. Linnaeus name is attached to the
biological taxonomy, in spite of the fact that its modern version (see Fig. 1.34)
much differs from the Linnaeus’ version, probably because both apply the so-called
binomial nomenclature, another idea which can be traced back to Aristotle. The
largest difference comes from two Kingdoms of bacteria invisible to the human eye,
Eubacteria and Achaea, which currently have been added to the root of Linnaean
taxonomy.

The binomial nomenclature assigns each biological taxon T with the name of the
“parental” taxon, genus, P to which T belongs, accompanied with a T identifier. The
idea of binomial nomenclature is universal and practical: a great accomplishment by
itself.

However, the biological taxonomy obtained its scientific value only after Charles
Darwin (1809–1882) interpreted it as a system describing the evolution of living
organisms. This was a groundbreaking idea leading to a complete revamp of the
picture of the world and its history, from the creationism of the Bible to a more
balanced view of millions of years of natural history, in which the Sun and Earth are
but ordinary exemplars of celestial objects.

The picture of biological evolution outlined in Fig. 1.34 is not yet complete (see
Koonin 2011). There are many blank spots and gaps such as the issues related to the

Fig. 1.34 An outline of the
contemporary biological
taxonomy involving three
major divisions (Bacteria,
Archae, and Eucaryota)
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explanation of the evolution of Protista, the bacteria and the like, or the role of
Cladistics, an approach explaining any divergence in the species tree by changes in
a single feature.

The three examples of classification above clearly demonstrate that classification
is indeed a powerful structure for shaping knowledge which does not necessarily
belong in the sciences. This should make it clear, why the incipient age of science
back in 17–18th centuries threw out both, the Aristotelian claims and the concept of
classification, from the set of tools indispensable for science. The rigor of science
was probably then necessary for establishing the scientific perspective at the
worldviews. Currently, the trend goes in the opposite direction. The processes of
digitalization and globalization involve all kinds of knowledge since all kinds of
decisions are to be taken. It suffices to mention various relaxations of the
set-theoretic concepts, from conventional crisp sets to probabilistic density func-
tions to fuzzy sets to possibilistic sets to hesitant fuzzy sets.

1.5.2 Goals of Classification

The classification is among the most useful concepts in the emerging field of
knowledge discovery, maintenance and engineering.

Generally, classification is considered a form of soft knowledge that involves a
division of objects under consideration in similarity groups with any or all of the
following goals:

I. Analysis of the structure of the phenomenon under consideration;
II. Establishing relations between different aspects of the phenomenon;
III. Forming and shaping knowledge.

One cannot help but realize that each of the three above-mentioned classifica-
tions concerns all three of the goals above. Say, the biological taxonomy establishes
the structure of the living matter, points to the relation between the structure and
evolution of life, and, in this way, shapes and preserves knowledge of the
phenomenon.

When discussing various sides of phenomena and processes, it is useful to
distinguish between the following five facets covering their major aspects:

• Structure
• Function
• History
• Attitude
• Action.

One should note that whereas the triplet structure-function-history may relate to
any phenomenon, the latter two facets, attitude and action, make sense as related to
social systems only.
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Here are three well-known scientific classifications relating some of the five
facets to each other: structure to function, structure to history, and structure to
attitude/action.

Structure-to-Function: Periodic Table of the Elements
The periodic table of elements is a celebrated example of a quite profound clas-
sification because it links together four facets of the elements: the internal structure
of the atoms, their combination into molecules, their chemical interaction proper-
ties, and their physical features. The version proposed by D. Mendeleev (1834–
1907) in 1869 (see https://www.slideshare.net/dianekinney/history-of-the-periodic-
table-of-elements) is presented in Fig. 1.35. One can see a number of question
marks—these elements were unknown at that time, but Mendeleev was able to
correctly predict not only their existence, but many properties as well. The periodic
table “provides a stimulus and a guide in chemical research, constantly suggesting
as it does new experiments to be tried and providing a basis for critically evaluating
and checking information already obtained.… The very existence of the Periodic
Law as an empirical principle provided a tremendous stimulus to the development
of our knowledge of atomic structure and greatly accelerated the growth of our
understanding of the relationship of the structure and the properties of matter.”
(Sisler 1973, p. 34).

Fig. 1.35 A version of the periodic table of elements proposed by D. Mendeleev in 1869
(translated from German)

1.5 Knowledge Shaped as Classification 63

https://www.slideshare.net/dianekinney/history-of-the-periodic-table-of-elements
https://www.slideshare.net/dianekinney/history-of-the-periodic-table-of-elements


Structure-to-History: Geological Correlation
In geology, the rocks and soils are usually organized in layers (strata) that rather
clearly differ from each other. Any geological layer is naturally considered older
than the layer just above because of an obvious observation that layers are formed
by geological processes on top of the layers already existing. This is referred to as
the “law of superposition” in geology. When originally formed, the strata were
laterally continuous; the fossils found in the rock are remains of the organisms
living in the time of formation of the rock or soil. A general method, “the
geological, or stratigraphical, correlation”, both is based on these principles and
supports them (see Fig. 1.36).

This method has led to discovery of many oil or coal deposits, as well as to some
theoretical breakthroughs, like periodization of the geological epochs from the
times unknown about 4.5 billion years ago, to the Tertiary period (65 million years
ago) to the current Quaternary period (started 1.6 million years ago), or develop-
ment of the concept of continent drift.

Structure-to-Attitude-and-Action: “Class Struggle”
Karl Marx (1818–1883) proposed that the structure of any society is determined by
social groups, or classes, that have different rights regarding the means of pro-
duction of industrial and agricultural goods. In particular, he referred to two most
important classes, the capitalists, the owners of the means of production, and the
workers, the individuals who are employed to produce goods using the means of
production. The workers produce surplus value, which is then distributed among all
the classes. According to Marx, the lion’s share of the surplus value goes to cap-
italists as the owners of the means of production. The greater the capitalists’ share,

Fig. 1.36 Similarity between different coastal areas can be established according to the sequence
of strata
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the smaller the share of the workers. Therefore, according to Marx, the capitalist
way of production necessarily leads to antagonistic class struggle between workers
and capitalists. The only way to restore the justice is via a radical social action by
the workers. “Let the ruling classes tremble at a Communistic revolution. The
proletarians have nothing to lose but their chains. They have a world to win.” (K.
Marks, F. Engels, Manifesto of Communist Party, 1847). The reader of this book is
well aware that out of all major nations, only two undertook a revolutionary action
to achieve a fairer distribution of the national wealth, Russia (1917) and China
(1949), although that was somewhat contrary to Marx’s views, since both countries
were overwhelmingly rural, with insignificant numbers of workers in industrial
enterprises. This has happened because of fierce propaganda of the communist
parties to assign farmers sometimes to the working class or sometimes to the
bourgeoisie (petty capitalists) depending on political ends to achieve (and, of
course, due to the help of the Soviet Army, in the case of China).

Even if Marx’s views were based on any reality back in the XIX century,
currently they have no substance at all since observations of the intergenerational
mobility in such countries, as the USA and UK, give little evidence of stability in
the social class structure from fathers to sons. Moreover, it is much clear by now
that the volume of surplus value created in a society depends not only on those who
are directly involved in production lines, but also the managers, banks, social and
health infrastructure, etc., which make the claim of interclass antagonism rather
odd. Nevertheless, throwing out the idea of class altogether currently seems a bit
premature, since this concept is useful in the analysis of social inequality and
stratification.

This is why the sociologists, especially Pierre Bourdieu (1930–2002) expanded
the concept of capital to add social and cultural dimensions to the economic one.
These, unfortunately, have not made it into the social or governmental statistics as
yet. Here we describe an approach taken by Savage et al. (2013) in pursuing this
idea with a survey conducted by BBC Lab UK in 2011.

To measure social capital, M. Savage et al. analyzed how well various occu-
pations were known to respondents. Specifically, they used the mean status score of
the occupations that respondents knew and the mean number of social contacts
reported. To measure cultural capital, two indexes have been used: (1) the “high-
brow” capital based on the extent of respondents’ engagement with classical music,
attending stately homes, museums, art galleries, jazz, theatre and French restau-
rants; (2) the ‘emerging’ cultural capital based on the extent of respondents’
engagement with video games, social network sites, the internet, playing or
watching sport, spending time with friends, etc. Measures of economic capital
involved household income, household savings and house price. To structure the
sample over these indexes, Savage et al. used method of “latent class structuring”
invented by Paul Lazarsfeld (1901–1976), one of the first advocates of application
of mathematics in social research. In contrast to clustering methods described
further on, this method tries to find such clusters that are statistically homogeneous
in the following sense: In each of the clusters, the features used for clustering are
statistically independent. This criterion differs greatly from our clustering criteria
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that require clusters to be homogeneous in a very different sense: All objects in
them must be similar to each other. A summary of latent structure clusters found is
given in Table 1.21. The nomenclature includes a rather recent term, Precariat,
introduced in Standing (2011) to mean a class of people whose employment and
income are insecure.

Q.1.9. What facets are related by the biological taxonomy?
A. Out of the five facets mentioned above (Structure, Function, History, Attitude,
and Action), the biological taxonomy relates the structure of living organism to
their history—the evolution, according to Ch. Darwn’s theory. Also, the Function
facet is involved, as related to reproduction of the living matter, since K. Linnaeus
put that as the base of his classification.
Q.1.10. What facets are related by the Periodic Table?
A. The Periodic Table relates Structure and Function in both, Physics and
Chemistry, perspectives. The structural perspective concerns both within-atomic
properties and combining atoms in molecules.

Obviously, these clusters still bear a traditional industrial flavor, but they also
involve features related to the types of capital and, as well, avoid traditional divi-
sions between “manual–not-manual” and “blue-collar–white-collar”. Instead, they
point to an important role of services and “technical–non-technical” division. Also,
two significant groups are distinguished on the extremes of the social ladder, the
elite and precariat.

Another example of a classification to relate the structure and attitude is pre-
sented in Fig. 1.37. Many know—but few are serious—about a hands-on typology
of fingernails, which is claimed to reflect important personality traits (see Fig. 1.37).

To complete this section, let us mention a highly universal classification relating
all the five aspects from Structure to Action above, although expressed in an ancient
terminology using the Chinese language and system including the so-called “yin
and yang”, the two parts of the whole, as shown in Fig. 1.38. This system, called I

Table 1.21 Summary of social classes found by Savage et al. (2013); the meaning of marks:
7—highest, 6—very high, 5—high/good, 4—moderately good, 3—moderately poor, 2—low/poor,
1—lowest

Class Percent Capital marks

Econ. Soc. Cultural

High Emergent
Elite 6 7 6 7 4
Established middle class 25 6 5 6 6
Technical middle class 6 6 6 4 4
New affluent workers 15 4 3 3 5
Traditional working class 14 3 2 2 2
Emergent service workers 19 3 3 2 5
Precariat 15 2 1 1 1
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Fig. 1.37 Seven types of fingernails and related personality features according to http://www.
yourchineseastrology.com/palmistry/fingernail/ (accessed 29 June 2017)

Fig. 1.38 Eight trigrams of I
Ching along with their
meanings (from http://www.
hiddentreasuresministries.org/
i-ching.html)
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Ching (The Book of Changes), classifies the universe and its various aspects by
using a set of eight trigrams; each of trigrams being a set of three binary 1/0 digits
represented by solid and broken lines, respectively.

Using the eight trigrams in pairs, the hexagrams, one can distinguish between 64
different states of the universe and its aspects, and use hexagrams cast by chance as
a kind of oracle, suggesting various relations between different aspects of one’s
current situation and possible outcomes of their actions.

1.5.3 Forms of Classification

Classification may come in various forms, of which perhaps most popular are
taxonomy and typology.

Taxonomy is usually shaped as a set of classes structured like a hierarchy
represented by a rooted tree so that the higher ranks of the hierarchy correspond to
more general concepts. Such is the biological classification mentioned above.
Similarly, a library classification such as the Dewey Decimal Classification or
Universal Decimal Classification structures book collections according to a hier-
archy defined by relation “a is b”. Note that, in contrast, the biological taxonomy
accords to relation “a is part of b”. This corresponds to the empirical nature of the
biological taxonomy. The Decimal classifications are conceptual and rather spec-
ulative. The classification of quadratic equations (see Fig. 1.33 above) is also
conceptual, but not speculative. It makes sense, to distinguish between two cases of
the hierarchical classification: conceptual classification and empirical classification,
that is taxonomy in the proper sense.

The hierarchical classification is playing a growing role as a backbone of
ontology, a newest form of computationally feasible knowledge organization.

Typology is another classification structure referring to a number of types that
are not hierarchical but rather of a similar level of granularity. The set of types is not
required to be exhaustive; other types can be added to reflect novel analysis or
novel facts. Types can be presented in different ways depending on the level of
theoretical thought of the phenomenon in question. Say, in mineralogy, a type,
referred to as “stratotype”, is represented by an actual piece of rock or soil as an
exemplar to be used for comparisons. Equally empirical, yet a bit more conceptual,
are types described in words, like types of novel (see, for example, Encyclopedia
Britannica, https://www.britannica.com/art/novel/Types-of-novel) or the type of
“real man” among men or of “fraudster” among bank customers.

A typology is deemed more theoretical if its types are defined according to a
feature forming an exhaustive system of disjoint characters over the universe under
consideration. Such is the celebrated typology of social action by Max Weber
(1864–1920) who claimed that there can be four different causes for social action: a
goal, a value, an emotion and customs. Accordingly, Weber’s typology involves
four pure, or ideal, types: rationally purposeful, value rational, affective, and tra-
ditional ones.
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Similarly, the ancient typology of temperament is based on the theory that there
are four main fluids in the human body: blood, yellow bile, black bile, and phlegm.
Normally they should be well mixed; but there can be pure cases at which one of
the fluids dominates. As a theory of the day claimed, the human temper was
determined by the fluids. Therefore, four ideal types of temperament are defined:
“sanguine”, “choleric”, “melancholic”, and “phlegmatic”, correspondingly (see
Fig. 1.39). The words relating to the four fluids are of Latin origin.

A modern typology of temperament aspiring to be known as a theoretical one is
defined by two or more features in such a way that its types correspond to all
possible combinations of the feature values. B. D. Nebylitsyn (1930–1972) pro-
posed that the four types are characterized by the speed and strength of mental
processes. Namely, the strong mental reaction types are choleric and phlegmatic,
whereas fast mental reaction types are choleric and sanguine (see Fig. 1.39). Then
the four temperament types correspond to all four combinations of values + and −
of the speed and strength features. A typology involving all combinations of the
feature values is referred sometimes as a faceted classification.

The classification of quadratic equations on Fig. 1.33 can be converted into a
faceted classification by using all combinations of signs of the three features
involved, D, p and q.

Another example of a theory-based typology: classification of snowflakes by
Libbrecht (2004) who enthusiastically claims that collecting photographs of
snowflakes is as interesting activity, as stamp collecting; and by far more useful!

There are dozens of snowflake classes. The shapes are determined by negative
feedback processes running while snowflake grows (Libbrecht 2004). The main
characteristics of the phenomenon are the levels of cold and humidity in the cloud
measured by the temperature and supersaturation on the so-called Morphology
Diagram in Fig. 1.40.

Fig. 1.39 Correspondence
between the “fluidal”
definition of temperament
types and the modernized
faceted one
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Let us elaborate a bit over the typology formats mentioned above. Consider a set
of features x1, x2,…, xp, potentially applicable to objects of set 1. These can be, for
example, occupation of survey respondents or an element of a computer commu-
nication protocol or speed of nervous processes (in Fig. 1.39). Assume that each of
them has a finite number of values, and denote the set of values, or categories, of
feature xn by Vn (n = 1,2, …, p).

There are many ways for forming a multivariate classification here:

(i) A faceted classification is defined as the classification over the Cartesian
product of sets Vn, V = V1 � V2 � … � Vp, so that classes one-to-one
correspond to p-series v = (v1,v2, …, vp) 2 V and, in fact, are defined by
them.

(ii) A peaked classification is defined by specifying a single value vn* at each Vn
(n = 1, 2, …, p) so that its n-th class is defined by the set V(vn*) of such
p-series (v1, v2, …, vp) 2 V at which vn = vn*, whereas vl may be any
vl 2 Vl for any l 6¼ n (l = 1, 2, …, p).

An example of the faceted classification is four temperament types defined by all
combinations of ± values of speed and strength of reaction features. In contrast, the
“fluid” based temperament types form a peaked classification. Indeed, the types are
defined here by the over-presence of one of the four liquids which are the features in
this definition.

Fig. 1.40 The morphology diagram according to Libbrecht (2004): snowflake forms much
depend on the relation between temperature and the water vapor and droplets in a cloud. The curve
on the figure shows the boundary between the water oversaturated states and water under-saturated
states. The basic shapes form within the vertical strips
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It should be noted that the concept of faceted classification gained popularity
after R. S. Ranganathan applied that in library science in 1933 (see a later edition of
his seminal book Ranganathan 2006). His innovative approach involved a uniform
set of five facets for any specific aspect of reality:

• Personality (the core point)
• Matter (basic elements/materials/products)
• Energy (action and interaction of persons or objects)
• Space
• Time.

An example of Ranganathan’s class from Encyclopaedia Britannica: “The cat-
egory of dental surgery, for example, symbolized as L 214:4:7, is created by
combining the letter L for medicine, the number 214 for teeth, the number 4 for
diseases, and the number 7 for surgery (https://www.britannica.com/science/Colon-
Classification).”

Two other typical formats of typology:

(iii) Ranking, based on one of the features whose set of values is ordered;
(iv) Specifying a set of points in the feature space, v1, v2, …,

vK 2 V = V1 � V2 � … � Vp, to be used as explicit combinations of
feature values, each expressing a type.

When talking of ranking, that can be ad hoc, as for example, for boxing weight
divisions created to reduce the effect of weight differences at fist-fighting. There are
several traditions; one of them, Amateur Weight Division, currently contains 11
categories such as the Lightweight (from 132 to 140 lb), Welterweight (from 152 to
164 lb) and the Super Heavyweight (over 201 lb). Or, that can be coordinated with
many a human activity, such as soil classification over particle sizes, from 0 to over
200 mm, presented on Fig. 1.41. As to the type points typology, take examples
such as stratotype and the literary character type. One more example comes from
the health psychology. Some distinguish between contrasting type A and type B
personalities. Type A relates to a personality that is competitive, highly organized,
ambitious, impatient, highly aware of time management and aggressive. Type B
comprises more relaxed personalities.

Table 1.22 summarizes forms of classification mentioned above.

Clay Silt Sand Gravel Cobble Boulder

0.002 0.06 2 60 200 mm

Fig. 1.41 Classification (ranking) of soils over particle sizes (according to http://environment.
uwe.ac.uk/geocal/SoilMech/classification/default.html)
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Some scientists distinguish between “natural” and “artificial” classifications.
According to this view, the former express laws of nature, as, for example, the
Periodic Chart, whereas the latter are created for human use, as, for example, any
sports classification. Unfortunately, this view is not easy to operationalize; the
recent essays collected by Kendig (2015) do not lead to any reasonable computa-
tionally feasible definition. The only thing certain is that in a natural classification,
having established the position of an entity within the classification, a great deal of
information of principal features and tendencies of its behavior becomes available.

Overall, classification is ubiquitous and much important in all walks of life. Just
a few more examples:

– In technology: the systems of technological standards which channel all the
industrial manufacture and production;

– In education: the nomenclature of specialties both in subject and level; uni-
versity ranking tables;

– In politics: the international blocks; political parties;
– In internet: standard menu systems; social networks.

Nevertheless, the business of designing and improving classifications has not
made it to the mainstream as yet. It seems that classification research is not con-
sidered by the research community as valuable as exploring natural phenomena.
Perhaps this is why such outstanding researchers as D. Mendeleev, with his
Periodic Table, and C. Woese, with his groundbreaking Archaea domain in the Tree
of Life (see, for example, Woese 1987), have been rejected by the Nobel Prize
committees.

The contents of this section bring forth the following conclusion. Clustering, that
is, activity of finding cohesive groups in data, should be considered as part of
classification activities. Therefore, it should be used for any or all of the three
classification goals:

I. Structuring the data to judge of the structure of the phenomenon under
consideration;

II. Establishing relations between different feature sets;
III. Forming and shaping knowledge, first of all, as cluster partitions and

hierarchies.

Systematic methods for doing that are yet to be developed.

Table 1.22 Forms of
classification as soft
knowledge

Hierarchy Typology
Taxonomy
Conceptual system

Faceted
Peaked
Ranking
Type pointed
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1.6 Summary

This Chapter introduces four core problems in data analysis as related to either
(i) summarization or correlation, in either (ii) quantitative or categorical way. The
problems reflect the structure of theoretical knowledge as comprised, first of all, of
concepts and statements of relation among them. Each of these four will be given a
specific attention in the text further on. After covering quantitative summarization
method of Principal Component Analysis and its derivatives, Chap. 2, we will
move on to problems of correlation in Chap. 3, both for quantitative data (re-
gression, Sects. 3.2–3.5) and categorical data (Sects. 3.6–3.9).

The Chapter also presents several small real-world data sets and related data
analysis problems as pertained to (1) purely quantitative entity-to-feature data,
(2) mixed scale data tables, and (3) square similarity data matrices.

The final part of the Chapter is devoted to three controversial subjects, which
have not yet found any clear-cut or customary solution and remain challenges for
the future. They are:

– Data visualization and its role as a data analysis tool and result;
– Data analysis strategic issues related to the need in theoretical substantiation of

found patterns;
– Classification, its goals and structures as soft knowledge specifically related to

cluster analysis;

No data science practitioner may ignore them.
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Chapter 2
Quantitative Summarization

Abstract Before going to the thick of the multivariate summarization, this chapter
first considers the concept of feature and its summarizations into histograms,
density functions and centers. Two perspectives are defined, the probabilistic and
vector-space ones, for defining concepts of feature centers and spreads. Also,
current views on the types of measurement scales are described to conclude that the
binary scales are both quantitative and categorical. The core of the Chapter
describes the method of principal components (PCA) as a method for fitting a
data-driven data summarization model. The model proposes that the data entries, up
to the errors, are (sums of) products of hidden factor scores and feature loadings.
This, together with the least-squares fitting criterion, appears to be equivalent to
finding what is known in mathematics as part of the singular value decomposition
(SVD) of a rectangular matrix. Three applications of the method are described:
(1) scoring hidden aggregate factors, (2) visualization of the data, and (3) Latent
Semantic Indexing. The conventional, and equivalent, formulation of PCA via
covariance matrices involving their eigenvalues is also described. The main dif-
ference between the two formulations is that the property of principal components
to be linear combinations of features is postulated in the conventional approach and
derived in that SVD based. The issue of interpretation of the results is discussed,
too. A novel promising approach based on a postulated linear model of stratification
is presented via a project. The issue of data standardization in data summarization
problems, remaining unsolved, is discussed at length in the beginning. A powerful
application using eigenvectors for scoring node importance in networks and pair
comparison matrices, the Google PageRank approach, is described too.

2.1 Encoder–Decoder Data Summarization

2.1.1 Structure of a Summarization Problem

Summarization as a concept covers many activities from data compression to
labeling a dataset in archeology with a phrase like “Archeology finds indicate no
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King David Palace at the time of King David”. In contrast to a correlation problem
(see further in Chap. 3), the features are not divided here into those belonging to
input or target of the phenomenon under consideration. One may think of this as
that all features available are target features so that those to be constructed for a
summary are in fact “hidden input features”.

In this way, the structure of a summarization problem in Fig. 2.1a may be
likened to that of a correlation problem, on Fig. 2.1c, if a decoding rule is provided
to predict all the original data entries using the summary. That is, the original data
in the summarization problem act as the target data in the correlation problem. That
implies that there should be two rules involved in a summarization problem: one for
building the summary, that is, encoder; the other to provide a feedback from the
summary to the observed data, that is, decoder.

The issue of data summarization sometimes is considered somewhat simplisti-
cally as just deriving a summary from data without any feedback (see Fig. 2.1b).

A proper consideration of the structure of a summarization problem should rely
on the existence of a decoder to provide a feedback from the summary back to the
data and make the summarization process more or less similar to that of the cor-
relation process (see Fig. 2.1a vs. 2.1c). More exactly, a decoder is a device that
converts the summary representation encoded in the chosen summarization rule
back into the original data format. Then one may compare the original data and
those output by the decoder: the less the difference between them, the better the

Input data  Rule Predicted
data                  

Target data (c)

 Difference 

Data                Encoder              Summary

(b)

(a)

Encoder                      Data

Difference

Summary    Decoder     Decoded
data                  

Fig. 2.1 A diagram for encoder/decoder data summarization, in a, versus learning input-target
correlation, in c, or summarization with no decoder, in b. Rectangles are for observed data, ovals
for computational constructions, hexagons for feedback comparisons
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summary. Of course, the set of all admissible encoders and decoders should be
pre-specified. This text concerns only those methods at which both the encoder and
decoder are based on the so-called matrix factorization models. Matrix factorization
models represent the data matrix as a product of matrices corresponding to some
pre-specified “ideal” data structures.

The data recovery approach in data summarization is based on the assumption
that there is a regular structure in the phenomenon of which the observed dataset
informs. This regular structure C is the summary to be found. When C is deter-
mined, this can feed back to the observed data Y in the format of the decoded data
D(C) that should coincide with Y, up to residuals, that are due to possible flaws in
any or all of the following three aspects:

(a) bias in entity sampling,
(b) selecting and measuring features,
(c) adequacy of the set of admissible C structures to the phenomenon in question.

Each of these three can greatly affect results. However, so far only the simplest
of the aspects, (a) the sampling bias, has been addressed scientifically, in mathe-
matical statistics—as a random bias, due to the probabilistic nature of the data
selection process. The other two are subjects of much effort in specific domains but
not in the general computational data analysis framework as yet. Rather than
focusing on accounting for the causes of errors, let us consider the underlying
equation in which the errors are looked at as a whole:

Observed Data Y ¼ Model Data D Cð ÞþResiduals E ð2:1Þ

2.1.2 Least-Squares Data Summarization and Pythagorean
Decomposition

Equation (2.1) brings in a natural data recovery criterion for the assessment of the
quality of the model A in recovering data Y—according to the level of residuals E:
the smaller the residuals, the better the model. Since any data model in data analysis
involves unknown parameter values, this naturally leads to the idea of fitting these
parameter values to the data so that the residuals are as small as possible.

In many cases this principle can be rather easily implemented as the least squares
criterion because of an extension of the Pythagoras theorem relating the square
lengths of the hypotenuse and two other sides in a right-angle triangle connecting
“points” Y, D(C) and 0, the space origin (see Fig. 2.2). The least squares criterion
requires fitting the model C by minimizing the sum of the squared residuals.
Geometrically, that often means an orthogonal projection of the data set considered
as a multidimensional point onto the space of all possible models represented by the
x axis on Fig. 2.2. In such a case the dataset (pentagram), its projection (rectangle)
and the origin (0) form a right-angle triangle for which a multidimensional extension
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of the Pythagoras’ theorem holds. The theorem states that the squared length of the
hypotenuse is equal to the sum of squares of lengths of the two other sides. The
squared hypotenuse translates into the data scatter, that is, the sum of all the data
entries squared, being decomposed in two parts, the part explained by the summary
model C, that is, the contribution of the line between 0 and rectangle, and the part left
unexplained by C. The latter part is the contribution of the residuals E expressed as
the sum of squared residuals, which is exactly the least squares criterion.

When the data can be considered as a random sample from a multivariate
Gaussian distribution, the least squares principle can be derived, under some
simplifying assumptions, from a major statistical principle, that of maximum
likelihood. In the data analysis framework, the data do not necessarily come from a
probabilistic population. Still, the least squares framework frequently provides for
solutions that are both practically relevant and theoretically sound. The least
squares will be the only criterion utilized in this text further on.

A decoder based linear—or, more exactly, bilinear—summarization problem can
be stated as follows. Given N row-vectors yi = (yi1,…,yiV), i = 1, 2, …, N, forming
an N � V data matrix Y = {(yiv)} and a set of admissible summary structures
Z represented by sets of mutually orthogonal, usually normed, N-dimensional
vectors zk = (zik), build a summary C so that the decoded N � V data matrix D(C) is
as close to Y as possible. In other words, we assume an encoder to draw a summary
C using Z, and a decoder ~Y ¼ DðCÞ such that the error, which is the difference
between the decoded data ~Y ¼ DðCÞ and observed data Y, is minimal over the class
of admissible rules Z. More explicitly, we assume that

Y ¼ DðCÞþE ð2:2Þ

where E is matrix of residual values, or errors: the smaller the errors, the better the
summarization C. According to the least-squares approach, the errors are minimized
by minimizing the summary squared error:

E2 ¼ hY � DðCÞ; Y � D Cð Þi ð2:3Þ

with respect to all admissible summarization (encoding) rules.
In the follow-up data summarization methods, the Principal Component

Analysis, K-means partitioning, and Ward hierarchical clustering (see Sects. 2.4,
4.2 and 5.1, respectively), the encoder and decoder are defined within the same

Data Y 

Residuals E

0 Model Data D(C)

Fig. 2.2 Geometric illustration of the Pythagorean relation between the observed data (penta-
gram), the fitted model data (black rectangle), and the residuals (connecting line)
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bilinear structure, so that D(C) = ZC where Z is an N � K matrix of mutually
orthogonal N-dimensional vectors in which K is a relatively small integer. Indeed,
consider Z to be either:

(a) Set of the first K normed singular vectors zk of matrix Y, so that YTzk ¼ lkck
and Yck ¼ lkzk where l1 [ l2 [ � � � [ lK and k = 1,2,…, K, or

(b) Set of the K binary 0/1 membership vectors zk = (zik) for non-overlapping
clusters forming a partition S = {S1, S2,…, SK} of the set of objects, so that
zik = 1 if i 2 Sk and zik = 0, otherwise (k = 1,2,…, K), or

(c) Set of the K ternary 0/a/−b split vectors zk = (zik) for a binary up-hierarchy
consisting of K binary splits Sk = {Sk1, Sk2} where Sk is a cluster and Sk1, Sk2 its
non-overlapping non-empty split parts, so that zik = 0 if i 62 Sk and zik = a if
i 2 Sk1 and zik = −b if i 2 Sk2ðk ¼ 1; 2; . . .;KÞ. Values a and b are defined as

a ¼ ð1= Sk1j j � 1= Skj jÞ1=2 and b ¼ ð1= Sk2j j � 1= Skj jÞ1=2, so that all vectors zk
are centered, normed and mutually orthogonal.

Each of these should be a subject for a special consideration. Indeed, items
(a) and (b) are covered in this and next chapter, respectively. As to the item (c), we
felt that putting it here would be an overly technical challenge to the reader and
decided to skip it, referring an interested reader to Mirkin (2012) and Kovaleva and
Mirkin (2015) for more detail. Once more, let us point out that the encoder and
decoder are defined within the same bilinear structure here, so that D(C) = ZC
where both Z and C are unknown, with an additional constraint that Z is an
N � K matrix of mutually orthogonal N-dimensional vectors defined as in (a), (b),
or (c) above—such a representation is usually referred to as matrix factorization.
Matrix factorization has been extended to several other issues, first of all, fuzzy
clustering and text analysis. Developments in data analysis with encoders and
decoders set apart are yet to be developed.

Luckily, the least-squares criterion admits a rather straightforward solution.
Given matrix Z, the optimal ZC minimizing the criterion E2 ¼ hY � ZC; Y � ZCi
in (2.3) is the orthogonal projection ZC = PZY of the data matrix Y, onto the span

L(Z) of Z, so that PZ ¼ Z ZTZð Þ�1ZT , the matrix of the orthogonal projector, where
L(Z) is the linear subspace L(Z) = {z: z = Zc for some c} referred to as the span of
Z. If Z consists of normed mutually orthogonal column vectors, then ZTZ = I, where
I is the identity matrix, so that ZC = ZZTY and C = ZTY.

In this case, the data matrices Y and D(C), considered as multidimensional
points, form a “right-angle triangle” at the origin 0, as presented on Fig. 2.2. In such
a case hY ;D Cð Þi ¼ hD Cð Þ;D Cð Þi and the square error (2.3) becomes part of a
multivariate analogue to the Pythagorean decomposition relating the squares of the
“hypotenuse”, Y, and of the right-angle “sides”, D(C) and E:

hY ; Yi ¼ hD Cð Þ;D Cð ÞiþE2 ð2:4Þ

or using matrix entries,
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X
i2I

X
v2V

y2iv ¼
X
i2I

X
v2V

d2iv þ
X
i2I

X
v2V

e2iv ð2:40Þ

The data is an N � V matrix Y = (yiv) that can be considered as either set of
rows/entities yiði ¼ 1; . . .;NÞ or set of columns/features yv (v = 1,…, V) or both.
The item on the left in (2.4) is usually referred to as the data scatter and denoted by
T(Y),

TðYÞ ¼
X
i2I

X
v2V

y2iv ð2:5Þ

Why is this termed “scatter”? It is not difficult to see that T(Y) in (2.5) is the sum
of Euclidean squared distances from all the objects to 0, thus a measure of scattering
data points around 0. Of course, T(Y) admits a dual interpretation. On the one hand,
T(Y) is the sum of row-based object contributions, the squared distances d(yi,0)
(i = 1,…,N). On the other hand, T(Y) is the sum of column-based feature contri-
butions fv = Ri2I yiv

2 . In the case when the average cv has been subtracted from all
values of the column v, the summary contribution fv is N times the variance,
fv = Nrv

2 which is proven in Q.2.1 below.

Q.2.1. Prove that the summary contribution tv is N times the variance, tv = Nrv
2 if

feature v is centered.
A. Indeed, tv ¼

P
i2I y

2
iv ¼

P
i2I yiv � cvð Þ2 ¼ N½Pi2I yiv � cvð Þ2=N� ¼ Nr2v ,

where cv is the mean of feature v.

2.2 Quantitative Features and Their Characteristics

The concept of feature, synonymously referred to as character (in biology), variable
(in statistics), attribute (in logics), is a key concept in data analysis. So far, we have
no good understanding of what feature is, which is not uncommon with prime
concepts in sciences. Empirically, there must be a measurement or identification
procedure that assigns every object of a specific type with a value of the charac-
teristic which is measured or identified, be it, for example, the human height or eye
color. The lack of understanding in the nature of the measurement phenomenon
leads to two different co-existing mathematical formalizations of the feature
concept.

One, of the data analysis proper, is very close to the empirical view. There is a
finite set of objects that are characterized just by their labels, or index values. Then
a feature is just a mapping from the set of objects to a set of its values, usually reals
or even strings such as “good” and “bad”. The values indexed by the object indexes
form a vector, which leads to vector and matrix algebra as the natural habitat of the
theoretical constructions and mathematical derivations, the main setting in this text.

82 2 Quantitative Summarization



A major shortcoming of this concept of feature is its relying on the set of objects
under consideration. Whatever is observed or stated refers to this set only. This
makes it quite difficult, if not impossible, to translate the conclusions to another
dataset.

The other formalization, of classical statistics, is the concept of random variable,
that is usually represented by a so-called density function defined over a real line or
vector space. The density function allows easily assigning probabilities to real-line
intervals, as well as to set-theoretic combinations of them. The density function
language is well adapted for describing universal phenomena, making probabilistic
statements and testing statistical hypotheses about them. Its shortcoming is exactly
where the strength of the data analysis approach lies. In contrast to the latter, the
probabilistic view disregards individual objects, considering them, in the best case,
as results of random, usually independent, sampling from a population representing
a density function. In contrast, the notion of individual object is in the focus of data
analysis perspective.

When one deals with prediction of weather or harvest, the probabilistic view is
adequate and useful. When one deals with the analysis of European state statistics or
data of within-company messages, the probabilistic view can be useful only after the
structure of inter-state or inter-department intricate inter-relations has been analyzed—
this is why data analysis has emerged and become popular in the digital era.

2.2.1 Data Analysis Perspective: Scale Types,
Minkowski Distance and Center

2.2.1.1 Quantitative and Categorical Feature Scales

According to the data analysis perspective, a feature xv is a mapping from a set of
objects O to the set of feature values. That is, at every i 2 O, a feature value, xv(i), is
defined. From now on, we assume the values are coded in numbers. Of course, this
definition represents a very limited perspective. It does not take into account that
there is a measurement method behind any feature. The method is applicable to all
the objects of the sort in our dataset, so that the dataset can be easily extended to
include more objects of the same kind, be it web sites or territorial units or gene
products. This is missed in the definition above but is always meant in practical
computations.

Conventionally, the following five feature scale types are distinguished:

(A) Absolute;
(B) Ratio;
(C) Interval;
(D) Ordinal;
(E) Nominal.
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This classification is based on a conventional formalism of admissible trans-
formations. A numeric function f is referred to as an admissible transformation for
feature x if f(x) is considered the same feature. The set of admissible transformations
F specifies the scale type. Physics parameters can be used as examples of quan-
titative scale types. Say, physical mass or height is measured up to a scale factor:
5 kg is 5000 g, and 6 ft. height is 182.88 cm, as well as 20 °C is 68 °F.
A measurement scale is referred to as an absolute scale if the set of admissible
transformations consists of the only transformation, the identity mapping leaving
values intact: f(x) = x. Any counting scale—the number of respondents, the number
of objects—is considered as an example of the absolute scale type. A measurement
scale is referred to as a ratio scale if the set of admissible transformations consists
of multiplication by a positive real, called scale factor, F = {f: f(x) = ax for
some a > 0}. A measurement scale is referred to as an interval scale if the
set of admissible transformations consists of multiplication by a positive real,
called scale factor, with a follow-up summation with a constant called scale shift,
F = {f: f(x) = ax + b for some real a > 0, b}. Obviously, the weight and height
measurements belong to the ratio scales. In this author’s view, any counting scale
should be considered a ratio scale as well. Indeed, one can count in dozens or
hundreds rather than in unities. On the other hand, the temperature and historical
time are considered as measured in interval scales. Indeed, the Celsius temperature
is converted to that of Fahrenheit by multiplying it by a scale factor a = 1.8 with the
follow up addition of the scale shift b = 32. The time measurements are not that
smooth because of differences in the periods of the Sun and the Moon differently
taken into account in different cultures. Conversion of the Gregorian calendar to the
Islamic one can be done only approximately. Although the scale shift, the date of
Hijri, the New Year of 622 AD, is constant, the lengths of the “Sun” year in the
former is variable, 365 or 366 days, as well as that of the “Moon” year in the latter,
354 or 355 days, which prevents the scale factor to be defined as a single value. For
example, 1st February 2018 is 15th Jumada Al-Awwal, 1439 Hijri.

The names of the scale types inform of the properties remaining invariant after
any admissible transformation. Indeed, any ratio of measures, say x(i)/x(j) remains
the same under any admissible ratio scale transformation: x0 ið Þ=x0 jð Þ ¼ x ið Þ=x jð Þ if
x0 ¼ ax, for any a. Similarly, any ratio of intervals, say ½xðiÞ � xðjÞ�=½xðkÞ � x lð Þ�
remains the same under any admissible transformation: ½x0ðiÞ � x0ðjÞ�=½x0ðkÞ � x0 lð Þ�
if x0 ¼ axþ b, for any scale factor a and scale shift b. What is important, though, is
that the concept of average remains valid within the concept of interval scale.
Specifically, assume that c and d are means of some data series {ci} and {dj},
respectively. Consider an admissible transformation with the scale factor a and
scale shift b; c0i ¼ aci þ b and d0i ¼ adi þ b. It is easy to check that the averages
satisfy equations c0 ¼ acþ b and d0 ¼ adþ b. Since a > 0, c > d if and only if
c0 [ d0. However, the ratio is invariant for intervals only, not for the average values
themselves.
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A feature is said to be measured in the ordinal scale if the set of admissible
transformations consists of monotonically increasing mappings so that whatever is
better remains so under any admissible transformation. A feature is said to be
measured in the nominal scale if the set of admissible features consists of
one-to-one mappings so that whatever is different remains so under any admissible
transformation. The nominal and ordinal scale types are examples of non-metric
scales. In spite of seemingly loose, non-metric, character, both are abstractions,
sometimes unrealistic, of the scale types in real data.

The ordinal scale type is an abstraction of ranking. Rankings come from personal
preferences, ranking survey questions, and recommendation systems. In a simplest
case, this may come as an answer to a question whether the respondent likes this or
that event or public personality, “yes” or “no” or “indifferent”. (The answer “have
never heard of” is usually considered as a missing.) These three categories are
usually numerically coded by 1, 0, −1 or 7, 0, −7. According to the definition of
ordinal scale, equally good are numerical codes: (a) 1000000, −2, −30; (b) 1, 0,
−1000000; (c) 1, −1000000, −1000001. The imbalances in the codes contradict our
intuition and customs: imbalances usually are taken into account in natural lan-
guage structures. For example, the coding (a) above may correspond to formula-
tions: “like very-very much”, “slightly dislike”, and “dislike” rather than those in
the original question.

The concept of nominal scale formalizes a type of features that divide the set of
objects in unrelated non-overlapping parts. Such is a question like: (i) “What is your
preferred European vacation destination?”, with answers like “Greece”, “Sicily”,
and “Malta”; or (ii) “In what region your household is located?”, with answers like
“West Europe”, “North Europe”, “Balkans”, etc.; or (iii) “What is your occupa-
tion?”, with answers like “Engineering”, “Medicine”, “Management”, etc. Three
main assumptions in the definition above are: (a) no relation between the feature
values; (b) no values may co-occur on the same object; (c) no missings. Of these,
the assumption (b) is especially difficult to provide: say, more than one destination
may be preferable (question (i)) and some may have households in more than one
region (question (ii)) and some may be engaged in several occupations (question
(iii)).

The concept of scale type above allows one to shift the issue of a proper
definition of the scale type to the issue of adequacy of a statement involving
measurements. A statement is adequate if its truth modality (true or false) does not
change under admissible transformations. In this sense, a numerical statement
x + y = y + x is adequate even if x and y are measured in a non-metrical scale.
Indeed, it reflects the nature of arithmetic which depends on no concrete domain.

The issue of how this or that method of measurement and the corresponding
measure values acquire a set of admissible transformations is far from being solved.
Two extreme points of view: (a) the scale type is derived within that theory at which
the corresponding feature is part of; (b) the scale type is derived from the properties
of the relations between objects that are immanent to them. The former takes
justification from physics, whereas the latter has its roots in psychology.
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A good theory for data analysis should embrace all the data types occurring in
real data analyses. Unfortunately, this is not the case so far, although some
movement towards developing such a theory can be seen in 21st century.

In this text, three scale types are distinguished:

(1) Quantitative;
(2) Binary;
(3) Nominal;

as those that can be treated within the same formalism of linear algebra. To this end,
we abandon the formalism of admissible transformations and define the scale type
for a measurement, as based on common sense.

Consider the following dataset Company from Table 1.3 as an example.
Table 2.1 contains data of eight companies whose names are in the column on

the left.
Features:

(1) Income, $ Million;
(2) Market Share—the proportion of market controlled by company, %;
(3) NSup—the number of principal suppliers;
(4) E-C—Yes or No depending on the usage of e-commerce in the company;
(5) Sector—sector of the economy: (a) Retail, (b) Utility, and (c) Manufacture.

A feature, as already mentioned, is a mapping of the set of objects to a set of
feature values. A quantitative feature, according to our common-sense definition, is
that one for which the operation of averaging of its values makes sense. In contrast,
a nominal feature must have relatively few values which admit no operation over
them; these values usually are referred to as categories. A nominal feature is ade-
quately represented by the corresponding partition of the set of objects. Parts of this
partition are sets of objects falling into the same category.

There are three quantitative features and two nominal features in Table 2.1.
Indeed, one may average features Income, MarketS and NSup. The averages over,
for example, A-companies are: (19.0 + 29.4 + 23.9)/3 = 24.10 (Income),
(43.7 + 36.0 + 38.0)/3 = 39.23 (Market Share), (2 + 3 + 3)/3 = 2.67 (Principal

Table 2.1 Company

Company Income, $ million Market share, % NSup E-C Sector

Aversi
Antyos
Astonite

19.0
29.4
23.9

43.7
36.0
38.0

2
3
3

No
No
No

Utility
Utility
Manufacture

Bayermart
Breaktops
Bumchist

18.4
25.7
12.1

27.9
22.3
16.9

2
3
2

Yes
Yes
Yes

Utility
Manufacture
Manufacture

Civok
Cyberdam

23.9
27.2

30.2
58.0

4
5

Yes
Yes

Retail
Retail
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Suppliers). Some say that the last average, 2.67 suppliers, makes no sense, so that
the operation of averaging is not admissible for such counting features. This author
replies: “Yes, indeed, the number of suppliers 2.67 makes no sense because it
relates to a single company. But one could think of a hundred companies like these.
The hundred would have 267 suppliers, which makes a perfect sense.” The oper-
ation of averaging cannot be applied to string values of features E-C and Sector.
These correspond to partitions of the Company set: {{Av, An, As}, {Ba, Br, Bu, Ci,
Cy}}, for E-C, and {{Av, An, Ba}, {As, Br, Bu}, {Ci, Cy}}, for Sector.

The assumption of equal importance of features currently underlies all the
efforts, which makes the entire edifice of data analysis somewhat crippled—but
there is nothing new in this. As the history of science clearly demonstrates, any
breakthrough in the sciences starts with a rather shaky base.

To balance contributions of features to the data scatter, one conventionally
applies the operation of data standardization comprising two transformations, shift
of the origin and rescaling.

We will encounter the issue of standardization in Chap. 3 while studying mul-
tivariate classifiers, decision trees and neural networks. In neural networks, as well
as in Support vector machine, the standardization involves the scale shift to the
midrange and rescaling by normalizing the feature values by the half-range. These
parameters are distribution independent.

Another, much more popular, choice is the feature’s mean for the scale shift and
normalizing by the standard deviation for rescaling. This standardization is a
cornerstone in mathematical statistics and it works very well if observations come
from a Gaussian distribution, because the distribution becomes parameter-free if
standardized by subtracting the mean followed by dividing over the standard
deviation. In statistics, this transformation is frequently referred to as z-scoring. In
the context of data analysis, though, distributions are rarely Gaussian and rarely of
any popular family at all; moreover, observations are not necessarily random or
independent. In these circumstances, the choice of shifting and rescaling needs a
rethink.

First of all, there is no need in linking the two operations together: shifting the
origin has nothing to do with balancing feature weights. The goal of the shifting is
to position the data against a backdrop of a “norm” which is put to the origin by the
shift. In this way, the analysis involves the differences of the data and the norm. The
experimental evidence accumulated in the ever growing body of data analysis
research suggests that it is much easier to find meaningful structures if the “normal
background” has been removed from data. According to the least squares criterion,
it is the mean that approximates the overall “norm” the best. Since this criterion
underlies all the methods considered in this text, the mean—sometimes referred to
as grand mean, to point out its position over the entire entity set—will be the choice
for the origin.

The normalization seems to be better if done by half-range or, equivalently, the
range, indeed. On the first glance, there is no advantage in normalization by the
range. Z-scoring seems a better choice, especially since z-scoring satisfies the
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intuitively appealing equality principle—all features contribute to the data scatter
equally after they have been divided by their standard deviations.

This view is, however, overly simplistic. In fact, the feature’s contribution to the
data scatter is affected by two unrelated factors: (a) the feature scale range and
(b) the feature distribution shape. While reducing the effect of the former, nor-
malization should not suppress the effect of the latter because the distribution shape
is an important indicator of the data structure. But the standard deviation involves
both and thus mixes them up. Take a look, for example, at distributions of two
features presented on Fig. 2.3. One of them has one mode only (a), whereas the
other has two modes (b). Since the features have the same range, the standard
deviation is greater for the distribution (b), which means that its relative contri-
bution to the data scatter decreases under the z-scoring standardization. This means
that its clear cut discrimination between two parts of the distribution will be
stretched in while the unimodal structure, which is hiding the two-part structure,
will be stretched out. This is not exactly what we want of data standardization. Data
standardization should help in revealing the data structure rather than concealing it.
Thus, normalization by the range helps in bringing forward multimodal features by
assigning them relatively larger weights proportional to their variances.

Therefore, in contrast to conventional wisdom, z-scoring standardization should
be avoided unless there is a strong indication that the data come from a Gaussian
distribution indeed. Any index related to the scale range can be used for normal-
ization. In this text, the range is universally accepted. If, however, there is a strong
indication that the range may be subject to outlier effects and, thus, unstable and
random, more stable indexes could be used for normalization such as, for example,
the distance between upper and lower 1% quantiles.

2.2.2 Centers and Spreads: Minkowski Distance

Further summarization of the data leads to presenting a feature with just two
numbers, one expressing the distribution’s location, its “central” or other important
point, and the other representing the distribution’s dispersion, the spread. We

(a) (b)

Fig. 2.3 One-modal distribution shape on a versus a two-modal distribution shape on b: the
standard deviation of the latter is greater, thus making it less significant under the z-scoring
standardization
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review some most popular characteristics for both, the center, Table 2.2, and the
spread, Table 2.3.

Worked Example 2.1. Mean
For set X = {1, 1, 5, 3, 4, 1, 2}, mean is c = (1 + 1 + 5 + 3 + 4 + 1 + 2)/7 = 17/7 =
2.42857…, or rounded up to two decimals, c = 2.43.

This is as close an approximation to the numbers as one can get, which is good.
A less satisfactory property is that the mean is not stable against outliers. For
example, if X in Worked Example 2.1 is supplemented with value 23, the mean
becomes c = (17 + 23)/8 = 5, a much greater number. This is why it is a good idea
to remove some observations on both extremes of the data range, both the minimum

Table 2.2 A review of location or central point concepts

# Name Explanation Comments

1 Mean The feature’s arithmetic average 0. Minimizes the
summary error
squared

1. Estimates the
distribution’s expected
value

2. Sensitive to outliers
and distribution’s
shape

2 Median The middle of the sorted list of feature values 1. Minimizes the
summary absolute
error

2. Estimates the
distribution’s expected
value

3. Not-sensitive to
outliers

4. Sensitive to
distribution’s shape

3 Mid-range Middle of the range 1. Minimizes the
maximum absolute
error

2. Estimates the
distribution’s expected
value

3. Very sensitive to
outliers

4. Not sensitive to
distribution’s shape

4 P-quantile A value dividing the entire entity set in proportion P/
(1 − P) of feature values so that those with higher
values constitute P proportion (upper P-quantile) or
1 − P proportion (bottom P-quantile)

1. Not-sensitive to
outliers

2. Sensitive to
distribution’s shape

5 Mode A maximum of the histogram 1. Depends on the bin
size

2. Can be multiple
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and maximum, before computing the mean, which is utilized in the concept of
trimmed mean in statistics.

Worked Example 2.2. Median
To compute the median of the set from the previous example, X = {1, 1, 5, 3, 4, 1,
2}, it must be sorted first: 1, 1, 1, 2, 3, 4, 5. The median is defined as the element in
the middle, which is 2. This is rather far away from the mean, 2.43, which evi-
dences that the distribution is biased towards the left end, the smaller values. With
the outlier 23 added, the sorted set becomes 1, 1, 1, 2, 3, 4, 5, 23, thus leading to
two elements in the middle, 2 and 3. The median in this case is the average of the
two, (2 + 3)/2 = 2.5, which is by far lesser change than the mean of the extended
set, 5.

The more symmetric a distribution, the closer its mean and median to each other.
Sepal width of Iris data set (Table 1.3) has mean = 3.05 and median = 3, quite
close values. In contrast, in Market town data (Table 1.4), Population resident’s
median, 5258, is predictably much less than the mean, 7351.4. The mean of a power
law distribution is always biased towards the great values achieved by the few
outliers; this is why it is a good idea to use the median as its central value. The
median is very stable against outliers: the values on the extremes just do not affect
the middle of the sorted set if added uniformly to both sides.

The midrange corresponds to the mean of a flat distribution, in which all bins are
equally likely. In contrast to the mean and median, the midrange depends only on
the range, not on the distribution. It is obviously highly sensitive to outliers, that is,
changes of the maximum and/or minimum values of the sample.

The concept of P-quantile is an extension of the concept of median, which is a
50% quantile.

Worked Example 2.3. P-quantile (Percentile)
Take p = 10% and determine the upper 10% quantile of Population resident feature.
This should be 5th value in its descending order, that is, 18,966. Why is the 5th
value? Because 10% of the total number of entities, 45, is 4.5; therefore, the 5-th
value leaves out p = 10% of the largest towns in the sample. Similarly, the lower
10% quantile of the feature is 5th value in its ascending order, 2230.

Table 2.3 A review of spread concepts

# Name Explanation Comments

1 Standard
deviation

The quadratic average deviation
from the mean

1. Minimized by the mean
2. Estimates the square root of
the variance

2 Absolute
deviation

The average absolute deviation
from the median

Minimized by the median

3 Half-range The maximum deviation from the
midrange

Minimized by the mid-range
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Case-Study 2.1. Mode
To determine a mode, one needs to know the feature’s density function, which is
available, in data analysis, as a histogram.

To draw a histogram, one first draws an x axis and the feature range boundaries,
that is, its minimum and maximum. The range interval is divided then into a
number of non-overlapping equal-sized sub-intervals, bins. Then the number of
objects that fall in each bin is counted, and the counts are reflected in the heights of
the bars over the bins, forming a histogram. Histograms of Population resident in
Market town dataset and Petal width in Iris dataset are presented in Fig. 2.4.

Q.2.2. Why the bins are not to overlap?
A. Each entity falls in only one bin if bins do not overlap, and the total of all bin

counts equals the total number of entities in this case. If bins do overlap, the
principle “one entity—one vote” will be broken.

According to the histograms in the bottom of Fig. 2.4, it is the very first bin
which is modal in the Population resident distribution. In the 5-bin setting, it takes
one fifth of the feature range, 23,801 − 2040 = 21,761, that is, 4352. In the 10-bin
setting, it is one tenth of the feature range, that is, 2176. In the latter case, the modal
bin is interval [2040, 4216], and the modal bin is as twice wider, [2040, 6392], in
the former case.

Each of the characteristics of spread in Table 2.3 parallels, to an extent, a central
location characteristic under the same number.

These measures intend to give an estimate of the extent of error in the corre-
sponding centrality index. The standard deviation is the average quadratic error of
the mean. Its use is related to the least-squares approach that currently prevails in
data analysis and can be justified by good properties of the solutions, within the
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Fig. 2.4 Histograms of quantitative features in Iris and Market town data: the feature represented
on x-axis and the counts on y-axis. The histogram shapes depend on the number of bins
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data analysis perspective, and properties of the normal distribution, within the
probabilistic perspective—these are explained further on.

The absolute deviation expresses the average absolute deviation from the
median. Usually, it is calculated regarding the mean, as the average error in rep-
resenting the feature values by the mean. However, it is more related to the median,
because it is the median that minimizes it.

The half-range expresses the maximum deviation from the mid-range; so they
should be used on par, as it is done customarily by the research community
involved in building classifying rules.

There are two perspectives on data summarization and correlation that very
much differ from each other. One, of the classical mathematical statistics, views the
data as generated by a probabilistic mechanism and uses the data to recover the
mechanism or, at least, some properties of it. The other, of data analysis, does not
much care of the mechanism and tries to look for patterns in the data instead. The
data analysis perspective is described here.

Given a series X = {x1, …, xN}, one defines the center of X as a minimizing the
average distance

DðX; aÞ ¼ d x1; að Þþ d x2; að Þþ � � � þ d xN ; að Þ½ �=N ð2:6Þ

At different definitions of the distance, the optimal a may have different
expressions.

Consider first the least-squares formulation. According to this approach the
distance is measured as the squared difference, d x; að Þ ¼ x� aj j2. The minimum
distance (2.6) then is reached at a equal to the mean c defined by expression

c ¼
XN
i¼1

xi=N ð2:7Þ

and distance D(X, c) itself is equal to the variance s2 defined by expression

s2 ¼
XN
i¼1

ðxi � cÞ2=N ð2:8Þ

At the more traditional distance measure d x; að Þ ¼ x� aj j in (2.6), the optimal
a (center) is but the median, m, and D(X, a) the absolute deviation from the median,

ms ¼
XN
i¼1

jxi � mj=N ð2:9Þ

To be more precise, the optimal a in this problem is median, that is the value
x(N+1)/2 in the sorted order of X, when N is odd. When N is even, any value between
xN/2 and xN/2+1 in the sorted order of X is a solution, including the median.
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If D(X, a) is defined not by the sum, but by the maximum of the distances,
D(X, a) = max(d(x1 ,a), d(x2, a), …, d(xN, a)), then the midrange mr is the solution,
for d(x, a) specified as both x� aj j2 and x� aj j.

These statements explain the parallels between the centers and corresponding
spread evaluations reflected in Tables 2.2 and 2.3, with each of the centers mini-
mizing its corresponding measure of spread.

The distance minimization problem can be reformulated in the data recovery
perspective. In the data recovery perspective, the observed values are assumed to be
but noisy realizations of an unknown value a. This is reflected in the form of an
equation expressing xi through a:

xi ¼ aþ ei; for all i ¼ 1; 2; . . .;N; ð2:10Þ

in which ei are additive errors, or residuals, that are to be minimized.
One cannot minimize all the residuals in (2.10) simultaneously. An integral

criterion is needed to embrace them all. A general family of such criteria is known
as Minkowski’s criterion or Lp norm. It is specified by using a positive number p as

Lp ¼ e1j jp þ e2j jp þ � � � þ eNj jpð Þ1=p

At a given p, minimizing Lp or, equivalently, its p-th power Lp
p, would lead to a

specific solution. Most popular are values p = 1, 2, and ∞ (infinity) leading to:

(1) Least-squares criterion L22 ¼ e21 þ e22 þ � � � þ e2N at p = 2.

Its minimization over unknown a is equivalent to the task of minimizing the
average squared distance, thus leading to the mean as the optimal a.

(2) Least-modules criterion L1 ¼ e1j j þ e2j j þ � � � þ eNj j at p = 1.

Its minimization over unknown a is equivalent to the task of minimizing the
average absolute deviation, thus leading to the median, optimal a = m.

(3) Least-maximum criterion L1 ¼ maxð e1j j; e2j j; . . . eNj jÞ at p = ∞. Minimization
of L∞ with respect to a is equivalent to the task of minimizing the maximum
deviation leading to the midrange, optimal a = mr.

The Minkowski’s criteria (1)–(3) may look just as trivial reformulations of the
distance approximation criterion (2.6). This, however, is not exactly so.
Equation (2.10) adds to the solution one more equation. It allows for a decompo-
sition of the data scatter involving the corresponding data recovery criterion.

This is rather straightforward for the least-squares criterion L2 whose minimal
value, at a equal to the mean c (2.7) is L22 ¼ x1 � cð Þ2 þ x2 � cð Þ2 þ
� � � þ xN � cð Þ2. With little algebra, this becomes
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L22 ¼ x1 � cð Þ2 þ x2 � cð Þ2 þ � � � þ xN � cð Þ2 þNc2

¼ x21 þ x22 þ � � � þ x2N � Nc2 ¼ T Xð Þ � Nc2

where T(X) is the quadratic data scatter defined as T Xð Þ ¼ x21 þ x22 þ � � � þ x2N .
This leads to equation T Xð Þ ¼ Nc2 þ L22 decomposing the data scatter in two

parts: that explained by the model (2.10), Nc2, and that unexplained, L2
2. Since the

data scatter is constant, minimizing L2
2 is equivalent to maximizing Nc2. The

decomposition of the data scatter allows measuring the adequacy of model (2.10)
not by just the averaged square criterion, the variance, but by the relative value of
the explained part L2

2/T(X). A similar decomposition can be derived for the least
modules L1 (see Mirkin 1996).

Q.2.3. Consider a multiplicative model for the error, xi = a(1 + ei), assuming
that errors are proportional to the values. What center a fits the data with the
least-squares criterion?

A. According to the least squares approach, the fit should minimize the summary
errors squared. Every error can be expressed, from the model, as ei =
xi /a − 1 = (xi − a)/a. Thus the criterion can be expressed as L22 ¼ e21 þ e2i þ
� � � þ e2N ¼ x1=a� 1ð Þ2 þ x2=a� 1ð Þ2 þ � � � : xN=a� 1ð Þ2. Applying the first order
optimality condition, let us take the derivative of L2

2 over a and equate it to zero.
The derivative is L202 ¼ � 2=a3ð ÞPi ðxi � aÞxi. Assuming the optimal value of a is
not zero, the first order condition can be expressed as Ri(xi − a)xi = 0, so that
a ¼ P

i x
2
i =

P
i xi ¼ ðPi x

2
i =NÞ=ð

P
i xi=NÞ. The denominator here is but the mean,

c, whereas the numerator can be expressed through the variance s2 because of
equation s2 ¼ P

i x
2
i =N �P

i xi=N which is not difficult to prove. With little
algebraic manipulation, the least-squares fit can be expressed as a = s2/c +1. The
variance to mean ratio s2/c, equal to a − 1 according to the model, emerges also in
statistics as a good relative estimate of the spread.

It seems rather natural that both, the standard deviation and absolute deviation,
are not greater than half the range, which can be proven mathematically (see
Sect. 2.3.2).

Q.2.4. Prove that Minkowski’s center is not sensitive with respect to changing
the scale factor.

Q.2.5. Prove that Minkowski’s center grows whenever power p grows.
Q.2.6. For the Population resident feature in Market town data compute

Minkowski center at p = 0.5, 1, 2, 3, 4, 5.
A. See solutions found using the cm.m code developed in Project 2.1 (and

confirmed, at p > 1, with the steepest descent AG-MC method) in Table 2.4.
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2.2.3 Probabilistic Perspective: Distributions, Centers
and Spreads

2.2.3.1 Distribution and Density Function

The concept of probabilistic distribution is a far-reaching way for summarization of
the data. There are several popular probabilistic distributions, of which one should
be acquainted with at least these three:

(a) Gaussian, or normal;
(b) Power law; and
(c) Uniform distribution.

They can be represented by different mathematical objects, of which perhaps the
most popular is representation via density function. The density functions of these
three, in respect, are

f ðuÞ ¼ Ce�ðu�lÞ2=2r2 ; ð2:11Þ

where C stands for a constant term equal to C ¼ ð2pr2Þ�1=2, µ for the mean, r2 for
the variance;

p xð Þ ¼ Cx�a ¼ C=xa; ð2:12Þ

for x� xmin where C ¼ a� 1ð Þxa�1
min and a > 1, and

f ðxÞ ¼
1

b�a ; x 2 a; b½ �
0; x\a or x[ b

�
ð2:13Þ

as illustrated in Figs. 2.5, 2.6, and 2.7. The area between the x-axis and a density
function, that is, the corresponding integral, shows the probabilities. The total prob-
ability, that is, the total area is 1; and whatever interval one would take, its probability
would be defined as the area between that interval and corresponding part of the
density function. For example, for the Gaussian (or normal) density function, the
probability of interval between µ and µ − r is 0.341, between µ and µ − 2r,

Table 2.4 Minkowski’s metric centers of the Population resident in Market town dataset for
different power values p

p Minkowski’s center Data scatter unexplained
0.5 2611.0 0.7143
1 5258.0 (median) 0.6173
2 7351.4 (mean) 0.4097
3 8894.9 0.2318
4 9758.8 0.0584
5 10,294.5 0.1186
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0.341 + 0.136 = 0.477, and between µ and µ − 3r, 0.341 + 0.136 + 0.021 = 0.499,
respectively. The square root of the variance, r, is referred to as the standard devi-
ation. It represents the average quadratic deviation of the feature from the mean µ and
is more intuitive than the variance because measured in the same units of scale.

The Gaussian distribution is called normal not without a reason. Sums of density
functions of independent from each other distributions with a limited variation
converge to a Gaussian density function. The average density function of any
distribution of a limited variability converges to the density function of a Gaussian

Fig. 2.5 Gaussian density function

Fig. 2.6 Power law density function at different values of alpha

Fig. 2.7 Density function of
the uniform distribution in
interval [a, b]
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distribution. Distributions of measurement errors and, in general, features being
results of small random effects are thought to be Gaussian. One more property of
the Gaussian distribution: a linear transformation of feature x with a Gaussian
distribution N(µ, r), y = ax + b, also has a Gaussian distribution with accordingly
transformed parameters, µy = aµ + b, and ry = ar. This last property allows
comparing features having different Gaussian distributions by using the so-called
z-transformation x ) x0 ¼ ðx� lÞ=r. Clearly, x0 has the standardized Gaussian
distribution N(0,1) with 0 mean and 1 variance.

The parameter a in the power law density function (2.12) reflects the steepness of
the frequency’s fall. Such a law expresses what is called the Matthew’s effect referring
to the saying “Hewho has much, will get more; and he who has nothing, will lose even
that little that he has,” according to Matthew’s gospel (as well as that by Luke). The
Matthew’s effect was first observed in the distribution of household income (Pareto’s
Law): 80% of wealth belongs to 20% of families, whereas the rest 80% possess the
remaining 20%ofwealth. Similar 80-20 effectswere later observed inmany other areas
of human activity: sciences, languages, city sizes. Currently, many phenomena over
the web can be approximately described as distributed according to a power law,
notably, the popularity of web-sites, that is described with the so-called “mechanism of
preferential attachment”. This mechanism proposes that the probability that a newweb
surfer hits a web-site is proportional to the site’s popularity. A nice property of the
power law is that it is “scale-free”, meaning that change of the feature scale unit does
not affect the value of parameter a: a does not change at all! At a < 2, the mathematics
says that a power law has an infinite mean. Therefore, practitioners usually do not
compute averages for variables distributed according to such a power law preferring
order statistics such as the median or percentile. Rather than comparing the average
incomes, statistics compares incomes of the 10% of families, those with lowest income
with those of the 10% top income families. Indeed, what is the value in computing the
average income of a group of university professors to which a billionaire is added?

The next distribution to be considered is the uniform distribution, over an
interval [a, b]. Its density is constant over this interval and equal to p(x) = 1/(b − a),
so that the total area of the box in Fig. 2.7 is 1. The probability of any interval (a, b)
within the range is proportional to the length of the interval, p = (b − a)/(b − a).

2.2.3.2 Center and Spread

In classical mathematical statistics, a set of real numbers X = {x1, x2,…, xN} is
usually considered a random sample from a population defined by a probabilistic
distribution with density f(x), in which each element xi is sampled independently
from the others. This involves an assumption that each observation xi is modeled by
the distribution f(xi) so that the mean’s density function is the average of density
functions f(xi). The population analogues to the mean and variance are defined over
function f(x) so that the mean, median and the midrange are unbiased estimates of
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the population mean. Moreover, the variance of the mean is N times less than the
population variance, so that the standard deviation tends to decrease by √N when
N grows.

Then c in (2.7) is an estimate of l, and s in (2.8) of r in (2.11). [These
parameters amount to the population analogues of the mean and variance defined,
for any density function f(u), as l ¼ R

uf uð Þdu and r2 ¼ R
u� lð Þ2f uð Þdu where

the integral is taken over the entire u axis.] We are going to prove this.
Consider the set X as a random independent sample from a population with a

Gaussian, for the sake of simplicity, probabilistic density function f xð Þ ¼
Cexpf�ðx� lÞ2=2r2g (2.11) where l and r2 are unknown parameters. The like-

lihood of randomly obtaining xi then will be Cexp �ðxi � lÞ2=2r2
n o

. The likeli-

hood of the entire sample X will be the product of these values, because of the
independence assumption. Therefore, the likelihood of the sample is
PðXÞ ¼ Pi2ICexpf�ðxi � lÞ2=2r2g ¼ CN expf�P

i2I ðxi � lÞ2=2r2g. One may

even go further and express P(X) as PðXÞ ¼ expfN lnðCÞ �P
i2I ðxi � lÞ2=2r2g

where ln is the natural logarithm (over base e). A well-established approach in
mathematical statistics, the principle of maximum likelihood, claims that the values
of l and r2 best fitting the data X are those at which the likelihood P(X) or,
equivalently its logarithm, ln(P(X)), reaches its maximum. The maximum lnðPÞ ¼
N lnðCÞ �P

i2I ðxi � lÞ2=2r2 is reached at l minimizing the expression in the

exponent, E ¼ P
i2I ðxi � lÞ2, which is in fact the summary quadratic distance

(2.6), that is, the least-squares criterion, which thus can be derived from the
assumption that the sample is randomly drawn from a Gaussian population. This,
however, does not mean that the least-squares criterion is only meaningful under the
normality assumption: the least-squares criterion has a meaning of its own within
the data analysis paradigm.

Likewise, the optimal r2 maximizes the part of ln(P) depending on it,
gðr2Þ ¼ N lnðr2Þ=2�P

i2I ðxi � lÞ2=2r2. It is not difficult to find the optimal r2

from the first-order optimality condition for g(r2). Let us take the derivative of the
function over r2 and equate it to 0: dg=dðr2Þ ¼ �N=ð2r2Þþ P

i2I
ðxi � lÞ2=2 r2ð Þ2¼ 0. This equation leads to r2 ¼ P

i2I ðxi � lÞ2=N, which means
that indeed the variance s2 is the maximum likelihood estimate of the parameter
r2 in the Gaussian distribution.

However, when l is not known beforehand but rather found from the sample
according to formula (2.7) for the mean, s2 in (2.8) appears to be a slightly biased
estimate of r2 and must be corrected by taking the denominator equal to N − 1
rather than N, which is the case in many statistical packages. The intuition behind
the correction is that Eq. (2.7) is a relation imposed by the user on the N observed
values, which effectively decreases the “degrees of freedom” in the number of
observations from N to N − 1.

In situations in which the data entities can be plausibly assumed to have been
randomly and independently drawn from a Gaussian distribution, the derivation
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above justifies the use of the mean and variance as the only theoretically valid
estimates of the data center and spread. The Gaussian distribution has been proven
to approximate well situations in which there are many small independent random
effects adding to each other. However, in many cases the assumption of normality is
highly unrealistic, which does not necessarily lead to rejection of the concepts of the
mean and variance—they still may be utilized within the general data analysis
perspective.

In some real-life situations, the assumption that X is an independent random
sample from the same distribution seems rather adequate; current mathematical
statistics developments cover the issue of centrality and spread quite well even at
non-Gaussian distributions. However, in most real-world databases and multivariate
samplings this assumption is far from being realistic. Nevertheless, in many real-life
situations, conclusions drawn from such untrue assumptions work quite well.

2.2.3.3 Computational Validation of the Mean: Bootstrap

Having a dataset and a feature x with its mean computed over the dataset, one may
wonder how representative the mean is. Mathematical statistics proposes to assign
the feature with a probabilistic distribution that would allow drawing likely
boundaries to the mean. Luckily, the computation power proposes a simple way to
extend the dataset available to many copies of it randomly sampled from the
dataset. These copies give rise to as many copies of the estimated value, the mean in
the case—quite enough to draw a convincing density function for the value.

Consider, for example, the data file short.dat in Appendix A6, a 50 � 3 array
whose columns are samples of three data types described in Table 2.5.

The normal data is in fact a sample from a Gaussian N(10, 2), that has 10 as its
mean and 2 as its standard deviation. The other two are Two-modal and Power law
samples. Their histograms are on the left-hand sides of Figs. 2.8, 2.9, and 2.10.
Even with the aggregate data in Table 2.5 one can see that the average of Power law
does not make much sense, because its standard deviation is more than three times
greater than the average itself.

Many statisticians would argue the validity of characteristics in Table 2.5 not
because of the distribution shapes—which would be a justifiable source of concern
for at least two of the three distributions—but because of small sizes of the samples.
Is the 50 entities available a good representation of the entire population indeed? To
address these concerns, the Mathematical Statistics have worked out principles

Table 2.5 Aggregate characteristics of columns for short.dat array

Data type Normal Two-modal Power law

Mean 10.27 16.92 289.74

Standard deviation Real value 1.76 4.97 914.50

Related to
ffiffiffiffi
N

p
0.25 0.70 129.33
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based on the assumption that the sampled entities come randomly and indepen-
dently from a—possibly unknown but stationary—probabilistic distribution. The
mathematical thinking would allow then, in reasonably well-defined situations, to
arrive at a theoretical distribution of an aggregate index such as the mean, so that
the distribution may lead to some confidence boundaries for the index. Typically,
one would obtain the boundaries of an interval at which 95% of the population fall,
according to the derived distribution. For instance, when the distribution is normal,
the 95% confidence interval is defined by its mean plus/minus 1.96 times the
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Fig. 2.8 The histograms of a 50 strong sample from a two-mode distribution (on the left) and its
mean’s bootstrap values (on the right)

0 2000 4000 6000 8000
0

10

20

30

40

50

50−strong 10−bin histogram:
 Power law case

0 500 1000
0

20

40

60

80

100

30−bin histogram of means 
in 1000 bootstrap trials

Fig. 2.9 The histograms of a 50 strong sample from a Power law distribution (on the left) and its
mean’s bootstrap values (on the right)
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standard deviation related to the square root of the number of observations, which is
7.07 at N = 50. Thus, for the first column data, the theoretically derived 95%
confidence interval will be 10 ± 1.96 * 2/7.07 = 10 ± 0.55, that is, (9.45, 10.55)
(if the true parameters of the distribution are known) or 10.27 ± 1.96 * 1.76/
7.07 = 10.27 ± 0.49, that is, (9.78, 10.76) (at the observed parameters in
Table 2.5).

The difference is rather minor, especially if one recalls that the 95% confidence
is a rather arbitrary notion. In probabilistic statistics, the so-called Student’s dis-
tribution is used to make up for the fact that the sample-estimated standard devi-
ation value is used instead of the exact one, but that distribution differs little from
the Gaussian distribution when there are more than several hundred entities.

In many real-life applications, the shape of the underlying distribution is
unknown and, moreover, the distribution is not necessarily stationary. The theo-
retically defined confidence boundaries are of little value then. This is why a
question arises whether any confidence boundaries can be derived computationally
by re-sampling the data at hand rather than by imposing some debatable assump-
tions. A popular approach to this is bootstrapping, which will be considered here in
its two basic formats defined usually as those “pivotal” and “non-pivotal” (see
Carpenter and Bithell 2000).

Bootstrapping is based on a pre-specified number, say 1000 or 5000 or 10,000
(nobody knows any rule on this), of random trials. A trial involves randomly drawn
N entities, with replacement, from the entity set. Note that N is the size of the entity
set. Since the sampling goes with replacement, some entities may be drawn two or
more times so that some others are bound to be left behind. For instance, in a
bootstrap trial of 10 entities, the following numbers have been drawn: 4, 5, 5, 10, 6,
1, 3, 4, 4, 3 (see the middle column in Table 2.6), so that four out of 10 indices have
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Fig. 2.10 The histograms of a 50 strong sample from a Gaussian distribution (on the left) and its
mean’s bootstrap values (on the right): all falling between 9.7 and 11.1
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been left out of the trial while several multiple copies have got in. These multiples
are 4, occurred three times, as well as 3 and 5, that occurred twice each. Is there any
order in the random missing items?

Yes, there is. Recalling that e = 2.7182818… is the natural logarithm base, it is
not difficult to prove that, on average, only approximately (e − 1)/e = 63.2%
entities get selected into a trial sample. Indeed, at each random drawing from a set
of N, the probability of an entity being not drawn is 1 − 1/N, so that the approx-
imate proportion of entities never selected in N draws is equal to (1 − 1/N)N � 1/
e = 1/2.71828 � 36.8% of the total number of entities. The approximate equation
above comes from the so-called special limit, defining the e, (1 + x)1/x ) e at x
tending to 0.

A trial set of N randomly drawn entity indices (some of them, as explained,
would coincide) is assigned with the corresponding row data values from the
original data table so that coinciding entities get identical values. Then a method
under consideration, currently “computing the mean”, applies to this trial data to
produce the trial result. After a number of trials, the user gets enough results to
represent them with a histogram and derive confidence boundaries from that.

Consider a bootstrap trial for feature x in the left column of Table 2.6. at which
its mean, 1.6, is presented too. The column in the middle is a list of indices
randomly drawn between 1 and 10. The column on the right contains a resampled
version of feature x—the values of x at the indices in the second column. One
cannot help but noticing how biased the trial version of x is, just because of the bias
in the trial sample; and its mean value is 0.3 now, far from the original 1.6. It is not
an individual trial, but rather the set of all of them that creates a representative
density function.

The bootstrap distributions for each of the three types of data generation
mechanism, after 1000 trials, are presented in Figs. 2.8, 2.9 and 2.10 (Table 2.7).

The pivotal validation method is based on the assumption that the bootstrap
distribution of means is Gaussian, so that having estimated its average mb and
standard deviation sb, the 95% confidence interval is estimated as usual, with

Table 2.6 An illustrative bootstrap trial: the original feature x, in the left column; a sample of 10
indices randomly drawn out of 10 in the middle; and corresponding x-values, in the column on the
right; the means are in the bottom line

Feature x Trial r indices Feature x over trial, x(r)
5 4 −3
6 5 4
−2 5 4
−3 10 1
4 6 2
2 1 5
1 3 −2
3 4 −3
−1 4 −3
1 3 −2
1.6 0.3
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formula mb ± 1.96 * sb = 10.24 ± 1.96 * 0.24 = 10.24 ± 0.47, the interval
between 9.77 and 10.71—which is very similar to that obtained under the
hypothesis of Gaussian distribution—this is no wonder here because the hypothesis
is true. However, the Gaussian assumption is not bad even in the case if the
underlying distribution is not Gaussian because of the central limit theorem.
According to this theorem, the distribution of the mean approximates the normal
distribution under rather mild assumptions. Specifically, the approximating
Gaussian distribution has its mean coinciding with the sample mean while the
variance is equal to the sample variance divided by N.

There is theoretical evidence, presented by Efron and Tibshirani (1994), to
support the view that the bootstrap can produce somewhat tighter estimate of the
deviation than the estimate based on the original sample. In our case, we can see in
Table 2.7 that indeed, with the means almost unchanged, the standard deviations
have been slightly reduced.

The non-pivotal method makes no assumption of the distribution of bootstrap
means and uses the empirical bootstrap found distribution to cut it at its 2.5% upper
and bottom quantiles. To do this, we can sort values of the vector of bootstrap
means and find the values at its 26th and 975th components that cut out exactly
2.5% of the set each. This action produces interval between 9.78 and 10.70, which
is very close to the previously found boundaries for the 95% confidence interval for
the mean value of the first sample.

Unfortunately, the bootstrap results are not that helpful in analyzing the other
two distributions: as can be seen in our example, both of the means, the Two-modal
and Power law ones, are assigned rather decent boundaries while, in most appli-
cations, the mean of either of these two distributions may be considered mean-
ingless. It is a matter of applying other data analysis methods such as clustering to
produce more homogeneous sub-samples whose distributions would be more
similar to that of a Gaussian.

The reader is requested toprovidepivotal andnot-pivotal estimatesof95%confidence
interval for the other two samples in short.dat dataset (Two-modal and Power law).

Worked Example 2.4 Bootstrap Confidence Interval for the Mean Sepal
Width
Consider the Iris dataset and its feature w2, the Sepal Width, whose mean is
m = 3.057. Let us draw its 5000-strong bootstrap resampling duplicate. Here are
corresponding MatLab commands:

Table 2.7 Aggregate characteristics of the results of 1000 bootstrap trials over short.dat array

Data type Normal Two-mode Power law

Mean 10.24 16.94 287.54

Standard
deviation

Original sample 0.25 0.70 129.33

Bootsrap value 0.24 0.69 124.38

Mean, % 2.46 4.05 43.26
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>> n=150; r=ceil(n*rand(n,5000));

The command “rand” produces a 150 � 5000 matrix of pseudo-random reals
between 0 and 1. After multiplication by n = 150 the reals become between 0 and
150, and command “ceil” converts them into next larger integers that are between 1
and 150. Columns of matrix r are individual bootstrap trials, so that matrix xr = w2(r)
is a set of bootstrap trial values of the feature w2 at the 5000 random samples. Now
we are ready to draw the 5000-strong set of the corresponding means,

>> mx=mean(xr);

Let us derive the 95% confidence interval for the mean; a 25-bin histogram of
vector mx is presented in Fig. 2.11 looking quite Gaussian. To use the pivotal
method, let us find the mean and standard deviation of mx:

>> ma=mean(mx)= 3.0583
>> sa=std(mx)= 0.0360
Therefore, according to the pivotal method, the 95% confidence interval for the

mean has its left boundary at lb = ma − 1.96 * sa = 2.988 and its right boundary at
rb = ma + 1.96 * sa = 3.129.

To apply the non-pivotal method, let us first sort mx in the ascending order,
making it sm, and take its 2.5% percentiles from the bottom and the top:

>> lb=sm(126)= 2.989
>> rb=sm(4875)= 3.131

Fig. 2.11 A histogram of the
bootstrap 5000-strong set of
means for the Sepal width
feature of the Iris dataset
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2.3 Categorical Features and Mixed Scale Data

2.3.1 Distribution and Its Characteristics

A categorical feature differs from a quantitative one not just because its values are
strings, not numbers—they are coded by numbers anyway to be processed. The
average of a quantitative feature is always meaningful, whereas the averaging of
categories, such as Occupations—BA, IT or AN—in Student data or Sector of
Economy—Retail, Utility or Manufacture—in Company data, makes no sense even
after they are coded by numbers. The applicability of the operation of averaging is
indeed a characteristic property of being quantitative. For example, one may claim
that a feature like the number of children in Student data is not quantitative because
its values can only be whole numbers. Still, a statement like “the average number of
children per woman is 1.85” does make sense because it can be easily made
legitimate by moving to counting by hundreds: there are 185 children per every
hundred women.

For categorical features, there is no need to define bins: the categories them-
selves play the role of bins. However, their histograms typically are visualized with
bars or stems, like on Fig. 2.12 that represents the distribution of categories IT, BA
and AN of Occupation feature in Student data.

Thedistributionof the feature canbeexpressed in absolute numbers of entities falling
in each of the categories, that is, D = (35, 34, 31), or on the relative scale, by using
proportions found by dividing frequencies over their total, 35 + 34 + 31 = 100, which
leads to the relative frequency distribution d = (0.35, 0.34, 0.31).

This distribution is close to the uniform one in which all frequencies are equal to
each other. In real life, many distributions are far from that. For example the
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Fig. 2.12 The distribution of categories IT, BA and AN of Occupation feature in Student data
shown with bars on the left and stems on the right
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distribution by race of the 878,153 stop-and-search cases performed by police in
England and Wales was widely discussed in the media (see Table 2.8 and BBC’s
website http://news.bbc.co.uk/1/hi/uk/7069791.stm of 29/10/07.) This is far from
uniform indeed: the proportion of W category is thrice greater than of the other two
taken together. Yet it was a claim of racial bias because the proportion of W
category in the population is even higher than that (for further analysis,
see Sect. 2.3).

Q.2.7. What is the modal category in the distribution of Table 2.8? In Occupation
on Student data?
A. These are most likely categories, W in Table 2.8 and IT in Student data.

Recently, the so-called bubble chart format, developed for multidimensional
visualizations, has been applied to 1D distributions (see Fig. 2.13) at which the
distribution of most frequent causes of death in the USA is visualized with strips, on
the left, and bubbles, on the right. At the current author’s opinion, the bubble chart
is more impressive. Also, it allows for visually estimating the risk of death from a
medical error, about 10% (251 out of 2597).

Table 2.8 Race distribution of stop-and-search cases in England and Wales in 2005/6

Race “Stop-and-search” case number Relative frequency, %

Black (B) 131,723 15

Asian (A) 70,250 8

White (W) 676,180 77

Total 878,153 100

Fig. 2.13 The distribution of causes of death in the USA, 2013, according to Makary and Daniel
(2016) by using strips, on the left, and bubbles (on the right). COPD is Chronic obstructive
pulmonary disease
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A number of coefficients have been proposed to evaluate how much a distri-
bution differs from the uniform distribution. The most popular are the entropy and
Gini index. The latter also is referred to as the categorical variance.

The entropy measures the information in signals being transferred over a com-
munication channel. Intuitively, a rare signal bears more information than a more
frequent one. Additionally, the levels of information in independent signals are to
be summed to estimate the total information. These two requirements lead to the
choice of logarithm of 1/p, that is, −log(p), for scoring the level of information in a
signal which appears with the probability (frequency) p. The logarithm’s base is
taken to be 2, because all the digital coding uses the binary number system. The
entropy is defined as the averaged level of information in categories of a categorical
feature. The unit of entropy has been chosen to be the bit, which is the entropy of a
uniformly distributed binary feature, also referred to as a binary digit with two
equally likely states. Intuitively, one bit is the level of information given in an
answer to a Yes-or-No question in which no prior knowledge of the possible answer
is assumed. The maximum entropy of a feature with m categories, H = log(m), is
reached when their distribution is uniform. The maximum Gini index, (m − 1)/m, is
reached at the uniform distribution too. Gini index measures the average level of
error of the proportional classifier. Given a sequence of entities with unknown
values of a categorical feature, the proportional classifier assigns entities with
values chosen randomly, each with a probability proportional to its frequency. The
average error of a category whose frequency is p is equal to p(1 − p) = p − p2. If,
for example, p = 20%, then the average error is 0.2 − 0.2 * 0.2 = 16%.

Worked Example 2.5. Entropy and Gini Index of a Distribution
Table 2.9 presents all the steps to compute the value of entropy, the summary
−plog(p) value, and Gini index, the summary p(1 − p) value where p are proba-
bilities (relative frequencies) of categories.

Entropy is the averaged quantity of information in the three categories,
H ¼ �p1 log p1ð Þ � p2 log p2ð Þ � p3 log p3ð Þ. The entropy in Table 2.9 relative to
the maximum is 0.99/1.585 = 0.625 because at m = 3 the maximum entropy is
H = log(3) = 1.585. Gini index is defined as the average error of the proportional

Table 2.9 Entropy and Gini index for race distribution in Table 2.8

Distribution Entropy Categorical variance

Category Relative
frequency p

Information
–log(p)

Weighted
–plog(p)

Error
1−p

Variance
p(1−p)

B 0.15 2.74 0.41 0.85 0.128

A 0.08 3.64 0.29 0.92 0.074

W 0.77 0.38 0.29 0.23 0.177

Total 1.00 0.99 0.378
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prediction. The proportional prediction mechanism is defined over a stream of
entities of which nothing is known beforehand except for the distribution of cate-
gories {pl}. This mechanism predicts category l at an entity in pl proportion of all
instances. In our case, G ¼ p1ð1� p1Þþ p2ð1� p2Þþ p3ð1� p3Þ ¼ 0:378. The
maximum Gini index value, (m − 1)/m, is reached at the uniform distribution, that
is, G = 2/3. The relative Gini index, thus, is 0.378/(2/3) = 0.567, which is not that
different from the relative entropy.

A categorical feature such as Occupation in Students data or Protocol in
Intrusion data, partitions the entity set in such a way that each entity falls in one and
only one category. Categorical features of this type are referred to as nominal ones.

If a nominal feature has L categories l = 1,…, L, its distribution is characterized
by quantities N1, N2, …, NL of entities that fall in each of the categories. Because of
the partitioning property these numbers sum to the total number of entities, N1 + N2

…. NL = N. The relative frequencies, defined as pl = Nl/N, sum to the unity (l = 1,
2, …, L).

Since categories of a nominal feature are not ordered, their distributions are
better visualized by pie-charts than by histograms.

The concepts of centrality, except for the mode, are not applicable to categorical
feature distributions. Spread here is also not quite applicable. However, the vari-
ation—or diversity—of the distribution (p1, p2, …, pL) can be measured. There are
two rather popular indexes that evaluate dispersion of the distribution, Gini index,
or categorical variance, and entropy.

Gini index G is the average error of the proportional prediction rule. According
to the proportional prediction rule, each category l, l = 1,2, …, L, is predicted
randomly with the distribution (pl), so that l is predicted at Npl cases out of N. The
average error rate of predictions of l in this case is equal to 1 − pl, which makes the
average error rate to be equal to:

G ¼
XL
l¼1

plð1� plÞ ¼ 1�
XL
l¼1

p2l ð2:14Þ

Entropy averages the quantity of information in category l as measured by log(1/
pl) = −log(pl) over all l. The entropy is defined as

H ¼ �
XL
l¼1

pl log pl ð2:15Þ

p 

f(p) 
Fig. 2.14 Graphs of
functions of the error
f(p) = 1 − p involved in Gini
index (dashed line) and the
information f(p) = −log(p)
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There is an affinity between H and G indexes, because at small p, −log(1 − p)
and 1 − p coincide, up to a very minor difference, as is well known from calculus
(see Fig. 2.14).

If the distribution of a feature is in vector df, then a command like

>> bar(df, .4);h=axis;axis(1.1*h);

will produce its bar drawing. The parameters here are: 0.4 the width of bars, 1.1 the
rescaling to allow some air between the histogram and the border in the drawing
frame (see Fig. 2.12 on the left).

Computation of the entropy and Gini index for the distribution presented in
vector df can be done with commands:

>> df=df/sum(df); h=-sum(df .*\log2(df)); % h is entropy
>> df=df/sum(df); g=-sum(df .*(1-df)); % h is Gini
Q.2.8. Take nominal features from the Intrusion data set and generate
category-based binary features, after which compute their individual means and
variances. Compare the variances with Gini index for the original features.

2.3.2 Binary Features

A very important class of nominal features consists of features with only two
categories—binary features. A feature admitting only two, either “Yes” or “No”,
values is conventionally considered Boolean in Computer Sciences, thus relating it
to Boolean algebra with its “True” and “False” statement evaluations. We do not
adhere to this strict logic approach but rather engage the numbers and arithmetic,
thus referring to two-value nominal features as Binary. The values are coded by
numerals 1, for “Yes”, and 0, for “No”. This coding is conventionally referred to, in
statistics, as dummy. In the context of data analysis, the coding is meaningful
because it makes the operation of averaging meaningful. Indeed, the average of a
dummy feature over any set of objects is the relative frequency of the category
coded by 1, on the set.

Curiously, binary features can be meaningfully treated within the perspective of
scale types defined with admissible transformations. Indeed, the scale type of a
binary feature is twofold: nominal and interval simultaneously. To prove that,
consider a binary feature with categories x1 and x2. Then a one-to-one mapping u
can transform them into x1′ and x2′ which are not equal to each other. Therefore,
equations x1′ = ax1 + b and x2′ = ax2 + b with two unknown reals, a and b, have
one and only one solution, a = (x1 − x2)/(x1′ − x2′) and b = x1′ − ax1, thus
defining an interval scale transformation with scale factor a and scale shift
b. Obviously, this transformation coincides with the mapping u.
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Moreover, a binary feature may be considered even as belonging in the ratio
scale format. Just take b = 0 in the above discussion, and you obtain any 0/a coding
in which 0 is assigned to the “No” category and a, to the “Yes” category. This is
especially convenient when using linear algebra transformations of the data matrix.
Consider, say, multiplication of the data matrix Y by a column-vector c on the right,
y = Yc. If Y contains a dummy column v, then its multiplication by the corre-
sponding component cv corresponds to the 0/a ratio scale coding where a = cv.
A question emerges: can matrix algebra be used to maintain the original interval
scale type for a binary feature? Yes, it can! The only thing needed for that is
doubling the dummy feature. A binary feature can be represented by two dummy
columns, v and v′, one for the “Yes” category and the other for the “No” category,
so that they complement each other and sum to a vector of all unities. Then, in Yc,
the categories will be represented by two reals, cv and cv′, thus corresponding to
b and a + b where a is the scale factor and b, the scale shift.

These combine properties of both categorical and quantitative features. Indeed,
an important difference between categorical and quantitative features is in their
admissible coding sets. An admissible numerical recoding of values of a feature
changes them consistently, in such a way that the relations between entities
according to the feature remain intact. For example, the human heights in cen-
timeters can be recoded in millimeters, by multiplying them by 10, or temperatures
at various locations expressed in Fahrenheit can be recoded in Celsius, by sub-
tracting 32 and dividing the result by 1.8. Such a recoding would not change the
relations between locations that have been put in effect when Fahrenheit temper-
atures had been recorded. If, however, we assign arbitrary values to the tempera-
tures, the new set will be inconsistent with the previous one and give a very
different information. This is the borderline between quantitative and nominal
features: the nominal feature can only compare if the categories are the same or not,
thus admitting any one-to-one recoding as admissible, whereas the quantitative
feature can only admit shifts of the origin of the scale and changes of the scale
factor. This borderline however is not quite hard. Binary features, as nominal ones,
admit any numerical recoding. But the recoding, in this case, can always be
expressed as a shift of the origin and change of the scale factor. Indeed, for any two
numbers, a and b, a conversion of the feature values from 0 to a and from 1 to b
can be achieved in a conventional quantitative fashion by using two rescaling
parameters: the shift of the origin (a) and scaling factor (b − a).

Thus, a binary feature can be always considered as coded into a quantitative 1/0
format, 1 for Yes and 0 for No. Thus coded, a binary feature sometimes is referred
to as a dummy variable.

The mean of a 1/0 coded binary feature is the proportion of its “Yes” values,
which is rather meaningful. The other popular central values bear much less
information. The median is 1 only if the proportion of ones is 0.5 or greater;
otherwise, it is 0. In a rare event when the number of entities is even and the
proportion of ones is exactly one half, the median is one half too. The mode is either
1 or 0, the same as the median.
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To compute the variance s2 of a binary feature whose mean c = p, sum Np items
(1 − p)2 and N(1 − p) items p2, and divide the result by N, which altogether leads
to s2 ¼ p 1� pð Þ ¼ p� p2. Accordingly, the standard deviation is the square root of
the variance, s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞp
. Obviously, this is maximum when p = 0.5, that is,

both binary values are equally likely. The range is always 1. The absolute deviation,
in the case when p < 0.5 so that median m = 0, comprises Np items that are 1 and N
(1 − p) items that are 0, so that sm = p. When p > 0.5, m = 1 and the number of
unity distances is N(1 − p) leading to sm = 1 − p. That means that, in general,
sm = min(p, 1 − p), which is less than or equal to the standard deviation. Indeed, if
p� 0:5, then p� 1� p and, thus, p2 � pð1� pÞ, so that ms � s. Analogously, if
p > 0.5 then p > 1 − p and, thus, p(1 − p) > (1 − p)2, so that again sm < s, which
proves the statement.

When a categorical feature is converted into a set of binary features corre-
sponding to its categories, the total variance of the L binary variables is equal to the
Gini index, or categorical variance, of the original feature.

There are some probabilistic underpinnings to binary features. Two models are
popular, one by Bernoulli and another by Poisson. Given p, 0 � p � 1, Bernoulli
model assumes that every xi is either 1, with probability p, or 0, with probability
1 − p. Poisson model suggests that, among the N binary numerals, random pN are
unities, and (1 − p)N zeros. Both models yield the same mathematical expectation,
p. However, their variances differ: the Bernoulli distribution’s variance is p(1 − p),
whereas the Poisson distribution’s variance is p, which is obviously greater for all
positive p, because the factor at Bernoulli standard deviation, 1 − p, is less than 1
under this condition. Similar models can be considered for nominal features with
more than two categories.

2.3.3 Dummy Matrix; Spanning Subspace and Equivalence
Relation

Given a nominal feature x on the set I = {1, 2,…, N} with values vk (k = 1, 2,…, K),
each value vk defines a set Rk 	 I consisting of such entities i that x(i) = vk. Roughly
speaking, Rk is the set of entities falling in the category vk. For the mathematical
simplicity, it is assumed that no Rk is empty, that is, that for every category, there are
some objects falling in it. Of course, in reality, the set I may be a subset of a larger
sample so that some categories could be absent from I. For example, if one takes only
enterprises from the Manufacturing sector, then no object will have the Retail cate-
gory of the Sector feature. Those categories that are absent from the set, must be
removed from the set of feature values before applying a data analysis method. The
Rk (k = 1,2,…, K) sets form a partition R = {R1, R2, …, RK} which may be con-
sidered a portrayal of the feature over set I. To apply linear algebra operations, any
K-valued nominal feature x can be represented by an N � K 1/0-matrix X = (xik)
where xik = 1 if x(i) = vk, or, equivalently, if i 2 Rk, and xik = 0, otherwise
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(k = 1,2,…, K). This matrix X will be referred to as the dummy matrix of the nominal
feature x.

It is not difficult to prove that the dummy matrix of any nominal feature satisfies
the following two properties:

– Each its row i, i = 1, 2, …, N, contains one and only one unity, that one
corresponding to the category k such that x(i) = k;

– Each its column contains at least one unity.

Reciprocally, any binary matrix satisfying these properties is the dummy matrix
of a nominal feature.

It is not difficult to prove then that the sum of X columns is an N-dimensional
unity vector. Let us denote 1n an n-dimensional column-vector whose all compo-
nents are unities, so that ITn = (1, 1, …, 1). Then this property can be written as a
linear algebraic equation X1K = 1N.

Let us consider the span of X, L(X) = {y = Xa for some K-dimensional a}. This
linear subspace L(X) consists of vectors y = Xa, each of which represents the feature
x by a quantitative encoding its categories. More precisely, every category k is
quantitatively coded in y as ak (k = 1,2,…, K). L(X) corresponds to all possible
numerical encodings of the categories including those at which different categories
k and l may be coded by the same values ak = al. That is, the space L(X) represents
the nominal scale x in an extended sense, at which admissible transformations are not
only one-to-one mappings but any mappings admitting merging categories as well.

Unfortunately, all the spaces L(X) have a purely formal part in them, the bisector,
the one-dimensional subspace consisting of all the N-dimensional vectors a1N
consisting of equal values a where a is any real, because of the property of dummy
matrices that their columns sum to the 1N-vector. Therefore, it would be more
productive to consider the space L(X) without the bisector, that is, an orthogonal
complement L−(X) to the bisector consisting of all centered vectors. Indeed,
〈z, 1N〉 = 0 if and only if z is a centered vector so that z1 + z2 + ��� +zN = 0.

Consider the orthogonal projector PL� Xð Þ onto the space L−(X). It is not difficult

to prove that PL� Xð Þ ¼ PX�P1 where PX ¼ X XTXð Þ�1XT is the orthogonal pro-

jector onto L(X) and P1 ¼ 1N 1TN1N
� ��1

1TN is the orthogonal projector onto the
bisector.

To see what is PX, let us first find X
TX, that is a diagonal matrix because columns

of X are mutually orthogonal, and the diagonal consists of frequencies N1 ¼
R1j j;N2 ¼ R2j j; . . .;NK ¼ RKj j of the categories. Therefore, (XTX)−1 is a diagonal
matrix with diagonal elements equal to 1=N1; 1=N2; . . .; 1=NK . Matrix XXT is a 1/0
binary matrix of a block structure. For every k, it has a unity for every pair

i; jð Þ 2 Rk � Rk; k ¼ 1; 2; . . .;K; while 0 stands at all other pairs (i, j). Matrix PX ¼
X XTXð Þ�1XT has a similar structure: For every k, its (i, j)-th element is 1/Nk for all
i; jð Þ 2 Rk � Rk; k ¼ 1; 2; . . .;K; while 0 stands at all other pairs (i, j).
We can similarly find that 1N

T1N = N, so that (1N
T1N)

−1=1/N, so that P1 = 1N
(1N

T1N)
−11N

T has all its elements equal to 1/N.
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This gives us the structure of the N � N orthogonal projector matrix PL� Xð Þ: For
every k, its (i, j)-th element is 1/Nk − 1/N = (1 − Nk/N)/Nk for all (i, j) 2 Rk � Rk,
k = 1,2,…, K, while −1/N stands at all other (i, j) places.

It should be noted that the auxiliary 1/0 binary matrix XXT of a block structure
has an independent meaning as the matrix representing a binary equivalence rela-
tion. A binary relation is a logics concept that can be expressed in a set-theoretic
way. In this case, the relation can be formulated as follows: Any objects i, j 2 I are
ex-equivalent if and only if they fall in the same x-category, that is, x(i) = x(j). This
relation can be expressed in a set-theoretic way as the set of ex-equivalent pairs (i, j),
that is, . Matrix XXT is the indicator of ex. Indeed,
as we have seen, for every k, its elements are unities for all pairs (i, j) 2 Rk � Rk,
k = 1,2,…, K, while 0 stands at all other pairs (i, j).

A binary relation q is said to be an equivalence relation if it is: (i) reflexive, so
that (i, i) 2 q for any i 2 I; (ii) symmetric, so that (i, j) 2 q implies (j, i) 2 q for all
i, j 2 I; and (iii) transitive, so that (i, j) 2 q and (j, k) 2 q implies (i, k) 2 q for any
triplet i, j, k 2 I. An equivalence relation one-to-one corresponds to a partition of
the set of objects in equivalence classes. An example: ex-equivalence and partition
R = {R1, R2, …, RK}.

There is a rather natural, though somewhat less recognized, relation between
quantitative and binary features: the variance of a quantitative feature is always
smaller than that of the corresponding binary feature. To explicate this according to
Mirkin (2012), assume the interval [0, 1] to be the range of data X = {x1,…,xN}.
Assume that the mean c divides the interval in such a way that a proportion p of the
data is greater than or equal to c, whereas proportion of those smaller than c is
1 − p. The question then is this: given p, at what distribution of X the variance is
maximized. To address the question, assume that X is any given distribution within
interval [0, 1] with its mean at some interior point c. According to the assumption,
there are Np observations between 0 and c. Obviously, the variance can only
increase if we move each of these points to the boundary, 0. Similarly, the variance
will only increase if we push each of N(1 − p) points between c and 1, into the
opposite boundary 1. That means that the variance p(1 − p) of a binary variable
with Np zero and N(1 − p) unity values is the maximum, at any p. The following is
proven. Given a p > 0, a binary variable, whose distribution is (p, 1 − p), has the
maximum variance, and the standard deviation, among all quantitative variables of
the same range and the proportion p of entries below its average.

This implies that no variable over the range [0, 1] has its variance greater than
the maximum ¼ reached by a binary variable at p = 0.5. The standard deviation of
this binary variable is ½, which is just half the range. Therefore, the standard
deviation of any variable cannot be greater than its half-range.

The binary variables also have the maximum absolute deviation among the
variables of the same range, which can be proven similarly.

Worked Example 2.6. Standardizing the Iris Dataset
Consider Iris dataset in Table 1.3. Its grand mean and midrange are presented in
Table 2.10, along with its range and standard deviations.
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These have been found by using the following MatLab commands:
>> iris=load(′Data\iris.dat′);
>> m=mean(iris); % grand mean
>> ma=max(iris);% maximum
>> ma=min(iris);% minimum
>> mr=(ma+mi)/2; % midrange
>> s=std(iris);% standard deviation
>> ra=ma-mi;% range
In Table 2.10, midrange more or less follows the grand mean, but there are some

discrepancies between the range and standard deviation. For example, ranges of w2
and w4 are the same, whereas standard deviations differ by almost 100%.

Let us take three different standardizations:
A—range related, y ( (x − mr)/ra;
B—mean/range standardization, y ( (x − m)/ra;
C—z-scoring, y ( (x − m)/s;

and evaluate feature contributions to the data scatter after each of them (Table 2.11).
Feature contributions under A and B are similar, because both involve division

by the range. According to these standardizations features w3 and w4 contribute
most, because they are bimodal (Sect. 2.3.2) and, thus play important role in further
summarization methods, both Principal component analysis and cluster analysis.
This concurs with the botanists’ view that it is these sizes that determine the
belongingness of an Iris specimen to a specific taxon (see references in Mirkin
2012). Moreover, at building a classification tree over Iris dataset, in Sect. 3.8,
feature w4 will be involved in the splits according to three goodness criteria. In
contrast, the first line assigns contributions according to feature values so that the
lengths w1 and w3 get much larger contributions than the widths w2 and w4. And
z-scoring (standardization C) makes all features contribute similarly, even in spite
of the fact that two of them are bimodal.

Table 2.10 Characteristics
of Iris dataset

Characteristics Features

w1 w2 w3 w4

Mean, m
Midrange, mr

5.84
6.10

3.06
3.20

3.76
3.95

1.20
1.30

Standard deviation, s
Range, ra

0.83
3.60

0.44
2.40

1.77
5.90

0.76
2.40

Table 2.11 Iris feature
contributions to data scatter at
different standardizations,
percent to the data scatter
value

Standardization Feature contributions, %

w1 w2 w3 w4
No standardization 54.76 15.00 27.07 3.17
A: midrange/range 20.16 12.70 31.48 35.66
B: mean/range 19.15 11.94 32.40 36.51
C: mean/std 25.00 25.00 25.00 25.00
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The problem of standardization can be addressed by the user if they know the
type of the distribution behind the observed data—the parameters of the distribution
typically lead to a reasonable standardization. For example, the data should be
standardized by z-scoring if the data is generated by independent one-dimensional
Gaussian distributions. According to the formula for Gaussian density, a z-scored
feature column would then fit the conventional N(0, 1) distribution making all
features comparable to each other. A similar strategy applies if the data is generated
from a multivariate Gaussian density, just the data first need to be transformed into
mutually orthogonal singular vectors or, equivalently, principal components. Then
z-standardization applies.

If no reasonable distribution can be assumed in the data, then there is no uni-
versal advice on standardization. However, with the summarization problems that
we are going to address, the principal component analysis and clustering, some
advice can be given in terms of the data scatter.

The data transformation effected by the standardization can be expressed as

yiv ¼ xiv�avð Þ=bv ð2:16Þ

where X = (xiv) stands for the original and Y = (yiv) for standardized data, whereas
i 2 I denotes an entity and v 2 V a feature. Parameter av stands for the shift of the
origin and bv for normalizing factor at each feature v 2 V. In other words, one may
say that the transformation (2.16), first, shifts the data origin into the point a = (av),
after which each feature v is rescaled separately by dividing its values over bv.

The position of the space’s origin, zero point 0 = (0,0, …, 0), at the standardized
data Y is unique because any linear transformation of the data, that is, matrix
product AY, for any A, can be expressed as a set of rotations of the coordinate axes
around the origin, so that the origin itself is invariant. The principal component
analysis can be expressed mathematically as a set of twisted linear transformations
of the data features as becomes clear in Sect. 2.4, which means that all the action in
this method occurs around the origin. Metaphorically, the origin can be likened to
the eye through which data points are looked at by the methods below. Therefore,
for the purposes of data analysis, the origin should be put somewhere in the center
of the data set, for which the gravity center, the point of all within-feature averages,
is a best candidate. Let us recall that the data Y scatter is defined as the sum of the
squares of all its entries, T Yð Þ ¼ P

i;v y
2
iv: What is nice about locating the origin to

the center of gravity of the data, is that the feature contributions to the scatter of the
center-of-gravity standardized data are equal to tv ¼

P
i2I y

2
iv ðv 2 VÞ, which means

that they are proportional to the feature variances. Indeed, after the average cv has
been subtracted from all values of the column v, the summary contribution satisfies
equation tv = Nrv

2 so that tv is N times the variance. Even nicer properties of the
gravity center as the origin have been derived in the framework of the simultaneous
analysis of categorical and quantitative data, see in Sects. 3.6, 3.8 and 4.4.

As to the normalizing coefficients, bv, their choice is underlied by the idea of
balancing the features weights. A most straightforward expression of the principle
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of feature equal importance is the use of the standard deviations as the normalizing
coefficients, bv = rv. This standardization makes the variances of all the variables
v 2 V equal to 1 so that all the feature contributions become equal to tv = N, which
is seen at Table 2.11.

A very popular way to take into account the relative importance of different
features is by using weight coefficients of features in computing the distances. This,
in fact, is equivalent to and can be achieved with a proper standardization. Take, for
instance, the weighted squared Euclidean distance between arbitrary entities
x = (x1, x2,..., xV) and y = (y1, y2,...,yV) which is defined as

Dw x; yð Þ ¼ w1 x1 � y1ð Þ2 þw2 x2 � y2ð Þ2 þ � � � þwV xV � yVð Þ2

where wv are pre-specified weights of features v 2 V. Let us define (additional)
normalizing parameters bv ¼ 1=

p
wv ðv 2 VÞ to transform x and y into x0v ¼ xv=bv

and y0v ¼ yv=bv. It is rather obvious that

Dw x; yð Þ ¼ d x0; y0ð Þ

where d is the unweighted Euclidean squared distance.
That is, the following fact holds: for the Euclidean squared distance, the feature

weighting is equivalent to an appropriate normalization as described above.

Q.2.9. Is it true that the sum of feature values standardized by subtracting the mean
is zero?

A. Yes, because the sum is proportional to the mean which is zero after centering.

Q.2.10. Consider a reversal of the operations in standardizing data: the scaling to be
followed by the scale shift. Is it that different from the conventional
standardization?
A. Denote the scale shift and rescaling factor by a and b. Then the conventional
standardization produces y = (x − a)/b = x/b − a/b from x, whereas that suggested
gives z = x/b − a. These differ at a 6¼ 0. To make them equal, the scale shift in the
latter case must be a/b.

2.3.4 Quantification and Standardization
of Mixed Scale Data

Many data analysis specialists prefer treating different scale type data differently, by
converting the non-numerical part of data into an object-to-object similarity matrix
while keeping the quantitative part as is. This author, however, prefers keeping the
mixed data scales all together by quantifying the entire data table in a most non-
destructive way. Given a data table containing mixed scale features, quantitative,
rank, binary, and nominal, among them, the user first should take care of rank
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features. As there is no theory to embrace the rank scale type into a unified format,
rank features should be converted into either quantitative or nominal format. In this
author and his colleagues experiences, following C. Spearman by coding all the
ranks by consecutive numbers (say, −2, −1, 0, 1, 2 or 1, 2, 3, 4, 5, which does not
matter if a unified centering applies as a pre-processing option) works quite well in
practice. Next, all the binary features are to be considered quantitative by assigning
1 to their “Yes” value and 0, to the “No” value. Then, every nominal feature should
be quantified by substituting its dummy matrix instead of the feature’s column. This
is examplified at the Company dataset in the Project 2.1 below. If the number of
values of a given nominal feature is m, then in this way, m columns are inserted
instead of just one column in the original data table.

This creates a disbalance in the data scatter, an important characteristic of the
data, according to data-driven summarization models which will be considered in
further sections. The data scatter is the sum of squares of all the data table entries.
Instead of N items in the sum from the orginal feature, the dummy matrix adds mN
items, thus making the contribution of the feature, in general, m times greater. To
make up for such a growth, the dummy matrix should be divided by

ffiffiffiffi
m

p
. Why the

square root? Because all the values are squared in the data scatter. After this, thus
quantified data matrix should be standardized by subtracting a background central
value from every column and dividing the result by a factor to balance contributions
of different features. This is another twilight zone of data analysis at which the
customs prevail rather than theory (see Project 2.1 for illustration).

The utilized method of quantification of categoricak values via dummy variables
is not without a merit. First of all, the binary representation unifies the concept of
the average and the frequency: the latter is the average of a dummy variable.
Second, in clustering problems, geometric characteristics of binary data over par-
titions being built are mathematically equivalent to popular association measures
defined for cross-classifications, such as Pearson’s chi-squared. This bridges the
gaps between the geometric and statistical perspectives on the analysis of cate-
gorical data.

Table 2.12 Data of eight companies producing goods A, B, or C according to the initial symbol
of company’s name

Company Income MShare NSup EC Sector
Aversi 19.0 43.7 2 No Utility
Antyos 29.4 36.0 3 No Utility
Astonite 23.9 38.0 3 No Manufacture
Bayermart 18.4 27.9 2 Yes Utility
Breaktops 25.7 22.3 3 Yes Manufacture
Bumchist 12.1 16.9 2 Yes Manufacture
Civok 23.9 30.2 4 Yes Retail
Cyberdam 27.2 58.0 5 Yes Retail
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Project 2.1. Standardization of Mixed Scale Data and Its Effect

Pr2.1.A Data Table and Its Quantification

Consider the Company dataset described in Sect. 1.2 and copied here in
Table 2.12. Let us convert it into a quantitative format. The table contains two
categorical variables, EC, with categories Yes/No, and Sector, with categories
Utility, Manufacture and Retail. The former feature, EC, in fact represents just one
category, “Using E-Commerce” and can be recoded as such by substituting 1 for
Yes and 0 for No. The other feature, Sector, has three categories. To be able to treat
them in a quantitative way, one should substitute each by a dummy variable.

Specifically, the three dummy features are:

(i) Utility: Is it Utility sector?
(ii) Manufacture: Is it Manufacture sector?
(iii) Retail: Is it Retail sector?

Each of them admits Yes or No values, respectively substituted by 1 and 0. In
this way, the original heterogeneous table will be transformed into a quantitative
matrix in Table 2.13.

The first two features, Income and MShare, dominate the data in Table 2.13,
especially with regard to the data scatter, that is, the sum of all the data entries
squared, equal to 14,833. As shown in Table 2.14, the two of them contribute more

Table 2.13 Quantitatively recoded Company data table, along with summary characteristics

Company Income Market Share NSup EC Util Manu Reta
Aversi 19.0 43.7 2 0 1 0 0
Antyos 29.4 36.0 3 0 1 0 0
Astonite 23.9 38.0 3 0 0 1 0
Bayermart 18.4 27.9 2 1 1 0 0
Breaktops 25.7 22.3 3 1 0 1 0
Bumchist 12.1 16.9 2 1 0 1 0
Civok 23.9 30.2 4 1 0 0 1
Cyberdam 27.2 58.0 5 1 0 0 1
Average 22.45 34.12 3.0 5/8 3/8 3/8 1/4
St deviation 5.26 12.10 1.0 0.48 0.48 0.48 0.43
Midrange 20.75 37.45 3.5 0.5 0.5 0.5 0.5
Range 17.3 41.1 3.0 1.0 1.0 1.0 1.0

Table 2.14 Within-column sums of the squared entries in Table 2.13

Contribution Income MShare NSup EC Util Manu Retail Data
scatter

Absolute 4253 10,487 80 5 3 3 2 14,833

Percent 28.67 70.70 0.54 0.03 0.02 0.02 0.01 100.00
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than 99% to the data scatter. To balance the contributions, features should be
rescaled. Another important transformation of the data is the shift of the origin,
because it affects the value of the data scatter and the decomposition of it in the
explained and unexplained parts, as can be seen on Fig. 2.2.

Pr2.1.B Visualization of the data at different normalizations

One can take a look at the effects of different standardization options. Table 2.15
contains data of Table 2.12 standardized by the scale shifting only: in each column,
the within-column average has been subtracted from the column entries. Such
standardization is referred to as centering.

The relative configuration of the 7-dimensional row-vectors in Table 2.14 can be
captured by projecting them onto a plane, which is two-dimensional, in an optimal
way; this is provided by the two first singular values and corresponding singular
vectors, as will be explained later in Sect. 2.5. This visualization is presented on
Fig. 2.15 at which different product companies are shown with different shapes:
squares (for A), triangles (for B) and circles (for C). As expected, this bears too
much on features 2 and 1, that contribute 83.2 and 15.7%, respectively; a slight
change from the original 70.7 and 23.7% according to Table 2.14. The features
seem not related to products at all—the products are randomly intermingled with
each other in the picture.

Pr2.1.C Standardization by z-scoring

Consider now a more balanced standardization involving not only feature cen-
tering but also feature normalization over the standard deviations—z-scoring, as
presented in Table 2.16.

Table 2.15 The data in Table 2.13 standardized by the shift scale only, with the within-column
averages subtracted

Ave −3.45 9.58 −1.00 −0.62 0.62 −0.38 −0.25
Ant 6.95 1.88 0 −0.62 0.62 −0.38 −0.25
Ast 1.45 3.88 0 −0.62 −0.38 0.62 −0.25
Bay −4.05 −6.22 −1.00 0.38 0.62 −0.38 −0.25
Bre 3.25 −11.82 0 0.38 −0.38 0.62 −0.25
Bum −10.4 −17.22 −1.00 0.38 −0.38 0.62 −0.25
Civ 1.45 −3.92 1.00 0.38 −0.38 −0.38 0.75
Cyb 4.75 23.88 2.0 0.38 −0.38 −0.38 0.75
Cnt 221.1 1170.9 8.0 1.9 1.9 1.9 1.5
Cnt % 15.7 83.2 0.6 0.1 0.1 0.1 0.1

The values are rounded to the nearest two-digit decimal part, choosing the even number when two
are the nearest. The bottom rows represent contributions of the columns to the data scatter as they
are and percent
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An interesting property of this standardization is that contributions of all features
to the data scatter are equal to each other, and moreover, they total to the number of
entities, 8! This is not a coincidence but a property of the z-scoring standardization.

The data in Table 2.16 projected onto the plane of two first singular vectors
better reflect the products—on Fig. 2.16, C companies are clear-cut separated from
the others; yet A and B are still intertwined.

Pr2.1.D Range Normalization and Rescaling of Dummy Features

We would like now to standardize the data in a mixed way by: (a) shifting the
scales to the averages, as in z-scoring, but (b) dividing the results not by the
feature’s standard deviations but rather their ranges. However, when using both
categorical and quantitative features, there is a catch here: each of the categories
represented by dummy binary variables will have a greater variance than any of the

Bayermart

Breaktops

Bumchist

Civok

Cyberdam

Aversi

Antyos

Astonite

Fig. 2.15 Visualization of the entities in Companies data, centered only

Table 2.16 The data in Table 2.13 standardized by z-scoring

Ave −0.66 0.79 −1.00 −1.29 1.29 −0.77 −0.58
Ant 1.32 0.15 0 −1.29 1.29 −0.77 −0.58
Ast 0.28 0.32 0 −1.29 −0.77 1.29 −0.58
Bay −0.77 −0.51 −1.00 0.77 1.29 −0.77 −0.58
Bre 0.62 −0.98 0 0.77 −0.77 1.29 −0.58
Bum −1.97 −1.42 −1.00 0.77 −0.77 1.29 −0.58
Civ 0.28 −0.32 1.00 0.77 −0.77 −0.77 1.73
Cyb 0.90 1.97 2.00 0.77 −0.77 −0.77 1.73
Cnt 8 8 8 8 8 8 8
Cnt, % 14.3 14.3 14.3 14.3 14.3 14.3 14.3

The bottom rows represent contributions of the columns to the data scatter as they are and percent
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quantitative counterparts after dividing by the ranges. Table 2.17 represents con-
tributions of the range-standardized columns of Table 2.13.

Binary variables contribute much greater than the quantitative variables
according to this standardization. The total contribution of the three categories of
the original variable Sector looks especially odd—it is more than 55% of the data
scatter, by far greater than should be assigned to one of the five original variables.
This is partly because the variable Sector in the original table has been enveloped
into three variables corresponding to its categories, thus blowing up the contribu-
tion accordingly. To make up for this, the summary contribution of the three
dummies should be decreased back three times. This can be done by making further
normalization of them by dividing the normalized values by the square root of their
number—3 in our case. Why the square root is used, not just 3? Because contri-
bution to the data scatter involves not the entries themselves but their squared
values.

The data table after additionally dividing entries in the three right-most columns
over √3 is presented in Table 2.18. One can see that the contributions of the last
three features did decrease threefold from those in Table 2.17, though the relative
contributions changed less. Now the most contributing feature is the binary EC that
divides the sample along the product-based lines. This probably has contributed to
the structure visualized in Fig. 2.17. The product defined clusters, much blurred on
the previous figures, are clearly seen here, which shows that the original features
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Fig. 2.16 Visualization of the entities in Companies data after z-scoring (Table 2.16)

Table 2.17 Within-column sums of the entries squared in the data of Table 2.13 standardized by
subtracting the averages and dividing the results by the ranges

Contribution Income MShar NSup EC Util Manu Retail Data scatter

Absolute 0.739 0.693 0.889 1.875 1.875 1.875 1.500 9.446

Percent 7.82 7.34 9.41 19.85 19.85 19.85 15.88 100.00
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indeed are informative of the products—just a proper standardization has to be
carried out.

Note: only two different values stand in each of the four columns on the right—
why? Moreover, the entries within every column sum to 0 (see Q.2.9 and
Table 2.18).

Q.2.11. How to do z-scoring in MatLab?

A. Take [n, v] = size(X) where X is the data matrix. Then define Y = (X-repmat
(mean(X, n, 1)))./repmat(std(X, n, 1).

Q.2.12. What are the feature contributions after z-scoring?
A. They all are equal to the same value, the data scatter related to V, the number of
features.
Q.2.13. How distances are affected if a different set of scale shifts is applied?

Table 2.18 The data in Table 2.13 standardized by: (i) shifting to the within-column averages,
(ii) dividing by the within-column ranges, and (iii) further dividing the category based three
columns by √3

Av −0.20 0.23 −0.33 −0.63 0.36 −0.22 −0.14
An 0.40 0.05 0 −0.63 0.36 −0.22 −0.14
As 0.08 0.09 0 −0.63 −0.22 0.36 −0.14
Ba −0.23 −0.15 −0.33 0.38 0.36 −0.22 −0.14
Br 0.19 −0.29 0 0.38 −0.22 0.36 −0.14
Bu −0.60 −0.42 −0.33 0.38 −0.22 0.36 −0.14
Ci 0.08 −0.10 0.33 0.38 −0.22 −0.22 0.43
Cy 0.27 0.58 0.67 0.38 −0.22 −0.22 0.43
Cnt 0.74 0.69 0.89 1.88 0.62 0.62 0.50
Cnt % 12.42 11.66 15.95 31.54 10.51 10.51 8.41

The values are rounded to the nearest two-digit decimal part
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Fig. 2.17 Visualization of data in Table 2.18 standardized by the ranges with further subdividing
the binary category features by the square root of 3
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A. Since the coordinates of two points are subtracted from each other in the dis-
tance, the scale shifts cancel each other and have no effect on the distances: the
distances do not depend on the location of the origin of the space.

2.4 Principal Component Analysis (PCA):
Model, Method, Usage

The method of principal component analysis (PCA) has emerged in the research of
“inherited talent” undertaken on the verge of 19th and 20th centuries by F. Galton
(1822–1911) and K. Pearson (1857–1936). For the time being, it has become one of
the most popular methods for data summarization and visualization. The mathe-
matical structure and properties of the method are based on the so-called singular
value decomposition of data matrices (SVD); this is why in some publications terms
PCA and SVD are used as synonymous. In the UK and USA, though, the term PCA
frequently refers only to a technique for the analysis of inter-feature covariance or
correlation matrix by extracting most contributing linear combinations of features,
which utilizes no specific data models and is considered as purely heuristic.
However, this method can be related to a genuine encoder–decoder based data
summarization model that is underlied by the SVD equations—in the case when the
data matrix has been centered beforehand. But the centering can hardly make a big
difference to the method as such; this is why I refer to the method, even when the
data matrix is not centered, as PCA.

There are many motivations for this method, of which the following will be
considered further on:

1. Scoring a hidden factor (Sect. 2.6.1)
2. Data visualization (Sect. 2.5)
3. Latent semantic analysis (Sect. 2.5.2)

Q.2.14. What could be a purpose to aggregate the features in the Market towns’
data?
A. Since all the features relate to the extent of development of a town, the aggregate
feature perhaps would express the extent of the town’s development.

2.4.1 A Multiplicative Decoder

Let us consider a data matrix X with entries xiv and standardize it into Y = (yiv)
(i = 1,2,…, N; v = 1,2, …,V). The PCA model assumes hidden factor scores zi* and
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feature loadings cv* such that their product zi* cv* is the decoder for yiv, which can
be explicated, by using additive residuals eiv, as

yiv ¼ cv

zi
 þ eiv ð2:17Þ

where the residuals are to be minimized using the least squares criterion

L2 ¼
X
i2I

X
v2V

e2iv ¼
X
i2I

X
v2V

ðyiv � cv

zi
Þ2 ð2:18Þ

The decoder in (2.17), as a mathematical model for deriving zi* and cv*, has a
flaw from the technical point of view: its solution cannot be defined uniquely!
Indeed, assume that we have obtained a factor score zi* for object i and the loading
cv* at feature v, to produce zi*cv* as the estimate for the value of the feature at the
object. However, the same estimate will be produced if we halve the factor score
vector and simultaneously double the loading vector: zi*cv* = (zi*/2)(2cv*). Any
other real taken as the divisor/multiplier would, obviously, do the same.

A conventional remedy to this is the following: specify the norms of vectors z*,
c* to unity, and treat the multiplicative effect of the two as a real l > 0. Then put
the product l zicv in (2.17) and (2.18) instead of zi*cv* where z and c are normed
versions of z* and c*, and l is their multiplicative effect, the product of norms of z*
and c*. The (Euclidean) norm xj jj j of vector x = (xI,…, xN) is defined as its length,
that is, the square root of xj jj j2¼ xTx ¼ x21 þ x22 þ � � � þ x2N . Thus, a vector is
referred to as normed if its length is 1, xj jj j ¼ 1. After l, z and c minimizing (2.18),
thus adjusted, are determined, return to the talent score vector z* and loading vector
c* with formulas: z* = l1/2z, c* = l1/2c. Any asymmetric version of the recovery
rules, say, z* = laz, c* = l1−ac, at 0 < a < 1, would not work unless a = 1/2, as
proven below, see Property 1. It should be pointed out that a different norming
condition such as say x1j j þ x2j j þ � � � xNj j ¼ 1 would lead to a different solution,
which is not popular, since the Euclidean normalization leads to an elegant
SVD-based solution described below.

The first-order optimality conditions for a triplet (l, z, c) to be the least-squares
solution to (2.17) and (2.18) imply that l = zTYc is the maximum value satisfying
equations

YTz ¼ lc and Yc ¼ lz ð2:19Þ

These equations for the optimal scores give the transformation of the data
leading to the summaries z* and c*. The transformation, denoted by D(C) in (2.1),
appears to be linear, and combines optimal c and z so that each determines the
other. It appears, this type of summarization is well known in linear algebra.

A triplet (l, z, c) consisting of a non-negative l and two vectors, c (size V � 1)
and z (size N � 1) is referred to as to a singular triplet for Y if it satisfies (2.19); l is
referred to as a singular value and z, c the corresponding singular vectors. What can
be proven immediately is the following:
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Property 1 For any singular triplet (l, z, c) satisfying (2.19) at l 6¼ 0, vectors
z and c have the same norm.

Indeed, by multiplying the left-side equation in (2.19) by cT, and the right-side
equation by zT, both from the left, one arrives at equations cTYTz = lcTc and
zTYc = lzTz. Since cTYTz = (zTYc)T and both are just real numbers, the equation
cTc = zTz holds because l 6¼ 0. Typically, the norms of c and z are taken to be
unities. However, at the Principal components in (2.17), they are equal to the square
root of the singular value l, which proves the statement.

Any matrix Y can have only a finite number of nonzero singular values, and the
number is equal to the rank of Y. Singular vectors z corresponding to different
singular values are necessarily mutually orthogonal, as well as singular vectors
c. When two or more singular values coincide, their singular vectors form a linear
subspace and can be chosen to be orthogonal, which is the case in computational
packages such as MatLab.

Therefore, z* = l½z and c* = l½c is a solution to the model (2.17) minimizing
(2.18) defined by the maximum singular value of matrix Y and the corresponding
normed singular vectors. Vectors z* and c* obviously also satisfy (2.19). This leads
to other nice mathematical properties.

Property 2 The score vector z* is a linear combination of columns of Y weighted
by c*’s components: c*’s components are feature weights in the score z*.

Equations (2.19) allow mapping additional features or entities onto the other part
of the hidden factor model. Consider, for example, an additional N-dimensional
feature vector y standardized same way as Y. Its loading c*(y) is determined as
c
 yð Þ ¼ hz
; yi=l for the talent score z*. Similarly, an additional standardized V-
dimensional entity point h has its hidden factor score defined according to the other
part of (2.19), z
 hð Þ ¼ hc
; hi=l.
Property 3 Pythagorean decomposition of the data scatter T(Y) relating the least
squares criterion (2.18) and the singular value holds as follows:

T Yð Þ ¼ l2 þ L2 ð2:20Þ

This implies that the squared singular value l2 expresses the proportion of the
data scatter explained by the principal component z*.

2.4.2 Extension of the PC Encoder–Decoder
to the Case of Many Factors

It is rather naïve to expect that a single hidden factor can explain the structure of
observed data. Assume a relatively small number K of different hidden factors z*k
and corresponding feature loading vectors c*k (k = 1,2, …, K; K < V), with objects
and features differently scored over them so that the observed data, after
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standardization, are sums of scores provided by different factors, as expressed by
Eq. (2.21).

This is again a decoder that can be used for deriving a summary from the

yiv ¼
XK
k¼1

c
kvz


ik þ eiv; ð2:21Þ

standardized matrix Y = (yiv) so that the hidden score and loading vectors z*k and
c*k are found by minimizing residuals, eiv. To eliminate the mathematical ambi-
guity, we again assume that z*k = l½zk and c*k = l½ck, where zk and ck are normed
vectors.

Assume that the rank of Y is r and K < r. Assume that the singular values of
Y are sorted so that l1 � l2 � ⋯ � lr. It can be proven that the least-squares
solution to (2.21) is provided by the maximal singular values lk and corresponding
normed singular vectors zk and ck (k = 1, 2, …, K).

The underlying mathematical property is that any matrix Y can be decomposed

yiv ¼
Xr

k¼1

lkckvzik; ð2:22Þ

over its singular values and vectors, as expressed in (2.22), which is referred to as
the singular value decomposition (SVD). In matrix terms, SVD (2.22) can be
expressed as

Y ¼
Xr

k¼1

lkzkc
T
k ¼ ZMCT ð2:220Þ

where the right-hand item Z is N � r matrix with columns zk and C is V � r matrix
with columns ck and M is an r � r diagonal matrix with the (k, k)-th diagonal entry
equal to lk.

Since the singular vectors are mutually orthogonal, Eq. (2.22 implies, that the
scatter of matrix Y is decomposed into the sum of the squared singular values:

T Yð Þ ¼ l21 þ l22 þ � � � þ l2r ð2:23Þ

This implies that the least-squares fitting of the PCA model in Eq. (2.21)
decomposes the data scatter into the sum of contributions of individual singular
triplets and the least-squares criterion L2 ¼ P

i;v e
2
iv:

T Yð Þ ¼ l21 þ l22 þ � � � þ l2K þ L2 ð2:24Þ

This provides for scoring the relative contribution of the model (2.21) to the data
scatter as l21 þ l22 þ � � � þ l2K

� �
=T Yð Þ.

In particular, this part of decomposition (2.22) is used at 2D visualization:
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yiv

 � zii


c1v
 þ zi2

c2v
 ð2:2200Þ

where the elements on the right come from the two first principal components. This
equation holds not 100% of the data scatter but 100 
 ðl21 þ l22Þ=T Yð Þ percent.
Every entity i 2 I is represented on a 2D Cartesian plane by the coordinate pair
(zii*, zi2*). Moreover, because of the symmetry, every feature v can be represented,
on the same plot, by the pair (c1v*, c2v*). Such a simultaneous representation of
both entities and features is referred to as a joint display or a biplot. As a matter of
fact, features are presented on a biplot by not just the corresponding points, but by
lines joining them to 0. This reflects the fact, that projections of points, representing
the entities (entity markers), to these lines are meaningful. For a variable v, the
length and direction of the projection of an entity marker to the corresponding line
reflects the value of v on the entity.

It should be added that the decomposition of the data scatter (2.24) in the
explained part and unexplained part, as well as its special case (2.20), can be
considered a multivariate analogue to the popular Pythagoras theorem. Pythagoras,
an Ancient Greece philosopher, whose life spanned almost all of the 6th century
BC, is credited for the development of the concept of mathematical proof, seeing
parallels between the numbers, music and outer space phenomena and, in this way,
establishing the classical system of education. The Pythagoras theorem states that in
any right-angled triangle, the square of the hypotenuse is equal to the sum of
squares of the other two sides. The data scatter then serves as an analogue to the
squared hypothenuse, whereas the other two items, the other two sides, the singular
values squared and L2, the PCA encoding model and the decoder’s error (see
Fig. 2.2 on p. 80 for an illustration of this).

2.4.3 Conventional Formulation of PCA Using
Covariance Matrix

In the English-language literature, PCA is conventionally introduced in a different
way: not via the encoder–decoder based model (2.17) or (2.21), but rather as a
heuristic technique to build most contributing linear combinations of features with
the help of the data covariance matrix.

The covariance matrix is defined as V � V matrix C = YTY/N, where Y is a
centered version of the data matrix X, so that all its columns are centered. The
v0; v00ð Þ-entry in the covariance matrix is the covariance coefficient between features
v′ and v′′; and the diagonal elements are variances of the corresponding features.
The covariance matrix is referred to as the correlation matrix if Y has been z-score
standardized, that is, if, after shifting each column to its mean, it was further
normalized by dividing by its standard deviation. In this case, elements of C are
correlation coefficients between corresponding variables. (Note how a bivariate
concept is carried through to multivariate data by using matrix multiplication.)
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One may express the conventional PCA formulation as follows. Given a cen-
tered N � V data matrix Y, find a normed V-dimensional vector c = (cv) such that
the sum of Y columns weighted by c, f = Yc, has the largest variance possible. This
vector is the principal component, termed so because it shows the direction of the
maximum variance in data. Vector f is centered for any c, since Y is centered.
Therefore, its variance is s2 ¼ hf ; f i=N ¼ f T f =N. The last equation comes under
the convention that a V-dimensional vector is a V � 1 matrix, that is, a column. By
substituting Yc for f, this leads to equation s2 = cTYTYc/N. Maximizing this with
respect to all vectors c that are normed, that is, satisfy condition cTc = 1, is
equivalent to unconditionally maximizing the quotient

qðcÞ ¼ cTYTYc
cTc

ð2:25Þ

over all V-dimensional vectors c. Expression (2.25) is well known in linear algebra
as the Rayleigh quotient for matrix YTY which is proportional to the covariance
matrix A = YTY/N. The maximum of Rayleigh quotient is reached at c being an
eigenvector of matrix A, corresponding to its maximum eigenvalue q(c) (2.25).

Vector a is referred to as an eigenvector for a square matrix B if Ba = ka for
some, possibly complex, number k which is referred to as the eigenvalue corre-
sponding to a. In the case of a covariance matrix all eigenvalues are not only real
but non-negative as well. The number of eigenvalues of B is equal to the rank of B,
and eigenvectors corresponding to different eigenvalues are orthogonal to each
other. In data analysis, the eigenvalues are always assumed to be different because
the probability that two or more of them are equal to each other is negligible.

Therefore, the first principal component, in the conventional definition, is vector
f = Yc defined by the eigenvector of the covariance matrix A corresponding to its
maximum eigenvalue. The second principal component is conventionally defined as
another linear combination of columns of Y, which maximizes its variance under the
condition that it is orthogonal to the first principal component. It is defined, of
course, by the second eigenvalue and corresponding eigenvector. Other principal
components are defined similarly, in a recurrent manner, under the condition that
they are orthogonal to all preceding principal components; which implies that they
correspond to other eigenvalues, in the descending order, and the corresponding
eigenvectors.

This construction seems rather remote from how the principal components are
introduced above. However, it is not difficult to prove that the two definitions are
computationally equivalent. Indeed, take equation Yc = lz from (2.19), express
z from this as z = Yc/l, and substitute this z into the other equation in (2.19):
YTz = lc, leading to YTYc/l = lc. This implies that l2 and c, defined by the
multiplicative encoder–decoder model, satisfy equation
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YTYc ¼ l2c; ð2:26Þ

that is, c is an eigenvector of square matrix YTY, corresponding to its maximum
eigenvalue k = l2. Matrix YTY, in the case when Y is centred, is the covariance
matrix A up to the constant factor 1/N. Therefore, c in (2.26) is an eigenvector of
A corresponding to its maximum eigenvalue. This proves that the two definitions
are equivalent when the data matrix Y is centered. The given proof also establishes a
simple relation between the eigenvalues k of A and singular values l of Y: k = l2/N.

In spite of the computational equivalence, there are some conceptual differences
between the two definitions. In contrast to the definition based on the multiplicative
encoder–decoder model, the conventional definition is purely heuristic, assuming
no underlying model whatsoever. It makes sense only for centered data because of
its reliance on the concept of covariance. Moreover, the fact that the principal
components are linear combinations of features is postulated in the conventional
definition, whereas this is a derived property of the optimal solution to the multi-
plicative decoder model which involves no assumptions on a linear or nonlinear
relation between features and hidden factors.

Q.2.15. Can you write equations defining l2 and z as an eigenvalue and corre-
sponding eigenvector of matrix YYT. Does this square matrix have any meaning of
its own?
A. By multiplying the left-side equation in (2.19) by Y on the left, we obtain
YYTz = lYc = l2z, the latter equation following from the right-hand equation in
(2.19). Elements of matrix YYT are inner products of rows of matrix Y to express
similarities between corresponding entities.

2.4.4 Computing Principal Components

The SVD decomposition is found with MatLab’s svd.m function

Z;M;C½ � ¼ svd Yð Þ;

where Y is N � V data matrix after standardization whose rank is r. Typically, if all
data entries come from observation, the rank r = min(N, V).

The output consists of three matrices:

Z—N � N matrix of which only r columns are meaningful, r factor score normed
columns;
C—V � V matrix of corresponding feature loading columns (normed) of which
only r are meaningful;
M—N � V matrix with r � r diagonal submatrix of corresponding singular values
sorted in the descending order on the top left, the part below and to the right is all
zeros.
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Q.2.16. Assume that a category covers subset S of entities and y(S) represents the
feature mean vector over S. Prove that the supplementary introduction of y(S) onto
the plane of singular vectors z via equation z
 ¼ p

lz ¼ Y 
 y Sð Þ=pl from (2.19)
onto the 2D PCA display is equivalent to representing the category by the averages
of the 2D points z1i* and z2i* over i 2 S.
A. Indeed, the operation of averaging involves but addition and dividing by a
constant, which are not affected by the linear operation of matrix multiplication.

2.4.5 Interpretation of Principal Components

We consider here issues of interpretation of solutions of the Principal Component
Analysis model. These are not quite straightforward. The fact, that the concept of
interpretation is quite vague itself, does not help either. We consider two aspects
of interpretation, the geometry and the substance, in the next two sections,
respectively.

2.4.5.1 Geometric Interpretation

Take all talent score points z = (z1, …, zN) that are normed, that is, satisfy equation
hz; zi ¼ 1 or zTz = 1 or z1

2 + ��� +zN2 = 1: they form a sphere of radius 1 in the
N-dimensional “entity” space (Fig. 2.18a). The image of these points in the feature
space, YTz, forms a skewed sphere, an ellipsoid in the feature space, consisting of
points lc where c is normed. The longest axis of this ellipsoid corresponds to the
maximum l, that is the first singular value of Y [Indeed, the first singular value l1
and corresponding normed singular vectors c1, z1 satisfy equation Yc1 = lz1 and,
thus, its transpose, c1

TYT = l1z
T. Multiplying the latter by the former, one gets

equation c1
TYTYc1 = l1

2, because zTz = 1.] (Fig. 2.18).

zN 

z1

1 yV

c1 

y1 

 (a) (b)

Fig. 2.18 Sphere zTz = 1 in the entity space (a) and its image, ellipsoid cTYTYc = l1
2, in the

feature space (b). The first component, c1, corresponds to the maximal axis of the ellipsoid with its
length equal to 2l1
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What the longest axis has to do with the data? This is exactly the direction which
is looked for in the conventional definition of PCA. The direction of the longest
axis of the data ellipsoid makes minimum of the summary distances (Euclidean
squared) from data points to their projections on the line (see Fig. 2.19), because of
the least-squares optimality of the decoder in (2.17) so that this axis is the best
possible 1D representation of the data.

This property extends to all subspaces generated in the order of extraction of
principal components: the first two PCs make a plane that is the best
two-dimensional approximation of the dataset; the first three make a 3D space best
approximating the dataset, etc.

One more illustration concerns the difference between SVD for the raw data and
that after centering; see Fig. 2.20. One can see that at the raw data, Fig. 2.20a, the
longest axis follows the direction between the origin and the points cloud, whereas
after centering it follows the structure of the dataset, Fig. 2.20b.

1 c1 yM 

c1

Fig. 2.19 The direction of the longest axis of the data ellipsoid makes minimum the summary
distances (Euclidean squared) from data points to their projections onto the line

xM 

x1 

(b) 

x M 

x1 

(a) 

Fig. 2.20 a PCA at data before centering, b PCA at the data after centering
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2.4.5.2 Substantive Interpretation

The principal components provide for the best possible least-squares approximation
of the data in a low dimension space. The quality of such a data compression is
usually judged over (i) the proportion of the data scatter taken into account by the
reduced dimension space and (ii) interpretability of the hidden factors supplied by
the PCs.

Contribution of the PCA model to the data scatter is reflected in the sum of
squared singular values corresponding to the principal components in the reduced
data table. This sum should be related to the data scatter or, equivalently, to the total
of all squared singular values to observe the impact to the data scatter.

For example, the 2D representation of 4D student data on Fig. 2.21 in the further
down Worked Example 2.7 contributes 72.11% to the data scatter.

The Fig. 2.2 on p. 80 shows that the contribution, in spite of its firm mathe-
matical footing, can be rather shaky an argument because it much depends on the
data standardization options. The criterion of interpretability gives a different, and
frequently more reliable, perspective.

To interpret PCA results substantively in terms of the data feature space, one
should use the feature loadings according to the singular vectors related to features.
These straightforwardly show how much a principal component is affected by a
feature: the larger the value, the greater the correlation. Any PCA component is
interpreted by using features with relatively high positive or negative coefficients,
as illustrated in the example below.

Worked Example 2.7. Interpretation of Principal Components at the
Standardized Student Data
Consider four features in the Students dataset—the Age and marks for SEn, OOP
and CI subjects. Let us center it by subtracting the mean vector a = (33.68, 58.39,
61.65, 55.35) from all the rows, and normalize the features by their ranges

−0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

−0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

Fig. 2.21 Scatter plot of the Student data (age and marks over SP, OO, CI) row points on the
plane of two first principal components, centered and rescaled. Pentagrams on the right represent
the mean points of the occupation categories AN and IT
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r = (31, 56, 67, 69). The latter operation seems a necessity because the Age,
expressed in years, and subject marks, percent, are not exactly comparable.
Characteristics of all the four singular vectors of these data for feature loadings are
presented in Table 2.19.

The summary contribution of the two first principal components (PCs) to the
data scatter is 42.34 + 29.77 = 72.11%, which is not that bad for educational data;
it warrants a close representation of the entities on the principal components plane.
The two principal components are found by multiplication of each of the corre-
sponding left singular vectors z1 and z2 by the square roots of the corresponding
singular values.

Take a look at the first singular vector in Table 2.19 corresponding to the
maximum singular value 3.33 at the standardized Students data. One can see that
the first component positively relates to marks over all subjects, perhaps except SEn
at which the loading is almost zero, and negatively to the Age. That means that on
average, the first factor is greater when a student gets better marks and is younger.
Thus, the first component can be interpreted as the “Age-related Computer Science
proficiency”. The second component (the second line in Table 2.19) is positively
related to all of the features, especially SEn marks, which can be interpreted as
“Age defying inclination towards Software Engineering”. Further insights into
interpretation can be found by looking at a visualization of the data on the plane of
two first principal components (see Worked Example 2.8 further on).

In spite of the fact that the occupation has not been involved in building the PC
space, its categories appear to occupy different parts of the plane, which will be
shown later, in Worked Example 2.8. Then the triangle and circle patterns on the
right of Fig. 2.21 show that AN laborers are on the minimum side of the age-related
CS proficiency, whereas IT occupations are high on that—all of which seem rather
reasonable. Both are rather low on the second component, though, in contrast to
students represented by dots, thus belonging to BA occupation category, that get the
maximum values on it.

In the early days of the development of factor analysis, yet within the psy-
chology community, researchers were trying to explore the possibility of achieving
a more interpretable solution by rotating the axes of the found subspace. The goal
was to find a simple structure of the loadings, in which most of the loading elements
are zero with a few non-zero values that should be as close to either 1 or −1 as

Table 2.19 Components of the normed loading parts of principal components for the
standardized part of Student data set; corresponding singular values, along with their squares
expressed both percent to their total, the data scatter, and in real

Singular
value

Singular value
squared

Contribution,
percent

Singular vector

Age SEn OOP CI
3.33 11.12 42.34 −0.59 0.03 0.59 0.55
2.80 7.82 29.77 0.53 0.73 0.10 0.42
2.03 4.11 15.67 −0.51 0.68 −0.08 −0.51
1.79 3.21 12.22 −0.32 0.05 −0.80 0.51
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possible. This goal, however, is subject to too much of arbitrariness and remains an
open issue, although using the so-called regularizers, relatively simple functions of
the solution being sought, to the optimized penalty function, can make a difference
(see, for example, Tibshirani et al. 2015). Keeping singular vectors as they are, not
rotated, has the advantage that each of them contributes to the data scatter as much
as possible. This relates to frequently occurring real world situations in which
factors underlying the phenomenon of interest contribute to it differently. The PCA
factors express such a structure formally: that one contributing the most is followed
by the second best contributing, then by the third best contributing, etc.

2.5 SVD Based Data Visualization

2.5.1 PCA Data Visualization

For the purposes of visualization of the data entities on a 2D plane, the data set is
usually first centered to put it against the backdrop of the center—we mentioned
already that more structure in the dataset can be seen when looking at it from the
center of gravity, that is, the grand mean location. Solutions to the multiple factor
model, that is, the hidden factor scoring vectors which are singular vectors of the
data matrix, in this case, are referred to as principal components (PCs). Two
principal components corresponding to the maximal singular values are needed for
a 2D representation.

What is warranted in this arrangement is that the PC plane approximates the
data, as well as the between-feature covariances and between-entity similarities, in
the best possible way. The coordinates provided by the singular vectors/principal
components are not unique, though, and can be changed by rotating the axes, but
they do hold a unique property that each of the components maximally contributes
to the data scatter.

Worked Example 2.8. Visualization of a Fragment of Students Dataset
Let us return to the Worked Example 2.7, regarding four features in the Students
dataset—the Age and marks for SEn, OOP and CI. We visualize the data on the
plane formed by the first two singular vectors as axes after multiplying each of them
by the square root of the corresponding singular value.

Each entity i = 1, 2, …, N is represented on the PC plane by the pair of the first
and second PC values (z1i*, z2i*) (see Fig. 2.21). The left part is just the data with
no labels. On the right part, two occupational categories are visualized using tri-
angles (IT) and circles (AN); remaining dots relate to category BA.

To produce the scatter-plot of Fig. 2.21 with 100 � 4 Student data matrix Y, the
following MatLab commands can be used:

� subplot(1, 2, 1); plot(z1*,z2*,‘k.’); %Fig. 2.21, picture on the left
� subplot(1,2,2);
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� plot(z1*, z2*,‘k.’, z1*(1:35),z2*(1:35),‘k^’,…z1*(70:100),z2*(70:100),‘ko’,
ad1,ad2,‘kp’);

In the last command, there are several items to be shown on the same plot:

(i) z1*, z2*, ‘k.’—these are black dot markers for all 100 entities in the plot on
the left;

(ii) z1*(1:35), z2*(1:35), ‘k^’—these are triangles to represent entities 1–35—
those in category IT;

(iii) z1*(70:100), z2*(70:100), ‘ko’—these are circles to represent entities 70–
100—those in category AN;

(iv) ad1, ad2,’kp’—ad1 is a 2 � 1 vector of the averages of z1* over entities 1 to
35 (category IT) and 70–100 (category AN), and ad2 a similar vector of
within-category averages of z2*. These are represented by pentagrams.

Q.2.17.Why we recommend multiply the singular vectors by the square roots of the
corresponding singular values for a 2D data visualization?
A. Because of Eq. (2.22′′) on p. 127 underlying the recommendations. The singular
values are taken into account in this way in the equation.

Worked Example 2.9. Evaluation of the Quality of Visualization of the
Standardized Student Data
To evaluate how well the data are approximated by the PC plane such as that on
Fig. 2.21, according to Eq. (2.21), one needs to assess the summary contribution of
the first two squared singular values in the total data scatter. To get the squares one
can multiply matrix mu below by itself and then see the proportion of the first two
values in the total:

� mu=m(1:4,:); %no need in the MatLab’s 4 � 100 matrix output, have a square
size 4 � 4
� la=diag(mu*mu);% make squares and put them as a vector
� lar=la*100/sum(sum(la)) % vector of the relative contributions of the PCs
� lar(1)+lar(2) % relative contribution of the 2 first components
The last two lines print to the screen:

lar ¼
42:3426

29:7719

15:6664

12:2191

ans ¼
72:1145

The latter is the sum of two first elements of the former—the proportion of the
data scatter, percent, taken into account by the 2D visualization on Fig. 2.21.
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2.5.2 Latent Semantic Analysis

The number of papers applying PCA to various problems—image analysis, infor-
mation retrieval, gene expression interpretation, complex data storage, etc.—makes
many hundreds published annually. Some of the applications are well established
techniques of their own. We present one such technique: Latent semantic indexing
(analysis), see Deerwester et al. (1990), Landauer (2006). Another application, to
categorical features, Correspondence analysis, is left to Sect. 3.6.3.

Latent semantic analysis is an application of PCA to document analysis—in-
formation retrieval, first of all, using document-to-keyword data.

Information retrieval is an application that no computational data analysis may
skip: given a set of records or documents stored, find out those related to a specific
query expressed by a set of keywords. Initially, at the dawn of computer era, when
all the documents were stored in the same database, the problem was treated in a
hard manner—only documents containing the query words were to be given to the
user. Currently, this is a much softer problem, that is being constantly and effi-
ciently solved by various search engines such as Google, for millions of World
Wide Web users, see Manning et al. (2008).

In its generic format, the problem can be illustrated with data in Table 2.20.
It refers to a number of newspaper articles related to subjects such as entertainment,
feminism and households, conveniently coded with letters E, F and H, respectively.
Columns correspond to keywords, or terms, listed in the first line of the table, and

Table 2.20 Database of 12 newspaper articles along with 10 keywords and the conventional
coding of term frequencies

Article Keyword

Drink Equal Fuel Play Popular Price Relief Talent Tax Woman
F1 1 2 0 1 2 0 0 0 0 2
F2 0 0 0 1 0 1 0 2 0 2
F3 0 2 0 0 0 0 0 1 0 2
F4 2 1 0 0 0 2 0 2 0 1
E1 2 0 1 2 2 0 0 1 0 0
E2 0 1 0 3 2 1 2 0 0 0
E3 1 0 2 0 1 1 0 3 1 1
E4 0 1 0 1 1 0 1 1 0 0
H1 0 0 2 0 1 2 0 0 2 0
H2 1 0 2 2 0 2 2 0 0 0
H3 0 0 1 1 2 1 1 0 2 0
H4 0 0 1 0 0 2 2 0 2 0
Df 5 5 6 7 7 8 5 6 4 5
Idf 0.88 0.88 0.69 0.54 0.54 0.41 0.88 0.69 1.1 0.88
The articles are labeled F for Feminism, E for Entertainment and H for Household. Two bottom lines
hold document frequencies of terms (df) and the other, inverse document frequency weights (idf)
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entries refer to term frequency in the articles, according to a conventional coding
scheme:

0—no occurrence,
1—occurs once,
2—occurs twice or more.

The user may wish to retrieve all the articles on the subject of households, but
they have to inquire by using the listed keywords only. For example, query “fuel”
will retrieve all four of the household related articles, and, in fact more than that—
E1 and E3 will show up too; query “tax” will get four items, three—H1, H3, and
H4—on the subjects of household and one—E3—on the subject of entertainment.
No combination of these two can improve the result.

This is very much a problem of description of a class, that is, of finding a
decision rule covering the required set of documents as tight as possible. Just the
decision rules must be queries, combinations of keywords. The error of such a
query is characterized by two characteristics, precision and recall (see Sect. 3.10).
For example, the “fuel” query’s precision is 4/6 = 2/3 since only four out of six are
relevant and recall is 1 because all of the relevant documents have been returned.
Similarly, for “tax” query both the precision and recall are ¾.

The rigidity of the query format does not fit well into the polysemy of natural
language—such words as “fuel” or “play” have more than one meaning—thus
leading to impossibility of exact information retrieval in many cases.

The method of latent semantic indexing (LSI) utilizes the SVD decomposition of
the document-to-term data to soften and thus improve the query system by
embedding both documents and terms into a subspace of singular vectors of the
data matrix.

Before proceeding to SVD, the data table sometimes is pre-processed, typically,
with what is referred to Term-Frequency-Inverse-Document-Frequency (tf-idf)
normalization. This procedure gives a different weight to any keyword according to
the number of documents it occurs at (document frequency df). The intuition is that
the greater the document frequency, the more common and thus less informative is
the word. The idf weighting assigns each keyword with a weight inversely pro-
portional to the logarithm of its document frequency. For Table 2.20, df and idf
weights are in the bottom lines.

The term frequency, tf, value is that of the corresponding data matrix entry
referring to the frequency of the occurrence of the column word in the row doc-
ument related to the document size.

After the SVD of the data matrix is obtained, the documents are considered
points of the subspace of a few first singular vectors. The dimension of the space is
not very important here, though it still should be much smaller than the original
dimension. Good practical results have been reported at the dimension of about
100–200 when the number of documents in tens and hundred thousands and the
number of keywords in thousands. A query is also represented as a point in the
same space. The principal components, in general, are considered as “orthogonal”
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concepts underlying the meaning of terms. This however, should not be taken too
literally, as the singular vectors can be quite difficult to interpret. Also, the repre-
sentation of documents and queries as points in a Euclidean space is referred to
sometimes as the vector space model in information retrieval.

The Euclidean space format allows to measure similarity between items using
the inner product or even what is called cosine—the inner product between rows
that have been pre-normalized. Then a query would return the set of documents
whose similarity to the query point is greater than a threshold. This tool may
provide for a better resolution in the problem of information retrieval, because it
well separates different meanings of synonyms.

Worked Example 2.10. Latent Semantic Space for the Article-to-term Data
Let us illustrate the LSI at the data in Table 2.20. To apply tf-idf normalization, we
assume that all the documents have the same length so that the absolute term
frequencies in Table 2.20 can be used as tf estimates. Then the tf-idf coding of any
entry is equal to the entry value multiplied by the corresponding idf value (the last
line in Table 2.20).

Consider the combination fuel-price-relief-tax as a query Q that should relate to
Household category. Table 2.21 contains data that are necessary for computing
coordinates of the query Q in the concept space. The query is represented by 1/0
vector in the bottom line of Table 2.21. The first coordinate of Q image on the map
is computed by summing all the corresponding components of the first left singular
vector and dividing the result by the square root of the first singular value:
u1 = (−0.34 − 0.42 − 0.29 − 0.24)/8.6½ = −0.44. The second coordinate is com-
puted similarly from the second singular vector and value:
u2 = (−0.25 − 0.22 − 0.35 − 0.33)/5.3½ = −0.48. These correspond to the pen-
tagram on the left part of Fig. 2.22. One can think that query Q corresponds to an
additional row in the data table which is equal to the last line in Table 2.21, so that
the visualization algorithm of PCA applies to that line.

Figure 2.22 represents the documents in the space of two first principal com-
ponents; left part corresponds to the original term frequency codes and the right part
to the data tf-idf normalized.

As one can see, both representations separate the three subjects, F, E and H,
more or less similarly, and provide the query Q with a rather good resolution.
Taking into account the position of the origin of the concept space—the circle in the
middle of the right boundary, the four H items are indeed have very good angular
similarity to the pentagram representing the query Q.

The SVD representation of documents is utilized in other applications such as
text mining, web search, text categorization, software engineering, etc.

The full SVD of data matrix F leads to equation F = ZMCT where Z and C are
matrices whose columns are right and left normed singular vectors of F and M is a
diagonal matrix with the corresponding singular values of F on the diagonal. By
leaving only K columns in these matrices, we substitute matrix F, by matrix
FK = ZKMKCK

T so that the entities are represented in the K-dimensional concept
space by the rows of matrix ZKMK

½.
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To translate a query presented as a vector q in the V-dimensional space into the
corresponding point u in the K-dimensional concept space, one needs to take the
product g = CK

Tq, which is equal to g = zMK
½ according to the definition of singular

values, after which z is found as z = gMK
−½. Specifically, k-th coordinate of vector

z is calculated as zk ¼ hck; qi=l1=2k k ¼ 1; 2; . . .;Kð Þ.
The similarities between rows (documents), corresponding to row-to-row inner

products in the concept space are computed as ZKMK
2ZK

T and, similarly, the simi-
larities between columns (keywords) are computed according to the dual formula
CKMK

2CK
T . Applying this to the case of the K-dimensional point z representing the

original V-dimensional vector q, its similarities to N original entities are computed
as zMK

2ZK
T .

Let X be N � V array representing the original frequency data. To convert that to
the conventional coding, in which all the entries larger than 1 are coded by 2, one
can use this operation:

>> Y=min(X,2*ones(N,V));

Computing vector df of document frequencies over matrix Y can be done with
this line:

>> df=zeros(1,V); for k=1:V;df(k)=length(find(Y(:,k)>0));end;

and converting df to the inverse-document-frequency weights, with this:

>> idf=log(N./df);

After that, it-idf normalization can be made by using command

>>YI=Y.*repmat(idf, N,1);

Given term frequency matrix Y, its K-dimensional concept space is created with
commands:

>> [z,m,c]=svd(Y);
>>zK=z(:, [1:K]); cK=c(:, [1:K]); mK=m([1:K], [1:K]);

Worked Example 2.11. Drawing Fig. 2.22
For MatLab coding, consider that z is the matrix of normed document score sin-
gular vectors, c the matrix of normed keyword loading vectors, and m the matrix of
singular values of the data in Table 2.20 as they are.

Table 2.21 Two first singular vectors of term frequency data in Table 2.20

Ei.value Contrib.,
%

Left singular vectors normed

1st comp. 8.6 46.9 −0.25 −0.19 −0.34 −0.40 −0.39 −0.42 −0.29 −0.32 −0.24 −0.22
2nd comp. 5.3 17.8 0.22 0.34 −0.25 −0.07 0.01 −0.22 −0.35 0.48 −0.33 0.51
Query Q 0 0 1 0 0 1 1 0 1 0
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To draw the left part of Fig. 2.22, one can define the coordinates with vectors z1
and z2:

� z1=z(:,1)*sqrt(m(1,1)); %first coordinates of N entities in the concept space
� z2=z(:,2)*sqrt(m(2,2)); %second coordinates of N entities in the concept space

Then prepare the query vector and its translation to the concept space:

� q=[0 0 1 0 0 1 1 0 1 0]; % “fuel, price, relief, tax” query vector
� d1=q*c(:,1)/sqrt(m(1,1)); %first coordinate of query q in the concept space
� d2=q*c(:,2)/sqrt(m(2,2)); %second coordinate of query q in the concept space

After this, an auxiliary text data should be put according to MatLab
requirements:

� tt={‘E1’,‘E2’, …, ‘H4’}; % cell of 12 names of the items in data matrix
� ll=[0:.04:1.5]; zd1=d1*ll; zd2 = d2*ll;
% pair zd1, zd2 will draw a line through the origin and point (d1, d2)

Now we are ready for plotting the left drawing on Fig. 2.22:

� subplot(1,2,1);
� plot(u1,u2,‘k.’,d1,d2,‘kp’,0,0,‘ko’,ud1,ud2);text(u1,u2,tt);
� text(d1,d2, ‘Q’);
� axis([-1.5 0 -1 1.2]);

The arguments of the plot drawing command here are:

u1, u2, ‘k.’—black dots corresponding to the original entities;
d1,d2,‘kp’—black pentagram corresponding to query q;
0,0,‘ko’—black circle corresponding to the space origin;
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Fig. 2.22 Two first principal components plane for the data in Table 2.21, both in the original
format (left) and after the tf-idf normalization (right). Query Q combining fuel-price–relief-tax
keywords is mapped to the pentagram; the line connects it with the origin 0
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ud1,ud2—coordinates of the line through the query and the origin.

Command text provides for string labels at the corresponding points. Command
axis specifies the boundaries of the Cartesian plane box on the figure, which can be
used for making different plot boxes uniform.

The plot on the right of Fig. 2.22 is coded similarly by using SVD of tf-idf
matrix YI rather than Y.

Q.2.18. In many situations, (a) the first singular vector is all positive and (b) the
second singular vector is half negative. Why can be that? A. A typical situation:
(a) All features are positively correlated which implies that the first eigenvector is
positive; (b) the second must be orthogonal to the first, to make 0 their inner
product.

Q.2.19. Is matrix

1 2
2 1

of rank 1 or not?
A. The rows are not proportional to each other, thus not.

Q.2.20. Prove that if matrix Y is symmetric then its eigenvalues and vectors (k,z) are
simultaneously its singular triplets (k, z, z).
Q.2.21. Find a matrix of rank 1 that is the nearest to matrix in Q.2.19 according to
the least-squares criterion.
A. The solution is given by the first singular value and corresponding singular
vectors which are the same as the first eigenvalue and corresponding eigenvector,
k = 3 and z = (1/√2, 1/√2), thus leading to matrix

3=2 3=2
3=2 3=2

as the solution.

Q.2.22. For positive a and b, inequality a < b can be equivalently expressed as a/
b < 1. The difference between a and b does not change if c > 0 is added to both of
them, but the ratio does. Prove that for any c > 0, (a + c)/(b + c) > a/b—this
would illustrate that the further away the positive data are from zero, the greater the
contribution of the first principal component.
Q.2.23. There is another representation of a singular value problem as an eigen-
value problem. Given a rectangular N � V matrix Y, consider a square
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(N + V) � (N + V) matrix Y* that consists of four blocks, two of which, the
diagonal N � N and V � V blocks, are all zeros, while the others are Y and YT:

Y
 ¼ 0 Y
YT 0

� �
:

Prove that a triplet (l, z, c) is singular for Y if and only if l is eigenvalue for Y*

corresponding to eigenvector y = (z,c) in which first N components are taken by
z and the remaining V components, by c.

A. Consider an arbitrary eigenvalue l and corresponding eigenvector y of matrix
Y* and denote the vector of its first N component by z, and the rest by c so that
y = (z, c). The product Y*y will have its first N components equal to 0z + Yc = Yc
and the next V components equal to YTz + 0c = YTz. Since Y*y = ly, that means
that Yc = lz and YTz = lc, which proves the statement.

Q.2.24. Prove that if an eigenvector y = (z,c) of Y* is normed, then its components
z and c both have norms of 0.51/2.
A. Indeed, yj jj j2¼ zj jj j2 þ cj jj j2 because these are just sums of the squared com-
ponents. On the other hand, as proven in Q.2.23, z and c are singular vectors of Y so
that they must have equal norms because of Property 1 on p. 125. This leads to
equation zj jj j2¼ cj jj j2¼ 1=2, which proves the statement.
Q.2.25. Prove that if l is an eigenvalue of Y* corresponding to its eigenvector
y = (z, c) then so is its negation −l corresponding to eigenvector y = (−z, c).
A. Indeed, equations Yc = lz and YTz = lc hold if and only if Yc = (−l)(−z) and Y
(−z) = (−l)c.

2.6 Ranking in Feature Space and Networks

2.6.1 Scoring a Hidden Factor

2.6.1.1 Encoder−Decoder Multiplicative Model

Consider the following problem. Given student’s marks at different subjects, can we
derive from this their score at a hidden factor of talent that is supposedly reflected in
the marks? Take a look, for example, at the first six students’ marks over the three
subjects in Table 2.22 extracted from Students data, Table 1.5.

To judge of the relative strength of a student, the average mark is used in
practice. This ignores the relative work load that different subjects may impose on a
student—can you see that CI mark is greater than SEn mark for each of the six
students?—and in fact, is purely empirical and does not allow much theoretical
speculation. Let us assume that there is a hidden factor, not measurable straight-
forwardly, the talent, that is manifested in the marks. Suppose that another factor
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manifested in the marks is subject load, and, most importantly, assume that these
factors multiply to make a mark, so that a student’s mark over a subject is the
product of the subject’s loading and the student’s talent:

Mark Student; Subjectð Þ ¼ Talent Score Studentð Þ 
 Loading Subjectð Þ ð
Þ

One may point out two issues related to this model—one internal, the other
external.

The external issue is that the mark, as observed, depends on many other factors
differently affecting different students—the weather, a sleepless night or malady,
level of interest in the subject, etc., which make the model as is overly simplistic
and prone to errors. Well, a proponent would say, sure the model is simplistic—it
takes on only most important factors. The others will cause errors indeed, but these
can be tackled by minimizing them: the idea is that the hidden talent and loading
factors can be found by minimizing the differences between the real marks and
those derived from the model. The PCA method is based on the least-squares
approach so that it is the sum of squared differences between the observed and
computed marks that is minimized in PCA.

The internal issue is that the model as is admits no unique solution because it is
the product of mark by loading that matters, not their individual values—if one
multiples all the talent scores by a number, say Talent_Score(Student) * 5, and
simultaneously divides all the subject loadings by the same number, Loading
(Subject)/5, the product will not change. How one is supposed to compute some-
thing which admits no definite representation? To make a solution unique, con-
ventionally, a constant norm of one or both of the items is assumed so that one more
item into the product is admitted—that expressing the product’s magnitude. Then,
there is a unique solution indeed, with the magnitude expressed by the so-called
maximum singular value of the data matrix with the score and load factors being its
corresponding normed singular vectors.

Specifically, the maximum singular value of matrix in Table 2.22 is 291.4, and
the corresponding normed singular vectors are z = (0.40, 0.34, 0.42, 0.42, 0.41,
0.45), for the talent score, and c = (0.50, 0.57, 0.66), for the loadings. That means
that every mark in the matrix is the product of three items. For example, to compute

Table 2.22 Marks at three subjects for six students from Students data Table 1.5

# SEn OOP CI Average
1 41 66 90 65.7
2 57 56 60 57.7
3 61 72 79 70.7
4 69 73 72 71.3
5 63 52 88 67.7
6 62 83 80 75.0
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the model SEn value for student 6, one takes 291.4 * 0.45 * 0.50 = 65.6, which is not
that far from the observed mark of 62. Yet the model involves the product of two items
only. To get back to our model, we need to distribute the singular value between the
vectors. There is only one way to do it complying with the singular value Eqs. (2.22)
and (2.22″)—by multiplying each of the vectors by the same value, the square root of
the singular value which is 17.1. Thus, the denormalized talent score and subject
loading vectors will be z′ = (6.85, 5.83, 7.21, 7.20, 6.95, 7.64) and c′ = (8.45, 9.67,
11.25). According to the model, the score of student 3 over subject SEn is the product
of the talent score, 7.21, and the loading, 8.45, which is 60.9, quite close to the
observed mark 61. Similarly, product 5.83 * 9.67 = 56.4 is close to 56, student 2’s
mark over OOP. The differences can be greater though: product 5.83 * 8.45 is 49.3,
which is rather far away from the observed mark 57 for student 2 over SEn.

In matrix terms, the model can be represented by the following equation

6.85 
5.83 
7.21 
7.20 
6.95 
7.64 

8.45   9.67   11.25

57.88   66.29   77.07 
49.22   56.37   65.53 
60.88   69.72   81.05 
60.83   69.67   81.00 
58.69   67.22   78.15 
64.53   73.91   85.92 

ð2:27Þ

whereas its relation to the observed data matrix, by equation

 41    66    90 
 57    56    60 
 61    72    79 
 69    73    72 
 63    52    88 
 62    83    80 

57.88   66.29   77.07 
49.22   56.37   65.53 
60.88   69.72   81.05 
60.83   69.67   81.00 
58.69   67.22   78.15 
64.53   73.91   85.92

–16.88  –0.29  12.93
  7.78   –0.37   –5.53
  0.12    2.28   –2.05 
  8.17    3.33   –9.00 
  4.31 –15.22    9.85 
–2.53    9.09   –5.92

ð2:28Þ

where the left-hand item is the observed mark matrix; that in the middle, the
model-computed evaluations of the marks; and the right-hand item comprises the
differences between the real and decoded marks.

2.6.1.2 Error of the Model

Among questions that arise with respect to the matrix equation such as that in (2.2)
are the following:

(i) Why are the errors appearing at all?
(ii) How can the overall level of errors be assessed?
(iii) Can any better fitting estimates for the talent be found?
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We address them in turn.

(i) Differences between real and model-derived marks

The differences emerge because the model imposes significant constraints on the
model-derived estimates of marks. They are generated as products of components
of just two vectors, the talent score and the subject loadings. This means that every
row in the model-based matrix (*) is proportional to the vector of subject loadings,
and every column, to the vector of talent scores. Therefore, the rows are mutually
proportional as well as the columns. Real marks, generally speaking, do not satisfy
such a property: mark rows or columns are typically not proportional to each other.
More formally, this can be expressed in the following way: 6 talent scores and 3
subject loadings together can generate not more than 6 + 3 = 9 independent esti-
mates. (One more degree of freedom may go because the norms of these two
vectors are the same.) The number of marks however, is the product of these,
6 * 3 = 18. The greater the size of the data matrix, M � V, the smaller the pro-
portion of the independent values, M + V, that can be generated from the model.

In other words, matrix (*) is one-dimensional. It is well recognized in mathe-
matics in the concept of matrix rank which corresponds to the “inner” dimension of
a matrix—matrices that are products of two vectors are referred to as matrices of
rank 1.

Q.2.26. For the data in Table 2.22, as well as many others, svd function in MatLab
produces first singular vectors z and c negative, which contradicts the meaning of them
as talent scores and subject loadings. Can anything be done about that?

A. Yes, they can be changed to –z and –c without compromising their singular
vector status.

(ii) Assessment of the level of differences

A conventional measure of the level of error of the model is the ratio of the
scatters of the model derived matrix and the observed data matrix in (2.28). The
scatter of matrix A, T(A), is the sum of the squares of all of A-entries or, which is
the same, the sum of the diagonal entries in matrix A * AT, the trace(A * AT).

Worked Example 2.12. Explained Proportion of the Data Scatter in Eq. (2.28)
Consider scatters of three matrices in (2.28) in Table 2.23. The residual data scatter is
rather small and accounts for only e2 = 1183.2/86,092 = 0.0137, that is, 1.37%, of
the original data scatter. Its complement to unity, 98.63%, is the proportion of the
data scatter explained by the multiplicative model. This also can be straightforwardly

Table 2.23 Scatters of matrices in Eq. (2.28)

Scatter of

Data matrix Model matrix Residual matrix
Absolute 86,092 84,908.80 1183.20
Proportion 100 98.63 1.37
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derived from the singular value, 291.4: its square shows the part of the data scatter
explained by the model, 291.42/86,092 = 0.9863 (see Eq. (2.20) on p. 125).

Q.2.27. In spite of the fact that some errors in (2.24) are rather high, the overall
squared error is quite small, just about 1% of the data scatter. Why is that?
A. Because the data values are far away from 0—see Q.2.22 explaining the effect in
general.

(iii) The singular vector estimates are the best

The squared error is the criterion optimized by the estimates of talent scores and
subject loadings. No other estimates can give a smaller value to the square error for
data matrix in Table 2.22 than e2 = 1.37%.

2.6.1.3 Formulaic Expression of the Hidden Factor Through the Data

The relations between singular vectors (see Eq. (2.19) in Sect. 2.4.1) provide us with
a conventional expression of the talent score as a weighted average of marks at
different subjects. The weights are proportional to the subject loadings c′ = (8.45,
9.67, 11.25): weight vectorw is the result of dividing of all entries in c′ by the singular
value, w = c′/291.4 = (0.029, 0.033, 0.039). For example, the talent score for student
1 is the w weighted average of their marks, 0.029 * 41 + 0.033 * 66 +
0.039 * 90 = 6.88.

The model-derived averaging allows one also to score the talent of other stu-
dents, those not belonging to the sample being analyzed. If marks of a student over
the three subjects are (50, 50, 70), their talent score will be the w-weighted average:
0.029 * 50 + 0.033 * 50 + 0.039 * 70 = 5.83.

A final touch to the hidden factor scoring can be given by rescaling it in a way
conforming to the application domain. Specifically, onemaywish to express the talent
scores in a 0–100 scale resembling that of the originalmark scales. Thatmeans that the
score vector z′ has to be transformed into z′′ = a * z′ + b, where a and b are the
scaling factor and shift coefficients, that can be found from two natural conditions:
(a) z′′ is 0 when all the marks are 0 and (b) z′′ is 100 when all the marks are 100.
Condition (a) means that b = 0, and condition (b) calls for calculation of the talent
score of a student with all topmarks. Summing the three 100marks with weights from
w leads to the value zM = 0.029 * 100 + 0.033 * 100 + 0.039 * 100 = 10.10
which implies that the rescaling coefficient amust be 100/zM = 9.92 or, equivalently,
weights must be rescaled as w′ = 9.92 * w = (0.29, 0.33, 0.38). Talent scores found
with these weights are presented in the right column of Table 2.24—hardly a great
difference from the average scores, except that the talent scores are slightly higher, due
to a greater weight assigned to the mark-earning CI subject.

Worked Example 2.13. SVD for Six Students Dataset
For the centered version of the 6 � 3 matrix in Table 2.22 the SVD matrices are as
follows:

146 2 Quantitative Summarization



In spite of the fact that the original model does not assume any averaging of the
marks, the optimal scoring is a form of averaging indeed. However, one should note
that it is the model that provides us with both the weights, which are the optimal
subject loadings, and the error—these are entirely out of the picture at the empirical
averaging.

This line of thinking can be applied to any other hidden performance measures
such as quality of life in different cities using scorings over its different aspects
(housing, transportation, catering, pollution, etc.) or performance of different sec-
tions of management in a big company or government.

2.6.1.4 Sensitivity of the Hidden Factor to Data Standardization

One big issue related to the multiplicative hidden factor model is its instability with
respect to data standardization that has been clearly seen at different data normal-
ization options in Project 2.1. Here is another example.

Worked Example 2.14. Principal Components After Feature Centering
Consider the data set in Table 2.22 analyzed above. Take the means of marks over
different disciplines in this table, 58.8 for SEn, 67.0 for OOP, and 78.2 for CI, and
subtract them from the marks, to shift the data to the mean point (see Table 2.25).
This would not much change the average scores presented in Tables 2.19 and 2.20—
just shifting them back by the average of the means, (58.8 + 67.0 + 78.2)/3 = 68.

Table 2.24 Marks and talent scores for six students

# SEn OOP CI Average PC
talent

1 41 66 90 65.7 68.0
2 57 56 60 57.7 57.8
3 61 72 79 70.7 71.5
4 69 73 72 71.3 71. 5
5 63 52 88 67.7 69.0
6 62 83 80 75.0 75.8
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Table 2.25 Centered marks for six students and corresponding talent scores, first, as found as
explained in A.1, and, second, that rescaled to produce extreme values 0 and 100 if all subject
marks are 0 or 100, respectively

# SEn OOP CI Average Talent
score

Talent
rescaled

1 −17.8 −1.0 11.8 −2.3 −3.71 13.69
2 −1.8 −11.0 −18.2 −10.3 1.48 17.60
3 2.2 5.0 0.8 2.7 0.49 16.85
4 10.2 6.0 −6.2 3.3 2.42 18.31
5 4.2 −15.0 9.8 −0.3 −1.94 15.02
6 3.2 16.0 1.8 7.0 1.25 17.42

Everything changes, though, in the multiplicative model, starting from the data
scatter, which is now 1729.7—a 50 times reduction from the case of uncentered
data. The maximum singular value of the feature centered matrix in Table 2.25, is
27.37 so that the multiplicative model now accounts for only 27.372/
1729.7 = 0.433 = 43.3% of the data scatter. This goes in line with the idea that
much of the data structure can be seen from the “grand” mean (see Fig. 2.20 in
Sect. 2.4.5.1 illustrating the point), however, this also greatly increases the error. In
fact, the relative order of errors does not change that much, as can be seen in
formula (2.29) decomposing the centered data (in the box on the left) in the
model-based item, the first on the right, and the residual errors in the right-hand
item. What changes is the denominator. The model-based estimates have been
calculated in the same way as those in formula (2.27)—by multiplying every entry
of the new talent score vector z* = (−3.71, 1.48, 0.49, 2.42, −1.94, 1.25) over every
entry of the new subject loading vector c* = (3.10, 1.95, −3.73).

= + +

 –17.8  –1.0   11.8 
 –1.8  –11.0  –18.2 
  2.2     5.0     0.8 
 10.2    6.0    –6.2 
  4.2  –15.0     9.8 
  3.2   16.0     1.8 

–11.51 –7.24 13.83
   4.60  2.90  –5.53 
   1.52  0.96  –1.82 
   7.52  4.73  –9.04 
  –6.02 –3.79  7.23 
   3.88   2.44 –4.67

–6.33    6.24   –2.00 
–6.44 –13.90 –12.63 
 0.65    4.05     2.66 
 2.65    1.27     2.87 
10.18 –11.21    2.60
–0.72  13.56    6.50

ð2:29Þ

Worked Example 2.15. Rescaling the Talent Score fromWorked Example 2.14
Let us determine rescaling parameters a and b that should be applied to z*, or to the
weights c*, in Worked Example 2.14 so that at 0 marks over all three subjects the
talent score would be 0 and at all 100 marks the talent score would be 100.

As in the previous section, we first determine what scores correspond to these
situations in the current setting. All-zero marks, after centering, become minus the
average marks,−58.8 for SEn,−67.0 for OOP, and−78.2 for CI. Averaged according
to the loadings c* from Worked Example 2.14, they produce 3.10 * (−58.8) +
1.95 * (−67) − 3.73 * (−78.2) = −21.24. Analogously, all-hundred marks, after
centering, become 41.2 for SEn, 33.0 for OOP, and 21.8 for CI to produce the score
3.10 * (41.2) + 1.95 * (33) − 3.73 * (21.8) = 110.8. The difference between these,
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110.8 − (−21.2) = 132.0 divides 100 to produce the rescaling coefficient a = 100/
132 = 0.75, after which shift value is determined from the all-0 score as b = −a*
(−21.24) = 16.48. Thus rescaled talent scores are in the column on the right of
Table 2.25. These are much less related to the average scoring than it was the case at
the original data. One can see some drastic changes such as, for instance, the formerly
worst student 2 becoming second best, since their deficiency over CI has been con-
verted to an advantage because of the negative loading at CI.

For a student with marks (50, 50, 70) that becomes (−8.8, −17.0, −8.2) after
centering, the rescaled talent score comes from the adjusted weighting vector
w = a * c = 0.75 * (3.10, 1.95, −3.73) = (2.34, 1.47, −2.81) as the weighted
average 2.34 * (−8.8) + 1.47 * (−17) − 2.81 * (−8.2) = −22.73 plus the shift
value b = 16.48 so that the result is, paradoxically, −6.25—less than at all zeros!
This is again a result of the negative loading at CI.

This example illustrates not only the idea of a great sensitivity of the multi-
plicative model, but, also, that there should be no mark centering when evaluating
performances.

Project 2.2. Stratification: The PCA and an Alternative Scoring Method

Consider the following illustrative data of 8 projects evaluated over two criteria
(Table 2.26).

These data are illustrated on Fig. 2.23 which is just a data scatter-plot on the
plane of the two criteria, x1 and x2. Additional information, the parallel dash-lines
A, B, and C show three strata, A, B, and C, to which the projects belong.

The term “stratum (singular)—strata (plural)” denotes here a line at which an
aggregate weighted criterion f = w1x1 + w2x2 is constant. It is not difficult to check
that the strata A, B, and C on Fig. 2.16 are defined by the equation f = 1/3x1 + 2/
3x2 = a where a = 2.67, 2.00, and 0.67, respectively. The weights form a vector,
w = (w1, w2) = (1/3, 2/3) which shows the relative contribution of the criteria in the
aggregate criterion. This vector is orthogonal to the strata lines, that is, normal
vector, and is represented by the dash-axis on Fig. 2.23.

Table 2.26 Eight projects evaluated over two criteria

Project Criterion x1 Criterion x2 LinStrat First singular vector
C1 2 0 0.67 1.54
C2 0 1 0.67 0.23
B1 6 0 2.00 4.63
B2 5 0.5 2.00 3.97
B3 3 1.5 2.00 2.66
B4 1 2.5 2.00 1.34
A1 4 2 2.67 3.54
A2 2 3 2.67 2.23
The columns on the right contain scores assigned to the projects by two alternative criteria
combining methods
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In this regard, a question emerges—have the strata A, B, C and the weight vector
w anything to do with the SVD decomposition? Specifically—does this solution
coincide with that provided by the first singular vector of the data matrix in
Table 2.26? On the first glance, it should. Indeed, the aggregate criterion exactly
represents the data, thus making the error of the one dimensional representation
zero. It is the error, in its squared form, which is minimized by the method of
principal components, is not it? It appears not!

Let us first compute the first principal component, with no preliminary data
centering. To this end, let as compute the squared matrix A = XTX:

A ¼ 95:00 23:50
23:50 22:75

� �

Operation eig in MatLab produces the maximum eigenvalue of A, 101.971 and
the corresponding eigenvector c = (−0.9587, −0.2844). The negative sign, at the
positive A, makes no sense. Thus, we multiply it by −1 to equivalently arrive at
c = (0.9587, 0.2844). Normalizing this to weights summing to unity, we obtain a
weight vector w1 = (0.7712, 0.2289). This shifts the main weight from x2 to x1!
Moreover, the quadratic error of the component is not zero, but 13.4% of the data
scatter (Fig. 2.23).

What is the matter? Well, let us recall that the PCA encoder–decoder model
assumes no linear relation between the hidden factor sought and the criteria. The
model in (2.17) assumes that data matrix elements are products of the factor scores
and feature loadings, xiv � zicv, up to a residual. The fact that the principal com-
ponent is a linear combination of features derives from their optimality regarding
that model, the least-squares criterion (2.18), from nothing else.

Indeed, if we compare the values of the Rayleigh quotient, k(c) = cTAc/(cTc),
whose maximum is the maximum eigenvalue of A, at w and w1, we will see that
k(w) = 56, whereas k(w1) = 101.971, which shows how far away is the right
weight vector w = (1/3, 2/3) from the optimum.

B
  C A

Fig. 2.23 Parallel strata on the plane of criterion x1, x-axis, and criterion 2, x2, y-axis, labeled by
letters A, B, and C, according to groups of project points located on them. Projects of these groups
are presented by rectangles (C), circles (B), and triangles (A). The dash line axis represents the
normal vector to the strata, the solid line axis, the first principal component
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This example motivates us to define a data analysis model which would be more
appropriate to the issue of stratification than that of the PCA. According to such a
model, the user has to pre-specify the number of strata, K > 1. The problem is to
find them by minimizing their “thickness”. Given M criteria x1, x2,…, xM, over
N objects, an aggregate criterion f ¼ PM

m¼1 wmxm is to determine K strata and their
aggregate f-values, ck (k = 1, 2,…, K), so that the objects in each of the strata would
have their aggregate f-values as close to the strata value ck, as possible (see Orlov
and Mirkin 2014; Murtagh et al. 2018). Let us denote the strata to be found by Sk
(k = 1, 2,…, K); they form a partition, so that every object belongs to one and only
one of the strata. Then the criterion can be formulated as

L w; Sk; ckð Þ ¼
XN
i¼1

XK
k¼1

X
i2Sk

ðck �
XM
m¼1

wmximÞ2 ð2:30Þ

to be minimized with respect to an unknown weight vector w = (wm) such that
0 � wm � 1 and w1 + w2 + ��� + wM = 1, strata Sk and their values ck (k = 1,…,
K).

A method, Linstrat, proposed by Orlov and Mirkin (2014) starts from a vector of
arbitrary admissible weights w and works in iterations. Each of the iterations
consists of two steps.

The first step takes in vector w and forms the current aggregate criterion f = Xw
where X is the object-to-criterion data matrix. The criterion in (2.30) can be
reformulated by using f as

l Sk; ckð Þ ¼
XN
i¼1

XK
k¼1

X
i2Sk

ðck � fiÞ2 ð2:31Þ

It is not difficult to prove two following properties of the criterion:

(1) Given strata Sk, the optimal values ck are the within-stratum centers of f,
ck ¼ 1

Nk

P
i2Sk fi.

(2) Given centers ck, the optimal strata are intervals of the f range.

The statement (1) is proven by taking the derivative of (2.31) with respect to ck
and equalizing it to zero. To prove the statement (2), one should assume that on the
contrary a stratum contains such i′ and i″ that a j from a different stratum exists
such, that fi0\fj\fi00 ; in this case, moving one of them to an appropriate stratum
should decrease the value of the criterion, which would prove that the initial
assumption is wrong.

This warrants that the number of admissible partitions can be constrained to a
binomial number, CK�1

N , of sets of K − 1 boundary points between the strata; a
method for finding an optimal partition is known for quite a while already (see
Fisher 1958), but an ordinary K-means works even better, as our experiments show.
An ordinary K-means algorithm begins with a set of values ck. Then all the objects
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are assigned to their nearest centers, forming intervals of f-values around them.
After this, the within-interval averages are computed, and the process is repeated till
convergence. More on K-means can be found in Chap. 4.

The second step takes in the strata Sk found at the previous step and finds a
weight vector minimizing (2.31) at given Sk and their centers ck automatically found
at every current f = Xw as the within-strata f-averages. To put it more formally, let
us introduce the stratification incidence N � K matrix S = (sik) where sik = 1 if i 2
Sk, and sik = 0, otherwise. Define N � N projector matrix PS = ST(STS)−1ST, so that
at any given f, its projection fS = PSf onto the linear subspace L(S) span by the
columns of S consists of the within-stratum averages ck (k = 1, …, K). Therefore,
the squared norm of the difference between f and fS, which is the minimized
criterion (2.30) can be equivalently reformulated as L = (f − fS)

T(f − fS) =
(f T − fTPS)(f − PSf). After a little algebra, we obtain L = f Tf + fTPSPS f − 2fTPSf.
But PSPS = PS because of the property of idempotence of orthogonal projectors.
Therefore L = f Tf − fTPSf = fT(I − PS)f where I is the unity matrix at which all
entries are zeros except those in the main diagonal, that are unities. Now we recall
that f = Xw, so that L = wTXT(I − PS)Xw. Let us denote Y = (I − PS)X. Then
L = wTYTYw, since matrix (I − PS) is also idempotent. Then the problem of min-
imization of (2.30), given S, is to find an admissible weight vector w minimizing
L = wTYTYw. This is a canonical quadratic programming problem, which can be
solved by using a standard method such as the parametric active set algorithm
coded in C++ (see Ferreau et al. 2014; there are references there to other programs).
After obtaining an optimal weight vector w, the next iteration of Linstrat may begin.
The computation stops upon convergence or reaching a prespecified number of
steps. The convergence is warranted by the fact that each step decreases the value of
criterion L in (2.30) because the number of possible strata is finite.

The results of application of the method Linstrat to the base stations data in
Table 1.7 (Chap. 1) are in Table 2.26. The Table contains the raw data (the first
four columns) and the resulting 3 strata stratification. The number of strata is taken
to be the same as it was in the original stratification over the first feature (the
so-called ABC-classification). Let us recall the criteria in this Table:

1. AvNUser—the average number of unique active users a day, in thousands;
2. AvUsRev—the average number of the median values of the average revenue per

customer a day;
3. IncMeg—the average income generated by the traffic per a million bytes.

The features are measured in quite different scales so that the data are to be
pre-processed using a data standardization.

Any standardization of feature xv is defined by two reals, the origin shift av and
the scaling factor bv. so that the standardized feature x0v is defined as

x0v ¼ ðxv � avÞ=bv

We apply two different standardizations to the data. One standardization, popular
in Operations Research, transforms all the feature values into a 0–100 scale so that
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Table 2.27 The data and strata for base stations

# AvNUser AvUsRev Inc_Meg Strata
1 385.30 500.57 10.53 2
2 124.80 443.90 1.04 3
3 785.70 406.74 5.47 3
4 234.10 411.36 0.94 3
5 15.30 543.97 47.37 1
6 1580.10 525.33 19.49 1
7 243.90 448.36 19.39 2
8 1344.40 509.73 3.44 2
9 610.80 385.65 2.37 3
10 961.60 438.15 8.58 2
11 113.20 491.67 0.87 3
12 1637.20 447.04 9.08 2
13 81.30 418.78 0.77 3
14 0.40 460.32 8.11 3
15 82.70 424.93 2.57 3
16 1010.40 396.67 13.08 2
17 2203.40 525.37 21.26 1
18 175.30 578.02 10.79 2
19 2487.10 486.62 8.72 1
20 180.70 499.58 6.78 3
21 2284.50 375.44 4.38 2
22 119.10 378.25 1.58 3
23 2077.80 429.69 6.86 2
24 757.00 435.41 3.23 3
25 361.30 487.94 4.54 3
26 2401.50 402.60 11.64 1
27 1174.30 433.33 5.62 2
28 54.30 481.13 1.19 3
29 615.30 523.04 7.81 2
30 524.10 490.90 2.80 3
31 125.80 438.58 1.71 3
32 466.50 439.90 6.07 3
33 2305.10 419.05 12.00 1
34 395.20 424.58 2.97 3
35 655.00 416.37 6.43 3
36 674.20 442.18 16.26 2
37 1251.30 462.81 6.72 2
38 700.80 428.38 2.27 3
39 1112.70 609.03 17.84 1
40 353.40 551.38 1.76 3
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the minimum feature value is shifted to 0 and the maximum value, to 100. To
achieve this, the parameters are defined by av = min(xv) and bv = (max(xv)—min
(xv))/100. The other standardization, popular in Statistics, is the conventional
z-scoring at which av is taken to be the mean of xv, and bv, the standard deviation of
xv.

The stratification in Table 2.27 has been obtained under each of the two stan-
dardizations. One can see that the stratum 1 referring to the heaviest load contains
only 7 base stations, by far less than 1/3 of the stations, 13, normally taken for the
maintenance work. This would give the company a cheer as the result hints that the
maintenance work could be somewhat reduced.

However, the criteria weight coefficients obtained under these standardizations
somewhat differ (see Table 2.28 which also contains spread characteristics of the
criteria, as well as their ratios). Although the ratios of the ranges and standard
deviations in Table 2.28 do show a degree of differences between their actions as
the divisors in the data standardization formula, the weights obtained do not show
that much of differences. Both standardization give a lesser weight to the Revenue
per User criterion while giving almost equal weighting to the two other criteria.

2.6.2 PCA and Ranking Network Nodes: PageRank

Take a look at the graph in Fig. 2.24 representing a small fragment of a large social
network.

This is a directed graph with 4 nodes and 5 asymmetric arcs. Each node has
inward and outward links according to the arc directions. For example, node 1 has 3
outward links, to nodes 2, 3, and 4, and 0 inward links, whereas node 2 has 1
outward link, to node 3, and 2 inward links, from nodes 1 and 3 (Fig. 2.24).

To score importance of a node, assume that each node has a unit of influence
which is uniformly distributed across its outward links, so that node 2 sends 1/3 to
each of the nodes 2, 3, and 4. This can be represented by a 4 � 4 matrix Q:

Table 2.28 Criteria characteristics and weights for the base stations data

Criteria

Characteristics AvNUser AvUsRev Inc_Meg
Range 2486.7 233.6 46.6
Standard deviation 763.2 55.2 8.5
Range/Std 3.3 4.2 5.5
Standardization Criteria weights
Statistics 0.46 0.18 0.36
Operations research 0.34 0.17 0.49
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Q =   

1
2 
3 
4 

1

0

0
0

0

1/3 1/3 1/3

0
1/2 1/2

0

0
0

0

0

0

2 3 4

The (i, j)-th entry of Q, qij is the share of influence sent by i to j. What is nice
about Q, its mathematical property—that the rows sum to unity. Well, not all of
them: the row 4 cannot sum to unity because it is all zero; node 4 is terminal,
sending no influence to other nodes. There is a simple remedy: assume that any
terminal node randomly distributes its influence across the nodes by sending 1/N to
each of the N nodes in the network, including herself. Matrix Q becomes Q0:

Q' =   

1
2 
3 
4 

1 2 3 4

0

0
0

1/4 1/4 1/4 1/4

1/3 1/3 1/3

0
1/2 1/2

1
0

0

In general, this transformation can be described as follows. Given a network of
N nodes, introduce a binary vector, t = (ti), where ti = 1 if i is a terminal node, and
ti = 0, otherwise. Define e = (1,1,…,1)T, a N � 1 vector consisting of all unities.
Then Q0 is defined by equation Q0 ¼ Qþ te=N.

A matrix P is referred to as a stochastic one if all its rows are non-negative and
sum to unity. Therefore, Q′ is a stochastic matrix. A stochastic N � N matrix
P corresponds to a probabilistic process, the so-called Markov chain with N states.
In the process, a particle wanders between the states jumping from i to j with
probability pij in P. Therefore, our analysis of the distribution of influences in the
networks will be valid for Markov chains as well.

Before we begin, let us introduce one more transformation of matrix Q to make it
positive so that the Perron-Frobenius theorem works straightforwardly, with no
need in addressing the intricacies of the structure of the network graph. Such an
intricacy exists in the structure of the network in Fig. 2.24: the subset of nodes 2, 3,
and 4 forms a closed subset, so that any particle visiting either of them can never go
to node 1 outside because of the zero probabilities.

Let us introduce the possibility of “teleportation” between any two nodes
with a small probability which does not depend on the structure of the network.

 1

  2              3             4 

Fig. 2.24 An illustrative
network fragment
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Consider N � N matrix beeT/N with the same number b/N, where b is assumed
rather small, in all its entries and add it to Q0 or, better, to ð1� bÞQ0 so that the
summary matrix remains stochastic. This is what makes PageRank a most powerful
application. The original influence matrix Q, with many zeros and potential
structural complexities, is transformed into a positive influence matrix

P ¼ a Qþ teT
� �þð1� aÞeeT=N ð2:32Þ

The damping factor a= 1 − b is taken at the level 0.85 in Page et al. (1999); to
this author’s knowledge, nobody has challenged this value so far.

In our example, at a = 0.85, the matrix P (2.32) is:

P =   

1
2 
3 
4 

1 2 3 4

0.0375
0.0375
0.0375
0.2500 0.2500 0.2500 0.2500

0.3208 0.3208 0.3208
0.0375
0.4625 0.4625

0.8875
0.0375

0.0375

Now we can turn to the essence of the PageRank method. Let us associate an
importance score, ri, with each node i = 1,2,…, N. It is natural to assume that the
importance score of node i is the sum of the scores of all the network nodes
weighted by the influence the node i exercises over them:

ri ¼ pi1r1 þ pi2r12 þ � � � þ piNrN ð2:33Þ

In matrix form, Eq. (2.33) can be rewritten as r = PTr where r is an N-dimen-
sional column-vector r = (ri). This equation means that r is an eigenvector of matrix
PT corresponding to its eigenvalue 1. Indeed, it is proven that a positive stochastic
matrix has 1 as its unique maximum eigenvalue. The PageRank method, basically,
is the power method of one-by-one application of PT to an arbitrary initial vector r0,
so that each next vector rs+1=P

Trs (s = 1,2,…).
Table 2.29 presents results of PageRank iterations at r0 with all the entries equal

to 1/N at N = 4.
Computationally, the results are fine. The triumph cannot be abated by the

difficulties in bringing the matrix Ps to the stationary form; it stabilizes, up to 4
decimals, only at s = 20. The difficulties relate to the presence of a “switching”
element p23 = 0.8875 in matrix P. It should be pointed out that the converging
eigenvectors are in rows of matrix P (see Q.2.28).

Q.2.28. Why the converging eigenvectors are in rows of matrix P, whereas the
power method works with right eigenvectors?
A. Because in the very definition (2.33), r is a left eigenvector of P, or, equiva-
lently, right eigenvector of PT.
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However, the scores found seem at odds with the structure of the graph in
Fig. 2.24. The most striking is the fact that the node 1 is dominant in that structure,
whereas its final score is the minimum, a humble 0.0958, according to the
Table 2.29. The maximum importance is assigned to node 3, dominated by node 1
in Fig. 2.24. Moreover, the most subordinate, according to the graph, node 4, shares
2–3 places in importance. These controversial results are obtained because of the
very small size of the network. The random elements introduced in Eq. (2.32) are
absolutely minor at any more or less realistic network, with its size N of the order of
a thousand or, in a real-world search engine, a hundred million. But in this case the
line 4, originally zero in Q, gets numbers as high as line 1 in the modified matrix P.

Therefore, PageRank is a two-step method to be applied to a network, both
weighted and flat. A network is referred to as weighted if its arcs are assigned with
reals expressing the degree of similarity or interaction between nodes. Arcs in a flat
network are assigned with the same, unity, weight. At the first step, the network
matrix is transformed into a positive stochastic matrix according to formula (2.32).
At the second step, a power method is applied to find an output importance scoring
for the nodes. This is one of the most powerful research ideas applied to an
industrial application. A history of the power method can be found in Franceschet
(2011). Some approaches to extending the power method to big data can be found
in Andersson and Eckstrom (2004); its exposition is broadly followed to in the
current account.

Worked Example 2.16. Pagerank Scoring
Let us find the PageRank importance scores of nodes in the graph in Fig. 2.25.

First, we are to develop an interaction matrix P; then apply the power method to
P. The network adjacency matrix Q will contain a zero row corresponding to node
1. Matrix of the network, with probabilities 1/6 inserted as entries in row 1, is below

Q
0 ¼

1
6

1
6

1
6

1
6

1
6

1
6

1
2 0 1

2 0 0 0
1
3

1
3 0 1

3 0 0
0 0 0 0 1

2
1
2

0 0 0 1
2

1
2 0

0 0 0 1 0 0

0
BBBBBB@

1
CCCCCCA

Table 2.29 Results of s-th iterations of the PageRank method for matrix PT and rs at s = 0, 1, 5,
10, 14, 15 are in the columns of the table

Node r0 r1 r5 r10 r14 r15
1 0.25 0.0906 0.0961 0.0957 0.0958 0.0958
2 0.25 0.2677 0.2732 0.2742 0.2742 0.2742
3 0.25 0.3740 0.3576 0.3558 0.3559 0.3559
4 0.25 0.2677 0.2732 0.2742 0.2742 0.2742
The convergence, up to 4 decimals, is observed at 14th iteration
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Now we add teleportation probabilities (1 − a)/N = 0.025, where a = 0.85 and
N = 6, to each entry of Q′ multiplied by a. This produces matrix P:

P ¼

1
6

1
6

1
6

1
6

1
6

1
6

9
20

1
40

9
20

1
40

1
40

1
40

37
120

37
120

1
40

1
3

1
40

1
40

1
40

1
40

1
40

1
40

9
20

9
20

1
40

1
40

1
40

9
20

9
20

1
40

1
40

1
40

1
40

7
8

1
40

1
40

0
BBBBBB@

1
CCCCCCA

Applying the power method starting from e/6. the iterations of the process
converge by s = 22, as can be seen in Table 2.30. The matrix Ps to converge takes a
bit longer, about 30 iterations.

An issue of theoretical nature should be mentioned regarding the one-rank
approximation matrix which is sought by the power method. In contrast to sym-
metric similarity matrices that are approximated by one-rank matrices with (i, j)-th
entry kxixj, there is no unified view of an ideal one-rank matrix kxiyj where x = (xi)
is a right eigenvector and y = (yi) is a left eigenvector of an arbitrary
P corresponding to its maximum eigenvalue. An issue is that entries pij in P may
have different meaning depending on the nature of pair comparisons they relate to.

A radical view assumes that pij expresses how many times i is preferred to j, so
that the symmetric comparison should be its reciprocal, pji = 1/pij. Another, less
radical view, considers that pij is a share of the total preference assigned to i against
j, so that pij + pji = 1. Still, both of these keep to an assumption, “the independence
of irrelevant alternatives”, that the comparison between i and j may not involve any
other object. This is much convenient in the theoretical perspective, although rather
naïve practically. In particular, the radical view above leads to the concept of
super-transitivity of matrix P as a form of consistency in the preferences. This
concept reformulates the so-called Luce axiom in psychology as follows (Mirkin
1979): matrix P is super-transitive if the equation pijpjk = pik holds for every triplet
of objects. i, j, k. It is not difficult to prove that matrix P is super-transitive if and
only if there exists a vector r = (r1, r2, …, rn) such that pij = ri/rj (i, j = 1, …, n),
see Mirkin 1979 and Q.2.29. For a super-transitive P, this vector r is obviously right

 1

  2                             3    

4                          5

 6

Fig. 2.25 A six node
network from Andersson and
Ekström (2004)
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eigenvector of matrix PT corresponding to its maximum eigenvalue 1, whereas
vector of reciprocals rr = (1/r1,1/r2,…,1/rn) is a corresponding left eigenvector of
PT. Of course, the power method for a super-transitive matrix converges in one
iteration.

Q.2.29. A square matrix P is super-transitive if the equation pijpjk =pik holds for
every triplet of indices. i, j, k. Prove that matrix P is super-transitive if and only if
there exists a vector r= (r1, r2,…, rn) such that pij= ri/rj (i, j= 1,…,n).
A. If pij = ri/rj, then the super-transitivity is obvious. Conversely, assume P to be
super-transitive. Take any positive number r1 and define ri =r1/p1i for all i> 1.
Then, for any i, j, pij=pi1p1j because of super-transitivity. But p1j = r1/rj because of
definition. Similarly, pi1 = 1/p1i= ri/r1. Therefore, pij=ri/rj, q.e.d.

The concept of super-transitive pair comparisons lies at the heart of another
popular ranking method, the so-called Analytical Hierarchy Process, which also
uses the Perron-Frobenius theorem and power method (Saaty 1990). Podinovski
and Podinovskaya (2014) point to some shortcomings of the ranking approach
based on the first eigenvector. For further reading, see Luce (2014), Cavallo and
D’Apuzzo (2009).

2.7 Summary

This Chapter introduces the concept of data summarization as an encoder-decoder
pair and describes the method of principal components (PCA) as a data-driven
model in this framework. The data, even if of mixed scale types, is first converted
into a quantitative format by using popular dummy representations of categories.
This gives a chance to discuss, however brief, the concept of feature as a mathe-
matical object. Luckily, the PCA model is based on a well developed mathematical
theory of singular value decomposition (SVD) for rectangular matrices. Unlike the
conventional formulation of PCA, this model does not require to postulate that the
principal components are to be linear combinations of features. This property is
rather derived from the model. The PCA model itself is rather simplistic and
suggests that further thinking on better data summarization models should be

Table 2.30 Results of s-th iterations of the PageRank method for 6 � 6 matrix PT and s = 0, 1, 5,
10, 20, 22 are in the columns of the table

Node r0 r1 r5 r10 r20 r22
1 0.1667 0.1667 0.0833 0.0743 0.0737 0.0737
2 0.1667 0.0958 0.0572 0.0521 0.0517 0.0517
3 0.1667 0.1194 0.0639 0.0578 0.0574 0.0574
4 0.1667 0.3083 0.3351 0.3308 0.3327 0.3327
5 0.1667 0.1903 0.2926 0.3074 0.3076 0.3076
6 0.1667 0.1194 0.1679 0.1776 0.1769 0.1769
The convergence, up to 4 decimals, is observed at 22nd iteration
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undertaken. An extension of PCA to scoring nodes of a network, the celebrated
Google PageRank approach, is described too.

Three applications of PCA—scoring hidden factors, data visualization, and
Latent semantic analysis are illustrated with further instructions and Worked
Examples. This is extended to network and similarity data including the currently
very popular Google PageRank algorithm.

It should be noted that the PCA model is an early example of what is currently
called matrix factorization approach. According to this approach the data matrix is
encoded as the product of two other, unknown, matrices, X = CZ which represent a
hidden structure of the data and satisfy some conditions required by the underlying
considerations. Such is the model of PCA above and of the partitional cluster
analysis described further, in Part 4. Also much popular are the so-called
non-negative matrix factorization and probabilistic topic modeling; see, in respect,
Lee and Seung (2001) and Wang and Blei (2011) and references therein.
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Chapter 3
Learning Correlations

Abstract After a short introduction of the general concept of decision rule to relate
input and target features, this chapter describes some generic and most popular
methods for learning correlations over two or more features. Four of them pertain to
quantitative targets (linear regression, canonical correlation, neural network, and
regression tree), and seven to categorical ones (linear discrimination, support vector
machine, naïve Bayes classifier, classification tree, contingency table, distance
between partition and ranking relations, and the correspondence analysis). Of these,
classification trees are treated in a most detailed way including a number of theo-
retical results that are not well known. These establish firm relations between
popular scoring functions and bivariate measures—Quetelet indexes in contingency
tables and, rather unexpectedly, normalization options for dummy variables rep-
resenting target categories. Some related concepts such as Bayesian decision rules,
bag-of-word model in text analysis, VC-dimension and kernel for non-linear
classification are introduced too. The Chapter outlines several important charac-
teristics of summarization and correlation between two features, and displays some
of the properties of those. They are:

– linear regression and correlation coefficient for two quantitative variables (Sect. 3.2);
– tabular regression and correlation ratio for the mixed scale case (Sect. 3.8.3); and
– contingency table, Quetelet index, statistical independence, and Pearson’s

chi-squared for two nominal variables; the latter is treated as a summary correlation
measure, in contrast to the conventional view of it as just a criterion of statistical
independence (Sect. 3.6.1); moreover, a few less known least-squares based con-
cepts are outlined, including canonical correlation and correspondence analysis.

3.1 General: Decision Rules, Fitting Criteria,
and Learning Protocols

To specify a problem of learning correlation in a data table, one has to distinguish
between two parts in the feature set: predictor, or input, features and target, or
output, features. Typically, the number of target features is small, and in generic
tasks, there is just one target feature. Target features are usually difficult to measure
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or impossible to know beforehand. This is why one would want to derive a decision
rule relating predictors and targets so that prediction of targets can be made after
measuring predictors only. Examples of learning problems include:

(a) chemical compounds: input features are of the molecular structure, whereas
target features are activities such as toxicity or healing effects;

(b) types of grain in agriculture: input features are those of the seeds, soil and
weather, and target features are of productivity and protein contents,

(c) industrial enterprises: input features refer to technology, investment and labor
policies, whereas target features are of sales and profits;

(d) postcode districts in marketing research: input features refer to demographic,
social and economic characteristics of the district residents, target features—to
their purchasing behavior;

(e) bank loan customers: input features characterize demographic and income,
whereas output features are of (potentially) bad debt;

(f) gene expression data: input features relate to levels of expression of DNA
materials in the earlier stages of an illness, and output features to those at later
stages.

A decision rule predicts values of target features from values of input features.
A rule is referred to as a classifier if the target is categorical and as a regression if
the target is quantitative. A generic categorical target problem is defined by spec-
ifying just a subset of entities labeled as belonging to the class of interest—the
correlation problem in this case would be of building such a decision rule that
would recognize, for each of the entities, whether it belongs to the labeled class or
not. A generic regression problem—the bivariate linear regression—is considered
in Sect. 3.1; its extension to the multivariate case is described in Sect. 3.3.

A decision rule is learnt over a dataset in which values of the targets are
available. These data are frequently referred to as the training data. The idea
underlying the process of learning is to look at the difference between predicted and
observed target feature values on the training data set and to minimize them over a
class of admissible rules. The structure of such a process is presented on the upper
part of Fig. 3.1.

The notion that it ought to be a class of admissible rules pre-specified emerges
because the training data is finite and, therefore, can be fit exactly by using a
sufficient number of parameters. However, this would be valid on the training set
only, because the fit would capture all the errors and noise inevitable in data
collecting processes. Take a look, for example, at the 2D regression problem on
Fig. 3.2 depicting seven points on (x,u)-plane corresponding to observed combi-
nations of input feature x and target feature u.

The seven points on Fig. 3.2 can be exactly fitted by a polynomial of 6th order
u = p(x) = a0+ a1x + a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. Indeed, they would lead to
7 equations ui = p(xi) (i = 1,…,7), so that, in a typical case, the 7 coefficients ak of
the polynomial can be exactly determined. Having N points observed would require
an (N-1)-th degree polynomial to exactly fit them.
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However, the polynomial, on which graph all the observations lie, has no pre-
dictive power both within and beyond the range. The curve may go either course
(like those shown) depending on small changes in the data. The power of a theory
—and a regression line is a theory in this case—rests on its generalization power,
which, in this case, can be cast down as the relation between the number of
observations and the number of parameters: the greater the better. When this ratio is
relatively small, statisticians would refer to this as an over-fitted rule. The over-
fitting normally produce very poor predictions on newly added observations. The
blue straight line fits none of the points, but it expresses a simple and very robust
tendency and should be preferred because it summarizes the data much deeper: the
seven observations are summarized here in just two parameters, slope and intercept,
whereas the polynomial line provides no summary: it involves as many parameters
as the data entities. This is why, in learning decision rules problems, a class of
admissible rules should be selected first. Unfortunately, as of this moment, there is

Input data            Rule               Predicted

Target data
Difference

Input data              Rule Predicted
data                         

Target data
Difference 

Fig. 3.1 Structure of a training/testing problem: In training, on the top, the decision rule is fitted
to minimize the difference between the predicted and observed target data. In testing, the bottom
part, the rule is used to predict so that no feedback to the rule is utilized

u 

x 

Fig. 3.2 Possible graphs of interrelation between x and u according to observed data points (black
circles)
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no model based advice, within the data analysis discipline, on how this can be done,
except very general ones like “look at the shapes of scatter plots”. If there is no
domain knowledge to choose a class of decision rules to fit, it is hard to tell what
class of decision rules to use.

A most popular advice relates to the so-called Occam’s razor, which means that
the complexity of the data should be balanced by the simplicity of the decision
rule. A British monk philosopher William Ockham (c. 1285–1349) made a claim:
“Entities should not be multiplied unnecessarily.” This is usually interpreted as
saying that all other things being equal, the simplest explanation tends to be the best
one. Operationally, this is further translated as the Principle of Maximum
Parsimony, which is referred to when there is nothing better available. In the format
of the so-called “Minimum description length” principle, this approach can be
meaningfully applied to problems of estimation of parameters of statistic distri-
butions (see Grünwald 2007). Somewhat wider, and perhaps more appropriate,
explication of the Occam’s razor is proposed by Vapnik (2006). In a slightly
modified form, to avoid mixing different terminologies, it can be put as follows:
“Find an admissible decision rule with the smallest number of free parameters to
explain the observed facts” (Vapnik 2006, p. 448). However, even in this format,
the principle gives no guidance about how to choose an adequate functional form.
For example, which of two functions, the power function f(x) = axb or logarithmic
one, g(x) = blog(x) + a, both having just two parameters a and b, should be pre-
ferred as a summarization tool for graphs on Fig. 3.3?

Another set of advices, not incompatible with those above, relates to the
so-called falsifiability principle by Popper (1902–1994), which can be expressed as
follows: “Explain the facts by using such an admissible decision rule which is
easiest to falsify” (Vapnik 2006, p. 451). In principle, to falsify a theory one needs
to give an example contradicting to it. Falsifiability of a decision rule can be
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Fig. 3.3 A graph of one out of two functions, f(x) = 65x0.3 and g(x) = 50log(x) + 30, both with
an added normal noise N(0,15), is presented on each of the plots. Can the reader give an educated
guess of which is which? (Answer: f(x) is on the right and g(x) on the left)
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formulated in terms of the so-called VC-dimension, a measure of complexity of
classes of decision rules: the smaller VC- dimension, the greater the falsifiability.

Let us explain the concept of VC-dimension for the case of a categorical target,
so that a decision rule to be would be a classifier. However many categorical target
features are specified, different combinations of target categories can be assigned
different labels, so that a classifier is bound to predict a label. A set of classifiers U
is said to shatter the training sample if for any possible assignment of the labels, a
classifier exactly reproducing the labels can be found in U. Given a set of admis-
sible classifiers U, the VC-dimension of a classifying problem is the maximum
number of entities that can be shattered by classifiers from U. For example, 2D
points have VC complexity 3 in the class of linear decision rules. Indeed, any three
points, not lying on a line, can be shattered by a line; yet not all four-point sets can
be shattered by lines, as shown on Fig. 3.4, the left and right parts, respectively.

The VC complexity is an important characteristic of a correlation problem
especially within the probabilistic machine learning paradigm. Under the conven-
tional conditions of the independent random sampling of the data, a reliable clas-
sifier “with probability a% will be b% accurate, where b depends not only on a, but
also on the sample size and VC-dimension” (Vapnik 2006).

The problem of learning correlation in a data table can be stated, in general
terms, as follows. Given N pairs (xi, ui), i = 1,…, N, in which xi are predictor/input
p-dimensional vectors xi = (xi1,…,xip) and ui = (ui1,…,uiq) are target/output q-
dimensional vectors (usually q = 1), find a decision rule

û ¼ FðxÞ ð3:1Þ

such that the difference between computed û and observed u is minimal over a
pre-specified class U of admissible rules F.

To specify a correlation learning problem one should specify assumptions
regarding a number of constituents including:

(i) Type of target
Two types of target features are considered usually: quantitative and cate-
gorical. In the former case, Eq. (3.1) is usually referred to as regression; in
the latter case, decision rule, and the learning problem is referred to as that of
“classification” or “pattern recognition”.

Fig. 3.4 Any two-part split of three points (not on one line) can be made by a line, but the
presented case of four points on the right cannot be split by a line
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(ii) Type of rule
A rule involves a postulated mathematical structure whose parameters are to
be learnt from the data. The mathematical structures considered further on
are:

– linear combination of features
– neural network mapping a set of input features into a set of target features
– decision tree built over a set of features
– partition of the entity set into a number of non-overlapping clusters

(iii) Criterion
Criterion of the quality of fitting depends on the framework in which the
learning task is formulated. Most popular criteria are: maximum likelihood
(in a probabilistic model of data generation), least-squares (data recovery
approach) and relative errors. According to the least-squares criterion, the
difference between u and û is measured with the average squared error,

E ¼ u� û; u� ûh i=N ¼ u� FðxÞ; u� FðxÞh i=N ð3:2Þ

which is to be minimized over all admissible F.
(iv) Training protocol

The rule F is to be learnt from a training dataset. The way the data become
available can be referred to as the learning protocol. Three popular training
protocols are: batch, random and on-line. The batch mode is the case when
all the training set is available and used at once, the other two refer to cases
when data entities come one by one so that the learning goes incrementally.
In the random protocol, the data are available at once, yet the learning
process is organized incrementally by picking up entities randomly
one-by-one, possibly many times each. In contrast, in an on-line protocol
each entity comes from an external source and can be seen only once.

3.2 Two-D Linear Regression and Special Cases

3.2.1 Case of Two Features

Let us first focus on a most illustrative case when only two quantitative features are
considered. Three most popular concepts are: scatter plot, correlation coefficient,
and regression.

We consider them in turn by using two features from the Market towns dataset,
Population Resident and Number of Primary Schools. The data are taken from
Table 1.4 (see below an extract for four towns out of 45):
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PopRes (x) PSchools (y) (x,y)-point
Tavistock 10,222 5 (10,222.5)
Bodmin 12,553 5 (12,553.5)
Saltash 14,139 4 (14,139.4)
Brixham 15,865 7 (15,865.7)

Scatter plot is a presentation of entities as 2D points in the plane of two
pre-specified features. On the left-hand side of Fig. 3.5, a scatter-plot of Market
town features PopRes (Axis x) and PSchools (Axis y) is presented.

One can think that these two features are approximately related by a linear
equation y = ax + b where a and b are some constant coefficients, referred to as the
slope and intercept, respectively, because the number of schools should be related
to the number of children which is related to the number of residents. This equation
is referred to as the linear regression of y over x. Obviously, most relations are not
necessarily that simple because they also depend on other factors such as school
sizes, population’s age, etc. It would be a miracle if one equation fitted well all 45
towns. The possible inconsistencies in the equation can be modeled as additive
errors, or residuals. The slope a and intercept b are taken in such a way that the
inconsistencies of the equation on the 45 towns are minimized.
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Fig. 3.5 Scatter plot of PopRes versus PSchools in Market town data. The right hand graph
includes a regression line of PSchools over PopRes
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When a linear regression equation is fitted, its validity should be checked.
A valid equation can be used for both (i) prediction and (ii) description.

The term “regression” relates to an episode in the long struggle by Francis
Galton for the recognition of his obsession with “inherited talent”. He thought, in
about 1888, like this: “Currently, I cannot measure the talent—why cannot I take a
feature, that I can measure, say, the height? The son’s height should be related to
the father’s height, adjusted by that of the mother, of course.” This thought was
possibly supported by the idea, rather relevant at that time, that the human’s height
may have an evolutionary dimension so that, in the UK, the taller people might
have had better chances of survival. The relation appeared to exist. However,
unexpectedly, it turned out to be rather counter-intuitive. The taller father’s son
was, on average, not as tall as his father, whereas, in contrast, the shorter fathers’
sons were relatively taller than their fathers. Galton considered that as a phe-
nomenon of regress to the mediocrity. And it took some time, to figure out that the
regress did not contradict the law of natural selection established by his cousin,
Charles Darwin.1

The Galton-Pearson theory of linear regression involves a useful and very
popular parameter, the correlation coefficient, that shows the extent of linearity in
the relation between two features. Its square, referred to as the determinacy coef-
ficient, can be used for a quick check of the validity of the regression: it shows the
proportion of the variance of y that is taken into account by the regression. The
correlation coefficient between the two features, PopRes and PSchools, is 0.909.
The correlation coefficient, in general, ranges between −1 and 1, and a value close
to 1 or −1 indicates a high extent of the linear relation between the features. In
physics or chemistry, a high value of the correlation coefficient is rather usual; in
social sciences, rather not—that is, the current features are highly related indeed.

Most other features in Market town data—such as the numbers of Post offices or
Doctors—are also highly related to Pop feature, but not the number of Farmers
markets. This latter feature appears to be binary here: a town either has a farmers
market or not. The low value of the correlation coefficient, just below 0.15, shows
that the size of the town does not much matter in this part of the world: a farmers
market is as likely in a small town as it is in a larger town.

A low or even zero value of the correlation coefficient does not necessarily mean
“no relation at all”, but rather just “no linear relation”. A zero correlation coefficient
may hide a different type of functional relation, as shown on Fig. 3.6, which pre-
sents three different cases of the zero correlation. Only one of these, that on the left,
case is genuine—there is no relation between x and y according to the picture
indeed. Each of the other two cases relates to a rather high association between
x and y. Specifically, the figure in the middle refers to a quadratic dependence and
the figure on the right, to a split between two subsamples of highly linear but
inverse relations.

1Both, Francis Galton and Charles Darwin, were grandsons of a celebrated medical doctor and
philosopher, Erasmus Darwin.
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Then the regression equation, estimated according to formulas (3.6)–(3.8) in
Sect. 3.2.3, is this:

PSchool ¼ 0:401 � PopResþ 0:072 ð3:3Þ

where Population resident (PopRes) is expressed in thousands to make the slope the
thousand times greater than it would be if population is expressed in the absolute
numbers. The slope expresses how much target changes when the input changes by
1. Because the target’s values are integers, the value of slope can be rephrased as
follows: the growth of population in a town by 2.5 thousand would lead, on
average, to building one more primary school.

3.2.2 Validity of the Regression

A regression function built over a data set should be validated. Three types of
validity checks can be considered:

(a) The proportion of the variance of target variable taken into account by the
regression, the determinacy coefficient: the greater the determinacy the better
the fit.

(b) The confidence intervals of regression parameters—their ranges can give an
idea of how stable the regression is.

(c) The direct testing of the accuracy of prediction both on data used for building
the regression and data not used for that.
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Fig. 3.6 Three scatter-plots corresponding to zero or almost zero correlation coefficient q; the
case on the left: no relation between x and y; the case in the middle: a non-random quadratic
relation y = (x − 2)2 + 5; the case on the right: two symmetric linear relations, y = 2x − 5 and
y = −2x + 3, each holding at a half of the entities
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Worked Example 3.1. Determinacy Coefficient
Consider feature PSchools as target versus PopRes as input, in Market Data
(Fig. 3.5). The correlation coefficient between them is 0.909. The determinacy
coefficient, in the case of linear regression, is its square, that is, 0.9092 = 0.826,
which shows that the linear dependence on PopRes decreases the variance of
PSchools by 83.6%, a rather high value.

If the determinacy coefficient is not that high, still the hypothesis of linear
relation may hold—depending on the distribution of residuals, that is, differences
between the observed values of PSchool and those computed from PopRes
according to Eq. (3.3). This distribution should be Gaussian or approximately
Gaussian, so that the principle of maximum likelihood and formulas derived from
that are appropriate. The distribution for the case under consideration is presented
on Fig. 3.7. It is similar to a Gaussian distribution indeed, at the 5 bin histogram.
The histogram with 10 bins is less so because it is somewhat dented—probably the
sample is too small for this level of granularity: on average, only 4–5 entities fall in
each of the bins.

A more straightforward validity test can be performed without any statistic
theory at all—by purely computational means using the so-called bootstrapping
which is a procedure for obtaining a multitude of random estimates of the
parameters of interest by using random samples from the dataset as illustrated in the
Worked Example 3.2.
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Fig. 3.7 Histograms of the residuals, the differences between values of PSchool as observed and
those computed from Pop by using Eq. (3.1), with 5 bins (on the left) and 10 bins (on the right).
The dents in the finer histogram can be attributed to the fact that the sample of 45 instances is too
small to use 10 bins
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Worked Example 3.2. Bootstrap Validity Testing
Consider the linear regression of PSchools over PopRes in Eq. (3.3) in the previous
section. How stable are its slope and intercept regarding change of the sample? This
can be tested by using an approach referred to as the bootstrap. One bootstrap trial
involves three stages:

1. Randomly choose, with replacement, as many entities as there are in the
sample—45 in this case. Here is the sequence of indices of the entities randomly
drawn with replacement while writing this text: r = {26,17,36,11,29,39,32,
25,27,26, 29,4,4,33,10,1,5,45,17,16, 13,5, 42,43,28, 26,35,2,37,44,6,39,33,
21,15, 11,33,1,44,30,26,25,5,37,24}. Some indices made it into the sample
more than once, most notably 26—four times, whereas many others did not
make it into the sample at all—altogether, 16 objects such as 3,7,8 are absent
from the sample. The proportion of the absent indices is 16/45 = 0.356, which is
rather close to the theoretic estimate 1/e = 0.3679 derived in Sect. 2.2.3.3, p. 102.

2. Take “resampled” versions of PopRes and PSchools as their values on the
elements drawn on step 1.

3. Find values of the slope and intercept for the resampled PopRes and PSchools
and store them.

The MatLab computation steps are similar to those in Sect. 2.2.3.3. After 400
trials the stored slopes and intercepts form distributions presented as 20 bin his-
tograms on Fig. 3.8 a and b, respectively. After 4000 trials, the respective his-
tograms are c and d. One can easily see the smoothing effect of the increased
number of trials on the histogram shapes—at 4000 trials they do look Gaussian.

The bootstrapping trials give a diversity needed for estimating the average values
of the slope and intercept. Moreover, one can draw confidence boundaries for the
values.
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Fig. 3.8 Histograms of the distributions of the slope, on the left, and intercept, on the right, found
at 400 (on top) and 4000 (bottom) bootstrapping trials on PopRes, expressed in thousands, and
PSchool features in Market town data
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How can one obtain, say, 95% confidence boundaries? According to the
non-pivotal method, lower and upper 2.5% quantiles are cut out from the distri-
bution in a symmetric way: 95% of the observations fall between the quantiles. For
the case of 400 trials, 2.5% equals 10, so that the lower quantile corresponds to 11th
and the upper quantile to 390th elements in the sorted set of values. For the case of
4000 trials, 2.5% equals 100: the quantiles correspond to 101st and 3900th elements
of the sorted sets. They are shown in Table 3.1 at both of the cases, 400 and 4000
trials. One can see that these provide consistent and rather tight boundaries for the
slope: it is between 0.303 and 0.488 in 95% of all trials, according to the 4000-trial
data, and more or less the same at the 400-trial data. The values of intercept are
distributed with a greater dispersion and provide for a worsened accuracy.
Symmetric 95% confidence intervals for the intercept are [−0.343,0.623] at 400
trials and [−0.400,0.594] at 4000 trials.

How a pivotal bootstrapping rule can be applied here? This would provide more
stable evaluations than empirical distributions. The standard deviations of the slope
and intercept are 0.0493 and 0.2606, respectively, at 400 bootstrapping trials; they
are somewhat smaller, 0.0477 and 0.2529, at the 4000 trials. Can one derive from
this a symmetric 95% confidence interval for the slope or intercept? Tip: in a
Gaussian distribution, 95% of all values fall within interval mean ±1.96 * std. This
is the so-called pivotal bootstrapping method.

Q.3.1. Can you give an estimate of the level of variance of the differences between
PSchool observed and computed values?

A final validity test of the regression equation is probably the toughest one—by
the prediction error (see Worked Example 3.3).

Worked Example 3.3. Prediction Error of the Regression Equation
Compare the observed values of PSchool with those computed through PopRes
according to Eq. (3.3). Table 3.2 presents a few examples taken from both ends of
the sorted PopRes feature.

On average, the predictions are close, but, in some cases, are less so. One can
easily estimate the relative error, which is [(1 − 0.89)/1] * 100 = 11% on the first
element, [(2 − 0.97)/2] * 100 = 51.5% on the second element, etc. The average
relative error of Eq. (3.3) on the set of all 45 towns is equal to 30.7%. Can it be made
smaller? On the first glance, no, it cannot, because Eq. (3.1) minimizes the error.

Table 3.1 Parameters of the linear regression of PopRes over PSchool found on the original set,
as well as on the bootstrap 400 and 4000 trials

Regression
parameters

Set 400 trials 4000 trials

Mean 2.5% 97.5% Mean 2.5% 97.5%

Slope 0.401 0.399 0.296 0.486 0.398 0.303 0.488
Intercept 0.072 0.089 −0.343 0.623 0.092 −0.400 0.594

The latter involves the average values, as well as the lower and upper 2.5% quantiles
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But, the error minimized by Eq. (3.1) is the average quadratic error, not the relative
error under consideration. The two errors do differ, and Eq. (3.1) is not necessarily
optimal with regard to the relative error.

The classical optimization theory has virtually nothing to propose for the min-
imization of the relative error—this criterion is neither linear, nor quadratic, nor
convex. Instead, the evolutionary optimization approach can be applied to the task.
This approach uses a population of solutions randomly evolving, iteration after
iteration, in the search for better solutions as explained in Project 3.2. Applying the
algorithm from that project to minimize the criterion of relative error, one can find a
different solution, in fact, a set of solutions each leading to the average relative error
of 26.4%, a reduction of 3.3 points, one seventh of the relative error of the
Eq. (3.3).

The new solution is PSchool = 0.28 * PopRes + 0.33 expressing a smaller rate
of increase in school numbers at the growth of population.

3.2.3 Fitting the Equation of Linear Regression

Let us derive parameters of linear regression. Given target feature y and predictor x
at N entities (x1,y1), (x2,y2),…, (xN,yN), we are interested at finding a linear equation
relating them so that

y ¼ axþ b ð3:4Þ

The exact fit can occur only if all pairs (xi,yi) belong to the same straight line on
(x,y)-plane, which is rather unlikely on real-world data. Therefore, Eq. (3.4) will
have an error at each pair (xi,yi) so that the equation should be rewritten as

yi ¼ axiþ bþ ei ði ¼ 1; 2; . . .;NÞ ð3:40Þ

where ei are referred to as errors or residuals. The problem is of determining the two
parameters, a and b, in such a way that the residuals are least-squares minimized,
that is, the average square error

Table 3.2 Observed
numbers of primary schools
versus those predicted from
the population resident data
on some market towns

PS
obs.

PS
comp.

Pop PS
obse.

PS
comp.

Pop

1 0.89 2040 2 3.35 5676
2 0.97 2230 2 3.9 7044
2 1.06 2452 4 3.12 10,092
2 1.19 2786 7 6.44 15,865
1 1.54 3660 4 7.05 17,390
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Lða; bÞ ¼ Rie
2
i =N ¼ Riðyi � axi � bÞ2=N; ð3:5Þ

reaches its minimum over all possible a and b, given xi and yi (i = 1, 2, …,N). This
minimization problem is easy to solve with the elementary calculus tools.

Indeed L(a, b) is a “bottom down” parabolic function of a and b, so that its
minimum corresponds to the point at which both partial derivatives of L(a, b) are
zero (the first-order optimality condition):

@L=@a ¼ 0 and @L=@b ¼ 0:

Leaving the task of actually finding the derivatives to the reader as an exercise,
let us focus on the unique solution to the first-order optimality equations defined by
the following formulas (3.6), for a, and (3.8), for b:

a ¼ qrðyÞ=rðxÞ ð3:6Þ

where

q ¼ Riðxi � mxÞðyi � myÞ
� �

= NrðxÞrðyÞ½ � ð3:7Þ

is the so-called correlation coefficient and mx, my are means of xi, yi, respectively;

b ¼ my � amx ð3:8Þ

By putting these optimal a and b into (3.5), one can express the minimum
criterion value as

Lmða; bÞ ¼ r2ðyÞð1� q2Þ ð3:9Þ

The Eq. (3.4) is referred to as the linear regression of y over x, index q in (3.6)
and (3.7) as the correlation coefficient, its square q2 in (3.9) as the determinacy
coefficient, and the minimum criterion value Lm in (3.9) is referred to as the
unexplained, or residual, variance.

3.2.4 Correlation Coefficient and Its Properties

The meaning of the coefficients of correlation and determinacy, in the data recovery
framework of data analysis, is provided by Eqs. (3.6)–(3.9). Here are some
formulations.

Property 1 Determinacy coefficient q2 shows the rate of decrease of the variance
of y after its linear relation to x has been taken into account by the regression
(follows from (3.9)).
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Property 2 Correlation coefficient q ranges between −1 and 1, because q2 is
between 0 and 1, as follows from the fact that value Lm in (3.9) cannot be negative
because the items in its expression (3.5) are all squares. The closer q to either 1 or
−1, the smaller are the residuals in the regression equation. For example, q = 0.9
implies that y’s unexplained variance Lm is 1 − q2 = 19% of the original value.

Property 3 The slope a is proportional to q according to (3.6); a is positive or
negative depending on the sign of q. If q = 0, the slope is 0: in this case, y and x are
referred to as not correlated.

Property 4 The correlation coefficient q does not change under shifting and
rescaling of x and/or y, which can be seen from Eq. (3.7). Its formula (3.7) becomes
especially simple if the so-called z-scoring has been applied to standardize both
x and y.

To perform z-scoring over a feature, its mean m is subtracted from all the values
and the results are divided by the standard deviation r:

x0i ¼ ðxi�mxÞ=rðxÞ and y0i ¼ ðyi � myÞ=rðyÞ; i ¼ 1; 2; . . .;N

Using the z-score standardization, formula (3.7) can be rewritten as

q ¼ Rix
0
iy
0
i=N ¼ x0; y0h i=N ð3:70Þ

where hx0; y0i denotes the inner product of vectors x0 ¼ ðx0iÞ and y0 ¼ ðy0iÞ.
The next property refers to one of the fundamental discoveries by K. Pearson,

interpretation of the correlation coefficient in terms of the bivariate Gaussian dis-
tribution. A generic formula for the density function of this distribution, in the case
in which the features have been pre-processed by using z-score standardization
described above, is

f ðu;RÞ ¼ C expf�uTR�1u=2g ð3:10Þ

where u = (x, y) is a two-dimensional vector of two variables, x and y, under
consideration and R is the so-called correlation matrix

R ¼ 1 q
q 1

� �
In formula (3.10), q is a parameter with a very clear geometric meaning.

Consider a set of points u = (x,y) on (x,y)–plane making function f(u, R) in (3.10)
equal to a pre-specified constant. Such a set makes the values of uTR−1u constant
too. That means that a constant density set of points u = (x, y) must satisfy equation
x2 − 2qxy + y2 = const. This equation defines a well-known quadratic curve, the
ellipsis. At q = 0 the equation becomes that of a circle, x2+ y2 = const, and the
greater the difference between q and 0, the more skewed is the ellipsis, so that at
q = ±1 the ellipsis becomes a bisector line y = ±x + b because the left part of the
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equation makes a full square, in this case, x2 ± 2xy + y2 = const, that is,
(y ± x)2 = const. The size of the ellipsis is proportional to the constant: the greater
the constant the greater the size.

Property 5 The correlation coefficient (3.7) is a sample based estimate of the
parameter q in the Gaussian density function (3.10) under the conventional
assumption that the sample points (yi, xi) are drawn from a Gaussian population
randomly and independently.

This striking fact is behind a longstanding controversy. Some say that the usage of
the correlation coefficient is justified only when the sample is taken from a Gaussian
distribution, because the coefficient has a clear-cut meaning only in this model. This
logic seems somewhat overly restrictive. True, the usage of the coefficient for esti-
mating the density function is justified only when the function is Gaussian. However,
when trying to linearly represent one variable through the other, the coefficient has a
very different meaning in the approximation context, which has nothing to dowith the
Gaussian distribution, as expressed above with Eqs. (3.6)–(3.9).

3.2.5 Linearization of Non-linear Regression

Non-linear dependencies also can be fit by using the same criterion of minimizing
the square error. Consider a popular case of exponential regression, that is, repre-
senting correlation between target y and predictor x as y = aebx where a and b are
unknown constants and e the base of natural logarithm. Given some a and b, the
average square error is calculated as

E ¼ y1 � a expðbx1Þ½ �2þ . . .þ yN � a expðbxNÞ½ �2
� �

=N ¼ Ri yi � a expðbxiÞ½ �2=N
ð3:11Þ

There is no method that would straightforwardly lead to a globally optimal
solution of the problem of minimization of E in (3.11) because it is too complex
function of the unknown values. This is why conventionally the exponential
regression is fit by what should be referred to as its linearization: transforming the
original problem to that of linear regression.

Indeed, let us take the logarithm of both parts of the equation that we want to fit,
y = aebx. The resulting equation is ln(y) = ln(a) + bx. This equation has the format
of linear equation, z = ax + b, where z = ln(y), a = b and b = ln(a). This leads to
the following idea. Let us take the target be z = ln(y) with its values zi = ln(yi). By
fitting the linear regression equation with data xi and zi, one finds optimal a and b,
so that the original exponential parameters are found as a = exp(b) and b = a.
These values do not necessarily minimize (3.11), but the hope is that they are close
to the optimum anyway. Unfortunately, this may be very wrong sometimes as the
material in Project 3.2. clearly demonstrates.
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Q.3.2. Find the derivatives of L over a and b and solve the first-order optimality
conditions.
Q.3.3. Derive the optimal value of L in (3.9) for the optimal a and b.
Q.3.4. Prove or find a proof in the literature that any linear equation
y = ax + b corresponds to a straight line on Cartesian xy plane, for which a is the
slope and b intercept.

Q.3.5. Find the inverse matrix R−1 for R ¼ 1 q
q 1

� �
.

A. R�1 ¼ 1 �q
�q 1

� �
=ð1� q2Þ:

3.2.6 Linear Regression: Computation

Regression is a technique for representing the correlation between x and y as a
linear function (that is, a straight line on the plot), y = slope * x + intercept where
slope and intercept are constants, the former expressing the change in y when x is
added by 1 and the latter the level of y at x = 0. The best possible values of slope
and intercept (that is, those minimizing the average square difference between real
y’s and those found as slope * x + intercept) are expressed in MatLab, according to
formulas (3.6) and (3.8), as follows:

�slope=corr(x,y)*std(y)/std(x);
�intercept=mean(y) - slope*mean(x);

Here corr(x,y) is the MatLab command for computing Pearson correlation
coefficient between x and y (3.7). There is another MatLab operation “corrcoef”
which leads to an estimate of the matrix R above.

Project 3.1. 2D Analysis, Linear Regression and Bootstrapping
Let us take the Students data table as a 100 � 8 array a in MatLab, pick any two
features of interest and plot entities as points on the Cartesian plane formed by the
features. For instance, take Age as x and Computational Intelligence mark as y:

�x=a(:,4); % Age is 4-th column of array “a”
�y=a(:,8); % CI score is in 8-th column of “a”

Then student 1 (first row) will be presented by point with coordinates x = 28 and
y = 90 corresponding to the student’s age and CI mark, respectively. To plot them
all, use command:
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�plot(x,y,‘k’)
% k refers to black colour, “.” dot graphics; ‘mp’ stands for magenta pentagram;
% see others by using “help plot”

Unfortunately, this gives a very tight presentation: some points are on the bor-
ders of the drawing. To make the borders stretched out, one needs to change the
axis, for example, as follows:

�d=axis; axis(1.2*d-10);

This transformation is presented on the right part of Fig. 3.9. To make both plots
presented on the same figure, use “subplot” command of MatLab:

�subplot(1,2,1)
�plot(x,y,′k.′);
�subplot(1,2,2)
�plot(x,y,′k.′);
�d=axis; axis(1.2*d-10);

Whichever presentation is taken, no regularity can be seen on Fig. 3.9 at all.
Let’s try then whether anything better can be seen for different occupations. To do
this, one needs to handle entity sets for each occupation separately:
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Fig. 3.9 Scatter plot of features “Age” and “CI score”; the display on the right is a rescaled
version of that on the left
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�o1=find(a(:,1)==1); % set of indices for IT
�o2=find(a(:,2)==1); % set of indices for BA
�o3=find(a(:,3)==1); % set of indices for AN
�x1=x(o1);y1=y(o1); % the features x and y at IT students
�x2=x(o2);y2=y(o2); % the features at BA students
�x3=x(o3);y3=y(o3); % the features at AN students

Now we are in a position to put, first, all the three together, and then each of
these three separately (again with the command “subplot”, but this time with four
windows organized in a two-by-two format, see Fig. 3.10).

�subplot(2,2,1); plot(x1,y1, ′*b′,x2,y2,′pm′,x3,y3,′.k′);% all three
�d=axis; axis(1.2*d-10);
�subplot(2,2,2); plot(x1,y1, ′*b′); % IT plotted with blue stars
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Fig. 3.10 Joint and individual displays of the scatter-plots at the occupation categories (IT star,
BA pentagrams, AN dots)
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�d=axis; axis(1.2*d-10);
�subplot(2,2,3); plot(x2,y2,′pm′); %BA plotted with magenta pentagrams
�d=axis; axis(1.2*d-10);
�subplot(2,2,4); plot(x3,y3,′.k′); % AN plotted with black dots
�d=axis; axis(1.2*d-10);

Of the three occupation groups, some potential relation can be seen only in the
AN group: it is likely that “the greater the age the lower the mark” regularity holds
in this group (black dots in the Fig. 3.10’s bottom right). To check this, let us utilize
the linear regression.

Linear regression equation, y = slope * x + intercept, is estimated by using
MatLab, according to formulas (3.4)–(3.6), as follows:

�cc=corrcoef(x3,y3);rho=c(1,2);% producing rho = -0.7082
�slope=rho*std(y3)/std(x3); % this produces slope=−1.33;
�intercept=mean(y3) - slope*mean(x3); % this produces intercept=98.2;

Since we are interested in group AN only, we apply these commands at
AN-related values x3 and y3 to produce the linear regression as y3 =
98.2 − 1.33 * x3. The slope value suggests that every year added to the age, in
general decreases the mark by 1.33, so that aging by 3 years would lead to the loss
of 4 mark points. Obviously, care should be taken to draw realistic conclusions.

Altogether, the regression equation explains rho^2 = 0.50 = 50% of the total
variance of y3—not too much, as is usual in social and human sciences.

Let us take a look at the reliability of the regression equation with bootstrapping,
the popular computational experiment technique for validating data analysis results
(see Sect. 2.2.3.3).

Bootstrapping is based on a pre-specified number of random trials, for instance,
5000. Each trial consists of the following steps:

(i) randomly selecting an entity N times, with replacement, so that the same
entity can be selected several times whereas some other entities may be never
selected in a trial. (As shown in Sect. 2.2.3.3, on average only 63% entities
get selected into the sample.) A sample consists of N entities because this is
the number of entities in the set under consideration. In our case, N = 31.
One can use the following MatLab command:

�N=31;ra=ceil(N*rand(N,1));
% rand(N,1) produces a column of N random real numbers, between 0 and 1
each.
% Multiplying this by N stretches them to (0,N) interval; the operation ceil
rounds the numbers up to integers.

(ii) the sample ra is assigned with their data values according to the original data
table:

�xt=xx(ra);yt=yy(ra);
% here xx and yy represent the predictor and target, respectively;
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% they are x3 and y3, respectively, which can be taken into account with
assignments
% xx=x3; and yy=y3.

so that coinciding entities get identical feature values.
(iii) a data analysis method under consideration, currently “linear regression”,

that basically computes the rho, the slope and the intercept, applies to this
data sample to produce the trial result.
To do a number of trials (5000, in this case), one should run (i)–(iii) in a
loop:

�for k=1:5000; ra=ceil(N*rand(N,1));

xt=xx(ra);yt=yy(ra);
cc=corrcoef(xt,yt);
rh(k)=cc(1,2);
sl(k)=rh(k)*std(yt)/std(xt); inte(k)=mean(yt)-sl(k)*mean(xt);

end
% the results are 5000-strong set of columns rh (correlations), sl (slopes)
% and inte (intercepts)

Now we can check the mean and standard deviation of the obtained distribu-
tions. Commands

�mean(sl); std(sl)

produce values: −1.33 and 0.23 for the mean and standard deviation, respectively.
That means that the original value of slope = −1.33 is confirmed with the boot-
strapping, but now we have obtained its standard deviation, 0.23, as well. Similarly
mean/std values for the intercept and rho are computed. They are, respectively,
98.2/9.0 and −0.704/0.095.

We can plot the 5000 values found as 30-bin histograms (see Fig. 3.11):

�subplot(1,2,1); hist(sl,30)
�subplot(1,2,2); hist(in,30)

The command subplot (1,2,1) creates a pane with one row consisting of two
windows for plots and puts the follow-up plot into the first window (that on the
left). Command subplot (1,2,2) moves the action into the second window which is
on the right of Fig. 3.11.

To derive the 95% confidence boundaries for the slope, intercept and correlation
coefficient, one may use both pivotal and non-pivotal methods.

The pivotal method uses the hypothesis that the bootstrap sample is indeed a
random sample from a Gaussian distribution. Parameters of this distribution for
slope are determined with the following commands:

�msl=mean(sl); ssl=std(sl);
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Since 95% of the Gaussian distribution fall within interval of ±1.96*std, the
95% confidence boundaries are derived, for the slope, as follows:

�lbsl=msl – 1.96*ssl; rbsl=msl+1.96*ssl

The non-pivotal estimates require no such a hypothesis and are based on the
bootstrap distribution as is. One just sorts all the values and takes 2.5% quantiles on
both extremes of the range:

�ssl=sort(sl); lbn=ssl(126);rbn=ssl(4875);

Indeed, we need to cut out 5% items from the sample, to make a 95% confidence
interval. Since 5% of 5000 is 250, conventionally divided in two halves, this
requires cutting off first 125 observations as well as the last 125 observations of the
presorted list of the bootstrap values, which brings us to ssl(126) and ssl(4875) as
the non-pivotal boundaries for the slope value.

All these estimates are presented in Table 3.3. The pivotal and non-pivotal
estimates do not fall too far apart. Either can be taken as parameters of the boundary
regressions.
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Fig. 3.11 30-bin histograms of the slope (left) and intercept (right) after 5000 bootstrapping trials

Table 3.3 Parameters of the bootstrap distributions, as well as pivotal and non-pivotal boundaries

Mean St. dev. Pivotal boundaries Non-pivotal
boundaries

Left Right Left Right

Slope
Intercept
Corr. coef.

−1.337
98.510
−0.707

0.241
9.048
0.094

−1.809
80.776
−0.891

−0.865
116.244
−0.523

−1.800
80.411
−0.861

−0.850
116.041
−0.493
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This all can be visualized by, first, defining the three regression lines, the regular
one and two corresponding to the lower and upper estimate boundaries, respec-
tively, with

�y3reg=slope*x3+intercept;
�y3regleft=lbsl*x3+lbintercept;
�y3regright=rbsl*x3+rbintercept;
and then plotting the four sets onto the same Fig. 3.12.

�plot(x3,y3,′*k′,x3,y3reg,′k′,x3,y3regleft,′r′,x3,y3regright,′r′)
% x3,y3,′*k′ presents student data as black stars; x3,y3reg,′k′ presents the
% real regression line in black
% x3,y3regleft,′g′ and x3,y3regright,′g′ for boundary regressions in green

The lines on Fig. 3.12 show the boundaries of the regression line for 95% of
trials.

Project 3.2. Non-linear and Linearized Regression: A Nature-Inspired
Algorithm
In many domains the correlation between features is not necessarily linear. For
example, in economics, processes related to the inflation over time are modeled by
using the exponential function. A similar way of thinking applies to the processes of
growth in biology. Variables describing climatic conditions obviously have a cyclic
character; etc. The power law in social systems is nonlinear too.

Consider, for example, a power law function y = axb where x is predictor and
y target variables whereas a and b are unknown constant coefficients. Given the
values of xi and yi on a number of observed entities i = 1,…, N, the power law
regression problem can be formulated as the problem of minimizing the summary
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Fig. 3.12 Regression of CI score over Age (black line) within occupation category AN with
boundaries covering 95% of potential biases due to sample fluctuations
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squared or absolute error over all possible pairs of coefficients a and b. There is no
method that would straightforwardly lead to a globally optimal solution of the
problem because minimizing a sum of many exponents is a complex problem. This
is why conventionally the power law regression is fit by transforming it into a linear
regression problem. Indeed, the equation of the power law regression, taken with no
errors, is equivalent to the equation of linear regression with log(x) being predictor
and log(y) the target: log(y) = blog(x) + log(a).This gives rise to the very popular
strategy of linearization of the problem. First, transform xi and yi to vi = log(xi) and
zi = log(yi) and fit the linear regression equation for given vi and zi; then convert the
found coefficients into those of the original exponential function. This strategy
seems especially suitable since the logarithm of a variable typically is much
smoother so that the linear fit is better under the logarithm transformation.

There is one caveat, however: the fact that found coefficients are optimal in the
linear regression problem does not necessarily imply that the converted exponents
are necessarily optimal in the original problem. This we are going to explore in this
project.

Nature-inspired optimization is a computational intelligence approach to mini-
mize a non-linear function. Rather than look and polish a single solution to the
optimization problem under consideration, this approach utilizes a population of
solutions iteratively evolving from generation to generation, according to rules
imitating a real-world evolutionary process and survival of the fittest. The rules
typically include: (a) random changes from generation to generation such as
“mutations” and “crossovers” in earlier, so-called “genetic”, algorithms, and
(b) policies for selecting and maintaining the best found solutions, the “elite”. After
a pre-specified number of iterations, the best solution among those observed in
computations is reported as the outcome.

To start the evolutionary optimization process, one should first define a restricted
area of admissible solutions so that no member of the population may leave the
area. This warrants that the population will not explode by moving solutions to the
infinity. There can be different ways for determining such an area. Let us follow
this. Under the hypothesis of a power law relation y = abx, for any two entities i and
j, the following equations should hold: zi = b * vi+ c and zj = b * vj+ c where
c = log(a), zi = log(yi) and vi = log(xi). From these, b and c can be expressed as
follows: b = (zi − zj)/(vi − vj), c = (vi * zj − vj * zi)/(vi − vj), which may lead to
different values of b and c at different i and j. Denote bm and bM the minimum and
the maximum of (zi − zj)/(vi − vj), and cm and cM the minimum and maximum of (vi
* zj − vj * zi)/(vi − vj) over those i and j for which vi − vj 6¼ 0. One would expect that
the admissible b and c should be within these boundaries, which means that the area
of admissible solutions should be defined by the inequalities (bm,cm) � (b,c) �
(bM,cM). Since the optimal values of (b,c) should be around the averages of the
ratios above, that is, lie deep inside the area between their maxima and minima, it
helps to speed up the computation if one takes only those pairs (i,j) at which the
values of vi, vj and zi, zj are not too close to 0 so that their logarithms are not that far
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away from 0, and, similarly, the differences between them should be neither that
small nor that high. This approach is implemented in MatLab code ddr.m in
Appendix A.3.

For the step of producing the next generation, let us denote the population’s
p � 2 array by f, at the current iteration, and by f′, at the next iteration. The
transition from f to f′ is done in three steps. First, take the row of mean values within
the columns of f and repeat it p times in a p � 2 array mf. Then make a Gaussian
random move:

fn ¼ fþ randnðp; 2Þ: �mf=20

Here randn(p,2) is a p � 2 array of (pseudo) random numbers generated
according to Gaussian distribution N(0,1) with 0 expectation and 1 variance. The
symbol .* denotes the operation of multiplication of corresponding elements in
matrices, so that (aij).*(bij) is a matrix whose (i,j)-th elements are products aij * bij.
This random matrix is scaled down by mf/20 so that the move accounts for about
5% (one twentieth) of the average f values.

Since the move is to be restricted within the admissibility area, any a-element
(first column of fn) which is greater than aM, is to be changed for aM, and any a-
element smaller than am is to be changed for am. Similar trimming applies to b-
elements. Denote the result by fr.

At the next step, take a p � 2 array el whose rows are the same stored elite
solution and arrive at the next generation f′ by using the following “elite mix”:

f 0 ¼ 0:7frþ 0:3el

The elite mix moves all population members in the direction of the best solution
found so far by 30%, which has been found work well in the examples of our
interest.

This procedure is implemented in MatLab code nlr.m that relies on ddr.m at step
1 and a subroutine, delta, for evaluating the fitness (see A.4 in Appendix).

Consider now this experiment. Generate predictor x as a 50-long vector of
random positive entries between 0 and 10, x = 10 * rand(1,50), and define
y = 2 * x1.07 with the normal additive noise 2 * N(0,1) where 0 is the mean and 1
the variance, which is suppressed when overly negative, according to the Matlab
code line

�for ii=1:50;yy=2*x(ii)^1.07 +2*randn;y(ii)=max(yy,1.01);end;

When using the conventional linearized regression model by linearly mapping
log(x) to log(y), to extract b and a (as the exponent of the found c) from this, the
program llr.m implementing this approach produces a = 3.0843 and b = 0.8011
leading to the averaged squared error y − axb equal to 3.41, so that the standard
error is 3.10, about 20% of the mean y value, 10.1168. It is not only that the error is
high, but also a wrong law is identified. The generated function y stretches x out
(b > 1), whereas the found function stretches x in (b <1).

3.2 Two-D Linear Regression and Special Cases 187



Here are the results. Minimization of the averaged squared error y − axb of the
original model directly by using the code nlr.m, that implements the nature-inspired
algorithm, the values are a = 3.0293 and b = 1.0760 leading to the average squared
error of 0.0003 and the standard error of 0.0180. In contrast to the values found at
the linearized scheme, the parameters a and b here are very close to those generated.

This obviously considerably outperforms the conventional procedure. Similar
results can be found at different values of the noise variance.

Case-Study 3.1. Growth of Investment
Let us apply a similar approach to the following example involving variables x and
y defined over a period of 20 time moments as presented in Table 3.4.

Variable x can be thought of as related to the time periods whereas y may
represent the value of a fund. In fact, the components of x are numbers from 1 to 20
divided by 10, and y is obtained from them in MatLab according to formula
y = 2 * exp(1.04 * x) + 0.6 * randn where randn is the normal (Gaussian) random
variable with the mathematical expectation 0 and variance 1.

Let us, first, try a conventional approach of finding the average growth of the
fund during all the period.

The average growth of the investment according to these data is conventionally
expressed as the root 19, or power 1/19, of the ratio y20/y01, that is, 1.13. This
estimates the average growth as 14% per period—which is by far greater than 4% in
the data generating model.

Let us now try to make sense of the relation between x and y by applying the
conventional linearization strategy to this data.

The strategy of linearization of the exponential equation outlined in Sect. 3.2.5
leads to values 1.1969 and 0.4986 for b and c, respectively, to produce a = ec =
1.6465 and b = 1.1969 according to formulas there. As one can see, these differ
from the original a = 2 and b = 1.04 by the order of 15–20%. The value of the
squared error here is E = 13.90. See Fig. 3.13 representing the data.

Let us now apply the nature inspired approach to the original non-linear
least-squares problem.

The program nlrm.m implementing the evolutionary approach described in
Project 3.2 found a = 1.9908 and b = 1.0573. These are within 1–3% of the error
from the original values a = 2 and b = 1.03. The summary squared error here is
E = 7.45, which is by far smaller than that found with the linearization strategy.

The two found solutions can be represented on the scatter-plot graph, see
Fig. 3.14. One can see that the linearized version has a much steeper exponent,
which becomes visible at later periods.

Table 3.4 Data of investment y at time moments x from 0.10–3.00

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y 1.3 1.82 3.03 3.29 3.3 3.9 3.84 3.24 3.23 6.5
x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 3
y 6.93 7.23 7.91 9.27 9.45 11.18 13.48 13.51 15.4 15.91
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Q.3.6. Consider a binary feature defined on seven entities so that it is category A on
the first three of them, and category B on the next four. Let us draw two dummy 1/0
variables, xA and xB, corresponding to each so that xA = 1 on the first three entities
and xA = 0 on the rest, whereas xB = 0 on the first three entities and xB = 1 on the
rest. What can be said of the correlation coefficient between xA and xB?
A. The correlation coefficient between xA and xB is -1 because xA + xB = 1 for all
entities so that xA = −xB + 1.
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Fig. 3.13 Plot of the original pair (x,y) in which y is a noisy exponential function of x (on the left)
and plot of the pair (x,z) in which z =ln(y). The plot on the right looks somewhat straighter indeed,
though the correlation coefficients are rather similar, 0.970 for the plot on the left and 0.973 for the
plot on the right
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Fig. 3.14 Two fitting exponents are shown, with stars and dots, for the data in Case-Study 3.1
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Q.3.7. Extend the nature-inspired approach to the problem of fitting a linear
regression with a nonconventional criterion such as the average relative error
defined by formula 1=N

PN
i¼1 ei=yij j.

Case-Study 3.2. Correlation Between Iris Sepal Length and Width
Take x and y from the Iris set in Table 1.1 as the Sepal’s length and width,
respectively.

A scatter plot of x and y is presented on the left part of Fig. 3.15. This is a loose
cloud of points which looks similar to that on the left part of Fig. 3.6, of no
correlation. Indeed the correlation coefficient value here is not only very small,
−0.12, but also negative, which is somewhat odd, because intuitively the features
should be positively correlated as reflecting the size of the same flower.

To see a particular reason for the low, and negative, correlation, one should take
into account that the sample is not homogeneous: the Iris set consists of 50 specimens
of each of three different taxa. When the taxa are separated (see Fig. 3.15 on the
right), the positive correlation is restored. The correlation coefficients are 0.74, 0.53
and 0.46 in taxon one, two and three, respectively. Here we see a nice example of the
negative effect of the non-homogeneity of the sample on the data analysis results.

3.3 Multivariate Linear Regression

3.3.1 Formulation

Let us extend the notion of linear regression from the bivariate case to a multivariate
case, when several features can be used as predictors for a target feature.
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Fig. 3.15 Scatter plot of Sepal length and Sepal width from Iris data set (Table 1.1), as a whole
on the left and taxon-wise on the right. Taxon 1 is presented by circles, taxon 2 by triangles, and
taxon 3 by dots
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The problem of multivariate linear regression can be formulated as a particular
case of the correlation learning problem with just one quantitative target variable
u and linear admissible rules so that

u ¼ w1x1þw2x2þ . . .þwpxpþw0

where w0, w1,…, wp are unknown weights, parameters of the model.
For any entity i = 1, 2, …, N, the rule-computed value of u

ûi ¼ w1xi1þw2xi2þ . . .þwpxipþw0

differs from the observed one by di ¼ ûi� uij j, which may be zero—when the
prediction is exact. To find w1, w2, …, wp, w0, one can minimize the summary
square error

D2 ¼ Rid
2
i ¼ Ri ui�w1 � xi1 � w2 � xi2 � . . .� wp � xip � w0

� 	2 ð3:12Þ

over all possible parameter vectors w = (w0, w1,…,wp).
To make the problem treatable in terms of linear operations, a fictitious feature x0

is introduced such that all its values are 1: xi0 = 1 for all i = 1, 2, …, N. Then
criterion D2 can be expressed as D2 ¼ Ri ui � hwi; xiið Þ2 using the inner products
hw; xii where w = (w0, w1,…,wp) and xi = (xi0, xi1, …, xip) are (p + 1)-dimensional
vectors of which all xi are known whereas w is not. From now on, the unity feature
x0 is assumed to be part of data matrix X in all correlation learning problems.

The criterion D2 in (3.12) is but the squared Euclidean distance between the
N-dimensional target feature column u = (ui) and vector û = Xw whose components
are ûii ¼ hw; xii. Here X is N�(p + 1) matrix whose rows are xi (augmented with
the component xi0 = 1, thus being (p + 1)-dimensional) so that Xw is the matrix
product of X and w. Vectors defined as Xw for all possible w’s form (p + 1)-
dimensional vector space, referred to as X-span.

Thus, the problem of minimization of (3.12) can be reformulated as follows:
given a target vector u, find its projection û in the X-span space. The global solution
to this problem is well-known: it is provided by a matrix PX applied to u:

û ¼ PXu ð3:13Þ

where PX is the so-called orthogonal projection operator, an N � N matrix,
defined as:

PX ¼ X XTX
� 	�1

XT ð3:14Þ
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so that

û ¼ XðXTXÞ�1XTu and w ¼ ðXTXÞ�1XTu: ð3:15Þ

Matrix PX projects every N-dimensional vector u to its nearest match in the
(p + 1)-dimensional X-span space. The inverse (XTX)−1 does not exist if the rank of
X, as it may happen, is less than the number of columns in X, p + 1, that is, if matrix
XTX is singular or, equivalently, the dimension of X-span is less than p + 1. In this
case, the so-called pseudo-inverse matrix (XTX)+ can be used as well. This is not a
big deal computationally: for example, in MatLab one just puts pinv(XTX) instead
of inv(XTX).

The quality of approximation is evaluated by the minimum value D2 in (3.12)
averaged over the number of entities and related to the variance of the target
variable. Its complement to 1, the determinacy coefficient, is defined by the
equation

q2 ¼ 1� D2=ðNr2ðuÞÞ ð3:16Þ

The determinacy coefficient shows the proportion of the variance of u explained
by the linear regression. Its square root, q, is referred to as the coefficient of
multiple correlation between u and X = {x0, x1, x2, …, xp}.

3.3.2 Case Studies

Case-Study 3.3. Linear Regression for Market Town Data
Consider feature Post expressing the number of post offices in Market towns
(Table 1.2 on p. 15) and try to relate it to other features in the table. It obviously
relates to the population. For example, towns with population of 15,000 and greater
are those and only those where the number of post offices is 5 or greater. This
correlation, however, is not as good as to give us more guidance in predicting Post
from the Population. For example, at the seven towns whose population is from
8000 to 10,000 any number of post offices from 1 to 4 may occur, according to the
table. This could be attributed to effects of services such as a bank or hospital
present at the towns. Let us specify a set of features in Table 1.2 that can be thought
of as affecting the feature Post, to include in addition to Population some other
features—PS—Primary schools, Do—General Practitioners, Hos—Hospitals, Ba—
Banks, Sst—Superstores, and Pet—Petrol Stations; seven features altogether, taken
as the set of input variables (predictors).
What we want is to establish a linear relation between this set and target feature
Post. A linear relation is an equation representing Post as a weighted sum of input
features plus a constant intercept; the weights can be any reals, not necessarily
positive. If the relation is supported by the data, it can be used for various purposes
such as analysis, prediction and planning.
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In the example of seven Market town features used for linearly relating them to
Post Office feature, the least-squares optimal weight coefficients are presented in
Table 3.5. Each weight coefficient shows how much the target variable would
change on average if the corresponding feature is increased by a unity, while the
others do not change. One can see that increasing population by a thousand would
give a similar effect as adding a primary school, about 0.2, which may seem absurd
in the example as Post Office variable can have only integer values. Moreover, the
linear function format should not trick the decision maker into thinking that
increasing different input features can be done independently: the features are
obviously not independent so that increase of, say, the population will lead to
respectively adding new schools for the additional children. Still, the weights show
relative effects of the features—according to Table 3.5, adding a doctor’s surgery in
a town would lead to maximally possible increase in post offices. The maximum
value is assigned to the intercept in this case. What this may mean? Is it the number
of post offices in an empty town with no population, hospitals or petrol stations?
Certainly not. The intercept expresses that part of the target variable which is
relatively independent of the features taken into account. It should be also pointed
out that the weight values are relative not to just feature concepts but specific scales
in which features measured. Change of a feature scale, say 10-fold, would result in
a corresponding, inverse, change of its weight (due to the linearity of the regression
equation). This is why in statistics the relative weights are considered for the scales
expressed in units of the standard deviation. To find them, one should multiply the
weight for the current scale by the feature’s standard deviation (see Table 3.6).

The standardized weights are well justified when input features are mutually
uncorrelated—indeed, they show the pair-wise correlation with the target feature.
Yet in a situation of correlated features, like this, they seem to have much less
definite interpretation, except for showing the changes of the target in units of the
standard deviations, although some claim that they also reflect feature’s correlation
with the target or even importance for predicting the target. An argument against
their usage as a correlation measure is that, in fact, a regression coefficient multi-
plied by the standard deviation loses its “purity” as a measure of correlation to the
target at constant levels of the other features because the standard deviation does
not pertain to constant features. An argument against their usage as measures of

Table 3.5 Weight
coefficients of input features
at Post Office as target
variable for Market
towns data

Feature Weight

Pop_Res 0.0002
PSchools 0.1982
Doctors 0.2623
Hospitals −0.2659
Banks 0.077
Superstores 0.0028
Petrol −0.3894
Intercept 0.5784
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importance for prediction is that the standardized coefficient has nothing to do with
the change of the coefficient of determinacy when the corresponding feature is
removed from the equation of regression.

Bring (1994) proposes to kill two birds with one stone: to clean up the standard
deviations from the non-constancy of the other features, which are claimed to reflect
the changes in the coefficients of determinacy. Specifically, take the variance of a
feature and take off the proportion of it unexplained by the linear regression of it
through the other features. The square root of the result represents the partial
standard deviation, which is proportional to the so-called “t-value”, and, in the
original squared form, to the change of the coefficient of determinacy inflicted by
the removal of the feature from the list of the explanatory variables (Bring 1994).
Unfortunately, this is not that simple, as the next Case-Study 3.4 shows.

Case-Study 3.4. Using Feature Weights Standardized
Table 3.7 presents the feature weights standardized with both the original and
partial standard deviations as well as the absolute reductions of the original coef-
ficient of determinacy 0.8295 after removal of the corresponding variables. There is
a general agreement between the absolute values of the first column and those in the
third column, but the second column has little in common with either of them.

Table 3.6 Standardized weight coefficients of input features at Post Office as target variable for
Market towns

Feature Weights in natural
scales, w

Standard deviations, s Weights in standardized
scales, w *s

Pop_Res 0.0002 6193.2 1.3889
PSchools 0.1982 3.7344 0.5419
Doctors 0.2623 1.3019 0.3414
Hospitals −0.2659 0.58 −0.1542
Banks 0.077 3.384 0.3376
Superstores 0.0028 1.7242 0.0048
Petrol −0.3894 1.637 −0.6375

Table 3.7 Different indexes to express the idea of importance of a feature in the Post regression
problem

Feature Weights expressed in
standard deviations

Weights with partial
standard deviations

Determinacy
coefficient reduction

Pop_Res 1.3889 1603 0.0247
PSchools 0.5419 1.02 0.0077
Doctors 0.3414 0.64 0.0055
Hospitals −0.1542 0.41 0.0023
Banks 0.3376 3.27 0.0059
Superstores 0.0048 1.07 0
Petrol -0.6375 0.96 0.0251
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A general analysis of a simpler problem of relation between the regression coef-
ficients and correlation coefficients between the target and input features can be
found in Waller and Jones (2010).

Amazingly, the convenient standardization involves negative weights, specifi-
cally at features Petrols and Hospitals. This can be an artifact of the method, related
to the effect of “replication” of features. One can think of Hospitals being a double
for Doctors, and Petrol, for Superstores. Thus, before jumping to conclusions, one
should check whether the minus disappears if the “replicas” are removed from the
set of features. As Table 3.8 shows, not in this case: the negative weights remain,
though they slightly change, as well as other weights. This illustrates that the
interpretation of linear regression coefficients as weights should be cautious and
restrained.

In our example, coefficient of determinacy q2 = 0.83, that is, the seven features
explain 83% of the variance of Post Office feature, and the multiple correlation is
q = 0.91. Curiously, the reduced set of five features (see Table 3.8) contributes
almost the same, 83.4% of the variance of the target variable. This may make one
wonder whether just one Population feature could suffice for doing the regression.
This can be tested with the 2D method described in Sect. 3.1 or with the nD method
of this section.

According to the formulation of the multivariate linear regression method, the
estimated parameters must be feature weight coefficients—no room for an intercept
in the formula. To accommodate the intercept, a fictitious feature whose all values
are unities is introduced. That is, an input data matrix X with two columns is to be
used: one for the Population feature, the other for the fictitious variable of all ones.
According to (3.10), this leads to the slope 0.0003 and intercept 0.4015, though
with somewhat reduced coefficient of determinacy, which is q2 = 0.78 in this case.
From the prediction point of view this may be all right, but the reduced feature set
looses on interpretation.

Table 3.8 Weight
coefficients for reduced set of
features at Post Office as
target variable for Market
towns data

Feature Weight

POP_RES 0.0003
PSchools 0.1823
Hospitals −0.3167
Banks 0.0818
Petrol −0.4072
Intercept 0.5898
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3.4 Linear Discrimination and SVM

3.4.1 Linear Discrimination

Discrimination is an approach to address the problem of drawing a rule to distin-
guish between two classes of entity points in the feature space, a “yes” class and
“no” class, such as for instance a set of banking customers in which a, typically
very small, subset of fraudsters constitutes the “yes” class and that of the others the
“no” class. On Fig. 3.16, entities of “yes” class are presented by circles and of “no”
class by squares.

The problem is to find a function u = f(x) that would separate the two classes in
such a way that f(x) is positive for all entities in the “yes” class and negative for all
the entities in the “no” class. When the discriminant function f(x) is assumed to be
linear, the problem is of linear discrimination. It differs from that of the linear
regression in that aspect that the target values here are binary, either “yes” or “no”,
so that this is a classification rather than regression, problem.

The classes on Fig. 3.16 can be discriminated by a straight—dashed—line
indeed. The dotted vector w, orthogonal to the “dashed line” hyperplane, represents
a set of coefficients at the linear classifier represented by the dashed line. Vector
w also shows the direction at which function f ðxÞ ¼ hw; xi � b grows. Specifically,
f(x) is 0 on the separating hyperplane, and it is positive above, and negative beneath,
that. With no loss of generality, w can be assumed to have its length equal to unity.
Then, for any x, the inner product hw; xi would express the length of the projection
of vector x along the direction of w.

To find an appropriate w, even in the case when “yes” and “no” classes are
linearly separable, various criteria can be utilized. A most straightforward classifier
is defined as follows: put 1 for “yes” and −1 for “no” and apply the least-squares
criterion of linear regression. This produces a theoretically sound solution
approximating the best possible—Bayesian—solution in a conventional statistics
model. Yet, in spite of its good theoretical properties, least-squares solution may be

+ side  x1

x2

w
-

+ side x1

x2

-

(a)                                (b)

Fig. 3.16 A geometric illustration of a separating hyper-plane between classes of circles and
squares. The dotted vector w on a is orthogonal to the hyper-plane: its elements are hyper-plane
coefficients, so that it is represented by equation hw; xi � b ¼ 0. Vector w points at the direction:
at all points above the dashed line, the circles included, function f ðxÞ ¼ hw; xi � b is positive. The
dotted lines on, b show the margin, and the squares and circle on them are support vectors
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not necessarily the best at some data configurations. In fact, it may even fail to
separate the positives from negatives when they are linearly separable. Consider the
following example.

Worked Example 3.4. A Failure of Fisher Discrimination Criterion
Let there be 14 2D points that are presented in Table 3.9 (first line) and displayed in
Fig. 3.17a. Points 1,2,3,4,6 belong to the positive class (dots on Fig. 3.17a), and the
others to the negative class (stars on Fig. 3.17a). Another set, obtained by adding to
each of the components a random number, according to the normal distribution with
zero mean and 0.2 the standard deviation, is presented in the bottom line of
Table 3.9 and Fig. 3.17b. The class assignment for the disturbed points remains the
same.

The optimal vectors w according to formula (3.15) are presented in Table 3.10 as
well as that for the separating, dotted, line in Fig. 3.17d.

Note that the least-squares solution depends on the values assigned to classes,
leading potentially to an infinite number of possible solutions under different
numerical codes for “yes” and “no”. A popular discriminant criterion of minimizing
the ratio of a “within-class error” over “out-of-class error”, proposed by R. Fisher in
his founding work of 1936, in fact, can be expressed with the least-squares criterion
as well. Just change the target as follows: assign N/N1, rather than +1, to “yes” class
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Fig. 3.17 a and b represent the original and perturbed data. The least squares optimal separating
line is added in c and d shown by solid. Entity 5 is wrongly assigned to the “dot” class according
to the solid line in (d); a separating line is shown dotted there
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and −N/N2 to “no” class, rather than −1 (see Duda et al. 2001, pp. 242–243). This
means that Fisher’s criterion may also lead to a failure in a linearly separable
situation (see Fig. 3.17d).

By far the most popular set of techniques, Support Vector Machine (SVM),
utilize a different criterion—that of maximum margin. The margin of a point x, with
respect to a hyperplane, is the distance from x to the hyperplane along its per-
pendicular vector w (Fig. 3.17a), which is measured by the absolute value of inner
product hw; xi. The margin of a class is defined by the minimum value of the
margins of its members. Thus the criterion requires, like L∞, finding such a
hyperplane that maximizes the minimum of class margins, that is, crosses the
middle of line between the nearest entities of two classes. Those entities that fall
on the margins, shown by dotted lines on Fig. 3.17b, are referred to as support
vectors; this explains the method’s title.

It should be noted that the classes are not necessarily linearly separable;
moreover, in most cases they are not. Therefore, the SVM technique is accompa-
nied with a non-linear transformation of the data into a high-dimensional space
which is more likely to make the classes linear-separable. Such a non-linear
transformation is provided by the so-called kernel function. The kernel function
imitates the inner product in the high-dimensional space and is represented by a
between-entity similarity function such as that defined by formula (3.20) on p. 202.

The intuition behind the SVM approach is this: if the population data—those not
present in the training sample—concentrate around training data, then having a
wide margin would keep classes separated even after other data points are added
(see Fig. 3.18). One more consideration comes from the Minimum Description
Length principle: the wider the margin, the more robust the separating hyperplane

Table 3.10 Coefficients of
straight lines on Fig. 3.17

Coefficients at

x y Intercept

LSE at original data −1.2422 -0.8270 5.2857
LSE at perturbed data −0.8124 −0.7020 3.8023
Dotted at perturbed data −0.8497 −0.7020 3.7846

Fig. 3.18 Illustrative
example of 2D entities
belonging to two classes,
circles and squares. The
separating line in the space of
Gaussian kernel is shown by
the dashed oval. The support
entities are shown by black
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is and the less information of it needs to be stored. A criticism of the SVM
approach is that the support vector machine hyperplane is based on the borderline
objects—support vectors—only, whereas the least-squares hyperplanes take into
account all the entities so that the further away an entity is the more it may affect the
solution, because of the quadratic nature of the least-squares criterion. Some may
argue that both borderline and far away entities can be rather randomly represented
in the sample under investigation so that neither should be taken into account in
distinguishing between classes: it is some “core” entities of the patterns that should
be separated—however, there has been no such an approach taken in the literature
so far.

3.4.2 Support Vector Machine (SVM) Criterion

Another criterion would put the separating hyperplane just in the middle of an
interval drawn through closest points of the different patterns. This criterion pro-
duces what is referred to as the support vector machine since it heavily relies on the
points involved in the drawing of the separating hyperplane (as shown on the right
of Fig. 3.16). These points are referred to as support vectors. A natural formulation
would be like this: find a hyperplane H : hw; xi ¼ b with a normed w to maximize
the minimum of absolute values of distances hw; xii � bj j to H from points xi
belonging to each of the classes. This, however, is rather difficult to associate with a
conventional formulation of an optimization problem because of the following
irregularities:

(i) an absolute value to maximize,
(ii) the minimum over points from each of the classes, and
(iii) w being of the length 1, that is, normed.

However, these all can be successfully tackled. The issue (i) is easy to handle,
because there are only two classes, on the different sides of H. Specifically, the
distance is hw; xii � b for “yes” class and �hw; xiiþ b for “no” class—this removes
the absolute values. The issue (ii) can be taken care of by uniformly using
inequality constraints

hw; xii � b� k for xi in “yes” class and
�hw; xiiþ b� k for xi in “no” class

and maximizing the margin k with respect to these constraints. The issue (iii) can be
addressed by dividing the constraints by k so that the norm of the weight vector
becomes 1/k, thus inversely proportional to the margin k. Moreover, one can
change the criterion now because the norm of the ratio w/k is minimized when k is
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maximized. Denote the “yes” class by ui = 1 and “no” class by ui = −1. Then the
problem of deriving a hyperplane with a maximum margin can be reformulated,
without the irregularities, as follows: find b and w such that the norm of w or its
square, hw;wi, is minimum with respect to constraints

uiðhw; xii � b Þ� 1 ði ¼ 1; 2; . . .;NÞ ð3:17Þ

This is a problem of quadratic programming with linear constraints, which is
easier to analyze in the format of its dual optimization problem. The dual problem
can be formulated by using the so-called Lagrangian, a common concept in opti-
mization, that is, the original criterion penalized by the constraints weighted by the
so-called Lagrange multipliers that are but penalty rates. Denote the penalty rate for
the violation of i-th constraint by ai. Then the Lagrangian can be expressed as

Lðw; b; aÞ ¼ hw;wi=2 þRiai ui hw; xii � bð Þ � 1ð Þ; ð3:18Þ

where hw;wi has been divided by 2 with no loss of generality, just for the sake of
convenience. The optimum solution minimizes L over w and b, and maximizes
L over non-negative a. The first order optimality conditions require that all partial
derivatives of L are zero at the optimum, which leads to equations Riaiui ¼ 0 and
w ¼ Riaiuixi. Multiplying the latter expression by itself leads to equation
hw;wi ¼ Rijaiajuiujhxi; xji. The second item in Lagrangian L becomes equal to
Riaiuihw; xii � Riaiuib − Riai ¼ hw;wi � 0� Riai. This leads us to the following,
dual, problem of optimization regarding the Lagrangian multipliers, which is
equivalent to the original problem: Maximize criterion

Riai � Rijaiajuiujhxi; xji=2 ð3:19Þ

subject to Riaiui ¼ 0 and ai � 0.
Support vectors are defined as those xi for which penalty rates are positive,

ai > 0, in the optimal solution—only they contribute to the optimal vector
w ¼ Riaiuixi; the others have zero coefficients and disappear.

It should be noted that the margin constraints can be violated, which is not
difficult to take into account—by using non-negative values ηi expressing the extent
of violations:

uiðhw; xii � bÞ� 1� gi ði ¼ 1; 2; . . .;NÞ

in such a way that they are minimized in a combined criterion hw;wi=2þCRigi
where C is a large “reconciling” coefficient that is a user-defined parameter. The
dual problem for the combined criterion remains almost the same as above, in spite
of the fact that an additional set of dual variables, bi, needs to be introduced as
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corresponding to the constraints ηi � 0. Indeed, the Lagrangian for the new
problem can be expressed as

Lðw; b; a; bÞ ¼ hw;wi=2� Riai ui hw; xii � bð Þ � 1ð Þ�Rigiðaiþ bi � CÞ;

which differs from the previous expression by just the right-side item. This implies
that the same first-order optimality equations hold, Riaiui ¼ 0 and w ¼ Riaiuixi,
plus additionally ai +bi = C. These latter equations imply that C � ai � 0 because
bi are non-negative.

Since the additional dual variables are expressed through the original ones,
bi = C − ai, the dual problem can be shown to remain unchanged and it can be
solved by using quadratic programming algorithms (see Vapnik 2006; Schölkopf
and Smola 2005). Recently, approaches have appeared for solving the original
problem as well (see Groenen et al. 2008).

3.4.3 Kernels

Situations at which classes are linearly separable are very rare; in real data, classes
are typically well intermingled with each other. To attack these typical situations
with linear approaches, the following trick can be applied. The data are nonlinearly
transformed into a much higher dimensional space in which, because of both
nonlinearity and higher dimension, the classes may be linearly separable. The
transformation can be performed only virtually because of specifics of the dual
problem: dual criterion (3.19) depends not on individual entities but rather just inner
products between them. This property obviously translates to the transformed
space, that is, to the transformed entities. The inner products in the transformed
space can be computed with the so-called kernel functions K(x,y) so that in criterion
(3.19) inner products hxi; xji are substituted by the kernel values K(xi,xj). Moreover,
by substituting the expression w ¼ Riaiuixi into the original discrimination function
f ðxÞ ¼ hw; xi � b we obtain its different expression f ðxÞ ¼ Riaiuihx; xii � b, also
involving inner products only, which can be used as a kernel-based decision rule in
the transformed space: x belongs to “yes” class if RiaiuiKðx; xiÞ � b[ 0.

It is convenient to define a kernel function over vectors x = (xv) and y = (yv)
through the squared Euclidean distance d2(x,y) = (x1 − y1)

2+ …+(xV − yV)
2

because matrix (K(xi,xj)) in this case is positive definite—a defining property of
matrices of inner products. Arguably, the most popular is the Gaussian kernel
defined by:

Kðx; yÞ ¼ exp �d2ðx; yÞ� 	 ð3:20Þ
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Q.3.8. Consider a full set Bn of 2n binary 1/0 vectors of length n like those
presented by columns below for n = 3:

1 0 0 0 0 1 1 1 1

2 0 0 1 1 0 0 1 1

3 0 1 0 1 0 1 0 1

These columns can be considered as integers coded in the binary number system;
moreover, they are ordered from 0 to 7. Prove that this set shutters any subset of
n (or less) points.

A. Indeed, let S be a set of elements i1, i2,…, in in Bn that are one-to-one labeled by
numbers from 1 to n. Consider any partition of S in two classes, S1 and S3. Assign 0
to each element of S1 and 1 to each element of S3. The partition follows that vector
of Bn that corresponds to the assignment.
Q.3.9. Consider set Bn defined above. Prove that its rank is n, that is, there are
n columns in matrix Bn that form a base of the space of n-dimensional vectors.
A. Take, for example, n columns ep that contain unity at p-th position whereas other
n-1 elements are zero (p = 1, 2, …n). These obviously are mutually orthogonal and
any vector x = (x1,…,xn) can be expressed as a linear combination x ¼ Rpxpep,
which proves that vectors ep form a base of the n-dimensional space.
Q.3.10. What is VC-dimension of the linear discrimination problem at an arbitrary
dimension p � 2?
A. The VC = dimension in this case is p + 1, because each subset of p points can
be separated from the others by a hyperplane, but there can be such (p + 1)-point
configurations that cannot be shattered using linear separators.

Worked Example 3.5. SVM for the Iris Dataset
Consider Iris dataset standardized by subtracting, from each feature column, its
midrange and dividing the result by the half-range.

Take the Gaussian kernel in (3.20) to find a support vector machine surface
separating Iris class 3 from the rest. The resulting solution embraces 21 supporting
entities (see Table 3.11), along with their “alpha” prices reaching into hundreds
and even, on two occasions, to the maximum boundary 500 embedded in the
algorithm.

There is only one error with this solution, entity 78 wrongly recognized as
belonging to taxon 3. The errors increase when we apply a cross-validation tech-
niques, though. For example, “leave-all-one-out” cross-validation leads to nine
errors: entities 63, 71, 78, 82 and 83 wrongly classified as belonging to taxon 3
(false positives), while entities 127, 133, 135 and 139 are classified as being out of
taxon 3 (false negatives).
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Q.3.11. Why only 10, not 14, points are drawn on Fig. 3.17b?

A. Because each of the points 11–14 doubles a point 7–10.

Q.3.12. What would change if the last four points are removed so that only points
1–10 remain?

A. The least-squares solution will be separating again

3.5 Learning Correlation with Neural Networks

3.5.1 Artificial Neuron and Neural Network: Presentation

Neural network is one of the most popular structures used for predictions of target
features. It is a network of artificial neurons modeling the neuron cell in a living
organism. A neuron cell fires an output when its summary input becomes higher
than a threshold. Dendrites bring signal in, axons pass it out, and the firing occurs
via a synapse, a gap between neurons, that makes the threshold (see Fig. 3.19).

This is modeled in the concept of artificial neuron as follows (see Fig. 3.20).
A neuron model is drawn as a set of input elements connected to an output. The
connections are assigned with wiring weights.

The input signals are data features or other neurons’ outputs. The output element
receives a combined signal, the sum of feature values weighted by the wiring
weights. The output compares this with a firing threshold, otherwise referred to as a
bias, and fires an output depending on the result. Ideally, the output is 1 if the
combined signal is greater than the threshold, and −1 if it is smaller than that. This
is, in fact, what is called the sign function of the difference, sign(x), which is 1, 0 or
−1 if x is positive, zero or negative, respectively. This activation function is overly
straightforward sometimes. Instead, the so-called sigmoid and symmetric sigmoid

Table 3.11 List of support
entities in the problem of
separation of taxon 3 (entities
101 to 150) in Iris data set
from the rest (thanks to
V. Sulimova for the
computation)

N Entity Alpha N Entity Alpha

1 18 0.203 12 105 3.492
2 28 0.178 13 106 15.185
3 37 0.202 14 115 53.096
4 39 0.672 15 118 15.724
5 58 13.63 16 119 449.201
6 63 209.614 17 127 163.651
7 71 7.137 18 133 500
8 78 500 19 135 5.221
9 81 18.192 20 139 16.111

10 82 296.039 21 150 26.498
11 83 200.312
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functions are considered as smooth exponent-based counterparts to sign(x). Their
graphs are shown alongside with that for sign(x) on Fig. 3.21. Sometimes the output
element is assumed as doing no transformation at all, just passing the combined
signal as the neuron’s output, which is referred to as a linear activation function.

The firing threshold, or bias, hidden in the box in neuron on the left on Fig. 3.20,
can be made explicit if one more, fictitious, input is added to the neuron.

This input is always equal to 1 so that its wiring weight is always added to the
combined input to the neuron. It is assumed to be equal to minus the bias so that the
total sum is the difference between the combined signal and the bias. In the

Fig. 3.19 Scheme of a neural cell

w1    w2                  wp

x1    x2                                     xp 

w1    w2                wp    w0

x1     x2                         xp x0=1

w0

Fig. 3.20 A scheme of an artificial neuron, on the left. The same neuron with the firing threshold
shown as a wiring weight on the fictitious input always equal to 1 is on the right

(a)      (b) (c)Fig. 3.21 Graphs of sign (a),
sigmoid (b) and symmetric
sigmoid (c) functions
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remainder, we assume that the bias, with the minus sign, is always explicitly present
among the wiring weights in this way (see Fig. 3.20 on the right).

Artificial neurons can be variously combined in neural networks. There have
been defined many specific types of neural network structures, referred to as
architectures, of which the most generic is a three-layer structure with no feedback
connections, referred to as a feedforward neural network. Such a network is pre-
sented on Fig. 3.22. There are two outbound layers, the input and output ones, and
one intermediate layer which is referred to as a hidden layer. This is why such a
structure is referred to as a one hidden-layer neural network (NN).

Network on Fig. 3.22 is designed as a one-hidden-layer NN for predicting petal
sizes of Iris features from their sepal sizes. Recall that in Iris data set, each of 150
specimens is presented with four features which are the length and width of petals
(features w3 and w4) and sepals (features w1 and w2). It is likely that the sepal
sizes and petal sizes are related.

In fact, the further material can be used for building an NN for modeling cor-
relation between any inputs and outputs—the only possible difference, in numbers
of input and/or output units, plays no role in the organization of computations.

This neural network consists of the following layers:

(a) Input layer that accepts three inputs: a bias input x0 = 1 as explained above (see
Fig. 3.20 on the right) as well as sepal length and width; these are combined to
be inputs to each of the neurons at the hidden layer.

(b) Output layer producing an estimate for petal length and width with a linear
activation function. Its input is the output signals from the hidden layer. No
fictitious input x0 = 1 is assumed here because the activation function here just
passes the combined signal through without a threshold.

û1 û2

k                            Output  (linear)

v11     v12      
v21 v22      v31     v32

s.l. x1 s.w. x2 fict. x0 = 1                        Input  (linear)

III1 III2

II1 II2 II3

I1 I2 I3  

h Hidden (sigmoid)

w21              w22        w23
w11  w12      w13              w31   w32   w33

i 

Fig. 3.22 A feed-forward network with two input and two output features (no feedback loops).
Layers: Input (I, indexed by i), Output (III, indexed by k) and Hidden (II, indexed by h)
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(c) Hidden layer consisting of three neurons. Each of them takes a combined input
from the first layer and applies to it its sigmoid activation function. The output
signals of these three neurons constitute inputs to the output layer. The archi-
tecture allows for any number of hidden neurons with no changes in the
computations.

The one-hidden-layer structure is generic in NN theory. It has been proven, for
instance, that such a structure can exactly learn any subset of the set of entities.
Moreover, any pre-specified mapping of inputs to outputs can be approximated up
to a pre-specified precision with such a one-hidden-layer network, if the number of
hidden neurons is large enough (Haykin 1999). This property, for many years,
served as a justification for the specialists to consider one-layer neural networks
only. The past decade saw an explosion of research on deep neural networks, that
is, networks with a dozen or more layers (see, for example, LeCun et al. 2015). It
appears deep neural networks are capable to capture non-linear hidden features and,
in this way, dramatically improve precision of the neural network decision rules.
Deep learning is an area of intense research efforts which should bring novel
breakthroughs in machine learning. There is a caveat though. The hidden features
are hidden indeed. There is no way to explicitly describe relations between given
features and the hidden one. That brings forward the I. Asimov’s controversy
pointed to in his “I, Robot” series: unlike in data analysis, machine learning may
generate unexpected and unpredictable consequences.

3.5.2 Activation Functions and Network Function

Two popular activation functions, besides the sign function ůi = sign(ûi), are the
linear activation function, ůi = ûi and sigmoid activation function ůi = s(ûi) where

sðxÞ ¼ ð1þ e�xÞ�1 ð3:21Þ

is a smooth analogue to the sign function, except for the fact that its output is
between 0 and 1 rather than −1 and 1 (see Fig. 3.21b). To imitate the perceptron
with its sign(x) output, between −1 and 1, we first double the output interval and
then subtract 1 to obtain what is referred to as a symmetric sigmoid or hyperbolic
tangent:

thðxÞ ¼ 2sðxÞ � 1 ¼ 2ð1þ e�xÞ�1 � 1 ð3:210Þ

This function, illustrated on Fig. 3.21c, in contrast to sigmoid s(x), is symmetric:
th(−x) = −th(x), like sign(x), which can be useful in some contexts.

The sigmoid activation functions have nice mathematical properties; they are not
only smooth, but their derivatives can be expressed through the functions them-
selves, see Q.3.13 and (3.28) further on.
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Let us express now the function of the one-hidden-layer neural network pre-
sented on Fig. 3.22. Its wiring weights between the input and hidden layer form a
matrix W = (wih), where i denotes an input, and h a hidden neuron, h = 1, 2,…,
H where H is the number of hidden neurons. The wiring weights between the
hidden and output layers form matrix V = (vhk), where h denotes a hidden neuron
and k an output.

Layers I and III are assumed to be linear giving no transformation to their inputs;
all of the hidden layer neurons will be assumed to have a symmetric sigmoid as
their activation function.

To find out an analytic expression for the network’s output, let us work it out
layer by layer. Neuron h in the hidden layer receives, as its input, a combined signal

zh ¼ w1hx1þ w2hx2þw3hx0

which is h-th component of vector z ¼ Rixi � wih ¼ x �W where x is a 1�3 input
vector. Then its output will be th(zh). These constitute an output vector th(z) = th(x
* W) that is input to the output layer. Its k-th node receives a combined signal
Rjvjk � thðzjÞ which is k-th component of the matrix product th(z) * V, that is passed
as the NN output û. Therefore, the NN on Fig. 3.22 transforms input x into output û
according to the following formula

û ¼ thðx �WÞ � V ð3:22Þ

which combines linear operations of matrix multiplication with a nonlinear sym-
metric sigmoid transformation. If matrices W, V are known, (3.22) computes the
function u = F(x) in terms of th, W, and V. The problem is to fit this model with
training data provided, at this instance, by the Iris data set.

3.5.3 Learning a Multi-layer Network

Given all the wiring weights W, between the input and hidden layers, and wiring
weights V, between the hidden and output layers, as well as pre-specified hidden
layer activation functions, the NN on Fig. 3.22 takes an input of the sepal length
and width and transforms it into estimates of the corresponding petal length and
width.

The quality of the estimates can be measured by the average squared error. The
better adapted weights W and V are, the smaller the error. Where the weights come
from? They are learnt from the training data.

Thus, the problem is to estimate weight matrices W and V at the training data in
such a way that the average squared error is minimized.

The machine learning paradigm is based on the assumption that a learning
device adapts itself incrementally by facing entities one by one. This means that the
full sample is assumed to be never known to the device so that global solutions,

208 3 Learning Correlations



such as the orthogonal projection used in linear discrimination, are not applicable.
In such a situation an optimization algorithm that processes entities one by one
should be applied. Such is the gradient method, also referred to as the steepest
descent.

This method relies on the so-called gradient of the function to be optimized (see
Sect. A.2 in Appendix). The gradient is a vector that can be derived or estimated at
any admissible solution, that is, matrices W and V. This vector shows the direction
of the steepest ascent over the optimized function considered as a surface. Its
elements are the so-called partial derivatives of the optimized function that can be
derived according to rules of calculus. The gradient is useful for maximizing a
criterion, but how one can do minimization with the steepest ascent? Easily, by
moving in the opposite direction, that is, taking minus gradient.

Assume, we have some estimates of matrices W and V as well as their gradients,
that is, matrices gW and gV, whose components express the steepest ascent
direction of changes in W and V. Then, according to the method of steepest descent,
the matrices V and W should be moved in the direction of −gW and −gV with the
control of the length of the step by a factor referred to as the learning rate. The
equations expressing the move from the old state to the new one are as follows:

VðnewÞ ¼ VðoldÞ � l � gV ;WðnewÞ ¼ WðoldÞ�l � gW ð3:23Þ

where l is the learning rate (step size). The importance of properly choosing the
step size is illustrated on Fig. 3.23.

The gradient of the criterion of squared error is defined by: (a) the matrices
W and V, (b) the error value itself, and (c) the input feature values. This is why it is
convenient to apply this approach when entities come in a sequence so that each
individual entity gives an estimate of the gradient and, accordingly, the move to a
new state of matrices W and V according to Eq. (3.23). The sequence of entities is
natural when the learning is done on the fly by processing entities in the order of
their arrival. In the situations when all the entities have been already collected in a
data set, as the Iris data set, the sequence is organized artificially in a random order.
Moreover, as the number of entities is typically rather small (as it is in the case of
just 150 Iris specimens) and the gradient process is rather slow, it is usually not
enough to process all the entities just once. The processing of all the entities in a

  old          new                        
W

Fig. 3.23 The importance of
properly choosing the step in
the steepest descent process:
if the leap is too big, the new
state may be worse than the
old one
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random order constitutes an epoch. A number of epochs need to be executed until
the matrices V and W are more or less stabilized.

Worked Example 3.6. Learning Iris Petal Sizes
Consider, at any Iris specimen, its two sepal sizes as the input and its two petal sizes
as the output. We are going to find a decision rule relating them in the format of a
one-hidden-layer NN.

At the Iris data, the architecture presented on Fig. 3.22 and program nnn.m
implementing the error back-propagation algorithm leads to the average errors at
each of the output variables presented in Table 3.12 at different numbers of hidden
neurons h. Note that the errors are given relative to feature ranges.

The number of elements in matrices V and W here are five-fold of the number of
hidden neurons, thus ranging from 15 at the current setting of three hidden neurons
to 50 when this grows to 10. One can see that the increase in the numbers of hidden
neurons does bring some improvement, but not that great—probably not worth
doing.

Here are a few suggestions for further work on this example:

1. Find values of E for the errors reported in Table above.
2. Take a look at what happens if the data are not normalized.
3. Take a look at what happens if the learning rate is increased, or decreased, ten

times.
4. Extend the table above for different numbers of hidden neurons.
5. Try petal sizes as input with sepal sizes as output.
6. Try predicting only one size over all input variables.

Worked Example 3.7. Predicting Marks at Student Dataset
Let us embark on an ambitious task of predicting student marks at the Students
data—we partially dealt with this in Sect. 3.3. The nnn.m program leads to the
average errors in predicting student marks over three subjects, as presented in
Table 3.13 at different numbers of hidden neurons h. Surprisingly, the prediction
works rather well: the errors are on the level of 3 points only, more or less inde-
pendently of the number of hidden neurons utilized.

Table 3.12 Relative error
values in the predicted petal
dimensions with full Iris data
after 5000 epochs

Number of hidden neurons Relative error, %

Petal length Petal width

3 5.36 8.84
6 3.99 8.40
10 3.98 8.15

210 3 Learning Correlations



3.5.4 Steepest Descent for the Square Error Criterion
with Linear Rules

In machine learning, the assumption is that the decision rule is learnt incrementally
by using entities one by one. That is, the global solutions involving the entire
sample are not applicable. In such a situation an optimization algorithm that pro-
cesses entities one by one should be applied. The most popular is the gradient
method, also referred to as the steepest descent.

This method relies on the gradient of the function to be optimized. If we are to
minimize function f(x) over x spanning a subspace D of the n-dimensional vector
space Rn, we can utilize its gradient gf for this purpose. The gradient gf at x2D is a
vector consisting of the f’s partial derivatives over all components of x, under the
assumption that a full derivative, geometrically corresponding to the tangential
hyperplane, does exist. This vector shows the direction of the steepest ascent of f(x), so
that its opposite vector −gf shows the opposite direction which is considered as that of
the steepest descent of f(x). The method of steepest descent produces a sequence of
points x(0), x(1), x(2), … starting from an arbitrary x(0) by using recursive equation

xðtþ 1Þ ¼ xðtÞ�lt � gf xðtÞð Þ ð3:230Þ

where parameter lt denotes the length of the step to go from x(t) in the direction of
the steepest descent, referred to as the learning rate in machine learning. The
sequence x(t) is guaranteed to converge to the minimum point at a constant lt = l if
f(x) is strictly convex, so that there is a sphere of a finite radius such that f(x) is always
greater than its lower part, as shown on the right of Fig. 3.24 (see Polyak 1987).

Table 3.13 Average absolute error values in the predicted student marks over all three subjects,
with full Student data after 5,000 epochs

H |e1| |e2| |e3| #
param.

3 3.65 3.16 3.17 27
6 3.29 3.03 3.75 54
10 3.17 3.00 3.64 90

Fig. 3.24 A convex function, on the left and strictly convex function, on the right
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The process converges if f(x) is a convex function and lt tends to 0 when t grows
to infinity, but not too fast so that the sum of the series Rtlt is infinity. This
guarantees that the moves from x(t) to x(t + 1) are small enough to not over-jump
the point of minimum but not that small to stop the sequence short of reaching the
optimum by themselves.

If f(x) is not convex however, the sequence reaches just one of the local optima
depending on the starting point x(0) (see Fig. 3.25). Luckily, the square error in the
problem of linear discriminant analysis is strictly convex so that the steepest descent
sequence converges to the optimum from any initial point. This gives rise to the
algorithm described in the following section.

3.5.5 Learning Wiring Weights with Error
Back-Propagation

The problem of learning a neural network is to find weight matrices W and
V minimizing the squared difference between u observed and û computed:

E ¼ dðu; ûÞ ¼ hu� thðx �WÞ � V ; u� thðx �WÞ � Vi=2; ð3:24Þ

over the training entity set. The division by 2 is made to avoid factor 2 in the
derivatives of E.

Specifically, with just two outputs in Fig. 3.22, the error function is

E ¼ ðu1 � û1Þ2þðu2 � û2Þ2
h i

=2 ð3:240Þ

where u1 − û1 and u2 − û2 are differences between the actual and predicted values of
the two outputs.

Steepest descent equations (3.23) for learning V and W can be written
component-wise:

  x1 x2 x3 x4 x

f

Fig. 3.25 Points x1–x4 are points of local minimum for the function whose graph is drawn with
the line. The global minimum is only one of them, x4
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vhkðtþ 1Þ ¼ vhkðtÞ � l � @E=@vhk;
wihðtþ 1Þ ¼ wihðtÞ � l � @E=@wihði 2 I; h 2 II; k 2 IIIÞ ð3:25Þ

To make these computable, let us express the derivatives explicitly; first those at
the output, over vhk:

@E=@vhk ¼ � uk�ûkð Þ � @ûk=@vhk:

To advance, notice that ∂ûk/∂vhk = th(zh), since ûk ¼ RjthðzhÞ � vhk. Putting this
into equation above makes

@E=@vhk ¼ �ðuk�ûkÞ � thðzhÞ: ð3:26Þ

Regarding the second layer, of W, let us find the derivative ∂E/∂wih which
requires more chain-based derivations. Specifically,

@E=@wij ¼ Rk �ðuk� ûkÞ � @ûk=@wij
� �

:

Since ûk ¼ Rjth Rixi � wij
� 	 � vjk, this can be expressed as

@ûk=@wij ¼ vjk � th0 Rixi � wij
� 	 � xi:

The derivative th′(z) can be expressed through th(z) as explained in Q.3.13 later,
which leads to the following final expression for the partial derivatives:

@E=@wij ¼ �Rk �ðuk� ûkÞ � vjk
� � � 1þ thðzjÞ

� 	
1� thðzjÞ
� 	 � xi=2 ð3:27Þ

Equations (3.23), (3.26) and (3.27) lead to the following rule for processing an
entity, or instance, in the error back-propagation algorithm as applied to neural
network in Fig. 3.22.

1 Forward computation (of the output û and error). Given matrices V and W,
upon receiving an instance (x,u), the estimate û of vector u is computed
according to the neural network as formalized in Eq. (3.22), and the error
e = u − û is calculated.

2 Error back-propagation (for estimation of the gradient elements). Each neuron
receives the relevant error estimate, which is

– ek = −(uk − ûk), for (3.26) at output neurons k (k = III1, III2) or
– Rk ðuk�ûkÞ � vhk½ �, for (3.27) at hidden neurons h (j = II1, II2, II3) [the latter

can be seen as the sum of errors arriving from the output neurons according
to the corresponding synapse weights].
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These are used to adjust the derivatives (3.26) and (3.27) by multiplying them
with local data depending on the input signal, which is th(zh), for neuron k’s
source h in (3.26), and th′(zh)xi for neuron h’s source i in (3.27).

3 Weights update. Matrices V and W are updated according to formula (3.23).

What is nice in this procedure is that the computation can be done locally, so that
every neuron processes only the data that are available to this neuron, first from the
input layer, then backwards, from the output layer. In particular, the algorithm does
not change if the number of hidden neurons is changed from h = 3 on Fig. 3.22, to
any other integer h = 1, 2, …; nor does it change if the number of inputs and/or
outputs changed.

3.5.6 Error Back-Propagation: Computation

For a data set available as a whole, “offline”, due to the specifics of the binary target
variables and activation functions, such as th(x) and sign(x), which have −1 and 1 as
their boundaries, the data in the NN context are frequently pre-processed to make
every feature’s range to lie between −1 and 1 and the midrange to be 0. This can be
done by using the conventional shifting and rescaling formula for each feature v,
yiv = (xiv − av)/bv, at which bv is equal to the half-range, bv = (Mv − mv)/2, and shift
coefficient av, to the mid-range, av = (Mv+ mv)/2. Here Mv denotes the maximum
and mv the minimum of feature v.

The practice of digital computation, with a limited number of digits used for
representation of reals, shows that it is a good idea to further expand the ranges into
a [−10,10] interval by multiplying afterwards all the entries by 10: in this range,
digital numbers stored in computer arguably lead to smaller computation errors than
in the range [−1,1], if they are closer to 0.

The implementation of the method of gradient descent for learning neural net-
works cannot be straightforward because the minimized squared error depends both
on the wiring weight matrices V and W and input/output pairs (x,u), yet there is no
way to freely change the latter—the process is bound by the set of observations.
This is why the observed pairs (xi,ui), the instances, are used as triggers to the
steepest descent changes in matrices V and W. Specifically, given V and W, the
instances are put one by one, in a random order, to see what are the discrepances
between the observed u and computed û. When all of the instances have been
entered, their order is randomly changed and they are ready to be put all over
again—this is referred to as a new “epoch”. The matrices V and W are changed
either at each (xi,ui) instance, using the errors û–u locally, or after an epoch, using
the accumulated errors.

The error back-propagation algorithm, with the local changes of matrices V and
W, can be formulated as follows.
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A. Initialize weight matrices W = (wih) and V = (vhk) by using random normal
distribution N(0,1) with the mean at 0 and the variance 1.

B. Standardize data to [−10,10] ranges and 0 averages as described above.
C. Formulate halting criterion as explained below and run a loop over epochs.
D. Randomize the order of entities within an epoch and run a loop of the error

back-propagation instance processing procedure, below, in that order.
E. If Halt-criterion is met, end the computation and output results: W, V, û, e, and

E. Otherwise, execute D again.

The best halting criterion, according to the nature of the steepest descent process
should be at

(i) Matrices V and W stabilized. Unfortunately, in real world computations this
criterion requires by far too many iterations, so that in practice the matrices
fail to converge. Thus, other stopping criteria are used.

(ii) The difference between the average values (over iterations within an epoch)
of the error function becomes smaller than a pre-specified threshold, such as
0.0001.

(iii) The number of epochs performed reaches a pre-specified threshold such as
5000.

Instance Processing Procedure

Specifics of the NN structure and function provide for simple and effective rules
for processing individual entities in the procedure of the steepest descent. Before
updating the wiring weights according to Eqs. (3.23), two following steps are
executed:

1. Forward computation of the estimated output and its error. Upon receiving a
training instance input feature values, they are processed by the neural network
to produce an estimate of the output, after which the error is computed as the
difference between real and estimated output values.

2. Error back-propagation for estimation of the gradient. The computed error of
the output is back-propagated through the network. Each neuron of the output
layer corresponds to a specific output feature and, thus, receives the error in this
feature. Each neuron of the hidden layer receives a combined error signal from
all output neurons weighted by the corresponding wiring weights. These are
used to adjust the gradient elements by using the hidden neuron activation
function.

In the Appendix A.4, a Matlab code nnn.m is presented for learning NN weights
with the error back-propagation algorithm according to the NN of Fig. 3.22. Two
parameters of the algorithm, the number of neurons in the hidden layer and the
learning rate, are its input parameters. The output is the minimum level of error
achieved and the corresponding weight matrices V and W.
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The code includes the following steps:

1. Loading data. It is assumed that all data are in subfolder Data. According to the
task, this can be either iris.dat or stud.dat or any other dataset.

2. Normalizing data. This is done by shifting each column to its midrange with the
follow-up dividing it by the half-range, after which all data set is multiplied by
10, to have them in [−10,10] scale as described above.

3. Preparing input and output training sub-matrices. This is done after the decision
has been made of what features fall in the former and what features fall in the
latter categories. In the case of Iris data, for example, the target is petal data
(features w3 and w4) and input is sepal measurements (features w1 and w2) as
described. In the case of Students data, the target can be students’ marks on all
three subjects (CI, SP and OOP), whereas the other variables (occupation cat-
egories, age and number of children), input.

4. Initializing the network. This is done by: (a) specifying the number of hidden
neurons H, (b) filling in matrices W and V with random (0,1) normally dis-
tributed values, and (c) setting a loop over epochs with the counter initialized at
zero.

5. Organizing a loop over the entities. For setting a random order of entities to be
processed, the Matlab command randperm(n) for making a random permutation
of integers 1, 2,…, n can be used.

6. Forward pass. Given an entity, the output is calculated, as well as the error,
using the current V, W and activation functions. The program uses the sym-
metric sigmoid (3.21) as the activation function of hidden neurons.

7. Error back-propagation. Gradient matrices for V and W according to formulas
(3.26) and (3.27) are computed.

8. Weights V and W update. Having the gradients computed and learning rate
accepted as the input, updated W and V are computed according to (3.23).

9. Halt-condition. This includes both the level of precision, say 0.01, and a
threshold to the number of epochs, say, 5,000. If either is reached, the program
halts.

Q.3.13. Prove that the derivatives of sigmoid (3.21) or hyperbolic tangent (3.21)
functions appear to be simple polynomials of selves. Specifically,

s0ðxÞ ¼ ð1þ e�xÞ�1
� �0

¼ ð�1Þð1þ e�xÞ�2ð�1Þe�x ¼ sðxÞ 1� sðxÞð Þ; ð3:28Þ

th0ðxÞ ¼ 2 � sðxÞ � 1½ �0¼ 2 � sðxÞ0 ¼ 2 � sðxÞ � 1� sðxÞð Þ
¼ 1þ thðxÞð Þ � 1� thðxÞð Þ=2 ð3:280Þ

Q.3.14. Find a way to improve the convergence of the process, for instance, with
adaptive changes in the step size values.
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Q.3.15. Use k-fold cross validation to provide estimates of variation of the results
regarding the data change.
Q.3.16. Develop a scoring function for learning a category by using the contri-
bution of the partition to be built to the category.

3.6 Association Between Nominal Features: Elementary
and Linear Modeling

3.6.1 Elementary Analysis: Quetelet Index and Chi-Squared

3.6.1.1 Conceptual Relations from Statistics

To analyze interrelations between two nominal features, they are cross-classified in
the so-called contingency table. A contingency table has its rows corresponding to
categories of one feature and columns to categories of the other feature, while the
entries are counts of entities falling in the overlap of the corresponding row and
column categories. The contingency table’s structure may well serve for the anal-
ysis of association between the nominal features summarized in the table.

Worked Example 3.8. Contingency Table on Market Towns Data
To cross-classify features Banks and Farmer’s Market on Market towns data, we
first need to categorize the quantitative feature Banks. Consider, for example, the
four-category partition of the range of Banks feature at Market towns set presented
in Table 3.14.

These categories are cross-classified with FM “yes” and “no” categories in
Table 3.15. Besides the cross-classification counts, the table also contains summary
within category counts, the totals, on the margins of the table, the last row and last

Table 3.14 Definition of Ba
categories on the Market
towns dataset

Category Definition Notation

1 Ba � 10 10+
2 10>Ba� 4 4+
3 4>Ba� 2 2+
4 Ba = 0 or 1 1−

Table 3.15 Cross
classification of the Ba
categories with FM categories

FarmMarket Bank/building society
categories

Total

10+ 4+ 2+ 1−

Yes 2 5 1 1 9
No 4 7 13 12 36
Total 6 12 14 13 45
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column—this is why they are referred to as marginal frequencies. The total count
balances the sheet in the bottom-right corner.

The same contingency data converted to relative frequencies by relating them to
the total number of entities are presented in Table 3.16.

Q.3.17. Build a contingency table for features “Protocol-type” and “Attack type” in
Intrusion data. A. See Table 3.17

A contingency table can be used for assessment of correlation between two sets
of categories. The highest level of correlation is that of a conceptual association.
A conceptual association may exist if a row, k, has all its entries, not marginal of
course, except just one, say l, equal to 0, which would mean that all of the extent of
category k belongs to the column category l. The data, thus, indicate that the
category k may logically imply the category l.

Worked Example 3.9. Equivalence and Implication from a Contingency
Table
Such are rows “Udp” and “Icmp” in Table 3.17. There is a perfect match in this
table: a row category k = “Icmp” and a column category l = “Smurf”, that contains
the only non-zero count. No other combination (k, l′) or (k′, l) is possible according
to the table. In such a situation, one may claim that, subject to the sampling error,
category l may occur if and only if k does, that is, k and l are equivalent.

A somewhat weaker, but still very much valuable is the case of “Udp” row in
Table 3.17. It appears, Udp protocol implies “Norm” column category—a no-attack
situation, though there is no equivalence here because the “Norm” column contains
another positive count, in row “Tcp”.

Case-Study 3.5. Trimming Contingency Data: A Bad Option
Unfortunately, there are no zeros in Table 3.15, and thus, no conceptual relation
between the number of Banks and the presence of a Farmer’s market. But some of
the entries are really close to 0, which may make us tempted to trim the data a bit.
Imagine, for example, that in row “Yes” of Table 3.15, two last entries are 0, not 1s.

Table 3.16 BA/FM
cross-classification relative
frequencies, percent

FM | Ba 10+ 4+ 2+ 1− Total

Yes 3.44 11.11 3.22 3.22 20
No 8.89 15.56 28.89 26.67 80
Total 13.33 26.67 31.11 28.89 100

Table 3.17 Protocol/attack
contingency table for
Intrusion data

Category Apache Saint Smurf Norm Total

Tcp 23 11 0 30 64
Udp 0 0 0 26 26
Icmp 0 0 10 0 10
Total 23 11 10 56 100
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This would imply that a Farmers Market may occur only in a town with 4 or more
Banks. A logical implication, that is, a production rule, “If BA is 4 or more, then a
Farmer’s market must be present”, could be derived then from thus modified table.
One may try taking this path and cleaning the data of smaller entries, by removing
corresponding entities from the table, of course, to not obscure our “vision” of the
pattern of correlation. Thus trimmed Table 3.18 is obtained from Table 3.15 by
removing just 13 entities from “less popular” entries. This latter table expresses,
with no exception, a very simple conceptual statement “A town has a Farmer’s
market if and only if the number of Banks in it is 4 or greater”. However nice the
rule may sound, let us not forget the cost of the trimming which is the 13 towns,
almost 30% of the sample, that have been removed as those not fitting the stated
perspective. Such a data doctoring borders with forgery—one of the reasons for a
famous quip usually attributed to B. Disraeli, a celebrated British politician of XIX
century: “There are three gradations of lies: lies, damned lies and statistics.” The
issue of sample adjustment so far has received no reasonable solution, even with
respect to outliers—values falling way beyond the feature range one would expect
normally. Anyway, the conclusion of the trimming exercise is that one should try
finding ways of expressing conceptual relations without doctoring the sample.

3.6.1.2 Capturing Relationships with Quetelet Indexes

Quetelet index provides for a strategy for visualization of correlation patterns in
contingency tables without removal of “not-fitting” entities. In 1832, A. Quetelet
(1796–1874), a founding father of statistics, proposed to measure the extent of
association between row and column categories in a contingency table by com-
paring the local count with an average one.

Let us consider correlation between the presence of a Farmer’s Market and the
category “10 or more Banks” according to Table 3.15. We can see that their joint
probability/ frequency is the entry in the corresponding row and column: P(Ba = 10
+ & FM = Yes) = 2/45 = 4.44% (joint probability/frequency rate). Of the 20%
entities that fall in the row “Yes”, this makes the proportion of “Ba = 10+” under
condition “FM = Yes” equal to P(Ba = 10+ /FM = Yes) = P(Ba = 10+ &
FM = Yes)/P(FM = Yes) = 0.0444/0.20 = 0.222 = 22.2%. Such a ratio expresses
the conditional probability/rate.

Table 3.18 A trimmed BA/
FM cross classification
“cleaned” of 13 towns, to
sharpen the view

Number of banks/build,
societies

FMarket 10+ 4+ 2+ 1− Total

Yes 2 5 0 0 7
No 0 0 13 12 25
Total 2 5 13 12 32
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Is this high or low? Hard to tell without comparing this with the unconditional
rate, that is, with the frequency of category “Ba = 10+” in the whole dataset, which
is P(Ba = 10+) = 13.33%. Let us compute the (relative) difference between the two,
which is referred to as Quetelet index q:

qðBa ¼ 10þ =FM ¼ YesÞ ¼ P(Ba ¼ 10þ =FM ¼ YesÞ½
�PðBa ¼ 10þÞ�=PðBa ¼ 10þÞ
¼ ½0:2222� 0:1333�=0:1333 ¼ 0:6667 ¼ 66:7%:

That means that condition “FM = Yes” raises the frequency of the Bank cate-
gory by 66.7%.

This logic concurs with our everyday intuition. Consider, for example, the risk
of getting a serious illness, say tuberculosis, which may be, say, about 0.1%, one in
a thousand, in a given region. Take a condition such as “Bad housing” and count
the rate of tuberculosis under this condition, amounting to, say 0.5%—which is
very small by itself, yet a five-fold increase over the average tuberculosis rate. This
is exactly what Quetelet index measures: q(l/k) = (0.5 − 0.1)/0.1 = 400% to show
that the change of the average rate is 4 times.

Worked Example 3.10. Quetelet Index in a Contingency Table
Let us apply the general Quetelet index formula (3.29) to entries in Table 3.15. This
leads to Quetelet index values presented in Table 3.19. By highlighting positive
values in the table, we obtain the same pattern as on the “purified” data as in
Case-Study 3.5, but this time in a somewhat more realistic manner, keeping the
sample intact. Specifically, one can see that “Yes” FM category provides for a strong
increase in the probabilities, whereas “No” category leads to much weaker changes.

Q.3.18. Compute Quetelet coefficients for Table 3.17.
A. See Table 3.20 in which positive entries are highlighted in bold

Table 3.19 BA/FM Cross classification Quetelet coefficients, % (positive entries highlighted
using bold font)

FMarket 10+ 4+ 2+ 1−

Yes 66.67 108.33 −63.29 −61.54
No −16.67 −27.08 16.07 15.38

Table 3.20 Quetelet indices
for the protocol/attack
contingency Table 3.17, %;
positive values are
highlighted using bold font

Category Apache Saint Surf Norm

Tcp 56.25 56.25 −100.00 −16.29
Udp −100.00 −100.00 −100.00 78.57
Icmp −100.00 −100.00 900.00 −100.00
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Case-Study 3.6. Has There Been Any Bias in S’n’S’ Policy?
Take on the case of Stop-and-Search policy in England and Wales 2005 represented
according to race (B—black, A—Asian and W—white), by numbers in Table 1.12
in Sect. 1.3.2—these are overwhelmingly in category W. The criticism of this
policy came out of comparison of this distribution with the distribution of the entire
population. Such a distribution, according to the latest pre-2005 census 2001, can
be easily found on web. By subtracting from that the numbers of Stop-and-Search
occurrences, under the assumption that nobody has been subjected to this more than
once, Table 3.21 has been drawn. Its last column gives the numbers that were used
for the claim of a racial bias: indeed category B members have been subjects of the
policy six times more frequently than category W members. A similar picture
emerges when Quetelet coefficients are used (see Table 3.22). Category B is subject
to Stop-and-Search policy 400% more frequently than on average, whereas cate-
gory W, 15% less.

Yet some would consider drawing a table like Table 3.21, and of course the
derived Table 3.22, as something nonsensical, because it is based on an implicit
assumption that the Stop-and-Search policy applies to the population randomly.
They would argue that police apply the policy only when they deem it necessary, so
that the comparison should involve not all of the total population but only that
criminal. Indeed, the distribution of subjects to Stop-and-Search policy by race has
been almost identical to that of the imprisoned population of the same year.
Therefore, the claim of a racial bias by police should be declared incorrect, provided
that the system of justice is not biased overall.

Table 3.21 Distribution of stop-and-search policy cross-classified with race

S’n’S Not S’n’S Total S’n’S-to-Total

Black 131,723 1,377,493 1,509,216 0.0873
Asian 70,252 2,948,179 3,018,431 0.0233
White 676,178 46,838,091 47,514,269 0.0142
Total 878,153 51,163,763 52,041,916 0.0169

Table 3.22 Relative
Quetelet coefficients for
cross-classification in
Table 3.21, %

S’n’S Not S’n’S

Black 417.2 −7.2
Asian 37.9 −0.6
White −15.7 0.3
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3.6.1.3 Conditional Probabilities, Quetelet Indexes and Pearson’s
Chi-Squared

Consider two sets of disjoint categories on an entity set I, K and L. Using k = 1,…,
K (for example, occupation of individuals constituting I) and l = 1,…, L (say, family
or housing type) as category indices should not bring any confusion here. Both, K and
L, make a partition of the entity set I; these partitions are crossed to see if there is any
correlation between them. For a a pair of categories (k,l)2K � L, count the number of
entities that fall in both. The (k,l) co-occurrence count is denoted by Nkl. Obviously,
these counts sum to N because the categories are not overlapping and cover the entire
dataset. A table housing these counts, Nkl, or their relative values, relative frequencies
pkl = Nkl/N, is referred to as a contingency table or just cross-classification. The totals,
that is, within-row sums Nkþ ¼ RlNkl and within-column sums Nþ l ¼ RkNkl (as
well as their relative frequency counterparts) are referred to as marginals (because
they are located on the margin of the contingency table).

The (empirical) probability that category l occurs under condition k can be
expressed as P(l/k) = pkl/pk+ = Nkl/Nk+. The probability P(l) of the category l with
no condition is just p+l = N+l/N. Similar notation is used when l and k are swapped.
The relative difference between the conditional and unconditional probabilities is
referred to as the (relative) Quetelet index (Mirkin 2001):

qðl=kÞ ¼ Pðl=kÞ � PðlÞ
PðlÞ ð3:29Þ

where P(l) = N+l/N, P(k) = Nk+/N, P(l/k) = Nkl/Nk+. That is, Quetelet index
expresses correlation between categories k and l as the relative change in the
probability of l when k is taken into account.

With little algebra, one can derive a simpler—and symmetric—expression

qðl=kÞ ¼ ½Nkl=Nkþ � Nþ l=N�= Nþ l=Nð Þ
¼ NklN=ðNkþNþ lÞ�1 ¼ pkl

pkþ pþ l
� 1

ð3:290Þ

Highlighting high positive and negative values in a Quetelet index table, such as
Tables 3.19 and 3.22, visualizes the pattern of association between the two sets of
categories.

This visualization can be extended to a theoretically sound presentation. Let us
define the average Quetelet association index Q as the sum of pair-wise Quetelet
indexes weighted by their frequencies/probabilities:

Q ¼
XK
k¼1

XL
l¼1

pklqðl; kÞ ¼
XK
k¼1

XL
l¼1

pkl
pkl

pkþ pþ l
� 1

� �
¼
XK
k¼1

XL
l¼1

p2kl
pkþ pþ l

� 1

ð3:30Þ
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The right-hand expression for Q in (3.30) is popular in the statistical analysis of
contingency data. In fact, this Q is equal to the chi-squared correlation coefficient
proposed by Pearson (1900) in a very different context—as a measure of deviation
of the contingency table entries from the statistical independence.

To explain this in more detail, let us first introduce the concept of statistical
independence. The sets of k and l categories are said to be statistically independent
if pkl = pk+ p+l for all k and l. Obviously, such a condition is hard to fulfill in reality
K. Pearson suggested using relative squared errors to measure the deviations of
observed frequencies from the statistical independence. Specifically, he introduced
the following coefficient usually referred to as Pearson’s chi-squared association
coefficient:

X2 ¼ N
XK
k¼1

XL
l¼1

ðpkl � pkþ pþ lÞ2
pkþ pþ l

¼ N
XK
k¼1

XL
l¼1

p2kl
pkþ pþ l

� 1

 !
ð3:31Þ

The equation on the right can be proven with little algebra. Consider, for
example, this part of the expression on the left in (3.31):

XL
l¼1

ðpkl � pkþ pþ lÞ2
pkþ pþ l

¼
XL
l¼1

p2kl � 2pklpkþ pþ lþðpkþ pþ lÞ2
pkþ pþ l

¼
XL
l¼1

p2kl
pkþ pþ l

� 2
XL
l¼1

pklþ
XL
l¼1

pkþ pþ l ¼
XL
l¼1

p2kl
pkþ pþ l

� pkþ

The expression on the right in the above is derived by using equations Rlpkl ¼
pkþ and Rlpþ l ¼ 1. Summing all these equations over k will produce (3.31). On
the other hand, the expression on the right in (3.31) is obviously equal to
Rlpklqðl=kÞ so that

XL
l¼1

ðpkl � pkþ pþ lÞ2
pkþ pþ l

¼
XL
l¼1

pklqðl=kÞ ð3:32Þ

By comparing the right-hand parts of (3.30) and (3.31), it is easy to see that
X2 = NQ. The same follows from summing all the equations (3.32) over k.

The popularity of X2 index in statistics and related fields rests on the following
theorem proven by K. Pearson: if the contingency table is based on a sample of
entities independently drawn from a population in which the statistical indepen-
dence holds (so that all deviations are due to just randomness in the sampling), then
the probabilistic distribution of X2 converges to the chi-squared distribution (when
N tends to infinity) introduced by Pearson earlier for similar analyses. The proba-
bilistic chi-squared distribution (with p degrees of freedom) is defined as the dis-
tribution of the sum of squares of p random variables, each distributed according to
the standard Gaussian N(0,1) distribution.
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This theorem is not always of interest to a computational data analyst, because
they analyze data that are not necessarily random or not necessarily independently
sampled. However, Pearson’s chi-squared coefficient is frequently used just for
scoring correlation in contingency tables. The equation X2 = NQ gives a credible
support to this practice. According to this equation, the value of X2 is not only a
measure of deviation from the statistical independence. It also has a different
meaning as a measure of association between categories: that of the averaged
Quetelet coefficient. If, for example X2/N = 0.25, one may credibly claim that the
knowledge of L-category at an object improves the chance of its corresponding
K-category by 25% on average.

To get more intuition on the underlying correlation concept, let us take a look at
the extreme values that X2 can take and situations at which the extreme values are
reached (Mirkin 2001). It appears that at K � L, that is, if the number of columns
is not smaller than that of rows, X2 ranges between 0 and K − 1. It reaches 0 if
there is a statistical independence at all (k,l) entries so that all qkl = 0, and it reaches
K − 1 if each column l contains only one non-zero entry pk(l)l, which is thus equal to
p+l. Such a structure of the contingency table can be interpreted as an empirical
evidence that the logical implication l(k) ! k has place for all k = 1,2,…, K.

Representation of the chi-squared through Quetelet coefficients,

X2 ¼
XK
k¼1

XL
l¼1

Npklqðl=kÞ ð3:33Þ

amounts to decomposition of X2 into the sum of Nkl q(l/k) items and allows for
visualization of the items within the contingency table format, such as that pre-
sented in Table 3.23.

In fact, not only the total sum of these items coincide with that of the original
chi-squared items N(pkl − pk+p+l)

2/pk+p+l, but also the within-column and
within-row sums coincide too, as the derivation of (3.32) above clearly demon-
strates for the latter case.

However all the original chi-squared items in (3.31) are positive and cannot
show whether the correlation expressed by an individual entry is positive or neg-
ative. To overcome this shortcoming, another visualization of X2 is in use. That
visualization involves the square roots of the chi-squared items

rðk; lÞ ¼ pkl � pkþ pþ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkþ pþ l
p ð3:34Þ

Table 3.23 Four-fold
contingency table between
binary features

Feature Y Total

Yes No

Feature X Yes a b a + b

No c d c + d
Total a + c b + d N = a + b+c + d
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that are convenient to refer to as Pearson indexes. Obviously, X2 ¼ NRk;lrðk; lÞ2.
Pearson indexes indeed have the same signs as q(l/k), and in fact are closely related:
q(l/k) = r(k,l)[(pk+p+l)]

1/3. It is less clear what interpretation of its own the values
r(k,l) may have, although they are useful in the Correspondence analysis of con-
tingency tables (Sect. 3.6.3), see also normalized Laplacian in Sect. 5.2.

Q.3.19. Take two binary features presented as 1/0 variables and build their con-
tingency table, sometimes referred to as a four-fold table (Table 3.23) in which
symbols a, b, c, and d are used to denote the co-occurrence counts.

Prove that Quetelet coefficient q(Yes/Yes) expressing the relative difference
between a/(a + c) and (a + b)/N is equal to

qðYes=YesÞ ¼ ad � bc
ðaþ cÞðaþ bÞ ;

and the summary Quetelet coefficient Q, or Pearson’s X2/N, is equal to

Q ¼ ðad � bcÞ2
ðaþ cÞðbþ dÞðaþ bÞðcþ dÞ :

Q.3.20. Prove that the correlation coefficient between two 1/0 binary features can be
expressed in terms of the four-fold table as q = √Q, that is,

q ¼ ad � bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ cÞðbþ dÞðaþ bÞðcþ dÞp :

Q.3.21. Given a K � L contingency table P and a pair of categories, k 2 K and l 2
L, consider an absolute Quetelet index a(l/k) = P(l/k) − P(l) − the change from the
frequency of l 2 L on the whole entity set I to the frequency of l on entities falling in
category k 2 K. In terms of P, P(l) = p+l and P(l/k) = pkl/p+l. Prove that the sum-
mary Quetelet index A ¼ Rk;lpklaðl=kÞ ¼ Rk;lp2kl=pkþ � Rlp2þ l is equal to the fol-
lowing expression, an asymmetric analogue to Pearson chi-squared:

A ¼
XK
k¼1

XL
l¼1

ðpkl � pkþ pþ lÞ2
pkþ

ð3:35Þ

which also is the numerator of the so called Goodman-Kruskal “tau-b” association
index (Kendall and Stewart 1967).
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A. Indeed, by taking the square of the numerator, expression in (3.35) becomes equal
to Rk;lðp2kl � 2pklpkþ pþ lþ p2kþ p

2
þ lÞ=pkþ , which is Rk;lp2kl=pkþ � 2Rk;lpklpþ lþ

Rk;lpkþ p2þ l = Rk;lp2kl=pkþ � 2Rk;lp2þ lþRlp2þ l because Rkpkl ¼ pþ l and
Rkpkþ ¼ 1. This is obviously Rk;lp2kl=pkþ � Rlp2þ l ¼ Rk;lpklaðl=kÞ ¼ A, which
proves the statement.

Worked Example 3.11. Visualization of Contingency Table Using Weighted
Quetelet Coefficients
Let us multiply Quetelet coefficients in Table 3.19 by the frequencies of the cor-
responding entries in Table 3.15. Quetelet coefficients in Table 3.19 are taken
relative to unity, not per cent. This leads us to Table 3.24 whose entries sum to the
value of Pearson’s chi-square coefficient for Table 3.15, 6.86. Note that entries in
Table 3.24 can be both positive and negative; those with absolute value greater than
6.86/4 = 1.72 are highlighted in bold—they show the entries of an extraordinary
deviation from the average. Of them, column 4+ supplies the highest positive
impact and the highest negative impact.

Worked Example 3.12. A Conventional Decomposition of Chi-square
Coefficient
Let us consider a conventional way of visualization of contingency tables, by
putting Pearson indexes, the square roots r(k,l) of the chi-square coefficient items in
(3.34) as the table’s elements. These are in Table 3.25. The table does show a
similar pattern of positive and negative associations. However, it is not the entries
of the table that sum to the chi-square coefficient but rather the squares of the
entries. The fact that the summary values on the margins in Tables 3.24 and 3.25
are the same is not by chance: it exemplifies a mathematical property (see
Eq. (3.32)).

Table 3.24 BA/FM chi-squared (NQ = 6.86) and its decomposition according to (3.33); extreme
values are highlighted using bold font

FMarket 10+ 4+ 2+ 1− Total

Yes 1.33 5.41 −0.64 −0.62 5.48
No −0.67 −1.90 3.09 1.85 1.37
Total 0.67 3.51 1.45 1.23 6.86

Table 3.25 Square roots of the items in Pearson chi-squared (X2 = 6.86); the items themselves
are in parentheses; those positive are highlighted using bold font

FMarket 10+ 4+ 2+ 1- Total

Yes 0.73(0.53) 1.68(3.82) −1.08 (1.16) −0.99 (0.98) (5.49)
No −0.36 (0.13) −0.84 (0.70) 0.54 (0.29) 0.50 (0.25) (1.37)
Total (0.67) (3.52) (1.45) (1.23) (6.86)
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Q.3.22. In Table 3.24, all marginal values, the sums of rows and columns, are
positive, in spite of the fact that many within-table entries are negative. Is this just
due to specifics of the distribution in Table 3.15 or a general property?
A. A general property: the within-row or within-column sums of the elements,
Nlk q(l/k), must be positive, see (3.32).
Q.3.23. Find a similar decomposition of chi-squared for OOPmarks/Occupation in
Student data. Hint: First, categorize quantitative feature OOPmarks somehow: you
may use equal bins, or conventional boundary age points such as 35, 65 and 75, or
any other considerations.
Q.3.24. Can any logical production rules come from the columns of Table 3.17?
A. Yes, both Apache and Saint attacks may occur at the tcp protocol only.
Q.3.25. Of 100 Christmas shoppers in Q.2.25, 50 spent £60 each, 20 spent £100
each, and 30 spent £150 each. Those who spent £60 each are males only and those
who spent £100 each are females only, whereas among the rest 30 individuals half
are men and half are women. Build a contingency table for the two features, gender
and spending. Find and interpret the value of Quetelet coefficient for females who
spent £100 each.
A. The contingency table (of co-occurrence counts):

Spending, £

Gender 60 100 150 Total

Female 0 20 15 35
Male 50 0 15 65
Total 50 20 30 100

This table of absolute co-occurrence counts coincides with that of proportions
expressed per cent because the number of shoppers is 100.

Quetelet coefficient for (Female/£100) entry is

Q ¼ 100 � 20=ð20 � 35Þ � 1 ¼ 3:86� 1 ¼ 1:86

This means that being female in this category of spending is more likely than the
average, by 186%.

3.6.1.4 Different Association Measures

Given two nominal features represented by partitions S = {S1, S2,…, SK} and
T = {T1, T2,…., TL} of the entity set I, summarized in a K�L contingency table
P = (pkl) where pkl is the proportion of entities in Sk \ Tl. Let us describe a few
approaches to scoring the association between S and T that are used in popular data
analysis programs.

One idea for assessing the extent of association is to use a correlation measure
over the contingency table entries, such as averaged Quetelet coefficients, Q and A,
or chi-squared X2, as discussed above in Sect. 3.6.1.
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Seemingly another idea is to score the extent of reduction of uncertainty over
T obtained when S becomes available. This idea works like this: take a measure of
uncertainty of a feature, in this case partition, t(T), and evaluate it within each of S-
classes, t(T(Sk)), k = 1,…, K. Then the average uncertainty on these classes will bePK

k¼1 pkþ tðTðSkÞÞ, where pk+ are proportions of categories k, that is, classes Sk, so
that the total reduction of uncertainty is equal to

tðT=SÞ ¼ tðTÞ �
XK
k¼1

pkþ tðTðSkÞÞ ð3:36Þ

Of course, a function like (3.36) can be considered a measure of association over
the contingency table P as well, but a nice feature of this approach is that it can be
extended from nominal features to quantitative ones—by using an uncertainty index
over quantitative T-features.

Two very popular measures defined according to (3.36) are the so-called im-
purity function (Breiman et al. 1984) and information gain (Quinlan 1993).

The impurity function builds on Gini coefficient as a measure of variance (see
Sect. 2.3.1). Let us recall that Gini index for partition T is GðTÞ ¼ 1�PL

l¼1 p
2
l

where pl is the proportion of entities in Tl. If I is partitioned in clusters Sk, k = 1,…,
K, partitions T and S form a contingency table of relative frequencies P = (pkl). Then
the reduction (3.36) of the value of Gini coefficient due to partition S is equal to

DðT; SÞ ¼ GðTÞ �
XK
k¼1

pkþGðTðSkÞÞ: ð3:37Þ

This index D(T, S) is referred to as impurity of S over partition T. The greater the
impurity, the better the split S.

It is not difficult to prove that D(T, S) relates to Quetelet indexes from
Sect. 3.6.1. Indeed, D(T, S) = A(T, S) where A(T, S) is the average absolute
Quetelet index defined by Eq. (3.35) in Q.3.21. This implies indeed that DðT ; SÞ ¼P

l p
2
kl=pkþ �

P
l p

2
þ l; which proves the following statement: The impurity func-

tion is equal to the average absolute Quetelet index.
The information gain function builds on entropy as a measure of uncertainty (see

Sect. 2.3.1). Let us recall that entropy of partition T is HðTÞ ¼ �PL
l¼1 pl logðplÞ

where pl is the proportion of category l, that is, part Tl. If the entity set is partitioned
in clusters Sk, k = 1,…, K, partitions T and S form a contingency table of relative
frequencies P = (pkl). Then the reduction (3.36) of the value of entropy due to
partition S is equal to IðT ; SÞ ¼ HðTÞ �PK

k¼1 pkþHðTðSkÞ. This index I(T, S) is
referred to as the information gain due to S. In fact, it is equal to a popular
characteristic of the cross-classification of T and S, the mutual information defined
as I(T, S) = H(T) + H(S) − H(ST) where H(ST) is entropy of the bivariate distri-
bution represented by the contingency table P. Please note that the mutual infor-
mation is symmetric with regard to S and T, in contrast to the impurity function.
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To prove the statement let us just put forward the definition of the information gain
and use the property of logarithm that log(a/b) = log(a) − log(b):

IðT ; SÞ ¼ HðTÞ �
X

k
pkHðTðSkÞÞ ¼ HðTÞþ

X
k
pkþ

X
l
pkl logðpkl=pkþ Þ

¼ HðTÞ �
X

k
pkþ logðpkþ Þþ

X
k;l
pkl logðpklÞ ¼ HðTÞþHðSÞ � HðSTÞ;

which completes the proof.
The reduction of uncertainty measures are absolute differences that much depend

on the measurement scale and, also, on values of t(T) and t(S). This is why it can be
of advantage to use relative versions of the reduction of uncertainty measures
normalized by t(T) or t(S) or both. For example, the popular program C4.5
(Quinlan 1993) uses the information gain normalized by H(S) and referred to as the
information gain ratio.

3.6.2 Least-Squares Analysis of Association Between
Dummy Matrices

3.6.2.1 Linear Regression of One Dummy Matrix Over the Other One

Consider a nominal feature over an entity set I of cardinality N represented by
partition T = {Tl}, and another nominal feature represented by partition S = {Sk}.
This can be a cluster partition derived from available features to approximate
T. Rather than directly concentrating on their contingency table P = (pkl), let us take
a look at the association between T and S from a different perspective.

Let us define an N�L dummy matrix X corresponding to partition T by
assigning each category Tl with a binary variable xl, a dummy, which is just a
1/0 N-dimensional vector whose elements xil = 1 if i 2 Tl and xil = 0, otherwise
(l = 1,…, L). Similarly define an N�K dummy matrix Y whose columns yk are
0/1-vectors corresponding to categories k of S.

Let us consider linear regression of yk over set of all X-categories which is
achieved by using the orthogonal projector PX = X(XTX)−1XT, so that ŷk = PXyk. Let
us take a look at the components of the computed vector ŷk. Let us recall that the
projector’s matrix PX consists of diagonal blocks with (i,j)-th elements 1/Nl for i,j 2
Tl. whereas all the other elements are zero. Then the inner product of its i-th row
and vector is the number of unities in it multiplied by 1/Nl for that l for which i 2 Tl.
That is exactly Nlk/Nl where Nlk is the cardinality of intersection Sk \ Tl. In other
words, i-th element of ŷk is the conditional probability Nlk/Nl = p(k/l) where l is the
T-category of object i, i = 1,2,…, N.

This gives the structure of regression of the dummy matrix Y over dummy matrix
X, Ŷ = PXY in terms of the conditional frequency contingency table.
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Let us now standardize each feature yk by a scale shift ak and rescaling factor 1/
bk, according to the conventional formula y′k = (yk − ak)/bk. This will corre-
spondingly change the Ŷ-values, so that the conditional probabilities will change to
ckl = (p(k/l) − ak)/bk. In mathematical statistics, the issue of standardization is just a
routine transforming the probabilistic density function to a standardized format.
Things are different in data analysis, since no density function is assigned to data
usually. The scale shift is considered as positioning the data against a backdrop of
the “norm”, whereas the act of rescaling is to balance feature “weights” (see
Sect. 2.2 for discussion). Therefore, choosing the feature means as the ‘norm”
should be reasonable. The mean of feature yk is obviously the proportion of unities
in it, which is pk+ in notations related to the contingency table P. In fact, the
remainder of this section can be considered as another reason for using ak = pk+.
The choice of rescaling factors is somewhat less certain, though using all bk = 1
should seem reasonable too because all the dummies are just 1/0 variables measured
in the same scale. Incidentally, 1 is the range of any dummy. Some other values
related to yk′s dispersion could be used as well. Especially suitable is bk = (pk+)

1/2

which is the standard deviation of the Poisson distribution of a 1/0 variable (see
Sect. 2.3.3), as will be seen in the end of this section. With the scale shift value
specified, the standardized conditional probabilities in Ŷ can be expressed as

p0ðk=lÞ ¼ plk � pkþ pþ l

pþ lbk
ð3:38Þ

Let us compute the sum of squares of all the Ŷ-elements (3.38). Within the k-th
column, there are N+l values p(k/l) (3.38), which leads us to the value

Blk ¼ Nþ lp
0ðk=lÞ2 ¼ N

ðplk � pkþ pþ lÞ2
b2kpþ l

ð3:39Þ

as the contribution of (k,l)-pair to the sum of squares, hŶ 0; Ŷ 0i, where symbol ‘′’
refers to the fact that the data matrix Y has been pre-standardized.

Accordingly, the total contribution of partition S to the total scatter of the set of
standardized dummies representing partition T is equal to

BðS; TÞ ¼ bY0; bY0D E
¼
XL
l¼1

XK
k¼1

B2
lk ¼ N

XL
l¼1

XK
k¼1

ðplk � pkþ pþ lÞ2
b2kpþ l

ð3:40Þ

The term “contribution” comes from the regression model under consideration:

Y0 ¼ PXYþE ¼ bY0 þE;

which satisfies the Pythagorean decomposition property because of the orthogo-
nality of the projector PX:
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hY0;Y0i ¼ hbY0; bY0i þ hE;Ei;
so that hbY0; bY0i is the contribution indeed.

It should be noted that the value hE;Ei can be considered a measure of distance,
Euclidean squared, as usual, between partitions T and S corresponding to the
nominal features and their dummy matrices X and Y under consideration

dðX;YÞ ¼ hE;Ei ¼ Y0 � PXY0k k2 ð3:41Þ

This can be referred to as the dummy matrix regression distance.
The total contribution (3.40) reminds us of both the averaged relative Quetelet

coefficient Q in (3.30), as well as the impurity function D(T, S) in (3.37) and the
averaged absolute Quetelet coefficient in (3.35). The latter two indexes, up to
the constant N of course, emerge at the rescaling factors being unity, bk = 1. The
former emerges when rescaling factors bk ¼ ffiffiffiffiffiffiffiffi

pkþ
p

. The square root of the fre-
quency has an appropriate meaning—this is a good estimate of the standard
deviation in Poisson model of the variable: according to this model, Nk+ unities are
thrown randomly into the fragment of memory assigned for the storage of vector yk.
In fact, at this scaling system, B(T/S) = X2, the Pearson chi-squared!

Let us summarize the proven facts.

Statement 3.6.2.1 The impurity function in (3.37) can be equivalently expressed as

(a) The reduction of Gini uncertainty index of partition T when partition S is taken
into account;

(b) The averaged absolute Quetelet index aðl=kÞ ¼ pkl=pkþ � pþ l of the same
effect;

(c) The total contribution of partition S to the summary data scatter of the set of
dummy 1/0 features corresponding to classes of T and standardized by sub-
tracting the mean with no rescaling.

Statement 3.6.2.2 The Pearson chi-squared association index can be equivalently
expressed as

(a) A measure of statistical independence between partitions T and S;
(b) The averaged relative Quetelet index qðl=kÞ ¼ ðpkl=pkþ � pþ lÞ=pþ l between

partitions T and S;
(c) The total contribution of partition S to the summary data scatter of the set of

dummy 1/0 features xl corresponding to classes Tl and standardized by sub-
tracting the mean and dividing the result by bl ¼ ffiffiffiffi

pl
p

.

The claims of equivalence in Statements 3.6.2.1 and 3.6.2.2, although having
been described by this author earlier (see, for example Mirkin 1996, 2012) remain
virtually unknown, in spite of the fact that they point to useful relations between
different association measures and, as well, between statistical association measures
and preferred data normalization options.
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3.6.2.2 Canonical Analysis of Dummy Matrices: Dual Scaling,
“L’analyse Des Correspondences” and the Chi-Squared

Consider two nominal features over an entity set I of cardinality N represented by
partitions T = {Tl} and S = {Sk}. Define N�L dummy matrix X and N�K dummy
matrix Y corresponding to partitions T and S, respectively.

Consider the linear subspaces L(X) and L(Y) spanning matrices X and Y. The
problem of canonical correlation is to find in L(X) and L(Y) normed vectors x and y
maximally oriented towards each other so that hx; yi is maximum with respect to
x 2 L(X) and y 2 L(Y) such that hx; xi ¼ aTXTXa ¼ 1 and hy; yi ¼ bTYTYb ¼ 1. In
fact the problem is of finding vectors a and b maximizing aTXTYb such that
aTXTXa = 1 and bTYTYb = 1. Since matrices XTX and YTY are diagonal with
diagonal elements equal to N+l and Nk+, respectively, the normalizing constraints
can be reformulated as

XL
l¼1

Nþ lb
2
l ¼ 1;

XK
k¼1

Nkþ a2k ¼ 1;

A mathematical solution to this problem is described in Sect. A.3.3 of Appendix.
It is related to spectral analysis of the product PXPY where PX and PY are
N�N orthogonal projector matrices, defined as PX = X(XTX)−1XT, PY = Y(YTY)−1YT.

The general (i,j)-th element of PXPY is the inner product of i-th row of PX and j-th
row/column of PY. The former consists of 1/N+l for all the objects belonging to the
same l-th category of T as i, and zeros at other objects. The latter consists of 1/Nk+

for all the objects belonging to the same k-th category of S as j, and zeros at
other objects. Non-zero values meet at objects belonging to both T+l and Sk+, that is,
Sk \ Tl. Therefore the inner product is equal to Nkl/(Nk+N+l).

The spectrum of matrix PXPY is the same as of matrix AB where A =
(XTX)−1XTY, B = (YTY)−1YTX as defined in Sect. A.3.3. The matrices A and B are of
sizes L�K and K�L, respectively, and their entries are conditional probabilities. It
is easy to find out that (l,k)-th element of A is equal to Nlk/N+l, and (k,l)-th element
of B is equal to Nkl/Nk+. Here Nlk = Nkl is the number of objects in the intersection
Sk \ Tl.

A version of the power method for finding the maximum eigenvalue of PXPY or
of AB, which is the same, may be defined by using matrices A and B separately.
The method begins with any K-dimensional a = a(0) and finds L-dimensional
b′ = Aa(0), which is then normalized by computing b = (b′TYTYb′)1/2 and taking
b(1) = b′/b. Now next a-vector is computed as a′ = Bb(1) and then normalized
similarly as a(1) = a′/(a′TXTX a′)1/2. Next iterations run similarly. The convergence
is warranted if the maximal eigenvalue is greater than the other eigenvalues indeed.
The maximum eigenvalue is computed as the product of the norms of a′ and b′. The
corresponding eigenvectors a and b can be considered as the best numerical codes
for the categories; they are mutually oriented towards each other.
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Moreover, the total of the canonical eigenvalues is related to the Pearson
chi-squared coefficient between the two nominal variables. Since both spaces,
L(X) and L(Y), contain the bisector subspace of all N-dimensional vectors with
equal elements, this generates a trivial eigenvalue 1, which should not be taken into
account when considering the total of canonical eigenvalues. As is well known, the
sum of all eigenvalues of a square matrix is invariant under linear transformations
of the space; it is equal to the sum of the diagonal elements. As was shown above
the (i,i)-th element of matrix PXPY is equal to Nkl/(Nk+N+l), where k and l are
those indices for which i 2 Tl and i 2 Sk. The number of objects i such that i 2 Tl
and i 2 Sk, is equal to Nkl. Therefore, the total of diagonal elements in matrix PXPY

is equal to

XK
k¼1

XL
l¼1

Nkl
Nkl

NkþNþ l
¼
XK
k¼1

XL
l¼1

N2
kl

NkþNþ l
¼
XK
k¼1

XL
l¼1

pkl
pkþ pþ l

¼ X2=N þ 1;

according to Eq. (3.31). By subtracting the trivial eigenvalue 1, we conclude that
the total of non-trivial canonical eigenvalues is equal to X2/N.

The phenomenon of canonical correlation between nominal features has
attracted considerable attention of researchers. In particular, there are two tech-
niques of numerical analysis of nominal features based on the canonical correlation.
One is referred to as dual scaling (see Nishisato 2014); that utilizes a version of the
iterations according to the power method, as described above. Another, referred to
as the correspondence analysis, builds on the simultaneous consideration of both
spaces, L(X) and L(Y), and processes related to their interrelation (Benzecri 1992;
Greenacre 2017; Lebart et al. 1995). Specifically, an attention is given to equations
relating the canonical vectors, a = lBb and b = lAa, the so-called transition for-
mulas. Since elements of A and B are conditional probabilities p(k/l) = plk/p+l, and
p(l/k) = pkl/pk+, respectively, a and b appear to be averaged versions of each other
(up to the singular value l), which leads to a joint display of both S-categories and
T-categories.

This author developed a symmetric version of the correspondence analysis
which involves no dual spaces; this is described in the next Sect. 3.6.3.

3.6.3 Correspondence Analysis

3.6.3.1 Correspondence Analysis: Presentation

Correspondence Analysis is an extension of PCA to contingency tables taking into
account the specifics of co-occurrence data: they are not only comparable across the
table but also can be meaningfully summed together across the table. This leads to a
unique way of standardization of such data—by using the Quetelet coefficients
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rather than the original frequencies, which is an advantage over the common sit-
uations in which the data standardization is rather arbitrary.

Correspondence Analysis (CA) is a method for visually displaying both row and
column categories of a contingency table P = (pij), i 2 I, j 2 J, in such a way that
distances between the presenting points reflect the patterns of co-occurrences in
P. This method is usually introduced as a set of dual heuristics applied simulta-
neously to rows and columns of the contingency table (see, for example, Lebart
et al. 1995; Greenacre 2017). Yet there is a way for introducing CA as an
encoder-decoder based data recovery technique similar to that used for introducing
PCA above. According to this perspective (Lebart and Mirkin 1993; Mirkin 1996),
CA is a version of PCA differing from PCA due to the specifics of contingency
data, in the following aspects:

(i) The CA method obtains hidden factors representing the relative Quetelet
indexes rather than the original frequency data;

(ii) Both rows and columns are not equivalently contributing; each is assigned
with a weight reflecting its frequency; the greater the frequency, the greater
the weight. These weights are used in the approximation problem through-
out; both in the least-squares criterion and the mutual orthogonality
conditions;

(iii) Both rows and columns are visualized on the same display, thus referred to
as a biplot, in such a way that the geometric distances between the repre-
senting points reflect the so-called chi-square distances between row (or
column) conditional frequency profiles;

(iv) The data scatter is defined as the sum of squared entries weighted by the
products of the row and column weights, that is equal to the Pearson
chi-squared association coefficient.

Worked Example 3.13. Correspondence Analysis of a Theft/Age Contingency
Table
Consider Table 3.26, cross-classifying cases of attempted theft from shops and
supermarkets in the Netherlands 1979 from the book by Israëls 1987; see also
Lombardo et al. (2016).

Two classification bases are: categories of stolen goods and age groups of
perpetrators. There are 13 goods categories, from closing to household items to
perfumes; see the list in the left column of Table 3.26. There are 9 age groups (less
than 12 years old, 12–14 years old, 15–17, 18–20, 21–29, 30–39, 40–49, 50–64, 65
and over years old) coded accordingly in the first row of Table 3.26.

To apply the method to data in Table 3.26, we first transform that into Quetelet
coefficients format (see Table 3.27).

This standardization does make the data structure somewhat. It suffices to
mention pairs (tobacco, AGold) and (toys, AGmin) whose q-values exceed 200%
increase from the average. But the transformation p)q is not alone in CA. It is
coupled with the weighting of each row and column by its corresponding marginal
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probability so that the squared errors in the criterion are weighted by products of the
marginal probabilities. Moreover, the vector norm is weighted by them too.

Figure 3.26 represents a CA visualization of Table 3.26 derived as described
above, on the left, and PCA, on the right. The visualizations do not differ that much,
although the CA display gives a more clear picture. They clearly show which good
types an age group tends to steal. AGmin is close to toys, whereas AG16 is near
jewelry and records.

3.6.3.2 Correspondence Analysis: Formulation

Correspondence Analysis (CA) is a method for visually displaying both row and
column categories of a contingency table P = (pij), i 2 I, j 2 J, in such a way that
distances between the presenting points reflect the pattern of co-occurrences in
P. To be specific, let us take on the issue of visualization of P on a 2D plane so that
we are looking for just two approximating factors, u1 = (v1, w1) where v1 = (v1(i))
and w1 = (w1(j)) and u2 = (v2, w2) where v2 = (v2 (i)) and w2 = (w2(j)), with I [ J
as their domain, such that each row i 2 I is displayed as point u(i) = (v1(i), v2(i))
and each column j 2 J as point u(j) = (w1(j), w2(j)) on the plane as shown in
Fig. 3.26.

The |I|-dimensional vectors vt and |J|-dimensional vectors wt constituting
ut (t = 1, 2) are calculated to approximate the relative Quetelet coefficients
qij = pij/(pi+p+j)− 1 rather than the co-occurrencespij themselves, according to equations:

qij ¼ l1v1ðiÞw1ðjÞþ l2v2ðiÞw2ðjÞþ eij ð3:42Þ

where l1 and l2 are positive reals, by minimizing the weighted least-squares
criterion
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Fig. 3.26 Visualization of thefts/age contingency table in Table 3.26 using Correspondence
Analysis, on the left, and PCA, on the right. Squares stand for good types and stars for thief
categories
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E2 ¼
X
i2I

X
j2J

piþ pþ je2ij ð3:43Þ

with regard to lt, vt, wt, subject to conditions of weighted orthonormality:

X
i2I

piþ vtðiÞvt0 ðiÞ ¼
X
j2J

pþ jwtðjÞwt0 ðjÞ ¼ 1 if t ¼ t0

0 otherwise

�
ð3:44Þ

where t, t′ = 1, 2.
The weighted criterion E2 is equivalent to the unweighted least-squares criterion L2

applied to the matrix Rwith Pearson indexes rij = qij(pi+p+j)
½ = (pij − pi+p+j)/(pi+p+j)

½

as its entries. To be exact, let us consider model (3.42′) below:

rij ¼ a1f1ðiÞg1ðjÞþ a2f2ðiÞg2ðjÞþ eij ð3:420Þ

and try minimize the sum of squared residuals L2 ¼Pi;j e
2
ij. According to the SVD

theory, the solution to this problem is constituted by the two maximal singular
values a1 and a2 of matrix R = (rij) and corresponding pairs of the normed singular
vectors (f1, g1) and (f2, g2), respectively. Let us put rij = qij(pi+p+j)

½ in (3.42′) and
divide the equation by (pi+p+j)

½, which leaves it invariant:

qij ¼ a1f1ðiÞg1ðjÞ=ðpiþ pþ jÞ1=2þ a2f2ðiÞg2ðjÞ=ðpiþ pþ jÞ1=2þ eij=ðpiþ pþ jÞ1=2

This can be equivalently rewritten as:

qij ¼ a1v1ðiÞw1ðjÞþ a2v2ðiÞw2ðjÞþ eij ð3:4200Þ

where vt(i) = fit/(pi+
½), wt(j) = gjt/(p+j

½), and eij = eij/(pi+p+j)
½. Equation (3.42′′) is

similar to Eq. (3.42). What is about criterion? One can see that eij = eij(pi+p+j)
½.

Therefore, the L2 ¼ E2. That means that the a1 and a2 are the maximal singular
values of R, and the above definitions provide for the solutions of the problem in
(3.42), (3.43), and (3.44).

Therefore, the factors v and w are determined by the singular-value decompo-
sition of matrix R = (rij). More explicitly, the two maximal singular values lt and
corresponding singular vectors ft = (fit) and gt = (gjt) of matrix R, defined by
equations Rgt = ltft, R

Tft = ltgt (t = 1, 2) determine the optimal values lt and
optimal solutions to the problem of minimization of (3.43)–(3.44), according to
equations vt(i) = fit/(pi+

½) and wt(j) = gjt/(p+j
½).

The singular triplet equations can be rewritten in terms of vt and wt, as follows:X
j2J

pij
piþ

wtðjÞ ¼ ltvtðiÞ;
X
i2I

pij
pþ j

vtðiÞ ¼ ltwtðjÞ ð3:45Þ
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To prove the left-hand equation, take equation Rgt = ltft in its component-wise
form,

P
j2J rijgj ¼ lfi (index t omitted for the sake of convenience) and substitute

by vectors v and w defined above:
P

j2J rij
pþ j

piþ

� �1=2
wðjÞ ¼ lvðiÞ. This is equivalent

to
P

j2J
pij
piþ
� pþ j

� �
wðjÞ ¼ lvðiÞ. To complete the proof, equation

P
j pþ jwðjÞ ¼ 0

is to be proven. To do that, let us first prove that vector g0 whose components are
p+j

1/2 is a singular vector of R corresponding to singular value 0 (the other com-
ponent of the singular triplet is equal to f0 = (pi+

1/2)). Indeed,X
j2J rijp

1=2
þ j ¼ ð1=p1=2iþ Þ

X
j2J ðpij � piþ pþ jÞ ¼ ð1=p1=2iþ Þðpiþ � piþ Þ ¼ 0:

Then the equation
P

j pþ jwðjÞ ¼ 0 follows from the fact that all the singular
vectors are mutually orthogonal so that singular vector g corresponding to w is
orthogonal to g0, which proves the statement. The right-hand equation can be
proven in a similar way, from equation RTft = ltgt.

Equations (3.45) are referred to as transition equations and considered to justify
the joint display of rows and columns because the row-points vt(i) appear to be
averaged column-points wt(j) and, vice versa, the column-points appear to be
averaged versions of the row-points, up to the singular value of lt course.

The mutual location of the row-points is considered as justified by the fact that
between-row-point squared Euclidean distances d2(u(i), u(i′)) approximate the
chi-square distances between corresponding rows of the contingency table.
Specifically, chi-square distance is defined as a weighted squared Euclidean
distance:

v2ði; i0Þ ¼
X

j2J pþ jðqij � qi0jÞ2 ¼
X

j2J ðpij=piþ � pi0j=pi0 þ Þ2=pþ j: ð3:46Þ

Here u(i) = (v1(i), v2(i)) for v1 and v2 rescaled in such a way that their norms are
equal to l1 and l2, respectively. A similar property holds for columns j, j′. In fact, it
is the right-hand item in (3.46) which is used to define the chi-squared distance
between either columns or rows of a contingency table (Lebart et al. 1995), but the
definition in terms of Quetelet coefficients in the middle of (3.46) (Mirkin 1996)
looks more natural. The distance is dubbed chi-square distance because of its links
to the chi-square coefficient for the table P. First of all, if we take the weighted
chi-square summary distance to 0,

P
i2I piþ c

2ði; 0Þ where 0 is put instead of qi′j in
(3.46), it is easy to see that this is the Pearson chi-squared coefficient, without the
factor N of course, which is simultaneously the expression for the data scatter
according to criterion E2 in (3.43):X

i2I
piþ c2ði; 0Þ ¼

X
i2I

X
j2J

piþ pþ je
2
ij ¼ X2=N ð3:47Þ
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The weighted data scatter is equal to the scatter of R, the sum of its squared
entries T(R), which can be easily proven from the definition of R. Indeed,

TðRÞ ¼Pi2I
P

j2J pij � piþ pþ j
� 	2

=ðpiþ pþ jÞ = X2/N. This implies that

X2=N ¼ l21þ l22þ E2 ð3:48Þ

which can be seen as a decomposition of the contingency data scatter, expressed by
X2, into contributions of the individual factors, l21 and l22, and unexplained resid-
uals, E2. (Only two factors are considered here, but the number of factors to be
found can be raised up to the rank of matrix R with no other changes).

In a common situation, the first two singular values account for a major part of
X2, thus justifying the use of the plane of the first two factors for visualization of the
interrelations between I and J.

3.6.3.3 Correspondence Analysis: Computation

Given a contingency table P, the computation of correspondence analysis factors
can go in three steps: (a) computing Pearson index matrix R, (b) finding the singular
decomposition of R and the two first correspondence analysis factors, and (c) vi-
sualization of the joint display of rows and columns of P. Here are MatLab com-
mands for these.

(a) Computing Pearson index matrix R

�Pc=sum(P); Pr=sum(P′); total=sum(Pc);
�P=P/total; %relative frequencies
�Pc=Pc/total; %column relative frequencies
�Pr=Pr/total; %row relative frequencies
�Prod=Pr′*Pc; % matrix of products
� rProd=Prod.^(0.5); % square roots of products
� r=(P-Prod)./rProd; % Pearson index matrix

(b) Finding the correspondence analysis factors:

�[a,mu,b]=svd(r);
�% finding first factor
�x1=a(:,1)./sqrt(Pr′);
�y1 = b(:,1)./sqrt(Pc′);
�% finding second factor
�x2= a(:,2)./sqrt(Pr′);
�y2= b(:,2)./sqrt(Pc′);

As a bonus, one can estimate the proportion of data scatter, the chi-squared,
taken into account by the factors, and display it on the screen:

�yy=r.*r; chi=sum(sum(yy))% data scatter
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�ccn=(mu(1,1)^2+mu(2,2)^2)*100/chi;
%contribution of the first two
�disp(′Contribution of the solution:′); ccn

(c) Visualization of the joint display of rows and columns of P. The plot is easy to
do with command

�plot(x1,x2,′ks′, y1,y2,′kp′);

Yet to make the points annotated with row and column names, which are to be
available in a string cell termed say ‘names’, the joint set of rows and columns
should get their x-coordinate and y-coordinate vectors, z1 and z2 below:

�z1=[x1′ y1′]; z2=[x2′ y2′]; text(z1,z2,names);
�v=axis; axis(1.5*v);

The last line is to make the plot to look tighter by extending its boundaries.

3.6.4 Correlation Between Projection Matrices

Consider two nominal features over an entity set I of cardinality N represented by
partitions T = {Tl} and S = {Sk}. Define the N�L dummy matrix X and
N�K dummy matrix Y corresponding to partitions T and S, respectively.

Consider the linear subspaces L(X) and L(Y) spanning matrices X and Y, as well
as corresponding orthogonal projection matrices PX = X(XTX)−1XT and PX = Y
(YTY)−1YT. Such a matrix expresses the orientation of the space L(X) or L(Y) in a
concise way, like the normal vector a for a hyperplane defined by the equation
<a, x> = 0. Recall that the spaces L(X) or L(Y) overlap over the unidimensional
bisector line. To take this parasitic subspace out, one should subtract the parasitic
subspace from the matrices—by simply subtracting 1/N from all the elements of the
matrices, which transforms them to PX

−and PY
−.

The similarity between the corrected subspaces L(X)− and L(Y)− can be mea-
sured by the inner product, or even a correlation index, between PX

− and PY
−.

The inner product is equal to

hP�X ; P�Yi ¼
XK
k¼1

XL
l¼1

X
i2Sk

X
j2Tl

1
Nkþ

� 1
N

� �
1

Nþ l
� 1
N

� �

¼
XK
k¼1

XL
l¼1

X
i2Sk

X
j2Tl

1
NkþNþ l

� 1
NNþ l

� 1
NNkþ

þ 1
N2

� �
:

The latter expression is the result of multiplication of the expressions in the
parentheses in the former one. Let us figure out what are the summation results for
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each of the four items. The item 1/(Nk+N+l) appears in those (i,j) at which i 2 Sk and
j2Sl. that is, at those (i,j) at which both i,j 2 Sk \ Sl. That implies that the sum of

these items is equal to
PK

k¼1
PL

l¼1
N2
kl

NkþNþ l
. The second item does not depend on i, so

that there are N of them to sum. Within any category Tl, there are Nl items leading to
the summary value −1/N within each l = 1,2…, N. Summing these over l leads
to −1 as the total. Similarly, the total of summation of the third item is −1 as well.
The item number four, 1/(N2), summed N2 times, over all i and all j, will produce 1
as the total. Altogether, the inner product of the projection matrices is equal to

hP�X ;P�Y i ¼
XK
k¼1

XL
l¼1

N2
kl

NkþNþ l
� 1 ¼ Q: ð3:49Þ

That is, rather unexpectedly, the inner product of orthogonal projector’s matrices
is the average Quetelet index, or Pearson chi-squared related to N.

Q.3.26. Prove that the sum of elements of matrix P�X considered as an N�N vector
is 0; so is the mean of P�X .
Q.3.27. Prove that the sum of squares of elements of matrix P�X considered as an
N�N vector is K − 1 where K is the number of X-categories. Hint: Follow the way
of the previous paragraph. Consider the sum of all the elements of P�X to be
multiplied by themselves, in real, and see what are the results of summation of them
over all i,j = 1,…, N.

Now we are ready to see what is the correlation coefficient between matrices
P�X and P�Y :

qðP�X ;P�Y Þ ¼
QffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK � 1ÞðL� 1Þp ¼

PK
k¼1
PL

l¼1
ðNkl�NkþNþ lÞ2

NkþNþ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK � 1ÞðL� 1Þp ð3:50Þ

That is an interesting index. According to Kendall and Stewart (1967,
Eq. (33.64)), that is the squared value of the so-called Tschuprow association
coefficient. A. Tschuprow (1874–1926) proposed it in early 20th century based on
the fact that the product (K − 1)(L − 1) is the mean value for Pearson’s chi-squared
under the hypothesis that the features are statistically independent.

Q.3.28. Give an analytic expression for the quadratic distance between P�X and P�Y .
A. That is dðP�X ;P�Y Þ ¼ hP�X ;P�X iþ hP�Y ;P�Y i � 2hP�X ;P�Y i = K − 1+ L – 1 −
2Q = 2((K + L)/2 − 1 − Q) where Q is the average Quetelet coefficient. In the case
when K = L, this works fine. However, the greater the difference between L and K,
the greater the minimum value of d differs from 0, which perhaps correctly reflects
the mismatch between the two features.
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3.7 Distance Between Relations Corresponding to Tied
Rankings and Partitions

This material follows that by Mirkin and Fenner (2019). The topic of comparing
rankings was initiated by Charles Spearman (1863−1945) (a junior collaborator of
the founding fathers of multivariate statistics, Francis Galton and Karl Pearson), who
was hired to further pursue the golden dream of Galton, a proof that human talent is
inherited, mainly from one’s parents and, partly, from even more distant ancestors.
Although ranking is non-quantitative, Spearman proposed using ranks as numerical
values, so that the Pearson correlation coefficient could be employed. This is
straightforward when the observations being compared are linearly ordered.
However, different observations can sometimes be assigned the same numerical rank
value, which then led to the introduction of the term “tied observations”, subse-
quently replaced by “tied rankings”. Formally, a tied ranking can be represented as
an ordered partition R = (R1, R2, …, Rp), that is, a partition whose parts are linearly
ordered by their indices 1, 2,…, p. We say that an element i precedes an element j in
the ranking R if the part containing i precedes the part containing j. A clear-cut case
of an ordered partition is given by the rank features in social surveys. A ranked
feature asks respondents to classify alternatives using an ordered set of categories,
such as “strongly agree”, “agree”, “neutral”, “disagree”, “strongly disagree”. The
term ranking is used here as a synonym of the ordered partition; when considering a
series of objects with no ties, that is referred to as a strict ranking.

In 1938, a British statistician Maurice Kendall (1907–1983) introduced a dif-
ferent representation for rankings by using the relation of precedence between ranks
rather than the ranks themselves. Given a tied ranking R, we define a square
observation-to-observation matrix (the Kendall matrix) in which the (i, j) entry is +1
if i precedes j in R, 0 if i and j have the same rank, or −1 if j precedes i. The Kendall
rank correlation coefficient between two tied rankings is the Pearson correlation
coefficient between the corresponding Kendall matrices, considered as vectors in an
N�N-dimensional space.

In the 1950s, John Kemeny (1926–1992) approached the issue of comparing
rankings from a social consensus perspective. Given a set of ordered partitions, a
consensus ordered partition should represent the major tendency in the set.
A conventional approach, the majority rule, may fail when determined by voting on
pairs of alternatives.

Specifically, the so-called Condorcet paradox holds: if there are three parties at a
meeting, each supporting one of three cyclically related linear orderings of three
alternatives, say, (a) [i,j,k], (b) [j,k,i], and (c) [k,i,j], respectively, then the majority
rule would lead to a cycle in the precedence relation: i would precede j because this
is so for the majority, (a) and (c); similarly, j would precede k, and k would precede
i. This contradicts the requirement that the precedence relation corresponding to the
majority consensus ranking should be transitive. This paradox is a basis of the
celebrated “social choice impossibility theorem” by an American economist
Kenneth Arrow (1921–2017), a Nobel Prize winner.
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John Kemeny proposed a different definition for consensus ranking using a
distance measure between rankings. Rather than defining any specific distance
measure ab initio, he formulated four axioms that should hold for any admissible
distance measure. These axioms led Kemeny to derive the unique distance measure
satisfying them. The Kemeny distance turned out to be the L1-distance between the
Kendall matrices [see (Kemeny and Snell 1962) for a convincing exposition].

Here, we are going to describe a joint geometric space of ordered and unordered
partitions using the corresponding weak order and equivalence relations on the set
of observations (as it is done in (Mirkin 1979; Mirkin and Fenner 2019).

a. Weak orders and equivalence relations

Given a finite set I of N elements, a collection of its subsets R = {R1, R2, …,
Rp} is referred to as a partition if the subsets Rs are all non-empty, non-overlapping,
and cover the entire set I, so that each i 2 I belongs to a unique subset Rs,
1 � s � p. The subsets are called the parts of the partition R. A partition is said to
be ordered if there is a linear order relation of precedence between its parts, Rs < Rt,
that is transitive, anti-reflexive and complete. If the order coincides with the natural
order between indices 1, 2, …, p, we use parentheses to denote this, viz. R = (R1,
R2, …, Rp). In Decision Theory, an ordered partition is referred to as a ranking.

Each ordered partition R = (R1, R2, …, Rp) generates a binary preference
relation

q ¼ ði; jÞ : i 2 Rs; j 2 Rt; and s� tf g: ð3:51Þ

Usually, two non-overlapping binary relations are defined with respect to a
ranking R = (R1, R2, …, Rp): the strict preference relation P = {(i, j): i 2 Rs, j 2
Rt, and s < t} and the indifference relation E = {(i, j): i, j 2 Rs for some s}. The
indifference relation E here is transitive, reflexive and symmetric, thus E is the
equivalence relation corresponding to the unordered partition Ř having the same
parts as R. Obviously, q = P [ E, that is, q in (3.51) is a non-strict preference
relation in which the strict preference and indifference relations are merged toge-
ther. Usually, researchers try to avoid such a “mix”; but we will see later that there
is no problem with this merger. The next part of this section is a brief reminder of
some conventional concepts and facts about preference relations [see, for example,
(Steele and Stefánsson 2015)].

If q is a binary relation, its inverse q−1 is defined as q−1 = {(i, j): (j, i) 2 q}. If q
is the preference relation corresponding to a tied ranking R = (R1, R2, …, Rp), then
its inverse q−1 corresponds to the reverse tied ranking R−1 = (Rp, …, R2, R1). It is
easy to see that the indifference relation E corresponding to any tied ranking
R satisfies E = q \ q−1. Thus, the strict preference relation is the difference P = q
− E = q − q−1.

It is clear that q in (3.51) is

– Reflexive, that is, (i, i) 2 q for any i 2 I,
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– Transitive, that is, if (i, j) 2 q and (j, k) 2 q, then (i, k) 2 q for any i, j, k 2 A,
and

– Complete, that is, (i, j) 2 q or (j, i) 2 q, or both, for any i, j 2 A.

Of course, reflexivity can be considered as a special case of completeness for
which i = j. A binary relation satisfying these properties is usually referred to as a
weak order. In fact, a converse statement also holds: A preference relation q
corresponds to an ordered partition R if and only if it is a weak order.

To prove that, assume q to be a binary relation on the set I that is reflexive,
transitive and complete. Consider any i 2 I and define the subset q(i) = {j2 I: (i, j)
2 q}. Then, for any pair i, k 2 I, if (i, k) 2 q then q(k) 	 q(i). This holds because
whenever j 2 q(k), i.e. (k, j) 2 q, then (i, j)2 q also, because q is transitive.
Therefore, since q is complete, for any pair i, k 2 I, either q(k) 	 q(i) or q(i) 	
q(k), or both. It follows that the collection of sets q(i) is linearly ordered by
set-theoretic inclusion, so they can be ordered as a sequence of sets St for t = 1, 2,
…, p, where S1 
 S2 
… 
 Sp. Then the subsets Rt = St − St+1, t = 1, 2,…, p-1,
and Rp = Sp,, form a ranking R = (R1, R2, …, Rp). It is quite easy to check that its
corresponding preference relation (3.51) coincides with the given relation q. The
reverse implication, that the relation (3.51) corresponding to an ordered partition is
reflexive, transitive and complete, has already been established above. This com-
pletes the proof.

The subsets Rt = St − St+1 in the proof each satisfy Rt = q(i) \ q−1(i) for some i
2 I. This establishes that a binary relation q is a weak order if and only if its strict
part P is anti-reflexive and transitive, its indifference part E is an equivalence
relation, and P, P−1, E form a partition of the Cartesian product I�I.
b. Refinement and betweenness

A ranking R′ is a refinement of a ranking R if it is obtained from the latter by
subdividing some of its parts into smaller ones, and some ordering is defined
between the smaller parts of each subdivided part of R. The corresponding pref-
erence relations, q′ and q, are related by set-theoretic inclusion: A tied ranking R′ is
a refinement of a tied ranking R if and only if q′ � q.

Indeed, if R′ is a refinement of a tied ranking R then, for some pairs i, j of
elements of A such that both (i,j) 2 q and (j,i)2 q, only one of these holds for q′.
Conversely, suppose that q and q′ correspond to tied rankings R and R′, respec-
tively, and that q′ � q. Then q′(i) 	 q(i) for any i 2 I, and, moreover, the inclusion
is proper for some i 2 I. Consider any such i. Let {i1, i2, …, ik} be a maximal
subset of I such that q(i) 
 q′(i1) 
 q′(i2) 
 … 
 q′(ik). Then, by the previous
analysis, every equivalence class R′tu = q′(iu)\ q′−1(iu) will be part of the equiv-
alence class Rt = q(i) \ q−1(i), which completes the proof.

We say that q is coarser than q′, if q′ is a refinement of q.
A binary relation s on I is said to be between binary relations q and q′ if and only

if q \ q′ 	 s 	 q[q′. A ranking T is said to be between tied rankings R and R′ if,
for any i, j 2 I, the ordering between them in T is compatible with their ordering in
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both R and R′: that is, (i) if i precedes j in both R and R′ then i precedes j in T; (ii) if
i precedes j in one of R and R′, and i and j are indifferent in the other, then i either
precedes j or is indifferent to j in T; (iii) if i and j are indifferent in both R and R′,
then i and j are indifferent in T; lastly, (iv) if i precedes j in R but j precedes i in R′,
then anything can be true of the ordering between i and j in T: i may precede j, or j
may precede i, or i and j may be indifferent in T (Kemeny and Snell 1962). It is easy
to prove that T is between R and R′ if and only if the same is true for their weak
orders.

In the general case of two arbitrary tied rankings R and R′, the relation q \ q′
is a partial preference relation because there can be i, j ε I such that i strictly
precedes j in R, whereas j strictly precedes i in R′, so that neither (i, j) nor (j, i)
belongs to q \ q′.

Such a case, which is not uncommon, is exemplified by a proverbial question:
“What is better: being poor but healthy or being rich but ill?” (with a proverbial
answer that to be both rich and healthy is better indeed.)

What is appealing about q \ q′ is that its indifference relation is always an
equivalence relation, thus corresponding to the partition that is just the intersection
of the unordered partitions Ř and Ř′ that correspond to the ordered partitions R and
R′, respectively. The intersection Ř\Ř′ is the partition of I in which the parts are
the intersections Rs \ Rt′ of some part Rs of R and some part Rt′ of R′ for which Rs

and Rt′ are not disjoint.
Both ordered and unordered intersections can be visualized as a block matrix in

which the blocks are formed by the subsets of rows and columns corresponding to
the parts of the ordered partitions R′ and R, respectively (see Fig. 3.27). Of course,
the blocks of the intersections are only partially ordered so that, for example, blocks
R2′ \ R3 and R3′ \ R2 are not comparable. However, a linear order can be imposed
naturally by ordering the blocks first by rows and then by columns, so that any
block of the first row precedes the blocks in all other rows. This is the so-called
lexicographic product R′ * R introduced in (Mirkin 1979). Similarly, an alternative

R1 R2 R3 R4 R5

R1′∩R1 R1′∩R2 R1′∩R3 R1′∩R4 R1′∩R5

R2′∩R1 R2′∩R2 R2′∩R3 R2′∩R4 R2′∩R5

R3′∩R1 R3′∩R2 R3′∩R3 R3′∩R4 R3′∩R5

R4′∩R1 R4′∩R2 R4′∩R3 R4′∩R4 R4′∩R5

R1′

R2′

R3′

R4′

Fig. 3.27 A visual representation of the intersection of two rankings R ′\ R, where R′ relates to
rows and R to columns. It is assumed that the rows and columns are permuted according to the
rankings R′ and R, respectively
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lexicographic product R * R′ is defined by ordering blocks first by columns and
then by rows. Curiously, in the ordered series R′, R′ * R, R * R′ and R, the middle
term of each triplet is between the other two (Mirkin 1979). A similar statement
holds for the corresponding relations q′, q′ * q, q * q′ and q.

Q.3.29. Consider two rankings on an 8-element set, R′= (1–2–3–4, 5–6–7–8) and
R = (1–4–5, 2–3–7, 6–8). Here symbol – joins elements of the same part. Prove that
E′ \ E = {1–4, 2–3, 5, 7, 6–8} and give examples of rankings between R′and R.
A. For example, any ordering of E′ \ E which is compatible with both R and R′ as
well as its further aggregations, say, S = (1-4, 2-3, 5, 6-8,7) and T =
(1-4-2-3,5-6-8,7).

c. Correlation by Spearman and Kendall

Consider the Spearman rank correlation, that is, the Pearson correlation coeffi-
cient between ranks taken as numerical values. To deal with the case of tied
rankings, each element of an equivalence class of the indifference relation is
assigned with the average within-class rank. The average rank of the elements in
part Rs of the tied ranking R = (R1, R2, …, Rp) is L + (|Rs| + 1)/2, where L is the
cardinality of R1 [ R2 [ … [ Rs−1, and |�| denotes the number of elements in a
set. The Kendall rank correlation is based on the representation of tied rankings on
I by N�N matrices. Given a tied ranking R and the corresponding preference
relation q = P [ E, we now define a skew-symmetric matrix K = (kij), for i, j 2 I,
such that kij = 1 if (i, j) 2 P, kij = 0 if (i, j) 2 E, and kij = -1, if (j, i) 2 P. The
Kendall rank correlation coefficient between R and R′ is the correlation coefficient
between their Kendall matrices, K and K′, considered as vectors in an N2-dimen-
sional space. This is compatible with the non-quantitative nature of tied rankings,
especially since the mean of a skew-symmetric matrix is always 0.

It should be noted that, soon after the Kendall matrix was defined, a somewhat
similar skew-symmetric representation for quantitative features was proposed by
Daniels (1944), who proved that, given a quantitative feature x on I, the matrix
X = (xij), where xij = xi − xj, can be used to represent the feature in statistical
computations. For example, the inner product of the matrices X and X′ corre-
sponding to features x and x′ is proportional to the inner product of x and x′ after
they have been centered by subtracting their means, viz. hX;X0i ¼ 2Nhx�mðxÞ;
x0 �mðx0Þi, where m(x) is the mean of x. This implies that the correlation coef-
ficient between X and X′ is equal to the correlation coefficient between x and x′.
Therefore, the Spearman rank correlation coefficient can also be defined as the
Pearson correlation coefficient between the corresponding matrices of rank differ-
ences (rij), where rij = ri − rj. The Kendall matrix is then just the matrix of signs in
the Daniels matrix X = (xij), where xij = xi − xj.
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d. Kemeny distance

Rather than defining an ad hoc distance measure, Kemeny formulated four
axioms that should hold for any acceptable distance measure d(R, R′) between
rankings R and R′. These axioms require that the acceptable distance measures
should:

A1. Be mathematical metrics, that is, have the following properties:

(a) Symmetry: d(R, R′) = d(R′, R);
(b) Non-negativity and definiteness: d(R, R′) � 0 and d(R, R′) = 0 if and

only if R = R′;
(c) Strict triangle inequality: for any rankings R, R′ and R′′, d(R, R′′) � d(R,

R′) + (R′, R′′); moreover, equality holds if and only if R′ is between R and
R′′.

A2. If R′ is obtained from R by a permutation of the set I and S′ from S by the same
permutation, then d(R′, S′) = d(R, S).

To formulate the next axiom, let us say that a subset B � I is a segment of a tied
ranking R if its complement I − B 6¼ ∅ and each element i 2 I − B either precedes
all the elements of B or is situated after all the elements of B. The tied ranking
R restricted to a segment B will be denoted by RB.

A3. If R and R′ coincide on I − B and B is a segment of both R and R′, then d(R, R′) =
d(RB, RB′).

A4. Unit of scale: The minimum positive distance is equal to 1.

Kemeny proved that the only distance satisfying all four axioms is the L1-metric
between the corresponding skew-symmetric Kendall matrices divided by 2
(Kemeny 1959), namely:

kdðR;R0Þ ¼ 1
2

X
i;j2I

kij � k0ij
��� ��� ð3:52Þ

We see from (3.52) that the pairs of elements (i, j) in I can be divided into three
subsets:

(a) those contributing 1 to kd(R, R′): pairs (i, j) such that i precedes j in either R or
R′ while j precedes i in the other;

(b) those contributing ½ to kd(R, R′): pairs (i, j) such that i and j are indifferent in
either R or R′ whilst one precedes the other in the other ranking;

(c) those contributing 0 to kd(R, R′): pairs (i, j), that are similarly related in both
rankings—either i precedes j, or j precedes i, or i and j are indifferent.
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e. The mismatch distance between binary relations and the corresponding
binary matrices

Binary relations considered as subsets of the Cartesian product I�I may be
compared using any of the many measures of dissimilarity between subsets that
have been introduced over the years (Morlini and Zani 2012). One particularly
simple measure is the number of pairs for which they differ, the so-called mismatch
distance, i.e., the number of pairs in their symmetric difference:

dðq; q0Þ ¼ ðq� q0Þ [ ðq0 � qÞj j ð3:53Þ

The mismatch distance between unordered partitions was described in earlier
publications by B. Mirkin in Russian from 1969 onwards [see, for example, (Mirkin
and Cherny 1972)]; it is sometimes referred to as Mirkin’s distance (Meilă 2007).

We note that d(q, q′) is a metric on the space of all binary relations on I and
satisfies Axiom A1, including the strict triangle inequality, even for binary relations
that do not correspond to tied rankings.

The mismatch distance can easily be translated into a distance between N�N
matrices. Given a binary relation q 2 I�I, we define its binary matrix r = (rij) by:

rij ¼ 1 if ði; jÞ 2 q
0 if ði; jÞ 62 q

�
Then the mismatch distance between R and R′ is the mismatch (Hamming)

distance between the corresponding binary relations q and q′, and is thus given by:

dðR;R0Þ ¼ dðq; q0Þ ¼ ðq� q0Þ [ ðq0 � qÞj j
¼
X

i;j2I rij � r0ij
��� ��� ¼X

i;j2I rij � r0ij
� �2 ð3:54Þ

The right-hand equality allows the original L1-distance to be transformed into
the square of the more conventional, Euclidean or L2-distance because the absolute
differences are either 1 or 0.

Obviously, the mismatch distance (3.54) is much simpler than the Kemeny
distance (3.52) because the only possible non-zero contribution to d(R, R′) by an
ordered pair (i, j) is 1, and this only occurs when j precedes i in one of the tied
rankings but not in the other ranking. This happens when rij = 0 and rii′ = 1 or, vice
versa, rij′ = 0 and rij = 1. It may therefore be somewhat of a surprise that these two
distance measures are, in fact, equal, that is, the Kemeny distance (3.52) is equal to
the mismatch distance (3.54).

To prove that, let us first analyse the contributions of pairs of elements i, j 2 I to
the Kemeny distance between R and R′ depending on their relative positions in the
rankings R and R′; the various cases are shown in Table 3.28. We note that the
contribution of the pair (j, i) is exactly the same as that of the pair (i, j).

3.7 Distance Between Relations Corresponding to Tied Rankings and Partitions 249



Now we need to take into account a subtle difference between the concepts of
ranking and preference relation. The Kemeny distance is between two rankings—it
records disagreements in the relative positions between a pair of elements in the two
rankings; the symmetry between i and j accounts for the factor ½ in the expression
(3.52) for the Kemeny distance.

In contrast, the mismatch distance is between binary relations and counts the
disagreements between the relations in respect of ordered pairs of elements. We,
therefore, must distinguish between the ordered pair (i, j) and the inverse pair (j, i),
relative to the corresponding relation, q or q′. The various cases of the contributions
to the mismatch distance are shown in Tables 3.29 and 3.30, respectively.

Returning to the analysis of the interrelation between two elements i, j 2 I, we
need to combine Tables 3.29 and 3.30 by summing them, which produces
Table 3.31.

Table 3.28 The contribution of a pair (i, j) 2 I � I to the Kemeny distance (3.52) between R and
R′

R
Cases i precedes j i and j are indifferent j precedes i

R′ i precedes j 0 ½ 1
i and j are indifferent ½ 0 ½

j precedes i 1 ½ 0

Table 3.29 The contribution of the ordered pair (i, j) 2 I � I to the mismatch distance (3.54)
between R and R′

R
Cases i precedes j i, j are indifferent j precedes i

R′ i precedes j 0 0 1
i and j are indifferent 0 0 1
j precedes i 1 1 0

Table 3.30 The contribution of the ordered pair (j, i) 2 I � I to the mismatch distance (3.54)
between R and R′

R
Cases i precedes j i, j are indifferent j precedes i

R′ i precedes j 0 1 1
i and j are indifferent 1 0 0
j precedes i 1 0 0
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If we double the values in Table 3.28 to account for both ordered pairs (i, j) and
(j, i), we observe that the resulting entries are identical to those in Table 3.31, which
completes the proof.

Consider a simple example where I consists of three elements, 1, 2, and 3 that
are linearly ordered in R and all tied in R′, so that R = ({1}, {2}, {3}) and R′ = ({1,
2, 3}). Their respective Kendall matrices are

k ¼
0 1 1
�1 0 1
�1 �1 0

and k0 ¼
0 0 0
0 0 0
0 0 0

;

so that the Kemeny distance kdðR;R0Þ ¼ 6=2 ¼ 3:
On the other hand, their respective weak order matrices are

r ¼
1 1 1
0 1 1
0 0 1

and r0 ¼
1 1 1
1 1 1
1 1 1

;

so that the mismatch distance dðR;R0Þ ¼ 3 as well:

Q.3.30. Consider three rankings on a 7-element set I = {1,2,3,4,5,6,7}: R1 = (1–2–3,
4–5, 6–7), R2 = (2–3–6, 4, 1–5–7), and R3 = (1–2, 3–4, 5–6–7). Build their
relation and Kendall matrices, and compute mismatch and Kemeny distances
between all the three

f. The mismatch distance expressed in terms of the contingency table

Although the following results can be established directly, we now rely on
Axiom A1(c), which states that d(R, R′) = d(R, R′′) + d(R′′, R′) if and only if R′′
is between R and R′, that is q \ q′ 	 q′′ 	 q [ q′ for the corresponding preference
relations. By virtue of (3.5.4), we may use d(R, R′) and d (q, q′) interchangeably.

Let us first consider a tied ranking R and its reverse R−1. Obviously,
q \ q−1 = E, where E is the indifference relation of R, which is an equivalence
relation, stripped of all ranking information. Similarly, q [ q−1 = U, the universal
relation U = I�I, which contains all possible ordered pairs of elements of I. Both
E and U are, therefore, between q and q−1 for any weak order q.

Table 3.31 Summary contribution of the ordered pairs (i, j) and (j, i) to the mismatch distance
(3.54)

R
Cases i precedes j i, j are indifferent j precedes i

R′ i precedes j 0 1 2
i and j are indifferent 1 0 1
j precedes i 2 1 0
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Let Ns be the number of elements in part Rs of the tied ranking R = (R1, R2,…, Rp).
Then the mismatch distance between U and E is easily seen to be

dðE;UÞ ¼ N2 � RsN2
s ; ð3:55Þ

since the first term on the right is the number of ones in the binary matrix of U and
the second term is the number of ones in the binary matrix of E.

Curiously, the mismatch distance between U and R itself is exactly half the
distance in (3.55). That is, the mismatch distance between a tied ranking R and the
universal relation U is given by

dðR;UÞ ¼ 1=2 N2 � RsN2
s

� 	
: ð3:56Þ

To prove that, we first notice that d(R, U) = d(R−1, U) and d(R, E) = d(R−1, E).
Indeed, neither U nor E depend on the ranking information in R, and, moreover, the
number of pairs in q and q−1, which is the number of ones in their respective
matrices r and r−1, is the same. Since both U and E are between R and R−1, we
have: d(R, R−1) = d(R, U) + d(U, R−1) = 2d(R, U) and d(R, R−1) = d(R, E) +
d(E, R−1) = 2d(R, E).

This implies that d(R, U) = d(R, E). So, since R is between E and U, d(E, U) =
d(E, R) + d(R, U) = 2d(R, U). Equation (3.56) now follows from this and (3.55),
which completes the proof.

We also have proved that the distance d(R, R−1) is equal to d(E, U) given by
(3.55), whereas the distance d(R, E) is equal to d(R, U), given by (3.56).

Now we are in a position to prove a formula for the mismatch distance between a
ranking R and its arbitrary refinement R′. Like the previous results in this sub-
section, this does not depend on the ranking information.

Specifically, the mismatch distance between a ranking R = (R1, R2, …, Rp) and
its arbitrary refinement R′ = (R1′, R2′, …, Rq′), where q > p, is given by

d(R;R0Þ ¼ RsN2
s � RtN0 2t

� 	
; ð3:57Þ

where Ns and N′t are the numbers of elements in the parts Rs of R and Rt′ of R′,
respectively.

Indeed, since R is between R′ and U, we have d(R′, U) = d(R′, R) + d(R, U), so
d(R′, R) = d(R′, U) − d(R, U). Both distances d(R′, U) and d(R, U) are determined
by Eq. (3.56), adjusted for the corresponding parts of R′ and R, respectively. This
immediately yields (3.57), completing the proof.

Consider now two ordered partitions, R and R′, and their lexicographic products
R * R′ and R′* R. We shall show that the entire ranking component contributing to
the distance between R and R′ is accounted for by the distance between R * R′ and
R′ * R. First, consider the intersection R \ R′, as presented in Fig. 3.27.

Letting Nst = |Rs \ R′t|, for s = 1, 2, …, p and t = 1, 2, …, q, denote the
numbers of elements in the parts of the intersection, we can present these cardi-
nalities as a contingency table, or cross-classification, between R and R′.
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The distance between R * R′ and R′ * R is equal to half of the total of the
products of the cardinalities of those parts in the intersection R \ R′ for which the
orderings in R and R′ are contradictory:

dðR � R0;R0 � RÞ ¼ 1
2
Rs[ s0Rt[ t0NstNs0t0 ð3:58Þ

Considering the rankings R and R′ as unordered partitions, denoted above by Ř
and Ř′, respectively, the mismatch distance between the corresponding equivalence
relations, E and E′, can be expressed as

dðE;E0Þ ¼ RsN2
s þRtN0 2t � Rs;tN2

st ð3:59Þ

where Ns, N′t, and Nst are, as above, the numbers of elements in parts Rs of R, R′t of
R′ and Rs \ R′t of R \ R′, respectively. The mismatch distance between tied
rankings R and R′ can be decomposed into ranking and equivalence parts as
follows:

dðR;R0Þ ¼ 1
2
dðE;E0Þ þ dðR � R0;R0 � RÞ: ð3:60Þ

To prove that, consider the corresponding binary relations q, q′, and q \ q′.
Since the intersection q \ q′ is between q and q′, d(q, q′) = d(q, q \ q′) + d(q \
q′, q′). On the other hand, q * q′ is between q \ q′ and q, and q′ * q is between q
\ q′ and q′, so d(q, q \ q′) = d(q, q * q′) + d(q * q′, q \ q′) and d(q \ q′,
q′) = d(q \ q′, q′ * q) + d(q′ * q, q′). But q \ q′ is between q * q′ and q′ * q, so d
(q * q′, q′ * q) = d(q * q′, q \ q′) + d(q \ q′, q′ * q). Substituting these in the
equation d(q, q′) = d(q, q \ q′) + d(q \ q′, q′), we obtain

dðq; q0Þ ¼ dðq;q � q0Þ þ dðq � q0; q0 � qÞþ dðq0 � q; q0Þ:

Since q*q′ is a refinement of q, and q′ * q is a refinement of q′, d(q, q *
q′) = 1=2 RsN2

s � Rs;tN2
st

� 	
and d(q′ * q, q′) = 1=2 RtN0 2t � Rs;tN2

st

� 	
. This implies,

by (3.59), that d(q, q * q′) + d(q′ * q, q′) = ½d(E, E′). Together with the equation
above, this completes the proof.

This section can be looked at as an attempt to find some structure in the −1 entries
in the Kendall matrices occurring in the formula for the Kemeny distance between
tied rankings. These entries appear whenever a pair of elements, i and j, are inversely
related. First, we showed that the Kemeny distance can be expressed in terms of the
mismatch distance between the preference relations (weak orders) corresponding to
the rankings, in which no negative entries appear. The mismatch distance can be
properly defined in terms of the non-negative 0−1 matrices of weak orders, rather
than the Kendall matrices of the rankings, containing entries 1, 0 and −1.
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Q.3.31. What is the meaning of the mismatch distance between partitions?
A. This is the probability of two random objects to belong to a same part in one
partition and to different parts in the other partition.
Q.3.32. Frequently, when dealing with partitions, pairs of objects are considered as
subsets rather than elements of the cartesian square of the set of objects. Then the
number of pairs in set S is not |S|2, but rather what is called the binomial coefficient
|S|(|S|−1)/2, equal to the number of two-element subsets of S. Reformulate the
expression for the mismatch distance for this case.

3.8 Decision Trees

3.8.1 General

Decision tree is a structure used for learning and predicting quantitative or nominal
target features. In the former case it is referred to as a regression tree, in the latter,
classification tree. This structure can be considered a multivariate extension of
contingency tables in such a way that only meaningful combinations of feature
categories are involved.

As illustrated on Fig. 3.28, a decision tree recursively partitions the entity set
into smaller clusters by splitting a parental cluster over a single feature. The root of
a decision tree corresponds to the entire entity set. Each node corresponds to a
subset of entities, cluster, and its children are the cluster’s parts defined by values of
a single predictor feature x. Note that the trees on Fig. 3.28 are binary: each interior
node is split in two parts. This is a most convenient format, currently used in most
popular programs. Only binary trees are considered in this section.

Decision trees are built from top to bottom in such a way that every split is made
to maximize the homogeneity of the resulting subsets with respect to a desired
target feature. The splitting stops either when the homogeneity is enough for a
reliable prediction of the target feature values or when the set of entities is too small
to consider its splits reliable. A function scoring the extent of homogeneity to
decide of the stopping is, basically, a measure of correlation between the partition
of the entity set being built and the target feature.

Sector: Util/Man Retail          NSup < 4 4 or more 

EC:  No    Yes              ShareP > 30      < 30                                

A B

C

A B

C

Fig. 3.28 Decision trees for three product based classes of Companies, A, B, and C, made using
categorical features, on the left, and quantitative features, on the right
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When the process of building a tree is completed, each terminal node is assigned
with a value of the target that is determined to be characteristic for that node, and
thus should be predicted at the conditions leading to the node. For example, both
trees on Fig. 3.28 are precise—each terminal class corresponds to one and only one
product, which is the target feature, so that each of the trees give a precise con-
ceptual description of all products by conjunctions of the corresponding branch
values. For example, product A can be described as that which is not in Utility
sector, nor E commerce utilized in the production process (left-side tree) or as that
in which less than 4 suppliers are involved and the share price is greater than 30.
Both descriptions are fitting here since both give no errors at all.

Decision trees are very popular because they are simple to understand, use, and
interpret. However, one should use them properly, because the decision rules
produced with them can be overly simplistic and frequently imprecise. Their
effectiveness much depends on the features and samples selected for the analysis.
As always in learning correlation, a simpler tree is preferred to a complex one
because of the over-fitting problem: a complex tree is more likely to reflect noise in
the data rather than the true tendencies.

In the Sect. 3.6 we have described popular association indexes between parti-
tions. Many of them are used as homogeneity scoring functions (to be) utilized in
the process of classification tree building. This will be described next.

To build a binary decision tree, one needs the following information:

(a) a dataset of input features X,
(b) an output feature u over the set of objects,
(c) a scoring function W(S,u) that scores admissible partitions S against the output

feature,
(d) a rule for splitting a subset of objects, corresponding to the terminal node

under consideration, in more homogeneous clusters,
(e) split-stopping criterion
(f) rule for pruning long or unreliable branches, and
(g) rule for the assignment of u-values to terminal nodes.

Let us comment on each of these items:

(a) The input features are, typically, quantitative or nominal. Quantitative features
are handled rather easily by testing all possible splits of their ranges. More
problematic are categorical features, especially those with many categories
because the number of possible binary splits can be very large. However, this
issue does not emerge at all if categorical features are preprocessed into the
quantitative format of binary dummy variables corresponding to individual
categories (which is advocated in this text too, see more detail in Sect. 2.3.2).
Indeed, each of the dummy variables admits only one split—that separating the
corresponding category from the rest, which reduces the number of possible
splits to the number of categories—an approach advocated by Loh and Shih
(1997), among many others. A number of such splits can be done in sequence
to warrant that any combination of categories is admissible in this approach too.
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Since this approach involves one feature at a time only, missing values are not
of an issue here, because all the relevant information such as means and fre-
quencies can be reasonably well estimated from those values that are available
—this is a stark contrast with the other multivariate techniques.

(b) In principle, the decision tree format does not prevent from using multiple
target features—just single-target criteria should be summed when there are
several targets; this approach was successfully applied to sociology survey
mixed scale data by P. Rostovtsev and B. Mirkin back in seventies (Mirkin
1985). However, all current internationally available programs involve only
single target feature. Depending on the scale of the target feature, the learning
task may differ, as well as the terminology. Specifically, if the target feature is
quantitative, a decision tree is referred to as a regression tree, and if the target
feature is categorical, a decision tree is referred to as a classification tree. Yet
classification trees may differ with regards to the learning task: (a) learning a
whole partition, if the target is nominal, or (b) learning just a category. This
section focuses only on the task of learning a classification tree with a parti-
tional target.

(c) Given a decision tree, its terminal nodes (leaves) form a partition S, which is
considered then against the target feature u with a scoring function measuring
the overall correlation W(S,u). This suggests a context of the analysis of cor-
relation between two features. If the target u is quantitative, then a tabular
regression of u over S should be analyzed and scored. This approach involving
the concept of the correlation ratio, as a natural scoring function, is described in
the next section.
Unfortunately, in the data mining literature, this natural approach is not
appreciated; thus, the correlation ratio is not popular. In contrast, at a cate-
gorical target, two most popular scoring functions, Gini index and Pearson
chi-squared, fit perfectly in the framework of contingency tables and Quetelet
indexes as described in Sect. 3.6.2. Moreover, it is mathematically proven in
that section that these two can be considered as implementations of the same
approach of maximizing the contribution to the data scatter of the target cat-
egories—the only difference being the way the dummy variables representing
the categories are normalized: (i) no normalization to make it Gini index or
(ii) normalization by Poissonian standard deviations so that less frequent cat-
egories get more important, to make it Pearson chi-squared. This sheds a fresh
light on the criteria and suggests the user a way for choosing between the two
indexes depending on user’s preferences over the importance of being rare.

(d) Admissible partitions conventionally are obtained by splitting the entity subset
corresponding to one of the current terminal nodes over one of the features. To
make it less arbitrary, most modern programs do only binary splits. That means
that any node may be split only in two parts: (i) that corresponding to a
category and the rest, for a categorical feature or (ii) given an a, those “less than
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a” and those “greater than a”, for a quantitative feature. This text attends to this
approach as well. All possible splits are tested and that split which leads to the
largest value of the criterion is actually made, after which the process is
reiterated.

(e) Stopping rule typically assumes a degree of homogeneity of sets of entities, that
is, clusters, corresponding to terminal nodes and, of course, their sizes: too
small clusters are not stable and should be excluded.

(f) Pruning: In some programs, the size of a cluster is unconstrained so that in the
process of splitting nodes over features, some split parts may become very
small and, thus, unreliable as terminal nodes. This makes it useful to prune the
tree after it is computed, usually by merging the small subset nodes into greater
agglomerations. This is typically done not according to the splitting criterion W
(S,u) but according to more local considerations such as testing whether pro-
portions of the target categories in a cluster are similar to those used at the
assignment of u values to terminal nodes or by removing nodes with small
chi-squared values (see, for a review, Esposito et al. 1997).

(g) Assigning a terminal node with a u category conventionally is done by just
averaging its values over the node entities if u is quantitative or according to the
maximum probability of an u category. Then the quality of quantitative pre-
diction is accessed, as usual, by computing the differences between observed
and predicted values of u, and their variance of course. In the nominal target
case, this leads to an obvious estimate of the probability of the error: unity
minus the maximum probability; these then are averaged over the terminal
nodes of the decision tree. To make the error’s estimate more robust,
cross-validation techniques are used. Consider, say, a tenfold cross validation.
The entity set is randomly divided into ten equal-sized subsets. Each of them is
used as a testing ground for a decision tree built over the rest: these errors are
averaged and given as the error’s estimate to the tree built over the entire entity
set. These techniques are beyond the scope of the current text.

It should be mentioned that the assignment of a category to a terminal cluster in
the tree can be of an issue in some situations: (i) if no obvious winning category
occurs in the cluster, (ii) if the category of interest is quite rare, that is, when u’s
distribution is highly skewed. In this latter case using Quetelet coefficients relating
the node proportions with those in the entire set may help by revealing some great
improvements in the proportions, thus leading to interesting tendencies discovered.

3.8.2 Three Approaches to Scoring Correlation
for Decision Trees

The process of building a classification tree is, basically, a process of splitting
clusters into smaller parts driven by a measure of correlation between the partition
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S being built and the target feature u. Since our focus here is the case of nominal u’s
only, the target feature is represented by a partition T which is known to us on the
training set.

How to define a function w(S,T) to score correlation between the target partition
T and partition S being built? Three possible approaches are:

1. A popular idea is to use a measure of uncertainty, or impurity, of a partition and
score the goodness of split S by the reduction of uncertainty achieved when the
split is made. If it is Gini index, or nominal variance, which is taken as the
measure of uncertainty, the reduction of uncertainty is the popular impurity
function utilized in a popular decision tree building program CART (Breiman
et al. 1984). If it is entropy, which is taken as the measure of uncertainty, the
reduction of uncertainty is the popular Information gain function utilized in
another popular decision tree building program C3.5 (Quinlan 1993).

2. Another idea would be to use a popular correlation measure defined over the
contingency table between partitions S and T such as Pearson chi-squared.
Indeed Pearson chi-squared is used for building decision trees in one more
popular program, SPSS (Green and Salkind 2003), as a criterion of statistical
independence criterion, though, rather than a measure of association. Yet
because Pearson chi-squared is equal to the summary relative Quetelet index
(see Sect. 3.6.2), it is a measure association, and it is in this capacity that
Pearson chi-squared is used in this text. Moreover, both the impurity function
and Information gain mentioned above also are correlation measures defined
over the contingency table as shown in the formulation part of this section.
Indeed, the Information gain is just the mutual information between S and T, a
symmetric function, and the impurity function, the summary absolute Quetelet
index.

3. One more idea comes from the discipline of analysis of variance in statistics: the
correlation can be measured by the proportion of the target feature variance
taken into account by the partition S. How come? The variance is a property of a
quantitative feature, and we are talking of a target partition here. The trick is that
each class of the target partition is represented by the corresponding dummy
feature, which is equal to 1 at entities belonging to the class and 0 at the rest.
Each of them can be treated as quantitative, as explained in Sect. 3.6, so that the
summary explained proportion would make a measure of correlation between
S and T. What is nice in this approach, that it is uniform across different types of
feature scales: both categorical and quantitative features can be treated the same,
which is not the case with other approaches. Although this approach has been
advocated by the author for a couple of decades already (see, for example,
Mirkin 1996, 2012), no computational program has come out of that so far.
There is a good news though: both the impurity function and Pearson
chi-squared can be expressed as the summary explained proportion of the target
variance, under different normalizations of the dummy variables course (see
Sect. 3.6). To get the impurity function (Gini index), no normalization is needed
at all, and Pearson chi-squared emerges if each of the dummies is normalized by
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the square root of its frequency. That means that Pearson chi-squared is
underlied by the idea that more frequent classes are less contributing. This might
suggest the user to choose Pearson chi-squared if they attend to this idea, or, in
contrast, the impurity function if they think that the frequencies of target cate-
gories are irrelevant to their case.

There have been developed a number of myths about classification tree building
programs and correlation scoring functions involved in them. The following
comments are purported to shed light on some of them.

Comment 1. Difference between CART and CHAID.

There is an opinion lurking in some comments on the web that of two popular
programs, CART (Breiman et al. 1984) and CHAID (Green and Salkind 2003), the
former is more oriented at prediction whereas the latter, at description. The reason
for this perhaps can be traced to the fact that CART involves the impurity function
that is defined as the reduction in uncertainty whereas CHAID involves Pearson
chi-squared as a measure of the deviation from statistical independence. Yet this
opinion is completely undermined by the fact that the measures have very similar
predictive powers shaped as the summary Quetelet indexes, the only difference
being that one of them involves the relative Quetelet indexes, and the other absolute
ones (see Statements 3.5.3.1(b) and 3.5.3.2(b)).

Comment 2. Difference between Pearson chi-squared index and impurity
function.

The difference between impurity function and Pearson chi-squared amounts to
just different scaling options for the dummy variables representing classes of the
target partition T (see items (c) in Statements 3.5.3.1 and 3.5.3.2). The smaller
T classes get rescaled to larger values, thus contributing more, when using Pearson
chi-squared.

Comment 3. Zeros in contingency tables.

Pearson chi-squared introduced to measure the deviation of a bivariate distri-
bution from the statistical independence, appears also to signify a purely geometric
concept, the contribution to the data scatter (see (a) and (c) in Statement 3.6.2.2 on
p. 231). This leads to a different advice regarding the zeros in a contingency table.
According to classical statistics, the presence of zeros in a contingency table
contradicts the hypothesis of statistical independence so that the data are to be
trimmed to avoid zeros. However, in the context of data scatter decompositions, the
chi-squared is just a contribution with no statistical independence involved so that
the presence of zeros is of no issue in this context: thus, no data trimming is needed.

Consider an entity set I with a pre-specified partition T = {Tl}—which can be set
according to categories l of a nominal feature—that is to be learnt by producing a
classification tree. At each step of the tree building process, a subset J 	 I is to be
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split into a partition S = {Sk} in such a way that S is as close as possible to
T(J) which is the overlap of T and J. The question is: how the similarity between S
and T(J) is to be measured? When S = T(J), there is no confusion between the two.
Otherwise, it is the contingency table between S and T(J), P = (pkl) where pkl is the
proportion of J- entities in Sk \ Tl, that expresses the confusion, which is why it is
frequently referred to as a confusion table in this context.

One idea for assessing the extent of similarity is to use a correlation measure
over the contingency table such as the averaged Quetelet coefficients, Q and A, or
chi-squared X2, as discussed in Sect. 3.6.2.

Seemingly another idea is to score the extent of reduction of uncertainty over
T(J) obtained when S becomes available. This idea works like this: take a measure
of uncertainty of a feature, in this case partition T(J), t(T(J)), and evaluate it at each
of S-classes, v(T(Sk)), k = 1,…, K. Then the average uncertainty on these classes
will be

PK
k¼1 pkþ tðTðSkÞÞ, where pk+ are proportions of entities in classes Sk, so

that the reduction of uncertainty is equal to

tðTðJÞ=SÞ ¼ tðTðJÞÞ �
XK
k¼1

pkþ tðTðSkÞÞ ð3:61Þ

Of course, a function like (3.61) can be considered a measure of correlation over
the contingency table P as well. One more nice feature of this approach is that it can
be extended from nominal features to quantitative ones—just with an uncertainty
index over quantitative T-features,

Two very popular measures defined according to (3.61) are the so-called im-
purity function and information gain. The impurity function builds on Gini coef-
ficient as a measure of variance (see Sect. 3.6). Let us recall that Gini index for
partition T is GðTÞ ¼ 1�PL

l¼1 p
2
l where pl is the proportion of entities in Tl. If J is

partitioned in clusters Sk, k = 1,…, K, partitions T and S form a contingency table of
relative frequencies P = (pkl). Then the reduction (3.61) of the value of Gini
coefficient due to partition S is equal to DðTðJÞ; SÞ ¼ GðTðJÞÞ �Pk pkGðTðSkÞÞ.
This index D(T(J),S) is referred to as impurity of S over partition T. The greater the
impurity the better the split S. As established in Statement 3.6.2.1 in Sect. 3.6.2.1,
D(T, S) = A(T, S) where A(T, S) is the summary absolute Quetelet index defined by
Eq. (3.35) in Q.3.21, p. 225.

Three functions discussed above, Gini index, Pearson chi-squared, and
Information gain can be coded as presented in columns of the box below where
input p is a contingency table. Due to a holistic nature of MatLab computation, it is
possible to organize the computation without looping through the matrix elements.
The subroutines gini, chi and ing in the box can be considered pseudocodes of the
functions for coding in any other language as well.
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Q.3.33. What is the formula of summary contribution B of partition S to the set of
dummy features representing partition T when they have been normalized by
dividing by their Bernoullian standard deviations bl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ lð1� pþ lÞ

p
?

Q.3.34. Consider a partition S = {Sk} (k = 1, 2,…, K) on J and a set of categorical
features v2V, each with a set of categories L(v). The category utility function
(Fisher 1987) scores partition S against the feature set according to formula:

uðSÞ ¼ 1
K

XK
k¼1

pk
X
v2V

X
l2LðvÞ

pðv ¼ l=SkÞ2 �
X
v2V

X
l2LðvÞ

pðv ¼ lÞ2
24 35 ð3:62Þ

The term in the square brackets is the increase in the expected number of
attribute values that can be predicted given a class, Sk, over the expected number of
attribute values that could be predicted without using the class. The assumed pre-
diction strategy follows a probability-matching approach. According to this
approach, entities arrive one-by-one in a random order, and the category l is pre-
dicted for them with the frequency reflecting its probability, P(l/k) if the class Sk is
known, or pk = Nk/N if information of the class Sk is not provided. Factors pk weigh
classes Sk according to their sizes, and the division by K takes into account the
differences in the numbers of clusters: the smaller the better. Prove that the category
utility function u(S) is the sum of impurity functions D(l,S) over all features
l2L related to the number of clusters, that is, uðSÞ ¼Pl2L Dðl; SÞ=K.
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3.8.3 Tabular Regression for Regression Trees
and the Correlation Ratio

This section concerns yet another invention by Karl Pearson, the concept of
piecewise constant regression and its version, tabular regression.

Consider x a categorical feature on the same entity set as a quantitative feature y,
such as Occupation and Age at Students data set, or when building a regression tree,
x being a partition to be built, and y, the target feature. The within-category dis-
tributions of y can be used to investigate the correlation between x and y.

The correlation between x and y is higher when the within-category spreads are
tighter because the tighter the spread within an x-category, the more precise is
prediction of the value(s) of y at it. Figure 3.29 illustrates an ideal case of a perfect
correlation—all within-category y-values are the same leading to an exact predic-
tion of Age when Occupation is known.

Figure 3.30 presents another extreme, when knowledge of an Occupation cat-
egory does not lead to a better prediction of Age than when the Occupation is
unknown.

IT                        BA                        AN           Occupation

Age 
 51 

20 

Fig. 3.29 In a situation of ideal correlation, with zero within-category variances, knowledge of
the Occupation category would provide an exact prediction of the age within it

IT                    BA                  AN          Occupation

Age 
51 

20 

Fig. 3.30 Wide within-category distributions: the case of full variance within categories in which
the knowledge of Occupation would give no information of age
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A simple statistical model extending that for the mean will be referred to as
tabular regression. The tabular regression of quantitative y over categorical x is a
table comprising three columns corresponding to:

(1) Category of x
(2) Within category mean of y
(3) Within category standard deviation of y.

The number of rows in the tabular regression thus corresponds to the number of
x-categories; there should be a marginal row as well, with the mean and standard
deviation of y on the entire entity set.

Worked Example 3.14. Tabular Regression of Age (Quantitative Target) Over
Occupation (Categorical Predictor) in Students Data
Let us draw a tabular regression of Age over Occupation in Table 3.32. The table
suggests that if we know the Occupation category, say IT, then we can safely
predict the Age as being 28.2 within the margin of plus/minus 5.6 years. With no
knowledge of the Occupation category, we could only say that the Age is on
average 33.7 plus/minus 8.5, a somewhat less precise estimate.

The table can be visualized in a manner similar to those in box-plots (see
Fig. 3.31).

Table 3.32 Tabular
regression of age over
occupation in Students data

Occupation Age mean Age Std

IT 28.2 5.6
BA 39.3 7.3
AN 33.7 8.7
Total 33.7 8.5

IT                        BA                          AN       Occupation

Age 
51 

20 

Fig. 3.31 Tabular regression visualized with the within-category averages and standard
deviations represented by the position of solid horizontal lines and vertical line sizes, respectively.
The dashed line’s position represents the overall average (grand mean)
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There is an integral characteristic of the tabular regression, the correlation ratio,
which is akin to the determinacy coefficient at linear regression. This coefficient
scores the extent at which the within group variance is smaller on average than the
variance of the feature on the set before the split—a determinacy coefficient for the
tabular regression.

Given a quantitative feature y, with no further information, its average,
�y ¼Pi2I yi= Ij j, would represent a proper summarization of the data. If, however, a
set of categories of another variable, x, is additionally present, a more detailed
summarization can be provided: the within category averages. Let Sk denote the set
of entities falling in k category of x, then the within-category averages are
�yk ¼

P
i2Sk yi= Skj j.

This can be considered the least-squares solution to the model of tabular
regression which extends the data recovery model for the average in Sect. 2.2.2 as
follows. Find a set of ck values such that the summary square error L ¼Pi2I e

2
i is

minimized, where ei = yi − ck according to equations

yi ¼ ck þ ei for all i 2 Sk ð3:63Þ

The equations underlie the tabular regression and are referred to sometimes as
the piece-wise constant regression. It is not difficult to prove that the optimal ck in
(3.61) is the within category average �yk , which implies that the minimum value of
L is equal to Lm ¼

PK
k¼1
P

i2Sk ðyi � �ykÞ2. By dividing and multiplying the interior
sum by the number of elements in Sk, |Sk|, we can see that in fact Lm = Nrw

2 where
rw
2 is the average within category variance defined as

r2w ¼
X
K

pks
2
k ð3:64Þ

where pk ¼ Skj j=N is the proportion of category k and rk
2 the variance of y within

Sk.
To further analyze this, consider equation

ðyi � �ykÞ2 ¼ y2i þ�y2k � 2yi�yk

and sum it over all i2Sk. This would lead to the summary right-hand item being
similar to that in the middle, thus producing

P
i2Sk ðyi � �ykÞ2 =

P
i2Sk y

2
i � Skj j�y2k .

Summing these equations over k and moving the right-hand item to the other side of
the equation, would lead to the following decomposition:

X
i2I

y2i ¼
XK
k¼1

Skj j�y2k þ
XK
k¼1

X
i2Sk
ðyi � �ykÞ2 ð3:65Þ
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Note that the right-hand item in (3.65) is the summary least-squares criterion of
model in (3.63) Lm. This allows us to interpret the Eq. (3.65) as a decomposition of
the scatter of variable y, the item on the left, in two parts on the right: the explained
part, in the middle, and the unexplained part Lm.

The explained part sums contributions of individual categories k, Skj j�y2k . The
value of the contribution is proportional to both the category frequency and its
squared value—the greater the better.

Another expression of decomposition (3.65) can be obtained under the
assumption that variable y is centered, so that its mean is 0, by relating it to N:

r2 ¼
XK
k¼1

pk�y
2
k þ

XK
k¼1

pkr
2
k ð3:66Þ

where r2 is the variance of y, the item on the right the minimum value Lm/N from
(3.64), and the item in the middle, the weighted summary squared distance between
the grand mean �y ¼ 0 and within-category means �yk.

Equation (3.66) is very popular in statistics as the decomposition of the variance
into the within-group variance, the item on the right, and the between-group
variance, the item in the middle, as the base of a popular method for comparison of
within-category means which is referred to as ANOVA (ANalysis Of VAriance). In
the context of the tabular regression model (3.65) viewed as a data recovery model,
the original decomposition (3.65) of the quantitative feature scatter into part
explained by the nominal feature and part remaining unexplained is more appro-
priate. Viewed in this light, decomposition (3.66) shows that the category k con-
tribution to the total variance of y is proportional to its frequency multiplied by the
squared difference between within-category mean �yk and grand mean �y ¼ 0.

The correlation ratio shows the relative drop in the variance of y when y is
predicted according to model (3.63) or, in other words, the relative proportion of the
explained part of the variance. The correlation ratio is usually denoted by η2 and
defined by the following formula:

g2 ¼ 1�r2w=r2 ð3:67Þ

The notation, η2, is well accepted in the literature, although some authors prefer
using the term, correlation ratio, for the squared root of η2, but most authors leave
the term as is.

The definition implies the following properties:

– The range of η2 is between 0 and 1.
– Correlation ratio η2 = 1 when all within-category variances rk

2 are zero (that is,
when y is constant within each group Sk).

– Correlation ratio η2 is about 0 when all rk
2 are of the order of rk

2.
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Case-Study 3.7. Is There Any Relation Between Correlation Coefficient and
Correlation Ratio?
Consider two quantitative features x and y. Divide the range of x in four equal-sized
bins to produce a categorical variable xc. Is there any relation between the correlation
coefficient between x and y and the correlation ratio coefficient between xc and y?

Some claim that η2 should be always greater than q because the correlation ratio
captures any type of functional relation whereas the correlation coefficient relates to
linear functions only.

In general, no relation between η2 and q can be claimed. The former can be
greater than the latter in some cases, and smaller in some others, as presented in
Fig. 3.32a at which η2 � q and 3.32b at which η2  q.

Q.3.35. Consider the variance to be an uncertainty measure for a quantitative
feature y. Define the uncertainty reduction measure according to formula (3.16),
with T changed for y of course, and prove that it is equal to the numerator of the
correlation measure—the part of variance of y explained by its tabular regression
over S.
A. The summary contribution of S to the data scatter is equal to B ¼PK

k¼1 c
2
k
Skj j =P

i2I y
2
i �

PK
k¼1 r

2
k
Skj j where r2k is the within-cluster variance of y (see (3.13) in

Sect. 3.2). Then B ¼ N r2 �PK
k¼1 pkr

2
k

� 	
where r2 is the variance of the stan-

dardized feature y (note that the mean of y is 0!) and pk the proportion of entities in
cluster Sk. The last equation clearly shows that the explained part of v is
B ¼ Nr2g2. If y has been z-score standardized so that r2 ¼ 1, B equals the cor-
relation ratio.

3.8.4 Building Classification Trees

Building of a classification tree is a recursive process: starting from the entire data
set, partition a cluster into a number of parts according to one of the features. To
make the partitions less arbitrary, only binary splits are involved in most of the

(a) (b)

Fig. 3.32 Different patterns of linear and piecewise constant association between features
corresponding to x-axis ad y-axis: almost perfect piecewise constant match against a highly
non-linear pattern in (a), and almost linear arrangement against a highly non-constant pattern in (b)
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update programs. That means that any node may be split only in two parts: (i) that
corresponding to a category and the rest, for a categorical feature, or (ii) given a
threshold a, those “less than or equal to a” and those “greater than a”, for a
quantitative feature. This approach naturally comes when the data are preprocessed
by “enveloping” categories into the corresponding “quantitative” dummy features,
that assign a unity to every object falling into the category, and a zero to all the rest.
Indeed, at a = 0, such a dummy feature would split the set in two parts—that for the
corresponding category and the rest. Given a cluster, the choice of feature and
threshold a for doing the split is driven by a correlation scoring function, be it
Information gain, Pearson chi-squared, Gini index or anything else.

A cluster is not to be split anymore if it is smaller than a user defined threshold
TS (TS = 10 is set further on) or is homogeneous enough. We use two different
homogeneity tests: (a) large enough proportion of a target category in the cluster,
say, above 80%, and (b) small enough value of the scoring function which is set to
be 0.03 for Gini index, 0.08 for Pearson chi-squared, and 0.15 for Information gain.
These levels of magnitude reflect the functions’ ranges: Gini index is very close to 0
hardly reaching 0.5 at all, Pearson chi-squared, related to N, changes between 0 and
1 because it cannot be greater than the number of split parts minus 1, and
Information gain can have larger values when the number of target categories is 3 or
more. This sets the stopping conditions.

Worked Example 3.15 Classification Tree for the Iris Dataset
At Iris dataset with its three taxa, Iris setosa and Iris versicolor and Iris virginica,
taken as target categories, all the three scoring functions—Impurity (Gini) function,
Pearson chi-squared and Information gain—lead to the same classification tree,
presented on Fig. 3.33.

The tree of Fig. 3.33 was found with program clatree.m. It comprises three leaf
clusters: A, consisting of all 50 Iris setosa specimens; B, containing 54 entities of
which 49 are of Iris versicolor and 5 of Iris virginica; C, containing 46 entities of
which 45 are of Iris virginica and 1 of Iris versicolor. Altogether, this misplaces 6
entities leading to the accuracy of 96%. Of course, the accuracy would somewhat
diminish if a cross-classification scheme is applied (see Loh and Shih 1997, who
draw a slightly different tree for Iris dataset).

Let us take a look at the action of each variable at each of the two splits in
Table 3.33. Each time features w3 and w4 appear to be most contributing, so that at

Ve Vir

S

Petal width:           
>0.6                ≤0.6

Petal width:   
≤1.7     >1.7

Fig. 3.33 Classification tree
for the three-taxon partition at
Iris dataset found by using
each of the Gini, Pearson
chi-squared and Information
gain scoring functions
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the first split, at which w3 and w4 give the same impurity value, w4 made it through
just because it is the last maximum, which is remembered by the program.

The tree involves just one feature, w4: Petal width, used for splitting twice, first
at w4 = 0.6 and then at w4 = 1.7. The Pearson chi-squared value (related to N of
course) is 1 at the first split and 0.78 at the second. The Impurity function grows by
0.33 at the first split and 0.39 at the second. The fact that the second value is greater
than the first one may seem to be somewhat controversial. Indeed, the first split is
supposed to be the best, so that it is the first value that ought to be maximum.
Nevertheless, this opinion is wrong: if the first split was at w4 = 1.7 that would
generate just 0.28 of impurity value, less than the optimal 0.33 at w4 = 0.6. Why?
Because the first taxon has not been extracted yet and grossly contributes to a
higher confusion (see the top part in Table 3.34).

Project 3.3. Prediction of the Learning Outcome at Student Data Using
Decision Trees
Consider the Student dataset and ask whether students’ learning successes can be
predicted from other features available (Occupation, Age, Number of children)? By
looking at Table 1.5, one hardly can expect that marks can be predicted in this way.
Therefore, let us divide students in three groups: I—not so good performers
(average mark is less than 50), II—good performers (average mark between 50 and
70 inclusive), and III—excellent performers (average mark higher than 70). To do

Table 3.33 Values of Gini index at the best split of each feature on the Iris dataset clusters in
Fig. 3.33

First split Second split

Feature Value Gini Value Gini

w1 5.4 0.228 6.1 0.107
w2 3.3 0.127 3.4 0.036
w3 1.9 0.333 3.7 0.374
w4 0.6 0.333 1.7 0.390

Table 3.34 Confusion tables between a split and target partition on the Iris dataset

Target partition classes Iris setosa Iris versicolor Iris virginica Total

Full set

w4 � 1.7 50 49 5 104
w4>1.7 0 1 45 46
Total 50 50 50 150
First cluster removed
w4 � 1.7 0 49 5 54
w4 > 1.7 0 1 45 46
Total 0 50 50 100
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this, we compute the average mark over the three subjects (SE, OOP, and CI) and
create a partition of students T as described; the distribution of T appears to be I-25,
II-58, III-17.

We have a 100�5 matrix X to explore the correlation between X and T, the three
columns, 1,2,3, being dummy variables for Occupation categories (IT, BA, AN),
column 4 for Age, and column 5 for Number of children. The two conventional
stopping criteria, the cluster’s size and prevalence of a target class, are not sufficient
at this data, because after one or two splits, the program just chips away small
fragments of clusters without much improving them. This corresponds to the sit-
uations at which the scoring function does not show much improvements either.
Therefore, we utilize one more criterion—the minimum value of the scoring
function, a threshold below which there is no splitting. Since the three scoring
functions we use have different ranges, the thresholds must be different too. At this
study, the threshold is set at 0.03 for the Gini index, 0.08 for the Pearson
chi-squared, and 0.15 for the Information gain. The minimum cluster size is taken at
10, and the prevalence of a target class is set at 80%.

The classification tree found with Gini index is presented on Fig. 3.34. The
distributions of target categories in clusters in Fig. 3.34 are presented in Table 3.35.
Bold font highlights four terminal clusters as well as high or low proportions of
target classes in clusters. High proportions here are those greater than 70% and low
proportions are those smaller than 5%.

Tree on Fig. 3.34 is driven by two features: AN Occupation, that structures the
set rather well—one split part, those of AN occupation, get more than 70% of
category I, and none of category III, and the other of category II. All further
divisions are over feature Age; the 12 students in cluster 8 are rather specific—these
are of AN occupation aged between 22 and 28, so that 75% of them are in category
I, an improvement over parental cluster 6. Cluster 4 of younger not-AN students
seems an attempt at drawing a cluster to predict category III—it has a highest jump
in its proportion, to 36.4% from 17% in the entire set (cluster 1). The 25 older
people among not-AN students are overwhelmingly, 92%, in category II. More
splits would have followed if we had decreased the minimum acceptable value of
Gini index, say from 0.03 to 0.01.

1: AN

6: Age

2: Age 

7: 18

3: Age

4: 44 5: 25

8: 12

No   Yes

≤35                           >35            ≤28                        >28  

 >21          

Fig. 3.34 Classification tree
on Students data, targeting
partition T of students in three
categories, found using Gini
index. The legend Number: A
presents, at a split cluster
labeled by Number, A as the
split variable or, at an unsplit
cluster, A as the size (the
number of students in it)
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How well this tree would fare at prediction? To address this question properly,
one should either conduct a cross-validation test or set aside a random testing set
before using the rest for building a tree, after which see the levels of errors on the
testing set.

Yet for the illustrative purposes, let us calculate the prediction error by using tree
on Fig. 3.34. This is done by using the terminal clusters 4, 5, 7, 8 comprising 44,
25, 18, 12 elements, respectively. They total to 99, not 100, because of chipping off
an element from cluster 6 to make it into cluster 7. That means: for students in AN
category aged 21 or less, no prediction of their learning success level will be made;
the classifier takes what is referred to as reject option (comprising approximately
1% of future cases if our sample is representative). According to the data in
Table 3.35, the optimal prediction rule would predict then category II at Cluster 4
(with error 100 − 61.4 = 38.6%), category II again, at cluster 5 (with error 100 −
92 = 8%), and category I at clusters 7 and 8 (with errors 23.2 and 25.0%,
respectively). The average error is the sum of the individual cluster errors weighted
by their relative sizes, (38.6 * 44 + 8 * 25 + 23.2 * 18 + 25 * 12)/99 = 26.2%.

What happens, if we use the parental cluster 6 instead of the chipped cluster 8?
First thing—no reject option is involved then. Second, the error somewhat increases
as should be expected: (38.6 * 44 + 8 * 25 + 23.2 * 18 + 30.8 * 13)/100 = 27.0%.

Figure 3.35 presents trees found by using the Pearson chi-squared (a) and
Information gain (b). In contrast to Gini index, decreasing the increment threshold

Table 3.35 Distributions of target classes in clusters of tree on Fig. 3.34, %

Target
categories

Clusters in tree on Figure 3.34

1 2 3 4 5 6 7 8

I 25.0 3.9 73.2 3.3 3.0 69.2 77.8 75.0
II 58.0 73.5 25.8 61.4 93.0 30.8 23.2 25.0
III 17.0 23.6 0 36.4 3.0 0 0 0
Gini index at

split
0.168 0.046 0.035 0.048

Cluster size 100 69 31 44 25 13 18 12

(a)                                                         (b)

1: AN

2: 69 3: 31

1: AN

2: Age 3: 31

4: 24 5: 45

No           Yes
No           Yes

≤30 >30

Fig. 3.35 Classification trees on Student dataset targeting partition T of students in the three
categories, defined above, found using Pearson chi-squared (a) and Information gain (b). The
legends are of format “Number: A” where “A”, at a split cluster, is the split variable or, at an
unsplit cluster, the cluster’s size
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does not much help at Information gain: chipping here and there rather than splits
will be added. The change of splitting Age value to 30 at cluster 2 on tree (a) does
lead to some improvements: the 45 older students are 83.2% in category II. Yet
among the 24 younger students, 45.8% belong to category III (leaving 53.2% in
category II and 0 in category I).

With this example, one can see that the 90–100% precision is not that easy to
achieve. That is, a terminal node may have rather modest proportions of target
categories, like cluster 5 on Fig. 3.35a: about 54% of II category and 46% of III
category. Conventional thinking would label the node as an II category predictor
because the share of II is greater than half.

However, one should note that, in fact, the proportion 54% is smaller than that,
58%, in the entire set, which means that in fact these conditions, Not_AN and
younger age, less than 31, wash out some of II category. It is a case when the style
of Quetelet’s thinking may produce a better description. This thinking goes beyond
proportions in the terminal node and requires comparing the category shares at the
node with that in the whole sample. In contrast to a reduction of II category, this
cluster boasts a dramatic increase of III category—from 17% in the entire set to
46% in the cluster, 29%. This difference would be picked up by using the absolute
Quetelet coefficient which is equal to Gini index. Even more dramatic would be the
relative increase, (45.8 − 17)/17 = 170%. It is this increase that has been picked up
by Pearson chi-squared scoring function, because it is driven by the relative
Quetelet coefficient.

Q.3.36. Drawing a lift chart in marketing research. Consider a marketing
campaign advertising a product. There is a 1000 strong sample from the set of
targeted customers whose purchasing behavior is known because of prior cam-
paigns. The sample is composed of clusters of a classification tree with different
response (that is, purchasing) rates (see Table 3.36). To plan an effective campaign,
marketing researchers use what is called a lift chart—a visual representation of the
response rate.

The x-axis of a lift chart shows the percentiles of the sample, say, from 10 to
100%. On y-axis, the so-called lifts are presented. Given a group of customers, the
lift is defined as the ratio of the group’s response rate to the baseline response rate,
which is the response rate for the entire sample. On the lift chart, the percentiles of
the sample are taken in the descending order of the lift. Both baseline and percentile
lifts are presented on the chart. Build a lift chart for the sample. A. First, we calculate
the baseline rate which is the average of the response rates in Table 3.36 weighted
by the cluster proportions: r = 0.1 * 30 + 0.4 * 10 + 0.25 * 4 + 0.25 * 0 = 8%.

Table 3.36 Proportions of four clusters in a sample of 1000 customers and their purchasing
behavior (response rate)

Cluster share, % 10 40 25 25
Response rate, % 30 10 4 0
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Now we take the most responsive 10% of the customers and calculate their lift
value: 30/8 = 3.75. Next, we take the most responsive 20% of the sample, that is
the first cluster plus a hundred customers from the second cluster and see their
response rate—there should be 30 customers from the first cluster plus 10 from the
second who have purchased the product, which gives 40/200 = 20% response rate
leading to the lift value of 20/8 = 3.5. Next percentile, 30% of the sample is
composed of the first cluster plus 200 customers from the second cluster leading to
50/300 = 17.7% response rate and lift 3.3. In this way, the chart presented on
Fig. 3.36 is computed.

3.8.5 Building Classification Trees: Computation

Consider an entity set I with a nominal target feature represented by partition T of
I as well as a set of quantitative input features X (some or all of X-features may
be binary dummy variables corresponding to categories). At each step of the pro-
cess of building a classification tree a cluster J 	 I is to be split according to a
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Fig. 3.36 Lift chart for data in Table 3.36
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feature xv from X in two clusters, S1 and S2 so that S1 = {i|i 2 J and xiv � a} and
S2 = {i|i 2 J and xiv> a} where a is a value of xv. The choice of xv and a is guided
by a scoring function W(S,T) defined over the contingency table P cross-classifying
T by S.

That implies that a cluster, as an element of the hierarchical structure being built,
should maintain at least the following data:

(i) its entity set,
(ii) its parental cluster,
(iii) feature xv over which it has been split,
(iv) splitting value a,
(v) the inequality, � or > , in the cluster defining predicate.

The process starts at the universal cluster consisting of the entire set I. The
process stops if either of two conditions holds:

(a) |J| < n, where n is a pre-specified threshold on the minimum number of entities
in a cluster, and

(b) if the frequency of a T-cluster is greater than a pre-specified threshold a. To
make testing of (b) easier, each cluster should bear one more feature

(vi) the distribution of T in it. One more useful piece of data supplied with a
cluster would be

(vii) a signal of whether it may or may not be split again.

The recursive nature of the process, as well as the presence of a set of data to
accompany each cluster, would make it a fitting subject of an object oriented code.
Yet since the object oriented part of MatLab is not quite native in it, a procedural
construction will be described in this section. This construction involves two parts,
provided that computing scoring function W(T,S) over contingency table P, has
been implemented: (A) finding the best split over a feature, and (B) building a
hierarchy of the best splits.

A pseudocode, or MatLab, function, msplit.m, takes in a column-feature x,
partition of the set of its indices, t, as a cell array of t-classes, and a string with the
name of a scoring method. It produces partition s, the feature splitting value y, and
the value of scoring function ma. The stages of computation are annotated within
the code.
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The computation is organized in code clatree.m printed in the appendix. Here are
just a few comments on its structure. Consider a set of ss clusters stored in a cell
structure indexed from 1 to ss; in the beginning, the structure stores just the uni-
versal cluster I and its features at ss = 1. Of these clusters, those in the end, starting
from index tt � ss are eligible for splitting. The newly split clusters are indexed by
index bb starting from bb = ss + 1. (Note that with this system of indexing, there is
no need to assign clusters with a label informing that they should not be split
anymore: the clusters to split can only be fresh ones!) After split parts are put in the
structure, the indices are updated.

There can be a number of stopping criteria that are to be set in the very beginning
of the program: it stops when no clusters eligible for splitting remain. In the current
version of program clatree.m, three types of stopping criteria are employed. First is
the number of entities, TS: a cluster with a smaller number of entities cannot make
it into the tree and of course cannot be split further. Second, the dominant pro-
portion of the target classes, ee: a cluster is not split anymore if this has been
reached. And the third stopping criterion is tin, a threshold on the scoring function
value: if it is less then tin at a split, the cluster is not split.

3.8.6 Random Forest Classifier

Although the decision tree structure is very good for interpretation, it is not as good,
in general, for prediction; I guess, because of its instability. This is why one of the
most prominent authors in the field proposed to diversify the tree structure by using
a large number of decision trees generated by the bootstrap (Breiman 2001). To be
more exact, let us specify a number P of bootstrap trials and generate, randomly
with resampling, P series of the length N of indices from 1 to N, where N is the
number of objects. Then we specify a number m < V where V is the number of
features and, for each of the P bootstrap series, generate a data table with objects
corresponding to the indices in the series and k features randomly taken from the
original V features. Then a decision tree is drawn based on each of the P data tables.
In a refined version, the k-element feature subset is randomly drawn at each con-
secutive splitting step. This set of decision trees is what is called a random forest.
Given an entity at which all the input variables are defined, one can decide over its
class, in a classification problem, as follows. Use every tree in the forest, identify
the location of the entity in the tree, and predict the target class accordingly. Count
the number of votes, that is, the trees, for each of the target classes and predict that
one with the largest number of votes. If the task at hand is not of classification but
rather of prediction of the quantitative feature values, that is, of regression, the
predicted outcome is the average of the values predicted by each of the regression
trees in the forest.

This procedure works quite well, so that the random forest voting has become
one of the most popular tools used by the practitioners.
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However, the random forest concept loses its interpretability while gaining in the
accuracy. This is why one needs a measure of feature importance according to a
random forest, to compensate the loss albeit partly.

Consider a most popular feature importance measure, the valence (Breiman
2001; Louppe et al. 2013), which can be defined for any measure of impurity of a
subset S with regard to a target feature u, c(S). (we skip the output partition in this
notation). Limiting ourselves to the classification problem, that can be any measure
considered in Sects. 3.6.1 and 3.6.2, as for example, Gini index. Then the impurity
loss at partitioning a node s of the tree being built in its left part, sL, and its right
part, sR, will be

DcðsÞ ¼ cðsÞ � pLcðsLÞ � pRcðsRÞ ð3:68Þ

where pL and pR are the proportions of S-entities in the left and right split parts, sL
and sR, respectfully.

The importance of a variable w for predicting u is scored by summing the
weighted impurity losses p(s)Δc(s), where p(s) is the proportion of objects at the
node s, for all nodes s at which w is used as the splitting criterion, averaged over all
the trees in the forest:

rvðwÞ ¼ 1
P

XP
t¼1

X
st w

pðstÞDcðstÞ ð3:69Þ

Here the symbol st←w denotes the fact that the t-th tree node st involves splitting
of the variable w, so that the second summation involves all the nodes st formed by
splitting the variable w (t = 1,2,…, P).

Assume that all the features, both the target u and input V, are categorical and the
decision trees in the ensemble are “fully developed and balanced” (see Louppe et al.
2013) so that all the divisions possible have been made—for the binary features that
would mean that all the branches involve all the V features so that the tree has 2V

leaves. Then the importance weights can be estimated according to the following
formulas. Given a subset W of k features, define

cðujWÞ ¼
X
w0

PðW ¼ w0ÞcðujW ¼ w0Þ

where P is the probability, and summation runs over all possible combinations w0
of the features in W. Given a feature v and subset of features W such that v 62 W,
define G(u|W + v) = c(u|W) − c(u|W + v). Then the following formula holds
(Louppe et al. 2013):

rcðwÞ ¼
XV�1

k¼0
1

ðV � kÞCk
V

X
W2P�vk

GðujW þ vÞ ð3:70Þ
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where P�vk is the set of all k-element subsets of features such that v is not among
them, and Ck

V is the binomial coefficient.

Case-Study 3.8. Importance of Digit Features
Consider Table 3.37 of the ten numeral digits characterized by the seven binary
features corresponding to the presence or absence of an edge in the numeral
drawing over the seven-line rectangle in Fig. 1.2 in Sect. 1.2.3. The numerals
themselves occupy the left-most column in the table.

The bottom rows contain the feature importance weights computed according to
f-la (3.70), as well as those estimated over a sample of 10,000 fully randomized
trees, generated at k = 1 and k = 4 according to the random forest algorithm,
against the target feature Numeral. As one can see, the sampling estimates at k = 1
follow the theoretical estimates rather closely.

3.9 Naïve Bayes Approach

3.9.1 Bayes Decision Rule

Consider a situation in which there is only one target, a binary feature labeling two
states of the world corresponding to “positive” and “negative” classes of entities.
According to Thomas Bayes (c. 1701–1761), all relevant knowledge of the world
should be shaped by the decision maker in the form of probability distributions.
Then, whatever new data may be observed, they may lead to changing the

Table 3.37 The table of digit-to-edge features e1–e7 according to the Fig. 1.2 in Sect. 1.2.3

Numeral e1 e2 e3 e4 e5 e6 e7

0 1 1 1 0 1 1 1
1 0 0 1 0 0 1 0
2 1 0 1 1 1 0 1
3 1 0 1 1 0 1 1
4 0 1 1 1 0 1 0
5 1 1 0 1 0 1 1
6 1 1 0 1 1 1 1
7 1 0 1 0 0 1 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1
(3.70) 0.412 0.581 0.531 0.542 0.656 0.225 0.372
K = 1 0.414 0.583 0.532 0.543 0.658 0.221 0.368
K = 4 0.309 0.757 0.489 0.445 0.810 0.122 0.387

The bottom rows contain the feature importance weights computed according to f-la (3.70), as well
as those estimated over a sample of 10,000 fully randomized trees, generated at k = 1 and k = 4,
against the target feature Numeral, see on the left, by Louppe et al 2013
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probabilities—hence the difference between prior probabilities and posterior,
data-updated, probabilities. Specifically, assume that, P(1) = p1 and P(2) = p2 are
prior probabilities of the two states so that p1 and p2 are positive and sum to unity.
Assume furthermore that there are two probability density functions, f1(x1, x2, …,
xp) and f2(x1, x2, …, xp), defining the generation of observed entity points x = (x1,
x2, …, xp) for each of the classes. That gives us, for any point x = (x1, x2, …, xp) to
occur, two probabilities, P(1&x) = p1f1(x) and P(2&x) = p2f2(x), of x being
generated at either class. Therefore, the total probability of x to occur is f(x) =
p1f1(x) + p2f2(x). If an x = (x1, x2,…, xp) is actually observed, it leads to a change in
probabilities of the classes, from the prior probabilities P(1) = p1 and P(2) = p2 to
posterior probabilities P(1/x) and P(2/x), respectively. These can be computed as
conditional probabilities

Pð1jxÞ ¼ p1f1ðxÞ=f ðxÞ and Pð2jxÞ ¼ p2f2ðxÞ=f ðxÞ: ð3:71Þ

The decision of which class the entity x belongs to depends on what value, P(1/
x) or P(2/x) is greater. The class is considered to be the positive if P(1/x)> P(2/x) or,
equivalently,

f1ðxÞ=f2ðxÞ[ p2=p1 ð3:72Þ

or, the negative, if the reverse inequality holds. This rule is referred to as Bayes
decision rule. Another expression of the Bayes rule can be drawn by using the
difference B(x) = P(1/x)-P(2/x) rather than the ratio: x is taken to belong to the
positive class if B(x) > 0, and the negative class if B(x) < 0. Equation B(x) = 0
defines the so-called separating surface between the two classes.

The proportion of errors admitted by the Bayes rule is 1 − P(1/x) when 1 is
predicted and 1 − P(2/x) when 2 is predicted. These are the minimum error rates
achievable when both within-class distributions f1(x) and f2(x) and priors p1 and p2
are known.

Unfortunately, the distributions f1(x) and f2(x) are typically not known. Then
some simplifying assumptions are to be made so that the distributions could be
estimated from the observed data. Among most popular assumptions are:

(i) Gaussian probability and
(ii) Local independence.

Let us consider them in turn:

(i) Gaussian probability

The class probability distributions f1(x) and f2(x) are assumed to be Gaussian, so
that each can be expressed as

fkðxÞ ¼ exp�ðx� lkÞTR�1k ðx� lkÞ=2
� �

= ð2pÞp Rkj j½ �1=2 ð3:73Þ
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where lk is the central point, Rk the p�p covariance matrix and Rkj j its determinant
(k = 1, 2).

The Gaussian distribution is tremendously popular. There are at least two rea-
sons for that. First, it is treatable theoretically and, in fact, may frequently lead to
the least squares criterion within the probabilistic approach. Second, some
real-world stochastic processes, especially in physics, can be thought of as having
the Gaussian distribution. This is justified theoretically with the so-called proba-
bility limit theorems. These theorems state that the sum of a multitude of inde-
pendent probabilistic distributions converges to a Gaussian distribution. Typical
shapes of a 2D Gaussian density function are illustrated on Fig. 3.37: that with zero
correlation on the left and 0.8 correlation on the right.

In the case at which the within-class covariance matrices are equal to each other,
the Bayes decision function B(x) is linear so that the separating surface B(x) = 0 is a
hyperplane.

(ii) Local independence (Naïve Bayes)

The assumption of local independence states that all variables are independent
within each class so that the within-cluster distribution is a product of
one-dimensional distributions:

fk x1; x2; . . .; xp
� 	 ¼ fk1ðx1Þfk2ðx2Þ. . .fkpðxpÞ ð3:74Þ

This postulate much simplifies the matters because usually it is not difficult to
produce rather reliable estimates of the one-dimensional density functions fkv(xv)
from the training data. Especially simple such a task is when features x1, x2, …, xp
are binary themselves. In this case the Bayes rule is referred to as a naïve Bayes rule
because in most cases the assumption of independence (3.74) is obviously wrong in
practical situations. Take, for example, the cases of text categorization or genomic
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analyses—constituents of a text or a protein, serving as the features, are necessarily
interrelated according to the syntactic and semantic structures, in the former, and
biochemical reactions, in the latter. Yet the decision rules based on the wrong
assumptions and distributions appear surprisingly good (see discussion in Manning
et al. 2008).

Combining the assumptions of local independence and Gaussian distributions in
the case of binary variables, one can arrive at equations expressing the conditional
probabilities through exponents of linear functions of the variables (as described in
Mitchell 2010) so that:

Pð1=xÞ ¼ 1
1þ expðc0þ c1x1þ . . .þ cpxpÞ ;

Pð2=xÞ ¼ expðc0þ c1x1þ . . .þ cpxpÞ
1þ expðc0þ c1x1þ . . .þ cpxpÞ

ð3:75Þ

Equations (3.75) express what is referred to as the logistic regression. Logistic
regression is a popular decision rule that can be applied to any data on its own right
as a model for the conditional probability, and not necessarily derived from the
restrictive independence and normality assumptions.

3.9.2 Naïve Bayes Classifier

Consider a learning problem related to data in Table 3.38 further on: there is a set of
entities, which are newspaper articles, divided into a number of categories—there
are three categories in Table 3.38 according to the three subjects: Feminism,
Entertainment and Household. Each article is characterized by its set of keywords
presented in the corresponding line. The entries are either 0—no occurrence of the
keyword, or 1—one occurrence, or 2—two or more occurrences of the keyword.

The problem is to form a rule according to which any article, including those
outside of the collection in Table 3.38, can be assigned to one of these categories
using its profile—the data on occurrences of the keywords in the corresponding line
of Table 3.38.

Consider the Naïve Bayes decision rule. It assigns each category k with its
conditional probability P(k/x) depending on the profile x of an article in question
according to equations in (3.71):

Pðk=xÞ ¼ pkfkðxÞ=f ðxÞ

where f ðxÞ ¼Pl plflðxÞ. According to the Bayes rule, the category k, at which
P(k/x) is maximum, is selected. Obviously, the denominator does not depend on
k and can be removed: that category k is selected, at which pkfkðxÞ is maximum.
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According to the Naïve Bayes approach, fk(x) is assumed to be the product of the
probabilities of occurrences of the keywords in category k. How can one estimate
such a probability? This is not that simple as it sounds.

For example, what is the probability of term “drink” in H category according to
Table 3.38? Probably, it can be taken as ¼—since the term is present in only one of
four members of H. But what’s about term “play” in H—it occurs thrice but in two
documents only; thus its probability cannot be taken ¾; yet 2/4 does not seem right
either. A popular convention accepts the “bag-of-words” model for the categories.
According to this model, all occurrences of all terms in a category are summed, to
produce 31 for category H in Table 3.38. Then each term’s probability in category
k would be its summary occurrence in k divided by the bag’s total. This would lead
to a fairly small probability of the “drink” in H, just 1/31. This bias is not that
important, however, because what matters indeed in the Naïve Bayes rule is the
feature relative contributions, not the absolute ones.

And the relative contributions are all right with “drink”, “fuel” and “play”
contributing 1/31, 6/31 and 3/31, respectively, to H. Moreover, taking the total
account of all keyword occurrences in a category serves well for balancing the
differences between categories according to their sizes.

There is one more issue to take care of: zero entries in the training data. Term
“equal” does not appear at all in H, leading thus to its zero probability in the
category. This means that any article with an occurrence of “equal” would not be
classed into H category, however heavy evidence from other keywords may be.
One could make a point of course that term “equal” has not been observed in H just
because the sample of four articles in Table 3.38 is too small, which is a strong
argument indeed. To make up for these, another, a “uniform prior” assumption is

Table 3.38 An illustrative database of 12 newspaper articles along with 10 keywords

Article Keyword

Drink Equal Fuel Play Popular Price Relief Talent Tax Woman

F1 1 2 0 1 2 0 0 0 0 2

F2 0 0 0 1 0 1 0 2 0 2

F3 0 2 0 0 0 0 0 1 0 2

F4 2 1 0 0 0 2 0 2 0 1

E1 2 0 1 2 2 0 0 1 0 0

E2 0 1 0 3 2 1 2 0 0 0

E3 1 0 2 0 1 1 0 3 1 1

E4 0 1 0 1 1 0 1 1 0 0

H1 0 0 2 0 1 2 0 0 2 0

H2 1 0 2 2 0 2 2 0 0 0

H3 0 0 1 1 2 1 1 0 2 0

H4 0 0 1 0 0 2 2 0 2 0

The articles are labeled according to their main subjects—F for feminism, E for entertainment, and
H for household
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widely accepted. According to this assumption each term is present once at any
category before the count is started. For the case of Table 3.38, this adds 1 to each
numerator and 10 to each denominator, which means that the probability of “drink”,
“equal”, “fuel” and “play” in category H will be (1 + 1)/(31 + 10) = 2/41, (0 + 1)/
(31 + 10) = 1/41, (6 + 1)/(31 + 10) = 7/41 and (3 + 1)/(31 + 10) = 4/41,
respectively.

To summarize, the “bag-of-words” model represents a category as a bag con-
taining all occurrences of all keywords in the documents of the category plus one
occurrence of each keyword, to be added to every count in the data table.

Table 3.39 contains the prior probabilities of categories, that are taken to be just
proportions of categories in the collection, 4 of each in the collection of 12, as well
as within-category probabilities of terms (the presence of binary features) computed
as described above. Logarithms of these are given too.

Now we can apply Naïve Bayes classifier to any entity presented in the format of
Table 3.38 including those in Table 3.38 itself (the training set). Because the
probabilities in Table 3.39 are expressed in thousands, we may use sums of their
logarithms rather than the probability products; this seems an intuitively appealing
operation. Indeed, after such a transformation the score of a category is just the
inner product of the row representing the tested entity and the feature scores cor-
responding to the category. Table 3.40 presents the logarithm scores of article E1
for each of the categories.

Q.3.37. Apply Naïve Bayes classifier in Table 3.39 to article X = (2 2 0 0 0 0 2 2 0
0) which involves items “drink”, “equal”, “relief” and “talent” frequently.
A. The category scores are: s(F/X) = 35.2, s(E/X) = 35.6, and S(H/X) = 29.4
pointing to Entertainment or, somewhat less likely, Feminism.
Q.3.38. Compute Naïve Bayes category scores for all entities in Table 3.38 and
prove that the classifier correctly attributes them to their categories.
A. See Table 3.41

It should be mentioned that the Naïve Bayes computations here, as applied to the
text categorization problem, follow the so-called multinomial model in which only
terms present in the entities are considered—as many times as they occur. Another
popular model is the so-called Bernoulli model, in which terms are assumed to be
generated independently as binomial variables. The Bernoulli model based com-
putations differ from these on two counts: first, the features are binary indeed so that
only binary information, yes or no, of term occurrence is taken, and, second, for
each term the event of its absence, along with its probability, is counted too (for
more detail, see Manning et al. 2008; Mitchell 2010).
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3.10 Metrics of Accuracy

Consider a generic problem of learning a binary target feature, so that all entities
belong to either class 1 or class 2. A decision rule, applied to an entity, generates a
“prediction” which of these two classes the entity belongs to. The classifier may
return some decisions correct and some erroneous. Let us pick one of the classes as
that of our interest, say 1, then there can be two types of errors: false positives (FP)—
the classifier says that an entity belongs to class 1 while it does not, and false
negatives (FN)—the classifier says that an entity does not belong to class 1 while it
does.

Let it be, for example, a lung screening device for testing against a lung cancer.
Whilst established in a hospital cancer ward, on a selected sample of 200 patients
sent by local surgeries for investigation, it may produce results that are presented in
Table 3.42. Its rows correspond to the diagnosis by the screening device and the
columns to the results of further, more elaborate and definitive, tests. This is a
cross-classification contingency table, and it is frequently referred to as a confusion
table.

There are 94 true positives TP and 98 true negatives TN in the table so that the
total accuracy of the device can be rated as (94 + 98)/200 = 0.96 = 96%.

Table 3.41 Naïve Bayes
category scores for the items
in Table 3.38 with maxima
highlighted using bold font

Articles Category scores

F E H

F1 37.7006 35.0696 29.3069
F2 28.9097 25.9362 21.5322
F3 23.9197 20.1271 13.8723
F4 38.276 33.6072 30
E1 33.2349 37.9964 33.3322
E2 37.244 43.1315 40.2435
E3 43.1957 43.5672 40.8398
E4 21.1663 23.9203 19.4367
H1 25.8505 29.394 33.5895
H2 33.929 40.4527 43.749
H3 29.9582 35.3573 38.3227
H4 23.7518 28.8344 33.8408

Table 3.42 Confusion table
of patients’ lung screening
test results

True lung
cancer

Total

Yes No

Device’s diagnosis Yes 94 7 101
Not 1 98 99

Total 95 105 200
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Respectively, the numbers of false positives FP = 7, and false negatives FN = 1
sum up to 8 leading to 4% error rate. Yet there are significant differences between
these two showing that the device is in fact better than the totals show. Indeed, the 7
FP are not that important, because patients with the suspected cancer will be
investigated further in depth anyway so that their No-status will be restored, with
the cost of further testing. In contrast, 1 FN may go out of the medical system and
get their cancer untreated with the potential loss of life because of the error. This is
an example of different costs associated with FP and FN errors. The device made
just one serious error out of 95 true cancer cases. The TP rate, the proportion of
correctly identified true cases, frequently referred to as recall or sensitivity,
94/95 = 98.9%, is impressive indeed. On the other hand, the precision, that is, the
proportion of the 94 TP cases related to all cancer predicted cases, 101, is somewhat
smaller, just 93% to reflect that FP rate is 7%. The difference between precision and
sensitivity is somewhat averaged in the value of accuracy rate, 96% in this case, so
that the accuracy rate works reasonably well here as a single characteristic of the
quality of the testing device.

Yet in a situation in which there is a great disparity in the sizes of Yes and No
classes, the accuracy rate fails to reflect the results properly. Consider, for example,
results of the same device at a random sample of 200 individuals who have not been
sent for the screening by doctors but rather volunteered to be screened from public
at large (Table 3.43).

The accuracy rate at Table 3.43 is even greater than that at Table 3.42,
(2 + 195)/200 = 98.5%. Yet both sensitivity, 2/3 = 66.7%, and precision,
2/4 = 50%, are quite mediocre. The high accuracy rate is caused by the very high
specificity, the proportion of correctly identified No cases, 195/197 = 98.9%, and
by the fact that there are very few Yes cases.

As to a single measure adequately reflecting sensitivity and precision, the one most
popular is their harmonic mean, the F-measure, which is equal to F = 2/(1/(2/3) +
1/(2/4)) = 2/(3/2 + 4/2) = 4/7 = 57.1%.

Case-Study 3.9. Prevalence and Quetelet Coefficients
If one looks at the record of the screening device according to Table 3.43, out of 4
cancer cases diagnosed, 2 are correct, and compares that with the prevalence of the
cancer at the sample, 3 cases of 200—the difference is impressive indeed. This
difference is exactly what is caught up in the concept of Quetelet coefficient q(l/k)
(see Sect. 3.6.1) at row k = 1 and column l = 1. This takes the relative difference
between the conditional probability P(1/1) = 2/4 and the average probability

Table 3.43 Contingency
table of volunteers’ lung
screening test results

True lung
cancer

Total

Yes No

Device’s diagnosis Yes 2 2 4
Not 1 195 196

Total 3 197 200

286 3 Learning Correlations



P(l = 1) = 3/200 which is referred to sometimes as the prevalence: q(1/1) = (2/4-3/
200)/(3/200) = 2 * 200/(3 * 4) − 1 = 33.33 = 3333%, quite a change. This high
value probably explains the difference in sensitivity and specificity between
Tables 3.43 and 3.42.

Indeed, a similar Quetelet coefficient at Table 3.42 is q(1/1) = 94 * 200/(101 *
95) − 1 = 0.96 = 96%, a less than a 100% increase, which may convey the idea that
Table 3.42 is much more balanced than Table 3.43. The accuracy measure works
well at balanced tables and it does not at those that are not.

In general, the situation can be described by a confusion, or contingency, table
between two sets of categories related to the class being predicted (1 or not) and the
true class (1 or not), see Table 3.44 further on. Of course, if one changes the class
of interest, the errors will remain errors, but their labels will change: false positives
regarding class 1 are false negatives when the focus is on class 2, and vice versa.

Among popular indexes scoring the error or accuracy rates are the following:

FP rate = FP/(FP + TN)—the proportion of false positives among those not in 1;
1-FP rate is referred to sometimes as specificity—it shows the proportion of correct
predictions among other, not class 1, entities.
TP rate = TP/(TP + FN)—the proportion of true positives in class 1; in information
retrieval, this frequently is referred to as recall or sensitivity.
Precision = TP/(TP + FP)—the proportion of true positives in the predicted class 1.

These reflect each of the possible errors separately. There are indexes that try to
combine all the errors, too. Among them the most popular are:

Accuracy = (TP + TN)/N—the total proportion of accurate predictions. Obviously,
1—Accuracy is the total proportion of errors.
F-measure = 2/(1/Precision + 1/Recall)—the harmonic average of Recall and
Precision.

The latter measure is getting more popularity than the former because the
Accuracy counts both types of errors equally, which may be at odds with the
common sense in those frequent situations at which errors of one type are “more
expensive” than the others. Consider, for example, the case of medical diagnostics
in Tables 3.42, 3.43 and 3.44: a tumor wrongly diagnosed as malignant would cost
much less than the other way around when a deadly tumor is diagnosed as benign.
F-measure, to some extent, is more conservative because it, first, combines rates
rather than counts, and, second, utilizes the harmonic mean which tends to be close
to the minimum of the two, as can be seen from the statements in the next questions,
Q.3.39 and Q.3.40.

Q.3.39. Consider two positive reals, a and b, and assume, say that a < b. Prove that
the harmonic mean, h = 2/(1/a + 1/b) stays within the interval between a and
2a however large the difference b − a is.
A. Take b be b = ka at some k > 1. Then h = 2/(1/a + 1/(ka)) = 2ka/(1+ k). The
coefficient at a, 2k/(1+ k), is less than 2, which proves the statement.
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Q.3.40. Consider two positive real values, a and b, and prove that their mean,
m = (a + b)/2, and harmonic mean, h = 2/(1/a + 1/b), satisfy equation mh = ab.
A. Take the product mh = [(a + b)/2][2/(1/a + 1/b)] and perform elementary
algebraic operations.

More elaborate representation of errors of the two types can be achieved with the
so-called receiver operating characteristics (ROC) graph analysis (see, for example,
Fawcett 2006). ROC graphs are especially suitable in the cases of classifiers that
have a continuous output such as Bayes classifiers. ROC graph is a 2D Cartesian
plane plotting TP rate against FP rate so that the latter is shown on x-axis and the
former, on y-axis (see Fig. 3.38).

To be specific, let us take a Bayes classifier’s rule in (3.66) and change the ratio
p2/p1 for an arbitrary threshold d > 0. Take now d = d1 for a specific d1, so that the
rule now predicts class 1 if f1(x)/f2(x)> d1. Count the proportions of true and false
positives, tp1 and fp1, at this threshold and put the point (fp1, tp1) onto a ROC
graph. Then change d to d2 and count the rates, tp2 and fp2, at this threshold. If, say,
d2> d1, then the TP rate can only decrease, because the number of positive

Table 3.44 A statistical
representation of the match
between the true class and
predicted class. The entries
are counts of the numbers of
co-occurrences

True class

1 Not Total

Predicted
Class

1 True False TP + FP
Positives Positives

Not False True FN +
TNNegatives Negatives

Total TP + FN FP + TN N
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Fig. 3.38 ROC curves for two classifiers; that of a is superior to that of b
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predictions can only decrease. The FP rate, in a regular case, should increase at
d2> d1 so that point (fp2, ft2) would go to the right and above the former point on
the ROC plot. In this way, by step-by-step changing the threshold d, one can obtain
a ROC curve such as curves “a” and “b” on the plot of Fig. 3.38. Such a curve can
be utilized as a characteristic of the classifier under consideration that can be used,
for instance, for selection of suitable levels of TP and FP rates. In the case shown on
Fig. 3.38, one can safely claim that classifier “a” is superior to that of “b”, because
at each FP rate level, TP rate of “a” is greater than that of “b”.

There is a quantitative characteristic of the quality of a ROC, called the area
under the curve (AUC), which is indeed the area between the ROC and the
FP-rate-axis: the greater the AUC, the better the classifier. The AUC expresses the
probability that for a random pair of objects in which one is a “yes” and the second
a “no” object, the classifier correctly predicts their belongingness to the “yes” and
“no” classes. Experiments show that the AUC of 0.9 or greater can be considered an
excellent one.

3.11 Summary

The goal of this chapter is to present a significant variety of techniques for learning
correlation from data. Most popular concepts—regression, correlation, chi-squared,
discrimination, Bayes classifiers, decision trees, neural networks, support vector
machine, and correspondence analysis—are presented. Some of these are accom-
panied with concepts that are interesting on their own such as the bag-of-words
model or kernel. The description, though, is rather fragmentary, except perhaps the
classification trees for which a number of theoretical results is invoked to show their
firm relations to bivariate analysis: first, summary Quetelet indexes in contingency
tables and, second, normalization options for dummy variables representing target
categories.

Overall, the chapter contents reflect basics of the art of learning correlations from
data. Perhaps the subject is by far too complex and major advances are a matter of
the future rather than the past. One such advance, though, should be mentioned
here—deep learning based on neural networks with many layers (see, for example,
Schmidhuber 2015).

The Chapter outlines several important characteristics of summarization and
correlation between two features, and displays some of the properties of those. They
are:

– linear regression and correlation coefficient for two quantitative variables;
– tabular regression and correlation ratio for the mixed scale case; and
– contingency table, Quetelet index, statistical independence, and Pearson’s

chi-squared for two nominal variables.

They all are applicable in the case of multidimensional data as well.
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Some of the characteristics described here are rather unconventional. For
example, the concepts of tabular regression and correlation ratio are not terribly
popular in data mining. The Quetelet indexes are recognized by neither community,
the more so the idea that Pearson chi-squared is a summary correlation measure, not
necessarily a criterion of statistical independence.

Some examples of non-linear regression and nature-inspired approaches for
fitting that are outlined. Computational bootstrap based validation is considered.
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Chapter 4
Core Partitioning: K-means
and Similarity Clustering

Abstract K-means is arguably the most popular cluster-analysis method. The
method’s output is twofold: (1) a partition of the entity set into clusters, and
(2) centers representing the clusters. The method is rather intuitive and usually
requires just a few pages to get presented. In contrast, this text includes a number of
less popular subjects that are much important when using K-means for real-world
data analysis:

• Data standardization, especially, at nominal or mixed scales
• Innate and other tools for interpretation of clusters
• Analysis of examples of K-means working and its failures
• Initialization—the choice of the number of clusters and location of centers.

Versions of K-means such as incremental K-means, nature inspired K-means,
and entity-center “medoid” methods are presented. Three modifications of K-means
onto different cluster structures are given: Fuzzy K-means for finding fuzzy clusters,
Expectation-Maximization (EM) for finding probabilistic clusters, and Kohonen’s
self-organizing maps (SOM) that tie up the sought clusters to a visually convenient
two-dimensional grid. An equivalent reformulation of K-means criterion is
described to yield what we call the complementary criterion. This criterion allows
to reinterpret the method as that for finding big anomalous clusters. In this for-
mulation, K-means is shown to extend the Principal component analysis criterion to
the case at which the scoring factors are supposed to be binary. This allows to
address a haunting issue at K-means, finding the “right” number of clusters K, by
one-by-one building Anomalous clusters. Section 4.6 is devoted to partitioning
over similarity data. First of all, the complementary K-means criterion is equiva-
lently reformulated as the so-called semi-average similarity criterion. This criterion
is maximized with a consecutive merger process referred to as SA-Agglomeration
clustering to produce provably tight, on average, clusters. This method stops
merging clusters when the criterion does not increase anymore if the data has been
pre-processed by zeroing the similarities of the objects to themselves. A similar
process is considered for another natural criterion, the summary within-cluster
similarity, for which two pre-processing options are considered. These are: a
popular “modularity” clustering option, based on subtraction of random interactions,
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and “uniform” partitioning, based on a scale shift, a.k.a. soft thresholding. Using
either pre-processing option, the summary clustering also leads to an automated
determination of the number of clusters. The chapter concludes with Sect. 4.7 on
consensus clustering, a more recent concept. In the context of central partition for a
given ensemble of partitions, two distance-between-partitions measures apply, both
involving the so-called consensus matrix. The consensus similarity is defined, for
any two objects, by the number of clusters in the ensemble to which both objects
belong. This brings the issue of consensus into the context of similarity clustering, in
the form of either the semi-average criterion or uniform partitioning criterion.

4.1 General: Clustering as Categorical Summarization

Clustering is a set of methods for finding and describing cohesive groups in data,
typically, as “compact” clusters of entities in the feature space.

Consider data patterns in Fig. 4.1: a clear-cut cluster structure in part (a), a blob
in (b), and an ambiguous “cloud” in (d).

Some argue that term “clustering” applies only to structures of the type presented
on Fig. 4.1a and c, moreover, depending on the level of resolution, one may dis-
tinguish 3 or 7 clusters in (c). There are no “natural” clusters in the other two cases,
Fig. 4.1b and d, however. Indeed, initially, the term was used to express a clear-cut
clustering. But currently clustering has become synonymous to building a classi-
fication over empirical data, and as such it embraces all the situations in which data
can be structured into cohesive chunks.

(a) 

(c) 

(b) 

(d) 

Fig. 4.1 Clear-cut cluster structures at (a) and (c); data clouds with no clear structure at (b)
and (d)
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To serve as data summaries, clusters are to be not only found, but conceptually
described as well.

A “class” always expresses a concept embedded into a fragment of knowledge—
this is what is referred to, in logics, as the class’ “intension”, in contrast to empirical
instances of the class constituting what is referred to as the class’ “extension”, e.g.,
the concept of “tree” versus real plants growing here and there. Therefore, two dual
intelligent activities—cluster finding and cluster describing—should be exercised
both when clustering.

As Fig. 4.2 illustrates, a cluster is rather easy to describe by combining corre-
sponding feature intervals when it is clear-cut geometrically. This
knowledge-driven data analysis perspective can be reflected in dividing all cluster
finding techniques in the following categories:

(a) clusters are to be found directly in terms of features—this is frequently referred
to as conceptual clustering;

(b) clusters are to be found simultaneously with a transformation of the feature
space making them clear-cut—this direction started very recently and is not
well shaped yet;

(c) clusters are to be found as subsets of entities first, so that the description comes
as a follow-up stage—this is the genuine clustering which covers most of the
clustering activities so far.

There have been developed several different clustering approaches of which
K-means is by far most popular. Table 4.1 presents the numbers of pages claimed
by popular search engines as returned in response to querying several popular
clustering techniques—they all will be explained in this text further on (the query
experiment took place June 6, 2018, in Moscow Russia). Only “single linkage” may
challenge the overall superiority of K-means, having mysteriously received support
by the Bing search engine; almost 2.8 million pages.

b2 

b1 
               a1      a2 

Fig. 4.2 Cluster of blank circles on the left is well described by the predicate a1 < x < a2 and
b1 < y < b2. A similar cluster on the right cannot be accurately described by interval predicates
without false positive and false negative errors
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4.2 K-means Clustering

4.2.1 Batch K-means Partitioning

K-means is a major clustering technique, of type (c), that is present, in various
forms, in all major statistical packages such as SPSS and SAS, as well as data
mining packages such as Clementine, iDA tool and DBMiner. It is very popular in
many application areas such as image analysis, marketing research, bioinformatics,
and medical informatics.

In general, the cluster finding process according to K-means is run in a Euclidean
space. It starts from K tentative centers and repeatedly applies two steps:

(a) collecting clusters of points around centers,
(b) updating centers as within cluster means,

– until convergence.
This makes much sense—whichever centers are suggested first, as hypothetical

cluster tendencies, they are checked then against the real data and moved to the
areas of higher density.

In its generic, so-called Batch mode, K-means can be formulated as comprising
the following steps 0–3 illustrated on Fig. 4.3 for K = 3 and entity set I:

Batch K-means

0. Initialization: The user chooses the number K of clusters and puts K hypothetic
cluster centers among the entity points, see Fig. 4.3a.

1. Cluster update: Given K centers ck (k = 1, 2, …, K), each of the entities i2I is
assigned to one of the centers according to Minimum distance rule: distances
between i and each ck are calculated, and i is assigned to the nearest ck, see
Fig. 4.3b. For each center ck, the entities assigned to it form cluster Sk (k = 1, 2,
…, K), see Fig. 4.3c.

2. Center update: At each of the given K clusters Sk, its gravity center is computed
and set as the new center c0k (k = 1, 2, …, K), see Fig. 4.3d.

3. Halting test: New centers c0k are compared with those from the previous itera-
tion. If c0k = ck for all k = 1, 2, …, K, stop and output both c0k and Sk for all
k = 1, 2, …, K. Otherwise, set c0k as ck and go to “1. Cluster update step”.

Table 4.1 The numbers of
pages, in thousands, claimed
by popular search engines as
returned in response to
querying cluster-analysis
approaches

Query Search engine

Google Bing Yandex

K-means 915,000 779 64,000
Single linkage 43,900 2770 23,000
Agglomerative clustering 418 88 8000
Spectral clustering 8320 271 12,000
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The algorithm is appealing in several aspects. Conceptually, it may be consid-
ered a model for the human process of typology making, with types represented by
clusters Sk and centers ck. Also, it has nice mathematical properties. This method is
computationally easy, fast and memory-efficient. However, researchers and prac-
titioners point to some less desirable properties of K-means. Specifically, they refer
to lack of advice with respect to

(a) the initial setting, i.e. the number of clusters K and initial positioning of centers,
(b) instability of clustering results with respect to the initial setting and data

standardization, and
(c) insufficient interpretation aids.

These issues can be alleviated, to an extent, by looking more attentively into the
properties of the mathematical criterion driving it, as will be explained later in this
section.

A decoder-based summarization model underlying the method is that the entities
are assigned to clusters in such a way that each cluster is represented by its center,
sometimes referred to as the cluster’s standard point or prototype. This point
expresses, intensionally, the typical tendencies of the cluster.

Worked Example 4.1. K-means Clustering of Company Data
Consider the standardized Company data in Table 2.18 copied here as Table 4.2.

This data set can be visualized with two principal components as presented in
Project 2.1 (Sect. 2.3).

Let entities An, Br and Ci be initial centers of three clusters. One can compu-
tationally compare each of the entities with each of the centers to decide which
center better represents an entity. To compare two points, Euclidean squared dis-
tance is a natural choice (see Table 4.3).

(a) (b)

(c) (d)

Fig. 4.3 Main steps of Batch K-means: a initialization of centers, b cluster update using
Minimum distance rule (the pointed lines show distances from an entity to all centers), c cluster
update completed, d center update completed
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According to the Minimum distance rule, an entity is assigned to its nearest
center (see Table 4.4 in which all distances between the entities and centers are
presented; those chosen according to the Minimum distance rule are highlighted in
bold.) entities assigned to the same center form a tentative cluster around it. Clusters
found at Table 4.4 are S1 = {Av, An, As}, S2 = {Ba, Br, Bu}, and S3 = {Ci, Cy}
as illustrated in Fig. 4.4. These are the product classes already, but this is irrelevant
to the computation. K-means procedure has its own logic that needs to ensure that
the new tentative clusters lead to the same centers.

One needs to proceed further on and update centers by using the information of
the assigned clusters. New centers are defined as centers of the tentative clusters,
whose components are the averages of the corresponding components within the
clusters; these are presented in Table 4.5.

Table 4.2 The Company data standardized by: (i) shifting to the feature averages, (ii) dividing by
the feature ranges, and (iii) further dividing the category based three columns by √3. Contributions
of the features to the data scatter are presented in the bottom

Av
An
As
Ba
Br
Bu
Ci
Cy

−0.20
0.40
0.08

−0.23
0.19

−0.60
0.08
0.27

0.23
0.05
0.09

−0.15
−0.29
−0.42
−0.10
0.58

−0.33
0
0

−0.33
0

−0.33
0.33
0.67

−0.63
−0.63
−0.63
0.38
0.38
0.38
0.38
0.38

0.36
0.36

−0.22
0.36

−0.22
−0.22
−0.22
−0.22

−0.22
−0.22
0.36

−0.22
0.36
0.36

−0.22
−0.22

−0.14
−0.14
−0.14
−0.14
−0.14
−0.14
0.43
0.43

Cnt
Cnt, %

0.74
12.42

0.69
11.66

0.89
14.95

1.88
31.54

0.62
10.51

0.62
10.51

0.50
8.41

Table 4.3 Computation of squared Euclidean distance between rows Av and An in Table 4.2 as
the sum of squared differences between corresponding components

Points Coordinates d(An, Av)

An 0.40 0.05 0.00 −0.63 0.36 −0.22 −0.14
Av −0.20 0.23 −0.33 −0.63 0.36 −0.22 −0.14
An-Av 0.60 −0.18 0.33 0 0 0 0
Squares 0.36 0. 03 0.11 0 0 0 0 0.50

Table 4.4 Distances between three company entities chosen as centers and all the companies;
each company column shows three distances between the company and centers—the highlighted
minima present best matches between the centers and companies

Point Av An As Ba Br Bu Ci Cy

An 0.50 0.00 0.77 1.55 1.82 2.99 1.90 2.41
Br 2.20 1.82 1.16 0.97 0.00 0.75 0.83 1.87
Ci 2.30 1.90 1.81 1.22 0.83 1.68 0.00 0.61
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The updated centers differ from the previous ones. Thus, we must update their
cluster lists by using the distances between updated centers and entities; the dis-
tances are presented in Table 4.6. As it is easy to see, the Minimum distance rule
assigns centers again with the same entity lists.

Therefore, the process has stabilized—if we repeat it all over again, nothing new
would ever come—the same centers and the same assignments. The process stops at
this point, and the found clusters along with their centers are returned (they are, in
the standardized format, in Table 4.5).

The result obviously depends on the standardization of the data, performed
beforehand, as the method heavily relies on the squared Euclidean distance and,
thus, on the relative weighting of the features, just like PCA.

Bayermart

Breaktops

Bumchist

Civok

Cyberda

Aversi

Antyos

Astonite

Fig. 4.4 Table 4.2 rows on the plane of two first principal components: it should not be difficult
to discern clusters formed by products: distances within A, B and C groups are smaller than
between them

Table 4.5 Tentative clusters from Table 4.2 and their centers

Av
An
As

−0.20
0.40
0.08

0.23
0.05
0.09

−0.33
0
0

−0.63
−0.63
−0.63

0.36
0.36
−0.22

−0.22
−0.22
0.36

−0.14
−0.14
−0.14

Center 1 0.10 0.12 −0.11 −0.63 0.17 −0.02 −0.14
Ba
Br
Bu

−0.23
0.19
−0.60

−0.15
−0.29
−0.42

−0.33
0
−0.33

0.38
0.38
0.38

0.36
−0.22
−0.22

−0.22
0.36
0.36

−0.14
−0.14
−0.14

Center 2 −0.21 −0.29 −0.22 0.38 −0.02 0.17 −0.14
Ci
Cy

0.08
0.27

−0.10
0.58

0.33
0.67

0.38
0.38

−0.22
−0.22

−0.22
−0.22

0.43
0.43

Center 3 0.18 0.24 0.50 0.38 −0.22 −0.22 0.43
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Case-Study 4.1. Dependence of K-means on Initialization: A Drawback and
Advantage
The bad news is that the result of K-means depends on initialization—the choice of
the initial tentative centers, even if we know, or have guessed correctly, the number
of clusters K. Indeed, if we start from wrong entities as the tentative centers, the
result can be rather disappointing.

In some packages, such as SPSS (Green and Salkind 2003), K first entities are
taken as the initial centers. Why not start from rows for Av, An and As then?
Taking these three as the initial tentative centers will stabilize the process at wrong
clusters S1 = {Av, Ba, Br}, S2 = {An}, and S3 = {As, Bu, Ci, Cy} (see Q.4.4).
But what else can be expected if all centers are taken from the same cluster?

However, even if the initial centers are taken from right clusters, this would not
necessarily warrant good results either. Start, for example, from Av, Ba and Ci
(note, these relate to different products!); the final result will be rather odd—
S1 = {Av, An, As}, S2 = {Ba, Bu}, and S3 = {Br, Ci, Cy} because Br should be
in B-cluster S2.

Figure 4.5 illustrates the fact that such instability is not because of a specially
designed example but rather an ordinary phenomenon. There are two clear-cut
clusters on Fig. 4.5, that can be thought of as uniformly distributed sets of points,

Table 4.6 Distances between the three updated centers and all the companies; the highlighted
column minima present best matches between centers and companies

Point Av An As Ba Br Bu Ci Cy

Center 1 0.22 0.19 0.31 1.31 1.49 2.12 1.76 2.36
Center 2 1.58 1.84 1.36 0.33 0.29 0.25 0.95 2.30
Center 3 2.50 2.00 1.95 1.69 1.20 2.40 0.15 0.15

Initial Final

(a) Right 

 (b) Wrong 

Fig. 4.5 Case of two
clear-cut clusters and two
different initializations:
(a) and (b). Case (a) results in
a correct separation of the
clusters, case (b) not
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and two different initializations, symmetric one on the (a) part and not symmetric
one on (b) part. The Minimum distance rule at K = 2 amounts to drawing a
hyperplane that orthogonally cuts through the middle of the line between the two
centers; the hyperplane is shown on Fig. 4.5 as the line separating the centers. In
Fig. 4.5, the case (a) presents initial centers that are more or less symmetric so that
the line through the middle separates the clusters indeed. In the case (b), initial
centers are highly asymmetric so that the separating line cuts through one of the
clusters, thus distorting the position of the further centers; the final separation still
cuts through one of the clusters and, therefore, is utterly wrong.

There is one more property of K-means clusters illustrated by Fig. 4.5: they are
convex. Indeed, the Minimum Distance rule assigns each center with the inter-
section of half-spaces formed by the orthogonal cutting hyperplanes.

Another example of non-optimality of K-means is presented in Fig. 4.6 which
involves four points only. There are two settings there, that on the left and that on
the right. In both settings, centers represented by stars, are final in the algorithm, but
that on the right leads to a much smaller value for the criterion (4.3) further on.

However, the non-optimality of K-means can be of an advantage, too—in those
cases when K-means criterion leads to solutions that are counterintuitive such as
those in which the fact that K-means favors equal cluster sizes brings good results,
as described in Case-Study 4.2 below.

Case-Study 4.2. Uniform Clusters Can Be Too Costly
Here is an example when the square-error clustering criterion leads to a solution
which is at odds with intuition, however that cannot be reached with batch K-means
algorithm because of its local nature.

Consider the case of Fig. 4.7 that presents three sets of points, two consisting of
big clumps of say 100 entities each, around points A and B, and a small one around
point C, consisting say of just one entity located at that point. Assume that the
distance between A and B is 2, and between B and C, 10. There can be only two
2-cluster partitions possible: (I) 200 of A and B entities together in one cluster while

Fig. 4.6 An example of K-means failure: two clusterings at a four-point-set with K-means—that
intuitive on the right and that counter-intuitive on the left, with stars as centers

A B C

Fig. 4.7 Three clumps of points to be clustered using the K-means clustering at K = 2: which two
will join together, A and B or B and C?
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the second cluster consists of just one entity in C; (II) 100 A entities for one cluster
while 101 entities in B and C for the other. The third partition, consisting of cluster
B and cluster A + C, cannot be optimal because cluster A + C is more outstretched
than a similar cluster B + C in (II).

Let us compare the values of K-means criterion using the squared Euclidean
distance between entities and their centers.

In the case (I), center of cluster A + B will be located in the middle of the
interval between A and B, thus on the distance 1 from each, leading to the total
squared Euclidean distance 200*1 = 200. Since cluster C contains just one entity, it
adds 0 to the value of K-means criterion, which is 200 in this case.

In the case (II), cluster B + C has center, which is the gravity center, between B
and C distanced from B by d = 10/101. Thus, the total value of K-means criterion
here is 100*d2 + (10 − d)2 which is less than 100*(1/10)2 + 102 = 101 because
d < 1/10 and 10 − d < 10. Cluster A contributes 0 because all 100 entities are
located in A which is, therefore, the center of this cluster.

Case (II) wins by a great margin: K-means criterion, in this case, favors more
equal distribution of entities between clusters in spite of the fact that case (I) is
intuitive and case (II) is not: A and B are much closer to each other than B and C.

Yet Batch K-means algorithm leads to non-optimal, but intuitive, case (I) rather
than optimal, but odd, case (II), if started from the most distant points A and C as
initial centers—an intuitively appealing option. Indeed, according to Minimal
distance rule, all entities in B will join A, thus resulting in (I) clustering.

Case-Study 4.3. Robustness of K-means Criterion with Data Normalization
Let us generate two 2D clusters, of 100 and 200 elements, respectively. First cluster—
a Gaussian spherical distribution with the mean in point (1, 1) and the standard
deviation 0.5. The second cluster, of 200 elements, is uniformly randomly distributed
in the rectangle of the length 40 and width 1, put over axis x either at y = 5 (Fig. 4.8,
on the left) or at y = 3 (Fig. 4.8, on the right). K-means criterion of course cannot
separate these two if applied in the original space; its criterion value will be minimized

0 20 40 60
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20
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50

0 20 40 60

0

10

20

30

40

50

Fig. 4.8 A set of two differently shaped clusters, a circle and rectangle; the y-coordinates of their
centers are 1 (circle) and 4.5 (rectangle) on the left, and 1 and 3.5, on the right
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by dividing the set somewhere closer to one fourth of the strip of the rectangular
cluster so that the split parts will have approximately 150 points each.

Yet after the data standardization, with the grand means subtracted and
range-normalized, the clusters on the left part of Fig. 4.8 are perfectly separable
with K-means criterion, that does attain its minimum value, at K = 2, on the
cluster-based partition of the set. This holds with z-scoring, too.

This tendency changes, though, at a less structured case on the right of Fig. 4.8.
The best split indeed holds at about x = 10 in this case. At a random sample, 32
points of the rectangular cluster join circular cluster in the optimal split. Curiously,
the z-scoring standardization, in this case, works towards a better recovery of the
structure so that the optimal 2-cluster partition, at the same data sample, merges
only 5 rectangular cluster elements into the circular cluster, thus splitting the
rectangular cluster over a mark x = 5.

These results do not much change when we go to Gaussian similarities (affinity
data) defined by formula Gðx; yÞ ¼ e�dðx;yÞ=2r2 where d(x, y) is the squared
Euclidean distance between x and y if x 6¼ y, and r2 is equal to 10 at the original
data and 0.5 at the standardized data, in the manner of spectral clustering (see
Sect. 5.2) and apply algorithm AddRem from Sect. 5.4.

4.2.2 Batch K-means and Its Criterion

4.2.2.1 Batch K-means as Alternating Minimization

The cluster structure in K-means is specified by a partition S of the entity set in K
non-overlapping clusters, S = {S1, S2,…, SK} represented by lists of entities Sk, and
cluster centers ck = (ck1, ck2, …, ckV), k = 1, 2, …, K.

There is a model that can be thought of as that driving K-means algorithm.
According to this model, each entity, represented by the corresponding row of
Y matrix as yi = (yi1, yi2, …, yiV), belongs to a cluster, say Sk, and is equal, up to
small residuals, or errors, to the cluster’s center:

yiv ¼ ckv þ eiv for all i 2 Sk and all v ¼ 1; 2; . . .;V ð4:1Þ

Equations (4.1) define as simple a decoder as possible: whatever entity belongs
to cluster Sk, its data point in the feature space is decoded as center ck.

The problem is to find such a partition S = {S1, S2, …, SK} and cluster centers
ck = (ck1, ck2, …, ckV), k = 1, 2, …, K, that minimize the square error of decoding

L2 ¼
X
i2I

X
v2V

e2iv ¼
XK
k¼1

X
i2Sk

X
v2V

ðyiv � ckvÞ2 ð4:2Þ
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Criterion (4.2) can be equivalently reformulated in terms of the squared
Euclidean distances as the summary distance between entities and their cluster
centers (see (4.3) and Fig. 4.9). Please note that the number of distances in the sum
is N and does not depend on the number of clusters.

L2 ¼ WðS; cÞ ¼
XK
k¼1

X
i2Sk

dðyi; ckÞ ð4:3Þ

This is because the distance referred to as squared Euclidean distance is defined,
for any V-dimensional x = (xv) and y = (yv) as d(x, y) = (x1 − y1)

2 + (x2 −
y2)

2 + … + (xV − yV)
2 so that the rightmost summation symbol in (4.2) leads to d

(yi, ck) indeed.
This criterion depends on two groups of variables, S and c, and thus can be

minimized by the alternating minimization method which proceeds by repetitively
applying the same minimization step: Given one group of variables, optimize cri-
terion over the other group, and so forth, until convergence.

Specifically, given centers c = (c1, c2, …, cK), find a partition S minimizing the
summary distance (4.3). Obviously, to choose a partition S, one should choose, for
each entity i2I, one of K distances d(yi, c1), d(yi, c2), …, d(yi, cK). The choice to
minimize (4.3) is according to the Minimum distance rule: for each i2I, choose the
minimum of d(yi, ck), k = 1, …, V, that is, assign any entity to its nearest center.

When there are several nearest centers, the assignment is taken among them
arbitrarily. In general, some centers may be assigned no entity at all with this rule.

The other step in the alternating minimization would be minimizing (4.3) over
c at a given S. The solution to this problem comes from the additive format of
criterion (4.2) that provides for the independence of cluster center components from
each other. As was indicated in Sect. 2.2.2, it is the mean that minimizes the square
error, and thus the within-cluster mean vectors minimize (4.3) over c at given S.

Thus, starting from an initial set of centers, c = (c1, c2, …, cK), the alternating
minimization method for criterion (4.3) will consist of a series of repeated appli-
cations of two steps: (a) clusters update—find clusters S according to the Minimum
distance rule, (b) centers update—make centers equal to within cluster mean

Fig. 4.9 The distances—
lines connecting centers with
entity points—in criterion W
(S, c)
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vectors. The computation stops when new clusters coincide with those on the
previous step. This is exactly the K-means in its Batch mode.

The convergence of the method follows from two facts: (i) at each step, criterion
(4.3) can only decrease, and (ii) the number of different partitions S is finite.

Q.4.1. How many distances are summed in W(S, c)? (A: This is equal to the number
of entities N.) Does this number depend on the number of clusters K? (A: No.) Does
the latter imply: the greater the K, the less the W(S, c)? (A: Yes.) Why?
Q.4.2. Why is convergence guaranteed for K-means?
A. Because K-means is alternating minimization process at which criterion
W(S, c) may only decrease at each step. Convergence follows from the fact that
there are only a finite number of different partitions on I.
Q.4.3. Assume that d(yi, ck) in W(S, c) is city-block distance rather than Euclidean
squared. Could K-means be adjusted to make it alternating minimization algorithm
for the modified W(S, c)?
A. (Yes, just use the city-block distance through, as well as within cluster median
points rather than gravity centers.) Would this make any difference? (Yes, it will;
especially at skewed distributions of the variables.)
Q.4.4. Demonstrate that, at Companies data, value W(S, c) at product-based par-
tition {1–2–3, 4–5–6, 7–8} is lower than at partition {1–4–6, 2, 3–5–7–8} found at
seeds 1, 2 and 3.
A. Indeed the sums of within-cluster distances to cluster centers in the product
based clusters are 0.7193, 0.8701, 0.3070, respectively, totaling to 1.8964, whereas
the sums of the second partition are 1.4411, 0, 2.1789 and sum up to 3.62.
Q.4.5. Demonstrate that, at Companies data, value W(S, c) at product-based par-
tition {1–2–3, 4–5–6, 7–8} is lower than at partition {1–2–3, 4–6, 5–7–8} found at
seeds 1, 4 and 7.
A. Indeed, the sums of within-cluster distances to cluster centers in the
product-based clusters are 0.7193, 0.8701, 0.3070, respectively, totaling to 1.8964,
whereas the sums of the second partition are 0.7193, 0.4413, 1.1020 that total to
2.2624.
Q.4.6. Can example of Fig. 4.6 or its modification lead to a similar effect for the case
of least-modules criterion related to the city-block distance and median rather than
average centers? Can it be further extended to PAM method which uses city-block
distance and “medoid” entities rather than coordinates, as described in Sect. 4.2.5?

4.2.2.2 A Pseudo-code for Batch K-means: Computation

To summarize, an application of K-means clustering involves the following steps:

0. Select a data set.
1. Standardize the data.
2. Choose number of clusters K.
3. Define K hypothetical centers (seeds).
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4. Clusters update: Assign entities to the centers according to Minimum distance
rule.

5. Centers update: define centers as the gravity centers of thus obtained clusters.
6. Iterate 4. and 5. until convergence.

MatLab codes for the items 4 and 5 can be put as follows.
4. Clusters update: Assign points to the centers according to Minimum distance

rule:
Given data matrix X and a K�V array of centers cent, produce an N-dimensional

array of cluster labels for the entities and the summary within cluster distance to
centers, wc:

function [labelc,wc]=clusterupdate(X,cent)

[K,m]=size(cent);

[N,m]=size(X);

for k=1:K

cc=cent(k,:); %center of cluster k

Ck=repmat(cc,N,1);

dif=X-Ck;

ddif=dif.*dif; %Nxm matrix of squares

dist(k,:)=sum(ddif’);

%distances from entities to cluster center

end

[aa,bb]=min(dist); %Minimum distance rule

wc=sum(aa);

labelc=bb;

return

4. Centers update: Put centers in gravity centres of clusters defined by the array
of cluster labels labelc according to data in matrix X, to produce K�V array centres
of the centers:

function centres=ceupdate(X,labelc)

K=max(labelc);

for k=1:K

clk=find(labelc==k);

elemk=X(clk,:);

centres(k,:)=mean(elemk);

end

return

Batch K-means with MatLab, therefore, is to embrace steps 3–6 above and
output a clustering in cell array termed, say, Clusters, along with the proportion of
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unexplained data scatter found by using preliminarily standardized matrix X and set
of initial centers, cent, as input. This can be put like this:

function [Clusters,uds]=k_means(X,cent)

[N,m]=size(X);

[K,m1]=size(cent);

flag=0; %-- stop-condition

membership=zeros(N,1);

dd=sum(sum(X.*X)); %-- data scatter

%--- clusters and centers updates

while flag==0

[labelc,wc]=clusterupdate(Y,cent);

if isequal(labelc,membership)

%--stop-condition’s working

flag=1;

centre=cent;

w=wc;

else

cent=ceupdate(Y,labelc);

membership=labelc;

end

end

%-----preparing the output --------------

uds=w*100/dd;

Clusters{1}=membership;

Clusters{2}=centre;

return

Q.4.7. Check the values of criterion (4.3) at each initial setting considered for
Company data above. Find out which is the best among them.
Q.4.8. Prove that the square-error criterion (4.2) can be reformulated as the sum of
within cluster variances r2kv ¼ Ri2Sk yiv � ckvð Þ2=Nk weighted by the cluster cardi-
nalities Nk:

WðS; cÞ ¼
XK
k¼1

Nk

X
v2V

r2kv ð4:4Þ

Q.4.9. Prove that the following criterion (4.5) is equivalent to criterion (4.3) in
terms of entity-to-entity distances only—without any reference to centers at all:
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DðSÞ ¼
XK
k¼1

X
i;j2Sk dðyi; yjÞ=Nk ð4:5Þ

where d(yi, yj) is the squared Euclidean distance between i and j’s rows.
A. This can be proven by substituting the definition of center ckv, ckv = Ri2Skykv/Nk,
through feature values in formula (4.2).
Q.4.10. Prove that if Batch K-means is applied to Iris data, preprocessed by sub-
tracting the feature means only, with K = 3 and specimens 1, 51, and 101 taken as
the initial centers, the resulting clustering cross-classified with the prior three
50-strong classes forms contingency table presented in Table 4.7.
Q.4.11. Prove that if Batch K-means is applied to Iris data, mean-range normalized
with K = 3 and specimens 1, 51, and 101 taken as the initial centers, the resulting
clustering cross-classified with the prior three classes forms contingency table
presented in Table 4.7.

In the following two sections we describe two approaches at reaching deeper
minima of K-means criterion (4.3): (a) an incremental version and (b) nature
inspired versions.

4.2.3 Incremental K-means

An incremental version of K-means uses the Minimum distance rule not for all of
the entities but for one of them only. There can be two different reasons for doing
so:

(Ri) The user is not able to operate over the entire data set and takes in the
entities one by one, because of the data protocol, so that entities are to be clustered
on the fly as, for instance, in an on-line application process.

(Rii) The user operates with the entire data set, but wants to smooth the action of
the algorithm so that no drastic changes in the cluster contents may occur. To do
this, the user may specify an order of the entities and run entities one-by-one in this
order for a number of epochs like it is done in a neural network learning process.

Table 4.7 Cross classification of the original Iris taxa and 3-cluster clustering found starting from
entities 1, 51 and 101 as initial seeds. The clustering does separate Iris Setosa but misplaces
14 + 3=17 specimens between two other taxa

Cluster Setosa Versicolor Virginica Total

S1 50 0 0 50
S2 0 47 14 61
S3 0 3 36 39
Total 50 50 50 150
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The result of such a one-by-one entity processing may differ from that of Batch
K-means because each version finds a locally optimal solution on a different
structure of locality neighborhoods.

Q.4.12. What is the difference in neighborhoods between Batch and incremental
versions of K-means?

When an entity yi joins cluster Sk whose cardinality is Nk, center ck changes to c0k,
according to the following formula:

c0k ¼ Nkck= Nk þ 1ð Þþ yi= Nk þ 1ð Þ

When yi moves out of cluster Sk, the formula remains valid if all the pluses are
changed for minuses. To extend the formula so that it holds for both cases, let us
introduce variable zi which is equal to +1 when yi joins the cluster and −1 when it
moves out of it. Then the extended formula is:

c0k ¼ Nkck= Nk þ zið Þþ yizi= Nk þ zið Þ

Accordingly, the distances from other entities change to d(yj, c0k).
Because of the incremental setting, the stopping rule of the straight version

(reaching a stationary state) may be not necessarily applicable here. In Ri case, the
natural stopping rule is to end when there are no new entities observed. In Rii case,
the process of running through the entities one-by-one stops when all entities
remain in their clusters. The process may be stopped as well when a pre-specified
number of runs through the entity set, that is, epochs, is reached.

Q.4.13. Consider a run of incremental K-means at situation Rii on the Companies
data, at which the order of entities follows the order of their distances to nearest
centers. Let K = 3 and entities Av, Ba and Ci initial centers.
A. Sequential steps of the incremental computation are presented in Table 4.8. In
this table, cluster updates are provided as well as their centers after each single
update. The column on the right presents squared Euclidean distances between
centers and entities yet unclustered, with the minima highlighted in bold. The
minimum distance determines, in this version, which of the entities joins the
clustering next. One can see that on iteration 2 company Br switches to center Ba
after center Ci of the third cluster had been updated to the mean of Ci and Cy—
because its distance to the new center increased from the minimum 0.83–1.20. This
leads to correct, product-based, clusters.
Q.4.14. Prove that the same initialization leads to wrong, that is, non-product based,
clusters with Batch K-means.
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4.2.4 Nature Inspired Algorithms for K-means

4.2.4.1 Nature Inspired Algorithms

In real-world applications, K-means typically does not move far away from the
initial setting of centers. Considered in the perspective of minimization of criterion
(4.3), this leads to the strategy of multiple runs of K-means starting from randomly
generated sets of centers to reach as deep a minimum of (4.3) as possible. This
strategy works well on illustrative small data sets but it may fail when the data set is
large because in this case random settings cannot cover the space of solutions in a
reasonable time. Nature inspired approach provides a well-defined framework for
using random centers in parallel, rather than in sequence, to channel them to deeper
minima as an evolving population of admissible solutions. The main difference of
the nature inspired optimization from the classical optimization is that the latter
reaches for a single solution, provably optimal, whereas the former runs a popu-
lation of solutions and does not much care for the provability.

A nature inspired algorithm mimics some natural process to set rules for the
population behavior and/or evolution. Among the nature inspired approaches, the
following are especially popular:

A. Genetic
B. Evolutionary
C. Particle swarm optimization

A K-means method according to each of these will be described in this section.
A nature inspired algorithm proceeds as a sequence of steps of evolution for a

population of possible solutions, that is, clusterings represented by specific data
structures. A K-means clustering comprises two items: a partition S of the entity set
I in K clusters and a set of clusters’ K centers c = {c1, c2, …, cK}. Typically, only
one of them is carried out in a nature-inspired algorithm. The other is easily
recovered according to K-means rules. Given a partition S, centers ck are found as
vectors of within cluster means. Given a set of centers, each cluster Sk is determined
as the set of points nearest to its center ck, according to the Minimum distance rule
(k = 1, 2, …, K). Respectively, the following two representations are most popular
in nature inspired algorithms:

(i) Partition as a string,
(ii) Centers as a string.

Consider them in turn.

(i) Partition as a string

Having pre-specified an order of entities, a partition S can be represented as a
string of cluster labels k = 1, 2, …, K of the entities thus ordered. If, for instance,
there are eight entities ordered as e1, e2, e3, e4, e5, e6, e7, e8, then the
string 12333112 represents partition S with three parts according to the labels,
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S1 = {e1, e6, e7}, S2 = {e2, e8}, and S3 = {e3, e4, e5}, which can be easily seen
from the diagram relating the entities and labels:

e1 e2 e3 e4 e5 e6 e7 e8
1 2 3 3 3 1 1 2

A string of N integers from 1 to K is considered not admissible, if some integer
between 1 and K is absent from it (so that the corresponding cluster is empty). Such
a not admissible string for the entity set above would be 11333111, because it lacks
label 2 and, therefore, makes class S2 empty.

(ii) Centers as a string

Consider the same partition as in (i) on the set of eight objects, the companies in
Company data Table 4.2 in their order. Clusters S1 = {e1, e6, e7}, S2 = {e2, e8},
and S3 = {e3, e4, e5}, as well as their centers, are presented in Table 4.9. The three
centers form a sequence of 7 � 3 = 21 numbers c = (−0.24, −0.09, −0.11, 0.04,
−0.02, −0.02, 0.05, 0.34, 0.31, 0.33, −0.12, 0.07, −0.22, 0.14, 0.01, −0.12, −0.11,
0.04, −0.02, 0.17, −0.14), which suffices for representing the clustering: the
sequence can be easily converted back in three 7-dimensional center vectors to
recover then clusters with the Minimum distance rule. It should be pointed out that
the original clusters may be somewhat weird and not recoverable in this way. For
example, entity e4, which is Ba, appears to be nearer to center 1 rather than to
center 3 so that the Minimum distance rule would produce clusters S1 = {e1, e4,
e6, e7}, S2 = {e2, e8}, and S3 = {e3, e5} rather than those original ones, but such
a loss makes no difference, because K-means clusters necessarily satisfy the
Minimum distance rule so that all the entities are nearest to their cluster’s centers.

What is important is that any 21-dimensional sequence of real values can be
treated as the clustering code for its centers.

Table 4.9 Centers of clusters S1 = {e1, e6, e7}, S2 = {e2, e8}, and S3 = {e3, e4, e5} according
to data in Table 4.2

Av −0.20 0.23 −0.33 −0.63 0.36 −0.22 −0.14
Bu −0.60 −0.42 −0.33 0.38 −0.22 0.36 −0.14
Ci 0.08 −0.10 0.33 0.38 −0.22 −0.22 0.43
Center 1 −0.24 −0.09 −0.11 0.04 −0.02 −0.02 0.05
An 0.40 0.05 0 −0.62 0.36 −0.22 −0.14
Cy 0.27 0.58 0.67 0.38 −0.22 −0.22 0.43
Center 2 0.34 0.31 0.33 −0.12 0.07 −0.22 0.14
As 0.08 0.09 0.00 −0.62 −0.22 0.36 −0.14
Ba −0.23 −0.15 −0.33 0.38 0.36 −0.22 −0.14
Br 0.10 −0.29 0.00 0.38 −0.22 0.36 −0.14
Center 3 0.01 −0.12 −0.11 0.04 −0.02 0.17 −0.14
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4.2.4.2 GA for K-means Clustering

Genetic algorithms work over a population of strings, each representing an
admissible solution and referred to as a chromosome. The optimized function is
referred to as the fitness function. Let us use a string representation for partitions
S = {S1, …, SK} of the entity set. The minimized fitness function is the summary
within-cluster distance to centers, the function W(S, c) in (4.3):

0. Initial setting. Specify an even integer P for the population size (no rules exist
for this), and randomly generate P chromosomes, that is, strings s1, …, sP of
K integers 1,…, K in such a way that all K integers 1, 2,…, K are present within
each chromosome. For each of the strings, define corresponding clusters, cal-
culate their centers as gravity centres and the value of criterion, W(s1), …,
W(sP), according to formula (4.3).

1. Mating selection. Choose P/2 pairs of strings; each pair to mate and produce two
“children” strings. The mating pairs usually are selected randomly (with
replacement, so that the same string may appear in several pairs and, moreover,
can form both parents in a pair). To mimic Darwin’s “survival of the fittest” law,
the probability of selection of string st (t = 1, …, P) should reflect its fitness
value W(st). Since the fitness is greater for the smaller W value, some make the
probability inversely proportional to W(st) (see Murthy and Chowdhury 1996)
and some to the difference between a rather large number and W(st) (see Lu
et al. 2004). This latter approach can be taken further with the probability
proportional to the explained part of the data scatter—in this case the “rather
large number” taken to be the data scatter rather than any arbitrary real.

2. Cross-over. For each of the mating pairs, generate a random number r between 0
and 1. If r is smaller than a pre-specified probability p (typically, p is taken
about 0.7–0.8), then perform a cross-over; otherwise the mates themselves are
considered the result. A (single-point) cross-over of string chromosomes
a = a1a2…aN and b = b1b2…bN is performed as follows. A random number
n between 1 and N − 1 is selected and the strings are crossed over to produce
children a1a2…anbn+1…bN and b1b2…bnan+1…aN. If a child is not admissible
(like, for instance, strings a = 11133222 and b = 32123311 crossed over at
n = 4 would produce a0 ¼ 11133311 and b0 ¼ 32123222 so that a0 is inad-
missible because of absent 2), then various policies can be applied. Some
authors suggest the cross-over operation to be repeated until an admissible pair
is produced. Some say inadmissible chromosomes are ok, just they must be
assigned with a smaller probability of selection.

3. Mutation. Mutation is a random alteration of a character in a chromosome. This
provides a mechanism for jumping to different “ravines” of the minimized
fitness function. Every character in every string is subject to the mutation pro-
cess, with a low probability q which can be constant or inversely proportional to
the distance between the corresponding entity and corresponding center.

4. Elitist survival. This strategy suggests keeping the best fitting chromosome(s)
stored separately. After the cross-over and mutations have been completed, find

4.2 K-means Clustering 313



fitness values for the new generation of chromosomes. Check whether the worst
of them is better than the record or not. If not, put the record chromosome
instead of the worst one into the population. Then find the record for thus
obtained population. If this record is better than the stored elit value, change the
stored value for the current one.

5. Halt condition. Check the stop condition (typically, a limit on the number of
iterations). If this doesn’t hold, go to 1; otherwise, halt.

Lu et al. (2004) note that such a GA works much faster if after step 3. Mutation
the labels are changed according to the Minimum distance rule. They apply this
instead of the elitist survival.

Thus, a GA algorithm operates with a population of chromosomes representing
admissible solutions. To update the population, mates are selected, undergone a
cross-over process generating offspring which then is subjected to mutation process.
Elite maintenance completes the update. In the end, the elite is output as the best
solution.

A computational shortcoming of the GA algorithm is that the length of the
chromosomes is the size of the entity set N, which may run in millions in contem-
porary applications. Can this be overcome? Sure, by using center not partition strings
to represent a clustering. Center string sizes depend on the number of features and
number of clusters, not the number of entities. Another advantage of center strings is
in the mutation process. Rather than an abrupt swap between literals, they can be
changed softly, in a quantitative manner by adding or subtracting a small change.
This is utilized in evolutionary and particle swarm algorithms.

4.2.4.3 Evolutionary K-means

Here, the chromosome is represented by a set of K centers c = (c1, c2, … cK) which
can be considered a string of KV real (“float”) numbers. In contrast to the
partition-as-string representation, the length of the string here does not depend on
the number of entities that can be of advantage when the number of entities is
massive. Each center in the string is analogous to a gene in a chromosome.

The cross-over of two center strings c and c′, each of the length KV, is performed
at a randomly selected place n, 1 � n < KV, exactly as it is in the genetic algo-
rithm above. Chromosomes c and c′ exchange the portions lying to the right of n-th
component to produce two offsprings. This means that, a number of centers in c is
substituted by corresponding centers in c′. Moreover, if n cuts across a center, its
components change in each of the offspring chromosomes.

The process of mutation, according to Bandyopadhyay and Maulik (2002), can
be organized as follows. Given the fitness W values of all the chromosomes, let
minW and maxW denote their minimum and maximum respectively. For each
chromosome, its radius R is defined as a proportion of maxW reached at it:
R = (W − minW)/(maxW − minW). When the denominator is 0, that is, if
minW = maxW, define R = 1 in all chromosomes. Here,W is the fitness value of the
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chromosome under consideration. Then the mutation intensity d is generated ran-
domly in the interval between −R and +R.

Let minv and maxv denote the minimum and maximum values in the data
set along feature v (v = 1, …, V). Then every v-th component xv of each center ck in
the chromosome changes to

xvþ d � maxv�xvð Þ if d� 0 increaseð Þ; or
xvþ d � xv�minvð Þ; otherwise decreaseð Þ:

The perturbation leaves chromosomes within the hyper-rectangle defined by
boundaries minv and maxv. Please note that the best chromosome, at which
W = minW, does not change in this process because its R = 0.

Elitism is maintained in the process as well.
The algorithm follows the scheme outlined for the genetic algorithm.
Based on little experimentation, this algorithm is said to outperform the previous

one, GA, many times in terms of the speed of convergence.
The evolutionary approach can be further modified such as, for example, the

so-called Differential evolution (see Paterlini and Krink 2006 who claim that this
method outperforms the others in K-means). In Differential evolution, the
cross-over, mutation and elite maintenance are merged together by removing the
mating stage and changing those for the following. An offspring chromosome is
created for every chromosome t in the population (t = 1, …, P) as follows. Three
other chromosomes, k, l and m, are taken randomly from the population. Then, for
every component (gene) x.t of the chromosome t, a uniformly random value r be-
tween 0 and 1 is drawn. This value is compared to the pre-specified probability
p (somewhat between 0.5 and 0.8). If r > p then the component goes to the off-
spring unchanged. Otherwise, this component is substituted by the linear combi-
nation of the same component in the three other chromosomes: x.m + a*(x.k − x.
l) where a is a small scaling parameter. After the offspring’s fitness is evaluated, it
substitutes chromosome t if it is better; otherwise, t remains as is and the process
applies to the next chromosome.

4.2.4.4 Particle Swarm Optimization for K-means

Particle swarm mimics a drift of a bee population so that the population members
here are not crossbred, nor they mutate. They just move randomly by drifting in
random directions having an eye on the best places visited so far, individually and
socially. This can be done because they are vectors of real numbers. Because of the
change, the genetic metaphor is abandoned here, and the elements are referred to as
particles rather than chromosomes, and the set of them as a swarm rather than a
population.
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Each particle comprises:

– a position vector x that is an admissible solution to the problem in question (such
as the KV center vector in K-means),

– the evaluation of its fitness f(x) (such as the summary distance W in (4.3)),
– a velocity vector z of the same dimension as x, and
– a record of the best position b reached by the particle so far.

The swarm best position bg is determined as the best among all the individual
best positions b.

At iteration t (t = 0, 1, …) the next iteration’s position is defined as the current
position shifted by the velocity vector:

x tþ 1ð Þ ¼ x tð Þþ z tþ 1ð Þ

where z(t + 1) is computed as a change in the direction of personal and popula-
tion’s best positions:

z tþ 1ð Þ ¼ z tð Þþ a b�xðtÞð Þþ b bg�xðtÞð Þ

where

– a and b are uniformly distributed random numbers (typically, within the interval
between 0 and 2, so that they are around unity),

– item a(b − x(t)) is referred to as the cognitive component and
– item b(bg − x(t)) as the social component of the process.

Initial values x(0) and z(0) are generated randomly within the manifold of
admissible values.

In some implementations, the group best position bg is changed for that of local
best position bl that is defined by the particle’s neighbors only so that some
pre-defined neighborhood topology makes its effect. There is a report that the local
best position works especially well, in terms of the depth of the minimum reached,
when it is based on just two Euclidean neighbors.

Q.4.15. Formulate a particle swarm optimization algorithm for K-means clustering.

4.2.5 Partition Around Medoids PAM

K-means centers are average points rather than individual entities, which may be
considered artificial in contexts in which the user may wish to consider but only
genuinely occurring real world entities rather the “synthetic” averages. Estates or art
objects or countries are examples of entities for which this restriction seems ade-
quate. To implement the idea, let us change the concept of cluster prototype from
center to medoid (Kaufman and Rousseeuw 1990). An entity in a cluster S, i*2S, is

316 4 Core Partitioning: K-means and Similarity Clustering



referred to as its medoid if it is the nearest in S to all other elements of S, that is, if i*
minimizes the sum of distances D(i) = Rj2Sd(i, j) over all i2S. The symbol d(i, j) is
used here to denote any dissimilarity function, which may or may not be squared
Euclidean distance, between observed entities i, j2I.

The method of partitioning around medoids PAM (Kaufman and Rousseeuw
1990) works exactly as Batch K-means with the only difference that medoids, not
centers, are used as cluster prototypes. It starts, as usual, with choosing the number
of clusters K and initial medoids c = (c1, c2, …, cK) that are not just M-dimensional
points but individual entities. Given medoids c, clusters Sk are collected according
to the Minimum distance rule—as sets of entities that are nearest to entity ck for all
k = 1, 2, …, K. Given clusters Sk, medoids are updated according to the definition.
This process reiterates again and again, and halts when no change of the clustering
occurs. It obviously will never leave a cluster Sk empty. If the size of the data set is
not large, all computations can be done over the entity-to-entity distance matrix
without ever changing it.

Worked Example 4.2. PAM Applied to Company Data
Let us apply PAM to the Company data displayed in Table 4.2 with K = 3 and
entities Av, Br and Cy as initial medoids. We can operate over the distance matrix,
presented in Table 4.10.

With seeds, Av, Br, Cy, the Minimum distance rule would obviously produce
the product-based clusters A, B, and C. At the next iteration, clusters’ medoids are
computed: they are obviously An in A cluster, Bu in B cluster and either of the two
entities in C cluster—leave it thus at the less controversial Cy. With the set of
medoids changed to An, Bu and Cy, we apply the Minimum distance rule again,
leading us to the product-based clusters again. This halts the process.

Note that PAM can lead to instability in results because the assignment depends
on distances to just a single entity.

Q.4.16. Why Cy is less controversial than Ci in Table 4.10?
A. Because Cy unequivocally relates to Ci only, whereas Ci is close to Br as well.

Table 4.10 Distances between standardized company entities

Entities Av An Ast Ba Br Bu Ci Cy

Av 0.00 0.51 0.88 1.15 2.20 2.25 2.30 3.01
An 0.51 0.00 0.77 1.55 1.82 2.99 1.90 2.41
As 0.88 0.77 0.00 1.94 1.16 1.84 1.81 2.38
Ba 1.15 1.55 1.94 0.00 0.97 0.87 1.22 2.46
Br 2.20 1.82 1.16 0.97 0.00 0.75 0.83 1.87
Bu 2.25 2.99 1.84 0.87 0.75 0.00 1.68 3.43
Ci 2.30 1.90 1.81 1.22 0.83 1.68 0.00 0.61
Cy 3.01 2.41 2.38 2.46 1.87 3.43 0.61 0.00

For the sake of convenience, those smaller than 1, are highlighted in bold

4.2 K-means Clustering 317



Q.4.17. Assume that the distance d(Bre, Bum) in Table 4.10 is 0.85 rather than
0.75. Show that then if one chooses Civ to be medoid of C cluster, then the
Minimum distance rule would assign to Civ not only Cyb but also Bre, because its
distance to Civ, 0.83, would be less than its distance to Bum, 0.85. Show that this
cluster, {Civ, Cyb, Bre} will remain stable over successive iterations.

4.2.6 Initialization of K-means: Conventional Approaches

To initialize K-means, one needs to specify:

(i) the number of clusters, K, and
(ii) initial centers, c = (c1, c2, …, cK).

Each of these can be of an issue in practical computations. Both depend on the
user’s expectations related to the level of granularity and typological attitudes,
which remain beyond the scope of the theory of K-means. This is why some
suggest relying on the user’s view of the substantive domain to specify the number
and positions of initial centers as hypothetical prototypes. There have been however
a number of approaches for specifying the number and location of the initial centers
by exploring the structure of the data, of which we describe the following three:

(a) multiple runs of K-means;
(b) distant representatives;
(c) algorithm “Build”

Further on we are going to present yet another approach based on the comple-
mentary criterion derived in Sect. 4.2.

(a) Multiple runs of K-means

According to this approach, at a given K, a number of K-means’ runs R is
pre-specified; each run starting with K randomly selected entities as the initial seeds
(randomly generated points within the feature ranges have proven to give inferior
results in experiments reported by several authors). Then the best result in terms of
the square-error criterion W(S, c) (4.3) is output. This can be further extended to
choosing the “right” number of clusters K. Let us denote by WK the minimum value
of W(S, c) found after R runs of K-means over random initializations. Then the
series WK found at different K, from a pre-specified range say between 2 and 20, is
usually taken to see which K would lead to the best WK over the range.
Unfortunately, the best WK is not necessarily minimum WK, because the minimum
value of the square-error criterion cannot increase when K grows, which should be
reflected in the empirically found WK’s. In the literature, a number of stop criteria
utilizing WK have been suggested based on some simplified data models and
intuition such “Gap” and “Jump” statistics. Unfortunately, they all may fail even in
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the relatively simple situations of controlled computation experiments (see Chiang
and Mirkin 2010 for a review).

A relatively simple heuristic rule is based on the intuition that when there are K*
well separated clusters, then for K < K* a (K + 1)-cluster partition should be the
K-cluster partition with one of its clusters split in two, which would drastically
decrease WK+1 from WK. On the other hand, at K > K*, both K- and (K + 1)-cluster
partitions are to be the “right” K*-cluster partition with some of the “right” clusters
split randomly, so that WK and WK+1 are not that different. Therefore, as “a crude
rule of thumb”, Hartigan (1975, p. 91) proposed calculating index

HK ¼ ðWK=WKþ 1 � 1ÞðN � K � 1Þ;

where N is the number of entities, while increasing K, so that the very first K at
which HK becomes smaller than 10 is to be taken as the estimate of K*. It should be
noted that, in the experiments by Chiang and Mirkin (2010), this rule came as the
best of a set of nine different criteria and, moreover, the threshold 10 in the rule
appeared to be not very sensitive to 10–20% changes.

Case-Study 4.4. Hartigan’s Index for Choosing the Number of Clusters
Consider values of HK for Iris and Town datasets computed after the results of 100
runs of Batch K-means using the mean/range standardization starting from random
K entities taken as seeds (Table 4.11). Each of the computations has been repeated
twice (see 1st and 2nd sets in Table 4.11) to illustrate typical variations of HK

values due to the fact that empirical values of WK may be not optimal. In particular,
at the 2nd set of K-means over Town data we can see a break of the rule that HK is
positive because of the monotonic relation between K and the optimal WK that are
to decrease when K grows. The monotonic relation here is broken because the
values of WK after 100 runs are not necessarily minimal indeed.

The “natural” number of clusters in Iris data, according to Hartigan’s criterion is
not 3 as claimed because of substantive considerations but much greater, 11! In
Town data set, the criterion would indicate 4 naturally occurring clusters. However,
one should argue that the exact value of 10 in Hartigan’s rule does not bear much
credibility—it should be accompanied by a significant drop in HK value. We can see
such a drop at K = 5, which should be taken, thus, as the “natural” number of

Table 4.11 Values of Hartigan’s HK index for two data sets at K ranging from 2 to 11 as based on
two different sets of 100 clusterings from random K entities as initial centers

Dataset K = 2 3 4 5 6 7 8 9 10 11

Iris 1st set 108.3 38.8 29.6 24.1 18.6 15.0 14.1 15.4 15.4 9.4

2nd set 108.3 38.8 29.6 24.1 18.7 15.4 15.6 15.7 14.0 7.2

Town 1st set 13.2 10.5 9.3 5.0 4.7 3.1 3.0 3.2 3.2 1.6

2nd set 13.2 10.5 9.3 5.8 4.1 2.5 3.0 7.2 −0.2 1.8
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clusters in Town data. Similarly, a substantial drop of HK on Iris data occurs at
K = 3, which is the number of natural clusters, taxa, in this set.

Altogether, making multiple runs of K-means seems a sensible strategy, espe-
cially when the number of entities is not that high. With the number of entities
growing into thousands, the number of tries needed to reach a representative value
of WK may become prohibitively large. Deeper minima can be sought by using the
evolutionary schemes described above. On the other hand, the criterion W(S, c) has
some intrinsic flaws and should be used only along some domain-knowledge or
data-structure based strategy.

(b) Mutually distant points

An attractive idea would be to take a number of entities one by one on the
principle that each is as far away from the others as possible. These faraway points
then are assigned to be the initial centers. For example, one may wish to start from
two entities such that the distance between them is the greatest, then take an entity
whose average distance to these is maximum. Et cetera. Unfortunately, this method
does not work in practical computations (see, for example, Steinley and Brusco
2007). Probably, too often the distant points do not represent a cluster: it is not
enough to have a distant point; to make it into a cluster center, it must be sur-
rounded by some other data points. This is taken into account in the next approach.

(c) “Build” algorithm for a pre-specified K (Kaufman and Rousseeuw 1990)

This process involves only actual entities. It starts with choosing the medoid of
set I, that is, the entity whose summary distance to the others is minimum, and takes
it as the first medoid c1. Assume that a subset of m initial seeds have been selected
already (K > m � 1) and proceed to selecting cm+1. Denote the set of already
selected seeds by c and consider all remaining entities i2I−c. Define distance d(i, c)
as the minimum of the distances d(i, ck) (k = 1, …, m) and form an auxiliary cluster
Ai consisting of such j that are closer to i than to c so that Eij = d(j, c)−dij > 0.
The summary value Ei ¼ Rj2Ai Eij reflects both the number of points in Ai and
their remoteness from c. That i2I−c for which Ei is maximum is taken as the next
seed cm+1.

Worked Example 4.3. Selection of Initial Medoids in Company Data
Let us apply Build algorithm to the matrix of entity-to-entity distances for Company
data displayed in Table 4.10, at K = 3. First, we calculate the summary distances
from all the entities to the others, see Table 4.12, and notice that Bre is the medoid
of the entire set I, because its total distance to the others, 9.60, is the minimum of
total distances in Table 4.12. Thus, we set Bre as the first initial seed.

Table 4.12 Summary distances for entities according to Table 4.10

Entity Av An As Ba Br Bu Ci Cy

Distance to others 12.30 11.95 10.78 10.16 9.60 13.81 10.35 14.17
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Now we build auxiliary clusters Ai around all other entities. To form AAv, we
take the distance between Av and Br, 2.20, and see, in Table 4.11, that distances
from Av to entities An, As, and Ba are smaller than that, which makes them Av’s
auxiliary cluster with EAv = 4.04. Similarly, AAn is set to consist of the same
entities, but it is less remote than Ave because EAn = 2.98 is less than EAv. Auxiliary
cluster AAs consists of Av and An with even smaller EAs = 0.67. Auxiliary clusters
for Ba, Ci and Cy consist of one entity each (Bu, Cy and Ci, respectively) and have
much smaller the levels of remoteness; cluster ABu is empty because Br is its
nearest. This makes the most remote entity Ave the next selected seed. Now, we can
start building auxiliary clusters on the remaining six entities again. Of them, clusters
AAn and ABu are empty and the others are singletons, of which ACy consisting of Ci
is the remotest, with ECy = 1.87−0.61 = 1.24. This completes the set of initial
seeds: Br, Av, and Cy. Note, these are companies producing different products. It is
this set that was used to illustrate PAM in Sect. 4.2.5.

4.2.7 Notes on Software for K-means

This is based on this author’s chapter in Hennig et al. (2015). Although the
K-means method deserves to be coded as a standalone application supplied with
powerful tools for getting a meaningful cluster structure by using a wide spectrum
of computation and interpretation devices, the method rather appears in a generic
version in most popular computational platforms and packages. In this section, a
brief description of implementations of the method will be given in computational
platforms:

• Matlab (see http://www.mathworks.com/products/matlab/),
• Weka (see http://www.cs.waikato.ac.nz/ml/weka/),
• R (see http://www.r-project.org/),
• SPSS (see http://www-01.ibm.com/software/analytics/spss/).

K-means clustering in Matlab takes data matrix X and the number of clusters
K as its inputs and performs a run of batch K-means clustering with the squared
Euclidean distances by default. It allows using some different distances, first of all
the city block and cosine, as well. Other user selected parameters include:

• An initialization method: selecting K random rows from X, or a matrix of
user-specified K points in the feature space, or results of preliminary clustering
of a 10% random subsample of the dataset, or the so-called K-means++
initialization.

• Number of runs with different initializations.
• The way of reacting to the fact that some cluster happens to get empty: this can

be an “error” message or removal of empty clusters or making a singleton
instead.
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• The maximum number of iterations so that the computation halts upon reaching
that number (100, by default).

• A possibility of further minimization of the criterion by moving individual
entities between clusters.

In Weka, K-means is implemented as SimpleKMeans command. This command
automatically handles a mixture of categorical and numerical attributes. To this end,
the program converts all nominal attributes into binary numeric attributes and
normalizes scales of all the numeric features in the dataset to lie within the interval
[0, 1]. When prompted, the program replaces all missing values for nominal and
numeric attributes with the modes and means of features in the training data.
Initialization is made randomly from among the observations. Instance weighting
can be included if needed. The Weka SimpleKMeans algorithm uses Euclidean
distance measure to compute distances between instances and centers. It can
visualize the results with figures drawn for each cluster so that features are repre-
sented by lines radiating from the center.

In R, Project for Statistical Computing, K-means clustering is available in either
batch version or incremental one. It works either with random K observations taken
as initial centers or with a user-specified set of centers. The maximum number of
iterations can be specified, as well as the number of runs from random initializa-
tions. In the Weka version, K = 1 is made possible. If an empty cluster emerges, an
“error” message appears.

The statistics package SPSS allows to use its rich system for both data
pre-processing and interpretation of results.

Its implementation of K-means is similar to that in Matlab—all the parameters
available in Matlab are available in SPSS, except for the way for handling missing
values. There is a different system for handling missing data in SPSS. Additional
features include the possibility for storing the clusters set as a nominal variable,
ANOVA table for clusters to allow finding most contributing variables, and the
matrix of distances between found cluster centers.

Currently, some efforts are devoted to parallelization of K-means computations
to apply it to big data, that is, data with millions or more entities. The method is
well suited for distributed computations. Say, a big-data method is based on the idea
that the dataset is partitioned into portions processed at different processors. An
iteration is then performed as follows: a central processor supplies a set of centers
so that each processor computes: (a) distances from its portion entities to the centers
and (b) within cluster sums, after which it supplies the central processor with the
sums and number of entities. Then the central processor sums all the received input
within each cluster and computes the cluster centers.

Further development of cloud computations as a commodity will show what
versions of the algorithm will be required in the future.
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4.3 Complementary Criterion for K-means: Spectral
and Anomalous Clusters

4.3.1 Complementary K-means Criterion

Let us consider any cluster Sk and define ck as the vector of within-cluster means so
that ckv ¼ Ri2Sk ykv=Nk where Nk is the number of entities in Sk (k = 1, 2, …, K).
Take the square error criterion L2 = W(S, c) (4.2) and apply little algebraic
manipulation to it:

WðS; cÞ ¼
XK
k¼1

X
i2Sk

XV
v¼1

ðyiv � ckvÞ2

¼
XK
k¼1

X
i2Sk

XV
v¼1

ðy2iv � 2yivckv þ c2kvÞ ¼
XN
i¼1

XV
v¼1

y2iv�
XK
k¼1

Nk\ck; ck [ :

The expression

B S; cð Þ ¼
XK
k¼1

Nk\ck; ck [ ð4:6Þ

on the right has appeared after the sum Ri2Sk ykv has been substituted by its equal,
Nkckv.

Let us denote

TðYÞ ¼
XN
i¼1

XV
v¼1

y2iv; ð4:7Þ

the data scatter. Then the equation above can be rewritten as

T Yð Þ ¼ B S; cð ÞþW S; cð Þ ð4:8Þ

Equation (4.8) decomposes data scatter T(Y) in two parts: that one explained by
the cluster structure (S, c), which is B(S, c), and the unexplained part which is W(S,
c). The larger the explained part, the smaller the unexplained part, and the better the
match between clustering (S, c) and data. This equation is fully analogous to the
similar decomposition (2.20) and (2.24) of the data scatter over the Principal
Component Analysis model, which is not surprising at all because the models are
much similar. The comment on the Pythagorean meaning of the decomposition
remains valid as well. The only difference is that here items B(S, c) and W(S, c)
standing for the two sides of a right angle triangle, stand for the model and its error.
Another associated fact is that Eq. (4.8) is well known in the analysis of variance in
statistics; items B(S, c) and W(S, c) are referred to in that other context as
between-group and within-group variance.
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What is most important here, though, is that the clustering’s contribution to the
data scatter B(S, c) in (4.6) is a complementary criterion to W(S, c). Since the data
scatter is constant regarding the issue of minimizing W(S, c), then one may
equivalently maximize B(S, c) instead, to find an optimal clustering. Can we find
out, what is the meaning of this complementary criterion? Easily. Here is a purely
geometric view, as there are other meanings as well.

Since the sum of c2kv over v is but the squared Euclidean distance between 0 and
ck,

BðS; cÞ ¼
XK
k¼1

X
v2V

c2kvNk ¼
XK
k¼1

Nkdð0; ckÞ ð4:9Þ

The criterion on the right in formula (4.9) was first mentioned, under the name of
“criterion of distant centers”, by Mirkin (1996, p. 292). To maximize the criterion
on the right in formula (4.9), two conditions must be met. First, the clusters should
be big, consist of many entities (maximizing Nk). Second, the clusters should be as
far away from 0 as possible (maximizing d(0, ck) = <ck, ck>). There can be two
approaches to (sub)maximization of (4.9) considered. One is to build clusters one
by one, which is implemented in the method of Anomalous clusters (see
Sect. 4.3.3). The other would be to build clusters in parallel—an option glossed
over in this text.

4.3.2 The Complementary Criterion and Spectral
Approach to Clustering

Another expression of the cluster-explained part of the data scatter is

BðS; cÞ ¼
XK
k¼1

X
i2Sk

\yi; ck [ ð4:10Þ

which can be derived from (4.9) by substituting expression Ri2Sk yiv/Nk in (4.9)
instead of one of the ckv’s. Formula (4.10) shows that the complementary criterion
is to maximize within-cluster inner products of entities and centers. Note that the
distance based criterionW(S, c) makes sense at any set of centers, whereas the inner
product based criterion B(S, c) makes sense only when centers are within-cluster
averages. As is well known, the distance does not depend on the location of the
space origin whereas the inner product heavily depends on that—only special
arrangements are suitable for the latter.

By further substituting ck in (4.10) by its equal Ri2Sk yiv/Nk, one obtains yet one
more equivalent expression:
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BðS; cÞ ¼
XK
k¼1

1
Nk

X
i;j2Sk

\yi; yj [ ; ð4:11Þ

which appeals to entity-to-entity similarity values <yi, yj> where i, j = 1, 2, …,
N. Let us denote by A the N � N matrix of similarity values aij = <yi, yj>.
Obviously,

A ¼ YYT : ð4:12Þ

Given a clustering S = {S1, S2, …, SK}, let us introduce N-dimensional cluster
membership vectors zk = (zik) such that zik = 1 if i2Sk and zik = 0, otherwise (k = 1,
…, K). Obviously, \zk; zk [ ¼ zTk zk ¼ Nk . Therefore, using this notation, one can
easily see that Eq. (4.11) can be further rewritten as

B S; cð Þ ¼
XK
k¼1

1
zTk zk

XN
i;j¼1

\yi; yj [ zikzjk:

This can be reformulated, finally, in matrix terms, as

BðS; cÞ ¼
XK
k¼1

zTk Azk
zTk zk

: ð4:13Þ

the sum of Rayleigh quotients zTk Azk=z
T
k zk, each corresponding to a cluster k = 1, 2,

…, K. Let us remind that, to achieve the global maximum of (4.13) with respect to
arbitrary real-valued vectors z1, z2, …, zK, one needs to take just the K eigenvectors
of matrix A corresponding to the first K eigenvalues of A sorted in the descending
order, The eigenvalues are equal to the values of the corresponding Rayleigh
quotients themselves.

This shows that the complementary K-means criterion B(S, c) admits what is
referred to as the spectral approach to clustering.

The spectral approach to clustering involves:

(1) Relaxing the combinatorial problem from, in this case, 0/1-values of compo-
nents of zk, to any real values and finding a spectral solution to thus relaxed
problem;

(2) Adjusting the found solution back to the required format, 1/0 components, in
our case. This latter step can be done differently. A simplest decision for the
adjustment would be by putting ones for largest components, and zeros for the
others. This, however, may lead to rather odd clusters sometimes. Therefore,
some propose performing a clustering process but not in the raw space but
rather in the space of found K eigenvectors.

Since clusters are not overlapping, model in (4.1) can be rewritten differently in
such a way that no explicit references are made over individual clusters. To do that,
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let us again use the N-dimensional membership vectors zk ¼ ðzikÞ such that zik = 1
if i 2 Sk and zik ¼ 0, otherwise. Then the clustering model can be reformulated as
follows. For any data entry, the following equation holds:

yiv ¼
XK
k¼1

ckvzik þ eiv; ð4:14Þ

Indeed, since any entity i2I belongs to one and only one cluster Sk, only one of
zi1, zi2, …, ziK can be non-zero, that is, equal to 1, at any given i, which makes
(4.14) equivalent to (4.1).

Yet (4.14) makes the clustering model similar to that of PCA in (2.18) except
that zik in PCA are arbitrary values to score hidden factors, whereas in (4.14) zik are
to be 1/0 binary values: it is clusters, not factors, that are of concern here. That is,
clusters in model (4.14) correspond to factors in model (2.18).

The decomposition (4.8), (4.6) of the data scatter into explained and unexplained
parts is similar to that in (2.24) making the contributions of individual clusters
Rv2Vc2kvNk akin to contributions l2k of individual principal components. More
precisely, l2k in (2.24) are eigen-values of YYT, that can be expressed thus with an
analogous formula,

l2k ¼ zTk YY
Tzk=z

T
k zk ¼

X
v

c2kv Skj j ð4:15Þ

in which the latter equation is due to the fact that vector zk here consists of binary
1/0 entries.

4.3.3 Anomalous Pattern and Intelligent K-means

This method involves remote clusters, as Build does, too, but it does not discard
them after finding, which allows for obtaining the number of clusters K as well.
Besides, it is less computationally intensive. The method employs the concept of
reference point. A reference point is chosen to exemplify an “average” or “normal”
entity, not necessarily among the dataset. For example, when analyzing student
marks over different subjects, one might choose a “normal student” point which
would indicate levels of marks in tests and work in projects that are considered
normal for the contingent of students under consideration, and then see what pat-
terns of observed behavior deviate from this. Or, a bank manager may set as his
reference point, a customer having specific assets and backgrounds, to see what
patterns of customers deviate from this. In engineering, a moving robotic device
should be able to segment the environment into homogeneous chunks according to
the robot’s location as its reference point, with objects that are nearer to it having
finer resolution than objects that are farther away. In many cases the gravity center
of the entire entity set, its “grand mean”, can be taken as a reference point of choice.
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Using the chosen reference point allows for the comparison of entities with it,
not with each other, which drastically reduces computations: instead of mulling
over all the pair-wise distances, one may focus on entity-to-reference-point dis-
tances only—a reduction to the order of N from the order of N2.

An anomalous pattern is found by building a cluster which is most distant from
the reference point. To do this, the cluster’s seed is defined as the entity farthest
away from the reference point. Now a version of K-means at K = 2 is applied with
two seeds: the reference point which is never changed in the process and the
cluster’s seed, which is updated according to the standard procedure. In fact, only
the anomalous cluster is of interest here. Given a center, the cluster is defined as the
set of entities that are closer to it than to the reference point. Given a cluster, its
center is found as the gravity center, by averaging all the cluster entities. The
procedure is reiterated until convergence (see Fig. 4.10).

Obviously, the Anomalous pattern method is a version of K-means in which:

(i) the number of clusters K is 2;
(ii) center of one of the clusters is forcibly kept at 0, through all the iterations;
(iii) the initial center of the anomalous cluster is taken as an entity furthest away

from 0.

Property (iii) mitigates the issue of determining appropriate initial seeds. This
provides for using Anomalous pattern algorithm iteratively to obtain an initial
setting for K-means.

Worked Example 4.4. Anomalous Pattern in Market Towns
Let us apply the Anomalous pattern method to Town data assuming the grand mean
as the reference point and scaling by range. That means that after mean-range
standardization the reference point is 0.

The point farthest from 0 to be taken as the initial “anomalous” center, appears to
be entity 35 (St Austell) whose distance from zero (note—after standardization!) is

Reference point Reference point

Initial  cluster center

1/2

1/2

Final cluster   center

The farthest entity

Fig. 4.10 Extracting an anomalous pattern cluster with the reference point in the gravity center:
the first iteration is on the left and the final one on the right
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4.33, the maximum. There are only three entities, 26, 29 and 44 (Newton Abbot,
Penzance and Truro) that are closer to the seed than to 0, thus forming the cluster
along with the original seed, at this stage. After one more iteration, the anomalous
pattern cluster stabilizes with 8 entities 4, 9, 25, 26, 29, 35, 41, 44. Its center is
displayed in Table 4.13.

As follows from the fact that all the standardized centers are positive and mostly
fall within the range of 0.3–0.5, the anomalous cluster, according to Table 4.13,
consists of better off towns—all the center values are larger than the grand mean by
30–50% of the feature ranges. This probably relates to the fact that they comprise
eight out of the eleven towns that have a resident population greater than 10,000.
The other three largest towns have not made it into the cluster because of their
deficiencies in services such as Hospitals and Farmers’ Markets. The fact that the
scale of population is by far the largest in the original table doesn’t much affect the
computation here as it runs with the range standardized scales at which the total
contribution of this feature is not high, just about 8.5% only. It is rather the
concerted action of all the features associated with a greater population which
makes the cluster.

This process is illustrated in Fig. 4.11. The stars show the origin and the
anomalous seed at the beginning of the iteration. Curiously, a picture may not fit
well into the concept of anomalous pattern cluster, as illustrated in Fig. 4.11—the
anomalous pattern is dispersed here across the plane, which is at odds with the
property that the entities in it must be closer to the seed than to the origin. The cause
is not an error, but the fact that this plane represents all 12 original variables and
presents them rather selectively. It is not that the plane makes too little of the data
scatter—on the contrary, it makes a decent 76% of the data scatter. The issue here is
the second axis in which the last feature FM expressing whether there is a Farmers
market or not takes a lion share—thus stratifying the entire image over y axis.

Figure 4.11 is produced with commands:

[ [ subplot 1; 2; 1ð Þ; plot x1; x2;0 k:0; 0; 0;0 kp0; x1ð35Þ; x2ð35Þ;0 kp0ð Þ; text x1ðfirÞ; x2ðfirÞ; ftmð Þ;
[ [ subplot 1; 2; 2ð Þ; plot x1; x2;0 k:0; 0; 0;0 kp0; x1a; x2a;0 kp0ð Þ; text x1ðsecÞ; x2ðsecÞ; fsmð Þ;

Here fir and sec are lists of indices of towns belonging to the pattern after the first
and second iterations, respectively, while ftm and fsm refer to lists of their names.

The Anomalous pattern method can be used as a procedure to automatically
determine both the number of clusters and initial seeds for K-means. Preceded by
this option, K-means is referred to as intelligent K-means, iK-means for brevity,
because it relieves the user from the task of specifying the initial setting.

In iK-means method, the user is required to specify an integer, t, the threshold of
resolution, to be used to discard all the Anomalous patterns consisting of t or less
entities. When t = 0, nothing is discarded. At t = 1—the default option, singleton
anomalous patterns are considered a nuisance and put back to the data set. If t = 10,
all patterns with 10 or less entities are discarded as too small to deserve any
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attention at all—the level of resolution which may be justified at larger datasets and
coarser details needed.

In our experiments, the entities comprising singleton Anomalous pattern clusters
are frequently erroneous, that is, erroneous values are in some of their features such
as, for instance, the human age of 538 years. That means, that Anomalous pattern
clustering can be used as a device for capturing errors in data entries.

The iK-means method is flexible with regard to outliers and the “swamp” of
inexpressive—normal or ordinary—entities around the grand mean. For example, at
its step 4, K-means can be applied to either the entire dataset or to the set from
which the smaller APs have been removed. This may depend on the domain: in
some problems, such as structuring of a set of settlements for better planning or
monitoring or analysis of climate changes, no entity should be dropped out of the
consideration, whereas in other problems, such as developing synoptic descriptions
for text corpora, some “deviant” texts could be left out of the coverage at all.

In a series of experiments with intermixed Gaussian clusters described by
Chiang and Mirkin (2010), iK-means has performed rather well and appeared
superior to many other options for choosing K. These options included approaches
based on post-processing of results of multiple runs of K-means and then treating
them according to either of the following:

(a) Variance based approach: using intuitive or model-based functions of criterion
(4.3) which should get extreme or “elbow” values at a correct K such as
Hartigan’s rule above;

(b) Structural approach: comparing within-cluster cohesion versus between-cluster
separation at different K;

(c) Consensus distribution approach: choosing K according to the distribution of
the consensus matrix for sets of K-means clusterings at different K.
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Fig. 4.11 The first and second iterations of anomalous pattern cluster on the principal component
plane; the visual separation of the pattern over y axis is due to a very high loading of the presence
(top) or absence (bottom) of a Farmer’s market
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Some other approaches rely on different ideas for choosing K such as

(d) using results of a divisive or agglomerative clustering procedure or
(e) according to the similarity between K-means clustering results on randomly

perturbed or sampled data.

Worked Example 4.5. Iterated Anomalous Patterns in Market Towns
Applied to the range-standardized Market town data, AP algorithm iterated until no
unclustered entities remained, has produced 12 clusters of which 5 are singletons.
These singletons have strange patterns of facilities indeed. For example, entity 19
(Liskeard, 7044 residents) has an unusually large number of Hospitals (6) and
CABs (2), which makes it a singleton cluster. Lists of seven non-singleton clusters
are in Table 4.14, in the order of their extraction from the dataset.

This cluster structure doesn’t much change when, according to the iK-means
algorithm, Batch K-means is applied to the seven centers (with the five singletons
put back into the data). Moreover, similar results have been observed with clus-
tering of the original all-England list of about thirteen hundred Market towns
described by a wider list of eighteen characteristics of their development: the
number of non-singleton clusters was the same, and with much similar descriptions.

Q.4.18. Formulate a version of K-means to alternatingly maximize criterion (4.6)
rather than to minimize (4.3) as the generic version.
Q.4.19. Formulate a version of K-means to alternatingly maximize criterion (4.9)
rather than to minimize (4.3) as the generic version (a “parallel” version of the
Anomalous Pattern method). Take care of starting from a most distant set of centers.
Q.4.20. Why is the contribution of AP 4 in Table 4.14, 18.6%, greater than that of
the preceding AP3, 10.0%?
A. Because of much larger number of entities, 18 against 6 in AP 3. Even if the
center of AP 3 is further away from 0 than center of AP 4, which is the cause that AP
3 is extracted first, the contribution takes into account the number of entities as well!

Before substantiating AP algorithm, let us give it a more explicit formulation.

Table 4.14 Iterated AP market town non-singleton clusters

Cluster
#

Size Contents Contribution,
%

1 8 4, 9, 25, 26, 29, 35, 41, 44 35.1
3 6 5, 8, 12, 16, 21, 43 10.0
4 18 2, 6, 7, 10,13, 14, 17, 22, 23, 24, 27, 30, 31, 33, 34, 37,

38, 40
18.6

5 2 3, 32 2.4
6 2 1,11 1.6
8 2 39, 42 1.7
11 2 20,45 1.2
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Anomalous Pattern (AP) Algorithm

1. Pre-processing. Specify a reference point a = (a1, …, aV) (when in doubt, take
a to be the data grand mean) and standardize the original data table by shifting
the origin to a = (a1, …, aV) and rescaling if needed.

2. Initial setting. Put a tentative center, c, as the entity farthest away from the
origin, 0.

3. Cluster update. Determine cluster list S around c against the only other “center”
0, so that entity yi is assigned to S if d(yi, c) < d(yi, 0).

4. Center update. Calculate the within S mean c′ and check whether it differs from
the previous center c. If c′ and c do differ, update the center by assigning c ( c′
and go to Step 3. Otherwise, go to 5.

5. Output. Output list S and center c, with accompanying interpretation aids (as
advised in the next section), as the anomalous pattern.

It is not difficult to prove that, like K-means itself, the Anomalous pattern
alternately minimizes a specific version of K-means general criterion W(S, c) (4.3),

wðS; cÞ ¼
X
i2S

dðyi; cÞþ
X
i62S

dðyi; 0Þ ð4:16Þ

where S is a subset of I rather than partition and c its center. Yet AP differs from
2-Means in the following aspect: there is only one center, c, which is updated in
AP; the other center, 0, never changes and serves only to attract not-anomalous
entities. This is why 2-Means produces two clusters whereas AP—only one, that is
farthest away from the reference point, 0.

In fact, criterion (4.16) can be equivalently rephrased using Eqs. (4.8) and (4.9)
representing the complimentary criterion B(S, c). When (4.9) applies to the situation
of two clusters, one with center in c, the other in 0, it becomes of finding a cluster
S maximizing its contribution to the data scatter T(Y):

l2 ¼ zTYYTz=zTz ¼ c2v Sj j ¼ d 0; cð Þ Sj j ð4:17Þ

This means that AP algorithm straightforwardly follows the Principal
Component Analysis one-by-one extraction strategy extended to binary scoring
vectors. That is, the model behind AP is a version of the PCA Eq. (2.17) on p. 124
in which the scoring values z*i are but zeros or ones:

yiv ¼
cv þ ev; i 2 S

0þ ev; i 62 S

(
ð4:18Þ

where S is the cluster list of the anomalous pattern to be found.
In spite of the rather simplistic assumption presented in (4.18), AP clusters fare

well with real data. They can be extracted one-by-one, along with their contribu-
tions to the data scatter (4.17) showing cluster saliencies. These saliencies can be
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used to halt the process when the contribution of the next cluster drops decisively,
thus leading to an incomplete clustering when needed.

Here are steps of iK-means(t) where t is the cluster resolution threshold—the
minimum number of entities in a pattern that can be considered a cluster on its own.
In most applications dealing with moderately sized data (up to a few hundred
entities) t can be put to be equal to 1.

iK-means(t) Algorithm

0. Setting. Preprocess and standardize the data set. Take t as the threshold of
resolution. Put k = 1 and Ik = I, the original entity set.

1. Anomalous pattern. Apply AP to Ik to find k-th anomalous pattern Sk and its
center ck.

2. Test. Remove Sk from Ik to make k ( k + 1 and Ik ( Ik − Sk. If the new Ik is
empty, go to Step 3; if not, go to Step 1 again.

3. Discarding small clusters. Denote the number of clusters containing t entities or
more by K and re-label them so that their centers are c1, c2, …, cK.

4. K-means. Do Batch K-means using c1, c2, …, cK as initial seeds.

The Stop-condition in this method can be any or all of the following:

(a) All of I has been clustered, Sk = Ik, so that there are no unclustered entities left.
(b) Large cumulative contribution. The total contribution of the first k clusters to

the data scatter has reached a pre-specified threshold such as 50%.
(c) Small cluster contribution. Contribution of Sk is too small; for example, it is

comparable with the average contribution of a single entity, T/N, where T is the
data scatter.

(d) Number of clusters, k, has reached its pre-specified value K.

Condition (a) is reasonable if there are “natural” clusters that indeed differ in
their contributions to the data scatter. Conditions (b) and (c) can be considered as
related to the degrees of granulation at which the user looks at the data. Unlike (d),
they appeal to the structure of the data set rather than prior considerations.

Case-Study 4.5. iK-means Clustering of a Normally Distributed 1D Dataset
Let us generate a one dimensional set X of 280 points generated according to
Gaussian N(0, 10) distribution (see Fig. 4.12). This data set is printed in the
Appendix, section A6. Many would say that this sample constitutes a single,
Gaussian, cluster. Yet the idea of applying a clustering algorithm seems attractive as
a litmus paper to capture the pattern of clustering embedded in iK-means algorithm.

In spite of the symmetry in the generating model, the sample is slightly biased to
the negative side; its mean is −0.89 rather than 0, and its median is about −1.27.
Thus, the maximum distance from the mean is at the maximum of 32.02 rather than
at the minimum of −30.27.

The Anomalous pattern starting from the furthest away value of maximum
comprises 83 entities between the maximum and 4.28. Such a stripping goes along
real-world conventional procedures. For example, consider the heights of a sample
of young males to be drafted for a military action; the histogram of heights is
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known to be bell-shaped like Gaussian. Those on the either side of the bell-shaped
height histogram are not quite fitting for action: those too short cannot accomplish
many a specific task whereas those too tall may have problems in closed spaces
such as submarines or aircraft.

The iterative Anomalous pattern clustering would sequentially strip the
remaining margins off too. The set of fragments of the sorted sequence in
Table 4.15 that have been found by the Anomalous pattern clustering algorithm in
the order of their forming, including the cluster means and contributions to the data
scatter.

The last extracted clusters are all around the mean and, predictably, small in size.
One also can see that the contribution of a following cluster can be greater than that
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35

40
Histogram of a sample of 280 points generated according to N(0,10) distribution.

Fig. 4.12 Histogram of the sample of 280 values generated by Matlab’s randn command from the
Gaussian distribution N(0, 10)

Table 4.15 A summary of the iterative Anomalous pattern clustering results for the sample of
Gaussian distribution in Table A5.2. Clusters are shown in the extraction order, along with their
sizes, left and right boundary entity indices, means and contributions to the data scatter

Order of extraction Size Left index Right index Mean Con
trib,
%

1 83 198 280 11.35 34.28
2 70 1 70 −14.32 44.03
3 47 71 117 −5.40 4.39
4 41 157 197 2.90 1.11
5 18 118 135 −2.54 0.38
6 10 147 156 0.27 0.002
7 6 136 141 −1.42 0.039
8 2 145 146 −0.49 0.002
9 3 142 144 −0.77 0.006
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of the preceding cluster thus reflecting the local nature of the Anomalous pattern
algorithm which intends to find the maximally contributing cluster each time. The
total contribution of the nine clusters is about 86% to which the last five clusters
contribute next to nothing.

Project 4.1. Does PCA Clean the Data Structure Indeed: K-means After PCA
There is a wide-spread opinion that in a situation of many features, the data
structure can come less noisy if the features are first “cleaned” by applying PCA
and using a few principal components instead of the original features. Although
strongly debated by specialists (see, for example, Kettenring 2006), the opinion is
wide-spread among the practitioners. One of attacks against this opinion was
undertaken by late Kryshtanowski (2008) who provided an example of data
structure that, in his words, “becomes less pronounced in the space of principal
components”.

The example refers to data of two Gaussian clusters, each containing five
hundred of 15-dimensional entities. The first cluster can be generated by the fol-
lowing MatLab commands:

[ [ b 1 : 500; 1ð Þ ¼ 10 � randn 500; 1ð Þ;
[ [ b 1 : 500; 2 : 15ð Þ ¼ repmat b(1 : 500; 1Þ; 1; 14ð Þþ 20 � randn 500; 14ð Þ;

The first variable in the cluster is Gaussian with the mean 0 and standard
deviation 10, whereas the other fourteen variables add to that another Gaussian
variable whose mean and standard deviation are 0 and 20, respectively. That is, this
set is a sample from a 15-dimensional Gaussian with a diagonal covariance matrix,
whose center is in or near the origin of the space, with the standard deviations of all
features at 22.36, the square root of 102 + 202, except for the first one that has the
standard deviation of 10.

The elements in the second cluster are generated as the next 500 rows in the
same matrix in a similar manner:

[ [ b 501 : 1000; 1ð Þ ¼ 20þ 10 � randn 500; 1ð Þ;
[ [ b 501 : 1000; 2 : 15ð Þ ¼ repmat b(501 : 1000; 1Þ; 1; 14ð Þþ 20 � randn 500; 14ð Þþ 10;

The first variable now is centered at 20, and the other variables, at 30. The
standard deviations follow the pattern of the first cluster.

Since the standard deviations by far exceed the distance between centers, these
clusters are not easy to distinguish: see Fig. 4.13 illustrating the data cloud, after
centering, on the plane of the first principal components.

When applying iK-means to this data, preliminarily centered and range-
normalized, the algorithm finds in them indeed much more clusters, 13 altogether,
at the discarding threshold t = 1. However, when the discarding threshold is set to
t = 200, to remove any less populated anomalous patterns, the method arrives at just
two clusters that differ from those generated by 96 entities (see the very first resulting
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column in Table 4.16 presenting the results of the computation) constituting the total
error of 9.6%. The same method applied to the data z-score standardized, that is,
centered and normalized by the standard deviations, arrives at 99 errors; a rather
modest increase, probably due to specifics of the data generation.

Since Kryshtanowski (2008) operated with the four most contributing principal
components, we also take the first four principal components, after centering by the
means and normalizing data by the range:

[ [ n ¼ 1000; br ¼ b� repmat mean(b); n; 1ð Þð Þ:=repmat max(b)�min(b); n; 1ð Þ;
[ [ zr;mr; cr½ � ¼ svd brð Þ;
[ [ zr4 ¼ zr :; 1 : 4ð Þ;

These four first components bear 66% of the data scatter. We also derived four
principal components from the data non-normalized (yet centered) and from the
data normalized by the standard deviations (z-score standardized). The latter is
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Fig. 4.13 Data of two clusters generated as described above, after centering, are represented by
points on the plane of the two first principal components (on the left); the second cluster is
represented by circles on the right

Table 4.16 The numbers of errors of iK-means clustering at different data transformations: over
the original data differently normalized and over four principal components derived at different
data normalizations

Data Original 15 features Four principal components

Normalized by Range St. deviation No normalization Range St. deviation

Cluster 1 44 43 37 51 47
Cluster 2 52 56 47 47 45
Total 96 99 84 98 92
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especially important in this context, because Kryshtanowski (2008) used the con-
ventional form of PCA based on the correlation matrix between the variables, which
is equivalent to the model-based PCA applied to the data after z-score standard-
ization. The iK-means method applied to each of these data sets at the discarding
threshold of 200, has shown rather consistent results (see Table 4.16).

Overall, these results seem to support the idea of better structuring under prin-
cipal components rather than to refute it. The negative results of using principal
components by Kryshtanowski (2008) probably could be attributed to his indis-
criminate usage of Batch K-means method with random initializations that failed to
find a “right” pair of initial centers, in contrast to iK-means.

Project 4.2. Using Contributions to Determine the Number of Clusters
The question of determining the stopping rule can be addressed with the model
(4.18) itself, applied to the cluster contribution values as the raw data (compare to
Cangelosi and Goriely 2007). Assume the contributions are sorted in the
descending order and denoted by hk so that h1 � h2 � … (k = 1, 2, …).

If one assumes that the first K values are all approximately equal to each other,
whereas the rest approximate zero, then the optimal K can be derived as follows.

Denote the average of the first K contributions as h(K). Then criterion (4.6) to
maximize is the product Kh2(K). The optimal K obviously satisfies inequality
Kh2(K) > (K + 1)h2(K + 1). Since the average h(K + 1) can be expressed as h
(K + 1) = (K*h(K) + hK+1)/(K + 1), the inequality can be easily transformed to
h2(K) −2h(K)hK+1 + h2Kþ 1/K > 0 which can be further presented as (h(K) −

hK+1)
2 > h2K þ 1 (1−1/K). Since h(K) � hK+1, this inequality can be further sim-

plified to h Kð Þ � hKþ 1 [ hKþ 1
pð1� 1=KÞ, that is,

hðKÞ[ hKþ 1ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=K

p
Þ ð4:19Þ

which is, roughly, hK+1 < h(K)/2. This has an advantage that the threshold is not
pre-specified but rather determined according to the structure of gaps between the
numbers hk in their sorted order. The value of K at which (4.19) holds can be
considered as a candidate for the right number of clusters or components or, in fact,
anything evaluated by contributions.

Similar inequalities can be derived at different models for the chosen contribu-
tion values. One may try, for example, the power law assumption that h(k) = ak−b

for k = 1, …, K and h(k) = 0 for k > K.
Method iK-means utilizes a slightly different strategy for choosing the right

K. This strategy involves (1) all the anomalous patterns rather than those most
contributing, thus involving the patterns close to the reference points too, and (2) a
different scoring device—the intuitively clear number of entities rather than a
purely geometric contribution whose intuitive value is unclear.

4.3 Complementary Criterion for K-means: Spectral and Anomalous … 337



4.4 Cluster Interpretation Aids at Mixed Data Scales

4.4.1 Classical Statistics View at Interpretation
of Partitions: Tabular Regression and Correlation
Ratio

A set of clusters or just nominal feature values represented by subsets of objects
falling in each of them, Sk (k = 1, 2, …, K), can be associated with any quantitative
feature y on I with the so-called tabular regression described in Sect. 3.8.3. The
tabular regression of quantitative y over categorical x whose values are clusters Sk
(k = 1, 2,…, K) is a table comprising three columns corresponding to:

(1) Categories/clusters Sk
(2) Within category means of y, �yk
(3) Within category standard deviations of y, rk.

The association between partition S = {Sk} and feature y is defined as the cor-
relation ratio, that is the relative drop in the variance of y when it is predicted
according to the piece-wise constant model in Sect. 3.8.3. In other words, this is the
relative proportion of the explained part of the variance:

g2 ¼ 1�r2w=r
2 ð4:20Þ

where

r2w ¼
X
k

pkr2k ð4:21Þ

the average within-cluster variance and pk ¼ Skj j=N, the proportion of Sk in the
entire set and r2k the variance of y within Sk.

This works as well for categorical features whose categories are represented by
0/1 dummy columns in the data table. Consider a category l whose probability over
the whole entity set is pl, which is the mean of a 0/1 column playing the role of
feature y for the category. That means that the variance of the dummy feature is
r2l = pl (1 − pl). Let us denote the proportion of category l and cluster
k co-occurring by pkl. Then the frequency of category l within cluster Sk will be
p(l|k) = pkl/pk where pk is the proportion of cluster Sk in the entity set. Of course,
p(l|k) is the mean of the dummy feature l within cluster Sk, so that its within-cluster
variance is r2kl = p(l|k)(1 − p(l|k)). Then the variance r2w within partition S = {Sk} is
equal to

r2lw ¼
X
k

pkp ljkð Þ 1� p ljkð Þð Þ ¼
X
k

pkl 1� pkl=pkð Þ

¼
X
k

pkl �
X
k

p2kl=pk ¼ pl �
X
k

p2kl=pk
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Then the defining ratio is

r2lw
r2l

¼ pl �
P

k p
2
kl=pk

pl 1� plð Þ ¼
1�P

k
p2kl
pkpl

1� pl

Therefore, the correlation ratio for the cluster partition S and category l is equal
to

g2l ¼ 1�
1�P

k
p2kl
pkpl

1� pl
¼

P
k

p2kl
pkpl

� pl

1� pl
ð4:22Þ

This formula shows a close relation between the Pearson hi-squared contingency
table association index and correlation ratio. This can be seen especially clear if one
considers a “total correlation ratio”, the ratio of summary within cluster variances
r2lw and summary variances r2l over all the categories l of a given nominal feature.
The former is equal to the Pearson’s chi-squared between the feature and partition
S, and the latter is Gini index of the feature.

Worked Example 4.6. Correlation Ratio as an Association Measure
Here are two examples of association between Occupation categories of students
and their features, Age, in years, and exam mark over OOProgramming, in a 0–100
scale (Tables 4.17 and 4.18).

Which of the tables manifests a closer association?

Q.4.21. In Table 4.18, there is a positive relation between the Occupation and the
OOP mark, with the largest mark, 76.1, going to IT and the smallest mark, 50.7, to
AN. There is no such a relation in Table 4.17 in which AN’s Age is in the middle
between that at the other two groups. Is it that feature of Table 4.18 that leads to a
higher correlation ratio?

Table 4.18 Tabular
regression OOProg/
occupation

Occupation OOP mean OOP StD

IT 76.1 12.9
BA 56.7 12.3
AN 50.7 12.4
Total 61.6 16.5

Table 4.17 Tabular
regression of age over
occupation in students data

Occupation Age mean Age StD

IT 28.2 5.6
BA 39.3 7.3
AN 33.7 8.7
Total 33.7 8.5
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A. No; the order of means is irrelevant at the tabular regression. The correlation
ratio is higher at Table 4.18 than at Table 4.17 because of the tighter boundaries on
the quantitative feature within the groups in Table 4.18: the within-group standard
deviations in Table 4.18 are consistently lower, by about 25%, than the standard
deviation in the whole set, which is not the case in Table 4.17.

Specifically, correlation ratios for the tables computed by using formula (4.20) are:

Occupation/Age 28.1%

Occupation/OOProg 42.3%

The drop in the variance expressed by the correlation ratio is greater at the
second table, that is, the correlation between Occupation and OOProg mark is
greater than that between Occupation and Age.

4.4.2 Formulas for Cluster Interpretation Aids at Mixed
Scale Data

According to (4.6) and (4.7), clustering (S, c) decomposes the scatter T Yð Þ ¼
Ri;v y2iv of data matrix Y in the explained and unexplained parts, B(S, c) and W(S, c),
respectively. The latter is the square-error K-means criterion, whereas the explained
part B(S, c) is clustering’s contribution to the data scatter, which is equal, according
to (4.6), to

BðS; cÞ ¼
XK
k¼1

X
v2V

c2kvNk ð4:23Þ

This is the sum of additive items

Bkv ¼ Nkc
2
kv; ð4:24Þ

each accounting for the contribution of a feature-cluster pair, v2V and Sk (k = 1, 2,
…, K), in the data scatter.

Since the total contribution of feature v to the data scatter is Tv ¼ Ri2I y2iv, its
unexplained part can be expressed as Wv ¼ Tv � Bþ v where Bþ v ¼ RK

k¼1 Bkv is
feature’s v explained part, the total contribution of v to the cluster structure. This can be
displayed as a Scatter Decomposition (ScaD) tablewhose rows correspond to clusters,
columns to variables and entries to the contributions Bkv (see Table 4.19).

The summary rows, Explained, Unexplained and Total, as well as column Total
can be expressed as percentages of the data scatter T(Y). The contributions highlight
relative roles of features both at individual clusters and in total.
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The explained part B(S, c) is, according to (4.8), the sum of contributions of
individual feature-to-cluster pairs Bkv = c2kvNk which can be used for interpretation
of the clustering results. The sums of Bkv’s over features or clusters express total
contributions of individual clusters or features into the explanations of clusters.

Summary contributions of individual data features to clustering (S, c) have
something to do with statistical measures of association in bivariate data, such as
correlation ratio η2 (3.65) in Sect. 3.8.3 and chi-squared X2 (3.31) in Sect. 3.6
(Mirkin 2012). In fact, the analysis in Sect. 3.8.2 applies in full to the case when
target features are those used for building clustering S.

Specifically, for a quantitative feature v represented by the standardized column
yv, its summary contribution B+v to the data scatter is equal to

Bþ v ¼ Nr2vg
2
v

Consider now a nominal feature v represented by a set of binary columns,
dummies, corresponding to individual categories l2v. The grand mean of binary
column for l2v is obviously the proportion of this category in the set, p+l. To
standardize the column, one needs to subtract the mean, p+l, from all its entries and
divide them by the scaling parameter, bl. After the standardization, the center of
cluster Sk can be expressed through co-occurrence proportions too:

ckl ¼ ðpkl
pk

� pþ lÞ=bl ð4:25Þ

where pkl is the proportion of entities falling in both category l and cluster Sk; the
other symbols: p+l is the frequency of l, pk the proportion of entities in Sk, and bl the
normalizing scale parameter.

According to Eqs. (4.24) and (4.25), the summary contribution of all pairs
category-cluster (l, k) is equal to

Bðv=SÞ ¼ N
X
l2v

XK
k¼1

ðpkl � pkpþ lÞ2
pkb2l

ð4:26Þ

Table 4.19 ScaD: Data
scatter decomposed over
clusters and features using
notation introduced above

Feature f1 f2 fV Total

Cluster

S1 B11 B12 B1V B1+

S2 B21 B22 B2V B2+

SK BK1 BK2 BKV BK+

Explained B+1 B+2 B+V B(S, c)
Unexplained W+1 W+2 W+V W(S, c)
Total T1 T2 TV T(Y)
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This is akin to several contingency table association measures considered in the
literature including Pearson chi-squared X2 in (3.31) and Gini impurity function, or
summary absolute Quetelet index, in (3.35), see also (3.61). To make B(v/S) equal
to the chi-squared coefficient, the scaling of binary features must be done by using
bl ¼ ffiffiffiffiffiffiffiffi

pþ l
p

, which is the standard deviation of the so-called Poisson probabilistic
distribution that randomly throws plN unities into an N-dimensional binary vector.
To make B(v/S) equal to Gini impurity function, no normalization of the dummies is
to be done, or rather the recommended option of normalization by ranges applies
since the range of a dummy is 1.

One should not forget the additional normalization of the binary columns by the
square root of the number of categories in a nominal feature v,

ffiffiffiffiffi
vj jp
leading to both

the individual contributions Bkv in (4.24) and the total contribution B(v/S) in (4.26)
divided by the number of categories |v|. When applied to Pearson chi-squared, the
division by |v| can be considered as another normalization of the coefficient.
As mentioned in Sect. 3.3, the maximum of Pearson chi-squared (related to N) is
min(|v|, K)−1. Therefore, when |v| � K, the division would lead to a normalized
index whose values are between 0 and 1−1/|v|. If, however, the number of cate-
gories is larger so that K < |v|, then the normalized index could be very near 0
indeed. In this regard, it should be of interest to mention that in the literature some
other normalizations have been considered. Specifically, Pearson chi-squared is
referred to as Cramer coefficient if related to min(|v|, K)−1, and as Tchouprow
coefficient if related to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið vj j � 1ÞðK � 1Þp
(Kendall and Stewart 1973).

Therefore, the contributions for mixed scale data in tables above are not anything
weird, but rather extensions of the classic statistical constructions such as
chi-squared contingency and correlation ratio coefficients.

Q.4.22. Prove that, for any cluster k in K-means clustering, Ri2Sk y
2
iv ¼

Skj jðc2kv þ r2kvÞ.
Q.4.23. How one should interpret the normalization of a category by the

ffiffiffiffiffi
pv

p
?

What category gets a greater contribution: that more frequent or that less frequent?

Comment 4.1. Zeros in Contingency Tables
When the chi-squared contingency coefficient or related indexes are applied in the
traditional statistics context, the presence of zeros in a contingency table becomes
an issue because it contradicts the hypothesis of statistical independence. In the
context of data recovery clustering, zeros are treated as any other numbers and
create no problems at all because the coefficients are measures of contributions and
bear no other statistical meaning in this context.
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Comment 4.2. Advantages and Drawbacks of K-means

K-means advantages:
The method

i Models typology building activity
ii Computationally effective both in memory and time
iii Can be utilized incrementally, “on-line”
iv Straightforwardly associates feature salience weights with feature scales
v Applicable to both quantitative and categorical data and mixed data provided

that care has been taken of the relative feature scaling
vi Provides a number of interpretation aids including cluster prototypes and

features and entities most contributing to cluster specificity

K-means issues:

vii Simple convex spherical shape of clusters
viii Choosing the number of clusters and initial seeds
ix Instability of results with respect to initial seeds
x No help in defining feature weights; cannot distinguish between useful and

redundant features.

Although conventionally considered as shortcomings, issues vii–ix can be
beneficial too. To cope with issue vii, the feature set should be chosen carefully.
Then the simple shape of a cluster will provide for a simpler conceptual description
of it. To cope with issue viii, the initial seeds should be selected not randomly but
rather based on preliminary analysis of the substantive domain or using anomalous
approaches Build or AP. Another side of issue ix is that solutions are close to
pre-specified centers, which is good when the centers have been chosen carefully.
To cope with issue x, a preliminary systems analysis should be carried out to bring
forward features of the same granularity level.

Q.4.24. Find ScaD decomposition for the product clusters in Company data.
A. This is in Table 4.20. Table 4.20 shows feature EC as the one most contributing
to the Product A cluster, feature MSha to the Product B cluster, and features SupN
and Retail to the Product C cluster. The relatively high contribution of MSha to B
cluster is not that obvious because that of EC, 0.42, is higher. It becomes clear only
on the level of relative contributions relating the absolute values to their respective
Exp counterparts, 0.25/0.41 and 0.42/1.88—the former prevails indeed. Clusters A,
B, and C can be distinctively described by statements “EC==0”, “MSha < 28”, and
“SupN > 3” (or “Sector is Retail”), respectively, as highlighted in Table 4.20.
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4.4.3 Data Analysis View of Cluster Interpretation Aids

The practice of using clustering in data analysis for the past decades somewhat
extended and enriched the statistics tools. One can distinguish the following four
approaches to interpretation of clusters, at least:

(a) Comparing feature values at cluster centers with their grand means (feature
averages on the entire data set)

(b) Finding cluster representatives
(c) Estimating cluster-feature contributions to the data scatter to use the largest of them
(d) Conceptually describing clusters.

One should not forget that, under the zero-one coding system for categories,
cluster-to-category cross-classification frequencies are, in fact, cluster centers—
therefore, (a) includes looking at cross-classifications between the clustering partition
and categorical features—this is why we do not consider the cross-classifications as a
separate interpretation device—in contrast to conventional approaches.

Consider these in turn.

(a) Cluster centers versus grand means

These should be utilized in both, original and standardized, formats. The stan-
dardized format allows one to see the differences between cluster centers and grand
means across all the features expressed in comparable scales. The largest differ-
ences show what features are responsible for specifics of individual clusters with
respect to the “norm” corresponding to the point of grand means.

To express a standardized center value ckv of feature v in cluster Sk resulting from
a K-means run, in the original scale of feature v, one needs to invert the scale
transformation by multiplying over rescaling factor bv with the follow up adding the
shift value av, so that this becomes Ckv = bvckv + av.

Table 4.20 Decomposition of the data scatter over product clusters in Company data; notation is
similar to that in Table 4.19; within-row maxima used in Q.4.24 are highlighted in bold

Product Income MSha SupN EC Util Indu Retail Total Total
%

A 0.03 0.05 0.04 1.17 0.00 0.09 0.06 1.43 24.08
B 0.14 0.25 0.15 0.42 0.09 0.00 0.06 1.10 18.56
C 0.06 0.12 0.50 0.28 0.09 0.09 0.38 1.53 25.66
Exp 0.23 0.41 0.69 1.88 0.18 0.18 0.50 4.06 68.30
Unexp 0.51 0.28 0.20 0.00 0.44 0.44 0.00 1.88 31.70
Total 0.74 0.69 0.89 1.88 0.63 0.63 0.50 5.95 100.00
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Worked Example 4.7. Centers of Market Town Clusters
Let us take a look at centers of the seven clusters of Market towns data both in real
and range standardized scales in Table 4.21.

These show some tendencies rather clearly. For instance, the first cluster appears
to be a set of larger towns that score 30–50% higher than the average on almost all of
the 12 features. Similarly, cluster 3 obviously relates to smaller, than the average,
towns. However, in other cases, it is not always clear what feature(s) caused a cluster
to separate. On the first glance, both clusters 6 and 7 seem too close to the average to
make any real difference at all. However, let us take a look at SP (Swimming Pool)
feature, since it makes the maximum standardized deviation from the average in both
clusters, −0.24 and 0.25, respectively. The real difference is clearly seen: there is an
SP in each member of cluster 7 and no SP in members of cluster 6.

(b) Cluster representative

A cluster is typically characterized by its center consisting of the within-cluster
feature means. Sometimes, the means make no sense—like the number of suppliers
4.5 above. In such a case, it is more intuitive to characterize a cluster by its
“typical” representative. This is especially appealing when the representative is a
well-known object. Such an object can give much better intuition to a cluster than a
logical description in situations in which entities are complex and the features are
superficial. This is the case, for instance, in mineralogy where a class of minerals
can be represented by its “stratotype” mineral, or in art studies where a general
concept such as “surrealism” can be represented by an art object such as a painting
by S. Dali.

A cluster representative must be the nearest to its cluster’s center. An issue is
that two different expressions for K-means lead to two different measures. The sum
of entity-to-center distances W(S, c) in (4.3) leads to the strategy that can be
referred to as “the nearest in distance.” The sum of entity-to-center inner products
for B(S, c) in (4.10) and (4.23) leads to the strategy “the nearest in inner product”.
Intuitively, the choice according to the inner product follows tendencies represented
in ck towards the whole of the data expressed in grand mean position whereas the
distance follows just ck itself. These two principles usually lead to similar choices,
although not necessarily.

Worked Example 4.8. Representatives of Company Clusters
Consider, for example, A product cluster in Company data as presented in
Table 4.22: The nearest to center in distance is Ant and nearest in inner product is
Ave.

To see why is that, let us take a closer look at the two companies. Ant and Ave
are similar on all four binary features. Each is at odds with the center’s tendency on
one feature only: Ant is zero on NSup while center is negative, and Ave is negative
on Income while center is positive on that. The difference, however, is in feature
contributions to the cluster; that of Income is less than that of NSup, which makes
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Ave to win, as a follower of NSup, over the inner product expressing contributions
of entities to the data scatter. With the distance measure, the cluster tendency by
itself does not matter at all because it is expressed in the signs of the standardized
center.

Q.4.25. Find representatives of Company clusters B and C.

(c) Feature-cluster contributions to the data scatter

To see what features do matter in each of the clusters, the contributions of
feature-cluster pairs to the data scatter are to be invoked. The feature-cluster con-
tribution is equal to the product of the squared feature (standardized) center com-
ponent and the cluster size. In fact, this is proportional to the squared difference
between the feature’s grand mean and its within-cluster mean: the further away the
latter from the former, the greater the contribution! This is illustrated on Fig. 4.14.

Worked Example 4.9. Contributions of Features to Market Town Clusters
The cluster-specific feature contributions are presented in Table 4.23, along with
their total contributions to the data scatter in row Total. The intermediate rows Exp
and Unexp show the explained and unexplained parts of the totals, with Exp being
the sum of all cluster-feature contributions and Unexp the difference between the
Total and Exp rows.

Table 4.22 Standardized entities and center of cluster A in Company data. The nearest to center
are: Ant, in distance, and Ave, in inner product (both are in thousand and highlighted in bold)

Cluster Income MShar NSup EC Util Manu Retail Distance InnerPr

Center 0.10 0.12 −0.11 −0.63 0.17 −0.02 −0.14

Ave
Ant
Ast

−0.20
0.40
0.08

0.23
0.05
0.09

−0.33
0.00
0.00

−0.63
−0.63
−0.63

0.36
0.36

−0.22

−0.22
−0.22
0.36

−0.14
−0.14
−0.14

222
186
310

524
521
386

x 

y

Fig. 4.14 Contributions of features x and y in the group of blank-circled points are proportional to
the squared differences between their values at the grand mean (large star) and within-group center
(small star)
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The columns on the right show the total contributions of clusters to the data
scatter, both as is and per cent. The cluster structure in total accounts for 73.3% of
the data scatter, a rather high proportion. Of the total contributions, three first
clusters have the largest ones totaling to 24.78, or 87% of the explained part of the
data scatter, 30.81. Among the variables, FM gives the maximum contribution to
the data scatter, 5.33. This can be attributed to the fact that FM is a binary variable
on the data set—binary variables, in general, have the largest total contributions
because they are bimodal. Indeed, FM’s total contribution to the data scatter is 7.20
so that its explained part amounts to 5.33/7.20 = 0.74 which is not as much as that
of, say, the Population resident feature, 3.16/3.56 = 0.89, which means that overall
Population resident better explains the clusters than FM.

Worked Example 4.10. Contributions and Relative Contributions of Features
at Company Clusters
Consider the clustering of Companies data according to their main product cate-
gory, A or B or C, to find out what features can be associated with each of the
clusters. The cluster centers as well as feature-cluster contributions are presented in
Table 4.24. The summary contributions over clusters are presented in the last
column of Table 4.24, and over features, in the first line of third row of Table 4.24
termed “Explain”. The feature contributions to the data scatter, that is, the sums
of squares of the feature’s column entries, are in the second line of the third row—
these allow us to express the explained feature contributions per cent, in the third
line.

Now we can take a look at the most contributing feature-to-cluster pairs. This
can be done by considering relative contributions within individual lines (clusters)

Table 4.24 Centers and feature-to-cluster contributions for product clusters in Company data

Item Income MSh NSup EC Util Manu Retail Total

Cluster
Centers
Standardized

A
B
C

0.10
−0.21
0.18

0.12
−0.29
0.24

−0.11
−0.22
0.50

−0.63
0.38
0.38

0.17
−0.02
−0.22

−0.02
0.17

−0.22

−0.14
−0.14
0.43

Cluster
Contributions

A
B
C

0.03
0.14
0.06

0.05
0.25
0.12

0.04
0.15
0.50

1.17
0.42
0.28

0.09
0.00
0.09

0.00
0.09
0.09

0.06
0.06
0.38

1.43
1.10
1.53

Total
Contributions

Exp
Data
Ex%

0.23
0.74

31.1

0.41
0.69

59.4

0.69
0.89

77.5

1.88
1.88

100.0

0.18
0.63

28.6

0.18
0.63

28.6

0.50
0.50

100.0

4.06
5.95

68.3

Relative
Contribution
Indexes, %

A
B
C

14.7
101.2
31.7

29.5
191.1
67.0

18.5
90.2

219.5

258.1
120.2
58.5

59.9
0.0

54.7

0.0
77.7
54.7

49.5
64.2

297.0

Cluster
Centers
Real

24.1
18.73
25.55

39.23
22.37
44.10

2.67
2.33
4.50

0.00
1.00
1.00

0.67
0.33
0.00

0.33
0.67
0.00

0.00
0.00
1.00
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or within individual columns (features). For example, in the third row of
Table 4.24, each contribution that covers half or more of the explained contribution
by the feature is highlighted in bold. Obviously, the within-line maxima do not
necessarily match those within columns. The relative contribution indexes in the
fourth row of Table 4.24 combine these two perspectives: they are ratios of two
relative contributions: the relative explained feature contribution within a cluster
to the relative feature contribution to the data scatter. For example, relative con-
tribution index of feature MarketS to cluster B, 1.911, is found by relating its
relative explained contribution 0.25/1.10 to its relative contribution to the data
scatter, 0.69/5.95. Those of the relative contribution indexes that are greater than
150%, so that the feature contribution to the cluster structure is at least 50% greater
than its contribution to the data scatter, are highlighted.

The most contributing features are those that make the clusters different. To see
this, Table 4.24 is supplemented with the real values of the within-cluster feature
means, in its last row. The values corresponding to the outstanding contributions are
highlighted in bold. Cluster A differs by feature EC—A-listed companies do not use
e-commerce; cluster B differs by the relatively low Market Share; and cluster C
differs by either the fact that it all falls within Retail sector or the fact that its
companies have relatively high numbers of suppliers, 4 or 5. It is easy to see that
each of these statements not only points to a tendency but distinctively describes the
cluster as a whole.

Case-Study 4.6. 2D Analysis of Most Contributing Features
Consider 2D analysis of the relationship between the Company data partition in
three product classes, A, B, and C, and the most contributing of the quantitative
features in Table 4.22—the Number of suppliers (77.5%) as illustrated in
Table 4.25.

To calculate the correlation ratio of the NSup feature according to formula
(4.20), let us first calculate the average within-class variance
r2u ¼ 3 � 0:22þ 3 � :022þ 2 � 0:25ð Þ=8 ¼ 0:23; the correlation ratio then will be
equal to g2 ¼ ðr2 � r2uÞ=r2 ¼ 1:00� 0:23ð Þ=1:00 ¼ 0:77.

The case of a nominal feature can be analyzed similarly. Consider contingency
table between the product-based partition S and feature Sector in Company data
(Table 4.26).

Table 4.25 Tabular regression of NSup feature over the product-based classes in the Company
dataset in Table 4.2. (Note that the averaging of the squared deviations is made over N = 8 rather
than N−1 = 7.)

Classes # NSup mean NSup standard deviation NSup variance

A 3 2.67 0.47 0.22
B 3 2.33 0.47 0.22
C 2 4.50 0.5 0.25
Total 8 3.00 1.0 1.00
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In contrast to the classical statistics perspective, the small and even zero values
are not of an issue here.

Table 4.27 presents, on the left, the same data in the relative format; the other
two parts present absolute and relative Quetelet indexes as described in Sect. 3.3.

These indexes have something to do with the cluster-feature contributions in
Table 4.23. Given that the categories have been normalized by unities as well as the
other features, the absolute Quetélet indexes are involved. [To use the relative
Quetélet indexes, the categories have to be normalized by the square roots of their
frequencies, as explained in Sect. 3.8.2 and p.342.] Their squares multiplied by the
cluster cardinalities and additionally divided by the squared rescaling parameter, 3
in this case, are the contributions, according to formula (4.26), as presented in the
following Table 4.28.

(d) Conceptual description of clusters

If a contribution is high, then, as can be seen in Fig. 4.14, it is likely that the
corresponding feature can be utilized for conceptual description of the corre-
sponding class.

Table 4.26 Contingency table between the product-based classes and nominal feature Sector in
the Company dataset according to Table 4.2

Category class Utility Manuf Retail Total

A 2 1 0 3
B 1 2 0 3
C 0 0 2 2
Total 3 3 2 8

Table 4.27 Relative frequencies together with absolute and relative Quetélet indexes for
contingency Table 4.26

Cat.
Class

Utility Manuf.
Retail

Total Utility Manuf.
Retail

Utility Manuf.
Retail

Relative
frequencies

Absolute
Quetélet ind.

Relative
Quetélet ind.

A 0.25 0.12 0.00 0.37 0.29 −0.04 −0.25 0.78 −0.11 −1.00

B 0.12 0.25 0.00 0.37 −0.04 0.29 −0.25 −0.11 0.78 −1.00

C 0.00 0.00 0.25 0.25 −0.38 −0.38 0.75 −1.00 −1.00 3.00

Total 0.37 0.37 0.25 1.00
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Worked Example 4.11. Describing Market Town Clusters Conceptually
Consider, for example, Table 4.23 of contributions of the clusters found at Market
towns data. Several entries in Table 4.23 are highlighted in bold as those most
contributing to the data scatter parts explained by clusters, the columns on the right.
Take a look at them, cluster-wise.

Cluster 1 is indeed characterized by its two most contributing features,
Population resident (P, contribution 2.09) and the number of doctor surgeries (Do,
contribution 2.53). It can be described as a “set of towns with the population
resident P not less than 10,200 and number of doctor surgeries Do not less than
3”—this description perfectly fits the cluster with no errors, be it false positive or
false negative. Cluster 2 is blessed with an unusually high relative contribution of
FM, 3.84 of the total; this may be seen as the driving force of the cluster’s sepa-
ration: it comprises all the towns with a Farmers market that have not been included
in cluster 1! Other clusters can be described similarly. Let us note the difference
between clusters 6 and 7, underlined by the high contributions of swimming pools
(SW) to both, though by different reasons: every town in cluster 7 has a swimming
pool whereas any town in cluster 6 has none.

Worked example 4.12. Describing Company clusters conceptually
Conceptual descriptions can be drawn for the product clusters in Company data
according to Table 4.24. This Table shows that feature EC is the most contributing
to the Product A cluster, feature MSha to the Product B cluster, and features SupN
and Retail to the Product C cluster. The relatively high contribution of MSha to B
cluster is not that obvious because that of EC, 0.42, is even higher. It becomes clear
only on the level of relative contributions when the contributions are related to their
respective Total counterparts, 0.25/0.69 and 0.42/1.88—the former prevails indeed.
Clusters A, B, and C can be distinctively described by the statements “EC==0”,
“MSha < 28”, and “SupN > 3” (or “Sector is Retail”), respectively.

Unfortunately, high feature contributions not always lead to clear-cut conceptual
descriptions. The former are based on the averages, whereas the latter are defined
by clear-cut divisions, and division boundaries can be at odds with the averages.

Table 4.28 Absolute Quetélet indexes from Table 4.27 and their squares factored according to
formula (4.24) and follow-up; maxima are highlighted in bold

Cat. class Size Utility Manuf Retail Utility Manuf Retail Total

Absolute Quetélet indexes Contributions

A 3 0.29 −0.04 −0.25 0.085 0.002 0.062 0.149
B 3 −0.04 0.29 −0.25 0.002 0.085 0.062 0.149
C 2 −0.38 −0.38 0.75 0.094 0.094 0.375 0.563
Total 8 0.181 0.181 0.500 0.862
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4.4.4 Comparing Within-Cluster and Grand Means Using
Bootstrap

As explained in the previous section, comparing the within cluster-central values
with the corresponding grand means is at the heart of cluster interpretation. The
greater the difference, the more important is the feature to the cluster as an
aggregate entity. To extend the comparison result beyond the current dataset, one
would want to make a probabilistic assessment of the comparison.

Rather than going into details of mathematics-statistical modeling, we will rely
on the computational tool of bootstrapping introduced in Sect. 2.2.3.3. Specifically,
given a dataset I of size N and its subset, a cluster S, let us consider a feature x at
I. Generate a number, M, of bootstrap trials, each being a sequence of indices from
I, and separate its subsequence related to S. Then, for each of the sequences
compute the mean of x over it, gx, and the mean of x over the subsequence related to
S, sx, and take the difference, sg = sx−gx. Then the set of M sg values is used for
deriving probabilistic conclusions.

There can be either of three hypotheses: (i) sg > 0 (right-tailed testing), (ii) sg 6¼
0 (two-tailed testing), and (iii) sg < 0 (left-tailed testing). Each of these three is
against the normalcy hypothesis, which is sg = 0. Specifying the 95% level of
confidence, these hypotheses are tested by: (i) removing the minimal 5% of the sg
values; (ii) removing 2.5% of entities from both the right end and the left end; and
(iii) removing the maximal 5% of the sg values. The hypothesis is rejected in either
case, if the remaining subsample covers 0.

Worked Example 4.13. Comparing Grand Mean of Sepal Width with its Mean
in Taxon 3
Consider the Iris dataset feature Sepal Width. Its means and standard deviations are
in Table 4.29. Let us compare the grand mean, gm = 3.057 with the mean in Taxon
3, sm = 2.974. The normalcy hypothesis is that these are equal to each other, up to
the sampling errors. I prefer to think that gm > sm, which is to be subject to the
right-tailed testing.

Consider 5000-strong bootstrap sample of differences gm-sm over bootstrap
samples. Its mean and standard deviation are 0.0826 and 0.0443, respectively. The
5% quantile for a Gaussian distribution is, as well-known, 1.645 standard devia-
tions from the mean. Therefore, the difference 0.0826−1.645*0.0443 = 0.0097

Table 4.29 Characteristics
of the Sepal Width in the Iris
dataset

Set Mean Standard
deviation

Taxon 1 3.428 0.379
Taxon 2 2.770 0.314
Taxon 3 2.974 0.322
Total 3.057 0.436
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marks the boundary separating the upper 95% from the lower 5% of the Gaussian
density function area. The value 0 is not in the confidence 95% interval, meaning
that the pivotal bootstrap supports the hypothesis that the grand mean, 3.057, is
indeed greater than the within taxon mean, 2.974, up to the 95% confidence
(Fig. 4.15).

To apply the non-pivotal bootstrapping, we sort the values of the difference
vector, gm-sm, in the ascending order and remove the 5% = 250 minimal values.
The value number 251 in the sorted list is 0.0107, which is positive, so that this
method supports the conclusion, too. Of course, if we go for a 99% confidence
level, the data would not support the claim. Indeed, after removal of just 1% = 50
minimal values, the 51st value in the sorted list is negative, −0.0196, so that 0
belongs to the confidence interval and the hypothesis must be rejected.

4.5 Extension of K-means to Different Cluster Structures

So far the clustering was to encode a data set with a number of clusters forming a
partition. Yet there can be differing partition-like clustering structures of which,
arguably, the most popular are:

I Fuzzy: Cluster membership of entities may be not necessarily confined to one
cluster only but shared among several clusters;

II Probabilistic: Clusters can be represented by probabilistic distributions rather
than manifolds;

III Self-organizing Map (SOM): Capturing clusters within cells of a plane grid
along with the grid’s neighborhood structure.

Fig. 4.15 Histograms of bootstrap values for the means of the Sepal Width with respect to the
entire Iris dataset, gm (on the left), Iris taxon 3, sm (in the middle), and the difference gm−sm (on
the right)
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Further on in this section extensions of K-means to these structures are
presented.

4.5.1 Fuzzy K-means Clustering

A fuzzy cluster is represented by its membership function z = (zi), i2I, in which zi
(0 � zi � 1) is interpreted as the degree of membership of entity i to the cluster.
This extends the concept of conventional, hard (crisp) cluster, which can be con-
sidered a special case of the fuzzy cluster corresponding to membership zi restricted
to only 1 or 0 values.

A conventional (crisp) cluster k (k = 1, …, K) can be thought of as a pair
consisting of center ck = (ck1, …, ckv, …, ckV) in the V feature space and mem-
bership vector zk = (z1k, …, cik, …, cNk) over N entities so that zik = 1 means that
i belongs to cluster k, and zik = 0 means that i does not. Moreover, clusters form a
partition of the entity set so that every i belongs to one and only one cluster if and
only if Rk zik = 1 for every i2I.

These are extended to the case of fuzzy clusters, so that fuzzy cluster k (k = 1,
…, K) is a pair comprising center ck = (ck1, …, ckv, …, ckV), a point in the feature
space, and membership vector zk = (z1k,…, cik,…, cNk) such that all its components
are between 0 and 1, 0 � zik � 1, expressing the extent of belongingness of i to
each of the clusters k. Fuzzy clusters form what is referred to as a fuzzy partition of
the entity set, if the summary membership of every entity i2I is unity, that is, Rk

zik = 1 for each i2I. One may think of the total membership of any entity i as a
substance that can be differently distributed among the centers.

These concepts are especially easy to grasp if membership zik is considered as
the probability of belongingness. However, in many cases fuzzy partitions have
nothing to do with probabilities. For instance, dividing all people by their height
may involve fuzzy categories “short,” “medium” and “tall” with fuzzy meanings
such as those shown in Fig. 4.16.

Fuzzy clustering can be of interest in applications related with natural fuzziness
of cluster boundaries such as image analysis, robot planning, geography, etc.

Fig. 4.16 Possible trapezoid fuzzy sets corresponding to fuzzy concepts of man’s height: short,
regular, and tall
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If fuzzy cluster memberships are put into the bilinear PCA model, as K-means
crisp memberships have been (see formula (4.14)), they make a rather weird
structure in which centers are not average but rather extreme points in their clusters,
which can be relaxed in a certain way and make clusters interesting and appealing,
if somewhat unusual (Nascimento 2005).

An empirically convenient criterion (4.27) below differently extends that of (4.3)
by using the Euclidean squared distance d and factoring in an exponent of the
membership, za. The value a affects the fuzziness of the optimal solution: at a = 1,

Fðfck; zkgÞ ¼
XK
k¼1

XN
i¼1

zaikdðyi; ckÞ ð4:27Þ

the optimal memberships are proven to be crisp, the larger the a the ‘smoother’ the
membership. Usually a is taken to be a = 2.

Globally minimizing criterion (4.27) is a difficult task. Yet the alternating
minimization of it appears rather simple. As for Batch K-means, this works in
iterations, starting from somehow initialized centers. Each iteration proceeds in two
steps: (1) membership update and (2) center update. Specifically, (1): given cluster
centers, cluster memberships are updated; (2): given memberships, centers are
updated—after which everything is ready for the next iteration. The process stops
when the updated centers are close enough to the previous ones. Updating formulas
are derived from the first-order optimality conditions. They require the partial
derivatives of the criterion (4.27) over the optimized variables to be set to 0.

Membership update formula:

zik ¼ 1=
XK
k0¼1

½dðyi; ckÞ=dðyi; ck0 Þ�
1

a�1 ð4:28Þ

Center update formula:

ckv ¼
XN
i¼1

zaikyi=
XN
i0¼1

zai0k ð4:29Þ

Since Eqs. (4.28) and (4.29) are the first-order optimality conditions for criterion
(4.27) leading to unique solutions, convergence of the method, usually referred to
as fuzzy K-means (c-means, too, assuming c is the number of clusters, see Bezdek
et al. 1999), is guaranteed.

The meaning of criterion (4.27) can be formulated as follows. Let us present
criterion F in (4.27) as F = Ri F(i), the sum of weighted distances F(i) from points
i2I to all cluster centers. At a stationary solution, F(i) is equal to the harmonic
average of the individual memberships if a = 2 (see Stanforth et al. 2007).
Figure 4.17 presents the indifference contours of the averaged F values versus those
of the distances from the nearest centers. The former are much smoother.
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The Anomalous pattern method is applicable as a tool for initializing Fuzzy
K-means as well as crisp K-means, leading to reasonable results as reported by
Stanforth et al. (2007). Nascimento and Franco (2009) applied this method for
segmentation of sea surface temperature maps; found fuzzy clusters closely follow
the expert-identified regions of the so-called coastal upwelling, that are relatively
cold, and nutrient rich, water masses. In contrast, the conventional fuzzy K-means,
with user defined K, under- or over-segments the images.

Q.4.26. Regression-wise clustering. In general, centers ck can be defined in a space
which is different from that of the entity points yi (i2I). Such is the case of
regression-wise clustering. Recall that a regression function xV = f(x1, x2, …, xV−1)
may relate a target feature, xV, to (some of the) other features x1, x2, …, xV−1 as, for
example, the price of a product to its consumer value and production cost attributes.
In regression-wise clustering, entities are grouped together according to the degree
of their correspondence to a regression function rather than according to their
closeness to the gravity center. That means that regression functions play the role of
centers in regression-wise clustering (see Fig. 4.18).

Consider a version of Straight K-means for regression-wise clustering to involve
linear regression functions relating standardized variable yV to other standardized
variables, y1, y2,…, yV−1, in each cluster. Such a function is defined by the equation
yV = a1y1 + a2y2 + … + aV−1yV−1 + a0 for some coefficients a0, a1, …, aV−1.
These coefficients form a vector, a = (a0, a1,…, aV−1), which can be referred to as a
regression-wise center.

When a regression-wise center is given, its distance to an entity point yi = (yi1,
…, yiV) is defined as r(i, a) = (yiV − a1yi1 − a2yi2 − … − aV−1yi,V−1 − a0)

2, the
squared difference between the observed value of yV and that calculated from the
regression equation. To determine the regression-wise center a(S), given a cluster
list S�I, the standard technique of multivariate linear regression analysis is applied,
which is but minimizing the within cluster summary residual Ri2S r(i, a) over all
possible a.

Fig. 4.17 Maps of indifference levels for the membership function F(i) at about 14,000 chemical
compounds clustered with iK-means in 41 clusters (a); (b) scores membership using only the
nearest cluster’s center
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Formulate a version of the Straight K-means for this situation.
Hint: Same as Batch K-means, except that:

(1) centers must be regression-wise centers and
(2) the entity-to-center distance must be r(i, a).

4.5.2 Mixture of Distributions and EM Algorithm

Data of financial transactions or astronomic observations can be considered as a
random sample from a (potentially) infinite population. In such cases, the data
structure can be analyzed with probabilistic approaches of which arguably the most
radical is the mixture of distributions approach.

According to this approach, each of the yet unknown clusters k is modeled by a
density function f(x, ak) which represents a family of density functions over x de-
fined up to a parameter vector ak. Consider a one-dimensional density function f(x),
that, for any x and very small change dx, assigns its probability f(x)dx to the interval
between x and x + dx, so that the probability of any interval (a, b) is integralR b
a f ðxÞdx, which is the area between x-axis and f(x) within (a, b) as illustrated on
Fig. 4.19 for interval (6, 8). Multidimensional density functions have a similar
interpretation.

Usually, the cluster density f(x, ak) is considered uni-modal with the mode
corresponding to the cluster standard point. Such is the normal, or Gaussian, density
function defined by ak consisting of its mean vector mk and covariance matrix Rk:

f ðx;mk;RkÞ ¼ expð�ðx� mkÞTR�1
k ðx� mkÞ=2Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞV Rkj j

q
ð4:30Þ

Fig. 4.18 Two
regression-wise clusters with
their regression lines as
centers
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The shape of Gaussian clusters is ellipsoidal because any surface at which
f(x, ak) is constant satisfies equation ðx� mkÞTR�1

k ðx� mkÞ = c, where c is any
constant, that defines an ellipsoid. This is why the PCA representation is highly
compatible with the assumption of the underlying distribution being Gaussian. The
mean vector mk specifies the k-th cluster’s location.

The mixture of distributions clustering model can be set as follows. The row
points y1, y2, …, yN are considered a random sample of |V|-dimensional observa-
tions from a population with density function f(x) which is a mixture of individual
cluster density functions f(x, ak) (k = 1, 2, …, K) so that f ðxÞ ¼RK

k¼1 pkf ðx; akÞ,
where pk � 0 are the mixture probabilities such that RK

k¼1 pk ¼ 1.
To estimate the individual cluster parameters, the principle of maximum like-

lihood, one of the main approaches in mathematical statistics, applies. The approach
is based on the postulate that the events that have really occurred are those that are
most likely. In general, this is not correct—everybody can recall a situation in
which a less likely event has occurred. But the principle, applied for parameter
estimation, is as much effective as a similarly wrong principle of the maximum
parsimony, and even more. In its simplest version, the approach requires to find the
mixture probabilities pk and cluster parameters ak, k = 1, 2, …, K, by maximizing
the likelihood of the observed data under the assumption that the observations come
independently from a mixture of distributions. It is not difficult to show, under the
assumption that the observations come independently of each other, that the like-
lihood is the product of the density values, P ¼ QN

i¼1 R
K
k¼1 pkf ðyi; akÞ. To com-

putationally handle the maximization problem for P with respect to the unknown
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Fig. 4.19 Two Gaussian clusters represented by their density functions drawn with a thin and
solid lines. The probability of interval (6, 8) in the solid line cluster is shown by the area with
diagonal filling. The interval (A, B) is the only place in which the thin line cluster is more likely
than the bold line cluster
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parameter values, its logarithm, L = log(P), is maximized in the form of the fol-
lowing expression:

L ¼
XN
i¼1

XK
k¼1

gik½logðpkÞþ logðf ðyi; akÞ � logðgikÞ�; ð4:31Þ

where gik is the posterior density of cluster k defined as gik = pk f(yi, ak)/Rk pk
f(yi, ak).

Criterion L can be considered a function of two groups of variables:

(1) the mixture probabilities pk and cluster parameters ak, and
(2) posterior densities gik,

to apply the method of alternating optimization. The alternating maximization
algorithm for this criterion is referred to as EM-algorithm since computations are
performed as a sequence of Expectation (E) and Maximization (M) steps. As usual,
to start the process, the variables must be initialized. Then E-step is executed: Given
pk and ak, optimal gik are found. Given gik, M-step finds the optimal pk and ak. This
brings the process to an E-step again to follow by an M-step. And so forth. The
computation stops when the current parameter values approximately coincide with
the previous ones. This algorithm has been developed, in various versions, for
Gaussian density functions as well as for some other parametric families of prob-
ability distributions. It should be noted that developing a fitting algorithm is not that
simple, and not only because there are too many parameters here to estimate. One
should take into consideration that there is a tradeoff between the complexity of the
probabilistic model and the number of clusters: a more complex model may fit to a
smaller number of clusters. To select a better model one can utilize the likelihood
criterion penalized for the complexity of the model. A popular penalized
log-likelihood criterion is referred to as Bayesian Information Criterion (BIC) and is
defined, in this case, as

BIC ¼ 2 log pðX=pk; akÞ�k log Nð Þ; ð4:32Þ

where X is the observed data matrix, k the number of parameters to be fitted, and
N the number of observations, that is, rows in X. The greater the value, the better.
BIC analysis has been shown to be useful, for example, in assessing the number of
clusters K for the mixture of Gaussians model.

The goal of EM algorithm is determining the density functions rather than
assigning entities to clusters. If the user needs to see the “actual clusters”, the
posterior probabilities gik can be utilized: i is assigned to that k for which gik is the
maximum. Since this “optimal assignment” rule deviates from the distribution of
gik, the proportions of entities in clusters obtained in this way will deviate from the
mixture probabilities pk. This is why it is advisable to consider the relative values of
gik as fuzzy membership values.
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The situation, in which all Gaussian clusters have their covariance matrices
constant diagonal and equal to each other, so that Rk = r2E, where E is identity
matrix and r2 the variance, is of a theoretical interest. In this case, all clusters have
uniformly spherical distributions of the same radius. The maximum likelihood
criterion P in this case is equivalent to the criterion of K-means and, moreover,
there is a certain homology between the EM and Batch K-means algorithms in this
case.

To see what is going on here, consider feature vectors corresponding to entities
xi, i2I, as randomly and independently sampled from the population, with an
unknown assignment of the entities to clusters Sk. The likelihood of this sample is
determined by the following equation:

P ¼ C
YK
k¼1

Y
i2Sk

r�V expf�ðxi � mkÞTr�2ðxi � mkÞ=2g;

because in this case the determinant in (4.30) is equal to |Rk| = r2V and the inverse
covariance matrix is r−2E. The logarithm of the likelihood is proportional to

L ¼ �2V logðrÞ �
XK
k¼1

X
i2Sk

ðxi � mkÞTðxi � mkÞ=r2:

It is not difficult to see from the first-order optimality conditions for L that, given
partition S = {S1, S2, …, SK}, the optimal values of mk and r are determined
according to the usual formulas for the mean and the standard deviation. Moreover,
given mk and r, the partition S = {S1, S2,…, SK} maximizing L will simultaneously
minimize the double sum in the right part of its expression above, which is exactly
the summary squared Euclidean distance from all entities to their centers, that is,
criterion W(S, m) for K-means in (4.3) except for a denotation: the cluster gravity
centers are denoted here by mk rather than by ck, which is not a big deal after all.

Thus the mixture model leads to the conventional K-means method as a method
for fitting the model, under the condition that all clusters have spherical Gaussian
distribution of the same variance. This leads some authors to conclude that K-means
is applicable only under the assumption of such a model. However, this conclusion
is wrong because it involves a logic trap: it is well known that the fact that A
implies B does not necessarily mean that B implies A—there are plenty of examples
to the opposite. Note however that the K-means data recovery model, also leading
to K-means, assumes no restricting hypotheses on the mechanism of data genera-
tion. It also implies, through the data scatter decomposition, that useful data stan-
dardization options should involve dividing by range or similar range-related
indexes rather than by the standard deviation, associated with the spherical
Gaussian model. In general, the situation here is similar to that of the linear
regression, which is a good method to apply when there is a Gaussian distribution
of all variables involved, but it can and should be applied under any other distri-
bution of observations if they tend to lie around a straight line.
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4.5.3 Kohonen’s Self-Organizing Maps SOM

Kohonen’s Self-Organizing Map is an approach to visualize the data cluster structure
by explicitly mapping it onto a plane grid (see Kohonen 1995). Typically, the grid is
rectangular and its size is determined by the user-specified numbers of its rows and
columns, r and c, respectively, so that there are r � c nodes on the grid. Each of the
grid nodes, gk (k = 1, 2,…, rc), is one-to-one associated with the so-called model, or
reference, vector mk which is of the same dimension as the entity points yi, i2I.

The grid has a neighborhood structure which is to be set by the user. In a typical
case, the neighborhood Gk of node gk is defined as the set of all the grid nodes
whose path distance from gk is less than a pre-selected threshold value (see
Fig. 4.20).

Then each mk is associated with some data points—a process that can be reit-
erated. In the end, data points associated at each mk are visualized at the grid point
gk (k = 1, …, rc) (see Fig. 4.21). Historically, all SOM algorithms have been set in
a neural-network-like incremental manner, but later, after some theoretical inves-
tigation, straight/batch versions appeared, such as the following.

Initially, vectors mk are initialized in the data space either randomly or according
to an assumption of the data structure such as, for instance, centers of K-means
clusters found at K = rc. Given vectors mk, entity points yi are partitioned into
“neighborhood” sets Ik. For each k = 1, 2, …, rc, the neighborhood set Ik is defined
as consisting of those yi that are assigned to mk according to the Minimum distance
rule. Given sets Ik, model vectors mk are updated as centers of gravity of all entities
yi assigned to grid nodes in the neighborhood of gk, that is, such yi that i2It for some
gt2Gk. Then a new iteration of building Ik with the follow-up updating mk’s, is run.
The computation stops when new mk are close enough to the previous ones or after
a pre-specified number of iterations.

Fig. 4.20 A 7 � 12 SOM grid on which nodes g1 and g2 are shown along with their
neighborhoods defined by thresholds 1 and 2, respectively
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As one can see, SOM in this version is much similar to Straight/Batch K-means
except for the following:

(a) number K = rc of model vectors is large and has nothing to do with the number
of final clusters—this comes visually as the number of grid clusters;

(b) data points are averaged over the grid neighbourhood, not the feature space
neighborhood;

(c) there are no interpretation rules except according to positioning of points on the
grid.

Item (a) results in the fact that many of final Ik’s are empty, so that relatively very
few of grid nodes are populated, which may create a powerful image of a cluster
structure that may go to a deeper—or more interesting—minimum than K-means,
because of (b).

4.6 Partitioning for Similarity Data

4.6.1 Extending K-means to Similarity Data

In Sect. 4.3.2, a complementary clustering criterion B(S, c) was derived such that
T(Y) = W(S, c) + B(S, c) where T(Y) is the data scatter and W(S, c) the K-means
clustering criterion. We recall that, given a data matrix Y = (yiv), the data scatter is
the sum of all the entries, squared, TðYÞ ¼Ri;v y2iv. Given a partition S = {S1, S2,
…, SK} with a set of centers c = {c1, c2, …, cK}, over the set of objects, the
criterion is the total of distances between objects i, i = 1,2,…, N, and their cluster
centers ck (k = 1, 2, …, K). The complementary criterion B(S, c) was derived in
several versions, one of which was:

Fig. 4.21 A pattern of final SOM structure using entity labels of geometrical shapes
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BðS; cÞ ¼
XK
k¼1

1
Nk

X
i;j2Sk

\yi; yj [ ;

where Nk is the number of objects in cluster Sk (k = 1, 2, …, K). This involves
entity-to-entity similarity values <yi, yj> where i, j = 1, 2, …, N. Let us denote by
A the N � N matrix of similarity values aij = <yi, yj>. Obviously, A = YYT.

Of course, one may extend the inner product aij = <yi, yj> onto any similarity
index generated by a kernel function, aij = K(yi, yj) expressing the inner product in
a higher dimension space (see Sect. 3.4.3). One should note that the dependence on
centers ck is lost in (4.11). Thus we reformulate the criterion, in a kernel-based
form, as follows:

g Sð Þ ¼
XK
k¼1

1
Nk

X
i;j2Sk

aij ð4:33Þ

The meaning of the criterion (4.33)—the sum of contributions of individual
clusters, each being the within-cluster semi-average

g Skð Þ ¼ 1
Nk

X
i;j2Sk

aij ð4:34Þ

that is to be maximized.
Consider the average within-cluster similarity,

k Skð Þ ¼ 1
N2
k

X
i;j2Sk

aij ð4:35Þ

Then g(Sk) in (4.34) can be expressed as g Skð Þ ¼ Nkk Skð Þ, the product of the
number of elements and the average within-cluster similarity; this is why we refer to
criterion (4.33) as the semi-average clustering criterion. To maximize g(Sk), both
the number of elements and the average within-cluster similarity must be maxi-
mized. These two goals, however, usually contradict each other: the greater the
number of elements, the smaller the within-cluster similarities. The product, thus,
balances them and, in this way leads to relatively tight clusters of reasonable sizes.

A more detailed analysis of g(Sk) (4.34) will be given in the next chapter devoted
specifically to the analysis of individual clusters, see Sect. 5.4.

Worked Example 4.14. Similarity Matrix for Normalized Company Data
Consider the 8 � 7 Company data matrix in its standardized format (Table 4.30
copied for convenience from Table 4.2). Its last two rows show the column con-
tributions to the data scatter, both as are and per cent.

Let us compute two recommended similarity matrices, the matrix of inner products
A = YYT (see in Table 4.31) and thematrix of affinity data aij = exp(−d(xi, xj)/s) found
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by using the Gaussian kernel transformation, where d(xi, xj) is the squared Euclidean
distance d(xi, xj) and s a scaling parameter. At range-normalized data, our experi-
mentally tested value for s is s = 1/2. The former is presented in Table 4.31,
the latter in Table 4.33: the intermediate Table 4.32 contains the squared Euclidean
distances d(xi, xj).

Table 4.30 Company data matrix standardized by subtraction of feature means and division by
feature ranges, with the follow-up further division of columns 5,6, and 7 over the square root of 3

Av
An
As
Ba
Br
Bu
Ci
Cy

−0.20
0.40
0.08

−0.23
0.19

−0.60
0.08
0.27

0.23
0.05
0.09

−0.15
−0.29
−0.42
−0.10
0.58

−0.33
0
0

−0.33
0

−0.33
0.33
0.67

−0.63
−0.63
−0.63
0.38
0.38
0.38
0.38
0.38

0.36
0.36

−0.22
0.36

−0.22
−0.22
−0.22
−0.22

−0.22
−0.22
0.36

−0.22
0.36
0.36

−0.22
−0.22

−0.14
−0.14
−0.14
−0.14
−0.14
−0.14
0.43
0.43

Cnt
Cnt, %

0.74
12.42

0.69
11.66

0.89
14.95

1.88
31.54

0.62
10.51

0.62
10.51

0.50
8.41

Table 4.31 Matrix of row-to-row inner products for matrix of normalized Company data in
Table 4.30 (positive entries highlighted in bold)

Entities Av An Ast Ba Br Bu Ci Cy

Av
An
As
Ba
Br
Bu
Ci
Cy

0.794
0.519
0.260
0.086

−0.474
−0.237
−0.478
−0.470

0.519
0.752
0.293

−0.137
−0.307
−0.629
−0.299
−0.191

0.260
0.293
0.604

−0.404
−0.048
−0.126
−0.330
−0.250

0.086
−0.137
−0.404
0.527
0.005
0.320

−0.069
−0.328

−0.474
−0.307
−0.048
0.005
0.457
0.347
0.090

−0.069

−0.237
−0.629
−0.126
0.320
0.347
0.983

−0.074
−0.583

−0.478
−0.299
−0.330
−0.069
0.090

−0.074
0.549
0.612

−0.470
−0.191
−0.250
−0.328
−0.069
−0.583
0.612
1.279

Table 4.32 Matrix of row-to-row squared Euclidean distance values for the matrix of normalized
Company data in Table 4.30 (highlighted in bold are the values less than 1)

Entities Av An Ast Ba Br Bu Ci Cy

Av
An
As
Ba
Br
Bu
Ci
Cy

0.000
0.508
0.877
1.149
2.199
2.251
2.299
3.012

0.508
0.000
0.770
1.554
1.824
2.994
1.899
2.414

0.877
0.770
0.000
1.939
1.157
1.840
1.814
2.384

1.149
1.554
1.939
0.000
0.974
0.871
1.215
2.462

2.199
1.824
1.157
0.974
0.000
0.746
0.826
1.873

2.251
2.994
1.840
0.871
0.746
0.000
1.681
3.429

2.299
1.899
1.814
1.215
0.826
1.681
0.000
0.605

3.012
2.414
2.384
2.462
1.873
3.429
0.605
0.000
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In the inner product matrix A (Table 4.31) all positive entries are highlighted in
bold. One can see that almost all of them are concentrated within the three
product-based clusters {Av, An, As}, {Ba, Br, Bu}, and {Ci, Cy}, except for
c14 = 0.186 and c57 = 0.090. This, including rather small values of the “oddities”
may convince one that the product-based partition is optimal indeed.

Also, one should notice that the diagonal elements are by far the largest in their
rows and columns, which is no wonder as the inner product geometrically is the
product of vector norms and cosine of the angle between them.

Although rather auxiliary in the context of computation of the Gaussian kernel,
the squared Euclidean distance matrix in Table 4.28 may have an independent
standing too. Indeed, according to Eq. (4.5) in Q.4.9, these distances stand as the
only data involved in an equivalent reformulation of the K-means criterion; the
summary within-cluster semi-average value of them must be minimized to achieve
the goal of K-means. The distances less than 1 are highlighted in bold in
Table 4.31. As one can see, the distances are much consistent with the three
product-based clusters: only one between cluster distance, d(Ba, Ci) = 0.826, does
not follow this pattern.

4.6.2 Algorithms for the Semi-average Clustering Criterion

The semi-average criterion for partitioning does not admit a simple algorithm for its
maximization even if the similarity matrix has no negative entries. We consider two
local search algorithms here, agglomeration of clusters and moving objects. But we
first point out a property which is important further on. The property is that if
partition S = {S1, S2, …, SK} is a maximizer of the criterion g(S) in (4.33) over
similarity matrix A, then the S is a maximizer of (4.33) over symmetric similarity
matrix Asym = (A + AT)/2 with entries aij

sym = (aij + aji)/2. The proof easily follows
from an obvious fact that the value of g(S) over A coincides with that of g(S) over
Asym. Why? Because, every pair i, j adds to g(S) the same value aij + aji in both
cases.

Table 4.33 Matrix of row-to-row Gaussian kernel values for matrix of normalized Company data
in Table 4.29. All values that are greater than 0.14 are highlighted in bold

Entities Av An As Ba Br Bu Ci Cy

Av
An
As
Ba
Br
Bu
Ci
Cy

1.000
0.362
0.173
0.100
0.012
0.011
0.010
0.002

0.362
1.000
0.214
0.045
0.026
0.003
0.022
0.008

0.173
0.214
1.000
0.021
0.099
0.025
0.027
0.008

0.100
0.045
0.021
1.000
0.142
0.175
0.088
0.007

0.012
0.026
0.099
0.142
1.000
0.225
0.192
0.024

0.011
0.003
0.025
0.175
0.225
1.000
0.035
0.001

0.010
0.022
0.027
0.088
0.192
0.035
1.000
0.298

0.002
0.008
0.008
0.007
0.024
0.001
0.298
1.000
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Before proceeding to the stage of clustering itself, data matrix A should be
pre-processed. First of all, it should be converted to a symmetric form by trans-
forming it into Asym = (A + AT)/2. This will not affect the result, according to the
equivalence property above. Another pre-processing step is highly recommended
too: put zeros in all the diagonal elements to make aii = 0 for all objects i = 1, 2,
…, N. Indeed, clusters should reflect the similarity between objects rather than the
weighting of objects. A strong diagonal, like that in the Confusion data (see
Table 1.8 in Chap. 1), reflecting the strong- and differing-similarity of objects to
themselves, may affect the results as illustrated in Worked examples 4.14 and 4.15.

Agglomeration of Clusters Approach
This approach follows a conventional for all agglomerative algorithms scheme. It
transforms the original matrix A of object-to-object similarity index values into a
binary cluster hierarchy. It starts at N singleton clusters and one-by-one merges
chosen pairs of clusters to, conventionally, reach the global universal cluster con-
sisting of all the objects. Here, however, this convention may fail to work. Why?

Take a look at the current partition S = {S1, S2, …, SK}, K � N. and the
criterion value g(S) (4.33). What the criterion may lose if two clusters, Sk and Sl, are
merged together to form another partition, S(k, l), consisting of K−1 clusters, of
which one is Sk[ Sl and the others are the other clusters from S. Let us denote

A I1; I2ð Þ ¼
X
i2I1

X
j2I2

aij; ð4:36Þ

the summary similarity between sets of objects, I1 and I2, which may overlap or
even coincide.

We claim that the loss D(k, l) at merging Sk and Sl is equal to

D k; lð Þ ¼ g Sð Þ�g S k; lð Þð Þ
¼ ½NkAðSl; SlÞ=Nl þNlAðSk; SkÞ=Nk�2AðSk; SlÞ�=ðNk þNlÞ ð4:37Þ

Indeed, the difference involves only those parts (4.29) that relate to Sk, Sl, and
Sk[ Sl:

D k; lð Þ ¼ g Sð Þ�g S k; lð Þð Þ
¼ 1

Nk

X
i;j2Sk aij þ

1
Nl

X
i;j2Sl aij �

1
Nk þNl

X
i;j2Sk [ Sl

aij ¼ 1
NkNl Nk þNlð Þ½NlðNk

þNlÞA Sk; Skð ÞþNk Nk þNlð ÞA Sl; Slð Þ � NkNlA Sk [ Sl; Sk [ Slð Þ�
¼ 1

NkNl Nk þNlð Þ N2
l A Sk; Skð ÞþN2

k A Sl; Slð Þ � 2NkNlA Sk; Slð Þ� �
:

The last equation follows from the fact that A Sk [ Sl; Sk [ Slð Þ ¼
A Sk; Skð Þþ 2A Sk; Slð ÞþA Sl; Slð Þ and proves (4.37).

Now we should explain why we refer to the difference g(S) − g(S(k, l)) as a loss,
assuming that g(S) > g(S(k, l)). In the normal circumstances, when elements of
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A are inner product or kernel values, the Pythagorean decomposition (4.8) of the
data scatter holds, so that the data scatter is the sum of the quadratic error W(S, c)
and the “explained part”, B(S, c). Merging two clusters may only increase the
quadratic error W(S, c) and, thus, only decrease the complementary criterion B(S, c)
and, of course, its identical twin, g(S).

The circumstances are not normal when A is not a matrix of inner products
anymore, as, for example, if its diagonal is forcibly zeroed, as advised above, or if
that is just an observed data case, like that of Eurovision song contest results in
Table 1.11. In such a case non-monotonicity of g(S) regarding the merging process
can be taken as a stop condition: why one should continue mergers if the increment
D(k, l) gets negative? Indeed, the goal is to maximize g(S). This is how the
semi-average criterion brings forth a natural stopping condition to the process of
mergers, in this way determining the natural number of clusters.

One issue remaining to get discussed is a visual representation of the merger
process with a dendrogram. A dendrogram is a rooted tree along with a height
function. The height function assigns real numbers to tree nodes in such a monotone
way that any parental node’s height is greater than that of its children. Heights of
leaves usually are taken to be zero.

Agglomerative Clustering Algorithm for the Semi-average Criterion:
SA-Agglomeration

1. Initial setting. Set K = N, put all entities k2I to singleton clusters Sk = {k}, with
their cardinalities set to unity and heights to zero; form a cluster-to-cluster
similarity matrix AA = (A(k, l)) between them, with A(k, l) = akl, and a list of
maximal clusters M consisting of all the singletons at this stage. Set flag = 1 and
do the following steps till the flag changes.

2. Finding minimum. Using matrix AA, compute all D(k, l) (4.37) and find their
maximum D(k*, l*) where k* < l*.

3. Stop condition. If D(k*, l*) < 0, put flag = 0. If K = 2, put flag = 0.
4. Merge and update. Merge two maximal clusters, Sk* and Sl*, together to form

their parent in the dendrogram, a new maximal cluster Sk*[ l* = Sk*[ Sl*. To do
this, add the row l* to the row k* in AA; after this, add column l* to column k*
in AA, after which remove l* row and column from AA; its size now is K−1, so
change K by subtracting 1 from it. Similarly, add maximal cluster M(l*) to
maximal cluster M(k*), after which remove the l* cluster from M. Define the
new cluster’s cardinality as Nk* + Nl*, and put that as the cardinality of cluster
k*. Put the height added to the height of the previous merger equal to D(k*, l*)
and draw the merger accordingly. (In fact, any sequence of reals monotonically
following the order of mergers can be used as a height function.)

5. Output: the set of all merged clusters along with their heights. Draw a cluster
dendrogram, that is a tree, if K = 1, or a forest with K rooted trees if K > 1.
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Worked Example 4.15. Semi-average Clustering at the Original Confusion
Data
Let us take a symmetric version of the Confusion data obtained from the matrix A in
Table 1.8 using transformation (A + AT)/2, see Table 4.34.

The values of change of g(S) at consecutive mergers from S to S(k, l) form the
following sequence D(k, l): −484.0, −492.5, −605.3, −607.5, −667.6, −726.2,
−746.4, −767.3. This corresponds to the idea that each merger decreases the
semi-average g(S) because the very strong diagonal similarities are getting mixed
with much weaker off-diagonal similarities. Another feature of the sequence is that
each time the change is greater. Probably the observed monotonicity reflects the
presence of a natural cluster structure in the data. At such a structure, within-cluster
similarities are in general greater than those between clusters.

The observed monotonicity can be utilized in drawing the dendrogram. The
vertical axis on the right in Fig. 4.22 scores the heights of the interior nodes in the
dendrogram; the heights correspond to −470−D(k, l) values.

Let us point to less obvious features of the dendrogram. Clusters 1–4–7 and 3–
9–5 quite naturally fit at larger non-diagonal similarities between members of the
clusters (see in Table 4.34). On the other hand, a relatively high similarity 122

Table 4.34 A symmetric version of confusion data in Table 1.7

Stimulus Response

1 2 3 4 5 6 7 8 9 0

1
2
3
4
5
6
7
8
9
0

877.0
10.5
18.0
85.5
9.0
20.0
164.5
5.5
14.5
11.0

10.5
782.0
38.0
13.0
31.0
30.5
9.0
28.5
18.0
11.0

18.0
38.0
681.0
5.5
30.5
3.5
30.5
28.5
131.5
11.0

85.5
13.0
5.5
732.0
9.0
11.0
25.5
12.5
43.5
5.5

9.0
31.0
30.5
9.0
669.0
88.0
7.0
12.5
104.0
10.5

20.0
30.5
3.5
11.0
88.0
633.0
2.0
112.5
11.0
30.5

164.5
9.0
30.5
25.5
7.0
2.0
667.0
5.5
12.5
16.0

5.5
28.5
28.5
12.5
12.5
112.5
5.5
577.0
74.5
121.5

14.5
18.0
131.5
43.5
104.0
11.0
12.5
74.5
550.0
32.0

11.0
11.0
11.0
5.5
10.5
30.5
16.0
121.5
32.0
818.0

300

200

100 

1   7  4 3 9    5  6 8  2  0  

Fig. 4.22 Dendrogram of the
semi-average agglomeration
process for similarity data in
Table 4.34
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between 0 and 8 has not made it through: 0 is the last to merge into the tree. Why?
Perhaps the relatively high diagonal value, 818, for 0, has contributed to this. We
try to see to it in the next worked example.

Worked Example 4.16. Semi-average Clustering at the Confusion Data with a
Zeroed Diagonal
Let us take the very same Confusion similarity matrix A in Table 4.34 and make all
its diagonal entries 0, so that aii = 0 for all i = 1, 2, …, 10. Applying the same
Semi-average agglomeration algorithm to this dataset, we obtain the sequence of
mergers shown with the dendrogram in Fig. 4.23.

The sequence of changes D(k, l) of the criterion g(S) at consecutive mergers from
S to S(k, l) is this: 164.5, 131.5, 121.5, 88.0, 19.2, 11.7, −30.6, −48.1. The sequence
is monotone decreasing, like the similar sequence in the Worked example 4.15
above. However, unlike that sequence, this one consists of mostly positive reals.
Why is that? Because at the starting point of the agglomeration process here are
singleton clusters with zero within-cluster similarities, implying that g(S) = 0 at the
starting trivial partition. Merging two most similar objects, 1 and 7, adds the
average within-cluster similarity 164.5 to the value of g(S). Next merger, 3 and 9,
adds to this the similarity, 131.5, between objects forming a new cluster in the
dendrogram. Further four mergers add more to this, as reflected in the sequence of
the corresponding D(k, l) values: 121.5, 88.0, 19.2, 11.7. Then the maximum
change D(k, l) becomes negative, −30.6, at clusters 2–5–6 and 8–10 to be merged.
That means that the value g(S) would decrease at the merger and, therefore, no
further mergers should be made anymore, as the goal is to maximize g(S).

By comparing g(S) for the obtained partition S = {1–7–4, 5–6–2, 8–0, 3–9} with
g(T) where T = {1–7–4, 3–9–5, 6–8} is that found at Worked example 4.15, one
can see that g(S) = 536.3 and g(T) = 473.5. Therefore, at A with the diagonal
zeroed, S in Fig. 4.23 is by far better than T in Fig. 4.22.

Let us introduce the second partitioning algorithm, which implements the idea of
iteratively moving objects one-by-one into different clusters.

180

120

60

 0
1  7  4 5 6  2  8 0 3  9 

Fig. 4.23 Dendrogram of the
semi-average agglomeration
process for similarity data in
Table 4.34 with the zeroed
diagonal
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Moving Objects Between Clusters Algorithm: SA-Move
This algorithm takes in a partition S on the set of objects and loops through the

objects i = 1, 2, …, N, by testing whether moving i into a different cluster would
increase the value of criterion g(S). Because of its additivity, the change of g(S) at
moving object i from cluster Sk to cluster Sl can be expressed as

D i; Sk; Slð Þ ¼ g Skð Þ�2A i; Skð Þ½ �= Nk � 1ð Þ� g Slð Þþ 2A i; Slð Þ½ �= Nl þ 1ð Þ ð4:38Þ

where Nk and Nl are cluster cardinalities, g(Sk) and g(Sl) are parts (4.34) of the
criterion g(S) related to Sk and Sl, respectively, and A(i, S) the summary similarity
between object i and subset S. An important caveat: Eq. (4.38) is derived under
assumption that all the diagonal elements aii are zeros.

An exact formulation of the algorithm of local improvements by moving objects
can be different depending on the effort for finding the best version for a move.
A most rigorous version would require finding an I and Sl such that D(i, Sk, Sl) in
(4.38) is maximized. A most relaxed version would require pre-specifying an order
of objects and order of clusters and moving objects, in this order, to the very first
cluster Sl at which D(i, Sk, Sl) > 0.

Worked Example 4.17. SA-Move at the Confusion Data with a Zeroed
Diagonal
Let us apply SA-Move to the symmetric Confusion data with a zeroed diagonal
beginning with partition S = {1–7–4, 5–6–2, 8–0, 3–9} found in the Worked
example 4.16. It is not difficult to see that no move of an object can increase the
value g(S) = 536.3. For example, moving object 2 into cluster 1–7–4 would result
in the value of g-criterion equal to 495.0. Values of g equal to 510.5 and 518.2
would be returned if 2 is moved to cluster 8–0 or 3–9, respectively. Leaving 2 a
singleton would return 524.7. These all are less than g(S) = 536.3.

Let us then try the SA-Move algorithm beginning with T = {1–7–4, 3–9–5, 6–
8}. Adding object 2, which is outside of the partition T, to either of clusters 1–7–4,
3–9–5, 6–8 returns g-value 443.8, 472.7, 475.3, respectively. Of these, 475.3 is
greater than g(T) = 473.5. Should we thus take cluster 6–8–2 instead of 6–8 then?
No, this is not advisable because adding 0 to cluster 6–8 gives a by far greater rise
of the value of g, to 537.3! Unfortunately, further adding of 2 to either of the three
triplet clusters may only decrease the g-value (to 507. 7, 536.5, 528.2, respectively).
Now we see that the updated partition T′ = {1–7–4, 3–9–5, 6–8–0, 2} is better than
the partition S = {1–7–4, 5–6–2, 8–0, 3–9} found with the SA-Agglomeration
algorithm!

Why then the SA-Move failed in improving S? To properly answer to the
question, one must note that T′ cannot be obtained from S by moving single objects.
Two objects, 5 and 6, should be moved simultaneously, to 3–9 and 6–8, respec-
tively, to obtain T′ from S. It is not difficult to modify the SA-Move algorithm for
moving pairs rather than individual objects; however, so far, no such a version has
been proposed and substantiated.
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A conclusion: SA-Agglomeration algorithm does not necessarily lead to optimal
partitions, even with a zeroed diagonal. Moving individual objects may fail to
further optimize the Agglomeration results.

Q.4.27. Take the Eurovision song contest data A from Table 1.11, symmetrize it
using transformation AA = (A + AT)/2 and apply SA-Agglomeration method. How
many clusters are recommended by the semi-average criterion g(S)?
A. The symmetric data matrix is in Table 4.35.

The order of mergers is illustrated by the dendrogram in Fig. 4.24. The values of
the change D(k, l) at mergers form the sequence seq = 10.0, 9.0, 8.6, 8.0, 6.0, 4.6,
4.2, 4.0, 2.8, 2.0, 1.9, 0.5, −0.4, −0.4, −2.2, −6.1, −7.8. The heights of the cor-
responding nodes correspond to values 11-seq. As one can see, only 12 mergers
lead to the increase in g(S) value.

Therefore, the number of clusters recommended by the semi-average criterion is
7. They are:

(1) Az-Ukr-Rus,
(2) Bul-Greece-Serbia,
(3) Belg-Neth,
(4) Ger-UK,
(5) Est-Pol,
(6) Fr-Isr-Switz, and
(7) It-Rom-Port-Spain

The clusters correspond to cultural or ethnic relations between countries.
Specifically, cluster (1) is for the former Soviet Union, cluster (2) for Balkans,
cluster (3) for Low countries, cluster (5) for Baltics, cluster (7), for Romance
languages. Less obvious are clusters (4) and (6).

4.6.3 Summary Similarity Clustering

4.6.3.1 Min-Cut and Ford-Fulkerson Network Flow

Consider a heuristic clustering criterion which is somewhat simpler than the
semi-average similarity in (4.33)—the sum of within cluster similarities

f ðSÞ ¼
XK
k¼1

X
i;j2Sk

aij ¼
XK
k¼1

A Sk; Skð Þ ð4:39Þ

where A(Sk, Sk) is the summary similarity (4.36) within cluster Sk.
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This seems a perfect criterion for clustering—it is simple and intuitive (see
Fig. 4.25). The greater the within cluster total similarity, the tighter are the clusters.
Maximizing this criterion should lead to a partition consisting of clusters of highest
internal similarity.

What is nice about f(S) in (4.39) is that its maximum corresponds to the mini-
mum of the sum of all between cluster similarities

Az Ukr Ru Bu Gr Se Be Ne Ge Uk Fr Is SwEs Pol It Ro Sp Por

Fig. 4.24 Dendrogram of the semi-average agglomeration process for Eurovision song contest
data (symmetric)

S1

S2

S1                           S2

Fig. 4.25 The structure of the similarity matrix regarding partition {S1, S2} of the entity set,
which is assumed sorted so that elements of S1 stand first. The blocks out of the main diagonal
show similarities between S1 and S2, whereas those on the main diagonal refer to similarities within
the parts

374 4 Core Partitioning: K-means and Similarity Clustering



hðSÞ ¼
X
k 6¼l

A Sk; Slð Þ

Obviously, the sum of within-cluster and between-cluster similarities f(S) + h(S)
covers all the entries in A; each only once. This implies that f(S) + h(S) = A(I, I) where
I is the set of allN objects, so that A(I, I) is constant at a specifiedmatrix A. To illustrate
the claim, just take a look at Fig. 4.25: the square representing the similaritymatrix there
is divided in two parts: that of diagonal strips, the within-cluster similarities, and that
with horizontal strips, the between-cluster similarities. Therefore, any S maximizing
f(S) simultaneously minimizes h(S).

In the case, when there are only two clusters, S = {S1, S2}, the value of h(S) is
referred to as a cut and the problem of minimization of h(S) is referred to as the
min-cut problem in the theory of optimization.

At a nonnegative A, h(S) obviously reaches its minimum when the
between-cluster blocks in Fig. 4.25 are reduced to just mere one line and column,
that one having the minimum sum of its entries. Therefore, an optimal cut is a most
unbalanced partition: a singleton and the rest, which is not what should be con-
sidered a proper clustering. Such a solution can be avoided if one imposes
admissibility constraints on possible solutions. For example, only equal-sized
clusters may be admitted—this constraint make the problem very hard. A popular
approach is to specify two objects that must be in different clusters. a capacity A
flow in a network is arranged between two nodes, a source and a sink. Each link (i, j)
is considered as a pipeline capacity of which is limited by the similarity value aij.
A flow is a skew-symmetric function f(i, j) (that is, f(i, j) = −f(j, i) for any pair
i 6¼ j) defined over the network so that f(i, j) � aij, and, for any i which is neither
the source nor the sink, the sum of f(i, j) over all j is zero. The sum of f(source, j)
over all j is referred to as the flow value. The problem is to find a flow of the
maximum value. This can be done iteratively by sending a unit of the flow over
each path from the source to sink, which has yet a capacity to do so, that is, if aij −
f(i, j) > 0 for all edges (i, j) on the path. There is a celebrated Ford-Fulkerson
theorem stating that the maximum flow between the source and the sink is equal to
the min-cut separating them (see Ahuja et al. 2014 for a more precise exposition).
The maximum flow can be used to determine the corresponding min-cut. The
cluster containing the source is determined as the set of all nodes reachable from the
source by using “unsaturated” paths. Given a maximum flow f, an unsaturated path
is a set of neighboring edges (i, j) such that aij − f(i, j) > 0.

Q.4.28. Given a network with similarity matrix A, let us denote a(s, t) the value of
min-cut in the network with source s and sink t. Prove that the pair-wise min-cut
index a(s, t) is an ultra-similarity. A pair-wise similarity index a(s, t), s, t = 1, 2,…,
N, is referred to as an ultra-similarity if inequality
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a s; tð Þ�min a s; rð Þ; aðt; rÞð Þ ð4:40Þ

holds for all nodes s, t, r.

A. To correctly answer this question, one needs to see that the ultra-similarity
condition (4.40) means that at every triplet s, t, r, two of the values a(s, t), a(s, r),
and a(t, r), are equal to each other, whereas the third one is either larger or the same.
Indeed, if the opposite is true, that is, only one of the values, say a(s, t), is smaller
than the others, then of course (4.40) does not hold for a(s, t). Assume now that a
min-cut similarity index dos not satisfy (4.40) at some triplet s, t, r, so that
a(s, t) < a(s, r) � a(t, r). Consider min-cut at source s and sink t; its value is a(s, t).
The node r must belong to either of two clusters, say, to the cluster containing s.
Then the current partition can be considered as a cut, that is, partition, with source r
and sink t such that its value, a(s, t), is smaller than the min-cut a(t, r) = a(r, t). The
obtained contradiction proves the statement.

To obtain meaningful clusters, similarity data have to be transformed to sharpen
the structure to be found in a manner similar to the transformation of
object-to-feature data by standardization. Since all similarities are measured in the
same scale, no normalization by rescaling is applied—that would just change the
unit of measurement. The number of models of background, to be subtracted from
the data, is potentially infinite. So far, two of them made it into the literature,

(i) Uniform scale shift, or soft threshold, in which the background value of
similarity indices is considered constant, and

(ii) Modularity function, in which the background is assumed to be generated by
random interactions between objects.

These two will be considered in the next two sections.
Subtraction of background makes some A-entries negative, leaving others pos-

itive. The problem of minimum cut with negative similarity values becomes
computationally intensive, referred to as NP-complete in the theory of combina-
torial optimization (see, for example, Johnsonbaugh and Schaefer 2004). This
implies that local or approximate algorithms would be a welcome development for
the problem.

4.6.3.2 Uniform Similarity Shift Value Subtracted

Given a similarity shift value p, shifted similarity matrix A − p has aij − p as its (i, j)-th
entry. Therefore, the summary within-cluster criterion (4.39) can be reformulated
here as

f S; pð Þ ¼
XK
k¼1

X
i;j2Sk

aij � p
� � ð4:41Þ
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The summary criterion with the uniform noise subtracted is referred to as uni-
form clustering criterion (Mirkin 1996, 2012), The criterion leads to a distinction
between those pairs (i, j) at which aij > p and those at which aij � p. In the former
case, i and j should be put in a same cluster in S, whereas i and j should be separated
in S, in the latter case, because the goal is to maximize (4.41). Thus, p is not only
the similarity scale shift, but also a threshold. Unlike the concept of threshold used
in the definition of threshold graphs that are obtained from weighted graphs by
zeroing those weights which are smaller than the threshold (see Sect. 5.3.1), this
threshold is not hard, it is soft: a pair i, j can be put into the same cluster, even for
aij � p, if there are other objects whose similarities to both i and j are great
enough. This meaning of p is illustrated by Fig. 4.26.

To give this meaning a more precise formulation, let us introduce the concept of
average similarity between clusters:

a Sk; Slð Þ ¼ 1
NkNl

X
i2Sk

X
j2Sl

aij ¼ 1
NkNl

A Sk; Slð Þ

where Nk and Nl are cardinalities of Sk and Sl, respectively. Of course, at k = l, the
value a(Sk, Sk) is the average similarity within cluster Sk.

The following statement is true: if S is an optimal partition according to criterion
(4.41), then for any its clusters Sk and Sl, a(Sk, Sk) � p � a(Sk, Sl).

Indeed, those parts of matrix A- p that relate to clusters Sk and Sl produce sums
r(Sk, Sl) = A(Sk, Sl) − pNkNl and r(Sk, Sk) = A(Sk, Sk) − p N2

k whose signs are
different in an optimal partition. Specifically, if S is optimal, then for any Sk and Sl
r(Sk, Sk) � 0 and r(Sk, Sl) � 0 if k 6¼ l. Indeed, admitting that r(Sk, Sk) < 0 for
some k, one can easily improve the partition S by scattering all elements of Sk into
singletons, thus adding 0 to criterion (4.41) rather than a negative quantity (let us
remind that the diagonal entries are assumed zero, aii = 0). Similarly, admitting that
r(Sk, Sl) > 0 for some k 6¼ l leads to a simple way for improving S by merging

aij

ij 

Fig. 4.26 Illustration of the effect of subtraction of a constant background “noise” from the
similarity values. The graph shows similarity values (axis y) against some ordering of entity pairs
(i, j) over x-axis. At zero noise level, the area of positive similarity values is much larger than that
above the dashed line at which the area narrows down to two small high similarity islands
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clusters Sk and Sl, since the merger would add a positive quantity to the value of the
criterion. This proves the inequalities. Dividing them by NkNl and N2

k , respectively,
leads to the inequalities under consideration.

Yet one more meaning of p emerges from a simple transformation of criterion
(4.41). If we open the parentheses in the criterion, then we will see that the value of
p on its own is summed N2

k times within k-th cluster Sk, so that the following
equation holds:

f S; pð Þ ¼
XK
k¼1

X
i;j2Sk

aij � p
� � ¼ XK

k¼1

A Sk; Skð Þ � p
XK
k¼1

N2
k ð4:42Þ

This equation show that criterion f(S, p) in (4.41) is effectively the very same
within-cluster summary criterion (4.39) minus a regularizer, the item on the right,

eðSÞ ¼
XK
k¼1

N2
k ð4:43Þ

at which p is just a factor.
Regularizer, in general, is an item to be added to an objective function to

improve an aspect of solutions to be found, even at the price of losing some
effectivity. What aspect is to be improved by adding − pe(S)? According to the
formula in (4.42), the smaller the e(S), the greater the f(S, p). As is well known, the
minimum of e(S) is reached at the case at which all the clusters are equal-sized,
N1 = N2 = …=NK. Therefore, this regularizer tries to make a more balanced par-
tition, and p is just the weight of this additional goal, while the original goal,
maximization of f(S) has its weight equal to 1.

The concept of regularizer is known in data analysis for quite a while already,
but recently it became ubiquitous. Nowadays, regularizers are applied by the users
any time when a solution should be more comprehensible and smoother (see, for
example, Efron and Hastie 2016), Here we see a regularizer emerging quite natu-
rally from just the scale shifting. It should be mentioned that, in fact, subtraction of
pe(S) is equivalent to addition of the Gini index (see formula (2.14) in Sect. 2.3.1)
multiplied by pN2 (see Q.4.30).

Q.4.29. Prove that e(S) in (4.43) can be expressed through Gini index as e(S) =
N2 − N2g(S).
A. Obviously follows from the definition of Gini index g(S) in formula (2.14),
Sect. 2.3.1.
In fact, the claim that e(S) regularizes the balance in cluster sizes can be formulated
more precisely.
Q.4.30. Assume that S and S′ are optimal partitions according to criterion (4.41)
at shifts p and p′, respectively. Let, for example, p < p′. Then, necessarily
e(S′) � e(S). Prove that.
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A. To prove the statement, let us consider inequalities f(S, p′) � f(S′, p′) and
f(S′, p) � f(S, p). These follow from the fact that S′ and S are optimal at corre-
sponding values of the shift. Then the item (4.37) in the left and right parts of the
inequalities can be equivalently removed, so that the inequalities could be refor-
mulated as −p′e(S) � −p′e(S′) and −pe(S′) � −pe(S). These can be turned in
0 � p′[e(S) − e(S′)] and p[e(S) − e(S′)] � 0, so that p[e(S) − e(S′)] � p′[e(S) −
e(S′)]. This implies that (p′ − p)[e(S) − e(S′)] � 0. Dividing the last inequality by
the positive difference (p′ − p) > 0 proves the statement.

Let us consider an agglomerative algorithm for uniform partitioning. It is quite
similar to SA-Agglomeration above, except for the formula of the criterion change
at a merger. It is easy to prove that merging clusters Sk and Sl changes f(S, p) by

D k; lð Þ ¼ 2A Sk; Slð Þ � 2pNkNl;

which is as based on inter-cluster summary similarities A(Sk, Sl) as changes in the
Semi-average criterion (4.35), although the relation is somewhat simpler.

This can be made even simpler if matrix A is preliminarily transformed by
subtraction p from all its entries, A ( A − p. With thus transformed A, the change
of the criterion f(S, p) after a merger can be expressed as

D k; lð Þ ¼ 2A Sk; Slð Þ: ð4:420Þ

Therefore, an agglomerative algorithm for uniform partitioning can be formu-
lated as follows.

Agglomerative Clustering Algorithm for Uniform Partitioning:
SU-Agglomeration

1. Initial setting. Set K = N, put all entities k2I to singleton clusters Sk = {k}, with
their cardinalities set to unity and heights to zero; form a cluster-to-cluster
similarity matrix AA = (A(k, l)) between them, with A(k, l) = akl − p, and a list
of maximal clusters M consisting of all the singletons at this stage. Set flag = 1
and do the following steps till flag changes.

2. Finding maximum. Using matrix AA, compute all D(k, l) (4.42) and find their
maximum D(k*, l*) where k* < l*.

3. Stop condition. If D(k*, l*) < 0, put flag = 0. If K = 2, put flag = 0.
4. Merge and update. Merge two maximal clusters, Sk* and Sl*, together to form

their parent in the dendrogram, a new maximal cluster Sk*[ l* = Sk*[ Sl*. To do
this, add the row l* to the row k* in AA; after this, add column l* to column k*
in AA, after which remove l* row and column from AA—its size now is K−1, so
change K by subtracting 1 from it. Similarly, add maximal cluster M(l*) to
maximal cluster M(k*), after which remove the l* cluster from M. Define the
new cluster’s cardinality as Nk* + Nl*, and put that as the cardinality of cluster
k*. Put the height added to the height of the previous merger equal to D(k*, l*)
and draw the merger accordingly. (In fact, any sequence of reals monotonically
following the order of mergers can be used as a height function.)
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5. Output: the set of all merged clusters along with their heights. Draw a cluster
dendrogram, that is a tree, if K = 1, or a forest with K rooted trees if K > 1.

To complete the general description, let us briefly discuss the issue of choice of
the scale shift in criterion f(S, p). This can be considered a device in the user’s
hands to control the granularity of the clustering by using a different perspective. So
far, we encountered two ways for regulation of the granularity of the analysis:

(i) Directly, by specifying a global parameter of an admissible partition, the
number of clusters K, as it is in K-means clustering;

(ii) Less directly, by specifying a local parameter of an admissible partition, the
minimum cluster size, as it is in iK-means clustering.

Here is one more parameter, which involves no partition but rather the data
under analysis. What similarity level is insignificant? That lesser than threshold p.
An example of a situation in which that can be useful: let entries aij reflect the level
of interaction between two control units at an industrial enterprise, so that

mark 1 scores “opinion exchange”;
mark 5, “giving/receiving helpful advices”;
mark 15, “giving/receiving orders”;
mark 20, “giving/receiving resources”.

Then the user may establish p = 10 if the goal of the analysis is to analyse the
linear control structure, or p = 1 if the goal of the analysis is to cover all types of
working interactions.

In a general case, when setting threshold value is of an issue, it is advisable
setting p on the average similarity level.

Worked Example 4.18. Uniform Clustering of Confusion Dataset with a
Zeroed Diagonal
Let us take the Confusion similarity matrix A in Table 4.34 with all its diagonal
entries set to 0, so that aii = 0 for all i = 1, 2, …, 10. Find the average non-diagonal
value by dividing the sum of all the entries over 90. That produces p = 33.46.

Applying the SU-agglomeration algorithm to this dataset with this p, we obtain
the sequence of mergers shown with the dendrogram in Fig. 4.27.

The sequence s of changes D(k, l) (4.42) of the criterion f(S, p) at consecutive
mergers from S to S(k, l) is this: 262.1, 196.1, 176.1, 152.2, 135.2, 88.2. No further
mergers are made, because next mergers would decrease the value of the uniform
partitioning criterion: next best merger, item 2 into cluster 3–9–5, would make the
criterion value to go down by adding −26.7. The sequence is monotone decreasing,
like in the other similar sequences. Therefore, this process brings forward four
natural confusion clusters: 2, 5–3–9, 0–6–8, and 1–4–7. The interior point heights
in the dendrogram follow the rule 280 - s. This set of clusters accords well with
other clustering results over the dataset.
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Q.4.31. Uniform partition clusters at Eurovision song contest data.
Take the Eurovision song contest data A from Table 4.35 and apply
SU-Agglomeration method at p = 2. How many clusters are found by the method?
A. The order of mergers and other relevant information is provided in Table 4.36.

These mergers provide no monotonic sequence of changes D, unlike in the
previous examples in Sect. 4.6.2. There are four non-singleton clusters which
embrace 16 objects out of 19—Est, Pol, and Switz have not made it to the clusters.
Moreover, the current clusters somewhat differ from those in Fig. 4.24, as previ-
ously found clusters (1) and (2), Former Soviet Union and Baltics, form a cumu-
lative cluster in line 7 of Table 4.36. The previous “less obvious” cluster (6) has
disappeared altogether while leaving the Romance languages cluster intact (in line
12 of Table 4.35).

1    7    4    3    9   5    8   0   6   2 

200

100

0

Fig. 4.27 Dendrogram of the
SU-agglomeration process for
similarity data in Table 4.31
with the zeroed diagonal at
the scale shift p = 33.46

Table 4.36 Mergers of Eurovision song contest data according to the uniform partitioning
criterion at p = 2

Merger Cluster Sk Cluster Sl D(k, l)

1 Az Ukr 16.1
2 Az, Ukr Rus 25.9
3 Az, Ukr, Rus Isr 15.0
4 Az, Ukr, Rus, Isr Serb 14.8
5 Az, Ukr, Rus, Isr, Serb Gre 14.3
6 Az, Ukr, Rus, Isr, Serb, Gre Rom 21.4
7 Az, Ukr, Rus, Isr, Serb, Gre, Rom Bulg 16.5
8 Fra Ita 6.1
9 Fra, Ita Por 5.5
10 Belg Neth 5.3
11 Ger UK 4.1
12 Fra, Ita, Por Spain 3.9
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Q.4.32. Uniform partition clusters at Eurovision song contest data at a dif-
fering scale shift. The average value of off-diagonal entries of the Eurovision song
contest data in Table 4.35 is 1.786. Would using this threshold increase the number
of non-singleton clusters?
A. No, it would not. Although in this setting Pol and Est merge at 13th step, to form
a new non-singleton cluster, at the next 14th step Fra-Ita-Por cluster merges with
Ger-UK cluster, so that the number of non-singleton clusters, four, remain. Another
oddity is that Sp now joins the largest cluster rather than that of the Romance
languages. However, this solution seems less convincing than that in the previous
Question. There is no sharp boundary between “wanted” and “unwanted” mergers
here: the two last mergers added mere 0.33 and 0.07, respectively, to the value of
the criterion. This contrasts the much larger value 4.53 added at the previous, 12th
merger (compare with the last positive change of the criterion, 3.9, in the setting of
Q.4.31 at p = 2).

Case-Study 4.7. Summary Clustering at Flat Networks
Consider graphs in Fig. 4.28. They can be considered as representing 0–1 similarity
matrices whose ij-th entry is 1 if i and j are linked in the corresponding graph, and 0
if i, j nodes are not connected. Similarity matrices corresponding to these graphs are
in Tables 4.36 and 4.37.

Before applying SU-Agglomeration to the Cockroach graph on Fig. 4.28a take a
look at its structure with a naked eye. The structure seems a bit difficult for clus-
tering, although sets 1–2–3, 7–8–9 and the rest seem good candidates for clusters.

The average value in the matrix (Table 4.37) is 0.26. After subtracting that, the
unity entry changes for 0.74 and the zero entry, for −0.26.

How can one apply the maximum similarity rule in the algorithm in a case like
this: all positive entries are the same? Well, the MatLab routine for computing the
maximum value takes care of that. It keeps data of the very first maximum value if
there are several of them. Therefore, the SU-Agglomeration algorithm first merges
doubletons 1–2, 3–4, 5–6, 7–8, 9–10, and 11–12. After this, only one positive
nondiagonal entry at AA matrix remains, 0.96, between 5–6 and 11–12. This

7 8 9 10 11 12

1 2 3 4 5 6

(a)

1(b)

2 4 5 6

3

Fig. 4.28 Illustrative
ordinary graphs: “Cockroach”
in (a) and “Tail” in (b)
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completes the action with five clusters: 1–2, 3–4, 7–8, 9–10, and 5–6–11–12. At the
average level of resolution, only the Cockroach’s head makes it into a cluster; the
others form doubletons, according to the summary criterion (4.41).

Similarly, SU-Agglomeration at the Tail graph data in Table 4.38 with both the
average p value of 0.39 and the mid-interval 0.5 value leads to uniform clustering
clusters 1–2–3–4 and 5–6. Almost all—except for (4,5)th entry—the similarities
between these two clusters are negative. However, further increase in the scale shift
value, say, to p = 2/3, may break this. Indeed, at this value of p, joining node 4 into
a tight cluster 1–2–3 becomes too costly: it brings in two positive entries of 1/3 and
two negative values of −2/3, totalling to −2/3. Therefore, at p = 2/3, uniform
non-singleton clusters are 1–2–3 and 4–5.

4.6.3.3 Modularity Clustering

A rather popular approach to clustering, notably, to discovering communities in
networks is referred to as “Modularity clustering”. This approach is based on a
probabilistic interpretation of the similarities. Any similarity index is considered as
emerging from interactions between the objects. According to this interpretation,

Table 4.37 Similarity matrix of cockroach graph, Fig. 4.28a; empty places stand for 0

# 1 2 3 4 5 6 7 8 9 10 11 12

1 1
2 1 1
3 1 1
4 1 1 1
5 1 1 1
6 1 1
7 1
8 1 1
9 1 1
10 1 1 1
11 1 1 1
12 1 1

Table 4.38 Similarity matrix for the tail graph, Fig. 4.28b; empty places stand for 0

# 1 2 3 4 5 6

1 1 1 1
2 1 1
3 1 1 1
4 1 1 1
5 1 1
6 1
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each object i is assigned with a probability of interaction, equal to the proportion of
the summary similarity in the i-th row in the whole summary volume of the sim-
ilarities. Therefore, random interactions between two entities will occur with the
probability equal to the product of their respective probabilities. To clear the scored
similarity index values from these random interactions, the latter should be sub-
tracted from the former. Then the summary clustering criterion applies (see
Newman 2006).

Let us give a more precise formulation. In this approach, similarity matrix A is
considered as a contingency table. Then relative frequencies are derived.
Specifically, define the interaction summary values aiþ ¼ Rj2I aij at any of the
objects, i. The total sum is aþ þ ¼ Ri;j2I aij. Under the assumption that the random
interaction between entities i and j is proportional to the interaction summary
values, the background similarity is defined as the product kij = ai+aj+/a++; the
denominator is added to return the product to the original unit of measurement of
similarities in A. The within-cluster summary similarity criterion (4.39) is applied to
the residual similarity values found by subtracting the “background” similarity from
A. This criterion is referred to as the modularity criterion:

mðSÞ ¼
XK
k¼1

X
i;j2Sk

aij � kij
� � ¼ XK

k¼1

X
i;j2Sk

aij � aiþ aþ j=aþ þ
� �

Obviously, this criterion is the within-cluster summary criterion f(S) (4.39)
applied to matrix C = (cij) where cij = aij − ai+aj+/a++.

Worked Example 4.19. Modularity Clustering for Confusion Dataset
To apply the modularity transformation, let us take the original Confusion data
matrix in Table 1.5 and compute for it the matrix of random interactions (kij). This
matrix is subtracted from the data matrix, the result of which is made symmetric
with its transpose added and the result halved. Then the diagonal is zeroed. The
resulting matrix is in Table 4.39.

The SU-Agglomeration algorithm in this case is modified at the very first step:
the preliminary transformation now is aij ( aij − kij (modularity), rather than aij (
aij − p (uniform).

The agglomeration process is illustrated with the dendrogram in Fig. 4.29; the
heights correspond to the sequence of changes in the value of the criterion at the
mergers, 259.1, 176.0, 175.6, 150.7, 130.5, 121.7, 44.1, subtracted from 280.

Further mergers would decrease the criterion value; thus three clusters, 1–7–4,
3–9–5, and 8–0–6–2, are output. These much resemble clusters found with the same
algorithm at the data preprocessed by subtraction of a uniform scale shift value. The
only difference is in the allocation of digit 2. In contrast to joining the cluster of
“round” figures here, that forms a cluster of its own at the uniform scale shift value,
which is probably about right. The difference is caused by the fact that similarities
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of digit 2 with the rest are relatively small. This separates 2 from the rest at the
uniform shift value. This, however, makes its random interactions smaller as well,
so that the residual values remain positive leading to the fact that 2 becomes a
welcome member of the cluster 8–0–6.

Worked Example 4.20. Modularity Clustering of Tail Dataset
For matrix A of the Tail graph dataset (Table 4.38), the matrix of random inter-
actions ai+a+j/a++ is as follows:

0:64 0:43 0:64 0:64 0:43 0:21
0:43 0:29 0:43 0:43 0:29 0:14
0:64 0:43 0:64 0:64 0:43 0:21
0:64 0:43 0:64 0:64 0:43 0:21
0:43 0:29 0:43 0:43 0:29 0:14
0:21 0:14 0:21 0:21 0:14 0:07

By subtracting that from A and zeroing the diagonal entries, one obtains the
residual similarity matrix R:

Table 4.39 Confusion data after subtraction of random interactions and symmetrization

0 −12.70 −16.96 57.70 −26.93 −18.89 129.54 −41.18 −35.74 −12.20

−12.70 0 19.50 0.22 12.28 11.56 −7.62 3.42 −9.71 −5.26

−16.96 19.50 0 −14.90 0.97 −26.56 4.06 −10.95 88.01 −14.05

57.70 0.22 −14.90 0 −11.59 −9.56 7.55 −15.23 12.72 −13.22

−26.93 12.28 0.97 −11.59 0 57.61 −19.71 −27.50 59.87 −15.07

−18.89 11.56 −26.56 −9.56 57.61 0 −24.80 71.71 −34.14 3.66

129.54 −7.62 4.06 7.55 −19.71 −24.80 0 −30.40 −27.29 −7.88

−41.18 3.42 −10.95 −15.23 −27.50 71.71 −30.40 0 15.69 87.82

−35.74 −9.71 88.01 12.72 59.87 −34.14 −27.29 15.69 0 −4.70

−12.20 −5.26 −14.05 −13.22 −15.07 3.66 −7.88 87.82 −4.70 0
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Fig. 4.29 Dendrogram of the
SU-agglomeration process for
similarity data in Table 4.39
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R ¼

0:00 0:57 0:36 0:36 �0:43 �0:21
0:57 0:00 0:57 �0:43 �0:29 �0:14
0:36 0:57 0:00 0:36 �0:43 �0:21
0:36 �0:43 0:36 0:00 0:57 �0:21

�0:43 �0:29 �0:43 0:57 0:00 0:86
�0:21 �0:14 �0:21 �0:21 0:86 0:00

The SU-Agglomeration process leads to consecutive mergers illustrated in the
dendrogram in Fig. 4.30 and corresponding sequence of changes of the summary
criterion, 1.71, 1.14, 1.86, 0.71, this sequence is not monotone again. Therefore, the
dendrogram under consideration is drawn according to a proper height function
defined by cumulative summation of these values: 1.71, 2.86, 4.71, 5.43.

What seems somewhat odd at these results in the view of graph structure in
Fig. 4.28b: (1) rather peripheral items 5 and 6 merge first; (2) item 4 joins not to the
triangle 1–2–3, with which it is connected by 2 links, but rather to a weaker
doubleton 5–6. This is explained by the structure of positive entries in matrix R,
which is, in turn, can be explained by the very same phenomenon, as in the previous
example. The residual similarities between 4, 5, and 6 are greater because weaker
interactions are subtracted from the 0/1 values in the original data matrix. The
modularity approach makes weaker links comparatively larger.

Q.4.33. What clusters are brought in by the modularity approach to the Cockroach
data in Table 4.37?
A. Finally, there are three modularity clusters: 1–2–3, 7–8–9, and 4–5–10–11–6–
12. They differ from those found with uniform partitioning in Case-Study 4.7, but
probably may be considered as natural as those found there, 1–2, 3–4, 7–8, 9–10,
and 5–6–11–12.

1      2      3     4      5     6     

6

3

0

Fig. 4.30 Dendrogram of the
SU-agglomeration process for
the residual Tail matrix
R above
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4.7 Consensus Partitioning

To introduce the subject, let us consider the Digits data from Sect. 1.2: these are ten
numerals for which we have both a naïve digital system for putting them on screen,
and a matrix of confusion between them by a human eye. The naïve digital
drawings are represented by seven binary features corresponding to presence/
absence of a corresponding segment in the drawing (see Table 4.40).

. Different algorithms or subjective opinions may bring forward a number of
partitions of them, such a those presented in Table 4.41.

If one takes a close look at the partitions R1, R2, …, R11 in Table 4.41, one can
see that they are not incompatible. Say, digits 1 and 7, as well as 8 and 0, belong in
the same part in almost all eleven partitions, except for one.

Moreover, partitions R1, R3 and R9 coincide. Figure 4.31 illustrates the parti-
tions: it shows, by closed pointed lines, parts/clusters in partitions R1 (see part (a)),
R7 (see part (b)), and R4 (see part (c)).

There can be several situations at which the user encounters an ensemble of
partitions such as that in Table 4.39. Two most usual are:

– Partitions are results of different clustering algorithms or even of different runs
of the same clustering algorithm, such as K-means at different initial settings;

– Partitions represent various nominal features of the objects.

The ensemble in Table 4.41 has been obtained by runs of iK-means algorithm
over reduced data tables obtained from that in Table 4.40 by removing two columns
selected randomly. This may be considered an imitation of the situation at which no
data holder has a full dataset.

A partition which “accommodates” most of common characteristics of the
partition ensemble under consideration is referred to as a consensus partition.
A most popular approach to building a consensus partition is through defining it as
a central partition according to some partition-to-partition association or distance
measure. If such a measure is selected, then the central partition for a given
ensemble of partitions R1, R2,…, Rm of a finite set I is defined as such an S that
minimizes the summary distance

D Sð Þ ¼
Xm
t¼1

d S;Rtð Þ ð4:44Þ

where d(S, Rt) is the selected distance measure between partitions S and Rt.
In Chap. 3, we defined two distance measures between partitions, the mismatch

distance (3.54) and dummy matrix regression distance (3.41). Let us recall them in
this order.

The mismatch distance can be defined using binary N � N matrices of partitions.
Given a partition R on set I, its binary matrix r = (rij) is defined as:
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Table 4.41 Eleven partitions of the set of 10 numerals, each represented by a column assigning
entities to the corresponding cluster numbers

Digit R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

1
2
3
4
5
6
7
8
9
0

1
2
3
3
3
2
1
2
3
2

1
2
3
1
3
2
1
2
3
2

1
2
3
1
3
2
1
2
3
2

2
2
2
3
1
1
2
3
3
2

1
3
3
3
2
2
1
3
3
3

1
3
3
1
2
2
3
4
3
4

1
3
4
1
2
2
1
3
4
3

1
2
3
1
3
2
1
2
3
2

1
2
3
3
3
2
1
2
3
2

2
3
2
2
1
1
2
3
3
3

1
2
3
1
3
2
1
2
3
2

Table 4.40 The table of digit-to-edge features e1 to e7 according to Fig. 1.2 in Sect. 1.2.1

Numeral e1 e2 e3 e4 e5 e6 e7

1 0 0 1 0 0 1 0
2 1 0 1 1 1 0 1
3 1 0 1 1 0 1 1
4 0 1 1 1 0 1 0
5 1 1 0 1 0 1 1
6 1 1 0 1 1 1 1
7 1 0 1 0 0 1 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1
0 1 1 1 0 1 1 1

(a)  (b)

(c)

Fig. 4.31 Three replicas of segmented numerals from Fig. 1.2 in Sect. 1.2.3. Each shows a
partition from Table 4.41, specifically, R1 (in (a)), R7 (in (b)), and R4 (in (c))
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rij ¼ 1 if i; jð Þ 2 q
0 if i; jð Þ 62 q

�

so that rij = 1 if and only if i and j belong in the same part of R. For example, matrix
of partition R1 in Table 4.41 is in Table 4.42a, whereas matrix of partition R7 in
Table 4.41 is in Table 4.42b.

The mismatch distance between partitions is the mismatch (Hamming) distance
between their matrices:

d R;R0ð Þ ¼
X
i;j2I

rij � r0ij
			 			 ¼ X

i;j2I
rij � r0ij


 �2

The right-hand equality follows from the fact that rij � r0ij
			 			 is either 0 or 1.

Therefore, d(r1, r7) = 1 + 1 + 2 + 5 + 4 + 4 + 1 + 1 + 2 + 1 = 22. For the sake of
convenience, the total sums contributions of all rows.

The second distance is a bit more complex. First of all, it is asymmetric: one
needs to decide which is taken to be a predictor for the second. Let it be R7 as that

Table 4.42 Binary 10 � 10 matrices of partitions R1 and R7 from Table 4.41 (zeros are
presented by blank spaces)

(a)

r1 1 2 3 4 5 6 7 8 9 0

1 1 1

2 1 1 1 1

3 1 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

7 1 1

8 1 1 1 1

9 1 1 1 1

0 1 1 1 1

(b)

r7 1 2 3 4 5 6 7 8 9 0

1 1 1 1

2 1 1 1

3 1 1

4 1 1 1

5 1 1

6 1 1

7 1 1 1

8 1 1 1

9 1 1

0 1 1 1
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with a greater number of parts. Then one needs the orthogonal projector PX for the
predictor. Rather than using N � N similarity matrices, this approach uses partition
incidence matrices. A dummy incidence matrix Y for R1 is a binary N � 3 matrix
whose columns correspond to individual parts, and (i, t)-th entry is 1 if object
i belongs to t-th part, and 0, if not. The distance is measured by the squared
differences between Y and its projection PXY onto the linear subspace span by
columns of X, a similar object-to-part binary matrix for the predictor, R7. All these
matrices are presented in Table 4.43 including the difference Y − PXY. The sum of
the squared entries of this latter matrix, is equal to 2.333 (Table 4.43).

It appears, the central partition according to each of these two distances involves
the so-called consensus matrix. This is a N � N similarity matrix C = (cij). Given
an ensemble of m partitions on I, for every pair of objects, i and j, its entry cij is
defined as the number of partitions at which the objects belong in the same cluster.

The consensus matrix for the eleven partitions in Table 4.41 is presented in
Table 4.44. How its elements are calculated? Let us illustrate with some entries in
3-d row:

– c33 = 11 because 3 is in a cluster in all the eleven partitions;
– c34 = 4 because digits 3 and 4 are in the same cluster in four partitions: R1, R5,

R9, and R10;
– c37 = 3 because digits 3 and 7 are in the same cluster in three partitions: R4, R6,

and R7;
– c39 = 9 because digits 3 and 9 are in different clusters in only two partitions out

of 11: R4 and R10.

What this has to do with the concept of consensus central partition in (4.44)?
The following statements are true.
Given an ensemble of m partitions and the corresponding consensus matrix

C = (cij), partition S = {S1, S2, …, SK} is central for the mismatch distance if and
only if it maximizes the summary within-cluster criterion (4.40)

f S; pð Þ ¼
XK
k¼1

X
i;j2Sk

cij � p
� � ð4:400Þ

at p = m/2.
Given an ensemble of m partitions and the corresponding consensus matrix

C = (cij), partition S = {S1, S2, …, SK} is central for the dummy matrix regression
distance if and only if it maximizes the semi-average within-cluster similarity cri-
terion (4.31):

g Sð Þ ¼
XK
k¼1

1
Nk

X
i;j2Sk

cij ð4:31Þ

Let us prove these statements. Let us begin with the mismatch distance
consensus.
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Consider the summary mismatch distance in (4.44) from a partition S to be found
and given partitions R1, R2, …, Rm on I (with the corresponding square binary
matrices (sij) and (rij

t )):

D Sð Þ ¼
Xm
t¼1

dðS;RtÞ ¼
Xm
t¼1

X
i;j2I

ðsij � rtijÞ2 ¼
Xm
t¼1

X
i;j2I

ðsij

þ rtij � 2sijrtijÞ ¼
X
i;j2I

ðmsij þ
Xm
t¼1

rtij � 2sij
Xm
t¼1

rtijÞ ¼
X
i;j2I

ðmsij

þ cij � 2sijcijÞ ¼
X
i;j2I

cij � 2
X
i;j2I

ðcij � m=2Þsij:

These equations use little algebra and, most importantly, the fact that the con-
sensus matrix C is but the sum of square binary matrices of individual partitions (rtij)
over t = 1, 2, …, m. Since the first item in the last expression is constant, we may
conclude that the task of minimization of D(S) (4.44) with the mismatch distance is
equivalent to the task of maximization ofX

i;j2I
ðcij � m=2Þsij:

Of course, the last expression is obviously equal to the criterion in (4.40) at
p = m/2. This proves the first statement.

To prove the second statement, let us turn to the incidence matrices Y and Xt of
partitions S andRt, respectively. These binarymatricesmark by 1 the belongingness of
objects (rows) to clusters. The square error criterion can be reformulated in terms of
similarities between entities aswell. Let us denote the total number of clusters in all the
partitions (t = 1, 2,…,m) by L and form N � Lmatrix X = (X1 X2… Xm) consisting
of all the columns in these matrices. The columns of this matrix correspond to all the
clusters in partitions R1, R2, …, Rm. Then the criterion (4.44) for the dummy matrix
regression distance can be expressed as D(Y) = ||X − PYX||

2, or equivalently, as
D(Y) = Tr((X−PYX)(X−PYX)

T) where Tr denotes the trace of a squarematrix, that is,

Table 4.44 Consensus matrix for the eleven partitions in Table 4.41

1 2 3 4 5 6 7 8 9 0

1
2
3
4
5
6
7
8
9
0

11
1
2
7
0
0
10
0
0
1

1
11
3
1
0
6
2
9
3
10

2
3
11
4
6
0
3
1
9
2

7
1
4
11
2
0
6
2
4
1

0
0
6
2
11
5
0
0
6
0

0
6
0
0
5
11
0
6
0
6

10
2
3
6
0
0
11
0
1
1

0
9
1
2
0
6
0
11
3
10

0
3
9
4
6
0
1
3
11
2

1
10
2
1
0
6
1
10
2
11
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the sum of its diagonal elements. By opening the parentheses in the latter expression,
one can see thatD(Y) = Tr(XXT − PYXX

T − XXTPY + PYXX
TPY) = Tr(XXT − PYXX

T).
Indeed, the operation Tr is commutative, which implies equations Tr(PYXX

T) = Tr
(XXTPY) and Tr(PYXX

TPY) = Tr(PYPYXX
T) = Tr(PYXX

T); the last equation follows
from the fact that the projection operator PY satisfies the so-called idempotence
property, that is, its consecutive application changes nothing,PYPY = PY. It remains to
notice that matrix XXT is the consensus matrix C: indeed, the (i, j)-th entry is the sum
products xi

lxj
l, l = 1,…, L. Each of the products is either 1 or 0; it is 1 if both i and

j belong to the l-th cluster. Obviously, cii = L for all i2I, so that Tr(XXT) = NL. On the
other hand, the (i, i)-th diagonal element of matrix PYC equals to the sum of products
pijcji where pij is either 0, if i and j are in different S-clusters, or 1/Nk if j belongs to the
cluster Sk that contains i. This completes the proof.

It should be noted that the criterion (4.31) is akin to the K-means criterion for the
total binary matrix X whose columns correspond to all individual clusters; more-
over, it can be reformulated in terms of association measures between the partition
to be built and ensemble partitions (see Mirkin 2012 and Sects. 3.6 and 3.7).

The proven facts point to both semi-average and uniform partitioning criteria as
those implementing the concepts of consensus partition under consideration. Both
of the criteria, (4.40) and (4.31), involve the same consensus matrix C, although the
former seems somewhat less sensitive to the data structure, as its threshold, p = m/
2, depends on just the number of partitions, not their structure. Indeed, unlike the
latter criterion, it does not pass the so-called Muchnik test (Mirkin 2012) which is
described in the next Question, Q.4.34.

Q.4.34. Muchnik’s test
Consider a partition, R = {Rk} with K parts Rk, k = 1, 2, …, K, on I. This R can be
decomposed in K bisection partitions Rk. Each Rk is defined as a two-part partition
to comprise two parts, Rk and its complement, I − Rk (k = 1, …, K). Our intuition
tells us that the pre-specified R should be the consensus for the set of bisected
partitions Rk. Is R a central partition according to either distance concept above? If
yes indeed, the distance passes the test; if not, then not.
A. Unfortunately, the mismatch distance fails this test, whereas the dummy matrix
regression distance passes it.

Indeed, let us take a look at the consensus matrix C = (cij) at the test. Obviously,
if i and j belong to the same part Rk of R, they belong to the same part in every
bisected partition Rt, so that cij = K in this case. If, in contrast, i2 Rk and j2 Rl at
k 6¼ l, the objects will belong to different parts in the corresponding bisected
partitions Rk and Rl, whereas they would belong to the same class in all the other
bisected partitions. This would make cij = K−2 in the case when i and j belong to
different parts in R.

Then all items cij � p in criterion (4.40) will be positive at K � 4. Indeed, in
this case cij � p = K − 2 − K/2 = (K − 4)/2. This indeed is non-negative; that is,
equals 0 at K = 4 and greater than 0 at K > 4. That means the universal partition
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consisting just of one part coinciding with all the set I gives the maximum to the
criterion, not R. That is a “no pass” for the mismatch distance central partition.

In contrast, the central partition based on the dummy matrix regression distance
does pass the test.

Apply the equivalent consensus criterion (4.31) to S = R. Obviously, g(S) = KN
in this case because g(Sk) = KNk at each k = 1, 2, …, K. Any allocation of objects,
not consistent with R, will bring in lesser values of similarity cij within clusters
which would decrease the criterion value. On the other hand, breaking a part Rk,
say, in two would not change the criterion value; it would still be KN. Therefore,
R is the maximal consensus partition according to criterion (4.31) in this setting.

The last issue to address in this section is of zeroing the diagonal of consensus
matrix. Due to the fact that all the diagonal entries are equal to the same maximum
consensus similarity value m, the zeroing is equivalent to subtraction of m from all
the N diagonal cells. How is this reflected in the value of criterion g(S) in (4.31)? It
is not difficult to see that the value g(Sk) = C(Sk, Sk)/Nk decreases by m as well.
Therefore, when m is subtracted from all the diagonal elements of C, the summary
value g(S) at K-part partition S decreases by Km. Then the change D(k, l) at a
merger of two clusters, Sk and Sl, will be changed by +m. Why? That is the
difference between the change, −Km, before the merger, and −(K − 1)m after the
merger. Otherwise, the SA-Agglomeration process remains the same.

Worked Example 4.21. Consensus Partition at Digits Data
Let us apply the SA-Agglomeration process to the consensus matrix in Table 4.44
obtained from 11 partitions of the 10 numerals in Table 4.41. This brings forth a
consensus partition according to the dummy matrix regression distance. The
sequence of mergers according to this algorithm is reflected in the dendrogram
drawn in Fig. 4.32.

The changes D(k, l) of the criterion at the diagonal m = 11 are: −1.0, −1.0,
−1.67, −2.0, −5.67, −6.0, −6.83, −20.33. Those at the zeroed diagonal are: 10.0,
10.0, 9.33, 9.0, 5.33, 5.0, 4.17, −9.33. This latter sequence is equal to the former
one plus 11, exactly as proven above since m = 11 here. The negative value in the
end signals the end of mergers, so that the consensus partition according to this
method is S = {1–7–4, 2–0–8–6, 3–9–5}. The heights on the dendrogram in
Fig. 4.32 are defined as the positive part of the latter sequence of changes sub-
tracted from 11: 1, 1, 1.67, 2, 5.67, 6, 6.83.

The dendrogram differs from analogous dendrograms in Figs. 4.23, 4.26, and
4.28 by this: 2 merges into cluster containing 0 very early here, following the
pattern of similarities in the consensus matrix in Table 4.44.

Worked Example 4.22. Consensus Clustering for Eurovision Song Contest
Data
Cluster labels of 15 partitions of the Eurovision song contest countries from
Table 1.11 are presented in columns of Table 4.46. These partitions contain from 3
to 5 clusters found by the iK-means method over data tables containing 12 ran-
domly sampled columns out of 19 in Table 1.11.
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To find a consensus partition by minimizing the summary distance to the fifteen
partitions in Table 4.45, one should use the consensus matrix, whichever distance
between partitions one chooses, either the mismatch distance or the dummy matrix
regression distance. The consensus matrix is in Table 4.46. Its (i, j) entry counts the
number of the partitions at which i and j are in the same cluster. Say, Sw and Fr are
in the same cluster in each of the partitions leading to (Sw, Fr) entry equal to 15; in
contrast, Fr and Bu happen to be in the same cluster in only one partition, R13, thus
leading to (Bu, Fr) entry of 1.

The results of SA-Agglomeration process applied to the consensus matrix with
its diagonal zeroed are presented as a dendrogram in Fig. 4.33. There are five
clusters over there; they are:

(1) Belgium-UK
(2) Italy-Portugal-Spain
(3) France-Germany-Greece-Netherlands-Switzerland
(4) Bulgaria-Romania-Russia-Ukraine
(5) Azerbaijan-Estonia-Israel-Poland-Serbia

This picture somewhat differs from that in answers to Q.4.27, see Fig. 4.24, and
Q.4.31, see Table 4.35, which should not be taken too seriously, as the partition
ensemble data here is of a purely illustrative character.

Project 4.3. Median Ranking According to the Mismatch Distance and
Muchnik Test
Let us extend the concept of central partition to ordered partitions representing tied
rankings (see Sect. 3.7); this will closely follow Mirkin and Fenner (2019).

Given a set of tied rankings R1, R2, …, Rm, let us define its median as a tied
ranking Rminimizing the sum of mismatch distances between R and Rt (t = 1,2,…, m).
Let us define a ranking consensus matrix C = (cij) as follows: for any pair (i, j), cij is
the number of those rankings Rt, 1 � t � m, in which i either precedes j or is
indifferent to j.

1    7  4    3    9   5    2   0   8  6 

8

4

0

Fig. 4.32 Dendrogram of the
SA-Agglomeration mergers
for the consensus similarity
matrix in Table 4.44
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This means that C ¼ Rt rt, where r
t is the binary matrix of the binary relation qt

corresponding to Rt, for 1 � t � m. The very same analysis as that provided on
p. 392 proves that a tied ranking R = (R1, R2, …, Rp) is a median of the set of tied
rankings R1, R2, …, Rm if and only if it maximizes

F Rð Þ ¼
X
i;j2I

cij � m
2


 �
rij ¼

Xm
s¼1

X
t� s

X
i2Rs

X
j2Rt

cij � m
2


 �
ð4:45Þ

with respect to a pre-specified set of admissible rankings.
It is not difficult to prove that maximizing F(R) in (4.45) is equivalent to

maximizing

G R; pð Þ ¼
Xm
s¼1

X
t� s

X
i2Rs

X
j2Rt

cij � p
Xm
s¼1

N2
s ; ð4:46Þ

where p = m/4. This latter criterion can be used as a genuine criterion for finding a
median for the ensemble of m ordered partitions.

We can also see the very same regularizer eðRÞ ¼ Rp
s¼1 N

2
s as that in the uniform

partitioning criterion in Sect. 4.6.3.2 and the central partition criterion (see
Sect. 4.7). The value of the coefficient p = m/4 here is as insensitive to the structure
of the ensemble as that, p = m/2, for the consensus partition.

This makes us wonder if the Muchnik’s test can be applied here. Unfortunately,
in the original formulation, not, because it is valid for non-ordered partitions only.
However, the test can be easily extended to the concept of median, thanks to the
concept of Likert scale developed for psychological measurements (see Allen and
Seaman 2007). “This scale is applied when an individual cannot reproduce an entire
ranking. A psychologist then specifies a number of attributes, each of which splits
the ordering in question into two complementary fragments—the beginning and the

 Bu Ro Ukr   Ru Be UK Fr Sw  Ge Ne Gr Se Is Az Es Pol    It Sp Por 

Fig. 4.33 Dendrogram of the SU-Agglomeration process for Eurovision song contest consensus
partitioning
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end. For each object or observation, the psychologist asks the individual, in respect
of a specific attribute, whether the object falls within the beginning or end part of
the scale (Mirkin and Fenner 2019).” Asking this as many times as there are
boundaries between the scale parts can exactly recover the position of the object on
the scale.

In our setting, this can be formulated as follows. There is a ranking with K tied
parts, R = (R1, R2, …, RK). This ranking leads to producing K−1 binary rankings
R1, R2,…, RK−1. Each binary ranking Rt consists of just two parts, Ut, and Vt, in this
order, for t = 1, 2, …, K−1. The part Ut is the set-theoretic union of the first t parts
of R, and the part Vt is the union of the remaining parts of R. These binary rankings
completely determine the underlying ranking R. Then a question arises whether R is
the consensus ranking, or median, for the ensemble of binary rankings R1, R2, …,
RK−1.

Consider, for example, a consensus matrix on Fig. 4.34 and its partition in
blocks corresponding to a seven-part ranking over the set of its rows/columns from
Mirkin and Fenner (2019).

Parts (a) and (b) in Fig. 4.34 show two cases representing the ranking consensus
matrix for the set of binary rankings corresponding to a ranking with K = 7 tied
parts, with the value (K−1)/2 = 3 subtracted from each of the entries. Rather than
showing individual elements of the consensus matrix, the figure shows just the
block structure of the matrix, where the (s, t)-th block, 1 � s, t � K, corresponds
to the entries of constant value cij − (K−1)/2. There are only 6 negative blocks in
the matrix. The number of negative entries (i, j) clearly depends on the part sizes
of R.

Let us consider, for the sake of simplicity, a case in which each part R1, R2, …,
Rk of R contains the same number of elements. To maximize the criterion (4.46), we
just need to minimize the sum of the entries below the diagonal. Obviously, the
parts of R cannot be split in an optimal ranking S. Therefore, a median S can be
obtained by merging some parts of R, that is, S should be coarser than R. The best
option would, if it were possible, be to merge the parts in such a way that these
negative blocks of entries, and only they, are excluded from the upper part of the
matrix. However, this is not possible, because, however the parts are aggregated,
some positive entries must be present below the diagonal—more precisely, below a
borderline delineating the aggregated parts. This is shown in Fig. 4.34a for the case
in which the candidate ranking has three parts obtained by merging (i) R1 and R2,
(ii) R3, R4 and R5, and (iii) R6 and R7. The borderline between the entries included
in and excluded from the sum in (4.46) is shown in bold. We can see there are 6
positive entries below the borderline, which almost cancel out the negative values.
In this sense, the binary ranking R4 that merges R1, R2, R3 and R4 into the first part
of S, and R5, R6 and R7 into the second part of S, as shown in Fig. 4.34b, is better as
it excludes all the negative entries and only 3 positive entries. It is not difficult to
prove that this ranking is optimal, and that another optimal ranking is the binary
ranking R3. Similarly, in the general case with a different number of equal-size parts
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in the underlying ranking R, a binary ranking that splits R into two equal-size parts
(or as equal as possible) is an optimal ranking.

Therefore, the median rule for the Likert scale cannot reproduce the original
ranking R when K > 2. The median S in this case is just a coarser binary version of
R, that is a rather rough model of the original.

4.8 Summary

This Chapter presents K-means, the most popular clustering method. The method
partitions the entity set into clusters along with centers representing them. It is very
intuitive and usually does not require that much space to get presented, except of
course its various versions such as incremental or nature inspired or medoid based
algorithms.

This text includes rarely mentioned theoretical underpinnings of the method.
K-means relates to an extension of the Principal Component Analysis model onto
binary 1/0 vectors corresponding to clusters. Within this framework, a Pythagorean
decomposition of the data scatter is derived. In this decomposition, criterion of the
method represents unexplained part of the data scatter, whereas the part “explained”
by clusters has meaning of a complementary clustering criterion. This comple-
mentary criterion shows that K-means is, in fact, about finding big anomalous
clusters. It also brings forth useful tools for interpretation of clusters as well as for

(a) (b)

3 3 3 3 3 3 3 

2 3 3 3 3 3 3 

1 2 3 3 3 3 3 

0 1 2 3 3 3 3 

-1 0 1 2 3 3 3 

-2 -1 0 1 2 3 3 

-3 -2 -1 0 1 2 3 

3 3 3 3 3 3 3 

2 3 3 3 3 3 3 

1 2 3 3 3 3 3 

0 1 2 3 3 3 3 

-1 0 1 2 3 3 3 

-2 -1 0 1 2 3 3 

-3 -2 -1 0 1 2 3 

Fig. 4.34 Values cij − (K − 1)/2 for the blocks of the consensus matrix for the Likert scale
consensus problem at K = 7. The boundary separating entries summed in criterion (4.46) is shown
by the bold multi-line. Part (a) shows the case in which the seven parts are merged into three
aggregate parts: (i) the first two parts, (ii) the next three parts, and (iii) the last two parts. Part
(b) shows the case in which the seven parts are merged into two aggregate parts: (i) the first four
parts, and (ii) the last three parts

400 4 Core Partitioning: K-means and Similarity Clustering



initialization—the choice of K and location of centers by using what is referred to as
Anomalous and intelligent clustering. The decomposition allows for using a con-
ventional determinacy value for choosing the number of clusters. The intelligent
clustering involves a different granularity parameter, the minimum cluster size,
which may be more intuitive, in some contexts, that the number of clusters or the
explained data scatter proportion. Our attempts at combining the Anomalous cluster
approach with such seemingly relevant concepts as Affinity Propagation clustering
(Frey and Dueck 2007) and Silhouette Width (Rousseeuw 1987) so far brought no
success; thus AP and SW approaches glossed over here, as well as many other
popular approaches.

Three extensions of K-means onto different cluster structures are presented too.
These are: Fuzzy K-means for finding fuzzy clusters, Expectation-Maximization
(EM) for finding probabilistic clusters as items of a mixture of distributions, and
Kohonen’s self-organizing maps (SOM) that tie up the sought clusters to a visually
comfortable two-dimensional grid.

The second part of the chapter is devoted to partitioning over similarity data.
First of all, the complementary K-means criterion is equivalently reformulated as
the so-called semi-average similarity criterion. This criterion is maximized with a
consecutive merger process referred to SA-Agglomeration clustering. This latter
method leads to provably tight, on average, clusters, and, most importantly, stops
merging clusters when the criterion does not increase anymore if the data has been
pre-processed by zeroing the similarities of the objects to themselves. A similar
process is considered for another natural criterion, the summary within-cluster
similarity, for which two pre-processing options are considered. These are: a
popular “modularity” clustering option, based on removal of random interactions,
and “uniform” partitioning, based on a scale shift, a.k.a. soft thresholding. The
summary clustering also leads to an automated determination of the number of
clusters, which involves one more granularity parameter, the scale shift labeling the
level of significance of an individual interaction. Examples show the two different
data pre-processing options for the summary clustering criterion should be applied
in different contexts: the uniform criterion is better when the level of similarity is
uniform across the data table, whereas the modularity criterion works better at
differently scaled similarities. Another useful feature of these constructions is the
role played by zeroing the diagonal entries: this brings forth a natural criterion for
halting mergers in the agglomeration process and, therefore, automatic determi-
nation of the right number of clusters.

The chapter concludes with a section on consensus clustering, a concept getting
popular currently. In the context of central partition for a given ensemble of par-
titions, two distance-between-partitions measures apply, both leading to the usage
of the so-called consensus matrix; with consensus similarity defined, for any two
objects, by the number of clusters in the ensemble to which both objects belong.
This brings the issue into the context of similarity clustering.
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Chapter 5
Divisive and Separate Cluster Structures

Abstract This Chapter is about dividing a dataset or its subset in two parts. If both
parts are to be clusters, this is referred to as divisive clustering. If just one part is to
be a cluster, this will be referred to as separative clustering. Iterative application of
divisive clustering builds a binary hierarchy of which we will be interested at a
partition of the dataset. Iterative application of separative clustering builds a set of
clusters, possibly overlapping. The first three sections introduce three different
approaches in divisive clustering: Ward clustering, Spectral clustering and Single
link clustering. Ward clustering is an extension of K-means clustering dominated by
the so-called Ward distance between clusters; also, this is a natural niche for
conceptual clustering in which every division is made over a single feature to attain
immediate interpretability of the hierarchy branches and clusters. Spectral clustering
gained popularity with the so-called Normalized Cut approach to divisive cluster-
ing. A relaxation of this combinatorial problem appears to be equivalent to opti-
mizing the Rayleigh quotient for a Laplacian transformation of the similarity matrix
under consideration. In fact, other approaches under consideration, such as uniform
clustering and semi-average clustering, also may be treated within the spectral
approach. Single link clustering formalizes the nearest neighbor approach and is
much related to graph-theoretic concepts: components and maximum spanning
trees. One may think of divisive clustering as a process for building a binary
hierarchy, which goes “top-down” in contrast to agglomerative clustering
(in Sect. 4.6), which builds a binary hierarchy “bottom-up”. Two remaining sec-
tions describe two separative clustering approaches as extensions of popular
approaches to the case. One tries to find a cluster with maximum inner summary
similarity at a similarity matrix preprocessed according to the uniform and modu-
larity approaches considered in Sect. 4.6.3 The other applies the encoder-decoder
least-squares approach to modeling data by a one-cluster structure. It appears,
criteria emerging within the latter approach are much akin to those described earlier,
the summary and semi-average similarities, although parameters now can be
adjusted according to the least-squares approach. This applies to a distinct direction,
the so-called additive clustering approach, which can be usefully applied to the
analysis of similarity data.
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5.1 Ward Divisive Clustering

5.1.1 Hierarchy and Dendrogram

Term hierarchy can mean different things in different contexts. Here it is a den-
drogram, that is a decision tree-like nested structure drawn like that on Fig. 5.1
below (see also Figures in Sect. 4.6). Such a hierarchy may relate to mental or real
processes such as conceptual structures (taxonomy, ontology) or inheritance
structures (genealogy, phylogeny).

The top node, referred to as the root, represents all the entity set I under con-
sideration. Every interior node of the dendrogram has a number of children nodes
representing division of the subset—or cluster—represented by the node into
smaller clusters. The terminal nodes, that have no children, are referred to as leaves
and usually correspond to singletons. A hierarchical structure should be annotated
to reflect the correspondence between the nodes and entity sets. Such an annotation,
according to bases of division is utilized in decision trees. In clustering, another
annotation is frequently used—that imposed by the leaf contents. Every node of the
dendrogram corresponds to cluster of those entities that annotate the leaves
descending from the node.

On the right of the hierarchy on Fig. 5.1, there is a y-axis to represent the node
heights. The node height is a useful device for positioning nodes in layers.
Typically, all leaves have zero heights whereas the root is assigned with the
maximum height, usually taken as unity or 100%. Some hierarchies are naturally
assigned with node heights, e.g., the molecular clock in evolutionary trees, some
not, e.g. the decimal classification of library subjects. But to draw a dendrogram as
a figure, one needs to define positions for each node, thus its height as well, even if
implicitly.

Nodes may be linked by using what is called edges. Only one edge ascends from
each node—this is a defining property of nested hierarchies that each node, except

AV  AN   AS   BA  BR    BU  CI     CY

A                  B                      C

Fig. 5.1 A cluster hierarchy
of Company data entities:
nested node clusters, each
comprising a set of leaves.
Cutting the tree at a certain
height leads to a partition of
the three product clusters here
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for the root, has one and only one parent. Each hierarchy node, or its parental edge,
represents cluster of all leaves descending from the node; such are the edges labeled
by product names A, B, and C on Fig. 5.1—they represent the corresponding
clusters. These clusters have a very special pattern of overlapping: for any two
clusters of a hierarchy, their intersection is either empty or coincides with one of
them—this is one more characteristic property of a nested hierarchy.

The tree on Fig. 5.1 has one more specific property—it is binary: each interior
node in the tree has exactly two children, that is, split in two parts. Most clustering
algorithms, including those presented below, do produce binary trees, along with
node heights.

Q.5.1. Given a binary hierarchy H with leaf set I, prove that the number of edges in
the hierarchy is 2(|I| − 1).
Q.5.2. Consider a binary hierarchy H with node set J and height function h(j), jeJ,
such that h(j) = 0 at each leaf j. Assume that h(j) is monotone, that is, the closer the
node to the root the greater the value of h(j). Define the distance u(i1, i2) between
each pair of leaves i1, i22I as the height of the least cluster node j(i1,i2) such that
both i1 and i2 are among its descendants, u(i1, i2) = h(j(i1, i2)). Prove that the
distance u is an ultrametric, that is, it is not only symmetric, u(i1, i2) = u(i2, i1), and
reflexive, u(i1, i1) = 0, but also satisfies ultrametric inequality

uði1; i2Þ�max uði1; i3Þ; uði2; i3Þ½ � ð5:1Þ

for every triplet of leaves i1, i2, and i3.
Q.5.3. Prove that if distance u is ultrametric then, for each three entities, the three
distances between them satisfy the following property: those two larger ones are
equal to each other. This can be rephrased as follows: under an ultrametric, every
triangle is isosceles.
Q.5.4. Define Baire distance b(x,y) between non-coinciding real numbers x and y,
both located in interval [0,1], as follows. Consider their decimal digits, x = 0.x1x2
… and y = 0.y1y2 …, and set b(x,y) = 2−n where n is the very first digit at which
xn 6¼ yn. If, for example x = 0.125, y = 0.128 and z = 0.250, then b(x,y) = 2−3 and
b(x,z) = 2−1 (Murtagh et al. 2008). Prove that Baire distance is ultrametric and,
moreover, every finite ultrametric can be represented as a Baire metric.

Methods for hierarchical clustering are divided in two classes:

– Divisive methods: they build a cluster hierarchy by proceeding top-down,
starting from the entire data set and recursively splitting clusters into parts; and

– Agglomerative methods: they build a cluster hierarchy by proceeding
bottom-up, starting from the least clusters available, usually singletons, and
merging those nearest to each other at each step.
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5.1.2 Square-Error Criterion and Ward Distance

Consider a partition S = {S1, S2,…, SK} on set I, together with centers c = {c1, c2,…,
cK}, and the square error criterion WðS; cÞ ¼PK

k¼1

P
i2Sk dði; ckÞ of K-means. Here

d(i, ck) is the squared Euclidean distance between vector representing object i and
the center ck. Let two of the clusters, Sk, Sl, be merged so that the resulting partition
is S(k, l) coinciding with S except for the merged cluster Sk[ Sl; the new center
obviously being ck[ l=(Nkck+ Nlcl)/(Nk+ Nl), where Nk and Nl are cardinalities of
clusters Sk and Sl, respectively. As proven previously—and rather evident indeed
(see Fig. 5.2)—the value of square error criterion on partition S(k,l) is greater than
W(S,c). But how much greater? The answer is:

WðSk [ Sl; ck [ lÞ �WðS; cÞ ¼ NkNl

Nk þNl

X
v2V

ðckv � clvÞ2 ¼ NkNl

Nk þNl
dðck; clÞ; ð5:2Þ

the squared Euclidean distance between centers of the merged clusters Sk and Sl
weighted by a factor proportional to the product of cardinalities of the merged
clusters (Ward 1963).

To prove this, let us follow the definition and do some elementary transforma-
tions. First, we notice that the distances within unchanged clusters do not change in
the partition S(k,l) so that the difference between the values of criterion W after and
before the merger is

Fig. 5.2 The distances in
criterion W(S,c) before (solid
lines) and after the merger
(dashed lines) of two clusters
on the upper right. The
numbers of dashed and solid
lines coincide, but the
dashed-line distances are
longer overall
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X
i2Sk [ Sl

X
v2V

ðyiv � ck [ l;vÞ2 �
X
i2Sk

X
v2V

ðyiv � ckvÞ2 �
X
i2Sl

X
v2V

ðyiv � clvÞ2

¼
X
i2Sk

X
v2V

ðyiv � ck [ l;vÞ2 �
X
i2Sk

X
v2V

ðyiv � ckvÞ2 þ
X
i2Sl

X
v2V

ðyiv � ck [ l;vÞ2

�
X
i2Sl

X
v2V

ðyiv � clvÞ2:

Since
ck [ l;v ¼ ckv þNlðclm � ckmÞ=ðNk þNlÞ = clv þNkðckm � clmÞ=ðNk þNlÞ and the
binomial rule (a + b)2= a2+ b2+ 2ab, the sum

P
i2Sf
P

v2V ðyiv � ck [ l;vÞ2 can be

presented as

X
i2Sk

X
v2V

ðyiv � ckvÞ2 þ
X
i2Sk

X
v2V

Nl

Nk þNl

� �2

ðckv � clvÞ2þ 2
X
i2Sk

X
v2V

Nl

Nk þNl
ðyiv � ckvÞðckv � clvÞ

where the right-hand item is equal to zero, because
P

i2Sk ðyiv � ckvÞ ¼ 0: A similar

decomposition holds for the sum
P

i2Sl
P

v2V ðyiv � ck [ l;vÞ2. These two combined
make the difference W(S(k,l), c(k,l)) − W(S,c) equal to

X
v2V

Nk
Nl

Nk þNl

� �2

ðckv � clvÞ2 þ
X
v2V

Nl
Nk

Nk þNl

� �2

ðclv � ckvÞ2

¼ NkNl

Nk þNl

X
v2V

ðckv � clvÞ2

which completes the proof of Eq. (5.2).
The weighted distance found

wdðSk; SlÞ ¼ NkNl

Nk þNl
dðck; clÞ ð5:3Þ

is referred to as Ward distance between clusters. Its weight coefficient highly
depends on the distribution of entities between clusters being merged. This may
affect the results of agglomerative or divisive algorithms that utilize Ward distance.
Indeed, in an agglomerative process, the Ward distance between clusters to be
merged must be as small as possible—which favors merging big and small clusters.
On the other hand, in divisive clustering, when splitting, the Ward distance between
split parts must be as large as possible, which favors splitting large clusters into
relatively equal-sized parts. It is the effect of this weighting that underlies the odd
behavior of the square error K-means criterion in the discussion of issues of
K-means clustering (see Case-Study 4.2 and Fig. 4.7).

Given a cluster S with its center c, let us denote the square error within S by
WðSÞ ¼Pi2S dðyi; cÞ. Using this, Eq. (5.2) can be rewritten as

5.1 Ward Divisive Clustering 409



WðSk [ SlÞ ¼ WðSkÞþWðSlÞþwdðSk; SlÞ: ð5:20Þ

This explains the additive properties of the square error W(S) when used as the
height index in drawing the clustering tree. According to this equation, the height of
the parent is equal to the sum of heights of its children plus Ward distance between
them. This warrants a specific heights distribution over the tree: the closer to the
root, the longer the edges!

Q.5.5. Prove that Ward distance after a merger can be recursively calculated from
the distances before the merger according to the following formula (see also Q.5.23
and Table 5.17):

wdðSk [ l; StÞ ¼ ðNk þNtÞwdðSk; StÞþ ðNl þNtÞwdðSl; StÞ½
�NtwdðSk; SlÞ�= Nk þNl þ Ntð Þ: ð5:4Þ

Q.5.6. Prove that the square error of cluster, WðSkÞ ¼
P

i2Sk dðyi; ckÞ, can be
expressed using within cluster distances only:

WðSkÞ ¼
X
i;j2Sk

dðyi; yjÞ=Nk: ð5:5Þ

where d is the squared Euclidean distance and Nk is the number of entities in Sk.
Hint: Use Eq. (4.5) in Q.4.10.

Equations (5.4) and (5.5) allow carrying Ward’s agglomeration process by using
only the distances, so that the cluster centers are involved neither for calculating
Ward distances nor for the cluster’s square errors.

5.1.3 Divisive Clustering

A divisive method works in a top-down manner, starting from the entire data set
and splitting each cluster in two, which is reflected in drawing the split cluster as a
parental node with two children corresponding to split parts. The splitting process
goes on in such a way that each time a leaf cluster is split, two children nodes are
sprung from the leaf which thus becomes an internal node.

To specify a method for divisive clustering, one should define the following:

(i) splitting criterion—how one decides which split is better;
(ii) splitting method—how the splitting is actually done;
(iii) choice of cluster—which of the current leaf clusters is to be split;
(iv) stopping criterion—at what point one decides to stop the splitting.

Let us cover some options that can be recommended based on some theoretical
and/or experimental evidence, in this sequence.
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(i) Splitting criterion

The only splitting criterion that is considered here is K-means criterion of the
summary square error which is implemented as Ward criterion, that is the maximum
possible reduction in the total squared error caused by the split: the greater the
better.

When applied to categorical features represented by their categories enveloped
into the corresponding binary features, this criterion can be reinterpreted in terms of
what is referred to a goodness-of-split criterion, which usually measures the
improvements in the predictability of the categories, from the split partition. The
“predictability” can be measured differently, most frequently by involving the
general concept of “uncertainty” in the distribution of possible feature values that is
captured by the concepts like Gini index, entropy, variance, etc. defined above.

Three popular goodness-of-split criteria that are compatible with the
least-squares data recovery framework are: (a) impurity function (Breiman et al.
1984), (b) category utility function (Fisher 1987), and (c) the summary Pearson
chi-squared coefficient. The category utility function, in fact, is the sum of impurity
functions over all categories in the data, related to the number of clusters in the
partition being built. All the three can be expressed in terms of the cluster-category
contributions to the data scatter and, thus, can be considered special cases of the
square-error clustering criterion at the conventional zero-one coding of categories
along with different normalizations of the data, as explained in Sects. 3.6.1 and
3.8.2.

(ii) Splitting method

For Ward’s criterion, we consider two splitting approaches:

IIA. K-means at K = 2, or Bisecting K-means; this leads, typically, to good
results if care is taken to find good initial centers. Since the criterion of
Bisecting K-means is equivalent to the criterion of maximizing Ward dis-
tance between split parts, the divisive algorithm utilizing Bisecting K-means
is referred to as Ward divisive algorithm here.

IIB. Conceptual clustering—in this, just one of the features is involved in each of
the splits, which leads to a straightforward conceptual interpretation of all the
clusters. Conceptual clustering builds a cluster hierarchy by sequentially
splitting clusters, as all divisive algorithms do, yet here each of the splits uses
a single attribute in contrast to the classic clustering that utilizes distances
involving all features. The criteria such as summary impurity function or
summary Pearson chi-squared are part of the Ward divisive clustering
algorithm under a corresponding normalization option (see Sect. 3.8). In this
aspect, conceptual clustering should be equated to building classification
trees over a multiple target feature set—the only difference is that the very
same target features are simultaneously input features!
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(iii) Choice of cluster to split

The order of splitting conventionally is not considered important: if the set is
divided all the way down to singletons, then the order does not much matter indeed.
If, however, the goal is to produce a partition by finishing after just a few splits,
then Ward’s criterion gives the following guiding principle: after each split, all leaf
clusters Sk are supplied with their square errors W(Sk). The square-error is the
contribution to the unexplained data scatter, that is, the sum of Euclidean squared
distances between cluster’s entities and its center, which is proportional to the
cluster summary variance weighted by its size. To minimize the unexplained part,
that cluster whose square-error is maximum is to be split first.

(iv) Stopping criterion

Conventionally, the divisions stop when there remains nothing that can be split,
that is, when all the leaves are singletons. Yet for the Ward’s criterion one can
specify a threshold on the value of the square-error at a cluster, the level of “noise”
reached byW(Sk) at which a cluster is considered next to noise and not split anymore
because of that. This threshold can be set as a proportion of the data scatter, say 5%.
Another criterion of course can be just the cluster size—say, clusters whose cardi-
nality is less than 1% of the original data size are not to be split anymore. Tasoulis
et al. (2010) propose stopping the splitting process when the density of the cluster
points projections to the first principal component has no minima inside the range.

The process of divisive clustering is much like that of building a classification
decision tree—the only difference is the criterion. It is correlation to a target variable
in the latter case and it is a summary correlation with all the features forming the
clustering space, in the former case, even if it is expressed as maximizing Ward
distance between split parts. The equivalence between K-means criterion at K = 2
and the criterion of maximization of Ward distance justifies the following algorithm.

Ward divisive clustering algorithm

1. Start
Put J ( I and draw tree root as a node corresponding to I at the height of
W(I) which is the data scatter, by itself or 100%.

2. Split
Split J in two parts, S1 and S2, to maximize Ward distance wd(S1, S2).

3. Draw
In the dendrogram drawing, add two children nodes corresponding to S1 and S2
at the parent node corresponding to J, their heights being their square errors.

4. Update
Find the cluster of maximum height among the leaves of the current cluster
hierarchy and make it J.

5. Stop-Condition
Check the stopping condition as described below. If it holds, halt and output the
hierarchy and possible interpretation aids; otherwise, go to Step 2.
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Developing a good splitting algorithm at Step 2 in divisive clustering can be an
issue. We consider two versions: Bisecting K-means and C-splitting. The latter
option will be described in the next section.

Bisecting K-means

1. Initialization
Given J, specify initial seeds of its split parts, c1 and c2.

2. Batch 2-Means.
Apply Bisecting K-means with initial seeds specified at step 1 and the squared
Euclidean distance.

3. Output
Output:

(a) final split parts S1 and S2;
(b) their centers c1 and c2;
(c) their heights, h(S1) and h(S2);
(d) contribution of the split which is Ward distance dw(S1, S2).

To specify two initial seeds in Bisecting K-means, either option can be applied:

(1a) random selection;
(1b) maximally distant entities;
(1c) centers of two Anomalous pattern clusters derived on J as described in

Sect. 6.1.5.
(1d) two centers derived with algorithm Build in Sect. 6.1.5.

Random selection must be repeated many times to get a reasonable solution for
any sizeable dataset. Maximally distant entities not necessarily reflect the structure
of a good split (see Case-Study 5.1). Therefore, two latter options should be
preferred.

Case-Study 5.1. Divisive Clustering of Companies with Bisecting K-means
Consider the Ward divisive clustering method for the Company data, range stan-
dardized with the follow-up rescaling the dummy variables corresponding to the
three Sector categories in Table 4.2. Using Bisecting K-means algorithm may
produce a rather poorly resolved picture if the most distant entities, 6 and 8
according to the distance matrix in Table 5.1, are taken as the initial seeds. Then
step 2 would produce tentative clusters {1,3,4,5, 6} and {2,7,8} because 2 is nearer
to 8 than to 6 as easily seen in Table 5.1. This partition is at odds with the product
clusters.

Unfortunately, no further iterations can change that. This shows that the choice
of the initial seeds at the two farthest entities can be not that good an option that it
may seem to be. Usage of Build or Anomalous pattern algorithms, explained in
Sect. 6.1.5, could lead to better results. Because of our reluctance in using the
original Company dataset in this Chapter, let us use Build algorithm which relies on
distances only.
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According to distance data in Table 5.1, entity 5 Br is a medoid there since the
sum of its distances to the rest, 9.6, is the minimum. Now we form a cluster around
each entity to consist of those that are nearer to the entity than to medoid 5: these
will be 2 and 3 around 1, 1 and 3 around 2, 1 and 2 around 3, 7 and 8 around each
other, and clusters for entities 4,5,6 are singleton themselves. This would give an
edge to entity 1 as the next seed, because it is further away from 5 and surrounded
by two. Indeed the summary E value for 1, 2.20 + (1.82 − 0.51) + (1.16 − 0.88) =
3.79 is by far the greatest. Using the entities 5 and 1 as seeds, indeed brings the
bisecting K-means to a desired split {1,2,3} versus {4,5,6,7,8}. The hierarchy on
Fig. 5.1 then will be found with further splits. The node heights are the same—within
cluster squared errors that are scaled as percentages of the pre-processed data scatter.

5.1.4 Conceptual Clustering

This process applies when a hierarchy is needed with immediate interpretation of all
the splits and clusters. In this case, at each step of the divisive clustering process
divisions are made over a single feature chosen according to a maximum associ-
ation criterion. Here such an approach is described.

C-splitting (Conceptual clustering with binary splits)

1. Initial setting
Set J to consist of the universal cluster, the entire entity set I.

2. Evaluation
In a loop over all leaf clusters J and variables v2V, for each J and v, consider all
possible splits ylv of J over v in two parts. If v is quantitative or ordinal, J-splits
are defined by splits of its range in two parts: one part consists of entities at
which feature v is less than or equal to yiv and the other of those at which feature
v is greater than ylv. If v is nominal, J is split over each of v’s categories l in
“yes” and “no” parts. This amounts to using quantitative dummy variables for
each category.

Table 5.1 Distances between standardized Company entities (copied from Table 4.10). For the
sake of convenience, those smaller than 1, are highlighted in bold

Entities Av An Ast Ba Br Bu Ci Cy
1 Av 0.00 0.51 0.88 1.15 2.20 2.25 2.30 3.01
2 An 0.51 0.00 0.77 1.55 1.82 2.99 1.90 2.41
3 As 0.88 0.77 0.00 1.94 1.16 1.84 1.81 2.38
4 Ba 1.15 1.55 1.94 0.00 0.97 0.87 1.22 2.46
5 Br 2.20 1.82 1.16 0.97 0.00 0.75 0.83 1.87
6 Bu 2.25 2.99 1.84 0.87 0.75 0.00 1.68 3.43
7 Ci 2.30 1.90 1.81 1.22 0.83 1.68 0.00 0.61
8 Cy 3.01 2.41 2.38 2.46 1.87 3.43 0.61 0.00

414 5 Divisive and Separate Cluster Structures



3. Split
Select that triplet (J, v, ylv) which received the highest score and perform the
binary split of J, thus generating two its offspring nodes S1 and S2.

4. Output
This is the same as in the previous versions plus the variable v and split values,
for each of the splits, either yiv > a and yiv � a for a quantitative feature or
yiv = a and yiv 6¼ a for a categorical feature.

Case-Study 5.2. Conceptual Clustering of Digit Data as Related to Ward
Clustering
As shown in Sect. 3.8, divisions over individual features—the essence of con-
ceptual clustering procedures—are governed by the square error criterion if con-
ventional measures for scoring association between dataset features and the
partition—impurity index or Pearson chi-squared—are applied.

Let us take the set of 10 styled digits presented in Fig. 5.3 and turn the figure
into a dataset by considering each of the seven rectangle edges a feature with two
categories, “Present” and “Absent” (see Fig. 5.3 and Table 5.2).

To produce a classification tree leading to a partition S, we use summary Gini
index (impurity function) G(v1/S) + G(v2/S) + ��� + G(v7/S) as the criterion to
maximize. Start by trying each of the features as the split base to select the best of
them. Consider, for example, partition S = {S1,S2}of the Digit set according to

v1

v2     v3

v5 v4   v6

v7

v4

Fig. 5.3 Digit rectangle
edges as features

Table 5.2 Digit dataset

v1 v2 v3 v4 v5 v6 v7
1 0 0 1 0 0 1 0
2 1 0 1 1 1 0 1
3 1 0 1 1 0 1 1
4 0 1 1 1 0 1 0
5 1 1 0 1 0 1 1
6 1 1 0 1 1 1 1
7 1 0 1 0 0 1 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1
0 1 1 1 0 1 1 1
Total 8 6 8 7 4 9 7
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attribute v2 which is present at S1= {4,5, 6, 8, 9, 0} and is absent at S2= {1,2,3,7}.
Cross-classification of S and v7 (see Table 5.3) yields G(v7/S) = 0.053.

To see what this has to do with the setting in which Ward’s criterion applies, let
us pre-process the Digit data matrix by subtracting the column averages without
rescaling them (because the scaling coefficients must be all unity to make Ward’s
criterion equivalent to the summary Gini index, see Sects. 3.6.1 and 3.8.2).
However, the data in Table 5.4 is not exactly the data matrix Y considered theo-
retically in Sect. 4.3.1. Indeed, the theoretical data matrix in Eq. (4.8) comprises
columns corresponding to all of the categories, whereas the data matrices in
Tables 5.2 and 5.4 reflect only half of the categories—those of the presence of
edges v1–v7, never an absence. Indeed, a column corresponding to an “Absent”
category is a mirror of the column corresponding to the “Presence” category, with
all ones made zero and, vice versa, all zeros made ones. After the centering, the
lacking half of the data table would be the Table 5.4 negated, that is, multiplied
by −1. The data scatter is formed by squares of the entries which are the same. That
means that this lacking part can be taken into account by just doubling the con-
tributions accounted for with Table 5.4.

The data scatter of matrix in Table 5.4 is the summary column variance times
N = 10, which is 13.1. However, to get the data scatter in the left-hand side of (4.8),
this must be doubled to 26.2 to reflect the “missing half’’ of the virtual data matrix Y.

Let us now calculate the within class averages ckv of each of the variables,
v = v1, …, v7, in clusters k = 1,2 and take contributions Bkv = Nkv ckv

2 summed
over clusters S1 and S2. This is done in Table 5.5, the last line of which contains
contributions of all features to the explained part of the data scatter.

Table 5.3 Cross-classification of S = v2 and v7 on digit dataset

S1 S2 Total
v7 = 1 5 2 7
v7 = 0 1 2 3
Total 6 4 10

Table 5.4 Digit dataset pre-processed by centering its columns

Digit v1 v2 v3 v4 v5 v6 v7
1 −0.8 −0.6 0.2 −0.7 −0.4 0.1 −0.7
2 0.2 −0.6 0.2 0.3 0.6 −0.9 0.3
3 0.2 −0.6 0.2 0.3 −0.4 0.1 0.3
4 −0.8 0.4 0.2 0.3 −0.4 0.1 −0.7
5 0.2 0.4 −0.8 0.3 −0.4 0.1 0.3
6 0.2 0.4 −0.8 0.3 0.6 0.1 0.3
7 0.2 −0.6 0.2 −0.7 −0.4 0.1 −0.7
8 0.2 0.4 0.2 0.3 0.6 0.1 0.3
9 0.2 0.4 0.2 0.3 −0.4 0.1 0.3
0 0.2 0.4 0.2 −0.7 0.6 0.1 0.3
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The last item, 0.267, is the contribution of v7. Has it anything to do with the
reported value of impurity function G(v7/S) = 0.053? Yes, it does. There are two
reasons to make these two quantities different. First, to get to the contribution from
G(v7/S), it must be multiplied by N = 10, which would make it 0.533. Second, the
0.267 value is the contribution to the data scatter of matrix Y obtained after
enveloping of all 14 categories—not just 7 present in Table 5.5. After the contri-
bution 0.267 is properly doubled, the quantities do coincide. Similar calculations
made for the other six attributes, v1, v2, v3, v4, v5, and v6, would lead to the total
contribution of S to the data scatter equal 10RfG(vf/S) = 5.03 which is 26.8% of the
scatter 26.2.

To find out which of the features is to be used for the first split, all pair-wise Gini
index values have been computed and presented in Table 5.6. According to these,
feature v7 supplies the maximum summary contribution 10 * 0.963 = 9.63 which
is 36.8% of the total data scatter.

Therefore, the first split must be done according to v7. Two more splits are due v5,
contributing 3.90, and v1, contributing 3.33, resulting in a four-cluster partition
S = {1–4–7, 3–5–9, 2, 6–8–0}. This partition contributes 9.63 + 3.90 + 3.33 =
16.87 = 64.4% to the total data scatter. The next partition step would contribute less
than 10% of the data scatter, which is less than the contribution of one entity on
average—a good signal to stop the splitting. The classification tree, or conceptual
tree, produced with the splits is presented on Fig. 5.4 along with a visualization of
the set of tree-making features on the rectangle base of the Digit data.

What is nice about the tree is that the clusters are well matching those found by
using the data on Confusion between the digits in a psychological experiment
(see Sects. 4.5, 5.3 and 5.4). This should lead to further analysis of possible impor-
tance of features v7, v5, v1 for the human judgment on similarity between the digits.

Table 5.5 Feature contributions to digit clusters according to v2

v1 v2 v3 v4 v5 v6 v7
v2 = 1 0.007 0.960 0.107 0.107 0.060 0.060 0.107
v2 = 0 0.010 1.440 0.160 0.160 0.090 0.090 0.160
Total 0.017 2.400 0.267 0.267 0.150 0.150 0.267

Table 5.6 Pairwise Gini indexes for all 7 features in digit dataset

v1 v2 v3 v4 v5 v6 v7
v1 0.320 0.003 0.020 0.015 0.053 0.009 0.187
v2 0.005 0.480 0.080 0.061 0.030 0.080 0.061
v3 0.020 0.053 0.320 0.034 0.003 0.009 0.034
v4 0.020 0.053 0.045 0.420 0.003 0.020 0.115
v5 0.080 0.030 0.005 0.004 0.480 0.080 0.137
v6 0.005 0.030 0.005 0.009 0.030 0.180 0.009
v7 0.245 0.053 0.045 0.115 0.120 0.020 0.420
Total 0.695 0.703 0.520 0.658 0.720 0.398 0.963

5.1 Ward Divisive Clustering 417



Q.5.7. The appropriateness of using Bisecting K-means as a splitting device in
Ward divisive clustering.

On the first glance, the Ward criterion for dividing an entity set in two clusters—
maximize Ward distance between the split parts—has nothing to do with that of
K-means. In fact, given a parental cluster J�I, the K-means criterion, minimizing
WðS; cÞ ¼ WðJ; cÞ =

P
i2S1 dði; c1Þþ

P
i2S2 dði; c2Þ where S1 and S2 are the split

parts of J, c1 and c2 their respective centers and d squared Euclidean distance, is
equivalent to the Ward criterion. That means that Ward divisive clustering is
adequately served with Bisecting K-means, or Bisecting K-means. Prove it.

A. Let us remind of the complementary to criterion W part of the data scatter
according to the Pythagorean decomposition in Eq. (4.8). This complementary
criterion is to maximize BðS; cÞ ¼ N1hc1; c1iþN2hc2; c2i where N1 and N2 are
respective cardinalities of clusters S1 and S2.

Let us prove that Ward distance between the two clusters,
dwðS1; S2Þ ¼ N1N2

N1 þN2
dðc1; c2Þ, is just that. To proceed, we need two equations. The

first just expresses the squared Euclidean distance through inner products,
dðc1; c2Þ ¼ ðhc1; c1i � hc1; c2iÞþ ðhc2; c2i � hc1; c2iÞ. The second is relation
between the cluster centers and the parental cluster center c: N1c1 þN2c2 ¼
ðN1 þN2Þc. Since c is not involved in dw(S1,S2) and, in fact, is irrelevant to it, we
may take it to be c = 0. Then the latter equation implies that c2=−(N1/N2)c1. This can
be put into hc1; c1i � hc1; c2i ¼ hc1; c1iþN1=N2hc1; c1i = ðN1 þN2Þ=N2hc1; c1i.
Similarly, equation hc2; c2i � hc1; c2i ¼ ðN1 þN2Þ=N1hc2; c2i is obtained.
Substituting these through the first equation in Ward distance, we find
dwðS1; S2Þ ¼ N1N2

N1 þN2
dðc1; c2Þ ¼ N1N2

N1 þN2
ðN1 þN2Þ=N2hc1; c1ið þ ðN1 þN2Þ=N1hc2; c2iÞ ¼ BðS; cÞ;

which proves the statement.
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0             1

Fig. 5.4 Conceptual
clustering of Digit dataset and
features involved in the splits
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Q.5.8. Equivalence of the square-error criterion and the summary Gini index.

Show that, in the situation in which all the features are categorical, maximizing
the summary Gini index

P
v2V Gðv=JÞ is equivalent to minimizing the least squares

criterion.

A. Assume that data matrix Y in this case is drawn by putting a dummy variable for
each of the categories with a follow up centering it with the mean which is the
category frequency. Then, according to Statement 3.5.3.1(c) in Sect. 3.5.3, Gini
index G(v/S), multiplied by the number of entities, is the contribution of the par-
tition of J to the summary scatter of the dummies corresponding to categories of
feature v—this, in fact, easily follows from Eq. (3.40). This implies that the sum-
mary Gini index, multiplied by the number of entities, is the contribution of the
partition to the summary scatter of all the dummy variables, that is, the data scatter
of matrix Y. That means that maximum of the summary Gini index is reached at a
partition minimizing the total unexplained contribution which is exactly the square
error criterion. The statement is proved.
Q.5.9. What data standardization should be applied if one wants to build a con-
ceptual clustering tree maximizing the summary Pearson chi-squared by using
Ward distance maximization?
A. Each category is to be represented by a dummy variable which then should be
centered by subtracting its frequency and normalized by the square root of the
frequency (see Statement 3.6.2.2(c)).

Comment 5.1. Greediness of Divisive Clustering
Some may argue that the framework of divisive clustering is deliberately set as a
greedy optimization procedure: at each local splitting step the best solution is taken
which is not necessarily the best if one considers summary results of several
sequential steps. The greedy-wise nature of the setting is true. Yet it is not easy to
formulate a holistic optimization problem for divisive clustering. If for example, the
process of splitting goes all the way down to singleton clusters, then perhaps the
greedy-wise setting is most natural. When there is a stopping condition such as a
pre-specified number K of terminal clusters, then the problem becomes of globally
minimizing K-means square-error criterion. One should remember that the K-means
criterion has some innate drawbacks related to its rigidity in putting the goal of
getting split parts as uniform as possible. This means that achieving the global
minimum is not necessarily beneficial from the point of view of data analysis.

Q.5.10. Formulate a version of agglomerative clustering for Ward criterion using
the definition of Ward distance with centers.
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5.2 Normalized Cut, Laplace Standardization and
Spectral Clustering

5.2.1 Normalized Cut and Laplace Transformation

The concept of normalized cut is a relatively recent development started by Shi and
Malik (2000). It belongs to a series of graph cutting criteria that balance the cluster
sizes by normalizing the sums of within cluster similarities by the size-dependent
values. Given a similarity matrix A, let us take the volume of S�I, the summary
similarity in rows i 2 S, a(S) = R i2S ai+. Then the normalized cut over a partition
{S1, S2} is defined as a(S1,S2)/a(S1) + a(S1, S2)/a(S2). This is to be minimized over
all splits {S1, S2} of set I. An equivalent criterion would maximize the sum of
normalized within cluster similarities, a(S1, S1)/a(S1) + a(S2, S2)/a(S2)—the two
criteria sum to 2.

The normalized cut concept brought forward a less intuitive type of data pre-
processing, the Laplace transformation of similarity matrices. In its normalized
form, this transformation normalizes every similarity wij by dividing it by the square
root of the product of i and j volumes, wij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wiþwjþ

p
, and then subtracts the

resulting matrix from the identity matrix which has all its entries zero except for
unities on the diagonal. With this transformation we are into the realm of spectral
clustering. The Laplacian matrix L is proven to have all the eigenvalues
non-negative. Besides, L has a specific minimum eigenvalue—the zero. Yet the
next minimum eigenvalue and the corresponding eigenvector provide for a relax-
ation of the minimum of normalized cut problem, reformulated in terms of the
Rayleigh quotient for the Laplacian matrix. Then split {S1, S2} can be found by
using this second minimum eigenvector so that S1 is defined by indices of the
positive components and S2, of the negative components.

Let us put this a bit more precisely.
Given a symmetric similarity matrix A = (aij) on set I, consider the issue of

dividing I in two parts, S1 and S2, in such a way that the similarity between S1 and
S2 is minimum while it is maximum within the parts. Denote by A(Sf, Sg) the
summary similarity “between” Sf and Sg so that AðSf ; SgÞ ¼

P
i2Sf
P

j2Sg aij.
The normalized cut utilizes the summary similarities ai+ = A(i,I). Denote

aðSkÞ ¼
X
i2Sk

aiþ

Obviously, a(S1) = A(S1, S1) + A(S1, S2); a similar equation holds for a(S2). The
normalized cut is defined as

ncðSÞ ¼ AðS1; S2Þ
aðS1Þ þ AðS2; S1Þ

aðS2Þ ð5:6Þ

to be minimized.
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It should be noted that the minimized cut (5.6), in fact, includes the requirement
of maximization of the within-cluster similarities. Indeed consider the normalized
within-cluster similarity

ntðSÞ ¼ AðS1; S1Þ
aðS1Þ þ AðS2; S2Þ

aðS2Þ ; ð5:7Þ

scoring the tightness of clusters. These two measures are highly related: nc(S) + nt
(S) = 2 (see Q.5.11). This latter equation warrants that minimizing the normalized
cut simultaneously maximizes the normalized tightness.

It appears, the criterion of minimizing nc(S) can be expressed in terms of a
corresponding Rayleigh quotient—for the so-called Laplacian. Given a
(pre-processed) similarity matrix W = (wij), let us denote its row sums, as usual, by
wiþ ¼Pj2I wij ði 2 IÞ and introduce diagonal matrix D in which all entries are
zero except for diagonal elements (i,i) that hold wi+ for each iεI. The so-called
(normalized) Laplacian is defined as L ¼ E � D�1=2WD�1=2 where E is identity
matrix and D�1=2 is a diagonal matrix with (i,i)-th entry equal to 1=

ffiffiffiffiffiffiffiffiffi
wiþ

p
. That

means that L’s (i,j)-th entry is dij � wij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wiþwjþ

p
where dij is 1 if i = j and 0,

otherwise. It is not difficult to prove that Lf0= 0 where f0 ¼ ffiffiffiffiffiffiffiffiffi
wiþ

p� � ¼ D1=21N
where 1N is N-dimensional vector whose all entries are unity. That means that 0 is
an eigenvalue of L with f0 being the corresponding eigenvector.

Moreover, for any N-dimensional f, the following equation holds:

f TLf ¼ 1
2

X
i;j2I

wij
fiffiffiffiffiffiffiffiffiffi
wiþ

p � fjffiffiffiffiffiffiffiffiffi
wjþ

p
 !2

ð5:8Þ

This equation is easy to prove by opening the parentheses and doing little
algebra over the obtained expression. It implies, among other things, that matrix
L is semi-positive definite, which means that product fTLF is not negative for any
vector f. As is well known in matrix theory, any semi-positive definite matrix has all
its eigenvalues non-negative reals, so that 0 is the minimum eigenvalue.

Given a bisecting partition S = {S1, S2} of I, let us define vector s by condition
si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wiþwðS2Þ=wðS1Þ

p
for iεS1 and si ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wiþwðS1Þ=wðS2Þ
p

for iεS2.

Obviously, the squared norm of this vector is constant, sk k2¼Pi2I s
2
i = w(S2) + w

(S1) = w++. Moreover, s is orthogonal to the trivial eigenvector f0= D1/21N corre-
sponding to the 0 eigenvalue of L. Indeed, the product of i-th components of these
vectors has wi+ as its factor multiplied by a value which is constant within clusters.
Then summation of these components over S1 will produce wðS1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðS2Þ=wðS1Þ

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðS1ÞwðS2Þ

p
and summation over S2, �wðS2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðS1Þ=wðS2Þ

p ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðS1ÞwðS2Þ

p
.

The sum of these two is 0, which proves the statement.
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It remains to prove that minimization of the normalized cut (5.6) is equivalent to
minimization of sTLs/sTs for thus defined s. Indeed, at f = s, the squared item in
(5.8) is equal to 0 for i,j from the same set, S1 or S2. When i and j belong to different
classes of S, the squared item is equal to w(S1)/w(S2) + w(S2)/w(S1) + 2=[w++ − w
(S2)]/w(S2) +[w++ − w(S1)]/w(S1) + 2= w++/w(S2) + w++/w(S1). That means that to
make the sum (5.8), the obtained quantity is multiplied by the number of non-zero
items, 2W(S1, S2), so that sTLs = 2w++nc(S), that is, 2nc(S) = sTLs/sTs. Therefore,
indeed. minimization of nc(S) is equivalent to minimization of the Rayleigh quo-
tient for L.

We have proven that the normalized cut minimizes the Rayleigh quotient for
Laplacian matrix L over specially defined vectors s that are orthogonal to the
eigenvector f0 = (wi+

1/2) corresponding to the minimum eigenvalue 0 of L.
Therefore, one may consider the problem of finding the minimum non-zero

eigenvalue for L along with the corresponding eigenvector as a proper relaxation of
the normalized cut problem. That means that the spectral clustering approach in this
case would be to grab that eigenvector and approximate it with an s-like binary
vector. The simplest way to do that would be by putting all plus components to S1
and all negative to S2.

It remains to define the pseudo-inverse Laplacian transformation, Lapin for
short, for a symmetric matrix W. Consider all non-zero eigenvalues k1, k2, …, kr of
matrix L and corresponding eigenvectors f1, f2, …, fr. The following spectral
decomposition equation is known to hold:

L ¼ k1f1f
T
1 þ k2f2f

T
2 þ . . .þ krfrf

T
r ð5:9Þ

The pseudo-inverse is defined by leaving the same eigenvectors but reversing the
eigenvalues, which causes no problems since they are all non-zero:

Lþ ¼ 1
k1

f1f
T
1 þ 1

k2
f2f

T
2 þ . . .þ 1

kr
frf

T
r ð5:10Þ

Q.5.11. Prove that nc(S) + nt(S) = 2 where the constituents are defined by
Eqs. (5.6) and (5.7).
Q.5.12. Prove that a one cluster extension of the normalized cut criterion, maximize
ng(S) = a(S,S)/a(S), does not work at nonnegative similarity data because the
maximum is always reached at the universal cluster S = I.
A. Indeed, ng(I) = 1, whereas ng(S) < 1 at all other S unless there are all zeros
outside of A(S,S).
Q.5.13. What’s wrong with the idea of expressing the summary similarity criterion
as a Rayleigh quotient?

Given a non-negative matrix W with none of its rows summing up to 0, its
Laplacian can be found with these MatLab commands:
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�W=(W + W′)/2; % to warrant the symmetry
�wr=sum(W);
�D=diag(wr);
�D=sqrt(D);
�Di=inv(D);
�L=eye(size(W)) – Di*W*Di;

Then the pseudo-inverse transformation can work like this.

�L=(L + L′)/2;
�[Z,M]=eig(L);
�ee=diag(M);
�ind=find(ee*=0); % indices of non-zero eigenvalues;
�Zn=Z(ind,ind);
�Mn=M(ind.ind);
�Mi=inv(Mn);
�Lapin=Zn*Mi*Zn′;

Worked Example 5.1. Normalized Cut for Company Data: Laplace and Lapin
Matrices
To show how this works, consider the affinity data for Company data set and its
Laplacian matrix in Table 5.7. The minimum eigenvalue of the Laplacian matrix
is 0 whereas the second minimum eigenvalue is 0.32. The eigenvector corre-
sponding to the latter, as expected, well separates the first three entities, A-product
companies.

Although the result is natural, there is no way to see it from the Laplacian matrix
by itself. Unlike the original affinity matrix, the visible structure of the Laplacian
gives no useful indications on the cluster structure underlying its entries. To make
the structure visible, the Laplacian should be further transformed. The Laplacian
Pseudo Inverse (Lapin, for short) transformation takes the spectral decomposition of
the Laplacian, inverses the non-zero eigenvalues k into 1/k, and returns a pseudo-
inverse Laplacian which is presented in the lower triangle of Table 5.8.

Table 5.7 Affinity similarities between eight companies in the Company data in Table 4.2 (upper
triangle) and the result of the normalized Laplace transformation (lower triangle)

1 2 3 4 5 6 7 8
1 1 0.3623 0.1730 0.1005 0.0123 0.0111 0.0101 0.0024
2 −0.5360 1 0.2143 0.0447 0.0261 0.0025 0.0224 0.0080
3 −0.2803 −0.3450 1 0.0207 0.0989 0.0252 0.0266 0.0085
4 −0.1611 −0.0712 −0.0361 1 0.1424 0.1752 0.0880 0.0073
5 −0.0177 −0.0372 −0.1548 −0.2207 1 0.2248 0.1918 0.0236
6 −0.0196 −0.0044 −0.0486 −0.3343 −0.3845 1 0.0347 0.0011
7 −0.0150 −0.0332 −0.0431 −0.1411 −0.2759 −0.0614 1 0.2982
8 0.0050 −0.0164 −0.0191 −0.0162 −0.0471 −0.0026 −0.6158 1
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One can easily see that the cluster structure is more pronounced in the Lapin
matrix than it is in the original affinity matrix. First, there is no need for guessing a
right threshold value to subtract: it is 0 here. Second, there is only one not-fitting
entry here, (7,5), but it would not make any difference anyway because it is rather
small in comparison with the other negative entries (7,6) and (7,4) linking item 7 to
B-product cluster, or entry (8,5) linking item 5 to C-product cluster.

One more result of the Lapin transformation is that the eigenvalue to look for is
the maximum one, and it is much better separated from the rest because of the
inversion (see Table 5.9). The corresponding eigenvector does not change.

Indeed the three product based clusters, {1, 2, 3}, {4, 5, 6}, {7, 8}, are found
with both the summary clustering criterion and spectral approach applied to the
Lapin transformed Company affinity data.

Case-Study 5.3. Circular Cluster Exposed by Lapin Transformation
To further demonstrate the formidable ability of the Lapin transformation in
manifesting clusters according to human intuition, let us consider the 2D set pre-
sented in Fig. 5.5.

This set has been generated as follows. Three 100 � 2 data matrices, a1, a2
and a3, were generated from Gaussian distribution N(0,1). Then matrix a2 was
normed row-wise into b, so that each row in b is a 2D normed vector, after which
matrix c has been defined as c = 0.5 * a3+ 8 * b. Its rows form a ring-wise shape
on the Cartesian plane, while rows of a1 fall into a heap in the circle’s center as
presented on Fig. 5.5. Then a1 and c are merged into a 200 � 2 matrix X, in which
a1 takes the first 100 rows and c the next 100 rows.

Table 5.8 Affinity similarities between eight companies as in Table 5.7 (upper triangle; entries
larger than 0.15 are highlighted in bold; those not fitting in the structure underlined) and the result
of Lapin transformation (lower triangle, positive entries highlighted in bold, that not fitting
underlined)

1 2 3 4 5 6 7 8
1 0.3623 0.1730 0.1005 0.0123 0.0111 0.0101 0.0024
2 0.4734 0.2143 0.0447 0.0261 0.0025 0.0224 0.0080
3 0.2221 0.2677 0.0207 0.0989 0.0252 0.0266 0.0085
4 −0.2073 −0.2719 −0.2405 0.1424 0.1752 0.0880 0.0073
5 −0.4281 −0.4314 −0.2577 0.0190 0.2248 0.1918 0.0236
6 −0.3534 −0.3839 −0.2638 0.1563 0.1984 0.0347 0.0011
7 −0.5430 −0.5337 −0.4076 −0.1213 0.0457 −0.1020 0.2982
8 −0.4440 −0.4316 −0.3385 −0.1650 −0.0504 −0.1478 0.6003

Table 5.9 Reciprocal non-zero eigenvalues of the Laplacian and Lapin matrices corresponding to
the same eigenvectors

Eigenvalue labels I II III IV V VI
Normalized Laplacian 0.32 0.59 1.11 1.35 1.40 1.55
Lapin 3.08 1.70 0.90 0.74 0.71 0.65
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The conventional data standardization methods would not change the picture,
and conventional clustering procedures like K-means clustering would not be able
to separate the ring as a whole. The single link clustering will be able to separate
these two clusters, which would once again remind us of a rift between the data
approximation clustering and graph theoretic approaches. Yet the Laplace trans-
formation allows us to put this dataset into the data approximation context too.

The data is first transformed into a 200 � 200 affinity similarity matrix, which is
then Lapin transformed into a final similarity matrix. This final matrix shows a
clear-cut pattern: all similarities between the first hundred and the second hundred of
points are negative whereas all the Lapin similarities within these sets are positive.
Such a structure clearly separates the two clusters with any reasonable algorithm, the
summary criterion based AddRem and the spectral approach included.

Take a look, for example, at a randomly selected 5 � 2 fragment from matrix
X concerning 2 rows from a1 and 3 rows from c in the left-hand part of Table 5.10.
It is not easy to cluster points 3, 4, 5 together because of the great distances between
them.

Fig. 5.5 Two intuitively
obvious clusters that are
difficult to separate using
conventional approaches:
stars in the heap and dots in
the ring

Table 5.10 Five points from Fig. 5.5, on the left, the affinity similarities between them, in the
middle, and Lapin similarities, on the right (those positive are highlighted by bold font)

x-axis y-axis 2 3 4 5 2 3 4 5
1 −1.1465 0.3274 0.63 0.00 0.02 0.01 0.04 −0.12 −0.14 −0.10
2 0.8956 0.5529 0.00 0.00 0.00 −0.12 −0.15 −0.11
3 0.3086 5.9059 0.00 0.03 0.16 0.40
4 −5.1827 0.0625 0.01 0.46
5 −5.0025 5.8504
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This is reflected in the Gaussian affinity matrix A between 200 rows of the
data matrix too, which is defined as described in Sect. 5.1 according to formula
aij ¼ expð�dðxi; xjÞ=sÞ where dðx; yÞ ¼Pv2V ðxv � yvÞ2 is the squared Euclidean
distance between vectors x and y. The value of s relates to the denominator of
exponent 2r2 in the definition of the Gaussian density so that if one takes r to be
half of the range, then s should be about the same, which leads to s = 9 in this case.
The part of affinity matrix A related to the set of five points is presented in the
middle of Table 5.10. One can see indeed a high affinity value between the first two
entities, which belong to the heap in the middle of Fig. 5.5 and are close to each
other indeed, while the other similarities are close to zero—no visible structure.
A similar pattern can be seen on the Laplacian except that all non-diagonal entries
are negative there because of the definition. After the Lapin transformation, how-
ever, the similarity structure, once again, becomes clear-cut, as shown on the right
part of Table 5.10 for the 5-point subset, and in fact is true for the entire dataset.

This ability of Lapin transformation in transforming elongated structures into
convex clusters has been a subject of mathematical scrutiny. An analogy with
electricity circuits has been found. Roughly speaking, if wij measures the conduc-
tivity of the wire between nodes i and j in a “linear electricity network”, then the
corresponding element of a Lapin matrix expresses the “effective resistance”
between i and j in the circuit (Klein and Randic 1993). However, there can be cases
of elongated structures, as shown in Worked Example 5.2, at which Lapin trans-
formation does not work at all.

Worked Example 5.2. Failure of the Spectral Clustering at Cockroach
Network
Lapin matrix for Cockroach network analyzed in Chap. 4, see Fig. 4.28a, is pre-
sented in Table 5.11. It manifests a rather clear-cut cluster structure embracing three
clusters, {1, 2, 3, 4}, {7, 8, 9, 10}, {5, 6, 11, 12}. Indeed, the positive entries are
those within the clusters, except for two positive—but rather small—entries,
at (4, 5) and (10, 11).

Yet the first eigenvector reflects none of that; it cuts through by separating six
nodes {1, 2, 3, 4, 5, 6} (negative components) from the rest (positive components).
This is an example of a situation in which the spectral approach fails: the nor-
malized cut criterion at the partition separating the first 6 nodes from the other 6
nodes is equal to 0.46, whereas its value at cluster {5, 6, 11, 12} cut from the rest is
0.32. The same value of the criterion, 0.32, is attained at cluster {4, 5, 6, 10, 11, 12}
cut from the rest. These two cuts are optimal according to the criterion, and the
spectral cut is not.

5.2.2 Minimum Cut and Straight Spectral Clustering

It should be mentioned that the matrix spectrum can be used not only for the
normalized cut approach but for the summary and semi-average criteria as well.
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Here this is elaborated for the min-cut criterion, that is of minimization of the sum of
between-cluster similarities. Indeed, define N-dimensional vector z = (zi) such that
zi = 1 if iεS1 and zi = −1 if iεS2. Obviously, zi

2 = 1 for any iεI so that zTz = N which
is constant at any given entity set I. On the other hand, zTAz = A(S1, S1) + A(S2, S2) −
2A(S1, S2) = 2(A(S1, S1) + A(S2, S2)) − a(I ) = a(I ) − 4A(S1, S2), which means that
criterion (4.39) is maximized when zTAz is maximized, that is, the problem of finding
a minimum cut is equivalent to the problem of maximization of Rayleigh quotient

gðzÞ ¼ zTWz
zTz

ð5:11Þ

with respect to the unknown N-dimensional z whose components are either 1 or −1.
Matrix W is A pre-processed into either B, with subtraction of a threshold, or C,
with subtraction of the random interactions (see Sect. 4.6.3.3 for more detail) or
using a different transformation.

As is well known, the maximum of (5.11) with respect to arbitrary z is equal to
the maximum eigenvalue of W and it is reached at the corresponding eigenvector
referred to as the first eigenvector. This brings forth the idea that is referred to as
spectral clustering: Find the first eigenvector as the best solution and then
approximate it with a (1, −1)-vector by putting 1 for positive components and −1
for non-positive components—then produce S1 as the set of entities corresponding
to 1, and S2, corresponding to −1.

To find the maximum eigenvalue and corresponding eigenvector for a symmetric
similarity matrix W, MatLab command [Z,L] = eig(W) should be executed.
Resulting L is a diagonal matrix with eigenvalues located on the diagonal in the
ascending order, so that the last one is the maximum eigenvalue. Accordingly, the
last column is the corresponding, “first”, normed eigenvector. Its positive compo-
nents correspond to one cluster, and the non-positive components to the other. Here
is a sequence of commands to determine the split parts S1 and S2:

�[Z,L]=eig(W);
�[n,n]=size(L);
�z=Z(:,n);
�S{1}=find(z>0); S{2}=find(z<=0);

If W is non-negative then the first eigenvector is proven to be not negative
either—no partition of I can emerge in such a situation.

Although not necessarily an optimal partition, this is a practical and, in most
cases, good solution.

Unlike the normalized cut approach, no weird data transformation is required
here; this is why we refer to this approach as a “straight spectral approach.”
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Worked Example 5.3. Straight Spectral Clusters for Confusion Dataset
Table 5.12 presents results of sequential cuts according to the first eigenvectors on
the sets resulting from the previous cuts. As before, the modularity transformation
leads to three discernible clusters of numerals, {1, 4, 7}, {6, 8, 0} and {2, 3, 5, 9},
whereas the uniform data transformation, by subtracting the mean of the similarities
on the current set, convincingly separates 2 from cluster {2, 3, 5, 9}—the remaining
set {3,5,9} cannot be further divided because the maximum eigenvalue at that is
negative, thus no positive value of the criterion at the division.

Worked Example 5.4. Straight Spectral Clusters for Cockroach Network
Table 5.13 presents results of the first two cuts according to the spectral clusters
derived at the modularity and uniform data transformations. They differ on nodes 4
and 10 at which they are ether merged with the thicker end of the network, at the
uniform clustering, or not,—at the modularity clustering. At the second cut, they go
to different parts, according to the network topology on Fig. 4.28.

Q.5.14. Consider an agglomerative clustering algorithm, in which the similarity
between clusters is the sum of between cluster similarities. Prove that:

(a) this algorithm (locally) maximizes the summary within cluster similarity
criterion;

(b) the algorithm stops when all between cluster summary similarities are negative
(which will happen if the similarity matrix has been preprocessed with either
the modularity or uniform transformation).

Table 5.12 First eigenvectors according to the modularity and uniform data preprocessing
options

Modularity Uniform, current mean subtracted

Set 0–9 2 3 5 6 8 9 0 2 3 5 9 0–9 2 3 5 6 8 9 0 2 3 5 9 3 5 9
1 −0.57 0.52
2 0.08 0.06 0.5 −0.08 0.07 0.46
3 0.07 0.51 0.5 −0.12 0.50 −0.50 0.74
4 −0.27 0.25
5 0.21 0.22 0.5 −0.24 0.22 −0.29 −0.58
6 0.26 −0.36 −0.29 −0.36
7 −0.53 0.49
8 0.34 −0.43 −0.38 −0.44
9 0.19 0.43 0.5 −0.25 0.43 −0.68 0.35
0 0.21 −0.43 −0.23 −0.44
k 703.7 189.6 0.0 355.7 189.6 83.8 −46.4
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Worked Example 5.5. Straight Spectral clustering of Affinity Data The spectral
clustering approach is much successful on the affinity data for the Company dataset
—the three clusters corresponding to the three products are recovered well on both
data transformation options, the uniform and the modularity (see Table 5.14). The
uniform version does not divide the B product cluster {4, 5, 6} in smaller parts
because all components of the first eigenvector here have the same sign.

Table 5.13 First
eigenvectors according to the
modularity and uniform data
preprocessing options at
Cockroach network in
Fig. 4.28a: two cuts

Modularity Uniform, current
mean subtracted

Set 1–12 1–4 7–
10

1–12 1–3 7–9

1 0.21 −0.30 −0.22 0.3536
2 0.32 −0.46 −0.26 0.5000
3 0.24 −0.41 −0.10 0.3536
4 0.00 −0.16 0.22
5 −0.37 0.46
6 −0.40 0.34
7 0.21 0.30 −0.22 −0.3536
8 0.32 0.46 −0.26 0.5000
9 0.24 0.41 −0.10 −0.3536
10 0.00 0.16 0.22
11 −0.37 0.46
12 −0.40 0.34
k 1.71 1.53 1.88 1.41

Table 5.14 First eigenvectors according to the modularity and uniform data preprocessing
options at Company affinity data set

Modularity Uniform, current mean subtracted

Set 1–8 4–8 4–6 1–8 4–8 4–6
1 0.50 0.53
2 0.51 0.55
3 0.32 0.35
4 −0.13 0.35 0.58 −0.09 0.36 −0.40
5 −0.29 0.25 0.58 −0.23 0.27 −0.62
6 −0.24 0.48 0.58 −0.20 0.49 −0.68
7 −0.38 −0.45 −0.33 −0.43
8 −0.3 −0.62 −0.29 −0.61
k 0.41 0.21 0.00 0.41 0.21 0.01
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5.3 Threshold Graph, Connected Component,
Single Linkage Clustering, and Maximum
Spanning Tree MST

5.3.1 Threshold Graphs

Given a weighted graph with the node set I = {1,2,…,N}, or, equivalently, a
similarity matrix A = (aij), i,j�I, it can be simplified into the so-called threshold
graph. Given a real t, a t-threshold graph is defined as a flat graph with nodes in I so
that i and j from I are linked if and only if aij > t. In this way, all weights that are
less than t are considered as equally insignificant, while those greater than t are
considered equally significant. This may seem an over-simplification sometimes—
some insist on leaving the significant links in a t-threshold graph as they are,
without flattening them into the same unity weight. In this latter case, one
encounters a data pre-processing option. This option is powerful but applied quite
rarely, probably because of difficulties in substantiation of such a transformation.

Having a flat t-threshold graph, natural graph-theoretic cluster concepts are
applicable, first of all, a clique and a component. A clique is a maximal subset of
nodes, all of which are mutually linked in the graph. Finding a clique of maximum
size is a computationally hard task. A component is a maximal subset of nodes all
of which are connected by a path. Finding a component is computationally easy by
iteratively joining in all the nodes linked to any already existing member.

Worked Example 5.6. Flat Graphs for Eurovision Song Contest Data and
Components
Consider the symmetrized similarity data on the Eurovision song contest (from
Table 1.11 in Chap. 1).

Let us take its t-threshold graph at t = 6 so that all the weights that are less than 6
are zeroed. It appears, there is only one non-trivial component in this graph
(see Fig. 5.6).

The component in Fig. 5.6 shows no separate clusters but rather a transition from
East to West.

Fig. 5.6 The only non-trivial component of t-threshold graph for the similarity data in Table 5.15,
t = 6

5.3 Threshold Graph, Connected Component, Single Linkage Clustering … 431



Q.5.15. Demonstrate that any t-threshold graph for data in Table 5.15 may have
only one nontrivial connected component. How many nodes the component
contains?

Consider a similarity, rather than dissimilarity, matrix, for a change. All the
contents of this section apply to dissimilarity data as well with the only change—of
taking maximum for taking minimum.

Weighted graphs, or networks, is a natural way for representing similarity
matrices such as those in Tables 1.7 and 1.5. Single link clustering method applies
to symmetric matrices, such as that presented in Table 5.16—a symmetric version
of the Confusion data Table 1.7.

It is obtained by a most conventional way: given a possibly non-symmetric
matrix A, take its transpose AT and define Ã = (A + AT)/2. This is a technical way to
express the idea that every symmetric pair of non-coinciding entries such as 7 in
position (1,3) and 29 in position (3,1) should be substituted by their half-sum:.
36/2 = 18. To obtain data in Table 5.16, the result was rounded up to the nearest
larger integer.

The similarity matrix in Table 5.16 can be represented by a graph whose nodes
correspond to the entities i�I and edge weights to the similarity values. Frequently, a
threshold t applies so that only those edges {i,j} are put in the graph for which the
similarity values are greater than the threshold.

For the threshold t = 20, this graph is presented on Fig. 5.7.
Here we present some mathematical properties relating the concepts of

Maximum Spanning Tree, connected component of a graph and Nearest Neighbor
clustering, which is also referred to as the Single linkage clustering.

5.3.2 Maximum Spanning Trees and Connected
Components

In graph theory, a number of concepts have been developed to reflect the structure
of weighted graphs of which one of the most popular is the concept of Maximum
Spanning Tree (MST). A tree is a graph with no cycles, and a spanning tree is a tree
over all the entities under consideration as its nodes. The length of a spanning tree is
defined as the sum of weights of all its edges. An MST is a spanning tree whose
length is maximum.

Let us first recall some definitions from graph theory.
A weighted (similarity) graph Г = (I,G,A) is defined as a triplet of: (i) an

N-element set of nodes I; (ii) set of edges, that is, two-element subsets of I, G; and
(iii) edge weight function represented by a symmetric matrix A = (aij) so that aij= 0
if i; jf g 62 G. A graph is referred to as an ordinary graph if its nonzero weights are
all unities.

A path between nodes i and j in Г is a sequence of nodes i1, i2,…, in such that
{im, im+1}�G for each m = 1,2,…,n−1 and i1= i, in= j. A path is referred to as a
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cycle if i1= in. A subset of nodes S is referred to as a connected component if there
is a path within S between each pair of nodes in S, and S is maximal in this sense so
that addition of any supplementary node to S breaks the property. Graph Г is called
connected if it consists of just one connected component.

Given a connected weighted graph Г = (I,G,A), a connected weighted graph
T = (J,H,B), with no cycles, is referred to as its spanning tree if J = I, H	G, and
B is A restricted to H, so that bij= aij for {i,j}� H and bij= 0 for i; jf g 62 H.
A characteristic property of a spanning tree T is that it has exactly N − 1 edges:

6  0

  88       31   
113 122

       31     25 29   8
38     29                32 

31
104  3  75 

31
132  

9
7 44

26
165 4

1             86       

Fig. 5.7 Threshold graph of
connections corresponding to
similarity weights of 21 or
greater in matrix of
Table 5.16

Table 5.16 A symmetric version of Confusion data in Table 1.8

Stimulus Response

1 2 3 4 5 6 7 8 9 0
1 877 11 18 86 9 20 165 6 15 11
2 11 782 38 13 31 31 9 29 18 11
3 18 38 681 6 31 4 31 29 132 11
4 86 13 6 732 9 11 26 13 44 6
5 9 31 31 9 669 88 7 13 104 11
6 20 31 4 11 88 633 2 113 11 31
7 165 9 31 26 7 2 667 6 13 16
8 6 29 29 13 13 113 6 577 75 122
9 15 18 132 44 104 11 13 75 550 32
0 11 11 11 6 11 31 16 122 32 818
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if there are more edges than that, T must contain a cycle, and if there are less edges
than that, T cannot span the entire set I and, therefore, it would consist of several
connected components.

The weight of a spanning tree T = (I,H,B) is defined as the total weight of its
edges, that is, the sum of all elements of weight matrix B. A spanning tree of
maximum weight is referred to as a Maximum Spanning Tree, MST.

Given a weighted graph Г = (I,G,A) and a real t, an ordinary graph Гt= (I,Gt,At)
is referred to as a threshold graph if Gt= {{i,j}: aij> t}. Given a spanning tree T and
a threshold t, its threshold graph can be found by cutting out those edges whose
weights are smaller than or equal to t. It appears T bears a lot of structural infor-
mation of the corresponding graph Г = (I,G,A).

In particular, connected components of an MST found by cutting those links
from MST that are less than t one-to-one correspond to connected components of
the threshold graph Гt.

Indeed, consider a component S of MST T obtained by cutting all edges of the
T whose weights are less than t. We need to prove that for each pair i,j�S there is a
path between i and j such that it all belongs to S, so that the weight of each edge in
the path is greater than t, and, moreover, for all i,k such that i�S and k 62 S, if {i,k}�G,
then aik � t. But the former obviously follows from the fact that S is a connected
component of T in which all weights are greater than t since the others have
been cut out. The latter is not difficult to prove either: assumption that aik> t for
some i�S and k 62 s such that {i,k}�G would contradict the assumption that T is an
MST, that is, that the weight of T is maximal, because by substituting the edge
connecting S and the component containing k by edge {i,k}, one would obtain a
spanning tree of a greater weight. Assume now that an S is a connected component
of the threshold graph (at threshold t), and prove that S is a component of the
threshold graph, at the same threshold t, for any MST. Indeed, if S overlaps two
components, S1 and S2, of the threshold graph of some MST T, then there must be a
pair i,j in S such that i�S1 and j�S2 and aij> t, which again contradicts the fact that
S1 and S2 are not connected in the threshold graph of T. This completes the proof.

Building a Maximum Spanning Tree
To find an MST, several “greedy” approaches can be undertaken. One of them, by
Kruskal (1956), finds an MST by picking up edges; the other, by Prim (1957), picks
up nodes. Prim’s algorithm builds an MST T from an arbitrary node by finding the
weakest link to the tree from outside and adding it to tree at each step. An exact
formulation is this.

Prim’s algorithm

1. Initialization.
Start with tree T consisting of an arbitrary node i2I with no edges.

2. Tree update.
Find j2 I-T maxiimizing aij over all i2T and j2I−T. Add j and edge {i,j} with
the maximal aij to T.
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3. Stop-condition.
If I−T = ∅, halt and output tree T. Otherwise, go to 2.

To build a computationally effective procedure for the algorithm may be a
cumbersome issue, depending on how maxima are found, to which a lot of work
has been devoted. A simple pre-processing step can be quite useful: in the begin-
ning, find a nearest neighbor for each of the entities; only they may go to MST. At
each step, update the neighbors of all elements in I−T so that they lead to elements
of T (Murtagh 1985). The claim that the algorithm builds an MST indeed can be
proven using inductive statement that T at each step is part of an MST.

Worked Example 5.7. Concept of MST
Consider graph of Fig. 5.7. Figure 5.8 highlights two of its spanning trees. The length
of that on the left is 165{1–7} + 31{7–3} + 44{4–9} + 132{9–3} + 31{3–5} +
38{3–2} + 29{3–8} + 31{2–6} + 122{8–0} = 623; here, curly braces’ contents
correspond to the edges in the tree. The length of that on the right is 86{1–4} +
165{1–7} + 44{4–9} + 132{3–9} + 104{9–5} + 88{5–6} + 113{6–8} + 38{3–2} +
122{8–0} = 892, which is much greater. In fact the latter is a Maximum Spanning
Tree.

Given a weighted graph, or similarity matrix, an MST T can be built by
using Prim’s algorithm which collects T step by step starting from a singleton
node, in fact any of the nodes, and then adding a maximum outside link to T one
by one.

6  0
88     31     113 122

31
5 2 29 8

38 29      
31 75 32

104 3 132
31            

7 26 9 44

165 1 4

6  0
88     31     113 122

31
5 2  29 8

38 29      
31 75 32

104 3 132
31            

7 26 9 44

165 1 4

86                                                         
86                                                         

Fig. 5.8 Two spanning trees on the graph of Fig. 5.7 are highlighted by bold edges. The length of
the tree on the left is 623, and that on the right, 892. Which one is an MST?
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Worked Example 5.8. Building an MST on Confusion Data
Let us build a Maximum Spanning Tree for the network in Fig. 5.7 by using Prim’s
algorithm. Start, for example, with T = {0} and add to T that link which is maxi-
mum, that is, obviously 122{0–8}. Since T has two nodes now, we check external
links of each of them to find a maximum external link from T to the rest, 113{8–6},
thus getting three nodes, 0, 8, 6 and two links, {0–8} and {8–6}, in T. The max-
imum external link now is 88{6–5} bringing 5 and link {6–5}into T. Next maxi-
mum links are 104{5–9}, 132{9–3} and 44{9–4} bringing 9, 3 and 4, respectively,
into T. Of the three remaining nodes outside T, 2, 7 and 1, the maximum link is 86
{4–1} followed by 165{1–7}. Node 2’s maximum connection is 38{2–3} thus
completing the MST drawn on the right hand side of Fig. 5.8.

Prim’s algorithm is what is called greedy—it works node-by-node and picks
up the best solution at the given step, paying no attention to what happens next.
The MST problem is one of a very few combinatorial problems that can be
solved indeed by a greedy algorithm. On the other hand, one should not be
overly optimistic about performances of the algorithm because it finds, at each
step a maximum of a number of elements, on average—half the number of
entities, and one should not forget that finding maximum is a rather expensive
operation.

Another potential drawback, related to the weight data size, which is quadratic
over the number of entities, is not that bad. Specifically, if the similarities are
computed from data in the entity-to-feature format, the difference between the
data sizes can grow fast indeed: say 500 entities over 5 features take about
2500 numbers, whereas the corresponding similarity matrix will have about
250,000 numbers—a hundred times greater. Yet if the number of entities grows
20 times to 10,000—a rather modest size nowadays—the raw data table will
take 50,000 numbers whereas the similarity matrix, of the order of 100,000,000,
a hundred million, which is two thousand times greater! Yet it is possible to
organize the computation of an MST by storing and updating lists of nearest
neighbors in the network in such a manner that the quadratic size increase is not
necessary, because almost all necessary similarities can be calculated from the raw
data when needed.

5.3.3 Single Link Hierarchical Clustering by Using MST

Single link clustering is, primarily, a hierarchical clustering method in which the
similarity between two clusters, S1 and S2, is defined according to nearest neighbor
rule as the maximum similarity between elements of these clusters, aðS1; S2Þ ¼
maxi2S1;j2S2 aij—the fact that the between-cluster similarity is defined by just one
link underlies the name of the method.
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In an agglomerative process, there is no need to revise all the maximum simi-
larities after every merger step. New similarities can be revised dynamically in the
agglomeration process according to the following rule:

aðS; S1 [ S2Þ ¼ max aðS; S1Þ; aðS; S2Þ½ �;

where S1[ S2 is the result of the agglomeration step.
Thus, the only intensive computation is finding the maximum in the newly

formed column a(S, S1[ S2) of the similarity matrix over all current clusters S.
There is another way to proceed, however—by building an MST first. All the

merger steps can be made then according to the MST topology. First, the N−1
edges of the tree are to be sorted in the descending order. Then the following
recursive steps apply. On the first step, take any maximum similarity edge {i,j},
combine its nodes into a cluster and merge i and j by removing the edge. On the
general step, take any remaining similarity edge {i,j} of the maximum similarity
value (among those left) and combine clusters containing i and j nodes into a
merged cluster. Halt, when no edges remain in the sorted order.

This operation is legitimate because the following property holds: clusters found
in the process of mergers according to the sorted list of MST edges are clusters
obtained in the agglomerative Single Link clustering procedure.

There is no straightforward divisive version of the Single Link method as
originally defined. However, it is rather easy to do if an MST is built first. Then
cutting the tree over any of its weakest, that is, minimum, links produces the first
single link division. Each of the split parts is divided in the same way—by cutting
out one of the weakest links.

Worked Example 5.9. A Divisive MST based Single Link hierarchy for
Confusion data
Let us use the MST found in Worked Example 5.8 for Single Link divisive clus-
tering. We start from cutting the MST in two parts over the weakest link, in this
case, edge linking 2 and 3 with the weight 38. This division separates digit 2 from
the rest. Next weakest link is 44 between 4 and 9, thus cutting cluster 1–4–7 out.
Next divisions can be followed by the dendrogram on the right in Fig. 5.9: it shows
not only cuts but, also, the cut link values (in the bottom of the cluster boxes),
which are used as the height function, as well. Since they monotonically increase
from the root, not decrease, the height axis is turned upside down.

Q.5.16. Let us refer to a similarity matrix A as ultra-similarity if it satisfies the
following property: for any triplet i,j,k2I, aij 
 min (aik, akj), that is, two of the
values aij, aik, akj are equal, whereas the third one may be greater than that. Given
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an MST T, define a new similarity measure between any nodes i and j by using the
unique path T(i,j) connecting them in T: at(i,j) = min k,l2T(i,j) akl. Prove that:

(i) Similarity at(i,j) coincides with that defined by the agglomerative hierarchy
built according to the Single Link algorithm;

(ii) Similarity at(i,j) is an ultra-similarity;
(iii) Similarity at(i,j) is the minimum ultra-similarity satisfying condition at(i,

j) 
 aij for all i,j2I. (Hint: use similar properties of ultrametric.)

Worked Example 5.10. MST and Connected Components
Let us sort all the edges in MST found at the graph on Fig. 5.8 in the ascending
order: 38{3–2}, 44{4–9}, 86{1–4}, 88{5–6}, 104{9–5}, 113{6–8}, 122{8–0}, 132
{9–3}, 165{1–7}. Given a threshold t, say t = 50, cut the 2 edges in the tree that are
less than the threshold, 3–2 and 4–9—the tree will be partitioned in 2 + 1=3
fragments corresponding to connected components of the corresponding threshold
graph (see the cuts on the left in Fig. 5.9).

Figure 5.10 presents, on the left, a threshold graph at t = 50, along with clearly
seen components consisting of subsets {1, 4, 7}, {2}, and {3, 5, 6, 8, 9, 0}. The
same subsets are seen on the right where the two weakest links are cut out of the
MST. The fact that the threshold graph components are MST fragments is not a
coincidence but rather a mathematically proven property of the MSTs.
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Fig. 5.9 An MST for the graph of Fig. 5.7 is on the left, and, on the right, a dendrogram for the
results of a Single Link divisive clustering procedure by sequentially cutting the weakest links. The
node heights correspond to the split values
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Worked Example 5.11. MST and Single Linkage Clusters for Company
Dataset
This example illustrates a property of the MST based clustering. The results depend
on the link between just two objects, which can be at odds with the data structure
sometimes. Let us consider a Minimum Spanning Tree built on distances between
Companies in Table 5.1. Starting from Av, we add minimum link An(0.51)Av to
tree T being built, then we add to T the minimum distance link As(0.77)An. Then
the minimum distance is 1.15 between Ba and Av, which brings next links Bu(0.87)
Ba, Br(0.75)Bu, followed by Ci(0.83)Br and Cy(0.61)Ci. (Note that all row-wise
minimum distances highlighted on Table 5.1 have been brought in the tree T. These
minimum distances can be used, in fact, in a different method for building an MST
—Boruvka’s algorithm (1926), arguably the very first clustering method!).
This MST T, which is in fact a path, is presented on the left side of Fig. 5.11.

This path goes along the product clusters so that B companies are all between A
and C companies. Yet the single link clusters shown on the right side of Fig. 5.11
do not reflect the structure of the set but separate a distant company Ba and mix
together products B and C—all this just because the right-to-remove link Br-Ci
(0.83) appears a bit smaller than wrong-to-remove link Ba-Bu (0.87).

Case-Study 5.4. Difference Between K-means and Single Link Clustering
Consider a set of 2D points presented on Fig. 5.12. Those on the left have been
clustered by using the single link approach, whereas those on the right, by using the
square error criterion of K-means.

 

Fig. 5.10 Threshold graph at t = 50 for the graph of Fig. 5.7 is on the right, and the MST with 2
weakest links shown using crossing dashed lines is on the left
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Overall, this example demonstrates the major difference between conventional
clustering and single link clustering: the latter finds elongated structures whereas
the former cuts out convex parts. Sometimes, especially in the analysis of results of
physical processes or experiments over real-world particles, the elongated structures
do capture the essence of the data and are of great interest. In other cases, especially
when entities/features have no intuitive geometric meaning—think of bank cus-
tomers or internet users, for example, convex clusters make much more sense as
groupings around their centers.

51  77
Av      An As

                               75 
Ba Bu Br

83

Cy  Ci

51      77
Av An As

115 

87 75
Ba   Bu   Br

  61

83

   61    
Cy Ci

Fig. 5.11 Minimum Spanning Tree for company dataset in Table 5.1: the structure of company
products is reflected on the tree and lost on the clusters because of wrong cuts. (For the sake of
convenience, the distances are multiplied by 100.)

(a) (b)

Fig. 5.12 A 2D point set: clustered with the single link method (a) and K-means (b)
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An interesting property of the single linkage method is that it involves just N − 1
similarity entries occurring in an MST rather than all N(N − 1)/2 entries in A. This
results in a threefold effect:

(1) a nice mathematical theory,
(2) fast computations, and
(3) poor application capability.

Q.5.17. Explain the sequence of splits in a divisive algorithm according to tree of
Fig. 5.9.
Q.5.18. How many edges in an MST are to be cut if the user wants to find 5
clusters?
Q.5.19. Prove that the number of edges in an MST is always the number of entities
short one.
Q.5.20. Apply Prim’s algorithm to Amino acid similarity data in Table 1.9.
Q.5.21. Prove that the MST would not change if the similarities are transformed
with a monotone transformation, that is, a function u(x) such that u(x1) > u(x2)
if x1> x2. Hint: Because the sequence of events in Prim’s algorithm does not
change.
Q.5.22. Prove that an agglomerative version of the single linkage method can work
recursively by modifying the similarities, after every merger S1[ S2, according to
formula

aðS; S1 [ S2Þ ¼ max aðS; S1Þ; aðS; S2Þ½ �;

and each time merging the nearest neighbors in the similarity matrix.
Q.5.23. Lance and Williams family of agglomerative algorithms.

An agglomerative clustering algorithm works one-by-one mergers of the
“nearest” clusters beginning from the trivial partition of the entity set in singletons.
To specify the computation, a method for computing distances between the merged
cluster and the other remaining clusters can be defined. A very general formula
covering many a method has been proposed by Lance and Williams (1967):

dðk; f [ gÞ ¼ af dðk; f Þþ agdðk; gÞþ bdðf ; gÞ
þ c dðk; f Þ � dðk; gÞj j: ð5:12Þ

Values of the coefficients in (5.12) for some popular methods are presented in
Table 5.17. One of the methods, popular in bioinformatics, is referred to as
UPGMA (Unweighted Pair Group Method with Arithmetic Means): the dissimi-
larity between two clusters is defined as the average distance between all entities of
the two. Prove that coefficients in Table 5.17 are correct.
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5.4 Separate Clusters

Separation of one cluster from the rest is akin to divisive clustering; just criteria
differ, In divisive clustering, the two parts obtained have equal “statuses” as clus-
ters. In separate clustering, just one cluster is sought, whatever relations between
other objects are. This is a frequent situation in data analysis when the user is
interested at separating just one cluster from the rest, be it a cluster of endemic
territories or a subset of would-be fraudsters. We already encountered this when
considering Anomalous clusters at K-means. This is why the case of
entity-to-feature data will be considered in brief only. Most attention will be given
to the case of similarity data.

5.4.1 Anomalous Cluster

Separation of a cluster S from the rest may follow the model considered in
Chap. 4 (see Eqs. (4.18)). Specifically, a cluster is defined by its center c = (cv) so
that every object in S coincides with c, up to errors that are to be minimized.
A decoder-based model is this:

yiv ¼ cv þ ev; i 2 S
0þ ev; i 62 S

�
ð5:13Þ

The least squares approach requires to minimize the summary squared error,
equivalently represented as

WðS; cÞ ¼
X
i2S

dðyi; cÞþ
X
i62S

dðyi; 0Þ ð5:14Þ

Table 5.17 Lance-Williams coefficients for some popular agglomerative clustering methods

Method af ag b c
Single linkage ½ ½ 0 −½
Complete

linkage
½ ½ 0 ½

UPGMA Nf/(Nf+ Ng) Ng/(Nf+ Ng) 0 0
Ward (Nf+ Nk)/

(Nf+ Ng+ Nk)
(Ng +Nk)/

(Nf+ Ng+ Nk)
(Nf -Nk)/

(Nf+ Ng+ Nk)
0
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where S is the cluster to be found and c its center. This criterion much reminds the
K-means criterion at K = 2, except that here one of the centers, 0, is unvaried.
Obviously, minimizing (5.14) requires the cluster S’ center, c, to be as far away
from 0 as possible. An appropriate version of K-means can be formulated as
follows.

Anomalous Cluster (AC) algorithm

1. Pre-processing. Specify a reference point a = (a1, …, aV) (when in doubt, take
a to be the data grand mean point) and standardize the original data table by
shifting the origin to a = (a1, …, aV)—by subtracting a from every object point
vector.

2. Initial setting. Put a tentative center, c, as the entity farthest away from the
origin, 0.

3. Cluster update. Determine cluster list S around c against 0, so that entity yi is
assigned to S if d(yi,c)< d(yi,0).

4. Center update. Calculate the within S mean c′ and check whether c′ differs from
the previous center c. If c′ and c do differ (up to a pre-specified precision error),
update the center by assigning c ( c’ and go to Step 3. Otherwise, go to 5.

5. Output. Output list S and center c, with accompanying interpretation aids (as
advised in Chap. 4).

Examples of application of the Anomalous clustering were given in Chap, 4.
Here, we are just going to illustrate the difference between the separation of the
Anomalous cluster and Ward division method.

Case-Study 5.5. Anomalous Cluster Versus K-means Bisecting
Consider 280 values generated according to the one-dimensional Gaussian distri-
bution N(0,10) with zero mean and standard deviation equal to 10 (see Table A.6),
presented on Fig. 5.13 and try divide it in two clusters. When it is done with a
splitting criterion, the division goes just over the middle, cutting the bell-shaped
curve in two equal halves. When one takes Anomalous clusters, though, the divi-
sions are much different: first goes a quarter of the entities on the right (to the right
of point A on Fig. 5.13), because the right end in this individual sample is a bit
farther from the mean than the left one; then a similar chunk to the left of point B,
etc. Yet if one uses the anomalous clusters in iK-means, just as an initial centers
generator, things differ. With the discarding threshold of 60, only two major
Anomalous patterns found in the beginning remain. Further 2-means iterations
bring a rather symmetric solution reflected in the leftmost part of Table 5.18. The
right-hand part of the table shows results found with an incremental version of
Bisecting K-means method.

This leads to a slightly different partition, with three entities swapping their
membership, which is slightly better, achieving 65.4% of the explained scatter
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versus 64.8% at iK-means. This once again demonstrates that the incrementally
processing individual entities is a more precise option than the all-as-one switching
in iK-means.

5.4.2 One-Cluster Summary Criterion and Its Properties

Given a cluster S, its within-cluster similarities can be characterized by the sum-
mary value

AðS; SÞ ¼
X
i;j2S

aij: ð5:15Þ

Obviously, the greater the sum (5.15), the better the cluster S.
Given a non-negative matrix A, the maximum of A(S, S) is obviously reached at

the universal cluster S = I, because then the sum (5.15) is the greatest possible.
Provided that all rows/columns have at least one positive entry, S = I is the only
maximizer of (5.15). Does it mean that the summary criterion should be discarded
as leading to no nontrivial clusters as is conventionally suggested?

Fig. 5.13 Histogram of the one dimensional sample of 280 entities from N(0,10) distribution.
Points A and B denote the boundaries of the right and left anomalous fragments found with the
Anomalous pattern algorithm

Table 5.18 Two-class partitions found using different strategies

Cluster iK-means with t = 60 Incremental Bisecting K-means

Size Mean Explained, % Size Mean Explained, %
1 139 5.63 32.6 136 5.82 26.8
2 141 −9.30 32.1 144 −9.12 35.6
A better result by the incremental Bisecting K-means should be attributed to its one-by-one entity
moving procedure
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Not at all! Just a transformation of A is needed to sharpen the portrait of a cluster
structure hidden in the data, A most natural data pre-processing is by subtracting
some background. Two types of background data are:

(i) a constant similarity level p that has meaning of similarity scale shift or “soft”
similarity threshold (Mirkin 1987)

(ii) an effect of “random” interactions based on the relative “strength” of entities
involved (Newman 2006).

The maximum of the summary similarity criterion (5.15) applied to matrix
A after a similarity shift p is subtracted is referred to as the uniform criterion:

f ðS; pÞ ¼
X
i;j2S

ðaij � pÞ ð5:16Þ

Obviously, this criterion is the same as A(S, S) (5.15) applied to matrix A′= (aij′)
with aij′= aij − p.

As mentioned in Chap. 4, pair {i, j} should be put in cluster S if aij> p, and
rather not if aij< p. The value of threshold p can be defined using external infor-
mation (see, for example, Mirkin et al. 2010).

The background similarity in the case (ii) needs no external information. In this
approach, matrix A is treated as a contingency table. Consider the summary values
aiþ ¼ Rj2Iaij, and aþ þ ¼ Ri;j2Iaij. Under the assumption that there is random
interaction between entities i and j, which is proportional to these summary values,
the background similarity is defined as the product kij = ai+aj+/a++; the denominator
is added to return the product to the original scaling of similarities in A. The
within-cluster summary similarity criterion (5.15) applied to matrix A after the
“background” similarity is subtracted is the modularity criterion extended to
one-cluster case:

mðSÞ ¼
X
i;j2S

ðaij � kijÞ ¼
X
i;j2S

ðaij � aiþ ajþ =aþ þ Þ ð5:17Þ

Obviously, this criterion is the same as A′′(S, S) (5.15) applied to matrix A00 ¼
ða00ijÞ where a00ij ¼ aij�aiþ ajþ =aþ þ .

Let us briefly analyze some properties of these versions of the summary crite-
rion. For the case of f(S, p) in (5.16), let us focus on the case when the diagonal
entries are not considered so that i 6¼ j in (5.15):

f ðS; pÞ ¼
X
i;j2S
i6¼j

ðaij � pÞ ¼
X
i;j2S
i 6¼j

aij � p Sj jð Sj j � 1Þ ð5:18Þ

where Sj j denotes the number of elements in S. When the diagonal elements are
present, the right-hand item in (5.18) would be p Sj j2 rather than p|S|(|S| − 1).
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An irregular structure of similarities may prevent the threshold p to be a sepa-
rator between all within-cluster and out-of-cluster similarities, but it certainly works
on average. Indeed, let us denote the average similarity between i2I and S�I by
a(i,S)—this may be referred to as the uniform attraction of i to S. Obviously,
aði; SÞ ¼ Rj2Saij= Sj j � 1ð Þ if i2s, and aði; SÞ ¼ Sj2Saij= Sj j if i 62 S, because of the
assumption that the diagonal similarities aii are not considered.

Let us refer to cluster S as uniformly p-tight if, for any entity i2I, its uniform
attraction to S is greater than or equal to p if i2S and it is less than p, otherwise.
Then the following statement, in support of the claim that an optimal cluster
S should be tight, holds.

If S maximizes criterion f(S, p) in (5.18) then S as uniformly p-tight, that is,
a(i,S) 
 p for all i2S, and a(i,S) � p for all i 62 S.

To prove it, let us change the state of an entity i* with respect to cluster S, that is,
add i* to S if it does not belong to S or remove it from S if it does. Now take the
difference between f(S, p) and the result of the state change, that is, f(S − i*,p) if
i*2S, or f(S + i*, p) if i� 62 S where S − i* and S + i* denote S with i* removed or
added, respectively:

f ðS; pÞ � f ðS� i�; pÞ ¼ 2 Rj2Sai�j � p Sj j � 1ð Þ� �
;

f ðS; pÞ � f ðSþ i�; pÞ ¼ 2 �Rj2Sai�j þ p Sj jð Þ� �
;

ð5:19Þ

Equations (5.19) are rather obvious if one consults Fig. 5.14: all the differences
between f(S, p) and its value after the change of state of i* come from the boxed
fragments of i*th row and i*th column. Since S is assumed to be optimal, both of
the differences in (5.19) are to be non-negative. Take, for example, the case i� 62 S.
Then �Rj2Sai�j þ p Sj j 
 0. This implies p
Rj2Sai�j= Sj j ¼ a i�; Sð Þ—the statement
is proven for i� 62 S. The case of i� 2 S is treated similarly, which completes the
proof.

 S 

i*

S      

i*
Fig. 5.14 A schematic
representation of the
similarities with respect to
cluster S under the assumption
that entities are sorted so that
elements of S are followed by
i* followed by the rest; then
entries related to entity i* are
in the boxed row and column
on S’s margin
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In fact, a wider statement is proven. Let us refer to S as being locally optimal if,
for any entity i2I, f(S, p) does not decrease under the change of i’s state with respect
to S. The proof warrants that any locally optimal cluster is uniformly p-tight.

A similar statement can be proven for the modularity criterion m(S) in (5.17). For
the sake of simplicity, assume that the diagonal entries are all zeros. Let us consider
the summary similarity of S with all objects,

aðSÞ ¼
X
i2S

X
j2I

aij ¼
X
i2S

aiþ

and refer to it as the volume of S. In particular, an entity i’s volume will be
a(i) = ai+ and the universal cluster I’s volume, a(I) = A(I,I) = a++.Then the mod-
ularity criterion (5.17) can be rewritten as

mðSÞ ¼ aðS; SÞ � aðSÞ2=aðIÞ: ð5:170Þ

Let us introduce the modularity attraction of an entity i2I to S, mði; SÞ ¼
Si2Saij=aiþ , and the relative volume of S in I, v(S) = a(S)/a(I). Then the relative
volume of an entity i would be v(i) = ai+/a++. Let us refer to a cluster S as being
modularity tight if, for any entity i2I, its modularity attraction to S is greater than or
equal to the relative volume of S, minus a half of v(i), if i2S, and it is less than the
relative volume of S plus a half of v(i), otherwise. That is, S is modularity tight if
m(i,S) 
 a(S)/a(I) − v(i)/2 for all i 2 S, and m(i,S) � a(S)/a(I) + v(i)/2 for
all i 62 S. Then the following statement is true. If S is a local maximizer of criterion
m(S) in (5.17) then S is modularity tight.

To prove the statement, let us take i* and change its state with respect to S. Then
the increment of criterion m(S) expressed in terms of cij= aij − ai+aj+/a++ will be
equal to

mðS� i�Þ � mðSÞ ¼ �2
X
j2S

ci�j þ ci�i�

¼ �2ai� þ
X
j2S

ai�j=ai� þ � aðSÞ=aðIÞÞ  ai� þ =2aðIÞ
 !

:

That is,

mðS� i�Þ � mðSÞ ¼ �2ai� þ ðmði�; SÞ � vðSÞ  vði�Þ=2Þ: ð5:20Þ

The proof follows from (5.20) and the fact that the increment must be
non-positive at a locally optimal S.

Local algorithms for one-cluster summary criterion

At a preprocessed, by subtracting background similarities, similarity matrix
A = (aij) the summary criterion is rather easy to (locally) optimize by adding
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entities one-by-one starting, say, from a most linked couple i and j, and at each step
adding just one entity i*—that one which is most similar to S. The computation
stops when the summary similarity stops increasing, which will be the case if many
of A entries are negative. There are two issues about this algorithm:

• Starting configuration—the pair of entities of the maximum similarity. This may
not work in some cases such as the case of a flat graph matrix in which all
nonzero entries are the same. Also, this choice is not flexible and may lead to a
clearly suboptimal cluster and missing larger subsets whose elements are well
connected but with similarity levels slightly smaller than the maximum.

• Addition with no removals. This can be of an issue because at a later stage of
collecting a cluster some entities, picked up in the very beginning, can be far
away from the later arrivals and should be removed at later stages.

The following algorithm AddRem tackles both of these as follows. To not get
stuck in a wrong place, it runs as many times as there are entities, each time starting
from another singleton S = {i}. To have an opportunity to remove a wrong element,
at each step the algorithm considers the increment of the criterion caused by the
change of state of every entity with respect to the current cluster. To do so,
N-dimensional 1/−1 vector z = (zi) is maintained such that zi= 1 if i belongs to the
current cluster and zi= -1 if not. Then the change of state of i2I with respect to the
cluster is equivalent to changing the sign of zi. The change of the criterion value
because of this can be expressed as follows. Denote by z the vector at current cluster
S and by z(i) the result of change of sign of zi in it, so that S(i) = S − i if zi = 1 and
S(i) = S + i if zi = −1. This makes the operations of addition or removal of an entity
to or from the current cluster computationally similar. The increment of the sum-
mary criterion after the change is equal to

DðiÞ ¼ �2zi
X
j2S

aij þ daii ð5:21Þ

where d = 1 if the diagonal entries are taken into account and d = 0, otherwise.

AddRem(k) algorithm

Input: matrix A = (aij); output: cluster S related to entity k and value of the
summary criterion.

1. Initialization. Set N-dimensional z to have all its entries equal to −1 except for
zk= 1, the summary similarity equal to daii.

2. General step. For each entity i2I, compute the value D(i) according to (5.21)
and find i* maximizing it.

3. Test. If D(i*) > 0, change the sign of zi* in vector z, zi*(−zi*, after which
recalculate the sum by adding D(i) to it. (In the case of large data, computing the
summary values in (5.21) can be costly. Therefore, a vector of these values
should be maintained and dynamically changed after each addition/removal
step.), and go to 2. Otherwise, go to 4.
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4. Output. S and the summary criterion value.

A tightness property of the resulting cluster S depending on the pre-processing
step, at any starting i2I, holds as established in above in this section because S is
locally optimal.

Algorithm AddRem(k) utilizes no ad hoc parameters, except for the k of course,
so the cluster sizes are determined by the process of clustering itself. Multiple runs
of AddRem(k) at different starting points k allow to (a) find a better cluster
S maximizing the summary similarity criterion over the runs, and (b) explore the
cluster structure of the dataset by analyzing both differing and overlapping clusters.

Let us consider now application of this method, under each of the two back-
ground removal options—modularity and uniform, to instances of the three data
types: genuine similarity data, flat graphs and affinity data.

Worked Example 5.12. Summary Similarity Clusters at a Genuine Similarity
Dataset
Consider a similarity data set such as Confusion between numerals in Table 1.8,
already analyzed in Sect. 5.4.

A symmetric version of the Confusion data is presented in Table 5.19: the sum
of A + AT without further dividing it by 2, for the sake of wholeness of the entries.
In this table, care has been taken of the main diagonal. The diagonal entries are by
far the largest and considerably differ among themselves, which may highly affect
further computations. Since we are interested in patterns of confusion between
different numerals, this would be an unwanted effect so that the diagonal entries
should be made to bear no effect on the clustering process. They are changed for
zeros in Table 5.19.

The results of the clustering algorithm AddRem(k) applied, at each k, in the two
different settings—modularity and uniform—are presented in Table 5.20. The
arbitrariness of choosing an entity to start has no effect in this case. Not too many

Table 5.19 Confusion data from Table 1.7 summed with the transpose after the diagonal ele-
ments removed

1 2 3 4 5 6 7 8 9 0
1 0 21 36 171 18 40 329 11 29 22
2 21 0 76 26 62 61 18 57 36 22
3 36 76 0 11 61 7 61 57 263 22
4 171 26 11 0 18 22 51 25 87 11
5 18 62 61 18 0 176 14 25 208 21
6 40 61 7 22 176 0 4 225 22 61
7 329 18 61 51 14 4 0 11 25 32
8 11 57 57 25 25 225 11 0 149 243
9 29 36 263 87 208 22 25 149 0 64
0 22 22 22 11 21 61 32 243 64 0
Total 677 379 594 422 603 618 545 803 883 498
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clusters have been found anyway. The modularity criterion is capable of separating
the cluster {1, 4, 7} from the rest, albeit with a somewhat lesser criterion value, but
the rest also appears to be a cluster, in fact a tighter one. The uniform criterion at the
threshold subtracted at the average level of 66.91 with no diagonal entries con-
sidered, achieves a similar fit, though it loses digit 2 from the “rest” cluster—which
is good because this digit keeps a company of its own being very rarely confused
for anything else. Yet at a larger threshold value of a = 100, the uniform criterion
leads to four high density clusters—exactly those produced in Sect. 5.3 by the
conceptual clustering applied to the styled numerals’ images. This would be a
success story provided that the user knew beforehand the right threshold value,
which is a rather bold hypothesis.

Results reported in Table 5.20 lead to the following idea. Would the structure be
revealed in a more uniform way if clusters are taken sequentially, so that once
clustered entities are removed from the set, the remainder is considered as a new set
to cluster. That is, a new random interaction or average similarity data on the
remaining set is compiled and AddRem is applied after that—doing the removals
again and again. There may be a problem with this approach, which can be clearly
seen in Table 5.20: the cluster to remove should be the set of seven numerals rather
than the remainder consisting of three numerals, 1, 4 and 5. To tackle the issue,
each part, both the remainder and cluster, should be clustered again (see Case-Study
5.6).

Case-Study 5.6. Repeated One-Cluster Clustering with Repeated Removal of
Background
Let us, after each clustering step, consider the unclustered part as a fresh data set, a
ground set, to perform the background similarity removal again. The results of this
approach are presented in Table 5.21 in such a way that each cluster that has
appeared on the right, in its column, has been clustered again. All the three mod-
ularity clusters have produced themselves as their modularity subclusters. On the
contrary, at the uniform criterion, each of the three-element clusters has produced a
proper subcluster as shown in the further rows of the right-hand part of the table.

Table 5.20 One-cluster structures found with the summary criterion at symmetric Confusion data
in Table 5.19

Modularity Uniform,
p = Mean = 66.91

Uniform, p = 100

Cluster Criterion Cluster Criterion Cluster Criterion
2 3 5 6 8 9 10 1135.2 3 5 6 8 9 10 1200.7 1 4 7 502
1 4 7 805.2 1 4 7 700.5 3 5 9 464

6 8 10 458
2
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To explain this phenomenon, let us take a closer look, say, at cluster {1,4,7}.
Table 5.22 presents the original within cluster similarities as well as those found by
subtracting the average similarity, for the uniform clustering, or the random
interactions, for the modularity clustering.

The total sum of similarities in set {1,4,7}, the volume, according to the left part
of Table 5.22 is 1102 = 2 * 551 (factor 2 applies to make up for the absent lower
triangle of the similarity matrix), of which entity 1 takes 45.4%, entity 4, 20.1%,
and entity 7, 34.5%. The volume of entity 4, 20.1%, is by far the smallest of the
three, which straightforwardly translates to the level of its random interactions: they
are smaller than those of the others so that the subtracted part of entity 4’s simi-
larities is relatively small. This is why the summary similarity of 4 in the right-hand
part of the table is positive, c41 + c47 = 70.3 − 25.6 = 44.7 > 0, making 4 a wel-
come member of the cluster according to the modularity criterion. This is not so
according to the uniform criterion: the summary similarity of 4 with two others is
negative, b41 + b47 = −12.7 − 132.7 = −145.4 < 0, setting 4 apart from the rest.
A similar effect is at work with entity 2: 2 is rather remote from anything else so
that its similarities become negative when the average similarity is subtracted,
which is not the case with the random interactions because the latter are by far
smaller at 2 than those at other entities.

The analysis reported in Case-Study 5.6 shows that the two criteria—or, better to
say, the same criterion at the two different data pre-processing formulas—should be
applied in different contexts: the uniform criterion is better when the meaning of

Table 5.21 Partitions found
at the symmetric Confusion
data by sequentially
extracting clusters one by one,
recomputing the background
similarities at each subset to
be analyzed

Modularity, set adjusted Uniform, mean set
adjusted

Ground set Cluster Ground set Cluster
0–9 1 4 7 0–9 1 4 7
0 2 3 5 6 8 9 2 3 5 9 0 2 3 5 6 8 9 3 5 9
0 6 8 0 6 8 0 2 6 8 0 6 8

1 4 7 1 7
3 5 9 3 9
0 6 8 0 8

Table 5.22 Similarities between numerals 1, 4 and 7 according to Table 5.19 and, also, after
subtraction of the background according to each, uniform and modularity, criterion

Raw similarities Mean subtracted
similarities

Random interactions
subtracted
similarities

4 7 4 7 4 7
1 171 329 −12.7 145.3 70.3 156.6
4 51 −132.7 − 25.6
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similarity is uniform across the table, whereas the modularity criterion works better
when the similarities should be scaled depending on the individual entities.

Case-Study 5.7. Summary Criterion Clusters at Ordinary Network Data
Consider two network graphs on Fig. 5.15a and b. The former’s cluster structure is
rather simple—it consists of two connected components. There is no visible cluster
structure in the graph (b). The latter graph consists of just one component—but can
the cluster structure hidden in it be discovered using a less rigid instrument than the
concept of connected component?

An even less structured is a “cockroach” graph on Fig. 4.28 in Sect. 4.6.3.2,
taken from Guattery and Miller (1998) as an example of a structure that is difficult
for clustering (Luxburg 2007).

The results of AddRem clustering algorithm runs starting from every node for
the modularity criterion at the cockroach network of Fig. 4.28 are given in the left
part of Table 5.23.

There are three highly overlapping clusters, two of them reflecting the topology
of the graph with the winning cluster embracing four nodes in the right-hand side of
graph in Fig. 4.28. The second column reflects an attempt at finding a partition
using one-by-one clustering: after first cluster is found, its entities are removed, and
the method is applied to the remaining part of the data matrix, with the random
interactions readjusted to the topology of the ground set to be analyzed.

Similar attempts, but with the uniform criterion with the noise threshold set at
the average similarity value, are presented in the right part of the table. The clusters
demonstrate five patterns of which the lead, 4–5–6–10–11–12, embracing the
right-hand half of the graph, concurs with the human view of the topology
(see Luxburg 2007). After removal of this cluster, the algorithm finds remaining

3

54

6

7

8

2

3

54

6

7

8

2(a) (b)

1 1

Fig. 5.15 Two graphs on a
set of eight entities; that on
the left consists of two
components whereas that on
the right has a few additional
edges to make it just a
component
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connected components—see the clusters presented in the right-hand column of
Table 5.23. In contrast to the modularity criterion, the value of threshold subtracted
from the data is kept the same through all the iterations because of both flat values
of similarities and the thrust of the uniform criterion towards to a unified scale
across the entire network.

Good clustering results found here with the uniform criterion are not easy to
match with other clustering methods, which supports the view that the ordinary
graphs, that is, flat networks, could be a natural niche at which the uniform crite-
rion, with a flat value subtracted, can produce good results.

Affinity data are similarities between entities in an entity-to-feature table. They
are usually defined by a kernel function depending on entity-to-entity distances
such as a Gaussian kernel function Gðx; yÞ ¼ e�dðx;yÞ=2r2 where d(x,y) is the squared
Euclidean distance between x and y if x 6¼ y. The denominator 2r2 may greatly
affect results and is subject to the user’s choice. In our experiences, consistent
results are obtained with 2r2= 1/2 corresponding to r = 1/2 after each feature has
been normalized by its range.

One more parameter at defining the affinity data is the distance threshold, R, such
that the similarity between entities is defined as 0 if the distance between them is
greater than R. The usage of this parameter appears highly successful in such areas
as image analysis (Shi and Malik 2000).

Worked Example 5.13. Similarity Clusters at Affinity Data
The affinity data for eight entities in Company data table (range normalized with the
last three columns further divided by √3, see Sect. 4.1) are presented in Table 5.24.
Similarity values that are greater than 0.15 are highlighted in bold. The two affinity
values that are at odds with the three-product cluster structure S = {{1,2,3},
{4,5,6}, {7,8}} are underlined: the absent within-cluster link (4,5) and the
unwanted between-cluster link (6,7).

This similarity matrix after subtraction of the random interactions background is
presented in Table 5.25; the positive entries are highlighted in bold and those at
odds with the three-product cluster structure are underlined.

Table 5.23 One cluster multiple solutions using the summary criteria at Cockroach network data

Modularity as is and sequentially adjusted Uniform with the mean subtracted once

Cluster Criterion Ground
set

Cluster Cluster Criterion Ground
set

Cluster

5 6 11 12 5.15 1–12 5 6 11 12 4 5 6 10 11 12 5.09 1–12 4 5 6 10 11 12
1 2 3 4 5 6 4.69 1–4 7–10 1 2 3 4 10 2 3 4 5 10 11 6.09 1–3 7–9 1 2 3
3 4 7 8 9 10 4.69 7 8 9 7 8 9 4 5 8 9 10 11 6.09 7 8 9 7 8 9

3 4 5 9 10 11 6.09
1 2 3 4 5 6 4.09
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The results of AddRem clustering for the affinity data are presented in
Table 5.26. This time, both—modularity and uniform—criteria give similar results:
two clusters only, with cluster of product A separated from the rest. The only
difference is that the modularity criterion assigns a larger value to the combined
cluster of B and C products, whereas the uniform criterion with the subtracted
average affinity value gives a larger value to the cluster of A product.

Table 5.24 Affinity similarities between eight companies in the Company dataset

2 3 4 5 6 7 8
1 0.3623 0.1730 0.1005 0.0123 0.0111 0.0101 0.0024
2 0.2143 0.0447 0.0261 0.0025 0.0224 0.0080
3 0.0207 0.0989 0.0252 0.0266 0.0085
4 0.1424 0.1752 0.0880 0.0073
5 0.2248 0.1918 0.0236
6 0.0347 0.0011
7 0.2982
Those greater than 0.15 are highlighted by bold

Table 5.25 Table 5.24 data after subtraction of the background of the random interactions;
highlighted in bold are positive values; those at odds with the product-based clusters are
underlined

2 3 4 5 6 7 8
1 0.2654 0.0922 0.0180 −0.0903 −0.0565 −0.0857 −0.0473
2 0.1325 −0.0389 −0.0779 −0.0660 −0.0745 −0.0424
3 −0.0490 0.0123 −0.0319 −0.0543 −0.0335
4 0.0540 0.1169 0.0055 −0.0356
5 0.1523 0.0892 −0.0297
6 −0.0330 −0.0341
7 0.2484

Table 5.26 One-cluster and one-by-one partition structures found at the Company affinity data in
Table 5.25

Modularity Uniform, p = Mean

One-cluster One-by-one
clustering

One cluster One-by-one
clustering

Cluster Criterion Ground set Cluster Clu Criterion Ground set Cluster
4 5 6 7 8 1.068 1–8 1 2 3 1 2 3 1.057 1–8 1 2 3
1 2 3 0.980 4–8 4 5 6 4 5 6 7 8 0.901 4–8 4 5 6 7

7 8 7 8 4–7 4 5 6
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Consider now the case at which one-by-one clustering process applies with the
background adjusted at the set at whichmethods apply. In contrast to the previous case,
it is the modularity function that finds a good solution, whereas the uniform criterion
cannot find the cluster of two product C companies, making each of them a singleton.

5.4.3 Approximate Cluster

Given a similarity matrix W = (wij), we are going to develop a machinery for
finding an approximate cluster, that is a subset of objects S assigned with an
intensity weight k. The assumption is that objects in S are all mutually related to
each other with the intensity k. According to this view, other objects have no
relation to S whatsoever. We represent S by a binary N-dimensional zero-one vector
of the membership values s = (si) where si = 1 for i2S and si = 0 for i 62 s.
Therefore, we turn to a simplest version of approximation model for one cluster:

wij ¼ ksisj þ eij; ð5:22Þ

where wij are not necessarily the original similarities but rather pre-processed
similarities including the scale shifted aij, or aij after subtraction of random inter-
actions. This can be aij after application the Laplace transformation to it. The
meaning of the model: wij is k at any pair i and j from S, or 0, otherwise, up to small
residuals eij. To warrant that the residuals are small indeed, the square error criterion

L2ðk; sÞ ¼
X
i;j2I

ðwij � ksisjÞ2 ð5:23Þ

is to be minimized with respect to unknown S and, possibly, k.
We first note that, with no loss of generality, the similarity matrix W can always

be considered symmetric, because otherwise W can be equivalently changed for a
symmetric matrix Ŵ =(W + WT)/2: the solution will not change.

Indeed, the part of criterion (5.23) related to a particular pair i, j2I is (wij −
ksisj)

2+(wji − ksjsi)
2 which is equal to wij

2 + wji
2−2k(wij+ wji)sisj+2k

2sisj. The sisj on
the right are not squared because they are 0 or 1, thus do not change under this
operation. The same part at matrix Ŵ = (ŵij) reads as (wij

2 + wji
2 + 2wijwji)/2 − 2k

(wij+ wji) sisj+2k
2sisj so that the only parts affected are constant while those

depending on the cluster to be found are identical, which proves the statement.
Thus, the assumption that the similarity matrix is symmetric does not change
anything: it can always be transformed to a symmetric form Ŵ =(W + WT)/2.

For the sake of simplicity, we assume that the matrix W comes with diagonal
entries, usually all set to zero.
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Let us take a look at criterion (5.23) under each of two assumptions (Mirkin et al.
2010):

(a) Cluster intensity k is pre-specified by the user
(b) Cluster intensity k is to be found according to the criterion.

We first analyze the case (a) of k pre-specified. Let us slightly rewrite criterion
(5.23):

L2ðk; sÞ ¼
X
i;j2I

ðwij � ksisjÞ2 ¼
X
i;j2I

w2
ij � 2k

X
i;j2I

wij � k
2

� �
sisj ð5:230Þ

Assume that k is positive. Then minimizing (5.23) is equivalent to maximizing
the sum on the right, which is just the summary uniform criterion (5.16) at p = k/2
that has been described and utilized in Sect. 5.4.2. Indeed, the equationP

i;j2I ðwij � k=2Þsisj =
P

i;j2S ðwij � k=2Þ easily follows from the fact that si= 1 if
and only if i2S. That means that the algorithm AddRem from Sect. 5.4.2 is
applicable here to produce k/2-tight clusters.

Consider now case (b), when intensity k in (5.23) is to be adjusted to further
minimize the criterion. It is easy to prove that, given an S, the optimal k is just the
average of within cluster similarities, k = k(S), where

kðSÞ ¼

P
i; j2I
i 6¼ j

wijsisjP
i;j2I sisj

¼

P
i; j2S
i 6¼ j

wij

Sj j2 ð5:24Þ

as it is always the case for the least-squares approximation of a series of numbers by
a central value (see Sect. 2.2).

That means that, again, the criterion is equivalent to the summary uniform
criterion (5.16), but this time with a variable value of the threshold p = k(S)/2 that
depends on S. In particular, a locally optimal cluster is k(S)/2-tight: the average
similarities of entities i2I to S are greater than k(S)/2 for those i in S and smaller
than k(S)/2 for i’s out of S.

If one puts the optimal k = k(S) in (5.23), the least squares criterion is decom-
posed as follows

L2ðkðSÞ; sÞ ¼
X
i;j2I

ðwij � kðSÞsisjÞ2 ¼
X
i;j2I

w2
ij � k2ðSÞ

X
i; j 2 I

i 6¼ j

sisj ¼ T � k2ðSÞ Sj j2

where T is the data scatter, the sum of all the similarities squared, so that a
Pythagorean decomposition of the data scatter holds:
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T ¼
X
i;j2I

w2
ij ¼ kðSÞ2 Sj j2 þ L2 ð5:25Þ

where L2 is the unexplained minimized part (5.23) whereas the item in the middle is
the explained part of the data scatter.

The explained part in (5.25), which is to be maximized to minimize L2 because
the scatter T is constant, is

gðSÞ2 ¼ kðSÞ Sj j½ �2¼ sTWs
sTs

� 	2
ð5:26Þ

which is but the square of the Rayleigh quotient

gðSÞ ¼ sTWs
sTs

¼ kðSÞ Sj j ð5:27Þ

Since it is assumed that at least some of the similarities in A are positive, the
maximum of (5.27) over all binary s’s is positive as well. Indeed, take a positive wij

and a vector s with all components equal to zero except for just i-th and j-th
components that are unities. Obviously (5.27) is positive on that, the more so the
maximum. If, however, all the similarities between entities are negative, then no
non-singleton cluster can make (5.27) positive—that is, no nontrivial cluster can
come up with the criterion.

That means that a version of AddRem(k) algorithm with a variant threshold p,
AddRemAdd(k) in Sect. 5.5.3, in fact (locally) optimizes the Rayleigh quotient (5.27).

5.5 Decomposing a Similarity Matrix Over
Additive Clusters

5.5.1 General

The concept of additive clustering was proposed independently by Shepard and
Arabie (1979) and Mirkin (1987); see these references for further history com-
ments. The idea behind additive clustering is this. Since the raw data are similarities
measuring relations between entities, let us decode a cluster in the same relational
format. That is, let us make a cluster S to assign every two entities, i and j, a
similarity value: say unity if they belong to the cluster or 0 if at least one of them
does not. This cluster similarity matrix s plays the role of a dummy variable—in
the format of a similarity matrix. Consider, for example, subset S = {1,3,4} of
I ={1,2,3,4,5,6}: its corresponding matrices s, 2s, and 2s − 1 are in Table 5.27.
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Therefore, it is reasonable to think that a similarity matrix may reflect a number
of attribute-based similarity matrices possibly taken with different weights.
Consider, for example, the matrix of similarities between first five amino acids in
Table 1.9 (B is omitted from the list because it is synonymous to D, see Table 1.10)
as presented in Table 5.28; that on the right is obtained by subtracting the mini-
mum, −4, from all entries to make it non-negative.

Table 5.29 presents similarity matrices between these amino-acids according to
attributes from Table 5.32 in Project 5.1 further on. The attributes on the left in
Table 5.29, reflect popular molecular properties of amino acids related to their size
(Small or not), electricity charge (Polar or not) and the propensity to keep inside of
the molecules (Hydrophobic or not). The matrix on the right represents a weighted
sum of the three with an added intercept to mimic the matrix of similarities from
BLOSUM62 in Table 1.9.

The two similarity matrices are compared in Table 5.30. Overall, the result does
not look too bad: there are only two significant differences, in similarities between
amino acids A and E, and C and D, that probably require taking into account more
attributes. If we go for regression of the observed similarity over attribute-based
similarity we could get slightly better results. This idea is pursued further on in
Project 5.1 on the whole set of amino acids.

There are situations, though, in which the user prefers to find clusters underlying
the observed similarities, according to the additive model, by the matrix itself,
without much bothering of trying to obtain related attributes. This is the realm of
the additive clustering model in (5.28) analyzed further in Project 5.1. This model
can be considered as an extension of the spectral decomposition of similarity
matrices to the case when the vectors to be found are constrained to be 1/0 binary.
Assuming the conventional least-squares criterion for this specification of the
summarization problem, a natural idea coming to mind is to mimic the one-by-one
approach of the Principal Component Analysis. The other idea, just working on all
clusters in parallel, is not considered in this text.

Yet even at the restricted, one cluster, model (5.23), there can be a number of
different approaches to minimizing the least-squares criterion or, equivalently,
maximizing the Rayleigh quotient. Two of the approaches, tried at the maximum
tightness criteria in Sect. 5.4, should be considered first:

Table 5.28 Part of matrix in Table 1.9 related to amino acids A, C, D, E, F: Original on the left,
rearranged in the middle, and with 4 added to all entries on the right

A C D E F C D E F C D E F
A 4 0 −2 −1 −2 0 −2 −1 −2 4 2 3 2
C 0 9 −3 −4 −2 −3 −4 −2 1 0 2
D −2 −3 6 2 −3 2 −3 6 1
E −1 −4 2 5 −3 −3 1
F −2 −2 −3 −3 6
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(i) Spectral approach

Let us drop the constraint of vectors being binary and find the optimal solution
among arbitrary vectors, that is, the maximum eigenvalue and corresponding
eigenvector, and then adjust somehow its components to the zero-one setting. It
seems reasonable that the larger components of the eigenvector are to be changed
for unity while those smaller ones are changed for zero. If true, this would dras-
tically reduce computation.

(ii) Hill-climb clustering

The strategy of finding a cluster by adding/removing entities in a best possible
way implemented, for the summary similarity criterion, in Sect. 5.4.2 can be
applied here too. At least, it leads to provably tight clusters. This is the strategy
pursued further in this text with AddRem algorithm from Sect. 5.4.2.

The one-cluster model assumes, rather boldly, that all observed similarities can
be explained by a summary action of just two constant-level causes and noise.

This is a much-simplified model, but it brings in a nice clustering criterion to
implement the least-squares approach: the underlying cluster S must maximize the
criterion in (5.27), the product of the average within-cluster similarity a(S) and the
number of elements in S, |S|: g(S) = |S|a(S). The greater the within-cluster simi-
larity, the better, and the larger the cluster, the better too. These two objectives do
not necessarily go along. In fact, they are at odds in most cases: the greater the
number of elements in in a cluster, the smaller the within-cluster similarities are.
That is, criterion g(S) is a compromise between the two. When S is small, an
increase in its size would dominate the unavoidable fall in similarities. But later in
the addition process, when S becomes larger, the relative size change diminishes
and cannot dominate the fall in within-cluster similarities—the process of gener-
ating S stops. This is further elaborated in Sect. 5.5.2 in which an analogue to the
AddRem(k) algorithm (see Sect. 5.4.2) is formulated for the semi-average clustering
criterion (5.27). This analogue, referred to as AddRemAdd(k), outputs a cluster
which is provably tight in the following sense. The attraction of entity i to S, its

Table 5.30 Comparison of two similarity matrices between five amino acids, one taken from
observations (Table 5.28), and the other additively composed using attribute clusters (Table 5.29)

BLOSUM62 2Sm + 6Po +
2Hy + 1

Difference

C D E F C D E F C D E F
A 4 2 3 2 3 3 1 1 1 −1 2 0
C 1 0 2 3 1 2 −2 −1 0
D 6 1 6 1 0 0
E 1 1 0
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average similarity with elements in S, is greater than half the within cluster average
if i belongs in S; and it is less than that if i does not belong in S.

Worked Example 5.14. Additive Clusters at Confusion Dataset
Consider the symmetrized Confusion data set in Table 5.16 and apply algorithm
AddRem at different levels of similarity shifts starting at different entities
(Table 5.31).

Table 5.31 presents each approximate cluster with all three characteristics
implied by the additive clustering model:

(1) The cluster list S of its entities;
(2) The cluster-specific intensity k = a(S), the average within cluster similarity;
(3) The cluster contribution to the data scatter, g2(S) = k2|S|2.

The cluster sizes decrease when the similarity threshold grows, as illustrated on
Fig. 4.25 and stated in Q.5.26. The corresponding intensity changes reflect the ever
increasing shift values subtracted from the similarities. The table also shows that
there is no point in making the similarity shift values greater than the average
similarity value. In fact, setting the similarity shift value equal to the average can be
seen as a step of the one-by-one cluster extracting strategy: subtracting the average
from all the similarities is equivalent to extracting the universal cluster with its
optimal intensity value—provided the cluster is considered on its own, without the
presence of other clusters. At the similarity shift equal to the average, cluster
{1,4,7} loses digit 4 because of its weak connections. The results best matching
those of Fig. 1.24 in Sect. 1.3.3 are found at the similarity shift equal to Av/2.

Table 5.31 Non-singleton clusters at symmetrized, no diagonal, Confusion matrix found at
different similarity shift values; the average out-of-diagonal similarity value is Av = 33.46

Similarity shift Cluster lists Intensity Contribution
0 (i) 2 3 5 8 10 45.67 35.14

(ii) 1 4 7 91.83 21.46
Av/2 = 16.72 (i) 1 4 7 75.11 21.11

(ii) 3 5 9 71.94 19.37
(iii) 6 8 0 71.44 19.10

Av = 33.46 (i) 1 7 131.04 25.42
(ii) 3 5 9 55.21 13.54
(iii) 6 8 0 54.71 13.29

3Av/2 = 50.18 (i) 1 7 114.32 16.31
(ii) 3 9 81.32 5.25
(iii) 6 8 0 35.98 5.40

2Av = 66.91 (i) 1 7 95.59 5.08
(ii) 3 9 64.59 3.54
(iii) 8 0 54.59 2.53
(iv) 6 8 45.59 1.76
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Project 5.1. Analysis of Structure of Amino Acid Substitution Rates
Let us consider the data of substitution between amino acids in Table 1.9 and try
explaining them in terms of properties of amino acids. An amino acid molecule can
be considered as consisting of three groups of atoms: (i) an amine group, (ii) a
carboxylic acid group, and (iii) a side chain. The side chain varies between different
amino acids, thus affecting their biochemical properties. Among important features
of side chains are the size and polarity, the latter affecting the interaction of proteins
with solutions in which the life processes act: the polar amino acids tend to be on
protein surfaces, i.e., hydrophilic, whereas other amino acids hide within mem-
branes (hydrophobicity). There are also so-called aromatic amino acids, containing
a stable ring, and aliphatic amino acids whose side chains contain only hydrogen or
carbon atoms. These are presented in Table 5.32. As can be easily seen, these five
attributes cover all amino acids but only once or twice.

A natural idea would be to check what relation these features have to the
substitutions between amino acids. To explore the idea one needs to represent the
features in the format of the matrix of substitutions, that is, in the similarity matrix
format. Such a format is readily available as the adjacency matrix format. That is, a
feature, say, “Small” corresponds to a subset S of entities, amino acids, that fall in it.
The subset generates a binary relation “i and j belong to S” expressed by the
Cartesian product S�S or, equivalently, by the N�N binary entity-to-entity

Table 5.32 Attributes of twenty amino acids

Amino acid Small Polar Hydrophobic Aliphatic Aromatic
A Ala + +
C Cys + +
D Asp + +
E Glu +
F Phe + +
G Gly + +
H His +
I Ile + +
K Lys +
L Leu + +
M Met +
N Asn + +
P Pro +
Q Gln +
R Arg +
S Ser +
T Thr +
V Val + +
W Trp + +
Y Tyr +
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similarity matrix s = (sij) such that sij= 1 if both i and j belong to S, and sij= 0,
otherwise. For example, on the set of first five entities I = {A, C, D, E, F} in
Table 5.32, the binary similarity matrices for attributes Small, Polar and
Hydrophobic are presented in Table 5.29.

To analyze contributions of the attributes to the substitution rate data A one can
use a linear regression model (see Sect. 3.3)

A ¼ k1Smþ k2Poþ k3Hyþ k4Alþ k5Arþ k0

which in this context suggests that the similarity matrix A (after the intercept k0 is
subtracted from it) can be decomposed, up to a minimized residual matrix,
according to features in such a way that each coefficient k1, …, k5, expresses the
intensity level supplied by it to the overall similarity. The intercept k0, as usual,
sums shifts in the individual attribute similarity scales.

To fit the regression model, let us utilize upper parts of the matrices only. In this
way, we

(i) take into consideration the similarity symmetry and
(ii) make the diagonal substitution rates, that is, similarity to itself, not affecting

the results.

As one can see from Table 5.33, the estimates of the slope regression coefficients
are all positive, giving them the meaning of the weights or similarity intensities
indeed, of which dummies representing categories Small, Polar, and Aromatic are
the most contributing, according to the last line in Table 5.33. The intercept,
though, is negative.

Unfortunately, the five attributes cannot explain the pattern of amino acid sub-
stitution: the determinacy coefficient is just 35.3%, less than a half. That means one
needs to find different attributes for explaining the amino acid substitution patterns.

Then the idea of additive clustering comes. Why cannot we find attributes to fit
in the similarity matrix from the matrix itself rather than by trying to search the
amino acid feature databases? That is, let us consider unknown subsets S1, S2, .., SK
of the entity set along with the corresponding binary membership vectors s1, s2, …,
sK such that sik= 1 if i2Sk, and sik= 0, otherwise, k = 1,2, …, K, and find them
according to model

aij ¼ k1si1sj1 þ k2si2sj2 þ . . .þ kKsiKsjK þ k0 þ eij ð5:28Þ

Table 5.33 Least-squares regression results

Sm Po Hy Al Ar Intercept
Intensity k 2.46 1.48 1.02 0.81 2.65 −2.06
Standard deviation 0.27 0.31 0.36 0.22 2.06
Standardized intensities 0.66 0.47 0.36 0.18 0.46
The last line entries (standardized intensities) are products of the corresponding entries in the first
and second lines
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According to this model, each of the similarities aij is equal to a weighted sum of
the corresponding cluster similarities sik sjk, up to small residuals, eij (i,j2I).

Unfortunately, there are too many items to find, given the similarity matrix
A = (aij): the number of clusters K, the clusters S1, S2,…, SK themselves as well as
their intensity weights, k1, k2, …, kK, and the intercept, k0. This makes the solution
much dependent on the starting point, as it is with the general mixture of distri-
butions model.

If, however, we rewrite the model by moving the intercept to the left as

aij � k0 ¼ k1si1sj1 þ k2si2sj2 þ . . .þ kKsiKsjK þ eij; ð5:29Þ

the model reminds the equation for the Principal Component Analysis very much,
especially as expressed in terms of the square matrices—the aij − k0 plays the role
of the covariance values, sik, the role of the loading/values, that is, k-th eigenvector,
and kk, the role of the k-th eigenvalue, the only difference being that the binarity
constraints are imposed on the values sik that must be either 1 or 0.

In (5.28), the intercept value k0 is the intensity of the universal cluster
S0= I which is assumed to be part of the solution. In (5.29), however, this is just a
similarity shift, with the shifted similarity matrix As= (aij

s ) defined by aij
s= aij − k0

which is akin to the uniform data transformation in Sect. 4.6.3. Most important is
that the value of k0 in model (5.29) ought to come from external considerations
rather than from inside of the model as it is in (5.28).

The machinery for identifying additive clusters one-by-one developed further on
leads to the following clusters found at different scale shift value k0 (see
Table 5.34).

Table 5.34 Non-singleton clusters at Amino acid substitution data found at different similarity
shift values; the average out-of-diagonal similarity value is Av = −1.43

Similarity
shift

Cluster lists Intensity Contribution

0 (i) ILMV 1.67 2.04
(ii) FWY 2 1.47
(iii) EKQR 1.17 1
(iv) DEQ 1.33 0.65
(v) AST 0.67 0.16

Av/2 = −0.71 (i) ILMV 2.38 6.47
(ii) DEKNQRS 1.05 4.38
(iii) FWY 2.71 4.21
(iv) AST 1.38 1.09

Av = −1.43 (i) DEHKNQRS 1.6 16.83
(ii) FILMVY 1.96 13.44
(iii) FWY 3.43 5.22
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At the similarity shift equal to the average, there are three clusters covering
35.5% of the variance of the data. These concern three features of those considered
above: Polar (cluster i), Hydrophobic (cluster ii), and Aromatic (cluster iii). The
clusters slightly differ from those presented in Table 5.32, which can be well jus-
tified by the physical and chemical properties of amino acids. In particular, cluster
(i) adds to Polar group two more amino acids: H (Histidine) and S (Serine). These
two, in fact, are frequently considered polar too. Cluster (ii) differs from the
Hydrophobic group by the absence of C (Cysteine) and W (Tryptophan) and the
presence of Y (Tyrosine). This corresponds to a specific aspect of hydrophobicity,
the so-called octanol scale that does exclude C and include Y (for some most recent
measurements, see, for example, http://blanco.biomol.uci.edu). The absence of
Tryptophan from the cluster is probably due to the fact that it is not easily sub-
stituted by the others because it is by far the most hydrophobic of the pack. Cluster
(iii) consists of hydrophobic aromatic amino acids which excludes F
(Phenylalanine) because it is not hydrophobic.

5.5.2 Additive Clusters One-by-One

Let us reformulate the additive cluster model from Project 5.1, keeping the same
equation labels. Let I be a set of entities under consideration and A = (aij) a
symmetric similarity matrix i,j2I. The additive clustering model assumes that the
similarities in A are generated by a set of additive clusters Sk � I together with their
intensities kk (k = 0, 1, …, K) in such a way that each aij is approximated by the
sum of the intensities of those clusters that contain both i and j:

aij ¼ k1si1sj1 þ k2si2sj2 þ . . .þ kKsiKsjK þ k0 þ eij ð5:28Þ

where sk= (sik) are the membership vectors of unknown clusters Sk, and kk are their
positive intensity values, k = 1, 2, …, K. Residuals eij are to be minimized.

The zero’s cluster S0 is assumed to coincide with the entire set I so that its
intensity k0 is the intercept in (5.28). On the other hand, k0 has a meaning of the
similarity shift, with the shifted similarity matrix A0 ¼ ða0ijÞ defined by a0ij ¼ aij � l0.
Equation (5.28) for the shifted model can be rewritten as

a0ij ¼ k1si1sj1 þ k2si2sj2 þ . . .þ kKsiKsjK þ eij; ð5:29Þ

so the shifted similarity matrix a0ij ¼ aij � k0 is the sum of cluster binary matrices
weighted by their intensities. The role of the intercept k0 in (5.29) as a “soft”
similarity threshold is of a special interest when k0 is user specified, because the
shifted similarity matrix a0ij may lead to different clusters at different k0 values, as
Fig. 4.25 and Q.4.31 clearly demonstrate.
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Model (5.29) can be considered using two different assumptions of the under-
lying cluster structure:

A. Overlapping additive clusters
B. Non-overlapping clusters

In the latter case, the summation in model (5.28) and (5.29) hides the fact that no
summation of intensities goes on. Every similarity a0ij is assumed to be approxi-
mately equal to the intensity value of that cluster that contains both i and j, or 0 if no
cluster contains both of the entities.

The equations in (5.29) coincide with those in the spectral decomposition (5.25)
(see (A.13) in Sect. A.3.2) up to the condition that vector sk’s in (5.29) is bound to
be 1/0 binary, whereas no constraint is imposed on c’s in (A.13). That means that
the additive clustering model is an extension of the spectral decomposition onto the
case when vectors are binary. This type of decomposition, with additional con-
straints such as say non-negativity of the elements of the solution is becoming
increasingly popular in data analysis. Assuming the conventional least-squares
criterion for this specification of the summarization problem, a natural idea coming
to mind is to imitate the one-by-one approach of the Principal Component Analysis.
The other idea, just working on all clusters in parallel, is not considered in this text.

Now we can return to the case of the original model with multiple clusters. The
situation will slightly differ depending on whether clusters are assumed
non-overlapping (A) or possibly overlapping (B).

Consider, first, the case of model (5.29) with the restriction that clusters to be
found may not overlap. The fact that clusters Sf and Sg do not overlap can be
equivalently stated in terms of their binary membership vectors sf and sg: these must
be orthogonal so that hsf ; sgi ¼ 0. This implies that the shifted data scatter admits
the following decomposition:

hA0;A0i ¼
XK
k¼1

sTk Ask=s
T
k sk


 �2 þhE;Ei ð5:30Þ

which extends Eq. (5.25) to the multiple cluster case. In (5.30), the inner products
hA0;A0i and hE;Ei denote the sums of the squared elements of the corresponding
matrices. To derive (5.30), one can take the inner product of Eq. (5.29) by itself,
considering all matrices as N�N vectors, and taking into account the fact that
matrices sksk

T and slsl
T are orthogonal as N�N vectors at k 6¼ l, because the corre-

sponding vectors sk and sl are orthogonal.
Equation (5.30) means that each of the optimal non-overlapping clusters indeed

contributes the squared Rayleigh quotient (5.26) to the shifted data scatter, and,
moreover, the optimal intensity value kk of cluster Sk is, in fact, the within cluster
average kk= k(Sk). The sum in the middle represents the part of the data scatter
hA0;A0i “explained” by the model, whereas hE;Ei relates to the “unexplained”
part. Both can be expressed in percentages of the data scatter. Obviously, the greater
the explained part the better the fit.
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Assuming that the cluster contributions differ significantly, one can apply the
one-by-one principal component analysis strategy to the cluster case as well—
though, in this case, the process does not necessarily lead to an optimal solution.
This strategy can be put as follows. First, a cluster S is found at the entire data set to
maximize the Rayleigh quotient (5.27). It is denoted by S1 along with its intensity
value k1= k(S1) and the contribution g2(S1) in (5.30) and removed from the entity
set I. The next cluster S2 is found in the same way over the remaining entity set, and
removed as well. The process of sequential extraction iterates until no positive
entries in A′ over the remaining entities can be found. This would mean the
remaining entities are all to remain singletons. In general, the process yields sub-
optimal, not necessarily optimal, clusters.

Let us turn now to the case of overlapping clusters B.
To fit the model (5.29), the one-by-one cluster extracting strategy will require

maximizing, at each step k = 1, 2, …, K, the criterion (5.26) applied to a corre-
sponding residual similarity matrix Ak (Mirkin 2012). Specifically, A1 is taken to
coincide with the shifted similarity matrix, A1= A′. At k-th step, a (locally) optimal
cluster maximizing g2(S) in (5.26) over W = Ak is found to be set as Sk along with
its intensity value kk, equal to the average of the residual similarities within Sk. Its
contribution to the data scatter is equal to the optimized criterion (5.26). The
residual similarities are updated after each step k by subtracting the found kksiksjk:

aij;kþ 1 ¼ aij;k � kksiksjk: ð5:31Þ

In spite of the fact that thus found clusters may and frequently do overlap, this
one-by-one strategy leads to an additive decomposition of the data scatter into the
contributions of the extracted clusters (Sk, kk) and the minimized residual square error

hA0;A0i ¼
XK
k¼1

sTk Aksk=sTk sk

 �2 þhE;Ei ð5:32Þ

except that it is the residual similarity matrix Ak to stand in the middle rather than
the original matrix A′.

To prove (5.32), one needs just the Eq. (5.27) applied to W = Ak,X
i;j2I

a2ij;k ¼ sTk Aksk=s
T
k sk

� �2 þ L2k ð5:33Þ

Since L2k ¼
P

i;j2I a
2
ij;kþ 1, (5.32) can be obtained by summing all the Eqs. (5.33)

over all k = 1, 2, …,K.

Q.5.24. What happens if k < 0 in criterion (5.23)?
A. According to formula (5.23′), that would mean that the summary uniform
similarity

P
i;j2S ðwij � k=2Þ must be minimized rather than maximized. An optimal

set S would consist of most dissimilar entities. Such a set sometimes is referred to as
an anti-cluster.
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Q.5.25. Can you think of a real-world problem that would amount to the goal of
finding anti-clusters rather than clusters?
A. This can be any domain in which a parsimonious representation of a given set of
entities is required. One such domain is bioinformatics at which such a subset of
genes or gene products is required that express as differently as possible.
Q.5.26. Consider the uniform summary criterion f(S, p) in (5.16) and two values of
threshold, p1> p2. Prove that the size of optimal cluster at p1 cannot be greater than
that at p2.
A. Let S1 be an optimal cluster at p1, and S2, at p2. Then f(S2, p1) � f(S1, p1) and
f(S1, p2)� f(S2,p2) because of the optimality. With little algebra, the former
inequality can be reformulated as

X
i;j2S2

aij ¼
X
i;j2S1

aij � p1 S2j jð S2j j � 1Þ � S1j jð S1j j � 1Þ½ �

and the latter inequality, asX
i;j2S2

aij ¼
X
i;j2S1

aij � p2 S2j jð S2j j � 1Þ � S1j jð S1j j � 1Þ½ �

where |S| stands for the number of elements in S. Combining these leads to

p2 S2j jð S2j j � 1Þ � S1j jð S1j j � 1Þ½ � � p1 S2j jð S2j j � 1Þ � S1j jð S1j j � 1Þ½ �;

that is,

ðp1 � p2Þ S2j jð S2j j � 1Þ � S1j jð S1j j � 1Þ½ � 
 0:

Since p1 − p2 > 0, this implies that S2j jð S2j j � 1Þ � S1j jð S1j j � 1Þ
 0, which is
only possible when |S2| 
 |S1|, thus proving the claim.

In this derivation, an implicit assumption was that the diagonal elements aii are
not present, so that there are only |S|(|S| − 1) pairs to be considered in S. However,
the same derivation holds for the case at which diagonal elements are present, so
that all |S|2 pairs are to be considered. The only change would be in using the |S|2

item rather than |S|(|S| − 1), which would not affect the conclusion.

5.5.3 Finding (Sub)Optimal Additive Clusters

Before starting computation of additive clusters, the similarity matrix should be
made symmetric, by averaging it with its transpose, and shifted by a scale shift
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value k0 which is to be user defined. A default value for k0 can be the average value
of the similarity matrix if similarity values vary across the matrix or k0= 1/2 if the
similarity matrix is the flat zero-one matrix of an ordinary graph. For the sake of
simplicity, it is assumed here that the diagonal elements aii are present. In
real-world computations, it is advisable always put the diagonal elements equal to
0, except in the cases at which the “individual strength” of entities is to be taken
into account while looking for clusters.

We consider here only one cluster based additive clustering algorithms.
Given a matrix W = (wij), consider an additive clustering analogue to AddRem

(k) algorithm from Sect. 5.4.2 to adjust the cluster intensity, that is, the threshold
value, according to criterion (5.27). Again, vector z = 2s – 1 is used to hold the
information of cluster S being built. Its components are: zi=1 if i2S and zi= −1,
otherwise. This allows for the same action of changing the sign of zi to express both
addition of i into S if i 62 S and removal of i from S if i2S.
AddRemAdd(k) algorithm
Input: matrix W = (wij) and initial element in the cluster, k; output: cluster S, its
intensity k and contribution g2 to the original A′ matrix scatter.

1. Initialization. Set N-dimensional z to have all its entries equal to −1 except for
zk= 1, the number of elements in it n = 1, intensity k = 0, and contribution
g2 = 0. For each entity i2I, define its average similarity to S, w(i,S) = wij.

2. Selection. Find i* maximizing w(i,S) over all i2I.
3. Loop

1. While −zi * [w(i*,S) − k/2]> 0

a. Update:
g ( n[g − zi * 2w(i*,S)]/(n − zi*) (the criterion value),
w(i,S) ( [nw(i,S) − zi*wii*]/n (the average similarities of all entities i to
S),
n ( n − zi* (the number of elements in S),
k( g/n (the intensity of S),
g2 = g2 (the contribution), and go to 2.

b. Change the sign of zi* in vector z, zi* ( −zi* (either add i* to S or remove
i* from S)

2. Output S, k and g2.

The general step is justified by the fact that indeed maximizing w(i,S) over
all i2I does maximize the increment of g(S) among all sets that can be obtained
from S by either adding an entity to S or removing an entity from S. Updating
formulas can be derived from the definitions of the concepts involved.
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One such formula is for updating g(S):

gðS i�Þ ¼ Sj jgðSÞ � zi�2 Sj jwði�; SÞþwi�i�

Sj j � zi�
ð5:34Þ

so that the change of the criterion is

gðS i�Þ � gðSÞ ¼ zi� gðSÞ � 2 Sj jwði�; SÞ½ � þwi�i�

Sj j � zi�
:

It should be mentioned that these two formulas are derived under the assumption
that any diagonal values may be present in matrix W. The action of changing the
state of i* is executed if and only if the numerator in the latter formula is positive.
This explains the condition of the loop in AddRemAdd(k) above (under the
assumption that the diagonal is zero). The proof of the former formula closely
follows that of formula (5.19) in Sect. 5.4.2, based on using the image in Fig. 5.14
and, thus, is omitted. The latter formula is easily derived from the former.

The rule for updating the average similarities between entities and cluster S is
based on formula:

wði; S i�Þ ¼ Sj jwði; SÞ � zi�wii�

Sj j � zi�
;

Which is easily derived from the definition of the average similarity between
i2I and S,

wði; SÞ ¼
P

j2S wij

Sj j :

The algorithm AddRemAdd(k) utilizes no ad hoc parameters, except for the
similarity shift value, so the cluster sizes are determined by the process of clustering
itself. Yet, changing the similarity shift k0 may affect the clustering results indeed,
which can be of an advantage when one needs to contrast within- and between-
cluster similarities.

To use AddRemAdd algorithm for the case of non-overlapping clusters, one
needs to perform a set of repetitive steps arranged as the algorithm ADN (ADditive
clusters Non-overlapping) as follows.

ADN algorithm
Input: matrix A0 ¼ ða0ijÞ; Output: a set of non-overlapping clusters S1, S2, …, SK
where

(i) number of clusters K is not pre-specified and
(ii) they do not necessarily cover all the entity set,

together with their intensities kk and contributions gk
2 to the A′ matrix scatter.
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0. Initialization. Set k = 1, Ik= I and Ak= A′.
1. Stopping test. Check whether Ik contains more than one entity and whether Ak

contains positive values. If either is not true, the computation stops and those
clusters found so far are output.

2. Cluster. Apply AddRemAdd(j) for every j2Ik. Select that of the results maxi-
mizing the contribution and put is as Sk along with the corresponding intensity
kk and contribution gk

2.
3. Update. Set Ik = Ik − Sk, k = k + 1, and Ak the part of matrix A′ related to

elements of Ik only.

The number of clusters is not pre-specified by the user with ADN nor the subset
of entities remaining unclustered. Yet both are predetermined by the choice of the
scale shift parameter k0 leading to matrix A′. This choice, in fact, defines the
granularity of clustering.

A similar algorithm, ADO (ADditive clusters Overlapping) can be drawn for the
case when clusters are not necessarily non-overlapping.

ADO algorithm
Input: matrix A0 ¼ ða0ijÞ and parameters for halting the computation: (i) threshold of
contribution of individual clusters 1, say 1 = 5%, (ii) threshold of explained con-
tribution η, say η = 50%; Output: a set of possibly overlapping clusters S1, S2, …,
SK where

(i) number of clusters K is not pre-specified,
(ii) they do not necessarily cover all the entity set, and
(iii) they may overlap,

together with their intensities kk and contributions gk
2 to the A′ matrix scatter.

0. Initialization. Compute the data scatter D ¼ hA0;A0i. Set k = 1 and Ak= A′.
1. Cluster. Apply AddRemAdd(j) to Ak for every j2I. Select the result maximizing

the contribution and put is as Sk along with the corresponding intensity kk and
contribution gk

2.
2. Stopping test. Check whether gk

2/D > 1 and Rf� kg2k=D� g. If either is not true,
the computation stops and only clusters found at the previous iterations are
output.

3. Update. Set Ak = Ak − kk sksk
T, k = k + 1.

4. Similarity positivity test. Check whether Ak contains positive values. If yes, go to
1. If not, the computation stops and all clusters found so far are output.

Algorithm ADO extracts clusters from the similarity matrix one by one so that
the residual elements are getting smaller at each step overall (Mirkin 1996).
A drawback of ADO is that any cluster, once extracted, is never updated, so that a
version of the algorithm should be developed with an inbuilt mechanism for
updating the extracted clusters.
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5.6 Summary

This Chapter is about dividing a dataset or its subset in two parts in either divisive
or separative manner. In the former, both parts are to be clusters; in the latter, just
one.

The first three sections introduce three different approaches in divisive cluster-
ing: Ward clustering, Spectral clustering and Single link clustering. Ward clustering
is an extension of K-means clustering dominated by the so-called Ward distance
between clusters. Within this approach, an important direction is the so-called
conceptual clustering in which every division is made over a single feature to attain
immediate interpretability of the hierarchy branches and nodes, that are clusters.
Spectral clustering gained popularity with the so-called Normalized Cut approach to
divisive clustering. A matrix algebra relaxation of this combinatorial problem
appears to be equivalent to optimizing the Rayleigh quotient for Laplacian and
pseudo-inverse Laplacian transformation of the similarity matrix under considera-
tion. This amounts to using maximum and minimum eigenvalues and corre-
sponding eigenvectors. In fact, other approaches under consideration also may be
treated within the spectral approach, so a few examples of that, applied within the
summary similarity clustering framework, are presented in the end of the section.
Single link clustering is a popular method for extraction of elongated structures
from the data. It formalizes the nearest neighbor approach and is much related to
graph-theoretic concepts: components and Maximum Spanning Trees including
Prim’s algorithm for MST building.

Two remaining sections describe two separative clustering approaches as
extensions of popular partitional approaches to the case. One tries to find a cluster
with maximum inner summary similarity at a similarity matrix preprocessed
according to the uniform or modularity approaches considered in Sect. 4.6. Both of
the approaches are effective; they do find good clusters, although there are specifics
such as, for example, that the uniform criterion is better fitting to flat ordinary graph
structures while the modularity criterion is better fitting at the data reflecting the
diversity of intensity in establishing interrelations by individual entities.

The other approach applies the encoder-decoder least-squares approach to
modeling data by a one-cluster structure. It appears, criteria emerging within the
latter approach are much akin to those described earlier, the summary and
semi-average similarities, although parameters now can be adjusted according to the
least-squares criterion. This applies to the so-called additive clustering mechanism,
an encoder-decoder based model for similarity data, which can be usefully applied
to the analysis of similarity data.

474 5 Divisive and Separate Cluster Structures



References

L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees
(Wadswarth, Belmont, Ca, 1984)

B. Mirkin, Mathematical Classification and Clustering (Kluwer Academic Press, 1996)
B. Mirkin, Clustering: A Data Recovery Approach (Chapman & Hall/CRC, 2012)
F. Murtagh, Multidimensional Clustering Algorithms (Physica-Verlag, Vienna, 1985)

Articles

O. Boruvka, Příspěvek k řešení otázky ekonomické stavby elektrovodních sítí (Contribution to the
solution of a problem of economical construction of electrical networks)” (in Czech).
Elektronický Obzor 15, 153–154 (1926)

D.H. Fisher, Knowledge acquisition via incremental conceptual clustering. Mach. Learn. 2,
139–172 (1987)

S. Guattery, G. Miller, On the quality of spectral separators. SIAM J. Matrix Anal. Appl. 19(3),
701–719 (1998)

C. Klein, M. Randic, Resistance distance. J. Math. Chem. 12, 81–95 (1993)
J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem.

Proc. Am. Math. Soc. 7(1), 48–50 (1956)
G.N. Lance, W.T. Williams, A general theory of classificatory sorting strategies: 1. Hierarchical

Systems. Comput. J. 9, 373–380 (1967)
U. Luxburg, A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)
B. Mirkin, Additive clustering and qualitative factor analysis methods for similarity matrices.

J. Classif. 4, 7–31 (1987); Erratum 6, 271–272 (1989)
B. Mirkin, R. Camargo, T. Fenner, G. Loizou, P. Kellam, Similarity clustering of proteins using

substantive knowledge and reconstruction of evolutionary gene histories in herpesvirus. Theor.
Chem. Acc.: Theory, Comput., Model. 125(3–6), 569–582 (2010)

F. Murtagh, G. Downs, P. Contreras, Hierarchical clustering of massive, high dimensional data
sets by exploiting ultrametric embedding. SIAM J. Sci. Comput. 30, 707–730 (2008)

M.E.J. Newman, Modularity and community structure in networks. PNAS 103(23), 8577–8582
(2006)

R.C. Prim, Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–
1401 (1957)

J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
22(8), 888–905 (2000)

R.N. Shepard, P. Arabie, Additive clustering: Representation of similarities as combinations of
discrete overlapping properties. Psychol. Rev. 86, 87–123 (1979)

S.K. Tasoulis, D.K. Tasoulis, V.P. Plagianakos, Enhancing principal direction divisive clustering.
Pattern Recogn. 43, 3391–3411 (2010)

J.H. Ward Jr., Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58,
236–244 (1963)

References 475



Appendix

Boris Mirkin

Department of Data Analysis and Machine Intelligence, Higher School of
Economics, 20 Miasnitskaya Street, Moscow 101000 RF
Department of Computer Science and Information Systems, Birkbeck
University of London, Malet Street, London WC1E 7HX UK

Abstract This material consists of six sections. Four sections are to help an
interested reader in getting acquainted with

– Basic linear algebra and data approximation
– Basic optimization
– Basic MatLab

Section A5 lists MatLab codes for some of the methods, in addition to the codes
supplied in computational parts of the text. These are:

cm.m Evolutionary method for finding Minkowski’s center of a series
plan.m A set of modules for fitting power law regression by using both

evolutionary method and linearization; includes a module for saving
results in an ascii file (can be used as a template for saving results)

nnn.m Learning a neural network with one hidden layer
clatree.m Building binary classification trees using Gini or Pearson chi-squared

or Information gain criterion.

In last Sect. A6, presents two randomly generated samples: three samples from
different distributions 50-strong each—the file short.dat, and a 280 strong sample
from N(0,10).

© Springer Nature Switzerland AG 2019
B. Mirkin, Core Data Analysis: Summarization, Correlation,
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A1 Basic Linear Algebra

A1.1 Matrix

Table A.1 presents data matrix from Table 4.2. It has 8 rows and 7 columns, that is,
its data contents is a 8 � 7 matrix X below.
Matrix X is a set of elements xiv labeled by two indices, i related to its rows, and v,
related to its columns. It is a common convention that the first of the two indices
refers to row and the second to column. The pair, number of rows N and the number
of columns V, forms the dimension of matrix X, N�V, or in this case, 8�7.

X ¼

�0:20 0:23 �0:33 �0:63 0:36 �0:22 �0:14
0:40 0:05 0 �0:63 0:36 �0:22 �0:14
0:08 0:09 0 �0:63 �0:22 0:36 �0:14

�0:23 �0:15 �0:33 0:38 0:36 �0:22 �0:14
0:19 �0:29 0 0:38 �0:22 0:36 �0:14

�0:60 �0:42 �0:33 0:38 �0:22 0:36 �0:14
0:08 �0:10 0:33 0:38 �0:22 �0:22 0:43
0:27 0:58 0:67 0:38 �0:22 �0:22 0:43

A1.2 Inner Product and Distance

Every row in data matrix Table A.1 represents an entity as a 7-dimensional vector,
or point, such as e1 = (−0.20, 0.23, −0.33, −0.63, 0.36, −0.22, −0.14) which is
simultaneously a 1�7 matrix. Similarly, every column represents a feature or
category as an 8-dimensional vector, or a 8�1 matrix, such as

Table A.1 Company data standardized

v1 v2 v3 v4 v5 v6 v7
e1 −0.20 0.23 −0.33 −0.63 0.36 −0.22 −0.14
e2 0.40 0.05 0 −0.63 0.36 −0.22 −0.14
e3 0.08 0.09 0 −0.63 −0.22 0.36 −0.14
e4 −0.23 −0.15 −0.33 0.38 0.36 −0.22 −0.14
e5 0.19 −0.29 0 0.38 −0.22 0.36 −0.14
e6 −0.60 −0.42 −0.33 0.38 −0.22 0.36 −0.14
e7 0.08 −0.10 0.33 0.38 −0.22 −0.22 0.43
e8 0.27 0.58 0.67 0.38 −0.22 −0.22 0.43
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v1
�0:20
0:40
0:08

�0:23
0:19

�0:60
0:08
0:27

or, its transpose, a 1�8 row.

v1T ¼ �0:20; 0:40; 0:08; �0:23; 0:19; �0:60; 0:08; 0:27ð ÞT:

Elements of vectors are referred to as their components. Each component has an
index which is an integer running from 1 to 8, in this case. In general case, the index
runs from 1 to N, the number of components. In Computer Sciences, sometimes
indices run from 0 to N − 1. The index is the base for matching different vectors.

Operations of summation and subtraction are defined component-wise:

e1 ¼ �0:20; 0:23;�0:33;�0:63; 0:36;�0:22;�0:14ð Þ
þ
e2 ¼ 0:40; 0:05; 0; �0:63; 0:36;�0:22;�0:14ð Þ
e1þ e2 ¼ 0:20; 0:28;�0:33;�1:26; 0:72;�0:44;�0:28ð Þ

and

e1 ¼ �0:20; 0:23;�0:33;�0:63; 0:36;�0:22;�0:14ð Þ
�
e2 ¼ 0:40; 0:05; 0; �0:63; 0:36;�0:22;�0:14ð Þ
e1� e2 ¼ �0:60; 0:18;�0:33; 0; 0; 0; 0ð Þ

The second important operation is multiplication of a vector by a real defined as
multiplication of all components simultaneously:

3 � e1 ¼ �0:60; 0:69;�0:99;�1:89; 1:08;�0:66;�0:42ð Þ;
10 � e1 ¼ �2:00; 2:30;�3:30;�6:30; 3:60;�2:20;�1:40ð Þ

To get some intuition, let us consider Cartesian plane representation of 2D
vectors obtained by removing all components of the rows except for the first two
(Fig. A.1a).

Figure A.1 illustrates two geometric facts: (a) the sum of two vectors e1 + e2 sits
in the fourth node of the parallelogram formed by connecting 0 and the vectors;
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(b) given vector x, all vectors ax at a the constant a taking any value between minus
infinity and plus infinity, form a line through the origin 0 and x.

The third important operation over vectors is the inner product. The inner, or
scalar, product is defined for every pair of vectors x and y of the same dimension
and it is equal to—not a vector—but just a number, the sum of the products of
corresponding components and denoted by <x.y>. For example, for 2D parts of
vectors e1 = (−0.20, 0.23) and e2 = (0.40, 0.05), the inner product is <e1, e2> =
−0.20 * 0.40 + 0.23 * 0.05 = −0.08 + 0.01 = −0.07. A full computation of <e1,e2>:
= sum(e1.* e2) is below:

e1 ¼
e2 ¼

e1: � e2 ¼
e1; e2h i ¼ sum e1 � e2ð Þ

ð�0:20; 0:23; �0:33; �0:63; 0:36; �0:22; �0:14Þ
ð0:40; 0:05; 0; �0:63; 0:36; �0:22; �0:14Þ
ð�0:08; 0:01; 0; 0:39; 0:13; 0:05; 0:02Þ
�0:08þ 0:01þ 0þ 0:39þ 0:13þ 0:05þ 0:02 ¼ 0:52

Here we denote x.*y an operation over n�1 vectors x and y resulting in a vector
x * y = (xiyi) whose components are products of components of the same index in
both x, and y, xiyi.

The inner product is a linear operation so that, for example, <e1, 2 * e1 + 3 * e2>
= 2 * <e1, e1> + 3 * <e1, e2>, which can be proven in this case straightforwardly
by computation.

The inner square, that is, the product of a vector by itself, like <e1,e1> = −0.20 *
(−0.20) + 0.23 * 0.23 = 0.040 + 0.053 = 0.093, is the sum of squares of its
components, which is the square length of the line connecting the origin 0 and the
point on Cartesian plane such as Fig. A.1a. This follows from the Pythagoras
theorem illustrated on Fig. A.2. The theorem states that the square of hypothenuse’s
length in any right-angled triangle is equal to the sum of squares of the sides’

(a) (b)

Fig. A.1 Plane geometry representation of 2D vectors e1, e2, e1 + e2, and 1.5 * e1 on (a) and
eigenvector lines for symmetric matrix A (b)
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lengths, c2 = a2 + b2. By extending this property to multidimensional points and
vectors, the square root of the inner square <x,x> is referred to as the norm of x and
denoted ||x||.

This allows us to introduce Euclidean distance between any two vectors/points
x and y as the norm of their difference, r(x,y) = ||x − y||. In MatLab, this can be
expressed as r(x,y) = sqrt(sum((x − y).*(x − y)). For example, the distance between
e1 and e2 as rows of Table A.1 can be computed as follows:

e1� e2 ¼ ð�0:60; 0:18;�0:33; 0; 0; 0; 0Þ
ðe1� e2Þ: � ðe1� e2Þ ¼ ð 0:36; 0:03; 0:11; 0; 0; 0; 0Þ
d e1; e2ð Þ ¼ sum e1� e2ð Þ: � e1� e2ð Þð Þ ¼ 0:36þ 0:03þ 0:11þ 0þ 0þ 0þ 0 ¼ :50

r e1; e2ð Þ ¼ sqrt d e1; e2ð Þð Þ ¼ sqrt 0:50ð Þ ¼ 0:71

An important function in this computation is the squared Euclidean distance
d(e1,e2)—this is the base of the least-squares approach in data analysis.

Some other concepts of distance are popular too. Among them: Manhattan or
City-block distance defined as m(x1,x2) = |x11 − x21| + |x12 − x22| + ⋯ + |x1V − x2V|
and Chebyshev or L∞ distance defined as c(x1,x2) = max(|x11 − x21|, |x12 − x22|, …,
|x1V − x2V|). A popular exercise in getting intuition about the distances is drawing
sets of points that are equidistant to origin 0: this is a circle in the case of Euclidean
distance, rhomb in the case of city-block distance, and square in the case of
Chebyshev distance. All these are special cases of more general, so-called,
Minkowski distance, lp(x1,x2) = (|x11 − x21|

p + |x12 − x22|
p + ⋯ + |x1V − x2V|

p)1/p,
where p is any positive real number. Obviously, p = 1 corresponds to Machattan
distance, p = 2, to Euclidean distance, and at p tending to ∞, to Chebyshev
distance.

An important relation between the (Euclidean squared) distance and inner pro-
duct is this:

x1=(x11,x12)

a c

x2=(x21,x22)
b

0=(0,0) x11 x21

x12

x22

Fig. A.2 Pythagoras’ theo-
rem: the squared Euclidean
distance between x1 and x2 is
d(x1,x2) = (x11 − x21)

2 + (x12
− x22)

2
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d x; yð Þ ¼ \x� y; x� y[ ¼ \x; x[ þ\y; y[ � 2\x; y[ ;

which is especially simple if <x,y> = 0:

d x; yð Þ ¼ \x; x[ þ\y; y[

just like in Pythagoras’ theorem. This is why vectors/points x and y satisfying
<x,y> = 0 are referred to as orthogonal. This property underlies the decompositions
of data scatter presented in the text.

A1.3 Matrix Operations

A general notation for a matrix A is like this:

A ¼
a11 a12 . . . a1V

..

. . .
. ..

.

aN1 aN2 � � � aNV

0
B@

1
CA

so that A has N rows and V columns and the N�V size, and a common element is aiv
(i = 1,…,N, v = 1,…,V)—the row’s index always goes first. The transpose AT of
matrix A is defined by switching the rows and columns so that AT = (avi) is
of V�N size:

AT ¼
a11 a21 . . . aN1

..

. . .
. ..

.

a1V a2V � � � aNV

0
B@

1
CA

A matrix of N�V size is referred to as a square matrix if N = V. A square matrix
A is referred to as symmetric if A = AT. The set of elements aii with coinciding
indices is referred to as the diagonal of matrix A. The symmetry then literally is over
the diagonal.

Operations of summation, subtraction and multiplication by a number are
defined for matrices component-wise exactly as they are for vectors. Here is an
example:
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Matrices of different sizes cannot be summed with or subtracted from each other.
The rules are more complicated for the operation of matrix multiplication.

An N�V matrix A can be multiplied by a column vector b of the size V�1 to
produce an N�1 vector c = Ab—note that the number of components in b must be
equal to the number of columns in A. The result is just the sum of A columns
weighted by the corresponding components of b (hence is the rule that the size V of
b is equal to the number of columns in A). Here is an example:

�0:20 0:23
0:40 0:05
0:08 0:09

�0:23 �0:15

0
BB@

1
CCA 3

2

� �
¼ 3

�0:20
0:40
0:08

�0:23

0
BB@

1
CCAþ 2

0:23
0:05
0:09

�0:15

0
BB@

1
CCA ¼

�0:14
1:30
0:42

�0:99

0
BB@

1
CCA

This definition can be reformulated using the inner product: in fact, each com-
ponent of Ab is the inner product of the corresponding row of A and b. Using the
same example,

�0:20 0:23
0:40 0:05
0:08 0:09

�0:23 �0:15

0
BB@

1
CCA 3

2

� �
¼

\ð�0:20 0:23Þ; ð3 2Þ[
\ð0:40 0:05Þ; ð3 2Þ[
\ð0:08 0:09Þ; ð3 2Þ[

\ð�0:23 �0:15Þ; ð3 2Þ[

0
BB@

1
CCA ¼

�0:14
1:30
0:42

�0:99

0
BB@

1
CCA

Consider, as an example, the operation of multiplication of a row-vector aT =
(a1,a2,…,an) which is a 1�n matrix by its transpose, (aT)T = a, which is an n�1
matrix. Obviously, aTa = a1

2 + a2
2 + ⋯ + an

2 = <a,a> = ||a||2. On the other hand, aaT

is an n�n matrix whose (i,j)-th entry is aiaj.
It should be noted that the multiplication is a linear operation. That means that

taking a linear combination ax + by of two V-dimensional vectors, x and y, where a
and b are arbitrary reals, the product A(ax + by) = aAx + bAy, the same linear
combination of products. Consider the span L(A) of matrix A, that is the set of
vectors c = Ab for all possible V-dimensional vectors b. Obviously, L(A) is a linear
space, that is, such an algebraic structure that for any x,y2L(A), any linear com-
bination also belongs to L(A), ax + by 2 L(A). A geometric expression of this is that
lines are mapped into lines by any matrix.

Consider, for example, A ¼
6 7
5 8
8 9

2
4

3
5 and b ¼ 2

3

� �
; then c ¼ Ab ¼

33
34
43

2
4

3
5.

The line through 0 and b consists of points ab at all possible real a (see Fig. A.3 on
the left), and its image over mapping A is line formed by points ac (see Fig. A.3
on the right).

Based on the above, matrix product AB is defined for matrices A of size N�V
and B of size V�M (note coinciding V number!) as a matrix of size N�M whose
columns are products of A and corresponding columns of B. Let us extend our
example to this case:
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�0:20 0:23
0:40 0:05
0:08 0:09

�0:23 �0:15

0
BB@

1
CCA 3 1

2 0

� �
¼

�0:14 �0:20
1:30 0:40
0:42 0:08

�0:99 �0:23

0
BB@

1
CCA

One may consider an N�V matrix A as a mapping from RN, the space of
N-dimensional vectors x to the space RV of V-dimensional vectors y = Ax. Then the
matrix product AB for N�V matrix A and V�M matrix B is but the product of the
corresponding mappings, a mapping from RN to RM, that is the result of the con-
secutive application of mapping B after mapping A. Then one can see it only
natural, that the transpose of the product obeys the following rule (AB)T = BTAT.

Given a square n�n matrix A and an n�1 vector b, the product c = Ab is again
an n�1 vector. That means that n�n matrices can be considered as mappings in the
space Rn of n-dimensional vectors. Given a square matrix A, matrix A−1 is referred
to as inverse of A if AA−1= A−1A = E, where E is the so-called identity matrix, the
diagonal entries of which are unities and the rest are zeros:

eij ¼ 1; i ¼ j
0; i 6¼ j:

�

A square matrix is referred to as a diagonal one if its (i,j)-entries are all equal to 0
at i 6¼ j. Of course, the identity matrix is diagonal.

Obviously, AE = EA = A for each A. The inverse exists if and only if the
mapping of Rn represented by matrix A is injective, that is, one-to-one. In such a
case, A is referred to as a non-singular matrix; otherwise, singular. It can be proven
that A is non-singular if and only if for any b 6¼ 0, Ab 6¼ 0 as well. Here 0 is an
n-dimensional vector in which all components are zeros; this vector is called the

α

α

Fig. A.3 Line through 0 and point b, on the left, and line through 0 and point c = Ab, on the right
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origin of the space sometimes. If n�n A is non-singular, then given a vector b2Rn,
equation Ax = b can be easily solved as x = A−1b.

A1.4. Spectral Theory

A vector b is of a special interest if c = Ab lies on the line drawn through 0 and b,
that is, if equation Ab = kb holds for some number k. Such a number is referred to
as an eigenvalue of A and b the corresponding eigenvector of A. The set of
eigenvalues is not too large—the number of eigenvalues cannot exceed the matrix
size n. If A is symmetric, then all its eigenvalues are real numbers, and the
eigenvectors corresponding to different eigenvalues are orthogonal to each other. In
data analysis, it is usually assumed that all the non-zero eigenvalues are different
indeed since the matrices are based on observations of quantitative variables
because of random errors. We also adhere to this convention. Then the eigenvectors
of A represent “inner” directions for Cartesian space axes that follow the structure
of A. Geometrically, matrix multiplication transforms lines into lines. Then it would
be correct to say that A transforms axes of the Cartesian space into its inner axes
specified by the eigenvectors. Figure A.1b represents the eigenvector-defined axes
for matrix A = e + eT where e is the matrix composed of two-dimensional
row-vectors e1 and e2 considered above.

Let A be an n�n square symmetric matrix with non-zero, necessarily real,
eigenvalues k1 > k2 >⋯ >kr and corresponding eigenvectors c1, c2, …, cr, where
r � n. Equality n = r holds if and only if A is non-singular. The number r is what is
referred to as the rank of A. The rank of a matrix is defined as the maximum size of
its square submatrix at which the submatrix is non-singular. The set of eigenvalues
is referred to as the spectrum of A. Let us denote by K the diagonal n�n matrix
whose diagonal elements are the eigenvalues, so that k11 = k1, k22 = k2,…, krr = kr,
and kpp = 0 for all p > r. Assume that all the eigenvectors are normed, so that the
sum of squares of components in each ck, k = 1,…, r, is unity. Then the so-called
spectral decomposition holds:

A ¼ CKCT ; ðA:1Þ

where C = (c1, c2, …, cr) is n�r matrix in which c1, c2, …, cr are columns. This
matrix equation can be formulated element-wise,

aij ¼
Xr

k¼1

kkcikcjk ðA:10Þ

There can be an intermediate notation used as well:
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A ¼
Xr

k¼1

kkckc
T
k ðA:100Þ

These all equations mean that the eigenvalues and eigenvectors provide for a
decomposition of all the entries of A in sums of products cikcjk. The spectral
decomposition captures the structure of matrices, which is important in data anal-
ysis. In data analysis, usually the eigenvalues are numbered so that k1 > k2 >… > kr,
assuming that in any real-world dataset, it is highly unlikely that (some of)
eigenvalues can be equal to each other.

Since the eigenvectors in C are mutually orthogonal and normed, CTC = E where
E is the identity matrix. Multiplying (A.1) by itself, we obtain AA = (CKCT)
(CKCT), so that A2 = CKKCT = CK2CT. Since K2 is the diagonal matrix at which kk

2

stands on the diagonal rather than kk, the latter equation, in format of (A.1″), is

A2 ¼
Xr

k¼1

k2kckc
T
k ðA:2Þ

Of course, this holds for every integer power p, not only p = 2. In the case when
A is not singular, a similar equation holds for the inverse matrix A−1:

A�1 ¼
Xn
k¼1

1
kk
ckc

T
k ðA:3Þ

differing from (A.1) by only the reciprocals 1/kk used instead of the eigenvalues
kk. Equation (A.3) can be extended to the case of singular A at which the rank r is
smaller than n. In such a case, the equation is

Aþ ¼
Xr

k¼1

1
kk
ckc

T
k ðA:30Þ

This equation defines, and provides an algorithm for computing of, the concept
of pseudo-inverse matrix.

Multiplying (A.1) by C on the right, we obtain thus AC = CK (check that this is
the defining condition for eigenvalues!). Multiplying this by CT from the left, we
obtain

K ¼ CTAC; ðA:4Þ

that is,

kk ¼ cTk Ack;
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under the condition that ck is a normed vector, which brings us to the so-called
Rayleigh quotient,

q xð Þ ¼ xTAx
xTx

ðA:5Þ

This gives an independent way for deriving eigenvalues: the Rayleigh quotient
q(x) reaches its maximum over all possible x at the first eigenvector c1 and its value
is q(c1) = k1. Moreover, if we maximize q(x) at only those x that are orthogonal to
the first k − 1 eigenvectors c1, c2,…, ck−1, then the maximum is kk and it is reached
at x = ck.

A1.5. Singular Values and SVD

Given an n�m matrix X, its singlular triplet is defined as a set (l, u, v) in which l is
a non-negative real, u an m-dimensional normed vector u2Rm and v n-dimensional
normed vector v2Rn, such that

Xu ¼ lv
XTv ¼ lu

�
ðA:6Þ

The number l is referred to as a singular value and vectors u, v the corre-
sponding singular vectors. Geometrically, u represents a direction (0,u) from the
origin in Rm, whereas v a direction (0,v) from the origin in Rn (as shown on Fig. 5.3
with u = b and v = c). Equations (A.6) claim that the direction (0,v) is the image of
(0,u) under mapping X, while the direction (0,u) is the image of (0,v) under map-
ping XT. Geometrically, XT represents the inverse mapping to X. The situation much
resembles that in the concept of eigenvector. The difference is that the eigenvectors
are arguments and images of the same mapping in the same space, whereas singular
vectors are in different spaces and under somewhat different mappings. Can we
somehow put this into a larger space in which both mappings, X and XT, act
simultaneously? Yes, we can.

Given a rectangular n�m matrix X, define a square (n + m) � (n + m) matrix X*,
that consists of four blocks two of which, the diagonal n�n and m�m blocks, are all
zeros, whereas two others are X and XT:

X� ¼ 0 X
XT 0

� �

Note that X* is symmetric, which implies that all its eigenvalues are real.
Consider an (n + m)—dimensional vector w = (u,v) in which u is its m-dimensional
part and v n-dimensional part. The condition that w is an eigenvector of X* is
X * w = kw. Because of the special structure of X*, this can be reformulated by
using the constituent parts of w, u and v, as 0u + Xv = ku, XTu + 0v = kv, which is
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exactly equations (A.6) except that k here plays the role of l. What remains to be
seen is whether the norms of parts u and v are necessarily the same in w = (u,v) or
not. If this is true, then both vectors can be taken as normed and, in this way,
satisfying the definition. Let us multiply the first of the equations (A.6) by vT from
the left and the second equation by uT from the left. This will produce

vTXu ¼ lvTv ¼ l vj jj j2;
uTXTv ¼ luTu ¼ l uj jj j2:

�

But vTXu and uTXTv coincide because vTXu is of 1�1 size, that is, a real number
and, therefore, is equal to its transpose (vTXu)T = uTXTv. The following statement is
proven.

Pair k, w = (u,v) combines a non-negative eigenvalue and the corresponding
eigenvector of X* if and only if the triplet (k,u,v) is singular for X.

This leaves yet an issue of the negative eigenvalues of X*, which appears to be
resolved in a quite satisfactory way. Indeed, it is easy to prove, just by using
negations in equations (A.6) that a pair k, w = (u,v) is an eigenpair for X if and only
if so is the pair −k, w− = (−u,v). Therefore, one may only take into account the
non-negative eigenvalues of X*; the negative ones are just replicas of the positive
ones.

Another, much more popular, geometrical view of singular values as eigenval-
ues, comes from consecutively applying the mapping X and inverse mapping XT so
that the resulting mapping works in only one of the spaces, Rm or Rn. Let us
multiply the first equation in (A.6) by XT from the left. We obtain XTXu = XTlv = l
XTv. The last equation follows from the fact that product of a matrix and a number is
commutative. Now we put XTv = lu, from the second equation in (A.6), into the
expression on the right. This produces XTXu = l2u. The n�n matrix A = XTX is
what is referred to as Gram matrix; its elements are inner products of the columns of
a matrix, X, in this case. Of course, XTX is symmetric. The obtained equation XTXu
= l2u implies that u is an eigenvector of XTX corresponding to its eigenvalue l2

which is non-negative. Therefore, eigenvalues of a Gram matrix are non-negative
reals. This implies that a Gram matrix A = XTX is semi-definite positive, that is, for
any m-dimensional x, the product xTAx is non-negative so that xTAx � 0 for any x.

Similarly, one can prove that XXTv = l2v. Allover, the triplet (l, u, v) is a
singular triplet for matrix X if and only if is an eigen value of matrices XTX and XXT

and u is the corresponding normed eigenvector of matrix XTX and v, of matrix XXT.
This implies that singular m-dimensional vectors u1, u2,…, ur are mutually
orthogonal, as well as singular n-dimensional vectors v1, v2,…, vr.

The number r of positive singular values of X is equal to the rank of X. For
rectangular matrices, the rank is defined in the very same way as for the square
ones. The rank of X is the maximum size of such its square submatrix, that is
non-singular. Obviously, the rank is less than or equal to the minimum of m and n.

Let l1 > l2 > ⋯ > lr > 0 be positive singular values and u1, u2,…, ur and v1, v2,
…, vr the corresponding singular vectors for n�m matrix X. The so-called singular
value decomposition (SVD) of elements xij of X holds:

488 Appendix



xij ¼
Xr

k¼1

lk
Xm
i¼1

Xn
j¼1

uikvjk ðA:7Þ

Let us consider m�r matrix U = (uik) whose columns are singular vectors uk (i =
1,…,m, k = 1,…, r) and n�r matrix V = (vjk) whose columns are singular vectors vk
(j = 1,…,n, k = 1,…, r). Let us denote the r�r diagonal matrix of singular values l1,
l2, …,lr by M. Then the SVD in (5.7) can be reformulated as a matrix equation:

X ¼ UMVT ; ðA:70Þ

or, a bit less cryptically,

X ¼
Xr

k¼1

lkvku
T
k ðA:700Þ

A2 Basic Optimization

Given a function f(x) for x2X, it is natural to look for points x in X at which
f(x) takes extreme values, ether maximum or minimum, hence is the problem of
optimization, that is, finding a point that either minimizes f or maximizes it. Let us
focus on minimization, for certainty. There are two approaches to optimization: one
is the classical one and the other of nature-inspired computational intelligence.

The classical approach is informed by calculus.
This approach has been first developed for one-dimensional functions f(x) like

the one whose graph is on Fig. A.4. In the point of minimum, like A or D, or
maximum, like C, or change in the orientation of convexity, like B, the first
derivative f′(x), which expresses the tangent of the curve f(x) in the point, is 0—this
is what is referred to as the first-order necessary condition of minimum. It is
possible to separate the minima from the rest by using the second order derivatives,
but there is no way to tell one local minimum from the other unless reaching each of
them, and to add to the misery, there is not much usually known of how to find
them all or just the global minimum either. Sometimes the calculus is not of much
help—a case at hand is the curve on Fig. A.5: its global minimum is at the very left
point of the graph, and the first-order condition cannot help because it is valid only
in interior points of the admissible set X.

Yet to reach a local minimum satisfying the first-order minimum condition, a
most universal method is of steepest descent. This method relies on the derivative of
the function in any given point. This shows the direction of the steepest ascent over
the optimized function, so that the opposite direction makes it steepest descent.

Appendix 489



Given an x and values f(x) and f′(x), this method finds another point xnew by
subtracting the derivative scaled by a step factor, xnew = x − l f′(x), where l is the
step factor. The closer the point to the minimum, the smaller is the value of the
derivative, thus the smaller the change. Of course, the method can converge to a
local minimum point, not necessarily the global minimum.

The situation when x is multidimensional is even more complex. The mathe-
matics have made a good progress on the theory of optimization when only one
minimum can exist—such is the case of so called convex optimisation when both,
function f(x) and set of admissible points X, are convex. In a more general situation,
though, the steepest descent frequently remains the only tool available, even in spite
of the fact it finds a local minimum with no estimates on the global one. Here,
however, the concept of gradient is involved rather that of the derivative. For a
function of n-dimensional vectors, f(x1,x2,…,xn), the gradient is an n-dimensional
vector grad(f(x)) whose k-th component is partial derivative @y

@xk
(k = 1,…,n). The

different term is used because there are examples of functions that have all the
partial derivatives at some points but still have no gradients in those points. The
gradient, in n-dimensional space, shows direction of the steepest ascent. So, by
taking the opposite direction, the process is supposed to go in the direction of the
steepest descent. That makes the method of steepest descent to work in iterations.

A      B     C     D         x

f Fig. A.4 Graph of a typical
multi-optimum function

old   new                    x                      

Fig. A.5 New point taken in
the direction opposite to the
tangent
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Each iteration takes in a point x = (x1,x2,…,xn) and outputs a new point in the
direction opposite to the gradient:

x newð Þ ¼ x oldð Þ�l � grad f x oldð Þð Þð Þ

where l is the step size. This new point is taken then by the next iteration. By
changing the step-size from iteration to iteration, one may achieve a better rate of
convergence.

In the case when the set of arguments can be naturally partitioned in two or more
parts such that the function is easy to minimize over each part taken separately, an
iterative process applies to involve steps optimizing each part at pre-specified
values of the other parts. This process is referred to as alternating minimization.
Consider that x = (y,z) so that f(x) = f(y,z) and, at any given y* and z*, the minimum
of f(y*,z) with respect to z can be found easily, as well as minimum f(y,z*) over y.
Then, starting from some y0 the alternating minimization process would produce a
sequence y0, z1, y1, z2, y2,… in which zt is a minimizer of f(yt−1,z) and yt a minimizer
of f(y,zt) at each t = 1, 2,…. This sequence would provide for an ever decreasing
sequence of values f(yt,zt). In a situation when there is a bound on them from below,
this would warrant that the sequence converges to a local minimum. If either y or
z can have only a finite number of values, the process of alternating minimization
would converge in a finite number of steps.

Q.A.1. What is gradient of function: (i) f(x1,x2) = x1
2 + x2

2, (ii) f(x1,x2) = (x1 − 1)2

+ 3 * (x2 − 4)2, (iii) f(z1,z2) = 3 * z1
2 + (1 − z2)

4?
A: (i) (2x1, 2x2), (ii) [2 * (x1 − 1), 3 * (x2 − 4)], (iii) (6 *z1, − 4 * (1−z2)

3).
In contrast to classical approaches, a nature inspired optimization approach does

not try to reach a minimum by improving and updating a single solution point. Just
the opposite. According to this approach, a population of admissible solutions is
thrown in randomly and all the attention is given not to an individual solution but
the population as a whole. Probabilistic rules are defined to generate the next
generation of the population, usually in the same numbers, so that a process of
evolution of the population from generation to generation is defined and executed
computationally. Because of its probabilistic rules, each instance of the process may
differ from the others. To warrant that the population improves in the process of
evolution, a special “elite maintenance” policy is defined so that the elite—which is
the best solution or a set of best solutions reached so far in the process—is used as
an improvement device. The presence of the probabilistic component is considered
an important device to warrant that the population does not stuck in a local opti-
mum but rather covers the entire area of admissible solutions.
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A3 Approximate Data

A3.1 Orthogonal Projection and Projector

Consider an n�m matrix X. The set L(X) of all n-dimensional vectors c such that c =
Xb for some b is referred to as the L-span of X or just X-span. Given an n-
dimensional vector u, not necessarily belonging to L(X), the problem is: find a
vector û2L(X) such that the Euclidean distance from u to û is at its minimum over
all the vectors in L(X). The global solution to this problem is well-known: it is
provided by a matrix PX applied to u:

û ¼ PXu ðA:8Þ

where PX is the so-called orthogonal projection operator, or orthogonal projector, an
n�n matrix defined as:

PX ¼ X XTX
� ��1

XT ðA:9Þ

so that

û ¼ X XTX
� ��1

XTu or û ¼ Xb at b ¼ XTX
� ��1

XTu: ðA:10Þ

Matrix PX projects every n-dimensional vector u to its nearest match in the n-
dimensional X-span space. This matrix depends only on the space L(X) itself, not on
the specifics of matrix X. An n�n matrix P is an orthogonal projector if and only if
it is symmetric, P = PT and idempotent; that is, its repeated application does not
change the image, P2 = P.

The inverse (XTX)−1 in (A.9) does not exist if the rank of X, as it may happen, is
less than the number of columns in X, m, that is, if matrix XTX is singular or,
equivalently, the dimension of X-span is less than m. In this case, the so-called
pseudo-inverse matrix (XTX)+ can be used as well. This is not a big deal compu-
tationally: for example, in MatLab one just puts command pinv(XTX) instead of inv
(XTX), see formulas (A.3) and (A.3′) above.

A3.2. SVD and Data Approximation

Let us extend the problem of projection of a vector to data matrices by relaxing both
conditions, that the projection space is pre-specified and that the data is just a single
point. Given an n�m data matrix X and a relatively small integer p < r where r is
the rank of X, consider the problem of finding such a linear space L of the
dimensionality p that is the nearest to X. One can formalize the problem as follows.
Find an n�p matrix Z consisting of p mutually orthogonal columns such that the
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projection PZX of X into the Z-span L(Z) is as near X as possible with respect to all
possible p-dimensional spaces.

To measure the distance between matrices, one usually uses a straightforward
extension of the Euclidean vector norm onto matrices. Given two n�m matrices
X and Y, the norm ||X − Y|| is defined, via its square, as

X � Yk k2¼
Xn
i¼1

Xm
j¼1

xij � yij
� �2

:

This can be expressed in terms of matrix operations by using the notion of trace
of a square matrix. Given a square matrix A, its trace is defined as the sum of its
diagonal elements, Tr Að Þ ¼ Pn

i¼1 aii. The trace is equal to the sum of all eigen-
values of A.

It appears, Aj jj j2¼ Tr ATAð Þ ¼ Tr AATð Þ. Therefore, the problem is to find such
an n�p matrix Z that minimizes

X � PZXj jj j2¼ Tr X � PZX½ �T ½X � PZX�
� �

under the orthonormality constraint

ZTZ ¼ E:

The function to minimize can be simplified to

X � PZXj jj j2¼ TrðXTXÞ � Tr ZTXXTZ
� �

:

The first item on the right, T Xð Þ ¼ Tr XTXð Þ ¼ Pn
i¼1

Pm
j¼1 x

2
ij is but the sum of

squared distances from all the row-vectors (or column-vectors) to 0 and referred to
as the data scatter. Since T(X) is constant, the problem can be reformulated as of
finding an n�p matrix Z satisfying equation ZTZ = E and maximizing Tr(ZTXXTZ).
This is much reminiscent of equations (5.4) for the spectrum of A = XXT and C =
Z. Indeed, consider Z consisting of the p eigenvectors v1,v2,…,vp, of A = XXT

corresponding to its maximal p eigenvalues k1 > k2 > …> kp, respectively. The
(globally) optimal projection ~X pð Þ ¼ PZX in this case is part of (A.7′′) comprising
the first p singular triplets of X:

~X pð Þ ¼
Xp
k¼1

lkvku
T
k ðA:11Þ

where l1 > l2 >…> lp > 0 are the maximal singular values of X. Note that lk = kk
½.

Readers who have read the previous part of this section attentively, will not be
surprised to learn that this solution satisfies a Pythagorean equation decomposing
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the data scatter in two parts, that taken into account by the approximation, ~X pð Þ,
and that residual, X � ~X pð Þ		 		2:

TðXÞ ¼ Xk k2¼
X
i;j

x2ij ¼ l21 þ l22 þ � � � þ l2p þ X � ~X pð Þ		 		2 ðA:12Þ

The part taken into account is itself decomposed in contributions of individual
singular triplets, lk

2. The residual part is equal to the sum of contributions of
singular triplets corresponding to the smaller singular values,

X � ~x pð Þ2		 		 ¼
Xr

k¼pþ 1

l2k

The case of p = 1 is of a special interest both from theoretical and practical
perspectives. Let l be the maximum singular value of X and u = (uj), v = (vi)
corresponding normed singular vectors. Then the approximating matrix is ~X in
which (i,j)-th entry is the product viuj. Any matrix of rank 1 has a similar structure
generated by two vectors, one from Rn the other from Rm; all its rows are pro-
portional to each other and all its columns are proportional to each other.

This all can be extended to any square n�n matrix A that is not necessarily XXT.
The first p items in equation (A.1″) form a matrix A(p) which is the best at
approximating A among all the square matrices of rank p. More precisely, let us
consider matrix

A pð Þ ¼
Xp
k¼1

kkckc
T
k

and the difference E = A − A′ where A′ is any n�n matrix of rank p < n. It appears,
the minimum of ||E||2 = ||A − A′||2, with respect to all matrices A′ of rank p, is
reached at A′ = A(p). Therefore, equation

A ¼
Xp
k¼1

kkckc
T
k þE ðA:13Þ

decomposes any square matrix A into the best approximating matrix of rank p <
n and the residual E.

There is a special method, the so-called power method, for finding the maximum
l and corresponding singular values. The method can be presented in various
forms. Consider, say, matrix A = XXT where X is an n�m matrix. To compute its
first eigenvector, take an arbitrary positive x02Rn and apply A to it to compute x1
by dividing the result by its norm, x1 = A * x0/||A * x0||. Reiterate to obtain x2: x2 =
A * x1/||A * x1||. Continuing this process, we obtain a sequence x0, x1, x2, …, xs
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which converges to the first eigenvector v while the norm ||A * xs||, to the maximum
eigenvalue k.

For example, take matrix

X ¼
0:3 0:4 0:1 0:1
0:5 0:6 0:2 0:0
0:4 0:7 0:1 0:2

0
@

1
A

and compute

A ¼ XXT ¼
0:27 0:41 0:43
0:41 0:65 0:64
0:43 0:64 0:70

0
@

1
A

The following Table A.2 presents results of a few iterations of the power method
applied to A.

To explain the convergence, note that s iterations of the power method are
equivalent to one-time application of the s-th power of A, As, up to rescaling
normalization steps. According to equations (A.2) extended to the s-th power of A,

As ¼
Xr

k¼1

kskckc
T
k ¼ ks1 c1c

T
1 þ

Xr

k¼2

kk
k1

� �s

ckc
T
k

" #
:

At growing s, the fractions in power s tend to 0 since k1 is strictly greater than
any kk at k = 2,3,…r. The factor ks1 at the square brackets is taken care of by the
normalizing steps. Therefore, the result of application of s iterations to any initial
vector will approach c1cT1 x0 which is proportional to c1, the eigenvector of A for the
eigenvalue k1.

Moreover, the equation above warrants that As is approximated by matrix c1c1
T

multiplied by a number, so that all the columns of matrix A3 itself are versions of
the corresponding eigenvector c1. Indeed, in our case,

Table A.2 Results of three iterations of the power method for matrix A. The sequence of obtained
vectors in the top row and corresponding norms in the bottom

X0 X1 X2 X3
1 0.4121 0.4120 0.4120
1 0.6311 0.6311 0.6311
1 0.6571 0.6572 0.6572
||A * X0|| ||A * X1|| ||A * X2|| ||A * X3||
2.6935 1.5841 1.5841 1.5841
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A3 ¼
0:6747 1:0336 1:0783
1:0336 1:5834 1:6489
1:0763 1:6489 1:7171

0
@

1
A

The norms of columns of A3 are, in respect, 1.6376, 2.5088, 2.6126. Relating the
columns to their norms will produce the very same normed vector c1.

It should be noted that the very same power method can be applied to finding the
maximum eigenvalue and corresponding eigenvector even in the case when A is not
symmetric, provided that the maximum eigenvalue is known to be real and positive!
Such is the case at which all entries of A are positive. In this case the so-called
Perron-Frobenius theorem is true. The theorem states that the power method for
such an asymmetric A converges to the first eigenvector c1 and As, to a matrix
whose columns are collinear to c1.

Returning to A = XXT, we may proceed to singular triplets for X. This eigen-
vector c1 is the singular vector v2Rn for matrix X, corresponding to its maximum

singular value l1 ¼ k1=21 . The other singular vector, u2Rm, can be found from the
defining equation XTv = lu: u = XTv/l.

Applying this to our example, we have the maximum singular value of X equal
to (1.584)½ = 1.2586. One singular vector is

v ¼
0:4120
0:6311
0:6572;

And the other singular vector is

u ¼ XTv=l ¼
0:5578
0:7973
0:1852
0:1372

This allows us to compute the best approximating 1-rank matrix ~X as well as the
residual matrix X� ~X, all presented in Table A.3.

According to the Pythagorean decomposition (A.12), the approximating matrix
~X contributes 1.5841 to the data scatter Tr(XXT) = Tr(A) = 1.62, that is, 97.78% of
the latter. That means that the residual matrix accounts for 2.22% of the data scatter

Table A.3 Original matrix X, approximating matrix of rank one ~X; and the residual matrix X � ~X

Matrix X One-rank matrix ~X Residual matrix X � ~X
0.3 0.4 0.1 0.1 0.289 0.413 0.096 0.071 0.011 −0.013 0.004 0.029
0.5 0.6 0.2 0.0 0.443 0.633 0.147 0.109 0.057 −0.033 0.053 −0.109
0.4 0.7 0.1 0.2 0.461 0.660 0.153 0.114 −0.061 0.040 −0.053 0.086
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only, although some of the residuals may look rather large (such as the (2,4)-entry,
−0.109 in Table A.3).

One may now compute the second largest eigenvalue and its corresponding
eigenvector for matrix A = XXT by applying the same process to the residual matrix
X � ~X: Then the same process applied to the next residual matrix will compute the
third largest eigenvalue and corresponding eigenvector. This process of one-by-one
extraction may continue till the total contribution of the found SVD parts reaches an
acceptable threshold which may be sometimes, in social sciences for example, as
small as 40–50% of the data scatter.

A3.3 Canonical Correlation

Given two data matrices for the same set of objects, say n�m1 matrix X and n�m2

matrix Y, let us try scoring correlation between them. A rather straightforward
formulation may be this: let us consider X-span and Y-span spaces L(X) and
L(Y) and find such x2L(X) and y2L(Y), that is, x = Xa and y = Yb, that the squared
Euclidean distance ||x − y||2 between them is at its minimum. The intersection
L(X) \ L(Y) of the spaces is not empty, as 02 L(X) \ L(Y). To avoid such a trivial
solution, assume that both x and y belong to a unit sphere in its space, that is, ||x|| = ||
y|| = 1.

Therefore, the problem can be formulated as follows. Find a 2 Rm1 and b 2 Rm2

minimizing ||Xa − Xb||2 with regard to normalization constraints (Xa)T(Xa) = 1 and
(Yb)T(Yb) = 1. Since ||Xa − Xb||2 = (Xa)T(Xa) + (Yb)T(Yb) − 2(Xa)T(Yb) = 2 − 2
(Xa)T(Yb), the problem can be equivalently reformulated as of finding a 2 Rm1 and
b 2 Rm2 maximizing the inner product <x,y> = (Xa)T(Yb) = aTXTYb with regard to
the normalization conditions above. The solution to this problem satisfies equations
following from the first order optimality conditions:

PXy ¼ kx; PYx ¼ ky;

where PX and PY are orthogonal projectors to L(X) and L(Y), respectively, and k the
maximum value of the inner product <x,y>. By substituting the equations into one
another, one obtains final equations for the solution:

PXPYx ¼ k2x; PYPXy ¼ k2y: ðA:14Þ

These show that the sought vectors x = Xa and y = Yb are eigenvectors of the
matrices PXPY, PYPX, respectively, corresponding to their maximum eigenvalue k2.
Spectra of the matrices PXPY and PYPX coincide; the square roots of the eigenvalues
are referred to as canonical correlations, and corresponding eigenvectors x and y,
canonical vectors. The canonical correlations are non-negative and are smaller than
or equal to 1. The number r of positive canonical correlations is equal to the
minimum of ranks of X and Y. The canonical vectors x and y corresponding to the
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same eigenvalue are mutually orthogonal. To find the vectors a and b, let us
consider matrices A = (XTX)−1XTY and B = (YTY)−1YTX. It appears, a and b are
eigenvectors of AB and BA, respectively, corresponding to the same eigenvalue k2:

ABa ¼ k2a; BAb ¼ k2b: ðA:15Þ

Multiplying either of the equations in (A.15) from the left by B or A, respec-
tively, one can see that Ba in fact coincides, up to normalization, with b and, vice
versum, Ab coincides, up to normalization, with a. In practical computations, one
should use that of the matrices AB, BA, PXPY, PYPX, which has the smallest
dimensions.

Given a relatively small integer p < r, matrices ~XðpÞ and ~YðpÞ consisting of the
canonical vectors x1, x2, …,xp and y1, y2,…,yp, respectively, corresponding to the
first p maximal eigenvalues k21 [ k22 [ � � � [ k2pof matrices AB, BA, PXPY, PYPX,
solve the following problem. Find in the spaces L(X) and L(Y) such sets of p mu-
tually orthogonal normed vectors represented, respectively, by matrices Up and Vp
that the distance between them Up� Vpj jj j2 is as small as possible, or the summary
canonical correlations <xk, yk> = kk (k = 1,2,…,p) are as large as possible. This is
why the canonical correlations are frequently used for scoring the level of similarity
between the spaces L(X) and L(Y) or between the data matrices X and Y themselves.

A4 Basic MatLab

A4.1 Introduction

The working place within a processor’s memory is up to the user. A recommended
option:

– a folder with user-made MatLab codes, termed say Code, and two or more
subfolders, Data and Result, in which data and results, respectively, are to be
stored.

MatLab’s icon then is clicked on, after which MatLab opens as a three-part
window, of which that on the right is working area referred to as Command
Window, and the two parts on the left are auxiliary. MatLab can be brought in to the
working folder/directory with traditional MSDOS or UNIX based commands such
as: cd <Path_To_Working_Directory> in its Command Window. MatLab remem-
bers then this path; and it is available to the user in a tiny window on top of the
Command Window.

MatLab is organized as a set of packages, each in its own directory, consisting of
program files with extension .m each. Character ‘%’ symbolizes a comment, usually
made for humans till the end of the line.
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Help can be invoked Windows-wise or within the working area. In the latter,
“help” command allows seeing names of the packages as well as of individual
program files; the latter are operations that can be executed within MatLab.
Example: Command “help” shows a bunch of packages, “matlab\datafun” among
them; command “help datafun” displays a number of operations such as “max—
largest component”; command “help max” explains the operation in detail.

A4.2 Loading and Storing Files

A numeric data file should be organized as an entity-to-feature data table: rows
correspond to entities, columns to features (see studn.dat and studn.var). Such a
data structure, with all entries numerical, is referred to as a 2D array, corresponding
to a matrix in mathematics; 1D arrays correspond to solitary entities or columns
(features) or rows (entity records). Array is a most important MatLab data format
to hold numeric values. It works on the principle of a chess-board: its (i,k)-th entry
arr(i,k) is the element in i-th row and k-th column. An Excel file has a similar
structure but it is interlaced with strings. A 2D array's defining feature is that every
row has the same number of digits.

To load such a file, one may use a command from package “iofun”. A simple one
is “load” to load a numeric array, organized as described, into the current MatLab
processor memory:

>>arr=load('Data\stud.dat');
% symbol “%” is used for comments:
% MatLab interpreter doesn’t read lines beginning with “%”.
% “arr” is a place in computer’s memory to put the data (variable);
% semicolon “;” should stand at the end of an instruction;
% if it does not, then the result will be printed to the screen,
% which can be very useful for the user for checking the process of computation
% studn.dat is a 100x8 file of 100 part-time students with 8 features:
% 3 binary for Occupation categories; then Age, NumberChildren,
% and scores over three disciplines.
% All feature names are in file studn.var stored in Data folder.

An 1D array can be put into the workspace with a command like
	a=[3 4 7 0]
which is a 4�1 array, which can be transposed into a 1�4 array with a

“transpose” command
	b=a′
Since no semicolon is put in the end, b will be displayed on screen as
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3
4
7
0

To get its 2D entry, a command
	c=b(2)

can be utilized. Similarly, command
	d=arr(7,8)

puts the value in arr’s 7th row and 8th column into workspace as variable d.
If a numeric array in working memory is to be stored, one may use MatLab

command “save” which admits a number of storage formats including internal .mat
format (see more with “help save”). To store array X into file Result\good.res in
ASCII format (which is a text format covering characters in a standard keypad set),
one may use command

	save Result\good.res X −ascii
If you need to check, before saving, what files and variables are currently in the

workspace, you may use the upper-left part of the MatLab window or command
	whos

that produces the list on the screen.
Names are handled as strings, with ' ' symbol. The entity/feature name sizes may

vary, thus cannot be handled in the array format.
To do this, another data format is used: the cell. Cells involve curly braces rather

than round brackets (parentheses) utilized for arrays. See the difference: arr(i) is 1D
array arr’s i-th element, whereas brr{i} is cell brr’s i-th element, which can be not
only a number or character, as in arrays, but also a string, an array, or even another
cell.

There are other data structures as well in MatLab (video, audio, internet) which
are not covered here.

MatLab supports several data formats, including Excel which is popular among
scientists and practitioners alike (see more in help iofun). An Excel file with
extension .xls can be dealt with in MatLab by using commands xlsread and
xlswrite. Straightforward as they are, the user should not expect a comfortable
switch between Excel and MatLab with these commands. Take a look, for example,
onto Excel data file of several students in the Table A.4.

The xlsread command produces three data structures from an xls file: one for
numeric part, the other for text part, and the third for all data in the file. Specifically,
if the table above is stored in Data subfolder as student.xls file, this works as
follows:

	[nn,tt,rr]=xlsread(‘Data\student.xls’);
% nn is array of numeric values, tt – is cell of text,
% and rr is cell covering all the data in file

to produce a numeric 5�4 array nn:
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nn ¼

35 0 NaN 94
28 2 NaN 67
27 1 NaN 85
28 0 NaN 48
25 0 NaN 87

and a text 8�5 cell tt:

The full dataset is in 8�5 cell rr:

rr ¼

0Feature0 0Age0 0#Children0 0Occup0 0CI Mark0
0Student0 NaN½ � NaN½ � NaN½ � NaN½ �
NaN½ � NaN½ � NaN½ � NaN½ � NaN½ �
0John0 35½ � 0½ � 0IT0 94½ �
0Peggy0 28½ � 2½ � 0BA0 67½ �
0Fred0 27½ � 1½ � 0BA0 85½ �
0Chris0 28½ � 0½ � 0OT0 48½ �
0Liz0 25½ � 0½ � 0IT0 87½ �

The NaN symbol applies in MatLab to undefined numeric values emerging from
division by zero and the like.

As one can see, these are not exactly clean-cut structures to work with. The
numerical array nn contains an incomprehensible column of NaN values, and the
text file tt mixes up names of students and features.

Table A.4 An Excel spreadsheet with data of five students over four features (Age in years,
Number of Children, Occupation [Information Technology IT or Business Administration BA or
Other AN], and Mark over a range of 0−100%)

Student Feature

Age #Children Occup CI_Mark
John 35 0 IT 94
Peggy 28 2 BA 67
Fred 27 1 BA 85
Chris 28 0 OT 48
Liz 25 0 IT 87
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A4.3 Using Subsets of Entity/Feature Sets

If one wants working with only three of the six features, say “Age”, “Children” and
“OOProgramming_Score”, one must put together their indices into a named 1D
array:

	ii=[457]
% no semicolon in the end to display ii on screen as a row;

Then commands to reduce the dataset and the set of feature names over ii
columns can be like these:

	newa=arr(:,ii); %new data array
	newb=b(ii);
% newb is new feature set: to set it, one uses round braces rather than curly ones,
% in spite of the fact that cells are involved here, not arrays

A similar command makes it to a subset of entities. If, for instance, we want to
limit our attention to only those students who received 60 or more at
“OOProgramming”, we first find their indices with command “find”:

	jj=find(arr(:,7)>=60);
% jj is the set of the students defined in find( )
% arr(:,7) is the seventh column of arr

Now we can apply “arr” to “jj”:

	al=arr(jj,:); % partial data of better off students

The size of the data file al can be found with command

	size(al)
% note: no semicolon to see the size on the screen

to produce a screen output:

ans ¼
55 8

meaning that al consists of 55 rows and 8 columns. If one needs to maintain these in
the workspace, use command

	[n,m]=size(al)

that will put 55 into n and 8 into m.
Now we are ready to discern meaningful data from numerical array nn and text

cell tt in workspace for Table A.4 on p. 501. The array nn’s meaningless column is
3. Thus we can remove it like this:

	[rnn,cnn]=size(nn);
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% thus, the number of columns is cnn

	vv=setdiff([1:cnn],3);
% operation setdiff(x,y) removes from x all elements of array y occurring in x
% [1:cnn] is an array of all integers from 1 to cnn inclusive, e.g., [1:4] is [1 2 3
4]
% thus, vv consists of all indices but 3

	nnr=nn(:,vv);
% this puts all nn, except for column 3, into nnr:

nnr ¼

35 0 94
28 2 67
27 1 85
28 0 48
25 0 87

To create a cell containing the corresponding feature set, we need first to have a
cell with all features. These constitute the final fragment of the first row of cell tt,
without the very first string, “Feature”, as can be seen from the tt contents shown
above. Thus command

	fe=tt(1,2:5);
% only first row in tt concerning its four columns, 2 to 5, goes to cell fe

leads to cell fe of size 1�4 containing of four features. To remove feature 3, we
apply the array vv produced above:

	fer=fe(vv);

Cell fer contains strings 'Age', '#Children', 'ML_Mark' indexed by 1, 2 and 3 and
corresponding, in respect, to columns of array nnr.

Many additional operations of MatLab are introduced and utilized in projects,
worked examples and case studies within the text throughout.
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A5 MatLab Program Codes

A5.1. Minkowski’s Center: Evolutionary Algorithm
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A5.2 Fitting Power Law: Non-linear Evolutionary
and Linearization
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A5.3 Training Neural Network with One Hidden Layer
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A5.4 Building Classification Trees
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A6 Two Random Samples

A6.1 Short.dat is a Dataset of Random Samples from Three
Different Distributions in Table A.5

Table A.5 Three columns from three different distributions

8 20 1512
12 21 50
11 23 48
10 21 206
9 9 12
7 20 199

10 22 51
12 18 50
9 20 198

13 21 843
9 5 12

13 13 8
10 10 7
11 14 9
9 18 39
9 13 12
7 21 51

11 20 46
11 21 50
9 18 54
8 20 1391

10 19 49
10 19 41
13 24 35
12 23 45
10 13 11
12 9 9
10 21 49
7 10 10
8 17 52

12 8 8
11 20 48
12 17 199
8 11 9
8 11 13

(continued)
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Table A.5 (continued)

9 20 978
12 17 51
9 20 6233

13 19 23
10 21 47
11 11 8
11 20 973
11 7 43
13 20 201
9 18 200

10 19 49
9 10 7

14 20 36
9 10 8

11 21 203
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A6.2 A Sample of 280 N(0,10) Values

Here is a sample from the Gaussian distribution N(0,10). The sample has been
sorted in the ascending order (Table A.6).

Table A.6 Sample of 280 values from N(0,1) sorted in the ascending order

−30.29 −12.48 −7.01 −2.99 1.76 5.58 10.35
−25.57 −12.29 −6.94 −2.91 1.98 5.59 10.5
−25.34 −12.27 −6.83 −2.83 1.98 5.63 10.94
−23.79 −11.89 −6.79 −2.78 2.07 5.65 10.98
−23.34 −11.61 −6.65 −2.75 2.08 5.65 11.08
−22.38 −11.5 −6.64 −2.66 2.14 5.74 11.13
−22.37 −11.33 −6.11 −2.66 2.14 5.74 11.64
−21.78 −11.1 −6.02 −2.58 2.18 5.81 12.28
−21.05 −10.78 −5.98 −2.52 2.21 5.82 12.33
−20.89 −10.57 −5.87 −2.23 2.27 5.89 12.59
−20.65 −10.52 −5.53 −2.07 2.28 6.13 12.79
−19.1 −10.44 −5.35 −2.06 2.29 6.26 12.93
−18.16 −10.13 −5.33 −1.91 2.36 6.29 13.15
−17.95 −10.09 −5.22 −1.9 2.37 6.51 13.24
−17.79 −10.08 −5.17 −1.74 2.56 6.55 13.42
−17.58 −10.06 −4.91 −1.6 2.71 6.59 13.44
−16.47 −9.79 −4.82 −1.51 2.79 6.59 13.48
−16.43 −9.11 −4.62 −1.44 2.85 6.65 13.56
−16.31 −9.08 −4.58 −1.42 2.91 7 13.99
−16.19 −9.01 −4.53 −1.28 2.94 7.09 14.27
−16.15 −8.95 −4.43 −1.26 2.98 7.16 14.69
−16.14 −8.93 −4.26 −0.8 3.16 7.3 14.95
−15.9 −8.71 −4.18 −0.79 3.21 7.58 15.35
−15.89 −8.53 −4.17 −0.73 3.27 7.99 15.74
−15.67 −8.49 −4.08 −0.5 3.27 8.34 15.82
−15.56 −8.01 −4.01 −0.49 3.46 8.57 15.84
−15.5 −7.98 −3.98 −0.23 3.66 8.58 15.99
−15.04 −7.97 −3.95 −0.21 3.74 8.7 16.03
−15 −7.75 −3.84 −0.08 3.8 8.85 16.84
−14.91 −7.67 −3.78 −0.02 4.29 8.87 16.87
−14.16 −7.48 −3.74 0.03 4.39 8.97 17.29
−14.14 −7.46 −3.65 0.33 4.41 9.02 17.62
−14.04 −7.44 −3.61 0.65 4.42 9.08 18.43
−13.88 −7.37 −3.59 0.7 4.48 9.12 19.57
−13.84 −7.37 −3.47 0.78 4.6 9.39 19.58
−13.72 −7.35 −3.46 0.8 4.78 9.57 20.8
−13.58 −7.27 −3.39 1.1 4.94 9.83 22.38
−13.33 −7.24 −3.14 1.2 5.28 10.02 22.66
−12.98 −7.2 −3.02 1.38 5.41 10.08 29.5
−12.68 −7.03 −3.01 1.58 5.54 10.09 32.03
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ADO algorithm, 473
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Anti-cluster, 469
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Binary feature, 107
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Data scatter decomposed, 80, 126
Dataset, 3
Data standardization, 87
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Decoder, 10
Decomposition of data scatter, 79, 127, 344
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Density function, 95
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Discriminant function, 196
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Divisive clustering, 403
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Entropy, 107
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Feature scale, 83
Feedforward network, 206
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Fisher’s criterion, 199
F-measure, 287
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Fuzzy K-means, 355
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Genetic algorithm, 314
Genuine similarity data, 450
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Goodness-of-split criterion, 411
Gradient process, 490
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Height function, 368
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Incremental K-means, 308
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Interpretation of principal components, 130
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Kendall matrix, 247
Kendall rank correlation, 248
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K-means, 296
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Lagrange multipliers, 201
Lance-Williams coefficients, 443
Lapin transformation, 422
Laplace transformation, 420
Latent semantic indexing, 136
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Learning rate, 209
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Likert scale, 400
Linearization of non-linear regression, 178
Linear regression, 170, 191, 229
Linstrat algorithm, 149
Logistic regression, 280
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Marginal frequencies, 218
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Markov chain, 155
Matrix, 478

522 Index
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Maximum Spanning Tree (MST), 436
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Mismatch distance, 249
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Natural classification, 72
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Nearest neighbor clustering, 432
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Neural network, 206, 212
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Non-linear regression, 178
Non-overlapping clusters, 468
Non-pivotal validation, 174
Normalization by range, 87
Normalized cut, 420
Normal, or Gaussian, distribution, 95
Normed vector, 487
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Occam’s razor, 166
One-by-one clustering, 455, 469
One-cluster model, 462
One-cluster summary criterion, 445
Ordered partition, 245
Ordinal scale, 85
Orthogonal, 482
Overfitting, 165
Overlapping clusters, 473

P
PageRank algorithm, 154
Particle swarm, 315
Partitioning Around Medoids (PAM), 317
Pearson index, 225
Perron-Frobenius theorem, 155
Piece-wise constant regression, 264
Pivotal validation method, 174
Poisson model, 111
Power law, 8, 30
Power method, 494
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Precision, 286
Predictor, 163
Prevalence, 286
Principal component analysis, 123
Principle of maximum likelihood, 359
Prior probability, 278
Pythagorean decomposition, 81

Q
Quantitative feature, 33
Quantitative scale, 84
Quetelet index, 219

R
Random forest classifier, 275
Rank correlation, 243
Ranking, 243
Ratio scale, 84
Rayleigh quotient, 128, 325, 420
Receiver Operating Characteristics

(ROC) graph, 288
Reference point, 326
Refinement, 245
Regression-wise clustering, 357
Regularizer, 378
Reject option, 270
Rescaling of dummy features, 120
Residual similarities, 469

S
ScaD table, 341
Scatter plot, 168
Self-Organizing Map (SOM), 362
Semi-average

agglomeration, 366
move algorithm, 371
similarity criterion, 363

Sensitivity, 286
Separate cluster, 443

Index 523



Separative clustering, 403
Shifting the origin, 152
Sigmoid, 204
Sigmoid activation function, 207
Similarity shift, 446
Single link clustering, 437
Singular triplet, 124, 488
Singular value, 123
Singular Value Decomposition (SVD), 126,

488
Slope, 169
Space’s origin, 115
Spearman rank correlation, 247
Spectral clustering, 420
Spectral decomposition, 485
Splitting criterion, 276, 409
Square-error criterion, 318
Square matrix, 482
Statistical independence, 223
Stochastic matrix, 156
Stratification, 149
Summary clustering, 401
Super-transitivity, 158
Support vector, 199
Support Vector Machine (SVM), 199

T
Tabular regression, 263
Target, 163

Target feature, 163
Taxonomy, 61
Threshold graph, 431
Tied ranking, 243
TP rate, 286
Transition equations, 239
Transpose, 479
Tschuprow coefficient, 242
Typology, 66

U
Ultrametric, 407
Ultra-similarity, 438
Uniform clustering criterion, 377
Uniform distribution, 96

W
Ward

agglomeration, 408
distance, 408
divisive clustering, 410

Weighted data scatter, 239

V
VC-complexity, 167
VC-dimension, 167

Z
Z-scoring, 87
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