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Abstract. Spiking neural P systems or SN P systems are computing
models inspired by spiking neurons. The SN P systems variant we focus
on are SN P systems with structural plasticity or SNPSP systems. Unlike
SN P systems, SNPSP systems have a dynamic topology for creating or
removing synapses among neurons. In this work we construct small uni-
versal SNPSP systems: 62 and 61 neurons for computing functions and
generating numbers, respectively. We then provide some new directions,
e.g. parameters to consider, in the search for such small systems.

1 Introduction

In this work we continue the search for small universal systems concerning vari-
ants of spiking neural P systems (in short, SN P systems) as in [5,10,13,17] to
name a few. Investigations on the power, efficiency, and applications of SN P sys-
tems and variants is a very active area, with a recent survey in [12]. The specific
class of SN P systems we focus here are spiking neural P systems with structural
plasticity (or SNPSP systems) from [3] with further works in [1,2,14] to name
a few. SNPSP systems are inspired by the ability of neurons to add or delete
synapses (the edges) among neurons (the nodes in the graph). Computations in
SNPSP systems proceed with a dynamic topology in contrast with SN P systems
and their many variants with static topologies. This way, even with simplified
types of rules, SNPSP systems can be “useful” by controlling the flow of infor-
mation (in the form of spikes) in the system by using rules to create or remove
synapses. This work is structured as follows: Sect. 2 provides preliminaries for
our results; Sects. 3 and 4 provide our results with SNPSP systems having 62
and 61 neurons for computing functions and generating numbers, respectively. In
Sect. 5 we discuss why such numbers of neurons are “small enough” and provide
ideas, e.g. parameters, for future research on small universal systems.
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2 Preliminaries

We assume that the reader has basic knowledge in formal language and automata
theory, and membrane computing. We only briefly mention notations and def-
initions relevant to what follows. More information can be found in various
monographs, e.g. [11].

A register machine is a construct of the form M = (m,H, l0, lf , I) where m
is the number of registers, H is a finite set of instruction labels, l0 and lf are the
start and final (or halt) labels, respectively, and I is a finite set of instructions
bijectively labelled by H. Instructions have the following forms:

– li : (ADD(r), lj , lk), add 1 to register r, then nondeterministically apply either
instruction labelled by lj or by lk,

– li : (SUB(r), lj , lk), if register r is nonempty then subtract 1 from r and apply
lj , otherwise apply lk,

– lf : FIN , halts the computation of M .

A register machine is deterministic if all ADD instructions are of the form li :
(ADD(r), lj). To generate numbers, M starts with all registers empty, i.e. storing
the number zero. The computation of M starts by applying l0 and proceeds to
apply instructions as indicated by the labels. If lf is applied, the number n stored
in a specified register is said to be computed by M . If computation does not halt,
no number is generated. It is known that register machines are computationally
universal, i.e. able to generate all sets of numbers that are Turing computable.
To compute Turing computable functions, introduce arguments n1, n2, . . . , nk in
specified registers r1, r2, . . . , rk, respectively. The computation of M starts by
applying l0. If lf is applied, the value of the function is placed in a specified
register rt, with all registers different from rt being empty. In this way, the
partial function computed is denoted by M(n1, n2, . . . , nk).

The universality of register machines that compute functions is define as
follows [10,15]: Let ϕ0, ϕ1, . . . be a fixed and admissible enumeration of all unary
partial recursive functions. A register machine Mu is (strongly) universal if there
is a recursive function g such that for all natural numbers x, y we have ϕx(y) =
Mu(g(x), y). The numbers g(x) and y are introduced in registers 1 and 2 as
inputs, respectively, with the result obtained in a specified output register.

As in [10], we use the universal register machine Mu = (8,H, l0, lf , I) from
[6] with the 23 instructions in I and respective labels in H given in Fig. 1. The
machine from [6] which contains a separate instruction that checks for zero in
register 6 is replaced in [10] with l8 : (SUB(6), l9, l0), l9 : (ADD(6), l10). It
is important to note that as in [10], and without loss of generality, a modifi-
cation is made in Mu because SUB instructions on the output register 0 are
not allowed in the construction from [4]. A new register 8 is added and we
obtain register machine M ′

u by replacing lf of Mu with the following instruc-
tions: lf : (SUB(0), l22, l

′
f ), l22 : (ADD(8), lf ), l

′
f : FIN .

A spiking neural P system with structural plasticity or SNPSP system Π of
degree m ≥ 1 is a construct Π = (O, σ1, . . ., σm, syn, in, out), where O = {a} is
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l0 : (SUB(1), l1, l2), l1 : (ADD(7), l0), l2 : (ADD(6), l3),

l3 : (SUB(5), l2, l4), l4 : (SUB(6), l5, l3), l5 : (ADD(5), l6),

l6 : (SUB(7), l7, l8), l7 : (ADD(1), l4), l8 : (SUB(6), l9, l0),

l9 : (ADD(6), l10), l10 : (SUB(4), l0, l11), l11 : (SUB(5), l12, l13),

l12 : (SUB(5), l14, l15), l13 : (SUB(2), l18, l19), l14 : (SUB(5), l16, l17),

l15 : (SUB(3), l18, l20), l16 : (ADD(4), l11), l17 : (ADD(2), l21),

l18 : (SUB(4), l0, lf ), l19 : (SUB(0), l0, l18), l20 : (ADD(0), l0),

l21 : (ADD(3), l18), lf : FIN.

Fig. 1. The universal register machine from [6]

the alphabet containing the spike symbol a, and σ1, . . . , σm are neurons of Π.
A neuron σi = (ni, Ri), 1 ≤ i ≤ m, where ni ∈ N indicates the initial number
of spikes in σi written as string ani over O; Ri is a finite set of rules with the
following forms:

1. Spiking Rule: E/ac → a where E is a regular expression over O and c ≥ 1.
2. Plasticity Rule: E/ac → αk(i,N) where c ≥ 1, α ∈ {+,−,±,∓}, N ⊂

{1, . . . , m}, and k ≥ 1.

The set of initial synapses between neurons is syn ⊂ {1, . . . , m} × {1, . . . , m},
with (i, i) �∈ syn, and in, out are neuron labels that indicate the input and output
neurons, respectively. When L(E) = {ac}, rules can be written with only ac on
their left-hand sides. The semantics of SNPSP systems are as follows. For every
time step, each neuron of Π checks if any of their rules can be applied. Activation
requirements of a rule are specified as E/ac at the left-hand side of every rule. A
rule r ∈ Ri of σi is applied if the following conditions are met: the an spikes in σi

is described by E of r, i.e. an ∈ L(E), and n ≥ c. When r is applied, n− c spikes
remain in σi. If σi can apply more than one rule at a given time, exactly one
rule is nondeterministically chosen to be applied. When a spiking rule is applied
in neuron σi at time t, all neurons σj such that (i, j) ∈ syn receive a spike from
σi at the same step t.

When a plasticity rule E/ac → αk(i,N) is applied in σi, the neuron performs
one of the following actions depending on α and k: For α = +, add at most k
synapses from σi to k neurons whose labels are specified in N . For α = −, delete
at most k synapses that connect σi to neurons whose labels are specified in N .
For α = ± (resp., α = ∓), at time step t perform the actions for α = + (resp.,
α = −), then in step t + 1 perform the actions for α = − (resp., α = +).

Let P (i) = {j | (i, j) ∈ syn}, be the set of neuron labels such that (i, j) ∈ syn.
If a plasticity rule is applied and is specified to add k synapses, there are cases
when σi can only add less than k synapses: when most of the neurons in N
already have synapses from σi, i.e. |N −P (i)| < k. A synapse is added from σi to
each of the remaining neurons specified in N that are not in P (i). If |N−P (i)| = 0
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then there are no more synapses to add. If |N −P (i)| = k then there are exactly
k synapses to add. When |N − P (i)| > k then nondeterministically select k
neurons from N − P (i) and add a synapse from σi to the selected neurons.

We note the following important semantic of plasticity rules: when synapse
(i, j) is added at step t then σj receives one spike from σi also at step t.

Similar cases can occur when deleting synapses. If |P (i)| < k, then only less
than k synapses are deleted from σi to neurons specified in N that are also
in P (i). If |P (i)| = 0, then there are no synapses to delete. If |P (i) ∩ N | = k
then exactly k synapses are deleted from σi to neurons specified in N . When
|P (i) ∩ N | > k, nondeterministically select k synapses from σi to neurons in N
and delete the selected synapses. A plasticity rule with α ∈ {±,∓} activated
at step t is applied until step t + 1: during these steps, no other rules can be
applied but the neuron can still receive spikes.

Π is synchronous, i.e. at each step if a neuron can apply a rule then it must do
so. Neurons are locally sequential, i.e. they apply at most one rule each step, but
Π is globally parallel, i.e. all neurons can apply rules at each step. A configuration
of Π indicates the distribution of spikes among the neurons, as well as the
synapse dictionary syn. The initial configuration is described by n1, n2, . . . , nm

for each of the m neurons, and the initial syn. A transition is a change from one
configuration to another following the semantics of rule application. A sequence
of transitions from the initial configuration to a halting configuration, i.e. where
no more rules can be applied, is referred to as a computation.

At each computation, if σout fires at steps t1 and t2 for the first and second
time, respectively, then a number n = t2 − t1 is said to be computed by the
system. When the system receives or sends a spike to the environment, denote
with “1” or “0” each step when the system sends or does not send (resp., receives
or does not receive) a spike, respectively. This way, the spike train 10n−11 denotes
the system receiving or sending 2 spikes with interval n between the spikes.

3 A Small SNPSP System for Computing Functions

In this section we provide a small and universal SNPSP system that can compute
functions. The system will follow the same design as in [10] for simulating M ′

u:
the system takes in the input spike train 10g(x)−110y−11, where the numbers g(x)
and y are the inputs of M ′

u. After taking in the input spike train, simulation of M ′
u

begins by simulating instruction l0 until instruction lf is encountered which ends
the computation of M ′

u. Finally, the system output is a spike train 10ϕx(y)−11
corresponding to the output of ϕx(y) of M ′

u. Each neuron is associated with
either a register or a label of an instruction of M ′

u. If register r contains number
n, the corresponding σr has 2n spikes. Simulation of M ′

u starts when two spikes
are introduced to σl0 , after σ1 and σ2 are loaded with 2g(x) and 2y spikes,
respectively. If M ′

u halts with r8 containing ϕx(y) then σ8 has 2ϕx(y) spikes.
Figures 2 and 3 are the modules associated with the ADD and SUB instructions,
respectively. These modules have σl

′
i

and σl
′′
i

referred to as auxiliary neurons,
and such neurons do not correspond to registers or instructions. Instead of using
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rules of the form as → λ, i.e. forgetting rules of standard SN P systems in [4],
our systems only use plasticity rules of the form a → −1(li, ∅). In this way,
deleting a non-existing synapse simply consumes spikes and nothing else, hence
simulating a forgetting rule.

a2 → a

a → −1(li, ∅)
li

a → a

l′i

a → a

l′′i

a2 → a

a → −1(lj , ∅)

lj

r

Fig. 2. ADD module

a2 → a

a → −1(li, ∅)li

a → ∓1(l′′i , {lk})
l′′i

a → al′i

(a2)+a/a3 → ±|Sj |(r, Sj)
a → ∓|Sk|(r, Sk)

rlj lk

Fig. 3. SUB module

Module ADD in Fig. 2 simulates the instruction li : (ADD(r), lj). The first
instruction of M is an ADD instruction and is labeled l0. Let us assume that
the simulation of the module starts at time t. Initially, li contains 2 spikes and
all other neurons are empty. At time t, neuron li uses the rule a2 → a to send
one spike each to l

′
i and l

′′
i . At time t + 1, neurons l

′
i and l

′′
i each fire a spike,

and both r and lj each receive 2 spikes. At the next step, neuron lj activates in
order to simulate the next instruction.

Module SUB in Fig. 3 simulates the instruction li : (SUB(r), lj , lk). Initially,
li contains 2 spikes and all other neurons are empty. When the simulation starts
at time t, neuron li uses the rule a2 → a to send one spike each to l

′
i, l

′′
i , and r.

At time t+1, neuron l
′
i fires a spike to lj . At the same time, neuron l

′′
i deletes its

synapse to lk and waits until time t + 2 to add the same synapse, thus sending
one spike to lk.

In the case σr was not empty before it received a spike from li, neuron r now
contains at least three spikes which corresponds to register σr containing the
value of at least 1. Neuron r in this case uses the rule (a2)+a/a3 → ±|Sj |(r, Sj),
where Sj = {j | j is the second element of the triple in a SUB instruction on
register r}. If this rule was used, neuron lj receives a total of 2 spikes at time
t + 1. At t + 2, neuron lj is activated and continues the simulation of the next
instruction. At the same time, neuron l

′′
i sends a spike to σlk which σlk removes

at t + 3 using its rule a → −1(lk, ∅).
In the case where σr was empty before receiving a spike from σli , this cor-

responds to register r containing the value 0. Neuron r uses the rule a →
∓|Sk|(r, Sk), where Sk = {k | k is the third element of the triple in a SUB
instruction on register r}. At t + 1, neuron r deletes its synapse to σlk . At t + 2,
neuron lk receives 2 spikes in total – one from σr and from σl

′′
i

– and is activated
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in the next step in order to simulate the next instruction. Also at t + 2, neuron
lj removes the spike it received from σl

′
i

using its rule a → −1(lj , ∅).

a → ain

a4

a5/a → a
a6/a3 → −2(c1, {1, c2})
a3 → +2(c1, {2, c2})
a2 → +1(c1, {l0})

a → a

c1

a4

a5/a → a
a6/a3 → −2(c2, {1, c1})
a3 → +2(c2, {2, c1})
a2 → +1(c2, {l0})

a → a

c2

1

2 l0

Fig. 4. INPUT module

Module INPUT as seen in Fig. 4 loads 2g(x) and 2y spikes to σ1 and σ2,
respectively. The module begins its computation after σin receives the first spike
from the input spike train 10g(x)−110y−11. We assume that the simulation of
the INPUT module starts at time t when σin sends spikes to σc1 and σc2 . At
this point, both σc1 and σc2 have 5 spikes and each use the rule a5/a → a. At
t + 1, σ1 receives 2 spikes, so σc1 and σc2 receive a spike from each other. Since
σc1 and σc2 each have 5 spikes again, they use the same rules again. Neurons
c1 and c2 continue to send spikes to σ1 and to each other in a loop. This loop
continues until both neurons receive a spike again from σin, at this point they
have 6 spikes each. Note that this spike from σin is from the second spike in the
input spike train.

In the next step, σc1 and σc2 use rules a6/a3 → −2(c1, {1, c2}) and a6/a3 →
−2(c2, {1, c1}), respectively, to delete their synapses to each other and to σ1.
Neurons c1 and c2 each have 3 spikes now, so they create synapses and send one
spike to each other and σ2. Both neurons have one spike each so they use rule
a → a to send a spike to σ2 and each other in a loop similar to the previous
one. Once both neurons receive a spike from σin for the third and last time,
the loop is broken. Neurons c1 and c2 each have 2 spikes now so they use rules
a2 → +1(c1, {l0}) and a2 → +1(c2, {l0}) to create a synapse and send a spike to
σl0 . At the next step, σl0 activates and the simulation of M ′

u begins.
Module OUTPUT in Fig. 5 is activated when instruction lf is executed by

M ′
u. Recall that M ′

u stores its result in output register 8. We assume that at
some time t, instruction lf is executed so M ′

u halts. Also at t, and for simplicity,
σ8 contains 2n spikes corresponding to the value n stored in register 8 of M ′

u.
Actually, and as mentioned at the beginning of this section, register 8 stores the
number ϕx(y) and hence σ8 stores 2ϕx(y) spikes.

Neuron lf sends a spike to σ8 and σout. At t + 1, neuron out applies rule
a → a and sends the first of two spikes to the environment. Neuron 8 now
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a2 → alf a → a

out

a(aa)+/a2 → −1(8, ∅)
a → ±(8, {out})

8

Fig. 5. OUTPUT module.

a2 → a

a → −1(l18, ∅)l17

a → a

l′′17
a → a

l′17

l18

2

3

Fig. 6. ADD-ADD module to sim-
ulate l17 : (ADD(2), l21) and l21 :
(ADD(3), l18).

with 2n + 1 spikes applies rule a(aa)+/a2 → −1(8, ∅) to consume 2 spikes.
Neuron 8 continues to use this rule until only 1 spike remains, then uses the
rule a → ±1(8, out) to send a spike to σout. At the next step, σ8 deletes its
synapse to σout, while σout sends a spike to the environment for the second and
last time. In this way, the system produces an output spike train of the form
102n−11 corresponding to the output of M ′

u. The breakdown of the 86 neurons
in the system are as follows:

– 9 neurons for registers 0 to 8,
– 25 neurons for 25 instruction labels l0 to l22 with lf and l′f ,
– 48 neurons for 24 ADD and SUB instructions,
– 3 neurons in the INPUT module, 1 neuron in the OUTPUT module.

This number can be reduced by some “code optimizations”, exploiting some
particularities of M ′

u similar to what was done in [10]. We observe the case
of two consecutive ADD instructions. In M ′

u, there is one pair of consecutive
ADD instructions, i.e. l17 : (ADD(2), l21) and l21 : (ADD(3), l18). By using the
module in Fig. 6 to simulate the sequence of two consecutive ADD instructions,
we save the neuron associated with l21 and 2 auxiliary neurons.

A module for the sequence of ADD-SUB instructions is in Fig. 7. We save
the neurons associated with l6, l10, and one auxiliary neuron for each pair.
There are two sequences of ADD-SUB instructions, i.e. l5 : (ADD(5), l6),
l6 : (SUB(7), l7, l8), l9 : (ADD(6), l10) and l10 : (SUB(4), l0, l11).

To further reduce the number of neurons, we use similar techniques as in [17]
to decrease neurons by sharing one or two auxiliary neurons among modules.
Consider the case of two ADD modules: As shown in Proposition 3.1 in [17],
l2 : (ADD(6), l3) and l9 : (ADD(6), l10) can share one auxiliary neuron without
producing “wrong” simulations. Now consider the case of two SUB instructions:
We follow the same grouping using Proposition 3.2 in [17] to make sure that
two SUB modules follow only the “correct” simulations of M ′

u. All modules
associated with the instructions in each of the following groups can share 2
auxiliary neurons:
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a2 → a

a → −1(l5, ∅)l5

a → a

l′5
a → al′′5 a → a

l′′′5
7

5 l7 l8

Fig. 7. ADD-SUB module to sim-
ulate l5 : (ADD(5), l6) and l6 :
(SUB(7), l7, l8).

li1 li2

a → ±|Gj |(l′i1 , Gj)

l′i1
a → ∓|Gk|(l′′i1 , Gk)l′′i1

r1

r2

lj1 lk1 lj2 lk2

Fig. 8. SUB-SUB module

1. l0 : (SUB(1), l1, l2), l4 : (SUB(6), l5, l3), l6 : (SUB(7), l7, l8),
l10 : (SUB(4), l0, l11), l11 : (SUB(5), l12, l13), l13 : (SUB(2), l18, l19),
l15 : (SUB(3), l18, l20).

2. l3 : (SUB(5), l2, l4), l8 : (SUB(6), l9, l0), lf : (SUB(0), l22, l′f ).
3. l14 : (SUB(5), l16, l17), l18 : (SUB(4), l0, l22), l19 : (SUB(0), l0, l18).
4. l12 : (SUB(5), l14, l15).

In order to allow the sharing of auxiliary neurons between SUB modules in
the system, the rules of auxiliary neurons must be changed as shown in Fig. 8.
The rule in l′i auxiliary neurons is changed to a → ±|Gj |(r,Gj), where Gj = {j |
j is the second element of the triple in a SUB instruction within the same group}.
Similarly, the rule in l′′i auxiliary neurons is changed to a → ∓|Gk|(r,Gk), where
Gk = {k | k is the third element of the triple in a SUB instruction within the
same group}. As such, in the first group we have Gj as {l0, l1, l5, l7, l12, l18} and
Gk as {l2, l3, l8, l11, l13, l19, l20}.

These groupings allow the saving of 20 neurons, however only 16 neurons are
saved since l6 : (SUB(7), l7, l8) and l10 : (SUB(4), l0, l11) are already used in the
ADD-SUB module in Fig. 7. This gives a total decrease of 17 neurons. Together
with the 3 neurons saved by the module in Fig. 6, as well as the 4 neurons saved
by the module in Fig. 7, an improvement is achieved from 86 to 62 neurons which
we summarize as follows.

Theorem 1. There is a universal SNPSP system for computing functions hav-
ing 62 neurons.

4 A Small SNPSP System for Generating Numbers

In this section, an SNPSP system Π is said to be universal as a generator of a set
of numbers as in [10], according to the following framework: Let ϕ0, ϕ1, . . . be a
fixed and admissible enumeration of partial recursive functions in unary. Encode
the xth partial recursive function ϕx as a number given by g(x) for some recursive
function g. We then introduce from the environment the sequence 10g(x)−11 into
Π. The set of numbers generated by Π is {m ∈ N | ϕx(m) is defined}.
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We consider the same strategy from [10]. First, from the environment we
introduce the spike train 10g(x)−11 and load 2g(x) spikes in σ1. Second, non-
deterministically load a natural number m into σ2 by introducing 2m spikes
in σ2, and send the spike train 10m−11 out to the environment to generate
the number m. Third and lastly, to verify if ϕx is defined for m we start the
register machine Mu in Fig. 1 with the values g(x) and m in registers 1 and
2, respectively. If Mu halts then so does Π, thus ϕx(m) is defined. Note the
main difference between generating numbers and computing functions: we do
not require a separate OUTPUT module but we need to nondeterministically
generate the number m. Since no OUTPUT module is needed we can omit reg-
ister 8, and computation simply halts after l18 : (SUB(4), l0, lf ). The combined
INPUT -OUTPUT module is given in Fig. 9.

a → ain

a4

a5/a → a
a6/a3 → −2(c1, {1, c2})
a3 → +2(c1, {2, c2})

a2 → a
a → −1(c1, {in})

c1

a4

a5/a → a
a6/a3 → −2(c2, {1, c1})

a3 → +5(c2, {2, c1, c3, c4, out})
a2 → a

a → −1(c2, {in})

c2

a3

a5/a3 → −1(c3, {in})
a2/a → a

a2 → ∓2(c3, {c1, c2})
c3

1 2

l0 a2 → a

c5
a → a

c4

a2 → a

c6

a(aa)∗/a → a

out

Fig. 9. INPUT -OUTPUT module

Module INPUT -OUTPUT loads 2g(x) and 2m spikes to σ1 and σ2, respec-
tively. The module is activated when σin receives a spike from the environment.
Neurons c1, c2, and c3 initially contain 4, 4, and 3 spikes respectively. Assume
the module is activated at t and σin sends one spike each to σc1 , σc2 , and σc3 .
At this point, both c1 and c2 have 5 spikes and they use the rule a5/a → a. At
t + 1, neuron 1 receives 2 spikes, and c1 and c2 will receive a spike from each
other. Neurons c1 and c2 continue to spike at σ1 and to each other in a loop
until they receive a spike again from in. When σin fires a spike for the second
and last time at some t + x, neurons c1, c2, and c3 now have 6, 6, and 5 spikes,
respectively. At t + x + 1, neurons c1 and c2 use rules a6/a3 → −2(c1, {1, c2})
and a6/a3 → −2(c2, {1, c1}), respectively. They each delete their synapses to
σ1 and consume 3 spikes so 3 spikes remain. At the same time σc3 uses the
rule a5/a3 → −1(c3, {in}) and consumes 3 spikes. Now σc3 has 2 spikes and
nondeterministically chooses between two rules.

If σc3 applies a2/a → a at t + x + 2, it sends one spike each to σc1 and σc2 .
At the same time, σc1 applies a3 → +2(c1, {2, c2}) to create synapses and send
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spikes to σ2 and σc2 . Neuron c2 applies a3 → +5(c2, {2, c1, c3, c4, out}) to create
synapses and send spikes to σ2, σc1 , σc3 , σc4 , and σout. Since σc1 and σc2 received
one spike from each other and one spike from σc3 , they both apply a2 → a at
t + x + 3. If σc3 continues to apply a2/a → a, neurons c1 and c2 continue to
send one spike to each other, σc4 , and σout, as well as load σ2 with 2 spikes. If
σc3 applies a2 → ∓2(c3, {c1, c2}) instead then it ends the loop between σc1 and
σc2 . Neurons c1 and c2 receive a spike from each other but do not receive a spike
from σc3 . At the next step both neurons do not fire a spike and instead apply
a → −1(c1, {in}) to simply consume their spikes.

Now we verify the operation of the remainder of the module. When σc2 applies
a3 → +5(c2, {2, c1, c3, c4, out}) at t + x + 2, it sends a spike each to σc4 and σout

for the first time. At t + x + 3, neuron c4 sends a spike to σout, followed by the
sending of a spike of σout to the environment for the first time. Note that σc4

and σout also receive one spike each from σc2 at t + x + 3 due to a2 → a. At
the next step, σc4 and σout have 1 and 2 spikes, respectively. If σc3 continues to
apply a2/a → a then σc2 continues to fire spikes to σc4 and σout. Neuron out
does not fire since it accumulates an even number of spikes from σc2 and σc4 .

Once σc3 applies a2 → ∓2(c3, {c1, c2}) to end the loop between σc1 and σc2 ,
neurons c4 and out do not receive a spike from σc2 . Neuron c4 fires a spike to
σout so now σout has an odd number of spikes. At the next step, σout fires a spike
to the environment for the second and last time. Neuron out also sends a total
of two spikes each to σc5 and σc6 . Once σc5 and σc6 collect two spikes each they
fire a spike to σl0 to start the simulation of Mu. The modified module for halting
and simulating l18, since register 8 is not required, is in Fig. 10. The following is
the breakdown of the 81 neurons in the system:

– 8 neurons for 8 registers (the additional register 8 is omitted),
– 22 neurons for 22 labels (lf is omitted), 42 neurons for 21 ADD and SUB

instructions, 1 neuron for the special SUB instruction (Fig. 10),
– 8 neurons in the INPUT -OUTPUT module.

a2 → a

a → −1(l18, ∅)
l18

a → a

l′18

(a2)+a/a3 → ±|Sj |(4, Sj)
a → ∓|Sk|(4, Sk)

4
l0

Fig. 10. Module for simulating l18 : (SUB(4), l0, lf ) without lf .

As in Sect. 3, we can decrease by 7 the number of neurons by using the
optimizations in Figs. 6 and 7. We can also use the method in [17] and the
module shown in Fig. 8 to share auxiliary neurons. A neuron is saved in two
ADD modules, and we follow a similar grouping for the 12 SUB instructions
where we save 12 neurons. A total of 20 neurons are saved. Using the results
above, an improvement is made from 81 to 61 neurons. The breakdown is as
follows, and the result summarized afterwards.
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– 8 neurons for 8 registers, 19 neurons for 19 labels (l6, l10, and l21 are saved),
– 25 neurons for ADD and SUB instructions, 1 neuron for the special SUB

instruction, and 8 neurons in the INPUT -OUTPUT module.

Theorem 2. There is a universal number generating SNPSP system having 61
neurons.

5 Discussions and Final Remarks

We report our preliminary work on small universal SNPSP systems with 62 and
61 neurons for computing functions and generating numbers, respectively. Of
course these numbers can still be reduced but here we note some observations on
results for small SN P systems and their variants. While the numbers obtained
in this work are still “large”, we argue that the technique used in this work
and as in [10,17] and more recently in [5,13], which here we denote as the Korec
simulation technique, seems closer to biological reality: each neuron is associated
either with an instruction or a register only. In this technique, neurons also have
“fewer” rules making them more similar to the systems in [16] as compared to
smaller systems in [7–9] with “super neurons”, i.e. neurons having a fixed but
“large” number of rules. The Korec simulation can also bee seen as a normal
form, i.e. observing a simplifying set of restrictions. While it is interesting to
pursue the search for systems with the smallest number of neurons, we think
it is also interesting to search for systems with a small number of neurons and
rules in the neurons. Korec simulation can also be extended to other register
machines given in [6].

The smallest systems due to Korec simulation must have m + n neurons as
mentioned in [8]. In this work as in others using Korec simulation, simulating Mu

or M ′
u means having 34 and 30 neurons, respectively. Hence, results in this work

and in [5,10,13,17] are approximately double these numbers but it is still open
how to further reduce them without violating the Korec simulation. Perhaps
including a parameter k where each neuron has no more than k rules could be
considered in future works. In our results, all neurons in our modules have k = 2
except for the ci neurons in the INPUT module. Such neurons can be replaced
with neurons having at most 2 rules, but it remains open how to do this in our
systems and in others without increasing the number of neurons “significantly”.

Lastly, this work is only concerned with SNPSP systems having neurons that
produce at most one spike each step. It remains to be seen how small the system
can become if neurons produce more than one spike each step, e.g. using synapse
weights as in [1] and extended spiking rules as in [7,8,13].
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Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC
2009. LNCS, vol. 5957, pp. 436–447. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-11467-0 29

9. Pan, T., Shi, X., Zhang, Z., Xu, F.: A small universal spiking neural P system with
communication on request. Neurocomputing 275, 1622–1628 (2018)
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