
Software Reuse and Product Line
Engineering

Eduardo Santana de Almeida

Abstract Systematic Software Reuse is one of the most effective software engi-
neering approaches for obtaining benefits related to productivity, quality, and cost
reduction. In this chapter, we discuss its origins and motivations, obstacles, its
success and failure aspects, and future directions. In addition, we present the main
ideas and important directions related to Software Product Lines, a key reuse
approach.

1 Introduction

Hardware engineers have succeeded in developing increasingly complex and pow-
erful systems. On the other hand, it is well-known that hardware engineering cannot
be compared to software engineering because of software characteristics such as
no mass, no color, and so on (Cox 1990). However, software engineers are faced
with a growing demand for complex and powerful software systems, where new
products have to be developed more rapidly and product cycles seem to decrease, at
times, to almost nothing. Some advances in software engineering have contributed to
increased productivity, such as Object-Oriented Programming (OOP), Component-
Based Development (CBD), Domain Engineering (DE), Software Product Lines
(SPL), and Software Ecosystems, among others. These advances are known ways to
achieve software reuse.

In the software reuse and software engineering literature, there are different
published rates about reuse (Poulin 2006), however, some studies have shown that
40–60% of code is reusable from one application to another, 60% of design and
code are reusable in business applications, 75% of program functions are common
to more than one program, and only 15% of the code found in most systems is
unique and new to a specific application (Ezran et al. 2002). According to Mili

E. S. de Almeida
Federal University of Bahia, Salvador, Bahia, Brazil
e-mail: esa@dcc.ufba.br; esa@rise.com.br

© Springer Nature Switzerland AG 2019
S. Cha et al. (eds.), Handbook of Software Engineering,
https://doi.org/10.1007/978-3-030-00262-6_8

321

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00262-6_8&domain=pdf
mailto:esa@dcc.ufba.br
mailto:esa@rise.com.br
https://doi.org/10.1007/978-3-030-00262-6_8

322 E. S. de Almeida

et al. (1995), rates of actual and potential reuse range from 15% to 85%. With the
maximization of the reuse of tested, certified, and organized assets, organizations
can obtain improvements in cost, time, and quality as will be explained in the next
sections.

This remainder of this chapter is organized as follows. In Sect. 2, we present
the main concepts and principles related to software reuse. Section 3 presents an
organized tour with the seminal papers in the field. Section 4 introduces Software
Product Lines (SPL) an effective approach for software reuse, and, finally, Sect. 5
presents the conclusions.

2 Concepts and Principles

Many different viewpoints exist about the definitions involving software reuse.
For Frakes and Isoda (1994), software reuse is defined as the use of engineering
knowledge or artifacts from existing systems to build new ones. Tracz (1995)
considers reuse as the use of software that was designed for reuse. Basili et al.
(1996) define software reuse as the use of everything associated with a software
project, including knowledge. According to Ezran et al. (2002), software reuse is
the systematic practice of developing software from a stock of building blocks,
so that similarities in requirements and/or architecture between applications can
be exploited to achieve substantial benefits in productivity, quality, and business
performance.

In this chapter, Krueger’s general view of software reuse will be adopted
(Krueger 1992).

Definition Software reuse is the process of creating software systems from existing
software rather than building them from scratch.

The most common form of reusable asset is, of course, source code in some
programming language, but it is not the only one. We can reuse several assets from
different phases in the software development life cycle, such as (Mili et al. 2002):

• Requirements: Whereas code assets are executable, requirements specifications
are not; they are the products of eliciting user requirements and recording them
in some notation. These specifications can be reused to build either compound
specifications or variations of the original product.

• Designs: Designs are generic representation of design decisions and their essence
is the design/problem-solving knowledge that they capture. In contrast to source
code, designs are not executable. On the other hand, in contrast to requirements,
they capture structural information rather than functional information. They are
represented by patterns or styles that can be instantiated in different ways to
produce concrete designs.

• Tests: Test cases and test data can be reused on similar projects. The first one is
harder and the idea is to design them to be explicitly reused, for example, in a

Software Reuse and Product Line Engineering 323

product family. Test data can be used to test a product with a similar set of inputs
but different output scenarios.

• Documentation: Natural-language documentation that accompanies a reusable
asset can be considered as a reusable asset itself. For example, documentation to
reuse a software component or test case.

Once the different types of reusable assets are presented, it is important to
differentiate between systematic× nonsystematic reuse, which can present different
benefits and problems.

Definition Systematic reuse is the reuse of assets within a structured plan with
well-defined processes and life cycles and commitments for funding, staffing, and
incentives for production and use of reusable assets (Lim 1998). On the other hand,
nonsystematic reuse is, by contrast, ad hoc, dependent on individual knowledge
and initiative, not deployed consistently throughout the organization, and subject
to little if any management planning and control. In general, if the organization
is reasonably mature and well managed, it is not impossible for nonsystematic
reuse to achieve some good results. However, the more problematic outcome is that
nonsystematic reuse is chaotic, based on high risk of individual heroic employees,
and amplifies problems and defects rather than damping them (Ezran et al. 2002).

Besides the kind of reuse that an organization can adopt, an asset can be reused
in different ways, such as: black box, white box, and gray box reuse.

Definition If an asset is reused without the need for any adaptation, it is known
as black box reuse. If necessary to change the internal body of an asset in order
to obtain the required properties, it is known as white box reuse. The intermediate
situation, where adaptation is achieved by setting parameters, is known as gray box
reuse.

A key aspect for organizations willing to adopt systematic reuse is the domain.

Definition A domain is an area of knowledge or activity characterized by a
family of related systems. It is characterized by a set of concepts and terminology
understood by practitioners in that specific area of knowledge. A domain can also be
defined by the common managed features that satisfy a specific market or mission
(Mili et al. 2002).

Definition A domain can be considered vertical or horizontal. The first one refers
to reuse that exploits functional similarities in a single application domain. It is
contrasted with horizontal domain, which exploits similarities across two or more
application domains.We can consider vertical domains areas such as avionics, social
networks, medical systems, and so on. On the other hand, security, logging, and
network communication can be considered horizontal domains (Ezran et al. 2002).
It is important to highlight that this differentiation is subjective. An asset can be
considered as vertical within a domain; however, if this domain is split into finer
domains, the assets may be shared, and thus become horizontal.

In the systematic reuse process, it is possible to identify three stakeholders: the
management, which initiates the reuse initiative and monitors the costs and benefits;

324 E. S. de Almeida

the development for reuse team (aka domain engineering), which is responsible for
producing, classifying, andmaintaining reusable assets; and developmentwith reuse
team (aka application engineering), which is responsible for producing applications
using reusable assets.

In order to create reusable software, the development for/with reuse teams makes
use of two concepts strongly related: feature and binding time.

Definition A feature is a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems (Kang et al. 1990). According to
Kang et al. (1990), features can be classified as mandatory, optional, and alternative.
Common features among different products are modeled as mandatory features,
while different features among them can be optional or alternative.Optional features
represent selectable features for products of a given domain and alternative features
indicate that no more than one feature can be selected for a product.

Figure 1 shows an example of a feature model with mandatory, optional, and
alternative features (Kang et al. 1990). Based on this feature model, we can
derive different combination of products. Transmission and Horsepower
are mandatory features. On the other hand, Air conditioning is an optional
feature, thus, we can have products with this feature or not. Transmission has
two alternative features, which means that we have to choose between manual
or automatic. It is not possible to have both in the same product. Composition
rules supplement the feature model with mutual dependency (requires) and mutual
exclusion (excludes) relationships, which are used to constrain the selection from
optional or alternative features. That is, it is possible to specify which features
should be selected along with a designated one and which features should not.
In the figure, there is mutual dependency between Air conditioning and
Horsepower.

Other classifications can be found in the literature such as that of Czarnecki and
Eisenecker (2000). However, in this chapter, we will use the original one defined by
Kang et al. (1990).

Definition When we derive a product, we make decisions and decide which
features will be included in the product. Thus, we bind a decision. Different

Fig. 1 Features from the Car domain

Software Reuse and Product Line Engineering 325

implementation techniques (parameterization, configuration properties, conditional
compilation, inheritance, and so on) allow binding decisions at different times, that
is, they allow different binding times.

In their book, Apel et al. (2013) distinguish among compile-time binding, load-
time binding, and runtime binding. Using an implementation technique that supports
compile-binding time, software engineers make decisions of which features to
include at or before compile time. Code of deselected features is then not even
compiled into the product. Examples include the use of preprocessors (conditional
compilation directives) and feature-oriented programming.With an implementation
technique that enables load-time binding, software engineers can defer feature
selection until the program is actually started, that is, during compilation all
variations are still available; they are decided after deployment, based on command-
line parameters or configuration files. Finally, some techniques even support runtime
binding, where decisions are deferred to runtime and can even change during
program execution. Examples of techniques that support load-time and runtime
variability include reflection and context-oriented programming. There is not a best
binding time and each one has advantages and disadvantages.

Once reusable assets are created, they should be made available somewhere.

Definition A repository is the place where reusable software assets are stored,
along with the catalog of assets (Ezran et al. 2002). All the stakeholders should
be able to access and use it easily.

A repository to store reusable assets offers the following advantages:

• The definition and common recognition of a place for assets, therefore, a known
and unique place to look for and deposit assets

• A homogeneous way of documenting, searching, and accounting for assets
• A defined way of managing changes and enhancements to assets, including

configuration management procedures

Mili et al. (1998) and Burégio et al. (2008) present important considerations on
repository systems.

2.1 Software Reuse Benefits

Software reuse presents positive impact on software quality, as well as on cost
and productivity (Lim 1994; Basili et al. 1996; Sametinger 1997; Frakes and Succi
2001).

Quality Improvements Software reuse results in improvements in quality, produc-
tivity, and reliability.

• Quality. Error fixes accumulate from reuse to reuse. This yields higher quality
for a reused component than would be the case for a component that is developed
and used only once.

326 E. S. de Almeida

• Productivity. A productivity gain is achieved due to less code that has to be
developed. This results in less testing efforts and also saves analysis and design
labor, yielding overall savings in cost.

• Reliability. Using well-tested components increases the reliability of a software
system.Moreover, the use of a component in several systems increases the chance
of errors being detected and strengthens confidence in that component.

Effort Reduction Software reuse provides a reduction in redundant work and
development time, which yields a shorter time to market.

• Redundant work and development time. Developing every system from
scratch means redundant development of many parts such as requirement
specifications, use cases, architecture, and so on. This can be avoided when
these parts are available as reusable assets and can be shared, resulting in less
development and less associated time and costs.

• Time to market. The success or failure of a software product is often determined
by its time to market. Using reusable assets can result in a reduction of that time.

• Documentation. Although documentation is very important for the maintenance
of a system, it is often neglected. Reusing software components reduces the
amount of documentation to be written but compounds the importance of what
is written. Thus, only the overall structure of the system, and newly developed
assets have to be documented.

• Maintenance costs. Fewer defects can be expected when proven quality compo-
nents have been used and less maintainability of the system.

• Team size. Some large development teams suffer from a communication over-
load. Doubling the size of a development team does not result in doubled
productivity. If many components can be reused, then software systems can be
developed with smaller teams, leading to better communications and increased
productivity.

Ezran et al. (2002) presented some important estimates1 of actual improvements
due to reuse in organizations using programming languages ranging from Ada to
Cobol and C++:

• DEC

– Cycle time: 67–80% lower (reuse levels 50–80%)

• First National Bank of Chicago

– Cycle time: 67–80% lower (reuse levels 50–80%)

• Fujitsu

– Proportion of projects on schedule: increased from 20% to 70%
– Effort to customize package: reduced from 30 person-months to 4 person-days

1However, how these data were measured and which languages were used in each company are not
discussed.

Software Reuse and Product Line Engineering 327

• GTE

– Cost: $14M2 lower (reuse level 14%)

• Hewlett-Packard

– Defects: 24% and 76% lower (two projects)
– Productivity: 40% and 57% higher (same two projects)
– Time-to-market: 42% lower (one of the above two projects)

• NEC

– Productivity: 6.7 times higher
– Quality: 2.8 times better

• Raytheon

– Productivity: 50% higher (reuse level 60%)

• Toshiba

– Defects: 20–30% lower (reuse level 60%)

2.2 The Obstacles

Despite the benefits of software reuse, there are some factors that directly or
indirectly influence its adoption. These factors can be managerial, organizational,
economical, conceptual, or technical (Sametinger 1997).

Managerial and Organizational Obstacles Reuse is not just a technical problem
that has to be solved by software engineers. Thus, management support and
adequate organizational structures are equally important. The most common reuse
obstacles are:

• Lack of management support. Since software reuse causes upfront costs,
it cannot be widely achieved in an organization without support of top-level
management. Managers have to be informed about initial costs and have to be
convinced about expected savings.

• Project management. Managing traditional projects is not an easy task, mainly,
projects related to software reuse. Making the step to large-scale software reuse
has an impact on the whole software life cycle.

• Inadequate organizational structures. Organizational structures must consider
different needs that arise when explicit, large-scale reuse is being adopted.
For example, a separate team can be defined to develop, maintain, and certify
software components.

2All the values presented are in US dollars.

328 E. S. de Almeida

• Management incentives. A lack of incentives prohibits managers from letting
their developers spend time in making components of a system reusable. Their
success is often measured only in the time needed to complete a project.
Doing any work beyond that, although beneficial for the company as a whole,
diminishes their success.

Economic Obstacles Reuse can save money in the long run, but that is not for
free. Costs associated with reuse can be (Poulin 1997; Sametinger 1997): costs
of making something reusable, costs of reusing it, and costs of defining and
implementing a reuse process. Moreover, reuse requires upfront investments in
infrastructure, methodology, training, tools (among others things), and archives,
with payoffs being realized only years later. Developing assets for reuse is more
expensive than developing them for single use only (Poulin 1997). Higher levels
of quality, reliability, portability, maintainability, generality, and more extensive
documentation are necessary, thus such increased costs are not justified when a
component is used only once.

Conceptual and Technical Obstacles The technical obstacles for software reuse
include issues related to search and retrieval of components, legacy components,
and aspects involving adaptation (Sametinger 1997):

• Difficulty of finding reusable software. In order to reuse software components
there should exist efficient ways to search and retrieve them. Moreover, it is
important to have a well-organized repository containing components with some
means of accessing it (Mili et al. 1998; Lucrédio et al. 2004).

• Non-reusability of found software. Easy access to existing software does
not necessarily increase software reuse. Reusable assets should be carefully
specified, designed, implemented, and documented; thus, sometimes, modifying
and adapting software can be more expensive than programming the needed
functionality from scratch.

• Legacy components not suitable for reuse. One known approach for software
reuse is to use legacy software. However, simply recovering existing assets from
legacy system and trying to reuse them for new developments is not sufficient for
systematic reuse. Reengineering can help in extracting reusable components from
legacy systems, but the efforts needed for understanding and extraction should be
considered.

• Modification. It is very difficult to find a component that works exactly in the
same way that the developer wants. In this way, modifications are necessary
and there should exist ways to determine their effects on the component and
its previous verification results.

Software Reuse and Product Line Engineering 329

2.3 The Basic Features

The software reuse area has three key features (Ezran et al. 2002):

1. Reuse is a systematic software development practice. Systematic software
reuse means:

(a) Understanding how reuse can contribute toward the goals of the whole
business

(b) Defining a technical and managerial strategy to achievemaximum value from
reuse

(c) Integrating reuse into the whole software process, and into the software
process improvement program

(d) Ensuring all software staff have the necessary competence and motivation
(e) Establishing appropriate organizational, technical, and budgetary support
(f) Using appropriate measurements to control reuse performance

2. Reuse exploits similarities in requirements and/or architecture between
applications. Opportunities for reuse from one application to another originate
in their having similar requirements, or similar architectures, or both. The search
for similarities should begin as close as possible to those points of origin—
that is, when requirements are identified and architectural decisions are made.
The possibilities for exploiting similarities should be maximized by having a
development process that is designed and managed to give full visibility to the
flow, from requirements and architecture to all subsequent work products.

3. Reuse offers substantial benefits in productivity, quality, and business
performance. Systematic software reuse is a technique that is employed to
address the need for improvement of software development quality and efficiency
(Krueger 1992). Quality and productivity could be improved by reusing all
forms of proven experience, including products and processes, as well as quality
and productivity models. Productivity could be increased by using existing
experience, rather than creating everything from the beginning (Basili et al.
1996). Business performance improvements include lower costs, shorter time
to market, and higher customer satisfaction, which have already been noted
under the headings of productivity and quality improvements. These benefits
can initiate a virtuous circle of higher profitability, growth, competitiveness,
increased market share, and entry to new markets.

3 Organized Tour: Genealogy and Seminal Papers

In the previous section, we discussed important concepts and principles related to
software reuse. This section presents a deep diving in the area describing the main
work in the field. It is not too simple to define a final list and some important work
can be left behind. However, we believe that the work presented represents solid

330 E. S. de Almeida

contributions in the field. The reader can check also important surveys in the area
such as Krueger (1992), Mili et al. (1995), Kim and Stohr (1998), and Almeida et al.
(2007).

The seminal papers were divided in seven areas, which we believe cover the area
properly.

3.1 The Roots

In 1968, during the NATO Software Engineering Conference, generally considered
the birthplace of the field, the focus was the software crisis—the problem of
building large, reliable software systems in a controlled, cost-effective way. From
the beginning, software reuse was considered as a way for overcoming the software
crisis. An invited paper at the conference: “Mass Produced Software Components”
by McIlroy (1968), ended up being the seminal paper on software reuse. In
McIlroy’s words: “the software industry is weakly founded and one aspect of this
weakness is the absence of a software component sub-industry” (p. 80), a starting
point to investigatemass-production techniques in software. In the “mass production
techniques,” his emphasis is on “techniques” and not in “mass production.”

McIlroy argued for standard catalogs of routines, classified by precision, robust-
ness, time–space performance, size limits, and binding time of parameters; to apply
routines in the catalogs to any one of a larger class of often quite different machines;
and, to have confidence in the quality of the routines.

McIlroy had a great vision to propose those ideas almost 50 years ago. His
ideas were the foundations to start the work on repository systems and software
reuse processes such as component-based development, domain engineering, and
software product lines. ComponentSource,3 a large industrial component market, is
the closest solution to McIlroy’s ideas for a component industry.

Based on a set of important questions such as: what are the different approaches
to reusing software? How effective are the different approaches?What is required to
implement a software reuse technology?, Krueger (1992) presented one of the first
surveys in the software reuse area.

He classified the approaches in eight categories: high-level languages, design
and code scavenging, source code components, software schemas, application
generators, very high-level languages, transformational systems, and software
architectures. Next, he used a taxonomy to describe and compare the different
approaches and make generalizations about the field of software reuse. The taxon-
omy characterizes each reuse approach in terms of its reusable artifacts and the way
these artifacts are abstracted (What type of software artifacts are reused and what
abstractions are used to describe the artifacts?), selected (How are reusable artifacts

3ComponentSource—https://www.componentsource.com/help-support/publisher/faqs-open-
market

https://www.componentsource.com/help-support/publisher/faqs-open-market
https://www.componentsource.com/help-support/publisher/faqs-open-market

Software Reuse and Product Line Engineering 331

selected for reuse?), specialized (How are generalized artifacts specialized for
reuse?), and integrated (How are reusable artifacts integrated to create a complete
software system?).

Many of the ideas discussed in the survey are still relevant and valid for today.
We had other advances in the field as new paradigms such as aspect-oriented
programming, service-oriented computing, and so on, but the conceptual framework
could be reused and updated for the current days. We think that some improvements
could be made with the use of evidence (Kitchenham et al. 2004) to state that some
approach is more robust than another, but in no way does it diminish the relevance
of the work.

Tracz’s (1995) book presents an overview on software reuse covering the
motivations, inhibitors, benefits, myths, and future directions in the field. The book
is based on a collection of short essays and updated from various columns and
papers published over the years. Another important aspect of the book is the easy
language and humor introduced in each chapter.

3.2 Libraries and Repository Systems

As we defined in Sect. 2, a repository is the place where reusable software assets are
stored, along with the catalog of assets. Substantial work in the software reuse area
was conducted to define mechanisms to store, search, and retrieve software assets.

Based on the premises that a fundamental problem in software reuse was the
lack of tools to locate potential code for reuse, Frakes and Nejmeh (1986) presented
an approach using the CATALOG information retrieval system to create, maintain,
search, and retrieve code in the C language. The solution was used within AT&T.

CATALOG featured a database generator that assisted users in setting up
databases, an interactive tool for creating, modifying, adding, and deleting records,
and a search interface with a menu driven for novice users, and a command-driven
mode for expert users. Techniques such as inverted files used in current search
engines as well as automatic stemming and phonetic matching were used in the
solution. CATALOG databases were built using B-Trees in order to optimize search
and retrieval features.

Frakes and Nejmeh also identified that the extent to which information retrieval
technology could promote software reuse was directly related to the quality and
accuracy of the information in its software database. That is, poor descriptions
of code and functionality could decrease the probability that the code could be
located for potential reuse during the search process. Thus, they defined a software
template design to promote reuse. The goal was to keep this documentation for each
module and function stored in the tool to increase the ease with which it could be
reused. It was an important contribution for future work in the area of component
documentation.

After the initial work from Frakes and Nejmeh (1986), Prieto-Diaz and Freeman
(1987) presented a work which formed the foundations for the component search

332 E. S. de Almeida

research. They proposed a facet-based scheme to classify software components. The
facet scheme was based on the assumptions that collections of reusable components
are very large and growing continuously, and that there are large groups of similar
components.

In this approach, a limited number of characteristics (facets) that a component
may have are defined. According to them, facets are sometimes considered as
perspectives, viewpoints, or dimensions of a particular domain. Then, a set of
possible keywords are associated to each facet. In order to describe a component,
one or more keywords are chosen for each facet. Thus, it is possible to describe
components according to their different characteristics. Unlike the traditional
hierarchical classifications, where a single node from a tree-based scheme is chosen,
facet-based classification allowsmultiple keywords to be associated to a single facet,
reducing the chances of ambiguity and duplication.

Nowadays, facets are used in electronic commerce websites such as e-Bay.
In 2000, while the researchers were defining new methods and techniques to

search and retrieve software components based on “conventional directions,” Ye and
Fischer (2000) came up with a great idea inverting the search scenario. According to
them, software component-based reuse is difficult for developers to adopt because
they must know what components exist in a reuse repository and then they must
know how to retrieve them.

Their solution, called active reuse repository systems, used active information
delivery mechanisms to deliver potentially reusable components that are relevant to
the current development task. The idea was that they could help software developers
reuse components they did not even know existed. It could also reduce the cost of
component search because software developers need neither to specify reuse queries
explicitly, nor to switch working contexts back and forth between development
environments and repository systems. The idea of active reuse can be found in some
software development tools such as Eclipse (based on additional plugins).

The reader can find additional discussion on libraries and repository systems
in Mili et al. (1998), Lucrédio et al. (2004), Burégio et al. (2008), and Sim and
Gallardo-Valencia (2013).

3.3 Generative Reuse

Generative reuse is based on the reuse of a generation process rather than the
reuse of components (compositional approach). Examples of this kind of reuse
are generators for lexical analyzers, parsers, and compilers, application generators,
language-based generators, and transformation systems (Sametinger 1997).

Application generators reuse complete software systems design and are appro-
priate in application domains where many similar systems are written, one system
is modified or rewritten many times during its lifetime, or many prototypes of a
system are necessary to converge on a usable product. Language-based generators

Software Reuse and Product Line Engineering 333

provide a specification language that represents the problem domain and simulta-
neously hides implementation details from the developer. Specification languages
allow developers to create systems using constructs that are considered high-level
relative to programming languages. Finally, with transformation systems, software
is developed in two phases: in the first one, describing the semantic behavior of
a software system and applying transformations to the high-level specifications
(Krueger 1992).

Neighbors (1984) presented the pioneer work on generative reuse based on his
PhD thesis. The Draco approach organized reusable components based on problem
domains. Source-to-source program transformations, module interconnection lan-
guages, software components, and domain-specific languages worked together in
the construction of similar systems from reusable parts.

In general, Draco performed three activities: (1) It accepted a definition of
a problem domain as a high-level, domain-specific language called a domain
language. Both the syntax and semantics of the domain language had to be
described. (2) Once a domain language had been described, Draco could accept
a description of a software system to be constructed as a statement or program in
the domain language. (3) Finally, once a complete domain language program had
been given, then Draco could refine the statement into an executable program under
human guidance. It means that a developer wrote a program in a domain language
and it was compiled into successively lower-level domains until it eventually ended
up as executable code in a language such as C, C++, or Java.

Neighbors’ work was very important because he introduced ideas such as
domain, domain-specific languages, and generators. His influence can be found in
commercial product lines tools such as Gears4 and pure::variants.5

Batory et al. (1994) introduced the GenVoca strategy that supported the gen-
eration of software components by composing based on layers in a Layer-of-
Abstraction (LOA) model of program construction. Each layer provides a cohesive
set of services needed by the overall component. They defined also realms to rep-
resent types, and components to implement or realize those types. The components
need not be fully concrete, and may be parameterized by other realms or types. The
parameterization relationship defines a dependency between the realms, which in
some cases implies a layered structure of the components and realms.

The organization of GenVoca is similar in many ways to Draco; a key difference
is that GenVoca relies on larger grained refinements (layers). Thus, whereas a Draco
refinement might affect a single function invocation, a GenVoca transformation will
perform a coordinated refinement of all instance variables and all methods within in
several related classes in a single refinement step.

A nice overview on generative reuse can be found in Biggerstaff (1998). In this
paper, the author discusses 15 years of research in the field, addressing the key

4BigLever—http://www.biglever.com/
5pure-systems—https://www.pure-systems.com/

http://www.biglever.com
https://www.pure-systems.com

334 E. S. de Almeida

elements of generative success, main problems, evidence from the solutions, and a
guide to generative reuse technologies.

3.4 Metrics and Economic Models

Metrics and economic models play an important role in software engineering in
general, and in software reuse in particular. They enable managers to quantify,
justify, and document their decisions providing a sound basis for their decision-
making process.

Favaro (1991) analyzed the economics of reuse based on a model from Barnes
et al. (1998). He estimated the quantities R (proportion of reused code in the
product) and b (cost relative of incorporating the reused code into the new product)
for an Ada development project. According to him, it was difficult to estimate R
because it was unclear whether to measure source code or relative size of the load
modules. Regarding b, it was even more difficult to estimate because it was unclear
whether cost should be measured as the amount of real-time necessary to install the
component in the application and whether the cost of learning should be included.

Favaro identified that the cost of reusability increased with the complexity
of the component. In addition, he found that some components must be used
approximately 5–13 times before their costs are recovered.

Frakes and Terry (1996) surveyed metrics and models of software reuse and
provided a classification structure to help users select them. They reviewed six types
of metrics and models: cost–benefit models, maturity assessment models, reuse
metrics, failure modes models, reusability assessment models, and reuse library
metrics. The work can be considered the main survey in the area of software reuse
metrics and models.

Based on his experience at IBM and Lockheed Martin, Poulin (1997) surveyed
the software reuse metrics area and presented directions to implement a metric
program considering the software development processes for/with reuse and the
roles involved. Poulin recommends the following metrics for a reuse program:

1. Reuse % for measuring reuse levels

Reuse% = RSI/Total Statements x 100%

RSI means Reused Source Instruction. It is important to guarantee uniformity
of results and equity across organizations. Deciding what to count and what not
to count can sound easy, but in real-life projects, it is difficult. A manager and
software engineer cannot agree about count, for example, product maintenance
as reuse (code from new versions), use of COTS as reuse, code libraries as reuse,
and so on. All of these cases are not counted as reuse by Poulin and we agree
with him.

Software Reuse and Product Line Engineering 335

2. Reuse Cost Avoidance (RCA) for quantifying the benefits of reusing software
to an organization:

RCA = Development Cost Avoidance + Service Cost Avoidance

Where Development Cost Avoidance (DCA):

DCA = RSI x (1 - RCR) x (New code cost)

RCR (Relative Cost of Reuse) has the default value = 0.2
And Service Cost Avoidance (SCA):

SCA = RSI x (Your error rate) x (Your error cost)

The previous RCA metrics considers that an organization only consumes
reusable software. If the organization also produces reusable software, we can
subtract the Additional Development Cost (ADC) from RCA to obtain the
organization’s ROI:

ADC = (RCWR - 1) x (Code written for reuse by others) x
(New code cost)

RCWR has the default value = 1.5

It is important to highlight that if an organization has previous data that better
represent RCR and RCWR, these values should be used.

The software reuse metrics area presents solid references with metrics related
to reuse processes and repository systems, which can be used in current software
development projects. However, in order to have success with it, organizations
should define clearly its goals and based on them define what to measure. Metrics
themselves do not make sense if used alone just as numbers. Thus, thinking in terms
of the Goal Question Metric (GQM) approach is essential to success.

Lim (1998), besides discussing several aspects of software reuse, presents a nice
survey on software reuse metrics and economic models.

3.5 Reuse Models

Reuse maturity models support an assessment of how advanced reuse programs
are in implementing systematic reuse, using in general an ordinal scale of reuse
phases (Frakes and Terry 1996). It is a set of stages through which an organization
progresses inspired by Capability Maturity Model Integration (CMMI). Each stage
has a certain set of characteristics and brings the organization to a higher level of
quality and productivity.

The reuse capability model developed by the Software Productivity Consortium
(SPC) was composed of two elements: an assessment model and an implementation
model (Davis 1993). The first one consisted of a set of categorized critical
success factors that an organization can use to assess the current state of its
reuse practices. The factors are organized into four primary groups: management,
application development, asset development, and process and technology factors.

336 E. S. de Almeida

The implementation model aids prioritize goals and build four successive stages of
reuse implementation: opportunistic, integrated, leveraged, and anticipating.

While several researchers were creating new reuse models, another direction was
explored by Frakes and Fox (1996). According to them, failure models analysis
provides an approach to measure and improve a reuse process based on a model of
the ways a reuse process can fail. The model could be used to evaluate the quality
of a systematic reuse program, to determine reuse obstacles in an organization, and
to define an improvement strategy for a systematic reuse program.

The reuse failure model has seven failure modes corresponding to steps a
software developer will need to complete in order to reuse a component. The failure
modes are: no attempt to reuse; part does not exist; part is not available; part is
not found; part is not understood; part is not valid; and part cannot be integrated.
In order to use the model, an organization gathers data on reuse failure modes and
causes, and then uses this information to prioritize its reuse improvement activities.

Garcia (2010) defined the RiSE Reference Model (RiSE-RM) whose purpose
was to determine which process areas, goals, and key practices should be considered
by companies interested in adopting a systematic reuse approach. It includes a set
of process areas, guidelines, practices, and process outcomes.

RiSE-RM has two primary goals: (1) to help in the assessment of an organiza-
tion’s current situation (maturity level) in terms of software reuse practices; and
(2) to aid the organization in the improvement of their productivity, quality, and
competitiveness though the adoption of software reuse practices.

RiSE-RM model was evolved by RiSE Labs through discussions with industry
practitioners and software reuse researchers and the state of the art in the area
of reuse adoption model. It has seven maturity levels that reflect a degree of the
reuse process maturity. The levels are: informal reuse, basic reuse, planned reuse,
managed reuse, family-oriented products reuse, measured reuse, and proactive
reuse. The model was validated by software reuse experts using a survey and
experimented in Brazilian companies. The results were considered interesting and
the model can be adopted for software development organizations considering
starting a reuse program.

Several reuse maturity models have been developed along the years and the
reader can check more information in Frakes and Terry (1996) and Lim (1998).

3.6 Software Reuse Methods and Processes

Software applications are complex products that are difficult to develop and test
and, often, present unexpected and undesired behaviors that may even cause severe
problems and damage. For these reasons, researchers and practitioners have been
paying increasing attention to understanding and improving the quality of the
software being developed. It is accomplished through a number of approaches,
techniques, and tools, and one of the main directions investigated is centered on
the study and improvement of the process through which software is developed.

Software Reuse and Product Line Engineering 337

According to Sommerville (2006), a software process is a set of activities that
leads to the production of a software product. Processes are important and necessary
to define how an organization performs its activities, and how people work and
interact in order to achieve their goals.

The adoption of either a new, well-defined, managed software process or a
customized one is a possible facilitator for success in reuse programs (Morisio
et al. 2002). However, the choice of a specific software reuse process is not a
trivial task, because there are technical (management, measurements, tools, etc.)
and nontechnical (education, culture, organizational aspects, etc.) aspects that must
be considered.

In 1976, Parnas (1976) introduced the ideas of program families. According
to him, we can consider a set of programs to constitute a family, whenever it is
worthwhile to study programs from the set by first studying the common properties
of the set and then determining the special properties of the individual family
members. This work made extensive contributions for the software engineering area
in general, such as stepwise refinement, commonality analysis, design decisions, and
sure, software reuse. Parnas’ ideas were essentials for the field of software product
lines.

Based on motivation that the research involving software reuse processes was
too general and did not present concrete techniques to perform tasks such as
architecture and component modeling and implementation, three software develop-
ment experts—Jacobson, Griss, and Jonsson—created the Reuse-driven Software
Engineering Business (RSEB) (Jacobson et al. 1997). RSEB is a use-case-driven
systematic reuse process based on the UML notation. The method was designed to
facilitate both the development of reusable object-oriented software and software
reuse.

Key ideas in RSEB are: the explicit focus on modeling variability and maintain-
ing traceability links connecting representation of variability throughout the models,
that is, variability in use cases can be traced to variability in the analysis, design, and
implementation object models.

RSEB has separated processes for Domain Engineering and Application Engi-
neering. Domain Engineering in RSEB consists of two processes: Application
Family Engineering, concerned with the development and maintenance of the
overall layered system architecture and Component System Engineering, concerned
with the development of components for the different parts of the application system
with a focus on building and packaging robust, extendible, and flexible components.

Despite the RSEB focus on variability, the process components of Application
Family Engineering and Component System Engineering do not include essential
domain analysis techniques such as domain scoping and modeling. Moreover, the
process does not describe a systematic way to perform the asset development as
proposed. Another shortcoming of RSEB is the lack of feature models to perform
domain modeling, considered a key aspect by the reuse community (Kang et al.
1990). In RSEB, variability is expressed at the highest level in the form of variation
points, which are then implemented in other models using variability mechanisms.

338 E. S. de Almeida

Kang et al. (1998) presented the thesis that there were many attempts to support
software reuse, but most of these efforts had focused on two directions: exploratory
research to understand issues in Domain-Specific Software Architectures (DSSA),
component integration and application generation mechanisms; and theoretical
research on software architecture and architecture specification languages, devel-
opment of reusable patterns, and design recovery from existing code. Kang et al.
considered that there were few efforts to develop systematic methods for discovering
commonality and using this information to engineer software for reuse. It was their
motivation to develop the Feature-Oriented Reuse Method (FORM) (Kang et al.
1998), an extension of their previous work (Kang et al. 1990).

FORM is a systematic method that focuses on capturing commonalities and
differences of applications in a domain in terms of features and using the analysis
results to develop domain architectures and components. In FORM, the use of
features is motivated by the fact that customers and engineers often speak of product
characteristics in terms of features the product has and/or delivers.

FORM method consists of two major engineering processes: Domain Engi-
neering and Application Engineering. The domain engineering process consists of
activities for analyzing systems in a domain and creating reference architectures
and reusable components based on the analysis results. The application engineering
process consists of activities for developing applications using the artifacts created
during domain engineering.

There are three phases in the domain engineering process: context analysis,
domain modeling, and architecture (and component) modeling. FORM does not
discuss the context analysis phase; however, the domain modeling phase is very
well explored with regard to features. The core of FORM lies in the analysis of
domain features and use of these features to develop reusable domain artifacts. The
domain architecture, which is used as a reference model for creating architectures
for different systems, is defined in terms of a set of models, each one representing
the architecture at a different level of abstraction. Nevertheless, aspects such as
component identification, specification, design, implementation, and packaging are
under-investigated.

After the domain engineering, the application engineering process is performed.
Once again, the emphasis is on the analysis phase with the use of the developed
features. However, few directions are defined to select the architectural model and
develop the applications using the existing components.

Bayer et al. (1999) proposed the Product Line Software Engineering (PuLSE)
methodology. The methodology was developed with the purpose of enabling the
conception and deployment of software product lines within a large variety of
enterprise contexts. One important feature of PuLSE is that it is the result of a
bottom-up effort: the methodology captures and leverages the results (the lessons
learned) from technology transfer activities with industrial customers.

PuLSE is composed of three main elements: the Deployment phases, the
Technical components, and the Support components. The deployment phases are
a set of stages that describe activities for initialization, infrastructure construction,
infrastructure usage, and evolution and management of product lines. The technical

Software Reuse and Product Line Engineering 339

components provide the technical know-how needed to make the product line
development operational. For this task, PuLSE has components for Customization
(BC), Scoping (Eco), Modeling (CDA), Architecting (DSSA), Instantiating (I), and
Evolution and Management (EM). At the end, the support components are packages
of information, or guidelines, which enable a better adaptation, evolution, and
deployment of the product line.

The PuLSEmethodology presents an initial direction to develop software product
lines. However, some points are not well discussed. For example, the component
PuLSE-DSSA supports the definition of a domain-specific software architecture,
which covers current and future applications of the product line. Nevertheless,
aspects such as specification, design, and implementation of the architecture’s
components are not presented. Bayer et al. consider it an advantage, because PuLSE-
DSSA does not require a specific design methodology or a specific Architecture
Description Language (ADL). We do not agree with this vision because the lack of
details is the biggest problem related to software reuse processes. The same problem
can be seen in the Usage phase, in which product line members are specified,
derived, and validated without explicit details on how this can be done.

Based on industrial experiences in software development, especially at Lucent
Technologies, David Weiss and Chi Lai presented the Family-Oriented Abstraction,
Specification, and Translation (FAST) process (Weiss and Lai 1999). Their goal
was to provide a systematic approach to analyze potential families and to develop
facilities and processes for generating family members. FAST defines a pattern
for software production processes that strives to resolve the tension between rapid
production and careful engineering. A primary characteristic of the pattern is that all
FAST processes are organized into three subprocesses: Domain Qualification (DQ),
Domain Engineering, and Application Engineering.

Domain Qualification consists of an economic analysis of the family and requires
estimating the number and value of family members and the cost to produce
them. Domain Engineering makes it possible to generate members of a family and
is primarily an investment process; it represents a capital investment in both an
environment and the processes for rapidly and easily producing family members
using the environment. Application Engineering uses the environment and processes
to generate family members in response to customer requirements (Weiss and Lai
1999).

The key aspects of FAST is that the process is derived from practical experiences
in industrial environments, the systematic definition of inputs, outputs, steps, roles,
and the utilization of a process model that describes the process. However, some
activities in the process such as in Domain Engineering are not as simple to perform,
for example, the specification of an Application Modeling Language (AML)—
language for modeling a member of a domain—or to design the compiler to generate
the family members.

van Ommering et al. (2000) created at Philips, Koala, a component model for
consumer electronics. The main motivation for the development of Koala was
to handle the diversity and complexity of embedded software and its increasing
production speed. In Koala, a component is a unit of design composed of a

340 E. S. de Almeida

specification and an implementation. Semantically, Koala components are units of
computation and control connected in an architecture.

The components are defined in an ADL consisting of an IDL for defining
component interfaces, a CDL for defining components, and a Data Definition Lan-
guage (DDL) for specifying local data in components. Koala component definitions
are compiled by the Koala compiler to their implementation in a programming
language, for example, C (Lau and Wang 2007). The Koala component model
was used successfully to build a product population for consumer electronics from
repositories of preexisting components.

Roshandel et al. (2004) presented Mae, an architecture evolution environment. It
combines Software Configuration Management (SCM) principles and architectural
concepts in a single model so that changes made to an architectural model are
semantically interpreted prior to the application of SCM processes. Mae uses a type
system to model architectural primitives and version control is performed over type
revisions and variants of a given type.

Mae enables modeling, analysis, and management of different versions of
architectural artifacts, and supports domain-specific extensions to capture additional
system properties. The authors applied Mae to manage the specification and
evolution of three different systems: an audio/video entertainment system, a troop
deployment and battle simulation system, and a mobile robot system built in
cooperation with NASA Jet Propulsion Laboratory (JPL). The experience showed
that Mae is usable, scalable, and applicable to real-world problems (Roshandel et al.
2004).

More information about software reuse methods and processes can be seen in
Lim (1998) and Almeida et al. (2005).

3.7 Software Reuse: The Past Future

With the maturity of the area, several researchers have discussed future directions
in software reuse. Kim and Stohr (1998) discussed exhaustively seven crucial
aspects related to reuse: definitions, economic issues, processes, technologies,
behavioral issues, organizational issues, and, finally, legal and contractual issues.
Based on this analysis, they highlighted the following directions for research and
development: measurements, methodologies (development for and with reuse),
tools, and nontechnical aspects.

In 1999, during a panel (Zand et al. 1999) in the Symposium on Software
Reusability (SSR), software reuse specialists such as Victor Basili, Ira Baxter, and
Martin Griss presented several issues related to software reuse adoption in large
scale. Among the considerations discussed, the following points were highlighted:
(1) education in software reuse area still is a weak point; (2) the necessity of the
academia and industry to work together; and, (3) the necessity of experimental
studies to validate new work.

Software Reuse and Product Line Engineering 341

Frakes and Kang (2005) presented a summary on the software reuse research
discussing unsolved problems based on the Eighth International Conference on
Software Reuse (ICSR), in Madrid, Spain. According to them, open problems in
reuse included: reuse programs and strategies for organizations, organizational
issues, measurements, methodologies, libraries, reliability, safety, and scalability.

As these work were published more than 10 years ago, to conduct an analysis
based on their prediction is not too hard. Among the future directions defined, we
consider that many advances were achieved in the field. In this sense, we believe
that the following areas need more investigation: measurement for software product
lines and safety for reuse in general.

4 Software Product Lines (SPL): An Effective Reuse
Approach

The way that goods are produced has changed significantly over time. While goods
were previously handcrafted for individual customers (Pohl et al., 2005), the number
of people who could afford to buy several kinds of products have increased.

In the domain of vehicles, this led to Henry Ford’s invention of the mass
production (product line), which enabled production for a mass market cheaper than
individual product creation on a handcrafted basis. The same idea was made also by
Boeing, Dell, and even McDonald’s (Clements and Northrop 2001).

Customers were satisfied with standardized mass products for a while (Pohl et al.
2005); however, not all of the people want the same kind of car. Thus, industry was
challenged with the rising interest for individual products, which was the beginning
of mass customization.

Thereby, many companies started to introduce common platforms for their
different types of products, by planning beforehand which parts will be used in
different product types. Thus, the use of platforms for different products led to
the reduction in the production cost for a particular product kind. The systematic
combination of mass customization and common platforms is the key for product
lines, which is defined as a “set of software-intensive systems that share a common,
managed feature set, satisfying a particular market segment’s specific needs or
mission and that are developed from a common set of core assets in a prescribed
way” (Clements and Northrop 2001).

4.1 Software Product Line Essential Activities

Software product lines include three essential activities: Core Asset Development
(CAD), Product Development (PD), and Management (Clements and Northrop

342 E. S. de Almeida

2001). Some authors (Pohl et al. 2005) use other terms for CAD and PD, for exam-
ple, Domain Engineering (DE) representing the CAD and Application Engineering
(AE) representing the PD. These activities are detailed as follows.

Core Asset Development (Domain Engineering) This activity focuses on estab-
lishing a production capability for the products (Clements and Northrop 2001). It
is also known as Domain Engineering and involves the creation of common assets,
generic enough to fit different environments and products in the same domain.

The core asset development activity is iterative, and according to Clements and
Northrop (2001), some contextual factors can impact in the way the core assets are
produced. Some contextual factors can be listed as follows: product constraints such
as commonalities, variants, and behaviors; and production constraints, which is how
and when the product will be brought to market. These contextual factors may drive
decisions about the used variability mechanisms.

Product Development (Application Engineering) The main goal of this activity
is to create individual (customized) products by reusing the core assets. This activity
is also known as Application Engineering and depends on the outputs provided by
the core asset development activity (the core assets and the production plan).

Product engineers use the core assets, in accordance with the production plan,
to produce products that meet their respective requirements. Product engineers also
have an obligation to give feedback on any problem within the core assets, to avoid
the SPL decay (minimizing corrective maintenance), and keep the core asset base
healthy and viable for the construction of the products.

Management This activity includes technical and organizational management.
Technical management is responsible for the coordination between core asset and
product development and the organizational management is responsible for the
production constraints and ultimately determines the production strategy.

4.2 Commonalities and Variabilities in SPL

SPL establishes a systematic software reuse strategy whose goal is to identify
commonality (common functionality) and variability points among applications
within a domain, and build reusable assets to benefit future development efforts
(Pohl et al. 2005). Linden et al. (2007) separate the variability in three types, as
follows:

• Commonality: common assets to all the products.
• Variability: common assets to some products.
• Specific products: it is required for a specific member of the family (it cannot be

integrated in the set of the family assets).

In the SPL context, both commonalities and variabilities are specified through
features. SPL engineers consider features as central abstractions for the product

Software Reuse and Product Line Engineering 343

configuration, since they are used to trace requirements of a customer to the software
artifacts that provide the corresponding functionality. In this sense, the features
communicate commonalities and differences of the products between stakeholders,
and guide structure, reuse, and variation across all phases of the software life cycle
(Apel et al. 2013).

The variability is viewed as being the capability to change or customize a system.
It allows developers to delay some design decisions, that is, the variation points. A
variation point is a representation of a variability subject, for example, the type of
lighting control that an application provides. A variant identifies a single option of
a variation point. Using the same example, two options of lighting control can be
chosen for the application (e.g., user or autonomic lighting) (Pohl et al. 2005).

Although the variation points identified in the context of SPL hardly change over
time, the set of variants defined as objects of the variability can be changed. This is
the Software Product Lines Engineering (SPLE) focus, that is, the simultaneous use
of variable artifacts in different forms (variants) by different products (Gurp et al.
2001).

The variability management is an activity responsible to define, represent,
explore, implement, and evolve SPL variability (Linden et al. 2007) by dealing with
the following questions:

• Identifying what varies, that is, the variable property or variable feature that is
the subject of the variability

• Identifying why it varies, based on needs of the stakeholders, user, application,
and so on

• Identifying how the possible variants vary, which are objects of the variability
(instance of a product)

Considering the previous example from the car domain (Fig. 1), once created
the feature model with the commonality and variability of the domain, the design,
and implementation can be performed, for example, using techniques such as
conditional compilation, inheritance, or aspect-oriented programming. Based on
conditional compilation, ifdefs sentences can be used to separate optional code.
Thus, in the product development activity, automation tools (such as Ant6) can be
used to generate different products based on the features selection.

4.3 Future Directions in SPL and Software Reuse

Dynamic Software Product Lines (DSPL) Emerging domains, such as mobile,
ubiquitous computing, and software-intensive embedded systems, demand high
degree of adaptability from software. The capacity of these software to reconfigure
and incorporate new functionality can provide significant competitive advantages.

6http://ant.apache.org/

http://ant.apache.org

344 E. S. de Almeida

This new trend market requires SPL to become more evolvable and adaptable
(Bosch and Capilla 2012). More recently, DSPL became part of these emerging
domains.

The DSPL approach has emerged within the SPLE field as a promising means
to develop SPL that incorporates reusable and dynamically reconfigurable artifacts
(Hallsteinsen et al. 2008). Thus, researchers introduced the DSPL approach enabling
to bind variation points at runtime. The binding of the variation points happens
initially when software is launched to adapt to the current environment, as well as
during operation to adapt to changes in the environment (Hallsteinsen et al. 2008).

According to Hinchey et al. (2012), the DSPL practices are based on: (1) explicit
representation of the configuration space and constraints that describe permissible
configurations at runtime on the level of intended capabilities of the system;
(2) the system reconfiguration that must happen autonomously, once the intended
configuration is known; and (3) at the traditional SPLE practices.

The development of a DSPL involves two essential activities: monitoring the
current situation for detecting events that might require adaptation and controlling
the adaptation through the management of variation points. In that case, it is
important to analyze the change impact on the product’s requirements or constraints
and planning for deriving a suitable adaptation to cope with new situations. In
addition, these activities encompass some properties, such as automatic decision-
making, autonomy, and adaptivity, and context awareness (Hallsteinsen et al. 2008;
Bencomo et al. 2012).

The runtime variability can help to facilitate automatic decision-making in
systems where human intervention is extremely difficult or impossible. For this
reason, the DSPL approach treats automatic decision-making as an optional charac-
teristic. The decision to change or customize a feature is sometimes left to the user
(Bosch and Capilla 2012). However, the context awareness and the autonomy and
adaptability are treated in the same way.

The adoption of a DSPL approach is strongly based on adapting to variations
in individual needs and situations rather than market forces and supporting config-
uration and extension capabilities at runtime (Hallsteinsen et al. 2008; Hinchey et
al. 2012). Given these characteristics, DSPL would benefit from research in several
related areas. For example, it can provide the modeling framework to understand a
self-adaptive system based on Service-Oriented Architecture (SOA) by highlighting
the relationships among its parts, as well as, in the automotive industry, where the
need for post-deployment, dynamic and extensible variability increases significantly
(Bosch and Capilla 2012; Baresi et al. 2012; Lee et al. 2012).

Bencomo et al. (2012), Capilla et al. (2014) present important issues related to
the state-of-the-art in DSPL.

Other promising directions for software product lines are related to Search-
based Software Product Lines and Multiple Product Lines (MPLs). Search-
Based Software Engineering (SBES) is a discipline that focuses on the use of
search-based optimization techniques, such as evolutionary computation (genetic
algorithms), basic local searches, and integer programming to solve software

Software Reuse and Product Line Engineering 345

engineering problems. These techniques are being investigated and used in different
SPL areas such as testing and product configuration. Harman et al. (2014) and
Herrejon et al. (2015) present important issues related to the state-of-the-art in SBES
in the context of product lines.

As we discussed along this chapter, the typical scope of existing SPL methods
is “building a house,” that is, deriving products from a single product line that is
considered autonomous and independent from other possibly related systems. On
the other hand, as in some situations, this perspective of “building a house” in SPL
is no longer sufficient in many environments; an increasing number approaches and
tools have been proposed in recent years for managing Multi-Product Lines (MPLs)
representing a set of related and interdependent product lines (Holl et al. 2012).

Holl et al. (2012) define a multi-product line (MPL) as a set of several self-
contained but still interdependent product lines that together represent a large-scale
or ultra-large-scale system. The main point is that the different product lines in an
MPL can exist independently but typically use shared resources to meet the overall
system requirements. They are based on several heterogeneous subsystems that
are managed in a decentralized way. These subsystems themselves can represent
product lines managed by a dedicated team or even organizational unit. Holl et al.
(2012) present the main directions in the area of MPL based on a systematic
literature review and expert survey.

5 Conclusion

The reuse of products, processes, and other knowledge can be important ingredients
to try to enable the software industry to achieve the pursued improvements in
productivity and quality required to satisfy growing demands. However, these efforts
are often related to individuals and small groups, who practice it in an ad hoc way,
with high risks that can compromise future initiatives in this direction. Currently,
organizations are changing this vision, and software reuse starts to appear in their
business agendas as a systematic and managerial process, focused on application
domains, based on repeatable and controlled processes, and concerned with large-
scale reuse, from analysis and design to code and documentation.

Systematic software reuse is a paradigm shift in software development from
building single systems to application families of similar systems. In this chapter,
we presented and discussed the fundamental ideas of software reuse from its origins
to the most effective approaches.Moreover, we presented some important directions
in the area of Software Product Lines, the most effective approach to achieve large-
scale reuse with applications in the same domain.

346 E. S. de Almeida

References

Almeida, E.S., Alvaro, A., Lucrédio, D., Garcia, V.C., Meira, S.R.L.: A survey on software reuse
processes, International Conference on Information Reuse and Integration (IRI) (2005)

Almeida, E.S., Alvaro, A., Garcia, V.C., Mascena, J.C.C.P., Burégio, V.A.A., Nascimento, L.M.,
Lucrédio, D., Meira, S.R.L.: C.R.U.I.S.E. – Component Reuse in Software Engineering (2007)

Apel, S., Batory, D., Kastner, C., Saake, G.: Feature-Oriented Software Product Lines; Concepts
and Implementation. Springer, Berlin (2013)

Baresi, L., Guinea, S., Pasquale, L.: Service-oriented dynamic software product lines. IEEE
Comput. 45(10), 42–48 (2012)

Barnes, B., et al.: A framework and economic foundation for software reuse. In: Tracz, W.
(ed.) IEEE Tutorial: Software Reuse—Emerging Technology. IEEE Computer Society Press,
Washington, DC (1998)

Basili, V.R., Briand, L.C., Melo, W.L.: How reuse influences productivity in object-oriented
systems. Commun. ACM. 39(10), 104–116 (1996)

Batory, D., Singhal, V., Thomas, J., Dasari, S., Geraci, B.J., Sirkin, M.: The GenVoca model of
software-system generators. IEEE Softw. 11(5), 89–94 (1994)

Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud, J.M.:
PuLSE: A Methodology to Develop Software Product Lines, Symposium Software Reusability
(SSR) (1999)

Bencomo, N., Hallsteinsen, S.O., Almeida, E.S.: A view of the dynamic software product line
landscape. IEEE Comput. 45(10), 36–41 (2012)

Biggerstaff, T.J.: A perspective of generative reuse. Ann. Softw. Eng. 5, 169–226 (1998)
Bosch, J., Capilla, R.: Dynamic variability in software-intensive embedded system families. IEEE

Comput. 45(10), 28–35 (2012)
Burégio, V.A.A., Almeida, E.S., Lucrédio, D., Meira, S.R.L.: A Reuse Repository System: From

Specification to Deployment, International Conference on Software Reuse (ICSR) (2008)
Capilla, R., Bosch, J., Trinidad, P., Ruiz Cortés, A., Hinchey, M.: An overview of Dynamic

Software Product Line architectures and techniques: Observations from research and industry.
J. Syst. Softw. 91, 3–23 (2014)

Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns, p. 608. Addison-Wesley
(2001)

Cox, B.J.: Planning the software industrial revolution. IEEE Softw. 7(06), 25–33 (1990)
Czarnecki, K., Eisenecker, U.: Generative Progamming: Methods, Tools, Applications. Addison-

Wesley, Boston (2000)
Davis, T.: The reuse capability model: A basis for improving an organization’s reuse capability.

International Workshop on Software Reusability (1993)
Diaz, R.P., Freeman, P.: Classifying software for reusability. IEEE Softw. 4(1), (1987)
Ezran, M., Morisio, M., Tully, C.: Practical Software Reuse, p. 374. Springer, Heidelberg (2002)
Favaro, J.: What Price Reusability? A Case Study, First International Symposium on Environments

and Tools for Ada, California, pp. 115–124, March 1991
Frakes, W.B., Fox, C.J.: Quality improvement using a software reuse failure modes model. IEEE

Trans. Softw. Reuse. 23(4), 274–279 (1996)
Frakes, W.B., Isoda, S.: Success factors of systematic reuse. IEEE Softw. 11(5), 14–19 (1994)
Frakes, W.B., Kang, K.C.: Software reuse research: Status and future. IEEE Trans. Softw. Eng.

31(7), 529–536 (2005)
Frakes, W.B., Nejmeh, B.A.: Software reuse through information retrieval. ACM SIGIR Forum.

21(1–2), 30–36 (1986)
Frakes, W.B., Succi, G.: An industrial study of reuse, quality, and productivity. J. Syst. Softw.

57(2), 99–106 (2001)
Frakes, W.B., Terry, C.: Software Reuse: Metrics and Models, ACM Computing Survey (1996)
Garcia, V.C.: RiSE Reference Model for Software Reuse Adoption in Brazilian Companies, Ph.D.

Thesis, Federal University of Pernambuco, Brazil (2010)

Software Reuse and Product Line Engineering 347

Gurp, J.V., Bosch, J., Svahnberg, M.: On the Notion of Variability in Software Product Lines,
Working IEEE/IFIP Conference on Software Architecture (WICSA), pp. 45–54, Amsterdam,
Netherlands, August, 2001

Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product lines. IEEE
Comput. 41(04), 93–95 (2008)

Harman, M., Jia, Y., Krinke, J., Langdon, W.B., Petke, J., Zhang, Y.: Search based software
engineering for software product line engineering: A survey and directions for future work.
18th International Software Product Line Conference (SPLC), pp. 5–18, Italy, August, 2014

Herrejon, R.E.L., Linsbauer, L., Egyed, A.: A systematic mapping study of search-based software
engineering for software product lines. Inf. Softw. Technol. J. 61, 33–51 (2015)

Hinchey, M., Park, S., Schmid, K.: Building dynamic software product lines. IEEE Comput.
45(10), 22–26 (2012)

Holl, G., Grunbacher, P., Rabiser, R.: A systematic review and an expert survey on capabilities
supporting multi product lines. Inf. Softw. Technol. J. 54, 828–852 (2012)

Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and Organization for
Business Success. Addison-Wesley (1997)

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study, Software Engineering Institute (SEI), Technical Report,
p. 161, November 1990

Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-oriented reuse method
with domain-specific reference architectures. Ann. Softw. Eng. 5, 143–168 (1998)

Kim, Y., Stohr, E.A.: Software reuse: Survey and research directions. J. Manag. Inf. Syst. 14(04),
113–147 (1998)

Kitchenham, B.A., Dybå, T., Jørgensen, M.: Evidence-Based Software Engineering, International
Conference on Software Engineering (ICSE) (2004)

Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)
Lau, K.K., Wang, Z.: Software component models. IEEE Trans. Softw. Eng. 33(10), 709–724

(2007)
Lee, J., Kotonya, G., Robinson, D.: Engineering service-based dynamic software product lines.

IEEE Comput. 45(10), 49–55 (2012)
Lim, W.C.: Effects of reuse on quality, productivity, and economics. IEEE Softw. 11(05), 23–30

(1994)
Lim, W.C.: Managing Software Reuse. Prentice Hall, Upper Saddle River, NJ (1998)
Linden, F.V., Schmid, K., Rommes, E.: Software Product Lines in Action: The Best Industrial

Practice in Product Line Engineering. Springer (2007)
Lucrédio, D., Almeida, E.S., Prado, A.F.: A Survey on Software Components Search and

Retrieval, 30th IEEE EUROMICRO Conference on Software Engineering and Advanced
Applications (EUROMICRO-SEAA), Component-Based Software Engineering Track, pp.
152–159, Rennes, France, August/September 2004

McIlroy, M.D.: Mass Produced Software Components, NATO Software Engineering Conference
Report, pp. 79–85, Garmisch, Germany, October 1968

Mili, H., Mili, F., Mili, A.: Reusing software: Issues and research directions. IEEE Trans. Softw.
Eng. 21(6), 528–562 (1995)

Mili, A., Mili, R., Mittermeir, R.: A survey of software reuse libraries. Ann. Softw. Eng. 05, 349–
414 (1998)

Mili, H., Mili, A., Yacoub, S., Addy, E.: Reuse Based Software Engineering: Techniques,
Organizations, and Measurement. Wiley, New York (2002)

Morisio, M., Ezran, M., Tully, C.: Success and failure factors in software reuse. IEEE Trans. Softw.
Eng. 28(4), 340–357 (2002)

Neighbors, J.M.: The draco approach to constructing software from reusable components. IEEE
Trans. Softw. Eng. 10(5), 564–574 (1984)

Parnas, D.L.: On the design and development of program families. IEEE Trans. Softw. Eng. 2(1),
1–8 (1976)

348 E. S. de Almeida

Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques, p. 467. Springer, New York (2005)

Poulin, J.S.: Measuring Software Reuse, p. 195. Addison-Wesley, Boston, MA (1997)
Poulin, J.S.: The Business Case for Software Reuse: Reuse Metrics, Economic Models, Organiza-

tional Issues, and Case Studies, Tutorial Notes, Torino, Italy, June, 2006
Roshandel, R., van der Hoek, A., Rakic, M.M., Medvidovic, N.: Mae – A system model and

environment for managing architectural evolution. ACM Trans. Softw. Eng. Methodol. 13(2),
240–276 (2004)

Sametinger, J.: Software Engineering with Reusable Components, p. 275. Springer, Berlin (1997)
Sim, S.E., Gallardo-Valencia, R.G.: Finding Source Code on the Web for Remix and Reuse.

Springer, New York (2013)
Sommerville, I.: Software Engineering, Addison-Wesley (2006)
Tracz, W.: Confessions of a Used Program Salesman: Institutionalizing Software Reuse, Addison

Wesley, Reading, MA (1995)
van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala component model for

consumer electronics software. IEEE Comput. 33(3), 78–85 (2000)
Weiss, D., Lai, C.T.R.: Software Product-Line Engineering. Addison Wesley, Reading, MA (1999)
Ye, Y., Fischer, G.: Promoting Reuse with Active Reuse Repository Systems, International

Conference on Software Reuse (ICSR) (2000)
Zand, M., Basili, V.R., Baxter, I., Griss, M.L., Karlsson, E., Perry, D.: Reuse R&D: Gap Between

Theory and Practice, Symposium on Software Reusability (SSR), pp. 172–177, Los Angeles,
May, 1999

	Software Reuse and Product Line Engineering
	1 Introduction
	2 Concepts and Principles
	2.1 Software Reuse Benefits
	2.2 The Obstacles
	2.3 The Basic Features

	3 Organized Tour: Genealogy and Seminal Papers
	3.1 The Roots
	3.2 Libraries and Repository Systems
	3.3 Generative Reuse
	3.4 Metrics and Economic Models
	3.5 Reuse Models
	3.6 Software Reuse Methods and Processes
	3.7 Software Reuse: The Past Future

	4 Software Product Lines (SPL): An Effective Reuse Approach
	4.1 Software Product Line Essential Activities
	4.2 Commonalities and Variabilities in SPL
	4.3 Future Directions in SPL and Software Reuse

	5 Conclusion
	References

