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Abstract Requirements engineering (RE) aims to ensure that systems meet the
needs of their stakeholders including users, sponsors, and customers. Often con-
sidered as one of the earliest activities in software engineering, it has developed
into a set of activities that touch almost every step of the software development
process. In this chapter, we reflect on how the need for RE was first recognised and
how its foundational concepts were developed. We present the seminal papers on
four main activities of the RE process, namely, (1) elicitation, (2) modelling and
analysis, (3) assurance, and (4) management and evolution. We also discuss some
current research challenges in the area, including security requirements engineering
as well as RE for mobile and ubiquitous computing. Finally, we identify some open
challenges and research gaps that require further exploration.

1 Introduction

This chapter presents the foundational concepts of requirements engineering (RE)
and describes the evolution of RE research and practice. RE has been the subject
of several popular books [47, 102, 56, 90, 98, 107] and surveys [20, 82]; this
chapter clarifies the nature and evolution of RE research and practice, gives a guided
introduction to the field, and provides relevant references for further exploration
of the area.
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The target readers are students interested in the main theoretical and practical
approaches in the area, professionals looking for practical techniques to apply, and
researchers seeking new challenges to investigate. But first, what is RE?

Requirements engineering is the branch of software engineering concerned with the real-
world goals for, functions of, and constraints on software systems. It is also concerned with
the relationship of these factors to precise specifications of software behaviour, and to their
evolution over time and across software families.—Zave [111]

Zave’s definition emphasises that a new software system is introduced to solve a
real-world problem and that a good understanding of the problem and the associated
context is at the heart of RE. Therefore, it is important not only to define the
goals of the software system but also to specify its behaviour and to understand
the constraints and the environment in which this software system will operate. The
definition also highlights the need to consider change, which is inherent in any real-
world situation. Finally, the definition suggests that RE aims to capture and distil
the experience of software development across a wide range of applications and
projects.

Although Zave’s definition identifies some of the key challenges in RE, the nature
of RE itself has been changing. First, although much of the focus in this chapter is
given to software engineering, which is the subject of the book, RE is not specific
to software alone but to socio-technical systems in general, of which software is
only a part. Software today permeates every aspect of our lives, and therefore, one
must not only consider the technical but also the physical, economical, and social
aspects. Second, an important concept in RE is stakeholders, i.e. individuals or
organisations who stand a gain or loss from the success or failure of the system
to be constructed [82]. Stakeholders play an important role in eliciting requirements
as well as in validating them.

The chapter covers both the foundations and the open challenges of RE. When
you have read the chapter, you will:

• Appreciate the importance of RE and its role within the software engineering
process;

• Recognise the techniques for eliciting, modelling, documenting, validating, and
managing requirements for software systems;

• Understand the challenges and open research issues in RE.

The chapter is structured as follows. Section 2 introduces the fundamental
concepts of RE including the need to make explicit the relationship between
requirements, specifications, and environment properties, the quality properties of
requirements, and the main activities with the RE process. Section 3 presents
seminal work in requirements elicitation, modelling, assurance, and management.
It also discusses the RE techniques that address cross-cutting properties, such
as security, that involves a holistic approach across the RE process. Section 4
examines the challenges and research gaps that require further exploration. Section 5
concludes the chapter.
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2 Concepts and Principles

In the early days of software engineering, approximately from the 1960s up to
around the 1980s, many software systems used by organisations were largely, if
not completely, constructed in-house, by the organisations themselves. There were
serious problems with these software projects: software systems were often not
delivered on time and on budget. More seriously, their users did not necessarily
like to use the constructed software systems. Brooks [19] assessed the role of
requirements engineering in such projects as follows:

The hardest single part of building a software system is deciding precisely what to build.
No other part of the conceptual work is as difficult as establishing the detailed technical
requirements. No other part of the work so cripples the resulting system if done wrong. No
other part is more difficult to rectify later.

Although it was fashionable to argue that users do not really know what their
requirements are (and so it was difficult for software engineers to construct systems
users would want to use), it was also true that software engineers did not really
know what they mean when they say requirements. Much confusion abounds
around the term requirements. In fact, Brooks himself talked about “detailed
technical requirements” and “product requirements” in the same paper without
really explaining what they mean. Elsewhere, people were also using terms like
“system requirements”, “software requirements”, “user requirements”, and so on.
Obviously people realised that when they say requirements to each other, they might
be talking about very different things, hence the many modifiers. The need to give
precise meanings to the terms was quite urgent. In the following, Sect. 2.1 starts
by introducing Jackson and Zave’s framework for requirements engineering [112],
which makes explicit the relationship between requirements, specifications, and
environment properties. Section 2.2 defines the desirable attributes of requirements.
Finally, Sect. 2.3 introduces the main activities within the RE process.

2.1 Fundamentals: The World and the Machine

Zave and Jackson [112] propose a set of criteria that can be used to define
requirements and differentiate them from other artefacts in software engineering.
Their work is closely related to the “four-variable model” proposed by Parnas and
Madey [85], which defines the kinds of content that documents produced in the
software engineering process should contain.

Central to the proposal of Zave and Jackson is the distinction between the
machine and the world. Essentially the machine is the software system. The
portion of the real world where the machine is to be deployed and used is called
the environment. Hence, scoping the problem by defining the boundary of the
environment is paramount. The machine and the environment are described in terms
of phenomena, such as events, objects, states, and variables. Some phenomena
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Fig. 1 World, machine, and specification phenomena

belong to the world, and some phenomena belong to the machine. Since the world
and the machine are connected, their phenomena overlap (Fig. 1).

Typically the machine observes some phenomena in the environment, such as
events and variables, and the machine can control parts of the environment bymeans
of initiating some events. This set of machine observable and machine controllable
phenomena sits at the intersection between the machine and the world, and they are
called specification phenomena (S). There are also parts of the environment that the
machine can neither control nor observe directly. Indicative statements that describe
the environment in the absence of the machine or regardless of the machine are often
called assumptions or domain properties (D). Optative statements expressing some
desired properties of the environment that are to be brought about by constructing
the machine are called requirements (R). Crucially, requirements statements are
never about the properties of the machine itself. In fact, Zave and Jackson assert
that all statements made during RE should be about the environment. That means
that during RE, the engineer has to describe the environment without the machine,
and the environment with the machine. From these two descriptions, it is possible
to derive the specification of the machine systematically [50].

Accordingly, Zave and Jackson suggest that there are three main kinds of
artefacts that engineers would produce during the RE process:

1. statements about the domain describing properties that are true regardless of the
presence or actions of the machine,

2. statements about requirements, describing properties that the users want to be
true of the world in the presence of the machine,

3. statements about the specification describing what the machine needs to do in
order to achieve the requirements.

These statements can be written in natural language, formal logic, semi-formal
languages, or indeed in some combination of them, and Zave and Jackson are not
prescriptive about that. What is important is their relationship, which is as follows:

The specification (S), together with the properties of the domain (D),
should satisfy the requirements (R): S,D � R.

Returning to the issue of confusion about what requirements mean, is the term
any clearer in the light of such research work? It seems so. For example, a statement
like “The program must be written in C#” is not a requirement because this is
not a property of the environment; it is rather an implementation decision, that
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unnecessary constrains potential system specifications. Statements like “A library
reader is allowed borrow up to 10 different books at a time” are a requirement,
but “Readers always return their loans on time” is an assumed property of the
environment, i.e. a domain property.

Hence, RE is grounded in the real world; it involves understanding the envi-
ronment in which the system-to-be will operate and defining detailed, consistent
specification of the software system-to-be. This process is incremental and iterative
as we will see in Sect. 2.3. Zave and Jackson [112] specify five criteria for this
process to complete:

1. Each requirementsR has been validated with the stakeholders.
2. Each domain propertyD has also been validated with the stakeholders.
3. The requirements specification S does not constrain the environment or refer to

the future.
4. There exists a proof that an implementation of S satisfies R in environment W ,

i.e. S,W � R holds.
5. S andD are consistent, i.e. S,D ��false.
The ideas proposed by Zave and Jackson are quite conceptual: they help clarify our
thinking about requirements and how to work with the requirements productively
during software development. There are many commercial and non-commercial
tools that use some of the ideas: REVEAL [5] for example helps address the
importance of understanding the operational context through domain analysis.

2.2 Qualities

Requirements errors and omissions are relatively more costly than those introduced
in later stages of development [13]. Therefore, it is important to recognise some of
the key qualities of requirements, which include:

• Measurability. If a software solution is proposed, onemust be able to demonstrate
that it meets its requirements. For example, a statement such as “response
time small enough” is not measurable, and any solution cannot be proven to
satisfy it or not. A measurable requirement would be “response time smaller
than 2 s”. Agreement on such measures will then reduce potential dispute with
stakeholders. Having said that, requirements such as response time are easier to
quantify than others such as requirements for security.

• Completeness. Requirements must define all properties and constraints of the
system-to-be. In practice, completeness is achieved by complying with some
guidelines for defining the requirements statements such as ensuring that there
are no missing references, definitions, or functions [13].
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• Correctness (sometimes also referred to as adequacy or validity). The stakehold-
ers and requirements engineer have the same understanding of what is meant by
the requirements. Practically, correctness often involves compliance with other
business documents, policies, and laws.

• Consistency. As the RE process often involves multiple stakeholders holding
different views of the problems to be addressed, they might be contradictory
at the early stages. Through negotiation [15] and prioritisation [11], the conflicts
between these requirements can be solved, and an agreement may be reached.

• Unambiguity. The terms used within the requirements statements must mean the
same both to those who created it and those who use it. Guidelines to ensure
unambiguity include using a single term consistently and a glossary to define
any term with multiple meanings [44].

• Pertinence. Clearly defining the scope of the problem to solve is fundamental
in RE [90]. Requirements must be relevant to the needs of stakeholders without
unnecessarily restricting the developer.

• Feasibility. The requirements should be specified in a way that they can be
implemented using the available resources such as budget and schedule [13].

• Traceability. Traceability is about relating software artefacts. When requirements
change and evolve over time, traceability can help identify the impact on other
software artefacts and assess how the change should be propagated [23].

These qualities are not necessarily exhaustive. Other qualities that are often
highlighted include comprehensibility, good structuring, and modifiability [102].
Considerations of these quality factors guide the RE process. Indeed, since RE is
grounded in the physical world, it must progress from acquiring some understanding
of organisational and physical settings to resolving potential conflicting views about
what the software system-to-be is supposed to do and to defining a specification of
the software system-to-be that satisfies the above properties. This process is often
iterative and incremental with many activities.

Robertson and Robertson [90] define the Volere template as a structure for the
effective specification of requirements and propose a method called quality gateway
to focus on atomic requirements and ensure “each requirement is as close to
perfect as it can be”. IEEE 830-1998: IEEE Recommended Practice for Software
Requirements Specifications [44] provides some guidance and recommendations for
specifying software requirements and details a template for organising the different
kinds of requirements information for a software product in order to produce a
software requirements specification (SRS).

2.3 Processes

Requirements often permeate throughout many parts of systems development (see
Fig. 2). At the early stages of system development, requirements have a significant
influence on system feasibility. During system design, requirements are used to
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Fig. 2 RE and software development activities

inform decision-making about different design alternatives. During systems imple-
mentation, requirements are used to enable system function and subsystem testing.
Once the system has been deployed, requirements are used to drive acceptance tests
to check whether the final system does what the stakeholders originally wanted. In
addition, requirements are reviewed and updated during the software development
process as additional knowledge is acquired and stakeholders’ needs are better
understood. Each step of the development process may lead the definition of
additional requirements through a better understanding of the domain and associated
constraints. Nuseibeh [81] emphasise the need to consider requirements, design,
and architecture concurrently and highlight that this is often the process adopted by
developers.

While the definition of the requirements helps delimit the solution space,
the requirements problem space is less constrained, making it difficult to define
the environment boundary, negotiate resolution of conflicts, and set acceptance
criteria [20]. Therefore, several guidelines are given to define and regulate the RE
processes in order to build adequate requirements [90]. Figure 3 summarises the
main activities of RE:

❶ Elicitation Requirements elicitation aims to discover the needs of stakeholders
as well as understand the context in which the system-to-be will operate. It may also
explore alternative ways in which the new system could be specified. A number
of techniques can be used including: (1) traditional data gathering techniques
(e.g. interviews, questionnaires, surveys, analysis of existing documentation), (2)
collaborative techniques (e.g. brainstorming, RAD/JAD workshops, prototyping),
(3) cognitive techniques (e.g. protocol analysis, card sorting, laddering), (4) contex-
tual techniques (e.g. ethnographic techniques, discourse analysis), and (5) creativity
techniques (e.g. creativity workshops, facilitated analogical reasoning) [113]. Sec-
tion 3.1 is dedicated to elicitation.
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  - Adequacy of requirements and assumptions.
  - Specification meets the needs of stakeholders

  - Check quality criteria of the specification

Elicitation1    Modelling & Analysis2    

Assurance3    Management & Evolution4    

Fig. 3 Main activities of RE

❷ Modelling and Analysis The results of the elicitation activity often need be
described precisely and in a way accessible by domain experts, developers, and other
stakeholders. A wide range of techniques and notations can be used for requirements
specification and documentation, ranging from informal to semi-formal to formal
methods. The choice of the appropriatemethod often depends on the kind of analysis
or reasoning that needs to be performed. Section 3.2 is dedicated to modelling and
analysis.

❸ Assurance Requirements quality assurance seeks to identify, report, analyse,
and fix defects in requirements. It involves both validation and verification. Val-
idation aims to check the adequacy of the specified and modelled requirements
and domain assumptions with the actual expectations of stakeholders. Verification
covers a wide range of checks including quality criteria of the specified and
modelled requirements (e.g. consistency). Section 3.3 is dedicated to assurance.

❹ Management and Evolution Requirements management is an umbrella term
for the handling of changing requirements, reviewing and negotiating the require-
ments and their priorities, as well as maintaining traceability between requirements
and other software artefacts. Section 3.4 discusses some of the issues of managing
change and the requirement-driven techniques to address them.

These RE activities happen rarely in sequence since the requirements can rarely
be fully gathered upfront and changes occur continuously. Instead, the process is
iterative and incremental and can be viewed, like the software development process,
as a spiral model [14]. In the following section, we present the seminal work
associated with each of the activities in the RE process.
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3 Organised Tour: Genealogy and Seminal Works

RE is multidisciplinary in nature. As a result, different techniques for elicitation,
modelling, assurance, and management often co-exist and influence one another
without a clear chronological order. This section presents the key techniques and
approaches within each of the RE activities shown in Fig. 4. We begin with require-
ments elicitation techniques and categorise them. Next, we describe techniques for
modelling and analysing requirements, followed by the techniques for validating
and verifying requirements. We then explore techniques for dealing with change
and uncertainty in requirements and their context. Finally, we discuss properties
such as security and dependability that require a holistic approach that cuts across
the RE activities.

RE
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Fig. 4 Classification of key RE techniques
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3.1 Elicitation

Requirements elicitation aims at acquiring knowledge and understanding about the
system-as-is, the system-to-be, and the environment in which it will operate. First,
requirements engineers must scope the problem by understanding the context in
which the system will operate and identifying the problems and opportunities of
the new system. Second, they also need to identify the stakeholders and determine
their needs. These needsmay be identified through interactionwith the stakeholders,
who know what they want from the system and are able to articulate and express
those needs. There are also needs that the stakeholders do not realise are possible
but that can be formulated through invention and creative thinking [69]. Finally,
elicitation also aims to explore alternative specifications for the system-to-be in
order to address those needs.

However, eliciting requirements is challenging for a number of reasons. First,
in order to understand the environment, requirements engineers must access and
collect information that is often distributed acrossmany locations and consult a large
number of people and documents. Communication with stakeholders is paramount,
especially for capturing tacit knowledge and hidden needs and for uncovering
biases. These stakeholders may have diverging interests and perceptions and can
provide conflicting and inconsistent information. Key stakeholders may also be
not easy to contact or interested in contributing. Finally, changing socio-technical
context may lead to reviewing priorities, identifying new stakeholders, or revising
requirements and assumptions.

A range of elicitation techniques have been proposed to address some of those
challenges. An exhaustive survey of those techniques is beyond the scope of this
chapter. In the following, we present the main categories and some representative
techniques as summarised in Table 1. We refer the interested reader to the survey by
Zowghi and Coulin [113] for further details.

3.1.1 Data Gathering

This category includes traditional techniques for collecting data by analysing
existing documentation and questioning relevant stakeholders.

Background Study Collecting, examining, and synthesising existing and related
information about the system-as-is and its context is a useful way to gather early
requirements as well as gain an understanding of the environment in which the
system will operate. This information can originate from studying documents about
business plans, organisation strategy, and policy manuals. It can also come from
surveys, books, and reports on similar systems. It can also derive from the defect
and complaint reports or change requests. Background study enables requirements
engineers to build up the terminology and define the objective and policies to
be considered. It can also help them identify opportunities for reusing existing
specifications. However, it may require going through a considerable amount of
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Table 1 Summary of requirements elicitation techniques

Category Main idea Example techniques

Data gathering Collecting data by analysing existing
documentation and questioning stakeholders

• Background study
• Interviews

Collaborative Leveraging group dynamics to foster
agreements

• Brainstorming
• RAD/JAD workshops

Cognitive Acquiring domain knowledge by asking
stakeholders to think about, characterise, and
categorise domain concepts

• Repertory grids
• Card sorting

Contextual Observing stakeholders’ and users’
performing tasks in context

• Observation
• Protocol analysis

Creativity Inventing requirements • Creativity workshops
• ContraVision

documents, processing irrelevant details, and identifying inaccurate or outdated
data.

Interviews Interviews are often considered as one of the most traditional and
commonly used elicitation techniques. It typically involves requirements engineers
selecting specific stakeholders, asking them questions about particular topics, and
recording their answers. Analysts then prepare a report from the transcripts and
validate or refine it with the stakeholders. In a structured interview, analysts
would prepare the list of questions beforehand. Through direct interaction with
stakeholders, interviews allow requirements engineers to collect valuable data even
though the data obtained might be hard to integrate and analyse. In addition, the
quality of interviews greatly depends on the interpersonal skills of the analysts
involved.

3.1.2 Collaborative

This category of elicitation techniques takes advantage of the collective ability of a
group to perceive, judge, and invent requirements either in an unstructured manner
such as with brainstorming or in a structured manner such as in Joint Application
Development (JAD) workshops.

Brainstorming Brainstorming involves asking a group of stakeholders to generate
as many ideas as possible to improve a task or address a recognised problem, then
to jointly evaluate and choose some of these ideas according to agreed criteria.
The free and informal style of interaction in brainstorming sessions may lead to
generate many, and sometimes inventive, properties of the system-to-be as well as
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tacit knowledge. The challenge however is to determine the right group composition
to avoid unnecessary conflicts, bias, and miscommunication.

Joint Application Development (JAD) Workshops Similar to brainstorming,
JAD involves a group of stakeholders discussing both the problems to be solved
and alternative solutions. However, JAD often involves specific roles and viewpoints
for participants, and discussions are supported by a facilitator. The well-structured
nature of these facilitated interactions and the collaboration between involved
parties can lead to rapid decision-making and conflict solving.

3.1.3 Cognitive

Techniques within this category aim to acquire domain knowledge by asking
stakeholders to think about, characterise, and categorise domain concepts.

Card Sorting Stakeholders are asked to sort into groups a set of cards, each of
which has the name of some domain concept written or depicted on it. Stakeholders
then identify the criteria used for sorting the cards. While the knowledge obtained
is at a high level of abstraction, it may reveal latent relationships between domain
concepts.

Repertory Grids Stakeholders are given a set of domain concepts for which
they are asked to assign attributes, which results in a concept× attribute matrix.
Due to their finer-grained abstraction, repertory grids are typically used to elicit
expert knowledge and to compare and detect inconsistencies or conflict in this
knowledge [80].

3.1.4 Contextual

Techniques within this category aim to analyse stakeholders in context to capture
knowledge about the environment and ensure that the system-to-be is fit for use in
that environment.

Observation Observation is an ethnographic technique whereby the requirements
engineers observe actual practices and processes in the domain without interference.
While observation can reveal tacit knowledge, it requires significant skills and
effort to gain access to the organisation without disrupting the normal behaviour
of participants (stakeholders or actors) as well as to interpret and understand these
processes.

Protocol Analysis In this technique, requirements engineers observe participants
undertaking some tasks and explaining them out loud. This technique may reveal
specific information and rational for the processes within the system-as-is. However,
it does not necessarily reveal enough information about the system-to-be.
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3.1.5 Creativity

Most of the aforementioned elicitation techniques focus on distilling information
about the environment and existing needs of the stakeholders. Creativity elicitation
techniques emphasise the role of requirements engineers to bring about innovative
change in a system, which would give a competitive advantage. To do so, creativity
workshops introduce creativity techniques within a collaborative environment.
Another technique consists in using futuristic videos, or other narrative forms, in
order to engage stakeholders in exploring unfamiliar or controversial systems.

Creativity Workshops Creativity workshops [68] encourage a fun atmosphere
so that the participants are relaxed and prepared to generate and voice novel
ideas. Several techniques are used to stimulate creative thinking. For example,
facilitated analogical reasoning can be used to import ideas from one problem space
to another. Domain constraints can be removed in order to release the cognitive
blocks and create new opportunities for exploring innovative ideas. Building on
combinatorial creativity, requirements engineers can swap requirements between
groups of participants so as to generate new properties of the systems-to-be by
combining proposed ideas from each group in novel ways.

ContraVision ContraVision [70] uses two identical scenarios that highlight the
positive and negative aspects of the same situation. These scenarios use a variety
of verbal, musical, and visual codes as a powerful tool to trigger intellectual and
emotional responses from the stakeholders. The goal of ContraVision is to elicit a
wide spectrum of stakeholders’ reactions to potentially controversial or futuristic
technologies by providing alternative representations of the same situation.

3.1.6 Choosing and Combining Elicitation Techniques

Requirements elicitation remains a difficult challenge. The problem is not a lack
of elicitation techniques, since a wide range already exists, each with its strengths
and weakness. But taken in isolation, none is sufficient to capture complete
requirements. The challenge is then to select and plan a systematic sequence
of appropriate techniques to apply. ACRE framework [67] supports analysts for
selecting elicitation techniques according to their specified features and building
reusable combinations of techniques. Empirical studies have also been conducted
to identify most effective elicitation techniques, best practices, and systematic ways
for combining and applying them [27, 30].

3.2 Modelling and Analysis

While requirements elicitation aims to identify the requirements, domain properties,
and the associated specifications, modelling aims to reason about the interplay and
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Table 2 Summary of requirements modelling techniques

Category Main idea Example techniques

Natural language Guidelines and templates to write
requirements statements

• MoSCoW
• EARS

Structural Delimiting the problem world by
defining its components and their
interconnections

• Problem frames
• Class diagrams

Behavioural Interactions between actors and the
system-to-be

• Scenarios
• State machines

Goal modelling Desired states of actors, relation to
tasks goal

• KAOS
• i*

relationships between them. There is a wide range of techniques and notations
for modelling and analysing requirements, each focusing on a specific aspect of
the system. The choice of the appropriate modelling technique often depends on
the kind of analysis and reasoning that need to be performed. Indeed, while the
natural language provides a convenient way of representing requirements early in
the RE process, semi-formal and formal techniques are often used to conduct more
systematic and rigorous analysis later in the process. This analysis may also lead to
the elicitation of additional requirements.

Table 2 shows the main categories of requirements modelling and analysing
techniques. When discussing these techniques, we will use as our main example, a
system for scheduling meetings [103]. In this example, a meeting initiator proposes
a meeting, specifying a date range within which the meeting should take place as
well as potential meeting location. Participants indicate their availability constraints,
and the meeting scheduler needs to arrange a meeting that satisfies as many
constraints as possible.

3.2.1 Natural Language

At the early stages of RE, it is often convenient to write requirements in a natural
language, such as English. Although natural languages are very expressive, state-
ments can be imprecise and ambiguous. Several techniques are used to improve the
quality of requirements statements expressed in natural languages, and they include
(1) stylistic guidelines on reducing ambiguity in requirements statements [4]; (2)
requirements templates for ensuring consistency, such as Volere [89]; (3) controlled
syntax for simplifying and structuring the requirements statements, such as the
Easy Approach to Requirements Syntax (EARS); and (4) controlled syntax for
requirements prioritisation using predefined imperatives, such as MoSCoW [17].
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EARS The Easy Approach to Requirements Syntax (EARS) [75] defines a set of
patterns for writing requirements using natural language as follows:

1. Ubiquitous requirements: define properties that the system must maintain.
For example, the meeting scheduler shall display the scheduled meetings.

2. State-driven requirements: designate properties that must be satisfied while a pre-
condition holds.
For example, WHILE the meeting room is available, the meeting scheduler shall
allow the meeting initiator to book the meeting room.

3. Event-driven requirements: specify properties that must be satisfied once a
condition holds.
For example, WHEN the meeting room is booked, the meeting scheduler shall

display the meeting room as unavailable.
4. Option requirements: refer to properties satisfied in the presence of a feature.

For example, WHERE a meeting is rescheduled, the meeting scheduler shall

inform all participants.
5. Unwanted behaviour requirements: define the required system response to an

unwanted external event.
For example, IF the meeting room is unavailable, THEN the meeting scheduler
shall forbid booking this meeting room.

MoSCoW Requirements are often specified in standardisation documents using a
set of keywords, including MUST, MUST NOT, SHOULD, SHOULD NOT, and MAY. The
meaning of these words was initially specified in the IEFC RFC 2119 [17]. These
terms designate priority levels of requirements and are often used to determine
which requirements need to be implemented first. Although controlled syntax is
a step towards clarity, natural language remains inherently ambiguous and not
amenable to automated, systematic, or rigorous reasoning and analysis.

3.2.2 Structural Modelling

Structural modelling techniques focus on delimiting the problem world by defining
its components and their interconnections. These components might be technical
or social. This category of techniques is often semi-formal; i.e. the main concepts
of the technique and the relationships are defined formally, but the specification
of individual components is informal, i.e. in natural language. In the following
we present two structural modelling techniques: problem frames, which specify
relationships between software specifications, domains, and requirements, and class
diagrams, which define interconnections between classes.

Problem Frames Jackson [48] introduced the problem frames approach which
emphasises the importance of structural relationships between the software (called
the machine) and the physical world context in which the software is expected to
operate. Descriptions of the structural relationships include (1) relevant components
of the world (called the problem world domains); (2) events, states, and values these
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Fig. 5 Problem diagram: schedule a meeting

components share, control, and observe (called the shared phenomena); and (3)
the behaviours of those components (how events are triggered, how events affect
properties, and so on). Requirements are desired properties of the physical world, to
be enacted by the machine (see Sect. 2.1).

Such structural relationships are partially captured using semi-formal diagrams
called a problem diagram. Figure 5 shows the problem diagram for a requirement
in the meeting scheduler problem.

The problemworld domains are components in the environment that the machine
(Meeting Scheduler) interacts with. They are:

• Meeting Initiator: the person who wants to schedule a meeting with other
participant(s);

• Scheduler Terminal: the display terminal meeting initiator uses to schedule a
meeting;

• Participant Availability: a database containing availability of all potential
participants. Availability includes the exclusion set, preference set, and location
requirement of every participant; and

• Scheduled Meeting: a date, time, and location of a meeting scheduled.

The solid lines a, b, c, and d are domain interfaces representing shared variables
and events between the domains and the machine involved. For example, at the
interface a, the variables Date and Loc are controlled by Meeting Initiator (as
denoted by MI!) and can be observed by the Scheduler Terminal. In other words,



Requirements Engineering 67

when the meeting initiator enters the data and location information of a newmeeting
to schedule, the terminal will receive that information. The same information is
passed to the machine via the interface b. At the interface c, the machine can read
the exclusion set, preference set, and location requirement of each participant. At
the interface d, the machine can write the date, time, and location of a scheduled
meeting.

In the diagram, the requirement is denoted by R in the dotted oval, which stands
for “schedule a meeting”. More precisely, the requirement means that when the
meeting initiator makes a meeting request at the interface r, the meeting scheduler
should find a date, time, and location for the meeting (t) such that the date and time
is not in the exclusion set of any participant, the date and time is in the largest
possible number of preference sets, and the location is the same as the largest
possible number of location requirements of the participants (s). In other words,
the requirement is a desired relationship between a meeting request, participant
availability, and scheduled meeting.

Having described the requirement, the problem world domains, and the rela-
tionships among them, the requirements engineer can then focus on describing the
behaviour ofMeeting Scheduler (called the specification).

The main advantage of this structural modelling approach is that it allows the
requirements engineer to separate concerns initially, to check how they are related,
and to identify where the problem lies when the requirement is not satisfied.

Class Diagrams A class diagram is a graph that shows relationships between
classes where a class may have one or more instances called objects. In RE, a class
is used to represent a type of real-world objects. A relationship links one or more
classes (a class can be linked to itself) and can also be characterised by attributes.
The multiplicity on one side of a relationship specifies the minimum and maximum
number of instances on this side that may be linked to an instance on the other side.

Figure 6 depicts an extract from a class diagram for the Meeting Scheduler
example. The main classes are Person and Meeting, and its subclass is Sched-
uledMeeting. Name and Email are attributes of Person. Initiates is a relationship

Person

Name
E-mail

Meeting

Date range
Time range
Location

Initiates1..1 0..*

1..*

0..*

Invitation

Preferred dates
Excluded dates

1..1

1..*Schedules
Scheduled Meeting

Date

1..*

Participates

0..*

Fig. 6 A class diagram for the Meeting Scheduler example
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between Person and Meeting specifying that a meeting is initiated by one and
only one person (multiplicity 1..1) and that a person can initiate 0 or multiple
meetings (multiplicity 0..*). For each invited participant to a meeting, the Invitation
relationship specifies the preferred and excluded dates, which are attributes of this
relationship.

Structural modelling techniques reveal relationships between constituents of the
system-to-be, and they are helpful when scoping the problem, decomposing it, and
reusing specifications. In addition to such static models, it is also useful to describe
the dynamics of the system using behavioural models.

3.2.3 Behavioural Modelling

This category of modelling techniques focuses on interactions between different
entities relevant to the system-to-be. They can be driven by the data exchanges
between actors as in scenarios [2] or the events that show how an actor or actors
react/respond to external or internal events as in state machines [22].

Scenarios A scenario is a description of a sequence of actions or events for a
specific case of some generic task that the system needs to accomplish. A use
case is a description of a set of actions, including variants, that a system performs
that yield an observable result of value to actors. As such, a use case can be
perceived as a behavioural specification of the system-to-be. It specifies all of the
relevant normal course actions, variants on these actions, and potentially important
alternative courses that inhibit the achievement of services and high-level system
functions. In one sense, scenarios can be viewed as instances of a use case. Use
cases and scenarios enable engineers to share an understanding of user needs, put
them in context, elicit requirements, and explore side effects.

In the Unified Modelling Language [91], sequence diagrams are used to rep-
resent scenarios. Figure 7 shows a sequence diagram for the Meeting Scheduler
example. Each actor (Meeting Initiator, Meeting Scheduler, and Participant)
is associated with a timeline. Messages are shown as labelled arrows between
timelines to describe information exchange between actors. For example, to start the
scheduling process, theMeeting Initiator sends aMeetingRequest to theMeeting
Scheduler, which then sends it to the participant. The scheduler receives the
ParticipantAvail messages and sends back a MeetingResponse to the Meeting
Initiator, which then makes the final decision about the date and transmits the
message back to theMeeting Scheduler. Finally, theMeeting Scheduler notifies
the participants about the final date for the scheduled meeting.

State Machines Sequence diagrams capture a particular interaction between
actors. A classical technique for specifying the dynamics, or behaviour, of a system
as a set of interactions is state machines. A state machine can be regarded as a
directed graph whose nodes represent the states of a system and edges represent
events leading to transit from one state to another. The start node indicates the
initiation of an execution, and a final state, if there is one, indicates a successful
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Meeting Initiator Meeting Scheduler Participant

MeetingRequest(DateRange, Location)

MeetingRequest(Date, Location)

ParticipantAvail(PrefDates, ExcluDate)

MeetingResponse(DateRange,Avail)

ScheduleMeeting(Date)

ScheduledMeeting(Date)

Fig. 7 A sequence diagram for the Meeting Scheduler example
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MeetingResponse

MeetingScheduled
ScheduleMeeting

Fig. 8 A state machine for the Meeting Scheduler example

termination of an execution. Figure 8 depicts the behaviour of the Meeting
Scheduler, which starts at an Idle state, in which it can receive aMeetingRequest
and progresses to reach a terminating states the meeting is successfully scheduled.

In safety-critical systems, it is often important to model and analyse requirements
using formal methods such as state machines [59]. Indeed, when requirements are
formally specified, formal verification techniques such as model checking (which
we will discuss in Sect. 3.3.2) can be used to ensure that the system, or more
precisely a model thereof, satisfies those requirements [64]. However, recent studies
showed that despite several successful case studies for modelling and verifying
requirements formally, it remains underused in practice [73].

3.2.4 Goal Modelling

While structural modelling techniques focus on what constitutes the system-to-be,
and behavioural modelling techniques describe how its different actors interact, goal
modelling techniques focus on why, i.e. the rationale and objectives of the different
system components or actors as well as who is responsible for realising them. In the
following, we will present two goal modelling techniques: KAOS, which focuses on
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refinement relationships, and i*, which focuses on dependencies in socio-technical
systems.

KAOS A KAOS goal model [101] shows how goals are refined into sub-goals and
associated domain properties. A KAOS goal is defined as a prescriptive statement
that the system should satisfy through the cooperation of agents such as humans,
devices, and software. Goals may refer to services to be provided (functional
goals) or quality of service (soft goals). KAOS domain properties are descriptive
statements about the environment. Besides describing the contribution of sub-goals
(and associated domain properties) to the satisfaction of a goal, refinement links are
also used for the operationalisation of goals. In this case, refinement links map the
goals to operations, which are atomic tasks executed by the agents to satisfy those
goals. Conflict links are used to represent the case of goals that cannot be satisfied
together. Keywords such as Achieve, Maintain, and Avoid are used to characterise
the intended behaviours of the goals and can guide their formal specification in
real-time temporal logic [71]. A KAOS requirement is defined as a goal under the
responsibility of a single software agent.

Figure 9 depicts an extract of the meeting scheduler where the goal of even-
tually getting a meeting scheduled Achieve[MeetingScheduled] is refined into
a functional sub-goal consisting in booking a room and a soft sub-goal involving
maximising attendance. The satisfaction of the former assumes that the domain
property A room is available holds true and is assigned to the Initiator agent.
The latter can be hindered by an obstacle involving a participant never available.
To mitigate the risk posed by this obstacle, additional goals can be introduced.

KAOS defines a goal-oriented, model-based approach to RE which integrates
many views of the system, each of which captured using an appropriate model.
Traceability links are used to connect these different models. Besides the goal
model representing the intentional view of the system, KAOS defines the following
models:

• An obstacle model that enables risk analysis of the goal model by eliciting the
obstacles that may obstruct the satisfaction of goals.

Achieve 
[MeetingScheduled]

A room is available

Initiator
Participant 

never available

Achieve[RoomBooked] 
Maximise 
Attendance

Domaine 
Property

Legend

Functional
Goal

Soft 
Goal

ResponsibilityObstacle

Obstacle link

Fig. 9 A KAOS model for the Meeting Scheduler example
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• An object model that captures the structural view of the system and is represented
using UML class diagrams.

• An agent model that defines the agents forming the systems and for which goals
they are responsible.

• An operation model represented using UML use cases.
• A behaviour model captures interaction between agents as well as the behaviour

of individual agents. UML sequence diagrams are used to represent interaction
between agents, while a UML state diagram specifies the admissible behaviour
of a single individual agent.

i* The i* modelling approach emphasises the who aspect, which is paramount for
modelling socio-technical systems [109]. The central notion in i* is the actor, who
has intentional attributes such as objectives, rationale, and commitments. Besides
actors, the main i* elements are goals, tasks, soft goals, and resources. A goal
represents a condition or state of the world that can be achieved or not. Goals in
i* mean functional requirements that are either satisfied or not. A task represents
one particular way of attaining a goal. Tasks can be considered as activities that
produce changes in the world. In other words, tasks enact conditions and states of
the world. Resources are used in i* to model objects in the world. These objects
can be physical or informational. Soft goals describe properties or constraints of the
system being modelled whose achievement cannot be defined as a binary property.

Dependencies between actors are defined within a Strategic Dependency (SD)
model. In particular, one actor (the depender) can rely on another actor (dependee)
to satisfy a goal or a quality, to achieve a task, and to make a resource available.
Figure 10 illustrates an SD model between three actors of the Meeting Scheduler
example. The task dependency between Initiator andMeeting Scheduler indicates
that these two actors interact and collaborate to OrganiseMeeting. In other words,
the responsibility of performing the task is shared between these two actors. The
goal dependency between Meeting Scheduler and Participant means that the
former relies on the latter for satisfying the goal AvailabilityCompleted and for
doing so quickly. In other words, the satisfaction of that goal is the responsibility of
Participant.

Initiator

Availability
Completed 

quickly

Availability
Completed

Meeting

Scheduler

Organise

Meeting

Participant

Legend

ActorTaskGoal

Soft-goal
Dependency

Fig. 10 An i* SD model for the Meeting Scheduler example
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Fig. 11 An i* SR model for the Meeting Scheduler example

The Strategic Rationale (SR) model provides a finer-grained description by
detailing what each actor can achieve by itself. It includes three additional types of
links or relationships. Task decomposition links break down the completion of a task
into several other entities. Means-end links indicate alternative ways for achieving
a goal or a task. Contributes-to links indicate how satisfying a goal or performing a
task can contribute positively or negatively to a soft goal. These links are included
within the boundary of one actor, whereas dependency links connect different actors.

Figure 11 depicts an i* SR model where Meeting Scheduler has its SR
model revealed. OrganiseMeeting is decomposed into three subtasks. To achieve
CollectAvailabilty, MeetingScheduler requires availability to be completed and
therefore relies on Participant to satisfy this pre-condition.MeetingScheduler is
the sole responsible for performing the task DetermineSchedule. Two alternative
methods can be used to notify participants about the schedule meeting: email or
phone. This is represented using two means-end links to theNotifyParticipant task.
As notification by email is quicker than through phone, contributes-to links are used
to express this positive and negative influence. The i* modelling language has been
compiled in the i* 2.0 standard [26].

3.2.5 Choosing and Combining Modelling Techniques

Requirements models can serve many purposes, facilitate discussion, document
agreement, and guide implementations. By focusing on a specific aspect, each
modelling technique provides an abstraction that is better suited for particular
projects or at particular stages of RE. For example, structural techniques such
as problem frames can help scope the problem at the early stages of the RE



Requirements Engineering 73

process, goal-oriented techniques can be highly beneficial when the project has ill-
defined objectives, and behavioural techniques with their finer-grained description
are easily understood by developers. Hence, Alexander [2] advocates the need
for requirements engineers to understand the benefits and assumptions of each
technique and combine them to fit the specificities of the software project at hand.

3.3 Assurance

Requirements assurance seeks to determine whether requirements satisfy the qual-
ities defined in Sect. 2.2 and to identify, report, analyse, and fix defects in require-
ments. It involves both validation and verification (see Fig. 12). Validation checks
whether the elicited requirements reflect the real needs of the stakeholders and
that they are realistic (can be afforded, do not contradict laws of nature) and
consistent with domain constraints (existing interfaces and protocols). Verification
of requirements analyses the coherence of requirements themselves. Verification
against requirements specification involves showing and proving that the imple-
mentation of a software system conforms to its requirements specification. In the
following, we discuss techniques for validating and verifying requirements.

3.3.1 Validation

Traditionally, software engineering techniques tend to focus on code quality. Yet,
today more than ever software quality is defined by the users themselves. This
is, e.g. reflected in the move from software quality standards such as ISO/IEC
9126 [45] to ISO/IEC 25022 [46], which put increasing emphasis on requirements
analysis, design, and testing. Ultimately, what determines the success of software is
its acceptance by its users [28]. Criteria as to whether a software system fulfils all
basic promises, whether it fits the environment, produces no negative consequences,
and that it delights the users are decisive [28]. RE places an important focus on
ensuring that the requirements meet the expectations of the stakeholders from the
start. To do so, some techniques focus on checking each requirement individually,

Stakeholder

Validation of
requirements

Verification of
requirements

Verification against
specifications

Environment Phenomena Machine Phenomena

Requirements (R)
Domain Properties(D)

Program (P )Specification (S)

Fig. 12 Requirements assurance
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e.g. quality gateway, while others regard the requirements specification as a whole,
e.g. walkthroughs.

Quality Gateway The quality gateway [90] defines a set of tests that every
requirement specified using the Volere template must pass. The goal of the quality
gateway is to prevent incorrect requirements from passing into the design and
implementation. The tests are devised to make sure that each requirement is an
accurate statement of the business needs. There is no priority between the tests nor
is there an order in which they are applied. In particular, each requirement must
have (1) a unique identifier to be traceable, (2) a fit criterion that can be used to
check whether a given solution meets the requirement, (3) a rationale to justify
its existence in the first place, and (4) a customer satisfaction value to determine
its value to the stakeholders. Each requirement is relevant and has no reference to
specific technology which limits the number of solutions. Another test consists in
verifying that all essential terms within the Volere template are defined and used
consistently.

Walkthroughs Walkthroughs are inspection meetings where the requirements
engineers review the specified requirements with stakeholders to discover errors,
omissions, exceptions, and additional requirements [3]. Walkthroughs can take two
forms: (1) free discussion between the participants or (2) structured discussions
using checklists to guide the detection of defects or using scenarios and animations
to facilitate understanding.

3.3.2 Verification

Verification aims to check that the requirements meet some properties (e.g. consis-
tency) or that the software specification meets the requirements in the given domain.
It can be formal as is the case with model checking or semi-formal as is the case
with argumentation.

Model Checking Model checking is an automated formal verification technique
for assessing whether a model of a system satisfies a desired property [22]. Model
checking focuses on the behaviour of software systems, which is rigorously anal-
ysed in order to reveal potential inconsistencies, ambiguities, and incompleteness.
In other words, model checking helps verifying the absence of execution errors
in software systems. Once potential execution errors are detected, they can be
solved either by eliminating the interactions leading to the errors or by introducing
an intermediary software such that the composed behaviour satisfies the desired
property. In its basic form, the model of a system is given as a state machine and the
property to verify specified in temporal logic. A model checker then exhaustively
explores the state space, i.e. the set of all reachable states. When a state in which the
property is not valid is reachable, the path to this state is given as a counterexample,
which is then used to correct the error.
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Argumentation Formal verification is often insufficient in capturing various
aspects of a practical assurance process. First of all, facts in our knowledge are
not always complete and consistent, and yet they may still be useful to be able
to make limited inferences. Secondly, new knowledge may be discovered which
invalidates what was previously known, and yet it may be useful not to purge the
old knowledge. Thirdly, rules of inference that are not entirely sound, and perhaps
domain-dependent, may provide useful knowledge. In addressing these issues,
argumentation approaches have emerged as a form of reasoning that encompasses a
range of nonclassical logics [31] and is thought to be closer to human cognition [12].

Structurally an argument contains two essential parts: (1) a claim, a conclusion to
be reached, and (2) grounds, a set of assumptions made that support the conclusion
reached. A claim is usually a true/false statement, and assumptions may contain
different kinds of statements, facts, expert opinions, physical measurements, and
so on. There are two kinds of relationships between arguments: an argument
rebuts another argument if they make contradicting claims, and argument under-
cuts another argument if the former contradicts some of the assumptions of the
latter [12]. This structure lends itself very well to visualisation as a graph and to
capturing dialogues in knowledge discovery processes.

Argumentation approaches have been used in a number of application areas
including safety engineering. Kelly and Weaver [54] propose a graphical notation
for presenting “safety cases” as an argument. The aim of a safety case is to
present how all available evidence show that a system’s operation is safe within
a certain context, which can naturally be represented as an argument. In their
Goal Structuring Notation (GSN), claims are represented as goals, and assumptions
are categorised into different elements including solution, strategy, and context.
Argumentation approaches have also been used in security engineering in order to
make security engineers think clearly about the relationship between the security
measures and the security objectives they aim to achieve [40]. For example, Alice
might claim that her email account is secure (node A in Fig. 13) because she uses
long and complex passwords for an email account (node B and black arrow to A).
It is easy to undercut the argument by saying that an attacker will use a phishing
attack to steal the password (node C and red arrow to the black arrow). In the

A
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C
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A Claim: Alice’s mail account secure

B Ground: Alice uses long and
complex passwords

C Claim: Attacker uses phishing
to steal passwords

Support
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Fig. 13 A simple argument structure
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security argumentation method, this counterargument could lead to the introduction
of secure measures against phishing attacks.

3.4 Management and Evolution

This section explores techniques for managing conflicts and change in requirements.
We start by discussing techniques for negotiating and prioritising requirements
before focusing on agile methods, reuse of domain knowledge, requirements
traceability, and adaptation.

3.4.1 Negotiation and Prioritisation

RE typically involves multiple stakeholders with different viewpoints and expec-
tations, which could have conflicting requirements. Such requirements need to be
identified and resolved to the extent possible before the system is implemented.
Consensus building through negotiation among the stakeholders and prioritization
of requirements are two main techniques for managing conflicting requirements.

Negotiation Stakeholders, including users, customers, managers, domain experts,
and developers, have different expectations and interests in a software project. They
may be unsure of what they can expect from the new system. Requirements negoti-
ation aims to make informed decisions and trade-offs that would satisfy the relevant
stakeholders. WinWin [15] is a requirements negotiation technique whereby the
stakeholders collaboratively review, brainstorm, and agree on requirement based
on defined win conditions. A win condition represents stakeholders’ goals. While
conflicting win conditions exist, stakeholders invent options for mutual gain and
explore the option trade-offs. Options are iterated and turned into agreements when
all stakeholders concur. A glossary of terms ensures that the stakeholders have a
common understanding of important terms. AWinWin equilibrium is reached when
stakeholders agree on all win conditions.

Prioritisation Satisfying all requirements may be infeasible given budget and
schedule constraints, and as a result, requirements prioritisation may become
necessary. Prioritised requirements make it easier to allocate resources and plan
an incremental development process as well as to replan the project when new
constraints such as unanticipated delays or budget restrictions arise. MoSCoW
(see Sect. 3.2.1) is a simple prioritisation technique for categorising requirements
within four groups: Must, Should, Could, and Won’t. However, it is ambiguous
and assumes a shared understanding among stakeholders. Karlsson and Ryan [53]
propose to compare requirements pairwise and use AHP (analytic hierarchy process)
to determine their relative value according to customers or users. Engineers then
evaluate the cost of implementing each requirement. Finally, a cost-value diagram
shows how these two criteria are related in order to guide the selection of priorities.
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To determine the value of requirements, several criteria can be used, including
business value, cost, customer satisfaction [90], or risk [110], as estimated by
domain experts or stakeholders. The challenge is however to agree on the criteria
used for prioritisation [88].

3.4.2 Agile Methods

Agile methods refer to a set of software development methods that encourage
continuous collaboration with the stakeholders as well as frequent and incremental
delivery of software. Rather than planning and documenting the software implemen-
tation, the requirements, the design, and the implementation emerge simultaneously
and co-evolve. This section describes the characteristics of agile methods as they
relate to RE activities.

Elicitation Agile methods promote face-to-face communication with customers
over written specifications of requirements. As a result, agile methods assume that
customers’ needs can be captured when there is effective communication between
customers and developers [87]. Furthermore, domain knowledge is acquired through
iterative development cycles, leading to the emergence of requirements together
with the design.

Modelling and Analysis Requirements are often expressed in agile development
methods with user stories. User stories are designed to be simple and small. Each
user story describes a simple requirement from a user’s perspective in the form
of “As a [role], I want [functionality] so that [rationale]”. Measurability,
which is one of the main quality properties of requirements, is hardly specified
within user stories. Nevertheless, acceptance tests can be used to assess the
implementation of a user story. Many quality requirements are difficult to express as
user stories, which are often designed to be implemented in a single iteration [87].

Assurance Agile methods focus more on requirements validation rather than
verification as there is no formal modelling of requirements. Agile methods promote
frequent review meetings where developers demonstrate given functionality as well
as acceptance testing to evaluate, using a yes/no test, whether the user story is
correctly implemented.

Management and Evolution Agile teams prioritise requirements for each devel-
opment cycle rather than once for the entire project. One consequence is that
requirements are prioritised more on business value rather than other criteria such
as the need for a dependable architecture [87]. Agile methods are responsive to
requirements change during development and are therefore well-suited to projects
with uncertain and volatile requirements.
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3.4.3 Reuse

Software systems are seldom designed from scratch, and many systems have a
great deal of features in common. In the following we discuss how requirements
can be reused across software development projects. We then discuss the role and
challenges for RE when software systems are developed by reusing other software
components.

Requirements Reuse Jackson [49] highlights that most software engineering
projects follow normal design in which incremental improvements are made to
understand well successful existing systems. As such, many systems are likely to
have similar requirements. One technique for transferring requirements knowledge
across projects is using software requirements patterns to guide the formulation of
requirements [108]. A requirements pattern is applied at the level of an individual
requirement and guides the specifications of a single requirement at a time. It
provides a template for the specification of the requirement together with examples
of requirements of the same type, suggests other requirements that usually follow
on from this type of requirements, and gives hints to test or even implement this
type of requirements.

In contrast to normal design, radical design involves unfamiliar requirements
that are difficult to specify. To mitigate some of the risks associated with such
radical design, agile methods introduce development cycles that continually build
prototypes that help stakeholders and developers understand the problem domain.

Requirements for Reuse Modern software systems are increasingly built by
assembling, and reassembling existing software components, which are possibly
distributed among many devices. In this context, requirements play an essential role
when evaluating, comparing, and deciding the software components to reuse. We
now discuss the role of RE when reuse takes place in-house across related software
systems (software product lines) or externally with increasing level of autonomy
from commercial off-the-shelf (COTS) products to service-oriented systems, to
systems of systems.

• Software Product Lines. A software product line defines a set of software prod-
ucts that share an important set of functionalities called features. The variation
in features aims to satisfy the needs of different set of customers or markets.
As a result, there exists a set of core requirements associated with the common
features and additional requirements specific to individual products, representing
their variable features. Moon et al. [77] propose an approach to collect and
analyse domain properties and identify atomic requirements, described through
use cases, and rules for their composition. Tun et al. [99] propose to use problem
frames to relate requirements and features, which facilitates the configuration of
products that systematically satisfy given requirements.

• COTS. Commercial off-the-shelf products are software systems purchased from
a software vendor and either used as is or configured and customised to fit users’
needs. Hence, the ownership of the software system-to-be is shared, and the
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challenge shifted from defining requirements for developing a software system to
selecting and integrating the appropriate COTS products [6]. The selection aims
to match and find the closest fit between the requirements specifications and the
specification of the COTS. The integration aims to find the wrappers or adaptors
that compensate for the differences between the requirements specifications and
the specification of the selected COTS.

• Service-Oriented Systems. Service-oriented systems rely on an abstraction that
facilitates the development of distributed systems despite the heterogeneity
of the underlying infrastructure, i.e. middleware. Indeed, software systems
progressively evolved from fixed, static, and centralised to adaptable, dynamic,
and distributed systems [79]. As a result, there was an increasing demand for
methods, techniques, and tools to facilitate the integration of different systems.
For RE, this means a shift from specifying requirements for developing a bespoke
system or selecting a COTS products from one vendor to the discovery and
composition of multiple services to satisfy the requirements of the system-to-
be. A major challenge for discovery was syntactic mismatches between the
specification of services and the requirements. Indeed, as the components and
requirements are specified independently, the vocabulary and assumptions can
be different. For composition, the challenges were related to interdependencies
between service and behavioural mismatches with requirements. Semantic Web
services, which provide a richer and more precise way to describe the services
through the use of knowledge representation languages and ontologies, were then
used to enable the selection and composition of the services even in the case of
syntactic and behavioural differences [84].

• Systems of Systems. These are systems where constituent components are
autonomous systems that are designed and implemented independently and do
not obey any central control or administration. Examples include the military
systems of different countries [57] or several transportation companies within
a city [96]. There are often real incentives for these autonomous systems to
work together, e.g. to allow international cooperation during conflicts or ensure
users can commute. The RE challenges stem from the fact that each system may
have its own requirements and assumptions but their collaboration often needs
to satisfy other (global) requirements [60], e.g. by managing the inconsistent and
conflicting requirements of these autonomous systems [104].

3.4.4 Adaptation

Increasingly software systems are used in environments with highly dynamic
structures and properties. For example, a smart home may have several devices:
these devices may move around the house, in and out of the house, and they could
be in any of a number of states, some of which cannot be predicted until the system
becomes operational. A number of phrases are used to describe such systems include
“self-adaptive systems” [21] and “context-aware” systems [29]. Understanding and
controlling how these systems should behave in such an environment give an
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additional dimension to the challenges of RE, especially when their performance,
security, and usability requirements are considered.

Research in this area is still maturing, but a few fundamentals are becoming
clear [95]. First of all, there is a need to describe requirements for adaptation
quite precisely. A number of proposals have been made to this end including (1)
the concept of “requirements reflection” which treats the requirements model as
an executable model whose states reflect the state of the running software [95],
(2) the notion of “awareness-requirements” which considers the extent to which
other requirements should be satisfied [97], (3) numerical quantification of require-
ments so that their parameters can be estimated and updated at runtime [34],
and (4) rewriting of requirements to account for uncertainty in the environment
so that requirements are not violated when the system encounters unexpected
conditions [106].

Secondly, self-adaptive systems not only have to implement some requirements,
but they also have to monitor whether their actions satisfy or violate require-
ments [35], often by means of a feedback loop in the environment [36]. This leads
to the questions about which parts of the environment need to be monitored, how to
monitor them, and how to infer requirements satisfaction from the recorded data.

Thirdly, self-adaptive systems have to relate their requirements to the system
architecture at runtime. There are a number of mechanisms for doing this, including
(1) by means of switching the behaviour in response to monitored changes in
the environment [94], (2) by exploiting a layered architecture in order to identify
alternative ways of achieving goals when obstacles are encountered, and (3) by
reconfiguring components within the system architecture [55]. Jureta et al. [51]
revisit Jackson and Zave to deal with self-adaptive systems by proposing config-
urable specifications that can be associated with a different set of requirements. At
runtime, according to the environment context, different specification can be config-
ured which satisfies predefined set of requirements. Yet, this solution requires some
knowledge of all potential sets of requirements and associated specification rather
than automatically reacting to changes in the environment. Controller synthesis can
also be used to generate the software that satisfies requirements at runtime through
decomposition and assignment to multiple agents [58] or by composing existing
software components [10].

3.4.5 Traceability

Software evolution is inevitable, and we must prepare for change from the very
beginning of the project and throughout software lifetime. Traceability management
is a necessary ingredient for this process. Traceability is concerned with the rela-
tionships between requirements, their sources, and the system design as illustrated
in Fig. 14. Hence, different artefacts can be traced at varying levels of granularity.
The overall objective of traceability is to support consistency maintenance in the
presence of change by ensuring that the impact of changes can be located quickly
for assessment and propagation. In addition, in safety-critical systems, traceability
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Fig. 14 Requirements, software, and system traceability

supports approval and certification by establishing links between the necessary
requirements and the software complying with them. The main goal of traceability
is that it is requirements-driven [24], meaning that traceability must support stake-
holders’ needs. Challenges for RE include tools for creating, using, and managing
traceability links between relevant requirements, stakeholders, and other software
artefacts across projects regardless of the software development process [37]. These
challenges are made even more difficult when non-functional requirements that
often cross-cut multiple components and features are considered [76].

3.5 RE for Cross-Cutting Properties

Non-functional properties (such as dependability and security) properties affect
the behaviour of multiple components in the system. These properties are both
important (as they are critical to success [38]) and challenging as they require
holistic approaches to elicit, model, assure, and maintain non-functional require-
ments. These properties are typically related to system dependability, security, and
user privacy. In this section, RE efforts for addressing those relating to system
dependability, security, and user privacy are presented.

Dependability The notion of dependability encompasses a range of critical system
properties. Among the researchers in this area, a consensus has emerged as to the
main concepts and dependability of properties [7]. From RE point of view, the
taxonomy and characterisation of dependability provide a way of conceptualising
relationships between requirements and how they impact the system architecture.
Avizienis et al. [7] propose a framework in which dependability and security are
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defined in terms of attributes, threats, and means. They identify the following six
attributes as being the core properties of dependable systems:

• Availability: correct system behaviour is provided to the user whenever
demanded.

• Reliability: correct system behaviour continues to be available to the user.
• Safety: system behaviour has no bad consequences on the user and the environ-

ment.
• Confidentiality: no unauthorised disclosure of information.
• Integrity: no modification of data without authorisation or in an undetectable

manner.
• Maintainability: system behaviour can be changed and repaired.

Confidentiality, integrity, and availability are collectively known as the security
attributes.

Avizienis et al. identify three kinds of threats to dependability and security:

• Fault: A suspected or confirmed cause of an error.
• Error: A deviation from the designed system behaviour.
• Failure: A system behaviour that does not meet the user expectation.

There are different ways of managing threats, and they can be grouped as
follows:

• Fault prevention: methods for preventing the introduction or occurrence of faults
• Fault tolerance: methods for avoiding failures in the presence of faults
• Fault removal: methods for reducing or eliminating the occurrence of faults
• Fault forecasting: methods for estimating the occurrence and consequence of

faults

From the RE point of view, the dependability framework is valuable because a
systematic consideration of the dependability requirements could have a significant
impact on the system architecture and its implementation. For example, system
dependability can be improved by ensuring that critical requirements are satisfied
by a small subset of components in the system [52].

Security In recent years, the security of software systems has come under the
spotlight. There are two main ways in which the term “security” is used in the
context of RE. In a formal sense, security tends to be a triple of properties, known as
CIA properties: confidentiality, integrity, and availability of information (sometimes
called information security). In a broader sense, the term security is used to capture
the need for protecting valuable assets from harm [40] (sometimes called “system
security”). In RE approaches, analysis often begins with requirements for system
security, and many of them are often refined into CIA properties. Several RE
approaches to system security have been surveyed by Nhlabatsi et al. [78].

Rushby [92] suggests that it is difficult to write security requirements because
some security properties do not match with behavioural properties that can be



Requirements Engineering 83

expressed using formal methods and also because security requirements are counter-
factual (i.e. you do not know what the security requirements are until the system is
compromised by an attacker).

One way to think about security requirements is by looking at the system
from the point of view of an attacker: What would an attacker want to be
able to do with the system? Perhaps they want to steal the passwords stored
on the server. Requirements of an attacker are called negative requirements or
anti-requirements [25]. Once identified, the software engineer has to design the
system that prevents the anti-requirements from being satisfied. The idea has
been extended by considering various patterns of anti-requirements, known as
“abuse frames” [62]. In goal-oriented modelling, anti-requirements are called anti-
goals, and the anti-goals can be refined in order to identify obstacles to security
goals, and generate countermeasures [100]. In a similar vein, a systematic process
to analyse security requirements in a social and organisational setting has been
proposed [63]. Complementing these attacker-focused approaches to engineering
security requirements is the notion of defence in depth, which calls for ever more
detailed analysis of threats and defence mechanisms. This questioning attitude to
security is well supported by argumentation frameworks. In one line of work, formal
and semi-formal argumentation approaches have been used to reason about system
security [40].

Privacy For software systems dealing with personal and private information, there
are growing concerns for the protection of privacy. In some application areas such
as health and medicine, there are legal and regulatory frameworks for respecting
privacy. There are systematic approaches for obtaining requirements from existing
legal texts [18] and for designing adaptive privacy [83].

4 Future Challenges

Why should I bother writing requirements? Engineers focus on building things. Require-
ments are dead!
No, RE isn’t only about documents.
Well, anyway, there isn’t any real business using goal models!
Would you use RE for driveless car?

These statements exemplify the current debate around requirements engineering.
In its early years, requirements engineering was about the importance of specifying
requirements, focusing on the “What” instead of the “How”. It then moved to sys-
tematic processes and methods, focusing on the “Why”. It has then grown steadily
over the years. The achievements were reflected in requirements engineering being
part of several software engineering standards and processes. Yet, the essence of RE
remains the same: it involves good understanding of problems [66], which includes
analysing the domain, communicating with stakeholders, and preparing for system
evolution. So what have changed in those years?
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On the one hand, techniques such as machine learning, automated compositions,
and creativity disrupt the traditional models of software development and call for
quicker, if not immediate, response from requirements engineering. On the other
hand, the social underpinning and the increasing reliance on software systems
for every aspect of our life call for better methods to understand the impact and
implications of software solutions on the well-being of individuals and society as
a whole. For example, online social networks with their privacy implications and
their societal, legal, and ethical impact require some understanding of the domain in
which the software operate.

In addition, a number of pressing global problems such as climate change
and sustainability engineering as well as increasingly important domains such as
user-centred computing and other inter- and cross-disciplinary problems challenge
existing processes and techniques. Yet, the fundamentals of RE are likely to be
the same. The intrinsic ability of RE to deal with conflicts, negotiation, and its
traditional focus on tackling those wicked problems is highly beneficial. We now
summarise some trends influencing the evolution of requirements engineering as a
discipline.

4.1 Sustainability and Global Societal Challenges

Software is now evolving to encompass a world where the boundary between the
machine and human disappears, merging wearable with the Internet of Things into
“a digital universe of people, places and things” [1]. This ubiquitous connectivity
and digitisation open up endless opportunities for addressing pressing societal
problems defined by the United Nations as Sustainable Development Goals,1

e.g. eradicating hunger, ensuring health and well-being, and building resilient
infrastructure and fostering innovation. These problems are wicked problems that
RE has long aspired to address [32], but they still challenge existing RE techniques
and processes [39]. First, the multi- and cross-disciplinary nature of these problems
makes it hard to understand them, let alone to specify them. In addition, while
collaboration between systems and people is important, stakeholders may have
radically different views when addressing them. As each of those problems is novel
and unique, they involve radical design and thereby require dealing with failures to
adapt and adjust solutions iteratively [49].

Multidisciplinarity The need for multidisciplinary training for requirements engi-
neers has been advocated since 2000s [82]. Agile methods also promote multi-
functional teams [56]. Furthermore, Robertson and Maiden [69] highlight the need
to be creative during the RE process. But nowadays, requirements engineers need to
become global problem solvers with the ability to communicate, reflect, and mediate

1http://www.un.org/sustainabledevelopment/.

http://www.un.org/sustainabledevelopment/
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between domain experts and software engineers as well as to invent solutions. Early
empirical evidence is given in the domain of sustainability as to the role of the RE
mindset and its inherent focus on considering multiple perspectives to build shared
understanding in an adaptive, responsive, and iterative manner [8].

Collaboration Collaboration between software engineering teams to find software
solutions has attracted a lot of interest [42], so has the collaboration between
software components for adaptation and interoperability [10]. Software ecosystems
that compose software platforms as well as communities of developers, domain
experts, and users are becoming increasingly common [16]. The intentional aspects
of those ecosystems need to be well understood in order for the impact of
collaboration and interconnection to be specified rather than just incurred. The
requirements for emergent collaborations between people and technology and the
theory and processes for understanding them are still to be defined.

Failure In extremely complex systems, failure is inevitable [61]. In order to make
systems more resilient, it is important to be able to anticipate, inject, and control
errors so that the side effects that are not necessary foreseen at the design time
are better understood [93]. But embracing failure necessitates learning from it and
distilling appropriate knowledge into the design, which is often at the heart of
RE [49].

4.2 Artificial Intelligence

The research discipline of RE has focused on capturing lessons, developing
strategies and techniques, and building tools to assist with the creation of software
systems. Many of the related tasks, from scoping to operationalisation,were human-
driven, but increasingly artificial intelligence (AI) techniques are able to assist
with those tasks [86, 9]. For example, machine learning can be viewed as a tool
for building a system inductively from a set of input-output examples, where
specifications of such a system are given as training data sets [74]. In this context,
requirements are used to guide the selection of training data. Without having this
selection in line with stakeholders’ needs, the learnt system may diverge from their
initial purpose, as it happened with Microsoft Tay chatbot [105]. Tay was a machine
learning project designed for user engagement but which has learnt inappropriate
language and commentary due to the data used in the learning process. In addition,
transparency requirements [43] can also play an important role in increasing users’
confidence in the system by explaining the decision made with the software system.

4.3 Exemplars and Artefacts

In their 2007 survey paper, Cheng and Atlee [20] highlighted the need for the
RE community to be proactive in identifying the new computing challenges.
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Ten years later, RE still focuses on conceptual frameworks and reflects rather
than leads and invents new application domains. Evidence is somehow given by
the lack of extensive RE benchmarks and model problems (besides the meeting
scheduler [103], lift management system [72], or railroad crossing control [41])
despite some successful case studies in the domain of critical systems such as
aviation [59] and space exploration [65]. Yet as discussed in this section, RE can
play an immense role in leading the way for understanding and eliciting alternative
solutions for solving global societal challenges. The discipline of RE may need to
move from reflection to disruption [33].

5 Conclusion

Requirements are inherent to any software system whether or not they are made
explicit during the development. During its early days, RE research focused on
understanding the nature of requirements, relating RE to other software engineering
activities, and setting out the requirements processes. RE was then concerned with
defining the essential qualities of requirements, which would make them easy
to analyse and to change by developers. Later on a specific focus was given to
particular activities within requirements engineering, such as modelling, assurance,
andmanaging change. In the context of evolution, reuse and adaptation have become
active areas in research. Agile and distributed software development environments
have challenged the traditional techniques for specifying and documenting require-
ments. Although the tools for writing, documenting, and specifying requirements
may differ, the principles of RE relating to domain understanding, creativity, and
retrospection are still important, and will probably remain so. With the complexity
and ubiquity of software in society, the interplay between different technical,
economical, and political issues calls for the kinds of tools and techniques developed
by RE research.
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