
Software Engineering in the Cloud

Eric M. Dashofy

Abstract The computing infrastructure on which engineers develop and deploy
software has evolved significantly in recent years. The rapid growth of cloud
computing services mean that infrastructure and platform components are becoming
more decentralized (owned by others, often far away from the development or
operating organization) and more elastic (with the ability to provision and de-
provision them at will). Infrastructure-as-a-Service (IaaS) capabilities provide the
raw resources needed to deploy software—computing, storage, and networking.
Platform-as-a-Service (PaaS) offerings provide important software components
as commodity services—databases, identity and access management, security,
analytics, various kinds of middleware, and much more. New virtualization and
packaging techniques for software that can take advantage of cloud computing,
such as containers, provide new opportunities for rapid and automated testing,
deployment, and scaling of software systems. This enables new software delivery
models, such as continuous deployment of new software to production environments
and frequent, transparent A/B testing of new features. These changes are having
an impact on software development environments, as well, with more development
tasks and workflow steps moving to the cloud. This chapter will briefly explore these
technologies and their relationships to one another, and explore their impacts on the
practice of software engineering.

1 Introduction

Developments in the 2000s and 2010s have had a significant effect on how modern
software is built and deployed. High-bandwidth, ubiquitous Internet connections
and the development of different virtualization technologies and techniques have
enabled the emergence of a new set of technologies for software development
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and deployment collectively referred to as “cloud computing” technologies [1].
These technologies have created tremendous new opportunities—and challenges—
for software engineers.

In this chapter, we will explore cloud computing concepts and technologies, and
how these can impact software engineering processes, decisions, and designs. First,
we will examine virtualization technologies and how these enable cloud computing.
Then, we will walk through the cloud technology stack, covering the three layers
of the most widely accepted model of cloud computing: Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) [2]. Finally,
we will look at how cloud technologies are affecting the process of software
development and deployment. While they can be complex, cloud technologies offer
a wide variety of new architectural options for software engineers in developing and
composing novel applications in an increasingly networked world.

1.1 Example

Throughout this chapter, we will examine how the design of a software application
might be affected by, or take advantage of, cloud technologies through the use of a
hypothetical example. Consider a company that creates a software product called the
Media Manager. The initial version of the Media Manager is a traditional desktop
application with a component-based architecture that allows a user to store, catalog,
and play back digital media—songs, videos, and so on.

The architecture for the initial version of this application is shown in Fig. 1. This
application runs on a single desktop computer. The user interacts with the applica-
tion through a graphical user interface (GUI). This relies on a database component,

Desktop Computer

Graphical User Interface 
Component

Media Index Database 
Component Audio Storage Component Video Storage Component

Fig. 1 Architecture for the traditional desktop version of the (hypothetical) Media Manager
application
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which indexes all the media in the system (for searching and organization), as well
as two storage components for storing audio and video files, respectively.

The company wants to evolve the Media Manager application to take advantage
of the cloud, and make it available to multiple users as a Web application. We will
see how this transition occurs in the following sections.

2 Key Concepts

“Cloud computing” is a general term for technologies where software, services,
and infrastructure are made available as commodities over a network. Usually, the
provider of these resources is a separate, remote organization from the consumer,
and the resources are made available over the Internet, though organizations can
develop their own “private” clouds as well (see Sect. 3.1). One of the key advantages
of cloud technologies is that they tend to be available on-demand, where consumers
can allocate and deallocate resources as needs grow and shrink in near-real-time.
This property is often called elasticity.

2.1 Virtualization

In addition to ubiquitous Internet access, virtualization has been the key enabler
and driver of the development of cloud technology. Virtualization uses software
to create an abstraction layer atop physical computing, storage, and networking
resources. Virtual elements (machines, storage services, networks) function almost
identically to their physical counterparts, but use software to enable on-demand
provisioning and de-provisioning, as well as allow more flexible reconfiguration—
also on-demand.

2.1.1 Virtual Computing

Virtual computing is made possible through the use of virtual machines (VMs)
[3, 4]. Virtual machines allow a single physical computer to host multiple, isolated
virtual computers that share the physical resources of the underlying computer: the
processing capability, memory, mounted storage, and peripherals such as network
connections or hardware accelerators.

Virtual machines confer several advantages over physical machines. First, they
can improve resource utilization: in many applications, computing resources are not
fully utilized—processors sit idle much of the time, only part of the computer’s
memory is used, and network bandwidth use varies. By hosting multiple virtual
machines on the same physical machine, those resources can be more fully utilized.
Of course, virtual machines hosted together will compete with each other for those
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resources when demand is high. Virtualization engineers spend time analyzing this
and moving virtual machines among physical machines in order to achieve optimal
performance and minimize contention.

Even in applications with high resource requirements where few resources are
idle, it can still be advantageous to use virtual machines. In this situation, it is
common to see a single virtual machine running on, and using the full resources
of, each physical machine in the environment. Virtual machines provide a single,
consistent hardware interface to software applications running on them—regardless
of the underlying hardware. Imagine a data center with hundreds of physical
computers, where a recapitalization program replaces and upgrades one-third of
the machines every year. The new computers may be of a different make or model
than the older ones in the data center. In a situation without virtualization, software
running on those machines might need to undergo significant retesting or rewriting
to ensure that it remains compatible with the new hardware. Using virtual machines,
it is much less likely that the software will run differently on the new hardware.

Virtual machines can more easily take advantage of increased computing capac-
ity. An older physical machine might have the resources to host four virtual
machines at the same time. A newer machine might have the resources to host six or
eight. This helps to increase computing “density” in the data center—fewer physical
machines providing more capacity, without significant changes to the underlying
software.

Virtualization can also increase software reliability. Virtual machines can be
replicated, reconstituted, or (with some types of virtualization technology) migrated
“live” to other physical machines, usually within a few minutes of the request. This
allows software to operate with minimal disruptions when physical machines fail,
it allows physical machines to be brought down for maintenance more easily, and it
can be used to relocate software services to locations that are more advantageous—
for example, locations geographically closer to the demand for those services to
reduce network latency.

Each virtual machine has its own operating system (OS) and software configura-
tion. This allows multiple operating systems to run on the same physical hardware,
which is useful when developing software systems where application components
have different OS requirements. Additionally, although this is less common, a
virtual machine can emulate a completely different computing architecture than the
underlying physical hardware. This comes at a significant performance cost, but it is
extremely useful when an application or component runs only on a legacy platform
for which native hardware is no longer manufactured or available (such as DEC
Alpha or IBM OS/360). This strategy is often used to substantially increase the life
of these applications until they can be rewritten or replaced.

To take full advantage of virtual computing, software engineers must work hand-
in-handwith virtualization engineers, and must often develop their applications with
virtualization in mind. For example, to enable improved scalability or reliability,
a front-end load balancer or proxy may be necessary to route incoming user
requests to a family of virtual machines that provide the main software services.
Software applications working in an environment with live migration may need
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to listen for events preceding and following a migration to checkpoint or restore
state (although improvements in virtualization technology are making migration
increasingly transparent).

2.1.2 Virtual Storage

Storage virtualization pools many interconnected physical storage devices (e.g.,
hard disks or solid-state drives) into software-managed virtual storage devices. This
permits storage elasticity, where storage can be added or removed from a pool
in real time without disrupting operations. It can also improve storage reliability,
since pools can be configured to replicate data across physical storage devices in
case individual devices fail. More advanced storage virtualization technology will
constantly and transparently move data among heterogeneous storage devices to
optimize cost and performance. For example, it might move the most-used data to
more expensive, highly reliable, high-performance solid-state drives and the least-
used data to cheap, less-reliable, lower-performance commodity hard drives.

Storage virtualization generally has minimal impact on software engineers,
except to provide additional flexibility and optimization in storage. The exception
would be when software has specific performance assumptions or requirements
for storage—common in high-performance computing and database applications.
In these cases, it is important for software engineers to work with virtualization
engineers to ensure that these requirements are met by configuring the virtual
storage to allocate the right kind of storage for these parts of the application.

2.1.3 Virtual Networking

Virtual networking is the third major trend in virtualization, but today it is less
mature than virtual computing or storage. In traditional networking, machines are
physically connected in configurations that permit desired data flows and isolate
machines that should not be communicating. Software configurations on elements
such as routers, switches, and firewalls restrict or otherwise guide network data
flows, and are managed on a device-by-device basis.

With network virtualization technology, sometimes known as software-defined
networking (SDN) [5], all devices are physically interconnected to SDN-capable
routers and switches. Configurations, similar to programswritten in domain-specific
languages, are deployed onto these devices and create virtual networks and routes
between the devices. In this way, two endpoints that are physically connected to the
same router might be on completely separate virtual networks, able to communicate
with other devices on those same virtual networks but not with each other. This
isolation can be used to increase security and reduce possible interference between
applications. Network virtualization can also be used to increase the reliability of
distributed software systems—if an outage occurs, a virtual network can be quickly
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reconfigured to transparently route traffic to a backup server or data center without
disrupting the application.

As with other virtualization technologies, software and virtualization engineers
must work closely together to take maximum advantage of network virtualization.
Network virtualization introduces new options for security and reliability that may
supplement—or supplant—those traditionally implemented in software. For exam-
ple, software-defined network rules may eliminate or reduce the need for software
firewalls on individual machines in a distributed application. As noted above,
software-defined networking can be used to handle certain types of failover—a
job traditionally handled by proxies or load balancers. Software engineers must
decide carefully where and how to implement these capabilities as part of their
applications’ architecture.

2.1.4 Example

Howmight the media manager application evolve to take advantage of virtualization
and become a Web application at the same time?

The architecture of this version of the application is shown in Fig. 2. The core
architecture remains, with a few changes. The GUI has been replaced by a Web
interface, the internal database component has been replaced by an off-the-shelf
relational database (like MySQL or Postgres), and the storage components now rely
on virtual storage provided in the environment. Since this is still a one-machine
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Web-based User Interface

Media Index hosted on 
Off-the-shelf Rela�onal 

Database
Audio Storage Component Video Storage Component

Virtual 
Storage

Virtual
Storage

Virtual
Storage

Fig. 2 Architecture of the first Web-based version of the Media Manager application, taking
advantage of virtualization
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architecture, it doesn’t take obvious advantage of virtual networking, though it
might use software-defined networking features to limit incoming connections to
ensure that users can only connect to the Web interface and not, for example, to an
administrative interface on the database component.

2.2 The Three-Layer “as-a-Service” Model of Cloud
Computing

Cloud computing starts with the abstractions made available by virtualization, and
adds layers that turn them into consumable services. A common model used to
discuss cloud services breaks them up into three types: Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) [2].

2.2.1 Infrastructure-as-a-Service (IaaS)

Infrastructure-as-a-Service (IaaS) providers offer basic computing resources such as
computing, storage, and networking as commodity services. Software applications
are then deployed on these infrastructure elements.

Computing is usually provided in the form of virtual machines created and
destroyed on demand. Often, some amount of local storage is provided along
with the virtual machine. Additional storage can be accessed through IaaS storage
services, described below. IaaS computing providers often offer a variety of different
(virtual) hardware configurations that differ in the amount of processing power,
memory (RAM), storage, network bandwidth, and peripherals available. Configu-
rations for data storage and retrieval might have modest processing capabilities and
memory capacity, but large high-performance storage. Configurations for real-time
data processing may have fast processors and large amounts of memory, but little
available storage.

Virtual storage services are also part of many IaaS offerings. Storage may come
in the form of “block storage” or elastic filesystems, where the storage is mounted
directly on IaaS computing devices and acts as a network drive. It may also come
in the form of “object storage” where individual files are stored and retrieved one at
a time based on unique keys. Object storage does not have the nested directory
structure that block or filesystem storage has, and is not mounted as a network
drive.1 Instead, files in object storage are stored and retrieved through network-
based application programming interfaces (APIs), usually based on the HTTP
protocol. For applications that store and retrieve discrete files, like a photo or video
management system, object storage can be a good architectural fit.

1Some creative software developers have built adapters that can treat certain object storage services
as a filesystem, but the performance and latency are usually worse than a filesystem-based service.
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Virtual networking services are usually provided as part of IaaS computing
offerings, thoughwhat capabilities are exposed to the consumer vary from service to
service. More advanced IaaS offerings let consumers set up virtual private networks
between their IaaS machines and control the configuration and routing of those
virtual networks.

Hosted Bare Metal—IaaS Computing on Physical Machines
There’s no fundamental reason why IaaS computing services have to use
virtual machines; they could also be implemented in a manner where a pool
of physical machines are allocated, configured, and deallocated on demand.
Sometimes called “hosted bare metal” [6], this approach can be useful in
certain situations. Virtual machines introduce a small performance cost that
can be undesirable in very high-performance applications, such as high-
frequency stock trading or real-time control systems; this can be avoided
by hosting directly on physical machines. Additionally, the licensing and
management costs of virtual machines might be undesirable in an application
where the hardware requirements are consistent and well-known, and the
software makes efficient use of the hardware resources.

Example

Let’s look at how the Web-based Media Manager application might further evolve
to take advantage of IaaS services.

The IaaS-based architecture of the Media Manager application is shown in
Fig. 3. Here, each major component of the architecture has been moved to its own
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Fig. 3 IaaS-based architecture of the Media Manager application
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virtual machine, possibly connected to the others by a software-defined network that
carefully controls interconnections within and outside the application. Furthermore,
the storage components use cloud-based block storage (for the database) and
object storage (for the media). If use of the system increases, some of these
virtual machines may be replicated (with appropriate routing or load-balancing
infrastructure added) to increase capacity or scale.

Controlling IaaS Resources
When beginners start to use IaaS offerings, they generally provision resources
manually, usually through a point-and-click Web-based or command-line
interface. Many IaaS providers also expose network-accessible APIs that can
be accessed directly by software. Advanced applications that are IaaS-aware
can use these APIs to provision and de-provision additional resources on
demand when necessary, and this can have a significant impact on a software
system’s architecture.

One example of an IaaS control API is Amazon’s “Query API” [7] for
controlling resources in its Elastic Compute Cloud (EC2) service. Commands
are sent to this service via specially formatted HTTP requests, similar to those
made by a Web browser. The Query API uses individual requests for each
command, and implements a simple, consistent request-response protocol.
More complex APIs may implement a RESTful interface [8]. An example
request:
https://ec2.amazonaws.com/?Action=RunInstances

&ImageId=ami-31814f58
&InstanceType=m3.medium
&MaxCount=3
&MinCount=1
&KeyName=my-key-pair
&AUTHPARAMS

The main request goes to a well-known, published location (ec2.amazon-
aws.com) and invokes the RunInstances command. This command takes
a number of parameters that modify how the action works. In this example,
they are:

• ImageId: The identifier of a previously developed Amazon Machine
Image (AMI) that is to be deployed on the newly created virtual machines.

• MaxCount: The maximum number of virtual machines to create.
• MinCount: The minimum number of virtual machines to create.
• InstanceType:What type of virtual machine(s) to create. Amazon offers a

catalog of named virtual machine configurationswith different capabilities.
The m3.medium instance specified here has 1 virtual CPU, 3.75 GB of
RAM, and 4 GB of storage space. An m3.xlarge instance, in contrast,
would have 4 virtual CPUs, 15 GB of RAM, and 80 GB of storage (but
would cost more).

(continued)

http://amazonaws.com
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• KeyName andAUTHPARAMS:Authentication data previously set up by
the user to ensure that the user has permission to invoke this operation.

HTTP-based APIs like these are accessible from any programming lan-
guage or computing environment that can open a TCP connection, making
them very widely available. To make software-based management of IaaS
resources even more convenient, providers like Amazon often make software
development kits (SDKs) available in popular programming languages that
wrap these network-based calls in interfaces that are tailored to those pro-
gramming languages specifically.

2.2.2 Platform-as-a-Service (PaaS)

The definition of what constitutes a Platform-as-a-Service (PaaS) offering has
changed over the history of cloud computing. Here, we will try to address how
its use and conception has evolved.

In the early days of cloud computing, PaaS referred to a service offering that
allows software applications to be uploaded directly to the service for execution
on remote computing resources. These PaaS offerings often support specific
programming languages such as Java, Python, or JavaScript. Programs running
on the platform have access to the runtime library of the programming language,
with some exceptions to prevent the programs from using too many resources
(frequently, access to APIs that read or write files from the filesystem or open
network connections would be restricted). Different platforms may also provide
access to standard or custom libraries that provide developers additional capabilities
not normally part of the programming language’s standard runtime library.

For developers who want to deploy a new application or network service quickly,
these PaaS offerings provide several advantages over deploying the same software
directly on an IaaS offering. For example, consider a developer that wants to create
and deploy a simple Web service, or perform a one-time computation. With IaaS,
the developer must allocate a machine, log in, configure the operating system,
install any dependencies for the software (Web servers, dependent libraries, and
so on), configure those applications, install the software, and run it. Once the
software is running, the developer remains responsible for patching and upgrading
the operating system and its applications, which is an additional cost. However,
with an appropriate PaaS offering, the developer can just upload the software itself
directly, and the platform provides all the necessary dependencies.

This kind of PaaS offering is still available from many providers. However,
over time, the term “Platform-as-a-Service” expanded to encompass a related set
of offerings: network-hosted software services that can be incorporated into appli-
cations to provide additional capabilities—but which are not complete applications
themselves. These PaaS services can be thought of as the cloud equivalent of
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software libraries. Examples of PaaS services available from commercial providers
today include:

• Load-balancing services, which can provide scalability by balancing incoming
requests across a number of machines or endpoints that provide service, and can
provide reliability by routing requests around malfunctioning machines

• Database services, both relational and object-based or “NoSQL” [9]
• Identity and access management services, providing user management, authen-

tication, and authorization
• Content delivery services, which make it easier to disseminate content effi-

ciently, with automated caching throughout the network to replicate content in
locations close to endpoints that need it

• Natural language processing services, which use machine learning and artifi-
cial intelligence techniques to parse and produce written and spoken language

• Image and video processing services, which provide transformation, process-
ing, and recognition algorithms for images and video

• Large data processing services, which provide the ability to apply transforma-
tions or analysis algorithms to massive amounts of data efficiently

Both platform- and service-style PaaS offerings can be combined in the creation
and deployment of applications—a software engineer might develop an application
for deployment on a PaaS platform offering that also uses PaaS services such as
a database service and an identity management service for user management and
authentication.

For obvious reasons, PaaS can have a tremendous impact on how software
engineers architect and design applications. The previously laborious and technical
process of setting up and configuring resources, components, and services is
minimized. In a PaaS-driven architecture, software integration becomes at least as
important as the development itself.

Example

The PaaS-based architecture of the Media Manager application is shown in
Fig. 4. This architecture is quite different from the previous architectures. Many
application-specific components (blue) have been replaced by PaaS-based services
(green). The front-end and user interface of the system now runs on a PaaS-
based Web application hosting platform. A PaaS load-balancing server routes
incoming requests between instances of the front-end that are dynamically created
and replicated by theWeb app platform, enhancing the scalability of the application.
Databases and storage have been replaced by PaaS services. Note the absence of the
block and object storage elements shown in the IaaS architecture—it’s possible that
the PaaS relational database or media storage services use these storage elements to
do their jobs, but this detail is abstracted away from the developer. It’s now the PaaS
services’ job to manage the underlying storage. Here also, a user management and
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Fig. 4 PaaS-based architecture of the Media Manager application

authentication capability has been added to the system through the incorporation of
a PaaS identity management service.

It is interesting to note how much of the application has been replaced with PaaS
services. As noted above, this reflects how PaaS can affect architectures in general—
by increasing the importance of integration in software engineering when compared
to custom development. Here, the custom development is limited to just the unique
and integrative elements that tie together the other, commodity services.

2.2.3 Software-as-a-Service (SaaS)

Software-as-a-Service is the practice of offering complete software applications
to their users, for use over the network. In today’s Internet, these are usually
implemented as Web applications that run in a browser. Advances in browser tech-
nology have made it possible to implement increasingly capable applications; today,
complex systems such as word processors and spreadsheets have been implemented
as browser-based applications. The browser’s interface and capabilities have not
evolved to the point where these applications are equal to their desktop counterparts,
but the gap is closing over time.

As a delivery model, SaaS is attractive for several reasons. First, there is no client
software to install and update—all deployment of updates happens to the software
on the server-side, and users get those updates automatically whenever they access
the software. Second, access to the software can be sold as a subscription, creating
continuous revenue streams and also virtually eliminating software piracy.
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Probably the most important issue facing software engineers developing SaaS
applications is the need to carefully design the model by which they will update and
evolve the software. SaaS applications tend to be in continuous use. Pushing out an
update to a production service while users are actively using it can have negative
consequences depending on the implementation of the update. For example, it
is unlikely that you want users to start a transaction using one version of your
application and finish the transaction using another.

A solution to this problem leverages other cloud elements such as IaaS and PaaS
components described above. Using these techniques, a new version of the software
could be deployed on infrastructure parallel to the old version, and connected to
a load balancer or front-end proxy in an inactive state. When ready to go live,
the load balancer or proxy can be programmed to start routing some or all new
interactions to the new version of the application. When all transactions have moved
to the new version of the application, the old version and its infrastructure can be
de-provisioned. This process ensures a smooth transition.

Many mature SaaS vendors take advantage of this strategy for software testing,
as well. Using this strategy, it is possible to take a subset of application users,
perhaps 5%, and route their requests to a new or different version of the application.
Those interactions can be monitored using probes built into the software to test it
and compare it to the previous version—for reliability, usability, or performance.
With a big enough user base, a cloud provider can push and test updates like this
multiple times a day, or try dozens of slight variants of a new feature to performA/B
testing on small (frequently unsuspecting) populations of their users. With feature
updates in an SaaS environment being smaller and more frequent than in traditional
environments, it’s possible many users may not even consciously notice the changes.

Example

The SaaS version of the Media Manager application is shown in Fig. 5. Fewer
changes are apparent here—in reality, as a hosted Web application, the PaaS version
of the system is already inherently available in the Software-as-a-Service style. To
actually offer it as a commercial service, though, the development company must
add a few services. Here, we see some additional PaaS elements—one for a paywall,
preventing anyone without a paid account from accessing the application, and a
credit card processing service allowing people to pay for a new account—integrated
with the user and authentication management system, of course.
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Fig. 5 Architecture of the SaaS version of the Media Manager application

Open-Source Software-as-a-Service
Open-source software projects make their source code available for exami-
nation and enhancement by end users. Today, open-source software is found
everywhere, and open-source elements can be found in almost every large
software system.

There are two general classes of open-source licenses. The first, called
“permissive” licenses, includes the MIT, BSD, and Apache Licenses. These
licenses permit users to modify the software, but don’t create any obligations
for the users to make the source code for those modifications available to
others. For this reason, components with permissive licenses are frequently
integrated into proprietary software systems.

There is a second class of licenses, called “copyleft” licenses, typified by
the GNU General Public License (GPL) and its variants. Like permissive
licenses, copyleft licenses permit users to modify the software. Unlike permis-
sive licenses, copyleft licenses require that developers of modifications make
the source code for those modifications available to other parties whenever
they give those parties the compiled, or binary, versions of the software. This
prevents companies and individuals from taking a copyleft-licensed piece
of software, developing proprietary extensions to that software, and then
distributing the extended software while keeping those extensions proprietary
and thus unavailable for others to modify.

The copyleft model faced an interesting challenge with the rise of
Software-as-a-Service (SaaS) applications. In a SaaS application, users of

(continued)
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the software never have direct access to the software at all—neither as a
binary nor as source code. This raised the possibility that someone could take
copyleft-licensed software, create extensive modifications, and offer (or sell)
the result as SaaS without making those modifications available in any form
to its users, in conflict with the spirit of the copyleft model.

This resulted in the creation of new copyleft licenses, such as the GNU
Affero General Public License (AGPL) [10], which include additional provi-
sions that source code of modifications must be made available to network
users of software, and not just those that receive the compiled or binary
versions.

3 The Software Economics of Clouds

Before cloud computing, organizations wanting to offer new software services had
to buy, configure, and install their own infrastructure in their own facilities, handling
all technical and management aspects of this themselves. The costs to manage this,
along with the skills required to implement and maintain it, are very high. This made
entering the software market a daunting prospect for small companies and startups.
Over time, companies began to emerge that specialized in offering some aspects of
these services for sale—for example, so-called colocation facilities began to offer
space in high-quality, well-managed data centers to small businesses at reasonable
costs, but those businesses were still required to configure (and often install) the
hardware themselves.

As cloud computing matured, infrastructure, platform, and software services
were offered to the public, available to anyone with a credit card. Today, most
vendors sell these services commercially in a “pay-as-you-go” fashion. Access
to virtual machines is charged by the minute as long as the virtual machine is
running—when it is shut down, the charges cease and the computing resources
are made available to other customers. Platform services often charge by the
volume of transactions or data processed. Software services are usually offered
on a “subscription” basis, usually in the form of per-user-per-month charges. This
has changed the economics of starting a software company from being a capital
investment (with large upfront expenses in equipment and facilities and smaller
ongoing maintenance expenses) to an overhead investment (with ongoing charges
that scale with the needed capacity).

This shift has been a huge boon to small companies, startups, and innovators.
The investment to host a new software application on the Internet is now minuscule,
especially when the required capacity is small (as it would be for a brand-new
application). The servers, bandwidth, and platform services might be available for
a few dollars a day. As demand increases, more cloud resources can be acquired
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on demand—again, without significant capital investment. A startup today can go
from a one-server prototype application to a 500-server, globally available, high-
scalability server farm in hours—a process that would have taken months of time
and tens of thousands of dollars before the cloud.

Cloud providers, particularly infrastructure providers, have taken on the capital
investment that still needs to occur to manage the thousands of physical machines
hosting the tens of thousands of virtual machines available to their customers. This
centralization has led to incredible economies of scale, where the biggest providers
continue to hyper-optimize their services. Cloud provider data centers are gigantic,
and tend to be geographically located close to major power and cooling sources
such as dams and rivers. Some providers even work with hardware manufacturers to
design custom computers that are built as bare circuit boards—installed in machine
racks without cases to lower cost and maximize airflow for heat dissipation. These
optimizations drive costs down and capacity up in ways that would be otherwise
completely inaccessible to all but the biggest companies.

These commercial clouds are available to the general public and are used by
thousands of individuals and companies who share the infrastructure. For this
reason, these are often known as “community clouds” and are what people generally
think of as being “cloud computing.” Commercial community clouds are not the
only kind of clouds, however.

3.1 Private Clouds

Clouds enable new levels of decentralization in software engineering—where
systems are not just physically distributed across computers or sites, but where
the responsibility for parts of the application is held by different parties. When
customers (e.g., developers) acquire cloud services, they enter into contracts with
cloud providers that establish the responsibilities of both parties. These will include
a service-level agreement (SLA) [11] that specifies guarantees about characteristics
of the cloud service upon which the customer can rely. These may be guarantees
about reliability, performance, availability, support, and so on. If these guarantees
are violated, the cloud provider will generally compensate the customer monetarily
or with free services in the future.

Some companies and organizationswant to take advantage of cloud technologies,
but have reservations about commercial community clouds. Theymay be concerned,
for example, that:

• Their services will be starved for resources when demand spikes for other
customers in the same cloud

• Their data will be processed and stored on computers and storage devices that
are used by other companies, and bugs or exploitable flaws in virtualization
technology will expose their data to hackers
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• They lack sufficient control over the architecture and evolution of the cloud to
meet their future business goals

• They need to meet reliability or performance goals unavailable in SLAs from
commercial service providers, or that the offered monetary compensation is
insufficient to remedy a violation

In these cases, a company or organizationmay choose to invest in a private cloud.
A private cloud is owned by a single company and provides infrastructure, platform,
or cloud services similar to (and in some cases using the same technology as) a
commercial community cloud provider. However, the private cloud resources will
be exclusively available for the use of the owning company or organization, under
its complete control.

Organizations that do not want to build and maintain a completely private
cloud may partner with cloud providers to create a hybrid solution with additional
protections for that company. For example, a large cloud provider may offer, for
an additional fee, exclusive use of a subset of its cloud resources—guaranteed not
to be shared with any other customers. This would be a commercial private (i.e.,
noncommunity) cloud.

4 Software Development and Deployment in the Cloud

Cloud technologies have, to date, had only a modest impact on the process by which
software is developed. Most developers today still use full-featured development
environments such as Visual Studio or Eclipse on their desktop to write code,
even when that code is for a cloud-based application. They may, however, use
SaaS cloud services such as Sourceforge or Github for configuration management,
issue tracking, and so on. Recently, a few efforts have created integrated software
development environments (IDEs) that are available as SaaS services themselves,
running in the Web browser. Similar to other complex SaaS applications like word
processors and spreadsheets, the Web-based IDEs don’t yet have the features or
performance of their desktop counterparts, and haven’t yet achieved widespread
adoption—though this may change in the future.

The packaging and deployment of software in the cloud is undergoing rapid
evolution, however. As noted throughout this chapter, virtualization is a common
theme and enabler of software engineering for the cloud. Early in the evolution of
the cloud, this development focused on virtual machines, described in detail in Sect.
2.1.1. Recently, a new packaging and virtualization technology has emerged that is
rapidly gaining traction among software engineers—container-based virtualization
[12].

Containers are a lighter-weight form of virtualization than virtual machines.
With virtual machines, each VM is almost completely independent of the others,
and each machine can run a different operating system. Containers assume more
homogeneity—all containers on the same host machine share an operating system.
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Individual containers may use different libraries and binary tools, as long as they
are compatible with the shared operating system kernel.

This difference in approach enables containers to scale very differently than
virtual machines. A single physical machine will likely host only a handful of virtual
machines (especially powerful servers might host 10 or 20 VMs) due to the resource
requirements of virtual machines. Virtual machines usually take a few minutes to
provision, boot, shut down, and de-provision, just like their physical counterparts.
In contrast, a single host machine can support hundreds or thousands of containers,
and containers can be created and destroyed quickly—often in sub-second times.

Typically, each container runs a single application and performs a single function.
For example, a container might provide a proxy, a load-balancer, a Web service, or
a database. A complete software application usually relies on multiple containers
coordinating and communicating to implement the total system. This enables new
architectures where applications are composed of small, single-function interdepen-
dent services that can scale independently from one another. This is known as a
microservices architecture. In a way, these architectures are modern versions of the
time-tested UNIX architecture, where a key design principle is to build small, single-
purpose programs that can be easily combined (often in novel ways) to achieve user
goals.

Being lighter-weight than virtual machines, it is easy for container management
systems to scale the capacity of individual services by spinning up more instances
of containers when necessary. Similarly, containers can be easily migrated to, or
replicated on, other hosts to improve performance or application reliability. While
some virtual-machine-based systems can also have this capability, it is easier and
faster to do this with containers.

Containers can also help in application development. New software should
never be deployed to production environments directly. Rather, it should first
be deployed to staging environments that are (ideally) configured identically to
the production environment, where it can be tested. In a virtual-machine-based
architecture, keeping staging environments consistent with production environments
can be difficult, since any change to the production environment must be made
identically to the staging and other development environments. With containers, all
dependencies for an application or service are packaged into the container when it
is built, and these are independent of all other containers. Effectively, deploying a
container deploys the application and its entire stack of dependencies all at once.
This significantly reduces the likelihood of differences between production and
staging environments. Additionally, since containers are lightweight and many of
them can be deployed easily, each developer can effectively have his or her own
staging environments, separate from other developers. This reduces the likelihood
that developers’ work will interfere with each other inadvertently.
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Fig. 6 Replacing the Media Manager’s simple Web UI with a scalable, high-reliability container-
based version

4.1 Example

Figure 6 shows how a portion of the Media Manager might evolve to take advantage
of containers. Here, the single component deployed on a more traditional PaaS
platform is replaced by a number of containerized replicas of that component,
which may implement different versions (v1 and v2) of the service. An off-the-
shelf container manager creates and replicates these across hosts as necessary for
scalability and reliability. The application load balancer may be more intelligent,
routing some users to version 1 containers and a subset to version 2 containers for
A/B testing.

5 Seminal Papers and Genealogy

Cloud computing has been enabled and informed by a number of previous devel-
opments that have been combined and evolved into our modern conception of the
field. Many of the latest developments, however, have occurred on the Internet
and in the commercial world, somewhat separate from the academic conferences
and journals that capture significant developments in other computing disciplines.
As such, many of the seminal developments and milestones in cloud computing
occurred and evolved spontaneously on the Internet, making it difficult to reference
particular sources or works.

5.1 Foundations of Cloud Computing

As noted above, virtualization is a key enabler of cloud computing. The notion of
sharing computing resources among multiple tasks to make efficient use of those
resources goes back to the earliest days of computing mainframes. The notion of
virtual machines can be traced back to the mid-1960s, with the IBM CP-40 and CP-
67 computers and the CP/CMS operating system. Creasy [3] describes these early
developments.



510 E. M. Dashofy

By the 1990s, personal computing platforms (particularly, but not limited to
the Intel instruction-set-based x86 platforms) were growing powerful enough that
hosting multiple virtual machines on the same physical machine was an increasingly
attractive possibility, from an efficiency and economic perspective. Vendors like
VMware worked through the technical challenges required to fully virtualize the
x86 platform. Marshall [4] provides a high-level (and somewhat VMware-centric)
retrospective on these developments. Later technologies, like Xen, described by
Barham et al. [13], have made virtualization on commodity platforms much more
efficient by reducing the overhead introduced by virtualization.

5.2 Precursors to Cloud Computing

Like virtualization, the notion of computing as a utility or service was conceptual-
ized in the earliest days of the field. In 1961, at the MIT Centennial, John McCarthy
noted:

If computers of the kind I have advocated become the computers of the future, then
computing may someday be organized as a public utility just as the telephone system is a
public utility... The computer utility could become the basis of a new and important industry.

Garfinkel and Abelson [14] expand on this discussion of utility computing.
Multiple users sharing computing resources was enabled by a huge variety of

“time sharing” systems that relied on central computing resources accessed via
remote terminals. One of the earliest and most seminal descriptions of the UNIX
operating system [15] described it as a time-sharing system.

Utility computing was an inspiration for, and coevolved with, the notion of Grid
Computing. Grid computing assembles computing, storage, and network resources
from multiple locations to solve computing problems bigger than any individual
computer or cluster could solve. Many of the goals and benefits of grid computing
overlapped with those of cloud computing (shared pools of resources that can
be allocated on demand and then released for others’ use), the technology and
capabilities of grid computing were largely used by the scientific and engineering
communities to assemble virtual supercomputers. Foster and Kesselman [16]
describe Grid Computing in their seminal book on the topic, now in its second major
edition.

Utility computing and grids are largely precursors to Infrastructure-as-a-Service
cloud computing, there are also precursors for Platform-as-a-Service. A key techni-
cal development that enabled the Google search engine was the development of a
general-purpose map-reduce service implemented atop a vast array of commodity
PCs. This effectively became an elastic platform for running distributed comput-
ing jobs that can be decomposed into the map-reduce algorithmic style, and is
documented by Dean and Ghemawat [17]. Based on this work, others built open,
nonproprietary versions of the technology, most popularly Hadoop [18, 19].
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5.3 Cloud Computing

The evolution of the precursors noted above into what we call “cloud computing”
today was gradual. Many cite the introduction of Amazon’s Elastic Compute Cloud
(EC2) service in 1996 as an early milestone in this transition.

Barr [20] made the announcement of the service’s availability (in “beta”) in
2006. As the field matured, in 2009 Armbrust, Fox, and a number of colleagues
published a retrospective [1] on the early years of cloud computing. Much of
this paper is dedicated to identifying fundamental and essential challenges in
cloud computing, such as service availability, data confidentiality and integrity,
performance unpredictability, and others. These remain key challenges in the field
today.

A highly cited, succinct glossary of cloud computing terminology is provided in
the NIST definition of cloud computing [2]. This lays out what cloud computing is,
and the distinction between infrastructure, platform, and software-as-a-service. The
notion of Platform-as-a-Service captured in the NIST definition reflects the early
conception of that concept, where users deploy applications on a programming-
language/operating-system runtime environment, rather than the evolving definition
where the “platform” constitutes a set of generic (and sometimes domain-specific)
services that can be integrated into applications.

Platform-as-a-Service offerings emerged following Infrastructure-as-a-Service
cloud computing. Wardley [21] describes the 2005 emergence of a platform called
Zimki. Google’s App Engine [22] followed in April 2008, and its release was a
milestone event similar to the EC2 release in 2006.

The history of Software-as-a-Service offerings is harder to capture. Shared,
central hosting of applications dates back to the earliest days of computing, as noted
above. In the 1990s, this spawned an industry of Application Service Providers
(ASPs) that gradually evolved to host their services on the Web as the Web grew
in popularity in the late 1990s. Bianchi [23] looks back at this early era of ASPs.
Hotmail was an early, popular software-as-a-service offering that provided email,
hosted remotely, via the Web. Craddock [24] captures the history of this early SaaS
offering. Another early milestone in SaaS was the emergence of Salesforce.com,
described by McCarthy [25], which provided customer relationship management
and other capabilities entirely as a service with the slogan “No Software” (i.e., no
software that needs to be deployed to the desktop).

5.4 Related Concepts

One of the key challenges in cloud computing is ensuring that you “get what you
pay for” in terms of performance, availability, and so on. The cloud service provider
and consumer negotiate this via service-level agreements (SLAs) that describe the
expected characteristics of the service, with specific penalties if those characteristics

http://salesforce.com
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are not achieved. These sorts of agreements are effectively contracts, similar to
other business contracts that have existed throughout history. Verma [11] published
an early and frequently cited paper about service-level agreements specifically on
networks that predates most of cloud computing. Later authors, such as Keller and
Ludwig [26] and Lamanna et al. [27] describe specific computer-based languages
for capturing service-level agreements.

6 Conclusions

Cloud computing provides a number of opportunities and challenges for software
engineers. A few opportunities include:

• Elasticity: The ability to grow and shrink the amount of resources used by
an application as demand changes, only paying for the resources used. This
dramatically lowers startup costs to field a new application, and provides
unprecedented opportunities to scale up quickly without capital investment.

• Economies of scale: Service costs are lower than building your own infrastruc-
ture since central providers can hyper-optimize their environments.

• Extensive, powerful platform services: Substantial, complex application com-
ponents are now available as scalable platform services that can be called by your
application as needed, reducing the amount of custom code needed to build a new
application.

• Reliability: By taking advantage of the ability to replicate or migrate appli-
cations to different cloud data centers, the failure of any individual hardware
component—or even an entire data center—can be handled while avoiding
service disruptions.

• Agility: The ability to configure and reconfigure cloud applications quickly
allows frequent deployments of updates, as well as partial deployments of new
features for usability, performance, or reliability testing in the field.

6.1 Key Challenges

Many of the key challenges of using cloud computing were identified in its early
days, and continue to represent areas where software designers and architects should
pay close attention.

Many of the key challenges of moving to the cloud stem from decentralization.
The users and providers of cloud services generally come from different organiza-
tions. Moving software services to the cloud means that the users must cede some
amount of control to provider organizations, and trust them to provide service that
is good enough to meet software engineers’ business goals. Risks associated with
decentralization include:
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• Performance risks: Cloud providers generallymake guarantees about the capac-
ity of their services, and may make guarantees in their SLAs about availability.
Performance guarantees are less common. With multi-tenancy, the behavior of
one tenant can affect the performance of other tenant’s applications. These
concerns can be difficult to mitigate, but several strategies exist: find a provider
who will make performance guarantees in their SLA, distribute your application
across multiple cloud providers (or multiple “zones” of a single provider) and
so on. Generally, all these solutions require more resources, so a cost–benefit
trade-off must be made.

• Availability risks: When hosting a service in the cloud, an outage at the cloud
provider means an outage for your hosted service. Every year, there are a
few major cloud outages that affect entire services or regions [28]. Mature
cloud providers offer multiple “availability zones” (effectively, geographically
distributed data centers) to mitigate the risk of an outage at any one zone.
However, deploying into multiple availability zones usually means additional
costs, and the outage of an entire availability zone can stress alternative zones
to the point of breaking.

• Network risks: Hosting critical service over a network connection (with dis-
tances of hundreds or thousands of miles between consumers and providers) can
introduce risks due to varying, and sometimes limited, network bandwidth and
latency. Users with particular concerns can, in some cases, contract with cloud
and telecommunications providers to set up private or dedicated network circuits
to mitigate this risk. Some cloud providers even have a service where customers
can ship physical disks to the cloud provider to load or retrieve large amounts of
data rather than transferring it over the network [29].

• Reputation risks: A security compromise or reliability problem with a cloud
provider could negatively impact the reputation of customers that use that
provider. Cloud service users should always evaluate their security needs and
posture, and layer additional measures on top of the cloud provider’s where
necessary.

Another set of risks, not specifically related to decentralization, are complexity
risks. Developing an architecture that takes full advantage of the scalability,
elasticity, and agility of the cloud can be daunting. There are dozens of individual
technologies to learn and integrate, and these are evolving quickly. Different cloud
providers offer these services in slightly different ways, and few standards exist.

Obviously, cloud technologies are not suitable for every problem. They generally
assume reliable, constant network connectivity is available, which is not the case in
embedded or highly secure applications (although this is changing somewhat; see
the discussion on the Internet of Things, below). For applications where security
or performance are critical, the risks of trusting a third-party provider may be too
great. Even then, developers have the option of creating a private cloud to take
advantage of some of the advantages of cloud computing in general—but the cost
and complexity of doing so may not be worth the benefit.
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Like any major architectural decision, whether and how much to take advantage
of the cloud is part of the overall process of software systems engineering.
The advantages and disadvantages of different approaches and providers must be
carefully considered. Regardless, cloud technologies have given software engineers
a plethora of new architectural options and services that can be used to rapidly
develop and compose applications and make them available to a global audience,
scaling as necessary to meet demand.

6.2 Future Directions

It is difficult to predict how cloud computing will continue to affect software
engineering in the future. One clear trend is the emergence of the “Internet of
Things” (IoT) [30]. The expectation is that an increasing number of noncomputing
devices (home appliances, consumer products, and so on) will gain the ability
to connect to the Internet through the addition of low-power, cheap, embedded
computers connected through wireless interfaces (WiFi, Bluetooth). Since the
computing capabilities of the individual “things” will be limited, they will rely
more and more on cloud services for their capability. IoT combines many of the
challenges of cloud computing development (many noted above) with the challenges
of embedded systems development: How can the software on the endpoint devices
be secured? Patched?Updated?What happens to those endpoints if the cloud service
goes down or becomes unavailable?

A related trend is the use of cloud resources to perform analysis of huge data
sets, a field colloquially known as “Big Data” [31]. As the Internet of Things grows,
there will be many more devices that are potential data sources—many IoT devices
act as sensors of various kinds, and feed sensed data into cloud services. Big Data
analytics can be used to analyze these large data sets, and the cloud provides the
resources to elastically provision the amount of computing resources needed to do
big data without major capital investment, putting these kinds of capabilities into
the hands of individuals and organizations of all sizes. These analyses can be used
to optimize user experiences, predict behavior, and for purposes like marketing and
advertising. Privacy and confidentiality will be growing challenges in the IoT and
Big Data era.
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