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Abstract. We study the Directed Feedback Vertex Set problem
parameterized by the treewidth of the input graph. We prove that unless
the Exponential Time Hypothesis fails, the problem cannot be solved in
time 2o(t log t) ·nO(1) on general directed graphs, where t is the treewidth
of the underlying undirected graph. This is matched by a dynamic pro-
gramming algorithm with running time 2O(t log t) · nO(1). On the other
hand, we show that if the input digraph is planar, then the running time
can be improved to 2O(t) · nO(1).

1 Introduction

In the Directed Feedback Vertex Set (DFVS) problem we are given a
digraph G and the goal is to find a smallest directed feedback vertex set in it,
that is, a subset X of vertices such that G − X is acyclic. The arc-deletion
version, Directed Feedback Arc Set (DFAS), differs in that the deletion set
X has to consist of edges of G instead of vertices. The parameterized variants of
these problems, where we ask about the existence of a solution of size at most
k for a given parameter k, are arguably among central problems in the field
of parameterized algorithms. Unfortunately, we are still far from a complete
understanding of their complexity.
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Establishing the fixed-parameter tractability of DFVS was once a major open
problem. It has been resolved by Chen et al. [2], who gave an algorithm for both
DFVS and DFAS1 with running time 2O(k log k) · nO(1), obtained by combining
iterative compression with a smart application of important separators. Very
recently, Lokshtanov et al. [15] revisited the algorithm of Chen et al. [2] and
improved the running time to 2O(k log k) · (n+m); that is, the dependence on the
size of the graph is reduced to linear, but the dependence on the parameter k is
unchanged. Whether the running time can be improved to 2O(k) · nO(1), or even
to 2o(k log k) · nO(1), remains a challenging open problem [15]. We remark that
the question of whether DFVS admits a polynomial kernel on general digraphs
remains one of the central open problems in the field of kernelization.

A possible reason for why so little progress has been observed on such an
important problem, is that the analysis of cut problems in directed graphs is
far more complicated than in undirected graphs, and fewer basic techniques
are available. For instance, consider the undirected counterpart of the problem,
Feedback Vertex Set, where the goal is to delete at most k vertices from a
given undirected graph in order to obtain a forest. While forests have a very sim-
ple combinatorial structure that can be exploited in many ways, acyclic digraphs
form a much richer class that cannot be so easily captured. In particular, undi-
rected graphs admitting a feedback vertex set of size k have treewidth at most
k + 1, and this tree-likeness of positive instances of undirected FVS makes the
problem amenable to a variety of techniques related to treewidth; other basic
techniques like branching and kernelization are also applicable. Acyclic digraphs
may have arbitrarily large treewidth, whereas directed analogues of treewidth
offer almost no algorithmic tools useful for the design of FPT algorithms. There-
fore, for the study of DFVS and other directed cut problems in the parameterized
setting, we are so far left with important separators and a handful of other more
involved techniques; cf. [3,4,12,13,18].

In planar digraphs, the complexity of DFAS changes completely. As shown
by Lucchesi and Younger [17], it is actually polynomial-time solvable (see also a
different presentation by Lovász [16]). More precisely, this is a consequence of the
proof of the Lucchesi–Younger theorem [17], which states that in planar digraphs,
the minimum size of a directed feedback arc set is equal to the maximum size
of a packing of arc-disjoint cycles. The proof is constructive and can be turned
into a polynomial-time algorithm that computes a minimum directed feedback
arc set together with a maximum cycle packing; see [19] for details.

On the other hand, it is easy to see that DFVS remains NP-hard on planar
digraphs, as there is a simple reduction from Vertex Cover on planar graphs
to Directed Feedback Vertex Set on planar digraphs: just pick an arbitrary
ordering of vertices, orient all edges from left to right (giving an acyclic orien-
tation), and replace every edge uv with a directed triangle on u, v, and a fresh
vertex. To the best of our knowledge, no algorithm for DFVS with running time

1 In general digraphs, DFVS and DFAS are well-known to be reducible to each other;
see [5, Proposition 8.42 and Exercise 8.16]. These reductions, however, do not pre-
serve planarity of the digraph in question.
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2o(k log k) · nO(1) is known even for planar digraphs, which means that so far we
are not able to exploit the planarity constraint in any useful way.

Our Contribution. The goal of this paper is to improve our understanding of
DFVS by studying the parameterization by the treewidth of the input directed
graph2, with a particular focus on the planar setting. We first show that a semi-
standard dynamic programming approach yields an algorithm with running time
2O(t log t) · nO(1).

Theorem 1. There is an algorithm that given a digraph G of treewidth t on n
vertices, runs in time 2O(t log t) · nO(1) and determines the minimum size of a
directed feedback vertex set and of a directed feedback arc set in G.

For the proof of Theorem1, we define the following dynamic programming
table (here for DFVS). For a node x of a tree decomposition of G, let Bx be the
associated bag and let Gx be the subgraph induced in G by vertices residing in
Bx or below x in the decomposition. Then, for every subset X of Bx and every
ordering σ of Bx \X, we store the smallest size of a subset Y of V (Gx)\Bx such
that Gx − (X ∪Y ) is acyclic and admits a topological ordering whose restriction
to Bx \ X is exactly σ. Dynamic programming algorithm for DFAS is defined
similarly. While we believe that this simple formulation of dynamic programming
for DFVS and DFAS on a tree decomposition should have been known, we did
not find it in the literature and hence we include it in the full version [1].

Our next result states then that the running time of the algorithm of Theo-
rem 1 is tight under the Exponential Time Hypothesis (ETH) (see the Prelimi-
naries section for definitions).

Theorem 2. Unless ETH fails, there is no algorithm that determines the min-
imum size of a directed feedback vertex set or of a directed feedback arc set in a
given digraph in time 2o(t log t) ·nO(1), where t is the treewidth of the input graph
and n is the number of its vertices.

The proof of Theorem 2 uses the approach of Lokshtanov et al. [14] for prov-
ing slightly super-exponential lower bounds for the complexity of parameterized
problems. More precisely, we give a parameterized reduction from the k × k Hit-
ting Set with thin sets problem, for which a lower bound excluding running time
2o(k log k) · nO(1) under ETH was given in [14]. As an intermediate step, we use
problems asking for permutations that satisfy certain constraints; we remark
that somewhat similar constraint satisfaction problems, though with different
constraints, were previously studied by Kim and Gonçalves [11].

Finally, we move to the setting of planar graphs, where we prove that the
running time can be improved to 2O(t) · nO(1).

Theorem 3. There is an algorithm that given a planar digraph G of treewidth
t on n vertices, runs in time 2O(t) · nO(1) and determines the minimum size of
a directed feedback vertex set in G.
2 Throughout this paper, the treewidth of a directed graph is defined as the treewidth

of its underlying undirected graph.
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It is well known that the treewidth of a planar graph on n vertices is bounded
by O(

√
n); see e.g. [7]. This yields the following.

Corollary 1. There is an algorithm that given a planar digraph G on n vertices,
runs in time 2O(

√
n) and determines the minimum size of a directed feedback

vertex set in G.

Note that the algorithm of Corollary 1 is tight under ETH, due to the afore-
mentioned simple reduction from Vertex Cover to DFVS which preserves pla-
narity. Since Vertex Cover on planar graphs cannot be solved in time 2o(

√
n)

under ETH (see [5, Theorem 14.6]), the same lower bound carries over to DFVS
on planar digraphs (implying also a tight lower bound of 2o(t) · nO(1) for the
parameterization by treewidth on planar digraphs).

The proof of Theorem 3 is perhaps conceptually the most interesting part
of this work. The basic idea is to use sphere-cut decompositions of plane
graphs [6,20]. Namely, as observed by Dorn et al. [6], from the results of Sey-
mour and Thomas [20] it follows that every plane graph admits an optimum-
width branch decomposition that respects the plane embedding in the following
sense: each subgraph corresponding to a subtree of the decomposition is embed-
ded into a disk so that the interface of the subgraph—vertices adjacent to the
remainder of the graph—are embedded on the boundary of the disk. Such a
branch decomposition is called a sphere-cut decomposition. Since branchwidth is
linearly related to treewidth, in the proof of Theorem3 we may focus on branch
decompositions instead of tree decompositions.

As shown by Dorn et al. [6], the topological properties of sphere-cut decom-
position can be exploited algorithmically to bound the number of relevant states
in dynamic programming. This idea is instantiated in the technique of Catalan
structures where for some connectivity problems, like Hamiltonian Cycle, the
fact that the solution cannot self-intersect in the plane leads to an improvement
on the number of states from 2O(b log b) to 2O(b); here, b is the width of the con-
sidered sphere-cut decomposition. However, in the case of DFVS we cannot use
Catalan structures directly, since we are not building any connected structure
whose plane embedding would impose useful constraints.

Our main contribution here is that nevertheless, an improved upper bound on
the number of relevant states can be shown, with a conceptually new reasoning.
Consider a directed graph G embedded into a disk Δ and a subset T of its
vertices that are placed on the boundary of Δ. Let the connectivity pattern
induced by G on T be the reachability relation in G restricted to T 2: (s, t) are
in the connectivity pattern if and only if in G there is a path from s to t. The
crucial combinatorial statement (see Theorem 5) is as follows: the number of
different connectivity patterns on T that may be induced by different digraphs
G embedded in Δ is bounded by 2O(|T |); note that the naive bound would
be 2O(|T |2). This directly provides the sought upper bound on the number of
relevant states in dynamic programming on a sphere-cut decomposition, leading
to the proof of Theorem 3. To prove this statement, we show that every realizable
connectivity pattern can be encoded using a constant number of simpler relations,
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each forming a directed outerplanar graph on |T | vertices; the number of different
such digraphs is 2O(|T |). In the proof that such an encoding is possible we use
the result of Gyárfás that circle graphs are χ-bounded [8,9].

Organization. In Sect. 2 we establish notation and recall known relevant results.
Section 3 concerns the main ingredient of the proof of Theorem3, namely the
combinatorial upper bound on the number of different connectivity patterns
induced by disk-embedded directed graphs. Section 4 contains the hardness
reduction for Theorem2. Due to space restrictions the proofs of Theorem 3 and 1
and some proofs from Sects. 3 and 4 are deferred to the full version of this
paper [1]. In these sections, theorems with deferred proofs are marked with †.

2 Preliminaries

Let [k] := {1, 2, . . . , k}, and use standard graph notation, see e.g. [5]. The clique
number of graph G is denoted ω(G), the chromatic number χ(G).

Chords and Circle Graphs: A chord is an unordered pair of distinct points on
a circle, called endpoints of the chord; one may think of it as a straight line
segment between its endpoints. Two chords {a, a′}, {b, b′} of a circle cross if
their endpoints are all distinct and a, b, a′, b′ occur in this order on the circle
(clockwise or counter-clockwise). Intuitively this corresponds to the straight line
segments aa′ and bb′ intersecting inside the circle. A circle graph is a graph
whose vertices correspond to chords of a circle so that two vertices are adjacent
if and only if the corresponding chords cross. A circle graph with directed chords
is a circle graph in which every chord is directed; that is, it is an ordered pair.
A directed chord with tail a and head b is denoted by (a, b). Let T be a finite set
of points on a circle and let R ⊆ T 2 be a set of chords (directed or undirected).
A crossing is a pair of crossing chords in R. The circle graph induced by R is
the one with R as the vertex set where two chords from R are adjacent if they
cross.

As introduced by Gyárfás [10], a class C of graphs closed under induced
subgraphs is χ-bounded if there exists a function f : N → N such that for every
graph G ∈ C we have χ(G) ≤ f(ω(G)). Gyárfás [8,9] proved the following.

Theorem 4 ([8,9]). The class of circle graphs is χ-bounded.

ETH: The Exponential Time Hypothesis (ETH) states that for some c > 0,
there is no algorithm for 3SAT with running time O(2cn), where n is the num-
ber of variables of the input formula. ETH has served as a basic assumption for
countless complexity lower bounds of computational problems. We refer to [5,
Chap. 14] for a comprehensive overview of applications in parameterized com-
plexity.
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3 Connectivity Patterns

In this section we present the main combinatorial result leading to the proof of
Theorem 3, which is a reduction of the number of relevant dynamic programming
states in the planar setting. This is done by bounding the number of “connec-
tivity patterns” that can be induced by directed graphs embedded in a disk.

Suppose T is a finite set. A connectivity pattern on T is any quasi-order on
T , that is, a reflexive and transitive relation P ⊆ T 2. For a directed graph G
and a vertex subset T ⊆ V (G), we define the connectivity pattern induced by G
on T to be the reachability relation on T in G: (s, t) is in the relation iff there
is a path in G from s to t.

The main goal of this section is to prove a result that roughly states the
following: for a directed graph G drawn in a closed disk, with T be the vertices
lying the boundary of the disk, there are only 2O(|T |) different possibilities for the
connectivity pattern that G may induce. See Theorem 5 for a formal statement.
As mentioned in the introduction, this result will be our main tool for limiting
the number of relevant states in dynamic programming for Directed Feedback
Vertex Set on planar graphs. Note that in general directed graphs, the number
of different connectivity patterns induced on a vertex subset T may be as large
as 2Θ(|T |2). For instance, any subset of pairs with tail in the first half of T and
head in the second half already gives that many possibilities.

The idea of the proof is that such connectivity patterns induced by directed
planar graphs embedded in a disk can be generated from simpler relations, which
contain enough pairs to infer all the other ones from planarity. This is formalized
in the following definition.

Definition 1. For a set T of points on a circle and a relation R ⊆ T 2, define
the connectivity pattern on T generated by R, denoted gen(R), as follows: a pair
(s, t) ∈ T 2 is included in gen(R) if and only if for each partition of the circle
into two disjoint arcs Xs,Xt such that s ∈ Xs and t ∈ Xt, there exist s′ ∈ Xs

and t′ ∈ Xt which satisfy (s′, t′) ∈ R.

In the above definition, as well as throughout this whole section, arcs on a
circle may be open or closed from either side, unless explicitly stated.

It is easy to check that R ⊆ gen(R) and gen(R) is indeed reflexive and
transitive, for any R ⊆ T 2. Hence gen(R) also contains the reflexive transitive
closure of R, but it may be much larger still. Furthermore, one can observe that
gen(gen(R)) = gen(R), but we will not use this property. We now show that a
connectivity pattern induced by a graph is generated by itself; the goal will be
then to find simpler relations generating this pattern.

Lemma 1. Let G be a planar digraph drawn in a disk Δ, T be a subset of
vertices drawn on the boundary of Δ, and P be the connectivity pattern on T
induced by G. Then gen(P ) = P .

Proof. Let C be the boundary of Δ; we may assume that C is a circle. Clearly
P ⊆ gen(P ). Now assume that (s, t) ∈ gen(P ), that is, for each partition of C
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into two disjoint arcs Xs,Xt such that s ∈ Xs and t ∈ Xt, there exist s′ ∈ Xs

and t′ ∈ Xt which satisfy (s′, t′) ∈ P . We will show that (s, t) ∈ P .
Assume the contrary, that is, (s, t) /∈ P . Define Ts = {r ∈ T : (s, r) ∈ P}, see

Fig. 1. Let Xt be the largest arc on C that contains t and is disjoint from Ts;
this is well-defined since t /∈ Ts and s ∈ Ts. Define Xs = C \ Xt, thus (Xs,Xt)
is a partition of C into two disjoint arcs. Since s ∈ Ts, we have s /∈ Xt and
thus s ∈ Xs. From our assumption that (s, t) ∈ gen(P ), there exist s′ ∈ Xs and
t′ ∈ Xt that satisfy (s′, t′) ∈ P .

We have two cases: either s′ ∈ Ts or s′ /∈ Ts. If s′ ∈ Ts, then (s, s′) ∈ P
and consequently (s, t′) ∈ P , since P is transitive due to being the reachability
relation induced by G. But then t′ ∈ Ts and hence t′ /∈ Xt, a contradiction. Now
assume s′ /∈ Ts; in particular s′ �= s. Let us move along the circle from s to t
such that on the way we meet the point s′. Because the arc Xt was chosen to
be the largest possible, between s′ and t we meet a point r ∈ Ts. The arc Xt

is connected, so between s and r we cannot meet any point from the set Xt, in
particular t′. That is, s, s′, r, t′ appear in this order on the circle (either clockwise
or counterclockwise). Since r ∈ Ts, we have (s, r) ∈ P and (s′, t′) ∈ P . Therefore,
in G there are directed paths from s to r and from s′ to t′. These two paths
must intersect since they are drawn in a disk, which yields a path in G from s
to t′. We conclude that t′ ∈ Ts and hence t′ /∈ Xt, a contradiction. 	


s

r

t

s′

t′

Xs

Xt

Fig. 1. Proof of Lemma 1: the induced
pattern P shown as arrows, points in Ts

depicted in green. (Color figure online)

a b

a′b′

Xs

Xt

u

v

Fig. 2. Proof of Lemma 2.

The next lemma shows that generated connectivity patterns are closed under
adding directed chords (a, b′) whenever (a, a′) and (b, b′) cross. This operation
(and its inverse) is the only one we will use to simplify the generating relation.

Lemma 2. Let T be a finite set of points on a circle and let R ⊆ T 2. Let
a, b, a′, b′ ∈ T be distinct points that appear in this order on the circle, such that
(a, a′) ∈ R and (b, b′) ∈ R. Let R′ = R ∪ {(a, b′)}. Then gen(R) = gen(R′).

Proof. It is enough to prove that for each partition of the circle into two disjoint
arcs Xs,Xt, the following two conditions are equivalent:
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(1) There exist s′ ∈ Xs and t′ ∈ Xt which satisfy (s′, t′) ∈ R.
(2) There exist s′ ∈ Xs and t′ ∈ Xt which satisfy (s′, t′) ∈ R′.

Of course (1) implies (2). Now assume (2). If (s′, t′) ∈ R the proof is finished,
so suppose (s′, t′) = (a, b′). Let u, v be the ends of the arc Xs, see Fig. 2. We
may assume without loss of generality that a, b, a′, b′ occur clockwise on the
circle and are different from u, v; the latter is achieved by moving u, v slightly to
points not belonging to T . Let Ca,b be the arc of the circle from a (inclusive) to
b (exclusive), going clockwise, and define Cb,a′ , Ca′,b′ , Cb′,a analogously; these
four arcs form a partition of the circle. Since a ∈ Xs and b′ ∈ Xt, we may assume
that u ∈ Cb′,a and v /∈ Cb′,a. If v ∈ Ca,b or v ∈ Cb,a′ , then a ∈ Xs and a′ ∈ Xt

satisfy (a, a′) ∈ R. Otherwise, if v ∈ Ca′,b′ , then b ∈ Xs and b′ ∈ Xt satisfy
(b, b′) ∈ R. In both cases, (1) holds. 	


Next, we prove that the generating relation can be simplified as long as it
contains 4 pairwise crossing chords in the right order. The lemma after that
shows how to obtain such chords from any set of 7 pairwise crossing chords.

Lemma 3 (†). Let T be a finite set of points on a circle and let R ⊆ T 2. Let
a, b, c, d, x, y, z, u ∈ T be pairwise different points appearing in this order on the
circle (clockwise or counterclockwise), such that (a, x), (b, y), (c, z), (d, u) ∈ R.
Define

R′ = (R \ {(b, y), (c, z)}) ∪ {(b, z), (c, y)}.

Then gen(R′) = gen(R) and the number of crossings in R′ is smaller than in R.

Lemma 4 (†). Suppose H is a circle graph with directed chords and ω(H) ≥ 7.
Then there are distinct points a, b, c, d, x, y, z, u that appear in clockwise order on
the circle such that (a, x), (b, y), (c, z), (d, u) are pairwise crossing chords of H.

Lemmas 3 and 4 allow us to conclude that any generating relation can be
iteratively simplified until it contains no set of 7 pairwise crossing chords.

Lemma 5. Let G be a planar graph drawn in a disk Δ, let T be a subset of
vertices of G drawn on the boundary of Δ, and let P ⊆ T 2 be the connectivity
pattern on T induced by G. Then there exists a relation R ⊆ T 2 such that
gen(R) = P and the circle graph induced by R has clique number at most 6.

Proof. By Lemma 1 there exists a relation R ⊆ T 2 (namely R = P ) such that
gen(R) = P . Choose R such that gen(R) = P and the number of crossings
in R is as small as possible. Without loss of generality assume that R does
not contain pairs of the form (s, s) for s ∈ T , as such pairs may be removed
without changing the generated relation; thus R is a set of directed chords with
endpoints in T . Let ω be the clique number of the circle graph induced by R. If
ω ≤ 6 we are done, so suppose ω ≥ 7. By Lemma 4, there are pairwise different
points a, b, c, d, x, y, z, u that appear in clockwise order on the circle such that
(a, x), (b, y), (c, z), (d, u) ∈ R. Define R′ = (R \ {(b, y), (c, z)}) ∪ {(b, z), (c, y)}.
By Lemma 3, gen(R′) = gen(R) = P and R′ has fewer crossings than R, a
contradiction. 	
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Having obtained a generating relation with no large set of pairwise crossing
chords, we will later partition it into a small number of sets of pairwise non-
crossing chords using the χ-boundedness of circle graphs (Theorem4). First,
however, we bound the number of such non-crossing sets as follows.

Lemma 6 (†). Let T be a finite set of points on a circle. Then every set of
pairwise non-crossing chords with endpoints in T has at most 2|T | − 3 chords,
and there are 2O(|T |) different such sets.

We are now ready to prove the main theorem of this section.

Theorem 5. Let T be a set of n points on the boundary of a closed disk Δ.
There exists a family R of relations R ⊆ T 2 such that |R| = 2O(n) and the
following property is satisfied. For every planar digraph G drawn in Δ such that
T ⊆ V (G), the connectivity pattern induced by G on T is generated by some
relation in R.

Proof. Denote by R the family of all sets of directed chords R ⊆ T 2 such that
the circle graph induced by R has clique number at most 6. By Lemma 5 this
family satisfies the claimed property and it remains to bound its size.

By χ-boundedness of circle graphs (Theorem4), there exists a number χmax

such that for R ∈ R, the chromatic number of the circle graph induced by R is
at most χmax. The chords of any circle graph induced by some R ∈ R can thus
be partitioned into χmax sets (possibly empty) such that no two chords in the
same set cross. By Lemma 6, the number of possibilities to choose such a set of
undirected, pairwise non-crossing chords is 2O(n), and any such set contains at
most 2n − 3 chords. Hence there are at most 22n−3 possibilities to orient these
chords. We conclude that indeed |R| ≤ (2O(n) · 22n−3)χmax = 2O(n). 	


With Theorem 5 in hand, the proof of Theorem3 boils down to applying
standard dynamic programming algorithm on a sphere-cut decomposition of
the input graph. Each solved subproblem corresponds to a subgraph H of G
embedded in a disk Δ, where each vertex of H that has a neighbor outside of
H is embedded on the boundary of Δ; call the set of these vertices B. Then for
each partition of B into X and T , and for each connectivity pattern P on T that
can be induced by a digraph embedded in Δ, we compute that smallest size of a
subset Y ⊆ V (H) \B such that H − (X ∪Y ) induces P on T ; if there is no such
subset, we store +∞. It is straightforward to give recursive equations for this
formulation. Moreover, Theorem3 gives an upper bound of 2O(t) on the number
of values computed for each H, where t is the treewidth, implying the running
time of 2O(t) ·nO(1). Details, including an overview of sphere-cut decompositions,
can be found in the full version [1].

4 Lower Bound

In this section we prove Theorem 2. The hardness reduction happens to work for
both problems, producing exactly the same instances. We reduce from a problem
shown hard by Lokshtanov et al. [14] (see also [5, Theorem 14.16]):
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k × k Hitting Set with thin sets
Input: Family F of subsets of [k] × [k], each containing at most one element
from each row
Question: Is there a set X containing exactly one vertex from each row of
[k] × [k] such that X ∩ F �= ∅ for each F ∈ F?

Theorem 6 ([14]). Unless ETH fails, k × k Hitting Set with thin sets
cannot be solved in time 2o(k log k) · nO(1), where n is the number of input sets.

We first define an intermediate problem. An n-permutation d-constraint is a
tuple (i1, . . . , id) ∈ [n]d of d different indices. A permutation σ : [n] → [n] satisfies
such a constraint if σ(i1) < σ(i2) < · · · < σ(id). A k-CNF n-permutation d-
formula is a conjunction of clauses, each of which is a disjunction of at most k
n-permutation d-constraints. The length of a clause is the number of disjuncts
(constraints) in it. Satisfaction of such a formula by a permutation σ : [n] → [n]
is defined naturally.

We first show hardness for the satisfiability of 3-formulas, with the parameter
k denoting both the length of clauses and the number of indices on which the
permutation is defined.

Lemma 7. Unless ETH fails, the satisfiability of a given k-CNF k-permutation
3-formula cannot be decided in time 2o(k log k) ·nO(1), where n is the formula size.

Proof (sketch†). We only give the construction for the reduction, deferring the
proof of its correctness to the appendix. Without loss of generality suppose k ≥ 3.
Let F be the input instance of k×k Hitting Set with thin sets. We construct
in polynomial time a k-CNF (2k +1)-permutation 3-formula whose satisfiability
is equivalent to the input instance F , proving the claim by Theorem6.

To an initially empty formula φ we add the following clauses, each with a
single 3-constraint, to ensure that {k + 1, . . . , 2k + 1} are ordered increasingly
by the permutation:

(k + 1, k + 2, k + 3), (k + 2, k + 3, k + 4), . . . , (2k − 1, 2k, 2k + 1).

Then, for each i ∈ [k] we add a clause with a single 3-constraint (k +1, i, 2k +1).
Finally, for each set F ∈ F , we add the following clause CF to φ: the clause CF

is the disjunction of constraints (k + j, i, k + j + 1) over all elements (i, j) of F .
Since F contains at most one element of each row, the clause CF is a disjunction
of at most k constraints. 	


Next, we show hardness for larger, but structured 2-formulas. For a 3-CNF
n-permutation 2-formula φ, the incidence graph I(φ) of φ is the bipartite graph
defined as follows: the vertex set is formed by indices from [n] on one side and
clauses of φ on the other side, and there is an edge between every clause and
each index that occurs in some constraint of the clause. Thus, each clause has
degree at most 6 in I(φ).
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Lemma 8. Unless ETH fails, the satisfiability of a given 3-CNF n-permutation
2-formula with incidence graph of treewidth t cannot be decided in time 2o(t log t) ·
nO(1). This holds even for formulas in which every clause has length exactly 3
or 1, and has no repeating indices.

Proof (sketch†). Let φ be a k-CNF k-permutation 3-formula. We will construct
in polynomial time a 3-CNF n-permutation 2-formula ψ for some n = O(k2)
such that ψ is satisfiable iff φ is and the incidence graph of ψ has treewidth
O(k). The claim then follows by Lemma 7.

The idea is that every 3-constraint (a, b, c) can be thought of as a conjunction
(a, b) ∧ (b, c) of two 2-constraints (expressing σ(a) < σ(b) ∧ σ(b) < σ(c)).
Intuitively, we can then transform the obtained ‘non-CNF formula’ into a 3-
CNF in a standard way: a clause (x ∧ x′) ∨ (y ∧ y′) ∨ (z ∧ z′) ∨ . . . would be
replaced by

(p1) ∧ (¬p1 ∨ x ∨ p2) ∧ (¬p2 ∨ y ∨ p3) ∧ (¬p3 ∨ z ∨ p4) ∧ . . .

∧ (¬p1 ∨ x′ ∨ p2) ∧ (¬p2 ∨ y′ ∨ p3) ∧ (¬p3 ∨ z′ ∨ p4) ∧ . . . ∧ (¬pn)

where p1, p2, p3, . . . , pn are fresh auxiliary variables not appearing anywhere else.
Formally, we will ask for n-permutations with n := k + (2k + 2)k; the

additional indices are in order to make room for ‘auxiliary variables’. We con-
struct ψ as an initially empty conjunction. Each clause C of φ is a disjunc-
tion C1 ∨ · · · ∨ Ck′ (k′ ≤ k) of some 3-constraints Ci = (ai, bi, ci) ∈ [k]3. Let
j1, j2, . . . , j2k′+2 ∈ [n] \ [k] be some indices that were not yet used in any con-
structed clause. For each i ∈ [k′], we add the following clauses Di and D′

i to
ψ:

Di = (j2i, j2i−1) ∨ (ai, bi) ∨ (j2i+1, j2i+2)
D′

i = (j2i, j2i−1) ∨ (bi, ci) ∨ (j2i+1, j2i+2)

We then add two clauses with a single constraint each: Z = (j1, j2) and Z ′ =
(j2k′+2, j2k′+1). Repeating this for each clause C of φ concludes the construction.
Let W (C) be the set consisting of clauses and indices used for C: clauses Z,Z ′,
clauses Di,D

′
i for each i ∈ [k′], and indices j1, j2, . . . , j2k′+2 as above. Then

[k] together with sets W (C) for clauses C of φ form a partition of the vertex
set of the incidence graph I(ψ) of the constructed formula. Observe that if we
remove all the k vertices corresponding to [k], the only remaining edges in I(ψ)
have both endpoints within the same W (C) for some clause C of φ, and each
W (C) has size at most 3k + 4. This allows to bound the treewidth of I(ψ) by
O(k). Details and the correctness proof of the construction can be found in the
appendix. 	


We proceed to reducing the satisfiability problem for permutation formulas
as described in Lemma 8 to Directed Feedback Vertex (Arc) Set. Permuta-
tions of [n] will be encoded as orderings of a subset of n ‘terminal’ vertices in the
constructed digraph, identified with indices from [n]. The digraph will contain
gadgets ensuring that a permutation satisfies the original 3-CNF n-permutation



76 M. Bonamy et al.

2-formula if and only if the corresponding ordering of terminals can be extended
to a topological ordering of the whole digraph, after deleting a prescribed number
of vertices (edges). The key element is the or-gadget depicted in Fig. 3, which
encodes a clause that is a disjunction of three 2-constraints. Note that this
or-gadget has 6 terminal vertices, named xi, x

′
i for i ∈ [3]. The final graph is

obtained essentially by taking disjoint copies of the or-gadget and identifying
their terminal vertices with terminals.

Lemma 9. For an ordering ≺ of the terminal vertices of the or-gadget, ≺ can be
extended to a topological ordering of the or-gadget with some 2 vertices (edges)
deleted if and only if x1 ≺ x′

1 or x2 ≺ x′
2 or x3 ≺ x′

3. Furthermore, every
subgraph of the or-gadget obtained by deleting at most one non-terminal vertex
or an edge from it, contains a directed cycle.

Fig. 3. The or-gadget,
with terminal vertices
marked as squares.

Proof. Given an ordering ≺ of the terminal vertices
such that x1 ≺ x′

1, one can remove e2 and e3, or any
two vertices incident to them, to create an acyclic
subgraph of the or-gadget that admits a topological
ordering extending ≺. The cases of orderings ≺ with
x2 ≺ x′

2 and with x3 ≺ x′
3 are symmetric. Conversely,

any removal of two vertices or edges from the or-
gadget leaves some directed path xi → x′

i (i ∈ [3])
unharmed, implying xi ≺ x′

i in any topological order-
ing of the obtained subgraph. It is easy to check that
two non-terminal vertices or edges of the or-gadget
have to be removed to make it acyclic. 	

Proof (of Theorem 2, sketch†). We give a reduction from the satisfiability prob-
lem for 3-CNF n-permutation 2-formulas to DFVS and DFAS. More precisely,
on the input of the reduction we are given a 3-CNF n-permutation 2-formula
ψ with an incidence graph of treewidth t, where we assume that every clause
of ψ has length exactly 3 or 1, and has no repeating indices. We will construct
in polynomial time an equivalent instance of (the decision variant of) DFVS
(DFAS) of treewidth O(t). This will prove the claim by Lemma 8.

We construct a digraph G starting from [n] as the vertex set and no edges.
For each clause of length 1 in ψ, let (a, a′) ∈ [n]2 be the unique constraint in
it. Then we add an edge from a to a′ to G. For each clause of length 3 in ψ,
let (a1, a

′
1), (a2, a

′
2), (a3, a

′
3) ∈ [n]2 be its constraints. Then we add a new copy

of the or-gadget to G, and for each i ∈ [3] we identify xi and x′
i with ai and a′

i,
respectively. Finally, we set k, the target size of a directed feedback vertex (arc)
set, to be twice the number of clauses of length 3 in ψ. The obtained instance
(G, k) can be treated both as a DFVS instance and as a DFAS instance.

To bound the treewidth of G, observe that G can be obtained from I(ψ) by
replacing each vertex w corresponding to a clause with a copy of the or-gadget
(if it represents a clause of length 3), or with just an edge between its original
neighbors (if it represents a clause of length 1). 	
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5 Concluding Remarks

Our results do not provide any direct insight into the complexity of the classic
parameterization: by the target solution size k. We hope, however, that the com-
binatorial tools we used in the proof of Theorem3 may be useful for improving
the running time for DFVS on planar digraphs, say to running time 2O(k) ·nO(1),
or for obtaining a somewhat incomparable running time nO(

√
k). Observe that

there is a large gap between known results in this setting: while the classic
reduction from Vertex Cover on planar graphs gives a lower bound excluding
running time 2o(

√
k)·nO(1) under ETH, no faster algorithm than 2O(k log k)·(n+m)

from general digraphs [15] is known.
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