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Abstract. Low-treedepth colorings are an important tool for algorithms
that exploit structure in classes of bounded expansion; they guarantee
subgraphs that use few colors have bounded treedepth. These colorings
have an implicit tradeoff between the total number of colors used and
the treedepth bound, and prior empirical work suggests that the former
dominates the run time of existing algorithms in practice. We introduce
p-linear colorings as an alternative to the commonly used p-centered
colorings. They can be efficiently computed in bounded expansion classes
and use at most as many colors as p-centered colorings. Although a set of
k < p colors from a p-centered coloring induces a subgraph of treedepth
at most k, the same number of colors from a p-linear coloring may induce
subgraphs of larger treedepth. A simple analysis of this treedepth bound
shows it cannot exceed 2k, but no graph class is known to have treedepth
more than 2k. We establish polynomial upper bounds via constructive
coloring algorithms in trees and intervals graphs, and conjecture that
a polynomial relationship is in fact the worst case in general graphs.
We also give a co-NP-completeness reduction for recognizing p-linear
colorings and discuss ways to overcome this limitation in practice.

1 Introduction

Algorithms for graph classes that exhibit bounded expansion structure [2,9–11]
offer a promising framework for efficiently solving many NP-hard problems on
real-world networks. The structural restrictions of bounded expansion, which
allow for pockets of localized density in globally sparse graphs, are compatible
with properties of many real-world networks such as clustering and heavy-tailed
degree distributions. Moreover, multiple random graph models designed to mimic
these properties have been proven to asymptotically almost surely belong to
classes of bounded expansion [3]. From a theoretical perspective, graphs belong-
ing to classes of bounded expansion can be characterized by low-treedepth color-
ings of bounded size, i.e. using only a small number of colors. Roughly speaking,
a low-treedepth coloring is one in which the subgraphs induced on each small
set of colors have small treedepth, a structural property stronger than treewidth.
This definition naturally implies an algorithmic pipeline [3,4,10] for classes of
bounded expansion involving four stages: computing a low-treedepth coloring,
using the coloring to decompose the graph into subgraphs of small treedepth,
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solving the problem efficiently on each such subgraph, and combining the subso-
lutions to construct a global solution. The complexities of algorithms using this
paradigm often are of the form O(

(
k
p

)
2d log d ·nc) where k is the coloring size and

d is the treedepth of the subgraphs.
A recent implementation [12] and experimental evaluation [13] of this pipeline

has identified that the coloring size has a much larger effect on the run time than
the treedepth in practice. Although graphs in classes of bounded expansion are
guaranteed to admit colorings of constant size with respect to the number of ver-
tices, the only known polynomial-time algorithms for computing these colorings
are approximations [2]. Consequently it is unclear to what extent our current
coloring algorithms can be altered to reduce the coloring size. A more viable
approach to improving the performance of the algorithmic pipeline without sig-
nificant high-level changes would be to develop a new type of low-treedepth
coloring that uses fewer colors but potentially has weaker guarantees about the
treedepth of the subgraphs.

The traditional low-treedepth colorings for classes of bounded expansion are
known as p-centered colorings. This name stems from the property that on any
subgraph H, a p-centered coloring either uses at least p colors or is a centered
coloring, which restricts the multiplicity of colors in induced subgraphs. In this
paper we introduce an alternative that closely mirrors this paradigm but only
extends the color multiplicity guarantees to path subgraphs. For this reason we
refer to them as p-linear colorings and linear colorings. We identify that p-linear
colorings share three important properties with p-centered colorings that allow
them to be used in the bounded expansion algorithmic pipeline.

1. The minimum coloring size is constant in graphs of bounded expansion.
2. A coloring of bounded size can be computed in polynomial time.
3. Small sets of colors induce graphs of small treedepth.

The third of these properties is of particular interest, since understanding
the tradeoffs between coloring size and treedepth in switching between p-
centered and p-linear colorings fundamentally depends on bounding the max-
imum treedepth of a graph that admits a linear coloring with k colors. Equiv-
alently, we frame this problem as determining the gap between the minimum
number of colors needed for a linear versus a centered coloring in any given
graph. A näıve analysis does not exclude the possibility that this gap is expo-
nentially large, despite the fact that the largest known difference is a constant
multiplicative factor. We conjecture that our proven constant factor lower bound
is also the upper bound; as evidence, we prove that in trees and interval graphs
the difference is polynomially bounded (in the coloring size) and give polynomial
time algorithms (with respect to the graph size) to certify this difference. Surpris-
ingly, we also prove that some p-linear colorings cannot be verified in polynomial
time unless P = co-NP and discuss the practical implications of these findings.
In the interest of space, the proofs of all lemmas are omitted from the main text
and can be found in [7].
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2 Definitions and Background

In this section we detail the background and terminology necessary to understand
p-linear colorings.

2.1 Graph Terminology

We denote the vertices and edges of a graph G as V (G) and E(G), respectively,
and assume all graphs are simple and undirected except where specifically noted
otherwise. The open neighborhood of a vertex v, denoted N(v), is the set of
vertices u such that uv ∈ E(G), while the closed neighborhood, N [v] is defined as
N(v) ∪ {v}. Vertex a is an apex with respect to a subgraph H if V (H) ⊆ N(a).

We say P is a v1v�-path if V (P ) = {v1, . . . , v�} and E(P ) = {vivi+1 : 1 ≤ i ≤
� − 1}; we will notate this as P = v1, . . . , v�. Given disjoint paths P = v1, . . . , v�

and Q = u1, . . . , u�′ , the path P · Q = v1, . . . , v�, u1, . . . , u�′ is the concatenation
of P and Q if v� is adjacent to u1. A path is Hamiltonian with respect to subgraph
H if V (P ) = V (H).

In a rooted tree T , we let Tv be the subtree of T rooted at v and the leaf paths
of Tv be the set of paths from a leaf of Tv to v. Vertices u and v are unrelated
in T if u is neither an ancestor nor a descendant of v.

A coloring φ of a graph G is a mapping of the vertices of G to colors 1, . . . , k
and has size |φ| = k. A coloring is proper if no pair of adjacent vertices have
the same color. For any subgraph H and color c, if there is exactly one vertex
v ∈ H such that φ(v) = c we say c appears uniquely in H and v is a center of
H. A subgraph with no unique color is said to be non-centered.

2.2 p-Centered Colorings and Bounded Expansion

Definition 1. A p-centered coloring φ of graph G is a coloring such that for
every connected subgraph H, H has a center or φ|H uses at least p colors.

Nešetřil and Ossana de Mendez established that bounding the minimum size of
a p-centered coloring is a necessary and sufficient condition for a graph class to
have bounded expansion.

Proposition 1 ([9]). A class of graphs C has bounded expansion iff there exists
a function f such that for all G ∈ C and all p ≥ 1, G admits a p-centered coloring
with f(p) colors.

There are varying methods to compute p-centered colorings, such as transitive-
fraternal augmentations [5,9] and generalized coloring numbers [17], we focus
here on distance-truncated transitive-fraternal augmentations (DTFAs) [14],
which iteratively augment the graph with additional edges to impose constraints
on proper colorings. This linear time algorithm guarantees that after (2 log p)p

DTFA iterations, any proper coloring of the augmented graph is a p-centered
coloring whose size is bounded in classes of bounded expansion.
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2.3 Centered Colorings and Treedepth

Note that if φ is a p-centered coloring of G and H is a subgraph of G whose ver-
tices use at most p−1 colors in φ, H must have a center. This relates p-centered
colorings to a more restricted class of graphs defined by centered colorings.

Definition 2. A centered coloring φ of graph G is a coloring such that every
connected subgraph has a center. The minimum size of a centered coloring of G
is denoted χ

cen(G).

Note that a centered coloring is also proper, or else there would be a connected
subgraph of size two with no center. Observe that if X is the set of all centers
of G, then G\X must either be empty or disconnected. This implies that if
|G| � χcen(G), then G breaks into many components after only a few vertex
deletions. This property is captured by treedepth decompositions.

Definition 3. A treedepth decomposition T of graph G is a rooted forest with
the same vertex set as G such that uv ∈ E(G) implies u is an ancestor of v in
T or vice versa. The depth of T is the length of the longest path from a leaf in
T to a root in its component. The treedepth of G, td(G), is the minimum depth
of a treedepth decomposition of G.

Given a centered coloring of size k, we can generate a treedepth decomposi-
tion of depth at most k by choosing any center v to be the root and setting the
children of v to be the roots of the treedepth decompositions of the components
of G\{v}. Likewise, given a treedepth decomposition of depth k, we can generate
a centered coloring using k colors by bijectively assigning the colors to levels of
the tree and coloring vertices according to their level. We refer to the colorings
and decompositions resulting from these procedures as canonical ; together they
imply that the treedepth and centered coloring numbers are equal for all graphs.

3 p-Linear and Linear Colorings

We introduce p-linear colorings as an alternative to p-centered colorings.

Definition 4. A p-linear coloring is a coloring ψ of a graph G such that for
every path1 P , either P has a center or ψ|P uses at least p colors.

It is proven in [14] that after performing 2p DTFA iterations, any proper coloring
of the augmented graph is a p-linear coloring. This implies that p-linear colorings
indeed have constant size in bounded expansion classes and can be constructed
in polynomial time (like p-centered colorings).

In the interest of maintaining consistency with prior terminology, we define
linear colorings analogously to centered colorings.

1 This includes non-induced paths.
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Definition 5. A linear coloring is a coloring ψ of a graph G such that every
path has a center. The linear coloring number is the minimum number of colors
needed for a linear coloring and is denoted χlin(G).

Note that linear colorings must also be proper. A simple recursive argument
shows that every path of length d requires at least log2(d + 1) colors in a linear
coloring; thus a graph of linear coloring number k has no path of length 2k.
Because every depth-first search tree is a treedepth decomposition, td(G) ≤
2χ

lin(G), proving that small numbers of colors in p-linear colorings induce graphs
of bounded treedepth2.

Our study of the divergence between linear and centered coloring numbers
will naturally focus on linear colorings that are not also centered colorings. We
say ψ is a non-centered linear coloring (NCLC) of graph G if G contains a
connected induced subgraph with no center. For NCLC ψ, we say a connected
induced subgraph H is a witness to ψ if H is non-centered but every proper
connected subgraph of H has a center. For the sake of completeness, we prove
in Lemma 1 that many simple graph classes do not admit NCLCs.

Lemma 1. If G is a path, star, cycle, complete graph, or complete bipartite
graph, any linear coloring of G is also a centered coloring.

4 Treedepth Lower Bounds

To understand the tradeoff between the number of colors and treedepth of small
color sets when using p-linear colorings in lieu of p-centered colorings, it is impor-
tant to know the maximum treedepth of a graph of fixed linear coloring num-
ber k, tmax(k). In Lemmas 3 and 4, we prove lower bounds on tmax(k) through
explicit constructions of graph families. In order to show that these graphs have
large treedepth, we first establish assumptions about the structure of treedepth
decompositions that can be made without loss of generality.

Lemma 2. Let G be a graph and S ⊂ V (G) such that G[S] is connected and
with respect to some component C ∈ G\S, every vertex in S is an apex of C.
Then for any treedepth decomposition T of depth k, we can construct a treedepth
decomposition T ′ such that:

1. depth(T ′) ≤ k
2. Each vertex in S is an ancestor of every vertex in C in T ′

3. For each pair of vertices {u,w} ⊆ V (C) or {u,w} ⊆ V (G \ C), u is an
ancestor of w in T ′ iff it is an ancestor of w in T .

Using Lemma 2, we now show that tmax(k) ≥ 2k.

Lemma 3. There exists an infinite sequence of graphs R1, R2, . . . such that

lim
i→∞

χ
cen(Ri)

χlin(Ri)
= 2.

2 This tightens a bound in [14] from double to single exponential.
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The graphs in Lemma 3 contain large cliques. We now show that this is not
a necessary condition for the linear and centered coloring numbers to diverge
(Fig. 1).

Lemma 4. Let B� be the complete binary tree with � levels. Then

lim
�→∞

χcen(B�)
χlin(B�)

≥ 3
2

(a) R6 (Lemma 3).

w

x

y y

z

x y

(b) B3 (Lemma 4).

Fig. 1. Linear colorings of graphs in Lemmas 3–4. (Color figure online)

We conjecture that the construction in Lemma3 is optimal.

Conjecture 1. For any graph G, χcen(G) ≤ 2χlin(G).

While the exclusion of a path of length 2k indicates tmax(k) ≤ 2k, this nonethe-
less leaves a large gap between the upper and lower bounds on tmax(k). To
move towards a proof of Conjecture 1, we consider two restricted graph classes—
namely, trees and interval graphs—in the next two sections and establish poly-
nomial upper bounds on tmax(k) for graphs in these classes.

5 Treedepth Upper Bounds on Trees

Schäffer proved that there is a linear time algorithm for finding a minimum-sized
centered coloring of a tree T [16]. In this section we prove the following theo-
rem by showing a correspondence between the centered coloring from Schäffer’s
algorithm and colors on paths in any linear coloring of T .
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Theorem 1. There exists a polynomial time algorithm that takes as input a tree
T and a linear coloring ψ of T with size k and outputs a centered coloring of T
whose size is at most O(k3).

Schäffer’s algorithm finds a particular centered coloring whose colors are
ordered in a way that reflects their roles as centers. For this reason, the coloring
is called a vertex ranking and the colors are referred to as ranks; it guarantees
that in each subgraph, the vertex of maximum rank is also a center. We will use
this terminology in this section to clearly distinguish between the ranks in the
vertex ranking and colors in the linear coloring. Note that the canonical centered
coloring of a treedepth decomposition is a vertex ranking if the colors are ranked
decreasing from the root downwards, which implies that every centered coloring
can be converted to a vertex ranking of the same size. Of central importance to
Schäffer’s algorithm are what we will refer to as rank lists.

Definition 6. For a vertex ranking r of tree T , the rank list of T , denoted L(T ),
can be defined recursively as L(T ) = L(T\Tv) ∪ {r(v)} where v is the vertex of
maximum rank in T .

Schäffer’s algorithm arbitrarily roots T and builds the ranking from the leaves
to the root of T , computing the rank of each vertex from the rank lists of each
of its children.

Proposition 2 ([16]). Let r be a vertex ranking of T produced by Schäffer’s
algorithm and let v ∈ T be a vertex with children u1, . . . , u�. If x is the largest
integer appearing on rank lists of at least two children of v (or 0 if all such rank
lists are pairwise disjoint) then r(v) is the smallest integer satisfying r(v) > x

and r(v) /∈
⋃�

i=1 L(ui).

Our proof of Theorem1 is based on tracking sets of colors of ψ on leaf paths
as Schäffer’s algorithm moves up the rooted tree. Define the color vector of a
path P with respect to linear coloring ψ to be the set of colors from ψ appearing
on P . Let S(v) be the set of all color vectors of all leaf paths in Tv. Let κ(v) be
the maximum cardinality of any color vector in S(v) and Sκ(v) = {C ∈ S(v) :
|C| = κ(v)}. We show below that every vertex v has a corresponding vertex u
that is “similar” in rank but “dissimilar” in values of κ and/or Sκ.

Lemma 5. Let v be a vertex of rank i > k. There exists a vertex u ∈ Tv such
that

• i − κ(v) − 1 < r(u) < i and
• Either κ(u) < κ(v) or |Sκ(u)| ≤ 	 1

2 |Sκ(v)|
.

Using Lemma 5 as a recursive step, we prove Theorem 1 by tracing the values of
functions κ and S down towards the leaves.

Proof (Theorem1). Let ui be the vertex of maximum rank in T . There is a
maximal sequence of vertices u2, . . . , uq such that ui+1 satisfies the properties of
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Lemma 5 with respect to Tui
. Note that the ranks of u1, . . . , uq are monotonically

decreasing and r(ui) − r(ui+1) ≤ κ(ui). Moreover, every vertex in T satisfies
1 ≤ |Sκ(v)| ≤

(
k

κ(v)

)
and 1 ≤ κ(v) ≤ k. Since the only vertices with κ(v) = 1 are

the leaves,

r(ui) ≤
k∑

i=1

i

(
log2

(
k

i

)
+ 1

)
≤ O(k3).

Consequently, r is a centered coloring of size at most O(k3) that can be computed
in linear time. ��

6 Treedepth Upper Bounds on Interval Graphs

Because linear colorings are equivalent to centered colorings when restricted to
paths, we turn our attention to the linear coloring numbers of “pathlike” graphs.
We investigate a particular class of “pathlike” graphs in this section and prove
a polynomial relationship between their centered and linear coloring numbers.

Definition 7. A graph G is an interval graph if there is an injective mapping
f from V (G) to intervals on the real line such that uv ∈ E(G) iff f(u) and f(v)
overlap.

We refer to the mapping f as the interval representation of G. Since the overlap
between intervals f(u) and f(v) is independent of the interval representations
of the other vertices, every subgraph of an interval graph is also an interval
graph. The interval representation of G implies a natural “left-to-right” layout
that gives it the “pathlike” qualities, which are manifested in restrictions on the
length of induced cycles (chordal) and paths between vertex triples (AT-free).

Definition 8. A graph is chordal if it contains no induced cycles of length ≥4.

Definition 9. Vertices u, v, w are an asteroidal triple (AT) if there exist uv-,
vw-, and wu-paths Puv, Pvw, and Pwu, respectively, such that N [w] ∩ Puv =
N [u] ∩ Pvw = N [v] ∩ Puv = ∅. A graph with no AT is called AT-free.

Proposition 3 ([8]). Graph G is an interval graph iff G is chordal and AT-free.

Intuitively, Definition 9 is a set of three vertices such that every pair is connected
by a path that avoids the neighbors of the third. Roughly speaking, in the context
of linear colorings, Proposition 3 indicates that if w is a center of a “long” uv-
path P in G, any vertex w′ such that ψ(w) = ψ(w′) must have a neighbor on P .
We devote the rest of this section proving Theorem2.

Theorem 2. There exists a polynomial time algorithm that takes as input an
interval graph G and a linear coloring of G with size k and outputs a centered
coloring of G with size at most k2.

Our algorithm makes extensive use of the following well-known property of max-
imal cliques in interval graphs.
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Proposition 4 ([8]). If G is an interval graph, its maximal cliques can be lin-
early ordered in polynomial time such that for each vertex v, the cliques contain-
ing v appear consecutively.

In particular, we identify a prevailing path in G whose vertices “span” the maxi-
mal cliques and a prevailing subgraph that consists of the prevailing path as well
as vertices in maximal cliques “between” consecutive vertices on the prevailing
path. We will show that any linear coloring is a centered coloring when restricted
to the prevailing subgraph and that after removing the prevailing subgraph, the
remaining components each use fewer colors.

Let C1, . . . Cm be an ordering of the maximal cliques of G that satisfies
Proposition 4. We say vertex v is introduced in Ci if v ∈ Ci but v /∈ Ci−1, and
denote this as I(v) = i. Likewise, v is forgotten in Cj if v ∈ Cj but v /∈ Cj+1, and
denote this as F (v) = j. The procedure for constructing a prevailing subgraph
and prevailing path is described in Algorithm1. This algorithm selects the vertex
v from the current maximal clique that is forgotten “last” and adds v to the
prevailing path and CF (v) to the prevailing subgraph. We prove in Lemma6
that if P,Q are a prevailing path and subgraph, the vertices in Q\P can be
inserted between vertices of P to form a Hamiltonian path of Q.

Algorithm 1. Construction of a prevailing path and subgraph.
Input: interval graph G
Output: prevailing path P and prevailing subgraph Q
1: C1, . . . , Cm ← maximal cliques of G labeled in accordance with Proposition 4
2: P ← ∅
3: VQ ← ∅
4: i ← 1
5: j ← 1
6: while i < m do
7: vj ← arg maxu∈Ci

F (u)
8: P ← P · {vj}
9: i ← F (v)

10: VQ ← VQ ∪ V (Ci)
11: j ← j + 1
12: end while
13: Q ← G[VQ]
14: return P, Q

Lemma 6. Every prevailing subgraph has a Hamiltonian path.

Although the fact that the prevailing subgraph Q has a Hamiltonian path implies
Q has a center with respect to ψ, we must ensure that the proper subgraphs of
Q also have a center. In Lemma 7, we prove ψ|Q is centered by showing every
proper connected subgraph of Q also has a Hamiltonian path.
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Lemma 7. If Q is a prevailing subgraph of an interval graph G and ψ a linear
coloring of G, ψ|Q is a centered coloring.

Since any linear coloring ψ of the prevailing subgraph Q must also be a centered
coloring, td(Q) ≤ |ψ|. To get a bound on the treedepth of G, we focus on the
relationship between Q and G\Q. In particular, we show that the components
of G\Q use fewer than |ψ| colors by proving that each such component has an
apex in the prevailing path.

Lemma 8. Let P,Q be a prevailing path and subgraph of an interval graph G.
For each component X of G\Q, there is a vertex a ∈ P such that X ⊆ N(a).

We can now establish a polynomial upper bound on the treedepth of interval
graphs, proving Theorem2.

Proof (Theorem2). Let A be the algorithm that constructs a treedepth decom-
position T of G by finding a prevailing subgraph Q (Algorithm 1), using ψ|Q to
create a treedepth decomposition of Q, and recursively constructing treedepth
decompositions of G\Q. If depth(T ) ≤ k2 and A runs in polynomial time, then
the canonical centered coloring of T is a centered coloring of G of size at most
k2. We prove A satisfies these requirements by induction on k = |ψ|. At k = 1,
the graph consists of isolated vertices and A trivially constructs a treedepth
decomposition of G of depth 1 in polynomial time.

Assume A has the desired properties for linear colorings of size at most k−1.
Because the maximal cliques of an interval graph can be enumerated and ordered
in polynomial time (Proposition 4), identifying Q via Algorithm 1 can be done
in polynomial time. By Lemma 7, the canonical treedepth decomposition of Q
has depth at most k. Since every component X of G\Q has an apex a in P
(Lemma 8), we can assume a is an ancestor in T of each vertex in X (Lemma 2).
Because ψ is proper, ψ(a) does not appear in ψ|X and since induced subgraphs of
interval graphs are themselves interval graphs, A finds a treedepth decomposition
of X whose depth is at most (k − 1)2. Thus T has depth k + (k − 1)2 ≤ k2. The
recursion only lasts k ≤ n steps, so A runs in polynomial time. ��

7 Hardness of Recognizing Linear Colorings

Based on the similarity in definition between linear and centered colorings, one
might assume that computing them should be roughly equally difficult. Finding
a centered coloring of a fixed size is NP-hard [1], but given a coloring of a graph,
we can recognize whether it is centered in polynomial time by attempting to
create the canonical treedepth decomposition; this procedure will identify a non-
centered subgraph if the coloring is not centered. To the contrary, we will prove
that Linear Coloring Recognition, the problem of recognizing whether a
coloring is linear, is co-NP-complete. In order to prove the hardness of Linear
Coloring Recognition, we first define a dual problem. The Non-centered
Path problem takes a graph G and coloring ψ as input and decides whether G
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u1 u2 u3 w1 w2 w3 u0 u1 u2 u3 u0

w1,1

w1,2

w2,1 w2,2

w2,3 w3,1

w3,2PT
1 PT

2 PT
3

PF
1 PF

2 PF
3

Fig. 2. The graph G and coloring ψ for Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x2).
(Color figure online)

has a non-centered path P . We focus on proving the hardness of Non-centered
Path because a certificate to that problem is easily definable: a path where every
color appears at least twice (Fig. 2).

Theorem 3. Non-centered Path is NP-complete.

Corollary 1. Linear Coloring Recognition is co-NP-complete.

The co-NP-hardness of recognizing linear colorings is compounded by three
stronger hardness implications. First, the coloring ψ given in Theorem 3 has size
m+n+1, which means that unless the exponential time hypothesis [6] fails, there
is no 2o(k) algorithm to recognize a linear coloring of size k. Second, the graph
G is outerplanar with pathwidth two, which implies that neither treewidth-style
dynamic programming nor a Baker-style layering approach is likely to solve this
problem efficiently. Finally, by subdividing each edge and coloring all subdivi-
sion vertices with a (single) new color, we obtain a bipartite graph with degen-
eracy two, proving hardness for each of those classes. Nonetheless, the fact that
χcen(G) = O(log m + log n) while |ψ| = m + n + 1 leaves open the possibility
that Linear Coloring Recognition becomes easier for colorings of minimum
size.

8 Conclusion

We have introduced p-linear and linear colorings as an alternative to p-centered
and centered colorings for use in algorithms for classes of bounded expansion.
The p-linear colorings are computable in polynomial time and require a con-
stant number of colors in classes of bounded expansion, while inducing graphs
of bounded treedepth for all small sets of colors, allowing direct substitution
in existing algorithmic pipelines. A major direction for future work is to bring
the upper bound on tmax(k) of 2k closer to the lower bound of 2k. In par-
ticular, it appears our current toolkit for analyzing linear colorings must be
expanded in order to prove (or disprove) Conjecture 1. We also believe it is
worth studying whether recognizing linear colorings can be done in polynomial
time if we assume the coloring is of size χlin(G). Finally, using p-linear colorings
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in practice will require an efficient method for translating a linear coloring into
a treedepth decomposition. Although there exist general-purpose algorithms to
find treedepth decompositions efficiently in graphs of bounded linear coloring
number (e.g. [15]), a more specialized algorithm that avoids “heavy machinery”
is likely necessary to be practically useful.
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