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Abstract. In the study of geometric problems, the complexity class ∃R
plays a crucial role since it exhibits a deep connection between purely
geometric problems and real algebra. Sometimes ∃R is referred to as the
“real analogue” to the class NP. While NP is a class of computational
problems that deals with existentially quantified boolean variables, ∃R
deals with existentially quantified real variables.

In analogy to Πp
2 and Σp

2 in the famous polynomial hierarchy, we
study the complexity classes ∀∃R and ∃∀R with real variables. Our main
interest is focused on the Area Universality problem, where we are
given a plane graph G, and ask if for each assignment of areas to the
inner faces of G there is an area-realizing straight-line drawing of G. We
conjecture that the problem Area Universality is ∀∃R-complete and
support this conjecture by a series of partial results, where we prove ∃R-
and ∀∃R-completeness of variants of Area Universality. To do so,
we also introduce first tools to study ∀∃R. Finally, we present geometric
problems as candidates for ∀∃R-complete problems. These problems have
connections to the concepts of imprecision, robustness, and extendability.

1 Introduction

In this paper we investigate problems related to face areas in straight-line draw-
ings of planar graphs. We consider two crossing-free drawings of a planar graph
to be equivalent if they have the same outer face and rotation system, i.e., for
each vertex the cyclic ordering of the incident edges coincides. Recall that a plane
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graph is a planar graph together with a crossing-free drawing, and the faces of
a plane graph are determined by its rotation system. Let G be a plane graph
and let F be the set of inner faces of G. A face area assignment is a function
A : F → R

+
0 . We say that G′ is an A-realizing drawing, if G′ is an equivalent

straight-line drawing of G in which the area of each f ∈ F is exactly A(f). If
A has an area-realizing drawing, we say that A is realizable. A plane graph G is
area-universal if every face area assignment is realizable. Since we only consider
crossing-free straight-line drawings, we simply call them drawings from now on.

Since area-universality seems to be a strong property, it is somewhat surpris-
ing that many graphs indeed are easily seen to be area-universal. It is straight-
forward to observe that stacked triangulations, also known as planar 3-trees or
Apollonian networks, are area-universal. A stacked triangulation T is defined
recursively by subdividing a triangle t of a stacked triangulation T ′ into three
smaller triangles. An area assignment of T can be realized by first realizing T ′

so that t has the total area of the three smaller triangles, and then subdividing t
accordingly. Moreover, it is easy to see that if a graph is area-universal, then each
of its subgraphs is also area-universal. These two observations together imply
that partial planar 3-trees are area-universal [3]. In 1992, Thomassen [17] proved
that plane cubic graphs are area-universal. More recently, Kleist [9] showed that
all 1-subdivisions of plane graphs are area-universal. In other words, every area
assignment of every plane graph could be realized if we allowed each edge to
have at most one bend instead of only allowing straight-line drawings.

For a long time, the only graph known not to be area-universal was the
octahedron graph (or graphs containing the octahedron), which was proven by
Ringel [15] in 1990. Kleist [9] introduced the first non-trivial infinite family
of non-area-universal graphs. In particular, she showed that all Eulerian trian-
gulations and the icosahedron graph are not area-universal. This implies that
high connectivity of a graph does not imply area-universality. Moreover, area-
universality is not a minor-closed property, as the grid is area-universal [8], but
the octahedron graph is not area-universal, although it is a minor of the grid.

In this paper we are interested in the computational problem of deciding if a
given plane graph is area-universal; which we denote by Area Universality.

When investigating natural geometric problems, one often discovers that an
instance of such a problem can be described by a system of polynomial equa-
tions and inequalities Φ so that real-valued variable assignments that satisfy Φ
correspond to solutions of the original geometric problem. Existential The-
ory of the Reals (ETR) is a computational problem that takes a first-order
formula containing only existential quantifiers: ∃X1,X2, . . . , Xn : Φ, where Φ has
symbols 0, 1, +, ∗, =, <, ∧, ¬, (, ), X1, . . . , Xn as an input and asks whether
it is true or not over the reals. The complexity class ∃R consists of all prob-
lems that are many-one reducible to ETR by a Turing machine in at most
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a polynomial number of steps. Surprisingly many natural geometric problems
appear to be ∃R-complete, i.e., ETR is also reducible to these problems in ∃R
in the above sense. A prominent example is the stretchability of a pseudoline
arrangement (see [12,13,16]). A pseudoline arrangement in the plane is a set
of unbounded Jordan curves where every pair of curves intersects in exactly
one crossing point. A pseudoline arrangement is stretchable if there exists an
arrangement of straight lines with the same face structure. Stretchability is
a computational problem which asks whether a given pseudoline arrangement
is stretchable. Here the input is the order type of a pseudoline arrangement,
which is a rank 3 chirotope. Since Stretchability is ∃R-complete, there is lit-
tle hope to find a simple algorithm for Stretchability, since simple algorithms
to decide ETR are not known despite tremendous work in real algebraic geom-
etry. The ∃R-completeness of Stretchability reflects the deep algebraic con-
nections between line arrangements and real algebra. For instance, the smallest
non-strechable pseudoline arrangement, depicted in Fig. 1, is based on Pappus’s
Hexagon Theorem [10], dating back to the 4th century. It considers two different
lines with three points each, the points are denoted by A,B,C and X,Y,Z, see
Fig. 1. If the lines AY ,BZ,CX intersect the lines BX,CY ,AZ, respectively,
then the three points of intersection are collinear. Although the statement is
intrinsically geometric, most known proofs are algebraic, see [14].

Fig. 1. Pappus’s Hexagon Theorem and non-stretchable pseudoline arrangement.

Geometric problems that are ∃R-complete usually ask for the existence of
certain objects, satisfying some semialgebraic properties. However, the nature
of Area Universality seems to be different. We therefore define the new
complexity class ∀∃R as the set of all problems that reduce in polynomial time
to Universal Existential Theory of the Reals (UETR).

The class ∃∀R is defined analogously. Clearly ∃R is contained in ∀∃R. It
is easy to observe and well-known that NP is contained in ∃R. Highly non-
trivial is the containment of ∀∃R in PSPACE, which follows from a more general
result that deciding first-order formulae over the reals with bounded number of
quantifier blocks is in PSPACE (see [2]). For all we know, all these complexity
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classes could collapse, as we do not know whether NP and PSPACE constitute
two different or the same complexity class, see Fig. 2. However, ∃R �= ∀∃R can
be believed with similar confidence as NP �= Πp

2 . In addition, it is known that
the algebraic expressibility of ∀∃R-formulae is larger than ∃R-formulae, see [5].

Fig. 2. Relation of com-
plexity classes.

It is worth mentioning that Blum et al. [4] also
introduce a hierarchy of complexity classes analogous
to the complexity class NP, but over the reals (this gen-
eralizes to other rings). Their canonical model of com-
putation is the so-called Blum-Shub-Smale machine
(BSS). The main difference between these approaches
is that BSS accepts real numbers as input, while the
classes (∃R, ∀∃R, ∃∀R) work with ordinary Turing
machines, accepting only strings over finite alphabets.

Our Results
It is straightforward to show that Area Universality belongs to ∀∃R:
Proposition 1. Area Universality is in ∀∃R.
The idea is to use a block of universal quantifiers to describe the face area
assignment and the block of existential quantifiers to describe the placement of
the vertices of the drawing of G. We believe that a stronger statement holds.
Conjecture 1. Area Universality is ∀∃R-complete.
While this conjecture, if true, would show that Area Universality is a really
difficult problem in an algebraic and combinatorial sense, it would also give the
first known natural geometric problem that is complete for ∀∃R.

As a first step towards proving our conjecture, we consider three variants of
Area Universality, each approaching the conjecture from a different direc-
tion. In Sect. 2 we introduce restricted variants of ETR and UETR which are
still complete and may be useful to show hardness for other problems.

Note that two variants that we consider have the spirit of extending a partial
drawing with some extra constraints. This problem was shown recently to be
∃R-complete [11]. This work is the first to show ∃R-hardness for a problem of
drawing a planar graph in the plane.

As a starting point we drop the planarity restriction. For a plane graph G
with vertex set V , the face hypergraph of G has vertex set V , and its edges
correspond to sets of vertices forming the faces (see e.g. [7]). Observe that the
face hypergraph of a plane triangulation is 3-uniform, i.e. each hyperedge has 3
vertices. It is clear that Area Universality can be equivalently formulated in
the language of face hypergraphs. This relation motivates the following partial
assignment (PA) version of the problem.
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Theorem 1. Area Universality for Triples PA is ∀∃R-complete.

For the proof of Theorem 1 we use gadgets similar to the von Staudt constructions
used to show the ∃R-hardness of order-types, see [12].

Our second result concerns a variant, where we investigate the complexity of
realizing a specific area assignment. Prescribed Area denotes the following
problem: Given a plane graph G with an area assignment A, does there exist a
crossing-free drawing of G that realizes A? We study a partial extension (PE)
version of Prescribed Area, where some vertex positions are fixed and we
seek for an area-realizing placement of the remaining vertices.

We show the following hardness result for Prescribed Area PE.

Theorem 2. Prescribed Area PE is ∃R-complete.

The next two results consider the corresponding question for simplicial complexes
in three dimensions. Recall that an abstract simplicial complex is a family Σ of
non-empty finite sets over a ground set V =

⋃
Σ, which is closed under taking

non-empty subsets. We say Σ is pure when the inclusion-wise maximal sets of
Σ all have the same number of elements. We say Σ is realizable when there is a
simplicial complex S in R

3 that has a vertex for each element of V and a simplex
corresponding to each set in Σ.

A crossing-free drawing of Σ is a mapping of every i ∈ V to a point pi ∈ R
3,

such that the following holds. For any pair of sets σ1, σ2 ∈ Σ there is a separating
hyperplane h = {x ∈ R

3 : 〈a, x〉 = b} such that 〈a, pi〉 ≤ b for all i ∈ σ1 and
〈a, pi〉 ≥ b for all i ∈ σ2. A volume assignment for Σ is a non-negative-valued
function on the collection T of all 4-element sets in Σ, and a crossing-free drawing
of Σ realizes a volume assignment V : T → R

+
0 when for each τ ∈ T , the convex

hull of the points {pi : i ∈ τ} has volume V(τ). The analogous questions are:
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Proposition 2. Volume Universality PA is in ∀∃R.
Note that 3-dimensional simplicial complexes are the analogue of planar triangu-
lations. Indeed, Prescribed Area for triangulations reduces to Prescribed
Volume in the following sense:

Proposition 3. There is a polynomial time algorithm that takes as input any
plane triangulation G with positive area assignment A and outputs a simplicial
complex S with volume assignment V such that A is realizable for G if and only
if V is realizable for S.

Moreover, the analogues of Prescribed Area and Area Universality
are hard. The two versions read as follows:

Theorem 3. Prescribed Volume is ∃R-complete.

Theorem 4. Volume Universality PA is ∀∃R-complete.

2 Toolbox: Hard Variants of ETR and UETR

In this section we introduce some restricted variants of ETR and UETR which
enable us to show hardness. Recently, Abrahamsen et al. showed that the fol-
lowing problem is also ∃R-complete [1].

In order to define an even more restricted variant of ETRINV, we need one more
definition. Consider a formula Φ of the form Φ = Φ1∧Φ2∧. . .∧Φm, where each Φi

is a quantifier-free formula of the first-order theory of the reals with variables
X1,X2, . . . , Xn, which uses arithmetic operators and comparisons (=, <,≤) but
no logic symbols. The incidence graph of Φ is the bipartite graph with vertex set
{X1,X2, . . . , Xn} ∪ {Φ1, Φ2, . . . , Φm} that has an edge XiΦj if and only if the
variable Xi appears in the subformula Φj . By Planar-ETRINV we denote the
variant of ETRINV where the incidence graph of Φ is planar and Φ is either
unsatisfiable or has a solution with all variables within (0, 5).

Theorem 5. Planar-ETRINV is ∃R-complete.

Proof. Let (∃ X1,X2, . . . , Xn) : Φ be an instance of ETRINV and let G be some
embedding of G(Φ) in R

2. Suppose that G is not crossing-free and consider a
pair of crossing edges. Let X and Y denote the variables corresponding to (one
endpoint of) these edges. We introduce three new existential variables X ′, Y ′, Z
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Fig. 3. The crossing gadget.

and three constraints: X+Y = Z; X+Y ′ = Z; X ′+Y = Z. Observe that these
constraints ensure that X = X ′ and Y = Y ′. Moreover, the embedding of G can
be modified so that the new incidence graph has strictly fewer crossings (see
Fig. 3): the considered crossing is removed and no new crossing is introduced.
We repeat this procedure until the incidence graph of the obtained formula is
planar. Finally, note that 0 < 1 ≤ Z = X+Y ≤ 4 < 5 whenever 1/2 ≤ X,Y ≤ 2.
Note that the number of new variables and constraints is at most O(|Φ|4), since
each constraint in ETRINV has at most three variables. ��

Now we introduce a restricted variant of UETR.

Constrained-UETR can be seen as a variant of ∀∃R that is simplified in a
way analogous to a ∃R-complete variant of ETR called Ineq [12,16]. Similarly,
we will show that Constrained-UETR is ∀∃R-complete.

Theorem 6. Constrained-UETR is ∀∃R-complete.

3 Hardness of Area Universality for Triples PA

Here we prove Theorem 1.

Theorem 1. Area Universality for Triples PA is ∀∃R-complete.

Proof. For the containment, it is easy to express the area of a triangle by a
polynomial equation: Denoting the coordinates of a vertex vi by (xi, yi), the
signed area A(v1, v2, v3) of a counter-clockwise triangle v1v2v3 can be computed
by

2 · A(v1, v2, v3) = det

⎛

⎝
x1 x2 x3

y1 y2 y3
1 1 1

⎞

⎠ =: Det(v1, v2, v3).

Thus, we take a conjunction of equations of the above form for each triple.
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For the hardness, we reduce from Constrained-UETR. For every instance
Ψ of Constrained-UETR, we give a set of points V and unordered triples T ,
along with a partial area assignment A′. Let Ψ be a formula of the form:

Ψ = (∀Y1, . . . , Ym ∈ R
+)(∃X1, . . . , Xn ∈ R

+) : Φ(Y1, . . . , Ym,X1, . . . , Xn).
Recall that Φ is a conjunction of constraints of the form X = 1, X + Y = Z,

and X · Y = Z. First, we show how to express Φ. Our gadgets are similar to
the ones for showing ∃R-hardness of Order Type (see [12]). All variables are
represented by points on one line; which we denote by � for the rest of the
proof. First, we enforce points to be on �. Afterwards we construct gadgets for
mimicking addition and multiplication.

Introduce three points p0, p1, and r and define A′(p0, p1, r) := 1. The positive
area ensures that the points are not collinear and pairwise different. Without
loss of generality we assume that ‖p0p1‖ = 1 and interpret p0 as 0 and p1 as 1.
Denoting a line through two points a and b by �a,b, we set � := �p0,p1 . To force
a point x on �, we set A′(x, p0, p1) := 0. This introduces no other constraints on
the position of x. Each variable X is represented by a point x on �. Additionally,
since all variables are non-zero, we introduce a triangle forcing x to be different
from p0. In general, we can ensure that two points x1 and x2 are distinct, by
introducing a point q and adding a triangle (x1, x2, q) with A′(x1, x2, q) := 1.
The absolute value of X is defined by ‖p0x‖; if x and p1 lie on the same side
of p0, then the value of X is positive, otherwise it is negative. Here, we allow
negative values, but later we force the original variables to be positive.

Now, we describe the addition gadget for a constraint X +Y = Z. Let x, y, z
be the points encoding the values of X,Y,Z, respectively. Recall that x, y, z ∈ �
and x, y, z �= p0. We introduce a point q1 and prescribe the areas A′(p0, x, q1) =
A′(y, z, q1) = 1, see on the left of Fig. 4. Since the two triangles have the same
height, it holds that ‖yz‖ = ‖p0x‖. Thus, the value of Z is either X+Y or X−Y .
Analogously, we introduce a point q2 and define A′(p0, y, q2) = A′(x, z, q2) = 1,
implying that Z is either Y + X or Y − X. Therefore either Z = X + Y (the
intended solution) or Z = X − Y = Y − X. The latter case implies X = Y and
thus Z = 0. This contradicts the fact that z �= p0.

Fig. 4. Gadgets for addition and multiplication.

For the multiplication gadget, we show how to enforce on four pairwise differ-
ent points p, p′, s, s′ that �p,p′ is parallel to �s,s′ , without introducing additional
constraints on any of the four points. We insert two new points h1 on line �p,p′ and
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Fig. 5. Forcing a trapezoid.

h2 on line �s,s′ by defining A′(p, p′, h1) = A′(s, s′, h2) = 0. We aim for a trape-
zoid with points p, h1, s, h2 such that ph1 is parallel to sh2. For this, we prescribe
the areas A′(p, h1, s) = A′(p, h1, h2) = 1 and A′(s, h2, p) = A′(s, h2, h1) = 2, see
Fig. 5. Indeed, s and h2 must lie on the same side of the line �p,h1 : Assume by
contradiction that �p,h1 separates s and h2. If p, h1 are on the same side of �s,h2

then the triangle (s, h2, p) is contained in or contains the triangle (s, h2, h1),
see the middle of Fig. 5. However this contradicts the fact that both triangles
have the same area and p �= h1. Consequently, �s,h2 separates p and h1 and
the quadrangle psh1h2 can be partitioned by either diagonal sh2 or ph1. Thus,
2 = A(p, h1, s) + A(p, h1, h2) = A(s, h2, h1) + A(s, h2, p) = 4, which is again a
contradiction. Thus s, h2 lie on the same side of �p,h1 . By the prescribed area, s
and h2 have the same distance to �p,h1 . Hence, the segments ph1 and sh2 and the
lines �p,p′ and �s,s′ are parallel and no further constraints are imposed p, p′, s, s′.
To construct a multiplication gadget for the constraint X · Y = Z, let x, y, z (�=
p0) be the points encoding the values of X,Y,Z, respectively. We introduce two
points p, p′ not on �, but collinearity with p0 is forced by A′(p0, p, p′) := 0. By
the parallel-line construction we force that �p1,p with �y,p′ and �x,p with �z,p′ are
parallel, see Fig. 4. By the intercept theorem, the following ratios coincide (also
for negative variables): |p0p|/|p0p′| = |p0p1|/|p0y| = |p0x|/|p0z|. By definition
of x, y, z, we obtain 1/Y = X/Z, and hence X · Y = Z. Recall that p1 = 1.
For every universally quantified Yi, let yi be the point encoding its value with
yi ∈ � and yi �= p0. We introduce a triple fi = (p0, r, yi), whose area is universally
quantified. Recall that r is a point with A′(p0, p1, r) = 1. To enforce each original
variable X to be positive, we add an existentially quantified variable SX and the
constraint X = SX ·SX where SX may or may not be positive. This finishes the
reduction which clearly runs in polynomial time.

It remains to argue that Ψ is true if and only if, for the constructed instance
of Area Universality for Triples PA with partial assignment A′, every
assignment A consistent with A′ is realizable. Suppose Ψ is true, let A′ be as
above, and consider an assignment A that is consistent with A′. Let V (Yi) be
the area assigned to the triple fi, and let V (Xi) be the value of the variable Xi in
some satisfying assignment for Φ. Let y1, . . . , ym, x1, . . . , xn be points positioned
on a line at distances from a point p0 corresponding to these values. Since addi-
tion and multiplication relations specified by Φ hold, the corresponding gadgets
can be realized, so A is realizable. Suppose that every assignment A that is
consistent with A′ is realizable and consider values V (Y1), . . . , V (Ym) ∈ R

+ of
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the universally quantified variables of Ψ . Then there is a realization of A where
p0 �= p1 and each fi has area V (Yi). So V (Xi) = ‖xi−p0‖/‖p1−p0‖ is a satisfying
assignment for Φ, thus Ψ is true. ��

4 Hardness of Prescribed Area PE

Here we sketch a proof of Theorem 2 by reducing from Planar-ETRINV.

Theorem 2. Prescribed Area PE is ∃R-complete.

Proof (Sketch). Let Ψ = ∃X1 . . . Xn : Φ(X1, . . . , Xn) be an instance of Planar-
ETRINV. Recall that we can assume that if Ψ is a positive instance, then it has
a solution in which the values of variables are in the interval (0, 5). We construct
a plane graph GΨ = (V,E), a face area assignment A of inner faces of GΨ ,
and fixed positions of a subset of vertices, such that GΨ has a realizing drawing
respecting the position of pre-drawn vertices if and only if Φ is satisfiable by
real values from the interval (0, 5). Consider the incidence graph of Φ and fix an
orthogonal plane drawing on an integer grid, see Fig. 6 for an example.

Fig. 6. Incidence graph of (X1+X2 = X3)∧(X1X2 = 1)∧(X1+X4 = X3)∧(X4X3 = 1).

To represent each part of GΨ , we design several gadgets: variable gadgets
to represent the variables, as well as inversion and addition gadgets to realize
the constraints. Moreover, we construct wires and splitters in order to copy and
transport information. For an illustration consider Fig. 7. Some vertices in our
gadgets have prescribed positions; we call them fixed. The remaining vertices are
flexible. Most flexible vertices lie on a specific segments where the distance to
one end of the segment encodes the value of the variable. ��

Fig. 7. Gadgets for Theorem 2; black vertices are fixed, gray vertices are flexible.
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5 Volume-Universality

In order to show Theorem 3, we reduce from ETRINV and for Theorem 4 from
Constrained-UETR. We construct a simplicial complex S = (V, F ) and a
volume assignment V, such that S has a V-realization iff Φ is satisfiable. Our
essential building block is the coplanar gadget. It forces several triangles of equal
area to lie in a common plane, see Fig. 8 (left). These triangles will be free to
one half-space and thus accessible for our further construction. Indeed, all but
one vertices lie in the same plane. We use the coplanar gadget to force a set
of points representing the values of the variables to lie on a common line �.
In order to do so, we take two coplanar gadgets and enforce that their base
planes E,E� are not parallel, see Fig. 8 (right). This allows us to mimic addition
and inversion on a line as before. It turns out that in three dimensions we can
guarantee crossing-free simplices.

Fig. 8. Two gadgets for Prescribed Volume and Volume Universality PA.

6 Potential Complete Problems

To motivate the research on ∀∃R and ∃∀R, we present some candidates of prob-
lems that might be complete for these classes. A very natural one was suggested
by Marcus Schaefer. It is the well-known problem of determining the Hausdorff
distance of two semi-algebraic sets: For two sets A,B ⊆ R

d, the Hausdorff dis-
tance dH is defined as dH(A,B) = max{sup

a∈A
inf
b∈B

‖ab‖, sup
b∈B

inf
a∈A

‖ab‖}, where ‖ab‖
denotes the Euclidean distance. As a step towards proving the ∀∃R-hardness
of this problem, we show hardness for a variant where quantifier-free formulas
describing the semi-algebraic sets are part of the input.

Given a quantifier-free formula Γ of the first-order theory of the reals with n
free variables, SΓ := {x ∈ R

n : Γ (x)} is the semi-algebraic set defined by Γ . By
πk : Rn → R

k we denote the projection onto the first k coordinates. Note that
the complexity of a quantifier-free formula Γ ′ defining πk(SΓ ) may exceed the
complexity of Γ . In Hausdorff Distance of Projections, the input consists
of two quantifier-free formulas Φ and Ψ in the first-order theory of the reals and
k ∈ N. The question is whether dH(πk(SΦ), πk(SΨ )) = 0.
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Lemma 1. Hausdorff Distance of Projections is ∀∃R-complete.

Several other candidates of ∀∃R- and ∃∀R-complete problems are related
to the notion of imprecision, where we assume that our input is only a rough
approximation of the ‘real’ input. Nevertheless, we seek a universal solution
that is valid in any case, i.e., for every possible realization of the imprecise
data. As an example, consider Universal Guard Set, a variant of the Art
Gallery Problem [1]. For a set of unit disks specifying the imprecise placement
of polygon vertices, we ask for a minimum set of guards (points), that can guard
every polygon formed by points from the unit disks.
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