
 123

44th International Workshop, WG 2018
Cottbus, Germany, June 27–29, 2018
Proceedings

Graph-Theoretic Concepts
in Computer ScienceLN

CS
 1

11
59

AR
Co

SS
Andreas Brandstädt
Ekkehard Köhler
Klaus Meer (Eds.)

Lecture Notes in Computer Science 11159

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Andreas Brandstädt • Ekkehard Köhler
Klaus Meer (Eds.)

Graph-Theoretic Concepts
in Computer Science
44th International Workshop, WG 2018
Cottbus, Germany, June 27–29, 2018
Proceedings

123

Editors
Andreas Brandstädt
Universität Rostock
Rostock
Germany

Ekkehard Köhler
Brandenburgische Technische Universität
Cottbus-Senftenberg

Cottbus
Germany

Klaus Meer
Brandenburgische Technische Universität
Cottbus-Senftenberg

Cottbus
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-00255-8 ISBN 978-3-030-00256-5 (eBook)
https://doi.org/10.1007/978-3-030-00256-5

Library of Congress Control Number: 2018953364

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 44th International Workshop on Graph-Theoretic Concepts in Computer Science,
WG2018, took place at the Schlosshotel Lübbenau, Lübbenau,Germany, June 27–29, 2018.
It was organized by the Brandenburg University of Technology Cottbus-Senftenberg.
There were approximately 70 participants from several countries all over the world,
including Brazil, Canada, the Czech Republic, France, Germany, India, Italy, The
Netherlands, Norway, Poland, Slovenia, Sweden, the UK, and the USA. WG 2018
continued the series of the 43 previous WG conferences. Including this year’s meeting,
since 1975 the workshop has taken place 24 times in Germany, five times in The
Netherlands, three times in France, twice in Austria and the Czech Republic, and once in
Greece, Israel, Italy, Norway, Slovakia, Switzerland, Turkey, and the UK. WG confer-
ences aim to connect theory and applications by demonstrating how graph-theoretic
concepts can be applied in various areas of computer science. The goal is to present recent
research results and to identify and explore directions for future research.

The Program Committee of WG 2018 was chaired by Andreas Brandstädt
(Rostock), Ekkehard Köhler (Cottbus), and Klaus Meer (Cottbus). It was responsible
for the selection of three invited speakers and for running the reviewing process of all
submitted contributions. We received 66 submitted papers. One submission was
withdrawn by the author, another one had to be withdrawn by the PC-chairs because of
simultaneous submission to another conference with published proceedings. The
remaining 64 submissions were reviewed intensely by the Program Committee and
many expert sub-reviewers. For almost all submissions at least four reviews were
collected. Finally, 30 of the submitted papers were accepted for publication in this
volume. We would like to mention that the competition this year was very tough and
several good papers could not be accepted. Without the help of our expert referees, the
production of the volume would have been impossible. We would like to thank all the
sub-reviewers for their excellent work; their names are listed in the organization section
of this preface.

There were three excellent invited talks given by Maria Chudnovsky (Princeton
University, USA) on “4-Coloring Graphs with No Induced 6-Vertex Path”; by Martin
Milanič (University of Primorska in Koper, Slovenia) on “Strong Cliques and Graph
Classes”; and by Martin Skutella (TU Berlin, Germany) on “Flows over Time and
Submodular Function Minimization”.

In addition, there was the first WG Test-of-Time Award given for a highly
influential paper that has been presented at a previous WG conference. The award
committee consisted of H. L. Bodlaender, R. Möhring, and G. Woeginger. The winning
paper was “Bounding the Bandwidth of NP-Complete Problems” from WG 1980
authored by Burkhard Monien and Ivan Hal Sudborough. The talk was given by
Burkhard Monien.

Springer generously funded both a Best Paper Award (BPA) and a Best Student
Paper Award (BSPA), which were given during the WG 2018 conference.

Édouard Bonnet and Paweł Rzążewski won the BPA for their paper “Optimality
Program in Segment and String Graphs”. Jelco M. Bodewes and Marieke van der
Wegen won the BSPA for their paper “Recognizing Hyperelliptic Graphs in
Polynomial Time”, co-authored by Hans L. Bodlaender and Gunther Cornelissen.
Congratulations to the winners!

Acknowledgments

The organizers of WG 2018 would like to acknowledge and thank the following
entities for their financial and non-financial support (in alphabetic order): Brandenburg
University of Technology Cottbus-Senftenberg, Deutsche Forschungsgemeinschaft,
Springer, and an anonymous donor.

We thank Andrej Voronkov for his outstanding EasyChair system which facilitated
the work of the Program Committee and the editors considerably.

July 2018 Andreas Brandstädt
Ekkehard Köhler

Klaus Meer

VI Preface

Organization

Program Committee

Therese Biedl University of Waterloo, Canada
Andreas Brandstädt

(Co-chair)
Universität Rostock, Germany

Kathie Cameron Wilfrid Laurier University, Waterloo, Canada
Steven Chaplick Julius-Maximilians-Universität Würzburg, Germany
Derek Corneil University of Toronto, Canada
Feodor Dragan Kent State University, USA
Thomas Erlebach University of Leicester, UK
Celina De Figueiredo Universidade Federal do Rio de Janeiro, Brazil
Fedor Fomin University of Bergen, Norway
Michel Habib IRIF, CNRS and Université Paris-Diderot, France
Pinar Heggernes University of Bergen, Norway
Ekkehard Köhler (Co-chair) BTU Cottbus-Senftenberg, Germany
Jan Kratochvíl Charles University, Prague, Czech Republic
Dieter Kratsch Université de Lorraine, Metz, France
Ross Mcconnell Colorado State University, Fort Collins, USA
Klaus Meer (Co-chair) BTU Cottbus-Senftenberg, Germany
Petra Mutzel University of Dortmund, Germany
Christophe Paul LIRMM, CNRS, Université de Montpellier, France
Dieter Rautenbach Universität Ulm, Germany
Ignasi Sau LIRMM, CNRS, Université de Montpellier, France
Oliver Schaudt RWTH Aachen, Germany
Dimitrios M. Thilikos LIRMM, CNRS, Université de Montpellier, France

and National and Kapodistrian University of Athens,
Greece

Annegret Wagler Université Clermont Auvergne, Clermont-Ferrand,
France

Additional Reviewers

Adjiashvili, David
Barat, Janos
Beisegel, Jesse
Belmonte, Rémy
Bessy, Stéphane
Bianchi, Silvia
Biniaz, Ahmad
Bonamy, Marthe

Botler, Fábio
Bousquet, Nicolas
Campos, Victor
Chakraborty, Sankardeep
Chepoi, Victor
Cohen, Nathann
Coudert, David
Cunha, Luís

Da Fonseca, Guilherme D.
Dabrowski, Konrad

Kazimierz
Dahn, Christine
Damaschke, Peter
Deligkas, Argyrios
Denkert, Carolin
Dos Santos, Vinícius F.

Droschinsky, Andre
Ducoffe, Guillaume
Dyer, Martin
Ehard, Stefan
Eschen, Elaine
Fagerberg, Rolf
Felsner, Stefan
Fernau, Henning
Fiala, Jiri
Fluschnik, Till
Foucaud, Florent
Gabow, Harold
Giannopoulou, Archontia
Gijswijt, Dion
Golovach, Petr
Gonçalves, Daniel
Gronemann, Martin
Guarnera, Heather
Gurvich, Vladimir
Gutin, Gregory
Henning, Michael
Hols, Eva-Maria
Huang, Shenwei
Jabrayilov, Adalat
Kamiński, Marcin
Kanté, Mamadou

Moustapha
Kim, Eunjung
Klavžar, Sandi
Klemz, Boris
Knauer, Kolja
Knop, Dušan
Koster, Arie
Kothari, Nishad
Kratsch, Stefan
Kulik, Ariel
Kurz, Denis

Kwon, O-joung
Lampis, Michael
Le, Van Bang
Leitert, Arne
Liedloff, Mathieu
Lima, Carlos Vinicius
Lingas, Andrzej
Lopes, Raul
Maffray, Frederic
Makowsky, Johann A.
Maniatis, Spyridon
Mertzios, George B.
Milanič, Martin
Miranda, Alberto
Mitsou, Valia
Mohammed,

Abdulhakeem
Mondal, Debajyoti
Mouatadid, Lalla
Müller, Haiko
Munaro, Andrea
Naves, Guyslain
Nelson, Peter
Nisse, Nicolas
Ochem, Pascal
Oettershagen, Lutz
Oliveira, Fabiano
Oum, Sang-il
Panda, B. S.
Papadopoulos, Charis
Papagelis, Manos
Perarnau, Guillem
Plummer, Mike
Pupyrev, Sergey
Ramanujan, M. S.
Raymond, Jean-Florent
Saettler, Aline

Saito, Akira
Salazar, Gelasio
Saulpic, David
Saurabh, Saket
Sawada, Joe
Scheffler, Robert
Schrezenmaier, Hendrik
Schulz, André
Shalom, Mordechai
Shi, Yongtang
Sidorowicz, Elzbieta
Siebertz, Sebastian
Simoes, Jefferson
Souza, Uéverton
Spoerhase, Joachim
Sritharan, R.
Strash, Darren
Strehler, Martin
Strømme, Torstein
Szigeti, Zoltan
Todinca, Ioan
Torres, Luis M.
Ulmer, Arthur
van Dijk, Thomas C.
van Leeuwen, Erik Jan
van Rooij, Johan M. M.
Vaxès, Yann
Viennot, Laurent
Watrigant, Rémi
Weller, Mathias
Wollan, Paul
Wood, David R.
Wrochna, Marcin
Yen, Hsu-Chun
Zeman, Peter
Zey, Bernd

VIII Organization

Local Organization

Local organizers of WG 2018 were the Lehrstuhl für Diskrete Mathematik und
Grundlagen der Informatik and the Lehrstuhl Theoretische Informatik of the
Brandenburg University of Technology, Cottbus, Germany. The conference took
place at the Schlosshotel Lübbenau.

Members of the Organizing Committee were Jesse Beisegel, Carolin Denkert,
Romain Gengler, Diana Hübner, Uwe Jähnert, Karla Kersten, Ekkehard Köhler
(co-chair), Klaus Meer (co-chair), Robert Scheffler, and Martin Strehler.

Organization IX

Contents

On Dispersable Book Embeddings . 1
Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann,
Michael Kaufmann, and Sergey Pupyrev

Characterising AT-free Graphs with BFS . 15
Jesse Beisegel

Edge Partitions of Optimal 2-plane and 3-plane Graphs 27
Michael A. Bekos, Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta,
Fabrizio Montecchiani, and Chrysanthi Raftopoulou

On Minimum Connecting Transition Sets in Graphs 40
Thomas Bellitto and Benjamin Bergougnoux

Recognizing Hyperelliptic Graphs in Polynomial Time 52
Jelco M. Bodewes, Hans L. Bodlaender, Gunther Cornelissen,
and Marieke van der Wegen

On Directed Feedback Vertex Set Parameterized by Treewidth 65
Marthe Bonamy, Łukasz Kowalik, Jesper Nederlof, Michał Pilipczuk,
Arkadiusz Socała, and Marcin Wrochna

Optimality Program in Segment and String Graphs 79
Édouard Bonnet and Paweł Rzążewski

Anagram-Free Chromatic Number Is Not Pathwidth-Bounded. 91
Paz Carmi, Vida Dujmović, and Pat Morin

Tight Lower Bounds for the Number of Inclusion-Minimal st-Cuts 100
Alessio Conte, Roberto Grossi, Andrea Marino, Romeo Rizzi,
Takeaki Uno, and Luca Versari

Subexponential-Time and FPT Algorithms for Embedded Flat
Clustered Planarity . 111

Giordano Da Lozzo, David Eppstein, Michael T. Goodrich,
and Siddharth Gupta

Computing Small Pivot-Minors . 125
Konrad K. Dabrowski, François Dross, Jisu Jeong,
Mamadou Moustapha Kanté, O-joung Kwon, Sang-il Oum,
and Daniël Paulusma

Saving Probe Bits by Cube Domination . 139
Peter Damaschke

Graph Amalgamation Under Logical Constraints . 152
Mateus de Oliveira Oliveira

89R-Completeness and Area-Universality . 164
Michael Gene Dobbins, Linda Kleist, Tillmann Miltzow,
and Paweł Rzążewski

Optimal General Matchings . 176
Szymon Dudycz and Katarzyna Paluch

Quasimonotone Graphs . 190
Martin Dyer and Haiko Müller

Equiangular Polygon Contact Representations. 203
Stefan Felsner, Hendrik Schrezenmaier, and Raphael Steiner

Temporal Graph Classes: A View Through Temporal Separators. 216
Till Fluschnik, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche

Covering a Graph with Nontrivial Vertex-Disjoint Paths: Existence
and Optimization. 228

Renzo Gómez and Yoshiko Wakabayashi

On the Relation of Strong Triadic Closure and Cluster Deletion 239
Niels Grüttemeier and Christian Komusiewicz

On Perfect Linegraph Squares. 252
Meike Hatzel and Sebastian Wiederrecht

On Weak Isomorphism of Rooted Vertex-Colored Graphs 266
Lars Jaffke and Mateus de Oliveira Oliveira

Connected Vertex Cover for ðsP1 þP5Þ-Free Graphs 279
Matthew Johnson, Giacomo Paesani, and Daniël Paulusma

Structurally Parameterized d-Scattered Set . 292
Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos

Popular Matchings of Desired Size . 306
Telikepalli Kavitha

Convexity-Increasing Morphs of Planar Graphs. 318
Linda Kleist, Boris Klemz, Anna Lubiw, Lena Schlipf, Frank Staals,
and Darren Strash

XII Contents

Treedepth Bounds in Linear Colorings. 331
Jeremy Kun, Michael P. O’Brien, and Blair D. Sullivan

An Improved FPT Algorithm for Independent Feedback Vertex Set. 344
Shaohua Li and Marcin Pilipczuk

Construction and Local Routing for Angle-Monotone Graphs 356
Anna Lubiw and Debajyoti Mondal

Characterization and Recognition of Tree 3-Spanner Admissible
Directed Path Graphs of Diameter Three . 369

B. S. Panda and Anita Das

Author Index . 383

Contents XIII

On Dispersable Book Embeddings

Jawaherul Md. Alam1, Michael A. Bekos2(B), Martin Gronemann3,
Michael Kaufmann2, and Sergey Pupyrev1

1 Department of Computer Science, University of Arizona, Tucson, USA
jawaherul@gmail.com, spupyrev@gmail.com

2 Institut für Informatik, Universität Tübingen, Tübingen, Germany
{bekos,mk}@informatik.uni-tuebingen.de

3 Institut für Informatik, Universität zu Köln, Köln, Germany
gronemann@informatik.uni-koeln.de

Abstract. In a dispersable book embedding, the vertices of a graph G
are ordered along a line �, called spine, and the edges of G are drawn
at different half-planes bounded by �, called pages, such that: (i) no two
edges of the same page cross, and (ii) no two edges of the same page
share a common endvertex. The minimum number of pages needed in
a dispersable book embedding of G is called its dispersable book thick-
ness, dbt(G). Graph G is called dispersable if dbt(G) equals the maximum
degree of G, Δ(G) (note that dbt(G) ≥ Δ(G) always holds).

Back in 1979, Bernhart and Kainen conjectured that every k-regular
bipartite graph G is dispersable and showed that it holds for k ∈ {1, 2}.
In this paper, we disprove the conjecture for the cases k = 3 (with a
computer-aided proof), and k = 4 (with a purely combinatorial proof).
In particular, we show that the bipartite 3-regular Gray graph has dis-
persable book thickness four, while the bipartite 4-regular Folkman graph
has dispersable book thickness five. On the positive side, we show that
every 3-connected 3-regular bipartite planar graph is dispersable.

1 Introduction

The book embedding problem is a well studied problem in graph theory due
to its numerous applications with early results dating back to early 1970s; see
e.g., [12]. The input in this problem is a graph G and the task is to find a linear
order of the vertices of G along a line �, called the spine of the book, and an
assignment of the edges of G to different half-planes, called pages of the book,
delimited by the spine, such that no two edges of the same page cross; see Fig. 1a
for an illustration. The minimum number of pages that are required by any book
embedding of G is commonly referred to as its book thickness (but also as stack
number or page number) and is denoted by bt(G).

For planar input graphs, the literature is really rich. The most notable result
is due to Yannakakis [26], who proved that the book thickness of a planar graph
is at most four. Better upper bounds are only known for restricted subclasses,
such as planar 3-trees [16] (which fit in books with three pages), subgraphs of

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 1–14, 2018.
https://doi.org/10.1007/978-3-030-00256-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_1&domain=pdf

2 J. Md. Alam et al.

Fig. 1. (a) A dispersable book embedding with 3 pages of the 3-regular and bipartite
Heawood graph [15], and (b) an equivalent circular embedding with a 3-edge-coloring,
in which no two edges of the same color cross. (Color figure online)

planar Hamiltonian graphs [5], 4-connected planar graphs [22], planar graphs
without separating triangles [19], Halin graphs [10], bipartite planar graphs [14],
planar 2-trees [9], planar graphs of maximum degree 4 [3] (which fit in books
with two pages), and outerplanar graphs [5] (which fit in single-page books).
Note that, in general, the problem of testing, whether a maximal planar graph
has book thickness two, is equivalent to determining whether it is Hamiltonian,
and thus is NP-complete [25].

For non-planar graphs, the literature is significantly limited. It is known that
the book thickness of a complete n-vertex graph is Θ(n) [5], while all graphs
with subquadratic number of edges [21], subquadratic genus [20] or sublinear
treewidth [11] have sublinear book thickness. The book thickness is known to
be bounded, e.g., for bounded genus graphs [20] and, more generally, all minor-
closed graph families [6]. The reader is referred to [12] for a survey.

In this paper, we focus on dispersable book embeddings [5], in which addition-
ally no two edges of the same page share a common endvertex. The dispersable
book thickness of a graph G, denoted by dbt(G), is defined analogously to the
book thickness as the minimum number of pages required by any dispersable
book embedding of G. By definition dbt(G) ≥ Δ(G) holds, where Δ(G) is the
maximum degree of G. Finally, a graph G is called dispersable if and only if
dbt(G) = Δ(G); see Fig. 1a. Note that any book embedding with k pages can
be equivalently transformed into a circular embedding with a k-edge-coloring,
in which no two edges of the same color cross, and vice versa [5,16]. In the dis-
persable case, the graphs induced by the edges of the same color must addition-
ally be 1-regular; see Fig. 1b. The order in which the vertices appear in a circular
embedding with Δ(G) colors (or, equivalently on the spine of a dispersable book
embedding with Δ(G) pages), if any, is called dispersable order.

Dispersable book embeddings were first studied by Bernhart and Kainen [5],
who back in 1979 proved that the book thickness of the graph formed by the
Cartesian product of a dispersable bipartite graph B and an arbitrary graph
H is upper bounded by the degree of B plus the book thickness of H (that is,
bt(B × H) ≤ bt(H) + Δ(B)), and posed the following conjecture (see also [18]):

On Dispersable Book Embeddings 3

Conjecture 1 (Bernhart and Kainen [5]). Every k-regular bipartite graph G is
dispersable, that is, dbt(G) = k.

It is easy to verify that the conjecture holds for k ≤ 2. As every k-regular
bipartite graph admits a proper k-edge-coloring, Conjecture 1 implies that the
dispersable book thickness of a regular bipartite graph equals its chromatic
index. Overbay [23], who continued the study of dispersable embeddings in her
Ph.D. thesis, observed that not every proper k-edge coloring yields a dispersable
book embedding, and that bipartiteness is a necessary condition in the conjec-
ture. She also proved that several classes of graphs are dispersable; among them
are trees, binary cube graphs, and complete graphs.

Our contribution: In Sect. 2, we disprove Conjecture 1 for k = 4, by show-
ing, with a purely combinatorial proof, that the Folkman graph [13], which is
4-regular and bipartite, has dispersable book thickness five. In Sect. 3, we first
show how one can appropriately adjust a relatively recent SAT-formulation of
the book embedding problem [4] for the dispersable case, and, using this formula-
tion, we demonstrate that the 3-regular bipartite Gray graph [7] has dispersable
book thickness four, thus, disproving Conjecture 1 for k = 3. Note that since
both graphs are not planar, their (non-dispersable) book thickness is at least
three. In [1], we demonstrate that it is exactly three. In Sect. 4, we show that
3-connected 3-regular bipartite planar graphs are dispersable. Our findings lead
to a number of interesting research directions, which we list in Sect. 5, where
we also conjecture that every (i.e., not necessarily 3-connected) 3-regular planar
bipartite graph is dispersable.

2 The Dispersable Book Thickness of the Folkman Graph

The Folkman graph [13] can be constructed in two steps starting from K5 as
follows. First, we replace every edge by a path of length two to obtain a bipartite
graph (see Fig. 2b). Then, we add for every vertex of the original K5 a copy with
the same neighborhood (see Fig. 2c). The resulting graph is the Folkman graph,
which is clearly 4-regular and bipartite. We refer to a vertex of the original K5

and to its copy as twin vertices. The remaining vertices of the Folkman, i.e., the
ones obtained from the paths, are referred to as connector vertices. We denote
the five pairs of twin vertices by A1, A2, B1, B2, C1, C2, D1, D2, E1, E2, and the
ten connector vertices by ab, ac, ad, ae, bc, bd, be, cd, ce, de; see Fig. 2c.

To prove that the dispersable book thickness of the Folkman graph is five, it
suffices to prove that its dispersable book thickness cannot be four, and that it
admits a dispersable book embedding with five pages. For the latter, refer to [1].
For the former, we will assume for a contradiction that the Folkman graph admits
a circular embedding with a 4-edge-coloring, in which (i) no two edges of the
same color cross, and (ii) the graphs induced by the edges of the same color are
1-regular. Since by Property (ii) adjacent edges must have different colors, we
name them “crossing” such that we can use Property (i) also for them. In the
drawings, we use red, green, blue, and orange to indicate the four colors of the

4 J. Md. Alam et al.

Fig. 2. Construction steps for the Folkman graph [13].

edges; black is used for an unknown (or not yet specified) color. For any subset of
at least three twin or connector vertices of the Folkman graph, say A1, ab and B2,
we denote the clockwise order in which they appear along the boundary of the
circular embedding by (. . .A1 . . . ab . . .B2 . . .). Every two vertices, say ab and A1,
form two intervals, [ab,A1] and [A1, ab], in the clockwise order that correspond
to the two arcs on the circle.

Useful Lemmas: In the following, we investigate properties of a dispersable
book embedding with four pages of the Folkman graph. We start with a property
that was first observed by Overbay [23] and latter reproved by Hoske [17].

Lemma 1 (Overbay [23]). For any regular bipartite graph, the vertices from
both partitions are alternating in a dispersable order.

For the Folkman graph, Lemma1 implies alternating twin and connector
vertices in a dispersable order. In the following, we adjust this implication.

Lemma 2. Let A1, A2 be a pair of twins and [A1,A2], [A2,A1] be the two inter-
vals defined by them in a dispersable order. Then one of the following holds:

– one of the intervals contains exactly one connector vertex corresponding to
the twins, and another one contains all other connectors, that is, the order is
(. . .A1 ax A2 . . . ay . . . au . . . av . . .);

– both intervals contain two connectors corresponding to the twins (and possibly
other connectors), that is, the order is (. . .A1 . . . ax . . . ay . . .A2 . . .
au . . . av . . .).

Proof Sketch. Assuming that there is an interval with three or four of A’s con-
nectors, or with only one A’s connector and some other connectors, we easily see
that there exist five pairwise crossing edges; a contradiction. ��

Denote the number of A’s connectors in [x, y] by δA(x, y). Lemma 2 defines
two possible configurations for a pair of twins, A1 and A2. The first one, which we
call 1–3 configuration, is when δA(A1,A2) = 1 and δA(A2,A1) = 3, that is, the first
interval contains one connector and another interval contains three connectors.
In that case, the twins have to lie next to each other in the order (that is,
there are no other twins in between); we call such twins close. In the second

On Dispersable Book Embeddings 5

Fig. 3. Illustration for the proof of Lemma 3. (Color figure online)

configuration, called 2–2 configuration, δA(A1,A2) = δA(A2,A1) = 2 holds. Here,
the twins are called far (as there is at least one other twin in between).

Lemmas 3 and 4 describe properties of two pairs of twins that either do not
alternate along the spine (non-crossing twin-pairs) or that do (crossing twin-
pairs). We prove Lemma 3 in detail. The proof of Lemma4 is analogous; see [1].

Lemma 3. Let A1,A2 and B1,B2 be two non-crossing twin-pairs, i.e., the order
is (. . .A1 . . .A2 . . .B1 . . .B2 . . .). For connector ab, one of the following holds:

i. ab is in [A2,B1], that is, (. . .A1 . . .A2 . . . ab . . .B1 . . .B2 . . .);
ii. ab is in [B2,A1], that is, (. . .A1 . . .A2 . . .B1 . . .B2 . . . ab . . .);
iii. A1 and A2 are close twin vertices and the four twins are separated by A’s con-

nectors, that is, the order is (. . .A1 ab A2 . . . ax . . .B1 . . . ay . . .B2 . . . az . . .);
iv. B1 and B2 are close twin vertices and the four twins are separated by B’s con-

nectors, that is, the order is (. . .B1 ab B2 . . . bx . . .A1 . . . by . . .A2 . . . bz . . .).

Proof. If ab ∈ [A2,B1]∪ [B2,A1], then the lemma holds. Let w.l.o.g. ab ∈ [A1,A2].
If A1 and A2 were far, then by Lemma 2 there would be a connector of A, say ax,
in [A1,A2]. It follows that one of (A1, ax), (A2, ax) cannot be colored; see Fig. 3a.
Thus, ab is the only connector of A in [A1,A2]. Hence, A1 and A2 are close twins.

Twins B1 and B2 define three sub-intervals on [A2,A1]. If two of A’s connec-
tors, say ax and ay, belong to the left- or rightmost one, say w.l.o.g. the former,
then (A2, ab), (A2, ax), (A2, ay), (B1, ab) and (B2, ab) pairwise cross (see Fig. 3b);
a contradiction. Finally, if two of A’s connectors, say ax and ay, are on the central
sub-interval, then by symmetry we may assume that the fourth of A’s connec-
tors, say az, belongs either to [A2,B1] or to [B1,B2]. In both cases, edge (B2, ab)
crosses (A1, ax), (A1, ay) and (A1, az), which implies that all must have different
colors; see Figs. 3c and d. Thus, (A1, ab) needs a fifth color; a contradiction. We
conclude that each of the intervals contain one connector. ��

Corollary 1. Let the order be (. . .A1 ab A2 . . .). Then B1 and B2 are not close.

Lemma 4. Let A1, A2 and B1, B2 be two crossing twin-pairs, i.e., the order is
(. . .A1 . . .B1 . . .A2 . . .B2 . . .). Then one of the following holds:

6 J. Md. Alam et al.

i. δA(A1,B1) = δA(B1,A2) = δA(A2,B2) = δA(B2,A1) = 1;
ii. δA(A1,B1) = δA(A2,B2) = 2 and δA(B1,A2) = δA(B2,A1) = 0;
iii. δA(A1,B1) = δA(A2,B2) = 0 and δA(B1,A2) = δA(B2,A1) = 2.

Case Analysis: Next, we determine several forbidden patterns, i.e., subse-
quences of twin vertices not occurring in a dispersable order of the Folk-
man graph. For Forbidden Patterns 3, 4 and 8 we give only sketches; details
are in [1].

Forbidden Pattern 1 (. . .A1 ·B1 ·A2 . . .). Between any twin pair, there is not
exactly one single twin vertex.

Proof. For a contradiction, let B1 be the only twin in [A1,A2]. By Lemma 2, there
are two of A’s connectors in [A1,A2], say ax and ay, and two A’s connectors in
[A2,A1], say au and av; see Fig. 4a. The edges from B1 to the three connectors
different than ab cross both (A1, ay) and (A2, ax); a contradiction. ��

Forbidden Pattern 2 (. . .A1 · B1 · B2 · A2 . . .). Between any twin pair, there
are not exactly two same twin vertices, e.g., B1 and B2.

Proof. For a contradiction, let B1,B2 be the only twins in [A1,A2]. By Lemma 1,
we assume that the order is (. . .A1 x B1 y B2 z A2 . . .), where x, y, z are connectors.
By Lemma 2, two of them are connectors of A, including ab (by Lemma 3). If ab
were y, then by Lemma 3.iv both x and z would be B’s connectors, a contradiction
since two of x, y, z are connectors of A. Hence, ab is not y, and so there exist two
B’s connectors, say bu and bv, in [A2,A1]; see Fig. 4b. But now (B1, bv), (B2, bu),
(B2, bv), (A1, z), and (A2, x) pairwise cross, a contradiction; see Fig. 4c. ��

Forbidden Pattern 3 (. . .A1 · B1 · C1 · A2 . . .). Between any twin pair, there
are not exactly two different twin vertices, e.g., B1 and C1.

Proof Sketch. For a contradiction, let B1,C1 be the only two twins in [A1,A2].
By Lemma 2, A1 and A2 have two connectors in each of [A1,A2] and [A2,A1]. By
Lemma 3, ad, ae ∈ [A2,A1], and thus ab, ac ∈ [A1,A2]; w.l.o.g. let ae be before ad
in [A2,A1]. By Lemma 4, δB(A1,A2) = δC(A1,A2) = 2 holds. By symmetry, two
cases bc ∈ [A1,B1] and bc ∈ [B1,C1] exist, which we lead to contradiction. ��

Forbidden Pattern 4 (. . .A1 · B1 . . .B2 · A2 . . .). It is not possible to have a
non-crossing pair of adjacent twins.

Fig. 4. Illustrations for (a–c) Forbidden Patterns 1 and 2, and (d–e) Theorem 1.

On Dispersable Book Embeddings 7

Proof Sketch. If A1,A2 and B1,B2 were non-crossing adjacent twins, then by For-
bidden Pattern 2 neither A1,A2 nor B1,B2 are close. By Lemma 3, we assume
w.l.o.g. ab ∈ [B2,A2]. By Lemma 1, there is a connector in [A1,B1], which can be
adjacent to one of A1 or B1 or not. A contradiction is obtained in each case. ��

Forbidden Pattern 5 (. . .A1 · B1 · C1 . . .A2 · B2 · C2 . . .). It is not possible to
have a crossing triple, i.e., a triple of consecutive twins that pairwise cross.

Proof. For a contradiction, let the order be (. . .A1 x B1 y C1 . . .A2 u B2 v C2 . . .),
where x, y, u, v are intermediate connectors. Since A1,A2, B1,B2, and C1,C2 form
three pairs of crossing twins, by Lemma 4, the number of B’s connectors in
[A1,C1] equals the number of B’s connectors in [A2,C2], which implies that four,
two, or zero out of x, y, u, v are B’s connectors. We refer to the first two cases as
non-zero crossing triple, while to the third as zero crossing triple.

(i) B has four connectors among x, y, u, v. By symmetry, we may assume x = ab.
This implies that there is no connector of A in [A2,C2]. Lemma 4, however,
applied on A and C implies that there must exist an A’s connector in [A2,C2].

(ii) B has two connectors among x, y, u, v. Assume w.l.o.g. that x is a connector
of B. By Lemma 4.i, u is also a connector of B. We prove by contradiction
that x /∈ {ab, bc}. Assume first that x = bc and let w.l.o.g. the color of
(C1, bc) be blue. Since (C1, bc) cannot be crossed by another blue edge,
the edge (B1, y) exists and is blue contradicting the fact that B has two
connectors among x, y, u, v. Assume now that x = ab. Since δA(A1,B1) = 1,
by Lemma 4.i δA(A2,B2) = 1. So, u ∈ [A2,B2] is a connector of A. Since
ab ∈ [A1,B1] and u is a connector of B, we have a contradiction. It follows
that either x = bd or x = be holds. By symmetry, either u = bd or u = be
holds. By Lemma 2, there is a connector of B in each of [C1,A2] and [C2,A1].
W.l.o.g. assume ab ∈ [C1,A2] and bc ∈ [C2,A1]. Hence, (B1, bc), (C1, bc),
(A1, ab), (B1, ab), and (u,B1) pairwise cross; a contradiction.

(iii) B has zero connectors among x, y, u, v. By (i) and (ii), we may assume that
no non-zero crossing triple exists. By Lemma 4, two connectors of B exist
in each of [C1,A2] and [C2,A1]. Note that x is not a connector of C, as
otherwise the four edges incident to B1 would cross (C1, x). By symmetry,
u is not a connector of C, and y and v are not connectors of A. Also, ac /∈
[A1,C1] ∪ [A2,C2].

Let δ(C1,A2) and δ(C2,A1) be the number of twin vertices in [C1,A2] and
[C2,A1]. Clearly, δ(C1,A2) + δ(C2,A1) ≤ 4 holds. Since there exist two B’s con-
nectors in each of [C1,A2] and [C2,A1], there exist at least one twin vertex in
each of [C1,A2] and [C2,A1]. Thus, δ(C1,A2), δ(C2,A1) ≥ 1. Assume w.l.o.g. that
D1 is encountered first in [C1,A2]. The first twin vertex in [C2,A1] cannot be
D2, as otherwise B1,C1,D1, and B2,C2,D2 would form a non-zero crossing triple
containing C’s connectors. By symmetry, let E1 be the first twin vertex in [C2,A1].

We claim that δ(C1,A2), δ(C2,A1) ≤ 2. For a contradiction, let δ(C1,A2) = 3
(the case δ(C2,A1) = 3 is symmetric). Then, [C1,A2] contains D1,D2,E2. If D2

precedes E2 in [C1,A2], then E1,A1,B1, and E2,A2,B2 form a non-zero crossing

8 J. Md. Alam et al.

triple containing connectors of A. Otherwise, D2 follows E2 and thus D1,E2,D2

form Forbidden Pattern 1. Hence, our claim holds.
Since D1 ∈ [C1,A2], E1 ∈ [C2,A1] and δ(C1,A2) ≤ 2, either D1,E2 ∈ [C1,A2]

or D1,D2 ∈ [C1,A2] holds. In the former case, D and E form Forbidden Pattern 4.
In the latter case, the order is (A1 ·B1 ·C1 ·D1 ·D2 ·A2 ·B2 ·C2 ·E1 ·E2·). Recall that
ac /∈ [A1,C1]∪[A2,C2]. By Lemma 2, ac /∈ [D1,D2] and ac /∈ [E1,E2]. So, ac belongs
to one of [C1,D1], [D2,A2], [C2,E1], [E2,A1]. In the first case, (A1, ac) is crossed
by the four edges out of B1; a contradiction. The other cases are similar. ��

Forbidden Pattern 6 (. . .A1 · B1 . . .A2 · B2 . . .). It is not possible to have a
crossing pair of adjacent twins.

Proof. For a contradiction, let A1,A2 and B1,B2 be a crossing pair of adjacent
twins. Since by Forbidden Patterns 1 and 3 there are at least two twin vertices
in each of [B1,A2] and [B2,A1], we may assume that the order is (. . .X · A1 · B1 ·
Y . . .U ·A2 ·B2 ·V . . .). By Forbidden Pattern 3, X and Y are not twins; same with
U and V. Let w.l.o.g. X = D1, Y = C1. We may also assume U �= E1,E2. Thus,
U ∈ {C2,D2}. If U = D2, then D,A,B form Forbidden Pattern 5. Hence, U = C2.

Since the remaining twins are D2, E1, and E2, and since one of these is V,
there are either zero, or one, or two twin vertices in [C1,C2]. One yields Forbidden
Pattern 1, while two yield Forbidden Pattern 2 or 3. So, C1 and C2 are close.

It follows that D2, E1,E2 are all in [B2,D1]; hence, their relative order is:
(E1 ·D2 ·E2), or (E2 ·D2 ·E1), or (E1 ·E2 ·D2), or (E2 ·E1 ·D2), or (D2 ·E1 ·E2), or
(D2 ·E2 ·E1). The first four yield Forbidden Patterns 1 or 2. By the symmetry of
the last two cases, we may assume that the order is (A1 x B1 y C1 z C2 u A2 v B2 ·
E1 · E2 · D2 · D1·), where x, y, z, u, v are intermediate connectors.

Since C1,C2, D1,D2 and E1,E2 are close, by Corollary 1, z ∈ [C1,C2] is neither
cd nor ce. By Lemma 2, z is either ac or bc. By symmetry, we may assume z = ac.
Since ac ∈ [C1,C2], by Lemma 3.iii and iv applied for C and A, there is a C’s
connector in each of [C1,C2], [C2,A2], [A2,A1] and [A1,C1]. Thus, u ∈ [C2,A2]
and y ∈ [B1,C1] are C’s connectors. By Lemma 2, there are two A’s connectors
in [A1,A2]; thus, x ∈ [A1,B1] is a connector of A1. By symmetry, v is a B’s
connector. By Lemma 4, x ∈ [A1,B1] is also a connector of B, which implies that
x = ab (recall that x is a connector of A). Since x ∈ [A1,B1] is a connector of A,
again by Lemma 4, v ∈ [A2,B2] must be a connector of A. Since we have shown
that v is a connector of B, v = ab; a contradiction as ab ∈ [A1,B1]. ��

Forbidden Pattern 7 (. . .A1 · B1 · C1 · D1 · A2 . . .). Between any twin pair, it
is impossible to have exactly three pairwise different twins.

Proof. For a contradiction, let the order be (. . .X · A1 · B1 · C1 · D1 · A2 · Y . . .),
where X and Y are the twins preceding A1 and following A2. If X = B2, then
A and B form Forbidden Pattern 1; if X = C2, then A and C form Forbidden

1 [A1,A2] is the union of [A1,B1], [B1,C1], [C1,C2], [C2,A2]. As in the last three there are
C’s connectors including ac ∈ [C1,C2], the second A’s connector can be only in
[A1,B1].

On Dispersable Book Embeddings 9

Pattern 3; if X = D2, then D and A form Forbidden Pattern 6. Thus, X = E1. By
symmetry, Y = E2 holds. But then A and E form Forbidden Pattern 4. ��

Forbidden Pattern 8 (. . .A1 · B1 · C1 · C2 · A2 . . .). Between any twin pair, it
is impossible to have exactly three twins, such that two of them are same.

Proof Sketch. Assume that only B1,C1,C2 ∈ [A1,A2]. By Forbidden Pattern 1,
C1,C2 are close. So, the order is (A1·B1·C1·C2·A2·U·V·X·Y·Z·), where U,V,X,Y,Z
are the remaining twins. If B2 = Z, then A and B form Forbidden Pattern 1; if
B2 = Y, then A and B form Forbidden Pattern 3; if B2 = U, then A and B form
Forbidden Pattern 6. We lead the cases B2 = V and B2 = X to contradiction. ��

Theorem 1. The dispersable book thickness of the Folkman graph is five.

Proof. We argue that the dispersable book thickness of the Folkman graph is not
four. Let d[A1,A2] be the number of twin vertices in [A1,A2] including A1 and A2,
and let d(A) = min (d[A1,A2], d[A2,A1]). By Forbidden Pattern 1, d(A) �= 3; by
Forbidden Patterns 2 and 3, d(A) �= 4; by Forbidden Patterns 7 and 8, d(A) �= 5.
As d(A) ∈ {2, 6}, any pair of twins is close or opposite in a dispersable order.

We argue that at most one pair of twins is opposite. Indeed, let A1,A2 be one
opposite twin pair. By Forbidden Pattern 6, the twin vertices next to A1 and A2

cannot be opposite. This directly implies that all remaining twin pairs are close.
Figures 4d and e shows the remaining two cases, in which no or one pair of

twins is opposite. In the former case, by Lemma 2 there is an A’s connector, say
w.l.o.g. ab, in [A1,A2]. Then, by Corollary 1, twins B1,B2 must be far; a contra-
diction. For the latter case, let C1,C2 be the pair of opposite twins. By Lemma2
and Corollary 1, the connectors between the four close pairs can only be C’s con-
nectors. Hence, the order is (C2 x A1 ac A2 y B1 bc B2 z C1 u D1 cd D2 v E1 ce E2 w),
where x, y, z, u, v,w are the remaining connectors.

Applying Lemma 3 on A and C, we conclude that there exist A’s connectors in
both [A2,C1] and [C2,A1]. Thus, x is a connector of A. Similarly, we conclude that
z is B’s connector. Next observe that z �= ab, as otherwise five edges, (ab,A1),
(ab,A2), (ab,B1), (bc,C2), (bc,C1), pairwise cross. Hence, y = ab. Symmetrically,
u is D’s connector, w is E’s connector, and v = de. So, bd is either z or u. Both
cases are impossible, as (D1, bd) or (B2, bd) would cross four C1’s edges. ��

Corollary 2. The Folkman graph is not dispersable.

3 The Dispersable Book Thickness of the Gray Graph

In this section, we study the dispersable book thickness of the Gray graph [7],
which can be constructed in two steps starting from three copies of K3,3. First,
we subdivide every edge. Then, for each newly introduced vertex u in the first
copy, with v and w being its counterparts in the other two copies, we add a new
vertex connected to u, v and w. The resulting graph is the Gray graph, which
is clearly 3-regular and bipartite; for an illustration refer to [1].

10 J. Md. Alam et al.

Our computer-aided proof is based on appropriately adjusting a relatively
recent formulation of the (non-dispersable) book embedding problem as a SAT
instance by Bekos et al. [4]. In their formulation, Bekos et al. use three different
variables, denoted by σ, φ and χ, with the following meanings: (i) for a pair
of vertices u and v, variable σ(u, v) is true, if and only if u is to the left of v
along the spine, (ii) for an edge e and a page i, variable φi(e) is true, if and
only if edge e is assigned to page i of the book, and (iii) for a pair of edges e
and e′, variable χ(e, e′) is true, if and only if e and e′ are assigned to the same
page. Hence, there exist in total O(n2 + m2 + pm) variables, where n denotes
the number of vertices of the graph, m its number of edges, and p the number
of available pages. A set of O(n3 + m2) clauses ensure that the underlying order
is linear, and that no two edges of the same page cross; for details see [4].

For the dispersable case, we must additionally guarantee that no two adjacent
edges are on the same page. This requirement can be easily encoded by introduc-
ing for every pair of edges e, e′ with a common endvertex the clause ¬χ(e, e′).
Observe that there is no need to introduce new variables, and that the total
number of constraints is not asymptotically affected. Using this adjustment, we
proved that the dispersable book thickness of the Gray graph cannot be three,
and that it admits a dispersable book embedding with four pages (see [1]). We
summarize these findings in the following theorem.

Theorem 2. The Gray graph is not dispersable. Its dispersable book thickness
is four.

4 3-Connected 3-Regular Bipartite Planar Graphs

The Gray graph, which is 3-connected, 3-regular and bipartite, is not dispersable.
Since it contains K3,3 as minor, it is not planar. We next prove that when adding
planarity to the requirements, every such graph is dispersable. We refer to a 3-
connected 3-regular bipartite planar graph as Barnette graph for short (due to
Barnette’s Conjecture [2] which states that every such graph is Hamiltonian).

Lemma 5. Let G = (V,E) be a Barnette graph with its dual G∗ = (V ∗, E∗).
Then, there exists a 3-edge coloring Er � Eg � Eb = E for G, and a 3-vertex
coloring V ∗

r � V ∗
g � V ∗

b = V ∗ for G∗ so that: (i) Every facial cycle of G is
bichromatic, i.e., the edges on a facial cycle of G alternate between two colors.
(ii) Every face of G is colored differently from its bounding edges. (iii) The
edges of G∗ that connect vertices of V ∗

g to vertices of V ∗
b are in one-to-one

correspondence with the edges of Er, and induce a connected subgraph.

Proof. Since G is 3-regular and bipartite, G∗ is maximal planar and every vertex
has even degree. By the 3-color theorem, G∗ has chromatic number 3 [24], and
since it is maximal planar, G∗ is uniquely 3-colorable [8], i.e., it has a unique
3-vertex coloring up to permutation of the colors, say V ∗

r , V ∗
g and V ∗

b .
We first show (ii). Every edge e of G bounds two faces that are colored

differently in G∗. Hence, we can assign to e the third color. Since every vertex v

On Dispersable Book Embeddings 11

of G is incident to three faces (which are colored differently in G∗), no two edges
of v have the same color. The result is a proper 3-edge coloring Er, Eg, Eb of G.
Now (i) follows from (ii): On every facial cycle f of G, two adjacent edges have
distinct colors, which are different from the color of f in G∗. Thus, every face of
G is bichromatic. Next we show (iii). By (ii), any edge of G∗ that corresponds to
an edge of Er has one endpoint in V ∗

g and one in V ∗
b . Conversely, by construction

every edge of G∗ in the induced subgraph of V ∗
g ∪ V ∗

b corresponds to an edge in
Er of G. Hence, the edges of G∗ that connect vertices of V ∗

g to vertices of V ∗
b are

in one-to-one correspondence with the edges of Er. Property (iii) follows from [8],
where it is proved that for any k-vertex coloring of a uniquely k-colorable graph,
the subgraph induced by any two of the k colors is connected. ��

We now show that it is possible to determine a dispersable order for a Bar-
nette graph G such that the coloring of Lemma 5 for G is a valid page assignment.
Our construction is based on determining a subhamiltonian cycle C of an aux-
iliary two-page book embedding of G, i.e., a cyclic order of the vertices so that
when adding missing edges between consecutive vertices planarity is preserved.

Theorem 3. Each Barnette graph G = (V,E) has a 3-edge coloring Er � Eg �
Eb = E and a subhamiltonian cycle C so that edges of (i) Er are in the interior
of C or on C, (ii) Eb are in the exterior of C or on C, (iii) Eg are on C.

Proof Sketch. In the proof, we assume that Er � Eg � Eb is a 3-edge coloring of
G, and that V ∗

r � V ∗
g � V ∗

b is a 3-vertex coloring of the dual G∗ = (V ∗, E∗) of G
satisfying the Properties i–iii of Lemma5. By Lemma 5.iii, the subgraph G∗

bg of
G∗ induced by V ∗

g ∪ V ∗
b is connected. Hence, we can construct a spanning tree

T ∗ of G∗
bg. This tree and the one-to-one correspondence between the edges of

Er and the edges of G∗
bg yield a partition of Er into two sets Tr and Nr, such

that Tr � Nr = Er, as follows. An edge e ∈ Er belongs to Tr, if the edge of G∗

corresponding to e belongs to T ∗. Otherwise, e belongs to Nr. We also assume
T ∗ to be rooted at a leaf ρ, such w.l.o.g. ρ ∈ V ∗

b .
The proof is given by a recursive geometric construction of the subhamilto-

nian cycle C. Consider an arbitrary edge (u, v) ∈ Tr of G, and let p and q be the
faces to its left and its right side, respectively, as we move along (u, v) from u to
v. Then, (p, q) is an edge of T ∗. Since T ∗ is a tree, the removal of (p, q) results in
two trees T ∗

p and T ∗
q . W.l.o.g. we assume that ρ belongs to T ∗

p . For the recursive
step of our algorithm, we assume that we have already computed a simple and
plane cycle Cp for the subgraph Gp = (Vp, Ep) of G induced by the vertices of
the faces of G in T ∗

p , which satisfies the following additional invariants: (I.1)
edge (u, v) is on Cp, (I.2) every edge e ∈ Tr ∩ Ep is in the interior of Cp or on
Cp, (I.3) every edge e ∈ Eb ∩ Ep is in the exterior of Cp or on Cp, (I.4) every
edge e ∈ Eg ∩ Ep is on Cp, and (I.5) every edge e ∈ Nr that bounds two faces
h, h′, with h ∈ T ∗

p and h′ /∈ T ∗
p , is such that: (i) if h ∈ V ∗

b , then both endpoints
of e are on Cp, (ii) if h ∈ V ∗

g , then none of the endpoints of e is on Cp.
Let Gq = (Vq, Eq) be the subgraph of G induced by the vertices of the faces

of G in T ∗
q . Let also q1, . . . , qk, with k ≥ 0, be the children of q in T ∗ (if any).

We proceed by considering two cases; q ∈ V ∗
b and q ∈ V ∗

g ; see Figs. 5a and b,

12 J. Md. Alam et al.

Fig. 5. The solid (dotted) gray edges belong to T ∗ (G∗
bg \ T ∗). The solid (dashed) red

edges belong to Tr (Nr). Cycle Cq is drawn dotted black. (Color figure online)

respectively. Note that by Lemma 5.i and ii in the former case, the edges of q
alternate between red and green, while in the latter case between red and blue.

Assume first that q ∈ V ∗
b . We remove from Cp edge (u, v), which exists by

I.1 resulting in a path from u to v. Then, cycle Cq for T ∗
p ∪ {q} is obtained by

this path and the path from u to v in face q. Assume now that q ∈ V ∗
g . If q is a

leaf in T ∗ (i.e., the only edge incident to q that belongs to Tr is edge (u, v)), then
Cp is a (simple and plane) cycle also for T ∗

p ∪{q}, which clearly satisfies I.1–I.5.
Let now q be w.l.o.g. not a leaf in T ∗. Thus, there exist edges of q, different from
(u, v), that belong to Tr. Denote by w1, . . . , w� the endvertices of these edges as
they appear in a clockwise traversal of q starting from u. We remove from Cp

the edge (u, v), which exists by I.1. This results in a path from u to v. The cycle
Cq that is obtained by this path and the path u → w1 → . . . → w� → v is a
cycle for T ∗

p ∪ {q}. We prove in [1] that in both cases I.1–I.5 hold.
The base of our recursive algorithm corresponds to the face ρ ∈ V ∗

b that is
the root of T ∗, where we choose Cρ to be the facial cycle of ρ, which trivially
satisfies I.1–I.5. Once we have traversed T ∗, we have computed a simple and
plane cycle C, which by I.2–I.4, satisfies i–iii of our theorem. We show that C
is a subhamiltonian cycle of G as follows. Since T ∗ is a spanning tree of G∗

bg,
every green edge of G bounds a face that is in T ∗, and by I.4 we may assume
that both its endpoints are consecutive along C. As every vertex is incident to
a green edge, it follows that C is a subhamiltonian cycle of G. ��

Assigning the green edges to a third page yields then the desired result.

Corollary 3. Every Barnette graph is dispersable.

5 Conclusions

There is a number of interesting questions raised by our work. Does there exist
a non-dispersable bipartite graph for every k ≥ 5? Is it possible to provide an
upper bound on the dispersable book thickness of k-regular bipartite graphs
(e.g., k + 1)? We conjecture that all (not necessarily 3-connected) 3-regular
bipartite planar graphs are dispersable. Since Folkman and Gray graphs are not
vertex-transitive, we ask whether all vertex-transitive regular bipartite graphs
are dispersable.

On Dispersable Book Embeddings 13

Acknowledgment. Our work is partially supported by DFG grant KA812/18-1. We
would like to thank Prof. Paul Kainen for bringing this problem to our attention. We
also thank Jessica Wolz for discussions on experimental aspects.

References

1. Alam, J.M., Bekos, M.A., Gronemann, M., Kaufmann, M., Pupyrev, S.: On dis-
persable book embeddings. CoRR abs/1803.10030 (2018)

2. Barnette, D.W.: Conjecture 5. In: Tutte, W.T. (ed.) Recent Progress in Combi-
natorics, Proceedings of the Third Waterloo Conference on Combinatorics, pp.
xiv+347. Academic Press, New York, London (1969)

3. Bekos, M.A., Gronemann, M., Raftopoulou, C.N.: Two-page book embeddings of
4-planar graphs. Algorithmica 75(1), 158–185 (2016)

4. Bekos, M.A., Kaufmann, M., Zielke, C.: The book embedding problem from a SAT-
Solving perspective. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol.
9411, pp. 125–138. Springer, Cham (2015)

5. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory, Ser.
B 27(3), 320–331 (1979)

6. Blankenship, R.: Book embeddings of graphs. Ph.D. thesis, Louisiana State Uni-
versity (2003)

7. Bouwer, I.: On edge but not vertex transitive regular graphs. J. Comb. Theory,
Ser. B 12(1), 32–40 (1972)

8. Chartrand, G., Geller, D.P.: On uniquely colorable planar graphs. J. Comb. Theory
6(3), 271–278 (1969)

9. Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books:
a layout problem with applications to VLSI design. SIAM J. Algebraic Discret.
Methods 8(1), 33–58 (1987)

10. Cornuéjols, G., Naddef, D., Pulleyblank, W.: Halin graphs and the travelling sales-
man problem. Math. Program. 26(3), 287–294 (1983)

11. Dujmović, V., Wood, D.R.: Graph treewidth and geometric thickness parameters.
Discret. Comput. Geom. 37(4), 641–670 (2007)

12. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discret. Math. Theor.
Comput. Sci. 6(2), 339–358 (2004)

13. Folkman, J.: Regular line-symmetric graphs. J. Comb. Theory 3(3), 215–232 (1967)
14. de Fraysseix, H., de Mendez, P.O., Pach, J.: A left-first search algorithm for planar

graphs. Discret. Comput. Geom. 13, 459–468 (1995)
15. Gerbracht, E.: Eleven unit distance embeddings of the Heawood graph. CoRR

abs/0912.5395 (2009)
16. Heath, L.S.: Embedding planar graphs in seven pages. In: FOCS, pp. 74–83. IEEE

Computer Society (1984)
17. Hoske, D.: Book embedding with fixed page assignments. Bachelor thesis, Karl-

sruhe Institute for Technology (2012)
18. Kainen, P.C.: Crossing-free matchings in regular outerplane drawings. In: Knots

in Washington XXIX. George Washington Univ., Washington, DC, USA (2009).
http://faculty.georgetown.edu/kainen/circLayouts.pdf

19. Kainen, P.C., Overbay, S.: Extension of a theorem of Whitney. Appl. Math. Lett.
20(7), 835–837 (2007)

20. Malitz, S.: Genus g graphs have pagenumber O(
√

g). J. Algorithms 17(1), 85–109
(1994)

http://faculty.georgetown.edu/kainen/circLayouts.pdf

14 J. Md. Alam et al.

21. Malitz, S.: Graphs with E edges have pagenumber O(
√

E). J. Algorithms 17(1),
71–84 (1994)

22. Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. Elsevier, New
York (1988)

23. Overbay, S.B.: Generalized book embeddings. Ph.D. thesis, Colorado State Uni-
versity (1998)

24. Steinberg, R.: The state of the three color problem. In: Gimbel, J., Kennedy, J.W.,
Quintas, L.V. (eds.) Quo Vadis, Graph Theory?. Elsevier, New York (1993). Ann.
Discret. Math. 55, 211–248

25. Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal
planar graphs. Technical report TR-298, EECS Department, Princeton University
(1982)

26. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci.
38(1), 36–67 (1989)

Characterising AT-free Graphs with BFS

Jesse Beisegel(B)

Brandenburg University of Technology, Cottbus, Germany
beisegel@b-tu.de

Abstract. An asteroidal triple free graph is a graph such that for every
independent triple of vertices no path between any two avoids the third.
In a recent result from Corneil and Stacho, these graphs were charac-
terised through a linear vertex ordering called an AT-free order. Here,
we use techniques from abstract convex geometry to improve on this
result by giving a vertex order characterisation with stronger structural
properties and thus resolve an open question by Corneil and Stacho.
These orderings are generated by a modification of BFS which runs in
polynomial time. Furthermore, we give a linear time algorithm which
employs multiple applications of (L)BFS to compute AT-free orders in
claw-free AT-free graphs and a generalisation of these.

1 Introduction

In a classical paper of algorithmic graph theory by Lekkerkerker and Boland from
the early 1960s [17] the authors used a forbidden substructure called an asteroidal
triple to characterise interval graphs. An asteroidal triple is an independent triple
of vertices, such that for any two of them there is a path that avoids the third.
This definition gave rise to the introduction of the class of asteroidal triple free
graphs (AT-free graphs) and due to the fact that these graphs form a superclass
of both the interval and cocomparability graphs, there has been considerable
research interest for the last two decades.

AT-free graphs are widely believed to exhibit a “linear structure” [14] akin to
the interval graphs and two results in particular corroborate this claim: In [8]
it was shown that every AT-free graph contains a dominating pair, i.e., a pair
of vertices such that every path between them forms a dominating set for the
whole graph. This result was strengthened in the same paper [8] which char-
acterised AT-free graphs with the so-called spine property : A graph H has the
spine property, if for every non-adjacent dominating pair s and t there exists a
neighbour of t, say t′, such that s and t′ are a dominating pair in the connected
component of H − t that contains s. As shown in [8], a graph G is an asteroidal
triple free graph if and only if every connected induced subgraph of G has the
spine property. This can be seen as a generalisation of the fact that the maximal
cliques of interval graphs form a chain.

An important algorithmic tool in the theory of interval graphs has been
their characterising linear vertex ordering, the interval order. This is a linear

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 15–26, 2018.
https://doi.org/10.1007/978-3-030-00256-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_2&domain=pdf

16 J. Beisegel

ordering τ = (v1, . . . , vn) of the vertices of a graph G = (V,E) such that for
u ≺τ v ≺τ w and uw ∈ E we have uv ∈ E. It was long conjectured that such
a characterising linear vertex ordering must also exist for AT-free graphs and
while in a recent result [11] this conjecture was answered in the positive, the
notion of these orderings leaves quite a bit of freedom.

Ideally, such an ordering would somehow capture the structure given in the
spine property in [8] (as it is in the case of interval orderings which immediately
gives us the chain of maximal cliques). However, the so-called LexComp ordering
that is constructed in [11] has one significant drawback: For some graphs the
resulting ordering is “folded” in a way that seems to contradict our notion of
linear behaviour. For example, given the path graph with 2n + 1 vertices, the
P2n+1, where the vertices are numbered from left to right along the path, we
would expect any viable linear vertex ordering to be (1, 2, . . . , 2n + 1) or its
inversion. The algorithm in [11], on the other hand, might output (n + 1, n, n +
2, n−1, . . . , 1, 2n+1). In addition, this construction can even yield vertex orders
τ := (v1, . . . , vn) such that there are i ∈ {1, . . . , n} for which G[v1, . . . , vi] is not
connected - for example the circuit in five vertices, i.e., C5. More examples can
be found in Fig. 1.

In an attempt to remedy this issue, the authors of [11] investigate whether
it is possible to find AT-free orderings that coincide with search orders. After
proving that there are graphs G such that no LBFS ordering of G is an AT-free
order, they conjecture that every AT-free graph has an AT-free order that is a
BFS order.

Conjecture 1. [11] Let G = (V,E) be an AT-free graph. Then there exists a BFS
ordering τ = (v1, . . . , vn) that is an AT-free order.

We will prove an even stronger version of this conjecture, and show how
such an order can be used to wed the notion of an AT-free ordering to the
spine property. We will also give a polynomial time algorithm to compute such
an order that takes approximately the same time as the previous best known
algorithm to compute AT-free orders, i.e. O(nm) [11]. The best known algorithm
to recognise AT-free graphs uses fast matrix multiplication and takes O(n2.82)
time [16] and it can be shown that recognition of AT-free graphs is at least as
hard as recognising graphs without an independent set of size three [20].

For the special case of claw-free AT-free graphs and a generalisation of these
we give linear time algorithms to compute AT-free (L)BFS orders. This is a sur-
prising result, as it was shown in [13] that the recognition of claw-free AT-free
graphs is at least as hard as triangle recognition. This dichotomy is of striking
resemblance to the case of comparability graphs, where a characterising linear
ordering in the form of a transitive orientation can be found in linear time, while
there is no known recognition algorithm that is faster than matrix multiplica-
tion [20]. Due to these facts, we conjecture that it is possible to compute AT-free
orderings in linear time in the general case using some form of modified breadth-
first-search. As is the case for comparability graphs, such a linear ordering might
then be used for linear time optimisation algorithms that are robust for AT-free

Characterising AT-free Graphs with BFS 17

graphs, i.e. which can be applied without solving recognition first (for further
information on robust algorithms see [20]).

1 2 3

4

5

6 7 8

Arbitrary AT-free: (4, 5, 2, 7, 3, 6, 1, 8)
LexComp: (4, 5, 3, 6, 2, 7, 1, 8)
BFSconv(G, 1): (1, 2, 3, 4, 5, 6, 7, 8)

Fig. 1. Graph with its various AT-free orders

2 Preliminaries

In the following, we will exclusively refer to simple connected graphs G with
vertex set V and edge set E. The neighbourhood of v in G is the set NG(v) :=
{w : vw ∈ E} and N [v] := N(v) + v. A vertex with only one neighbour in G
will be called a pendant vertex. A walk W of length k in G is a succession of
vertices (v1, . . . , vk+1) such that vivi+1 ∈ E for all i ∈ {1, . . . , k}. If a walk P
has the additional property that all vertices are distinct, we call P a path. We
say that a path P avoids a vertex v, if v does not have any neighbours on P ,
while a vertex v intercepts a path P if it has at least one neighbour on P .

The distance between two vertices s and t is the length of a shortest path
between these vertices and will be denoted by distG(s, t). The set of vertices that
have distance k to a vertex s is called the k-th distance layer from s of G and is
denoted by Lk

G(s). For every vertex v ∈ V we say that Nk
s (v) := Lk

G(s)∩NG(v).
A vertex x with largest distance from s is called eccentric with respect to s and
its distance to s is the eccentricity eccG(s) of s. The eccentricity of G is the
largest such value among all vertices.

A subset D ⊆ V is called a dominating set of G if every vertex in V has a
neighbour in D. If the set D forms a path in G it is called a dominating path.
Two vertices s and t of G form a dominating pair, if every path between them is
dominating. A permutation τ := (v1, . . . , vn) of the vertices of G will be called
a linear vertex ordering.

Given a linear vertex ordering τ we can formulate a derivative of Breadth First
Search called BFS+(τ). This algorithm is a breadth first search which prioritises
vertices that are further to the right in τ , i.e. at any point of the search where
neighbours of the current vertex are added to the queue, the vertices with highest
τ -value are added first.

Lexicographic Breadth First Search (Algorithm 1) was introduced in [19] to
recognise chordal graphs and has been an important ingredient in many recog-
nition and optimisation algorithms since.

If two vertices have the same label in step 6, we say that they are tied. We
call a set of tied vertices S encountered in step 6 of Algorithm 1 a slice. Given
an LBFS order τ and two vertices u and v with u ≺τ v, we denote the vertex-
minimal slice with respect to τ containing u and v as Γ τ

u,v.

18 J. Beisegel

Algorithm 1. LBFS
Input: Connected graph G = (V, E) and a distinguished vertex s ∈ V
Output: A vertex ordering τ

1 begin
2 label(s) ← n;
3 for each vertex v ∈ V − s do
4 label(v) ← ∅;

5 for i ← 1 to n do
6 pick an unnumbered vertex v with lexicographically largest label;
7 τ(i) ← v;
8 for each unnumbered vertex u ∈ N(v) do
9 append (n − i) to label(w);

As before with the BFS, given a linear vertex order τ , we can define an
LBFS+(τ) in the following way: At any point in the search at which we encounter
a slice, i.e. a set of tied vertices, the vertex of highest τ -value is chosen first.

There are many interesting properties and applications of LBFS, and some
of these can be found in [7]. Here we will need one result in particular, which is
a useful tool for the analysis of LBFS and LBFS+ orders.

Lemma 1 (Prior Path Lemma). [10] Let τ be an arbitrary LBFS of a graph
G and let u, v ∈ V with u ≺τ v. Let w be the τ -first vertex of the connected
component Cu of Γ τ

u,v containing u. There exists a w-u-path in Γ τ
u,v all of whose

vertices, with the possible exception of u, are not adjacent to v. Moreover, all
vertices on this path, other than u, occur before u in τ . Such a path is called a
prior path.

Finally, a graph will be called claw-free, if it does not contain a claw graph,
i.e. the K1,3, as an induced subgraph. We will call the three independent vertices
the prongs and the fourth vertex the base of the claw.

3 Convex Geometries and AT-free Graphs

Definition 1. [12] A set V and a family of subsets C of V form a convexity
space, if ∅, V ∈ C and C is closed under intersection. The smallest convex set
conv(X) containing a set X ⊆ V is called the convex hull of X. We say that a
convexity space (V, C) is a convex geometry, if for every convex set X and two
points p, q ∈ V \X:

q ∈ conv(X + p) ⇒ p /∈ conv(X + q).

This is sometimes referred to as the anti-exchange property. A convex set whose
complement is also convex is called a halfspace.

Characterising AT-free Graphs with BFS 19

The anti-exchange property motivates an ordering of the ground set V of
a convex geometry: An ordering τ = (v1, . . . , vn) is a convexity ordering, if
{v1, . . . vi} is convex for every i ∈ {1, . . . , n}. If {v1, . . . , vi} is a halfspace for
every i ∈ {1, . . . , n}, then we call τ a halfspace ordering.

One way to define a convexity space is through strict betweenness. Follow-
ing [5] we say that a strict betweenness over a ground set V is a ternary relation
B ⊂ V 3 such that

(a, b, c) ∈ B implies that (c, b, a) ∈ B and a, b, and c are distinct.

The convexity space with regard to this betweenness is then defined to be
the pair (V, CB) where

CB := {C ⊆ V : {a, c} ⊆ C and (a, b, c) ∈ B implies b ∈ C}.

On graphs we can define just such a strict betweenness on the set of vertices and
thus we can construct a convexity space in the following way:

Definition 2. Given a graph G = (V,E) we say that (x, y, z) ∈ BD(G), if there
is a chordless x-y-path that avoids z and a chordless y-z-path that avoids x. The
set of vertices y with (x, y, z) ∈ BD(G) is called the domination interval of x and
z and is denoted by ID(x, z). The ternary relation BD(G) is called the domination
betweenness of G and it is easy to see that this is a strict betweenness. As a
result, we obtain a convexity space (V, CBD

(G)) which we will call the domination
convexity of G.

A vertex y is said to be admissible, if there are no two vertices x and z such
that (x, y, z) ∈ BD(G). An AT-free ordering is an ordering τ = (v1, . . . , vn) of
the vertices such that for any (x, y, z) ∈ BD(G) we have y ≺τ x or y ≺τ z. It is
easy to see that for any such ordering {v1, . . . , vi} is domination convex for any
i ∈ {1, . . . , n}. If τ is such that for any (x, y, z) ∈ BD(G) we have x ≺τ y ≺τ z
we say that it is a bilateral AT-free ordering of G.

The connection between convexity theory and AT-free graphs was recently
made in [3,4] and it was furthermore shown that the convexity space thus defined
is in fact a convex geometry. In the following we have bundled that result with
a number of other characterising properties of AT-free graphs:

Theorem 1. [2–4,8,11,12,15] Given a graph G, its domination betweenness BD

and its domination convexity CBD
, the following statements are equivalent:

(i) G is AT-free.
(ii) If (w, x, y) ∈ BD(G) and (x, y, z) ∈ BD(G) then (w, x, z) ∈ BD(G), i.e.,

BD(G) is a transitive ternary relation.
(iii) Every connected induced subgraph of G has the spine property.
(iv) G has an AT-free order.
(v) (V, CBD (G)) is a convex geometry.

20 J. Beisegel

4 AT-free BFS-Orders

Theorem 2. Let G be a connected AT-free graph. Then for any vertex s ∈ V
there is a linear vertex order τ := (s = v1, . . . , vn) that is an AT-free order and
a BFS order.

Proof. Let τ be a BFS order starting in an arbitrary vertex s of G with the
following tie-break rule: At each step i choose the vertex vi such that conv({s =
v1, . . . , vi}) has smallest cardinality among all allowed choices at step i. We will
show, that {s = v1, . . . , vi} is convex for i ∈ {1, . . . , n}, which implies that τ is
an AT-free order. The proof will be by induction on the BFS steps.

For k = 1 the claim is true, as every one element set is convex in C.
We show the claim for step k, assuming it is true for k − 1. Suppose vk is

chosen. Then {v1, . . . , vk−1} is convex and vk is such that conv({v1, . . . , vk−1}+
vk) is smallest among all vertices that can be chosen by the search in step
k. As we are conducting a BFS there is a vertex y ∈ {v1, . . . vk−1} that is
adjacent to all possible choices, but no others. Assume that {v1, . . . , vk} is not
convex. Then there is a vertex p ∈ V \{v1, . . . , vk}, such that (v, p, vk) ∈ BD

for some vertex v ∈ {v1, . . . vk−1}. As (V, CBD (G)) is a convex geometry, we can
deduce that conv({v1, . . . , vk−1} + p) � conv({v1, . . . vk−1} + vk). This implies
that yp /∈ E due to the choice of vk. Let w be the vertex that forced v into
the BFS ordering (it may be that y = w). Due to the definition of BFS we see
that distG(s, w) ≤ distG(s, y) < distG(s, p). We can assume that wp /∈ E, as
otherwise p would have been chosen before vk. Therefore, the vertices {v, vk, p}
form an asteroidal triple, due to the p-avoiding walk from v to vk along w, s and
y. This is a contradiction to fact that G is AT-free.
�

This theorem implies an algorithm for computing an AT-free BFS order which
will be denoted by BFSconv.

Any such ordering τ := (v1, . . . , vn) obviously has the property that for every
i ∈ {1, . . . , n} the induced subgraph G[{v1, . . . , vi}] is connected. This is already
an improvement on the orders produced by the algorithm given in [11] and in
Fig. 1 we compare orders computed by the different algorithms. On the other
hand, returning to the example given in the introduction, the P2k+1 path graph,
we can see that starting the BFSconv in vertex k + 1 still yields an undesirable
order.

Starting in an admissible vertex, which in the case of P2k+1 will be one of
the endpoints or one of their neighbours, is an easy remedy of this problem.
However, with a little modification to our search routine we can not only solve
this issue, but make an intriguing link with the AT-free graphs characterisation
through the spine property. We shall call a vertex ordering τ = (v1, . . . , vn) a
monotone dominating pair order, if for every i ∈ {1, . . . , n} the vertices v1 and
vi form a dominating pair in the induced subgraph G[v1, . . . , vi].

Theorem 3. [9] Let G = (V,E) be a connected AT-free graph and suppose that s
is an admissible vertex. Let τ = (v1, . . . , vn) be a vertex order produced by LBFS

Characterising AT-free Graphs with BFS 21

Algorithm 2. BFSconv

Input: Connected graph G and a distinguished vertex s ∈ V
Output: A vertex ordering σ

1 begin
2 Compute I(v, w) for every pair of vertices v, w ∈ V ;
3 L ← {s};
4 S ← ∅;
5 for i ← 1 to n do
6 Choose the first vertex v from L such that there are no u ∈ S and

z ∈ V − S with z ∈ I(u, v);
7 Delete v from L;
8 σ(i) ← v;
9 S ← S ∪ {v};

10 for each unnumbered vertex w adjacent to v do
11 if w /∈ L then
12 Append w to end of L;

(G, s). Then for any i ∈ {1, . . . , n} the vertices v1 and vi form a dominating pair
of G[v1, . . . , vn], i.e., τ is a monotone dominating pair order.

In the following we will prove an analogous result for BFSconv.

Lemma 2 (�1). Let G = (V,E) be an AT-free graph and let s be an admissible
vertex of eccentricity k > 2. If τ := (s = v1, . . . , vn = t) is the output of
BFSconv(G, s), then s and t form a dominating pair.

However, applying a BFSconv with an admissible start vertex must not always
result in a monotone dominating pair order, as can be seen in Fig. 2.

G:

1

2

3

4

5

G :

v1 v2 v3 1

2

3

4

5

BFSconv(G, 1): (1, 2, 3, 4, 5) BFSconv(G , v1): (v1, v2, v3, 1, 2, 3, 5, 4)

Fig. 2. Graph for which BFSconv does not necessarily output a monotone dominating
pair ordering and the graph G′ constructed from G as in Theorem 4.

In [8] it is shown that for an AT-free graph G and an admissible vertex s the
graph G′ obtained by adding a pendant vertex v to s is also AT-free and v is
admissible in G′. With this operation we can artificially raise the eccentricity of
our starting vertex and generalise Lemma2 to all AT-free graphs.
1 The full proofs of theorems marked with (�) can be found in [1].

22 J. Beisegel

Theorem 4. Let G be a connected AT-free graph. For every admissible vertex s
there is a vertex ordering τ beginning in s that is both AT-free and a monotone
dominating pair ordering.

Proof. We construct an auxiliary graph by adding a three vertex path to s in the
following way: G′ = (V + {v1, v2, v3}, E + {v1v2, v2v3, v3s}). As s is admissible,
the graph G′ is again AT-free and v1 is admissible in G′ with eccG′(v1) > 2.
The order τ ′ = (v1, v2, v3, w1, . . . , wn) that is generated by BFSconv(G′, v1) is
an AT-free order and with Lemma 2 it is easy to see that τ = (w1, . . . , wn) is a
monotone dominating pair order for G.
�

5 AT-free Orders in Claw-free AT-free Graphs

After having established the existence of AT-free BFS orders and a polynomial-
time algorithm for their computation, we are interested in finding a simple linear
time algorithm. In many graph classes, forbidding induced claw-graphs yields
strong structural properties for BFS searches. For example, in [6,18] the authors
use these structural properties to generate unit interval respectively minimal
triangulation orderings. As in the papers cited above, we will use successive
applications of BFS as well as LBFS.

Lemma 3. Let G be claw-free and AT-free. Then the last vertex of a BFS is
admissible.

Proof. Let s be the first and z the last vertex of the BFS and let k := distG(s, z).
Suppose there are a, b ∈ V such that (a, z, b) ∈ BD(G). As G is AT-free, at
least one of a or b must be in the last layer Lk

G(s) of the BFS, w.l.o.g. this
is a. If distG(s, b) < distG(s, z), then Nk−1

s (a) ⊆ Nk−1
s (z), as otherwise there

is a z-avoiding a-b-path. If distG(s, b) = distG(s, a) = distG(s, z), then either
Nk−1

s (a) ⊆ Nk−1
s (z) or Nk−1

s (b) ⊆ Nk−1
s (z), as G is AT-free, and without loss

of generality we can assume this to be true for a. Therefore, a and z have a
common neighbour c in Lk−1

G (s). If c is not the start vertex of the BFS, then c

has a neighbour d in Lk−2
G and a, z, c, d form a claw. If c is the start vertex, then

b must also be adjacent to c and a, b, c, d form a claw.
�
Lemma 4. Let G be a claw-free, AT-free graph and let s ∈ V be admissible in
G and t eccentric with respect to s. Then all but the first distance layers of s,
i.e., L0

G(s), L2
G(s), . . . , Lk

G(s), with k = eccG(s), are cliques and s and t form a
dominating pair.

Proof. For L0
G(s) this is obvious. Let i ≥ 2 and suppose there are a, b ∈ Li

G(s)
with ab /∈ E. As s is admissible, without loss of generality N i−1

s (a) ⊆ N i−1
s (b).

Therefore a and b have a common neighbour c ∈ Li−1
G . This c in turn has a

neighbour d ∈ Li−2
G and a, b, c, d form a claw, which is a contradiction to the

assumption.
As any path P between s and t has one vertex from each distance layer Li

G(s)
and s is adjacent to all vertices in L1

G(s) they must form a dominating pair.
�

Characterising AT-free Graphs with BFS 23

Theorem 5. Let G be an AT-free, claw-free graph. Then a BFS starting in an
admissible vertex yields an AT-free order that is a monotone dominating pair
order.

Proof. Let τ be such a BFS on G starting in an admissible vertex s. Suppose
(a, z, b) ∈ BD(G) and a, b ≺τ z. We can assume that a, b and z do not have
the same distance to s (otherwise we can construct a claw as above). As G is
AT-free, on the other hand, at least one of a or b must be in the same layer as z.
W.l.o.g. we can assume that b and z are in the same layer Li

G(s) and a is in layer
Lj

G(s) with j < i. As b and z are independent of each other, they must be in the
first layer of the BFS. As a cannot be the start vertex (it is not adjacent to the
other two), this is a contradiction. Lemma 4 states that τ must be a monotone
dominating pair order.
�
Lemma 5 (�). Let G = (V,E) be a connected graph with a dominating pair s
and t. Let u and v be two vertices with uv /∈ E and distG(s, u) < distG(s, v).
Then distG(t, u) ≥ distG(t, v).

Corollary 1 (�). Let G be a claw-free AT-free graph. Then G has a bilateral
AT-free ordering and this order can be found in linear time.

In the proof of Theorem5 we can see that the main obstacles are triples of
vertices a, b, z ∈ V (G) with (a, z, b) ∈ BD(G) that form the prongs of a claw.
This justifies the following:

Definition 3. Let G be a graph and let a, b, z, c ∈ V induce a claw with base c.
We will call such a claw a bad claw, if (a, z, b) ∈ BD(G).

It seems reasonable to expect that by forbidding such bad claws we will
be able to get similar results to the ones above. On the other hand, there are
examples of AT-free bad-claw-free graphs for which the above procedure does
not yield either an AT-free order nor a bilateral AT-free ordering (see Fig. 3).
In particular, Lemma3 does not hold in general for these graphs. Therefore, we
will use LBFS which guarantees us an admissible vertex as its end-vertex.

12 3

4

5 6

7

aa
bb

zz

BFS: τ1: (1, 2, 3, a , 4, 5, a, 6, 7, z , b , b, z)
BFS(τ1): τ2: (z, 7, 6, 3, b, a, 1, 2, 5, 4, a , b , z)
BFS(τ2): τ3: (z , 4, 5, 2, b , a , 1, 3, a, 6, 7, b, z)

Fig. 3. A bad-claw-free graph for which BFS does not yield an AT-free order

Lemma 6. [9] Let G = (V,E) be an AT-free graph and let τ be an ordering of
V produced by an LBFS. Then the vertex t := τ(n) is admissible in G.

24 J. Beisegel

In fact, the properties of LBFS even make up for the absence of the strong
structural property of Lemma 4 and we can prove analogues to both Theorem 5
and Corollary 1.

Theorem 6. Let G be AT-free and bad-claw-free. Then an LBFS starting in an
admissible vertex yields an AT-free order that is a monotone dominating pair
order.

Proof. Let τ be an LBFS order starting in an admissible vertex s. Suppose
(a, z, b) ∈ BD(G) and a, b ≺τ z. Without loss of generality, we see that i :=
distG(s, b) = distG(s, z), as G is AT-free. For that same reason either N i−1

s (b) ⊆
N i−1

s (z) or N i−1
s (a) ⊆ N i−1

s (z) or both.
Now suppose distG(s, a) = i. As s is admissible, and a, b and z are inde-

pendent, they must have a common neighbour c with distG(s, c) = i − 1 and
therefore a, b and z and c form a bad claw, which is a contradiction.

Therefore, we can assume that j := distG(s, a) < i. With the above we see
that N i−1

s (b) ⊆ N i−1
s (z) and there is a b-avoiding a-z-path P . Let x be the τ -last

vertex of P . As b ≺τ z τ x, due to Theorem 3 the vertex b must see every s-x-
path and thus also every x-a-path, which is a contradiction. Thus, every LBFS
starting in an admissible vertex yields an AT-free order.

Finally, Theorem 3 states that every LBFS order of an AT-free graph starting
in an admissible vertex is a monotone dominating pair order.
�
Corollary 2 (�). Let G be an AT-free graph that does not have a bad claw as
an induced subgraph. Then G has a bilateral AT-free ordering and such an order
can be found in linear time.

1

2

3 4

a

b

c

z

LBFS: τ1: (1, 2, 4, z, 3, b, a, c)
LBFS(τ1): τ2: (c, a, b, z, 4, 3, 2, 1)
LBFS(τ2): τ3: (1, 2, 3, 4, z, b, a, c)

Fig. 4. Example of a graph with a bad claw. On the right, one can see that the second
τ2 is not an AT-free order and τ3 is not a bilateral AT-free order. In fact, this is an
example of an AT-free graph that does not possess a bilateral AT-free ordering.

These results indicate that a linear time algorithm to construct AT-free orders
could also exist for the general case of AT-free graphs. However, none of the
techniques used for the (bad-)claw-free graphs can be transferred. In [11] it
was already shown that there are AT-free graphs which do not possess AT-free

Characterising AT-free Graphs with BFS 25

orders that are also LBFS orders. In addition, Fig. 4 shows a graph which does
not possess a bilateral AT-free ordering. Therefore, it will be necessary to use
a different search algorithm, possibly a BFS-derivative based on BFSconv. We
summarise these suppositions in the following:

Conjecture 2. Let G = (V,E) be an AT-free graph. There is a linear time algo-
rithm that computes an AT-free (BFS) order.

6 Conclusion

We resolved an open question from [11] by proving that any given AT-free graph
has an AT-free order that coincides with a BFS order. The proof implied a poly-
nomial time algorithm for the computation of such an order that is at least as
fast as recognition. As a result, we were able to show that there is a close link
between the vertex order characterisation of AT-free graphs, and their charac-
terisation through the spine property. As checking whether a vertex order is an
AT-free order is in fact of the same difficulty as recognising AT-free graphs, it
should still be possible to find AT-free orders in linear time. This could be done
by giving a linear time implementation of BFSconv or by constructing another
search scheme with similar structural properties.

For the special case of claw-free AT-free graphs we have shown that multi-
ple applications of BFS yield AT-free orders with additional structural proper-
ties. In fact, if we exchange generic BFS with LexMinBFS, a derivative defined
in [18], we can construct an AT-free, monotone dominating pair order that is
also a minimal interval completion order. While claw-free AT-free graphs form a
strongly restricted subclass of AT-free graphs, it is important to recall that their
recognition has been shown to be at least as hard as triangle recognition, the
same bound given to the recognition of general AT-free graphs. Furthermore, the
results on bad-claw-free graphs can be seen as a first step toward a resolution of
Conjecture 2, and give us a strong notion where the algorithmic difficulties lie.

Linear vertex orderings of other graph classes, such as interval orderings or
cocomparability orderings, have found many applications in optimisation algo-
rithms on these classes. To the best knowledge of the author, no such results
are known with respect to AT-free orderings. By using AT-free BFS orderings
such results might be easier to attain. Two of the most likely candidates are the
independent set problem and the vertex colouring problem. However, in the case
of vertex colouring even for cocomparability graphs there is no known algorithm
that utilises the cocomparability ordering. Should it be possible to compute
AT-free orders in linear time, it might even be possible to develop robust opti-
misation algorithms (see [20]) on AT-free graphs, similar to the maximum clique
algorithm on comparability graphs.

Finally, it is still an open question whether every AT-free graph admits a
DFS order whose reversal is AT-free [11].

26 J. Beisegel

References

1. Beisegel, J.: Characterising AT-free graphs with BFS. arXiv preprint (2018)
2. Broersma, H., Kloks, T., Kratsch, D., Müller, H.: Independent sets in asteroidal

triple-free graphs. SIAM J. Discret. Math. 12(2), 276–287 (1999)
3. Chang, J.M., Kloks, T., Wang, H.-L.: Gray codes for AT-free orders via antima-

troids. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS, vol. 9538, pp.
77–87. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29516-9 7

4. Chang, J.M., Kloks, T., Wang, H.-L.: Convex geometries on AT-free graphs and
an application to generating the AT-free orders. arXiv preprint arXiv:1706.06336
(2017)

5. Chvátal, V.: Antimatroids, betweenness, convexity. In: Cook, W., Lovász, L.,
Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 57–64.
Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-76796-1 3

6. Corneil, D.G.: A simple 3-sweep LBFS algorithm for the recognition of unit interval
graphs. Discret. Appl. Math. 138(3), 371–379 (2004)

7. Corneil, D.G.: Lexicographic breadth first search – a survey. In: Hromkovič, J.,
Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 1–19. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0 1

8. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Dis-
cret. Math. 10(3), 399–430 (1997)

9. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs
in asteroidal triple-free graphs. SIAM J. Comput. 28(4), 1284–1297 (1999)

10. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of
interval graphs. SIAM J. Discret. Math. 23(4), 1905–1953 (2009)

11. Corneil, D.G., Stacho, J.: Vertex ordering characterizations of graphs of bounded
asteroidal number. J. Graph Theory 78(1), 61–79 (2015)

12. Edelman, P.H., Jamison, R.E.: The theory of convex geometries. Geometriae Ded-
icata 19(3), 247–270 (1985)

13. Hempel, H., Kratsch, D.: On claw-free asteroidal triple-free graphs. Discret. Appl.
Math. 121(1), 155–180 (2002)

14. Köhler, E.: Linear structure of graphs and the knotting graph. In: Schulz, A.,
Skutella, M., Stiller, S., Wagner, D. (eds.) Gems of Combinatorial Optimization
and Graph Algorithms, pp. 13–27. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24971-1 2

15. Köhler, E.G.: Graphs Without Asteroidal Triples. Cuvillier, Göttingen (1999)
16. Kratsch, D., Spinrad, J.: Between O(nm) and O(nα). SIAM J. Comput. 36(2),

310–325 (2006)
17. Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals

on the real line. Fundamenta Mathematicae 51(1), 45–64 (1962)
18. Meister, D.: Recognition and computation of minimal triangulations for AT-free

claw-free and co-comparability graphs. Discret. Appl. Math. 146(3), 193–218
(2005)

19. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

20. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society,
Providence (2003)

https://doi.org/10.1007/978-3-319-29516-9_7
http://arxiv.org/abs/1706.06336
https://doi.org/10.1007/978-3-540-76796-1_3
https://doi.org/10.1007/978-3-540-30559-0_1
https://doi.org/10.1007/978-3-319-24971-1_2
https://doi.org/10.1007/978-3-319-24971-1_2

Edge Partitions of Optimal 2-plane
and 3-plane Graphs

Michael A. Bekos1, Emilio Di Giacomo2, Walter Didimo2, Giuseppe Liotta2,
Fabrizio Montecchiani2(B), and Chrysanthi Raftopoulou3

1 Universität Tübingen, Tübingen, Germany
bekos@informatik.uni-tuebingen.de

2 Università degli Studi di Perugia, Perugia, Italy
{emilio.digiacomo,walter.didimo,

giuseppe.liotta,fabrizio.montecchiani}@unipg.it
3 National Technical University of Athens, Athens, Greece

crisraft@mail.ntua.gr

Abstract. A topological graph is a graph drawn in the plane. A topo-
logical graph is k-plane, k > 0, if each edge is crossed at most k times. We
study the problem of partitioning the edges of a k-plane graph such that
each partite set forms a graph with a simpler structure. While this prob-
lem has been studied for k = 1, we focus on optimal 2-plane and 3-plane
graphs, which are 2-plane and 3-plane graphs with maximum density. We
prove the following results. (i) It is not possible to partition the edges
of a simple optimal 2-plane graph G into a 1-plane graph and a forest,
while (ii) an edge partition of G formed by a 1-plane graph and two
plane forests always exists and can be computed in linear time. (iii) We
describe efficient algorithms to partition the edges of G into a 1-plane
graph and a plane graph with maximum vertex degree 12, or with maxi-
mum vertex degree 8 if G is such that its crossing-free edges form a graph
with no separating triangles. (iv) We exhibit an infinite family of simple
optimal 2-plane graphs such that in any edge partition composed of a
1-plane graph and a plane graph, the plane graph has maximum vertex
degree at least 6. (v) We show that every optimal 3-plane graph whose
crossing-free edges form a biconnected graph can be decomposed into a
2-plane graph and two plane forests.

1 Introduction

Partitioning the edges of a graph such that each partite set induces a subgraph
with a simpler structure is a fundamental problem in graph theory with various
applications, including the design of graph drawing algorithms. For example, a
classic result by Schnyder [17] states that the edge set of any maximal planar
graph can be partitioned into three trees, which can be used to efficiently com-
pute planar straight-line drawings on a grid of polynomial size. Edge partitions

Research funded in part by the project: “Algoritmi e sistemi di analisi visuale di reti
complesse e di grandi dimensioni” - Ricerca di Base 2018, Dip. Ing. Univ. Perugia.

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 27–39, 2018.
https://doi.org/10.1007/978-3-030-00256-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_3&domain=pdf

28 M. A. Bekos et al.

Fig. 1. An edge partition of: (a) an optimal 2-plane graph into a 1-plane graph (solid)
and two plane forests (dashed and dotted); (b) an optimal 3-plane graph into a 2-plane
graph (solid) and two plane forests (dashed and dotted).

of planar graphs have also been studied by Gonçalves [11], who proved that the
edges of every planar graph can be partitioned into two outerplanar graphs, thus
solving a conjecture by Chartrand et al. [4], and improving previous results (see,
e.g., [8,12]). More in general, there exist various graph parameters based on edge
partitions. For example, the arboricity of a graph G is the minimum number of
forests needed to cover all edges of G, while G has thickness t if it is the union
of t planar graphs. Durocher and Mondal [9] studied the interplay between the
thickness t of a graph and the number of bends per edge in a drawing that can
be partitioned into t planar sub-drawings.

Recently, edge partitions have been studied for the family of 1-planar graphs.
A graph is k-planar (k ≥ 1) if it can be drawn in the plane such that each edge
is crossed at most k times [16]; a topological graph is k-plane if it has at most
k crossings per edge. Ackerman [1] proved that the edges of a 1-plane graph
can be partitioned into a plane graph (a topological graph with no crossings)
and a plane forest, extending an earlier result by Czap and Hudáck [5]. A 1-
planar graph with n vertices is optimal if it contains exactly 4n−8 edges, which
attains the maximum density for 1-planar graphs. Lenhart et al. [14] proved that
every optimal 1-plane graph can be partitioned into two plane graphs such that
one has maximum vertex degree four, where the bound on the vertex degree is
worst-case optimal. Di Giacomo et al. [7] proved that every triconnected 1-plane
graph can be partitioned into two plane graphs such that one has maximum
vertex degree six, which is also a tight bound. This result is exploited to show
that every such a graph has a visibility representation in which the vertices are
orthogonal polygons with few reflex corners each, while the edges are horizontal
and vertical lines of sight between vertices. Additional results on edge partitions
of various subclasses of 1-plane graphs are reported in [6].

While 1-planar graphs have been extensively studied (see also the survey by
Kobourov et al. [13]), and their structure has been deeply understood, this is not
the case for 2-planar and 3-planar graphs. These graphs have a more complex

Edge Partitions of Optimal 2-plane and 3-plane Graphs 29

structure with at most 5n − 10 and 5.5n − 11 edges, respectively [16]. Similarly
to 1-planar graphs, a 2-planar (respectively, 3-planar) graph with n vertices is
optimal if it contains 5n − 10 (respectively, 5.5n − 11) edges (see also Sect. 2).
Examples of optimal 2-plane and 3-plane graphs are shown in Figs. 1(a) and (b),
respectively. Bekos et al. [3] recently characterized optimal 2-planar and optimal
3-planar graphs, and showed that these graphs have a regular structure; refer
to Sect. 2 for details. In this paper, we build upon this characterization and we
initiate the study of edge partitions of simple (i.e., with neither self-loops nor
parallel edges) optimal 2-plane graphs. Figure 1(a) shows an edge partition of an
optimal 2-plane graph into a 1-plane graph and two plane forests. We then extend
some of our results to a subclass of optimal 3-plane graphs; an edge partition of
an optimal 3-plane graph is shown in Fig. 1(b). Our contributions are as follows.

– We prove that it is not possible to partition the edges of a simple optimal
2-plane graph G into a 1-plane graph and a forest. Note that, by Nash-
Williams formula [15], 2-planar graphs have arboricity at most five, while
1-planar graphs have arboricity at most four. Hence, our result implies that
in a decomposition of G into five forests, it is not possible to pick four of them
forming a 1-plane graph.

– On the positive side, every simple optimal 2-plane graph can be partitioned
into a 1-plane graph and two plane forests. This result exploits some insights
in the structure of optimal 2-plane graphs. Also, the edge partition can be
computed in linear time.

– Additionally, we prove that the edges of a simple optimal 2-plane graph can
always be partitioned into a 1-plane graph and a plane graph with maximum
vertex degree 12. This upper bound on the vertex degree can be lowered to 8
if the optimal 2-plane graph is such that its crossing-free edges form a graph
with no separating triangles. Both bounds are achieved with constructive
techniques that work in polynomial time.

– Besides the above upper bound on the vertex degree, we establish a non-
trivial lower bound. We exhibit an infinite family of simple optimal 2-plane
graphs such that in any edge partition composed of a 1-plane graph and a
plane graph, the plane graph has maximum vertex degree at least 6.

– We finally consider (non-simple) optimal 3-plane graphs and prove that any
such a topological graph whose crossing-free edges form a biconnected graph
can be partitioned into a 2-plane graph and two plane forests.

For space reasons, some proofs marked with * are omitted and can be found in [2].

2 Preliminaries and Notation

Drawings and Planarity. A graph is simple if it contains neither self-loops
nor parallel edges. A drawing of a graph G = (V,E) is a mapping of the vertices
of V to points of the plane, and of the edges of E to Jordan arcs connecting
their corresponding endpoints but not passing through any other vertex. We

30 M. A. Bekos et al.

Fig. 2. (a) The pentangulation of the graph G in Fig. 1(a). (b) A 1-plane graph obtained
from G by removing two adjacent chords from each filled pentagon.

only consider simple drawings, i.e., drawings such that two arcs representing
two edges have at most one point in common, and this point is either a common
endpoint or a common interior point where the two arcs properly cross each
other. A graph drawn in the plane is also called a topological graph. The crossing
graph C(G) of a topological graph G has a vertex for each edge of G and an
edge between two vertices if and only if the two corresponding edges of G cross
each other. A topological graph is plane if it has no edge crossings. A plane
graph subdivides the plane into topologically connected regions, called faces.
The infinite region is the outerface. The degree of a face f is the number of
vertices encountered in a closed walk along the boundary of f . If a vertex v is
encountered k > 0 times, then v has multiplicity k in f . In a biconnected graph,
all vertices have multiplicity one in the faces they belong to.

k-planar Graphs. A topological graph is k-plane if each edge is crossed at
most k times. A pentangulation (resp., hexangulation) P (resp., H) is a plane
graph such that all its faces are 5-cycles (resp., 6-cycles), which we call pentagons
(resp., hexagons). Two parallel edges are homotopic if the interior or the exterior
region bounded by their curves contain no vertices. A self loop is homotopic if the
interior or the exterior region bounded by its curve contains no vertices. Bekos
et al. [3] proved that an n-vertex graph G is optimal 2-planar if and only if it
admits a drawing without homotopic self-loops and homotopic parallel edges,
such that the graph formed by the crossing-free edges is a pentangulation P (G)
with n vertices, and each face of P (G) has five crossing edges in its interior, which
we call chords in the following. Also, each chord has exactly two crossings. A
pentagon with its five chords routed as described above will be called a filled
pentagon. Figure 2(a) shows the pentangulation P (G) of the optimal 2-plane
graph G of Fig. 1(a). Similarly, Bekos et al. proved that an n-vertex graph G is
optimal 3-planar if and only if it admits a drawing without homotopic self-loops
and parallel edges, such that the graph formed by the crossing-free edges is a
hexangulation H(G) with n vertices, and each face of H(G) has eight crossing

Edge Partitions of Optimal 2-plane and 3-plane Graphs 31

edges in its interior, which we call chords in the following. A hexagon with its
eight chords routed as described above will be called a filled hexagon.

Arboricity and Orientations. The arboricity of a graph is the minimum
number of forests into which its edges can be partitioned. Nash-Williams [15]
proved that a graph G has arboricity a ≥ 1 if and only if, a = max{� mS

nS−1�}
over all subgraphs S of G with nS ≥ 2 vertices and mS edges. A d-orientation of
a graph G is an orientation of the edges of G such that each vertex has at most
d outgoing edges, for some integer d ≥ 1. Note that if a graph has arboricity a,
it admits an a-orientation (the converse may not be true). Given two vertices s
and t of a graph G, an st-orientation of G is an orientation of its edges such that
G becomes a directed acyclic graph with a single source s and a single sink t.

Edge Partitions. Given a topological graph G = (V,E), an edge partition of
G is denoted by 〈E1, . . . , Ep〉, for some p > 1, where E = E1 ∪ · · · ∪ Ep and
Ei ∩Ej = ∅ (1 ≤ i �= j ≤ p). We denote by G[Ei] the topological graph obtained
from G by removing all edges not in Ei and all the isolated vertices.

3 Edge Partitions of Optimal 2-plane Graphs

We begin by observing the following property, which will be useful in the remain-
der of this section.

Property 1 (*). Let G′ = (V,E \R) be a topological graph obtained by removing
a subset R of crossing edges from a simple optimal 2-plane graph G = (V,E). G′

is 1-plane if and only if R has two adjacent chords for each filled pentagon of G.

For example, the graph in Fig. 2(b) is obtained by removing two adjacent chords
from each filled pentagon of an optimal 2-plane graph.

3.1 Edge Partitions with Acyclic Subgraphs

As already mentioned, the edge set of a 1-plane graph can always be partitioned
into a plane graph and a plane forest [1]. One may wonder whether this result can
be generalized to 2-plane graphs, that is, whether the edge set of every 2-plane
graph can be partitioned into a 1-plane graph and a forest. Theorem1 shows
that this may not be possible. In particular, this is never the case for optimal
2-plane graphs. On the positive side, Theorem2 gives a constructive technique
to partition the edges of every optimal 2-plane graph into a 1-plane graph and
two plane forests (rather than one).

Theorem 1. Let G be a simple optimal 2-plane graph. G has no edge partition
〈E1, E2〉 such that G[E1] is a 1-plane graph and G[E2] is a forest.

Proof. Let 〈E1, E2〉 be an edge partition such that G[E1] is a 1-plane graph. By
Property 1, E2 has at least two chords for each filled pentagon of G. By Euler’s
formula, if G has n vertices, the pentangulation P (G) has 2

3 (n − 2) faces, and

32 M. A. Bekos et al.

thus G has 2
3 (n−2) filled pentagons. Then E2 contains at least 2× 2

3 (n−2) edges,
and hence G[E2] can be a forest only if n ≤ 5. On the other hand n > 5, because
P (G) has at least two internal faces (otherwise either P (G) would be a 5-cycle
and G would have two parallel chords or P (G) would be drawn nonplanar). �
Lemma 1 (*). The pentangulation P (G) of a simple optimal 2-plane graph G
is biconnected.

Theorem 2. Every n-vertex simple optimal 2-plane graph G = (V,E) has an
edge partition 〈E1, E2, E3〉, which can be computed in O(n) time, such that G[E1]
is a 1-plane graph and both G[E2] and G[E3] are plane forests.

Proof. To construct the desired edge partition, we first guarantee that E′ =
E \E1 contains two adjacent chords for each filled pentagon of G, which implies
that G[E1] is a 1-plane graph by Property 1. We then color the edges of E′ with
two colors, say green and red, so that each monochromatic set is a plane forest.
The set of green edges will correspond to E2, while the set of red edges to E3.

We aim at computing an st-orientation of P (G). Recall that, given a bicon-
nected plane graph and two vertices s and t on its outerface, it is possible to
construct an st-orientation of the graph in linear time (see, e.g., [10,18]). By
Lemma 1, the pentangulation P (G) of G is biconnected, and hence we can com-
pute an st-orientation of P (G) (with s and t that belong to the outerface).
According to this orientation, all outgoing edges of any vertex v ∈ P (G) appear
consecutively around v, followed by all the incoming edges of v ([18, Lemma 2]).
For any vertex v ∈ P (G) distinct from s and t, this allows us to uniquely define
the leftmost (rightmost) face of v as the face containing the last incoming and
first outgoing edges (last outgoing and first incoming edges, respectively) of v
in clockwise order around v. We use this fact to classify the internal faces of
P (G) in different types. By [18, Lemma 1], each internal face f of P (G) has a
source vertex s(f) and a target vertex t(f), and consists of two directed paths
from s(f) to t(f), say pl(f) and pr(f). Since P (G) is a pentangulation, we have
|pl(f)| + |pr(f)| = 5, |pl(f)| ≤ 4, and |pr(f)| ≤ 4. We say that f is a face of
type i − j if |pl(f)| = i and |pr(f)| = j. Hence, in total there exist exactly four
different types of internal faces: 1 − 4, 4 − 1, 2 − 3 and 3 − 2; refer to Fig. 3.
For the first two types of faces we select to be part of E′ the two chords of
f in G that are incident to the target vertex t(f). In the other two types, we
select the two edges that are incident to the middle vertex of the directed path
with edge-length 2. If i < j (resp., i > j) we color the selected edges red (resp.,
green). Note that we have not selected and colored any chord of the outerface;
this selection will be made at the very end.

We now claim that each monochromatic subgraph induced by the red and
green edges is a forest. We prove this claim for the red subgraph, symmetric
arguments hold for the green one. We orient each pair of red edges of every
interior face f of P (G) towards their common end-vertex, and we observe that if
(u, v) is a directed red edge in a face f from u to v, then f is the leftmost face of
u. Since, the leftmost face of each vertex is unique, it follows that every vertex
has at most one outgoing red edge. Hence, a cycle of red edges would be actually

Edge Partitions of Optimal 2-plane and 3-plane Graphs 33

Fig. 3. Illustration for Theorem 2. Red (green) edges are dashed (dotted). (Color figure
online)

a directed cycle (otherwise it would contain at least one vertex with out-degree
two, contradicting the previous statement). Consider the plane subgraph Gred of
G containing the edges of P (G) (oriented according to the st-orientation defined
above) and the red edges (each pair oriented towards the common end-vertex).
We show that Gred does not contain directed cycles, which implies that the red
subgraph is a forest. We actually prove a stronger property of Gred, namely, we
show that the orientation of Gred is an st-orientation. The proof is by induction
on the number i ≥ 0 of internal faces of P (G) having red chords in Gred. If
i = 0, the statement trivially follows since Gred corresponds to P (G). Assume
the claim holds for i ≥ 0, and suppose there are i + 1 internal faces of P (G)
having red chords in Gred. Consider any such face f of P (G), and let G′

red be
the graph obtained from Gred by removing the two red chords of f . G′

red is
st-oriented by the inductive hypothesis. Obviously, reinserting the two removed
chords in G′

red creates neither new sources nor new sinks. Moreover, reinserting
the two chords cannot create a directed cycle, since each reinserted chord (u, v)
connects either vertices on opposite paths of face f , which implies that there
cannot be a directed path in G′

red from v to u [18, Lemma 4], or v = t(f), which
implies that there is already a directed path from u to v in G′

red and thus there
cannot be a directed path from v to u because G′

red is acyclic.
It remains to select and color two chords of G from the outerface of P (G).

For each interior face f of P (G), red or green edges are never incident to the
source vertex s(f). Hence, there is neither a red nor a green edge incident to s
(which is the source of the graph). We arbitrarily select one of the two chords of
G in the outerface of P (G) that is incident to s to be red and the other one to be
green. Since the degree of s in the red (green) subgraph is equal to one, it follows
that no cycle is created. Moreover, since an st-orientation can be computed in
O(n) time, and since G has O(n) faces and O(n) edges, the theorem follows.
Figure 1(a) shows an edge partition computed with the described algorithm. �
Theorem 2 together with the result by Ackerman [1] directly imply the following.

Corollary 1. Every simple optimal 2-plane graph has an edge partition 〈E1, E2,
E3, E4〉 such that G[E1] is a plane graph, and G[Ei] is a plane forest, for i ≥ 2.

34 M. A. Bekos et al.

3.2 Edge Partitions with Bounded Vertex Degree Subgraphs

We now prove that the edge set of a simple optimal 2-plane graph can be par-
titioned into a 1-plane graph and a plane graph whose maximum vertex degree
is bounded by a small constant. An analogous result holds for optimal 1-plane
graphs [14]. We will make use of the following technical lemma.

Lemma 2 (*). Let v0, v1, v2, v3, v4 be the (distinct) vertices of a 5-cycle C in
clockwise order starting from v0. Let the edges of C be arbitrarily oriented. There
exists an index 0 ≤ j ≤ 4 such that each of the three vertices vj, vj+2, vj+3

(indexes taken modulo 5) is incident to at least one outgoing edge of the 5-cycle.

Theorem 3. Every n-vertex simple optimal 2-plane graph G = (V,E) has an
edge partition 〈E1, E2〉, which can be computed in O(n) time, such that G[E1] is
a 1-plane graph and G[E2] is a plane graph of maximum vertex degree 12.

Proof. We construct the desired edge partition as follows. Remove three chords
from every pentagon of P (G) such that the resulting graph G′ is plane and all
its faces have degree three. Compute a 3-orientation of G′ in linear time, by
using the algorithm in [17]. From now on, we assume that the edges of P (G) are
directed according to this 3-orientation. For each filled pentagon of G we select
three vertices that satisfy the conditions of Lemma 2, and we mark to be part
of E2 the two chords of the pentagon incident to the selected vertices. All other
edges are part of E1. Since each vertex has at most three outgoing edges in the
3-orientation of P (G), and each of these edges is shared by exactly two pentagons
(as otherwise G would be non-simple), we have that each vertex is selected for
at most six pentagons and therefore is incident to at most 12 edges in E2.

G[E1] is 1-plane by Property 1. G[E2] is a graph with maximum vertex degree
12 as shown above, and no two edges of G[E2] cross, because either they share
an end-vertex or they are inside different pentagons of P (G). �

Theorem 3 can be improved if P (G) has no separating triangles.

Theorem 4 (*). Every n-vertex simple optimal 2-plane graph G = (V,E) whose
pentangulation P (G) has no separating triangles has an edge partition 〈E1, E2〉,
which can be computed in O(n1.5) time, such that G[E1] is a 1-plane graph and
G[E2] is a plane graph of maximum vertex degree 8.

The next corollary is a consequence of Theorems 3 and 4, together with the
fact that every 3-connected 1-plane graph can be decomposed into a plane graph
and a plane graph with maximum vertex degree 6 [7].

Corollary 2 (*). Every n-vertex simple optimal 2-plane graph G has an edge
partition 〈E1, E2, E3〉, which can be computed in O(n) time, such that G[E1] is
plane, G[E2] is plane with maximum vertex degree 12, and G[E3] is plane with
maximum vertex degree 6. Also, if P (G) has no separating triangles, then G has
an edge partition 〈E1, E2, E3〉, which can be computed in O(n1.5) time, such that
G[E1] is plane, G[E2] is plane with maximum vertex degree 8, and G[E3] is plane
with maximum vertex degree 6.

Edge Partitions of Optimal 2-plane and 3-plane Graphs 35

Fig. 4. Illustration for Theorem 5.

We conclude this section by proving a lower bound for the maximum vertex
degree of an edge partition into a 1-plane graph and a plane graph.

Theorem 5. There exists an infinite family G of simple optimal 2-plane graphs,
such that in any edge partition 〈E1, E2〉 of G ∈ G where G[E1] is 1-plane and
G[E2] is plane, G[E2] has maximum vertex degree at least 6.

Proof. For every n ≥ 12, we construct a graph Gn as described in the following.
Consider the plane graph G1 in Fig. 4(a). Note that all faces of G1 have degree
five, except for the outer face which is a 4-cycle. Construct the graph G2 by gluing
the graph G1 in the three gray quandrangular faces of the graph in Fig. 4(b).
Note that all faces of G2 have degree five, except for the outer face which is a
3-cycle. Then, starting from an n-vertex maximal plane graph Mn, identify each
face of Mn (including its outer face) with the outer face of a copy of G2. This
results in a pentangulation Pn with O(n) vertices. Gn is obtained by adding
all five chords inside each pentagon of Pn. Graph Gn is optimal 2-plane as it
satisfies the characterization in [3] (see also Sect. 2), and it is simple because Pn

is simple and triconnected. Consider any edge partition 〈E1, E2〉 of Gn, such that
G[E1] is 1-plane. By Property 1, E2 contains at least two chords of each filled
pentagon of Gn. Therefore, for each face of Mn, there are at least three edges of
E2 having one end-vertex in Mn (at least one for each filled pentagon incident
to the outer face of the copy of G2 identified with this face). This means that
E2 contains at least 3(2n − 4) = 6n − 12 edges incident to vertices of Mn. Let k
be the maximum number of edges of E2 that are incident to a single vertex of
Mn, we have kn ≥ 6n − 12 ⇒ k ≥ 6 for n ≥ 12. �

4 Edge Partitions of Optimal 3-plane Graphs

In this section we study optimal 3-plane graphs and we aim at showing the
existence of a decomposition into a 2-plane graph and two plane forests. It is
known that no optimal 3-plane graph is simple [3], and hence its hexangulation
may also be non-simple. We show that a similar strategy as the one used in
the proof of Theorem 2 can be employed provided that the hexangulation of the
graph is biconnected and hence each of its faces is a simple 6-cycle. Consider

36 M. A. Bekos et al.

Fig. 5. (a) A filled hexagon (poles shown in black). (b)–(d) The three patterns.

a filled hexagon h of an optimal 3-plane graph G. If H(G) is biconnected, h
contains six distinct vertices, which we denote by v0, v1, . . . , v5 following their
clockwise order in a closed walk along the boundary of h. Refer to Fig. 5(a). We
know that h contains 8 chords (see Sect. 2), and, in particular, there are only two
vertices of h that are not connected by an edge of h; we call these two vertices
the poles of h (black in Fig. 5(a)). Let vi and vj (0 ≤ i < j ≤ 5) be the poles
of h. Note that j − i = 3, and that each chord of h is crossed at most twice
after removing one of the following patterns: (α) the two chords of h incident
to vi or to vj (see Fig. 5(b)); (β) one of the two Z-paths (vi, vi+2), (vi+2, vj+2),
(vj+2, vj) and (vi, vj+1), (vj+1, vi+1), (vi+1, vj), where indexes are taken modulo
6 (see Figs. 5(c) and (d)); (γ) any three adjacent chords of h (see Fig. 5(e)).

Theorem 6. Every n-vertex optimal 3-plane graph G = (V,E) whose hexan-
gulation H(G) is biconnected has an edge partition 〈E1, E2, E3〉, which can be
computed in O(n) time, such that G[E1] is a 2-plane graph, and both G[E2] and
G[E3] are plane forests.

Proof. To construct the desired edge partition, we first guarantee that E′ =
E \E1 contains, for each filled hexagon of G, one of the three patterns described
above, which implies that G[E1] is 2-plane. We then color the edges of E′ with
two colors, say green and red, so that each monochromatic set is a plane forest.
The set of green edges will correspond to E2, while the set of red edges to E3.

We compute an st-orientation of H(G) by choosing a pole of the outerface as
vertex s. Recall that each internal face f of H(G) has a source vertex s(f) and
a target vertex t(f), and consists of two directed paths from s(f) to t(f), say
pl(f) and pr(f). The number of edges |pl(f)|, |pr(f)| of the two paths is at most
5, and in particular |pl(f)| + |pr(f)| = 6. We say that f is a face of type i − j if
|pl(f)| = i and |pr(f)| = j. Hence, in total there exist exactly five different types
of internal faces: 1 − 5, 5 − 1, 2 − 4, 4 − 2, 3 − 3; refer to Fig. 6. For the first two
types of faces we add to E′ the two or three chords of f in G that are incident
to the target vertex t(f) (i.e., we remove either pattern (α) or (γ)). In the type
1−5 (5−1) we color these edges red (green). For the types 2−4 (4−2), we add
to E′ the two or three chords incident to the middle vertex of pl(f) (pr(f)), and
we color them red (green). For the type 3−3, we distinguish a set of cases based
on the position of the poles. Suppose first that the poles are s(f) and t(f), then
we add to E′ the two chords incident to t(f) (pattern (α)), and we color red
(green) the chord incident to a vertex of pr(f) (pl(f)); see Fig. 6(e). Otherwise,

Edge Partitions of Optimal 2-plane and 3-plane Graphs 37

Fig. 6. Illustration for Theorem 6. Red (green) edges are dashed (dotted). (Color figure
online)

among the two possible Z-paths, there is one that does not contain neither s(f)
nor t(f) (pattern (β)), and we remove it; see Fig. 6(f).

We now claim that each monochromatic subgraph induced by the red and
green edges is a forest. We prove this claim for the red subgraph, symmetric
arguments hold for the green one. We orient the edges such that all red (green)
edges are outgoing with respect to their end-vertex belonging to pr(f) (pl(f)),
note that there is always such an end-vertex. This orientation implies that each
vertex has at most one outgoing red edge, hence a cycle of red edges would be
actually a directed cycle. Consider the plane subgraph Gred of G containing the
oriented edges of H(G) and the oriented red edges. Since each red edge in a face
f either connects a vertex of pr(f) to a vertex of pl(f), or it is incident to t(f),
a similar argument as the one used in the proof of Theorem2 shows that the
orientation of Gred is an st-orientation, and thus that there are no directed cycles.

It remains to select and color two chords of G from the outerface of H(G).
As in the proof of Theorem2, there is neither a red nor a green edge incident to
the vertex s of the outerface, which is a pole by construction. We color red one
of the two chords of the outerface incident to s, and we color green the other
one (i.e., we remove pattern (α) from the outerface). Since the degree of s in the
red (green) subgraph is equal to one, no cycle is created. An example is shown
in Fig. 1(b). Moreover, since an st-orientation can be computed in O(n) time,
and since G has O(n) faces and O(n) edges, the theorem follows. �

5 Open Problems

A natural question is whether the edges of a (simple) optimal 2-plane graph
can be partitioned into a plane graph and two forests. Moreover, the problem
of partitioning the edges of an optimal 3-plane graph into a 2-plane graph and
a forest is still open. Reducing the gap between the upper bound on the vertex
degree of Theorem 3 and the lower bound of Theorem5 is an interesting problem.
Also, can we improve the time complexity of Theorem 4?

38 M. A. Bekos et al.

We conclude with a result that sheds some light on the structure of k-plane
graphs with k ≥ 2. While it is easy to see that every k-plane graph can be
partitioned into k+1 plane graphs, the next theorem shows a stronger property.

Theorem 7 (*). Every n-vertex k-plane graph (k ≥ 2) has an edge partition
〈E1, E2〉, which can be computed in O(k1.5n) time, such that G[E1] is a plane
graph and G[E2] is a (k − 1)-plane graph.

Acknowledgments. Research started at the 2017 GNV Workshop, held in
Heiligkreuztal (Germany). We wish to thank the organizers of the workshop and all
the participants for the fruitful atmosphere and the useful discussions.

References

1. Ackerman, E.: A note on 1-planar graphs. Discret. Appl. Math. 175, 104–108
(2014)

2. Bekos, M., Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F., Raftopoulou,
C.: Edge partitions of optimal 2-plane and 3-plane graphs. CoRR, abs/1802.10300
(2018)

3. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar
graphs. In: SoCG 2017. LIPIcs, vol. 77, pp. 16:1–16:16. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017)

4. Chartrand, G., Geller, D., Hedetniemi, S.: Graphs with forbidden subgraphs. J.
Comb. Theory Ser. B 10(1), 12–41 (1971)

5. Czap, J., Hudák, D.: On drawings and decompositions of 1-planar graphs. Electron.
J. Comb. 20(2), P54 (2013)

6. Di Giacomo, E., et al.: New results on edge partitions of 1-plane graphs. Theor.
Comput. Sci. 713, 78–84 (2018)

7. Di Giacomo, E., et al.: Ortho-polygon visibility representations of embedded
graphs. Algorithmica 80(8), 2345–2383 (2018)

8. Ding, G., Oporowski, B., Sanders, D.P., Vertigan, D.: Surfaces, tree-width, clique-
minors, and partitions. J. Comb. Theory Ser. B 79(2), 221–246 (2000)

9. Durocher, S., Mondal, D.: Relating graph thickness to planar layers and bend
complexity. In: ICALP 2016. LIPIcs, vol. 55, pp. 10:1–10:13. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2016)

10. Even, S., Tarjan, R.E.: Computing an st-numbering. Theor. Comput. Sci. 2(3),
339–344 (1976)

11. Gonçalves, D.: Edge partition of planar graphs into two outerplanar graphs. In:
STOC 2005, pp. 504–512. ACM (2005)

12. Kedlaya, K.S.: Outerplanar partitions of planar graphs. J. Comb. Theory Ser. B
67(2), 238–248 (1996)

13. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. Comput. Sci. Rev. 25, 49–67 (2017)

14. Lenhart, W.J., Liotta, G., Montecchiani, F.: On partitioning the edges of 1-plane
graphs. Theor. Comput. Sci. 662, 59–65 (2017)

15. Nash-Williams, C.S.A.: Edge-disjoint spanning trees of finite graphs. J. Lond.
Math. Soc. s1–36(1), 445–450 (1961)

16. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997)

Edge Partitions of Optimal 2-plane and 3-plane Graphs 39

17. Schnyder, W.: Embedding planar graphs on the grid. In: SODA 1990, pp. 138–148.
SIAM (1990)

18. Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar
graphs. Discret. Comput. Geom. 1, 321–341 (1986)

On Minimum Connecting Transition Sets
in Graphs

Thomas Bellitto1(B) and Benjamin Bergougnoux2(B)

1 Université de Bordeaux, LABRI, CNRS, Bordeaux, France
thomas.bellitto@u-bordeaux.fr

2 Université Clermont Auvergne, LIMOS, CNRS, Clermont-Ferrand, France
benjamin.bergougnoux@uca.fr

Abstract. A forbidden transition graph is a graph defined together with
a set of permitted transitions i.e. unordered pair of adjacent edges that
one may use consecutively in a walk in the graph. In this paper, we look
for the smallest set of transitions needed to be able to go from any vertex
of the given graph to any other. We prove that this problem is NP-hard
and study approximation algorithms. We develop theoretical tools that
help to study this problem.

1 Introduction

Graphs are the model of choice to solve routing problems in all sorts of net-
works. Depending on the applications, we sometimes need to express stronger
constraints than what the standard definitions allow for. Indeed, in many prac-
tical cases, including optical networks, road networks or public transit systems
among others, the set of possible walks a user can take is much more complex
than the set of walks in a graph (see [1] or [2] for examples). To model a sit-
uation where a driver coming from a given road may not turn left while both
the road he comes from and the road on the left exists, we have to define the
permitted walks by taking into account not only the edges of the graph that a
walk may use but also the transitions. A transition is a pair of adjacent edges
and we call forbidden-transition graph a graph defined together with a set of
permitted transitions.

Graphs with forbidden transitions have appeared in the literature in [3] and
have received a lot of interest since, as well as other more specific models such as
properly colored paths [4,5]. Many problems are harder in graphs with forbidden
transitions, such as determining the existence of an elementary path (a path that
does not use twice the same vertex) between two vertices which is a well-known
polynomial problem in graph without forbidden transitions and has been proved
NP-complete otherwise [6]. Algorithms for this problem have been studied in the
general case [7] and also on some subclasses of graphs [8].

B. Bergougnoux—This work is supported by French Agency for Research under the
GraphEN project (ANR-15-CE-0009).

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 40–51, 2018.
https://doi.org/10.1007/978-3-030-00256-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_4&domain=pdf

On Minimum Connecting Transition Sets in Graphs 41

Forbidden transitions can also be used to measure the robustness of graph
properties. In [9], Sudakov studies the Hamiltonicity of a graph with the idea
that even Hamiltonian graphs can be more or less strongly Hamiltonian (an
Hamiltonian graph is a graph in which there exists an elementary cycle that
uses all the vertices). The number of transitions one needs to forbid for a graph
to lose its Hamiltonicity gives a measure of its robustness: if the smallest set of
forbidden transitions that makes a graph lose its Hamiltonicity has size 4, this
means that this graph can withstand the failure of three transitions, no matter
where the failures happen.

The notion we are interested in this paper is not Hamiltonicity but connec-
tivity (the possibility to go from any vertex to any other), which is probably one
of the most important properties we expect from any communication or trans-
port network. However, our work differs from others in that we are not looking
for the minimum number of transitions to forbid to disconnect the graph but
for the minimum number of transitions to allow to keep the graph connected
(the equivalent of minimum spanning trees for transitions). In other words, we
are looking for the maximum number of transitions that can fail without discon-
necting the graph, provided we get to choose which transitions still work. This
does not provide a valid measure of the robustness of the network but measur-
ing the robustness is only one part (the definition of the objective function) of
the problem of robust network design. In most practical situations, robustness is
achievable but comes at a cost and the optimization problem consists in creating
a network as robust as possible for the minimum cost. In this respect, it makes
sense to be able to choose where the failure are less likely to happen. Our problem
highlights which transitions are the most important for the proper functioning
of the network and this is where special attention must be paid in its design or
maintenance. As long as those transitions work, connectivity is assured.

We also would like to point out that in practice, unusable transitions are not
always the result of a malfunction. Consider a train network and imagine that
there is a train going from a town A to a town B and one going from the town B
to a town C. In the associated graph, there is an edge from A to B and one from
B to C but if the second train leaves before the first one arrives, the transition
is not usable and this kind of situation is clearly unavoidable in practice even if
no special problem happens. Highlighting the most important transitions in the
network thus helps design the schedule, even before the question of robustness
arises.

Unlike Hamiltonicity or the existence of elementary path between two ver-
tices, testing the connectivity is an easy task to perform even on graphs with
forbidden transitions (note that a walk connecting two vertices does not have to
be elementary). However, we prove that the problem of determining the small-
est set of transitions that maintains the connectivity of the given graph is NP-
hard even on co-planar graph which is the main contribution of the paper (see
Sect. 3). Other notable contributions include a O(|V |2)-time 3

2 -approximation
(Theorem 3) and a reformulation of the problem (Theorem2) which was of great

42 T. Bellitto and B. Bergougnoux

help in the proofs of the other results and could hopefully be useful again in
subsequent works.

Definitions and Notations. Throughout this paper, we only consider finite
simple graphs, i.e. undirected graphs with a finite number of vertices, no multiple
edges and no loop. Let G be a graph. The vertex set of G is denoted by V (G)
and its edge set by E(G). The size of a set S is denoted by |S|. We denote by
d(v) the degree of a vertex v. We write xy to denote an edge {x, y}. We define a
walk in G as a sequence W = (v1, . . . , vk) of vertices such that for all i � k − 1,
vivi+1 ∈ E(G) and we say that W uses the edge vivi+1. Here, we say that the
walk W leads from the vertex v1 to vk.

For X ⊆ V (G), we denote by G[X] the subgraph of G induced by X. We
also denote by G − X the subgraph of G induced by V (G) \ X. For x ∈ V (G),
we write G − x instead of G − {x}. We denote by G the complement of G i.e.
the graph such that V (G) = V (G) and E(G) = {xy ∈ (

V (G)
2

)
: xy /∈ E(G)}. We

say that a graph G is co-connected if and only if G is connected. We also call
co-connected components (or co-cc) of G the connected components of G.

Transitions. A transition is a set of two adjacent edges. We write abc for the
transition {ab, bc}. If a walk uses the edges ab and bc consecutively (with a �= c),
we say that it uses the transition abc. For example, the walk (u, v, w, v, x) uses the
transitions uvw and wvx. Let T be a set of transitions of G and W = (v1 . . . vk)
be a walk on G. We say that W is T -compatible if and only if it only uses
transitions of T i.e. for all i ∈ [1, k − 2], we have vivi+1vi+2 ∈ T or vi = vi+2

(i.e. vivi+1 and vi+1vi+2 are the same edge). Observe that a walk consisting of
two vertices is always T -compatible. If for all vertices u and v of V (G), there
exists a T -compatible walk between u and v, then we say that G is T -connected
and that T is a connecting transition set of G. The problem we study here is the
following:

Minimum Connecting Transition Set (MCTS)

Input: A connected graph G.
Output: A minimum connecting transition set of G.

A more complete version of this paper is available on arXiv [10]. We refer
the reader to the arXiv version for some of the proofs.

2 Polynomial Algorithms and Structural Results

In this section, we only consider graphs with at least 2 vertices. Our problem is
trivial otherwise.

Lemma 1. If G is a tree then a minimum connecting transition set of G has
size |V (G)| − 2.

On Minimum Connecting Transition Sets in Graphs 43

Proof. We first prove that |V (G)| − 2 transitions are enough to connect G. For
every vertex v of G, we pick a neighbor of v that we call f(v). For every neigh-
bor u �= f(v) of v, we allow the transition uvf(v). We end up with the tran-
sition set T = {uvf(v) : v ∈ V (G), u ∈ N(v) \ {f(v)}}. Let u and v be ver-
tices of G. Since G is connected, there exists a walk (u, u1, u2, . . . , uk, v). The
walk (u, u1, f(u1), u1, u2, f(u2), u2, . . . , uk, f(uk), uk, v) is T -compatible and still
leads from u to v. This proves that G is T -connected. The size of T is |T | =∑

v∈V (G)(d(v) − 1) = 2|E(G)| − |V (G)|. Since G is a tree, |E(G)| = |V (G)| − 1
and thus, |T | = |V (G)| − 2.

Let us now prove by induction on the number n of vertices of G that at least
n − 2 transitions are necessary to connect G. This is obvious for n = 2. Let us
assume that it holds for n and let G be a tree with n + 1 vertices. Let T be
a minimum connecting transition set of G. Let uv be an internal edge of T if
any (i.e. an edge such that u and v are not leaves). Let a and b be two vertices
from different connected components of G − {u, v}. Every walk leading from a
to b in G therefore uses the edge uv and thus, two transitions containing uv.
This proves that every internal edge of T belongs to at least two transitions
of T . If every edge of G belongs to at least two transitions of T , T has size
at least |E(G)| = |V (G)| − 1 which concludes the proof. Otherwise, let uv be
an edge that belongs to at most one transition of T . This means that one of its
vertices, say v, is a leaf. It is straightforward to check that uv must belong to one
transition of T , otherwise G would not be T -connected. Let t be the transition
in T containing uv. The graph G − v is T \ {t}-connected and is a tree. By the
induction hypothesis, this means that |T \ {t}| � n − 3 and |T | � n − 2. This
concludes the proof of the lemma. ��

Let us also note that a linear-time algorithm to compute an optimal solution
can be easily deduced from this proof. Since every connected graph contains a
spanning tree, we have the following corollary.

Corollary 1. Every connected graph G has a connecting transition set of size
|V (G)| − 2.

Note however that in the general case, this bound is far from tight. The most
extreme case is the complete graph where every vertex can be connected to every
other with a walk of one edge, that therefore uses no transition. Thus, the empty
set is a connecting transition set of the complete graph. The following result aims
at tightening the upper bound on the size of the minimum connecting transition
set of a graph.

Theorem 1. Every connected graph G has a connecting transition set of size
τ(G) where

τ(G) =
∑

C co-cc of G
|C|�2

{
|C| − 2 if the subgraph of G induced by C is connected
|C| − 1 otherwise

44 T. Bellitto and B. Bergougnoux

Proof. By definition, if u and v belong to different co-connected components of
G, there is an edge uv ∈ E(G) and there is therefore a walk between u and v
is compatible with any transition set. We only have to find a transition set that
connects all the vertices that belong to the same co-connected component.

Let C be a co-connected component of G with at least 2 vertices. If G[C]
is connected, Corollary 1 provides a transition set of size |C| − 2 that connects
C. Otherwise, since G is connected, we know that V (G) �= C and there exists a
vertex v /∈ C. Hence, v is adjacent to every vertex of C and C ∪ {v} induces a
connected subgraph of G. Corollary 1 provides a set of size |C ∪{v}|−2 = |C|−1
that connects C. By iterating this on every C, we build a connecting transition
set T of size τ(G). ��

Note that this bound can be computed in O(|V (G)|2). However, this bound
is still not tight. Let us consider the graph P7 whose vertex set is {v1, . . . , v7}
and where every vertex vi, 2 � i � 6 is connected to every vertex of the graph
but vi−1 and vi+1. Since the graph is connected and co-connected, τ(P7) = 5
but the set T = {v3v1v4, v2v4v1, v6v4v7, v5v7v4} is a connecting transition set of
size only 4. To better understand this solution, let us consider the spanning tree
of P7 depicted in Fig. 1:

Fig. 1. A spanning tree of P7.

Note that the set T described above does not connect this spanning tree.
Indeed, one can not go from v1, v2 or v3 to v5, v6 or v7 using a T -compatible
walk in the tree. However, these vertices are already connected to each other by
edges that do not belong to the spanning tree. The optimal solution here does not
consist in connecting a spanning tree of G but in connecting a spanning tree of
G[{v1, v2, v3, v4}] and one of G[{v4, v5, v6, v7}] and the cost is (4−2)+(4−2) = 4
instead of 7 − 2 = 5.

In fact, we will prove that to each optimal connecting transition set T of a
graph G corresponds a unique decomposition of G into subgraphs G1, G2, . . . , Gk

such that T is the disjoint union of T1, T2, . . . , Tk, where each Ti is the connecting
transition set of some spanning tree of Gi. Observe that the size of T is uniquely
determined by its correspondent decomposition, i.e., |T | = |V (G1)| − 2 + · · · +
|V (Gk)|− 2. Hence, finding an optimal connecting transition set is equivalent to
finding its correspondent decomposition. In the following, we reformulate MCTS
into this problem of graph decomposition which is easier to work with.

Definition 1. Connecting Hypergraph

On Minimum Connecting Transition Sets in Graphs 45

Let G be a graph. A connecting hypergraph of G is a set H of subsets of
V (G), such that

– For all E ∈ H, we have G[E] is connected and |E| � 2.
– For all uv /∈ E(G), there exists E ∈ H such that u, v ∈ E (we say that the

hyperedge E connects u and v).

We define the problem of optimal connecting hypergraph as follows:

Optimal Connecting HyperGraph (OCHG)

Input: A connected graph G.
Output: A connecting hypergraph H that minimizes cost(H) =∑

E∈H (|E| − 2).

In the next theorem, we prove that OCHG is a reformulation of MCTS.

Theorem 2. Let G be a graph.

– The size of a minimum connecting transition set of G is the same as the cost
of an optimal connecting hypergraph.

– A solution of one of these problems on G can be deduced in polynomial time
from a solution of the other.

Proof. Let G be a graph. This theorem is implied by the two following claims.

Claim. Let H = {E1, . . . , Ek} be a connecting hypergraph of G. There exists a
connecting transition set T of size at most cost(H).

By the definition of a connecting hypergraph, each Ei induces a connected
graph and by Corollary 1, there exists a subset of transitions Ti of size |Ei| − 2
such that G[Ei] is Ti-connected. Let T =

⋃
i�k Ti. By definition, for all uv /∈

E(G), there exists i such that u, v ∈ Ei. Since G[Ei] is Ti-connected and Ti ⊆ T ,
there is a T -compatible walk between u and v in G which means that G is
T -connected. Since T =

⋃
i�k Ti, |T | �

∑
i�k |Ti| =

∑
i�k(|Ei| − 2) = cost(H).

Claim. Let T be a connecting transition set of G. There exists a connecting
hypergraph H = {E1, . . . , Ek} of cost at most |T |.
Let ∼ be the relation on T such that t ∼ t′ if t and t′ share at least one
common edge. We denote by R the transitive closure of ∼. Let T1, . . . , Tk be the
equivalence classes of R. For all i � k, we denote by Ei the set of vertices induced
by Ti. We claim that the hypergraph {E1, . . . , Ek} is a connecting hypergraph
and that, for all i, |Ti| � |Ei| − 2.

By construction, for all i, we have |Ei| � 3 since Ti contains at least one
transition and thus, three vertices. Furthermore, since G is T -connected, there
exists a T -compatible walk W between every pair uv /∈ E(G). All the transitions
that W uses must be in T and are pairwise equivalent for R. Thus, for all
uv /∈ E(G), there exists i such that both u and v belong to Ei.

46 T. Bellitto and B. Bergougnoux

It remains to prove that for all i, |Ei| − 2 � |Ti|. We prove by induction on
n that every set T of n pairwise equivalent transitions induces a vertex set of
size at most n + 2. This property trivially holds for n = 1. Now, suppose that it
is true for sets of size n and let T be a set of pairwise equivalent transitions of
size n + 1. Let P = t1, . . . , tr be a maximal sequence of distinct transitions of T
such that, for all i � r − 1, ti ∼ ti+1. One can check that all the transitions of
T \ {t1} are still pairwise equivalent (otherwise, P would not be maximal). By
the induction hypothesis, T \{t1} induces at most n+2 vertices. Since t1 shares
an edge (and thus at least 2 vertices) with t2, it induces at most one vertex not
induced by T \ {t1}. Thus T induces at most n + 3 vertices. ��

Let us note that the bound provided in Theorem1 suggests a O(|V |2)-time
heuristic for OCHG which consists in building the set H as follows:

H =
⋃

C co-cc of G
|C|�2

{
C if the subgraph of G induced by C is connected
C ∪ {v} with v /∈ C otherwise

We use the reformulation given by Theorem2 to generalize Lemma 1:

Lemma 2 ([10]). If G has a cut vertex, then a minimum connecting transition
set of G has size |V (G)| − 2.

The following lemma helps us prove that MCTS admits a 3
2 -approximation

and its NP-hardness. It proves that if the graph is co-connected, we can restrict
ourselves to some specific connecting hypergraph.

Lemma 3 ([10]). Let G be a connected graph. If G is co-connected or G has a
dominating vertex x and G − x is connected and co-connected, then there exists
an optimal connecting hypergraph H = {E1, . . . , Ek} on G such that for all i,
G[Ei] is co-connected.

We can also prove that MCTS has a polynomial 3
2 -approximation:

Theorem 3 ([10]). For every connected graph G and optimal connecting tran-
sition set T of G, the size of T is at least 2/3τ(G), where τ(G) is the function
defined in Theorem1.

3 NP-hardness

In this section, we give a proof of NP-hardness of OCHG which involves very
dense graphs. Hence, we prefer to work with the complementary graphs and
therefore prove the NP-hardness of the following problem that we call co-
OCHG:

Definition 2 (co-Connecting Hypergraph). Let G be a graph. A co-connecting
hypergraph is a collection of hyperedges E1, . . . , Er ⊆ V (G) such that

On Minimum Connecting Transition Sets in Graphs 47

– For all i � r, G[Ei] is co-connected and |Ei| � 2.
– For all uv ∈ E(G), there exists i such that u, v ∈ Ei (we say that the hyperedge

Ei covers the edge uv).

co-Optimal Connecting HyperGraph (co-OCHG)

Input: A co-connected graph G.
Output: A co-Connecting Hypergraph that minimizes cost(H) =∑

E∈H (|E| − 2).

We prove the NP-hardness of this problem by reducing 3-SAT to it. We restrict
ourselves to the version of 3-SAT where each variable has at least one positive and
one negative occurrence and each clause has exactly 3 literals that are associated
to different variables. It is folklore that this restrictions of 3-SAT is NP-complete.

Let F = {c1, . . . , cm} be an instance of 3-SAT with n variables. We will
construct from F a graph GF such that F is satisfiable if and only if GF

admits a co-covering hypergraph of cost 25 m.
We start by describing how to construct GF . To simplify the construction

and the proofs, we give labels to some vertices and some edges. The set of labels
we use are {ci, Ti,x, Fi,x : i � m, x variable of F}. For each clause ci and each
variable x occurring in ci, we create the gadget g(x, ci). If x occurs positively in
ci then g(x, ci) is the graph depicted in Fig. 2a, otherwise, if x occurs negatively
in ci then g(x, ci) is the graph depicted in Fig. 2b. Each gadget g(x, ci) contains
a vertex labelled ci and two edges labelled Ti,x and Fi,x (Fig. 2).

Fig. 2.

We then create a new vertex for each clause ci that we connect to the three
vertices labelled ci and to an additional vertex of degree 1. We thus have for
each clause a graph like the one depicted in Fig. 3 that we call g(ci).

Finally, for each variable x, we do the following. Let ci1 , . . . , ci� be the clause
where x appears. Observe that � � 2 since every variable has a positive and a
negative occurrence. For each j � �, we merge the edge labelled Tij ,x in g(x, cij)
with the edge labelled Fik,x in g(x, cik) (where k = j + 1 mod �) such that the
resulting edge has an extremity of degree one. We consider that this edge has
both Tij ,x and Fik,x as labels. For example, if a variable x appears positively in
the clauses c1 and c4 and negatively in the clause c3, the Fig. 4 depicts what the
graph looks like around the gadget associated to the variable x.

48 T. Bellitto and B. Bergougnoux

Fig. 3. The clause-gadget associated to the clause ci = (x ∨ ¬y ∨ ¬z).

By connecting all the gadgets g(x, ci) as described above, we obtain the
gadget graph GF . We may assume that GF is connected. Otherwise, this means
that F is the conjunction of two formulas that share no common variables and
F is satisfiable if and only if those two formulas are. Observe that GF is trivially
co-connected. Moreover, the size of GF is polynomial in n and m.

Now, we prove that F is satisfiable if and only if GF admits a co-covering
hypergraph of cost 25 m. We start with the following lemma which proves the
existence of an optimal co-covering hypergraph where every hyperedge is con-
tained in the vertex set of some clause-gadget.

Lemma 4 ([10]). There exists an optimal co-connecting hypergraph H of GF

such that H = H1 ∪H2 ∪· · ·∪Hm and for all i � m, we have V (Hi) ⊆ V (g(ci)).

Let H = H1 ∪ · · · ∪ Hm be an optimal co-connecting hypergraph of G such
that for all i � m, we have V (Hi) ⊆ V (g(ci)).

Observe that the labelled edges are the only edges of GF to belong to several
clause-gadgets. Thus, for each i � m, the non-labelled edges of g(ci) must be
covered by Hi. Consequently, the cost of Hi is fully determined by which labelled
edges of g(ci) it covers. We want to prove that GF is satisfiable if and only if
the labelled edges can be covered in a way such that each Hj has cost 25.

Let ci be a clause of F and let us study the cost of Hi in function of which
labelled edges it covers. Let x be a variable of ci. We recall that the gadget
g(x, ci) differs depending on whether x appears positively or negatively in ci but
in both cases, the gadget has an edge labelled Fi,x and one labelled Ti,x. The
subgraph of g(x, ci) induced by Hi can take four values (up to isomorphims)
depending on which of the following situations occurs:

On Minimum Connecting Transition Sets in Graphs 49

Fig. 4. The gadgets associated to the variable x.

– Hi covers neither Ti,x nor Fi,x. We call this configuration N (for “none”).
– Hi covers both Ti,x and Fi,x. We call this configuration B (for “both”).
– Hi covers Ti,x and x appears positively in ci or Hi covers Fi,x and x appears

negatively in ci. We call this configuration S (for “satisfied”).
– Hi covers Ti,x and x appears negatively in ci or Hi covers Fi,x and x appears

positively in ci. We call this configuration U (for “unsatisfied”).

Hence, the edges that Hi covers are determined (up to isomorphism) by the
configurations encountered for each of the three variables that appear in ci. Since
the clause-gadget is symmetric, the order does not matter: the configuration
SUN is exactly the same as the configuration NSU . Thus, we find that Hi can
cover 20 different sets of edges up to isomorphisms. We determined the optimal
values of cost(Hi) for each case via a computer-assisted exhaustive search. The
results are the following:

Configuration Minimal cost conf. min. conf. min. conf. min.

BBB 28 BUS 26 UUU 26 UNN 25

BBU 27 BUN 26 UUS 25 SSS 25

BBS 27 BSS 26 UUN 25 SSN 25

BBN 27 BSN 26 USS 25 SNN 25

BUU 26 BNN 26 USN 25 NNN 25

50 T. Bellitto and B. Bergougnoux

The first observation we make is that the optimal value of cost(Hi) is nec-
essarily at least 25 and an optimal co-connecting hypergraph on GF therefore
always costs at least 25 m. We now investigate the case where the optimal cost
is exactly 25 m. To this end, we suppose that H has a cost of 25 m.

We note that every configuration that contains a B costs at least 26. Thus,
we know that for each Hi and each x appearing in ci, Hi covers at most one of
the two labelled edges of g(x, ci).

Let us now look at the gadgets associated to a variable x that appears in
� clauses (cf. Fig. 4). For all j such that x appears in cj , the hypergraph Hj

either covers the two labelled edges of g(x, cj) (B), one (S or U) or none (N).
Since every edge must be covered at least once, this means that a solution where
no configuration involves B also does not feature a configuration involving N .
Hence, for every Hi, the only configurations that occur are S and U .

Let us suppose that Hi covers the edge Ti,x. Since the configuration B is
impossible, we know that Hi does not cover the edge Fi,x. Let Tj,x the other
label of the edge Fi,x. Since this edge has to be covered, this means that Hj must
cover the edge Tj,x and because the configuration B is impossible, it cannot cover
the edge Fj,x. We can prove by induction that for each variable x either, for all
gadget g(x, ci), Hi covers the edge Ti,x or for all gadget g(x, ci), Hi covers the
edge Fi,x. In the first case, we say that the variable x is set to True, and in the
second case, to False. If the variable x is set to True, this means all its positive
occurrence will lead to a S configuration in the clause where it appears and
conversely.

Finally, we notice that the cost of an optimal co-connecting hypergraph on
the configurations SSS, SSU and SUU is 25 while it is 26 on the configuration
UUU . Therefore, there exists a solution of cost 25 m if and only of there exists
a way to affect all the variables to either True or False such that every clause is
satisfied by at least one variable, which comes down to saying that the formula
F is satisfiable.

This proves that co-OCGH and therefore OCGH and MCTS are all NP-
hard. Moreover, Lichtenstein proved in [11] that 3-SAT remains NP-complete
when restricted to formulas whose incidence graph is planar. The incidence graph
of a formula F is the bipartite graph representing the relation of belonging
between the variables and the clauses of F . Clearly, if the incidence graph of F
is planar then GF is planar too. We conclude that MCTS is NP-hard even on
co-planar graphs.

4 Conclusion

Our work proves that finding a minimum connecting transition set is NP-hard
even on co-planar graphs. This notably implies the NP-hardness of other prob-
lems that generalizes this one such as finding a minimum connecting transition
set in a graph that already has forbidden transitions.

A lot of our results suggest that the density of the graph has an impact on
the complexity of MCTS. Consequently, it would be interesting to study the

On Minimum Connecting Transition Sets in Graphs 51

complexity of this problem on sparse graphs such as planar graphs or graphs
with bounded treewith.

Further works could lead us to generalize this study to directed graphs, that
are more suitable for many practical applications. Another interesting continu-
ation of this work would also be the study of low-stretch connecting transition
sets, a problem that is already well-studied for minimal spanning trees [12]. Intu-
itively, it consists in looking for a subset of transitions T such that the shortest
T -compatible path between two vertices is not much longer than the shortest
path in the graph with no forbidden transitions, which is also an important
criteria of robustness.

Acknowledgments. The authors would like to thank Marthe Bonamy, Mamadou M.
Kanté, Arnaud Pêcher, Théo Pierron and Xuding Zhu for the interest they showed for
our work and for inspiring discussions.

References

1. Ahmed, M., Lubiw, A.: Shortest paths avoiding forbidden subpaths. In: 26th Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS 2009,
Freiburg, Germany, Proceedings, 26–28 February 2009, pp. 63–74 (2009)

2. Bellitto, T.: Separating codes and traffic monitoring. Theor. Comput. Sci. 717,
73–85 (2017)

3. Kotzig, A.: Moves without forbidden transitions in a graph. Matematický časopis
18(1), 76–80 (1968)

4. Chen, C.C., Daykin, D.E.: Graphs with Hamiltonian cycles having adjacent lines
different colors. J. Comb. Theory Ser. B 21(2), 135–139 (1976)

5. Gutin, G., Kim, E.J.: Properly coloured cycles and paths: results and open prob-
lems. In: Graph Theory, Computational Intelligence and Thought, Essays Ded-
icated to Martin Charles Golumbic on the Occasion of His 60th Birthday. pp.
200–208 (2009)

6. Szeider, S.: Finding paths in graphs avoiding forbidden transitions. Discret. Appl.
Math. 126(2–3), 261–273 (2003)

7. Kanté, M.M., Laforest, C., Momège, B.: An exact algorithm to check the existence
of (elementary) paths and a generalisation of the cut problem in graphs with forbid-
den transitions. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J.,
Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 257–267. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35843-2 23

8. Kanté, M.M., Moataz, F.Z., Momège, B., Nisse, N.: Finding paths in grids with
forbidden transitions. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 154–
168. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7 12

9. Sudakov, B.: Robustness of graph properties. arXiv (2016)
10. Bellitto, T., Bergougnoux, B.: On minimum connecting transition sets in graphs.

arXiv (2018)
11. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343

(1982)
12. Peleg, D.: Low stretch spanning trees. In: Diks, K., Rytter, W. (eds.) MFCS 2002.

LNCS, vol. 2420, pp. 68–80. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45687-2 5

https://doi.org/10.1007/978-3-642-35843-2_23
https://doi.org/10.1007/978-3-662-53174-7_12
https://doi.org/10.1007/3-540-45687-2_5
https://doi.org/10.1007/3-540-45687-2_5

Recognizing Hyperelliptic Graphs
in Polynomial Time

Jelco M. Bodewes1, Hans L. Bodlaender1,3, Gunther Cornelissen2,
and Marieke van der Wegen1,2(B)

1 Department of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

M.vanderWegen@uu.nl
2 Mathematical Institute, Utrecht University, P.O. Box 80.010,

3508 TA Utrecht, The Netherlands
3 Department of Mathematics and Computer Science,
Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven, The Netherlands

Abstract. Based on analogies between algebraic curves and graphs,
Baker and Norine introduced divisorial gonality, a graph parameter for
multigraphs related to treewidth, multigraph algorithms and number
theory. We consider so-called hyperelliptic graphs (multigraphs of gonal-
ity 2) and provide a safe and complete set of reduction rules for such
multigraphs, showing that we can recognize hyperelliptic graphs in time
O(n log n + m), where n is the number of vertices and m the number of
edges of the multigraph. A corollary is that we can decide with the same
runtime whether a two-edge-connected graph G admits an involution σ
such that the quotient G/〈σ〉 is a tree.

1 Introduction

Motivation. In this paper, we consider a graph theoretic problem that finds its
origin in algebraic geometry, and can be formulated in terms of a specific type
of graph search, namely monotone chip firing. The case with two chips is of
special interest in the application, and we show that we can decide this case in
O(n log n + m) time on a multigraph with n vertices and m edges.

In algebraic geometry, a special role is played by so-called hyperelliptic curves;
these are smooth projective algebraic curves possessing an involution, i.e. an
automorphism of order two, for which the quotient is the projective line. Such
curves can be described by an affine equation y2 = f(x), for some one-variable
polynomial f(x) without repeated roots. They are widely studied and used, for
example in the study of moduli spaces of abelian surfaces, invariants of binary

H. L. Bodlaender—This author was partially supported by the NETWORKS project,
funded by the Netherlands Organisation for Scientific Research.

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 52–64, 2018.
https://doi.org/10.1007/978-3-030-00256-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_5&domain=pdf

Recognizing Hyperelliptic Graphs in Polynomial Time 53

quadratic forms, diophantine problems (finding integer or rational solutions to
such equations), and in so-called “hyperelliptic curve cryptography” (see, e.g.,
[15,28]).

Recognizing hyperelliptic curves is an important, decidable problem in algo-
rithmic algebraic geometry; an algorithm has been implemented when the curve
is given by some set of polynomial equations, e.g., in the computer algebra pack-
age Magma [13]. No exact runtime analysis is available, but, the method being
dependent on Gröbner basis computations, worst-case performance is expected
to be more than exponential in the input size.

In recent work of Baker and Norine [5], the notion of a “hyperelliptic graph”
was introduced, based on an analogy between algebraic curves and multigraphs.
We show that the recognition problem for hyperelliptic graphs can be solved in
quasilinear time. This can be applied to the recognition of certain hyperelliptic
curves, since if an algebraic curve has a non-hyperelliptic stable reduction graph,
the curve itself cannot be hyperelliptic (see [4, 3.5]).

Divisorial Gonality. Hyperelliptic graphs are graphs with divisorial gonality at
most two. The notion of divisorial gonality has several equivalent definitions;
intuitively, we use a chip firing game: we have a graph and some initial config-
uration that assigns a non-negative number of “chips” to each vertex. We can
fire a subset of vertices by moving a chip along each outgoing edge of the subset,
if every vertex has sufficiently many chips. We say that an initial configuration
reaches a vertex if a sequence of firings results in that vertex having at least one
chip. The divisorial gonality of a graph is the minimum number of chips needed
for an initial configuration to reach each vertex of the graph. It actually suf-
fices to consider a ‘monotone’ variant of the chip firing procedure, in which the
sequence of subsets that are fired to reach a vertex is increasing; this is similar to
several other graph search games, where the optimal number of searchers does
not increase when we require the search to be monotone, see e.g., [7,25].

Known Results. The termination of similar Mancala-style games was discussed
by Björner, Lovász and Shor [8]. In the guise of “abelian sandpile model”, they
play an important role in the study of self-organized criticality in statistical
physics [3,19]. The chip firing game introduced by Baker and Norine is relevant
for classical combinatorial problems about graphs, relating to spanning trees
[14], the uniqueness of graph involutions [5], and potential theory on electrical
network graphs [6]. A polynomial bound on the minimal number of required
firings to terminate the Björner, Lovász and Shor-game was given by Tardos
[30].

We study the divisorial gonality of graphs from the point of view of com-
putational complexity. The analogous problem of computing the gonality of an
algebraic curve is decidable [29].

The divisorial gonality of a graph G is related to treewidth, tw(G), by an
inequality [21]

dgon(G) ≥ tw(G). (1)

54 J. M. Bodewes et al.

Since treewidth is insensitive to the presence of multiple edges while divisorial
gonality is not, the parameters are different; actually, they are not “tied” in the
sense of Norin [27]: there exists G with tw(G) = 2 but dgon(G) arbitrarily high
[24]. We know that treewidth is FPT, and that computing divisorial gonality is
NP-hard and in XP [22], [20, Sect. 5].

Our Results. Our main result is the following.

Theorem A (= Theorem 1). There is an algorithm that decides whether a
graph G is hyperelliptic in O(n log n + m) time.

To obtain our algorithm, we provide a safe and complete set of reduction rules.
Similar to recognition algorithms for graphs of treewidth 2 or 3 (see [1]), in our
algorithm the rules are applied to the graph until no further rule application is
possible; we decide positively if and only if this results in the empty graph. One
novelty is that some of the rules introduce constraints on pairs of vertices, which
we model by colored edges. To deal with the fact that some of the rules are not
local, we use a data structure that allows us to find an efficient way of applying
these rules, leading to the stated running time. Omitted proofs and details can
be found in [9], in which we also consider other variants of gonality.

The computational complexity of the problem “Does a graph admit a non-
trivial automorphism” (solvable in quasi-polynomial time [2]) is very sensitive
to alterations of the question. For example, deciding whether a graph has a fixed
point free automorphism of order two is NP-complete (see Lubiw [26]). Our main
result implies the following result as corollary.

Corollary A (= Corollary 1). There is an algorithm that, given a two-edge-
connected graph G, decides in O(n log n + m) time whether G admits an involu-
tion σ such that the quotient G/〈σ〉 is a tree.

2 Preliminaries

2.1 Definitions

Whenever we write “graph” we refer to a multigraph G = (V,E), where V is
the set of vertices and E is a multiset of edges.

There is a number of different definitions of divisorial gonality. The one we use
is shown to be equivalent to the chip firing procedure without the ‘monotonicity’
property by [20]. The definition given here allows us to prove correctness of the
reduction rules in our algorithm, and avoids more heavy algebraic terminology.

A divisor D in a graph G = (V,E) is a mapping D : V → Z (a divisor repre-
sents a distribution of chips, see Sect. 1). We call a divisor D effective (notation
D ≥ 0) if D(v) ≥ 0 for all v ∈ V . The degree, deg(D), of a divisor D equals∑

v∈V D(v).
Given an effective divisor D and a set of vertices W ⊆ V , we call W valid for

D, if for each v ∈ W , D(v) ≥ |E(v, V \ W)| (i.e., v has at least as many chips as
it has neighbors in V \ W). If W is valid for D, we can fire W starting from D,

Recognizing Hyperelliptic Graphs in Polynomial Time 55

this yields another divisor: for v ∈ W , D(v) is decreased by the number of edges
from v to V \ W , and for x ∈ V \ W , D(x) is increased by the number of edges
from W to x. Intuitively, firing W means moving a chip along all edges from W
to V \ W . Note that the divisor obtained by firing is effective as well.

We call two effective divisors D and D′ equivalent, in notation D ∼ D′, if
there is a sequence of subsets A1 ⊆ A2 ⊆ . . . ⊆ Ak−1 ⊂ Ak = V , such that
for all i the set Ai can be fired when A1, . . . , Ai−1 are fired starting from D,
and the divisor obtained by firing A1, . . . , Ak is D′. This defines an equivalence
relation on the set of effective divisors [20, Chap. 3]. For two equivalent effective
divisors D and D′, we call the difference of functions D′ −D the transformation
from D to D′, and the sequence A1 ⊆ A2 ⊆ . . . ⊆ Ak−1 ⊂ Ak = V the level set
decomposition of this transformation. This level set decomposition is unique [20,
Remark 3.8].

We say that an effective divisor D reaches a vertex v, if there exists a D′

such that D ∼ D′ and D′(v) ≥ 1. The divisorial gonality, dgon(G), of a graph G
is the minimum degree of an effective divisor D that reaches each vertex of G.

Example 1. Let T be a tree. Then T has divisorial gonality 1. Let v be a vertex
of T and consider the divisor D with D(v) = 1 and D(x) = 0 for all x
= v. This
divisor has degree 1 and reaches each vertex of T : Let w be a vertex of T . Let
vu be the first edge on the unique path from v to w. Let Av be the component
that contains v of the cut induced by vu. Firing Av yields the divisor D(u) = 1
and D(x) = 0 for all x
= u, thus we moved a chip from v to u. Repeating this
process yields a divisor with a chip on w.

Example 2. Let G be a cycle, then G has divisorial gonality 2. First note that
every set of vertices of G induces a cut of size at least 2. Hence for all degree
1 divisors, there are no valid sets. Hence a degree 1 divisor does not reach
every vertex. To see that there is a divisor with 2 chips that reaches every
vertex, number the vertices v1, v2, . . . , vn and consider the divisor D with a
chip on v1 and a chip on vn. To reach a vertex vk with k ≤ n

2 , fire the set
{vi | 1 ≤ i ≤ j} ∪ {vi | n − j + 1 ≤ i ≤ n} for j = 1, 2, . . . , i − 1. Analogous for a
vertex vk with n

2 ≤ k ≤ n.

Example 3. Consider the graph G in Fig. 1. This graph has treewidth 1 and
divisorial gonality 3. A divisor that reaches all vertices either has a chip on u
and 2 more chips to reach both v and w, or has at least 3 chips to move along
the three edges from v to u. See also [16, Table 3].

u v w

Fig. 1. Graph with divisorial gonality 3 and treewidth 1 (see Example 3).

56 J. M. Bodewes et al.

Example 4. Consider the graph G in Fig. 2. This graph has treewidth 2 and
divisorial gonality 3. A divisor that reaches all vertices needs two chips to traverse
the left cycle and 2 chips to traverse the right cycle. But we cannot move two
chips from u to v, so these two chips on the left side cannot be the same as the
two on the right side. Hence we need at least three chips.

u v

Fig. 2. Graph with divisorial gonality 3 and treewidth 2 (see Example 4).

2.2 Constraints

General Constraints. In the process of applying reduction rules to a graph, we
will need to keep track of certain restrictions otherwise lost by removal of vertices
and edges. We will maintain these restrictions in the form of a set of pairs of
vertices, called constraints, and then extend the notion of divisorial gonality to
graphs with constraints.

Definition 1. Given a graph G = (V,E), a constraint on G is an unordered
pair of vertices v, w ∈ V , usually denoted as (v, w), where v and w can be the
same vertex.

Constraints are, like edges, pairs of vertices, so we can consider them as an
extra set of edges. We will use C to represent this set.

Checking whether a graph has gonality two or lower is the same as checking
whether there exists a divisor on our graph with degree two that reaches all
vertices. Our constraints place restrictions on what divisors we consider, as well
as what sets we are allowed to fire.

Definition 2. Given a set of constraints C, and two equivalent effective divisors
D and D′. We call D and D′ C-equivalent (in notation D C D′), if for every
set Ai of the level set decomposition of D′ − D and every constraint (u, v) ∈ C,

either u, v ∈ Ai or u, v /∈ Ai.

Note that this defines a finer equivalence relation. Now we can extend the defini-
tion of reach using C-equivalence: a divisor D reaches a vertex v, if there exists
a D′ such that D C D′ and D′(v) ≥ 1.

Definition 3. Given a set of constraints C . A divisor D satisfies C if for every
constraint (u, v) C there is a divisor D′

C D such that D′(u) ≥ 1 and
D′(v) ≥ 1 if u
= v and D′(u) ≥ 2 if u = v.

Recognizing Hyperelliptic Graphs in Polynomial Time 57

Definition 4. Given a graph G = (V,E) with constraints C, we call a divisor D
suitable if it is effective, has degree 2, reaches all vertices using the C-equivalence
relation and satisfies all constraints in C .

Definition 5. We will say that a graph with constraints has divisorial gonality 2
or lower if it admits a suitable divisor. Note that for a graph with no constraints
this is equivalent to the usual definition of divisorial gonality 2 or lower. We will
denote the class of graphs with constraints that have divisorial gonality two or
lower as G2.

Constraints and Cycles. It will be useful to determine when constraints are
non-conflicting locally:

Definition 6. Let C be a cycle in a graph G with constraints C . Let CC C be
the subset of the constraints that contain a vertex in C. We call the constraints
CC compatible if the following hold.

(i) If (v, w) CC then both v ∈ C and w ∈ C.
(ii) For each (v, w) CC and (v′, w′) CC , the divisor given by assigning a chip

to v and w must be equivalent to the one given by assigning a chip to v′ and
w′ on the subgraph consisting of C.

2.3 Reduction Rules, Safeness and Completeness

A reduction rule is a rule that can be applied to a graph to produce a smaller
graph. Our final goal with the set of reduction rules is to show that it can be used
to characterize the graphs in a certain class, that of the graphs with divisorial
gonality two, by reduction to the empty graph. For this we need to make sure
that membership of the class is invariant under our reduction rules.

Definition 7. Let U be a rule and S be a set of reduction rules. Let A be a
class of graphs. We call U safe for A if for all graphs G and H such that H can
be produced by applying rule U to G it follows that H ∈ A ⇐⇒ G ∈ A. We call
S safe for A if every rule in S is safe for A.

Apart from our rule sets being safe, we also need to know that, if a graph is
in our class, it is always possible to reduce it to the empty graph.

Definition 8. Let S be a set of reduction rules and A be a class of graphs. We
call S complete for A if for any graph G ∈ A it holds that G can be reduced to
the empty graph by applying some finite sequence of rules from S.

For any rule set that is both complete and safe for A the rule set is suitable
for characterizing A: a graph G can be reduced to the empty graph if and only
if G is in A. Additionally it is not possible to make a wrong choice early on that
would prevent the graph from being reduced to the empty graph: if G ∈ A and
G can be reduced to H, then H can be reduced to the empty graph.

These properties ensure that we can use the set of reduction rules to create
an algorithm for recognition of the graph class.

58 J. M. Bodewes et al.

3 Reduction Rules for Divisorial Gonality

We will now show that there exists a set of reduction rules that is safe and
complete for the class of graphs with divisorial gonality at most two. We will
assume that our graph is loopless and connected. Loops can simply be removed
from the graph since they never impact the divisorial gonality and a disconnected
graph has divisorial gonality two or lower exactly when it consists of two trees,
which can easily be checked in linear time. All reduction rules below maintain
connectedness.

The Reduction Rules

We are given a connected loopless graph G = (V,E) and a yet empty set of
constraints C . The following rules are illustrated in Fig. 3, where a constraint is
represented by a red dashed edge.

We start by covering the two possible end states of our reduction:

Rule E1. Given a graph consisting of exactly one vertex, remove that vertex .

Rule E2. Given a graph consisting of exactly two vertices, u and v, connected
to each other by a single edge, and C = {(u, v)}, remove both vertices.

Next are the reduction rules to get rid of vertices with degree one. These
rules are split by what constraint applies to the vertex:

Rule T1. Let v be a leaf, such that v has no constraints in C . Remove v.

Rule T2. Let v be a leaf, such that its only constraint in C is (v, v). Let u be its
neighbor. Remove v and add the constraint (u, u) if it does not exist yet.

Rule T3. Let v1 be a leaf, such that its only constraint in C is (v1, v2), where v2
is another leaf, whose only constraint is also (v1, v2). Let u1 be the neighbor of
v1 and u2 be the neighbor of v2 (these can be the same vertex). Then remove v1
and v2 and add the constraint (u1, u2) if it does not exist yet .

Finally we have a set of reduction rules that apply to cycles containing at
most 2 vertices with degree greater than two. The rules themselves are split by
the number of vertices with degree greater than two.

Rule C1. Let C be a cycle of vertices with degree two. If the set of constraints
CC on C is compatible, then replace C by a new single vertex .

Rule C2. Let C be a cycle with one vertex v with degree greater than two. If the
set of constraints CC on C plus the constraint (v, v) is compatible, then remove
all vertices except v in C and add the constraint (v, v) if it does not exist yet.

Rule C3. Let C be a cycle with two vertices v and u of degree greater than two.
If there exists a path from v to u that does not share any edges with C and the
set of constraints CC on C plus the constraint (v, u) is compatible, then remove
all vertices of C except v and u, remove all edges in C and add the constraint
(v, u) if it does not exist yet.

Recognizing Hyperelliptic Graphs in Polynomial Time 59

Fig. 3. The reduction rules for divisorial gonality

We denote by R the set consisting of all the above reduction rules: E1, E2,
T1, T2, T3, C1, C2 and C3.

In the rest of this paragraph we will present safeness proofs for some of the
rules and the more interesting parts of the proof of completeness. Details are
found in [9, Sect. 4].

Proposition 1. (Safeness). The set of rules R is safe for G2.

Proof. We need to proof that all rules are safe, we will show this for rules T3

and C3 below, for the other rules, see [9, Lemma 4.6, 4.7, 4.9, 4.10].
Claim 1: Rule T3 is safe. Let v1 and v2 be the vertices with degree one, such
that their only constraint is (v1, v2) and let u1 and u2 be their (possibly equal)
neighbors. We first assume that H ∈ G2, then there is a suitable divisor on H
with one chip on u1 and another chip on u2. Consider this divisor on G. Then
by firing V (G) \ {v1, v2} we can move a chip to v1 and v2. For every vertex
v ∈ V (G) \ {v1, v2} there is a sequence A0, A1, . . . , Ak ⊆ V (H) such that firing
this sequence yields a divisor D′ with a chip on v. Now add vi to every set Aj

that contains ui. Firing these sets on G starting from D results in D′ on G,

60 J. M. Bodewes et al.

so D reaches v. Moreover, every set we fired contains either both v1 and v2, or
neither. We conclude that D is also suitable on G.

Assume that G ∈ G2, then the divisor on G with one chip on v1 and v2 is suit-
able. By firing {v1, v2} we can create a divisor with a chip on u1 and u2 (or two on
u1 if u1 = u2). It follows that this divisor is suitable when considered on H.
Claim 2: Rule C3 is safe. Let C be our cycle and v, w the two vertices with
degree greater than two in C. We first assume that H ∈ G2. From this it follows
that the divisor on H with a chip on v and a chip on w is suitable. We know that
in G all constraints on C plus (v, w) are compatible. From this we see that if we
consider the divisor on G it will be able to satisfy all constraints on C. It is also
clear that from v and w we can move chips along either of the two arcs between
v and w in C. Therefore the divisor is also suitable on G and thus G ∈ G2.

Let us now assume that instead G ∈ G2. Clearly there exists a suitable divisor
D on G that has a chip on v. We will show that there is a suitable divisor that
has a chip on both v and w: Assume that D(w) = 0, then there should be a
suitable divisor D′ with D′(w) = 1 and D ∼C D′. This implies there is a level

set decomposition A0, . . . , Ak of the transformation from D to D′.
Let Ai be the first subset that contains w and Di the divisor before firing Ai.

Note that we have Di(a) ≥ |E(a, V (G) \ Ai)| for all a ∈ Ai, since all firing sets
are valid. Since deg(Di) = 2 it follows that

∑
a∈Ai

|E(a, V (G) \ Ai)| ≤ 2. This
is the same as the cut induced by Ai having size two or lower. The minimum
cut between v and w is at least three, since they are both part of C and there
exists an additional path outside of C between them. Therefore it follows that
Ai can only induce a cut of size two or lower if w ∈ Ai. But this implies that
Di(w) ≥ 1, since a vertex can not receive a chip after entering the firing set. We
conclude that Di(v) = 1 and Di(w) = 1.

Also by the fact that the minimum cut between v and w is at least three it
follows that a subset firing can only be valid if the subset contains either both v
and w or neither (since otherwise the subset would have at least three outgoing
edges). It follows we can satisfy the set of constraints including (v, w).

Therefore the divisor Di gives us a suitable divisor when considered on H.
We conclude that H ∈ G2. ��

By the previous proposition we now have that membership in G2 is invariant
under the reduction rules in R. For the reduction rules to be useful however we
will also need to confirm that any graph can be reduced to the empty graph by
a finite sequence of rule applications.

Proposition 2. (Completeness). The set of rules R is complete for G2.

Proof. Let G ∈ G2 be a non-empty graph.
Claim 1: A rule in R can be applied to G. Assume instead that no rule in R can
be applied to G.
Claim 2: G contains no vertices of degree 1 [9, Lemma 4.14]. It follows that all
vertices of G have degree at least 2. Consider the minor H of G created by
contracting each path of only degree 2 vertices to an edge. Then any edge in

Recognizing Hyperelliptic Graphs in Polynomial Time 61

H was either created by contraction of a path of any number of vertices with
degree 2 in G or it already was an edge in G.

If H contains a loop, there is a path of degree 2 vertices in G going from a
degree 3 or greater vertex to itself (since G contains no loops), so this path plus
the vertex it is attached to forms a cycle with exactly one vertex of degree 3 or
greater. Since we cannot apply Rule C2 to G, it follows that the constraints CC

are not compatible. This contradicts the following claim:
Claim 3: For every cycle C in G, the constraints CC are compatible [9, Lemma
4.15]. Hence H contains no loops.

Now we find a subgraph H ′ of H with no multiple edges. If H contains no
multiple edges, simply let H ′ = H. Otherwise let v and w be two vertices such
that there are at least two edges between v and w. Suppose that v and w are
still connected to each other after removing two edges e1, e2 between them. The
removed edges each represent a single edge or a path of degree 2 vertices in G.
Thus v, w plus these paths form a cycle C in G with exactly two vertices of
degree 3 or greater, where there is also a path between v and w that does not
share any edges with C. By Claim 3 we have that the constraints on this cycle
are compatible and so we are able to apply Rule C3 to C. Since we cannot apply
any rules to G, it follows that G must be disconnected after removing e1 and
e2. So any multiple edge in H consists of a double edge, whose removal splits
the graph in two connected components. Let H ′ be the connected component
of minimal size over all possible removals of a double edge in H. Note that H ′

cannot contain any double edge, since this would imply a smaller connected
component.

We now have a minor H ′ of G, which is a simple graph since it has no loops
or multiple edges. Also, each vertex of H ′ has degree at least 3 with at most one
exception, namely the vertex that was incident to the two parallel edges that
were removed to obtain H ′. Since a graph with treewidth at most two has at
least two vertices of degree at most two, it follows that tw(H ′) ≥ 3 [12, Lemma
4]. Since treewidth is closed under taking minors we get tw(G) ≥ 3. But then
by Eq. 1 it follows that dgon(G) ≥ 3, creating a contradiction, since G ∈ G2. We
conclude that our assumption must be wrong and there must be a rule in R that
can be applied to G.

Assume that G ∈ G2. By Claim 1 and Proposition 1 we can keep applying
rules from R to G as long as G has not been turned into the empty graph yet.
Observe that each rule removes at least one vertex or at least two edges, while
never adding more vertices or edges. Since G is finite, rules from R can only be
applied a finite number of times. When no more rules can be applied, it follows
that the graph has been reduced to the empty graph. Therefore R is complete. ��

4 Main Algorithm

In this section, we discuss how the reduction rules of Sect. 3 lead to an efficient
algorithm that recognize graphs with divisorial gonality 2 or lower.

62 J. M. Bodewes et al.

Theorem 1 (= Theorem A). There is an algorithm that, given a graph G,
decides whether dgon(G) ≤ 2 in O(m + n log n) time.

Proof. We introduce a new rule that shortcuts repeated applications of Rule C3:

Rule M . Let u,v be vertices, such that |E(u, v)| ≥ 3. Remove 2
⌊

|E(u,v)|−1
2

⌋

edges between u and v and add a constraint (u, v).

All applications of this rule can be done in O(m) at the start of the algorithm,
after which we know that no pair of vertices has more than two edges between
them.

Since treewidth is a lower bound on divisorial gonality (Eq. 1), it follows
that if tw(G) > 2, the algorithm can terminate. Checking whether treewidth
is at most 2 can be done in linear time. Hereafter, we assume our graph has
treewidth at most 2.

The remainder of the algorithm is of the following form: repeatedly try to
apply a safe rule, until none is possible. If no rule is applicable, we can directly
decide, as safeness and completeness of our set of rules implies that dgon(G) ≤ 2,
if and only if the resulting graph is empty. We now discuss how this can be done
in O(n log n) time.

As graphs of treewidth k and n vertices have at most kn edges, the underlying
simple graph has at most 2n edges. There are at most 2 edges between a pair of
vertices and no loops, so at most 4n edges in total. Note that each rule application
decreases the sum of the number of vertices and the number of edges by at least
one, so O(n) rules can be applied before we reach the empty graph.

For most rules, standard data structures allow to find applicable rules in
amortized constant time. For Rules C2 and C3 we employ a technique used
in [10]: we use a formulation in monadic second order logic (MSOL), and a
data structure, based upon a tree decomposition of G of logarithmic depth and
constant width allows to perform queries and updates in O(log n) time each.
(See also [18,23].)

The main idea is as follows: by [11, Lemma 2.2], we can build in O(n) time a
tree decomposition of G of width 8, such that the tree T in the tree decomposition
is binary and has O(log n) depth. We augment the graph by labels that express
for vertices and edges whether they are contracted, deleted, or carry a constraint.
For each of the Rules C2 and C3, we can express the property that these can be
applied to the graph obtained after a number of rule applications as a sentence in
MSOL on the original graph G augmented with the labeling relations Contracted,
Deleted and Carry-a-Constraint. The sentences have free variables that allow
to find where in the graph the modification can take place. A modification of
Courcelle’s algorithm [17] gives that each query and each graph update can be
done in time linear in the depth of the tree decomposition, i.e., O(log n) time.
More details are given in [9, Sect. 7].

As the time per application of a safe rule is bounded by O(log n), and we
execute O(n) rule applications, the total time is bounded by O(n log n). ��

Recognizing Hyperelliptic Graphs in Polynomial Time 63

Corollary 1 (= Corollary A). There is an algorithm that, given a two-
edge-connected graph G, decides whether or not G admits an automorphism σ
of order two such that the quotient G/〈σ〉 is a tree, in O(n log n + m) time.

Proof. This follows from Theorem 1, since Baker and Norine [5, Theorem 5.12]
have shown that a two-edge-connected graph G is hyperelliptic precisely if G
admits an automorphism as stated in the theorem. ��

5 Conclusion

In this text, we have focused on divisorial gonality, defined by analogy with
the theory of divisors on algebraic curves and described in terms of chip-firing
games. We gave a quasilinear detection algorithm for dgon ≤ 2. Different flavours
of gonality exist, based on analogies with the theory of coverings of algebraic
curves; or “stable” versions (in which the graph can be refined), based on ideas
from the theory of tropical curves (see [16]). In [9], we give quasilinear time
detection algorithms for these variants being two, too.

Finally, we mention some interesting open questions on (divisorial) gonality
from the point of view of algorithmic complexity: (a) Can hyperelliptic graphs be
recognized in linear time? (b) Which problems become fixed parameter tractable
with gonality as parameter? (c) Is there an analogue of Courcelle’s theorem for
bounded gonality? (d) Is divisorial gonality fixed parameter tractable?

References

1. Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees.
SIAM J. Algebraic Discrete Methods 7(2), 305–314 (1986)

2. Babai, L.: Graph isomorphism in quasipolynomial time. Preprint
arXiv: 1512.03547v2 (2016)

3. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38(1),
364 (1988)

4. Baker, M.: Specialization of linear systems from curves to graphs. Algebra Number
Theory 2(6), 613–653 (2008). With an appendix by Brian Conrad

5. Baker, M., Norine, S.: Harmonic morphisms and hyperelliptic graphs. Int. Math.
Res. Not. IMRN 15, 2914–2955 (2009)

6. Baker, M., Shokrieh, F.: Chip-firing games, potential theory on graphs, and span-
ning trees. J. Comb. Theory Ser. A 120(1), 164–182 (2013)

7. Bienstock, D., Seymour, P.: Monotonicity in graph searching. J. Algorithms 12,
239–245 (1991)

8. Björner, A., Lovász, L., Shor, P.W.: Chip-firing games on graphs. European J.
Combin 12(4), 283–291 (1991)

9. Bodewes, J.M., Bodlaender, H.L., Cornelissen, G., van der Wegen, M.: Recognizing
hyperelliptic graphs in polynomial time. Preprint arXiv: 1706.05670 (2017)

10. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.
45(2), 317–378 (2016)

http://arxiv.org/abs/1512.03547v2
http://arxiv.org/abs/1706.05670

64 J. M. Bodewes et al.

11. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)

12. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations II. Lower bounds.
Inform. and Comput. 209(7), 1103–1119 (2011)

13. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997)

14. Chan, M., Glass, D., Macauley, M., Perkinson, D., Werner, C., Yang, Q.: Sandpiles,
spanning trees, and plane duality. SIAM J. Discrete Math. 29(1), 461–471 (2015)

15. Cohen, H., et al.: Handbook of Elliptic and Hyperelliptic Curve Cryptography,
Second Edn. Chapman & Hall/CRC, Boca Raton (2012)

16. Cornelissen, G., Kato, F., Kool, J.: A combinatorial Li-Yau inequality and rational
points on curves. Math. Ann. 361(1–2), 211–258 (2015)

17. Courcelle, B.: The monadic second-order logic of graphs. I: recognizable sets of
finite graphs. Inform. and Comput. 85(1), 12–75 (1990)

18. Courcelle, B., Vanicat, R.: Query efficient implementation of graphs of bounded
clique-width. Discrete Appl. Math. 131(1), 129–150 (2003)

19. Dhar, D.: Self-organized critical state of sandpile automaton models. Phys. Rev.
Let. 64(14), 1613 (1990)

20. van Dobben de Bruyn, J.: Reduced divisors and gonality in finite graphs. Bach-
elor thesis, Leiden University (2012). https://www.universiteitleiden.nl/binaries/
content/assets/science/mi/scripties/bachvandobbendebruyn.pdf

21. van Dobben de Bruyn, J., Gijswijt, D.: Treewidth is a lower bound on graph
gonality. Preprint arXiv:1407.7055 (2014)

22. Gijswijt, D.: Computing divisorial gonality is hard. Preprint arXiv:1504.06713
(2015)

23. Hagerup, T.: Dynamic algorithms for graphs of bounded treewidth. Algorithmica
27(3), 292–315 (2000)

24. Hendrey, K.: Sparse graphs of high gonality. Preprint arXiv:1606.06412 (2016)
25. LaPaugh, A.S.: Recontamination does not help to search a graph. J. ACM 40(2),

224–245 (1993)
26. Lubiw, A.: Some NP-complete problems similar to graph isomorphism. SIAM J.

Comput. 10(1), 11–21 (1981)
27. Norin, S.: New tools and results in graph minor structure theory. In: Surveys in

Combinatorics 2015. London Mathematical Society Lecture Note Series, vol. 424,
pp. 221–260. Cambridge University Press (2015)

28. Poonen, B.: Computing rational points on curves. Number theory for the millen-
nium. III (Urbana, IL, 2000), pp. 149–172. A K Peters, Natick (2002)

29. Schicho, J., Schreyer, F.-O., Weimann, M.: Computational aspects of gonal maps
and radical parametrization of curves. Appl. Algebra Engrg. Comm. Comput.
24(5), 313–341 (2013)

30. Tardos, G.: Polynomial bound for a chip firing game on graphs. SIAM J. Discrete
Math. 1(3), 397–398 (1988)

https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf
http://arxiv.org/abs/1407.7055
http://arxiv.org/abs/1504.06713
http://arxiv.org/abs/1606.06412

On Directed Feedback Vertex Set
Parameterized by Treewidth

Marthe Bonamy1, �Lukasz Kowalik2, Jesper Nederlof3, Micha�l Pilipczuk2,
Arkadiusz Soca�la2, and Marcin Wrochna2(B)

1 CNRS, LaBRI, Talence, France
marthe.bonamy@labri.fr

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
{kowalik,michal.pilipczuk,as277575,m.wrochna}@mimuw.edu.pl

3 Eindhoven University of Technology, Eindhoven, Netherlands
j.nederlof@tue.nl

Abstract. We study the Directed Feedback Vertex Set problem
parameterized by the treewidth of the input graph. We prove that unless
the Exponential Time Hypothesis fails, the problem cannot be solved in
time 2o(t log t) ·nO(1) on general directed graphs, where t is the treewidth
of the underlying undirected graph. This is matched by a dynamic pro-
gramming algorithm with running time 2O(t log t) · nO(1). On the other
hand, we show that if the input digraph is planar, then the running time
can be improved to 2O(t) · nO(1).

1 Introduction

In the Directed Feedback Vertex Set (DFVS) problem we are given a
digraph G and the goal is to find a smallest directed feedback vertex set in it,
that is, a subset X of vertices such that G − X is acyclic. The arc-deletion
version, Directed Feedback Arc Set (DFAS), differs in that the deletion set
X has to consist of edges of G instead of vertices. The parameterized variants of
these problems, where we ask about the existence of a solution of size at most
k for a given parameter k, are arguably among central problems in the field
of parameterized algorithms. Unfortunately, we are still far from a complete
understanding of their complexity.

Work supported by the National Science Centre of Poland, grant number
2013/11/D/ST6/03073 (MP, MW). The work of �L. Kowalik is a part of the
project TOTAL that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 677651). This research is a
part of projects that have received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme under grant agreements No 714704 (AS). MP and MW are supported
by the Foundation for Polish Science (FNP) via the START stipend programme. JN
is supported by NWO Veni grant 639.021.438.

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 65–78, 2018.
https://doi.org/10.1007/978-3-030-00256-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_6&domain=pdf

66 M. Bonamy et al.

Establishing the fixed-parameter tractability of DFVS was once a major open
problem. It has been resolved by Chen et al. [2], who gave an algorithm for both
DFVS and DFAS1 with running time 2O(k log k) · nO(1), obtained by combining
iterative compression with a smart application of important separators. Very
recently, Lokshtanov et al. [15] revisited the algorithm of Chen et al. [2] and
improved the running time to 2O(k log k) · (n+m); that is, the dependence on the
size of the graph is reduced to linear, but the dependence on the parameter k is
unchanged. Whether the running time can be improved to 2O(k) · nO(1), or even
to 2o(k log k) · nO(1), remains a challenging open problem [15]. We remark that
the question of whether DFVS admits a polynomial kernel on general digraphs
remains one of the central open problems in the field of kernelization.

A possible reason for why so little progress has been observed on such an
important problem, is that the analysis of cut problems in directed graphs is
far more complicated than in undirected graphs, and fewer basic techniques
are available. For instance, consider the undirected counterpart of the problem,
Feedback Vertex Set, where the goal is to delete at most k vertices from a
given undirected graph in order to obtain a forest. While forests have a very sim-
ple combinatorial structure that can be exploited in many ways, acyclic digraphs
form a much richer class that cannot be so easily captured. In particular, undi-
rected graphs admitting a feedback vertex set of size k have treewidth at most
k + 1, and this tree-likeness of positive instances of undirected FVS makes the
problem amenable to a variety of techniques related to treewidth; other basic
techniques like branching and kernelization are also applicable. Acyclic digraphs
may have arbitrarily large treewidth, whereas directed analogues of treewidth
offer almost no algorithmic tools useful for the design of FPT algorithms. There-
fore, for the study of DFVS and other directed cut problems in the parameterized
setting, we are so far left with important separators and a handful of other more
involved techniques; cf. [3,4,12,13,18].

In planar digraphs, the complexity of DFAS changes completely. As shown
by Lucchesi and Younger [17], it is actually polynomial-time solvable (see also a
different presentation by Lovász [16]). More precisely, this is a consequence of the
proof of the Lucchesi–Younger theorem [17], which states that in planar digraphs,
the minimum size of a directed feedback arc set is equal to the maximum size
of a packing of arc-disjoint cycles. The proof is constructive and can be turned
into a polynomial-time algorithm that computes a minimum directed feedback
arc set together with a maximum cycle packing; see [19] for details.

On the other hand, it is easy to see that DFVS remains NP-hard on planar
digraphs, as there is a simple reduction from Vertex Cover on planar graphs
to Directed Feedback Vertex Set on planar digraphs: just pick an arbitrary
ordering of vertices, orient all edges from left to right (giving an acyclic orien-
tation), and replace every edge uv with a directed triangle on u, v, and a fresh
vertex. To the best of our knowledge, no algorithm for DFVS with running time

1 In general digraphs, DFVS and DFAS are well-known to be reducible to each other;
see [5, Proposition 8.42 and Exercise 8.16]. These reductions, however, do not pre-
serve planarity of the digraph in question.

On Directed Feedback Vertex Set Parameterized by Treewidth 67

2o(k log k) · nO(1) is known even for planar digraphs, which means that so far we
are not able to exploit the planarity constraint in any useful way.

Our Contribution. The goal of this paper is to improve our understanding of
DFVS by studying the parameterization by the treewidth of the input directed
graph2, with a particular focus on the planar setting. We first show that a semi-
standard dynamic programming approach yields an algorithm with running time
2O(t log t) · nO(1).

Theorem 1. There is an algorithm that given a digraph G of treewidth t on n
vertices, runs in time 2O(t log t) · nO(1) and determines the minimum size of a
directed feedback vertex set and of a directed feedback arc set in G.

For the proof of Theorem1, we define the following dynamic programming
table (here for DFVS). For a node x of a tree decomposition of G, let Bx be the
associated bag and let Gx be the subgraph induced in G by vertices residing in
Bx or below x in the decomposition. Then, for every subset X of Bx and every
ordering σ of Bx \X, we store the smallest size of a subset Y of V (Gx)\Bx such
that Gx − (X ∪Y) is acyclic and admits a topological ordering whose restriction
to Bx \ X is exactly σ. Dynamic programming algorithm for DFAS is defined
similarly. While we believe that this simple formulation of dynamic programming
for DFVS and DFAS on a tree decomposition should have been known, we did
not find it in the literature and hence we include it in the full version [1].

Our next result states then that the running time of the algorithm of Theo-
rem 1 is tight under the Exponential Time Hypothesis (ETH) (see the Prelimi-
naries section for definitions).

Theorem 2. Unless ETH fails, there is no algorithm that determines the min-
imum size of a directed feedback vertex set or of a directed feedback arc set in a
given digraph in time 2o(t log t) ·nO(1), where t is the treewidth of the input graph
and n is the number of its vertices.

The proof of Theorem 2 uses the approach of Lokshtanov et al. [14] for prov-
ing slightly super-exponential lower bounds for the complexity of parameterized
problems. More precisely, we give a parameterized reduction from the k × k Hit-
ting Set with thin sets problem, for which a lower bound excluding running time
2o(k log k) · nO(1) under ETH was given in [14]. As an intermediate step, we use
problems asking for permutations that satisfy certain constraints; we remark
that somewhat similar constraint satisfaction problems, though with different
constraints, were previously studied by Kim and Gonçalves [11].

Finally, we move to the setting of planar graphs, where we prove that the
running time can be improved to 2O(t) · nO(1).

Theorem 3. There is an algorithm that given a planar digraph G of treewidth
t on n vertices, runs in time 2O(t) · nO(1) and determines the minimum size of
a directed feedback vertex set in G.
2 Throughout this paper, the treewidth of a directed graph is defined as the treewidth

of its underlying undirected graph.

68 M. Bonamy et al.

It is well known that the treewidth of a planar graph on n vertices is bounded
by O(

√
n); see e.g. [7]. This yields the following.

Corollary 1. There is an algorithm that given a planar digraph G on n vertices,
runs in time 2O(

√
n) and determines the minimum size of a directed feedback

vertex set in G.

Note that the algorithm of Corollary 1 is tight under ETH, due to the afore-
mentioned simple reduction from Vertex Cover to DFVS which preserves pla-
narity. Since Vertex Cover on planar graphs cannot be solved in time 2o(

√
n)

under ETH (see [5, Theorem 14.6]), the same lower bound carries over to DFVS
on planar digraphs (implying also a tight lower bound of 2o(t) · nO(1) for the
parameterization by treewidth on planar digraphs).

The proof of Theorem 3 is perhaps conceptually the most interesting part
of this work. The basic idea is to use sphere-cut decompositions of plane
graphs [6,20]. Namely, as observed by Dorn et al. [6], from the results of Sey-
mour and Thomas [20] it follows that every plane graph admits an optimum-
width branch decomposition that respects the plane embedding in the following
sense: each subgraph corresponding to a subtree of the decomposition is embed-
ded into a disk so that the interface of the subgraph—vertices adjacent to the
remainder of the graph—are embedded on the boundary of the disk. Such a
branch decomposition is called a sphere-cut decomposition. Since branchwidth is
linearly related to treewidth, in the proof of Theorem3 we may focus on branch
decompositions instead of tree decompositions.

As shown by Dorn et al. [6], the topological properties of sphere-cut decom-
position can be exploited algorithmically to bound the number of relevant states
in dynamic programming. This idea is instantiated in the technique of Catalan
structures where for some connectivity problems, like Hamiltonian Cycle, the
fact that the solution cannot self-intersect in the plane leads to an improvement
on the number of states from 2O(b log b) to 2O(b); here, b is the width of the con-
sidered sphere-cut decomposition. However, in the case of DFVS we cannot use
Catalan structures directly, since we are not building any connected structure
whose plane embedding would impose useful constraints.

Our main contribution here is that nevertheless, an improved upper bound on
the number of relevant states can be shown, with a conceptually new reasoning.
Consider a directed graph G embedded into a disk Δ and a subset T of its
vertices that are placed on the boundary of Δ. Let the connectivity pattern
induced by G on T be the reachability relation in G restricted to T 2: (s, t) are
in the connectivity pattern if and only if in G there is a path from s to t. The
crucial combinatorial statement (see Theorem 5) is as follows: the number of
different connectivity patterns on T that may be induced by different digraphs
G embedded in Δ is bounded by 2O(|T |); note that the naive bound would
be 2O(|T |2). This directly provides the sought upper bound on the number of
relevant states in dynamic programming on a sphere-cut decomposition, leading
to the proof of Theorem 3. To prove this statement, we show that every realizable
connectivity pattern can be encoded using a constant number of simpler relations,

On Directed Feedback Vertex Set Parameterized by Treewidth 69

each forming a directed outerplanar graph on |T | vertices; the number of different
such digraphs is 2O(|T |). In the proof that such an encoding is possible we use
the result of Gyárfás that circle graphs are χ-bounded [8,9].

Organization. In Sect. 2 we establish notation and recall known relevant results.
Section 3 concerns the main ingredient of the proof of Theorem3, namely the
combinatorial upper bound on the number of different connectivity patterns
induced by disk-embedded directed graphs. Section 4 contains the hardness
reduction for Theorem2. Due to space restrictions the proofs of Theorem 3 and 1
and some proofs from Sects. 3 and 4 are deferred to the full version of this
paper [1]. In these sections, theorems with deferred proofs are marked with †.

2 Preliminaries

Let [k] := {1, 2, . . . , k}, and use standard graph notation, see e.g. [5]. The clique
number of graph G is denoted ω(G), the chromatic number χ(G).

Chords and Circle Graphs: A chord is an unordered pair of distinct points on
a circle, called endpoints of the chord; one may think of it as a straight line
segment between its endpoints. Two chords {a, a′}, {b, b′} of a circle cross if
their endpoints are all distinct and a, b, a′, b′ occur in this order on the circle
(clockwise or counter-clockwise). Intuitively this corresponds to the straight line
segments aa′ and bb′ intersecting inside the circle. A circle graph is a graph
whose vertices correspond to chords of a circle so that two vertices are adjacent
if and only if the corresponding chords cross. A circle graph with directed chords
is a circle graph in which every chord is directed; that is, it is an ordered pair.
A directed chord with tail a and head b is denoted by (a, b). Let T be a finite set
of points on a circle and let R ⊆ T 2 be a set of chords (directed or undirected).
A crossing is a pair of crossing chords in R. The circle graph induced by R is
the one with R as the vertex set where two chords from R are adjacent if they
cross.

As introduced by Gyárfás [10], a class C of graphs closed under induced
subgraphs is χ-bounded if there exists a function f : N → N such that for every
graph G ∈ C we have χ(G) ≤ f(ω(G)). Gyárfás [8,9] proved the following.

Theorem 4 ([8,9]). The class of circle graphs is χ-bounded.

ETH: The Exponential Time Hypothesis (ETH) states that for some c > 0,
there is no algorithm for 3SAT with running time O(2cn), where n is the num-
ber of variables of the input formula. ETH has served as a basic assumption for
countless complexity lower bounds of computational problems. We refer to [5,
Chap. 14] for a comprehensive overview of applications in parameterized com-
plexity.

70 M. Bonamy et al.

3 Connectivity Patterns

In this section we present the main combinatorial result leading to the proof of
Theorem 3, which is a reduction of the number of relevant dynamic programming
states in the planar setting. This is done by bounding the number of “connec-
tivity patterns” that can be induced by directed graphs embedded in a disk.

Suppose T is a finite set. A connectivity pattern on T is any quasi-order on
T , that is, a reflexive and transitive relation P ⊆ T 2. For a directed graph G
and a vertex subset T ⊆ V (G), we define the connectivity pattern induced by G
on T to be the reachability relation on T in G: (s, t) is in the relation iff there
is a path in G from s to t.

The main goal of this section is to prove a result that roughly states the
following: for a directed graph G drawn in a closed disk, with T be the vertices
lying the boundary of the disk, there are only 2O(|T |) different possibilities for the
connectivity pattern that G may induce. See Theorem 5 for a formal statement.
As mentioned in the introduction, this result will be our main tool for limiting
the number of relevant states in dynamic programming for Directed Feedback
Vertex Set on planar graphs. Note that in general directed graphs, the number
of different connectivity patterns induced on a vertex subset T may be as large
as 2Θ(|T |2). For instance, any subset of pairs with tail in the first half of T and
head in the second half already gives that many possibilities.

The idea of the proof is that such connectivity patterns induced by directed
planar graphs embedded in a disk can be generated from simpler relations, which
contain enough pairs to infer all the other ones from planarity. This is formalized
in the following definition.

Definition 1. For a set T of points on a circle and a relation R ⊆ T 2, define
the connectivity pattern on T generated by R, denoted gen(R), as follows: a pair
(s, t) ∈ T 2 is included in gen(R) if and only if for each partition of the circle
into two disjoint arcs Xs,Xt such that s ∈ Xs and t ∈ Xt, there exist s′ ∈ Xs

and t′ ∈ Xt which satisfy (s′, t′) ∈ R.

In the above definition, as well as throughout this whole section, arcs on a
circle may be open or closed from either side, unless explicitly stated.

It is easy to check that R ⊆ gen(R) and gen(R) is indeed reflexive and
transitive, for any R ⊆ T 2. Hence gen(R) also contains the reflexive transitive
closure of R, but it may be much larger still. Furthermore, one can observe that
gen(gen(R)) = gen(R), but we will not use this property. We now show that a
connectivity pattern induced by a graph is generated by itself; the goal will be
then to find simpler relations generating this pattern.

Lemma 1. Let G be a planar digraph drawn in a disk Δ, T be a subset of
vertices drawn on the boundary of Δ, and P be the connectivity pattern on T
induced by G. Then gen(P) = P .

Proof. Let C be the boundary of Δ; we may assume that C is a circle. Clearly
P ⊆ gen(P). Now assume that (s, t) ∈ gen(P), that is, for each partition of C

On Directed Feedback Vertex Set Parameterized by Treewidth 71

into two disjoint arcs Xs,Xt such that s ∈ Xs and t ∈ Xt, there exist s′ ∈ Xs

and t′ ∈ Xt which satisfy (s′, t′) ∈ P . We will show that (s, t) ∈ P .
Assume the contrary, that is, (s, t) /∈ P . Define Ts = {r ∈ T : (s, r) ∈ P}, see

Fig. 1. Let Xt be the largest arc on C that contains t and is disjoint from Ts;
this is well-defined since t /∈ Ts and s ∈ Ts. Define Xs = C \ Xt, thus (Xs,Xt)
is a partition of C into two disjoint arcs. Since s ∈ Ts, we have s /∈ Xt and
thus s ∈ Xs. From our assumption that (s, t) ∈ gen(P), there exist s′ ∈ Xs and
t′ ∈ Xt that satisfy (s′, t′) ∈ P .

We have two cases: either s′ ∈ Ts or s′ /∈ Ts. If s′ ∈ Ts, then (s, s′) ∈ P
and consequently (s, t′) ∈ P , since P is transitive due to being the reachability
relation induced by G. But then t′ ∈ Ts and hence t′ /∈ Xt, a contradiction. Now
assume s′ /∈ Ts; in particular s′ �= s. Let us move along the circle from s to t
such that on the way we meet the point s′. Because the arc Xt was chosen to
be the largest possible, between s′ and t we meet a point r ∈ Ts. The arc Xt

is connected, so between s and r we cannot meet any point from the set Xt, in
particular t′. That is, s, s′, r, t′ appear in this order on the circle (either clockwise
or counterclockwise). Since r ∈ Ts, we have (s, r) ∈ P and (s′, t′) ∈ P . Therefore,
in G there are directed paths from s to r and from s′ to t′. These two paths
must intersect since they are drawn in a disk, which yields a path in G from s
to t′. We conclude that t′ ∈ Ts and hence t′ /∈ Xt, a contradiction. 	

s

r

t

s′

t′

Xs

Xt

Fig. 1. Proof of Lemma 1: the induced
pattern P shown as arrows, points in Ts

depicted in green. (Color figure online)

a b

a′b′

Xs

Xt

u

v

Fig. 2. Proof of Lemma 2.

The next lemma shows that generated connectivity patterns are closed under
adding directed chords (a, b′) whenever (a, a′) and (b, b′) cross. This operation
(and its inverse) is the only one we will use to simplify the generating relation.

Lemma 2. Let T be a finite set of points on a circle and let R ⊆ T 2. Let
a, b, a′, b′ ∈ T be distinct points that appear in this order on the circle, such that
(a, a′) ∈ R and (b, b′) ∈ R. Let R′ = R ∪ {(a, b′)}. Then gen(R) = gen(R′).

Proof. It is enough to prove that for each partition of the circle into two disjoint
arcs Xs,Xt, the following two conditions are equivalent:

72 M. Bonamy et al.

(1) There exist s′ ∈ Xs and t′ ∈ Xt which satisfy (s′, t′) ∈ R.
(2) There exist s′ ∈ Xs and t′ ∈ Xt which satisfy (s′, t′) ∈ R′.

Of course (1) implies (2). Now assume (2). If (s′, t′) ∈ R the proof is finished,
so suppose (s′, t′) = (a, b′). Let u, v be the ends of the arc Xs, see Fig. 2. We
may assume without loss of generality that a, b, a′, b′ occur clockwise on the
circle and are different from u, v; the latter is achieved by moving u, v slightly to
points not belonging to T . Let Ca,b be the arc of the circle from a (inclusive) to
b (exclusive), going clockwise, and define Cb,a′ , Ca′,b′ , Cb′,a analogously; these
four arcs form a partition of the circle. Since a ∈ Xs and b′ ∈ Xt, we may assume
that u ∈ Cb′,a and v /∈ Cb′,a. If v ∈ Ca,b or v ∈ Cb,a′ , then a ∈ Xs and a′ ∈ Xt

satisfy (a, a′) ∈ R. Otherwise, if v ∈ Ca′,b′ , then b ∈ Xs and b′ ∈ Xt satisfy
(b, b′) ∈ R. In both cases, (1) holds. 	

Next, we prove that the generating relation can be simplified as long as it
contains 4 pairwise crossing chords in the right order. The lemma after that
shows how to obtain such chords from any set of 7 pairwise crossing chords.

Lemma 3 (†). Let T be a finite set of points on a circle and let R ⊆ T 2. Let
a, b, c, d, x, y, z, u ∈ T be pairwise different points appearing in this order on the
circle (clockwise or counterclockwise), such that (a, x), (b, y), (c, z), (d, u) ∈ R.
Define

R′ = (R \ {(b, y), (c, z)}) ∪ {(b, z), (c, y)}.

Then gen(R′) = gen(R) and the number of crossings in R′ is smaller than in R.

Lemma 4 (†). Suppose H is a circle graph with directed chords and ω(H) ≥ 7.
Then there are distinct points a, b, c, d, x, y, z, u that appear in clockwise order on
the circle such that (a, x), (b, y), (c, z), (d, u) are pairwise crossing chords of H.

Lemmas 3 and 4 allow us to conclude that any generating relation can be
iteratively simplified until it contains no set of 7 pairwise crossing chords.

Lemma 5. Let G be a planar graph drawn in a disk Δ, let T be a subset of
vertices of G drawn on the boundary of Δ, and let P ⊆ T 2 be the connectivity
pattern on T induced by G. Then there exists a relation R ⊆ T 2 such that
gen(R) = P and the circle graph induced by R has clique number at most 6.

Proof. By Lemma 1 there exists a relation R ⊆ T 2 (namely R = P) such that
gen(R) = P . Choose R such that gen(R) = P and the number of crossings
in R is as small as possible. Without loss of generality assume that R does
not contain pairs of the form (s, s) for s ∈ T , as such pairs may be removed
without changing the generated relation; thus R is a set of directed chords with
endpoints in T . Let ω be the clique number of the circle graph induced by R. If
ω ≤ 6 we are done, so suppose ω ≥ 7. By Lemma 4, there are pairwise different
points a, b, c, d, x, y, z, u that appear in clockwise order on the circle such that
(a, x), (b, y), (c, z), (d, u) ∈ R. Define R′ = (R \ {(b, y), (c, z)}) ∪ {(b, z), (c, y)}.
By Lemma 3, gen(R′) = gen(R) = P and R′ has fewer crossings than R, a
contradiction. 	

On Directed Feedback Vertex Set Parameterized by Treewidth 73

Having obtained a generating relation with no large set of pairwise crossing
chords, we will later partition it into a small number of sets of pairwise non-
crossing chords using the χ-boundedness of circle graphs (Theorem4). First,
however, we bound the number of such non-crossing sets as follows.

Lemma 6 (†). Let T be a finite set of points on a circle. Then every set of
pairwise non-crossing chords with endpoints in T has at most 2|T | − 3 chords,
and there are 2O(|T |) different such sets.

We are now ready to prove the main theorem of this section.

Theorem 5. Let T be a set of n points on the boundary of a closed disk Δ.
There exists a family R of relations R ⊆ T 2 such that |R| = 2O(n) and the
following property is satisfied. For every planar digraph G drawn in Δ such that
T ⊆ V (G), the connectivity pattern induced by G on T is generated by some
relation in R.

Proof. Denote by R the family of all sets of directed chords R ⊆ T 2 such that
the circle graph induced by R has clique number at most 6. By Lemma 5 this
family satisfies the claimed property and it remains to bound its size.

By χ-boundedness of circle graphs (Theorem4), there exists a number χmax

such that for R ∈ R, the chromatic number of the circle graph induced by R is
at most χmax. The chords of any circle graph induced by some R ∈ R can thus
be partitioned into χmax sets (possibly empty) such that no two chords in the
same set cross. By Lemma 6, the number of possibilities to choose such a set of
undirected, pairwise non-crossing chords is 2O(n), and any such set contains at
most 2n − 3 chords. Hence there are at most 22n−3 possibilities to orient these
chords. We conclude that indeed |R| ≤ (2O(n) · 22n−3)χmax = 2O(n). 	

With Theorem 5 in hand, the proof of Theorem3 boils down to applying
standard dynamic programming algorithm on a sphere-cut decomposition of
the input graph. Each solved subproblem corresponds to a subgraph H of G
embedded in a disk Δ, where each vertex of H that has a neighbor outside of
H is embedded on the boundary of Δ; call the set of these vertices B. Then for
each partition of B into X and T , and for each connectivity pattern P on T that
can be induced by a digraph embedded in Δ, we compute that smallest size of a
subset Y ⊆ V (H) \B such that H − (X ∪Y) induces P on T ; if there is no such
subset, we store +∞. It is straightforward to give recursive equations for this
formulation. Moreover, Theorem3 gives an upper bound of 2O(t) on the number
of values computed for each H, where t is the treewidth, implying the running
time of 2O(t) ·nO(1). Details, including an overview of sphere-cut decompositions,
can be found in the full version [1].

4 Lower Bound

In this section we prove Theorem 2. The hardness reduction happens to work for
both problems, producing exactly the same instances. We reduce from a problem
shown hard by Lokshtanov et al. [14] (see also [5, Theorem 14.16]):

74 M. Bonamy et al.

k × k Hitting Set with thin sets
Input: Family F of subsets of [k] × [k], each containing at most one element
from each row
Question: Is there a set X containing exactly one vertex from each row of
[k] × [k] such that X ∩ F �= ∅ for each F ∈ F?

Theorem 6 ([14]). Unless ETH fails, k × k Hitting Set with thin sets
cannot be solved in time 2o(k log k) · nO(1), where n is the number of input sets.

We first define an intermediate problem. An n-permutation d-constraint is a
tuple (i1, . . . , id) ∈ [n]d of d different indices. A permutation σ : [n] → [n] satisfies
such a constraint if σ(i1) < σ(i2) < · · · < σ(id). A k-CNF n-permutation d-
formula is a conjunction of clauses, each of which is a disjunction of at most k
n-permutation d-constraints. The length of a clause is the number of disjuncts
(constraints) in it. Satisfaction of such a formula by a permutation σ : [n] → [n]
is defined naturally.

We first show hardness for the satisfiability of 3-formulas, with the parameter
k denoting both the length of clauses and the number of indices on which the
permutation is defined.

Lemma 7. Unless ETH fails, the satisfiability of a given k-CNF k-permutation
3-formula cannot be decided in time 2o(k log k) ·nO(1), where n is the formula size.

Proof (sketch†). We only give the construction for the reduction, deferring the
proof of its correctness to the appendix. Without loss of generality suppose k ≥ 3.
Let F be the input instance of k×k Hitting Set with thin sets. We construct
in polynomial time a k-CNF (2k +1)-permutation 3-formula whose satisfiability
is equivalent to the input instance F , proving the claim by Theorem6.

To an initially empty formula φ we add the following clauses, each with a
single 3-constraint, to ensure that {k + 1, . . . , 2k + 1} are ordered increasingly
by the permutation:

(k + 1, k + 2, k + 3), (k + 2, k + 3, k + 4), . . . , (2k − 1, 2k, 2k + 1).

Then, for each i ∈ [k] we add a clause with a single 3-constraint (k +1, i, 2k +1).
Finally, for each set F ∈ F , we add the following clause CF to φ: the clause CF

is the disjunction of constraints (k + j, i, k + j + 1) over all elements (i, j) of F .
Since F contains at most one element of each row, the clause CF is a disjunction
of at most k constraints. 	

Next, we show hardness for larger, but structured 2-formulas. For a 3-CNF
n-permutation 2-formula φ, the incidence graph I(φ) of φ is the bipartite graph
defined as follows: the vertex set is formed by indices from [n] on one side and
clauses of φ on the other side, and there is an edge between every clause and
each index that occurs in some constraint of the clause. Thus, each clause has
degree at most 6 in I(φ).

On Directed Feedback Vertex Set Parameterized by Treewidth 75

Lemma 8. Unless ETH fails, the satisfiability of a given 3-CNF n-permutation
2-formula with incidence graph of treewidth t cannot be decided in time 2o(t log t) ·
nO(1). This holds even for formulas in which every clause has length exactly 3
or 1, and has no repeating indices.

Proof (sketch†). Let φ be a k-CNF k-permutation 3-formula. We will construct
in polynomial time a 3-CNF n-permutation 2-formula ψ for some n = O(k2)
such that ψ is satisfiable iff φ is and the incidence graph of ψ has treewidth
O(k). The claim then follows by Lemma 7.

The idea is that every 3-constraint (a, b, c) can be thought of as a conjunction
(a, b) ∧ (b, c) of two 2-constraints (expressing σ(a) < σ(b) ∧ σ(b) < σ(c)).
Intuitively, we can then transform the obtained ‘non-CNF formula’ into a 3-
CNF in a standard way: a clause (x ∧ x′) ∨ (y ∧ y′) ∨ (z ∧ z′) ∨ . . . would be
replaced by

(p1) ∧ (¬p1 ∨ x ∨ p2) ∧ (¬p2 ∨ y ∨ p3) ∧ (¬p3 ∨ z ∨ p4) ∧ . . .

∧ (¬p1 ∨ x′ ∨ p2) ∧ (¬p2 ∨ y′ ∨ p3) ∧ (¬p3 ∨ z′ ∨ p4) ∧ . . . ∧ (¬pn)

where p1, p2, p3, . . . , pn are fresh auxiliary variables not appearing anywhere else.
Formally, we will ask for n-permutations with n := k + (2k + 2)k; the

additional indices are in order to make room for ‘auxiliary variables’. We con-
struct ψ as an initially empty conjunction. Each clause C of φ is a disjunc-
tion C1 ∨ · · · ∨ Ck′ (k′ ≤ k) of some 3-constraints Ci = (ai, bi, ci) ∈ [k]3. Let
j1, j2, . . . , j2k′+2 ∈ [n] \ [k] be some indices that were not yet used in any con-
structed clause. For each i ∈ [k′], we add the following clauses Di and D′

i to
ψ:

Di = (j2i, j2i−1) ∨ (ai, bi) ∨ (j2i+1, j2i+2)
D′

i = (j2i, j2i−1) ∨ (bi, ci) ∨ (j2i+1, j2i+2)

We then add two clauses with a single constraint each: Z = (j1, j2) and Z ′ =
(j2k′+2, j2k′+1). Repeating this for each clause C of φ concludes the construction.
Let W (C) be the set consisting of clauses and indices used for C: clauses Z,Z ′,
clauses Di,D

′
i for each i ∈ [k′], and indices j1, j2, . . . , j2k′+2 as above. Then

[k] together with sets W (C) for clauses C of φ form a partition of the vertex
set of the incidence graph I(ψ) of the constructed formula. Observe that if we
remove all the k vertices corresponding to [k], the only remaining edges in I(ψ)
have both endpoints within the same W (C) for some clause C of φ, and each
W (C) has size at most 3k + 4. This allows to bound the treewidth of I(ψ) by
O(k). Details and the correctness proof of the construction can be found in the
appendix. 	

We proceed to reducing the satisfiability problem for permutation formulas
as described in Lemma 8 to Directed Feedback Vertex (Arc) Set. Permuta-
tions of [n] will be encoded as orderings of a subset of n ‘terminal’ vertices in the
constructed digraph, identified with indices from [n]. The digraph will contain
gadgets ensuring that a permutation satisfies the original 3-CNF n-permutation

76 M. Bonamy et al.

2-formula if and only if the corresponding ordering of terminals can be extended
to a topological ordering of the whole digraph, after deleting a prescribed number
of vertices (edges). The key element is the or-gadget depicted in Fig. 3, which
encodes a clause that is a disjunction of three 2-constraints. Note that this
or-gadget has 6 terminal vertices, named xi, x

′
i for i ∈ [3]. The final graph is

obtained essentially by taking disjoint copies of the or-gadget and identifying
their terminal vertices with terminals.

Lemma 9. For an ordering ≺ of the terminal vertices of the or-gadget, ≺ can be
extended to a topological ordering of the or-gadget with some 2 vertices (edges)
deleted if and only if x1 ≺ x′

1 or x2 ≺ x′
2 or x3 ≺ x′

3. Furthermore, every
subgraph of the or-gadget obtained by deleting at most one non-terminal vertex
or an edge from it, contains a directed cycle.

Fig. 3. The or-gadget,
with terminal vertices
marked as squares.

Proof. Given an ordering ≺ of the terminal vertices
such that x1 ≺ x′

1, one can remove e2 and e3, or any
two vertices incident to them, to create an acyclic
subgraph of the or-gadget that admits a topological
ordering extending ≺. The cases of orderings ≺ with
x2 ≺ x′

2 and with x3 ≺ x′
3 are symmetric. Conversely,

any removal of two vertices or edges from the or-
gadget leaves some directed path xi → x′

i (i ∈ [3])
unharmed, implying xi ≺ x′

i in any topological order-
ing of the obtained subgraph. It is easy to check that
two non-terminal vertices or edges of the or-gadget
have to be removed to make it acyclic. 	

Proof (of Theorem 2, sketch†). We give a reduction from the satisfiability prob-
lem for 3-CNF n-permutation 2-formulas to DFVS and DFAS. More precisely,
on the input of the reduction we are given a 3-CNF n-permutation 2-formula
ψ with an incidence graph of treewidth t, where we assume that every clause
of ψ has length exactly 3 or 1, and has no repeating indices. We will construct
in polynomial time an equivalent instance of (the decision variant of) DFVS
(DFAS) of treewidth O(t). This will prove the claim by Lemma 8.

We construct a digraph G starting from [n] as the vertex set and no edges.
For each clause of length 1 in ψ, let (a, a′) ∈ [n]2 be the unique constraint in
it. Then we add an edge from a to a′ to G. For each clause of length 3 in ψ,
let (a1, a

′
1), (a2, a

′
2), (a3, a

′
3) ∈ [n]2 be its constraints. Then we add a new copy

of the or-gadget to G, and for each i ∈ [3] we identify xi and x′
i with ai and a′

i,
respectively. Finally, we set k, the target size of a directed feedback vertex (arc)
set, to be twice the number of clauses of length 3 in ψ. The obtained instance
(G, k) can be treated both as a DFVS instance and as a DFAS instance.

To bound the treewidth of G, observe that G can be obtained from I(ψ) by
replacing each vertex w corresponding to a clause with a copy of the or-gadget
(if it represents a clause of length 3), or with just an edge between its original
neighbors (if it represents a clause of length 1). 	

On Directed Feedback Vertex Set Parameterized by Treewidth 77

5 Concluding Remarks

Our results do not provide any direct insight into the complexity of the classic
parameterization: by the target solution size k. We hope, however, that the com-
binatorial tools we used in the proof of Theorem3 may be useful for improving
the running time for DFVS on planar digraphs, say to running time 2O(k) ·nO(1),
or for obtaining a somewhat incomparable running time nO(

√
k). Observe that

there is a large gap between known results in this setting: while the classic
reduction from Vertex Cover on planar graphs gives a lower bound excluding
running time 2o(

√
k)·nO(1) under ETH, no faster algorithm than 2O(k log k)·(n+m)

from general digraphs [15] is known.

References

1. Bonamy, M., Kowalik, L., Nederlof, J., Pilipczuk, M., Soca�la, A., Wrochna, M.:
On directed feedback vertex set parameterized by treewidth. arXiv abs/1707.01470
(2017)

2. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5), 21:1–21:19 (2008)

3. Chitnis, R.H., Cygan, M., Hajiaghayi, M.T., Marx, D.: Directed subset feedback
vertex set is fixed-parameter tractable. ACM Trans. Algorithms 11(4), 28:1–28:28
(2015)

4. Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed
multiway cut parameterized by the size of the cutset. SIAM J. Comput. 42(4),
1674–1696 (2013)

5. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

6. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms
on planar graphs: exploiting sphere cut decompositions. Algorithmica 58(3), 790–
810 (2010)

7. Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar
graphs. J. Graph Theory 51(1), 53–81 (2006)

8. Gyárfás, A.: On the chromatic number of multiple interval graphs and overlap
graphs. Discret. Math. 55(2), 161–166 (1985)

9. Gyárfás, A.: Corrigendum: on the chromatic number of multiple interval graphs
and overlap graphs. Discret. Math. 62(3), 333 (1986)

10. Gyárfás, A.: Problems from the world surrounding perfect graphs. Applicationes
Mathematicae 19(3–4), 413–441 (1987)

11. Kim, E.J., Gonçalves, D.: On exact algorithms for the permutation CSP. Theor.
Comput. Sci. 511, 109–116 (2013)

12. Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Fixed-parameter
tractability of Multicut in directed acyclic graphs. SIAM J. Discret. Math. 29(1),
122–144 (2015)

13. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: new tools
for kernelization. In: FOCS 2012, pp. 450–459. IEEE Computer Society (2012)

14. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized
problems. In: SODA vol. 2011, pp. 760–776 (2011)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

78 M. Bonamy et al.

15. Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: A linear time parameterized algo-
rithm for directed feedback vertex set. CoRR abs/1609.04347 (2016)

16. Lovász, L.: On two minimax theorems in graph. J. Comb. Theory, Ser. B 21(2),
96–103 (1976)

17. Lucchesi, C.L., Younger, D.H.: A minimax theorem for directed graphs. J. London
Math. Soc 17, 369–374 (1978)

18. Pilipczuk, M., Wahlström, M.: Directed multicut is W [1]-hard, even for four ter-
minal pairs. In: SODA 2016, pp. 1167–1178. SIAM (2016)

19. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer,
Heidelberg (2003)

20. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

Optimality Program in Segment
and String Graphs

Édouard Bonnet1 and Paweł Rzążewski2(B)

1 ENS Lyon, LIP, Lyon, France
edouard.bonnet@dauphine.fr

2 Faculty of Mathematics and Information Science,
Warsaw University of Technology, Warsaw, Poland

p.rzazewski@mini.pw.edu.pl

Abstract. Planar graphs are known to allow subexponential algorithms
running in time 2O(

√
n) or 2O(

√
n log n) for most of the paradigmatic prob-

lems, while the brute-force time 2Θ(n) is very likely to be asymptotically
best on general graphs. Intrigued by an algorithm packing curves in
2O(n2/3 log n) by Fox and Pach [SODA’11], we investigate which prob-
lems have subexponential algorithms on the intersection graphs of curves
(string graphs) or segments (segment intersection graphs) and which
problems have no such algorithms under the ETH (Exponential Time
Hypothesis). Among our results, we show that, quite surprisingly, 3-
Coloring can also be solved in time 2O(n2/3 logO(1) n) on string graphs
while an algorithm running in time 2o(n) for 4-Coloring even on axis-
parallel segments (of unbounded length) would disprove the ETH. For
4-Coloring of unit segments, we show a weaker lower bound, excluding
a 2o(n2/3) algorithm (under the ETH). The construction exploits the cel-
ebrated Erdős-Szekeres theorem. The subexponential running time also
carries over to Min Feedback Vertex Set, but not to Min Dominat-
ing Set and Min Independent Dominating Set.

1 Introduction

Most combinatorial optimization and decision problems admit subexponential
algorithms when restricted to planar graphs. More precisely, they can be solved
in time 2O(

√
n), or 2Õ(

√
n) on planar graphs with n vertices, while under the

ETH (Exponential Time Hypothesis, which asserts that 3-Sat cannot be solved
in subexponential time [24,25]) they do not admit an algorithm running in time
2o(n) on general graphs. The former is due to the facts that planar graphs have
treewidth O(

√
n) and that we have efficient algorithms parameterized by the

treewidth tw of the graph, namely running in 2O(tw)nO(1), or 2Õ(tw)nO(1).
The so-called bidimensionality theory [10,12–14] pushes this square-root phe-

nomenon further by yielding 2O(
√

k)nO(1) algorithms where k is the targeted size
of a solution (think for example of the problems of finding a maximum indepen-
dent set or a minimum dominating set of size k). In a nutshell, it exploits a deep
c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 79–90, 2018.
https://doi.org/10.1007/978-3-030-00256-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_7&domain=pdf

80 É. Bonnet and P. Rzążewski

structural result by Robertson, Seymour, and Thomas [38]: planar graphs with
treewidth tw have a Θ(tw)-by-Θ(tw) grid as a minor (i.e., any graph obtained
by deleting vertices and edges, and contracting edges). Thus, if the presence of
a large grid minor makes the problem trivial (as in, one can always answer yes
or always answer no), then one only has to solve efficiently instances with low
treewidth; which, as we noted, can often be done. The claimed running time
is obtained by defining large grids as Θ(

√
k)-by-Θ(

√
k), since their absence as

minors implies that the treewidth is in O(
√

k). The bidimensionality theory is
also used to obtain approximation schemes and linear kernels and could be gen-
eralized to graphs with bounded genus and graphs excluding a fixed minor [11].

A natural line of research is to generalize or extend the subexponential
(parameterized) algorithms to classes of graphs which do not fall into those cat-
egories. For geometric intersection graphs, the situation is much richer than for
planar graphs. For instance, Marx and Pilipczuk already observed that packing
problems (of the kind of Max Independent Set) are more broadly subject to
subexponential algorithms – running typically in nO(

√
k) – than covering prob-

lems (of the kind of Min Dominating Set) – for which nO(k) is essentially
optimal under the ETH [33,34].

We briefly survey the existing results concerning subexponential algorithms
on geometric intersection graphs. A prominent role is played by intersection
graphs of families of fat objects, i.e., objects for which the aspect ratio (length
divided by width) is bounded. We highlight that fat objects, and in particular
disks and squares, often allow fast algorithms and the so-called square-root phe-
nomenon. As we will see, subexponential algorithms are less frequent on intersec-
tion graphs of curves and segments but nevertheless present such as exemplified
by Max Independent Set, 3-Coloring, and Min Feedback Vertex Set.

Subexponential Algorithms on Geometric Intersection Graphs. By a ply of a family
of geometric objects we denote the maximum number of objects covering a single
point. Smith and Wormald show that for any collection of n convex fat objects with
ply p there is a balanced separator of sizeO(

√
np) [42]. This leads to subexponential

algorithms when the ply is constant, or in general for problems becoming trivial
when the ply is too large, such as k-Coloring. The 2Õ(

√
nk)-time algorithm that

this win-win provides for coloring n fat objects, say disks, with k colors is shown
essentially optimal under the ETH by Biró et al. [5].

A next step may consist of designing FPT (with running time f(k)nO(1)) or
XP (with running time nf(k)) algorithms where the dependency in the param-
eter is subexponential (for problems of the form “find k vertices such that. . . ”).
Using a shifting argument á la Baker [4], Alber and Fiala obtain a nO(

√
k)-time

algorithm to decide if one can find k disjoint unit disks or squares among n [3].
Marx and Pilipczuk generalize this result to packing k disjoint polygons among
n in the same time [33,34]. Their approach is based on guessing a small separator
in the medial axis (i.e., the Voronoi diagram of polygons) of a supposed solu-
tion, as suggested by Adamaszek and Wiese and Har-Peled to obtain QPTAS
for geometric packing problems [1,2,22].

Optimality Program in Segment and String Graphs 81

Marx showed that Max Independent Set and Min Dominating Set
in the intersection graphs of disks or squares are W[1]-complete, and therefore
unlikely to be FPT [32]. Those reductions also show that the nO(

√
k) algorithms

[33,34] are essentially optimal under the ETH. Fomin et al. [17] observed that
unit disks of bounded degree have treewidth O(

√
n) and used this fact to extend

bidimensionality to unit disk graphs for a handful of problems. Recently, a super-
set of the previous authors gave 2O(

√
k)nO(1)-time algorithms for k-Feedback

Vertex Set, k-Path, k-Cycle, Exact k-Cycle [16].

Non-fat Objects: Segments and Strings. Segment intersection graphs (or seg-
ment graphs in short) are the intersection graphs of straight-line segments in
the plane. They are called unit segments if all the segments of a representation
share the same length. For a fixed integer k, k-Dir is defined as the set of inter-
section graphs of segments, each parallel to one of fixed k directions. Strings
graphs are the intersection graphs of simple curves in the plane. Those curves
can be assumed polygonal without loss of generality. The vertices of the polyg-
onal curves in a geometric representation are called geometric vertices not to
confuse them with the actual vertices of the graph. As shown by Kratochvíl and
Matoušek, there are string graphs with n vertices, which require 2Ω(n) geometric
vertices in any string representation with polygonal curves [29].

A systematic study of segment graphs and their subclasses was initiated by
Kratochvíl and Matoušek [27]. It is interesting to point out that every planar
graph is a segment graph, as shown by Chalopin and Gonçalves [9] (this was a
long-standing conjecture by Scheinerman [41], see also [21]).

The class of string graphs is very general, as it includes split graphs (i.e.,
graphs whose vertices can be partitioned into two sets inducing a clique and an
independent set), intersection graphs of bodies (i.e., compact shapes with non-
empty interior), or incomparability graphs (i.e., graphs whose vertex set is given
by the set of elements of a poset, and edges join elements that are incomparable).

Biró et al. showed that even though coloring disks or more generally fat
objects with a constant number of colors can be solved in 2Õ(

√
n) [5], 6-coloring

axis-parallel segments (2-Dir) in time 2o(n) would refute the ETH. This suggests
that subexponential algorithms are less frequent on the intersection graphs of
non-fat objects such as segments and strings. On the other hand, Fox and Pach
presented a subexponential algorithm for Max Independent Set on string
graphs [18]. Their approach uses a win-win strategy and is based on the exis-
tence of balanced separators in string graphs. Fox, Pach, and Tóth showed that
string graphs with m edges have balanced separators of size O(m3/4 logm),
and conjectured that there is always a separator of size O(

√
m) [20]. Matoušek

showed that string graphs admit a balanced separator of size O(
√

m logm) [36].
Finally, recently Lee improved the result of Matoušek, proving the conjecture.

Theorem 1 (Lee [30]). Every string graph with m edges has a balanced sep-
arator of size O(

√
m). Moreover, it can be found in polynomial time, provided

that the geometric representation is given.

82 É. Bonnet and P. Rzążewski

Let us point out that this result generalizes the famous planar separator theorem
by Lipton and Tarjan [31], as planar graphs are string graphs and the number
of edges in a planar graph is linear in the number of vertices. This also shows
that Theorem 1 is best possible (up to the constants), as the planar separator
theorem is asymptotically tight.

Our Contributions. We show that the subexponential algorithm for Max Inde-
pendent Set in string graphs by Fox and Pach [18], running in time 2Õ(n2/3),
can be extended to 3-Coloring and Min Feedback Vertex Set. As in the
algorithm of Fox and Pach, the central idea is a win-win: either the graph is
rather sparse and the separator of Theorem 1 gives a speed-up, or the graph has
a high-degree vertex (used for 3-Coloring) or a large biclique (used for Min
Feedback Vertex Set) and an efficient branching can be performed. Refining
a lower bound of Biró et al. [5], we complement this former result by showing
that for any k � 4, k-Coloring cannot be solved in 2o(n) even on axis-parallel
segments, unless the ETH fails. The reduction relies on having segment lengths
with two different orders of magnitude. We therefore ask if unit segments could
allow a faster algorithm for k-Coloring for k � 4. Under the ETH, we provide
a stronger lower bound than the one for planar graphs (which refutes a running
time 2o(

√
n)) and show that unit segments cannot be k-colored in 2o(n2/3) for

any k � 4. Our construction uses the fact, closely related to the famous Erdős-
Szekeres [15] theorem, that any permutation on n totally ordered elements can
be partitioned into O(

√
n) monotone subsequences (see Knuth [26, Sect. 5.1.4]).

We then give tight ETH lower bounds for Min (Connected) Dominating
Set and Min Independent Dominating Set on segment graphs and Max
Clique on string graphs. For that, we design reductions whose number n of
produced segments is linear in N +M from satisfiability problems with N vari-
ables and M clauses. Indeed, the sparsification lemma of Impagliazzo et al. [23]
implies that those satisfiability problems are not solvable in 2o(N+M) unless the
ETH fails; which enables us to conclude that the problems are not solvable in
2o(n) under the ETH, on graphs with n vertices.

Although the NP-hardness of the mentioned problems is known for segment
intersection graphs [8,43], getting such linear reductions might be difficult.

For instance, while it is known that planar graphs are a subclass of segment
intersection graphs [9], implying the NP-hardness of all the problems of Table 1
except k-Coloring for k � 4 and Max Clique, this fact does not serve our
purpose since they can be solved in time 2O(

√
n) on planar graphs. The situation

is an interesting intermediate between planar and general graphs. Our objects
can intersect but we cannot afford crossover gadgets (at least not quadratically
many). Certain intersections create unwanted edges, whose importance we have
to tame. It is also noteworthy that segment/string graphs cannot be expanders
since if they have constant degree, by Theorem 1, they have treewidth Õ(

√
n).

Hence, we are deprived of the usual hardest instances.

Optimality Program in Segment and String Graphs 83

Table 1. Complexity bounds for classical problems on string and segment graphs. The
upper bounds work on string graphs. The lower bounds are designed on segment
graphs, unless precised otherwise. New results are indicated by the shaded background.
By p we denote the number of geometric vertices if a geometric representation is given.

2Õ(
√

n)pO(1) 2Õ(n2/3) 2Ω(
√

n)

3 2Õ(n2/3) 2Ω(
√

n)

k k � 4 2O(n) 2Ω(n)

k k � 4 2O(n) 2Ω(n2/3)

2Õ(n2/3) 2Ω(
√

n)

2O(n) 2Ω(n)

2O(n) 2Ω(n)

2O(n) 2Ω(n)

Geometric Representation and Robust Algorithms. In case of graphs with geo-
metric representations, it is important to distinguish between a graph itself (i.e.,
a pure abstract structure, for which we know that some geometric representation
exists), and the representation itself. Note that this is not the case with planar
graphs, as finding a plane embedding can be done in linear time [7].

Finding a segment or string representation of a graph was shown to be NP-
hard by Kratochvíl [28], and Kratochvíl and Matoušek [27], respectively. How-
ever, it was very unclear if the problems are in NP (which is usually the triv-
ial part of an NP-completeness proof). As mentioned above, Kratochvíl and
Matoušek [29] showed that some string graphs require a representation of expo-
nential size, which proved that the simple idea of exhaustively guessing the
representation cannot work for this problem. Finally, the NP-membership of rec-
ognizing string graphs was proven by Schaefer, Sedgwick, and Štefankovič [39].

The story of recognizing segment graphs is even more interesting. On the first
sight, the situation seems simpler than for strings, as the number of geometric
points in a segment representation is clearly polynomial in n. However, there
are segment graphs, whose every segment representation requires points with
coordinates doubly exponential in n, i.e., using 2Ω(n) digits (see Kratochvíl and
Matoušek [27], and McDiarmid and Müller [37]). Finally, the problem was shown
to be complete for the class ∃R (see Schaefer and Štefankovič [40]), i.e., the class
of problems reducible in polynomial time to deciding if a given existential formula
over the reals is true. This is a strong evidence that the problem is not in NP.
For a nice exposition of the ∃R-completeness proof, see Matoušek [35].

All this shows that a requirement of an explicit geometric representation of
an input graph may be a serious drawback of an algorithm. We call an algorithm
robust if it takes only an abstract structure as an input, and either computes the
solution, or concludes (correctly) that the input graph does not belong to the
desired class. On the one hand, our algorithms are robust, but work slightly faster

84 É. Bonnet and P. Rzążewski

if the input is given along with the geometric representation. On the other hand,
the lower bounds hold even if the geometric representation is given explicitly.

2 Upper Bounds

Fox and Pach showed that, on string graphs, a maximum independent set can
be computed in subexponential time:

Theorem 2 (Fox and Pach [18], Lee [30]). Max Independent Set can be
solved in time 2O(n2/3 log n) in string graphs with n vertices.

In their paper, they give a worse running time than the one claimed above,
because they used the O(m3/4 logm) separator theorem [20], which has been
recently improved to O(

√
m) [30]. The algorithm is a simple win-win argument:

if there is a vertex with degree at least n1/3, then we branch on including in in
the solution or not. Otherwise all degrees are smaller than n1/3, and a balanced
separator of size O(

√
m) = O(n2/3) can be used for divide-and-conquer.

The result of Fox and Pach was somewhat improved by Marx and Pilipczuk
[33,34] based on an approach introduced by Adamaszek, Har-Peled, and Wiese
[1]. However, their algorithm requires that the string graph is given with a rep-
resentation by polygonal curves on a polynomial number of geometric vertices.

Theorem 3 (Marx and Pilipczuk [33]). Max Independent Set can be
solved in time 2O(

√
n log n)pO(1) in string graphs with n vertices, where the strings

are given as polygonal curves on a total of p geometric vertices.

In a nutshell, the idea is to exhaustively guess a small balanced face-separator
in the Voronoi diagram of a supposed (although not known) fixed solution, and
solve recursively the two subinstances in the inside and outside of this separator.

If this approach does not seem to generalize easily to coloring problems, the
algorithm of Fox and Pach can be transported to 3-Coloring with a bit more
arguments. The algorithm even works for the more general List 3-Coloring
(in List k-Coloring each vertex v is equipped with a list L(v) ⊆ [k] and we
want to find a proper coloring, in which every vertex gets a color from its list).

Theorem 4. List 3-Coloring of a string graph with n vertices can be decided
in time 2O(n2/3 log n), even without geometric representation.

Proof. Consider an instance (G,L) of List 3-Coloring with n vertices. We
can assume that each list has two or three elements: if there is a vertex with
just one allowed color, we can fix this color and remove it from the list of each
neighbor. Let N be the sum of the lengths of the lists; clearly 2n � N � 3n.

First, assume that the maximum degree in G is at most n1/3, so the number m
of edges is O(n4/3). By Theorem 1, G has a balanced separator of size O(

√
m) =

O(n2/3). We can find this separator in polynomial time, if the representation
is given, or by exhaustive guessing in time nO(n2/3) = 2O(n2/3 log n), without a

Optimality Program in Segment and String Graphs 85

representation. Then we list all colorings of the separator and proceed with a
divide-and-conquer approach. The complexity of this step is 2O(n2/3 log n).

If there is a vertex v of degree at least n1/3, then one among the lists:
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3} appears on at least n1/3/4 of its neighbors. Thus
there are two colors (say, 1 and 2) that appear in lists of at least n1/3/4 of
neighbors of v. Since the list of v has size at least two, one of these colors (say 1)
appears on the list of v. We branch into two possibilities: choosing the color 1 for
v (then we exclude 1 from the lists of all neighbor of v), and not choosing 1 for v
(then we remove 1 from the list of v). The complexity F of this step is given by the
recursion F (N) � F (N−n1/3/4)+F (N−1) � F (N−N1/3/(31/3 ·4))+F (N−1).
This inequality is satisfied by F (N) = 2O(N2/3 log N) = 2O(n2/3·log n).

Combining these two cases gives the claimed time complexity. Finally, observe
that if the input graph is not a string graph, then the exhaustive search for a
separator might fail, and then we can report a wrong input instance. ��

In Min Feedback Vertex Set problem we ask for the minimum set of
vertices, whose removal destroys all cycles. For this problem, there is no obvious
branching on a high-degree vertex. Instead, we use the following theorem by Lee.

Theorem 5 (Lee [30]). There is a constant c such that for any t � 1, Kt,t-free
string graphs on n vertices have fewer than c · t log t · n edges.

It is worth mentioning that Fox and Pach [19, Theorem 5] obtained a slightly
weaker result with logO(1) t instead log t. Now we can show the following.

Theorem 6. Min Feedback Vertex Set on string graphs with n vertices
can be solved in time 2Õ(n2/3).

Proof. The proof is similar to the proof of Theorem 4, but it involves a slight
technical complication. We will solve a more general problem, where the input is
a graph G, a set C1 of constraints of type disconnect(u, v), and another set C2 of
constraints of type stays(v), where u, v are vertices of G. We ask for a minimum
feedback vertex set X of G, such that for every constraint disconnect(u, v), the
vertices u and v are in different connected components of G − X, and for every
constraint stays(v) we have v /∈ X. The algorithm is recursive, the constraints
C1 and C2 are checked at the leaves of the recursion tree. Clearly, if C1 = C2 = ∅,
then we just ask for the minimum feedback vertex set.

If G has fewer than c/3 · n4/3 log n edges (where c is a constant from
Theorem 5), then by Theorem 1 there is a balanced separator S of size
O(

√
m) = Õ(n2/3 log1/2 n), we can find it in time nO(n2/3) = 2O(n2/3 log3/2 n) by

exhaustive search or in polynomial time, if the geometric representation is given.
Let V1, V2 be sets such that V (G) = V1 	V2 	S, there is no V1-V2-path in G−S,
and V1, V2 � c′ · n for a constant c′; they exist since S is a balanced separator.
We will exhaustively guess the intersection I ′ of a fixed minimum solution with
S, taking into consideration the current constraints C2 (this represents at most

86 É. Bonnet and P. Rzążewski

2|S| = 2Õ(n2/3) possibilities), introduce the new constraints stays(v) for every
v ∈ S \ I ′, and solve the problem in G1 := G[V1 ∪ S \ I] and G2 := G[V2 ∪ S \ I].

However, note that there might be cycles in G that are not contained in V1∪S
nor V2 ∪ S and the straightforward approach discussed above would not destroy
them. Let us call such cycles essential. For each essential cycle C, and for i = 1, 2,
we call i-subpath of C a subpath of C, whose endvertices are in S, and inner
vertices are in Vi. To destroy C, we must disconnect the endvertices of some i-
subpath of C. We ensure this by introducing appropriate separation constraints.
For every partition Π = (S1, S2, . . . , Sk) of S\I, we run the algorithm recursively
in each graph Gi with additional constraints disconnect(u, v) for every u, v ∈ S,
such that u and v are in different parts of Π. The number of partitions of S \I is
given by the Bell number of |S\I|, which is at most |S||S| = 2|S| log |S| = 2Õ(n2/3).
This gives us a total of 2Õ(n2/3) recursive calls at each level of the recursion tree.
It is sufficient to only consider connectivity patterns since being connected is
a transitive relation: if u and v, and v and w stay connected in Gi, then u
and w also stay connected. We combine solutions in G1 and G2 which agree
on the subset I ⊆ S, and such that the essential cycles cannot survive. It is
known and relatively easy to see that this happens exactly when the partitions
Π1 = (S1

1 , S1
2 , . . . , S1

k1
) for G1 and Π2 = (S2

1 , S2
2 , . . . , S2

k2
) for G2 are such that

for each pair (i, j), |S1
i ∪ S2

j | � 1 and the bipartite intersection graph (with an
edge between S1

i and S2
j iff they have non-empty intersection) is a forest. This

step has a total running time 2Õ(n2/3).
On the other hand, if G has at least c/3 ·n4/3 log n edges, then by Theorem 5

it contains Kn1/3,n1/3 as a subgraph. We can find it exhaustively in time n2n1/3 ·
nO(1) = 2Õ(n1/3). Observe that any feedback vertex set of G must contain all
but one vertex of one bipartition class of the biclique. Guessing which vertex
is not necessarily chosen into the solution gives a branching algorithm, whose
complexity is F (n) � 2Õ(n1/3 log n) + 2n1/3F (n − n1/3 + 1), which is solved by
F (n) = 2O(n2/3 log n). We also trim branches which violate a constraint of C2.
Branching does not introduce new constraints. In particular, the vertex which is
not added to the solution with the other vertices of its bipartition class might still
be included in the solution later. Observe that the branching on a separator and
the branching on a biclique are compatible, and can be done in an interleaved
fashion. Finally, if the exhaustive search for a separator or a biclique fails, then
either we have reached a constant size (and the subproblem can be brute-forced),
or we correctly report that the input graph is not a string graph. ��

3 Lower Bounds

Rather surprisingly, the win-win for 3-Coloring ceases to work for k-Coloring
if k � 4. First, let us consider the List 4-Coloring. Following Kratochvíl and
Matoušek [27], by Pure 2-Dir we denote graphs with a 2-Dir representation,
in which parallel segments are disjoint. Note that such graphs are bipartite.

Optimality Program in Segment and String Graphs 87

Theorem 7 (�1). List 4-Coloring of a Pure 2-Dir graph cannot be solved
in time 2o(n), even if each list has size at most 3, unless the ETH fails.

The non-list version is obtained similarly to the case for 6-Coloring in [5].

Theorem 8 (�). For every fixed k � 4, the k-Coloring problem of a 2-Dir
graph cannot be solved in time 2o(n), unless the ETH fails.

The construction in the proof of Theorem 7 requires segments of length O(n).
For unit segments, we show the following weaker lower bound.

Theorem 9 (�). For k � 4, List k-Coloring of unit 2-Dir graphs or k-
Coloring of unit 3-Dir graphs cannot be solved in time 2o(n2/3), unless the
ETH fails.

Finally, we show that variants of Min Dominating Set on segment graphs
and Max Clique on string graphs are unlikely to have a subexponential algo-
rithm on segment graphs

Theorem 10 (�). Min (Connected) Dominating Set and Min Indepen-
dent Dominating Set cannot be solved in time 2o(n) on segment graphs with
n vertices, unless the ETH fails.

Theorem 11 (�). Max Clique cannot be solved in time 2o(n) on string graphs
with n vertices, unless the ETH fails.

4 Perspectives

We have started a generalized optimality program on segment and string graphs
for principal graph problems. On the algorithmic side, we extended a subex-
ponential algorithm for Max Independent Set on string graphs [18] to two
other problems: 3-Coloring and Min Feedback Vertex Set. On the com-
plexity side, we showed that subexponential algorithms are unlikely for, among
others, 4-Coloring and variants of Min Dominating Set. It is quite easy to
obtain such lower bounds for string graphs. Extending those results to segments
requires more ingenuity, and even more so when it comes to unit segments.

A handful of questions remains unsettled. Can we improve the algorithm or
give tight ETH lower bounds for the following problems: Max Independent
Set without geometric representation, 3-Coloring, and Min Feedback Ver-
tex Set on segments/strings? Can we show that Max Clique does not admit
a subexponential algorithm on segment graphs? The mere NP-hardness of Max
Clique on segments [8] answered 21-year-old open question. Hence, it is likely
that getting a tight ETH hardness will be difficult. We would also find interesting
to have, for a certain problem, an algorithm for segments (resp. unit segments)
which beats the ETH lower bound on strings (resp. segments).

Finally, another natural continuation of this work is to determine which fixed-
parameter tractable problems can be solved in time O∗(2Õ(k2/3)) or O∗(2Õ(

√
k)),

1 Full proofs of theorems marked with (�) can be found in [6].

88 É. Bonnet and P. Rzążewski

and which W[1]-hard problems can be solved in time f(k)nO(
√

k) on segments and
strings. For instance, Min Vertex Cover can be solved in time O∗(2Õ(k2/3))
(even in time O∗(2Õ(

√
k)) if a geometric representation is given with O∗(2Õ(

√
k))

intersections) on string graphs due to the linear kernel yielding an equivalent
instance on 2k vertices and the algorithm for Max Independent Set. The
latter problem can be solved in nO(

√
k) in segments or more generally in polygons

of polynomial complexity [33], while Min Dominating Set on string graphs
cannot be solved in time f(k)no(k), for any function f , unless the ETH fails.

References

1. Adamaszek, A., Har-Peled, S., Wiese, A.: Approximation schemes for independent
set and sparse subsets of polygons. CoRR abs/1703.04758 (2017). http://arxiv.
org/abs/1703.04758

2. Adamaszek, A., Wiese, A.: A QPTAS for maximum weight independent set of poly-
gons with polylogarithmically many vertices. In: Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, 5–7 January 2014, pp. 645–656 (2014). https://doi.org/10.1137/1.
9781611973402.49

3. Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms 52(2), 134–151 (2004)

4. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994). https://doi.org/10.1145/174644.174650

5. Biró, C., Bonnet, É., Marx, D., Miltzow, T., Rzążewski, P.: Fine-grained complexity
of coloring unit disks and balls. In: 33rd International Symposium on Computa-
tional Geometry, SoCG 2017, 4–7 July 2017, Brisbane, Australia, pp. 18:1–18:16
(2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.18

6. Bonnet, É., Rzążewski, P.: Optimality program in segment and string graphs.
CoRR abs/1712.08907 (2017). http://arxiv.org/abs/1712.08907

7. Boyer, J.M., Myrvold, W.J.: On the cutting edge: simplified o(n) planarity by
edge addition. J. Graph Algorithms Appl. 8(2), 241–273 (2004). http://jgaa.info/
accepted/2004/BoyerMyrvold2004.8.3.pdf

8. Cabello, S., Cardinal, J., Langerman, S.: The clique problem in ray intersection
graphs. Discret. Comput. Geom. 50(3), 771–783 (2013). https://doi.org/10.1007/
s00454-013-9538-5

9. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of seg-
ments in the plane: extended abstract. In: Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May
- 2 June 2009, pp. 631–638 (2009). https://doi.org/10.1145/1536414.1536500

10. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Bidimensional
parameters and local treewidth. SIAM J. Discret. Math. 18(3), 501–511 (2004)

11. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J.
ACM 52(6), 866–893 (2005)

12. Demaine, E.D., Hajiaghayi, M.T.: Fast algorithms for hard graph problems: bidi-
mensionality, minors, and local treewidth. In: Proceedings of GD 2014, pp. 517–533
(2004)

http://arxiv.org/abs/1703.04758
http://arxiv.org/abs/1703.04758
https://doi.org/10.1137/1.9781611973402.49
https://doi.org/10.1137/1.9781611973402.49
https://doi.org/10.1145/174644.174650
https://doi.org/10.4230/LIPIcs.SoCG.2017.18
http://arxiv.org/abs/1712.08907
http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3.pdf
http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3.pdf
https://doi.org/10.1007/s00454-013-9538-5
https://doi.org/10.1007/s00454-013-9538-5
https://doi.org/10.1145/1536414.1536500

Optimality Program in Segment and String Graphs 89

13. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic
applications. Comput. J. 51(3), 292–302 (2008)

14. Demaine, E.D., Hajiaghayi, M.: Linearity of grid minors in treewidth with appli-
cations through bidimensionality. Combinatorica 28(1), 19–36 (2008)

15. Erdős, P., Szekeres, G.: A Combinatorial Problem in Geometry, pp. 49–56.
Birkhäuser Boston, Boston (1987). https://doi.org/10.1007/978-0-8176-4842-8_3

16. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi, M.: Finding,
hitting and packing cycles in subexponential time on unit disk graphs. CoRR
abs/1704.07279 (2017). http://arxiv.org/abs/1704.07279

17. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Bidimensionality and geometric graphs.
In: Proceedings of SODA 2012, pp. 1563–1575 (2012)

18. Fox, J., Pach, J.: Computing the independence number of intersection graphs. In:
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, San Francisco, California, USA, 23–25 January 2011, pp.
1161–1165 (2011). https://doi.org/10.1137/1.9781611973082.87

19. Fox, J., Pach, J.: Applications of a new separator theorem for string graphs. CoRR
abs/1302.7228 (2013). http://arxiv.org/abs/1302.7228

20. Fox, J., Pach, J., Tóth, C.D.: A bipartite strengthening of the crossing lemma. J.
Comb. Theory, Ser. B 100(1), 23–35 (2010). https://doi.org/10.1016/j.jctb.2009.
03.005

21. Gonçalves, D., Isenmann, L., Pennarun, C.: Planar Graphs as L-intersection or
L-contact graphs. In: Czumaj, A. (ed.) Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, 7–10 January 2018, pp. 172–184. SIAM (2018). https://doi.org/10.1137/1.
9781611975031.12

22. Har-Peled, S.: Quasi-polynomial time approximation scheme for sparse subsets of
polygons. In: 30th Annual Symposium on Computational Geometry, SOCG 2014,
Kyoto, Japan, 08–11 June 2014, p. 120 (2014). https://doi.org/10.1145/2582112.
2582157

23. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? In: Proceedings of FOCS 1998, pp. 653–662, November 1998

24. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst.
Sci. 62(2), 367–375 (2001). http://www.sciencedirect.com/science/article/pii/
S0022000000917276

25. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/
jcss.2001.1774

26. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. III.
Addison-Wesley, Boston (1973)

27. Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. J. Comb. Theory,
Ser. B 62(2), 289–315 (1994). http://www.sciencedirect.com/science/article/pii/
S0095895684710719

28. Kratochvíl, J.: String graphs. II. Recognizing string graphs is NP-hard. J. Comb.
Theory, Ser. B 52(1), 67–78 (1991). https://doi.org/10.1016/0095-8956(91)90091-
W

29. Kratochvíl, J., Matoušek, J.: String graphs requiring exponential representa-
tions. J. Comb. Theory, Ser. B 53(1), 1–4 (1991). https://doi.org/10.1016/0095-
8956(91)90050-T

30. Lee, J.R.: Separators in region intersection graphs. CoRR abs/1608.01612 (2016).
http://arxiv.org/abs/1608.01612

https://doi.org/10.1007/978-0-8176-4842-8_3
http://arxiv.org/abs/1704.07279
https://doi.org/10.1137/1.9781611973082.87
http://arxiv.org/abs/1302.7228
https://doi.org/10.1016/j.jctb.2009.03.005
https://doi.org/10.1016/j.jctb.2009.03.005
https://doi.org/10.1137/1.9781611975031.12
https://doi.org/10.1137/1.9781611975031.12
https://doi.org/10.1145/2582112.2582157
https://doi.org/10.1145/2582112.2582157
http://www.sciencedirect.com/science/article/pii/S0022000000917276
http://www.sciencedirect.com/science/article/pii/S0022000000917276
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
http://www.sciencedirect.com/science/article/pii/S0095895684710719
http://www.sciencedirect.com/science/article/pii/S0095895684710719
https://doi.org/10.1016/0095-8956(91)90091-W
https://doi.org/10.1016/0095-8956(91)90091-W
https://doi.org/10.1016/0095-8956(91)90050-T
https://doi.org/10.1016/0095-8956(91)90050-T
http://arxiv.org/abs/1608.01612

90 É. Bonnet and P. Rzążewski

31. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J.
Comput. 9(3), 615–627 (1980). https://doi.org/10.1137/0209046

32. Marx, D.: Parameterized complexity of independence and domination on geomet-
ric graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS,
vol. 4169, pp. 154–165. Springer, Heidelberg (2006). https://doi.org/10.1007/
11847250_14

33. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility loca-
tion problems using Voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015.
LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48350-3_72

34. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility loca-
tion problems using Voronoi diagrams. CoRR abs/1504.05476 (2015). http://arxiv.
org/abs/1504.05476

35. Matoušek, J.: Intersection graphs of segments and ∃R. CoRR abs/1406.2636 (2014).
http://arxiv.org/abs/1406.2636

36. Matoušek, J.: Near-optimal separators in string graphs. Comb. Probab. Comput.
23(1), 135–139 (2014). https://doi.org/10.1017/S0963548313000400

37. McDiarmid, C., Müller, T.: Integer realizations of disk and segment graphs. J.
Comb. Theory, Ser. B 103(1), 114–143 (2013). https://doi.org/10.1016/j.jctb.2012.
09.004

38. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J.
Comb. Theory, Ser. B 62(2), 323–348 (1994). https://doi.org/10.1006/jctb.1994.
1073

39. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP.
J. Comput. Syst. Sci. 67(2), 365–380 (2003). https://doi.org/10.1016/S0022-
0000(03)00045-X

40. Schaefer, M., Štefankovič, D.: Fixed points, nash equilibria, and the existential
theory of the reals. Theory Comput. Syst. 60(2), 172–193 (2017). https://doi.org/
10.1007/s00224-015-9662-0

41. Scheinerman, E.: Intersection classes and multiple intersection parameters of
graphs. Ph.D. thesis, Princeton University (1984)

42. Smith, W.D., Wormald, N.C.: Geometric separator theorems and applications. In:
Proceedings of FOCS 1998, pp. 232–243. IEEE Computer Society, Washington,
DC (1998). http://dl.acm.org/citation.cfm?id=795664.796397

43. Zverovich, I.E., Zverovich, V.E.: An induced subgraph characterization of domina-
tion perfect graphs. J. Graph Theory 20(3), 375–395 (1995). https://doi.org/10.
1002/jgt.3190200313

https://doi.org/10.1137/0209046
https://doi.org/10.1007/11847250_14
https://doi.org/10.1007/11847250_14
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1007/978-3-662-48350-3_72
http://arxiv.org/abs/1504.05476
http://arxiv.org/abs/1504.05476
http://arxiv.org/abs/1406.2636
https://doi.org/10.1017/S0963548313000400
https://doi.org/10.1016/j.jctb.2012.09.004
https://doi.org/10.1016/j.jctb.2012.09.004
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1016/S0022-0000(03)00045-X
https://doi.org/10.1016/S0022-0000(03)00045-X
https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1007/s00224-015-9662-0
http://dl.acm.org/citation.cfm?id=795664.796397
https://doi.org/10.1002/jgt.3190200313
https://doi.org/10.1002/jgt.3190200313

Anagram-Free Chromatic Number Is Not
Pathwidth-Bounded

Paz Carmi1, Vida Dujmović2, and Pat Morin3(B)

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

2 School of Computer Science and Electrical Engineering, University of Ottawa,
Ottawa, Canada

3 School of Computer Science, Carleton University, Ottawa, Canada
morin@scs.carleton.ca

Abstract. The anagram-free chromatic number is a new graph param-
eter introduced independently by Kamčev, �Luczak, and Sudakov [1] and
Wilson and Wood [5]. In this note, we show that there are planar graphs
of pathwidth 3 with arbitrarily large anagram-free chromatic number.
More specifically, we describe 2n-vertex planar graphs of pathwidth 3
with anagram-free chromatic number Ω(log n). We also describe kn ver-
tex graphs with pathwidth 2k−1 having anagram-free chromatic number
in Ω(k log n).

1 Introduction

A string s = s1, . . . , s2k is called an anagram if s1, . . . , sk is a permutation of
sk+1, . . . , s2k. For a graph G, a c-colouring ϕ : V (G) → {1, . . . , c} is anagram-
free if, for every odd-length path v1, v2, . . . , v2k in G, the string ϕ(v1), . . . , ϕ(v2k)
is not an anagram. The anagram-free chromatic number of G, denoted πα(G),
is the smallest value of c for which G has an anagram-free c-colouring.

Answering a long-standing question of Erdős and Brown, Keränen [2] showed
that, for any n, the path Pn on n vertices has an anagram-free 4-colouring.
A straightforward divide-and-conquer algorithm applied to any n-vertex graph
of treewidth1 at most k yields an anagram-free O(k log n)-colouring. The same

This work was partly funded by NSERC and the Ontario Ministry of Research,
Innovation and Science. This work is based on work performed while attending the
AlgoPARC Workshop on Parallel Algorithms and Data Structures at the University
of Hawaii at Manoa, in part supported by the National Science Foundation under
Grant No. 1745331.

1 A tree decomposition (T, B) of a graph G consists of a tree T and set B = {Bx : x ∈
V (T)} of subsets of V (G) called bags that are indexed by the nodes of T with the
following properties:

1. for every edge uw ∈ E(G), there is at least one bag Bx, x ∈ V (T) with u, w ∈ Bx;
and

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 91–99, 2018.
https://doi.org/10.1007/978-3-030-00256-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_8&domain=pdf

92 P. Carmi et al.

divide-and-conquer algorithm, applied to graphs that exclude a fixed minor gives
an anagram free O(

√
n)-colouring [1].

An interesting variant of this divide-and-conquer algorithm is used by Wilson
and Wood [5] to obtain anagram-free (4k+1)-colourings of trees of pathwidth2 k.
On the negative side, Kamčev, �Luczak, and Sudakov [1] and Wilson and Wood
[5] have shown that there are trees—even binary trees—with arbitrarily large
anagram-free chromatic number. These results, and some others, are summarized
in Table 1.

Table 1. Bounds on anagram-free chromatic number. Upper bounds apply to all graphs
in the class. Lower bounds apply to some graphs in the class.

Graph class Bounds Reference

Paths πα(G) = 4 [2, Theorem 1]

Graphs of treewidth k πα(G) ∈ O(k log n) folklore

Graphs excluding a minor of size h πα(G) ∈ O(h3/2n1/2) [1, Proposition 1.2]

Trees πα(G) ∈ Ω(log n/ log log n) [5, Theorem 3]

Trees of pathwidth k k ≤ πα(G) ≤ 4k + 1 [5, Theorem 5]

Trees of radius r r ≤ πα(G) ≤ r + 1 [5, Theorem 4]

Binary trees πα(G) ∈ Ω(
√

log n/ log log n) [1, Proposition 1.1]

4-regular graphs πα(G) ∈ Ω(
√

n/ log n) [1, Proposition 3.1]

d-regular graphs πα(G) ∈ Ω(n) [1, Theorem 1.3]

Subdivisions of graphs πα(G) ≤ 8 [4, Theorem 6]

Planar graphs πα(G) ∈ O(
√

n) [1, Corollary 2.3]

Planar graphs of max. degree 3 πα(G) ∈ Ω(log n) [1, Proposition 2.4]

[5, Theorem 1]

Planar graphs of pathwidth 3 πα(G) ∈ Ω(log n) Theorem1

Graphs of pathwidth k > 3 πα(G) ∈ Ω(k log n) Theorem2

All of the examples of graphs having large anagram-free chromatic number
are graphs with large pathwidth [3]. Therefore, an obvious question is whether
anagram-free chromatic number is pathwidth-bounded, i.e., can πα(G) be upper
bounded by some function of the pathwidth pw(G) of G? Such a result seems
plausible, for two reasons:

1. pathwidth is a measure of how path-like a graph is and Keränen showed that
paths have anagram-free 4-colourings; and

2. for every vertex v ∈ V (G), the set T [v] = {x ∈ V (T) : v ∈ Bx} induces a
(connected) subtree of T .

The width of a tree decomposition (T, B) is the size max{|Bx| : x ∈ V (T)} of its
largest bag. The treewidth of a graph G is the minimum width of any tree decom-
position of G.

2 A path decomposition of G is a tree decomposition (P, B) of G where P is a path.
The pathwidth of G is the minimum width of any path decomposition of G.

Anagram-Free Chromatic Number Is Not Pathwidth-Bounded 93

2. the result of Wilson and Wood [5] shows that πα(T) ≤ 4 pw(T) + 1 for every
tree, T .

The purpose of this note, however, is to show that the result of Wilson and Wood
can not be strengthened even to planar graphs of pathwidth 3 and maximum
degree 5. (Here and throughout, log x = log2 x denotes the binary logarithm of
x.)

Theorem 1. For every n ∈ N, there exists a 2n-vertex planar graph of path-
width 3 and maximum degree 5 whose anagram-free chromatic number is at least
log(n + 1).

Theorem 2. For every n ∈ N and every integer k ≥ 3, there exists a kn-
vertex graph of pathwidth 2k−1 and maximum degree 3k−1 whose anagram-free
chromatic number is at least (k − 2) log(n/3).

These two results show that the straightforward divide-and-conquer algo-
rithm using separators gives asymptotically worst-case optimal colourings for
graphs of pathwidth k and graphs of treewidth k.

2 Proof of Theorem1

Let s ∈ Σ∗ be a string over some alphabet Σ. For each a ∈ Σ, we let na(s)
denote the number of occurences of a in s. We say that s is even if na(s) is even
for each a ∈ Σ. The following lemma says that strings with no even substrings
must use an alphabet of at least logarithmic size.

Lemma 1. If s = s0, . . . , s2n−1 ∈ Σ2n and |Σ| < log(n + 1), then s contains a
non-empty even substring s2i, . . . , s2j−1 for some 0 ≤ i < j ≤ n.

Proof. For any string q ∈ Σ∗, we define the parity vector P (q) = 〈na(q) mod 2 :
a ∈ Σ〉 and observe that q is even if and only if P (q) = 〈0, . . . , 0〉. Furthermore,
for two strings p and q, the parity vector of their concatenation pq is equal to
the xor-sum (i.e., modulo 2 sum) of their parity vectors:

P (pq) = P (p) ⊕ P (q).

Define the strings t0, . . . , tn, where t0 is the empty string and, for each i ∈
{1, . . . , n}, define ti = s0, . . . , s2i−1.

Now consider the parity vectors P (t0), P (t1), . . . , P (tn). Each of these n + 1
vectors is a binary string of length |Σ| < log(n + 1) therefore, there must exist
two indices i, j ∈ {0, . . . , n} with i < j such that P (ti) = P (tj). However,

P (tj) = P (ti) ⊕ P (s2i, . . . , s2j−1)

and since P (ti) = P (tj), this implies that P (s2i, . . . , s2j−1) = 〈0, . . . , 0〉 and
s2i, . . . , s2j−1 is even, as required.
�

94 P. Carmi et al.

The next lemma says that if we split an even string into consecutive pairs,
then we can can colour one element of each pair red and the other blue in so
that the resulting red and blue multisets are exactly the same.

Lemma 2. Let s = s0, . . . , s2r−1 ∈ Σ2r be an even string. Then
there exists a binary sequence v0, . . . , vr−1 such that the string sv =
s0+v0 , s2+v1 , . . . , s2(r−1)+vr−1 has na(sv) = na(s)/2 for all a ∈ Σ.

Proof. Suppose for the sake of contradiction that the lemma is not true, and
let s be the shortest counterexample. For each binary vector v ∈ {0, 1}r, let
sv = s0+1−v0 , s2+1−v1 , . . . , s2(r−1)+1−vr−1 be the complement of sv. Note that,
for any v ∈ {0, 1}r and any a ∈ Σ, na(sv)+na(sv) = na(s). Therefore, v satisifies
the conditions of the lemma if and only if na(sv) = na(sv) for all a ∈ Σ. Let
v ∈ {0, 1}r be the binary vector that minimizes

∑

a∈Σ

|na(sv) − na(sv)|. (1)

Since s is a counterexample to the lemma, (1) is greater than zero.
For each j ∈ {0, . . . , r − 1}, let xj = s2j+vj

and let yj = s2j+1−vj
so that

sv = x0, . . . , xr−1 and sv = y0, . . . , yr−1. Since (1) is non-zero, there exists some
j1 such that nxj1

(sv) > nxj1
(sv). This means that nyj1

(sv) ≥ nyj1
(sv), otherwise

flipping3 vj1 would decrease (1) by two. Furthermore, yj1 �= xj1 since, otherwise,
we could remove s2j1 and s2j1+1 from s and obtain a smaller counterexample,
since the value of vj has no effect on (1).

Refer to Fig. 1. Let a1 = xj1 and for k = 2, 3, 4 . . ., define ak = yjk−1 and
define jk to be any index such that xjk

= ak. Notice that that nak
(sv) ≥ nak

(sv)
since, otherwise, flipping vj1 , . . . , vjk−1 would decrease the value of (1). Indeed,
flipping vj1 , . . . , vjk−1 decreases na1(sv) by one, increases nak

(sv) by one, and
does not change na(sv) for any a ∈ Σ \ {a1, ak}. This implies that jk is well-
defined since nak

(sv) ≥ nak
(sv) ≥ 1.

Fig. 1. The proof of Lemma 2.

Since s is finite, there is some minimum value k such that ak = ak′ for some
k′ < k. This defines a sequence of indices jk′ , . . . , jk−1 such that
3 Here and throughout, flipping a binary variable b means changing its value to 1 − b.

Anagram-Free Chromatic Number Is Not Pathwidth-Bounded 95

1. ak′ = xjk′ = yjk−1 = ak;
2. a� = yj�−1 = xj�

for all � ∈ {k′ + 1, . . . , k − 1}.

In words, for each � ∈ {k′, . . . , k}, each occurrence of a� in sv is matched with a
corresponding occurrence of a� in sv. We claim that this contradicts the minimal-
ity of s. Indeed, by removing s2j

k′ , s2jk′+1, s2jk′+1
, s2jk′+1+1, . . . , s2jk−1 , s2jk−1+1

from s we obtain a smaller counterexample.
�

Fig. 2. The graph G in the proof of Theorem 1.

Fig. 3. The graph G in the proof of Theorem 1 is planar and is even a 2-page graph.

Proof of Theorem 1. The graph G used to prove the lower bound has vertex set
V (G) = {x0, y0, . . . , xn−1, yn−1} and edge set

E(G) =
n−2⋃

i=0

{xixi+1, xiyi+1, yiyi+1, yixi+1} ∪ {xiyi : i ∈ {0, . . . , n − 1}}.

The graph G has pathwidth 3 as can be seen from the path decomposition whose
bags are B0, . . . , Bn−2 where Bi = {xi, yi, xi+1, yi+1}. See Fig. 2. Although not
immediately obvious from Fig. 2, G is also planar—see Fig. 3.

96 P. Carmi et al.

Now, consider some colouring ϕ : V (G) → Σ with |Σ| < log(n + 1).
Applying Lemma 1 to the string s = ϕ(x0), ϕ(y0), . . . , ϕ(xn−1), ϕ(yn−1) we con-
clude that there is some i < j such that ϕ(xi), ϕ(yi), . . . , ϕ(xj), ϕ(yj) is even.
By Lemma 2 and the symmetry between each xi and yi we can assume that
na(ϕ(xi), . . . , ϕ(xj)) = na(ϕ(yi), . . . , ϕ(yj)) for each a ∈ Σ. But then the path
xi, . . . , xj , yj , yj−1, . . . , yi has a colour sequence that is an anagram.
�

3 Proof of Theorem2

Lemma 3. For every sequence of sets X1, . . . , Xn ⊆ Σ, each of size k > 2, with
|Σ| < (k − 2) log(n/3), there exists indices 1 ≤ i < j ≤ n and subsets X ′

i, . . . , X
′
j

such that, for each � ∈ {i, . . . , j}, X ′
� ⊆ X�, |X ′

�| ≥ 2 and, for each a ∈ Σ the
number of subsets in X ′

i, . . . , X
′
j that contain a is even.

Proof. For any 1 ≤ i ≤ j ≤ n, let Σi,j =
⋃j

�=i Xi and, for any I ⊂ Σi,j , let
Ni,j(I) = {� ∈ {i, . . . , j} : X� ∩ I �= ∅}. We distinguish between two cases.

Case 1: There is some pair of indices 1 ≤ i ≤ j ≤ n such that, for every I ⊆ Σi,j ,

|Ni,j(I)| ≥ |I|/(k − 2). (2)

In this case we will show the existence of the desired sets X ′
i, . . . , X

′
j . Without

loss of generality, assume i = 1, j = n, and define N = N1,n.
Define a bipartite graph H with vertex set V (H) = Σ ∪ {1, . . . , n} and edge

set E(H) = {(a, i) : i ∈ {1, . . . , n}, a ∈ Xi}. We will show that E(H) contains
a subset E′ such that each element a ∈ Σ appears exactly once in E′ and each
element of {1, . . . , n} appears at most k − 2 times in E′. That is, E′ defines a
mapping f : Σ → {1, . . . , n} in which, for any i ∈ {1, . . . , n}, |f−1(i)| ≤ k − 2.

The existence of the mapping f establishes the lemma since we can start
with X ′

i = Xi for all i ∈ {1, . . . , n} and then, for each a ∈ Σ that appears an
odd number of times, we can remove a from the set X ′

f(a). When this process is
complete each X ′

i has size at least 2 and each a ∈ Σ occurs in an even number
of the sets X ′

1, . . . , X
′
n.

All that remains is to prove the existence of the edge set E′, which we do
using an augmenting paths argument like that used, for example, to prove Hall’s
Marriage Theorem. Consider an edge set E′ ⊆ E(H) that contains exactly one
edge incident to each a ∈ Σ and let f : Σ → {1, . . . , n} be the corresponding
mapping. Then we define

Φ(E′) =
n∑

i=1

max{0, |f−1(i)| − (k − 2)}.

Note that the set E′ we hope to find has Φ(E′) = 0. Now, select some E′

that minimizes Φ(E′). If Φ(E′) = 0 then we are done, so assume by way of
contradiction, that Φ(E′) > 0. Thus, there exists some index i0 ∈ {1, . . . , n}

Anagram-Free Chromatic Number Is Not Pathwidth-Bounded 97

such that |f−1(i0)| ≥ k − 1 and therefore the set Σ0 = f−1(i0) has size at least
k − 1. Therefore,

|N(Σ0)| ≥
⌈ |Σ0|

k − 2

⌉
≥

⌈
k − 1
k − 2

⌉
= 2.

In particular, N(Σ0) \ {i0} is non-empty. Let I0 = {i0} and observe that each
i1 ∈ N(Σ0)\I0 must have |f−1(i1)| ≥ k−2 since, otherwise we could replace the
edge (a1, i0) with (a1, i1) in E′ and this would decrease Φ(E′). Let I1 = N(Σ0)
and let Σ1 =

⋃
i1∈Ii

f−1(i1). We have just argued that

|Σ1| ≥ |I1|(k − 2) + 1

and therefore,

|N(Σ1)| ≥
⌈ |Σ1|

k − 2

⌉
≥

⌈ |I1|(k − 2) + 1
k − 2

⌉
≥ |I1| + 1.

But now we can continue this argument, defining Ij = N(Σj−1) and Σj =⋃
ij∈Ij

f−1(ij). Again, each ij ∈ Ij \ ⋃j−1
�=1 I� must have |f−1(ij)| ≥ k − 2, oth-

erwise we can find a path i0, a0, i1, a1, . . . , aj−1ij and replace, in E′, the edges
i0a0, . . . , ij−1aj−1 with a0i1, a1i2, . . . , aj−1ij which would decrease Φ(E′). In this
way, we obtain an infinite sequence of subsets I0, . . . , I∞ ⊆ {1, . . . , n} such that
|Ij | > |Ij−1|. This is clearly a contradiction, since each |Ij | is an integer in
{1, . . . , n}.

Case 2: For every 1 ≤ i < j ≤ n, there exists a set I ⊂ Σi,j such that |Ni,j(I)| <
|I|/(k − 2). In this case, we will show that |Σ| ≥ (k − 2) log(n/3).

Before jumping into the messy details, we sketch an inductive proof that
gives the main intuition for why |Σ| ∈ Ω(k log n): There is some set I0 ⊂ Σ
such that [1, n]\N(I0) consists of O(|I0|/k) intervals. One such interval contains
Ω(nk/|I0|) integers i0, . . . , j0. By induction on n, |Σi0,j0 | = Ω(k log(nk/|I0|)).
But Σi0,j0 is disjoint from I0, so

|Σ| ≥ |I0|+Ω(k log(nk/|I0|)) = |I0|+Ω(k log n)−O(k log(|I0|/k)) = Ω(k log n).

The messy details occur when |I| = k − 1 since then the |I| and −O(k log(|I|/k)
terms are close in magnitude.

Let n0 = n, i0 = 1, j0 = n, Σ0 = Σ and let I0 ⊆ Σ0 be such that |N(I0)| <
|I|/(k − 2). For each integer � with n�−1 ≥ 1, we define

1. i� and j� such that i�−1 ≤ i� < j� ≤ j�−1, {i�, . . . , j�} ∩ Ni�−1,j�−1(I�−1) = ∅,
and n� = j� − i� + 1 is maximized.

2. I� ⊂ Σi�,j�
such that |Ni�,j�

(I�)| < |I�|/k;

In words, Ni�−1,j�−1(I�−1) partitions i�−1, . . . , j�−1 into intervals and we choose i�
and j� to be the endpoints of a largest such interval and recurse on that interval
using a new set I�. Letting y� = |Ni�,j�

(I�)|, observe that, for � ≥ 1,

n� ≥ n�−1 − y�−1

y�−1 + 1
>

n�−1

y�−1 + 1
− 1.

98 P. Carmi et al.

By expanding the preceding equation we can easily show that

n� ≥ n
∏�−1

τ=0(yτ + 1)
− 2.

Note that n�+1 is defined until n� < 1 so combining this with the preceding
equation and taking logs yields

�−1∑

τ=0

(yτ + 1) > log(n/3) (3)

Finally, observe that the sets I0, . . . , I�−1 are disjoint, so

|Σ| ≥
�−1∑

τ=0

|Iτ | >
�−1∑

τ=0

(k − 2)yτ . (4)

Now, minimizing (4) subject to (3) and using the fact that each yτ ≥ 1 is an
integer shows that |Σ| ≥ (k − 2) log(n/3), as desired. (The minimum is obtained
when � = log(n/3) and y1 = y2 = · · · = y�−1 = 1.)
�
Proof of Theorem 2. The pathwidth 2k − 1 graph, G, used in this proof is a
natural generalization of the pathwidth 3 graph used in the proof of Theorem1.
The kn vertices of G are partitioned in subsets V1, . . . , Vn, each size of size k.
For each i ∈ {1, . . . , n}, Vi is a clique and, for each i ∈ {1, . . . , n − 1}, every
vertex in Vi is adjacent to every vertex in Vi+1. That this graph has pathwidth
2k − 1 can be seen from the path decomposition whose bags are B1, . . . , Bn−1

where each Bi = {Vi ∪ Vi+1}.
Suppose we have some colouring ϕ : V (G) → Σ, with |Σ| < (k − 2) log(n/3).

Define the sets X1, . . . , Xn where Xi = {ϕ(v) : v ∈ Vi}. By Lemma 3, we can
find indices i ∈ {0, . . . , n − 1} and r > 0 and subsets V ′

1 , . . . , V
′
r such that, for

each � ∈ {1, . . . , r}, V ′
� ⊆ Vi+�, |V ′

� | ≥ 2, and such that each colour a ∈ Σ is used
in an even number of V ′

1 , . . . , V
′
r .

Next, label the vertices in V ′
1 , . . . , V

′
r red and blue as follows. If |V ′

i | is
even, then label half its vertices red and half its vertices blue, arbitrarily. Let
Q1, . . . , Qt denote the subsequence of V ′

1 , . . . , V
′
r consisting of only sets of odd

size (so the vertices in Q1, . . . , Qt are not labelled red or blue yet). Then, for odd
values of i, label �|Qi|/2� vertices of Qi red and the remaining blue. For even
values of i label �|Qi|/2� vertices of Qi red and the remaining blue. Observe that,
since

∑r
i=1 |V ′

i | is even, t is also even, so exactly half the vertices in
⋃r

i=1 V ′
i are

red and half are blue.
Now, consider the following perfect bichromatic matching of the complete

graph whose vertex set is
⋃r

i=1 V ′
i : In every set V ′

i of even size we match each
red vertex in V ′

i with a blue vertex in V ′
i . In each odd size set Qi, we match

�|Qi|/2� red vertices with blue vertices leaving one vertex vi unmatched. This
leaves t unmatched vertices u1, . . . , ut and these vertices alternate colour between
red and blue. To complete the matching, we match u2i with u2i−1 for each
i ∈ {1, . . . , t/2}.

Anagram-Free Chromatic Number Is Not Pathwidth-Bounded 99

Now, treat this matching as a long string s = x1, y1, . . . , xq, yq where each
xi = ϕ(vi), each yi = ϕ(wi), and each (vi, wi) is a matched pair of vertices. By
construction, s is an even string of length 2q so applying Lemma 2 to s we obtain
two sets of vertices V = {v′

1, . . . , v
′
q} and W = {w′

1, . . . , w
′
q} such that, for each

a ∈ Σ, na(ϕ(v1), . . . , ϕ(vq)) = na(ϕ(w1), . . . , ϕ(wq)). Thus, all that remains is
to show that G contains a path P whose first half is some permutation of V and
whose second half is some permutation of W . But this is obvious, because, for
each i ∈ {1, . . . , r}, V ′

i contains at least one vertex of V and at least one vertex
of W . Thus, the path P first visits all the vertices of V ∩ V ′

1 followed by all the
vertices of V ∩ V ′

2 , and so on until visiting all the vertices in V ∩ V ′
r . Next, the

path returns and visits all the vertices in W ∩ V ′
r , W ∩ V ′

r−1, and so on back to
W ∩ V ′

1 . The existence of the path P shows that no colouring of G with fewer
than (k − 2) log(n/3) colours is anagram-free, so πα(G) ≥ (k − 2) log(n/3).
�

4 Remarks

We have shown that the anagram-free chromatic number of graphs of pathwidth
3 is unbounded. Graph of pathwidth 1 are caterpillars (a special case of trees) and
therefore, by the result of Wilson and Wood [5], have anagram-free chromatic
number at most 5. It is still open problem, explicitly stated by Wilson and Wood
to determine if graphs of pathwidth 2 have bounded anagram-free chromatic
number.

We have show that anagram-free chromatic number is not pathwidth-
bounded, even for planar graphs. The graph we use in the proof of Theorem1 is
a 2-page graph; it has a book embedding using two pages. Outerplanar graphs
have a book embedding using a single page. Is anagram-free chromatic number
pathwidth-bounded for outerplanar graphs? We do not even know if the 2 × n
grid has constant anagram-free chromatic number.

References

1. Kamčev, N., �Luczak, T., Sudakov, B.: Anagram-free colorings of graphs. Comb.
Probab. Comput. 27(4), 1–20 (2017). Online first edition published August 2017

2. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992). https://doi.org/10.
1007/3-540-55719-9 62

3. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theor.
Ser. B 35(1), 39–61 (1983)

4. Wilson, T.E., Wood, D.R.: Anagram-free colourings of graph subdivisions (2017)
5. Wilson, T.E., Wood, D.R.: Anagram-free graph colouring (2017)

https://doi.org/10.1007/3-540-55719-9_62
https://doi.org/10.1007/3-540-55719-9_62

Tight Lower Bounds for the Number
of Inclusion-Minimal st-Cuts

Alessio Conte1, Roberto Grossi2, Andrea Marino2, Romeo Rizzi3,
Takeaki Uno1, and Luca Versari2(B)

1 National Institute of Informatics, Tokyo, Japan
{conte,uno}@nii.ac.jp

2 Università di Pisa, Pisa, Italy
{grossi,marino,luca.versari}@di.unipi.it

3 Università di Verona, Verona, Italy
rizzi@di.univr.it

Abstract. We study the number of inclusion-minimal cuts in an undi-
rected connected graph G, also called st-cuts, for any two distinct nodes
s and t: the st-cuts are in one-to-one correspondence with the partitions
S ∪ T of the nodes of G such that S ∩ T = ∅, s ∈ S, t ∈ T , and the sub-
graphs induced by S and T are connected. It is easy to find an exponential
upper bound to the number of st-cuts (e.g. if G is a clique) and a con-
stant lower bound. We prove that there is a more interesting lower bound
on this number, namely, Ω(m), for undirected m-edge graphs that are
biconnected or triconnected (2- or 3-node-connected). The wheel graphs
show that this lower bound is the best possible asymptotically.

1 Introduction

Cuts are among the fundamental notions in graphs. A cut in a graph G represents
a bipartition S, T of its node set V (G), and the corresponding cutset is the set
of edges in E(G) having one endpoint in S and the other in T . Cutsets have
a wide range of applications, such as switching functions, sensitivity analysis
of optimization problems, vertex packing, and network reliability [22,23]. Due
to the sheer number of cuts, it makes sense to focus on those whose cutsets are
minimal under inclusion (i.e. any subset of their edges is not a cutset): these cuts
corresponds to those having both induced subgraphs G[S] and G[T] connected.1

For any two given distinct nodes s and t in V (G), we consider their st-cuts
or, equivalently, the bipartitions S, T for which s ∈ S, t ∈ T and both G[S] and
G[T] are connected (a.k.a. bonds). In the following, we refer to just S as a cut,
meaning the bipartition S and T = V (G)\S as it is clear from the context.

In this paper, we investigate the number of st-cuts in an undirected con-
nected graph G with n = |V (G)| nodes and m = |E(G)| edges. This is useful
to recursively generate st-cuts, as knowing a lower bound on their number can

1 Since G is connected, also G[S] and G[T] are connected, otherwise we could remove
at least one edge from the minimal cutset to reconnect G[S] or G[T].

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 100–110, 2018.
https://doi.org/10.1007/978-3-030-00256-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_9&domain=pdf

Tight Lower Bounds for the Number of Inclusion-Minimal st-Cuts 101

help to better amortize the cost of recursive calls. For general graphs, we can
face two kinds of extreme situations. If G is a clique, any choice of S ⊆ V (G)
such that s ∈ S and t �∈ S gives rise to an st-cut; this yields 2n−2 st-cuts as
each such S can be obtained by adding s to any subset of V (G)\{s, t}. At the
other extreme is a single st-cut when G is made up of two cliques connected by
an edge {s, t}, where S is the node set of one of the cliques (see Fig. 1 (left)).

Fig. 1. Left: connected graph with one st-cut. Right: 2-edge-connected graph with two
st-cuts. The clouds correspond to cliques.

It is natural to investigate how the number of st-cuts changes if we add some
more stringent requirement on the connectivity of G. For 2-edge-connectivity,
where G remains connected by any single edge removal, the situation does not
change significantly. The graph in Fig. 1 (right) is 2-edge connected and has just
two st-cuts. The graph is formed by a triangle where s and t are its nodes, and
the remaining node is part of a clique of n−2 nodes: the only possible choices for
S are the singleton s or the clique extended with s. On the other hand, choosing
both s and t inside the clique (instead of the triangle) would give rise to an
exponential number of st-cuts, as discussed before.

Fig. 2. Left: a wheel graph (triconnected, thus also biconnected). Center and right:
st-cuts with respectively c �∈ S and c ∈ S.

What if G is biconnected (i.e. 2-node-connected)? For 2-node-connectivity,
G remains connected by any single node removal, and the clique is clearly bicon-
nected, thus we still have an exponential number of st-cuts. But this is not the
interesting question to pose. What we investigate is the minimum number of
st-cuts that a biconnected graph can have. For example, the wheel graph in
Fig. 2 has 2(n − 2) st-cuts: the graph is a cycle of n − 1 nodes, all connected to
a center node, thus m = 2(n − 1). The center node either belongs to S or not:
in either cases, we have n − 2 ways of choosing the remaining nodes, as they

102 A. Conte et al.

must bipartite the cycle in two sectors of adjacent nodes. One may wonder if it
is possible to find a biconnected graph with a constant number of st-cuts: the
answer to this question is negative.

Indeed the contribution of this paper is to give a proof that there are Ω(m) st-
cuts in any biconnected graph G for any choice of distinct node s, t. This provides
an interesting gap, from Ω(1) to Ω(m), when we move from either connectivity
or 2-edge-connectivity to 2-node-connectivity. The wheel in Fig. 2 shows that
the lower bound is tight. It is an open problem to study higher connectivity
or other requirements on G: we observe that our lower bound extends to k-
node-connected graphs with k ≥ 2, and matches for k = 2, 3 as the wheel is
triconnected, but we do not know if the lower bound is tight for k > 3.

Related Work. In the literature, the generation of all cuts in undirected graphs
has been studied by Abel and Bicker [1], Beltmore and Jensen [3], Tsukiyama et
al. [27], Golberg [11]. Others are [15,21,28]. Among these approaches, Tsukiyama
et al. is the most efficient as it requires O(m) time per cutset. Algorithms for
generating minimum cardinality and minimum weight cuts have been proposed
by Ball and Provan [2], Gardner [10], and Picard and Queyranne [20]. In [29],
all cuts of G are returned by non-decreasing weights ordering. Other variations
include the k-best cuts problem which have been considered in [12]. (For the
case of directed graphs see [25].) Enumerating the cutsets between all pairs of
nodes reduces to the problem of solving a system of linear equations [19]. The
notion of cutset has been generalized to cut conjunctions in [17].

From the above works we see that over the years a lot of listing algorithms
have been proposed for generating minimal cutsets. On the other hand, studies
about bounds on the number of cutsets have been focused on minimum cutsets
without fixing s and t, i.e. the minimum number of edges to be removed to dis-
connect a graph. Deciding the maximum size of such a minimum cutset has been
called the maximum connectivity problem, one of the 14 questions of Berge [4].
This question has been answered by Harary [14], giving lower and upper bounds
on the size of this cutset for any graph as a function of the number of nodes
and edges. Bixby [6] has found the minimum number of edges and nodes in a
k-edge-connected graph for a given number b of minimum cardinality cutsets.
This problem turned out to have an essentially closed form solution for all k and
b, and for many values of k and b it is possible to build a graph achieving this
minimum.

Over the years, this interest towards bounding cutsets have been mainly
motivated by the network reliability problem [7]. One of the fundamental results
is due to Kruskal [18] and Katona [16] in terms of Fi, which is the number of
sets of i edges which do not contain a cutset. Upper bounds for the number of
minimum cutsets in terms of the radius, diameter, minimum degree, maximum
degree, chordality, girth and other parameters have been given by Chandran et
al. [8] for weighted graphs. Harada et al. [13] have provided lower bounds for the
number of cutsets of a given size (not necessarily minimal). We remark that all
the above works consider set of edges, rather than partition of nodes, which are
eventually minimum but in any case never minimal. Hence, we are not aware of

Tight Lower Bounds for the Number of Inclusion-Minimal st-Cuts 103

previous work on lower bounds for the number of minimal st-cuts as discussed
in this paper.

Preliminaries. All the graphs considered in this paper are undirected, connected,
and simple (without multiple edges or self-loops). Hence a sequence of nodes
cannot induce more than one path or cycle, thus we may refer to paths and
cycles simply as sequences of nodes. Two paths are disjoint if they do not share
any node (and consequently any edge), and are internally disjoint if they share
both the first and last nodes in their sequences, but are otherwise disjoint. Two
paths that do not share any edge (but may share nodes) are called edge disjoint.
We call κ(G) the node connectivity of G, that is the size of the smallest node
cut. If κ(G) = k we say that G is k-connected (and thus removing k − 1 nodes
cannot disconnect the graph). By Menger’s theorem, we have that for each pair
of nodes x, y ∈ V (G) there are at least κ(G) internally disjoint paths between x
and y.

An st-numbering for two adjacent nodes s, t is a numbering of the nodes of G
such that each node (except t) is adjacent to a node larger than itself, and each
node (except s) to one smaller than itself. When G is biconnected, [9] proves
that there is an st-numbering for any pair of adjacent nodes s and t, and that
it can be found in linear time. Furthermore, we remark that this ordering can
be found even if s and t are not adjacent. Indeed, let G′ be the graph obtained
by adding the edge {s, t} to G. G′ is still biconnected, and has an st-numbering.
Consider the same numbering for G: s still has a neighbor larger than itself in
G (any neighbor, since it has the smallest label), and by the same logic t still
has a neighbor smaller than itself. All other nodes have the same neighborhood
in G as they had in G′. Thus we can remark the following

Observation 1. There is an st-numbering on a biconnected graph G for any
pair of nodes s and t.

In the rest of the paper, we assume that the nodes are numbered in st-
numbering, and thus x < y for any two nodes x and y means that x appears
earlier than y in the st-numbering.

2 Number of st-Cuts in a Biconnected Graph

This section illustrates our main result that, for any undirected biconnected
graph G and any two distinct nodes s, t, there are at least max(n,m−2n) = Ω(m)
st-cuts. In order to get this lower bound we will attempt at defining, for each
edge, a corresponding cut, ensuring that each such cut is valid. However, we also
need these cuts to be distinct from each other.

In the following, we will produce two sets of cuts, corresponding to different
kind of edges, which may overlap with each other, but each set will contain
distinct elements. One of the sets will contain exactly n distinct cuts, and the
other at least m−2n: as a result, we obtain that G has at least max(n,m−2n) =
Ω(m) st-cuts.

104 A. Conte et al.

One of the main ingredients of our proof will be defining a backbone of a
graph, which is based on the st-numbering of G. Its structure immediately leads
to a classification of the edges of G that will be crucial to define the st-cuts.
Indeed, it helps us to overcome the fact that it is not possible to identify a
distinct st-cut for each edge in a straightforward way, as some edges are not
yielding new st-cuts.

For the sake of discussion, we also report some observations on st-numbering
that can be partially found in previous work [5,24,26].

2.1 Backbone of the Graph

Consider a biconnected graph G = (V (G), E(G)), and an st-numbering induced
by two of its nodes s and t.

Definition 1 (backbone). The backbone is the graph bb = (V (G), E(bb))
where E(bb) ⊆ E(G) is defined as {i, j} ∈ E(bb) if and only if j is either the
largest or smallest neighbor of i in the st-numbering.

Fig. 3. Left: a biconnected graph G, labeled in st-numbering (s = 1, t = 14). Backbone
edges in bold, shortcut edges dashed, and cross edges in gray. Right: the corresponding
graph

−→
bb showing predecessor-successor relationships of G.

In other words, the backbone is obtained by taking for each node just the
edge to its largest and its smallest neighbor, as illustrated in Fig. 3 (left). We
observe that bb fulfills the following properties.

– All edges having s or t as an extreme are in bb, as s and t are respectively
the smallest and largest node.

– bb has at most 2n edges, since we take at most 2 edges for each node.

Tight Lower Bounds for the Number of Inclusion-Minimal st-Cuts 105

– The st-numbering of G is also an st-numbering for bb, since each node has
at least one smaller neighbor (except s) and a larger one (except t).

For the mere purpose of definitions, we consider the oriented version of bb,
called bipolar orientation −→

bb, where an arc (x, y) belongs to −→
bb iff {x, y} ∈ E(bb)

and x < y, as illustrated in Fig. 3 (right). Note that s and t are respectively the
only source and target in −→

bb. For each node v ∈ V (G), we say that x ∈ V (G) is
a predecessor of v iff there is an oriented path from x to v in −→

bb, and y ∈ V (G)
is a successor of v iff the oriented path in −→

bb is from v to y. Note that x is a
predecessor of v iff there is a monotone increasing path from x to v in bb, and y
is a successor of v iff there is a monotone decreasing path from y to v in bb. As it
can be seen, there can be pairs of nodes such that they are not one predecessor
of the other.

In the following, we drop −→
bb and focus on bb alone, keeping the sets of

predecessors and successors of each node v, respectively denoted as anc(v) and
desc(v). Note that v �∈ anc(v) and v �∈ desc(v). Clearly x ∈ anc(v) iff v ∈
desc(x), and anc(v) ∩ desc(v) = ∅. We remark that s and t are respectively a
predecessor and a successor of all nodes in V (G) except themselves.

The edges {x, y} ∈ E(G) can be classified in the given bb as three types (see
Fig. 3 (left)).

– {x, y} is a backbone (type b) edge iff {x, y} ∈ E(bb).
– {x, y} is a shortcut (type s) edge iff {x, y} ∈ E(G)\E(bb) and x ∈ anc(y).
– {x, y} is a cross (type c) edge iff {x, y} ∈ E(G)\E(bb) and x �∈ anc(y).

It is important to remark that each edge of E(G) falls under exactly one of
the above types.

Observation 2. Any edge of G is either a backbone edge, a cross edge, or a
shortcut edge.

2.2 Case Analysis on the st-Cut Types

In the following, we will use the classification of the edges to define st-cuts. In
particular, for each edge, depending on its type, we define a corresponding cut.
For all these edges, the corresponding st-cuts (S, T) we define are always valid,
meaning that both S and T = V \S induce connected subgraphs.

Definition 2 (B - backbone cut). For each node v ∈ V (G)\{t}, its type-b
cut is S = anc(v) ∪ {v}.
Example (B - backbone cut). On the graph in Fig. 3, v = 9 yields the type-b
cut S = {1, 3, 9} (and T = V (G)\S). A visual representation is shown in Fig. 4
(left).

Lemma 3. Every node except t yields a valid type-b cut, and the type-b cuts
are pairwise distinct.

106 A. Conte et al.

Proof. Each predecessor of v is on a path from v to s made of predecessors of
v, thus G[S] = G[anc(v) ∪ {v}] is connected. G[T] is also connected as any
node that is not predecessor of v has a path to t made of nodes which are not
predecessors of v. Furthermore, note that all nodes in S (except v itself) are
predecessors of v, and v is the only node that satisfies this property, thus v can
be uniquely deduced from the set S, meaning that two different nodes may not
lead to the same type-b cut.
�

As a consequence of Lemma 3, we get the following.

Observation 3. Every biconnected graph G has at least n distinct st-cut for
any choice of s and t.

In order to increase the lower bound in Observation 3, in the following we
consider edges {x, y} which do not belong to the backbone of G. Note that there
are at least m − 2n such edges since the backbone has at most 2n edges.

Suppose x < y without loss of generality in the rest of the section. Note that
y cannot be a predecessor of x, but may or may not be a successor.

Definition 4 (C - cross cut). For each cross edge {x, y}, its type-c cut is
S = anc(x) ∪ anc(y) ∪ {x, y}.
Example (C - cross cut). On the graph in Fig. 3, {x, y} = {5, 9} yields the
type-c cut S = {1, 2, 3, 5, 9} (and T = V (G)\S). A visual representation is
shown in Fig. 4 (center).

Lemma 5. Every cross edge yields a valid type-c cut, and the type-c cuts are
pairwise distinct.

Proof. By the proof of Lemma 3, G[anc(x) ∪ {x}] and G[anc(y) ∪ {y}] are
connected. As the subgraphs share the node s, their union G[anc(x)∪anc(y)∪
{x, y}] = G[S] is connected too. G[T] is connected since it is made of nodes
which are not predecessors of x nor y, thus have a path to t made of nodes that
are not predecessor of x nor y.

Given the set S, the only two nodes who are not successor of any other node
in S are x and y, thus the cut is uniquely identified by the cross edge {x, y},
meaning a different edge may not yield the same cut.
�
Definition 6 (S - shortcut cut). For each shortcut edge {x, y}, where y ∈
anc(x), its type-s cut is S = V (G)\T , where T is the set of all nodes connected
to t in G[V (G)\(anc(y) ∪ {x, y})], including t itself.

Example (S - shortcut cut). On the graph in Fig. 3, {x, y} = {3, 12} yields
the type-s cut S = {1, 3, 6, 10, 12} (and T = V (G)\S). A visual representation
is shown in Fig. 4 (right).

Lemma 7. Every shortcut edge yields a valid type-s cut, and the type-s cuts are
pairwise distinct.

Tight Lower Bounds for the Number of Inclusion-Minimal st-Cuts 107

Proof. Let G′ = G[V (G)\(anc(x) ∪ {x, y})] (recall that x < y). In a shortcut
cut, T contains all nodes connected to t in G′, including t itself. Thus G[T] is
connected by definition.

Consider now S = V (G)\T . In particular, S will contain anc(x) ∪ {x, y},
which by definition of anc is connected and contains s, plus all the nodes that
cannot reach t in G′: since these nodes cannot reach t, and G is connected, they
must be connected to anc(x) ∪ {x, y} instead, thus G[S] is connected, meaning
that S, T is a valid cut. A visual representation of this can be seen in Fig. 4
(right), where {x, y} = {3, 12}, 6 and 10 are the nodes that cannot reach t in
G[V (G)\anc(3) ∪ {3, 12}], while 9 can reach t via the edge {9, 5}.

We now only need to show that any two shortcut edges cannot produce the
same cut.

First, all nodes that are not predecessors of y have a path to t made of nodes
which are not predecessors of y. Since anc(x) ⊂ anc(y), these nodes may reach
t in G′, and thus are in T . This means that S ⊆ anc(y) ∪ {y}. Moreover, by the
properties of anc(), we have that y is the only node that satisfies this property.

We will now prove our claim by contradiction. Suppose another edge {w, z}
yields the same S. Then we have that S ⊆ anc(z) ∪ {z}, which implies that
y = z because of what we said above. Moreover, we must have that w ∈ S as
both extremes of the shortcut edge go in S when defining a type-s cut.

We can now only consider shortcut edges of the form {w, y}. Without loss of
generality, assume x < w (we cannot have x = w since G is not a multigraph).
Note that, by definition, x ∈ S. Furthermore, note that by construction of the
backbone, the edge between w and its largest neighbor is in the backbone, thus
since {w, y} is a shortcut edge (not a backbone edge), w must have a neighbor
v > y.

As v > y and w > x, it follows that v, w �∈ anc(x) ∪ {x, y}. This means that
there is a path from w to t that does not use any node from anc(x)∪{x, y}, thus
w ∈ T . As we supposed w ∈ S, this is a contradiction and the thesis follows.
�

Lemma 8. The sets of type-c cuts and type-s cuts are disjoint.

Proof. Notice that, as proven in Lemma 7, we have that for each type-s cut there
exists a node y that belongs to S and such that S ⊆ {y} ∪ anc(y).

On the other hand, a type-c cut has S = {x, y} ∪ anc(x) ∪ anc(y), where
{x, y} is a cross edge. We thus have that y �∈ anc(x) and x �∈ anc(y). Moreover,
as x �∈ anc(z) if z ∈ anc(x), any other node of S is not a predecessor of either
x or y (or both). This implies that there is no node in S that has the whole S
among its predecessors, thus proving that we cannot find the same cut in both
the sets of type-s cuts and type-c cuts.
�

We finally give the proof of our main result, which is now an immediate
consequence of the properties proved so far.

108 A. Conte et al.

Fig. 4. st-cuts corresponding to respectively a type-b cut with v = 9 (left), a type-c
cut with {x, y} = {5, 9} (center), and a type-s cut with {x, y} = {3, 12} (right)

Theorem 9. For any biconnected graph G and any two distinct nodes s, t, there
are at least max(n,m − 2n) = Ω(m) st-cuts.

Proof. Observation 3 proves that we have at least n different cuts. On the other
hand, any non-backbone edge gives us either a type-s cut or a type-c cut, and
no cut is obtained twice in this way, as proven in Lemma8. As there are m − 2n
non-backbone edges, we have at least m − 2n cuts.
�

2.3 Graphs that Allow for an st-Numbering

While we considered biconnected graphs, it can be noted that Theorem9 holds
for any graph admitting an st-numbering, as this is sufficient for our proof.
This condition is slightly more general than assuming G to be biconnected, and
actually corresponds to the biconnected components tree of G being a path, with
the components containing s and t in its extremes.

Indeed, as it can be seen in Fig. 5, any node in a biconnected component out
of this path (the dashed ones) is separated by both s and t by a single cut node,
meaning that there cannot be both a monotone increasing path and a monotone
decreasing path from the node to respectively t and s.

On the other hand, it can be easily seen how an st-numbering for a path of
biconnected component can be computed by combining a suitable st-numbering
of each of the components between its articulation points.

Tight Lower Bounds for the Number of Inclusion-Minimal st-Cuts 109

Fig. 5. An example of a graph that does not allow an st-numbering, and of a subgraph
(highlighted in black) that does. Circles represent biconnected components.

3 Conclusions and Further Work

In this paper we have proved that there are Ω(m) st-cuts in any biconnected
graph G for any choice of distinct nodes s, t. We have shown that this lower bound
is tight for k-node-connected graphs with k = 2, 3 as there is a triconnected
graph, i.e., the wheel in Fig. 2, matching this lower bound. The natural question
which remains open is whether the Ω(m) bound is tight in k-node-connected
graphs for k > 3.

Acknowledgements. This work was partially supported by JST CREST, grant num-
ber JPMJCR1401, Japan, and MIUR, Italy.

References

1. Abel, U., Bicker, R.: Determination of all minimal cut-sets between a vertex pair
in an undirected graph. IEEE Trans. Reliab. 31(2), 167–171 (1982)

2. Ball, M.O., Provan, J.S.: Calculating bounds on reachability and connectedness in
stochastic networks. Networks 13(2), 253–278 (1983)

3. Bellmore, M., Jensen, P.A.: An implicit enumeration scheme for proper cut gener-
ation. Technometrics 12(4), 775–788 (1970)

4. Berge, C.: La theorie des graphes. Presses Universitaires de France, Paris (1958)
5. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput.

Geom. 9(3), 159–180 (1998)
6. Bixby, R.E.: The minimum number of edges and vertices in a graph with edge

connectivity n and m n-bonds. Networks 5(3), 253–298 (1975)
7. Brecht, T.B., Colbourn, C.J.: Lower bounds on two-terminal network reliability.

Discrete Appl. Math. 21(3), 185–198 (1988)
8. Chandran, L.S., Ram, L.S.: On the number of minimum cuts in a graph. SIAM J.

Discrete Math. 18(1), 177–194 (2004)
9. Shimon Even and Robert Endre Tarjan: Computing an st-numbering. Theor. Com-

put. Sci. 2(3), 339–344 (1976)
10. Gardner, M.L.: Algorithm to aid in the design of large scale networks. Large Scale

Syst. 8(2), 147–156 (1985)

110 A. Conte et al.

11. Goldberg, L.A.: Efficient Algorithms for Listing Combinatorial Structures, vol. 5.
Cambridge University Press, Cambridge (2009)

12. Hamacher, H.W., Picard, J.-C., Queyranne, M.: On finding the K best cuts in a
network. Oper. Res. Lett. 2(6), 303–305 (1984)

13. Harada, H., Sun, Z., Nagamochi, H.: An exact lower bound on the number of
cut-sets in multigraphs. Networks 24(8), 429–443 (1994)

14. Harary, F.: The maximum connectivity of a graph. Proc. Nat. Acad. Sci. 48(7),
1142–1146 (1962)

15. Jasmon, G.B., Foong, K.W.: A method for evaluating all the minimal cuts of a
graph. IEEE Trans. Reliab. 36(5), 539–545 (1987)

16. Katona, G.: A theorem for finite sets. In: Theory of Graphs, pp. 187–207 (1968)
17. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K.:

Generating cut conjunctions in graphs and related problems. Algorithmica 51(3),
239–263 (2008)

18. Kruskal, J.B.: The number of simplices in a complex. Math. Optim. Tech. 10,
251–278 (1963)

19. Martelli, A.: A Gaussian elimination algorithm for the enumeration of cut sets in
a graph. J. ACM 23(1), 58–73 (1976)

20. Picard, J.-C., Queyranne, M.: On the structure of all minimum cuts in a network
and applications. Math. Program. 22(1), 121–121 (1982)

21. Prasad, V.C., Sankar, V., Rao, K.S.P.: Generation of vertex and edge cutsets.
Microelectron. Reliab. 32(9), 1291–1310 (1992)

22. Provan, J.S., Ball, M.O.: Computing network reliability in time polynomial in the
number of cuts. Oper. Res. 32(3), 516–526 (1984)

23. Provan, J.S., Shier, D.R.: A paradigm for listing (s, t)-cuts in graphs. Algorithmica
15(4), 351–372 (1996)

24. Pierre Rosenstiehl and Robert Endre Tarjan: Rectilinear planar layouts and bipolar
orientations of planar graphs. Discrete Comput. Geom. 1, 343–353 (1986)

25. Shier, D.R., Whited, D.E.: Iterative algorithms for generating minimal cutsets in
directed graphs. Networks 16(2), 133–147 (1986)

26. Tamassia, R., Tollis, I.G.: A unified approach a visibility representation of planar
graphs. Discrete Comput. Geom. 1, 321–341 (1986)

27. Tsukiyama, S., Shirakawa, I., Ozaki, H., Ariyoshi, H.: An algorithm to enumerate
all cutsets of a graph in linear time per cutset. J. ACM (JACM) 27(4), 619–632
(1980)

28. Li, Y., Taha, H.A., Landers, T.L.: A recursive approach for enumerating minimal
cutsets in a network. IEEE Trans. Reliab. 43(3), 383–388 (1994)

29. Yeh, L.-P., Wang, B.-F., Hsin-Hao, S.: Efficient algorithms for the problems of
enumerating cuts by non-decreasing weights. Algorithmica 56(3), 297–312 (2010)

Subexponential-Time and FPT
Algorithms for Embedded Flat Clustered

Planarity

Giordano Da Lozzo1(B), David Eppstein2, Michael T. Goodrich2,
and Siddharth Gupta2

1 Roma Tre University, Rome, Italy
dalozzo@dia.uniroma3.it

2 University of California, Irvine, USA
{eppstein,goodrich,guptasid}@uci.edu

Abstract. The C-Planarity problem asks for a drawing of a clus-
tered graph, i.e., a graph whose vertices belong to properly nested clus-
ters, in which each cluster is represented by a simple closed region with
no edge-edge crossings, no region-region crossings, and no unnecessary
edge-region crossings. We study C-Planarity for embedded flat clus-
tered graphs, graphs with a fixed combinatorial embedding whose clus-
ters partition the vertex set. Our main result is a subexponential-time
algorithm to test C-Planarity for these graphs when their face size is
bounded. Furthermore, we consider a variation of the notion of embed-
ded tree decomposition in which, for each face, including the outer face,
there is a bag that contains every vertex of the face. We show that C-
Planarity is fixed-parameter tractable with the embedded-width of the
underlying graph and the number of disconnected clusters as parameters.

1 Introduction

Fig. 1. A c-planar drawing.

A clustered graph (or c-graph) is a pair C(G, T) with
underlying graph G and inclusion tree T , i.e., a
rooted tree whose leaves are the vertices of G. Each
internal node μ of T represents a cluster of vertices
of G (its leaf descendants) which induces a subgraph
G(μ). A c-planar drawing of C(G, T) (Fig. 1) con-
sists of a drawing of G and of a representation of
each cluster μ as a simple closed region R(μ), i.e., a
region homeomorphic to a closed disc, such that: (1)
Each region R(μ) contains the drawing of G(μ). (2)
For every two clusters μ, ν ∈ T , R(ν) ⊆ R(μ) if and only if ν is a descendant of
μ in T . (3) No two edges cross. (4) No edge crosses any region boundary more
than once. (5) No two region boundaries intersect.

An interesting and challenging line of research in graph drawing concerns the
computational complexity of the C-Planarity problem, which asks to test the
c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 111–124, 2018.
https://doi.org/10.1007/978-3-030-00256-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_10&domain=pdf

112 G. Da Lozzo et al.

existence of a c-planar drawing of a c-graph. This problem is notoriously diffi-
cult, particularly when (as in Fig. 1) clusters may be disconnected, faces may
have unbounded size, and the cluster hierarchy may have multiple nested lev-
els. No known subexponential-time algorithm solves the (general) C-Planarity
problem, and it is unknown whether it is NP-complete. Thus, there is consider-
able interest in subexponential-time, slice-wise polynomial (for short XP), and
fixed-parameter tractable algorithms for special cases of C-Planarity.

C-Planarity was introduced by Feng, Cohen, and Eades [18], who solved it
in quadratic time for the c-connected case, i.e., when every cluster induces a con-
nected subgraph. Dahlhaus [16] claimed a linear-time algorithm for c-connected
C-Planarity (with some details later provided by Cortese et al. [13]). Goodrich
et al. [20] gave a cubic-time algorithm for disconnected clusters that satisfy an
“extroverted” property, and Gutwenger et al. [21] provided a polynomial-time
algorithm for “almost” c-connected inputs. Cornelsen and Wagner showed poly-
nomiality for completely connected c-graphs, i.e., when not only every cluster but
also the complement of each cluster is connected [12]. FPT algorithms have also
been investigated [8,11]. For additional special cases, see, e.g., [2–4].

A c-graph is flat when no non-trivial cluster is a subset of another, so T has
only three levels: the root, the clusters, and the leaves. Flat C-Planarity can
be solved in polynomial time for embedded c-graphs with at most 5 vertices per
face [17] or at most two vertices of each cluster per face [10], for embedded c-
graphs in which each cluster induces a subgraph with at most two connected com-
ponents [22], and for c-graphs with two clusters [7] or three clusters [1]. Jeĺınková
et al. [23] provide efficient algorithms for 3-connected flat c-graphs when each
cluster has at most 3 vertices. Fulek [19] speculates that C-Planarity could
be solvable in subexponential time for more general embedded flat c-graphs.

New Results. In this paper, we provide subexponential-time and fixed-
parameter tractable algorithms for broad classes of c-graphs. We show the fol-
lowing results:

� C-Planarity can be solved in subexponential time for embedded flat c-graphs
with bounded face size (Sect. 3).
� C-Planarity is fixed-parameter tractable for embedded flat c-graphs with
embedded-width and number of disconnected clusters as parameters (Sect. 4).

Our first result uses divide-and-conquer with a large but subexponential
branching factor. It exploits cycle separators in planar graphs and a concise rep-
resentation of the connectivity of each cluster in a c-planar drawing. This method
also leads to an XP algorithm for the class of generalized h-simply-nested graphs,
which includes the simply-nested graphs with bounded face size (see [15]).

We obtain our second result by expressing c-planarity in extended monadic
second-order logic for embedded flat c-graphs and applying Courcelle’s Theorem.
The graphs to which this result applies, with bounded treewidth and bounded
face size, include the nested triangles graphs, a standard family of examples that
are hard for many graph drawing tasks, the dual graphs of bounded-treewidth

Subexponential-Time and FPT Algorithms for C-Planarity Testing 113

bounded-degree plane graphs, and the buckytubes, graphs formed from a planar
hexagonal lattice wrapped to form a cylinder of bounded diameter.

We provide full details of omitted and sketched proofs in the full version [15].

2 Definitions and Preliminaries

The graphs considered in this paper are finite, simple, and connected. For stan-
dard concepts about planar graphs, their connectivity and embeddings, such as
combinatorial and planar embeddings, rotation at a vertex, faces, and embedded
(or plane) graphs, we refer the reader to the full version of the paper [15]. The
length of a face f is the number of occurrences of edges encountered in a traversal
of f . The maximum face size of an embedded graph is the length of its largest
face.

Tree-Width and Embedded-Width. A tree decomposition of a graph G is a
tree T whose nodes, called bags, are labeled by subsets of vertices of G. For each
vertex v the bags containing v must form a nonempty contiguous subtree of T ,
and for each edge uv at least one bag must contain both u and v. The width of
the decomposition is one less than the maximum cardinality of any bag, and the
treewidth tw(G) of G is the minimum width of any of its tree decompositions.

Recently, Borradaile et al. [9] developed a variant of treewidth, specialized
for plane graphs, called embedded-width. According to their definitions, a tree
decomposition respects an embedding of a plane graph G if, for every inner face
f of G, at least one bag contains all the vertices of f . They define the embedded-
width emw(G) of G to be the minimum width of a tree decomposition that
respects the embedding of G. We will use the following result.

Theorem 1 ([9], Theorem 2). If G is a plane graph where every inner face
has length at most �, then emw(G) ≤ (tw(G) + 2) · � − 1.

Borradaile et al.do not require the vertices of the outer face to be contained
in the same bag. In our applications, we modify this concept so that the tree
decomposition also includes a bag containing the outer face, and we denote the
minimum width of such a tree decomposition as emw(G). By simply adding the
vertices of the outer face to all bags, we have the following.

Lemma 1. If G is a plane graph whose maximum face size (including the size
of the outer face) is �, then emw(G) ≤ (tw(G) + 3) · � − 1.

Clustered Planarity. Recall that, in a c-graph C(G, T), each internal node μ of
T corresponds to the set V (μ) of vertices of G at leaves of the subtree of T rooted
at μ. Set V (μ) induces the subgraph G(μ) of G. We call clusters the internal
nodes other than the root. A cluster μ is connected if G(μ) is connected and
disconnected otherwise. C-graph C is c-connected if every cluster is connected.

A c-graph is c-planar if it admits a c-planar drawing. Two c-graphs C(G, T)
and C′

(G′, T ′
) are equivalent if both are c-planar or neither is. If the root of T

114 G. Da Lozzo et al.

u

v
f

(a)
u

v
f

(b)
u

v
f

(c)

Fig. 2. (a) An embedded flat c-graph C(G, T). (b) A super c-graph of C containing
all the candidate saturating edges of C (thick and colored curves); since vertices u
and v belong to different components of Xµ(f) but to the same connected component
of G(μ), edge (u, v) is not a candidate saturating edge. (c) A super c-graph of C
satisfying Condition (iii) of Theorem 2; regions enclosing vertices of each cluster are
shaded. (Color figure online)

has leaf children, enclosing each leaf v in a new singleton cluster produces an
equivalent c-graph. Therefore, we can safely assume that each vertex belongs to
a cluster. A c-graph is flat if each leaf-to-root path in T has exactly three nodes.
The clusters of a flat c-graph form a partition of the vertex set.

An embedded c-graph C(G, T) is a c-graph whose underlying graph has a
fixed combinatorial embedding. It is c-planar if it admits a c-planar drawing
that preserves the embedding of G. Since we only deal with embedded flat c-
graphs, we will refer to such graphs simply as c-graphs, except in the statements
of theorems.

We define the candidate saturating edges of a c-graph C(G, T) as follows. For
each face f of G, let G(f) be the closed walk composed of the vertices and edges
of f . For each cluster μ ∈ T , consider the set Xμ(f) of connected components of
G(f) induced by the vertices of μ and, for each component ξ ∈ Xμ(f), assign a
vertex of f in ξ as a reference vertex of ξ. We add an edge inside f between the
reference vertices of any two components in Xμ(f) if and only if such vertices
belong to different connected components of G(μ); see Figs. 2a and b. A c-graph
obtained from C by adding to it a subset E+ of its candidate saturating edges is a
super c-graph of C . Di Battista and Frati [17] gave the following characterization.

Theorem 2 ([17], Theorem 1). An embedded flat c-graph C(G, T) is c-planar
if and only if: (i) G is planar; (ii) there exists a face f in G such that when f is
chosen as the outer face for G no cycle composed of vertices of the same cluster
encloses a vertex of a different cluster in its interior; and (iii) there exists a
super c-graph C′

(G′, T) of C such that G′ is planar and C′
is c-connected (see

Fig. 2c).

Conditions (i) and (ii) of Theorem2 can be easily verified in linear time.
Therefore, we can assume that any c-graph satisfies these conditions. Follow-
ing [17] we thus view the problem of testing c-planarity as one of testing Condi-
tion (iii).

Subexponential-Time and FPT Algorithms for C-Planarity Testing 115

A cluster-separator in a c-graph C(G, T) is a cycle ρ in G for which some
cluster μ ∈ T has vertices both in the interior and in the exterior of ρ, but with
V (μ) ∩ V (ρ) = ∅. Condition (iii) immediately yields the following observation.

Observation 1. A c-graph that has a cluster-separator is not c-planar.

In the next sections, it will be useful to only consider c-graphs which are
at least 2-connected (Sect. 3) and 3-connected (Sect. 4). The next lemma, conve-
niently stated in a stronger form1, shows that this is not a loss of generality.

Lemma 2. Let C(G, T) be an n-vertex c-graph with maximum face size �. There
exists an O(n)-time algorithm that constructs an equivalent c-graph C∗(G∗, T ∗)
with |V (G∗)| = O(n) such that: 1. G∗ is 3-connected, 2. the maximum face size κ
of G∗ is O(�), and 3. the c-graph C�(G�, T �) obtained by augmenting C∗(G∗, T ∗)
with all its candidate saturating edges is such that tw(G�) = O(emw(G)).

3 A Subexponential-Time Algorithm for C-Planarity

In this section, we describe a divide-and-conquer algorithm for testing the c-
planarity of 2-connected c-graphs exploiting cycle separators in planar graphs.

The “conquer” part of our divide-and-conquer uses the following operation
on pairs of c-graphs. Let G1 and G2 be plane graphs on overlapping vertex sets
such that the outer face of G1 and an inner face of G2 are bounded by the same
cycle ρ. Merging G1 and G2 constructs a new plane graph G from G1 ∪ G2 as
follows. We remove multi-edges (belonging to cycle ρ) and assign each vertex v a
rotation whose restriction to the edges of G2 (of G1) is the same as the rotation
at v in G2 (in G1). This is possible as cycle ρ bounds the outer face of G1 and
an inner face of G2. We say that G is a merge of G1 and G2. Now consider two
c-graphs C1(G1, T1) and C2(G2, T2) such that (i) G1 ∩ G2 = ρ is a cycle, (ii) for
each vertex v ∈ V (ρ), vertex v belongs to the same cluster μ both in T1 and in
T2, and (iii) cycle ρ bounds the outer face of G1 and an inner face of G2 (when
a choice for their outer faces that satisfies Condition (ii) of Theorem2 has been
made). Merging C1 and C2 is the operation that constructs a c-graph C(G, T)
as follows. Graph G is obtained by merging G1 and G2. Tree T is obtained as
follows. Initialize T to T1. First, for each cluster μ ∈ T2 ∩ T1, we add the leaves
of μ in T2 as children of cluster μ in T , removing duplicate leaves. Second, for
each cluster μ ∈ T2\T1, we add the subtree of T2 rooted at μ as a child of the
root of T . We say that C(G, T) is a merge of C1(G1, T1) and C2(G2, T2).

In the “divide” part of the divide-and-conquer, we replace subgraphs of the
input by smaller planar components called cycle-stars that preserve their c-
planarity properties. Let G be a connected plane graph that contains a face
whose boundary is a cycle ρ. We say that G is a cycle-star if removing all the
edges of ρ makes G a forest of stars; refer to Fig. 3c. Also, we say that cycle ρ
is universal for G and we say that a vertex of G is a star vertex of G if it does
not belong to ρ. Clearly, the size of G is O(|ρ|).
1 In Sect. 4, we exploit all the properties of the lemma. In Sect. 3, we only exploit the

existence of an equivalent 2-connected c-graph with maximum face size κ = O(�).

116 G. Da Lozzo et al.

For a c-planar c-graph C(G, T) and a cycle separator ρ, we denote by
C+

ρ (G+, T +) (by C−
ρ (G−, T −)) the c-graph obtained from C by removing all

the vertices and the edges of G that lie in the interior of ρ (in the exterior of ρ).
Consider a super c-graph C′

(G′, T) of C satisfying Condition (iii) of Theorem2,
which exists since C is c-planar. We now give a procedure, which will be useful
throughout the paper, to construct two special c-planar c-graphs C−(S−,K−)
and C+(S+,K+) associated with C′

whose properties are described in the follow-
ing lemma.

Lemma 3. C-graphs C−(S−,K−) and C+(S+,K+) are such that: 1. graph S−

(S+) is a cycle-star whose universal cycle is ρ, 2. cycle ρ bounds the outer
face of S− (an inner face of S+), 3. each star vertex of S− (S+) and all its
neighbors belong to the same cluster in K− (K+), and 4. the c-graph Cout (Cin)
obtained by merging C−(S−,K−) and C+

ρ (G+, T +) (by merging C+(S+,K+) and
C−

ρ (G−, T −)) is c-planar.

We describe how to construct C−(S−,K−) from C′
; refer to Fig. 3. The con-

struction of C+(S+,K+) is symmetric.
First, for each cluster μ such that V (μ) ∩ V (ρ) = ∅, we remove all the ver-

tices in V (μ) lying in the interior of ρ together with their incident edges. By
Observation 1, the resulting c-graph is still c-planar and c-connected. Also, we
remove edges in the interior of ρ whose endpoints belong to different clusters.
Clearly, this simplification preserves c-connectedness. We still denote the result-
ing c-graph as C′

.
Second, consider the c-graph H consisting of the vertices and of the edges of

C′
lying in the interior and along the boundary of ρ. For each cluster μ and for

each connected component ci
μ of μ in H, we replace all the vertices and edges

of ci
μ lying in the interior of ρ in C′

with a single vertex si
μ, assigning it to

the same cluster μ and making it adjacent to all the vertices in V (ci
μ) ∩ V (ρ).

Let C∗ be the resulting c-graph. It is easy to see that such a transformation
preserves c-connectedness and planarity, therefore C∗ is a c-connected c-planar
c-graph. By construction, each vertex v ∈ V (ρ) is adjacent to a single vertex
si

μ, where μ is the cluster vertex v belongs to; thus, the vertices and the edges
in the interior and along the boundary of ρ in C∗ form c-graph C−(S−,K−)
whose underlying graph S− is a cycle-star satisfying Properties (1), (2) and (3)
of Lemma 3. Further, since the subgraph of C∗ consisting of the vertices and
of the edges lying in the exterior and along the boundary of ρ coincides with
C+

ρ (G+, T +), we have that C∗ is a c-planar c-connected super c-graph of Cout.
Thus, by Condition (iii) of Theorem2, Property (4) of Lemma 3 is also satisfied.

Let C−
Δ(R−,J −) (C+

Δ(R+,J +)) be a c-graph obtained by augmenting the c-
graph C−(S−,K−) (C+(S+,K+)) of Lemma 3 by introducing new vertices, each
belonging to a distinct cluster, and by adding edges only between the vertices
in V (S−) (V (S+)) and the newly introduced vertices in such a way that cycle
ρ bounds a face of R− (R+) and all the other faces of R− (R+) are triangles.
From the construction of Lemma 3, we also have the following useful technical
remark.

Subexponential-Time and FPT Algorithms for C-Planarity Testing 117

ρ

(a) C

ρ
c1µ

c2µ

c3µ

(b) H

ρ
s1µ

s2µ

s3µ

S−

(c) S−

s1µ
s2µ

s3µ

S−

Fig. 3. (a) Super c-graph C′
of C . (b) Each component of the blue cluster μ in H

lies inside a simple closed region. (c) Cycle-star S− corresponding to H. (d) The c-

connected c-planar c-graph C∗ obtained by replacing H with S− in C′
. (Color figure

online)

Remark 1. The c-graph obtained by merging C−
Δ(R−,J −) and C+

ρ (G+, T +) (by
merging C+

Δ(R+,J +) and C−
ρ (G−, T −)) is c-planar.

We now describe a divide-and-conquer algorithm based on Lemma3, called
TestCP, that tests the c-planarity of a 2-connected c-graph C(G, T) and returns
a super c-graph C∗ of C satisfying Condition (iii) of Theorem2, if C is c-planar.
See Fig. 4 and [15] for illustrations of the c-graphs constructed by the algorithm.

We first give an intuition on the role of cycle-stars in Algorithm TestCP.
Let C(G, T) be a 2-connected c-planar c-graph and let ρ be a cycle separator

of G. Consider any c-connected c-planar super c-graph C′
of C . Let I− be the

super c-graph of C−
ρ (G−, T −), composed of the vertices of G− and of the edges

in the interior and along the boundary of ρ in C′
. By Lemma 3, we can injectively

map I− with a cycle-star S− whose universal cycle is ρ. This is due to the fact
that there exists a one-to-one correspondence between the connected components
of I− induced by the vertices of each cluster in T − and the star vertices of S−.
Similar considerations hold for the super c-graph I+ of C+

ρ (G+, T +). Although
the c-planarity of C+

ρ and C−
ρ is necessary for the c-planarity of C , it is not a

sufficient condition, as the connectivity of clusters inside ρ in I− (internal cluster-
connectivity) and the connectivity of clusters outside ρ in I+ (external cluster-
connectivity) must also together determine the c-connectedness of C′

. The role of
cycle-stars S− and S+ in the algorithm presented in this section is exactly that
of concisely representing the internal cluster-connectivity of I− and the external
cluster-connectivity of I+, respectively, to devise a divide-and-conquer approach
to test the c-planarity of C .

Outline of the Algorithm. We overview the main steps of our algorithm
below.

– If n = O(�), we test c-planarity directly, as a base case for the divide-and-
conquer recursion (see [15]). Otherwise, we construct a cycle-separator ρ of G
and test whether ρ is a cluster-separator. If so, C cannot be c-planar (Obser-
vation 1), and we halt the search.

118 G. Da Lozzo et al.

C(G, T)

ρ

G+

G−

S−
i

ρ

G+
R−

i

ρ

G+

C+(G+
i , T +

i)

Gout

R−
i

ρ

C+
con(H

+
i , T +

i)

S+
i

R−
i

ρ

Fig. 4. Illustrations of some of the c-graphs constructed by Algorithm TestCP.

– We generate all cycle-stars S−
i with universal cycle ρ. A cycle-star S−

i repre-
sents a potential connection pattern of clusters inside ρ. For each cycle-star
S−

i we apply Procedure OuterCheck to test whether this pattern could be
augmented by additional connections outside ρ to complete the desired cluster-
connectivity. That is, we test whether C+

ρ admits a c-connected c-planar super
c-graph whose internal cluster-connectivity is represented by S−

i . To test this,
we replace the subgraph G− of G in C with an internally-triangulated super-
graph R−

i of S−
i to obtain a c-graph C+ and recursively test C+ for c-planarity.

It is important to observe that, the triangulation step prevents C+ from hav-
ing saturating edges inside ρ, thus enforcing exactly the same internal-cluster
connectivity represented by S−

i (Remark 1). If C+ is c-planar, then the proce-
dure returns a c-connected c-planar super c-graph C+

con of C+. If no cycle-star
passes the test, then C is not c-planar by Lemma 3. We call all the cycle-stars
that passed this test admissible.

– We then apply Procedure InnerCheck to verify whether the internal-cluster
connectivity represented by some admissible cycle-star S−

i can actually be
realized by a c-connected c-planar super c-graph of C . For each admissible
cycle-star S−

i , the procedure applies the construction of Lemma 3 to obtain
a cycle-star S+

i representing the external cluster-connectivity of C+
con. Then,

it tests whether C−
ρ admits a c-connected c-planar super c-graph C−

con whose
external cluster-connectivity is represented by S+

i . This is done similarly to
Procedure OuterCheck, by triangulating the exterior of ρ and recursively
testing c-planarity of a smaller c-graph. If Procedure InnerCheck succeeds
for any admissible cycle-star S−

i , then we can merge the subgraphs of C−
con and

of C+
con induced by the vertices inside and outside ρ, respectively, to obtain

a c-connected c-planar super c-graph of C , and we halt the search with a
successful outcome. It might be the case that C−

con has a different internal-
cluster connectivity than that represented by S−

i , but this is not a problem,
because the different cluster connectivity (which necessarily corresponds to a
different admissible cycle-star) still provides a c-planar drawing of the whole
graph.

– If no admissible cycle-star passes Procedure InnerCheck, C is not c-planar.

It is crucial in this algorithm that ρ be a cycle-separator. Because it is a
cycle, no candidate saturating edges can connect vertices in the interior of ρ to

Subexponential-Time and FPT Algorithms for C-Planarity Testing 119

vertices in the exterior of ρ, as such vertices do not share any face. That is, the
interaction between G−

ρ and G+
ρ only happens through vertices of ρ. This allows

us to split the instance into smaller instances recursively along ρ and model the
interaction via cycle-stars (by Lemma 3 and Remark 1) whose universal cycle
is ρ.

The complete listing of Algorithm TestCP is provided in the next page.

Correctness of the Algorithm. We show that, given a 2-connected c-graph
C(G, T), Algorithm TestCP returns YES, which happens when both procedures
OuterCheck and InnerCheck succeed, if and only if C(G, T) is c-planar.

(⇒) Suppose that OuterCheck and InnerCheck succeed for a cycle-star
S−

ω ∈ S constructed at step 2a. We show that C is c-planar. Consider the c-graph
C∗ constructed at step 3(a)v from C−

con(H−
ω , T −

ω) and C+
con(H+

ω , T +
ω). The proof

of this direction follows from the next claim about C∗ and from Theorem 2.

Claim 1. C-graph C∗(G∗, T) is a c-planar c-connected super c-graph of
C(G, T).

(⇐) Suppose that C(G, T) is c-planar. We show that Procedure Out-
erCheck and InnerCheck succeed. Since C is c-planar, there exists a super
c-graph C∗(G∗, T) of C such that G∗ is planar and C∗ is c-connected, by The-
orem 2. By using the construction of Lemma 3 on c-graph C∗, we can obtain
a cycle-star S− whose universal cycle is ρ that represents the connectivity of
clusters inside ρ in C∗. The proof of this direction follows from the next claim.

Claim 2. Procedures OuterCheck and InnerCheck succeed for S−
i = S−.

We are finally ready to present the main result of the section.

Theorem 3. The C-Planarity problem can be solved in 2O(
√

�n·log n) time for
n-vertex embedded flat c-graphs with maximum face size �.

Proof Sketch. Given an n-vertex c-graph C(G, T) with maximum face size �,
by Lemma 2, we can replace C with an equivalent 2-connected c-graph whose
vertex set and maximum face size are linear in n and �, respectively, and apply
Algorithm TestCP to such a c-graph to determine whether C is c-planar.

Since G is 2-connected, we can find a cycle separator of G of size s(n) =
O(

√
�n) that splits G into two subgraphs each having at most 2n

3 vertices [24].
By construction, the same bounds hold for G−

i and G+
i with respect to their size.

Also, since each cycle-star S−
i is in one-to-one correspondence with a non-crossing

partition of a set containing s(n) elements, the number of cycle-stars satisfying
the properties described at step 2a is given by the Catalan number Cs(n) ≤ 4s(n),
and S−

i has size g(n), which is in O(s(n)). Further, the non-recursive running
time f(n) of the algorithm is bounded by the time taken by steps 1 and 3(a)i,
i.e., O(n) time. Finally, the running time of Algorithm TestCP is expressed by
the following recurrence:

120 G. Da Lozzo et al.

Algorithm TestCP(c-graph C(G, T))

Base case

If |V (G)| = O(�), then we can test C-Planarity for C(G, T) in O(1) time when � is a constant
(refer to the full version of the paper [15]), by performing a brute force search to find a subset E′

of the candidate saturating edges of C such that c-graph C′
(G ∪ E′, T) satisfies Condition (iii)

of Theorem 2.

Recursive step

1. Select a cycle separator ρ of G. If ρ is a cluster-separator, then return NO; otherwise,
construct c-graphs C+

ρ (G+, T +) and C−
ρ (G−, T −) as defined in Lemma 3.

2. OuterCheck
(a) Construct the set S of all cycle-stars such that, for every S ∈ S, it holds that (i) ρ is

the universal cycle of S, (ii) ρ bounds the outer face of S, and (iii) every star vertex
of S is incident only to vertices of ρ belonging to the same cluster.

(b) For each cycle-star S−
i ∈ S:

i. Construct a c-graph C−(S−
i , K−

i) as follows. First, initialize K−
i to the subtree of

T whose leaves are the vertices of S−
i . Then, for each star vertex v of S−

i , assign
v to the cluster μ ∈ K−

i to which all its neighbors belong.
ii. Augment C−(S−

i , K−
i) to an internally triangulated c-graph C−

Δ(R−
i , J −

i) by
introducing new vertices, each belonging to a distinct cluster, and by adding
edges only between vertices in V (S−

i) and the newly introduced vertices (that is,
no two non-adjacent vertices in S−

i are adjacent in R−
i).

iii. Merge C−
Δ(R−

i , J −
i) and C+

ρ (G+, T +) to obtain a c-graph C+(G+
i , T +

i)a.

iv. Run TestCP(C+(G+
i , T +

i)) to test whether C+(G+
i , T +

i) is c-planarb.
(c) If no c-graph C+(G+

i , T +
i) is c-planar, then return NO; otherwise, initialize S′ as the

set of admissible cycle-stars, i.e., the cycle-stars in S whose corresponding c-graph
C+(G+

i , T +
i) is c-planar.

3. InnerCheck
(a) For each admissible cycle-star S−

i ∈ S′:
i. Let C+

con(H
+
i , T +

i) be the c-planar c-connected super c-graph of C+ returned
by TestCP(C+(G+

i , T +
i)) (step 2(b)iv). Apply the construction of Lemma 3 to

c-graph C+
con(H

+
i , T +

i) and cycle ρ to obtain a c-graph C+(S+
i , K+

i) satisfying
Properties (2) and (3) of the lemma.

ii. Augment C+(S+
i , K+

i) to a c-graph C+
Δ(R+

i , J +
i) by introducing new vertices, each

belonging to a distinct cluster, and by adding edges only between the vertices in
V (S+

i) and the newly introduced vertices in such a way that cycle ρ bounds an
inner face of R+

i and all the other faces of R+
i are triangles.

iii. Merge C+
Δ(R+

i , J +
i) and C−

ρ (G−, T −) to obtain a c-graph C−(G−
i , T −

i)a.

iv. Run TestCP(C−(G−
i , T −

i)) to test whether C−(G−
i , T −

i) is c-planarb.
v. If TestCP(C−(G−

i , T −
i)) returns YES, then construct a c-planar c-connected

super c-graph C∗(G∗, T) of C(G, T) as follows. Let C−
con(H

−
i , T −

i) be the c-
planar c-connected c-graph returned by TestCP(C−(G−

i , T −
i)). Remove all the

vertices and edges of H−
i in the exterior of cycle ρ, thus obtaining a new c-graph

Cin(Gin, Tin) in which cycle ρ bounds the outer face. Similarly, remove all the
vertices and edges of H+

i in the interior of cycle ρ, thus obtaining a new c-graph
Cout(Gout, Tout) in which cycle ρ bounds an inner face. Finally, merge Cin and
Cout to obtain c-graph C∗(G∗, T) and return YES along with c-graph C∗(G∗, T).

4. return NO if no c-graph C−(G−
i , T −

i), constructed at step 3(a)iii, is c-planar.

a The merging operations are well defined as cycle ρ bounds the outer face of R−
i and an

inner face of G+, as well as an inner face of R+
i and the outer face of G−.

b As C+(G+
i , T +

i) and C−(G−
i , T −

i) are 2-connected,TestCP can be recursively applied.

Subexponential-Time and FPT Algorithms for C-Planarity Testing 121

T (n) = 2Cs(n)

(
T

(2n

3
+ g(n)

)
+ f(n)

)
(1)

Since Eq. (1) solves to T (n) = 2O(
√

�n·log n), the statement follows. �

4 An MSO2 Formulation for C-Planarity

In this section, we show that the property of a c-graph of admitting a c-planar
drawing can be expressed in extended monadic second-order (MSO2) logic. We
use this result and the fact that graph properties definable in MSO2 logic can
be verified in linear time on graphs of bounded treewidth, by Courcelle’s Theo-
rem [14], to build an FPT algorithm for testing the c-planarity of embedded flat
c-graphs.

First-order graph logic deals with formulae whose variables represent the
vertices and edges of a graph. Second-order graph logic also allows quantification
over k-ary relations defined on the vertices and edges. MSO2 logic only allows
quantification over elements and unary relations, that is, sets of vertices and
edges. Given a graph G and an MSO2 formula φ, we say that G models φ,
denoted by G |= φ, if the logic statement expressed by φ is satisfied by the
vertices, edges, and sets of vertices and edges in G. We will apply Courcelle’s
theorem not to the underlying graph G of the clustered planarity instance, but
to the supergraph G� of G that includes all the candidate saturating edges of
G. This will allow us to quantify over sets of candidate saturating edges, but in
exchange we must show that G�, and not just G, has low treewidth (Lemma 2).

Let H be a graph and let E1, E2 ⊆ E(H). The following logic predicates can
be expressed in MSO2 logic (refer, e.g., to [6] for their detailed formulation):

� planarH(E1, E2) := the subgraph (V (H), E1 ∪ E2) of H is planar, and
� connH(U,E1, E2) := vertices in U ⊆ V (H) are connected by edges in E1 ∪E2.

Let C(G, T) be a c-graph and let E∗ be the set of all the candidate saturating
edges of C . By Property (iii) of Theorem2, c-graph C admits a c-planar drawing if
and only if there exists a super c-graph C′

(G′, T) of C such that G′ is planar and
C′

is c-connected. Testing Property (iii) amounts to determining the existence
of a set E+ ⊆ E∗ such that (i) the subgraph G′ of G� obtained by adding the
edges in E+ to G is planar and (ii) graph G′(μ) is connected, for each cluster
μ ∈ T .

We remark that in an MSO2 formula it is possible to refer to given subsets of
vertices or edges of a graph, provided that the elements of such subsets can be
distinguished from the elements of other subsets by equipping them with labels
from a constant finite set [5]. Therefore, in our formulae we use the unquanti-
fied variables Vi to denote the set of vertices belonging to cluster μi, for each
disconnected cluster μi ∈ T , E∗ to denote the set consisting of all the candidate
saturating edges of C , and EG to denote E(G).

122 G. Da Lozzo et al.

Let c be the number of disconnected clusters in T . We have the formula:

c-planarC(G,T) ≡ ∃(E+ ⊆ E∗)
[
planarG�(EG, E+) ∧

c∧
i=1

connG�(Vi, EG, E+)
]

It is easy to see that formula c-planarC(G,T) correctly expresses Con-
dition (iii) of Theorem2 only if G admits a unique combinatorial embed-
ding (up to a flip). In fact, if G has more than one embedding, formula
c-planarC(G,T) might still be satisfiable after a change of the embedding, as
formula planarG�(EG, E+) models the planarity of an abstract graph rather
than the planarity of a combinatorial embedding. We formalize this fact in the
following lemma.

Lemma 4. Let C(G, T) be a c-graph such that G has a unique combinatorial
embedding and let C�(G�, T �) be the c-graph obtained by augmenting C with all
its candidate saturating edges. Then, C is c-planar iff G� |= c-planarC(G,T).

Since changes of embedding are not allowed in our context, as we aim at
testing the c-planarity of a c-graph given a prescribed embedding, we combine
Lemmas 2 and 4, and then invoke Courcelle’s Theorem to obtain the following
main result.

Theorem 4. The C-Planarity problem can be solved in f(emw, c)O(n) time
for n-vertex embedded flat c-graphs with c disconnected clusters and whose under-
lying graph has embedded-width emw, where f is a computable function.

Proof. To test that C(G, T) admits a c-planar drawing with the given embedding
we proceed as follows. First, we apply Lemma 2 to obtain a c-graph C∗(G∗, T ∗)
that is equivalent to C such that G∗ is 3-connected. Note that, the 3-connectivity
of G∗ implies that it has a unique combinatorial embedding (up to a flip). Then,
we construct formula φ = c-planarC∗(G∗,T ∗) and the super c-graph C�(G�, T �)
of C∗ obtained by augmenting C∗ with all its candidate saturating edges. Finally,
we use Courcelle’s Theorem to test whether G� |= φ. The correctness immedi-
ately follows from Lemmas 2 and 4.

We now argue about the running time. By Lemma 2, c-graph C∗(G∗, T ∗)
can be constructed in O(n) time. Let κ be the maximum face size of G∗. The
number of candidate saturating edges of C∗ is O(κ2n). By Lemma 2, Hence, we
can augment C∗(G∗, T ∗) to obtain C�(G�, T �) in O(�2n) time.

By Courcelle’s theorem [14], it is possible to verify whether G� |= φ in
g(tw(Gdiamond), len(φ))O(|V (G�)| + |E(G�)|) time, where g is a computable
function. By Lemma 2, |V (G�)| = |V (G∗)| = O(n) and tw(G�) = emw(G). Also,
by the discussion above, |E(G�)| = O(�2n) and, by definition of embedded-width,
� = O(emw); thus, |E(G�)| = O(emw2n). Further, formula φ can be constructed
in time proportional to its length len(φ), which is O(c). Therefore, the over-
all running time can be expressed as f(emw, c)O(n), where f is a computable
function. �

Subexponential-Time and FPT Algorithms for C-Planarity Testing 123

5 Conclusions and Open Problems

In this paper, we provide subexponential-time, XP (see [15]), and FPT algorithms
to test C-Planarity of fairly-broad classes of c-graphs.

Several interesting questions arise from this research: (1) Can our results
be generalized from flat to non-flat c-graphs? (2) Is there a fully polynomial-
time algorithm to test C-Planarity of c-graphs whose underlying graph is a
generalized h-simply-nested graph? (3) Are there interesting parameters of the
underlying graph such that C-Planarity is FPT with respect to a single one
of them (e.g., outerplanarity index, maximum face size, notable graph width
parameters)? (4) Are there interesting parameters of the c-graph such that C-
Planarity is FPT with respect to a single one of them (e.g., number of clusters,
number of vertices of the same cluster incident to the same face)?

Acknowledgments. Supported in part by MIUR Project “MODE” under PRIN
20157EFM5C, by H2020-MSCA-RISE project 734922 - “CONNECT”, by MIUR-
DAAD JMP N◦ 34120, and by NSF grants CCF-1618301 and CCF-1616248. This
article also reports on work supported by the U.S. Defense Advanced Research Projects
Agency (DARPA) under agreement no. AFRL FA8750-15-2-0092. The views expressed
are those of the authors and do not reflect the official policy or position of the Depart-
ment of Defense or the U.S. Government.

References

1. Akitaya, H.A., Fulek, R., Tóth, C.D.: Recognizing weak embeddings of graphs. In:
Czumaj, A. (ed.) SODA 2018, pp. 274–292. SIAM (2018)

2. Angelini, P., Da Lozzo, G.: Clustered planarity with pipes. In: Hong, S. (ed.)
ISAAC 2016. LIPIcs, vol. 64, pp. 13:1–13:13. Schloss Dagstuhl - LZI (2016)

3. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F.: Strip planarity testing for
embedded planar graphs. Algorithmica 77(4), 1022–1059 (2017)

4. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.:
Relaxing the constraints of clustered planarity. Comput. Geom. 48(2), 42–75 (2015)

5. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12(2), 308–340 (1991)

6. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page draw-
ings of graphs with bounded treewidth. In: Duncan, C., Symvonis, A. (eds.) GD
2014. LNCS, vol. 8871, pp. 210–221. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45803-7 18

7. Biedl, T.: Drawing planar partitions III: two constrained embedding problems.
Technical report RRR 13–98, Rutcor Research Report (1998)

8. Bläsius, T., Rutter, I.: A new perspective on clustered planarity as a combinatorial
embedding problem. Theor. Comput. Sci. 609, 306–315 (2016)

9. Borradaile, G., Erickson, J., Le, H., Weber, R.: Embedded-width: a variant of
treewidth for plane graphs. CoRR abs/1703.07532 (2017). http://arxiv.org/abs/
1703.07532

10. Chimani, M., Di Battista, G., Frati, F., Klein, K.: Advances on testing C-planarity
of embedded flat clustered graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014.
LNCS, vol. 8871, pp. 416–427. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45803-7 35

https://doi.org/10.1007/978-3-662-45803-7_18
https://doi.org/10.1007/978-3-662-45803-7_18
http://arxiv.org/abs/1703.07532
http://arxiv.org/abs/1703.07532
https://doi.org/10.1007/978-3-662-45803-7_35
https://doi.org/10.1007/978-3-662-45803-7_35

124 G. Da Lozzo et al.

11. Chimani, M., Klein, K.: Shrinking the search space for clustered planarity. In:
Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 90–101. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2 9

12. Cornelsen, S., Wagner, D.: Completely connected clustered graphs. J. Discrete
Algorithms 4(2), 313–323 (2006)

13. Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity
of C-connected clustered graphs. JGAA 12(2), 225–262 (2008)

14. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

15. Da Lozzo, G., Eppstein, D., Goodrich, M.T., Gupta, S.: Subexponential-time
and FPT algorithms for embedded flat clustered planarity. CoRR abs/1803.05465
(2018). http://arxiv.org/abs/1803.05465

16. Dahlhaus, E.: A linear time algorithm to recognize clustered planar graphs and
its parallelization. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS,
vol. 1380, pp. 239–248. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054325

17. Di Battista, G., Frati, F.: Efficient C-planarity testing for embedded flat clustered
graphs with small faces. JGAA 13(3), 349–378 (2009)

18. Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.
(ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60313-1 145

19. Fulek, R.: C-planarity of embedded cyclic c-graphs. In: Hu, Y., Nöllenburg, M.
(eds.) GD 2016. LNCS, vol. 9801, pp. 94–106. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-50106-2 8

20. Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs.
In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211–222. Springer,
Heidelberg (2006). https://doi.org/10.1007/11618058 20

21. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.:
Advances in C -planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov,
S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220–236. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36151-0 21

22. Jeĺınek, V., Jeĺınková, E., Kratochv́ıl, J., Lidický, B.: Clustered planarity: embed-
ded clustered graphs with two-component clusters. In: Tollis, I.G., Patrignani, M.
(eds.) GD 2008. LNCS, vol. 5417, pp. 121–132. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00219-9 13

23. Jeĺınková, E., Kára, J., Kratochv́ıl, J., Pergel, M., Suchý, O., Vyskocil, T.: Clus-
tered planarity: small clusters in cycles and eulerian graphs. JGAA 13(3), 379–422
(2009)

24. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs.
J. Comput. Syst. Sci. 32(3), 265–279 (1986)

https://doi.org/10.1007/978-3-642-36763-2_9
http://arxiv.org/abs/1803.05465
https://doi.org/10.1007/BFb0054325
https://doi.org/10.1007/BFb0054325
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/978-3-319-50106-2_8
https://doi.org/10.1007/978-3-319-50106-2_8
https://doi.org/10.1007/11618058_20
https://doi.org/10.1007/3-540-36151-0_21
https://doi.org/10.1007/978-3-642-00219-9_13
https://doi.org/10.1007/978-3-642-00219-9_13

Computing Small Pivot-Minors

Konrad K. Dabrowski1(B) , François Dross2 , Jisu Jeong3 ,
Mamadou Moustapha Kanté4 , O-joung Kwon5 , Sang-il Oum3 ,

and Daniël Paulusma1

1 Department of Computer Science, Durham University, Durham, UK
{konrad.dabrowski,daniel.paulusma}@durham.ac.uk

2 LIRMM, CNRS, Université de Montpellier, Montpellier, France
francois.dross@lirmm.fr

3 Department of Mathematical Sciences, KAIST, Daejeon, South Korea
jjisu@kaist.ac.kr, sangil@kaist.edu

4 Université Clermont Auvergne, LIMOS, CNRS, Aubière, France
mamadou.kante@uca.fr

5 Department of Mathematics, Incheon National University, Incheon, South Korea
ojoungkwon@gmail.com

Abstract. A graph G contains a graph H as a pivot-minor if H can
be obtained from G by applying a sequence of vertex deletions and edge
pivots. Pivot-minors play an important role in the study of rank-width.
However, so far, pivot-minors have only been studied from a structural
perspective. We initiate a systematic study into their complexity aspects.
We first prove that the Pivot-Minor problem, which asks if a given
graph G contains a given graph H as a pivot-minor, is NP-complete.
If H is not part of the input, we denote the problem by H-Pivot-Minor.
We give a certifying polynomial-time algorithm for H-Pivot-Minor for
every graph H with |V (H)| ≤ 4 except when H ∈ {K4, C3 + P1, 4P1},
via a structural characterization of H-pivot-minor-free graphs in terms
of a set FH of minimal forbidden induced subgraphs.

1 Introduction

Computing whether a graph H appears as a “pattern” inside some other graph G
is a well-studied problem in the area of structural and algorithmic graph theory.

Kwon is supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (ERC consolidator grant
DISTRUCT, agreement No. 648527). Dabrowski and Paulusma are supported by
EPSRC (EP/K025090/1) and the Leverhulme Trust (RPG-2016-258). Jeong and
Oum are supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIP) (No. NRF-2017R1A2B4005020). Kanté is
supported by French Agency for Research under the GraphEN project (ANR-15-CE-
0009). Underlying research data: source code used to prove Propositions 6 and 10
can be found at [6]. This work made use of the NVIDIA CUDA Research Centre
cluster facility at Durham University. We thank Stephen Bonner, John Brennan,
Ibad Kureshi and Grégoire Payen de La Garanderie for their assistance.

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 125–138, 2018.
https://doi.org/10.1007/978-3-030-00256-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_11&domain=pdf
http://orcid.org/0000-0001-9515-6945
http://orcid.org/0000-0002-0535-9640
http://orcid.org/0000-0003-3614-4199
http://orcid.org/0000-0003-1838-7744
http://orcid.org/0000-0003-1820-1962
http://orcid.org/0000-0002-6889-7286
http://orcid.org/0000-0001-5945-9287

126 K. K. Dabrowski et al.

The definition of a pattern depends on the set of graph operations that we are
allowed to use. For instance, if we can obtain H from G via a sequence of vertex
deletions, edge deletions and edge contractions, then G contains H as a minor.
The Minor problem is that of testing whether a given graph G contains a given
graph H as a minor. This problem is known to be NP-complete even if G and H
are trees of small diameter [19]. Hence, it is natural to fix the graph H and let the
input consist of only G. This leads to the H-Minor problem, and a celebrated
result of Robertson and Seymour [28] states that the H-Minor problem can be
solved in cubic time for every graph H. If we only allow vertex deletions and
edge contractions, then we obtain the H-Induced Minor problem. In contrast,
this problem can be NP-complete (see [9] for an example of a “hard” graph H
on 68 vertices). Other well-known containment relations include containing a
graph H as a contraction, an induced subgraph, a subdivision, or an (induced)
topological minor; see, e.g. [3,13,17,18,29] for some complexity results for these
relations.

We focus on the pivot-minor containment relation, defined as follows. The
local complementation at a vertex u in a graph G replaces every edge of the
subgraph induced by the neighbours of u by a non-edge, and vice versa. We
denote the resulting graph by G ∗ u. An edge pivot is the operation that takes
an edge uv, first applies a local complementation at u, then at v, and then at u
again. We denote the resulting graph by G ∧ uv = G ∗ u ∗ v ∗ u and note that
G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v, so G ∧ uv = G ∧ vu. Alternatively, we can define
the edge pivot operation as follows. Consider the set Su of neighbours of u that
are non-adjacent to v, the set Sv of neighbours of v that are non-adjacent to u
and the set Suv of common neighbours of u and v. Replace every edge between
any two vertices in distinct sets from {Su, Sv, Suv} by a non-edge and vice versa.
Then delete every edge between u and Su and add every edge between u and Sv.
Similarly, delete every edge between v and Sv and add every edge between v
and Su. See Fig. 1 for an example. A graph G contains a graph H as a pivot-
minor if G can be modified into (an isomorphic copy of) H by a sequence of
vertex deletions and edge pivots.

Fig. 1. An example of a graph before and after pivoting an edge.

Pivot-minors were called p-reductions by Bouchet [1] and have been studied
from a structural perspective, as they form a very suitable tool for working
with rank-width [22,26]. Rank-width is a well-known width parameter (see [25]

Computing Small Pivot-Minors 127

for a survey) and pivot-minors play a similar role for rank-width as minors do
for treewidth. Oum [23] showed that for every positive constant k the class
of graphs of rank-width at most k is well-quasi-ordered under the pivot-minor
relation. Kwon and Oum [16] proved that every graph of rank-width at most k
is a pivot-minor of a graph of treewidth at most 2k, and that a graph of linear
rank-width at most k is a pivot-minor of a graph of path-width at most k + 1.

Pivot-minors are closely related to so-called vertex-minors, introduced in the
nineties as �-reductions by Bouchet [1]. A graph G contains a graph H as a
vertex-minor if G can be modified into (an isomorphic copy of) H by a sequence
of vertex deletions and local complementations. Hence, if G contains H as a
pivot-minor, then G contains H as a vertex-minor (but not necessarily vice
versa). Bouchet [1] characterized circle graphs in terms of forbidden vertex-
minors and by using this result, Geelen and Oum [12] were able to characterize
circle graphs in terms of forbidden pivot-minors. Oum [24] conjectured that for
each fixed bipartite circle graph H, every graph G of sufficiently large rank-width
contains H as a pivot-minor. This conjecture is known to be true when G is a
line graph, a bipartite graph or a circle graph (see [24]).

We study pivot-minors from an algorithmic perspective, that is, we consider
the following research question:

Can we decide if a graph H is a pivot-minor of a graph G in polynomial time?

If both G and H are part of the input, then we obtain the following problem:

Pivot-Minor
Instance: A pair of graphs G and H.
Question: Does G have a pivot-minor isomorphic to H?

If H is not part of the input but fixed, then we obtain the H-Pivot-Minor
problem. Question 7 in [25] asked for the complexity of H-Pivot-Minor, which
has not been studied so far.

Our Results. We initiate a systematic study into the complexity of computing
pivot minors. In Sect. 2 we prove that Pivot-Minor is NP-complete. Due to
this, it is natural to study the computational complexity of H-Pivot-Minor,
as proposed in [25]. To get a handle on this problem, we restrict ourselves to small
graphs H. For every graph H on at most four vertices except for the complete
graph K4, the edgeless graph 4P1 and the triangle plus a vertex C3 +P1, we give
a certifying algorithm that solves H-Pivot-Minor in polynomial time.

To explain the idea behind our algorithms, we observe that H-pivot-minor-
free graphs, that is, graphs that do not contain H as a pivot-minor, are closed
under vertex deletion. It is well known and readily seen that a class of graphs is
closed under vertex deletion if and only if it can be characterized by a (possibly
infinite) set of minimal forbidden induced subgraphs. In Sect. 3, for every graph
H /∈ {K4, C3 + P1, 4P1} with |V (H)| ≤ 4 we determine the set FH of minimal
forbidden induced subgraphs. We then test if the input graph G contains an
induced subgraph F ∈ FH . If not, then G is H-pivot-minor-free. Otherwise, G
contains H as a pivot-minor. As the graph F found by our algorithm contains H

128 K. K. Dabrowski et al.

as a pivot-minor, F is a certificate that can be used to verify H-pivot-minor
containment in polynomial time: first delete all vertices of G not in F and then
apply vertex deletions and edge pivots to obtain H from F . See [20] for a survey
on certifying algorithms.

We discuss the graphs K4, C3+P1 and 4P1 in Sect. 4. Computer experiments
show that F4P1 contains over 100,000 graphs, so it is likely that F4P1 is not
finite. We prove that FK4 and FC3+P1 each contain infinitely many graphs. In
the same section we discuss some further computer experiments and propose a
general framework for future research.

2 When H Is Part of the Input

We prove that Pivot-Minor is NP-complete. We first introduce some terminol-
ogy and basic results on matroids, which can be found in [27]. A matroid is a
pair M = (E, I) of a finite set E, called the ground set, and a set I of subsets
of E satisfying the following three properties: (i) I �= ∅; (ii) if Y ∈ I and X ⊆ Y ,
then X ∈ I; and (iii) if X,Y ∈ I with |Y | = |X|+1, then there exists an element
y ∈ Y \ X such that X ∪ {y} ∈ I. A set X ⊆ E is independent in M = (E, I)
if X ∈ I, otherwise X is dependent. The rank of a subset X ⊆ E is the size of a
largest independent subset of X. The rank of a matroid M = (E, I) is the rank
of E. A base of a matroid is a maximal independent set. A circuit of a matroid
is a minimal dependent set. The dual matroid M∗ of a matroid M = (E, I) is a
matroid on E such that X is a base of M∗ if and only if E \ X is a base in M .
For a subset X of E, we define M \ X to be the matroid (E \ X, I ′) such that
I ′ = {X ′ ⊆ E \ X | X ′ ∈ I}. We define M/X = (M∗ \ X)∗. A matroid N is a
minor of a matroid M if N = (M \ X)/Y for some disjoint sets X and Y . A
matroid M = (E, I) is binary if there is a matrix over the binary field whose
columns are indexed by E such that X is independent in M if and only if the cor-
responding columns are linearly independent. It is known that the dual matroid
of a binary matroid is also binary.

A major example of binary matroids arises from graphs. For a graph G =
(V,E), let I be the set of subsets X of E such that the subgraph (V,X) has
no cycles. Then M(G) = (E, I) is a matroid, called the cycle matroid of G and
such matroids are binary. It is known that circuits of M(G) are precisely the
edge sets of cycles of G and if a graph H is a minor of G, then M(H) is a minor
of M(G).

If G is connected and has n vertices and m edges, then M(G) has rank n− 1
because any spanning tree of G has n−1 edges, and (M(G))∗ has rank m−n+1.

For a binary matroid M = (E, I), the fundamental graph of M with respect
to a base B is the bipartite graph on E with the bipartition (B,E \B) such that
x ∈ B, y ∈ E \ B are adjacent if and only if (B \ {x}) ∪ {y} is a base of M .
Conversely, for a bipartite graph G with a bipartition (A,B), we may define a
binary matroid Bin(G,A,B) on V (G) represented by the A × V (G) matrix

(
A B

A IA MA,B

)

Computing Small Pivot-Minors 129

over the binary field where IA is the A × A identity matrix and MA,B is the
A × B submatrix of the adjacency matrix of G whose (x, y)-entry is 1 if and
only if x and y are adjacent. We need the following lemma for our NP-hardness
result.

Lemma 1 ([22, Corollary 3.6]). The following statements hold:

(i) Let N , M be binary matroids, and H, G be fundamental graphs of N and M
respectively. If N is a minor of M , then H is a pivot-minor of G.

(ii) Let G be a bipartite graph with bipartition A ∪ B = V (G). If H is a
pivot-minor of G, then there is a bipartition A′ ∪ B′ = V (H) such that
Bin(H,A′, B′) is a minor of Bin(G,A,B).

Theorem 1. Pivot-Minor is NP-complete.

Proof. We reduce from the Hamilton Cycle problem, which asks if a graph has
a Hamilton cycle. This problem is NP-complete even for 3-regular graphs [10].
Let G = (V,E) be a 3-regular graph with n vertices and m edges. We may
assume without loss of generality that n ≥ 5 and that G is connected. As G is
3-regular, 2m = 3n. Consequently, (M(G))∗ has rank m − n + 1 = 1

2n + 1.
Let T be a spanning tree of G. Let GT be the fundamental graph of M(G)

with respect to E(T), which can be built in polynomial time. We claim G has a
Hamilton cycle if and only if the n-vertex star K1,n−1 is a pivot-minor of GT .

For the forward direction, suppose G has a Hamilton cycle C. Then G con-
tains C as a minor and thus M(G) has M(C) as a minor, and so GT has
every fundamental graph of M(C) as a pivot-minor by Lemma 1(i). This proves
the forward direction, because every fundamental graph of M(C) is isomorphic
to K1,n−1.

For the reverse direction, suppose that K1,n−1 is a pivot-minor of GT .
Then by Lemma 1(ii), V (K1,n−1) has a bipartition (A′, B′) such that
Bin(K1,n−1, A

′, B′) is a minor of M(G) = Bin(GT , A,B) for some parti-
tion (A,B) of V (GT). As K1,n−1 is connected, it admits only two possible bipar-
titions (that is, there is a unique way of partitioning the vertices of K1,n−1

into two independent sets and there are two ways to order the sets). So
Bin(K1,n−1, A

′, B′) is either M(C) or its dual (M(C))∗, where C is the cycle
on n vertices. Therefore M(C) or (M(C))∗ is a minor of M(G). Equivalently,
M(C) is a minor of M(G) or (M(G))∗. Because the rank of M(C) is n − 1 and
the rank of (M(G))∗ is 1

2n + 1 < n − 1 (as n ≥ 5) we find that M(C) cannot be
a minor of (M(G))∗. Thus, M(C) is a minor of M(G) and therefore M(G) has
a circuit of length at least n. This implies that G has a cycle of length n. ��

3 When H Is Fixed

We give a certifying algorithm for recognizing H-pivot-minor-free graphs for
every graph H on at most four vertices except for the cases where H ∈ {K4,
C3+P1, 4P1} (see Sect. 4 for a further discussion on these three graphs). For each
such graph H, we determine the minimal set FH such that a graph G contains H

130 K. K. Dabrowski et al.

as a pivot-minor if and only if G contains an induced subgraph in FH . The cases
where H ∈ {2P1 + P2, 2P2} are too involved to expect a combinatorial proof, so
we rely on a computer-based proof for these cases. Of the remaining cases, the
ones where H is not 3P1-free are more involved than the others. We therefore
consider the 3P1-free cases in Sect. 3.1 and the remaining cases in Sect. 3.2.

3.1 When H Is 3P1-Free

The graph G = (V, {uv | uv /∈ E(G), u �= v} is the complement of a graph G.
A co-component in a graph G is a maximal set of vertices in G that induces a
connected subgraph in G. The graph G1+G2 = (V (G1)∪V (G2), E(G1)∪E(G2))
is the disjoint union of two vertex-disjoint graphs G1 and G2. Recall that K1,n−1

is the star on n vertices. The path and cycle on n vertices are denoted Pn and Cn,
respectively; the length of a path or cycle is the number of edges it contains.
The paw, diamond, dart and claw are the graphs P1 + P3, 2P1 + P2, P1 + paw
and K1,3, respectively (see also Fig. 2). A graph class is pivot-minor-closed if it
is closed under vertex deletions and edge pivots. A graph G is (H1, . . . , Hp)-free
for a set H = {H1, . . . ,Hp} of graphs if G has no induced subgraph isomorphic
to a graph in H. Let H /∈ {K4, C3 +P1} be a 3P1-free graph with |V (H)| ≤ 4, so
H ∈ {P1, 2P1, P1+P2, P2, 2P2, P3, P4, C3, C4,paw,diamond}. The cases H = P1,
H = P2 and H = 2P1 are trivial. We now consider the other cases (we omit the
proofs of Propositions 1–3).

Fig. 2. Graphs referred to in Sect. 3.

Proposition 1. For a graph G, P3 is a pivot-minor of G if and only if P3 is
an induced subgraph of G.

Proposition 2. For a graph G, C3 is a pivot-minor of G if and only if an odd
cycle is an induced subgraph of G if and only if G is not bipartite.

Proposition 3. The following statements are equivalent for every graph G:

(i) P1 + P2 is a pivot-minor of G.
(ii) P1 + P2, C4 or the diamond is an induced subgraph of G.
(iii) G is neither a complete graph, an edgeless graph nor a star.

A graph is a clique-star if it consists of pairwise vertex-disjoint cliques K,
L1, . . . , Lp for some p ≥ 0, such that every vertex of K is adjacent to every
vertex of L1 ∪ · · · ∪ Lp and there is no edge between any two distinct cliques Li

Computing Small Pivot-Minors 131

and Lj . Note that we may assume that p �= 1, as if p = 1 then the clique-star is
a complete graph, in which case we can set p = 0. We need the following lemma
(we omit the proof).

Lemma 2. The class of clique-stars is pivot-minor-closed.

Proposition 4. The following statements are equivalent for every graph G.

(i) P4 is a pivot-minor of G.
(ii) C4 is a pivot-minor of G.
(iii) P4, C4 or the dart is an induced subgraph of G.
(iv) G has a component that is not a clique-star.

Proof. Both the P4 and C4 can be obtained from each other by pivoting one
edge and so (i) and (ii) are equivalent. Pivoting an edge incident to a vertex of
degree 2 and a vertex of degree 3 in the dart yields a bull (see Fig. 3), which
contains P4 as an induced subgraph. Therefore the dart contains P4 as a pivot-
minor, so (iii) implies (i) and (ii). As P4, C4 and the dart are not clique-stars, (iii)
implies (iv). Lemma 2 implies that the class of graphs all of whose components
are clique-stars is pivot-minor-closed, hence (i) and (ii) imply (iv).

It remains to prove that (iv) implies (iii). Suppose that G has a component D
that is not a clique-star. Also assume that G is (P4, C4)-free. It is well known
that the complement of a connected P4-free graph on at least two vertices is
disconnected [4]. Hence we can partition V (D) into two sets A and B, such
that every vertex of A is adjacent to every vertex of B. Moreover, as D is not a
complete graph, we may assume that B is not a clique. If A is not a clique either,
then two non-adjacent vertices of A, together with two non-adjacent vertices
of B, form an induced C4, a contradiction. Hence A is a clique. We may assume
that A is chosen to be maximal subject to the condition that every vertex of A
is adjacent to every vertex of B and B contains two non-adjacent vertices.

Suppose B induces a connected subgraph. Then, since G[B] is P4-free, con-
nected, and contains at least two vertices, we can partition B into two non-empty
sets B1 and B2 such that every vertex of B1 is adjacent to every vertex of B2.
As B is not a clique, this means that at least one of B1 and B2, say B2, is not a
clique. Then, by the same argument as before, B1 must be a clique. This implies
that every vertex of B1 is adjacent to every other vertex of B1 and to every
vertex of B2. However, this contradicts the maximality of A, as we could have
chosen A ∪ B1 instead. Hence B does not induce a connected subgraph of D.

Let J1, . . . , Jr be the components of D[B] for some r ≥ 2. Since D is not a
clique-star, one of J1, . . . , Jr, say J1, is not complete. If follows that J1 contains
an induced P3, say on vertices u, v, w. Then u, v, w, together with a vertex of A
and a vertex of J2, induce a dart. ��
Proposition 5. The following statements are equivalent for every graph G.

(i) The paw is a pivot-minor of G.
(ii) The diamond is a pivot-minor of G.

132 K. K. Dabrowski et al.

(iii) The paw, the diamond or an odd cycle of length at least 5 is an induced
subgraph of G.

(iv) G has a component that is neither bipartite nor complete.

Proof. By pivoting one edge, the diamond can be obtained from the paw and so
(i) and (ii) are equivalent. Since every odd cycle on at least five vertices contains
the paw as a pivot-minor, (iii) implies (i) and (ii). As the classes of complete
graphs and bipartite graphs are pivot-minor-closed, (i) and (ii) imply (iv).

To prove that (iv) implies (iii), suppose (iii) is false. Let D be a component
of G. We claim that D is bipartite or complete. If not, C3 is a proper induced
subgraph of D. Let K be a maximal clique of D containing the vertices of a C3.
As D is not complete and K is maximal, there is a vertex u ∈ V (D) \ K that
has both a neighbour and a non-neighbour in K. Since K is a clique of size at
least 3, D contains the paw or diamond as an induced subgraph, a contradiction.

��
We proved the next proposition by computer (see [6] for source code).

Proposition 6 (proved by computer). The set F2P2 has size 9.

A sequence S of vertex deletions and edge pivots is an H-pivot-minor-
sequence of a graph G if H can be obtained from G after applying the operations
of S.

Theorem 2. For H ∈ {P1, 2P1, P2, P1 + P2, P3, C3, 2P2, P4, C4, paw, diamond},
there is a polynomial-time algorithm for H-Pivot-Minor that gives an H-pivot-
minor-sequence (if one exists).

Proof. The cases when H ∈ {P1, 2P1, P2} are trivial. By Propositions 1, 3, 4 and 6,
the set FH of minimal obstructions is finite if H ∈ {P3, P1 + P2, P4, C4, 2P2}.
If H = C3, by Proposition 2, we need to find an odd cycle F , which we do in
polynomial time by testing bipartiteness. If H ∈ {paw,diamond}, then we use
condition (iv) in Proposition 5 to decide if a graph has H as a pivot-minor; this
allows us to find a forbidden induced subgraph F efficiently by using the argument
in its proof. Then the theorem follows, as in polynomial time we can find the vertex
deletions and edge pivots that modify F into H. ��

3.2 When H Is Not 3P1-Free

We now consider the cases where H ∈ {3P1, 2P1 + P2, P1 + P3, claw}. The bull is
the graph obtained from P5 by adding an edge between the second vertex and the
fourth vertex. The graph W4 is obtained from C4 by adding one vertex adjacent to
all vertices of C4. The graph BW3 is the bipartite graph on seven vertices obtained
from C6 by adding one vertex adjacent to three pairwise non-adjacent vertices of
the cycle. We will work with the complement of BW3, denoted by BW3. See Fig. 3
for pictures of the bull, W4 and BW3.

We write G/v to denote (G∧ zv)− v if a vertex v has a neighbour z and G− v
if v is isolated. Two graphs are pivot-equivalent if they can be obtained from each

Computing Small Pivot-Minors 133

Fig. 3. Forbidden graphs from Sect. 3.2.

other by a sequence of edge pivots. For two distinct neighbours x, y of v, because
(G∧xv)−v = (G∧yv∧xy)−v = (G∧yv−v)∧xy, we find that (G∧xv)−v is pivot-
equivalent to (G ∧ yv) − v and thus the choice of neighbour of v does not change
the pivot-equivalence of graphs G/v. We need two lemmas (we omit the proofs).
Lemma 4 holds in the context of binary delta-matroids or matrix pivots (see [2,24])
and its proof is inspired by the analogous proof for vertex-minors in [12].

Lemma 3. Let v, x, y be distinct vertices of a graph G. If xy ∈ E(G), then (G ∧
xy) − v is pivot-equivalent to G − v and (G ∧ xy)/v is pivot-equivalent to G/v.

Lemma 4. If a graph H is a pivot-minor of a graph G and v ∈ V (G) \ V (H),
then H is a pivot-minor of G − v or (G ∧ vw) − v for some neighbour w of v in G.

The proofs for the cases where H ∈ {P1 + P3, claw} rely on the proof for the
H = 3P1 case. Our proof for the H = 3P1 case focuses on showing that if a graph G
contains 3P1 as a pivot-minor, then G contains a graph from {3P1,W4, BW3} as
an induced subgraph. We will do this by induction on |V (G)|. Since 3P1 is edgeless,
we cannot pivot any edge in it. Therefore, the above claim holds if |V (G)| ≤ 3,
and so we may assume that |V (G)| ≥ 4. If G has a pivot-minor isomorphic to 3P1,
then by Lemma 4, there is a vertex v ∈ V (G) such that G − v or G/v contains a
pivot-minor isomorphic to 3P1 for some neighbour w of v. Clearly, if G − v con-
tains 3P1, W4 or BW3 as an induced subgraph then G also contains this graph
as an induced subgraph. Therefore, by the induction hypothesis, we may assume
that G/v contains 3P1 as a pivot-minor. Lemmas 5, 6 and 7, we show that if G/v
contains an induced subgraph isomorphic to 3P1, W4 or BW3, then G contains
an induced subgraph in {3P1,W4, BW3}; these lemmas (we omit the proofs) will
form the main steps in our induction.

Lemma 5. Let vw be an edge of a graph G. If (G ∧ vw) − v contains 3P1 as an
induced subgraph, then G contains 3P1 or W4 as an induced subgraph.

Lemma 6. Let vw be an edge of a graph G. If G ∧ vw contains W4 as an induced
subgraph, then G contains 3P1, W4 or BW3 as an induced subgraph.

Lemma 7. Let G be a graph containing an edge vw. If G ∧ vw contains BW3 as
an induced subgraph, then G contains 3P1, W4 or BW3 as an induced subgraph.

Proposition 7. A graphG contains 3P1 as a pivot-minor if and only ifG contains
a graph from {3P1,W4, BW3} as an induced subgraph.

134 K. K. Dabrowski et al.

Proof. We first prove the “if” part. Suppose G contains a graph H ∈
{3P1,W4, BW3} as an induced subgraph. If H = W4, then by pivoting an
edge incident to the vertex of degree 4 we obtain a graph which contains 3P1

as an induced subgraph. If H = BW3, then let U1 = {a1, a2, a3} and U2 =
{b1, b2, b3, b4} be the two cliques of H and aibi ∈ E(H) for i = 1, 2, 3. By pivoting
an edge a1b1, we obtain a subgraph induced by {a2, a3, b2, b3, b4} that is isomor-
phic to W4.
Next, we prove the “only if” part. Suppose G contains 3P1 as a pivot-minor.
We use induction on |V (G)| = n to prove that G contains a graph from
{3P1,W4, BW3} as an induced subgraph. We may assume that n ≥ 4.

As n ≥ 4 > |V (3P1)|, Lemma 4 implies that there is a vertex v ∈ V (G) such
that G − v or (G ∧ vw) − v, for some neighbour w of v, contains 3P1 as a pivot-
minor. If G − v contains 3P1 as a pivot-minor, then by the induction hypothesis,
G − v contains an induced subgraph in {3P1,W4, BW3}, hence so does G. Now
we assume that (G ∧ vw) − v, for some neighbour w of v, contains 3P1 as a pivot-
minor. By the induction hypothesis, (G ∧ vw) − v contains 3P1, W4 or BW3 as
an induced subgraph. Applying Lemmas 5, 6 and 7, respectively, we find that G
contains an induced graph in {3P1,W4, BW3}. ��
Proposition 8. The following statements are equivalent for every graph G.

(i) P1 + P3 is a pivot-minor of G.
(ii) P1 + P3, K2,3, W4 or BW3 is an induced subgraph of G.
(iii) G contains 3P1 as a pivot minor and G is not a clique-star.

Proof. It is easy to verify that K2,3, W4 and BW3 contain P1 + P3 as a pivot-
minor. Therefore (ii) implies (i). To prove that (i) implies (iii), suppose that G
contains P1 +P3 as a pivot-minor. Since 3P1 is a pivot-minor of P1 +P3, it follows
that G contains 3P1 as a pivot-minor. It is easy to verify that all clique-stars are
(P1 + P3)-free. Since the class of clique-stars is pivot-minor-closed by Lemma 2,
it follows that all clique-stars are (P1 + P3)-pivot-minor-free. Hence G is not a
clique-star. Therefore (i) implies (iii).

It remains to show that (iii) implies (ii). Suppose (ii) does not hold, that is, G is
(P1+P3,K2,3,W4, BW3)-free. A graph is P1 + P3-free if and only if every compo-
nent of it is either complete multipartite or C3-free [21]. Hence, as G is (P1 +P3)-
free, every co-component of G is either a disjoint union of cliques or 3P1-free. If
every co-component of G is 3P1-free, then since co-components are complete to
each other, it follows that G is 3P1-free. Then G is (3P1,W4, BW3)-free. Then, by
Proposition 7, G is 3P1-pivot-minor-free. Assume that G has a co-component D
that contains an induced 3P1. Then D is a disjoint union of (at least three) cliques.
As G is K2,3-free, every other co-component of G is 2P1-free, in which case it con-
sists of a single vertex. Therefore the vertices in all the other co-components of G
form a dominating clique. Hence G is a clique-star. ��
For H = claw, we need a lemma (we omit the proof) that allows us to focus on
connected graphs.

Computing Small Pivot-Minors 135

Lemma 8. A graph G is (bull, claw, P5)-free if and only if every component of G
is 3P1-free.

Combining Lemma 8 with Proposition 7, it is easy to prove the following (we
omit the proof).

Proposition 9. A graph G contains the claw as a pivot-minor if and only if G
contains a graph from {claw, P5,bull,W4, BW3} as an induced subgraph.

We proved the next proposition by computer (see [6] for source code).

Proposition 10 (proved by computer). The set F2P1+P2 has size 19.

In the same way as for Theorem 2 we use Propositions 7–10 to prove:

Theorem 3. For H ∈ {3P1, 2P1 + P2, P1 + P3, claw}, there is a polynomial-
time algorithm for H-Pivot-Minor that gives an H-pivot-minor-sequence (if one
exists).

4 FutureWork

We aim to continue determining the complexity of H-Pivot-Minor. We do not
know yet if there is a graph H for which H-Pivot-Minor is NP-complete. Our
current technique for proving polynomial-time solvability is to find the set FH of
minimal forbidden induced subgraphs or a structural characterization verifiable
in polynomial time. Our research led to the following framework for future work.

1. For a graph H, determine if FH is finite (or has a polynomial characterization).
We have some preliminary results for the remaining graphs H on at most four
vertices, namely K4, C3 + P1 and 4P1. Using a computer, we found that F4P1

contains over 100,000 graphs even if we only list graphs on at most twelve vertices.
As such, it is likely that F4P1 is not finite. If H = K4 and H = C3 + P1, then
the set FH has infinite size. We also started to extend our computer approach
to graphs H on more than four vertices, which yielded large finite sets FH for
certain graphs H. The largest finite set we have found is FP2+C4 = FP2+P4 , which
contains 7932 graphs. In addition to F4P1 , we found that F3P2 also contains over
100,000 graphs, but it is not yet feasible for us to test if the set of minimal forbidden
graphs found so far is complete. Besides some further tests by computer, we also
need to answer the question of whether FH is infinite whenever H contains an
induced subgraph H ′ for which FH′ is infinite.

2. For a graph H, determine if H-pivot-minor-free graphs have bounded rankwidth.
If for a fixed graph H, the class of H-pivot-minor-free graphs has rank-width at
most k for some constant k, then we can decide in polynomial time if a given graph
G contains H as a pivot-minor. We first check in polynomial time [26] if the rank-
width rw(G) of G is at least k+1 or at most 3k+1. If rw(G) ≥ k+1, then G has H
as a pivot-minor. If rw(G) ≤ 3k + 1, then we can decide in cubic time if G has H
as a pivot-minor by adapting the approach for vertex-minor testing on graphs of

136 K. K. Dabrowski et al.

bounded rank-width from [5], namely via expression in monadic second order logic
with modulo-2 counting (we refer to a future paper for the details).

3. For a graph H, follow a hybrid approach by combining approaches 1 and 2.
In fact, for a graph H, it suffices to determine a sufficiently precise set F ′ ⊇ FH ,
after which we can try to prove boundedness of rank-width of the superclass of
F ′-free graphs using techniques for hereditary graph classes (see e.g. [8,14,15]).

4. For a graphH, determine whether the class ofH-pivot-minor-free graphs is well-
quasi-ordered by the induced subgraph relation.
For every graph H, the set FH is an antichain with respect to the induced sub-
graph relation. Suppose that the class of H-pivot-minor-free graphs is a subclass of
a hereditary class H that is defined by a finite collection of forbidden induced sub-
graphs such that H is well-quasi-ordered by the induced subgraph relation. Then
all graphs in FH are either one of the finitely-many minimal forbidden induced
subgraphs for H, or belong to H. Since H is well-quasi-ordered by the induced
subgraph relation and the graphs in FH form an antichain, it follows that FH is
finite. For example, since the graph W4 contains 3P1 as a pivot-minor and the
class of (3P1,W4)-free graphs is well-quasi-ordered by the induced subgraph rela-
tion [7], it follows that F3P1 is finite. Thus, even without finding the precise graphs
in FH , it may be possible to establish that the class of H-pivot-minor-free graphs
is well-quasi-ordered by the induced subgraph relation, and so conclude that the
H-Pivot Minor problem is polynomial-time solvable by finiteness of FH .

We note that approaches 2 and 3 do not yield certifying algorithms, while app-
roach 4 only gives a non-constructive proof that such an algorithm exists. Besides
the above, a proof for the Minor Recognition conjecture [11] for binary matroids
would also yield a technique to obtain complexity results for pivot-minors. In
particular, if this conjecture is true, then for every graph H the H-Pivot-
Minor problem is polynomial-time solvable for bipartite graphs. This follows
from Lemma 1, which implies that a connected bipartite graph H is a pivot-minor
of a bipartite graph G if and only if for binary matroids M and N that have G
and H as fundamental graphs, respectively, N or the dual of N is a minor of M
(if H is not connected, then we try all possible ways of making duals per compo-
nent of H).

Finally, it would be interesting to perform a similar complexity study with
respect to vertex-minors, starting by taking both G and H as part of the input.

Computing Small Pivot-Minors 137

References

1. Bouchet, A.: Circle graph obstructions. J. Comb. Theory, Ser. B 60(1), 107–144
(1994)

2. Bouchet, A., Duchamp, A.: Representability of Δ-matroids over GF(2). Linear Alge-
bra Appl. 146, 67–78 (1991)

3. Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. J. Graph The-
ory 11(1), 71–79 (1987)

4. Corneil, D.G., Lerchs, H., Stewart, L.: Complement reducible graphs. Discrete Appl.
Math. 3(3), 163–174 (1981)

5. Courcelle, B., Oum, S.: Vertex-minors, monadic second-order logic, and a conjecture
by Seese. J. Comb. Theory, Ser. B 97(1), 91–126 (2007)

6. Dabrowski, K.K.: Computing small pivot-minors [computer software]. Durham Uni-
versity (2018). https://doi.org/10.15128/r1t722h881p

7. Dabrowski, K.K., Lozin, V.V., Paulusma, D.: Clique-width and well-quasi-ordering
of triangle-free graph classes. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017.
LNCS, vol. 10520, pp. 220–233. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68705-6 17

8. Dabrowski, K.K., Paulusma, D.: Clique-width of graph classes defined by two for-
bidden induced subgraphs. Comput. J. 59(5), 650–666 (2016)

9. Fellows, M.R., Kratochv́ıl, J., Middendorf, M., Pfeiffer, F.: The complexity of
induced minors and related problems. Algorithmica 13(3), 266–282 (1995)

10. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem
is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

11. Geelen, J., Gerards, B., Whittle, G.: Towards a structure theory for matrices and
matroids. In: Proceedings of ICM 2006, vol. III, no. 827–842 (2006)

12. Geelen, J., Oum, S.: Circle graph obstructions under pivoting. J. Graph Theory
61(1), 1–11 (2009)

13. Grohe, M., Kawarabayashi, K.-i., Marx, D., Wollan, P.: Finding topological sub-
graphs is fixed-parameter tractable. In: Proceedings of STOC 2011, pp. 479–488
(2011)

14. Gurski, F.: The behavior of clique-width under graph operations and graph trans-
formations. Theory Comput. Syst. 60(2), 346–376 (2017)

15. Kamiński, M., Lozin, V.V., Milanič, M.: Recent developments on graphs of bounded
clique-width. Discrete Appl. Math. 157(12), 2747–2761 (2009)

16. Kwon, O., Oum, S.: Graphs of small rank-width are pivot-minors of graphs of small
tree-width. Discrete Appl. Math. 168, 108–118 (2014)

17. Lévêque, B., Lin, D.Y., Maffray, F., Trotignon, N.: Detecting induced subgraphs.
Discrete Appl. Math. 157(17), 3540–3551 (2009)

18. Lévêque, B., Maffray, F., Trotignon, N.: On graphs with no induced subdivision of
K4. J. Comb. Theory Ser. B 102(4), 924–947 (2012)

19. Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Math. 108(1–3), 343–364 (1992)

20. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Comput. Sci. Rev. 5(2), 119–161 (2011)

21. Olariu, S.: Paw-free graphs. Inf. Process. Lett. 28(1), 53–54 (1988)
22. Oum, S.: Rank-width and vertex-minors. J. Comb. Theory Ser. B 95(1), 79–100

(2005)
23. Oum, S.: Rank-width and well-quasi-ordering. SIAM J. Discrete Math. 22(2), 666–

682 (2008)

https://doi.org/10.15128/r1t722h881p
https://doi.org/10.1007/978-3-319-68705-6_17
https://doi.org/10.1007/978-3-319-68705-6_17

138 K. K. Dabrowski et al.

24. Oum, S.: Excluding a bipartite circle graph from line graphs. J. Graph Theory
60(3), 183–203 (2009)

25. Oum, S.: Rank-width: algorithmic and structural results. Discrete Appl. Math. 231,
15–24 (2017)

26. Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb.
Theory Ser. B 96(4), 514–528 (2006)

27. Oxley, J.G.: Matroid Theory. Oxford Graduate Texts in Mathematics, vol. 21, Sec-
ond edn. Oxford University Press, Oxford (2011)

28. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J.
Comb. Theory Ser. B 63(1), 65–110 (1995)

29. van’t Hof, P., Kamiński, M., Paulusma, D., Szeider, S., Thilikos, D.M.: On graph
contractions and induced minors. Discrete Appl. Math. 160(6), 799–809 (2012)

Saving Probe Bits by Cube Domination

Peter Damaschke(B)

Department of Computer Science and Engineering, Chalmers University,
41296 Göteborg, Sweden

ptr@chalmers.se

Abstract. We consider the problem of storing a single element from
an m-element set as a binary string of optimal length, and comparing
any queried string to the stored string without reading all bits. This is
the one-element version of the problem of membership testing in the bit
probe model, and solutions can serve as building blocks of general mem-
bership testers. Our principal contribution is the equivalence of saving
probe bits with some generalized notion of domination in hypercubes.
This domination variant requires that every vertex outside the dominat-
ing set belongs to a sub-hypercube, of fixed dimension, in which all other
vertices belong to in the dominating set. This fixed dimension equals the
number of saved probe bits. We give specific constructions showing that
up to three probe bits can be ignored when m is far enough from the
next larger power of 2. The main technical idea is to use low-dimensional
(grid) relaxations of the problem. The design of optimal schemes remains
an open problem, however one has to notice that even usual domination
in hypercubes is far from being completely understood.

Keywords: Bit probe model · Dominating set · Hypercube

1 Introduction

1.1 The Setting

Consider a fixed set U of m elements. We wish to perform two actions:

(i) Store a single element of U in memory.
(ii) For any u ∈ U (given to us by some external questioner) answer the question

whether the stored element equals u.
Memory may also be empty, and in this case the answer to (ii) should always
be negative. An action being similar to (ii) is simply:

(iii) Return the stored element.

One can obviously use (iii) to do (ii), but for a negative answer to (ii) it may
not be necessary to identify the stored element.

We suppose that memory consists of some number s of bits. Clearly, the
smallest possible memory size for the above task is s = �log(m + 1)�, where

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 139–151, 2018.
https://doi.org/10.1007/978-3-030-00256-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_12&domain=pdf

140 P. Damaschke

log := log2. Then every element of U can be represented by a unique string of s
bits that may be stored. Furthermore it is trivial to recover the stored element
by reading all s bits. However it may be sufficient to read a smaller number t < s
of bits.

1.2 Contributions

Only at first glance it might appear counterintuitive that not all bits need to be
read. However, it suffices to probe a subset of bits that distinguishes the queried
element from all other potentially stored elements, and in fact, t < s is possible
to achieve if m is far enough from the next larger power of 2. We will see that
designing schemes that utilize this idea is equivalent to domination in punctured
hypercubes. In a nutshell: Binary strings form a hypercube, but not all vertices
need to be used to encode elements, and we can decide on the unused ones.
When checking an element, we can stop reading more bits as soon as the already
known bits lead to a unique encoding. The vertices described by the read bits
form a sub-hypercube. This naturally defines a generalized domination problem
in hypercubes that we call cube domination. Since already usual domination in
hypercubes is difficult, we relax the problem to low-dimensional grids in order
to be able to construct specific solutions. We can save up to 3 probe bits for
certain large ranges of m. The main open question is how to prove lower bounds
on t, or equivalently, upper bounds on m. Therefore our numerical results are
likely to be improved by further research.

Other complexity models and other ways of implementing the same data
structure (other than by binary strings) are beyond the scope of this paper.

1.3 Background

A more general task than the one considered here is to store a set of up to
n elements and to answer set membership queries, i.e., tell whether a queried
element is in the stored set or not. This fundamental data structure problem has
been studied thoroughly [4,5,15,16].

The bit-probe model considers the number s of memory bits and the num-
ber t of bits that must be read (probed) in order to answer a query. In that
model, memory access is assumed to be the expensive part, while the external
computations needed to decide and decode the probes are a secondary concern.
In general, so called succinct data structures are concerned with the trade-off
between memory space and probes for answering queries or executing other data
structure operations. There are more recent results on set membership queries
in the bit-probe model in different ranges of the parameters [8,9,13].

Membership testers for small numbers n of elements can be relevant in various
ways. For memory management reasons, a large membership tester may be split
into many small blocks, where some hash function determines the blocks where
elements are stored. The question of optimizing blocks for fixed small n was
raised in [6]. In the present paper we consider only the case n = 1. However,
testers for single elements can be building blocks of any membership tester that

Saving Probe Bits by Cube Domination 141

first finds the location in memory where the queried element would be stored, and
then checks whether the stored candidate actually equals the queried element.
Storing and testing single elements is also a relevant task in its own right, e.g., for
authentication and access control of software agents. There, the stored element
may be a secret key.

As mentioned, there is a trade-off between s and t. We focus on the smallest
possible memory size s per element and ask how many probe bits can be saved
nevertheless. In big data applications, memory space can be a bottleneck or an
expensive resource.

The immediate relevance of a few saved probe bits might not be large, how-
ever for practical s they can make up some percent of the memory bits, and
queries may be frequent, such that certain applications may become slightly
faster. However the more interesting aspect is an understanding of the combi-
natorial nature of the problem, and the question which savings are possible at
all. Domination is a classic notion in graph theory, and connections between
properties of binary codes and the combinatorics of hypercubes are common.

In our notion of cube domination, every vertex not being in the dominating
set must belong to some sub-hypercube of fixed dimension, in which all other
vertices do belong to the dominating set. Some other, remotely similar gener-
alizations of domination have been considered in the literature. One example
are k-dominating sets, where every vertex outside the set must have at least
k neighbors in the set. The concept of k-tuple dominating sets is similar. We
refer to [1,7,11] for several approximation results. In our cube dominating sets,
the “dominating” vertices are not all adjacent to the “dominated” ones, instead,
they must form some low-diameter subgraph of a fixed shape that includes the
dominated vertex. We define our notion only for hypercubes and their subgraphs.
Similar concepts of subgraph domination in general graphs might also be inter-
esting, should some motivation for them arise.

2 Preliminaries

To avoid the invention of private terminology we use the established notation
for membership testers. Informally, an (m,n, s, t)-scheme is a data structure that
can store, within s bits, up to n elements from a universe of m elements and test
whether a queried element is among the stored ones, by reading at most t bits.
In our case we always have n = 1, and hence the “data structure” shall answer
question (ii) from the Introduction.

Upon a query, some strategy decides on the bits to read and eventually out-
puts an answer. An adaptive strategy decides sequentially which bit to read next,
depending on the query and on the bits already seen.

Definition 1. An (m, 1, s, t)-scheme consists of:

– a partitioning of the set {0, 1}s of binary strings of length s into a set E of
m element strings, a set D of dummy strings, and a set {o} containing only
one special string (without loss of generality the zero string),

142 P. Damaschke

– an injective function ϕ : U −→ E that encodes the elements of a fixed set U
with |U | = m as element strings,

– a deterministic adaptive strategy that takes a string e ∈ E ∪{o} and a queried
element u ∈ U , reads at most t bits of e, and outputs “yes” if e = ϕ(u), and
“no” otherwise.

We may informally identify an element u ∈ U with its element string ϕ(u).
The string o represents the empty set, that is, the state when no element is stored.
For our worst-case results, adaptivity is not really needed (see also the later
remark after Proposition 1). When checking an element, we expect specific bits
at specific positions, hence we can also read these bits simultaneously. However,
adaptivity can make a difference for the efficiency of negative tests.

Definition 2. Given an (m, 1, s, t)-scheme, we define the following concepts and
expressions, where xi denotes the i-th symbol of a string x.

– A ternary string is a string x from {0, 1, ∗}s. We call ∗ the wildcard and let
|x| denote the number of non-wildcard symbols.

– For x, y ∈ {0, 1, ∗}s we define x ⊂ y and call x a substring of y,
if ∀i : xi = yi ∨ xi = ∗.

– A ternary string p ⊂ ϕ(u) is a probe for u ∈ U , if p ⊂ e is false for all
e ∈ (E ∪ {o}) \ {u}.

– A probe p for u is a minimal probe if no ternary string q with q ⊂ p, q �= p
is still a probe for u.

– To read a probe means to look up the symbols of the probe which are not
wildcards.

Now we obtain a more combinatorial characterization of (m, 1, s, t)-schemes
and get rid of the consideration of a strategy. Remember that the zero string o
represents the empty set and does not need a probe.

Proposition 1. An (m, 1, s, t)-scheme is uniquely determined by ϕ, E, and
some minimal probe p(u) ⊂ ϕ(u) for every u ∈ U . Moreover, every p(u) contains
at least one bit 1. For every u ∈ U , the test whether the stored string is ϕ(u) is
done by reading p(u) entirely. Consequently, t = maxu∈U |p(u)|.
Proof. In order to decide the presence of a queried element u, some minimal
probe w of u must be read completely (both in the positive and negative case).
The reason is that, by minimality, no deviating bit may be found, until the
entire probe is read. We give the argument more formally: Let w′ ⊂ w with
|w′| = |w| − 1. Since w′ is not a probe of u, there exists another element v ∈ U
with w′ ⊂ ϕ(v). That is, ϕ(u) and ϕ(v) agree on w′ and differ in the bit omitted
from w. Without reading this bit, too, a tester cannot tell apart u and v. In
particular, the tester cannot safely confirm or rule out the presence of u.

Finally observe that every minimal probe of an element must also contain
some 1 in order to distinguish it from the zero string. �

While Definition 1 allowed adaptive reading, the above proof shows that the
bits of a minimal probe can be read in any order, even nonadaptively, since we

Saving Probe Bits by Cube Domination 143

must read them all. In the adaptive setting, reading the probe bits in random
order reveals a deviating bit in expected time at most t/2, hence negative answers
can be given faster, but not positive ones.

Finally, we define L := �log m�. Note that s = L + 1 is the optimal space
that can be used by any (m, 1, s, t)-scheme.

3 Cube Domination in Hypercubes

The following graph-theoretic definitions are quite common.
The (Hamming) weight of a binary string x is the number of 1s in that string:

|{i : xi = 1}|. The (Hamming) distance between two binary strings x and y of
equal lengths is the number of different bit positions: |{i : xi �= yi}|. The s-
dimensional hypercube Qs is the graph with vertex set {0, 1}s where two vertices
are adjacent if and only if their Hamming distance is 1. The sub-hypercube of
Qs described by the ternary string x ∈ {0, 1, ∗}s is the subgraph induced by all
vertices y ∈ {0, 1}s with x ⊂ y. The punctured s-dimensional hypercube Qo

s is
Qs after removal of one vertex and its indicent edges.

Note that we do not strictly distinguish between elements u, their strings
ϕ(u), and their corresponding vertices in the hypercube Qs; this should not
cause confusion. Therefore we may also speak of element vertices and dummy
vertices in Qs, corresponding to the element and dummy strings, respectively,
as introduced in Definition 1.

A subset D of vertices in a graph is called dominating if every vertex outside
D has a neighbor in D. The domination number γ(G) of a graph G is the size
of a minimum dominating set. We say that a vertex is dominated by itself and
by its neighbors.

In hypercubes and their subgraphs we will now generalize the notion of dom-
ination. As far as we know, this concept is novel. Note that the special case � = 1
is usual domination in hypercubes.

Definition 3. In a hypercube Qs or in an induced subgraph of QS, we call a set
D ⊆ {0, 1}s an �-cube dominating set if for every vertex u /∈ D there exists an
�-dimensional sub-hypercube consisting of u and 2� − 1 vertices from D. We say
that u is �-cube dominated by these vertices from D. We call a vertex v ∈ D
redundant if every u /∈ D is already �-cube dominated by some 2� − 1 vertices
from D \ {v}.

Informally, a redundant vertex is not needed to �-cube dominate any other
vertex. The connection of cube domination to our bit-probe number problem is
given by the following statement that has a straightforward proof.

Proposition 2. An (m, 1, L+1, L+1−�)-scheme exists if and only if the vertex
set of the punctured (L + 1)-dimensional hypercube can be divided into a set E
of m element vertices and a set D of 2L+1 − 1 − m dummy vertices, such that
D is an �-cube dominating set. Specifically, a probe for any element u ∈ U can
be chosen as the ternary string of an �-dimensional sub-hypercube which �-cube
dominates u.

144 P. Damaschke

The final lemma in this section is also simple but will be a useful tool for
concrete constructions of schemes. Techniques for the extension of schemes to
larger sizes are also known for general membership testers.

Lemma 1. Let D be an �-cube dominating set in the full (L + 1)-dimensional
hypercube QL+1 with |D| = 2L+1 − m, hence with exactly m vertices outside D.
Furthermore, let f be any positive integer. Then we have:

(i) There exists an (m−1, 1, L+1, L+1−�)-scheme. If D has some redundant
vertex, then there exists an (m, 1, L + 1, L + 1 − �)-scheme.

(ii) There exists a (2fm − 1, 1, L + 1 + f, L + 1 + f − �)-scheme. If D has some
redundant vertex, then there exists a (2fm, 1, L+1+f, L+1+f −�)-scheme.

Proof. (i) We remove some vertex not being in D, to get a punctured hypercube
with dummy vertices in D and m − 1 element vertices. Since no vertex of D has
been removed, D is still �-cube dominating, and Proposition 2 yields the first
assertion. If some vertex in D is redundant, we remove this vertex instead, and
retain m element vertices.

(ii) We append to every string f further bits, in all 2f possible ways. If the
original string was an element (dummy) string, then we let all its 2f extensions
be element (dummy) strings as well. In other words, we glue together 2f copies of
the given hypercube equipped with the given set D. Every element vertex is still
�-cube dominated within its own copy, and redundant vertices stay redundant.
Now both assertions follow as above. �

4 Ignoring One Bit

Now we use the equivalence to cube domination to obtain concrete (m, 1, s, t)-
schemes with s = L + 1 and t < s, that is, schemes that use optimal space
but need not read all bits. First we deal with t = L, that is, � = 1 and usual
dominatiom, according to Proposition 2.

We have to state that the knowledge of exact domination numbers of (full)
hypercubes is rather fragmentary. Only very few domination numbers are known
[2,3,10,12,14,17]:

Theorem 1. The domination number γ(QL+1) of the full (L + 1)-dimensional
hypercube is:

– 7, 12, 16, 32, 62, for L = 4, 5, 6, 7, 8, respectively,
– 2L+1−k for 2k − 2 ≤ L ≤ 2k − 1,
– at most 2L−2 for every L > 6.

Let G−v denote the graph G after removal of vertex v and its incident edges.
A very simple fact is:

Proposition 3. For every graph G we have γ(G) − 1 ≤ γ(G − v) ≤ γ(G).

Specifically we get the following results to start with.

Saving Probe Bits by Cube Domination 145

Proposition 4. There exists a (5, 1, 3, 2)-scheme, but no (6, 1, 3, 2)-scheme.

Proof. We have γ(Qo
3) = 2: One example of a minimum dominating set is given

by D = {100, 011}, which yields a (5, 1, 3, 2)-scheme that uses the element strings
010, 001, 110, 101, 111 and the corresponding probes 01∗, 0∗1, 1∗0, 10∗, ∗11. Due
to Proposition 2, a (6, 1, 3, 2)-scheme would require a single dominating vertex,
which can however dominate only 4 of the 7 vertices. �
Proposition 5. There exists an (11, 1, 4, 3)-scheme, but no (12, 1, 4, 3)-scheme.

Proof. Similar but slightly more complex; omitted due to space limitations. �
Similarly, the known domination numbers from Theorem1 yield a (24, 1, 5, 4)-

scheme, a (51, 1, 6, 5)-scheme, a (111, 1, 7, 6)-scheme, and so on, but in these cases
we could not figure out whether m can be improved by 1 (which might be possible
due to Proposition 3). However, a more rewarding question than closing these
tiny gaps is the bit probe number for general L:

Theorem 2. For every L ≥ 6 and every m < 1.75·2L, there exists an (m, 1, L+
1, L)-scheme.

Proof. By Theorem 1, the (L + 1)-dimensional hypercube, and thus also the
punctured one, has a dominating set of size 2L−2. Due to Proposition 2, the
result now follows for m = 2L+1 − 1 − 2L−2 and for all smaller numbers m. �

An open problem is whether the factor 1.75 can be further increased for larger
numbers L. It might even tend to 2 for L → ∞; we do not know a non-trivial
bound. According to Theorem1, this problem is equivalent to the notoriously
difficult domination numbers of hypercubes. Therefore we do not investigate this
problem further and look into the opposite direction instead: We show that even
more probe bits can be saved when the ratios m/2L are somewhat smaller.

5 Ignoring Two Bits

5.1 Approach

In this section we will construct (m, 1, L + 1, L − 1)-schemes. First we give some
intuition. According to Proposition 2 applied to � = 2, every element string
must belong to a quadrangle (2-dimensional sub-hypercube) together with three
dummy vertices. On the other hand, since s = L + 1, the majority of vertices
must be element vertices. To satisfy these seemingly conflicting requirements, any
(m, 1, L + 1, L − 1)-scheme needs conglomerates of such quadrangles that share
many dummy vertices but include even more different element vertices. In this
situation, our key observation is that a star of dummy vertices, consisting of one
“central” vertex and k ≤ L+1 of its neighbors, can indeed form quadrangles with
up to

(
k
2

)
element vertices at distance 2 from the central vertex. Since

(
k
2

)
> k+1

for k ≥ 4, the element vertices form the majority. However, the challenge is to
pave the entire hypercube by such stars, thereby maximizing m.

146 P. Damaschke

Next, a practical approach to reduce the search space for this puzzle, possibly
at the price of getting only suboptimal m, is to map the hypercube to a low-
dimensional grid and treat all vertices with the same image equally, i.e., make
them either dummy or element vertices. In other words, we relax our problem to
some weighted problem in homomorphic images of hypercubes. (Remember that
even the usual domination problem in hypercubes is not well understood, hence
suboptimal yet “positive” results for � = 2 should be valuable.) Below we will
develop the technical details of our constructions. First we define several special
objects. Recall that s = L + 1.

Definition 4. Let π be a partitioning of the ordered set of bit positions {1, . . . , s}
into g segments of s1, . . . , sg positions, where ∀i : si > 0 and

∑g
i=1 si = s.

Given π, we set up a g-dimensional grid of points with integer coordinate vectors
(x1, . . . , xg), where ∀i : 0 ≤ xi ≤ si. We also partition the

∏g
i=1(si + 1) grid

points into a set D̃ of dummy points and a set Ẽ of element points.
Finally, we define an (m, 1, s, t)-scheme from π, D̃, Ẽ as follows. We map

every vertex v of the punctured s-dimensional hypercube (binary string v of s
bits) to the grid point (x1, . . . , xg), where xi is the number of 1s in the i-th
segment of the string v. We let D and E be the set of strings mapped onto D̃
and Ẽ, respectively.

Recall from Proposition 1 that an (m, 1, s, t)-scheme is characterized by the
set of the element strings and their minimal probes. In Definition 4 we haven’t
yet specified the probes (and t), but we will do this by cube domination, using
Proposition 2. Due to Lemma 1 we consider full hypercubes and redundant ver-
tices in D. For � = 2 we will now derive a condition on the dummy points that
is sufficient to meke D a 2-cube dominating set.

For this purrpose, we can alternatively view a grid as a graph where two
vertices (grid points) are adjacent if and only if their Euclidean distance is 1.
We call a straight path a path of grid points where all coordinates but one are
equal (figuratively, a path without bends). A quadrangle in the grid is a subgraph
of four grid points that form a cycle.

Lemma 2. For any scheme defined by a grid as specified in Definition 4, the
following statements are equivalent:

– Every element point in the grid is an end point of a straight path with three
points, where the two others are dummy points, or belongs to a quadrangle
with three dummy points.

– The set of dummy vertices is 2-cube dominating in Qs.

The two cases are illustrated here, with dummy points and element points
displayed as * and e, respectively:

∗ ∗ e
∗ ∗
∗ e

Saving Probe Bits by Cube Domination 147

Proof. Consider any quadrangle in the hypercube. Its four strings have the form
u0v0w, u0v1w, u1v0w, u1v1w, where u, v, w are substrings that may be empty.
Remember the notion of segment from Definition 4.

If the two changing bits belong to the same segment, then the four elements
are mapped to grid points whose coordinates except one are constant, and the
changing coordinate has the values i, i + 1, i + 1, i + 2, for some integer i.
If the two changing bits belong to different segments, then the four elements
are mapped to grid points whose coordinates except two are constant, and the
changing coordinates have the values (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1), for
some integers i and j.

Suppose that the set of dummy vertices is 2-cube dominating. Then it follows:
Every element vertex is in some quadrangle with three vertices, and the image
of this quadrangle is either a straight path with three points or a quadrangle in
the grid, as seen above. In the former case, the element vertex is an end point
of the path, since the inner point represents two vertices which cannot be one
element and one dummy vertex.

This shows one direction of the equivalence. For proving the opposite direc-
tion, consider any element vertex and its image point p in the grid.

Let p be the end of a straight path with dummy points q and r. The strings
of vertices mapped to the path differ in only one segment σ. Let the number of
1s in p, q, r in σ be i, i+1, i+2, respectively. We choose any two positions of bits
in σ that are 0 in the considered string mapped to p. Such positions exist since
r represents all strings with i + 2 bits 1 in σ, in particular, the length of σ is at
least i + 2. We change any one of these 0s into 1 to obtain two strings mapped
to q, and we change both 0s into 1 to obtain a string mapped to r. These three
strings are dummy strings and together 2-cube dominate our considered element
string. The case where the strings in p, q, r have i + 2, i + 1, i, respectively, bits
1s in σ is symmetric. There we change two 1s into 0s instead.

It should be evident that the reasoning for quadrangles in the grid is similar,
except that only one bit is changed in each of two segments. �

5.2 Results

We are ready to derive specific results on (m, 1, L + 1, L − 1)-schemes, using the
above tools plus further heuristics (see below).

First we mention that no (8, 1, 4, 2)-scheme exists, hence no (9, 1, 4, 2)-scheme
etc. This can be shown by tedious exhaustive case examinations, but we have
not found a concise proof.

However, for sizes L ≥ 4 we do obtain (m, 1, L+1, L−1)-schemes. Note that
we want to maximize m for a given L, and that any (m, 1, L + 1, L − 1)-scheme
trivially implies (m′, 1, L + 1, L − 1)-schemes for all m′ < m.

The plan is to place the dummy points preferably close to the borders and
corners, where the element numbers are small. But we must also observe the
condition from Lemma 2 and “reach” all grid points. We first try to dominate
the heavy central points cheaply.

148 P. Damaschke

As a convenient notation, we display grids by indicating the numbers of
strings mapped to each grid point. From Definition 4 it is obvious that they are
certain binomial coefficients or products thereof. We mark each dummy point
by an asterisk (*).

Proposition 6. There exists a (19, 1, 5, 3)-scheme.

Proof. Apply Lemma 1 (i), Lemma 2, and the following 1-dimensional grid.

∗1 ∗5 10 10 ∗5 ∗1

Note that we get only m = 19, due to lack of a redundant dummy vertex. �
Corollary 1. There exist a (39, 1, 6, 4)-scheme, a (79, 1, 7, 5)-scheme, a
(159, 1, 8, 6)-scheme, and a (319, 1, 9, 7)-scheme.

Proof. Apply Lemma 1 (ii) to the scheme from Proposition 6. �
The next item would be a (639, 1, 10, 8)-scheme, but this can be improved:

Proposition 7. There exists a (723, 1, 10, 8)-scheme.

Proof. Apply Lemma 1 (i), Lemma 2, and the following 2-dimensional grid.

1 ∗5 ∗10 ∗10 5 1
5 25 ∗50 50 25 ∗5

∗10 50 100 100 ∗50 ∗10
∗10 ∗50 100 100 50 ∗10
∗5 25 50 ∗50 25 5
1 5 ∗10 ∗10 ∗5 1

Indeed, all element points satisfy the condition in Lemma2. �
Next we might apply Lemma 1 (ii) once more and obtain a (1447, 1, 11, 9)-

scheme. But we can raise m somewhat. Note that a new pattern of dummy points
in the grid emerges:

Proposition 8. There exists a (1464, 1, 11, 9)-scheme.

Proof. Apply Lemma 1 (i), Lemma 2, and the following 2-dimensional grid.

∗1 6 ∗15 ∗20 ∗15 6 ∗1
5 30 75 ∗100 75 30 5

∗10 ∗60 150 200 150 ∗60 ∗10
∗10 ∗60 150 200 150 ∗60 ∗10

5 30 75 ∗100 75 30 5
∗1 6 ∗15 ∗20 ∗15 6 ∗1

Note as a minor detail that the dummy vertices at the corners are redundant,
so we can remove one of them. �

Saving Probe Bits by Cube Domination 149

Finally we get a general result for saving two probe bits. It follows instantly
from Lemma 1, Proposition 8, and 1464/1024 > 1.42.

Theorem 3. For every L ≥ 10 and every m < 1.42·2L, there exists an (m, 1, L+
1, L − 1)-scheme.

Proof. This follows now instantly from Lemma 1 and Proposition 8, noticing that
1464/1024 > 1.42. �

Once more, the factor 1.42 is probably not the last word and may be raised
further. We remark that we have not found better values of m via grids of
dimension g > 2. An explanation might be that the quadrangles themselves are
2-dimensional, such that higher-dimensional grids might not give better oppor-
tunities to glue them.

5.3 Ignoring Even More Bits

Next we can show that even some (m, 1, L + 1, L − 2)-schemes exist. Similarly
as in case � = 2, the condition for a scheme described by a 2-dimensional grid is
that every element point is the end of a straight path of four points (a (1 × 4)-
subgrid) or the corner of some (2 × 3)-subgrid, where all other points in the
respective subgrid are dummy points. The proof is analogous to Lemma2.

Theorem 4. For every L ≥ 7 and every m < 1.09·2L, there exists an (m, 1, L+
1, L − 2)-scheme.

Proof. The following 1-dimensional grid describes a (69, 1, 7, 4)-scheme (where
we remove one of the 35 + 35 element vertices in the punctured hypercube).

∗1 ∗7 ∗21 35 35 ∗21 ∗7 ∗1

Note that every element point is the end of a path with three dummy points.
Since 70/64 > 1.09, Lemma 1 implies the assertion for every larger L. �

Again, it could be interesting to raise the factor 1.09. We conclude with a

Conjecture. There exist no (m, 1, L + 1, L − 3)-schemes.
We were led to this conjecture by reasoning on the growth of binomial coef-

ficients, and from failed attempts to construct such schemes from grids despite
much experimentation. But actually it is open whether (m, 1, L + 1, L + 1 − �)-
schemes are possible even for arbitrarily large �. A weaker conjecture is that no
such schemes exist from some fixed � on.

6 Conclusions

We have constructed several non-obvious schemes for storing one out of m ele-
ments, that use optimal space and save some probe bits when querying the
stored element. They work for large ranges of m. Although being based on fairly

150 P. Damaschke

general ideas (cube domination in hypercubes, low-dimensional relaxation, and
doubling), the specific results have been found in an ad-hoc way. It could be nice
to find good general patterns of dummy points.

The impact of extra memory bits (s = L + 2, s = L + 3, etc.) was beyond
our scope. Of course, larger probe bit savings would not be surprising there, but
it remains the (difficult) question of exactly quantifying them. Some other open
questions were already mentioned. Finally, these schemes for single elements
could be used inside membership testers for subsets of up to n elements.

Acknowledgment. Special thanks go to the anonymous reviewer who pointed out
additional references around Theorem 1.

References

1. Argiroffo, G.R., Leoni, V., Torres, P.: On the complexity of k-domination and
k-tuple domination in graphs. Info. Proc. Lett. 115, 556–561 (2015)

2. Arumugam, S., Kala, R.: Domination parameters of hypercubes. J. Indian Math.
Soc. 65, 31–38 (1998)

3. Azarija, J., Henning, M.A., Klavzar, S.: (Total) domination in prisms. Electron. J.
Combin. 24, paper 1.19 (2017)

4. Buhrman, H., Miltersen, P.B., Radhakrishnan, J., Venkatesh, S.: Are bitvectors
optimal? SIAM J. Comput. 31, 1723–1744 (2002)

5. Carter, L., Floyd, R.W., Gill, J., Markowsky, G., Wegman, M.N.: Exact and
approximate membership testers. In: Lipton, R.J., et al. (eds.) STOC 1978, pp.
59–65. ACM (1978)

6. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.: Cuckoo filter: prac-
tically better than bloom. In: Seneviratne, A., et al. (eds.) CoNEXT 2014, pp.
75–88. ACM (2014)

7. Förster, K.T.: Approximating fault-tolerant domination in general graphs. In:
Nebel, M.E., Szpankowski, W. (eds.) ANALCO 2013, pp. 25–32. SIAM (2013)

8. Garg, M., Radhakrishnan, J.: Set membership with a few bit probes. In: Indyk, P.
(ed.) SODA 2015, pp. 776–784. ACM-SIAM (2015)

9. Garg, M., Radhakrishnan, J.: Set membership with non-adaptive bit probes. In:
Vollmer, H., Vallée, B. (eds.) STACS 2017. LIPIcs, vol. 66, paper 38, Dagstuhl
(2017)

10. Harary, F., Livingston, M.: Independent domination in hypercubes. Appl. Math.
Lett. 6, 27–28 (1993)

11. Klasing, R., Laforest, C.: Hardness results and approximation algorithms of k-tuple
domination in graphs. Info. Proc. Lett. 89, 75–83 (2004)

12. Klavzar, S., Ma, M.: The domination number of exchanged hypercubes. Info. Proc.
Lett. 114, 159–162 (2014)

13. Lewenstein, M., Munro, J.I., Nicholson, P.K., Raman, V.: Improved explicit data
structures in the Bitprobe model. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014.
LNCS, vol. 8737, pp. 630–641. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44777-2 52

14. Österg̊ard, P.R.J., Blass, U.: On the size of optimal binary codes of length 9 and
covering radius 1. IEEE Trans. Inform. Theory 47, 2556–2557 (2001)

https://doi.org/10.1007/978-3-662-44777-2_52
https://doi.org/10.1007/978-3-662-44777-2_52

Saving Probe Bits by Cube Domination 151

15. Pagh, R.: On the cell probe complexity of membership and perfect hashing. In:
Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) STOC 2001, pp. 425–432. ACM
(2001)

16. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions encoding k-ary trees, prefix sums and multisets. ACM Trans. Algor. 3, paper
43 (2007)

17. van Wee, G.J.M.: Improved sphere bounds on the covering radius of codes. IEEE
Trans. Inform. Theory 34, 237–245 (1988)

Graph Amalgamation Under Logical
Constraints

Mateus de Oliveira Oliveira(B)

University of Bergen, Postboks 7803, 5020 Bergen, Norway
mateus.oliveira@uib.no

Abstract. We say that a graph G is an H-amalgamation of graphs G1

and G2 if G can be obtained by gluing G1 and G2 along isomorphic
copies of H. In the amalgamation recognition problem we are given
connected graphs H, G1, G2, G and the goal is to determine whether G is
an H-amalgamation of G1 and G2. Our main result states that amalga-
mation recognition can be solved in time 2O(Δ·t) · nO(t) where n, t, Δ
are the number of vertices, the treewidth and the maximum degree of G
respectively.

We generalize the techniques used in our algorithm for H-amalgamation
recognition to the setting in which some of the graphs H, G1, G2, G are not
given explicit at the input but are instead required to satisfy some topo-
logical property expressible in the counting monadic second order logic of
graphs (CMSO logic). In this way, when restricting ourselves to graphs of
constant treewidth and degree our approach generalizes certain algorith-
mic decomposition theorems from structural graph theory from the con-
text of clique-sums to the context in which the interface graph H is given
at the input.

Keywords: Graph amalgamation · CMSO logic · Logical constraints

1 Introduction

Amalgamation of graphs and related structures have been studied for at least
four decades and have been used as a crucial tool in many branches of graph
theory and combinatorics [14,15,18,25,28]. In particular, already in the special
case where the interface graph H is a clique, the notion of H-amalgamation has
played a major role in the development of structural graph theory [17,19,26], in
the study of the chromatic number of graphs [17] and in algorithmics [10].

Definition 1.1 (H-Amalgamation). A graph G is an H-amalgamation of
graphs G1 and G2, if there exist injective morphisms1 μ : H → G, {μi : H →
Gi}i∈{1,2} and {ηi : Gi → G}i∈{1,2} such that G = η1(G1) ∪ η2(G2) and μ =
ηi ◦ μi for each i ∈ {1, 2}.

1 Graph morphisms will be properly defined in Sect. 2.

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 152–163, 2018.
https://doi.org/10.1007/978-3-030-00256-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_13&domain=pdf

Graph Amalgamation Under Logical Constraints 153

Intuitively, G is an H-amalgamation of G1 and G2 if G can be obtained by
identifying G1 and G2 along isomorphic copies of H. In this sense, we may think
of H as an interface between G1 and G2. Since G1 and G2 may have many
distinct subgraphs isomorphic to H, the injective morphisms μ1 and μ2 are used
to specify which of these subgraphs will be used as an interface between G1 and
G2. The morphisms μ, η1, η2 together with the conditions G = η1(G1) ∪ η2(G2),
μ = η1 ◦ μ1 and μ = η2 ◦ μ2 are used to formalize the intuition that the graph G
is obtained by identifying the image of μ1 in G1 with the image of μ2 in G2.

Perhaps the most natural question that arises when considering the notion of
H-amalgamation of graphs is the question of recognizing whether a given graph
G is an H-amalgamation of graphs G1, G2. Below, we write |G| to denote the
number of vertices of G.

Amalgamation Recognition
Input: Connected graphs H, G1, G2 and G where |H| ≤ |G1|, |G2| ≤ |G|.
Output: yes if G is an H-amalgamation of G1 and G2 and no otherwise.

Our main result (Theorem 3.8) states that amalgamation recognition
can be solved in time 2O(Δ·t) ·nO(t) where n, t,Δ, are the number of vertices, the
treewidth and the maximum degree of the graph G respectively. We note that
amalgamation recognition trivially generalizes subgraph isomorphism
(by setting G = G1 and H = G2), and therefore our algorithm also shows that
this latter problem can be solved in time 2O(Δ·t) ·nO(t). This gives an alternative
to the celebrated algorithm of Matoušek and Thomas [24] which works in time
f(Δ′) · nO(t) for some fast growing function f in the maximum degree Δ′ of the
interface graph H. Under the assumption that P �= NP , there is no algorithm
that solves subgraph isomorphism in time f(t) · nO(1). This is because sub-
graph isomorphism is already NP complete for t = 4 [23]. Additionally, under
the assumption that W [1] �= FPT , there is no algorithm for subgraph isomor-
phism that runs in time f1(t) · |G|f2(t

′) where f1, f2 are computable functions, t
is the treewidth of G and t′ is the treewidth of H [23].

Building on our main result we devise algorithms for variants of the amalga-
mation recognition problem where either the target graph G, or the interface
graph H is not explicitly given at the input, but is instead required to satisfy
some property expressible in the counting monadic second-order logic of graphs
(CMSO logic) [4–6,8]. This logic is expressive enough to define several inter-
esting graph properties, such as planarity, k-outerplanarity, embeddability on a
surface of genus k, k-connectivity, k-colorability, Hamiltonicity [4]. Additionally,
on graphs of constant treewidth2, this logic can be used to define several graph
polynomials of interest in topological combinatorics, such as the Tutte’s poly-
nomial, the Farrel polynomial, the Jones and Kauffman polynomials for knot
diagrams, etc. [20–22].

2 Definability of these polynomials require access to a total ordering of the edge set of
the graph. On graphs of constant treewidth such orderings are by themselves CMSO
definable.

154 M. de Oliveira Oliveira

We note that the problem of decomposing a graph G into a clique-sum of a
graph G1 satisfying a CMSO property Π1 and a graph G2 satisfying a CMSO
property Π2 has found many important applications in the field of structural
graph theory [11,16,17,27]. One of our results (Theorem 4.4) can be regarded
as a generalization of this type of problem to the context in which the interface
graph is given at the input.

2 Preliminaries

For each n ∈ N, we let [n] = {1, ..., n}. As a degenerate case, we let [0] = ∅.

Graphs: A graph is a triple G = (VG, EG, IncG) where VG is a set of vertices,
EG is a set of edges, and IncG ⊆ EG × VG is an incidence relation. For each
e ∈ EG we let endpts(e) = {v | IncG(e, v)} be the set of endpoints of e, and we
assume that |endpts(e)| is either 0 or 2. We note that our graphs are allowed to
have multiple edges, but no loops. We say that a graph H is a subgraph of G if
VH ⊆ VG, EH ⊆ EG and IncH = IncG ∩ EH × VH . Alternatively, we say that G
is a supergraph of H. The degree of a vertex v ∈ VG is the number d(v) of edges
incident with v. We let Δ(G) denote the maximum degree of a vertex of G.

A path in a graph G is a sequence v1e1v2...en−1vn where vi ∈ VG for i ∈ [n],
ei ∈ EG for i ∈ [n − 1], vi �= vj for i �= j, and {vi, vi+1} = endpts(ei) for each
i ∈ [n − 1]. We say that G is connected if for every two vertices v, v′ ∈ VG there
is a path whose first vertex is v and whose last vertex is v′.

Let G and H be graphs. A morphism from H to G is a pair of functions
μ = (·μ: VH → VG, μ : EH → EG) such that for every e ∈ EH , if endpts(e) =
{v, v′} then endpts(μ(e)) = {·μ (v), ·μ (v′)}. We say that μ is injective if both·μ and μ are injective. As an abuse of notation we may write μ : H → G to
denote a morphism from H to G. Additionally, we may write μ(H) to denote
the subgraph of G formed by vertices ·μ (VH) and edges μ(EH).

Terms. Let [r]∗ denote the set of all strings over [r] and let λ denote the empty
string. A subset N ⊆ [r]∗ is prefix closed if for every p ∈ [r]∗ and every j ∈ [r],
pj ∈ N implies that p ∈ N . We note that the empty string λ is an element of any
prefix closed subset of [r]∗. We say that N ⊆ [r]∗ is well numbered if for every
p ∈ [r]∗ and every j ∈ [r], the presence of pj in N implies that p1, ..., p(j−1) also
belong to N . We say that a subset N ⊆ [r]∗ is tree-like if N is both prefix-closed
and well-numbered.

Let Σ be a finite set of symbols. An r-ary term over Σ is a function τ : N → Σ
whose domain N is a tree-like subset of [r]∗. We may write Pos(τ) to denote
the domain of τ . We say that τ is a binary term if τ is a 2-ary term. We use
Ter(Σ) to denote the set of all terms over Σ. If τ1, τ2, ..., τk are terms in Ter(Σ)
and a ∈ Σ, then we let τ = a(τ1, ..., τk) be the term where τ [λ] = a and for each
jp ∈ Pos(τ), τ [jp] = τj [p].

Tree Automata: Let Σ be a finite set of symbols. A bottom-up tree automaton
over Σ is a tuple A = (Q,Σ,F,R) where Q is a set of states, F ⊆ Q a set of
final states, and R is a set of transitions of the form (q1, ..., qr, a, q) with a ∈ Σ,

Graph Amalgamation Under Logical Constraints 155

0 ≤ r ≤ 2, and q1, ..., qr, q ∈ Q. The size of A, which is defined as |A| = |Q|+ |R|,
measures the number of states in Q plus the number of transitions in R. The set
L(A, q, i) of all terms reaching a state q ∈ Q in depth at most i is inductively
defined as follows: If (a, q) is a transition in R, then a reaches state q in depth 1.
If (q1, ..., qk, a, q) is a transition in R, and τ1, ..., τk are terms in Ter(Σ) such that
τj reaches state qj in depth at most i for each j ∈ [k], then the term a(τ1, ..., τk)
reaches q in depth i+1. The language accepted by A, denoted by L(A), is defined
as the set of terms in Ter(Σ) that reach some state q ∈ F in any finite depth.

Let π : Σ → Σ′ be a map between finite sets of symbols Σ and Σ′. Such
mapping can be homomorphically extended to a mapping π : Ter(Σ) → Ter(Σ′)
between terms by setting π(τ)[p] = π(τ [p]) for each position p ∈ Pos(τ). Addi-
tionally, π can be further extended to a set of terms L ⊆ Ter(Σ) by setting
π(L) = {π(τ) | τ ∈ Ter(Σ)}. Below we state some well known closure and decid-
ability properties for tree automata.

Lemma 2.1 (Properties of Tree Automata [3]). Let Σ and Σ′ be finite
sets of symbols. Let A1 and A2 be tree automata over Σ, and π : Σ → Σ′ be a
mapping.

1. One can construct in time O(|Σ|) a tree automaton A(Σ) accepting the lan-
guage Ter(Σ).

2. One can construct in time O(|A1| · |A2|) a tree automaton A1 ∩ A2 such that
L(A1 ∩ A2) = L(A1) ∩ L(A2).

3. One can determine whether L(A1) �= ∅ in time |A1|O(1).
4. One can construct in time O(|A1|) a tree automaton π(A1) such that

L(π(A1)) = π(L(A1)).

2.1 Concrete Tree Decompositions

In this section we define the notion of t-concrete tree decomposition of a graph
following closely the exposition in [9]. Intuitively, a t-concrete tree decomposition
may be regarded as a way of representing a graph together with one of its tree
decompositions. Such a representation is convenient because it allows one to
represent families of graphs of constant treewidth via tree automata that accept
concrete decompositions. We note that similar ideas are widespread in texts
dealing with recognizable properties of graphs [1,2,7,12,13].

A t-concrete bag is a pair B = (B, b) where B ⊆ [t], and b ⊆ B with b = ∅
or |b| = 2. We note that B is allowed to be empty. We let B(t) be the set of all
t-concrete bags3. Note that |B(t)| ≤ t2 · 2t. We regard the set B(t) as a finite
3 We note that in texts dealing with similar notions of decomposition, it is customary

to define a bag of width t as a graph with at most t vertices together with a function
that labels the vertices of these graphs with numbers from {1, ..., t}. Our notion of
t-concrete bag, on the other hand, may be regarded as a representation of a graph
with at most t vertices injectively labeled with numbers from {1, ...t} and at most
one edge. Within this point of view, the representation used here is a syntactic
restriction of the former. On the other hand, any decomposition which uses bags
with arbitrary graphs of size t can be converted into a t-concrete decomposition, by
expanding each bag into a sequence of t2 concrete bags.

156 M. de Oliveira Oliveira

alphabet which will be used to construct terms representing tree decompositions
of graphs.

A t-concrete tree decomposition is a binary term τ ∈ Ter(B(t)). We let
τ [p] = (τ [p].B, τ [p].b) be the t-concrete bag at position p of τ . For each s ∈ [t],
we say that a subset P ⊆ Pos(τ) is s-maximal if the following conditions are
satisfied.

1. P is connected in Pos(τ).
2. s ∈ τ [p].B for every p ∈ P .
3. If P ′ is a connected subset of Pos(τ) and s ∈ τ [p].B for every s ∈ P ′, then

P ′ ⊆ P .

Note that if P and P ′ are s-maximal then either P = P ′, or P ∩ P ′ = ∅.
Additionally, p ∈ Pos(τ) and each s ∈ τ [p].B, there exists a unique subset
P ⊆ Pos(τ) such that P is s-maximal and p ∈ P . We denote this unique set by
P (p, s).

Definition 2.2. Let τ ∈ Ter(B(t)). The graph G(τ) associated with τ is defined
as follows.

1. VG(τ) = {vs,P | s ∈ [t], P ⊆ Pos(τ), P is s-maximal}.
2. EG(τ) = {ep | p ∈ Pos(τ), b �= ∅}.
3. IncG(τ) = {(ep, vs,P (p,s)) | ep ∈ EG(τ), s ∈ τ [p].b}.

The following observation is immediate, using the fact that if a graph has
treewidth t, then it has a rooted tree decomposition in which each node has at
most two children (see for instance [12]).

Observation 1. A graph G has treewidth t if and only if there exists some
(t+1)-concrete tree decomposition τ ∈ Ter(B(t+1)) such that G(τ) is isomorphic
to G.

3 An Algorithm for Amalgamation Recognition

In this section we will show that the problem of determining whether a connected
graph G is an H-amalgamation of connected graphs G1 and G2 can be solved in
time 2O(t·Δ) · nO(t) where t is the treewidth of G and Δ is the maximum degree
of G. To this end we will introduce some machinery for the manipulation of tree
automata accepting families of t-concrete decompositions.

We say that a t-concrete bag (B, b) is a sub-bag of a t-concrete bag (B′, b′)
if B ⊆ B′ and b ⊆ b′.

Definition 3.1. We say that a t-concrete tree decomposition τ ∈ Ter(B(t)) is
a sub-decomposition of a t-concrete tree decomposition τ ′ ∈ Ter(B(t)) if the
following conditions are satisfied.

S1. Pos(τ) = Pos(τ ′).
S2. For each p ∈ Pos(τ), τ [p] is a sub-bag of τ ′[p].

Graph Amalgamation Under Logical Constraints 157

S3. For each p, pj ∈ Pos(τ), and for each s ∈ [t], if s ∈ τ ′[p].B and
s ∈ τ ′[pj].B, then s /∈ τ [p].B if and only if s /∈ τ [pj].B.

We write τ � τ ′ to denote that τ is a sub-decomposition of τ ′. Intuitively, if a
t-concrete tree decomposition τ represents a graph G then sub-decompositions of
τ represent subgraphs of G. The following lemma states that sub-decompositions
of τ are in one to one correspondence with subgraphs of G(τ).

Lemma 3.2 ([9]).

1. Let τ, τ ′ ∈ Ter(B(t)). If τ is a sub-decomposition of τ ′ then G(τ) is a subgraph
of G(τ ′).

2. Let τ ′ ∈ Ter(B(t)) and let G be a subgraph of G(τ ′). Then there exists a
unique τ ∈ Ter(B(t)) such that τ is a sub-decomposition of τ ′ and G(τ) = G.

Let B(t) be the set of t-concrete bags. We let B(t)⊗2 be the set of ordered
pairs of bags in B(t). If τ1 and τ2 are t-concrete decompositions with Pos(τ1) =
Pos(τ2), then the tensor product of τ1 with τ2 is the term τ1 ⊗ τ2 ∈ Ter(B(t)⊗2)
defined as follows.

1. Pos(τ1 ⊗ τ2) = Pos(τ1).
2. For each p ∈ Pos(τ1), (τ1 ⊗ τ2)[p] = (τ1[p], τ2[p]).

Intuitively τ1⊗τ2 is obtained by placing τ1 side by side with τ2. The condition
that Pos(τ1) = Pos(τ2) guarantees that both terms have the same tree structure,
and therefore the definition of tensor product is well defined. If L1 and L2 are
sets of terms in Ter(B(t)), then we let L1 ⊗ L2 = {τ1 ⊗ τ2 | Pos(τ1) = Pos(τ2)}
be the set of tensor products between terms in L1 and terms in L2. The fol-
lowing proposition states that tensor products of languages represented by tree
automata can be constructed efficiently.

Proposition 3.3. Let A1 and A2 be tree automata over B(t). Then one can
construct in time O(|A1|·|A2|) a tree automaton A1⊗A2 such that L(A1⊗A2) =
L(A1) ⊗ L(A2).

We note that the notions of tensor product of bags, terms and tree automata
can be extended straightforwardly to any arbitrary number of factors. In par-
ticular, we let B(t)⊗4 be the set of 4-tuples of elements from B(t), Ter(B(t)⊗4)
be the set of terms over the B(t)⊗4, and for tree automata A1,A2,A3,A4 over
Ter(B(t)), we let A1 ⊗ A2 ⊗ A3 ⊗ A4 be the tree automaton accepting precisely
those terms τ1⊗τ2⊗τ3⊗τ4 ∈ Ter(B(t)⊗4) such that τi ∈ L(Ai) for i ∈ {1, 2, 3, 4}.

Next we will provide a local characterization of tuples of graphs
(H,G1, G2, G) satisfying the property that G is an H-amalgamation of G1 and
G2. This local characterization is given in terms of the notion of interface
sequence.

Definition 3.4 (Interface Sequence). We say that a sequence τ, τ1, τ2, τ
′ of

t-concrete decompositions is a t-concrete interface sequence if τ � τi and τi � τ ′

for each i ∈ {1, 2}, and τ ′[p] = τ1[p].B ∪ τ2[p].B and τ ′[p] = τ1[p].b ∪ τ2[p].b for
each p ∈ Pos(τ ′).

158 M. de Oliveira Oliveira

Intuitively, τ, τ1, τ2, τ
′ is an interface sequence if for each i ∈ {1, 2}, τ can be

embedded bag-wise into τi, τi can be embedded bag-wise into τ ′, and τ ′ is the
bag-wise union of τ1 and τ2.

Lemma 3.5. Let H, G and G1, G2 be graphs of treewidth at most t. Then G is
an H-amalgamation of G1 and G2 if and only if there exists a (t + 1)-concrete
interface sequence τ, τ1, τ2, τ

′ satisfying the following properties.

1. G(τ) H.
2. G(τ ′) G.
3. G(τi) Gi for each i ∈ {1, 2}.
Proof. Let G be an H-amalgamation of G1, G2. Then there exist injective mor-
phisms μ : H → G, {μi : H → Gi}i∈{1,2} and {ηi : Gi → G}i∈{1,2} such that
G = η1(G1) ∪ η2(G2), and μ = ηi ◦μi for each i ∈ {1, 2}. Let G′

i = ηi(Gi) be the
image of ηi in Gi, and let H ′ = μ(H) be the image of μ in G. Then H ′ and G′

i are
subgraphs of G such that G = G′

1 ∪ G′
2 and H ′ = G′

1∩G′
2. Since G has treewidth

at most t, there is a (t + 1)-concrete tree decomposition τ ′ ∈ Ter(B(t + 1)) such
that G G(τ ′).

We may assume that G = G(τ ′), that H,G1, G2 are subgraphs of G and that
H is a subgraph of G1, G2, since otherwise we could simply rename the vertices of
G,G1, G2 and H appropriately. Since G1, G2 and H are subgraphs of G, Lemma
3.2 implies that there exist unique sub-decompositions τ , τ1 and τ2 such that
G(τ) = H, G(τ1) = G1 and G(τ2) = G2. Additionally, since G1 ∪ G2 = G, we
have that for each position p ∈ Pos(τ ′), τ ′[p].B = τ1[p].B ∪ τ2[p].B and τ ′[p].b =
τ1[p].b ∪ τ2[p].b. Since H is also a subgraph of G1 and of G2, again by Lemma
3.2, there exists a sub-decomposition τ̃1 of τ1 such that G(τ̃1) = H and a sub-
decomposition τ̃2 of τ2 such that G(τ̃2) = H. But since the sub-decomposition
relation is transitive, τ̃1 and τ̃2 are also sub-decompositions of τ ′. Finally, since τ ,
τ̃1 and τ̃2 are sub-decompositions of τ ′ such that G(τ) = G(τ̃1) = G(τ̃2) = H, by
uniqueness, we have that τ = τ̃1 = τ̃2. This shows that the sequence τ, τ1, τ2, τ

′

is an interface sequence.
For the converse, let τ, τ1, τ2, τ

′ be an interface sequence satisfying Condi-
tions 3.5 to 3.5. Then for each i ∈ {1, 2}, G(τ) is a subgraph of G(τi), and G(τi)
is a subgraph of G(τ ′). Let μ : G(τ) → G(τ ′) be the inclusion map from G(τ) to
G(τ ′), and for each i ∈ {1, 2}, let μi : G(τ) → G(τi) be the inclusion map from
G(τ) to G(τi), and ηi : G(τi) → G(τ ′) be the inclusion map from G(τi) to G(τ ′).
Then these morphisms are injective, and μ = ηi ◦μi for each i ∈ {1, 2}. Addition-
ally, the condition that τ ′[p].B = τ1[p].B ∪ τ2[p].B and τ ′[p].b = τ1[p].b ∪ τ2[p].b
implies that the graph G(τ ′) is the union of the graphs G(τ1) and G(τ2). There-
fore, G(τ ′) is an G(τ)-amalgamation of G(τ1) and G(τ2). �

The next theorem states that for each t ∈ N one can construct a tree automa-
ton I(t) over B(t)⊗4 that accepts precisely those terms in in Ter(B(t)⊗4) that
correspond to t-concrete interface sequences.

Theorem 3.6 (All Interface Sequences). For each t ∈ N one can construct
in time 2O(t) a tree automaton I(t) over B(t)⊗4 that accepts a term τ ⊗τ1 ⊗τ2 ⊗
τ ′ ∈ Ter(B(t)⊗4) if and only if τ, τ1, τ2, τ

′ is a t-concrete interface sequence.

Graph Amalgamation Under Logical Constraints 159

The next theorem states that given a connected graph G of maximum degree
Δ, and a positive integer t, one can construct in time 2O(Δ·t) · |VG|O(t) a tree
automaton A(G, t) over B(t) that accepts precisely those t-concrete tree decom-
positions of G.

Theorem 3.7 ([9]). Let G be a connected graph of treewidth t and maximum
degree Δ. Then one can construct in time 2O(Δ·t) · |VG|O(t) a tree automaton
A(G, t) over B(t) such that for each τ ∈ Ter(B(t)), τ ∈ L(A(G, t)) if and only
if τ is a concrete tree decomposition of G.

The following theorem is the main result of this section.

Theorem 3.8 (Amalgamation Recognition). Given connected graphs H,
G1, G2 and G, each with at most n vertices, treewidth at most t, and maxi-
mum degree at most Δ, one can determine whether G is an H-amalgamation of
G1, G2 in time 2O(Δ·t) · nO(t).

Proof. By Theorem 3.6, one can construct in time 2O(t) a tree automaton I(t+1)
that accepts a term τ ⊗ τ1 ⊗ τ2 ⊗ τ ′ ∈ Ter(B(t)) if and only if τ, τ1, τ2, τ

′ is a
(t + 1)-concrete interface sequence.

Consider the following tree automaton over B(t + 1)⊗4.

A(H,G1, G2, G, t + 1) = A(H, t + 1) ⊗ A(G1, t + 1) ⊗ A(G2, t + 1) ⊗ A(G, t + 1).

Then A(H,G1, G2, G, t+1) accepts a term τ ⊗ τ1 ⊗ τ2 ⊗ τ ′ ∈ Ter(B(t+1)⊗4)
if and only if G(τ) H, G(τi) Gi for each i ∈ {1, 2}, and G(τ ′) G′.
Additionally, this automaton can be constructed in time 2O(Δ·t) · nO(t) by a
combination of Theorem3.7 and Proposition 3.3.

Now consider the following tree automaton over B(t + 1)⊗4.

A = A(H,G1, G2, G, t + 1) ∩ I(t + 1).

Then A accepts a (t+1)-concrete decomposition τ ⊗τ1⊗τ2⊗τ ′ if and only if
τ, τ1, τ2, τ

′ is an interface sequence , G(τ) H, G(τi) Gi for each i ∈ {1, 2} and
G(τ ′) G. By Lemma 3.5, this happens if and only if G is an H-amalgamation
of G1, G2.

Therefore, in order to determine whether G is an H-amalgamation of G1, G2

it is enough to determine whether the language accepted by A is non-empty.
Since |I(t+1)| = 2O(t) and |A(H,G1, G2, t+1)| = 2O(Δ·t)·nO(t), by Lemmas 2.1.2
and 2.1.3, we can determine whether L(A) is non-empty in time 2O(Δ·t) ·nO(t). �

4 Amalgamating Graphs Under CMSO Constraints

The counting monadic second-order logic of graphs (CMSO) extends first order
logic by allowing quantifications over sets of vertices and over sets of edges. This
logic can be used to define several natural properties of graphs such as planarity,
Hamiltonicity, r-colorability, etc.

160 M. de Oliveira Oliveira

In this section we consider variants of the amalgamation recognition problem
where the interface graph H, the factor graphs G1 and G2 or the final graph
G is not explicitly given at the input but it is instead required to satisfy some
constraint specified in CMSO logic. Before proceeding we briefly recall the syntax
of CMSO logic. We refer to the monograph [7] for an extensive study of the links
between CMSO logic and graphs of bounded treewidth.

CMSO Logic: The counting monadic second-order logic of graphs, here denoted
by CMSO, extends first order logic by allowing quantifications over sets of
vertices and edges, and by introducing the notion of modular counting predi-
cates. More precisely, the syntax of CMSO logic includes the logical connectives
∨,∧,¬,⇔,⇒, variables for vertices, edges, sets of vertices and sets of edges, the
quantifiers ∃,∀ that can be applied to these variables, and the following atomic
predicates:

1. x ∈ X where x is a vertex variable and X a vertex-set variable;
2. y ∈ Y where y is an edge variable and Y an edge-set variable;
3. Inc(x, y) where x is a vertex variable, y is an edge variable, and the interpre-

tation is that the edge x is incident with the edge y.
4. cards,r(Z) where 0 ≤ s < r, r ≥ 2, Z is a vertex-set or edge-set variable, and

the interpretation is that |Z| = s (mod r);
5. equality of variables representing vertices, edges, sets of vertices and sets of

edges.

A CMSO sentence is a CMSO formula without free variables. If ϕ is a CMSO
sentence, then we write G |= ϕ to indicate that G satisfies ϕ.

The next theorem may be regarded as a variant of Courcelle’s theorem [7].

Theorem 4.1 (Courcelle’s Theorem). There exists a computable function
f : N × N → N and an algorithm U which takes a CMSO sentence ϕ and
an integer t as input and constructs in time f(|ϕ|, t) a tree automaton A(ϕ, t)
accepting the following tree language.

L(A(ϕ, t)) = {τ ∈ Ter(B(t)) | G(τ) |= ϕ}. (1)

4.1 Amalgamation Recognition

Let ϕ be a CMSO sentence and G1, G2, G be connected graphs. We say that
G is a ϕ-amalgamation of graphs G1, G2 if there exists a graph H satisfying ϕ,
such that G is an H-amalgamation of G1, G2. For instance, if ϕpl is a CMSO
sentence defining planar graphs [7], then G is a ϕpl -amalgamation of G1, G2 if
G is an H-amalgamation of G1 and G2 for some planar graph H.

ϕ-Amalgamation Recognition: Let ϕ be a CMSO sentence. Given connected
graphs G1, G2 and G determine whether G is a ϕ-amalgamation of G1, G2.

Theorem 4.2 (ϕ-Amalgamation Recognition). There is a computable
function f : N×N → N and an algorithm U that takes as input a CMSO-sentence
ϕ and connected graphs G1, G2, G of treewidth at most t and maximum degree at
most Δ, and determines in time f(|ϕ|, t)·|G|O(t) whether G is a ϕ-amalgamation
of G1 and G2.

Graph Amalgamation Under Logical Constraints 161

4.2 Amalgamability

Let G1, G2 and H be connected graphs, t ∈ N and ϕ be a CMSO sentence. We
say that G1 and G2 are (ϕ, t)-amalgable along H if there exists a graph G of
treewidth at most t such that G satisfies ϕ and G is an H-amalgamation of
G1, G2. For instance, if ϕpl is the MSO sentence defining planar graphs, then
G1, G2 are (ϕpl , t)-amalgable along H if there is a way of gluing G1, G2 to H in
such a way that the resulting graph is planar and has treewidth at most t.

ϕ-Amalgamability: Let ϕ be a CMSO sentence. Given connected graphs H,
G1, G2 and a positive integer t, determine whether G1, G2 are (ϕ, t)-amalgable
along H.

Theorem 4.3 (ϕ-Amalgamability). There is a computable function f : N →
N and an algorithm U that takes as input a CMSO-sentence ϕ, and connected
graphs H,G1, G2 of treewidth at most t and maximum degree at most Δ, and
determines in time f(|ϕ|, t) · 2O(Δ·t) · (|G1| + |G2|)O(t) whether G1 and G2 are
ϕ-amalgable along H.

4.3 (ϕ1, ϕ2)-Factors

The problem of decomposing a graph G into a clique sum of a graph G1 satisfying
a CMSO property Π1 and a graph G2 satisfying a CMSO property Π2 has found
many important applications in the field of structural graph theory [11,16,17,27].
In this section we generalize such type of problems to the context in which
the interface graph H is given at the input. More precisely, we consider the
problem of factorizing G into an H amalgamation of graphs G1 and G2 where
G1 satisfies a given CMSO-sentence ϕ1 and G2 satisfies a given CMSO-sentence
ϕ2. One of many natural questions that fit in this framework is the following4:
Given connected graphs G and H, does there exist a planar graph G1 and a
Hamiltonian graph G2 such that G is an H-sum of G1 and G2? More formally,
we consider the following problem.

(ϕ1, ϕ2)-factors: Let ϕ1 and ϕ2 be CMSO formulas and let G and H be con-
nected graphs. Do there exist graphs G1 and G2 such that G1 |= ϕ1, G2 |= ϕ2

and G is an H-amalgamation of G1 and G2?

Theorem 4.4 (ϕ1, ϕ2-Factors). There is a computable function f : N × N ×
N → N and an algorithm U that takes as input connected graphs G,H of treewidth
at most t and maximum degree at most Δ, and CMSO-sentences ϕ1, and ϕ2 and
determines in time f(ϕ1, ϕ2, t) · 2O(Δ·t) · |G|O(t) whether there exist graphs G1

and G2 such that G1 |= ϕ1, G2 |= ϕ2 and G is an H-amalgamation of G1 and
G2.

4 Both Planarity and Hamiltonicity are CMSO-definable (note that our definition of
CMSO logic allows edge-set quantifications).

162 M. de Oliveira Oliveira

5 Conclusion

In this work we introduced an algorithmic framework to deal with graph amal-
gamation problems parameterized by the treewidth and maximum degree of
the involved graphs. In particular we have shown that the problem of deciding
whether a connected graph G is an H-amalgamation of connected graphs G1

and G2 can be solved in time 2O(Δ·t) · |G|O(t) where Δ and t are the maximum
degree and the treewidth of G respectively.

We have also considered variants of amalgamation problems where the host
graph G, the interface graph H or the factor graphs G1 and G2 are not given at
the input but are instead required to satisfy certain CMSO property. In general
we have shown that such problems can be solved in time f(Δ, t) · nO(t) where n
is the size of the largest considered graph. We believe that these problems may
serve as an useful tool in the study of decomposition of graphs.

Acknowledgements. The author thanks Michael Fellows for many valuable com-
ments. This work was supported by the Bergen Research Foundation.

References

1. Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: Proceedings of
SODA 2008, pp. 641–650. SIAM (2008)

2. Bojańczyk, M., Pilipczuk, M.: Definability equals recognizability for graphs of
bounded treewidth. In Procedings of LICS 2016, pp. 407–416. ACM (2016)

3. Comon, H., et al.: Tree Automata Techniques and Applications (2007)
4. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of

finite graphs. Inf. Comput. 85(1), 12–75 (1990)
5. Courcelle, B.: The monadic second-order logic of graphs xii: planar graphs and

planar maps. Theor. Comput. Sci. 237(1), 1–32 (2000)
6. Courcelle, B.: The monadic second-order logic of graphs xiii: graph drawings with

edge crossings. Theor. Comput. Sci. 244(1–2), 63–94 (2000)
7. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A

Language-Theoretic Approach, vol. 138. Cambridge University Press, Cambridge
(2012)

8. Courcelle, B., Oum, S.: Vertex-minors, monadic second-order logic, and a conjec-
ture by Seese. J. Combina. Theory, Ser. B 97(1), 91–126 (2007)

9. de Oliveira Oliveira, M.: On supergraphs satisfying CMSO properties. In: Proceed-
ings of the 26th Annual Conference on Computer Science Logic (CSL 2017). LIPIcs,
vol. 82, pp. 33:1–33:15 (2017)

10. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential
parameterized algorithms on bounded-genus graphs and h-minor-free graphs. J.
ACM (JACM) 52(6), 866–893 (2005)

11. Diestel, R.: A separation property of planar triangulations. J. Graph Theory 11(1),
43–52 (1987)

12. Elberfeld, M.: Context-free graph properties via definable decompositions. In: Pro-
ceedings of the 25th Conference on Computer Science Logic (CSL 2016). LIPIcs,
vol. 62, pp. 17:1–17:16 (2016)

Graph Amalgamation Under Logical Constraints 163

13. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM
(JACM) 49(6), 716–752 (2002)

14. Gross, J.L.: Genus distribution of graph amalgamations: self-pasting at root-
vertices. Australas. J. Combin. 49, 19–38 (2011)

15. Hilton, A.J., Johnson, M., Rodger, C.A., Wantland, E.B.: Amalgamations of con-
nected k-factorizations. J. Combin. Theory, Ser. B 88(2), 267–279 (2003)

16. Johnson, C.R., McKee, T.A.: Structural conditions for cycle completable graphs.
Discret. Math. 159(1–3), 155–160 (1996)

17. Kriz, I., Thomas, R.: Clique-sums, tree-decompositions and compactness. Discret.
Math. 81(2), 177–185 (1990)

18. Leach, C.D., Rodger, C.: Hamilton decompositions of complete multipartite graphs
with any 2-factor leave. J. Graph Theory 44(3), 208–214 (2003)

19. Lovász, L.: Graph minor theory. Bull. Am. Math. Soc. 43(1), 75–86 (2006)
20. Makowsky, J.A.: Coloured tutte polynomials and Kauffman brackets for graphs of

bounded tree width. Discret. Appl. Math. 145(2), 276–290 (2005)
21. Makowsky, J.A., Marino, J.P.: Farrell polynomials on graphs of bounded tree width.

Adv. Appl. Math. 30(1–2), 160–176 (2003)
22. Makowsky, J.A., Rotics, U., Averbouch, I., Godlin, B.: Computing graph poly-

nomials on graphs of bounded clique-width. In: Fomin, F.V. (ed.) WG 2006.
LNCS, vol. 4271, pp. 191–204. Springer, Heidelberg (2006). https://doi.org/10.
1007/11917496 18

23. Marx, D., Pilipczuk, M.: Everything you always wanted to know about the param-
eterized complexity of Subgraph Isomorphism (but were afraid to ask). In: Pro-
ceedings of the 31st International Symposium on Theoretical Aspects of Computer
Science (STACS 2014), pp. 542 (2014)

24. Matoušek, J., Thomas, R.: On the complexity of finding ISO-and other morphisms
for partial k-trees. Discret. Math. 108(1), 343–364 (1992)

25. Nešetřil, J.: Amalgamation of graphs and its applications. Ann. New York Acad.
Sci. 319(1), 415–428 (1979)

26. Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph.
J. Combin. Theory, Ser. B 89(1), 43–76 (2003)

27. Seymour, P.D., Weaver, R.: A generalization of chordal graphs. J. Graph Theory
8(2), 241–251 (1984)

28. Yang, Y., Chen, Y.: The thickness of amalgamations and cartesian product of
graphs. Discuss. Math. Graph Theory 37(3), 561–572 (2017)

https://doi.org/10.1007/11917496_18
https://doi.org/10.1007/11917496_18

∀∃R-Completeness and Area-Universality

Michael Gene Dobbins1, Linda Kleist2(B), Tillmann Miltzow3,
and Paweł Rzążewski4

1 Binghamton University, Binghamton, NY, USA
mdobbins@binghamton.edu

2 Technische Universität Berlin, Berlin, Germany
kleist@math.tu-berlin.de

3 Université libre de Bruxelles, Brussels, Belgium
t.miltzow@gmail.com

4 Faculty of Mathematics and Information Science,
Warsaw University of Technology, Warsaw, Poland

p.rzazewski@mini.pw.edu.pl

Abstract. In the study of geometric problems, the complexity class ∃R
plays a crucial role since it exhibits a deep connection between purely
geometric problems and real algebra. Sometimes ∃R is referred to as the
“real analogue” to the class NP. While NP is a class of computational
problems that deals with existentially quantified boolean variables, ∃R
deals with existentially quantified real variables.

In analogy to Πp
2 and Σp

2 in the famous polynomial hierarchy, we
study the complexity classes ∀∃R and ∃∀R with real variables. Our main
interest is focused on the Area Universality problem, where we are
given a plane graph G, and ask if for each assignment of areas to the
inner faces of G there is an area-realizing straight-line drawing of G. We
conjecture that the problem Area Universality is ∀∃R-complete and
support this conjecture by a series of partial results, where we prove ∃R-
and ∀∃R-completeness of variants of Area Universality. To do so,
we also introduce first tools to study ∀∃R. Finally, we present geometric
problems as candidates for ∀∃R-complete problems. These problems have
connections to the concepts of imprecision, robustness, and extendability.

1 Introduction

In this paper we investigate problems related to face areas in straight-line draw-
ings of planar graphs. We consider two crossing-free drawings of a planar graph
to be equivalent if they have the same outer face and rotation system, i.e., for
each vertex the cyclic ordering of the incident edges coincides. Recall that a plane

A video presenting this paper is available at https://youtu.be/OQkACiNS66o.
Proofs omitted due to space constraints can be found in the full version of the
manuscript [6]
T. Miltzow—Partially supported by the ERC grant PARAMTIGHT: “Parameterized
complexity and the search for tight complexity results”, no. 280152.

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 164–175, 2018.
https://doi.org/10.1007/978-3-030-00256-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_14&domain=pdf
https://youtu.be/OQkACiNS66o

∀∃R-Completeness and Area-Universality 165

graph is a planar graph together with a crossing-free drawing, and the faces of
a plane graph are determined by its rotation system. Let G be a plane graph
and let F be the set of inner faces of G. A face area assignment is a function
A : F → R

+
0 . We say that G′ is an A-realizing drawing, if G′ is an equivalent

straight-line drawing of G in which the area of each f ∈ F is exactly A(f). If
A has an area-realizing drawing, we say that A is realizable. A plane graph G is
area-universal if every face area assignment is realizable. Since we only consider
crossing-free straight-line drawings, we simply call them drawings from now on.

Since area-universality seems to be a strong property, it is somewhat surpris-
ing that many graphs indeed are easily seen to be area-universal. It is straight-
forward to observe that stacked triangulations, also known as planar 3-trees or
Apollonian networks, are area-universal. A stacked triangulation T is defined
recursively by subdividing a triangle t of a stacked triangulation T ′ into three
smaller triangles. An area assignment of T can be realized by first realizing T ′

so that t has the total area of the three smaller triangles, and then subdividing t
accordingly. Moreover, it is easy to see that if a graph is area-universal, then each
of its subgraphs is also area-universal. These two observations together imply
that partial planar 3-trees are area-universal [3]. In 1992, Thomassen [17] proved
that plane cubic graphs are area-universal. More recently, Kleist [9] showed that
all 1-subdivisions of plane graphs are area-universal. In other words, every area
assignment of every plane graph could be realized if we allowed each edge to
have at most one bend instead of only allowing straight-line drawings.

For a long time, the only graph known not to be area-universal was the
octahedron graph (or graphs containing the octahedron), which was proven by
Ringel [15] in 1990. Kleist [9] introduced the first non-trivial infinite family
of non-area-universal graphs. In particular, she showed that all Eulerian trian-
gulations and the icosahedron graph are not area-universal. This implies that
high connectivity of a graph does not imply area-universality. Moreover, area-
universality is not a minor-closed property, as the grid is area-universal [8], but
the octahedron graph is not area-universal, although it is a minor of the grid.

In this paper we are interested in the computational problem of deciding if a
given plane graph is area-universal; which we denote by Area Universality.

When investigating natural geometric problems, one often discovers that an
instance of such a problem can be described by a system of polynomial equa-
tions and inequalities Φ so that real-valued variable assignments that satisfy Φ
correspond to solutions of the original geometric problem. Existential The-
ory of the Reals (ETR) is a computational problem that takes a first-order
formula containing only existential quantifiers: ∃X1,X2, . . . , Xn : Φ, where Φ has
symbols 0, 1, +, ∗, =, <, ∧, ¬, (,), X1, . . . , Xn as an input and asks whether
it is true or not over the reals. The complexity class ∃R consists of all prob-
lems that are many-one reducible to ETR by a Turing machine in at most

166 M. G. Dobbins et al.

a polynomial number of steps. Surprisingly many natural geometric problems
appear to be ∃R-complete, i.e., ETR is also reducible to these problems in ∃R
in the above sense. A prominent example is the stretchability of a pseudoline
arrangement (see [12,13,16]). A pseudoline arrangement in the plane is a set
of unbounded Jordan curves where every pair of curves intersects in exactly
one crossing point. A pseudoline arrangement is stretchable if there exists an
arrangement of straight lines with the same face structure. Stretchability is
a computational problem which asks whether a given pseudoline arrangement
is stretchable. Here the input is the order type of a pseudoline arrangement,
which is a rank 3 chirotope. Since Stretchability is ∃R-complete, there is lit-
tle hope to find a simple algorithm for Stretchability, since simple algorithms
to decide ETR are not known despite tremendous work in real algebraic geom-
etry. The ∃R-completeness of Stretchability reflects the deep algebraic con-
nections between line arrangements and real algebra. For instance, the smallest
non-strechable pseudoline arrangement, depicted in Fig. 1, is based on Pappus’s
Hexagon Theorem [10], dating back to the 4th century. It considers two different
lines with three points each, the points are denoted by A,B,C and X,Y,Z, see
Fig. 1. If the lines AY ,BZ,CX intersect the lines BX,CY ,AZ, respectively,
then the three points of intersection are collinear. Although the statement is
intrinsically geometric, most known proofs are algebraic, see [14].

Fig. 1. Pappus’s Hexagon Theorem and non-stretchable pseudoline arrangement.

Geometric problems that are ∃R-complete usually ask for the existence of
certain objects, satisfying some semialgebraic properties. However, the nature
of Area Universality seems to be different. We therefore define the new
complexity class ∀∃R as the set of all problems that reduce in polynomial time
to Universal Existential Theory of the Reals (UETR).

The class ∃∀R is defined analogously. Clearly ∃R is contained in ∀∃R. It
is easy to observe and well-known that NP is contained in ∃R. Highly non-
trivial is the containment of ∀∃R in PSPACE, which follows from a more general
result that deciding first-order formulae over the reals with bounded number of
quantifier blocks is in PSPACE (see [2]). For all we know, all these complexity

∀∃R-Completeness and Area-Universality 167

classes could collapse, as we do not know whether NP and PSPACE constitute
two different or the same complexity class, see Fig. 2. However, ∃R �= ∀∃R can
be believed with similar confidence as NP �= Πp

2 . In addition, it is known that
the algebraic expressibility of ∀∃R-formulae is larger than ∃R-formulae, see [5].

Fig. 2. Relation of com-
plexity classes.

It is worth mentioning that Blum et al. [4] also
introduce a hierarchy of complexity classes analogous
to the complexity class NP, but over the reals (this gen-
eralizes to other rings). Their canonical model of com-
putation is the so-called Blum-Shub-Smale machine
(BSS). The main difference between these approaches
is that BSS accepts real numbers as input, while the
classes (∃R, ∀∃R, ∃∀R) work with ordinary Turing
machines, accepting only strings over finite alphabets.

Our Results
It is straightforward to show that Area Universality belongs to ∀∃R:
Proposition 1. Area Universality is in ∀∃R.
The idea is to use a block of universal quantifiers to describe the face area
assignment and the block of existential quantifiers to describe the placement of
the vertices of the drawing of G. We believe that a stronger statement holds.
Conjecture 1. Area Universality is ∀∃R-complete.
While this conjecture, if true, would show that Area Universality is a really
difficult problem in an algebraic and combinatorial sense, it would also give the
first known natural geometric problem that is complete for ∀∃R.

As a first step towards proving our conjecture, we consider three variants of
Area Universality, each approaching the conjecture from a different direc-
tion. In Sect. 2 we introduce restricted variants of ETR and UETR which are
still complete and may be useful to show hardness for other problems.

Note that two variants that we consider have the spirit of extending a partial
drawing with some extra constraints. This problem was shown recently to be
∃R-complete [11]. This work is the first to show ∃R-hardness for a problem of
drawing a planar graph in the plane.

As a starting point we drop the planarity restriction. For a plane graph G
with vertex set V , the face hypergraph of G has vertex set V , and its edges
correspond to sets of vertices forming the faces (see e.g. [7]). Observe that the
face hypergraph of a plane triangulation is 3-uniform, i.e. each hyperedge has 3
vertices. It is clear that Area Universality can be equivalently formulated in
the language of face hypergraphs. This relation motivates the following partial
assignment (PA) version of the problem.

168 M. G. Dobbins et al.

Theorem 1. Area Universality for Triples PA is ∀∃R-complete.

For the proof of Theorem 1 we use gadgets similar to the von Staudt constructions
used to show the ∃R-hardness of order-types, see [12].

Our second result concerns a variant, where we investigate the complexity of
realizing a specific area assignment. Prescribed Area denotes the following
problem: Given a plane graph G with an area assignment A, does there exist a
crossing-free drawing of G that realizes A? We study a partial extension (PE)
version of Prescribed Area, where some vertex positions are fixed and we
seek for an area-realizing placement of the remaining vertices.

We show the following hardness result for Prescribed Area PE.

Theorem 2. Prescribed Area PE is ∃R-complete.

The next two results consider the corresponding question for simplicial complexes
in three dimensions. Recall that an abstract simplicial complex is a family Σ of
non-empty finite sets over a ground set V =

⋃
Σ, which is closed under taking

non-empty subsets. We say Σ is pure when the inclusion-wise maximal sets of
Σ all have the same number of elements. We say Σ is realizable when there is a
simplicial complex S in R

3 that has a vertex for each element of V and a simplex
corresponding to each set in Σ.

A crossing-free drawing of Σ is a mapping of every i ∈ V to a point pi ∈ R
3,

such that the following holds. For any pair of sets σ1, σ2 ∈ Σ there is a separating
hyperplane h = {x ∈ R

3 : 〈a, x〉 = b} such that 〈a, pi〉 ≤ b for all i ∈ σ1 and
〈a, pi〉 ≥ b for all i ∈ σ2. A volume assignment for Σ is a non-negative-valued
function on the collection T of all 4-element sets in Σ, and a crossing-free drawing
of Σ realizes a volume assignment V : T → R

+
0 when for each τ ∈ T , the convex

hull of the points {pi : i ∈ τ} has volume V(τ). The analogous questions are:

∀∃R-Completeness and Area-Universality 169

Proposition 2. Volume Universality PA is in ∀∃R.
Note that 3-dimensional simplicial complexes are the analogue of planar triangu-
lations. Indeed, Prescribed Area for triangulations reduces to Prescribed
Volume in the following sense:

Proposition 3. There is a polynomial time algorithm that takes as input any
plane triangulation G with positive area assignment A and outputs a simplicial
complex S with volume assignment V such that A is realizable for G if and only
if V is realizable for S.

Moreover, the analogues of Prescribed Area and Area Universality
are hard. The two versions read as follows:

Theorem 3. Prescribed Volume is ∃R-complete.

Theorem 4. Volume Universality PA is ∀∃R-complete.

2 Toolbox: Hard Variants of ETR and UETR

In this section we introduce some restricted variants of ETR and UETR which
enable us to show hardness. Recently, Abrahamsen et al. showed that the fol-
lowing problem is also ∃R-complete [1].

In order to define an even more restricted variant of ETRINV, we need one more
definition. Consider a formula Φ of the form Φ = Φ1∧Φ2∧. . .∧Φm, where each Φi

is a quantifier-free formula of the first-order theory of the reals with variables
X1,X2, . . . , Xn, which uses arithmetic operators and comparisons (=, <,≤) but
no logic symbols. The incidence graph of Φ is the bipartite graph with vertex set
{X1,X2, . . . , Xn} ∪ {Φ1, Φ2, . . . , Φm} that has an edge XiΦj if and only if the
variable Xi appears in the subformula Φj . By Planar-ETRINV we denote the
variant of ETRINV where the incidence graph of Φ is planar and Φ is either
unsatisfiable or has a solution with all variables within (0, 5).

Theorem 5. Planar-ETRINV is ∃R-complete.

Proof. Let (∃ X1,X2, . . . , Xn) : Φ be an instance of ETRINV and let G be some
embedding of G(Φ) in R

2. Suppose that G is not crossing-free and consider a
pair of crossing edges. Let X and Y denote the variables corresponding to (one
endpoint of) these edges. We introduce three new existential variables X ′, Y ′, Z

170 M. G. Dobbins et al.

Fig. 3. The crossing gadget.

and three constraints: X+Y = Z; X+Y ′ = Z; X ′+Y = Z. Observe that these
constraints ensure that X = X ′ and Y = Y ′. Moreover, the embedding of G can
be modified so that the new incidence graph has strictly fewer crossings (see
Fig. 3): the considered crossing is removed and no new crossing is introduced.
We repeat this procedure until the incidence graph of the obtained formula is
planar. Finally, note that 0 < 1 ≤ Z = X+Y ≤ 4 < 5 whenever 1/2 ≤ X,Y ≤ 2.
Note that the number of new variables and constraints is at most O(|Φ|4), since
each constraint in ETRINV has at most three variables. ��

Now we introduce a restricted variant of UETR.

Constrained-UETR can be seen as a variant of ∀∃R that is simplified in a
way analogous to a ∃R-complete variant of ETR called Ineq [12,16]. Similarly,
we will show that Constrained-UETR is ∀∃R-complete.

Theorem 6. Constrained-UETR is ∀∃R-complete.

3 Hardness of Area Universality for Triples PA

Here we prove Theorem 1.

Theorem 1. Area Universality for Triples PA is ∀∃R-complete.

Proof. For the containment, it is easy to express the area of a triangle by a
polynomial equation: Denoting the coordinates of a vertex vi by (xi, yi), the
signed area A(v1, v2, v3) of a counter-clockwise triangle v1v2v3 can be computed
by

2 · A(v1, v2, v3) = det

⎛

⎝
x1 x2 x3

y1 y2 y3
1 1 1

⎞

⎠ =: Det(v1, v2, v3).

Thus, we take a conjunction of equations of the above form for each triple.

∀∃R-Completeness and Area-Universality 171

For the hardness, we reduce from Constrained-UETR. For every instance
Ψ of Constrained-UETR, we give a set of points V and unordered triples T ,
along with a partial area assignment A′. Let Ψ be a formula of the form:

Ψ = (∀Y1, . . . , Ym ∈ R
+)(∃X1, . . . , Xn ∈ R

+) : Φ(Y1, . . . , Ym,X1, . . . , Xn).
Recall that Φ is a conjunction of constraints of the form X = 1, X + Y = Z,

and X · Y = Z. First, we show how to express Φ. Our gadgets are similar to
the ones for showing ∃R-hardness of Order Type (see [12]). All variables are
represented by points on one line; which we denote by � for the rest of the
proof. First, we enforce points to be on �. Afterwards we construct gadgets for
mimicking addition and multiplication.

Introduce three points p0, p1, and r and define A′(p0, p1, r) := 1. The positive
area ensures that the points are not collinear and pairwise different. Without
loss of generality we assume that ‖p0p1‖ = 1 and interpret p0 as 0 and p1 as 1.
Denoting a line through two points a and b by �a,b, we set � := �p0,p1 . To force
a point x on �, we set A′(x, p0, p1) := 0. This introduces no other constraints on
the position of x. Each variable X is represented by a point x on �. Additionally,
since all variables are non-zero, we introduce a triangle forcing x to be different
from p0. In general, we can ensure that two points x1 and x2 are distinct, by
introducing a point q and adding a triangle (x1, x2, q) with A′(x1, x2, q) := 1.
The absolute value of X is defined by ‖p0x‖; if x and p1 lie on the same side
of p0, then the value of X is positive, otherwise it is negative. Here, we allow
negative values, but later we force the original variables to be positive.

Now, we describe the addition gadget for a constraint X +Y = Z. Let x, y, z
be the points encoding the values of X,Y,Z, respectively. Recall that x, y, z ∈ �
and x, y, z �= p0. We introduce a point q1 and prescribe the areas A′(p0, x, q1) =
A′(y, z, q1) = 1, see on the left of Fig. 4. Since the two triangles have the same
height, it holds that ‖yz‖ = ‖p0x‖. Thus, the value of Z is either X+Y or X−Y .
Analogously, we introduce a point q2 and define A′(p0, y, q2) = A′(x, z, q2) = 1,
implying that Z is either Y + X or Y − X. Therefore either Z = X + Y (the
intended solution) or Z = X − Y = Y − X. The latter case implies X = Y and
thus Z = 0. This contradicts the fact that z �= p0.

Fig. 4. Gadgets for addition and multiplication.

For the multiplication gadget, we show how to enforce on four pairwise differ-
ent points p, p′, s, s′ that �p,p′ is parallel to �s,s′ , without introducing additional
constraints on any of the four points. We insert two new points h1 on line �p,p′ and

172 M. G. Dobbins et al.

Fig. 5. Forcing a trapezoid.

h2 on line �s,s′ by defining A′(p, p′, h1) = A′(s, s′, h2) = 0. We aim for a trape-
zoid with points p, h1, s, h2 such that ph1 is parallel to sh2. For this, we prescribe
the areas A′(p, h1, s) = A′(p, h1, h2) = 1 and A′(s, h2, p) = A′(s, h2, h1) = 2, see
Fig. 5. Indeed, s and h2 must lie on the same side of the line �p,h1 : Assume by
contradiction that �p,h1 separates s and h2. If p, h1 are on the same side of �s,h2

then the triangle (s, h2, p) is contained in or contains the triangle (s, h2, h1),
see the middle of Fig. 5. However this contradicts the fact that both triangles
have the same area and p �= h1. Consequently, �s,h2 separates p and h1 and
the quadrangle psh1h2 can be partitioned by either diagonal sh2 or ph1. Thus,
2 = A(p, h1, s) + A(p, h1, h2) = A(s, h2, h1) + A(s, h2, p) = 4, which is again a
contradiction. Thus s, h2 lie on the same side of �p,h1 . By the prescribed area, s
and h2 have the same distance to �p,h1 . Hence, the segments ph1 and sh2 and the
lines �p,p′ and �s,s′ are parallel and no further constraints are imposed p, p′, s, s′.
To construct a multiplication gadget for the constraint X · Y = Z, let x, y, z (�=
p0) be the points encoding the values of X,Y,Z, respectively. We introduce two
points p, p′ not on �, but collinearity with p0 is forced by A′(p0, p, p′) := 0. By
the parallel-line construction we force that �p1,p with �y,p′ and �x,p with �z,p′ are
parallel, see Fig. 4. By the intercept theorem, the following ratios coincide (also
for negative variables): |p0p|/|p0p′| = |p0p1|/|p0y| = |p0x|/|p0z|. By definition
of x, y, z, we obtain 1/Y = X/Z, and hence X · Y = Z. Recall that p1 = 1.
For every universally quantified Yi, let yi be the point encoding its value with
yi ∈ � and yi �= p0. We introduce a triple fi = (p0, r, yi), whose area is universally
quantified. Recall that r is a point with A′(p0, p1, r) = 1. To enforce each original
variable X to be positive, we add an existentially quantified variable SX and the
constraint X = SX ·SX where SX may or may not be positive. This finishes the
reduction which clearly runs in polynomial time.

It remains to argue that Ψ is true if and only if, for the constructed instance
of Area Universality for Triples PA with partial assignment A′, every
assignment A consistent with A′ is realizable. Suppose Ψ is true, let A′ be as
above, and consider an assignment A that is consistent with A′. Let V (Yi) be
the area assigned to the triple fi, and let V (Xi) be the value of the variable Xi in
some satisfying assignment for Φ. Let y1, . . . , ym, x1, . . . , xn be points positioned
on a line at distances from a point p0 corresponding to these values. Since addi-
tion and multiplication relations specified by Φ hold, the corresponding gadgets
can be realized, so A is realizable. Suppose that every assignment A that is
consistent with A′ is realizable and consider values V (Y1), . . . , V (Ym) ∈ R

+ of

∀∃R-Completeness and Area-Universality 173

the universally quantified variables of Ψ . Then there is a realization of A where
p0 �= p1 and each fi has area V (Yi). So V (Xi) = ‖xi−p0‖/‖p1−p0‖ is a satisfying
assignment for Φ, thus Ψ is true. ��

4 Hardness of Prescribed Area PE

Here we sketch a proof of Theorem 2 by reducing from Planar-ETRINV.

Theorem 2. Prescribed Area PE is ∃R-complete.

Proof (Sketch). Let Ψ = ∃X1 . . . Xn : Φ(X1, . . . , Xn) be an instance of Planar-
ETRINV. Recall that we can assume that if Ψ is a positive instance, then it has
a solution in which the values of variables are in the interval (0, 5). We construct
a plane graph GΨ = (V,E), a face area assignment A of inner faces of GΨ ,
and fixed positions of a subset of vertices, such that GΨ has a realizing drawing
respecting the position of pre-drawn vertices if and only if Φ is satisfiable by
real values from the interval (0, 5). Consider the incidence graph of Φ and fix an
orthogonal plane drawing on an integer grid, see Fig. 6 for an example.

Fig. 6. Incidence graph of (X1+X2 = X3)∧(X1X2 = 1)∧(X1+X4 = X3)∧(X4X3 = 1).

To represent each part of GΨ , we design several gadgets: variable gadgets
to represent the variables, as well as inversion and addition gadgets to realize
the constraints. Moreover, we construct wires and splitters in order to copy and
transport information. For an illustration consider Fig. 7. Some vertices in our
gadgets have prescribed positions; we call them fixed. The remaining vertices are
flexible. Most flexible vertices lie on a specific segments where the distance to
one end of the segment encodes the value of the variable. ��

Fig. 7. Gadgets for Theorem 2; black vertices are fixed, gray vertices are flexible.

174 M. G. Dobbins et al.

5 Volume-Universality

In order to show Theorem 3, we reduce from ETRINV and for Theorem 4 from
Constrained-UETR. We construct a simplicial complex S = (V, F) and a
volume assignment V, such that S has a V-realization iff Φ is satisfiable. Our
essential building block is the coplanar gadget. It forces several triangles of equal
area to lie in a common plane, see Fig. 8 (left). These triangles will be free to
one half-space and thus accessible for our further construction. Indeed, all but
one vertices lie in the same plane. We use the coplanar gadget to force a set
of points representing the values of the variables to lie on a common line �.
In order to do so, we take two coplanar gadgets and enforce that their base
planes E,E� are not parallel, see Fig. 8 (right). This allows us to mimic addition
and inversion on a line as before. It turns out that in three dimensions we can
guarantee crossing-free simplices.

Fig. 8. Two gadgets for Prescribed Volume and Volume Universality PA.

6 Potential Complete Problems

To motivate the research on ∀∃R and ∃∀R, we present some candidates of prob-
lems that might be complete for these classes. A very natural one was suggested
by Marcus Schaefer. It is the well-known problem of determining the Hausdorff
distance of two semi-algebraic sets: For two sets A,B ⊆ R

d, the Hausdorff dis-
tance dH is defined as dH(A,B) = max{sup

a∈A
inf
b∈B

‖ab‖, sup
b∈B

inf
a∈A

‖ab‖}, where ‖ab‖
denotes the Euclidean distance. As a step towards proving the ∀∃R-hardness
of this problem, we show hardness for a variant where quantifier-free formulas
describing the semi-algebraic sets are part of the input.

Given a quantifier-free formula Γ of the first-order theory of the reals with n
free variables, SΓ := {x ∈ R

n : Γ (x)} is the semi-algebraic set defined by Γ . By
πk : Rn → R

k we denote the projection onto the first k coordinates. Note that
the complexity of a quantifier-free formula Γ ′ defining πk(SΓ) may exceed the
complexity of Γ . In Hausdorff Distance of Projections, the input consists
of two quantifier-free formulas Φ and Ψ in the first-order theory of the reals and
k ∈ N. The question is whether dH(πk(SΦ), πk(SΨ)) = 0.

∀∃R-Completeness and Area-Universality 175

Lemma 1. Hausdorff Distance of Projections is ∀∃R-complete.

Several other candidates of ∀∃R- and ∃∀R-complete problems are related
to the notion of imprecision, where we assume that our input is only a rough
approximation of the ‘real’ input. Nevertheless, we seek a universal solution
that is valid in any case, i.e., for every possible realization of the imprecise
data. As an example, consider Universal Guard Set, a variant of the Art
Gallery Problem [1]. For a set of unit disks specifying the imprecise placement
of polygon vertices, we ask for a minimum set of guards (points), that can guard
every polygon formed by points from the unit disks.

References

1. Abrahamsen, M., Adamaszek, A., Miltzow, T.: The art gallery problem is ∃R-
complete. In: Proceedings of the 50th Annual ACM SIGACT Symposium on The-
ory of Computing. ACM (2018)

2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-33099-2

3. Biedl, T.C., Velázquez, L.E.R.: Drawing planar 3-trees with given face areas. Com-
put. Geom. 46(3), 276–285 (2013)

4. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer, New York (2012). https://doi.org/10.1007/978-1-4612-0701-6

5. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symb. Comput. 5(1), 29–35 (1988)

6. Dobbins, M.G., Kleist, L., Miltzow, T., Rzążewski, P.: ∀∃R-completeness and area-
universality. CoRR, abs/1712.05142 (2017)

7. Dvořák, Z., Král’, D., Škrekovski, R.: Coloring face hypergraphs on surfaces. Eur.
J. Comb. 26(1), 95–110 (2005)

8. Evans, W.S., et al.: Table cartogram. Comput. Geom. 68, 174–185 (2018)
9. Kleist, L.: Drawing planar graphs with prescribed face areas. J. Comput. Geom.

9(1), 290–311 (2018)
10. Levi, F.: Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Ber.

Math.-Phys. Kl. Sächs. Akad. Wiss 78, 256–267 (1926)
11. Lubiw, A., Miltzow, T., Mondal, D.: The complexity of drawing a graph in a

polygonal region. CoRR, abs/1802.06699 (2018). Accepted at Graph Drawing 2018
(GD 2018)

12. Matoušek, J.: Intersection graphs of segments and ∃R. CoRR, abs/1406.2636 (2014)
13. Mnev, N.E.: The universality theorems on the classification problem of configura-

tion varieties and convex polytopes varieties. In: Viro, O.Y., Vershik, A.M. (eds.)
Topology and Geometry—Rohlin Seminar. LNM, vol. 1346, pp. 527–543. Springer,
Heidelberg (1988). https://doi.org/10.1007/BFb0082792

14. Richter-Gebert, J.: Perspectives on Projective Geometry: A Guided Tour Through
Real and Complex Geometry. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-17286-1

15. Ringel, G.: Equiareal graphs. In: Contemporary Methods in Graph Theory, pp.
503–505 (1990)

16. Schaefer, M., Štefankovič, D.: Fixed points, Nash equilibria, and the existential
theory of the reals. Theory Comput. Syst. 60(2), 172–193 (2017)

17. Thomassen, C.: Plane cubic graphs with prescribed face areas. Comb. Probab.
Comput. 1, 371–381 (1992)

https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/978-1-4612-0701-6
https://doi.org/10.1007/BFb0082792
https://doi.org/10.1007/978-3-642-17286-1
https://doi.org/10.1007/978-3-642-17286-1

Optimal General Matchings

Szymon Dudycz(B) and Katarzyna Paluch

Institute of Computer Science, University of Wroc�law, Wroc�law, Poland
szymon.dudycz@gmail.com, abraka@cs.uni.wroc.pl

Abstract. Given a graph G = (V,E) and for each vertex v ∈ V a sub-
set B(v) of the set {0, 1, . . . , dG(v)}, where dG(v) denotes the degree of
vertex v in the graph G, a B-matching of G is any set F ⊆ E such that
dF (v) ∈ B(v) for each vertex v, where dF (v) denotes the number of edges
of F incident to v. The general matching problem asks the existence of a
B-matching in a given graph. A set B(v) is said to have a gap of length p
if there exists a number k ∈ B(v) such that k + 1, . . . , k + p /∈ B(v)
and k + p + 1 ∈ B(v). Without any restrictions the general match-
ing problem is NP-complete. However, if no set B(v) contains a gap
of length greater than 1, then the problem can be solved in polynomial
time and Cornuéjols [5] presented an algorithm for finding a B-matching,
if it exists. In this paper we consider a version of the general matching
problem, in which we are interested in finding a B-matching having a
maximum (or minimum) number of edges.

We present the first polynomial time algorithm for the maxi-
mum/minimum B-matching for the case when no set B(v) contains a
gap of length greater than 1. This also yields the first pseudopolynomial
algorithm for the weighted version of the problem, in which each edge of
the graph is assigned a weight and the goal is to compute a minimum or
maximum weight B-matching.

1 Introduction

Given a graph G = (V,E) and for each vertex v ∈ V a subset B(v) of the
set {0, 1, . . . , dG(v)}, where dG(v) denotes the degree of vertex v in the graph
G, a B-matching of G is any set F ⊆ E such that dF (v) ∈ B(v) for each
vertex v, where dF (v) denotes the number of edges of F incident to v. The
general matching problem asks the existence of a B-matching in a given graph.
A set B(v) is said to have a gap of length p if there exists a natural number
k ∈ B(v) such that k + 1, . . . , k + p /∈ B(v) and k + p + 1 ∈ B(v). Without
any restrictions the general matching problem is NP-complete [14]. However,
for the case when no set B(v) contains a gap of length greater than 1, Lovász
[14] developed a structural description and Cornuéjols [5] presented a polynomial
time algorithm for finding a B-matching, if it exists. It is then one of the strongest
generalizations of matchings which is polynomially solvable, unless P = NP. In

Partly supported by Polish National Science Center grant UMO-2013/11/B/
ST6/01748.

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 176–189, 2018.
https://doi.org/10.1007/978-3-030-00256-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_15&domain=pdf

Optimal General Matchings 177

the maximum/minimum cardinality variant the goal is to find a B-matching
having a maximum/minimum number of edges. In the weighted version of the
problem a weight function w : E → R is given and the aim is to find a B-
matching that maximizes or minimizes the sum of the weights of the edges.

Previous Work. If B(v) = {0, 1} for each vertex v, then a B-matching is in
fact a matching, i.e., a set of vertex-disjoint edges. A perfect matching is a B-
matching such that B(v) = 1 for each vertex v. Given a function b : V → N,
a b-matching is any set F ⊆ E such that dF (v) ≤ b(v) for each vertex v and a
perfect b-matching or a b-factor is any set F ⊆ E such that dF (v) = b(v) for each
vertex v. If in addition to a function b we are also given a function a : V → N,
then an (a, b)-matching is any set F ⊆ E such that a(v) ≤ dF (v) ≤ b(v) for each
vertex v.

All these special cases of the general matching problem are well-solved, both
in unweighted and weighted versions. For instance, for the maximum weight b-
matching there exist algorithms with the following running times: O(n2B) by
Pulleyblank [19], O(n2m log B) by Marsh [16], O(m2 log n log B) by Gabow [7],
O(n2m + n log B(m + n log n)) and O(n2 log n(m + n log n)) by Anstee [1], and
Õ(Wφω) by Gabow and Sankowski [8], where n = |V |, m = |E|, B = max b(v),
φ =

∑
b(v), W is a maximum weight of edge and nω is the time required to

multiply two n × n matrices. For a good survey on these problems see [22].
In the antifactor problem for each vertex v we have |{0, 1, . . . , dG(v)}\B(v)| =

1, meaning that for each vertex there is exactly one degree excluded from the
set B(v). Graphs that have an antifactor have been characterized by Lovász in
[13].

For the more general case when no set B(v) contains a gap of length greater
than 1, Cornuéjols [5] in 1988 presented two solutions to the problem of finding
such B-matching, if it exists. One uses a reduction to the edge-and-triangle
partitioning problem, in which we are given a graph G = (V,E) and a set T of
triangles (cycles of length 3) of G and are to decide if the set of vertices V can be
partitioned into sets of cardinality of 2 and 3 so that each set of cardinality 2 is
an edge of E and each set of cardinality 3 is a triangle of T . The other is based on
an augmenting path approach applied in the modified graph G′ = (V ∪ V ′, E′)
in which each edge e of G is split with two new vertices into three edges. For each
new vertex v′ the set B(v′) is defined to be {1} and we start from the set F ⊆ E′

such that all requirements regarding vertices of G are satisfied, i.e., dF (v) ∈ B(v)
for each vertex v ∈ V and for each vertex v′ ∈ V ′ it is dF (v′) ≤ 1. Next we aim
to gradually augment F so that it also satisfies the requirements regarding new
vertices V ′ and dF (v′) = 1 for each v′ ∈ V ′. In either case, the computed B-
matching is not guaranteed to be of maximum or minimum cardinality. A good
characterization of graphs that have a B-matching [23] was provided in 1993 by
Sebö [23].

General matchings in bipartite graphs were also studied in terms of their
parameterized complexity. Gutin et al. showed that for graphs G = (U ⊍ V,E),
such that |B(u)| = 1 for every u ∈ U , there exists a fixed-parameter tractable
algorithm parametrized by the size of V [9].

178 S. Dudycz and K. Paluch

For the optimization variant of the general matching with no gap greater
than 1 Carr and Parekh provided a linear relaxation which is 1

2 -integral [4].
A B-matching is said to be uniform if each B(v) is either an interval, i.e.,

has the form {a(v), a(v)+1, . . . , b(v)} for some nonnegative integers a(v) ≤ b(v)
or an interval intersected with either even or odd numbers, i.e., has the form
{a(v), a(v) + 2, . . . , b(v)} for two nonnegative integers a(v) ≤ b(v) such that
b(v) − a(v) is even. A maximum/minimum weight uniform B-matching problem
was shown to be solvable in polynomial time by Szabó [25]. In the solution to
the weighted uniform B-matching Szabó uses the following result of Pap [18].
Let F be an arbitrary set of odd length cycles of graph G, where a single vertex
is considered a cycle of length 1. A perfect F-matching is any set of cycles and
edges of G such that each vertex belongs to exactly one edge or cycle from F .
Pap gave a polynomial time algorithm which minimizes a linear function over
the convex hull of perfect F-matchings.

Our Results. We give the first polynomial time algorithm for the maxi-
mum/minimum B-matching and B(v) for the case when no set contains a gap
of length greater than 1. Our solution yields also the first pseudopolynomial
algorithm for the maximum/minimum weight B-matching for the case when no
set B(v) contains a gap of length greater than 1.

We provide a structural result for both cardinality and weighted variants,
which states that given two B-matchings M and N , their symmetric difference
M ⊕ N = (M \ N) ∪ (N \ M) can be decomposed into a set of canonical paths,
a notion which we define precisely later and which plays an analogous role as
that of an alternating path in the context of standard matchings. A path P is
alternating with respect to a matching M if its edges alternate between edges
of M and edges not belonging to M . Roughly speaking, a canonical path (with
respect to a given B-matching M) consists of a meta-path, that is a sequence
of alternating paths, and possibly some number of meta-cycles attached to the
endpoints of this meta-path. A meta-cycle is a sequence of alternating paths
such that the beginning of the first alternating path coincides with the end of
the last alternating path in the sequence. After the application of a canonical
path P to a B-matching M we obtain another B-matching M ′ = M ⊕ P such
that only the parities of the degrees in M and M ′ of the endpoints of P are
different.

Equipped with this structural result we show how finding a maxi-
mum/minimum B-matching can be reduced to a series of computations of a
maximum/minimum weight uniform B-matching. In fact we prove that in order
to verify if a given B-matching M has maximum/minimum weight it suffices to
check if there exists a uniform B-matching of so called neighbouring type to M ,
whose weight is greater/smaller than that of M .

Additionally, we show a very simple reduction of a weighted uniform B-
matching to a weighted (a, b)-matching, which yields a more efficient and simpler
algorithm than the one by Szabó.

Optimal General Matchings 179

A remaining open problem is whether there exists a polynomial time algo-
rithm for a maximum weight B-matching for the case when no set contains a gap
of length greater than 1. It is also possible that our algorithm runs in polynomial
time.

Motivation. Matchings, b-matchings and factors are basic combinatorial
notions that lie at the foundation of combinatorial optimization. The general
matching problem restricted to gaps of at most 1 is one of the strongest general-
izations of matching, that was not proven NP-hard. As such it is of theoretical
importance to find a polynomial time algorithm for a maximum/minimum car-
dinality/weight B-matching with gaps at most 1 or in the case of a maximum
weight B-matching, to prove that it is NP-hard.

As for practical applications, the general matching is related to the extended
global cardinality constraint problem (EGCC). Given a set of variables X, a set
of values D, a domain for each variable D(x) ⊆ D and a cardinality set K(d) for
each d ∈ D, the goal is to find a valuation of variables, such that the number of
variables with value d belongs to K(d). Algorithms for general matchings were
used to solve some restricted variants of EGCC [9,21], while the general EGCC
is NP-hard. The EGCC problem was used for, among others, staff scheduling in
healthcare [3], optical network design [24] or car sequencing [20]. For empirical
survey on EGCC see [17].

Related Work. In the deficiency problems the task consists in finding a match-
ing that is as close as possible to given sets B(v). Hell and Kirkpatrick [10] gave
an algorithm for finding a minimum deficiency (a, b)-matching among all (0, b)-
matchings, where the deficiency is measured as the sum of differences a(v)−d(v)
over all vertices whose degree is not between a(v) and b(v). They also proved
that for another measure of deficiency, namely number of vertices whose degree
is outside (a(v), b(v)), the problem is NP-hard.

Another related problem consists in decomposing a graph into (a, b)-
matchings - a graph that can be decomposed into (a, b)-matchings is called
(a, b)-factorable. In [12] Kano gave a sufficient condition for a graph to be
(2a, 2b)-factorable. Cai [15] generalized this result to (2a − 1, 2b), (2a, 2b + 1)
and (2a−1, 2b+1)-factorable graphs. Hilton and Wojciechowski showed another
sufficient condition for an (r, r + 1)-factorization of graphs [11].

(a, b)-matchings were also studied in the stable framework - Biró et al. proved
that checking whether a stable (a, b)-matching exists is NP-hard [2].

Organization. In Sect. 2 we present a simple reduction for a uniform
B-matching. In Sect. 3 we introduce the notion of a canonical paths, followed
by the proof of the main theorem of our paper. The proof of a key technical
lemma is omitted and available in full version [6]. In Sect. 4 we present an algo-
rithm for a maximum B-matching and a maximum weight B-matching.

2 Uniform B-matching

In this section we show a reduction of a uniform B-matching to an (a, b)-
matching.

180 S. Dudycz and K. Paluch

Suppose an instance of a uniform B-matching involves a graph G = (V,E)
and for each vertex v ∈ V a subset B(v) of the set {0, 1, . . . , dG(v)}. We construct
a graph G′ = (V,E ∪ E′) and functions a, b : V → N as follows.

If for a vertex v, the set B(v) is an interval {c(v), c(v)+1, . . . , d(v)} for some
nonnegative integers c(v) ≤ d(v), then we set a(v) = c(v) and b(v) = d(v). If for
a vertex v the set B(v) has the form {c(v), c(v)+2, . . . , d(v)}, i.e., B(v) contains
all odd numbers between c(v) and d(v), and c(v) and d(v) are also odd, or B(v)
contains all even numbers between c(v) and d(v), and c(v) and d(v) are even,
then we add d(v)−c(v)

2 loops incident to v and set a(v) = b(v) = d(v). Each loop
has weight 0. Apart from this each edge e ∈ E has the same weight in G and
G′. Thus E′ consists of some number of loops that are added to each vertex v
such that B(v) is not an interval.

Theorem 1. There is a one-to-one correspondence between uniformB-matchings
of G and (a, b)-matchings of G′. A maximum weight (a, b)-matching of G′ yields a
maximum weight B-matching of G.

After this reduction the number of edges may increase by at most n2 and the
number of vertices remains the same. To solve the (a, b)-matching we can use an
algorithm by Gabow [7]. Its running time on a (multi-)graph with n vertices and
m edges is

∑
v∈V b(v)min(m log n, n2), which we bound by n4. As the number

of vertices does not change in the reduction, a uniform B-matching can also be
found in time O(n4).

3 Structure of General B-matchings

In this section we will consider the weighted version of the problem - for the
maximum cardinality variant it is enough to set all weights to 1.

Let us first recall and generalise some notions and facts from matching theory.
In the case of matchings, it is often convenient to consider the symmetric differ-
ence of two matchings. Given two matchings M and N the symmetric difference
of M and N , denoted as M ⊕ N , is equal to (M \ N) ∪ (N \ M). The symmetric
difference M ⊕ N of two matchings M and N can be decomposed into a set of
edge-disjoint alternating paths and alternating cycles, where a path or cycle is
said to be alternating if its edges belong alternately to M and N . We extend the
definition of an alternating path and cycle to the context of B-matchings.

Definition 1. Let M be any B-matching of G. A sequence of edges P =
((v1, v2), (v2, v3), . . . , (v2k−1, v2k), (v2k, v1)) is said to be an alternating cycle
(with respect to M) if

– for every i such that 1 ≤ i ≤ k the edge (v2i−1, v2i) belongs to M ,
– (v2k, v1) /∈ M and for every i such that 1 ≤ i ≤ k − 1, (v2i, v2i+1) /∈ M ,
– each edge of G occurs in P at most once,
– vertices v1, . . . , v2k are not necessarily distinct.

Optimal General Matchings 181

Fig. 1. Alternating cycles and paths.

An alternating path (with respect to M) is a sequence of edges P =
((v1, v2), (v2, v3), . . . , (vk, vk+1)) such that

– for every i such that 1 ≤ i ≤ k − 1 exactly one of the edges
(vi, vi+1), (vi+1, vi+2) belongs to M ,

– each edge of G occurs in P at most once,
– vertices v1, . . . , vk are not necessarily distinct,
– if v1 = vk+1, then either both edges (v1, v2) and (vk, v1) are in M , or both are

not in M .

Vertices v1 and vk+1 are called the endpoints of P and edges
(v1, v2), (vk, vk+1) the ending edges of P .

Examples of alternating paths and cycles are shown in Fig. 1. Throughout
the paper we will draw matched edges using wavy lines, and unmatched edges
using straight lines.

The decomposition of the symmetric difference of two B-matchings into alter-
nating paths and cycles is not unique. Nevertheless we are interested in maximal
decompositions, i.e., such that the concatenation of any two alternating paths
from the decomposition does not result in a new alternating path or cycle.

By applying an alternating path or cycle P to a B-matching M we mean the
operation, whose result is M ⊕P . We can notice that given any alternating cycle
P with respect to a B-matching M , the set M ′ = M ⊕ P is also a B-matching,
because dM ′(v) = dM (v) for each vertex v. However, it is not true that for
every alternating path P with respect to a B-matching M , M ′ = M ⊕ P is a
also B-matching. If v1, v2 are the endpoints of P , then dM ′(v1) �= dM (v1) and
dM ′(v2) �= dM (v2), so it may happen that dM ′(v1) /∈ B(v1) or dM ′(v2) /∈ B(v2).

We observe the following.

Fact 1. Given two B-matchings M and N . Let D− and D+ denote the sets,
respectively, {v ∈ V : dN (v) < dM (v)} and {v ∈ V : dN (v) > dM (v)} and let D
denote D− ∪ D+. Then any maximal decomposition of M ⊕ N has the property
that each endpoint of an alternating path from the decomposition belongs to D.
Also, every ending edge of an alternating path P incident to a vertex v in D−
such that v is an endpoint of P , belongs to M and similarly, every ending edge
of an alternating path P incident to a vertex v in D+ such that v is an endpoint
of P , belongs to N .

Since the application of an alternating path to a B-matching does not neces-
sarily lead to a new B-matching, we need to introduce some generalisation of an

182 S. Dudycz and K. Paluch

alternating path that can be applied in the context of B-matchings in a similar
way as an alternating path in the context of (standard) matchings.

From alternating paths of a maximal decomposition of the symmetric dif-
ference of two B-matchings M and N we build meta-paths and meta-cycles.
Let P (u, v) denote an alternating path with the endpoints u and v (note that
u, v ∈ D). A meta-cycle C (w.r.t. M) is a sequence of alternating paths of the
form (P (v1, v2), P (v2, v3), . . . , P (vk, v1)) such that vertices v1, . . . , vk are pair-
wise distinct. Analogously, a meta-path P(v1, vk+1) (w.r.t. M) is a sequence
of alternating paths of the form (P (v1, v2), P (v2, v3), . . . , P (vk, vk+1)) such that
vertices v1, . . . , vk+1 are pairwise distinct. Let us note that a meta-cycle may
consist of one alternating path of the form P (v, v).

For a vertex v and k ∈ B(v) let uk(v) be a maximum element of B(v), such
that B(v) ∩ [k, uk(v)] does not contain an element of different parity than k.
Because B(v) has a gap of length at most 1 we obtain that B(v) ∩ [k, uk(v)] =
{k, k +2, k +4, . . . , uk(v)}. Also, either uk(v)+1 ∈ B(v) or uk(v) is a maximum
element of B(v), as otherwise we could increase uk(v). Similarly let us define
lk(v) to be a minimum element of B(v), such that B(v) ∩ [lk(v), k] does not
contain an element of different parity than k.

We define Bk(v) to be

Bk(v) := B(v) ∩ [lk(v), uk(v)] = {lk(v), lk(v) + 2, . . . , k, . . . , uk(v)}

Note that {Bk(v)}k∈B(v) is a partition of the set B(v). For a B-matching M we
also define BM (v) = BdM (v)(v).

Given a B-matching M we say that a B-matching N is of the same uni-
form type as M if for every vertex v it holds that dN (v) ∈ BM (v).

A B-matching N is said to be of neighbouring type to a B-matching M
if there exists a set W consisting of at most two vertices such that ∀w ∈ W :
dN (w) /∈ BM (w) and ∀v /∈ W : dN (v) ∈ BM (v) and:

– |W | = 0, or
– |W | = 2 and for w ∈ W BM (w) and BN (w) are adjacent, that is

max(BM (w)) + 1 = minBN (w) or max(BN (w)) + 1 = minBM (w), or
– |W | = 1 and for w ∈ W there exists k, such that Bk(w) is adjacent to both

BM (w) and BN (w).

This means that we allow two vertices to have degree outside of BM (v), but
we place limits on how much they can deviate from that set.

We are now ready to give a definition of a canonical path - a notion that
is going to prove crucial in further analysis and which plays an analogous role
as an alternating path in the context of matchings.

Definition 2. A canonical path S(v1, vk) (with respect to a B-matching M) in
a graph G consists of some number of meta-cycles C1, C2, . . . , Cp incident to a
vertex v1, some number of meta-cycles C′

1, C′
2, . . . , C′

q incident to vk and in the
case v1 �= vk - of a meta-path P(v1, vk) such that the application of all meta-
cycles C1, C2, . . . , Cp, C′

1, C′
2, . . . , C′

q and the meta-path P(v1, vk) to M results
in a B-matching of neighbouring type to M .

Optimal General Matchings 183

Fig. 2. Examples of matchings of neighbouring types. Solid edges belong to matching
M and wavy edges belong to matching N . For every red vertex w Bw = {1} and for
every blue vertex z Bz = {0, 2}. (Color figure online)

Two variants of canonical path - with one endpoint or two endpoints - cor-
respond to different cases in the definition of neighbouring type. Namely, if
v1 �= vk, then set W = {v1, vk}. Otherwise v1 = vk and W = {v1} or W = ∅.
The examples of these cases are presented on Fig. 2.

We will often refer to the weight of a canonical path - that is the effect
its application has on a B-matching M . More precisely, for a canonical path
S wM (S) = w(M⊕S)−w(M) =

∑
e∈S\M w(e)−

∑
e∈S∩M w(e). Observe that for

two edge-disjoint canonical paths S1 and S2 we have that wM (S1) = wM⊕S2(S1).
We will usually write w(S) instead of wM (S) when the choice of M is clear. Also,
when constructing new canonical paths, we will use the notion of a fine vertex
- we say that a vertex v is fine in S if the number of edges incident to v in
M ⊕ S belongs to B(v) and wrong otherwise. We say that an endpoint of S
is fine (wrong) if it is fine (wrong) in S. We will say that a path (or cycle) is
positive if its weight is positive.

In our algorithm we want to subsequently find and apply positive weight
canonical paths until a B-matching is optimal. Let us start by showing that it
is necessary to consider canonical paths, that is that it may happen that a B-
matching is not optimal, but there is no meta-path or meta-cycle augmenting it
(i.e. increasing its size). Consider an unweighted graph in Fig. 2d. Then we cannot
apply any of the meta-cycles incident to v, because the degree of v would be 2.
On the other hand applying the meta-path decreases the size of the B-matching.

184 S. Dudycz and K. Paluch

Hence we need to apply both meta-cycles and the meta-path at the same time
(which together form a canonical path) to obtain a feasible B-matching of greater
size.

In the remainder of this section we will prove Theorem 2, which states that if
a B-matching M is not optimal, then there exists a canonical path improving it,
i.e., such that its application to M gives rise to a B-matching of greater weight.
The outline of the proof is as follows. First, in Lemma1 we prove that any B-
matching can be transformed into an optimal one by a sequence of canonical
paths. As an optimal B-matching has greater weight, at least one of those paths
has positive weight. Next, in Lemma 2 we prove that we can change the order of
the canonical paths in such a way that positive weight paths occur earlier in the
sequence. The section finishes with the proof of Theorem 2, in which we apply a
key technical Lemma 2 to show that we may assume that already the first path
in the sequence has positive weight.

We will need a more restricted version of a canonical path. In the exam-
ple above we have seen that we cannot consider only minimal (with respect to
inclusion) canonical paths. Therefore, we introduce another notion, similar to a
minimal canonical path but taking into account the weight of a path.

Definition 3. We say that S is a basic (canonical) path if it is a canonical path
and for no proper subset S ′ � S, S ′ is a canonical path such that w(S ′) ≥ w(S)
or w(S ′) > 0.

Observation 1. Let M be a B-matching. If there exists a canonical path S
w.r.t. M , then there exists a basic canonical path S ′ ⊆ S w.r.t M .

Lemma 1. Let M,N be two B-matchings. Then there exists a sequence
S1,S2, . . . ,Sk and a set of alternating cycles C1, C2, . . . , Cl that satisfy the fol-
lowing.

1. Let M0 denote M ⊕
⋃l

i=1 Ci. For each i such that 0 < i ≤ k Si is a basic
canonical path with respect to Mi−1 and Mi = Mi−1 ⊕ Si. Also, Mk = N .

2. M ⊕ N =
⋃k

i=1 Si ∪
⋃l

i=1 Ci, where every two elements of the set.
{S1, . . . ,Sk, C1, . . . , Cl} are edge-disjoint.

Proof. Let us consider some fixed maximal decomposition of M ⊕ N . Let
C1, C2, . . . , Cl denote all alternating cycles of this decomposition. By M0 we
denote M ⊕

⋃l
i=1 Ci.

If dM (v) = dN (v) for every vertex v, then M⊕N consists solely of alternating
cycles C1, C2, . . . Cl and M0 = N and we are done.

The maximal decomposition of M0 ⊕ N consists only of alternating paths.
The distance of two B-matchings M and N , denoted as dist(M,N), is defined
as

dist(M,N) =
∑

v∈V

|dN (v) − dM (v)|

In the distance of two B-matchings it is enough to consider the vertices belonging
to D, i.e., dist(M,N) =

∑
v∈D |dN (v) − dM (v)|.

Optimal General Matchings 185

Let M0 and N be two matchings such that the set D corresponding to
them is not empty, i.e. there exists a vertex v such that dM0(v) �= dN (v)
and hence dist(M0, N) > 0. We show how to construct some canonical path
S with respect to M0 such that the B-matching M1 = M0 ⊕ S satisfies:
D(M1, N) ⊆ D(M0, N), D−(M1, N) ⊆ D−(M0, N),D+(M1, N) ⊆ D+(M0, N)
and dist(M1, N) < dist(M0, N).

We start by setting S to be any alternating path P that belongs to a maximal
decomposition of M0⊕N . P may have two different endpoints or one endpoint. If
P is not a canonical path, then it means that after its application for at least one
of its endpoints v1 or v2 it holds that dM0⊕P (vi) /∈ B(vi), where i ∈ {1, 2}. We
can notice that apart from this P satisfies all the other conditions of a canonical
path. We are going to gradually extend S so that we obtain a canonical path.
At each stage of the construction the candidate S for a canonical path has all
the properties of a canonical path except for the fact that for one or two of its
endpoints it holds that dM0⊕S(vi) /∈ B(vi), where i ∈ {1, 2}.

If S has two endpoints, then both endpoints have degree one. If vi is not
fine in S it means that either B(vi) contains dM0(vi) and dM0(vi) + 2, but does
not contain dM0(vi) + 1 (vi ∈ D+), or B(vi) contains dM0(vi) and dM0(vi) − 2,
but does not contain dM0(vi) − 1 (vi ∈ D−). Then if we add another alternating
path starting at vi, it will cease to be an endpoint of S and its degree will belong
to BM0(vi). This will be true at each step of our construction - a vertex v that
is not an endpoint satisfies dM0⊕S(v) ∈ BM0(v). Another invariant that will be
maintained during the construction is the following: if there are two endpoints
of S their degrees will be odd in S, and if the two endpoints join into one (thus
v1 = v2), then their degree is even in S.

Assume then that we have some candidate path with one endpoint v1 or two
endpoints v1, v2, which is not a canonical path, so dM0⊕S(v1) /∈ B(v1). Since N is
a B-matching, there exists an alternating path P ′ in the maximal decomposition
of (M0 ⊕S)⊕N with one endpoint v1. This path has the property that either P
and S both diminish the number of edges incident to v1, or they both increase the
number of edges incident to M0, or our alternating paths would not be maximal.
After adding P to S the following things may happen:

1. P has two different endpoints v1, v3. Then vertex v1 is fine in S ∪ P . If v3
is not an endpoint of any alternating path belonging to S, then v3 is a new
endpoint of S ∪ P and either (i) v3 is fine in S ∪ P and we have decreased
the number of wrong endpoints by one or (ii) v3 is wrong in M ⊕ (S ∪ P)
and the number of wrong endpoints of S ∪ P is the same as the number of
wrong endpoints of S and we continue the process treating S ∪ P as the new
candidate for a canonical path. If v3 is an endpoint of some alternating path
belonging to S, then we have created a new meta-cycle C incident to v3. If v3
is fine in S ∪ C, then we decreased the number of wrong endpoints. If v3 is
fine in C then C is a canonical path with respect to M0. Otherwise it means
that dM0(v3) + 2 /∈ B(v3) (if v3 ∈ D+(M0, N)) or dM0(v3) − 2 /∈ B(v3) (if
v3 ∈ D−(M0, N)), so v3 must be the other endpoint of S. In this case we
have only one wrong endpoint left, v3, and we continue extending S from v3.

186 S. Dudycz and K. Paluch

Note that now that two endpoints have joined in v3, we seemingly have only
one endpoint. However, after the addition of an alternating path with two
endpoints v3 and v′, S will have two endpoints - v3 and v′, where v3 is fine.

2. P has one endpoint v1. If v1 is fine in S ∪ P, then we have decreased the
number of wrong endpoints of a candidate for a canonical path. Otherwise if
P is a canonical path we are done. The only case left is when v1 is not fine
but dM0(v1) + 2 /∈ B(v1) (if v3 ∈ D+(M0, N)) or dM0(v3) − 2 /∈ B(v3) (if
v3 ∈ D−(M0, N)). This may only happen if both endpoints of S are the same
vertex and then we continue extending S with only one wrong endpoint left.

That way we have constructed a canonical path S w.r.t. M . By Observation 1
it means that there exists a basic canonical path S ′. We can continue finding
canonical paths in the same way, this time in M0 ⊕ S ′ ⊕ N . Each such basic
canonical path decreases the distance between M and N , which means that way
we can decompose M0 ⊕ N into a finite number of basic canonical paths.

Now we are ready to state the key technical lemma.

Lemma 2. Let M and N be two B-matchings, such that w(M) < w(N). Let Q
be a basic canonical path w.r.t. M contained in M ⊕ N and R a basic canonical
path w.r.t. M ⊕ Q and N such that w(Q) ≤ 0 and w(R) > 0. Then there exists
a canonical path T w.r.t. M such that w(T) > w(Q).

We defer the proof of this lemma to the full version of this paper [6] and let
us focus on its consequences.

Theorem 2. If there exists a B-matching of greater weight than M , then there
exists a B-matching of greater weight than M that is of the same uniform type
as M or that is of neighbouring type to M .

Proof. Suppose that there does not exist a B-matching M ′ of the same uniform
type as M and with greater weight than M but there exists a B-matching N
having greater weight than M .

By Lemma 1 we know that there exists a sequence of basic canonical paths
S1,S2, . . . ,Sk and a set of alternating cycles C1, C2, . . . , Cl such that M ⊕ N =⋃k

i=1 Si ∪
⋃l

i=1 Ci. The weight of N satisfies w(N) = w(M) +
∑l

i=1 w(Ci) +
∑k

i=1 w(Si). Since w(N) > w(M) there exists some alternating cycle Ci among
the cycles C1, . . . , Cl with positive weight or there exists some canonical path Si

among the canonical paths S1,S2, . . . ,Sk with positive weight.
We may, however, observe, that if some alternating cycle Ci has positive

weight, then M ⊕ Ci is of the same uniform type as M and has greater weight
than M , which finishes the proof. Assume then, that all alternating cycles have
nonpositive weight. As alternating cycles do not change the degree of any vertex,
we may apply them after canonical paths. Therefore, let N ′ = M ⊕

⋃k
i=1 Si and

note that it is also a B-matching, as ∀v d′
N (v) = dN (v). Its weight, however, is not

smaller than the weight of N , because we omitted negative weight alternating
cycles. Therefore, we can assume that the decomposition of M ⊕ N does not
contain any alternating cycles.

Optimal General Matchings 187

By Lemma 1 there exists some sequence of basic canonical paths that forms a
decomposition of M⊕N , but it is not necessarily unique. From all such sequences
let us choose that one, in which S1 has maximum weight. Let M0 = M and
M1 = M ⊕ S1. For each i > 1, Si is a basic canonical path with respect to Mi−1

of maximum weight and Mi = Mi−1 ⊕ Si.
Note that when choosing Si of maximum weight, we will always be able to

complete the sequence of canonical paths, because Mi is a B-matching and thus
we can apply Lemma 1.

Some basic canonical path Si must of course have positive weight. Let i be
the smallest such index. We will show, that in the chosen decomposition i = 1.
Assume then, that i > 1.

It means that Si has positive weight and w(Si−1) ≤ 0. Then, by Lemma
2 and Observation 1, there exists a basic canonical path S ′

i−1 with respect to
Mi−2 such that w(S ′

i−1) > w(Si−1), which contradicts the properties of our
decomposition, because instead of adding Si−1, we would choose S ′

i−1.

4 Algorithm for Computing a Maximum Cardinality
B-matching

In this section we will show the algorithmic consequences of Theorem 2, namely
we will present a polynomial time algorithm for a maximum cardinality B-
matching.

First, let us assume that we have some B-matching M . We want to be able
to either verify that it is maximum or find a B-matching of greater cardinality.
According to Theorem 2, M is not maximum if and only if there exists a larger B-
matching M ′ such that at most two vertices’ degrees are not in BM (v). Therefore,
we can consider all possible sets of at most two vertices, whose degrees would
not be restricted to BM (v). As resulting B-matching would be of neighboring
type, we can limit their degrees to adjacent uniform interval of degrees. For the
rest of vertices we allow them to have any degree in BM (v). Therefore, we obtain
4 instances of a uniform B-matching, hence we use Theorem 1 to solve it.

This approach requires solving O(n2) instances of a maximum weight uniform
B-matching problem and each of them takes O(n4) time.

In order to find a maximum cardinality B-matching we start by running
Cornuejols’ algorithm, which finds any B-matching or verifies that the graph
does not admit a B-matching. Then we subsequently augment this matching
until it is maximum. The size of a maximum matching can be bounded by the
number of edges in the graph, thus the total complexity is O(mn6).

This algorithm can be also used for finding a maximum weight B-matching,
however, since the value maximum weight B-matchings can be bounded only by
mW , where W = max |w(e)|, the algorithm becomes pseudopolynomial.

188 S. Dudycz and K. Paluch

Algorithm Max B-Matching

1. Using Cornuejols’ algorithm find some B-matching M .
2. while there exists a B-matching M ′ of neighbouring type to M with

cardinality greater than that of M do:
M ← M ′

3. Output M .

References

1. Anstee, R.P.: A polynomial algorithm for b-matchings: an alternative approach.
Inf. Process. Lett. 24(3), 153–157 (1987)

2. Biró, P., Fleiner, T., Irving, R.W., Manlove, D.F.: The college admissions problem
with lower and common quotas. Theor. Comput. Sci. 411(34), 3136–3153 (2010)

3. Bourdais, S., Galinier, P., Pesant, G.: HIBISCUS: a constraint programming appli-
cation to staff scheduling in health care. In: Rossi, F. (ed.) CP 2003. LNCS, vol.
2833, pp. 153–167. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45193-8 11

4. Carr, R., Parekh, O.: A 12-integral relaxation for the a-matching problem. Oper.
Res. Lett. 34(4), 445–450 (2006)

5. Cornuéjols, G.: General factors of graphs. J. Comb. Theory, Ser. B 45(2), 185–198
(1988)

6. Dudycz, S., Paluch, K.E.: Optimal general matchings. CoRR, abs/1706.07418
(2017)

7. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In: Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing, STOC 1983, pp. 448–456. ACM, New York
(1983)

8. Gabow, H.N., Sankowski, P.: Algebraic algorithms for b-matching, shortest undi-
rected paths, and f-factors. In: 54th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2013, Berkeley, CA, USA, 26–29 October 2013, pp.
137–146 (2013)

9. Gutin, G., Kim, E.J., Soleimanfallah, A., Szeider, S., Yeo, A.: Parameterized com-
plexity results for general factors in bipartite graphs with an application to con-
straint programming. Algorithmica 64(1), 112–125 (2012)

10. Hell, P., Kirkpatrick, D.G.: Algorithms for degree constrained graph factors of
minimum deficiency. J. Algorithms 14(1), 115–138 (1993)

11. Hilton, A.J.W., Wojciechowski, J.: Semiregular factorization of simple graphs.
AKCE Int. J. Graphs Comb. 2(1), 57–62 (2005)

12. Kano, M.: [a, b]-Factorization of a graph. J. Graph Theory 9(1), 129–146 (1985)
13. Lovász, L.: Antifactors of graphs. Periodica Mathematica Hungarica 4(2), 121–123

(1973)
14. Lovász, L.: The factorization of graphs. ii. Acta Mathematica Hungarica 23(1–2),

223–246 (1972)

https://doi.org/10.1007/978-3-540-45193-8_11
https://doi.org/10.1007/978-3-540-45193-8_11

Optimal General Matchings 189

15. Cai, M.-C.: [a, b]-Factorizations of graphs. J. Graph Theory 15(3), 283–301 (1991)
16. Marsh III, A.B.: Matching algorithms. Ph.D. thesis, The Johns Hopkins University

(1979)
17. Nightingale, P.: The extended global cardinality constraint: an empirical survey.

Artif. Intell. 175(2), 586–614 (2011)
18. Pap, G.: A TDI description of restricted 2-matching polytopes. In: Bienstock, D.,

Nemhauser, G. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 139–151. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-25960-2 11

19. Pulleyblank, W.R.: Faces of matching polyhedra. Ph.D. thesis, Department of
Combinatorics and Optimization, University of Waterloo (1973)

20. Régin, J.-C., Puget, J.-F.: A filtering algorithm for global sequencing constraints.
In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0017428

21. Samer, M., Szeider, S.: Tractable cases of the extended global cardinality con-
straint. In: Proceedings of the Fourteenth Symposium on Computing: The Aus-
tralasian Theory, CATS 2008, Darlinghurst, Australia, vol. 77, pp. 67–74. Aus-
tralian Computer Society Inc. (2008)

22. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24.
Springer, Heidelberg (2002)

23. Sebö, A.: General antifactors of graphs. J. Comb. Theory, Ser. B 58(2), 174–184
(1993)

24. Simonis, H.: A hybrid constraint model for the routing and wavelength assignment
problem. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 104–118. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 11

25. Szabó, J.: Good characterizations for some degree constrained subgraphs. J. Comb.
Theory, Ser. B 99(2), 436–446 (2009)

https://doi.org/10.1007/978-3-540-25960-2_11
https://doi.org/10.1007/BFb0017428
https://doi.org/10.1007/978-3-642-04244-7_11

Quasimonotone Graphs

Martin Dyer and Haiko Müller(B)

School of Computing, University of Leeds, Leeds LS2 9JT, UK
{M.E.Dyer,H.Muller}@leeds.ac.uk

Abstract. For any class C of bipartite graphs, we define quasi-C to be
the class of all graphs G such that every bipartition of G belongs to
C. This definition is motivated by a generalisation of the switch Markov
chain on perfect matchings from bipartite graphs to nonbipartite graphs.
The monotone graphs, also known as bipartite permutation graphs and
proper interval bigraphs, are such a class of bipartite graphs. We inves-
tigate the structure of quasi-monotone graphs and hence construct a
polynomial time recognition algorithm for graphs in this class.

1 Introduction

In [5] (with Jerrum) and [6] we considered the switch Markov chain on perfect
matchings in bipartite and nonbipartite graphs. This chain repeatedly replaces
two matching edges with two non-matching edges involving the same four ver-
tices. We considered the ergodicity and mixing properties of the chain.

In particular, we proved in [5] that the chain is rapidly mixing (i.e. converges
in polynomial time) on the class of monotone graphs. This class of bipartite
graphs was defined by Diaconis, Graham and Holmes in [4], motivated by sta-
tistical applications of perfect matchings. The biadjacency matrices of graphs
in the class have a “staircase” structure. Diaconis et al. conjectured the rapid
mixing property shown in [5]. We also showed in [5] that this class is, in fact,
identical to the known class of bipartite permutation graphs [14], which is itself
known to be identical to the class of proper interval bigraphs [9].

In extending the work of [5] to nonbipartite graphs in [6], we showed that the
rapid mixing proof for monotone graphs extends easily to a class of graphs which
includes, beside the monotone graphs themselves, all proper, or unit, interval
graphs [1]. In this class the bipartite graph given by the cut between any bipar-
tition of the vertices of the graph must be a monotone graph. We called these
graphs quasimonotone.

In fact, “quasi-” is an operator on bipartite graph classes, and can be applied
more generally. In this view, quasimonotone graphs are quasi-monotone graphs,
as formally defined in Sect. 2, and discussed in Sect. 2.1, below. For any class
of bipartite graphs that is recognisable in polynomial time, the definition of its
quasi-class implies membership in co-NP. Thus an immediate question is whether
we can recognise the quasi-class in polynomial time. The main contribution of
this paper is a polynomial time recognition algorithm for quasimonotone graphs.

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 190–202, 2018.
https://doi.org/10.1007/978-3-030-00256-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_16&domain=pdf

Quasimonotone Graphs 191

1.1 Definitions and Notation

If G = (V,E) is a graph and U ⊆ V , then G[U] is the subgraph induced by
U . Often we do not distinguish between the set U and the subgraph it induces.
So a cycle in G is either a subgraph or the set of its vertices. Similarly, we will
write G = H when G is isomorphic to H. A subgraph of G is a cycle in G if it is
connected and 2-regular. The length or size of a cycle is the number of its edges
(or vertices). A chord of a cycle (U,F) in G is an edge in U (2) ∩ E \ F . A chord
in a cycle of even length is odd if the distance between its endpoints on the cycle
is odd. That is, an odd chord splits an even cycle into two cycles of even length.
An even chord splits an even cycle into two cycles of odd length.

A hole in a graph is a chordless cycle of length at least five. A cycle of length
three is a triangle, and a cycle of length four a quadrangle. A hole is odd if it
has an odd number of vertices, otherwise even. Let HoleFree be the class of
graphs without a hole, and EvenHoleFree the class of graphs without even
holes. A long hole is an odd hole of size at least 7.

For a graph G = (V,E), L ⊆ V and R = V \ L the graph G[L:R] is the
bipartite graph with bipartition L,R, and edge set the cut L:R = {xy ∈ E : x ∈
L, y ∈ R}. We refer to G[L:R] as a bipartition of G.

The distance dist(u, v) between two vertices u and v is the length of a shortest
(u, . . . , v) path in G. For vertices x and y in a subgraph H of G we denote
their distance in H by distH(x, y). If v ∈ V , dist(v,H) is the smallest distance
dist(v, w) from v to any vertex w ∈ H. The maximum distance between two
vertices in G is the diameter of G. The neighbourhood of a vertex v is N(v).

1.2 Structure of the Paper

In 2 we discuss quasi-classes and give examples in Sect. 2.1. Sections 3 to 6 show
that quasimonotone graphs can be recognised in polynomial time. In Sect. 3.1
we prove some properties of quasimonotone graphs, using their characterisa-
tion by forbidden induced subgraphs. The anticipated recognition algorithm first
looks for flaws (defined in Sect. 3.1) and then branches into different procedures
depending on the length of a short hole (defined in Sect. 3.3) in the input graph.
The remaining forbidden subgraphs are preholes, also defined in Sect. 3.1.

Sections 4 and 5 deal with graphs containing a long hole. We start with
lemmas showing that the long hole enforces an annular structure in the absence
of flaws. The structure is determined by splitting, described in Sect. 5.1. Possible
preholes must wind round this annulus once or twice. We complete the process by
checking for preholes, using a procedure given in Sect. 5.2. The remaining cases
where no long hole exists are considered in Sect. 6. Finally Sect. 7 concludes the
paper.

A more detailed version (also with more examples) is available, see [7].

192 M. Dyer and H. Müller

2 Quasi-classes and Pre-graphs

A hereditary class of graphs is closed under induced subgraphs. Let Bipartite
denote the class of bipartite graphs, and let C ⊆ Bipartite. Then we will say
that the graph G is quasi -C if G[L:R] ∈ C for all bipartitions L,R of V .

Lemma 1. If C ⊆ Bipartite is a hereditary class that is closed under disjoint
union then C = Bipartite ∩ quasi-C.
Proof. First let G = (L ∪ R,E) be any bipartite graph that does not belong
to C. Since G = G[L:R] the graph G does not belong to quasi-C. Hence C ⊇
Bipartite ∩ quasi-C.

Next we show C ⊆ Bipartite ∩ quasi-C. Let G = (X ∪ Y,E) be a graph in
C and let L:R be a bipartition of X ∪ Y . Now G[L:R] is the disjoint union of
G1 = G[(X ∩ L) ∪ (Y ∩ R)] and G2 = G[(X ∩ R) ∪ (Y ∩ L)]. The graphs G1 and
G2 belong to C since the class is hereditary, and hence G[L:R] is in C because C
is closed under disjoint union. Thus G ∈ quasi-C. ��

A hereditary graph class can equally well be characterised by a set F of
forbidden subgraphs. The set F is minimal if no graph in F contains any other
as an induced subgraph. For a bipartite graph H, a graph G = (V,E) is a pre-H
if there is a bipartition L,R of V such that G[L:R] = H. In this case H is a
spanning subgraph of G. Clearly any bipartite graph H is itself a pre-H.

Lemma 2. If C ⊆ Bipartite is characterised by a set F of forbidden induced
subgraphs, let pre-F = {pre-H | H ∈ F}. Then quasi-C is characterised by the
set of forbidden induced subgraphs pre-F .

Proof. Suppose G = (V,E) contains H ′ = (V ′, E′), a pre-H for some H ∈ F .
Then V ′ has a bipartition L′, R′ such that H ′[L′:R′] = H. Extending L′, R′ to
a bipartition L,R of V , G[L:R] contains H. Then G[L:R] /∈ C, so G /∈ quasi-C.
Conversely, if G ∈ quasi-C, every G[L:R] ∈ C, so no G[L:R] contains H, for any
H ∈ F . Thus G contains no pre-H, for any H ∈ F , that is, no H ′ ∈ pre-F . ��

2.1 Examples

The class quasi-Bipartite is clearly the set of all graphs.
If C is the class of complete bipartite graphs, it is easy to see that quasi-C is

the class of complete graphs. Note however, that this class is not closed under
disjoint union. Now, if C becomes the class of graphs for which every component
is complete bipartite, then quasi-C is the class of graphs without P4, paw or
diamond. These three graphs are the pre-P4’s, see Fig. 1.

If Cd is the class of bipartite graphs with degree at most d, for a fixed integer
d > 0, then quasi-Cd is the class of all graphs with degree at most d. The unique
forbidden subgraph for Cd is clearly the star K1,d+1. Therefore, the class quasi-Cd

is characterised by forbidding pre-K1,d+1’s, a set with size O(d2). Hence quasi-Cd

can be recognised in polynomial time, for fixed d.

Quasimonotone Graphs 193

Fig. 1. The pre-P4’s: the path P4, the paw and the diamond

A less obvious example is for the class C of linear forests, which are disjoint
unions of paths. Its quasi-class contains all graphs with connected components
that are either a path or an odd cycle.

ChordalBipartite is the class of hole-free bipartite graphs. OddChordal
is the class of graphs in which every even cycle of length at least six has an odd
chord. We show in [6] that quasi-ChordalBipartite = OddChordal. The
complexity of the recognition problem for the class OddChordal is open, even
though ChordalBipartite can be recognised in almost linear time [12].

3 The Structure of Quasimonotone Graphs

3.1 Flaws and Preholes

A bipartite graph is monotone if and only if the rows and columns of its biad-
jacency matrix can be permuted such that the ones appear consecutively and
the boundaries of these intervals are monotonic functions of the row or column
index. That is, all the ones are in a staircase-shaped region in the biadjacency
matrix. A bipartite graph is monotone if and only if it does not contain a hole,
tripod, stirrer or armchair as induced subgraph, see Fig. 2 and [11] Lemma 1.46
on page 52 or [2] Proposition 6.2.1 on page 93. Monotone graphs are also called
bipartite permutation graphs [14] and proper interval bigraphs [9].

Fig. 2. The tripod, the stirrer and the armchair.

Let Monotone denote the class of monotone graphs, then the Quasimono-
tone will denote the class quasi-Monotone. Two example graphs are shown
in Fig. 3. Let Flaw be the class containing all pre-tripods, pre-stirrers and pre-
armchairs. We will say that any graph in Flaw is a flaw. A flawless graph
G will be one which contains no flaw as an induced subgraph. Since all flaws
have seven vertices, we can test in O(n7) time whether an input graph G on n
vertices is flawless. Let Flawless denote the class of flawless graphs, and let
Quasimonotone be the class of quasimonotone graphs.

Let P = (p1, p2, . . . , p�) be a path or even cycle in G. The alternating bipar-
tition L,R of P assigns L = {p1, p3, . . .} and R = {p2, p4, . . .}. The path P is

194 M. Dyer and H. Müller

Fig. 3. Two quasimonotone graphs

prechordless if it is an induced path G[L:R]. Similarly, let C = (p1, p2, . . . , p�)
be an even cycle in G. Then C is a prehole if it is a hole in G[L:R]. Thus C must
be an even cycle, and all chords must run between L and L or R and R in an
alternating bipartition L,R of C. This is equivalent to requiring that C has no
odd chord. The alternating partition is inconsistent for an odd cycle, so an odd
cycle C cannot be a prehole.

3.2 Properties of Flawless Graphs

Lemma 3. Let G ∈ Flawless. Let P = (p1, p2, p3, p4, p5, p6, p7) be a prechord-
less path in G, (p2, p3, p4, p5, p6) be a hole in G, or (p1, p2, p3, p4, p5, p6) be a
prehole in G. If v /∈ P is such that dist(v, P) = dist(v, p4), then dist(v, p4) = 1.

Lemma 4. Every hole or prehole in a connected flawless graph is dominating.

Proof. Let C be an odd hole or prehole in the connected flawless graph G.
We show dist(v, C) ≤ 1 for every vertex v of G. If v ∈ C, this is obvious.
Otherwise, let w be a vertex such that dist(v, C) = dist(v, w). Consider the
subpath P = (p1, p2, . . . , p7) of C such that w = p4, where this path wraps
around C if |C| < 7. Since C is a hole or a prehole, P is prechordless. The result
then follows from Lemma 3. ��

If C is an odd hole we will call n(C) = {v ∈ V : dist(v, C) ≤ 1}, the
neighbourhood of C. If G is connected then G = N(C) for any odd hole C ⊆ G.

Lemma 5. Suppose G ∈ Flawless ∩ EvenHoleFree, and that C is an odd
hole in G, of length at least seven. Then every vertex v ∈ V has at most three
neighbours in C. If there are two neighbours, w, x, then distC(w, x) = 2. If there
are three neighbours, w, x, y, then distC(w, x) = distC(x, y) = 2. If C is a short
odd hole (see Sect. 3.3) in G, then v has at most two neighbours on C.

Lemma 6. Let C be a prehole in G ∈ Flawless. Then every vertex v ∈ C has
at most five neighbours in C. Two of these are via edges of C, so v is incident
to at most three chords. If there are two chords, vw, vx, then distC(w, x) = 2. If
there are three chords, vw, vx, vy, then distC(w, x) = distC(x, y) = 2.

Quasimonotone Graphs 195

Proof. Otherwise, v must have at least four chords. These must be even chords to
c0, c2, c4, c6, where P = (c0, c1, . . . , c6, c7) is a subpath of C, since C is a prehole
and G has no even holes. We now move v from L to R. The only new edges
which appear in G[L:R] are those adjacent to v. But now c0, v, c3, c4, c5, c6, c7
induce an armchair in G[L:R], contradicting G ∈ Flawless, see Fig. 4. ��

Fig. 4. An armchair

The degree bound of Lemma 6 is tight, see Fig. 5.

Fig. 5. A prehole with a vertex of degree 5

Lemma 7. Let C be an odd hole in G ∈ Flawless such that v /∈ C and x /∈ C
are adjacent. Then vertices w, y ∈ C exist such that (v, x, y, w) is a quadrangle.

3.3 Determining a Short Odd Hole

We can test whether G contains a hole in time O(|E|2), using the algorithm
of [13]. Moreover, the algorithm returns a hole if one exists. If the hole is even,
we can conclude G /∈ Quasimonotone. If G ∈ Flawless, we will show that it
has a well-defined structure.

Lemma 8. If C is an odd cycle in a graph G, there is a triangle or an odd hole
C ′ in G.

Proof. The claim is clearly true if |C| ≤ 3. Otherwise, assume by induction that
it is true for all cycles shorter than C. If C is not already a hole, it has a chord
that divides it into a smaller odd cycle C1, and an even cycle C ′

1. The lemma
now follows by induction on C1. ��

The proof of Lemma 8 can easily be turned into an efficient algorithm to find
C ′. An odd hole C is short if dist(v, w) = distC(v, w) for all pairs v, w ∈ C.

Lemma 9. If G is a triangle-free graph containing an odd hole C, then G con-
tains a short odd hole.

196 M. Dyer and H. Müller

Fig. 6. Short odd holes of unequal size in a quasimonotone graph.

Note that the proof of Lemma9 gives an efficient algorithm for finding a short
odd hole H, given any odd hole C. Clearly the shortest hole in G is a short hole,
but the converse need not be true in general, even for quasimonotone graphs.

Corollary 1. If G has a short odd hole C, diam(G) ≥ diam(C) = (|C| − 1)/2.

If C is a prehole, G′ = G[C], and L:R is the alternating bipartition of C,
then G′[L:R] contains no edge other than those of C. A minimal prehole C is
such that G[C] contains no prehole with fewer than |C| vertices.

4 Flawless Graphs Containing a Long Hole

4.1 Triangles

Lemma 10. Let G be a quasimonotone graph containing an odd hole C of size
at least 7. Then G contains no triangle that has a vertex in C (Fig. 7).

Fig. 7. In a quasimonotone graph a 5-hole and a triangle can share a vertex.

Lemma 11. Let G be a quasimonotone graph containing an odd hole C of size
at least 7. Then G contains no triangle which is vertex-disjoint from C.

4.2 Long Odd Holes

Lemma 12. Let C,C ′ be odd holes in a quasimonotone graph G such that C ′ ∩
C �= ∅, and |C|, |C ′| ≥ 7. Let G′ = G[(C ′ ∪ C) \ (C ′ ∩ C)], Then G′ has no odd
hole or prehole.

Corollary 2. Let C,C ′ be odd holes in a quasimonotone graph G, such that
C ′ ∩ C �= ∅. Let G′ = G[(C ′ ∪ C) \ (C ′ ∩ C)]. Then G′ is a monotone graph.

Quasimonotone Graphs 197

Note that the holes C,C ′ in Corollary 2 can have different size. See Fig. 6,
where G′ is a ladder (see [5]) with two pendant edges. However, if we have
vertex-disjoint odd holes they cannot have different lengths.

A prism is the graph given by joining corresponding vertices in two cycles of
the same length. It is an n-prism if the cycles have length n [10].

Lemma 13. Let G be a quasimonotone graph containing an odd hole C. Then
G contains no vertex-disjoint hole C ′ with |C ′| �= |C|. Moreover, if |C| ≥ 7, any
two vertex-disjoint holes with |C ′| = |C| induce a prism in G.

5 Preholes in Flawless Graphs

Lemma 14. If G ∈ Flawless and has an odd hole of size � ≥ 7, any minimal
prehole C in G is either an even hole or (a) two odd holes intersecting in an
edge or (b) two disjoint odd holes connected by a quadrangle. See Fig. 8.

Thus, if G contains an odd hole of size at least 7, minimal preholes have only
two types, case (a) and case (b). From Lemma 13, case (b) are crossover preholes
(Fig. 9).

Fig. 8. Preholes with odd holes C1, C2, cases (a) left and (b) right.

Fig. 9. Flawless crossover preholes.

So let us consider the case (a) preholes. We will call these Möbius preholes,
since we will show that such a prehole must be a Möbius ladder [8,10].

Lemma 15. Every Möbius prehole in a flawless graph is a Möbius ladder
(Fig. 10).

198 M. Dyer and H. Müller

Fig. 10. Two different drawings of a Möbius ladder.

5.1 Splitting

Let G be a flawless graph with a hole C of length |C| ≥ 6. If |C| is even, we
conclude G /∈ Quasimonotone, so |C| ≥ 7 is odd. Thus G does not contain a
triangle, from Lemmas 10 and 11. We will assume that this has been tested. We
will now show that G must have the annular structure referred to in Sect. 1.2,
rather like a monotone graph with its ends identified.

Now suppose G has a short odd hole C with C ≥ 7, determined by the
procedure of Lemma 9. Thus, by Corollary 1, diam(G) ≥ 1

2 (|C|−1) ≥ 3. Choose
any v ∈ C, and consider the graph Gv = G[V \N [v]]. Then Gv contains no holes,
since any hole H in Gv must be a hole in G. But any hole H in G either contains
v, or has a vertex w adjacent to v, by Lemma 4. Since v, w /∈ Gv, H � Gv.
Neither can Gv contain a prehole, since any prehole must contain two holes.
Thus Gv is flawless and contains no holes or preholes, so is a monotone graph.
Now diam(G) is at least diam(C) = (|C| − 1)/2 ≥ 3. Thus there exists a w ∈ C
such that N(v) ∩ N(w) = ∅.

A chain graph is a bipartite graph (L ∪ R,E) where L and R are linearly
ordered by inclusion of neighbourhoods. Its biadjacency matrix has the form
indicated in Fig. 11, see [5] for details. In the monotone representation, it is
an easy observation that the graph has a decomposition into chain graphs, as
indicated in Fig. 12, where L is partitioned in D1,D3, . . . and R into D2,D4,
Brandstädt and Lozin showed in [3] that such a partition exists. For vertices v
and w as above, N(w) and its neighbours induce a monotone subgraph Nw of
G, as indicated in Fig. 12. The vertex set of Nw is {x ∈ L ∪ R : dist(w, x) ≤ 2}.
Clearly Nw is the union of two chain graphs Cw, C ′

w, with Cw lying in the rows
below and including w, and C ′

w in the rows above. Using the algorithm of [14],
the monotone representation of Gv determines this split. Then we can construct
a representation of the adjacency matrix A(G) of G as indicated in the first
diagram in Fig. 13, where D2 = N(w), C1 = Cw (transposed), and C7 = C′

w. The
chain graphs C2, . . . , C6 are a decomposition of the monotone graph Gw. Note
that the ordering of the chain graphs in the decomposition is circular, and the
second diagram in Fig. 13 gives an equivalent representation to the first, where
C1 (transposed) is moved from the first to the last position.

Lemma 16. A flawless graph G which has an odd hole of size at least 7 is
quasimonotone if and only if it has such a decomposition and does not contain
a prehole. If there are k chain graphs in the decomposition, then k is odd, and
the shortest hole in G has k vertices.

Quasimonotone Graphs 199

Fig. 11. Chain graph structure

Fig. 12. Decomposition of a monotone graph/neighbourhood of w in Gv

Fig. 13. Decomposition of A(G) for a quasimonotone graph G

5.2 Recognising Preholes

Let G = (V,E) be a flawless graph with a hole of size � ≥ 7. Lemma 16 can
determine whether or not G is quasimonotone provided it does not contain a
prehole. We now consider recognition of a prehole in such a graph.

We use the partition of V from Sect. 5.1 into independent sets D1,D2, . . . , D�,
where D�+1 ≡ D1. All edges in E run between Di and Di+1 (i ∈ [�]). Let
Gi = G[Di ∪Di+1], with edge set Ei, and let Gi = (V,E \Ei). Note that Gi is a
chain graph and Gi is a monotone graph. Thus Gi is bipartition, with bipartition
L:R, say, with Di,Di+1 ∈ L.

We search for possible crossovers in Gi. These are pairs a, b ∈ Di+1, c, d ∈ Di,
such that ac, ad, bc, bd ∈ E. We list all such quadruples a, b, c, d, O(n4) in total,
see Fig. 14. Given any quadruple, we attempt to determine vertex disjoint paths
Pac, Pbd in Gi between a, c and b, d or between a, d and b, c. See Fig. 15, cases (a)
and (b). We can do this in O(n|E|) = O(n3) time by network flow. Both paths
are even length, since Gi is bipartite and a, b, c, d ∈ L.

If these paths do not exist, we discard this quadruple and consider the next
in the list. If these paths do exist, in case (a) we have found a crossover prehole

200 M. Dyer and H. Müller

Fig. 14. Possible crossover

Fig. 15. Vertex-disjoint paths, case (a) left, (b) right

Pac, ad, Pbd, bc, in case (b) we have found a Möbius prehole Pad, bd, Pbc, ac. This
is clearly a cycle with even length. That it is a prehole is certified by reversing
the bipartition on Pac in case (a), Pad in case (b), as shown in Fig. 16. Thus we
can detect a prehole, or show that none exists, in O(n7) time. If a prehole exists
the input graph is not quasimonotone.

Fig. 16. Preholes, left with crossover (a), right of Möbius type (b).

6 Flawless Graphs Without Long Holes

6.1 Minimal Preholes in Hole-Free Graphs

Let C be any minimal prehole in a flawless hole-free graph G. A triangle in G[C]
will be called an interior triangle of C if it has no edge in common with C, a
crossing triangle if it has one edge in common with C, and a cap of C if it has
two edges in common with C.

Lemma 17. If C is a minimal prehole in a flawless graph with |C| > 12, then
G[C] has no interior or crossing triangles, and C is determined by two edge-
disjoint caps.

Quasimonotone Graphs 201

Let T1, T2 be caps of C, such that vi ∈ Ti is adjacent to two edges of
C (i = 1, 2). Then there are two edge-disjoint (v1, . . . , v2) paths P1, P2 in C
(Fig. 17).

Fig. 17. A prehole and its Hamilton subgraph

Lemma 18. Let C, with |C| > 12, be a minimal prehole in a flawless hole-free
graph determined by v1, v2, and let C ′ = C \ {v1, v2}. Then G[C ′] is a Hamilton
monotone graph, and all chords of C ′ connect P1 to P2.

Proof. Clearly G[C ′] is Hamilton, since G[C] is Hamilton. Now C ′ cannot be a
prehole, since it is strictly smaller than C. So G[C ′] cannot contain a triangle,
by Lemma 17. It cannot contain a larger odd cycle, since then it would contain a
triangle, by the argument of Lemma 17. Therefore, G[C ′] is bipartite and, since
G ∈ HoleFree, contains no hole. So, since G ∈ Flawless, G[C ′] is a monotone
graph. Suppose uv is an edge of G[C ′] with u, v ∈ P1. Then, since G[C] has only
even chords, the even chord uv and the segment of P1 between u and v forms
an odd cycle, giving a contradiction. ��

Thus any minimal prehole C comprises a Hamilton monotone graph G[C ′],
to which we add two caps T1, T2. We may also add edges from v1 and v2 to C ′,
as long as they are even chords in C.

Lemma 19. Let C be a minimal prehole with a cap at v ∈ {v1, v2}. Then there
are at most two chords from v, and both must be connected to either P1 or P2.

Let T1 = {v1, u1, w1}, T2 = {v2, u2, w2} be any two edge-disjoint triangles in
a flawless graph G. Let M be the component of G \ {v1, v2} containing u1w1,
u2w2, if such a component exists. If M does not exist then v1, v2 clearly do not
determine a prehole.

Lemma 20. C = (v1, u1, . . . , u2, v2, w2, . . . , w1, v1) determines a minimal pre-
hole if and only if M is a monotone graph containing two vertex-disjoint paths
between u1, u2 and v1, v2.

6.2 Preholes Containing 5-Holes and Triangles

It remains to consider preholes in graphs which contain 5-holes. Preholes deter-
mined by two triangles will be dealt with as in Sect. 6.1.

Lemma 21. Let C be a minimal prehole in a flawless graph G which contains
no odd hole of size greater than five. If C connects a 5-hole and a triangle, or if
C connects two 5-holes, then |C| ≤ 12.

202 M. Dyer and H. Müller

7 Conclusion and Discussion

In [6] we considered the problem of ergodicity and rapid mixing of the switch
chain in hereditary graph classes. We gave a complete answer to the ergodicity
question, and showed rapid mixing for the new class of quasimonotone graphs.
This led us to introduce a new “quasi-” operator on bipartite graph classes,
which is of independent interest. Quasimonotone graphs are a particular case of
this construction. Another interesting class is the class of odd-chordal graphs,
which are the quasi-chordal bipartite graphs. This is close to the largest class
for which the switch chain is ergodic.

A more straightforward approach to recognising quasimonotone graphs would
be provided by a polynomial time recognition algorithm for odd-chordal graphs.
This is equivalent to the detection of preholes in a graph. We have considered
this question, but we leave it as an open problem. The only evidence we can
provide is that it is NP-complete to determine if a graph is a prehole, which may
be a harder question. Nonetheless, the NP-completeness proof suggests that an
efficient algorithm for recognising odd-chordal graphs may be elusive.

References

1. Bogart, K.P., West, D.B.: A short proof that ‘proper = unit’. Discret. Math.
201(1), 21–23 (1999)

2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graphclasses: A Survey. Society for Indus-
trial and Applied Mathematics, Philadelphia (1999)

3. Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite
permutation graphs. Ars Combinatoria 67, 273–281 (2003)

4. Diaconis, P., Graham, R., Holmes, S.P.: Statistical problems involving permuta-
tions with restricted positions. In: State of the Art in Probability and Statistics.
Lecture Notes-Monograph Series, vol. 36, pp. 195–222. Institute of Mathematical
Statistics (2001)

5. Dyer, M., Jerrum, M., Müller, H.: On the switch Markov chain for perfect match-
ings. J. ACM 64(2), 12 (2017)

6. Dyer, M., Müller, H.: Counting perfect matchings and the switch chain. CoRR
abs/1705.05790 (2017)

7. Dyer, M., Müller, H.: Quasimonotone graphs. CoRR abs/1801.06494 (2018)
8. Guy, R.K., Harary, F.: On the Möbius ladders. Can. Math. Bull. 10, 493–496

(1967)
9. Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46,

313–327 (2004)
10. Hladnik, M., Marušič, D., Pisanski, T.: Cyclic Haar graphs. Discret. Mat. 244(1),

137–152 (2002)
11. Köhler, E.: Graphs without asteroidal triples. Ph.D. thesis, TU Berlin (1999)
12. Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. Comput. 16(5), 854–879

(1987)
13. Nikolopoulos, S.D., Palios, L.: Detecting holes and antiholes in graphs. Algorith-

mica 47(2), 119–138 (2007)
14. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discret.

Appl. Math. 18(3), 279–292 (1987)

Equiangular Polygon Contact
Representations

Stefan Felsner1, Hendrik Schrezenmaier1(B), and Raphael Steiner2

1 Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
{felsner,schrezen}@math.tu-berlin.de

2 Fachgebiet Mathematik, FernUniversität in Hagen, Hagen, Germany
steiner.raphael@gmx.de

Abstract. Planar graphs are known to have contact representations of
various types. The most prominent example is Koebe’s ‘kissing coins
theorem’. Its rediscovery by Thurston lead to effective versions of the
Riemann Mapping Theorem and motivated Schramm’s Monster Packing
Theorem. Monster Packing implies the existence of contact representa-
tions of planar triangulations where each vertex v is represented by a
homothetic copy of some smooth strictly-convex prototype Pv.

With this work we aim at computable approximations of Schramm
representations. For fixed K approximate Pv by an equiangular K-
gon Qv with horizontal basis. From Schramm’s work it follows that
the given triangulation also has a contact representation with homo-
thetic copies of these K-gons. Our approach starts by guessing a
K-contact-structure, i.e., the combinatorial structure of a contact rep-
resentation. From the combinatorial data, we build a system of linear
equations whose variables correspond to lengths of boundary segments
of the K-gons. If the system has a non-negative solution, this yields the
intended contact representation. If the solution of the system contains
negative variables, these can be used as sign-posts indicating how to
change the K-contact-structure for another try.

In the case K = 3 the K-contact-structures are Schnyder woods, in the
case K = 4 they are transversal structures. As in these cases, for K ≥ 5
the K-contact-structures of a fixed graph are in bijection to certain inte-
gral flows, and can be viewed as elements of a distributive lattice.

The procedure has been implemented, it computes the solution with
few iterations. The experiments involved graphs with up to one hundred
vertices.

1 Introduction

Representations of graphs by contacts of geometric objects are actively stud-
ied in graph theory and geometry. An early result in this direction is Koebe’s

A full version of the paper is available at http://page.math.tu-berlin.de/∼felsner/
Paper/kgons.pdf.
S. Felsner and H. Schrezenmaier—Partially supported by DFG grant FE-340/11-1.

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 203–215, 2018.
https://doi.org/10.1007/978-3-030-00256-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_17&domain=pdf
http://page.math.tu-berlin.de/~felsner/Paper/kgons.pdf
http://page.math.tu-berlin.de/~felsner/Paper/kgons.pdf

204 S. Felsner et al.

a1

a2

a3a4

a5

s1

s2

s3s4

s5

a1

a2

a3a4

a5

Fig. 1. Left: An equiangular pentagon contact representation of the graph G shown in
black where each inner vertex is represented by a regular pentagon. Right: The stack
extension G� of G.

Circle Packing Theorem from 1936. It states that every planar graph can be
represented as the contact system of a set of interiourly disjoint disks. Koebe
arrived at this result in the context of conformal mapping of ‘contact domains’.
Unaware of Koebe’s work, Thurston reproved the Circle Packing Theorem and
connected it to the Riemann Mapping Theorem. This line of research resulted
in discretizations of conformal mappings and has strong impact in the area of
discrete differential geometry. We refer to [1,19] for further details on those con-
nections.

A very strong generalization of Koebe’s theorem is Schramm’s Convex Pack-
ing Theorem from 1990 [14]. The theorem states that if each vertex v of a planar
triangulation G has a prescribed convex prototype Pv, then there is a contact
representation of G where each vertex is represented by a (possibly degenerate)
homothet of its prototype. When the prototypes have a smooth boundary there
are no degeneracies. With this work we aim at efficiently computable approxima-
tions of Schramm representations. The idea is to approximate the prototypes Pv

with simpler shapes; we use equiangular K-gons. Clearly, a sequence of approxi-
mating contact representations with K-gons, one for each positive integer K and
each of them confined to the unit square, will contain a subsequence converging
to a representation with the prototypes Pv.

Contact representations of graphs with polygons have also been studied
widely. Triangle contact representations have been investigated by De Fraysseix
et al. [5]. They observed that Schnyder woods can be considered as combina-
torial encodings of triangle contact representations of triangulations and that
any Schnyder wood can be used to construct a corresponding triangle contact
system. Gonçalves et al. [11] observed that Schramm’s Convex Packing Theorem
can be used to prove the existence of contact representations with homothetic
triangles for all 4-connected triangulations. A more combinatorial approach to
this result, which aims at computing the representation as the solution of a sys-
tem of linear equations, which are based on a Schnyder wood, was described
by Felsner [7]. On the basis of this approach, Schrezenmaier [17] reproved the
existence of homothetic triangle contact representations.

Equiangular Polygon Contact Representations 205

Fig. 2. Parts of equiangular 6-gon and 7-gon contact representations of the same graph.

Representations of graphs with side contacts of rectangles have applications
in architecture and VLSI design. For links into the extensive literature we recom-
mend [3,8]. Representations of graphs using squares or, more precisely, graphs
as a tool to model packings of squares already appear in classical work of Brooks
et al. [2] from 1940. Schramm [15] proved that every 5-connected inner trian-
gulation of a 4-cycle admits a square contact representation. Again there is a
combinatorial approach to this result which aims at computing the represen-
tation as the solution of a system of linear equations, see Felsner [8]. In this
context transversal structures play the role of Schnyder woods. As in the case
of homothetic triangles, this approach is based on an iterative procedure, how-
ever, a proof that the iteration terminates is still missing. On the basis of the
approach, Schrezenmaier [16] reproved Schramm’s Squaring Theorem.

Before stating our results, we introduce some precise terminology. A K-gon
contact system S is a finite system of convex K-gons in the plane such that the
interiors of any two K-gons are disjoint. If all K-gons of S are equiangular K-
gons (i.e., all interior angles are K−2

K π) with a horizontal segment at the bottom,
we call S an equiangular K-gon contact representation. The contact system has
an exceptional touching if there is a point where two corners of K-gons meet.
The contact graph G(S) of S is the graph that has a vertex for every K-gon
and an edge for every contact of two K-gons in S. Note that G(S) inherits a
crossing-free embedding from S. For a given plane graph G and a K-gon contact
system S with G(S) = G we say that S is a K-gon contact representation of G.

We will only consider the case that G is an inner triangulation of a K-cycle,
i.e., the outer face of G is a K-cycle with vertices a1, . . . , aK in clockwise order,
all inner faces are triangles, there are no loops or multiple edges, and there are no
additional edges between the outer vertices. Our interest lies in regular K-gon
contact representations of G with the additional property that a1, . . . , aK are
represented by line segments s1, . . . , sK which together form an equiangular K-
gon. The line segment s1 is always horizontal and at the top, and s1, . . . , sK is the
clockwise order of the segments of the K-gon. Figure 1 (left) shows an example
for K = 5. Figure 2 shows contact systems of 6-gons and 7-gons, respectively.

Let G be an inner triangulation of a K-cycle and for each inner vertex v of G
let Pv be a prescribed equiangular K-gon. From Schramm’s Convex Packing
Theorem it follows that G has a representation as contact graph of homothets of

206 S. Felsner et al.

the prototypes (see Sect. 2). The representation is non-degenerate whenever K ≥
5 and odd, or K ≥ 8 and even. For K = 3 and K = 6 the graph needs to be
4-connected to guarantee a non-degenerate representation. This is because the
three K-gons corresponding to a triangle in G can touch in a single point such
that there is no space left for the K-gons of vertices in the interior of this triangle.

We propose a new method for computing equiangular K-gon contact repre-
sentations. The idea is to guess the combinatorial structure of the representation
of G, i.e., for each edge uv of G guess whether the contact involves a corner
of Pu or a corner of Pv and also guess which corner of the respective proto-
type is involved. The guess is encoded in a K-contact-structure. The K-contact-
structure leads to a system of linear equations whose variables correspond to
lengths of boundary segments of the K-gons. The system is non-singular. If it
has a non-negative solution, the values of the variables determine the geome-
try of a K-gon contact representation. If the solution of the system contains
negative values, then it is possible to locally modify the K-contact-structure in
the neighborhood of negative variables. The modified K-contact-structure cor-
responds to a new system of equations which has a new solution. This yields an
iterative procedure which hopefully stops with a positive solution, i.e., with a
K-gon contact representation.

We could not prove that the above iterative procedure stops. However
the algorithm has been implemented and was used for extensive experiments
(Sect. 7). These have always been successful. Similar algorithms for the compu-
tation of contact representations by homothetic triangles or squares have been
described by Felsner [7,8]. These have also been implemented and successfully
tested, c.f. Rucker [13] and Piccetti [12], respectively. We therefore conjecture
that the proposed algorithm for computing equiangular K-gon contact represen-
tations always terminates with a solution.

In Sect. 3 we introduce K-contact-structures of the graph G. These are certain
weighted orientations of a supergraph of G. In Sect. 4 we enhance K-contact-
structures with a K-coloring of the edges. The color classes are directed forests
that resemble the trees of a Schnyder wood. In Sect. 5 we show that there is a
distributive lattice on the set of K-contact-structures of a fixed graph G and
describe the combinatorial change in K-contact-structures that form a cover
pair. In Sect. 6 we discuss the system of linear equations and prove that it is
non-singular. Section 7 describes the iteration which is proposed as a heuristic
for computing equiangular K-gon contact representations.

In this paper we focus on odd K ≥ 5. The case K = 3 is well-studied and
the case K ≥ 6 and even will be added in a later version of this paper. The
case K = 5 was first studied in the bachelor thesis of Steiner [18] (a coauthor in
this paper) and further elaborated by the present team of authors [10].

2 The Existence of Equiangular K-gon Contact
Representations

In this section let G be an inner triangulation of a K-cycle and let Vinner be the
set of inner vertices of G. Further, for each v ∈ Vinner, let Pv be an equiangular

Equiangular Polygon Contact Representations 207

K-gon with a horizontal segment at the bottom. We call Pv the prototype of v.
A homothetic copy of a prototype Pv is a set in the plane that can be obtained
from Pv by scaling and translation.

Theorem 1. For odd K ≥ 5 there is an equiangular K-gon contact representa-
tion of G in which each v ∈ Vinner is represented by a homothetic copy of Pv.

This theorem is an immediate consequence of the Convex Packing Theorem
by Schramm [14] which guarantees a contact representation of G with homothets
of the given prototypes if we also allow the inner vertices to be represented by
a single point, i.e., a homothetic copy of the prototype with scaling factor 0.
The interesting point is that for odd K ≥ 5 this cannot happen because the
interior angles of the equiangular K-gons are too large (combined with the fixed
alignment of the K-gons) to allow more than two equiangular K-gons to meet at
a given point. Similar proofs have been given for the case K = 3 in [11] and K = 5
in [10,18].

3 The Combinatorial Structure of Equiangular Polygon
Contact Representations

For the entire section let G be an inner triangulation of a K-cycle, K ≥ 3 odd.
We call an inner face of G a strictly inner face if it is only incident to inner
edges. We denote the set of inner edges of a planar graph H by Einner(H). For
the directed graphs used later in this section we denote the sets of incoming and
outgoing edges of a vertex v by Ein(v) and Eout(v), respectively.

Definition 1. The stack extension G� of G is the extension of G that contains
an extra vertex in every strictly inner face. These new vertices are connected to
all three vertices of the respective face. We call the new vertices stack vertices
and the vertices of G normal vertices. Analogously, we call the new edges stack
edges and the edges of G normal edges. See Fig. 1 (right) for an example.

Definition 2. A K-contact-structure on G is an orientation and weighting
w : Einner(G�) → N of the inner edges of G� such that

(P1) w(e) = 1 for each normal edge e,
(P2) each stack edge is oriented towards its incident stack vertex,
(P3) the out-flow of each normal vertex u is K, i.e.,

∑
e∈Eout(u)

w(e) = K,
(P4) the in-flow of each stack vertex v is K−3

2 , i.e.,
∑

e∈Ein(v)
w(e) = K−3

2 .

Definition 3. Let A be a K-contact-structure on G. Then we can associate
with A a modified version of G� where each inner edge e is replaced by w(e)
parallel edges (if w(e) = 0, the edge e is deleted) and all edges are oriented as
in A. We denote this graph by G�

+(A).

The following theorem shows the key correspondence between K-contact-
structures and equiangular K-gon contact representations.

208 S. Felsner et al.

Fig. 3. A contact representation of equiangular 7-gons and the graph G�
+(A) for its

induced 7-contact-structure A.

Theorem 2. Let S be an equiangular K-gon contact representation of the graph
G = G(S). Then S induces a K-contact-structure on G (see Fig. 3 for an illus-
tration).

First we consider the case that S has no exceptional touchings. Then the
construction of the induced K-contact-structure of S is as follows: Let e be an
inner normal edge of G�. Then e corresponds to the contact of a corner of a
K-gon A and a segment of a K-gon B in S. We orient the edge e from the
vertex corresponding to A to the vertex corresponding to B and set w(e) = 1.
Now let e = uv be a stack edge with normal vertex u and stack vertex v. Then u
corresponds to a K-gon A of S and v to an area F in S which is enclosed by A
and two more K-gons or outer segments si. Note that F is a pseudotriangle,
i.e., a polygon with exactly three convex corners and arbitrarily many concave
corners. We define w(e) to be the number of concave corners of F which are also
corners of A, and orient e from u to v.

Properties (P1) and (P2) are fulfilled directly by construction. Property (P3)
corresponds to the fact that each K-gon has exactly K corners, and prop-
erty (P4) corresponds to the fact that each pseudotriangle has exactly K−3

2
concave corners.

In the case that S has exceptional touchings, each exceptional touching of two
K-gon corners can be interpreted in two ways as a corner-segment contact with
infinitesimal distance to the other corner. We choose one of these interpretations
and proceed as before. Hence, the K-contact-structure induced by an equiangular
K-gon contact representation with exceptional touchings is not unique.

Theorem 3. Let G be an inner triangulation of a K-cycle. Then there exists a
K-contact-structure on G.

Theorem 3 immediately follows from Theorems 1 and 2. Since we aim for a
theory independent from the Monster Packing Theorem by Schramm, we give
another elementary proof of Theorem 3. The idea of the proof is the following:
We replace each stack edge of G� by K−3

2 parallel edges. Then we show that there
exists an orientation of this graph such that each normal vertex has out-degree K
and each stack vertex has in-degree K−3

2 . Such orientations with prescribed

Equiangular Polygon Contact Representations 209

Fig. 4. Left: The local conditions of a K-proper coloring in the case K = 5. Right: An
example for the K-proper coloring of an induced K-contact-structure. (Color figure
online)

vertex degrees have been studied in [6] under the name of α-orientations. There
are sufficient conditions related to Hall’s matching criterion for the existence
of α-orientations. In our case the conditions are fulfilled. The existence of the
appropriate orientation implies the existence of a K-contact-structure.

4 Coloring K-contact-structures

In this section let G be an inner triangulation of a K-cycle, let A be a K-contact-
structure on G and let G�

+ := G�
+(A). In the following, the set of colors 1, . . . , K

is to be understood as representatives modulo K, i.e., colors c and c + zK are
the same for any z ∈ Z.

Definition 4. A K-proper coloring of G�
+ is a coloring of the inner edges of G�

+

in the colors 1, . . . ,K such that (see Fig. 4 (left) for an illustration)

(C1) for i = 1, . . . ,K all edges incident to the outer vertex ai have color i,
(C2) each normal vertex has exactly one outgoing edge in each color and the

clockwise order of the colors is 1, . . . ,K,
(C3) incoming edges of a normal vertex, which are located between the outgoing

edges of colors c and c + 1, have color c − K−1
2 .

An equiangular K-gon contact representation S induces a K-contact-struc-
ture together with a K-proper coloring. To see this, recall the construction below
Theorem 2. Each inner edge of G�

+ corresponds to a corner of a K-gon of S. We
color the corners of each K-gon of S in the colors 1, . . . , K in clockwise order,
starting with color 1 at the corner at the top. Then each inner edge of G�

+ gets
the color of the corner it corresponds to. Figure 4 (right) shows an example.

The following theorem shows that this coloring is a property of the K-contact-
structure itself and independent of an inducing contact representation.

Theorem 4. The graph G�
+ has a unique K-proper coloring.

The idea of the construction of the colors is as follows: We start with an inner
edge e of G�

+ and follow a properly defined path that at some point reaches one

210 S. Felsner et al.

of the outer vertices. Then the color of this outer vertex will be the color of e.
This approach is similar to the proof of the bijection of Schnyder Woods and
3-orientations in [4]. In the definition of these paths, we aim at continuing with
the outgoing edge on the opposite side of a vertex. This is motivated by the
following geometric idea: If we are already given an equiangular K-gon contact
representation, such paths keep a constant slope and therefore run into an outer
segment with corresponding slope. If we run into a stack vertex, there is no
unique opposite edge. Therefore the path of e is not unique, but we can associate
a unique outer vertex with e by showing that all properly defined paths starting
with e end in the same outer vertex.

5 The Distributive Lattice of K-contact-structures

Let G be an inner triangulation of a K-cycle. The following definitions give us
a formalism how to change a K-contact-structure of G to obtain a new one.

Definition 5. Let A be a K-contact-structure of G. We call a multiset E of
oriented edges of G� flippable in A if (i) indegE(v) = outdegE(v) for each
vertex v; (ii) each normal edge is contained at most once in E and only in the
orientation of A; (iii) each stack edge e = uv with stack vertex v is contained
at most wA(e) times in E in the orientation from u to v (no restriction for the
other direction).

Definition 6. Let A be a K-contact-structure of G and let E be a flippable set
of edges in A. Then we can perform a flip on A and obtain a new K-contact-
structure A′ by changing the orientation of all normal edges in E, and by set-
ting wA′(e) := wA(e) − a + b for each stack edge e = uv with normal vertex u
and stack vertex v if e is contained a times in E oriented from u to v and b
times oriented from v to u.

It can easily be seen that a flip indeed yields a new K-contact-structure.
We can even reach every K-contact-structure A′ from A by flipping a suitable
flippable set of edges.

These flipping operations already show the close relation between K-contact-
structures and integral flows on G�. We now want to formalize this relation and
thereby obtain the structure of a distributive lattice on the set of K-contact-
structures of G. In particular, K-contact-structures can be equivalently modeled
as flows f : Einner(

−→
G�) → Z on a fixed orientation

−→
G� of G� where each stack

edge is oriented towards the incident stack vertex and each normal edge obtains
an arbitrary fixed orientation. In such a flow the excess of a vertex v is defined
as ω(v) :=

∑
e∈Ein(v)

f(e) − ∑
e∈Eout(v)

f(e).

Definition 7. A flow f : Einner(
−→
G�) → Z is called a K-contact-flow if

(i) f(e) ∈ {0, 1} for each normal edge e;
(ii) f(e′) ∈ {0, . . . , K−3

2 } for each stack edge e′;

Equiangular Polygon Contact Representations 211

(iii) ω(u) = indeg(u) − K for each normal vertex u;
(iv) ω(v) = K−3

2 for each stack vertex v.

For each normal edge e we set cl(e) := 0 and cu(e) := 1. For each stack
edge e′ we set cl(e′) := 0 and cu(e′) := K−3

2 . Then the first two conditions can be
formulated as cl(e′′) ≤ f(e′′) ≤ cu(e′′) for each edge e′′. The set of integral flows
F(H,ω, cl, cu) of a directed planar graph H fulfilling such constraints (bounds
cl, cu on the flow values and prescribed excesses ω) has been studied in [9].

The following describes a bijection between the set of K-contact-structures
and the set of K-contact-flows of G. Let A be a K-contact-structure on G. If
a normal edge e has the same orientation in

−→
G� and in A, we set f(e) = 1,

otherwise f(e) = 0. For a stack edge e′ we set f(e′) = wA(e′).
It has been shown in [9] that the set F(H,ω, cl, cu) carries the structure of a

distributive lattice. For a flow f ∈ F(H,ω, cl, cu) let the residual graph, denoted
by Hf , be the following reorientation of H: An edge vw of H is oriented from v
to w in Hf if f(vw) > cl(vw) and from w to v if f(vw) < cu(vw). Note that
in Hf an edge can have no, one, or two orientations. If we decrease the flow f
by one on a subgraph H ′

f of Hf with the property indegH′
f
(v) = outdegH′

f
(v)

for each vertex v, we obtain a new flow f ′ ∈ F(H,ω, cl, cu). This operation
corresponds to a flip in the K-contact-structure.

Definition 8. A chordal path of a simple cycle C is a directed path consisting
of edges inside C (referring to a plane embedding) whose first and last vertex are
vertices of C. These two vertices are allowed to coincide.

A simple cycle C is an essential cycle if there is a flow f such that C is a
directed cycle in Hf and has no chordal path in Hf .

Theorem 5 ([9]). The following relation on the set F(H,ω, cl, cu) of flows of
a planar graph H is the cover relation of a distributive lattice: A flow f ′ covers
a flow f if and only if f ′ can be obtained from f by subtracting one unit of flow
on a counterclockwise oriented essential cycle in Hf .

Now we can apply this to the set of K-contact-flows of G.

Theorem 6. The set of all K-contact-structures of G carries the structure of a
distributive lattice. In this lattice a K-contact-structure A′ covers a K-contact-
structure A if there is a flippable counterclockwise oriented facial cycle in G�

such that A′ can be obtained from A by flipping this cycle.

6 System of Linear Equations

Let G be an inner triangulation of a K-cycle and let A be a K-contact-structure
of G. Let G�

+ := G�
+(A). We will propose a system of linear equations that allows

us to compute an equiangular K-gon contact representation of G with induced
K-contact-structure A if such a representation exists. If such a representation
does not exist, the solution of the system will have negative variables.

212 S. Felsner et al.

Fig. 5. Left: The skeleton graph corresponding to the K-contact-structure of Fig. 4.
Right: The signs of the variables in the solution, green for non-negative and red for
negative, and the corresponding sign-separating edges in blue. (Color figure online)

We start by describing how to obtain the skeleton graph of the contact repre-
sentation. The skeleton graph Gskel is the medial graph of G�

+ without the edges
corresponding to the outer face of G�

+. We color the edges of Gskel according
to the following rules: If the edge corresponds to an angle of an inner normal
vertex and this angle lies between the outgoing edges of colors c and c+1 in the
K-proper coloring of G�

+, it gets the color c − K−1
2 . If the edge corresponds to

an angle of the outer normal vertex ai, it gets the color i. See Fig. 5 (left) for an
example.

The colors of the edges of Gskel correspond to their required slopes in the
following way: Let B be an equiangular K-gon with a horizontal side at the top
and its sides colored in the colors 1, . . . ,K in clockwise order, starting at the
top. Then a crossing-free straight-line drawing of Gskel is an equiangular K-gon
contact representation of G with induced K-contact-structure A if and only if
each edge e has the same slope as the side of B that has the same color as e.

The purpose of the system of linear equations is to find edge lengths for the
edges of Gskel in such a drawing with the additional property that the K-gons
are homothets of the given prototypes. Therefore we have a variable xe for each
edge e of Gskel representing its length, and a variable xv for each inner vertex v
of G representing the scaling factor of its prototype Pv. We have equations which
ensure that the scaling factor xv of each normal vertex fits together with the
edge lengths xe of the K-gon corresponding to v. For i = 1, . . . ,K let �i(Pv)
be the length of the ith segment of Pv, starting with the horizontal segment
and then proceeding in clockwise direction. Further let Ei(v) be the edges of
color i in Gskel corresponding to angles of v. Then the sum of the lengths of
the edges in Ei(v) has to be equal to xv�i(Pv), the scaled segment length of the
prototype:

∑
e∈Ei(v)

xe − �i(Pv)xv = 0. Further we have 2 equations for each
inner face of G ensuring that the edges of Gskel corresponding to this face form a
closed curve (these are the pseudotriangles). Finally, we add one more equation
to our system stating that the lengths of the edges building the line segment
corresponding to the outer vertex a1 of G sum up to 1:

∑
e∈E1(a1)

xe = 1. This
equation is the only inhomogeneous equation and will ensure that the solution

Equiangular Polygon Contact Representations 213

of the system is unique. We denote the entire system by AAx = e1 where AA is
a matrix depending on the K-contact-structure A and e1 = (1, 0, 0, . . . , 0).

Theorem 7. The system AAx = e1 has a unique solution. This solution is non-
negative if and only if the K-contact-structure A is induced by an equiangular
K-gon contact representation of G with the given prototypes.

One direction of the latter part of the statement is trivial because the edge
lengths of a contact representation yield a non-negative solution of the system.
For the other direction we show that we can construct a contact representation
from the edge lengths given by a non-negative solution by gluing together the
K-gons and pseudotriangles resulting from this solution.

7 A Heuristic

In this section we propose a heuristic to compute an equiangular K-gon con-
tact representation of a given triangulation G of a K-cycle. The basic idea of
our heuristic is to start with an arbitrary K-contact-structure A of G and to
solve the system AAx = e1. If the solution is non-negative, we can construct
the contact representation from the edge lengths given by the solution and are
done. Otherwise, we can use the negative variables of the solution as sign-posts
indicating how to change the K-contact-structure for another try. The goal is to
find a flippable set of edges in G� (see Sect. 5) that separates the edges of Gskel

with negative solution value from these with non-negative solution value.

Definition 9. We call these three types of oriented edges e = (v, w) in G�

sign-separating edges (see Fig. 6): (A) v, w are normal vertices, the abstract K-
gons of both vertices have a sign-change at the contact, the two involved abstract
pseudotriangles do not have a sign-change at the contact; (B) v is a normal
vertex, w is a stack vertex, and there is a sign-change at the corner corresponding
to e; (C) v is a stack vertex, w is a normal vertex, the abstract pseudotriangle
corresponding to v has a sign-change in a convex corner, the abstract K-gon
corresponding to w has a sign-change at the same point, but not a corner.

Let E+− be the set of all sign-separating edges. It might be that there is a nor-
mal vertex v and a stack vertex u such that (u, v), (v, u) ∈ E+−. In this case let w
be the normal vertex corresponding to the abstract K-gon touching the abstract
K-gon of v in the contact point where (u, v) and (v, u) have their assigned sign-
changes. Then we change E+− in the following way: We remove (v, u) from E+−
and add (v, w) and (w, u) instead. We call this a repairing step. It guarantees
that a flip of the edges in E+− changes the K-contact-structure.

Theorem 8. After performing all possible repairing steps, the set E+− is flip-
pable in A and the corresponding flip leads to a K-contact-structure A′ �= A.

We could not prove that iterating to flip the edges in E+− can guarantee
any kind of progress. Therefore a proof is still missing that this heuristic always

214 S. Felsner et al.

v

w

+ −
+ −

v

w

+ − v

w

− +

+

Fig. 6. The sign-separating edges of types (A), (B) and (C).

terminates with a solution. However, the heuristic has been subject to extensive
experiments. We tested the heuristic with a total of 1000 random graphs with
up to 100 inner vertices and up to 23 outer vertices. The heuristic terminated
for each graph after few seconds.1 Therefore we have the following conjecture.

Conjecture 1. The heuristic described in this section terminates with a solution
for all K, for every graph G which is an inner triangulation of a K-cycle, and
for every K-contact-structure of G to start the heuristic.

The experiments also suggest that the number of iterations is polynomial or
even linear (sub-linear in the average case). Since the equation system has linear
size and systems of linear equations can be solved exactly in polynomial time,
this would imply that the heuristic has polynomial running time.

Acknowledgements. We want to thank Manfred Scheucher for supporting us with
the implementation of the heuristic.

References

1. Bowers, P.L.: Circle packing: a personal reminiscence. In: Pitici, M. (ed.) The Best
Writing on Mathematics 2010, pp. 330–345. Princeton University Press, Princeton
(2010)

2. Brooks, R.L., Smith, C., Stone, A.H., Tutte, W.T.: The dissection of rectangles
into squares. Duke Math. J. 7(1), 312–340 (1940)

3. Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rect-
angular layouts and contact graphs. ACM Trans. Algorithms 4, 28 (2008). Article
no 8

4. de Fraysseix, H., de Mendez, P.O.: On topological aspects of orientations. Discret.
Math. 229(1), 57–72 (2001)

5. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs.
Comb. Probab. Comput. 3, 233–246 (1994)

6. Felsner, S.: Lattice structures from planar graphs. Electron. J. Comb. 11(1), R15
(2004)

7. Felsner, S.: Triangle contact representations. In: Midsummer Combinatorial Work-
shop, Praha (2009)

8. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J.
(ed.) Thirty Essays on Geometric Graph Theory, pp. 213–248. Springer, New York
(2013). https://doi.org/10.1007/978-1-4614-0110-0 12

1 Visualizations of some examples can be found at https://www3.math.tu-berlin.de/
diskremath/research/kgon-representations/index.html.

https://doi.org/10.1007/978-1-4614-0110-0_12
https://www3.math.tu-berlin.de/diskremath/research/kgon-representations/index.html
https://www3.math.tu-berlin.de/diskremath/research/kgon-representations/index.html

Equiangular Polygon Contact Representations 215

9. Felsner, S., Knauer, K.: ULD-lattices and Δ-bonds. Comb. Probab. Comput. 18(5),
707–724 (2009)

10. Felsner, S., Schrezenmaier, H., Steiner, R.: Pentagon contact representations. In:
Proceedings of the Eurocomb, pp. 421–427 (2017)

11. Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and dual-
ity. In: Proceedings of the Graph Drawing, pp. 262–273 (2011)

12. Picchetti, T.: Finding a square dual of a graph (2011)
13. Rucker, J.: Kontaktdarstellungen von planaren Graphen. Diplomarbeit, Technische

Universität Berlin (2011)
14. Schramm, O.: Combinatorically prescribed packings and applications to con-

formal and quasiconformal maps. Modified version of Ph.D. thesis from 1990.
arXiv.org/0709.0710v1

15. Schramm, O.: Square tilings with prescribed combinatorics. Isr. J. Math. 84(1–2),
97–118 (1993)

16. Schrezenmaier, H.: Zur Berechnung von Kontaktdarstellungen. Masterarbeit, Tech-
nische Universität Berlin (2016)

17. Schrezenmaier, H.: Homothetic triangle contact representations. In: Bodlaender,
H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 425–437. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68705-6 32

18. Steiner, R.: Existenz und Konstruktion von Dreieckszerlegungen triangulierter
Graphen und Schnyder woods. Bachelorarbeit, FernUniversität in Hagen (2016)

19. Stephenson, K.: Introduction to Circle Packing. The Theory of Discrete Analytic
Functions. Cambridge University Press, Cambridge (2005)

http://arxiv.org/abs/org/0709.0710v1
https://doi.org/10.1007/978-3-319-68705-6_32

Temporal Graph Classes: A View
Through Temporal Separators

Till Fluschnik, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche(B)

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin,
Berlin, Germany

{till.fluschnik,h.molter,rolf.niedermeier,zschoche}@tu-berlin.de

Abstract. We investigate the computational complexity of separating
two distinct vertices s and z by vertex deletion in a temporal graph. In a
temporal graph, the vertex set is fixed but the edges have (discrete) time
labels. Since the corresponding Temporal (s, z)-Separation problem
is NP-hard, it is natural to investigate whether relevant special cases
exist that are computationally tractable. To this end, we study restric-
tions of the underlying (static) graph—there we observe polynomial-time
solvability in the case of bounded treewidth—as well as restrictions con-
cerning the “temporal evolution” along the time steps. Systematically
studying partially novel concepts in this direction, we identify sharp bor-
ders between tractable and intractable cases.

1 Introduction

Reachability, connectivity, and robustness in networks depend often on time. For
instance, in public transport or human contact networks, available connections
or contacts are time-dependent. To model such time-dependent aspects, one
turns from static graphs to temporal graphs. Formally, an undirected temporal
graph G = (V,E, τ) is an ordered triple consisting of a set V of vertices, a
set E ⊆ (

V
2

) × {1, . . . , τ} of time-edges, and a maximal time label τ ∈ N. We
study the problem of finding a small set of vertices in a temporal graph whose
removal disconnects two designated terminals: a classic, polynomial-time solvable
problem in (static) graph theory.

Temporal (s, z)-Separation
Input: A temporal graph G = (V,E, τ), two distinct vertices s, z ∈ V ,

and k ∈ N.
Question: Does G admit a temporal (s, z)-separator of size at most k?

Due to the space constraints, missing details and proofs (marked with �) are deferred
to a long version [9] of this paper, see https://arxiv.org/abs/1803.00882.
T. Fluschnik—Supported by the DFG, project DAMM (NI 369/13).
H. Molter—Supported by the DFG, project MATE (NI 369/17).

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 216–227, 2018.
https://doi.org/10.1007/978-3-030-00256-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_18&domain=pdf
https://arxiv.org/abs/1803.00882

Temporal Graph Classes: A View Through Temporal Separators 217

Herein, a vertex set S ⊆ V \ {s, z} is a temporal (s, z)-separator for a given
temporal graph G = (V,E, τ) with s, z ∈ V if there is no temporal (s, z)-path
in G− S := (V \ S, {({v, w}, t) ∈ E | v, w ∈ V \ S}, τ). A temporal (s, z)-path of
length � in G is a sequence P = (({v0, v1}, t1), ({v1, v2}, t2), . . . , ({v�−1, v�}, t�))
of time-edges in E, where s = v0, z = v�, vi �= vj for all i, j ∈ {0, . . . , �} with i �=
j, and ti ≤ ti+1 for all i ∈ {1, . . . , � − 1}. Temporal (s, z)-Separation is NP-
hard [11]. In this work, we study Temporal (s, z)-Separation on restricted
classes of temporal graphs with the goal to identify computationally tractable
cases.

So far, in the literature one basically finds two different directions concerning
the definition of temporal graph classes. One direction is defining temporal graph
classes through the underlying graph (that is, essentially, the graph obtained by
forgetting about the time labels of the edges) [1,7,17]. Herein, one restricts the
input temporal graph to have its underlying graph being contained in some spe-
cific graph class. The other direction considers properties expressible through
temporal aspects [5,8,13,15]. Such properties are, for instance, each layer being
a subgraph of its succeeding layer, or the temporal graph being periodic, that is,
having a subsequence of layers which is repeated in the same order for some peri-
ods. In this work, we study Temporal (s, z)-Separation on temporal graph
classes from both directions.

Our Contributions. We show that Temporal (s, z)-Separation remains NP-
complete on many restricted temporal graph classes.

– Temporal (s, z)-Separation remains NP-complete on temporal graphs
whose underlying graph falls into a class of graphs containing complete-but-
one graphs (that is, complete graphs where exactly one edge is missing) or
line graphs. However, if the underlying graph is of bounded treewidth, Tem-
poral (s, z)-Separation becomes polynomial-time solvable (see Fig. 1 for
an overview).

– Temporal (s, z)-Separation remains NP-complete on temporal graphs
where each layer contains only one edge (Corollary 1). In contrast, if we
require each layer to be a unit interval graph with respect to the same
global vertex ordering, then Temporal (s, z)-Separation becomes solvable
in polynomial time (Theorem 1).

– Regarding temporal graph classes defined through temporal aspects, Tempo-
ral (s, z)-Separation becomes solvable in polynomial time on single-peaked
temporal graphs, on graphs where all layers are identical (1-periodic or 0-
steady), or when the number of periods is at least the number of vertices. In all
other considered cases Temporal (s, z)-Separation remains NP-complete
(see Table 1 in Sect. 4 for an overview).

Related Work. Kempe et al. [11] proved Temporal (s, z)-Separation to be
NP-complete. Zschoche et al. [17] proved that Temporal (s, z)-Separation
remains NP-complete on temporal graphs with bipartite or planar underlying
graphs. Moreover, Temporal (s, z)-Separation is W[1]-hard when parameter-
ized by the solution size k [17].

218 T. Fluschnik et al.

Fig. 1. Computational complexity of Temporal (s, z)-Separation for some graph
classes of the underlying graph. An edge between two classes indicates containment of
the lower in the upper class. For the classes of line, complete-but-one, bipartite, and
planar graphs, we provide for which values of the maximum time label τ NP-hardness
is proven as well as the parameterized complexity of Temporal (s, z)-Separation
when parameterized by the solution size k. We point out that in the case of planar
graphs, neither a bound on τ nor the parameterized complexity regarding k is known.

Casteigts et al. [5] defined twelve different classes of temporal graphs and
showed a corresponding inclusion diagram. Among these classes, they define
temporal graph classes with recurrence or periodicity of edges. On a slightly
different notion of the latter class, Flocchini et al. [8] studied the problem of
exploring a temporal graph. Kuhn et al. [13] studied the problem of token dis-
semination on temporal graphs where in each time-interval of length T , at least
the edges of an arbitrary spanning tree appear.

The class of temporal graphs with underlying graphs of bounded treewidth
are considered in the context of temporal graph exploration [7] and single-source
temporal connectivity [1]. Erlebach et al. [7] studied the problem of temporal
graph exploration on temporal graphs with underlying graphs being planar and
of bounded vertex degree. They also introduced the class of temporal graphs
with regularly present edges, where the absence of each edge in consecutive
time steps is lower- and upper-bounded by two values. Michail and Spirakis
[15] studied a temporal version of the Traveling Salesperson Problem on
temporal graphs with bounded dynamic diameter, where the dynamic diameter
is the smallest number d such that every vertex can reach any other vertex at
any time in at most d time steps.

2 Preliminaries

As a convention, N denotes the natural numbers without zero.

Static Graphs. We use basic notations from (static) graph theory. Let G = (V,E)
be an undirected, simple graph. We use V (G) and E(G) to denote the set

Temporal Graph Classes: A View Through Temporal Separators 219

of vertices and the set of edges of G, respectively. We denote by G − V ′

:= (V \ V ′, {{v, w} ∈ E | v, w ∈ V \ V ′}) the graph G without the vertices
in V ′ ⊆ V . For V ′ ⊆ V , G[V ′] := G − (V \ V ′) denotes the induced sub-
graph of G on the vertices V ′. A path of length � is sequence of edges P =
({v1, v2}, {v2, v3}, . . . , {v�, v�+1}) where vi �= vj for all i, j ∈ {1, . . . , � − 1} with
i �= j. We set V (P) = {v1, v2, . . . , v�+1}. Path P is an (s, z)-path if s = v1
and z = v�+1. A set S ⊆ V of vertices is an (s, z)-separator in G if there is no
(s, z)-path in G − S.

Temporal Graphs. Let G = (V,E, τ) be a temporal graph. The graph Gi(G) =
(V,Ei(G)) is called layer i of the temporal graph G = (V,E, τ) if and only
if {v, w} ∈ Ei(G) ⇔ ({v, w}, i) ∈ E. The underlying graph G↓(G) of a temporal
graph G = (V,E, τ) is defined as G↓(G) := (V,E↓(G)), where E↓(G) = {e |
∃t : (e, t) ∈ E}. (We drop G in the notations if it is clear from the context.)
For X ⊆ V we define the induced temporal subgraph of G by X by G[X] :=
(X, {({v, w}, t) ∈ E | v, w ∈ X}, τ). We say that a temporal graph G is connected
if its underlying graph G↓ is connected. Let s, z ∈ V . Throughout the whole
paper we assume that the temporal input graph G is connected and that there
is no time-edge between s and z. Furthermore, in accordance with Wu et al.
[16] we assume that the time-edge set E is ordered by ascending labels.1 The
concatenation of two temporal graphs G1 = (V,E1, τ1), G2 = (V,E2, τ2) is
denoted by G1 ◦ G2 = (V,E1 ∪ {(e, t + τ1) | (e, t) ∈ E2}, τ1 + τ2). Furthermore,
we define that G1

1 = G1 and Gx
1 = Gx−1

1 ◦ G1, for all integers x ≥ 2.

Lemma 1 (�). Given a temporal graph G = (V,E, τ) and two distinct vertices s
and z, a temporal (s, z)-path can be computed in O(|E|) time.

Parameterized Complexity. A parameterized problem is in XP if there is an
algorithm that solves each instance (I, r) in |I|f(r) time, as well as it is
fixed-parameter tractable (in FPT) if there is an algorithm that solves each
instance (I, r) in f(r) · |I|O(1) time, where f is a computable function depending
only on the parameter r [6]. There is a hierarchy of hardness classes for param-
eterized problems, of which the most important one is W[1]. If a parameterized
problem is W[1]-hard, then it is (presumably) not in FPT.

3 Structural Restrictions

Two approaches to define temporal graph classes are (i) restricting each layer to
be contained in a specific graph class or (ii) restricting the underlying graph to
be contained in a specific graph class. We point out that both are independent of
the linear order of the layer and hence appear to not fully capture the temporal
characteristics of a given temporal graph. Indeed, our results support this fact
as we obtain intractability for many restricted graph classes.

1 If this is not the case, then E can be sorted by ascending labels with bucketsort or
mergesort in O(min{τ, |E| log |E|}) time.

220 T. Fluschnik et al.

3.1 Layer-Wise Restrictions

Restricting the layers to fall into a specific graph class neither captures any
temporal aspect of the temporal graph nor the full picture drawn by all layers
together. In fact, we show that such restrictions are not helpful: the problem is
already NP-hard when each layer consists of at most one edge.

Lemma 2 (�). There is a polynomial-time many-one reduction that maps any
instance (G = (V,E, τ), s, t, k) of Temporal (s, z)-Separation to an equiv-
alent instance (G′ = (V,E′, τ ′), s, t, k) such that each layer in G′ has at most
one edge and τ ′ ≤ τ · |V |4.
Lemma 2 (together with known hardness results [11,17]) implies the following.

Corollary 1. Temporal (s, z)-Separation is NP-complete and W[1]-hard
when parameterized by the solution size k even if each layer has at most one edge.

Now we consider a scenario where temporal graphs have a certain geometric
interpretation. For example in data sets where vertices are individuals and edges
model physical proximity (see e.g. [2]), it is a reasonable assumption that the
individual layers are disc intersection graphs (assuming the individuals only move
in the plane). We focus on the one-dimensional case, where we get (unit) interval
graphs, and investigate this restriction as a starting point for further research.
We show in the following that if each layer of a given temporal graph G is
restricted to be a unit interval graph and there is an ordering on the vertices
that matches the relative positions of the intervals in all layers, then we can solve
Temporal (s, z)-Separation on G in polynomial time. We first give a formal
definition of the restriction.

In the following we introduce temporal interval graphs. We call a temporal
graph G = (V,E, τ) a temporal interval graph if every layer Gi is an interval
graph. We say that a temporal graph G = (V,E, τ) is a temporal unit interval
graph if every layer Gi is a unit interval graph. By Lemma2, Temporal (s, z)-
Separation on temporal unit interval graph is NP-hard.

We call a total ordering <V on a vertex set V compatible with a unit interval
graph G = (V,E) if there are unit intervals [av, av + 1] with av ∈ R for all
vertices v ∈ V that induce the graph G and for all u, v ∈ V with u <V v we have
that au ≤ av. Note that for every unit interval graph there is a total ordering
on the vertices that is compatible with it.

Definition 1. A temporal graph G = (V,E, τ) is an order-preserving temporal
unit interval graph if G is a temporal unit interval graph and there is a total
ordering <V on the vertex set V that is compatible with every layer Gi.

One can prove a number of useful properties of order-preserving temporal unit
interval graphs [9], which lead to the following result.

Theorem 1 (�). Temporal (s, z)-Separation on order-preserving temporal
unit interval graphs with given ordering <V is solvable in polynomial time.

Temporal Graph Classes: A View Through Temporal Separators 221

3.2 Underlying-Wise Restrictions

We next study temporal graphs where the underlying graph is contained in some
graph class. A graph is complete-but-one if all but one possible edges are present.

Lemma 3 (�). There is a polynomial-time many-one reduction that maps any
instance (G = (V,E, τ), s, t, k) of Temporal (s, z)-Separation to an equiva-
lent instance (G′ = (V,E′, τ ′), s, t, k) such that E(G↓(G′)) =

(
V
2

) \ {s, t}.
Lemma 3 implies that Temporal (s, z)-Separation remains NP-hard on all
temporal graphs where the underlying graph falls into a graph class containing
all complete-but-one graphs, for instance the classes of unit interval or threshold
graphs. We refer to Fig. 1 in Sect. 1 for an overview.

Note that complete-but-one graphs are no line graphs, as each complete-but-
one graph (with at least five vertices) contains a K5 − e as induced subgraph,
which is forbidden in line graphs [3, Graph G3]. Hence, we next study Temporal
(s, z)-Separation on temporal graphs where the underlying graph is a line
graph.

Lemma 4 (�). Temporal (s, z)-Separation on temporal graphs where the
underlying graph is a line graph is NP-complete.

Classification Through Parameterization. An alternative way to classify an
instance of a graph-theoretic problem is through its (graph) parameters. We
study Temporal (s, z)-Separation employing several problem specific param-
eterizations. Any upper bound on the maximum length of a temporal (s, z)-path
leads to a straightforward search-tree algorithm.

Lemma 5 (�). Temporal (s, z)-Separation is solvable in O(�k · |E|) time,
where k is the solution size and � is the maximum length of a temporal (s, z)-path.

From Lemma 5 we can derive that Temporal (s, z)-Separation is linear-
time solvable on temporal graph classes where the underlying graph has a con-
stant vertex cover number2.

Corollary 2 (�). Temporal (s, z)-Separation can be solved in O((2 vc)vc ·
|E|) time, where vc is the vertex cover number of the underlying graph.

Another graph parameter which upper-bounds the maximum length of an
(s, z)-path in the underlying graph is the well-studied tree-depth3 of the under-
lying graph.

Corollary 3 (�). Temporal (s, z)-Separation can be solved in O(2td(G↓)·k ·
|E|) time, where k is the solution size and td(G↓) is the tree-depth of the under-
lying graph.

2 The vertex cover number of a graph is the smallest number of vertices such that
each edges has at least one of these vertices as an endpoint.

3 We refer to the long version [9] for details.

222 T. Fluschnik et al.

A1: A2: A3: S: Z:

s z
1

2

2

2

2

2

2

3 2, 3 3 3
3

3

3
3

Fig. 2. The idea for the dynamic program from Theorem 2 for a temporal graph G.
Vertices in S form the temporal (s, z)-separator, vertices in Z are not reachable from
s in G − S, and vertices in At are not reachable from s in G − S before time t.

One of the tools from the repertoire for designing fixed-parameter algorithms
for (static) graph problems are tree decompositions [6]. A tree decomposition is
a mapping of a graph into a related tree-like structure. For many graph problems
this tree-like structure can be used to formulate a bottom-up dynamic program
that starts at the leaves and ends at the root of the tree decomposition [6].
Indeed, if we parameterize by tw↓(G), where tw↓(G) is defined as the treewidth
of the underlying graph G↓(G), then we obtain an XP-algorithm by dynamic
programming.

Theorem 2 (�). Temporal (s, z)-Separation is solvable in time O((τ +
2)tw↓(G)+2 · tw↓(G) · |V | · |E|), if a nice tree-decomposition of the underlying
graph with treewidth tw↓(G) is given, and where τ is the maximum time label.

Note that a tree-decomposition of width O(tw(G)) can be computed in 2O(tw(G))·
n time [4] and can be turned into a nice tree-decomposition in polynomial-time
[6, Lemma 7.4], where G is a graph with n vertices. The dynamic program is
based on the fact that for each vertex v ∈ V in a temporal graph G = (V,E, τ)
there is a point of time t ∈ {1, . . . , τ} such that v cannot be reached from s ∈ V
before time t. In particular, we guess a partition V = A1 � . . . � Aτ � S � Z such
that S is the temporal (s, z)-separator and in G−S, no vertex contained in Z is
reachable from s and no vertex v ∈ At can be reached from s before time step t,
where t ∈ {1, . . . , τ}. See Fig. 2 for an illustrative example.

It remains open whether Temporal (s, z)-Separation is fixed-parameter
tractable when parameterized by tw↓ or by k + tw↓.

4 Temporal Restrictions

In Sect. 3 we considered restrictions on the layers and the underlying graph.
Observe that these restrictions do not cover the temporal aspects of a temporal
graph, that is, any reordering of the layers yields a different temporal graph hav-
ing the same restrictions. In this section, we study temporal graph classes whose
definitions depend on the ordering of the layers. Herein, we study monotone,
periodic, consecutively connected, and steady temporal graphs.

Note that monotone, periodic, and consecutively connected temporal graphs
are quite restricted temporal graph classes [5]. Unfortunately, even on these
temporal graph classes, except for trivial cases, we encounter computational

Temporal Graph Classes: A View Through Temporal Separators 223

Table 1. Let τ denote the maximum time label and r the number of periods in G.

Temporal (s, z)-Separation

Polynomial-time NP-hard

p-monotone single-peaked p ≥ 2

p-periodic p = 1, or r ≥ n p ≥ 2

T -interval connected - T ≥ 1

λ-steady λ = 0 or (λ, τ constant) λ ≥ 1

hardness by straightforward arguments. We refer to Table 1 for an overview on
our results.
Monotone Temporal Graphs. Intuitively, a temporal graph is monotone if it can
be decomposed into time-intervals on which the layers are consecutively sub-
graphs or supergraphs.

Definition 2. A temporal graph G = (V,E, τ) is p-monotone if p ∈ N is the
smallest number such that there are 1 = i1 < i2 < . . . < ip+1 = τ such that for
all � ∈ {1, . . . , p} holds Ej ⊆ Ej+1 or Ej ⊇ Ej+1 for all i� ≤ j < i�+1.

Khodaverdian et al. [12] call a temporal graph monotone if whenever an
edge is contained in a layer, this edge is contained in all succeeding layers. Their
motivation is activation of proteins, or more general, temporal graphs that model
activation by connected components. Casteigts et al. [5, Class 6] call this prop-
erty of temporal graphs while additionally requiring the underlying graph to
be connected as “recurrence of edges”. Since we only consider temporal graphs
with connected underlying graphs, both definitions form special cases of our
1-monotone temporal graphs where each layer is a subgraph of its successor.

A peak in a p-monotone temporal graph is an index i� ∈ {i1, i2, . . . , ip+1}
such that there exists a i�−1 ≤ j < i� with Ej ⊂ Ej+1 or a i� ≤ j < i�+1

with Ej ⊃ Ej+1. As a convention, 1-monotone temporal graphs are single-peaked,
that is, they have only one peak. Indeed, observe that for Temporal (s, z)-
Separation only the peaks matter. Hence, we obtain the following reduction.

Observation 1. Given an instance I = (G = (V,E, τ), s, t, k) with G being p-
monotone with � peaks, we can compute in polynomial time an instance I ′ =
(G′ = (V,E′, τ ′), s, t, k) such that I is equivalent to I ′ and τ ′ ≤ �.

Observation 1 at hand, the following is straightforward:

Observation 2. Temporal (s, z)-Separation is solvable in polynomial time
on single-peaked temporal graphs.

Surprisingly, the situation changes when the temporal graph is already 2-
monotone but not single-peaked. We can make every temporal graph τ -monotone
by simply adding edge-free layers between any two consecutive layers; formally:

224 T. Fluschnik et al.

Observation 3. There is a polynomial-time many-one reduction that maps any
instance (G = (V,E, τ), s, t, k) of Temporal (s, z)-Separation to an equiva-
lent instance (G′ = (V,E′, 2τ −1), s, t, k) such that for all i ∈ {1, . . . , τ} it holds
that E2i−1(G′) = Ei(G) and for all i ∈ {1, . . . , τ − 1} it holds that E2i(G′) = ∅.

As Temporal (s, z)-Separation is already NP-complete for τ = 2 [17], we
get the following.

Observation 4. For all p ≥ 2, Temporal (s, z)-Separation on p-monotone
temporal graphs is NP-complete.

Periodic Temporal Graphs. In several real-world scenarios one observes periodic-
ity; Indeed, whenever one observes mobile entities with periodic movements [5],
as satellites or (scheduled) public transport, over longer time periods, periodic
patterns appear. Such models motivate the following class of temporal graphs.

Definition 3. A temporal graph G = (V,E, τ) is p-periodic if p ∈ N is the
smallest number such that G = G′r where G′ = (V,E′, p) and r denotes the
number of periods.

Different notions of periodic temporal graphs exist in the literature. Flocchini
et al. [8] consider periodic temporal graphs obtained from “carriers”, that is, a set
of strict temporal paths define a network. Liu and Wu [14] consider delay tolerant
networks where nodes have some cyclic movement pattern and get connected
when they are in reach: if the time steps are large enough, periodicity is observed.
In both cases, the smallest common multiple of the time spans of the entities
define the length of a period. Casteigts et al. [5, Class 8] define periodic temporal
graphs by periodicity of edges, that is, for all edges e, time steps t, and c ∈ N,
edge e is present at time step t if and only if e is present at time step t + c · p,
where p is the periodicity. They require the underlying graph to be connected,
but they do not require minimality on the periodicity.

It is known that Temporal (s, z)-Separation is NP-complete on 2-periodic
temporal graphs [17]. Contrarily, on 1-periodic temporal graphs, Temporal
(s, z)-Separation collapses to (s, z)-Separation in the underlying graph. Sur-
prisingly, if the number of periods is large enough, then the problem becomes
polynomial-time solvable.

Let P be an (s, z)-path of length � in the underlying graph G↓ of the temporal
graph G = (V,E, τ). A time-edge sequence P ′ =

(
(e1, t1), . . . , (e�, t�)

) ∈ E� is a
realization of P (P ′ � P) if

(
e1, . . . , e�

)
is P . The distance to temporality of P

in G is minP ′�P |fP ′ |− 1, where |fP ′ | is the number of monotonically increasing
intervals of the function fP ′ : {1, . . . , �} → {1, . . . , τ}, fP ′(x) = tx and tx is
the label of the x-th time-edge of P ′. Furthermore, the distance to temporality
from s to z in G is the maximum distance to temporality over all (s, z)-paths
in G↓.

Lemma 6 (�). Let G = G′r be a p-periodic temporal graph such that the number
of periods r is at least the distance to temporality from s to z in G′. Then
Temporal (s, z)-Separation is solvable in polynomial time.

Temporal Graph Classes: A View Through Temporal Separators 225

Observe that in the reduction of Zschoche et al. [17] for maximum time
label τ = 2, the distance to temporality from s to z is two. Thus, Temporal
(s, z)-Separation is NP-hard even if the input temporal graph G = G′r is p-
periodic and the number r of periods is the distance to temporality from s to z
minus one. However, the distance to temporality is clearly upper-bounded by
the number of vertices. Hence, we obtain the following.

Corollary 4. Let G = (V,E, τ) be a p-periodic temporal graph. If the number
of periods r ≥ |V |, then Temporal (s, z)-Separation is solvable in polynomial
time.

Interval-Connected Temporal Graphs. Kuhn et al. [13, Definition 2.1] introduced
the following class of temporal graphs.

Definition 4. A temporal graph G = (V,E, τ) is T -interval connected for T ∈
N if for every t ∈ {1, . . . , τ − T + 1} the static graph G = (V,

⋂t+T−1
i=t Ei(G)) is

connected.

Kuhn et al. [13] studied T -interval connected temporal graphs in the context
of counting and token dissemination in distributed systems. Note that temporal
graphs where each layer is connected are 1-interval connected temporal graphs,
but are not necessarily T -interval connected for some T ≥ 2. On the contrary,
for every T -interval connected temporal graph it holds true that each layer is
connected.

Observation 5 (�). There is a polynomial-time many-one reduction that maps
any instance (G = (V,E, τ), s, t, k) of Temporal (s, z)-Separation to an
equivalent instance (G′ = (V ′,E′, τ), s, t, k + 1) such that G′ is T -interval con-
nected for every T ≥ 1.

Steady Temporal Graphs. When monitoring a network over time with high reso-
lution, we expect evolutionary instead of revolutionary changes in one time step.
For instance, observing any contact network per second, we do not expect many
contacts to appear in the same second. More generally, in several real-world
scenarios we do not expect big changes from one time step to the other. This
assumption motivates the following class of temporal graphs.

Definition 5. A temporal graph G = (V,E, τ) is λ-steady if λ ∈ N∪ {0} is the
smallest number such that for each point in time t ∈ {1, . . . , τ − 1} the size of
the symmetric difference of two consecutive edge sets |Et�Et+1| is at most λ.

To the best of our knowledge, this class has not yet been considered in the
literature.

One can expect that hardness results for temporal graphs translate to steady
temporal graphs, even if λ ≤ 1.

Observation 6 (�). There is a polynomial time many-one reduction that maps
any instance (G = (V,E, τ), s, t, k) of Temporal (s, z)-Separation to an
equivalent instance (G′ = (V ′,E′, τ ′), s, t, k) such that G′ is 1-steady.

226 T. Fluschnik et al.

The reduction of Observation 6 increases the maximum time label by a factor
depending on the input size. Indeed, from previous results [17] it follows that
Temporal (s, z)-Separation on λ-steady temporal graphs is fixed-parameter
tractable when parameterized by τ .

Corollary 5 (�). Temporal (s, z)-Separation on λ-steady temporal graphs
is fixed-parameter tractable when parameterized by the maximum time label τ .

5 Conclusion

We studied Temporal (s, z)-Separation on different temporal graph classes—
with structural and temporal restrictions on temporal graph models. We proved
Temporal (s, z)-Separation to remain NP-complete on the majority of the
considered classes of restricted temporal graphs. Polynomial-time solvability is
achieved for temporal graphs where the underlying graph has bounded treewidth,
on single-peaked temporal graphs, temporal graphs with many periods, and
order-preserving temporal unit interval graphs.

Our results call into question to which extent currently in the literature con-
sidered notions of temporal graph classes address the features of temporal graphs
and hence impose useful restrictions on temporal graphs. For instance, the intro-
duced class of order-preserving temporal unit interval graphs is more restrictive
than just requiring the layers to fall into a specific graphs class; however, also
this notion does not capture temporal aspects. Exploring further, more sophis-
ticated structural restrictions of temporal graphs, whose definitions may rely on
global properties and on temporal aspects, is of particular interest when asking
for computationally tractable cases of Temporal (s, z)-Separation.

A specific direction for future work would be to use the derived polynomial-
time algorithms as a basis for distance-to-triviality parameterizations [10]. For
instance, for a temporal unit interval graph one may introduce a parameter
κ that upper-bounds how much the vertex orderings of two consecutive lay-
ers of a temporal unit interval graph differ. More specifically, given a temporal
unit interval graph G = (V,E, τ), we define κ as the smallest integer such
that there are vertex orderings <1

V , . . . , <τ
V such that <t

V is compatible with
layer Gt for all t ∈ {1, . . . , τ}, and the orderings of any two consecutive lay-
ers have Kendall tau distance4 at most κ, that is, for all t ∈ {1, . . . , τ − 1} we
have that K(<t

V , <t+1
V) ≤ κ. Clearly for order-preserving temporal unit inter-

val graphs we have that κ = 0 and it is easy to observe (with the help of
Lemma 2) that we get NP-hardness for κ = 1. We conjecture that we can achieve
fixed-parameter tractability for the parameter combination (κ, τ) for Temporal
(s, z)-Separation on temporal unit interval graphs.

4 The Kendall tau distance is a metric that counts the number of inversions between
two total orderings; it is also known as “bubble sort distance”.

Temporal Graph Classes: A View Through Temporal Separators 227

References

1. Axiotis, K., Fotakis, D.: On the size and the approximability of minimum tem-
porally connected subgraphs. In: Proceedings of 43rd ICALP, vol. 55, pp. 149:1–
149:14. Dagstuhl Publishing (2016)

2. Barrat, A., Fournet, J.: Contact patterns among high school students. PLoS ONE
9(9), e107878 (2014)

3. Beineke, L.W.: Characterizations of derived graphs. J. Comb. Theor. 9(2), 129–135
(1970)

4. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.
45(2), 317–378 (2016)

5. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012)

6. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

7. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9134, pp. 444–455. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47672-7 36

8. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks.
Theor. Comput. Sci. 469, 53–68 (2013)

9. Fluschnik, T., Molter, H., Niedermeier, R., Zschoche, P.: Temporal graph classes:
a view through temporal separators. CoRR, abs/1803.00882 (2018). http://arxiv.
org/abs/1803.00882. Long version of this paper

10. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing prob-
lems: distance from triviality. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC
2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-28639-4 15

11. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for
temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

12. Khodaverdian, A., Weitz, B., Wu, J., Yosef, N.: Steiner network problems on tem-
poral graphs. CoRR, abs/1609.04918v2 (2016)

13. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Proceedings of 42nd STOC, pp. 513–522. ACM (2010)

14. Liu, C., Wu, J.: Scalable routing in cyclic mobile networks. IEEE Trans. Parallel
Distrib. Syst. 20(9), 1325–1338 (2009)

15. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs.
Theor. Comput. Sci. 634, 1–23 (2016)

16. Wu, H., Cheng, J., Ke, Y., Huang, S., Huang, Y., Wu, H.: Efficient algorithms for
temporal path computation. IEEE Trans. Knowl. Data. Eng. 28(11), 2927–2942
(2016)

17. Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding
small separators in temporal graphs. In: Proceedings of the 43rd MFCS, LIPIcs.
Schloss Dagstuhl-Leibniz Center for Informatics (2018, to appear). https://arxiv.
org/abs/1711.00963

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-47672-7_36
https://doi.org/10.1007/978-3-662-47672-7_36
http://arxiv.org/abs/1803.00882
http://arxiv.org/abs/1803.00882
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1007/978-3-540-28639-4_15
https://arxiv.org/abs/1711.00963
https://arxiv.org/abs/1711.00963

Covering a Graph with Nontrivial
Vertex-Disjoint Paths: Existence

and Optimization

Renzo Gómez(B) and Yoshiko Wakabayashi

Instituto de Matemática e Estat́ıstica, Universidade de São Paulo,
São Paulo, Brazil

{rgomez,yw}@ime.usp.br

Abstract. LetG be a connected graph and P be a set of pairwise vertex-
disjoint paths in G. We say that P is a path cover if every vertex of G
belongs to a path in P. In the minimum path cover problem, one wishes
to find a path cover of minimum cardinality. In this problem, known to be
NP-hard, the set P may contain trivial (single-vertex) paths. We study
the problem of finding a path cover composed only of nontrivial paths.
First, we show that the corresponding existence problem can be reduced
to a matching problem on a bipartite graph via the Edmonds-Gallai
Decomposition. This reduction gives, in polynomial time, a certificate
for both the yes-answer and the no-answer. When trivial paths are for-
bidden, for the feasible instances, one may consider either minimizing or
maximizing the number of paths in the path cover. We show that the
maximization problem has a close relation with the maximum matchings
of a graph, and can be solved in polynomial time. For the minimization
problem on feasible instances, we show that its computational complex-
ity is equivalent to the minimum path cover problem. We also show a
linear-time algorithm on (edge-weighted) trees.

1 Introduction

All graphs considered here are simple and undirected. The length of a path in a
graph is its number of edges. If a path has length k, we say that it is a k-path; and
when its length is zero, we say that it is trivial. Here, a path cover of a graph G
means a set of pairwise vertex-disjoint paths that collectively spans V (G).

The Minimum Path Cover (MinPC) problem asks for a path cover of
minimum cardinality. Clearly, MinPC is NP-hard on the classes of graphs for
which the Hamiltonian path problem is NP-complete. This is known to hold for
cubic planar 3-connected graphs [5], circle graphs, split graphs, chordal bipar-
tite graphs [12], etc. Polynomial-time algorithms have been designed for MinPC
on several classes of perfect graphs, such as interval graphs [2], cocomparability

Research supported by CNPq (Proc. 456792/2014-7, 306464/2016-0), FAPESP
(Proc. 2015/11937-9), CAPES (235671298-48), MaCLinC Proj. NUMEC/USP,
Brazil.

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 228–238, 2018.
https://doi.org/10.1007/978-3-030-00256-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_19&domain=pdf
http://orcid.org/0000-0002-5759-5418
http://orcid.org/0000-0002-8229-3139

Covering a Graph with Nontrivial Vertex-Disjoint Paths 229

graphs [3], trees [4], etc. No approximation algorithm has been designed for this
problem. Some applications of MinPC include establishing ring protocols in a
network, code optimization and mapping parallel processes to parallel architec-
tures [11].

We study the problem of finding a path cover without trivial paths. First, we
consider the existence problem, and then the corresponding optimization prob-
lems: the Minimum Nontrivial Path Cover (MinNtPC) and the Maximum
Nontrivial Path Cover (MaxNtPC), both for the cardinality version.

In Sect. 2 we show that the existence of a nontrivial path cover in a graph is
closely related to the structure of its maximum matchings, which is in turn related
to the MaxNtPC. We show a new characterization of graphs that have a non-
trivial path cover, which allows us to obtain an algorithm that solves the exis-
tence problem in an interesting way: it returns in polynomial time either (a) a
yes-answer which is an optimal solution to the MaxNtPC or (b) a no-answer
together with a certificate. In the case of MinNtPC, we show a polynomial-time
algorithm that transforms a minimum path cover into one without trivial paths, if
it exists, and with the same cardinality (and therefore optimal). This result shows
that the complexity of both problems, MinPC and MinNtPC, is in some sense
equivalent. We also show a linear-time algorithm for MinNtPC on trees, which
can be extended to the edge-weighted version of the problem. Owing to space lim-
itation, most of the proofs are sketched and in some cases they are omitted.

2 Forbidding Trivial Paths

This section is devoted to nontrivial path covers of a graph: both the existence
and the optimization problem. To shorten notation, we write pc (resp. ntpc) to
refer to a path cover (resp. nontrivial path cover) of a graph.

While every graph admits a pc, not every graph admits an ntpc. It is imme-
diate that some trees do not admit an ntpc. One may naturally ask whether
minimum degree 2 would suffice for a graph to admit an ntpc. This is not the
case, even when we ask for a higher constant minimum degree.

The ntpc existence problem is, in fact, a special case of classic and intensively
studied problems in graph theory. Given a graph G with integer functions g and f
defined on its vertices, a (g, f)-factor of G is a spanning subgraph H of G such
that each vertex x in H has degree at least g(x) and at most f(x). The special
case in which g and f are constants, say a and b, is referred to an [a, b]-factor.
Thus, the existence of an ntpc in a graph is equivalent to the existence of a [1, 2]-
factor. Kano and Saito [7] proved that, for r ≥ 1, if G is a graph with degree at
least r and at most r + s, where s ∈ {1, . . . , r}, then G contains a [1, 2]-factor.
This means that all regular graphs contain [1, 2]-factors. These authors also show
classes of complete bipartite graphs that do not contain [1, 2]-factors (Kr,r+s,
with s > r ≥ 1).

There is a large number of structural results on the existence of (g, f)-factors
in graphs. In 1952, Tutte [13] characterized graphs that have an (f, f)-factor.
Lovász [9] generalized this result characterizing graphs that have a (g, f)-factor.

230 R. Gómez and Y. Wakabayashi

Later, some results on the algorithmic aspect of this problem were obtained.
Anstee [1] showed a polynomial-time algorithm that finds a (g, f)-factor, if it
exists, or a negative certificate. Heinrich et al. [6] showed an algorithm that
finds a (g, f)-factor when g(x) ≤ 1 and g(x) < f(x) for every vertex x in G,
whose running time is better than Anstee’s algorithm. Thus, the ntpc existence
problem has been shown to be solvable in polynomial time.

In what follows, we adopt another approach that focuses on the close rela-
tionship between the existence of an ntpc in a graph and the structure of its
maximum matchings, and derive results also on MaxNtPC. Clearly, if a graph
has a perfect matching, it has an ntpc consisting solely of 1-paths. And, if a graph
has an ntpc but does not have a perfect matching, we need k-paths with k ≥ 2
to cover it. In fact, we do not need k > 2, as such k-paths can be broken into
paths of length 1 or 2. This observation indicates that we may focus only on
the problem of deciding whether a graph G admits an ntpc consisting only of
1-paths and 2-paths.

We denote by P1,2(G), or simply P1,2, the class of these special types of
ntpc in G, and by P1

1,2 the subclass of P1,2 consisting of path covers with the
largest possible number of 1-paths. The following result shows how a pc in P1

1,2

and a maximum matching in G are related.

Proposition 1. If a graph G admits an ntpc, then the cardinality of any path
cover in P1

1,2 coincides with the cardinality of a maximum matching in G.

Proof (sketch). Let P be a pc in P1
1,2, and denote by P2 the set of 2-paths in P.

Let M be a matching obtained by choosing one edge from every path in P. We
claim that M is a maximum matching in G. We may assume that |P2| ≥ 2,
otherwise the result is immediate. Suppose, by contradiction, that M is not a
maximum matching, and let P be a shortest M -augmenting path. Observe that
the endvertices of P are endvertices of 2-paths, say Q and R, in P2. From the
minimality of P , it can be shown that Q and R are the only paths in P2 that
intersect P . Let E(P) (resp. E(P)) be the set of edges in P (resp. P). Observe
that E(P ′) �E(P) induce a path cover of G by 1-paths and 2-paths with more
1-paths than P, a contradiction. Therefore, M is a maximum matching in G. ��

Proposition 1 tells us that if a graph G admits an ntpc, then G has a max-
imum matching that can be extended (by adding some edges) to a path cover
in P1

1,2. However, it is not true that every maximum matching has this property.
In Fig. 1, we show an example of such matching (given by the wavy edges).

Fig. 1. A maximum matching that cannot be extended to a path cover in P1
1,2.

Covering a Graph with Nontrivial Vertex-Disjoint Paths 231

The idea is then to investigate whether, using information on every maximum
matching of a graph, we may go further. It is well known that the Edmonds-
Gallai Decomposition [10] of a graph provides the information we are seeking
for. Moreover, it can be obtained in polynomial time. It defines a partition of
the vertex set of a graph G into the following sets, from which we know the
structure of all maximum matchings of G.

• D(G), the set of vertices in G which are not covered by at least one maximum
matching,

• A(G), the set of vertices in V (G) \ D(G) adjacent to at least one vertex
in D(G), and

• C(G) = V (G) \ (A(G) ∪ D(G)).

A near-perfect matching of a graph G is one covering all but exactly one
vertex of G. We say that a graph G is hypomatchable if G − v has a perfect
matching for every vertex v in G. Now, we state the Edmonds-Gallai Structure
Theorem [10].

Theorem 1 (Edmonds, Gallai, 1965). Let G be a graph and A(G), C(G)
and D(G) as defined above. Then

(a) the components of the subgraph induced by D(G) are hypomatchable,
(b) the subgraph induced by C(G) has a perfect matching,
(c) every maximum matching of G contains a near-perfect matching of each

component of D(G), a perfect matching of each component of C(G) and
matches all vertices of A(G) with vertices in different components of D(G).

Next, from a pc P in P1
1,2, we define the following partition of V (G).

L(P) := {v ∈ V (G) : v is an endvertex of a 2-path in P},
R(P) := {v ∈ V (G) : v is an internal vertex of a 2-path in P},
S(P) := V (G) \ (L(P) ∪ R(P)).

Now, regarding this partition, we show the following result, where the sets A(G),
C(G) and D(G) are those defined above.

Proposition 2. Let G be a graph that admits an ntpc, and let P ∈ P1
1,2(G).

Then,

(a) L(P) ⊆ D(G),
(b) if u ∈ S(P) ∩ A(G), then, the neighbor of u in P belongs to D(G),
(c) let u, v ∈ R(P) ∪ S(P) (possibly, u = v). Let N be the set of neighbors of

u and v in P. If u, v ∈ A(G), then, each vertex in N belongs to a different
component in D(G).

Proof (sketch). By Proposition 1, if we choose one edge from every path of P,
we obtain a maximum matching of G. Since any of the two edges of a 2-path
in P may belong to this matching, (a) follows. By Theorem 1, in every maximum
matching, the vertices in A(G) are matched to vertices in different components
of D(G). This fact implies (b). To prove (c) we use the fact that every maximum
matching in G contains a near-perfect matching of the components in D(G), and
analyse three cases concerning the membership of u and v in R(P) ∪ S(P). ��

232 R. Gómez and Y. Wakabayashi

Consider a pc in P1
1,2. Observe that Propositions 1 and 2 imply that the ver-

tices in C(G) are covered by 1-paths obtained from a perfect matching in C(G).
Moreover, Proposition 2 tells us how the vertices in A(G)∪D(G) are covered by
a pc in P1

1,2. Observe that to cover a nontrivial component K in D(G), we can
take a near-perfect matching of K and add one of the edges in K incident to
the uncovered vertex to obtain a pc by 1-paths and 2-paths. Since the nontrivial
components of D(G) are hypomatchable, to find a pc in P1

1,2, it suffices to focus
on how to cover the trivial components in D(G).

On the other hand, note that P1
1,2 consists of path covers of G with the

maximum number of paths. Thus, MaxNtPC on G reduces to the problem of
finding a pc in P1

1,2. Now, we show that the latter can be reduced to a maximum
matching problem in a bipartite graph that is obtained using the Edmonds-Gallai
Decomposition of G.

Let T ⊆ D(G) be the set of vertices corresponding to the trivial components
in D(G), and let N be a set of vertices representing the nontrivial components
in D(G). Moreover, let A′ and N ′ be copies of A(G) and N , respectively. We
define a bipartite graph H = (U ∪ W,F), in the following way.

U = A(G) ∪ A′ ∪ N ′,
W = T ∪ N.

For every component K in D(G), let us denote by wK the vertex representing
this component in W . Now, we describe the set of edges F . Let u be a vertex
in A(G) ∪ A′ and wK be a vertex in W . The edge uwK ∈ F , if and only if, the
vertex represented by u in G is adjacent to a vertex in K. Also, there is an edge
linking every vertex in N to its copy in N ′. Using this construction, we obtain
the following result.

Theorem 2. MaxNtPC can be solved in polynomial time.

The classic results characterizing graphs containing (g, f)-factors, when spe-
cialized to [1, 2]-factors, give the following result (see Las Vergnas [8]).

Theorem 3 (Lovász 1970). A graph G has a [1, 2]-factor, if and only if, for
every S ⊆ V (G), we have that i(G−S) ≤ 2|S|, where i(G−S) is the number of
isolated vertices in G − S.

Most of the characterization results, except for Anstee [1], were not concerned
with an efficient way to find a no-certificate (a set S that does not satisfy the
condition stated in Theorem 3). Interestingly, our approach of searching for a
pc in P1

1,2 gives an efficient way to find a [1, 2]-factor (and therefore an ntpc),
when it exists, or to find a no-certificate. The next theorem tells how this can
be achieved.

Theorem 4. Let G be a graph, D(G) be the set given by the Edmonds-Gallai
Decomposition of G, and T ⊆ D(G) be the set of vertices corresponding to the
trivial hypomatchable components in D(G). Then the following holds:

Covering a Graph with Nontrivial Vertex-Disjoint Paths 233

(i) G has a [1, 2]-factor if and only if |X| ≤ 2|N(X)|, for every X ⊆ T .
(ii) If G does not have a [1, 2]-factor, and X is a set that violates the condition
stated in (i), then S = N(X) is a set that violates the condition stated in
Theorem 3. Moreover, S can be found in polynomial time.

In what follows, we show that the computational complexity of MinPC and
of MinNtPC are closely related. More precisely, we show a polynomial-time
algorithm that transforms a minimum pc of a graph into a minimum ntpc, if it
exists, or exhibits a set of vertices that violates the condition given in Theorem 3.

If P denotes a pc of a graph G = (V,E), then Pk denotes the set of k-paths
of P and Vk denotes the set of vertices covered by the paths in Pk. Furthermore,
let B ⊆ V2 be the set of the interior vertices of the paths in P2.

V3

V2

V0

(a)

M

V2

V0

(b)

Fig. 2. (a) a graph G and a path cover P; (b) the graph G∗.

Given a graph G and a minimum pc P of G, let G∗ be the graph obtained
from G and P in the following way. First, we contract every k-path in Pk, k ≥ 3,
into a single vertex. Let M be the set of vertices obtained this way. Then, we
remove every edge with one end in B and the other in V1 ∪B ∪M . In Fig. 2, we
show an example of a graph G∗ obtained from a graph G and a pc P (represented
by one trivial path and the paths consisting of solid edges). The following result
is the core of our algorithm.

Lemma 1. Let G be a graph and let P be a minimum pc of G. Consider the
graph G∗ as defined above. If there is a path in G∗ from V0 to M , then there is
a pc Q such that |Q| = |P|, and Q has fewer trivial paths than P; otherwise, G
does not have an ntpc.

Proof (sketch). First, suppose that there is a path in G∗ between V0 and M .
Let P be a shortest path with endvertices u ∈ V0 and v ∈ M . Consider that

P := 〈r1 = u, r2, . . . , rs = v〉.

234 R. Gómez and Y. Wakabayashi

It can be shown that P has the following structure

(a) s = 2k, for some k ≥ 1.
(b) r2i ∈ B and r2i+1 ∈ (V2 \ B), for i = 1, 2 . . . , k − 1.

In what follows, given paths S and T such that |V (S) ∩ V (T)| = 1 and its
common vertex is an endvertex of both S and T , we denote by S · T the path
resulting from the concatenation of S and T .

Let P ′ ∈ P be the path represented by the vertex v ∈ M . Let w ∈ V (P ′)
be a vertex adjacent to rs−1 in G. Consider that P ′ = P ′

1 · P ′
2 where w is an

endvertex of both P ′
1 and P ′

2, and |P ′
1| ≤ |P ′

2|. Moreover, let Pi ∈ P2 be the path
containing r2i and r2i+1 such that Pi := 〈si, r2i, r2i+1〉, for i = 1, 2, . . . , k − 1.
Now, consider the paths

Qi =

⎧
⎪⎪⎨

⎪⎪⎩

〈r1, r2, s1〉 , if i = 1 and s > 2,
〈r2i−1, r2i, si〉 , if 1 < i < k,
〈rs−1, w〉 · P ′

1 , if i = k,
P ′
2 , if i = k + 1.

By replacing the paths 〈r1〉, P1, P2, . . . , Pk−1 and P ′ with Q1, Q2, . . . , Qk+1,
we obtain the desired path cover Q. In Fig. 3 we show an example considering
the path cover P and G∗ shown in Fig. 2.

a) b)

Fig. 3. (a) a path P and (b) the resulting path cover Q.

Now, suppose there is no path from V0 to M in G∗. Let u be a vertex in V0.
First, let Bu be the set of vertices in B which are reachable from u in G∗. It can
be shown that, by the minimality of P, the set S = Bu violates the condition
stated in Theorem 3. ��

Covering a Graph with Nontrivial Vertex-Disjoint Paths 235

By the proof of Lemma 1, given a minimum pc P of G, if we find a path in G∗

from V0 to M , we can obtain a minimum pc of G with one fewer trivial path
than P. Observe that, given P, we can obtain G∗ in polynomial time. Therefore,
by repeating this process |V0| times, we obtain in polynomial time either an ntpc
of G or a set that violates the condition given in Theorem 3.

Let µ(G) (resp. µnt(G)) be the cardinality of a minimum pc (resp. ntpc)
of G. By Lemma 1, the following result holds.

Corollary 1. Let G be a graph that admits an ntpc. Then, µ(G) = µnt(G).

Since every minimum ntpc is also a minimum pc, and we can obtain in
polynomial time a minimum ntpc given a minimum pc, we have the following
result.

Corollary 2. Let G be the class of graphs that admit an ntpc. Then MinNtPC
and MinPC on the class G have the same computational complexity.

As we mentioned, MinPC on trees can be solved in linear time. In what
follows, we show a linear-time algorithm for MinNtPC, called Algorithm 1. It
is for the cardinality version, but once it is understood, one can easily extend it
to the edge-weighted version of the problem (in which one considers weights on
the edges of T , and seeks to minimize or maximize the sum of the weights of the
edges in an ntpc of T).

Let T be a tree and P be a minimum ntpc of T . Consider that T ′ is the
arborescence obtained when we root T at a vertex r in T . Let T ′

u be the subtree
of T ′ rooted at u. Note that, when we consider the subgraph of T ′ spanned by the
edges of P, the vertex u has degree 0, 1 or 2 in T ′

u. Let f(u, d) be the cardinality
of a minimum ntpc in Tu where the vertex u has degree d. Since r ∈ V (T) can
be any vertex, we choose r to be a leaf of T and, therefore f(r, 1) would be the
cardinality of an ntpc of T .

Algorithm 1 computes the values f(u, d) in post-order using a DFS traver-
sal of T . In order to obtain the cardinality of a minimum ntpc of T , we call
DFS(r, nil) where r is a leaf of T . We note that T has an ntpc if f(r, 1) = +∞.
Our algorithm can be easily modified to obtain the edges in a minimum ntpc.

Theorem 5. Algorithm1 correctly computes the values f(v, d) for every vertex
v ∈ V (T) and d ∈ {0, 1, 2}.
Proof. The proof is by induction on n := |V (T ′

v)|, where v is any vertex in T . If
n = 1, then v is a leaf of the tree. In this case, the algorithm correctly computes
f(v, 0) = 1 and f(v, 1) = f(v, 2) = +∞.

Now, suppose that n ≥ 2. Let u1, u2, . . . , uk be the neighbors of v in T ′
v. First,

if d > k, then there is no solution to f(v, d). Therefore, we set f(v, d) = +∞
in line 17, and this value is not changed afterwards. So, suppose that d ≤ k.
Since we are restricting the path covers to those in which v has degree d in T ′

v,
we have to choose d edges incident to v and ui, 1 ≤ i ≤ k, to belong to the
pc. Observe that for the vertices ui such that vui belongs to the pc, the degree
in its corresponding subtree T ′

ui
can be zero or one. In case this edge does not

236 R. Gómez and Y. Wakabayashi

Algorithm 1. DFS(v, parent)
1: deg ← 0
2: m1 ← +∞
3: m2 ← +∞
4: sum ← 0
5: for u ∈ N(v) :
6: if u �= parent :
7: DFS(u, v)
8: Y ← min(f(u, 1), f(u, 2))
9: X ← min(f(u, 1), f(u, 0))
10: sum ← sum+ Y
11: deg ← deg + 1
12: if m1 > Y − X :
13: m1 ← Y − X
14: else if m2 > Y − X :
15: m2 ← Y − X

16: for d = 0 to 2 :
17: f(v, d) ← +∞
18: if deg ≥ 0 :
19: f(v, 0) ← sum+ 1

20: if deg ≥ 1 :
21: f(v, 1) ← sum+m1

22: if deg ≥ 2 :
23: f(v, 2) ← sum+m1 +m2 − 1

belong to the cover, its degree in T ′
ui

must be one or two. For i = 1, 2, . . . , k,
let Xui

:= min{f(ui, 1), f(ui, 0)} and let Yui
:= min{f(ui, 1), f(ui, 2)}. Now, we

will show how to express f(u, d) in terms of Xui
and Yui

. In what follows, we
show this for d = 2.

Let ua and ub be neighbors of v in a minimum ntpc where v has degree two
in T ′

v. By the previous arguments, we have that

f(v, 2) =
k∑

i=1
i�=a,b

Yui
+ Xua

+ Xub
− 1.

Adding and subtracting Yua
and Yub

, we get the expression

f(v, 2) =
k∑

i=1

Yui
+ (Xua

− Yua
) + (Xub

− Y ub) − 1.

Since
∑k

i=1 Yui
is a constant, to compute f(u, 2) we need to find two neighbors

of u that minimize Xui
−Yui

. Observe that, at the end of the loop at line 5, the
variable sum is equal to

∑k
i=1 Yui

, and m1 and m2 hold the desired minima.

Covering a Graph with Nontrivial Vertex-Disjoint Paths 237

By the induction hypothesis, Algorithm 1 correctly computes f(ui, d). There-
fore, it correctly computes the value f(v, 2). The cases in which d = 0 or d = 1
can be shown using analogous arguments. ��

Since we process each vertex v of the tree just once, and we iterate through
its neighbors to compute the values of f(u, d), the complexity of Algorithm 1
is O(n), where n is the number of vertices of the tree. Thus, we obtain the
following result.

Corollary 3. MinNtPC on trees can be solved in linear time.

3 Concluding Remarks

As far as we know, the problems MinNtPC and MaxNtPC have not been
treated in the literature. To deal with these optimization problems, we consid-
ered first the corresponding existence problem, which turns out to be a special
case of the well-studied (g, f)-factor problem. Our result showing the close rela-
tion between the existence problem and the maximum matchings of the graph
contributes with a characterization that gives a polynomial-time algorithm that
either finds an ntpc in a graph or finds a no-certificate. The proof of this char-
acterization (Theorem 4) can also be seen as an alternative proof of Theorem 3.
Regarding MinNtPC, we have shown that if we consider the class of graphs
that admit an ntpc, then MinPC and MinNtPC have the same computational
complexity. This result also shows an interesting fact about the cardinalities of
these path covers. Finally, we also showed a linear-time algorithm for MinNtPC
on trees.

A related optimization problem is the Minimum Weight Nontrivial Path
Cover (MinWNtPC) problem: given an edge-weighted graph, find a nontrivial
path cover of minimum total weight. It should be noted that, for unit weights
this problem is not equivalent to MinNtPC. In fact, we have proved that Min-
WNtPC can be solved in polynomial time. This result, as well as some integer
programming formulations we have proposed for MinPC and MinNtPC are
part of an ongoing research. The computational results are preliminary, but
seem very promising. The design of approximation algorithms for MinPC and
MinNtPC is a further interesting topic, for which finding good lower bounds is
a challenging problem.

References

1. Anstee, R.: An algorithmic proof of Tutte’s f -factor theorem. J. Algorithms 6(1),
112–131 (1985)

2. Arikati, S.R., Pandu Rangan, C.: Linear algorithm for optimal path cover problem
on interval graphs. Inform. Process. Lett. 35(3), 149–153 (1990)

3. Corneil, D.G., Dalton, B., Habib, M.: LDFS-based certifying algorithm for the
minimum path cover problem on cocomparability graphs. SIAM J. Comput. 42(3),
792–807 (2013)

238 R. Gómez and Y. Wakabayashi

4. Franzblau, D.S., Raychaudhuri, A.: Optimal Hamiltonian completions and path
covers for trees, and a reduction to maximum flow. ANZIAM J. 44(2), 193–204
(2002)

5. Garey, M., Johnson, D., Tarjan, R.: The planar Hamiltonian circuit problem is
NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

6. Heinrich, K., Hell, P., Kirkpatrick, D., Liu, G.: A simple existence criterion for
(g < f)-factors. Discrete Math. 85(3), 313–317 (1990)

7. Kano, M., Saito, A.: [a, b]-factors of graphs. Discrete Math. 47(1), 113–116 (1983)
8. Las Vergnas, M.: An extension of Tutte’s 1-factor theorem. Discrete Math. 23(3),

241–255 (1978)
9. Lovász, L.: Subgraphs with prescribed valencies. J. Comb. Theory 8, 391–416

(1970)
10. Lovász, L., Plummer, M.: Matching Theory. North-Holland Mathematics Studies,

vol. 121. North-Holland, Amsterdam (1986)
11. Moran, S., Wolfstahl, Y.: Optimal covering of cacti by vertex-disjoint paths. Theo-

ret. Comput. Sci. 84(2), 179–197 (1991). Algorithms Automat. Complexity Games
12. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156(1–

3), 291–298 (1996)
13. Tutte, W.: The factors of graphs. Can. J. Math. 4, 314–328 (1952)

On the Relation of Strong Triadic Closure
and Cluster Deletion

Niels Grüttemeier(B) and Christian Komusiewicz

Fachbereich für Mathematik und Informatik, Philipps-Universität Marburg,
Marburg, Germany

{niegru,komusiewicz}@informatik.uni-marburg.de

Abstract. We study the parameterized and classical complexity of two
related problems on undirected graphs G = (V, E). In Strong Triadic
Closure we aim to label the edges in E as strong and weak such
that at most k edges are weak and G contains no induced P3 with two
strong edges. In Cluster Deletion we aim to destroy all induced P3s
by a minimum number of edge deletions. We first show that Strong
Triadic Closure admits a 4k-vertex kernel. Then, we study parameter-
ization by � := |E|−k and show that both problems are fixed-parameter
tractable and unlikely to admit a polynomial kernel with respect to �.
Finally, we give a dichotomy of the classical complexity of both problems
on H-free graphs for all H of order four.

1 Introduction

We study two related graph problems arising in social network analysis and
data clustering. Assume we are given a social network where vertices represent
agents and edges represent interactions between these agents, and want to predict
which of the interactions are important. In online social networks for example,
one could aim to distinguish between close friends and spurious relationships.
Sintos and Tsaparas [19] proposed to use the notion of triadic closures for this
problem. Informally, they assume that if one agent has strong relations to two
other agents, then these two should have at least a weak relation. The aim is
then to label a maximum number of edges of the social network as strong while
fulfilling this requirement. This may be defined as follows.

Definition 1. A labeling L = (SL,WL) of an undirected graph G = (V,E) is
a partition of the edge set E. The edges in SL are called strong and the edges
in WL are called weak. A labeling L = (SL,WL) is an STC-labeling if there
exists no pair of strong edges {u, v} ∈ SL and {v, w} ∈ SL such that {u,w} �∈ E.

For any weak (strong) edge {u, v} we will refer to u as a weak (strong) neighbor
of v. The computational problem described informally above is now the following.

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 239–251, 2018.
https://doi.org/10.1007/978-3-030-00256-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_20&domain=pdf

240 N. Grüttemeier and C. Komusiewicz

Strong Triadic Closure (STC)
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Is there an STC-labeling L with |WL| ≤ k?

We call an STC-labeling L = (SL,WL) optimal for a graph G, if the number
|WL| of weak edges is minimal. The STC-labeling property can also be stated in
terms of induced subgraphs: for every induced P3, the path on three vertices, of G
at most one edge is labeled strong. Therefore, as observed previously [13], STC
is closely related to the problem of destroying induced P3s by edge deletions.
Since the graphs without an induced P3 are exactly the disjoint union of cliques,
this problem is usually formulated as follows.

Cluster Deletion (CD)
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Can we transform G into a cluster graph, that is, a disjoint
union of cliques by at most k edge deletions?

More precisely, any set D of at most k edge deletions that transform G into a
cluster graph, directly implies an STC-labeling (E \ D,D) with at most k weak
edges. There are, however, graphs G where the minimum number of weak edges
in an STC-labeling is strictly smaller than the number of edge deletions that
are needed in order to transform G into a cluster graph [13]. Due to the close
relation between the two problems there are graph classes where any minimum-
cardinality solution for Cluster Deletion directly implies an optimal STC-
labeling [13].

In this work, we study the parameterized complexity of STC and Cluster
Deletion and the classical computational complexity of both problems in graph
classes that can be described by one forbidden induced subgraph of order four.

Known Results. STC is NP-hard [19], even when restricted to graphs with max-
imum degree four [13], or to split graphs [14]. In contrast, STC is solvable in
polynomial time when the input graph is bipartite [19], subcubic [13], a proper
interval graph [14], or a cograph, that is, a graph with no induced P4 [13]. STC
can be solved in O(1.28k + nm) time [19] by solving Vertex Cover in the
so-called Gallai graph of the input graph. Cluster Deletion is NP-hard [18],
even when restricted to graphs with maximum degree four [12], and solvable in
polynomial-time on cographs [7] and in time O(1.42k +m) on general graphs [1].

Our Results. We provide the first polynomial kernel for STC parameterized by k.
More precisely, we show that in O(n3) time we can reduce an arbitrary instance
of STC to an equivalent instance with at most 4k vertices.

Second, we initiate the study of the parameterized complexity of STC and
Cluster Deletion with respect to the parameter � := |E| − k. Hence, in STC
we are searching for an STC-labeling with at least � strong edges and in Cluster
Deletion we are searching for a cluster graph that is a subgraph of G and that
has at least � edges; we call these edges the cluster edges of this subgraph. While
we present fixed-parameter algorithms for both problems and the parameter �, we

On the Relation of Strong Triadic Closure and Cluster Deletion 241

Table 1. The parameterized complexity of STC and Cluster Deletion for parameters k
and � := |E| − k.

Parameter STC Cluster Deletion

k O(1.28k + nm)-time algo [19]
4k-vertex kernel (Theorem 1)

O(1.42k + m)-time algo [1]
4k-vertex kernel [9]

� �O(�) ·n-time algo (Theorem 5)
No poly kernel (Theorem 3)

O(9� · �n)-time algo (Theorem 4)
No poly kernel (Corollary 1)

also show that, somewhat surprisingly, both problems do not admit a polynomial
kernel with respect to �, unless NP ⊆ coNP/poly. Our result is obtained by
polynomial parameter transformations from Clique parameterized by the size
of a vertex cover of the input graph to Multicolored Clique parameterized by
the sum of the sizes of all except one color class to STC and Cluster Deletion
parameterized by �. The Multicolored Clique variant may be of independent
interest as a suitable base problem for polynomial parameter transformations.
Table 1 gives an overview of the parameterized complexity.

Independent from our work, Heggernes et al. [8] showed that STC parameter-
ized by � has no polynomial kernel unless NP ⊆ coNP/poly, even when the input
graph is a split graph. Moreover, they discuss the Strong F -Closure prob-
lem, which is a generalization of STC. For an arbitrary graph F , the Strong
F -Closure problem asks for a labeling L = (SL,WL) of a graph G such that
there is no induced subgraph F in G that consists only of strong edges under L
and where the number of strong edges is maximum under this property.

Finally, we extend the line of research studying the complexity of Cluster
Deletion [7] and STC [13] on H-free graphs where H is a graph of order four.
We present a complexity dichotomy between polynomial-time solvable and NP-
hard cases for all possibilities for H. Moreover, we show for all such graphs H
whether STC and Cluster Deletion correspond on H-free graphs, that is,
whether every STC-labeling with at most k edges implies a Cluster Deletion
solution with at most k edge deletions. These results are shown in Table 2.

Table 2. Complexity Dichotomy and correspondence of STC and Cluster Deletion on
H-free graphs.

STC CD Correspondent

H ∈ {K4, 4K1, C4, 2K2, claw,
co-claw, co-diamond, co-paw}

NP-h NP-h NO

H = diamond NP-h NP-h YES

H ∈ {paw, P4} P P YES

Preliminaries. We consider undirected simple graphs G = (V,E) where n := |V |
and m := |E|. For any vertex v ∈ V the open neighborhood of v is denoted by
NG(v), the closed neighborhood is denoted by NG[v]. The set of vertices in G

242 N. Grüttemeier and C. Komusiewicz

which have a distance of exactly 2 to v is denoted by N2
G(v). For any two vertex

sets V1, V2 ⊆ V , we let EG(V1, V2) := {{v1, v2} ∈ E | v1 ∈ V1, v2 ∈ V2} denote
the set of edges between V1 and V2. For any set V ′ ⊆ V of vertices, we let
EG(V ′) := EG(V ′, V ′) be the set of edges between the vertices of V ′. We may
omit the subscript G if the graph is clear from the context.

For any V ′ ⊆ V , G[V ′] := (V ′, E(V ′)) denotes the subgraph induced by V ′.
A clique in a graph G is a set K ⊆ V of vertices, such that G[K] is complete.
A cut C = (V1, V2) is a partition of the vertex set into two parts. The cut-set
EC := EG(V1, V2) is the set of edges between V1 and V2. A matching M ⊆ E
is a set of pairwise disjoint edges. A matching is maximal if adding any edge to
M does not give a matching. A matching in a graph G is maximum if G has no
larger matching. A graph G is H-free if it does not contain an induced subgraph
that is isomorphic to the graph H. For the definitions of single small graphs such
as the 2K2, refer to [4] or http://graphclasses.org. For the relevant notions of
parameterized complexity refer to the standard monographs [5,6]. A reduction
rule is called safe if it produces an equivalent instance.

Due to lack of space, several proofs are deferred to a full version of this article.

2 On Problem Kernelizations

We now discuss problem kernelizations for STC parameterized by k and �. First,
we give a 4k-vertex kernel and an O(� ·2�)-size kernel. Then, we show that there
is no polynomial problem kernel for � unless NP ⊆ coNP/poly. An important
concept for our kernelizations are weak cuts which are defined as follows.

Definition 2. Let G = (V,E) be a graph and L = (SL,WL) an STC-Labeling
for G. A weak cut for G under L is a cut C such that EC is contained in WL.

Proposition 1. Let G = (V,E) be a graph and L = (SL,WL) an STC-Labeling
for G. If there is a weak cut C with cut-set EC , then there is an STC-Labeling
L′ = (SL′ ,WL′) for G′ = (V,E \ EC) such that |SL′ | = |SL|.

A 4k−vertexkernelforSTC. We now show that STC parameterized by k admits
a kernel with at most 4k vertices. In the kernelization, we will make use of the
concepts of critical cliques and critical clique graphs as introduced in [16]. These
concepts were also used for a kernelization for Cluster Editing [9].

Definition 3. A critical clique of a graph G is a clique K where the vertices of
K all have the same neighbors in V \ K, and K is maximal under this property.

Definition 4. Given a graph G = (V,E), let K be the collection of its critical
cliques. The critical clique graph C of G is the graph (K, EC) with {Ki,Kj} ∈
EC ⇔ ∀u ∈ Ki, v ∈ Kj : {u, v} ∈ E.

http://graphclasses.org

On the Relation of Strong Triadic Closure and Cluster Deletion 243

For a critical clique K we let N (K) :=
⋃

K′∈NC(K) K ′ denote the union of
its neighbor cliques in the critical clique graph and N 2(K) :=

⋃
K′∈N2

C(K) K ′

denote the union of the critical cliques at distance exactly two from K. The
critical clique graph can be constructed in O(n + m) time [11]. Note that the
edges within a critical clique K are not part of any P3. It is known that these
kind of edges are labeled as strong in every optimal solution for STC [19].

In the following, we will distinguish between two types of critical cliques. We
say that K has type 1, if N (K) does not form a clique in G, and that K has
type 2, if N (K) forms a clique in G. We will see that the number of critical
cliques of type 1 is bounded for every yes-instance of STC. The main step of
the kernelization is to delete large critical cliques of type 2. Before we give the
concrete rule we provide two useful properties of critical cliques of type 2.

Proposition 2. If K1 and K2 are critical cliques of type 2, then {K1,K2} �∈ EC.

Proposition 3. Let K be a critical clique of type 2, v ∈ N (K) and L =
(SL,WL) an STC-labeling for G with a minimal number of weak edges. Then
E({v},K) ⊆ SL or E({v},K) ⊆ WL.

Now, we may formulate the reduction rule.

Rule 1. If G has a critical clique K of type 2 with |K| > |EG(N (K),N 2(K))|,
then remove K and N (K) from G and decrease k by |EG(N (K),N 2(K))|.
Proposition 4. Rule 1 is safe and can be carried out in O(n3) time.

Proof. Let K be a critical clique in G with |K| > |EG(N (K),N 2(K))| and let
G′ be the reduced graph after deleting K and N (K) from G. We show that there
is an STC-labeling L = (SL,WL) for G with |WL| ≤ k if and only if there is an
STC-labeling L′ = (SL′ ,WL′) for G′ with |WL′ | ≤ k − |EG(N (K),N 2(K))|.

First, let L′ = (SL′ ,WL′) be an STC-labeling, such that |WL′ | ≤ k −
|EG(N (K),N 2(K))| for G′. We define a labeling L = (SL,WL) with |WL| ≤ k
for G by setting

SL := SL′ ∪ EG(K) ∪ EG(K,N (K)) and WL := WL′ ∪ EG(N (K),N 2(K)).

It remains to show that L is an STC-labeling. Since the edges in SL′ do not
have a common endpoint with the edges in EG(K)∪EG(K,N (K)) it suffices to
show that there is no induced P3 containing two edges e1, e2 ∈ SL′ or e1, e2 ∈
EG(K) ∪ EG(K,N (K)). If e1, e2 ∈ SL′ , the edges do not form a strong P3 since
L′ is an STC-labeling. Let e1, e2 ∈ EG(K) ∪ EG(K,N (K)). Since K is a critical
clique of type 2, K ∪ N (K) is a clique. It follows, that e1 and e2 are edges
between vertices of a clique, so they do not form a P3. Since there is no strong
P3 under L, it follows that L is an STC-labeling with |WL| ≤ k.

Conversely, let L = (SL,WL) be an STC-labeling for G with a minimal
number of weak edges. We prove the safeness by using Proposition 1. To this
end, we show that C = (K ∪ N (K), V \ (K ∪ N (K))) is a weak cut under L.

244 N. Grüttemeier and C. Komusiewicz

Assume there is a vertex v ∈ N (K) that has a strong neighbor w ∈ N 2(K).
Then, for each u ∈ K, the edge {u, v} is weak under L. Otherwise {u, v} and
{v, w} would form a strong P3, which contradicts the fact that L is an STC-
labeling. Then, we have exactly |K| weak edges in EG({v},K) and at most
|EG(N (K),N 2(K))| strong edges in EG({v},N 2(K)). We define a new labeling
L+ = (SL+ ,WL+) by

SL+ := SL ∪ EG({v},K) \ EG({v},N 2(K)),

WL+ := WL ∪ EG({v},N 2(K)) \ EG({v},K).

From |V (K)| > |EG(N (K),N 2(K))| we get that |WL+ | < |WL|. It remains
to show that L+ is an STC-labeling, which contradicts the fact that L is an
STC-labeling with a minimal number of weak edges.

Since we add edges {u, v} with u ∈ K to SL+ we need to show that no such
edge is part of a strong P3 under L+. Let ({u, v}, e) with u ∈ K be a tuple
of edges that share exactly one endpoint. Consider the case e = {v, w} with
w ∈ N 2(K). It follows that e ∈ W+

L by the construction of L+. So {u, v} and
e do not form a strong P3 under L+. Otherwise, w ∈ K ∪ N (K). Then {u, v}
and e do not form an induced P3 since K ∪ N (K) is a clique by the definition
of type-2 critical cliques.

Since there is no strong P3 under L+ it follows, that L+ is an STC-labeling. In
combination with the fact that |WL+ | < |WL|, we conclude that L+ is an STC-
labeling for G with fewer weak edges than L which contradicts the fact that
L is an STC-labeling with a minimal number of weak edges. This proves the
claim that C = (K ∪ N (K), V \ (K ∪ N (K))) is a weak cut under L. By using
Proposition 1, we conclude that there exists an STC-labeling L′ = (SL′ ,WL′)
with |WL′ | ≤ k − |EG(N (K),N 2(K))| in G′, proving the safeness of Rule 1.

The running time of Rule 1 is O(n3). The critical clique graph C can be
computed in O(n + m) time [11]. For each critical clique K the sizes of N (K)
and N 2(K) can be computed in O(n2) time [9]. Since every application of Rule 1
removes some vertices from G, it can be applied at most n times. �

Theorem 1. Rule 1 can be applied exhaustively in O(n3) time and yields a prob-
lem kernel for STC with at most 4k vertices.

An O(�·2�) kernel for STC. We now show that STC parameterized by � := |E|−k
admits a kernel of size O(� · 2�). Let G = (V,E) be a graph and let M ⊆ E be a
maximum matching in G. We partition the vertices of G into

• MV := {v ∈ V | v is an endpoint of some e ∈ M},
• I2 := {v ∈ V | ∃{u,w} ∈ M : u and w are both neighbors of v},
• I1 := V \ (I2 ∪ MV).

Note that since M is maximal, I1 ∪ I2 is an independent set. We will see that
the number of vertices in I2 is upper-bounded by � in every STC instance. The
main step of the kernelization is to delete superfluous vertices form I1.

On the Relation of Strong Triadic Closure and Cluster Deletion 245

We will say that two vertices v1, v2 ∈ I1 are members of the same family F ,
if N(v1) = N(v2). Given a family F , we will refer to the neighborhood of the
vertices in F as N(F) := N(v) for some v ∈ F .

Rule 2. For every family F of vertices in I1: If |F | > |N(F)| then delete |F | −
|N(F)| of the vertices in F and decrease k by (|F | − |N(F)|) · |N(F)|.

Note that Rule 2 decreases the value of k by the exact amount of edges
deleted. Hence, the value of the parameter � does not change.

Proposition 5. Rule 2 is safe.

Theorem 2. STC admits a problem kernel of size O(�·2�) that can be computed
in time O(

√
nm).

A kernel lower bound for the parameter �. Above, we gave an exponential-size
problem kernelization for STC parameterized by the number of strong edges �.
Now we will prove that STC does not admit a polynomial kernel for the param-
eter � unless NP ⊆ coNP/poly by reducing from Clique.

Clique
Input: G = (V,E), t ∈ N

Question: Is there a clique on t vertices in G?

Clique parameterized by the size s of a vertex cover does not admit a polyno-
mial kernel unless NP ⊆ coNP/poly [2]. Our proof gives a polynomial parameter
transformation [3] from Clique parameterized by s to STC parameterized by �
in two steps. The first step is a reduction to the following problem.

Restricted-Multicolored-Clique
Input: A properly t-colored graph G = (V,E) with color classes
C1, . . . , Ct ⊆ V such that |C1| = |C2| = . . . = |Ct−1|.
Question: Is there a clique containing one vertex from each color in G?

Proposition 6. Restricted-Multicolored-Clique parameterized by |C1 ∪
. . . ∪ Ct−1| does not admit a polynomial kernel unless NP ⊆ coNP/poly.

The next step to prove the kernel lower bound is to give a polynomial param-
eter transformation from Restricted-Multicolored-Clique to STC.

Theorem 3. STC parameterized by the number of strong edges � does not admit
a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We give a polynomial parameter transformation from Restricted-
Multicolored-Clique to STC. Let G = (V,E) be a properly t-
colored graph with color classes C1 = {v1,1, v2,1, . . . , vz,1}, C2 =
{v1,2, v2,2, . . . , vz,2}, . . . , Ct−1 = {v1,t−1, v2,t−1, . . . , vz,t−1}, each of size z, and
Ct. We now describe how to construct an STC-instance (G′ = (V ′, E′), k) from
G such that there is an STC-labeling L = (SL,WL) with |WL| ≤ k for G′ if and
only if G has a multicolored clique.

246 N. Grüttemeier and C. Komusiewicz

For each of the first (t − 1) classes Cr, r = 1, . . . , t− 1, we define a family Kr

of z − 1 vertex sets K1,r,K2,r, . . . , Kz−1,r, each of size t, and we add edges such
that each K ∈ Kr becomes a clique. For every fixed i = 1, . . . , z − 1 we also add
edges {u, v} from all u ∈ Ki,r to all v ∈ Cr.

Setting k := |E| − ((
t
2

)
+ (t − 1)(z − 1)

(
t+1
2

))
gives us � =

(
t
2

)
+ (t − 1) ·

(z− 1)
(
t+1
2

)
. Obviously, � is polynomially bounded in |C1∪. . .∪Ct−1| = (t−1)·z.

This completes the construction. The correctness proof is deferred. ��
The proof of Theorem3 also implies that Cluster Deletion has no kernel

with respect to the parameter � := |E|−k: The strong edges in the STC-labeling
obtained in the forward direction of the proof form a disjoint union of cliques
and the converse direction follows from the fact that a cluster subgraph with at
least � cluster edges implies an STC-labeling with at least � strong edges which
then implies that the Multicolored Clique instance is a yes-instance.

Corollary 1. Cluster Deletion parameterized by the number of cluster edges
� := |E| − k does not admit a polynomial kernel unless NP ⊆ coNP/poly.

3 Fixed-Parameter Algorithms for the Parameterization
by the Number of Strong or Cluster Edges

For Cluster Deletion, we obtain a fixed-parameter algorithm by a simple
dynamic programming algorithm.

Theorem 4. Cluster Deletion can be solved in O(9� · �n) time.

For STC, we combine a branching on the graph that is induced by a maximal
matching with a dynamic programming over the vertex sets of this graph.

Theorem 5. STC can be solved in �O(�) · n time.

Proof. The initial step of the algorithm is to compute a maximal matching M
in G. If |M | ≥ �, then answer yes. Otherwise, the endpoints of M are a vertex
cover of size less than 2� since M is maximal. Let C denote this vertex cover and
let I := V \ C denote the independent set consisting of the vertices that are not
an endpoint of M . The algorithm now has two further main steps. First, try all
STC-labelings of G[C] with at most � strong edges. If there is one STC-labeling
with � strong edges, then answer yes. Otherwise, compute for each STC-labeling
of G[C] with fewer than � edges, whether it can be extended to an STC-labeling
of G with � strong edges by labeling sufficiently many edges of E(C, I) as strong.

Observe that G[C] has �O(�) STC-labelings with at most � strong edges and
that they can be enumerated in �O(�) time: The set of edges in G[C] has size less
than

(
2�
2

)
= O(�2) and we enumerate all subsets of size at most � of this set. Now

consider one such set EC . In O(�2) time, we can check whether (EC , E(C)\EC)
is a valid STC-labeling. If this is not the case, then discard the current set.
Otherwise, compute whether this labeling can be extended into a labeling of G
with at least � strong edges by using dynamic programming over subsets of C.

On the Relation of Strong Triadic Closure and Cluster Deletion 247

Assume in the following that I := {1, . . . , n − |C|}. The dynamic programming
table T has entries of the type T [i, C ′] for all i ∈ {1, . . . , n−|C|} and all C ′ ⊆ C.
Each entry stores the maximum number of strong edges in an STC-labeling
of G[C ∪ {1, . . . , i}] in which the strong edges of E(C) are exactly those of EC

and in which the strong neighbors of the vertices in {1, . . . , i} are exactly from C ′.
Observe that the set of strong neighbors NS(i) of each vertex i has to fulfill three
properties:

– NS(i) is a clique.
– No vertex of NS(i) has a strong neighbor in C \ N(i).
– No vertex of NS(i) has a strong neighbor in I \ {i}.

We call a set that fulfills the first two properties valid for i. We ensure the third
property by the recurrence in the dynamic programming.

After filling this table completely, we have a yes-instance if T [n − |C|, C] ≥ �
and a no-instance otherwise. The entries are computed for increasing values of i
and subsets C ′ of increasing size. The basic entry is T [0, ∅] which is set to |EC |.
The recurrence to compute an entry for i ≥ 1 is

T [i, C ′] = max
C′′⊆C′:C′′is valid for{i}

T [i − 1, C ′ \ C ′′] + |C ′′|.

The correctness follows from the observation that we consider all valid sets for
strong neighbors and that in the optimal solution for G[i − 1, C ′ \ C ′′] no vertex
from {1, . . . , i − 1} has strong neighbors in C ′′.

The running time of the algorithm can be seen as follows. A maximal matching
can be computed greedily in linear time. If the matching has size less than �, we
fill the dynamic programming table as defined above. The number of partial label-
ings EC is �O(�). For each of them, in O(22� · �n) time, we can compute for each i
the subsets of C which are valid for i. The number of terms that are subsequently
evaluated in the recurrences is 3|C| as each term corresponds to one partition of C
into C \ C ′, C ′ \ C ′′, and C ′′. For each term, one needs to evaluate the equation
in O(1) time. Hence, the overall time needed to fill T for one partial labeling EC

is O(32� · n) = O(9� · n); the overall running time follows. ��

4 STC and Cluster Deletion on H-free Graphs

Recall that every solution for Cluster Deletion provides an STC-labeling
L = (SL,WL) by defining SL as the set of edges inside the cliques in the
resulting graph. We call such L a cluster labeling. However, this solution is not
necessarily an optimal one [14].

In this section we discuss the complexity and the solution structure if the
input for STC and Cluster Deletion is limited to H-free graphs, that is,
graphs that do not have an induced subgraph H. We give a dichotomy for all
classes of H-free graphs, where H is a graph on four vertices, that is H ∈
{K4, 4K1, C4, 2K2,diamond, co-diamond, claw, co-claw,paw, co-paw, P4}.

248 N. Grüttemeier and C. Komusiewicz

a) b) c)

Fig. 1. Two graphs where no cluster labeling is an optimal STC-labeling. Column (a)
shows the input graph, column (b) shows an optimal cluster labeling, and column (c)
shows the strong edges in an optimal STC-labeling.

The correspondence between STC and Cluster Deletion on H-free graphs. We
say that the two problems correspond on a graph class Π if for every graph in Π
we can find a cluster labeling that is an optimal STC-labeling.

Figure 1 shows two examples, where a cluster labeling is not an optimal
solution for STC. The upper example, taken from [14], is C4-, 2K2-, co-paw-,
and co-diamond-free; an optimal STC-labeling has eight strong edges, while the
best cluster labeling has only seven cluster edges. The second example is the
complement of a C7. It is K4-, 4K1-, claw- and co-claw free; the optimal STC-
labeling has seven strong edges, while the best cluster labeling has six cluster
edges. The examples give the cases where STC and Cluster Deletion do not
correspond.

Theorem 6. The problems Cluster Deletion and STC

• do not correspond on the class of H-free graphs, for H ∈ {C4, 2K2, co-paw,
co-diamond,K4, 4K1, claw, co-claw}, and

• correspond on the class of H-free graphs, for H ∈ {P4, diamond, paw}.

The complexity of STC and Cluster Deletion on H-free graphs. We first identify
the cases where both problems are solvable in polynomial time.

Proposition 7. If H ∈ {P4, paw}, STC and Cluster Deletion are solvable
in polynomial time on H-free graphs.

In all other possible cases for H, both problems remain NP-hard on H-free
graphs. To show this, we first use the following construction:

Definition 5. Let G = (V,E) be a graph. The expanded graph G̃ of G is the
graph obtained by adding a clique K̃ = {v1, . . . , v|V |3} and all edges such that
every v ∈ V is adjacent to all vertices in K̃.

Obviously, we can construct G̃ from G in polynomial time. We use this con-
struction to give a reduction from Clique to STC and Cluster Deletion.
The construction also transfers certain H-freeness properties from G to G̃.

On the Relation of Strong Triadic Closure and Cluster Deletion 249

Proposition 8. Let (G = (V,E), t) be a Clique instance.

(a) There is a clique of size at least t in G if and only if there is an STC-labeling
L = (SL,WL) for G̃ such that |SL| ≥ (

n3

2

)
+ t · n3.

(b) There is a clique of size at least t in G if and only if G̃ has a solution for
Cluster Deletion with at least

(
n3

2

)
+ t · n3 cluster edges.

Proposition 9. Let H ∈ {2K2, co-diamond, co-paw, 4K1}. If a graph G is H-
free, then the expanded graph G̃ is H-free as well.

As mentioned above, the Propositions 8 and 9 deliver the following.

Proposition 10. STC and Cluster Deletion remain NP-hard on H-free
graphs if H ∈ {2K2, co-diamond, co-paw, 4K1, claw, C4, diamond,K4}.
Proof. Case 1: H ∈ {2K2, co-diamond, co-paw, 4K1}. Clique remains NP-
hard on 2K2-, co-diamond-, co-paw- and 4K1-free graphs since Independent
Set is NP-hard on the complement graphs: C4-, diamond-, paw- and K4-free
graphs [15]. By Proposition 8, (G, k) �→ (G̃,m − (

(
n3

2

)
+ k · n3)) is a polynomial

time reduction from Clique to STC and Cluster Deletion. From Proposi-
tion 9 we know, that if G is 2K2-, co-diamond-, co-paw- or 4K1-free, so is G̃.
Thus, STC and Cluster Deletion remain NP-hard on H-free graphs.

Case 2: H = claw. Analogously to Case 1, we use the reduction (G, k) �→
(G̃,m − (

(
n3

2

)
+ k · n3)) to show that STC and Cluster Deletion remain NP-

hard on claw-free graphs. It is known that Clique remains NP-hard on 3K1-free
graphs, since Independent Set is NP-hard on triangle-free graphs [15]. If G is
3K1-free, then G̃ is claw-free: Assuming G̃ has a claw as induced subgraph, there
are three vertices in G̃, which are pairwise non-adjacent. Since G is 3K1-free,
one of those vertices must lie in K̃. This contradicts the fact, that every vertex
in K̃ is adjacent to every other vertex in G̃ by construction.

Case 3: H ∈ {C4,diamond,K4}. There is a reduction from 3Sat to Cluster
Deletion producing a C4-, K4-, and diamond-free Cluster Deletion
instance [12]. By Theorem 6, there is an optimal cluster labeling for STC on
diamond-free graphs, so the reduction works also for STC. Thus, STC and
Cluster Deletion remain NP-hard on C4-, K4-, and diamond-free graphs. �

It remains to show NP-hardness on co-claw-free graphs. Since Clique can be
solved in polynomial time on co-claw-free graphs [17] we cannot reduce from
Clique in this case. Instead, we reduce from the following problem.

3-Clique Cover
Input: A graph G = (V,E)
Question: Can V be partitioned into three cliques K1,K2, and K3?

3-Clique Cover is NP-hard on co-claw-free graphs [10].

Proposition 11. STC and Cluster Deletion remain NP-hard on co-claw-
free graphs.

250 N. Grüttemeier and C. Komusiewicz

Proof. We give a reduction from 3-Clique Cover on co-claw-free graphs to
STC and Cluster Editing on co-claw free graphs. Let G = (V,E) be a co-claw-
free instance for 3-Clique Cover. We describe how to construct a co-claw-free
STC-/Cluster Deletion- instance (G′ = (V ′, E′), k). We define three vertex
sets K1,K2, and K3. Every Ki consists of exactly n3 vertices v1,i, . . . , vn3,i. We
set V ′ := V ∪ K1 ∪ K2 ∪ K3. Moreover, we define edges from every vertex in
K1 ∪ K2 ∪ K3 to every vertex in V and edges of the form {vc,i, vd,j}, where
c �= d. The set E′ is the union of those edges and E. Note that this makes each
Ki a clique of size n3. We set k := |E′| − (3 · (

n3

2

)
+ n4). This completes the

construction; the correctness proof is deferred. ��
Theorem 7. The problems Cluster Deletion and STC are

• solvable in polynomial time on H-free graphs, if H ∈ {P4, paw}, and
• NP-hard on H-free graphs, if H ∈ {K4, 4K1, C4, 2K2, diamond, co-diamond,
claw, co-claw, co-paw}.

References

1. Böcker, S., Damaschke, P.: Even faster parameterized cluster deletion and cluster
editing. Inf. Process. Lett. 111(14), 717–721 (2011)

2. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by
cross-composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)

3. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, vol. 3. SIAM,
Philadelphia (1999)

5. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-
5559-1

7. Gao, Y., Hare, D.R., Nastos, J.: The cluster deletion problem for cographs. Discret.
Math. 313(23), 2763–2771 (2013)

8. Golovach, P.A., Heggernes, P., Konstantinidis, A.L., Lima, P.T., Papadopou-
los, C.: Parameterized Aspects of Strong Subgraph Closure. ArXiv e-prints,
abs/1802.10386, February 2018

9. Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput.
Sci. 410(8–10), 718–726 (2009)

10. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–
720 (1981)

11. Hsu, W.-L., Ma, T.-H.: Substitution decomposition on chordal graphs and appli-
cations. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 52–60.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54945-5 49

12. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications.
Discret. Appl. Math. 160(15), 2259–2270 (2012)

13. Konstantinidis, A.L., Nikolopoulos, S.D., Papadopoulos, C.: Strong triadic clo-
sure in cographs and graphs of low maximum degree. In: Cao, Y., Chen, J. (eds.)
COCOON 2017. LNCS, vol. 10392, pp. 346–358. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-62389-4 29

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-54945-5_49
https://doi.org/10.1007/978-3-319-62389-4_29
https://doi.org/10.1007/978-3-319-62389-4_29

On the Relation of Strong Triadic Closure and Cluster Deletion 251

14. Konstantinidis, A.L., Papadopoulos, C.: Maximizing the strong triadic closure in
split graphs and proper interval graphs. In: Proceedings of the 28th ISAAC. LIPIcs,
Dagstuhl, Germany, vol. 92, pp. 53:1–53:12. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2017)

15. Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Mathe-
maticae Universitatis Carolinae 15(2), 307–309 (1974)

16. Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition
to parameterized cluster editing problems. Theory Comput. Syst. 44(1), 91–104
(2009)

17. Sbihi, N.: Algorithme de recherche d’un stable de cardinalite maximum dans un
graphe sans etoile. Discret. Math. 29(1), 53–76 (1980)

18. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discret.
Appl. Math. 144(1–2), 173–182 (2004)

19. Sintos, S., Tsaparas, P.: Using strong triadic closure to characterize ties in social
networks. In: Proceedigns of the 20th KDD, pp. 1466–1475. ACM, New York (2014)

On Perfect Linegraph Squares

Meike Hatzel(B) and Sebastian Wiederrecht

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Berlin,
Germany

{meike.hatzel,sebastian.wiederrecht}@tu-berlin.de

Abstract. A strong edge colouring is a proper colouring of the edges of
a graph such that no two edges that are incident with a common edge
receive the same colour. The square of a graph G is obtained from G by
adding edges between vertices of distance exactly 2. Therefore the strong
edge colouring problem can be transformed to the problem of finding
a proper vertex colouring of the squared linegraph. In this paper we
characterise families of graphs whose squared linegraphs exclude induced
paths of a fixed length. As an example, we give a characterisation of
graphs with P4-free linegraph squares by a finite family of forbidden
induced subgraphs. Our main result is a characterisation of graphs with
perfect linegraph squares by providing forbidden induced subgraphs. In
addition we are able to observe that all of these classes are χ-bounded.

Keywords: Perfect graphs · Graph powers · χ-bounded

1 Introduction

The colouring of graphs is a well known and highly active area of research that
has many applications. A proper colouring (VCol) of a graph is an assignment of
colours to its vertices such that no two adjacent vertices receive the same colour.
Similarly a proper edge colouring (ECol) is an assignment of colours to the edges
of a graph, such that two edges with a common vertex receive different colours.

The concept of colourings for both, vertices and edges, can be generalised
by adding a distance constraint. A strong vertex colouring (SVCol) is a proper
colouring such that vertices within distance 2 of each other also receive different
colours and a strong edge colouring (SECol) is a proper edge colouring where
every two edges having an adjacent edge in common are also coloured differently.
The colour classes of SECol form an induced matching.

M. Hatzel and S. Wiederrecht—Both authors are supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (ERC Consolidator Grant DISTRUCT, grant agreement No
648527).

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 252–265, 2018.
https://doi.org/10.1007/978-3-030-00256-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_21&domain=pdf

On Perfect Linegraph Squares 253

The SECol-problem and the related maximum induced matching(MIM)-
problem have received a lot of attention from the network community as this
problem appears in the context of interference-free channel assignments [1,11,15–
17].

The SVCol-problem (see [13]), the SECol-problem (see [14]) and the MIM-
problem [2,21] are all NP-complete. This is especially surprising for the MIM-
problem, as maximum matching is long known to be in P. Moreover, MIM stays
NP-hard even on bipartite graphs [2] and on planar graphs of maximum degree
4 [12].

While many problems are solvable with more reasonable running time if
parametrised, SVCol is still W [1]-hard, even when parametrised by treewidth [8].

By adding edges between vertices of distance at most l, we obtain the k-
th distance power Gk of G. So the problem of finding a SVCol of G can be
transformed into finding a VCol of G2. If we were able to ensure G2 to be in a
class of graphs where the VCol-problem is known to be in P, we could use this
for the construction of new algorithms for the SVCol-problem.

A classical example of graphs on which many NP-complete problems, such
as the VCol-problem, become easy to solve are chordal graphs. While squares
of chordal graphs are not again chordal in general, Duchet proved the following
result:

Theorem 1 (Duchet [7]). If Gk is chordal, so is Gk+2.

A ECol corresponds to a VCol of the vertices of the linegraph. In the same
fashion a SECol corresponds to a VCol of the squared linegraph, so in order to
find graphs on which the SECol-problem becomes accessible we are interested
in L(G) 2 to belong to a class of graphs that we can colour in polynomial time.
Again chordal graphs provide a nice example.

Theorem 2 (Cameron [2]). If G is a chordal graph, then L(G) 2 is chordal.

In this paper we investigate the structure of graphs whose squared linegraphs
have nice properties with respect to the VCol-problem. Namely we find families
A and B of forbidden induced subgraphs in order to make sure that for any
graph G excluding the graphs of A, L(G) 2 excludes the graphs of B as induced
subgraphs. This leads in particular to a characterisation of graphs with perfect
linegraph squares and therefore yields a class of graphs on which the strong edge
colouring problem can be solved in polynomial time. We extend the results from
[19] by using similar techniques which are also used in [3].

2 Preliminaries

All graphs considered in this paper are finite, simple and undirected. If G =
(V,E) is a graph and H = (V ′, E′) such that V ′ ⊆ V and E′ = {e ∈ E | e ⊆ V ′},
we call H an induced subgraph of G and H is said to be contained in G. We denote
the subgraph induced by the vertex set V ′ by G [V ′]. If H is not contained in

254 M. Hatzel and S. Wiederrecht

G, we call G H-free, respectively if H1, . . . , Ht are graphs not contained in G we
say that G is (H1, . . . , Ht)-free.

Let x, y be two vertices of a graph G, the distance distG (x, y) between x and y
is the length of a shortest path in G with endpoints x and y. The neighbourhood
NG(v) of a vertex v in G is defined as the set {y ∈ V (G) | vy ∈ E(G)}. The set
NG[v] := NG(v) ∪ {v} is the closed neighbourhood of v in G. If G is understood
from the context, we write dist (x, y). The linegraph of G = (V,E) is the graph
L(G) := (E, {e1e2 | e1 ∩ e2 �= ∅, e1, e2 ∈ E}). The k-th distance power, or simply
k-th power of G, for k ≥ 1, is the graph Gk := (V, {xy | dist (x, y) ≤ k}). For
t ≥ 1, k ≥ 3 we denote the path on t vertices by Pt and the cycle on k vertices
by Ck. The complement of G is defined as G :=

(
V,

(
V
2

) \ E
)
, where

(
V
2

)
denotes

the set of all 2-element subsets of V . For k ≥ 5 the complement of a cycle Ck,
namely Ck, is called an antihole. If we are given a set S of vertices and a vertex
x ∈ S, we sometimes refer to x as a S-vertex, the same occurs for edges. As
reference for other definitions including those of paths and cycles the reader is
referred to the book by Diestel [6].

3 Induced Graphs in L(G) 2

The Strong Perfect Graph Theorem by Chudnovsky et al. [4] allows us to describe
perfect graphs in terms of forbidden induced subgraphs.

A graph G is perfect if ω(H) = χ(H) holds for all induced subgraphs H ⊆ G.
Here ω denotes the size of a maximum clique and χ the minimum number of
colours required for a VCol of a given graph.

Theorem 3 (Strong Perfect Graph Theorem, Chudnovsky et al. [4]).
A graph is perfect if and only if it contains neither Ck nor Ck for odd k ≥ 5.

We are aiming to forbid induced cycles and antiholes on an odd number of
vertices ≥ 5 in the squared linegraph. A possible generalisation of perfect graphs
is the concept of χ-boundedness. A class of graphs C is χ-bounded if there is a
function f : N → N such all G ∈ C satisfy χ(G) ≤ f(ω(G)). A famous result by
Gyárfás [10] states that the class of Pt-free graphs is χ-bounded for every t ≥ 1.

Inspired by this, we start our discussion on induced graphs in G2 by investi-
gating graphs with Pt-free squares.

3.1 Induced Paths in G2

The goal of this subsection is to provide some insight in the technical descriptions
of the structures, i.e. subgraphs, that are responsible for the existence of induced
paths in the square of a graph G. Our main technique is quite technical and uses a
lot of case distinctions. The proof of Lemma 5, which characterises the structures
that give rise to induced paths in G2, is presented as an example.

Definition 4 (Spire). A spire of order n is a graph Sn = (U ∪ W,E) with
U = {u1, . . . , un} and W = {w1, . . . , wq} such that the following conditions
hold:

On Perfect Linegraph Squares 255

(S1) Sn contains a path P with endpoints u1 and un such that all ui and wj

are ordered by their appearance along P .
(S2) No three U -vertices form a subpath of length 2 on P .
(S3) No two W -vertices are consecutive on P .
(S4) The graph G [U] only contains edges that lie on P , additionally: W ⊆ V (P)

and U ⊆ V (P).
(S5) Either uiui+1 ∈ E(Sn), or uiwjui+1 is an induced subpath of P for some j.
(S6) Each wj ∈ W is adjacent to exactly two U -vertices and those are consecu-

tive on P .

If Sn is contained in some graph G and there exists an additional vertex v with
vui, vuj ∈ E(G) for some j �= i ± 1, then Sn is called a withered spire or just
withered.

We refer to U as the base of Sn and if wjuiwj+1 ⊆ P and wjwj+1 ∈ E(Sn),
ui is called pending.

Lemma 5. Let G be a graph and t ≥ 1. There is a set of vertices U ⊆ V (G)
such that G2 [U] ∼= Pt if and only if G contains an unwithered spire of order t
with base U .

Proof. Let U = {u1, . . . , ut} ⊆ V (G) such that G2 [U] ∼= Pt. Assume that the
vertices of U are ordered by their appearance along Pt. If distG (ui, ui+1) = 2 for
some i ∈ {1, . . . , t − 1}, there is a vertex w ∈ V (G) with ui, ui+1 ∈ N(w).
Suppose there is some j ∈ {1, . . . , t} \ {i, i + 1} with uj ∈ N(w). Then
distG (ui, uj) ≤ 2 and distG (ui+1, uj) ≤ 2 which contradicts Pt being an induced
path. Hence we can collect a set W of such vertices by choosing exactly one such
w for every pair of vertices ui, ui+1 of distance 2 in G. This set W immediately
satisfies Property (S6). In addition, we now have a path P on the vertices of U
and W in which two consecutive vertices ui and ui+1 are not adjacent if and
only if there is some w ∈ W adjacent to both of them. Thus, Properties (S1) to
(S3) hold as well.

As we have seen, all W -vertices connect U -vertices of distance exactly 2 in
G, so if e ∈ E(G [U]) \ E(P), then e joins two U -vertices that do not have a
common neighbour in W and are not consecutive on P . This contradicts Pn

being induced, so such edges do not exists and Property (S4) holds. Property
(S5) holds by construction and thus we are done.

For the reverse direction of the proof let St = (U ∪ W,E) be an unwithered
spire in G and P its corresponding path. By Property (S5), the uiui+1 ∈ E

(
G2

)
for all 1 ≤ i ≤ t−1, so G2 [U] contains a path of length t−1 on the vertices of U .
Assume towards a contradiction that this path is not induced. Hence, there are
two U -vertices ui and uj with j �= i±1 and distG (ui, uj) ≤ 2. By Properties (S2)
and (S4), ui and uj cannot be adjacent and since St is not withered, there is no
v ∈ V (G)\V (St) adjacent to both. So there is some x ∈ V (St) with ui, uj ∈ N(x).
By Properties (S2) and (S4), x /∈ U and thus x ∈ W . But by Property (S6), ui

and uj now have to be consecutive, a contradiction. �

256 M. Hatzel and S. Wiederrecht

Consider the class St of graphs G such that G2 excludes a fixed Pt. There
has to be an additional vertex in the graph, and not within the spire, in order
for the spire to be withered. So our result does not allow us to conclude the
χ-boundedness of St. However, by Gyárfás’ Theorem, for every t ≥ 1 the class
S2

t of graphs G for which some graph H exists with H2 = G and all Sn in H are
withered is χ-bounded.

3.2 Linegraphs

The problem of spires and other structures responsible for the existence of pre-
scribed induced subgraphs in G2 is that an additional vertex in the graph G is
required to render them withered.

Flotow (see [9]) gives the following construction to show that there is no finite
family of forbidden induced subgraphs describing a class C′ such that G2 ∈ C
if and only if G ∈ C′ if we put no bound on the clique number. Suppose there
was a finite family F characterising C in this way. We construct the graph G by
taking a copy of every graph in F together with one additional vertex v adjacent
to everything else. Thus G2 is complete, so G2 ∈ C, contradicting the F-free
graphs to be exactly those with squares in C.

This construction exploits the problem of additional vertices responsible for
the existence of paths of length 2. However, if we consider linegraphs this problem
does not occur. In order for a vertex to be responsible for a structure being
withered in L(G), an edge in G has to contain endpoints of two other edges
that are not supposed to be connected in L(G) 2. Hence, the edge is part of the
subgraph induced by the vertex set of the edges producing the structure in L(G)
(Fig. 1).

G

L(G)

L(G) 2

u1

w1

u2

w3

u3
w3

w4

w5 u6

u4 u5

u1

w1

u2

w3

u3
w3

w4
w5 u6

u4 u5

u1

w1

u2

w3

u3
w3

w4
w5 u6

u4 u5

Fig. 1. A graph G containing an unwithered spire in its linegraph together with the
induced P6 in L(G) 2. (Color figure online)

On Perfect Linegraph Squares 257

Definition 6 (Sprout [19]). A sprout of order n is defined as a graph STn =
(V,U ∪ W ∪ E) with |U | = n and |W | = q, U , W and E having a pairwise empty
intersection and

⌈
n
2

⌉ ≤ q ≤ n satisfying the following conditions:

(ST1) There is a cycle C with E(C) ⊇ W containing the edges of W in the
order w1, . . . , wq.

(ST2) The elements of U = {u1, . . . , un} are sorted such that they appear along
C in order with u1 ∩ wq �= ∅ and u2 ∩ w1 �= ∅. In addition ui ∩ uj = ∅ for all
j �= i ± 1 (mod n).

(ST3) If wi∩wi+1 �= ∅, then there is exactly one u ∈ U with (wi ∩ wi+1)∩u �= ∅.
These edges are called pending.

(ST4) If wi ∩ wi+1 = ∅, then there either is one u ∈ U connecting wi and wi+1

in C, or there are exactly two edges t, t′ ∈ U , such that the graph induced by
t and t′ is a path starting on wi, ending on wi+1 and being part of C.

(ST5) The pending U -edges are pairwise non-adjacent and every U -edge that is
not pending is an edge in E(C).

If a sprout STn = (V,U ∪ W ∪ E) contains an edge e ∈ E connecting two non-
consecutive u-edges, we say STn is infertile, otherwise STn is called fertile.

Theorem 7 (Scheidweiler and Wiederrecht [19]). Let G be a graph and
n ∈ N. Then L(G) 2 contains a cycle of length n if and only if G contains a
fertile sprout of order n.

Induced Paths in Linegraph Squares
In order to forbid Pt in L(G) 2 we translate spires into the world of linegraphs.
Similar to sprouts, the first definition is very technical but for t = 4 we will be
able to make use of it in order find a small family of graphs to forbid in G.

Definition 8 (Plantlet). A plantlet of order n PLn = (V,U ∪ W ∪ R) is a
graph with U = {u1, . . . , un}, W = {w1, . . . , wq} and U , W and R pairwise
disjoint such that the following conditions hold:

(P1) V =
⋃

u∈U u.
(P2) There is a path P with E(P) ⊆ U ∪W and W ⊆ E(P) such that for every

ui ∈ U \E(P) there is a unique vertex {v} = ui ∩V (P). U -edges with a vertex
that is not on P are called pending. Every pending U -edge is adjacent to two
W -edges. Both, U - and W -edges, are ordered by their appearance along P .

(P3) If u ∈ U is pending, then none of its endpoints belongs to another U -edge.
(P4) No U -edge contains vertices of two other U -edges.
(P5) Either ui∩ui+1 �= ∅, or there exists a unique wj ∈ W such that ui ∩wj �= ∅

and ui+1 ∩ wj �= ∅.
If there is an edge e ∈ R and i, j ∈ {1, . . . , n} with |i − j| ≥ 2 such that e∩ui �= ∅
and e ∩ uj �= ∅, PLn is called infertile, otherwise it is called fertile.

Lemma 9. A graph G contains a fertile PLn = (V,U ∪ W ∪ R) if and only if
L(G) contains an unwithered spire Sn = (U ∪ W,E) for some E ⊆ E(L(G)).

258 M. Hatzel and S. Wiederrecht

To reach a characterisation of a graph class excluding an induced path of
fixed length in L(G) in terms of a succinct list of forbidden subgraphs, one
usually needs a huge case distinction. Excluding the P4 results in a class of
perfect graphs (see [20]). Furthermore, excluding any single induced subgraph
not contained in the P4 results in a class of graphs for which no linear χ-bounding
function can exist (see [18]). So, considering the class of graphs whose squared
linegraphs exclude P4 seems natural in the context of investigating generally
perfect linegraph squares. We also obtain the following general observations on
graph classes whose linegraph squares exclude induced paths of a certain length.

Lemma 10. Let n ≥ 2 and G be a graph such that L(G) 2 is Pn-free. Then G
is P� 3

2n�-free.

There are two main characteristics by which we can distinguish different
plantlets of the same order: The length of the path P of Property (P2), and the
number and position of pending edges along P . By Lemma 10, we have a lower
bound of

⌈
3
2n

⌉− 1 on the length of P in a plantlet of order n that does not have
any pending U -edges. Next, we show that 2n − 1 is an upper bound. As long as
there are no pending U -edges these bounds are strict. By allowing pending edges
we obtain a lower bound of n + 2. This is summarised in the following corollary.

Corollary 11. Let n ∈ N, then there is no plantlet of order n such that its
Property (P2)-path P is isomorphic to Pi for some i ∈ N \ {n + 2, . . . , 2n}.

Let us return to the case where n = 4. In this case the Property (P2)-paths
of a plantlet has between 6 and 8 vertices. We categorise these plantlets into
seven different types as depicted in Fig. 2.

d)

b)a) c)

f) e)g)

Fig. 2. The seven types of plantlets of order 4. The yellow marked edges are the U -
edges, the thicker violet edges belong to W and the grey edges are those that may exist
in R, but are not necessary for the graph to be a fertile plantlet. (Color figure online)

We claim that, up to isomorphism, these are all possible plantlets of order 4.
To prove this, we partition them into three families based on the length of their
Property (P2)-path. By Corollary 11, there are no other plantlets of order 4, so
this case distinction suffices.

On Perfect Linegraph Squares 259

Still, it is clear that some of these fertile plantlets of order 4 are subgraphs
of plantlets of the other types, so this family is not minimal with respect to
excluding all fertile plantlets of order 4. The next step is to reduce the number
of forbidden subgraphs. Figure 3 depicts a smaller family of forbidden subgraphs
for excluding plantlets of order 4.

Type A plantlets correspond exactly to the type d plantlets of Fig. 2. The
type B plantlets are a specified version of type b plantlets where the v3v5-edge
has to exist in order to distinguish them from plantlets of type A. Type C is
obtained from type a by requiring the additional edge v3v6 and allowing all
possible combinations of all other allowed edges except for the existence of v3v5
and v4v6 at the same time, while type D is obtained by requiring v3v5 and v4v6
to exist at the same time, distinguishing them from plantlets of type B.

C)

B)A)

D)

Fig. 3. The four minimal types of plantlets of order 4. Unmarked black edges must
necessarily exist, all other colours/patterns are chosen as in Fig. 2. (Color figure online)

To summarise, we obtain the following theorem for graphs without an induced
P4 in their squared linegraph.

Theorem 12. Let G be a graph. Then L(G) 2 is P4-free if and only if G does
not contain a graph of type A, B, C, or D.

Induced Odd Antiholes and Perfect Linegraph Squares
In order to describe the class of graphs with perfect linegraph squares, we need
to find a structure similar to sprouts. The edges that will become the vertices of
an induced antihole in L(G) 2 are ordered in a cyclic fashion and we use a cycle
to represent this ordering. When deleting a vertex from this cycle we obtain a
path, hence a bipartite graph. Whenever we talk about the colour classes of a
path obtained this way, we refer to the two classes of the unique 2-colouring of
this path.

Definition 13 (Meristem). A meristem of order n = 2k+1, k ≥ 2, is a graph
Mn = (V,U ∪ W ∪ R) with U = {u1, . . . , un} such that the following conditions
hold:

(M1) V =
⋃

u∈U u.
(M2) There is a cyclic ordering on the edges of U such that un+1 = u1. We

represent this ordering by a cycle CU whose vertices correspond to the edges
in U .

260 M. Hatzel and S. Wiederrecht

(M3) There exists a family {U1, . . . , Un} ⊆ (
U
k

)
such that the edges in Ui are

identified with the vertices of CU − ui from the same colour class as ui+1.
(M4) For all u ∈ U and v, v′ ∈ U with v ∩ u �= ∅ and v′ ∩ u �= ∅ there is some

j ∈ {1, . . . , n} with v, v′ ∈ Uj.
(M5) There are sets W1, . . . ,Wn, possibly empty and not necessarily disjoint,

with
⋃n

i=1 Wi = W and for all w = xy ∈ Wi there are u, v ∈ Ui such that
x ∈ u, y ∈ v, u ∩ v = ∅ and e � u ∪ v for all e in (U ∪ W) \ {u, v, w}.

(M6) For all w ∈ W and u, v ∈ U with u ∩ w �= ∅ and v ∩ w �= ∅ there is some
j such that u, v ∈ Uj and w ∈ Wj.

(M7) For all u, u′ ∈ Ui with u ∩ u′ = ∅ there is a w ∈ Wi with u ∩ w �= ∅ and
u′ ∩ w �= ∅.

We call U the base of Mn. If ui ∩u = ∅ for all u ∈ U \{ui}, ui is called pending.
If there is an edge e ∈ R with e∩ui �= ∅ and e∩ui+1 �= ∅ for some i ∈ {1, . . . , n},
Mn is called infertile.

The following theorem is proved in two steps. First we find a family of graphs
whose squares contain antiholes, which is done in a way similar to spires, com-
plete with a notion of being withered. Such a graph is called a thornbush of
order n, where n is the size of the induced antihole it generates when being
squared. Then, as the second step, we show that a fertile meristem of order n in
G corresponds to an unwithered thornbush in L(G).

Theorem 14. A graph G contains a fertile meristem of order n if and only if
L(G) 2 contains an antihole of size n.

Theorem 14 allows us to state a first straight forward characterisation of
graphs with perfect linegraph squares by combining it with Theorem7.

Corollary 15. Let G be a graph, then L(G) 2 is perfect if and only if G does not
contain a fertile sprout or fertile meristem of order n = 2k + 1 for any k ≥ 2.

We now further refine this result by taking a closer look at the structure of
sprouts and meristems. We need the following lemmata.

Lemma 16 (Scheidweiler and Wiederrecht [19]). Let G be a graph and
k ≥ 2 an integer. If C is an induced cycle in Gk, then Gr cannot contain two
consecutive edges of C for all r ≤ ⌊

k
2

⌋
.

Lemma 17 (Scheidweiler and Wiederrecht [19]). A graph G contains a
cycle of length at least four as a, not necessarily induced, subgraph if and only if
L(G) contains an induced cycle of the same length.

Lemma 18 (Scheidweiler and Wiederrecht [19]). Let k ≥ 4 be an integer.
If a graph G does not contain induced cycles of length � ≥ k, then L(G) 2 contains
no induced cycles of length � ≥ k.

Lemma 19. For all n ≥ 4 the cycle Cj with n+
⌈

n
2

⌉ ≤ j ≤ 2n is a fertile sprout
of order n.

On Perfect Linegraph Squares 261

Proof. By Lemma 16 there are at most
⌊

n
2

⌋
pairs of adjacent u-edges in a fertile

sprout of size n.
First, consider j = n +

⌈
n
2

⌉
. If there are exactly

⌊
n
2

⌋
pairs of adjacent u-

edges, then the remaining
⌈

n
2

⌉−⌊
n
2

⌋ ∈ {0, 1} U -edges cannot be adjacent to any
other U -edge. Hence, we need exactly

⌈
n
2

⌉
W -edges to complete the sprout. By

alternating between U -edge pairs, W -edges and possibly one single U -edge we
obtain a cycle of length n +

⌈
n
2

⌉
. The sprout definition allows some additional

chords, but no such edge is necessary, so the Cj is a fertile sprout of size n.
Second, we note that each of those

⌊
n
2

⌋
pairs of U -edges may be split by an

additional W -edge, hence with k ≤ ⌊
n
2

⌋
such splits we can produce a cycle of

length n +
⌈

n
2

⌉
+ k ≤ 2n which again is a fertile sprout of size n. �

Corollary 20. A graph G with an induced cycle of length � ≥ 8 contains a
fertile sprout of odd order.

Proof. By Lemma 19 cycles of length 8, 9 or 10 contain a fertile sprout of order
5. So consider � ≥ 11. We observe that for n ≥ 7 we have n+

⌈
n
2

⌉ ≤ 2 (n − 2)+1
and 7 +

⌈
7
2

⌉
= 11. So by this observation and Lemma19, if � is odd, then the

cycle is a fertile sprout of order �−1
2 + 2. If � is even, then the cycle is a fertile

sprout of order �
2 . �

As the squared linegraph of C7 yields an antihole of size 7, the following
lemma reduces the length of allowed induced cycles even further.

Lemma 21. If a graph G contains a C7, L(G) 2 contains an antihole of the
same size.

Proof. If G contains a C7 Lemma 17 yields the existence of an induced cycle C of
the same length in L(G). For each pair of non-adjacent vertices u,w ∈ V (L(G))
of C that do not have a common neighbour on C, distL(G) (u,w) ≥ 3 holds,
since a path of length 2 between two such vertices would correspond to a chord
in the C7, which does not exist. In L(G) 2 each vertex of C is adjacent to its
four nearest vertices on C and not adjacent to the two opposite vertices of C.
By reordering the vertices C2 is an antihole. �

Lemma 18 implies that a graph G without induced cycles of length � ≥ 7 does
not contain a fertile sprout of order � ≥ 7, hence L(G) 2 only contains holes of
size at most 5. In order to forbid the holes of size 5, we exclude all fertile sprouts
of order 5 in G. Since we can exclude the existence of induced cycles of length
� ≥ 7, it suffices to consider sprouts of order 5 with a longest induced cycle, or
base cycle, of length 5 and 6. Figure 4 depicts the three possible types of sprouts
of order 5 with a base cycle of length 5. We proceed by discussing the case of a
base cycle of length 6.

Lemma 22. Let ST5 = (V,U ∪ W ∪ R) be a fertile sprout of order 5 with a base
cycle C of length 6 and E(C)∩R = ∅. Then ST5 has either three or four pending
edges, which are incident with consecutive vertices of C.

262 M. Hatzel and S. Wiederrecht

A5 B5 C5

Fig. 4. The sprouts of order 5 with a base cycle of length 5. Colours are chosen as in
Figs. 2 and 3. (Color figure online)

Proof. Because ST5 is a fertile sprout of order 5, the number of pending edges
is at least 0 and at most 5. Assume that ST5 has 5 pending edges. Then the
cycle consists of exactly one U -edge and five W -edges. Since pending U -edges can
only be incident to vertices on C that are not contained in any other U -edge, the
number of pending edges in ST5 is at most four contradicting the assumption.

Suppose ST5 has no pending edge, then C contains five U -edges. But, by
Lemma 16 there are at least

⌈
5
2

⌉
= 3 W -edges, which must be contained in C

as well since C is the base cycle of ST5. This contradicts the fact that |C| = 6.
For the same reason ST5 does not have exactly one pending edge. There remain
4 U -edges and at least 3 W -edges on C, which contradicts |C| = 6 again.

Next, suppose there are exactly two pending edges. There are at least three
W -edges necessary for the pending edges and since three U -edges may not form
a path on C we need at least one additional W -edge, thus C must now consist
of 3 U -edges and at least 4 W -edges, again exceeding the length of C.

So there only are two possibilities: Either ST5 has three or four pending
U -edges. These are incident to consecutive vertices of C. Suppose they were
not, then the base cycle must contain at least 6 W -edges and an additional U -
edge and if there are just three pending edges not being adjacent to consecutive
vertices of C, 5 W -edges and 2 additional U -edges are required. �

Notice that every fertile sprout of type B6 contains a type A6-sprout. Hence
the fertile ST5 not containing a type A6-sprout but still having a base cycle of
length 6 are the types C6. D6 and E6 from Fig. 5.

Corollary 23. Let ST5 = (V,U ∪ W ∪ R) be a fertile sprout of order 5 with a
longest induced cycle C of length 6, then ST5 contains a fertile sprout ST′

5 of
type A6, C6, D6, or E6 (see Fig. 5).

As a last observation on sprouts one can see that the sprouts of type C6 are
also of type B6, and the sprouts of type D6 or E6 certainly contain type A6

sprouts. The complement of a C5 is again a C5, hence the family of meristems of
order 5 is exactly the family of sprouts of order 5. With these last observations
we can further reduce the number of obstructions to perfect linegraph squares
to the statement of our main result.

On Perfect Linegraph Squares 263

A6 B6

C6 D6 E6

Fig. 5. The sprouts of order 5 with a base cycle of length 6. Colours are chosen as in
Figs. 2 and 3. (Color figure online)

Theorem 24. Let G be a graph. Then L(G) 2 is perfect if and only if G does
not contain a cycle of length � ≥ 7, a fertile sprout of type A5, B5, or C5 (see
Fig. 4), a fertile sprout of type A6 (see Fig. 5), or a fertile meristem of order
n = 2k + 1 with k ≥ 3.

4 Conclusion (χ-Boundedness)

Theorem 24 states that the class of graphs with perfect linegraph squares
excludes induced cycles of length � ≥ 7. Similarly, if we exclude induced cycles
of certain length in the squared linegraph of a graph G, by Lemma 19 G itself
also excludes cycles of some length. Hence, if Cn is the class of graphs G such
that L(G) 2 does not contain an induced cycle of length � ≥ n, the graphs in C
also exclude cycles of length � ≥ n +

⌈
n
2

⌉
.

Something similar holds for graph classes excluding induced paths of a certain
length in their squared linegraphs, see Lemma 10. With Gyárfás’ Theorem on
classes excluding induced paths and the following theorem by Chudnovsky et al.
we are able to deduce the χ-boundedness of graph classes with certain excluded
induced subgraphs in their linegraph squares.

Theorem 25. (Chudnovsky et al. [5]). If Cn is a class excluding induced
cycles of length � ≥ n, Cn is χ-bounded.

Theorem 26. The following classes are χ-bounded: 1. the class Cchordal of
graphs with L(G) 2 chordal, 2. the class Cperfect of graphs with L(G) 2 perfect,
3. the class CPt

of graphs with L(G) 2 Pt-free, t ≥ 1, and 4. the class Cn of
graphs with L(G) 2 excluding induced cycles of length � ≥ n.

The families of forbidden induced subgraphs for all four of these classes con-
tain many more graphs than just cycles and paths of a certain length. In fact,
we forbid plantlets, sprouts or meristems in all of them, which have a far more
complicated structure.

264 M. Hatzel and S. Wiederrecht

Therefore, it might be possible to derive much better χ-bounding functions
for some of those classes than those provided by Theorem25 and Gyárfás’ The-
orem. This seems especially possible for classes like CP4 , which can be described
by a finite family of forbidden induced subgraphs as we saw in Theorem12.

References

1. Arputhamary, I.A., Mercy, M.H.: An analytical discourse on strong edge coloring
for interference-free channel assignment in interconnection networks. Wirel. Pers.
Commun. 94(4), 2081–2094 (2017)

2. Cameron, K.: Induced matchings. Discret. Appl. Math. 24(1–3), 97–102 (1989)
3. Cameron, K., Sritharan, R., Tang, Y.: Finding a maximum induced matching in

weakly chordal graphs. Discret. Math. 266(1–3), 133–142 (2003)
4. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect

graph theorem. Ann. Math. 164, 51–229 (2006)
5. Chudnovsky, M., Scott, A., Seymour, P.: Induced subgraphs of graphs with large

chromatic number. iii. long holes. Combinatorica 121, 1–16 (2016)
6. Diestel, R.: Graph Theory, vol. 5. Springer, Heildelberg (2010)
7. Duchet, P.: Classical perfect graphs: an introduction with emphasis on triangulated

and interval graphs. North-Holland Math. Stud. 88, 67–96 (1984)
8. Fiala, J., Golovach, P.A., Kratochv́ıl, J.: Parameterized complexity of coloring

problems: treewidth versus vertex cover. Theor. Comput. Sci. 412(23), 2513–2523
(2011)

9. Flotow, C.: Graphs whose powers are chordal and graphs whose powers are interval
graphs. J. Graph Theory 24(4), 323–330 (1997)

10. Gyárfás, A.: Problems from the world surrounding perfect graphs. Applicationes
Mathematicae 19(3–4), 413–441 (1987)

11. Janssen, J., Narayanan, L.: Approximation algorithms for channel assignment with
constraints. Theor. Comput. Sci. 262(1), 649–667 (2001)

12. Ko, C., Shepherd, F.: Adding an identity to a totally unimodular matrix (1994)
13. Lloyd, E.L., Ramanathan, S.: On the complexity of distance-2 coloring. In: Pro-

ceedings of the Fourth International Conference on Computing and Information,
ICCI 1992, pp. 71–74. IEEE (1992)

14. Mahdian, M.: On the computational complexity of strong edge coloring. Discret.
Appl. Math. 118(3), 239–248 (2002)

15. Nandagopal, T., Kim, T.E., Gao, X., Bharghavan, V.: Achieving MAC layer fair-
ness in wireless packet networks. In: Proceedings of the 6th Annual International
Conference on Mobile Computing and Networking, pp. 87–98. ACM (2000)

16. Ramanathan, S.: A unified framework and algorithm for (T/F/C) DMA chan-
nel assignment in wireless networks. In: INFOCOM 1997, Sixteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Driving the
Information Revolution, Proceedings IEEE, vol. 2, pp. 900–907. IEEE (1997)

17. Ramanathan, S., Lloyd, E.L.: Scheduling algorithms for multihop radio networks.
IEEE/ACM Trans. Netw. (TON) 1(2), 166–177 (1993)

18. Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs-a survey.
Graphs Combin. 20(1), 1–40 (2004)

On Perfect Linegraph Squares 265

19. Scheidweiler, R., Wiederrecht, S.: On chordal graph and line graph squares. Discret.
Appl. Math. 243, 239–247 (2018)

20. Seinsche, D.: On a property of the class of n-colorable graphs. J. Comb. Theory,
Ser. B 16(2), 191–193 (1974)

21. Stockmeyer, L.J., Vazirani, V.V.: NP-completeness of some generalizations of the
maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)

On Weak Isomorphism of Rooted
Vertex-Colored Graphs

Lars Jaffke(B) and Mateus de Oliveira Oliveira

University of Bergen, Bergen, Norway
{lars.jaffke,mateus.oliveira}@uib.no

Abstract. In this work we consider a notion of isomorphism of rooted
vertex-colored graphs which allows not only vertices, but also colors to
be permuted. Here, a prospective color permutation must be chosen from
a group specified at the input. We call this notion weak isomorphism. It
turns out that already for severely restricted classes of graphs, the cor-
responding weak graph isomorphism problem is as hard as the well
studied string isomorphism problem. Our main result states that weak
isomorphism can be solved in FPT time when simultaneously parame-
terized by three graph invariants: maximum degree, BFS color number,
and BFS width. Intuitively, the second parameter quantifies the number
of colors that cross a level of a breadth first search (BFS) tree of the cor-
responding graph. The third parameter is a width measure based on a
BFS-based decomposition introduced independently by Yamazaki et al.
[Algorithmica ’99] and by Chepoi and Dragan [Eur. J. Comb. ’00]. We
show that the resulting parameterized problem has close relations to the
notion of (strong) isomorphism of bounded color class hypergraphs. Our
algorithm can be used to solve the latter problem in FPT time. Another
consequence is that isomorphism of hypergraphs implicitly represented
by ordered decision diagrams (ODD’s) can be solved in FPT time if the
width of the involved ODD’s is an additional parameter.

Keywords: Weak Graph Isomorphism
Implicit hypergraph representation · Fixed-parameter tractability

1 Introduction

In the graph isomorphism problem (GI), we are given vertex-colored graphs
G and G′, each with n vertices, and the goal is to determine if there is a bijec-
tion between the vertex sets of G and G′ that preserves both adjacencies and
vertex-colors. It has been known for a long time that GI can be decided in time
2O(

√
n log n) [4]. In a recent work, Babai proposed an algorithm that improves

this upper bound to 2O(logk n) for some constant k [2].
From the perspective of parameterized algorithms [10], graph isomorphism

is solvable in time f(k) · nO(1) (that is, FPT time) whenever the parameter k

This work was supported by the Bergen Research Foundation.

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 266–278, 2018.
https://doi.org/10.1007/978-3-030-00256-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_22&domain=pdf
http://orcid.org/0000-0003-4856-5863
http://orcid.org/0000-0001-7798-7446

On Weak Isomorphism of Rooted Vertex-Colored Graphs 267

stands for eigenvalue multiplicity [3], treewidth [16], feedback vertex-set number
[15], or size of the largest color class [11] of the involved graphs. On the other
hand, GI can be solved in time f1(k) ·nf2(k) (that is, in XP time), whenever the
parameter k stands for genus [18], rankwidth [14], maximum degree [17], size of
an excluded topological subgraph [13] or size of an excluded minor [12].

We note that Babai’s recent breakthrough [2] does not immediately imply
an improvement on the running time of any of the parameterized algorithms
mentioned above. On the one hand, some of these parameterized algorithms,
such as those in [12–14,18], are obtained using techniques which are very distinct
from Luks’ group-theoretic framework, which is crucially employed in [2]. On the
other hand, the reduction to Johnson schemes, which is the central technique
introduced by Babai in [2] is only guaranteed to work when applied to groups
of order at least n1+log n, while the size of the primitive groups that arise as
the bottleneck for the running time of algorithms for bounded degree graph
isomorphism [17] and bounded color-class graph isomorphism [11] is bounded
by nf(k) where k is the parameter.

In this work we consider a relaxation of isomorphism of vertex-colored graphs
in which not only vertices, but also colors can be permuted. Here, a prospective
permutation of the set of colors must be chosen from a permutation group spec-
ified at the input. We call this notion weak isomorphism1 and the corresponding
decision problem Weak Graph Isomorphism (WGI). To avoid confusion, we
may call strong isomorphism the usual notion of isomorphism for colored graphs
(and hypergraphs), in which colors must be preserved.

It turns out that WGI for severely restricted classes of graphs, such as stars2

is as hard as the well studied String Isomorphism (SI) problem, and therefore
as hard as the Group Graph Isomorphism problem (GGI)3. Note that stars
are graphs of genus 0, treewidth 1, which have feedback vertex-set number 0
and that exclude triangles as minors and topological minors. Therefore, the
existence of XP algorithms for WGI when parameterized by the magnitude of
these invariants would imply that SI can be solved in polynomial time. Contrast
this with the fact that GI has been shown to be in FPT or in XP for each of
these parameters.

Main Result: Our main result (Theorem 3) is an algorithm that solves WGI on
rooted graphs in FPT time when the problem is simultaneously parameterized by
three invariants: maximum degree (d), BFS color number (α) and BFS width (β).
In other words, we show that this problem can be solved in time f(d, α, β) ·nO(1)

for some function f . While maximum degree does not require introduction, the

1 If one is allowed to permute the colors arbitrarily, according to the symmetric group
acting on the set of colors, then the corresponding isomorphism problem is sometimes
termed isomorphism of labeled graphs [8].

2 A star is a graph with a root r and n other vertices which are connected to r and
only to r.

3 SI was shown to be polynomially many-one equivalent to GGI in [4]. Nevertheless it
is a longstanding open problem to determine whether any of these problems can be
reduced to GI even via polynomial-time Turing reductions.

268 L. Jaffke and M. de Oliveira Oliveira

last two parameters are based on a breadth first search (BFS) of the graph
starting in its root. Intuitively, the BFS color number of a rooted graph quantifies
the number of colors that cross a level of such a BFS. The third parameter is a
width measure based a notion of BFS-decomposition introduced in two distinct
contexts by Yamazaki et al. [24] and by Chepoi and Dragan [9]. These parameters
will be properly defined in Sect. 2.

Hardness Results: It is worth noting that proving the existence of an FPT
algorithm for WGI in the case that either BFS color (α) number or BFS width
(β) is unbounded would solve major open problems in algorithmics. First, we
note that trees (and in particular stars) have BFS width 1. Therefore, by the
discussion above, WGI for graphs of BFS width 1 is as hard as SI. On the other
hand, WGI on graphs of BFS color number 1 is as hard as GI. Additionally, WGI
for bounded degree trees and for bounded degree graphs of BFS color number
1 is as hard as bounded degree graph isomorphism. This shows that developing
algorithms running in time f(d, α) ·ng(α) or running in time f(d, β) ·ng(β) would
imply that bounded degree graph isomorphism is in FPT, solving a major open
problem in the field of parameterized algorithmics [10, p. 680]. We refer to the
full version for proofs of the statements discussed in this paragraph.

Bounded Color Class Hypergraph Isomorphism: Weak isomorphism for
rooted graphs where the degree, BFS color number and BFS width are bounded
is intimately connected with strong isomorphism of bounded color class hyper-
graphs. In particular, we show that bounded color-class hypergraph isomorphism
is reducible in FPT time to weak isomorphism of rooted colored trees (BFS width
1), bounded degree and bounded BFS color number. In this sense, our main result
(Theorem 3) may be regarded as a generalization of an FPT algorithm due to
Arvind, Das, Köbler and Toda for bounded color class hypergraph isomorphism
parameterized by maximum color-class size [1].

Implicitly Represented Hypergraph Isomorphism: Considering weak iso-
morphism of rooted graphs of higher BFS width, we are able to address the
strong isomorphism problem for implicitly represented bounded color class hyper-
graphs containing an exponential number of hyperedges. A popular way of
implicitly representing graphs and hypergraphs of exponential size is via the
notion of ordered decision diagrams, or equivalently, via the notion of leveled
finite automata (LFA’s) [6,19]. Within this formalism, vertices and edges are
encoded as strings of symbols. Since LFA’s with poly(n) states may accept expo-
nentially many strings, such LFA’s can be used to represent graphs with exp(n)
edges. The goal then is to devise algorithms for computational problems on
graphs that operate directly on these implicit representations without ever hav-
ing to construct the underlying graph or hypergraph explicitly. Problems that
have been addressed from this symbolic perspective include All-Pairs Short-
est Paths [20], Minimum Spanning Tree [5], maximum matching [7] and
Topological Sorting [23]. In this work we use LFA’s to provide implicit rep-
resentations of bounded color class hypergraphs. Our main result in this respect
states that the problem of deciding strong isomorphism between bounded color

On Weak Isomorphism of Rooted Vertex-Colored Graphs 269

class hypergraphs H and H ′ represented by LFA’s A and A′ respectively can be
solved in time f(w, b) · |m|O(1) where w is the width of the input automata, m
is the number of color classes, and b is the size of the largest color class in the
graphs represented by A and A′ respectively.

Throughout the text, proofs of statements marked with ‘�’ are deferred to
the full version.

2 Problem Definition and Statement of the Main Result

Let Γ be a finite set of colors. A rooted Γ -colored graph is a tuple G = (V,E, γ, r)
where V is a set of vertices, E ⊆ (

V
2

)
is a set of undirected edges, γ : V → Γ is a

function that colors vertices in V with elements from Γ , and r is a special vertex
which is called the root of G. (For a formal explanation of the following group-
theoretic notions, see the beginning of Sect. 3.) Let R be a permutation group
on Γ . An R-weak isomorphism between rooted Γ -colored graphs G = (V,E, γ, r)
and G′ = (V ′, E′, γ′, r′) is a pair (ϕ,ψ) where ϕ : V → V ′ is a bijection between
V and V ′, and ψ is a permutation in R satisfying the following conditions.

(i) ϕ(r) = r′.
(ii) For each u, v ∈ V , {u, v} ∈ E if and only if {ϕ(u), ϕ(v)} ∈ E′.
(iii) For each v ∈ V , ψ(γ(v)) = γ′(ϕ(v)).

We refer to the computational problem of deciding whether two Γ -colored rooted
graphs are R-weakly isomorphic as Weak Isomorphism.

We observe that by setting ψ in the definition above to be the identity on Γ
we recover the traditional notion of isomorphism for vertex-colored graphs. In
this case, we say that the pair (ϕ,ψ) is a strong isomorphism.

We parameterize Weak Isomorphism for vertex-colored graphs with respect
to three parameters. The first is simply the maximum degree of the involved
graphs. The other two, the BFS color number and the BFS-width which we define
next, are based on a breadth first search (BFS) starting at the root vertex.

Let G = (V,E, γ, r) be a rooted Γ -colored graph. For each i ∈ {0, . . . , |V |},
we let BG(i) be the set of vertices of G at distance at most i from r, CG(i) be
the set of vertices of G at distance at least i from r, and SG(i) be the set of
vertices of G at distance precisely i from r.

BFS Color Number. The BFS color number of G, α(G), is defined as follows.

α(G) = max
i≥0

|γ(BG(i)) ∩ γ(CG(i))|.

In other words, α(G) is the maximum among all i ∈ {0, 1, . . . , |V |} of colors that
occur, at the same time, in some vertex at distance at most i from v and in some
vertex at distance at least i from v. For a given i, we call the set of such colors
the colors crossing level i.

BFS-Width. We now define the BFS-decomposition of a rooted graph, intro-
duced by Yamazaki et al. [24] in the study of graph isomorphism, and by Chepoi
and Dragan in the context of distance-approximating trees [9].

270 L. Jaffke and M. de Oliveira Oliveira

Definition 1 (BFS-decomposition). Let G be rooted graph with root r, and
let m be the maximum distance of any vertex in V (G) to r. For i ∈ [m], we say
that a set X ⊆ SG(i) is i-normal if for each pair u, u′ ∈ X, there is a path from
u to u′ that is contained in CG(i).

The BFS-decomposition of G is a pair (T,X) where T is a rooted tree and
X = {Xu}u∈V (T) is a family of subsets of vertices of G, called the bags, satisfying
the following properties.

(i) For each S ⊆ V (G), S = Xu for some u ∈ V (T) if and only if S is i-normal
for some i ∈ [m].

(ii) There is an edge (u, u′) ∈ E(T) if and only if there are vertices v ∈ Xu and
v′ ∈ Xu′ such that {v, v′} ∈ E(G).

The width of (T,X) is defined as maxt∈V (T) |Xt|.
We note that unlike other notions of graph decompositions, each rooted graph
G has a unique BFS-decomposition (T,X). Hence, we refer to the width of the
BFS-decomposition as the BFS-width of G. Note that the BFS-width of G is
simply the largest size of an i-normal set, over all i ∈ [m]. Chepoi and Dragan
observed that the BFS-decomposition of a rooted graph can be constructed in
time linear in the size of the input graph.

Proposition 2 ([9]). Let G be a rooted graph on n vertices and m edges. There
is an algorithm that computes the BFS-decomposition of G in time O(n + m).

Intuitively, the BFS-width of a rooted graph measures how close the oriented
graph induced by the ordering obtained from a BFS started in the root is to being
an outbranching tree. It is not difficult to see that a rooted graph has BFS-width
1 if and only if it is a rooted tree and that the clique on n vertices has BFS-width
n − 1. However, taking edge subgraphs can increase the BFS-width.

The notion of BFS width of a rooted graph G described above coincides with
the notion of rooted tree distance width defined in [24] in the special case in which
a single root is fixed4. A comparison between rooted tree distance width and some
well known width measures for graphs can be found in [24]. We compare BFS
width with some well known width measures in Fig. 1 and we refer to the full
version for the details. It is known [16] that strong isomorphism parameterized
by treewidth, and hence by BFS-width, can be solved in FPT time. However, an
fpt-algorithm for weak isomorphism parameterized by BFS-width would give a
polynomial-time algorithm for String Isomorphism. Hence we turn to a more
fine-grained parameterization.

Theorem 3 (Main Theorem). Let Γ be a finite set of colors and G and G′ be
rooted Γ -colored graphs with n vertices, maximum degree d, BFS color number α
and BFS-width β. Let R be a subgroup of Sym(Γ) specified by a generating set of

4 The work [24] also considers the setting in which several roots are fixed. They showed
that graph isomorphism is solvable in XP time in the number of fixed roots.

On Weak Isomorphism of Rooted Vertex-Colored Graphs 271

BFS-width

Pathwidth

TreewidthBranchwidth

Carving Width

Fig. 1. Relationship between BFS-width and some well-known graph width measures.
An arrow A → B translates to ‘if A is bounded, then B is bounded’ and an arrow
A �→ B means that there are graphs where A is bounded and B is unbounded.

size5 |Γ |2. Then, for some function f , one can determine in time f(d, α, β)·nO(1)

whether G and G′ are R-weakly isomorphic.

3 FPT-Algorithm for Weak Isomorphism

This section is devoted to the proof of Theorem 3. Before we proceed, we review
some key standard group-theoretic concepts (see e.g. [21]), and set some notation
concerning rooted trees.

Group-Theoretic Background. Let Ω be a finite set. A permutation π : Ω →
Ω is a bijection from Ω to itself. We denote by Sym(Ω) the symmetric group
on Ω, i.e. the group of all permutations of Ω with function composition. We
use the shorthand Sn for Sym([n]). For two groups G and H, we denote by
H � G that H is a subgroup of G. For each subgroup H of G and each element
r ∈ G, we say that Hr = {hr | h ∈ H} is a (right) coset of H in G. We say
that r is a coset representative of the set Hr. A group G � Sym(Ω) is called a
permutation group on Ω. For a set Δ ⊆ Ω, we denote by Stab(G,Δ) the pointwise
stabilizer subgroup of Δ in G, i.e. the subgroup of G that fixes each element in
Δ. For an element ω ∈ Ω, we use the shorthand Stab(G,ω) for Stab(G, {ω}).
We furthermore denote by SetStab(G,Δ), the setwise stabilizer of Δ in G.

Let G be a group and Ω a finite set. An action of G on Ω is a homomorphism
ϕ : G → Sym(Ω) and we say that G acts on Ω via ϕ. Suppose G acts on Ω via ϕ
and let ω ∈ Ω and g ∈ G. For notational convenience, we denote by ωg ∈ Ω the
element ϕ(g)(ω), i.e. the element of Ω to which ω is mapped by the permutation
ϕ(g). For an element ω ∈ Ω, we call the set ωG ..= {ωg | g ∈ G} the orbit of ω.
We remark that the set of orbits forms a partition of Ω.

A set of permutations S ⊆ Sym(Ω) is a generating set for a permutation
group G, if G is the smallest subgroup of Sym(Ω) containing S and we write
G = 〈S〉 to denote that G is generated by S.

Theorem 4 ([22]). Let G � Sn given by a set of t generators. There is an
algorithm that computes a generating set for G of size at most n2 in time O(t·n2).

For a permutation π ∈ Sym(Ω) and a set Δ ⊆ Ω, we denote by Δπ the set {ωπ |
ω ∈ Δ}. For a set of permutations P ⊆ Sym(Ω), we let PΔ = {π ∈ P | Δπ = Δ}.
5 By Theorem 4 one may assume that the input generating set has at most |Γ |2 ele-

ments.

272 L. Jaffke and M. de Oliveira Oliveira

Δ is called P -stable if PΔ = P . Let b be a positive integer. A permutation group
G � Sym(Ω) is called b-bounded if Ω can be partitioned into Ω = Ω1 ∪̇ · · · ∪̇ Ωr

such that for each i ∈ [r], |Ωi| ≤ b and Ωi is G-stable.
An important tool in the algorithms presented in this section is an FPT-

algorithm due to Arvind et al. [1] for the following problem: Given two groups
G,H � Sym(Ω) such that 〈G ∪ H〉 is b-bounded, and two permutations x, y ∈
Sym(Ω), compute a set of generators and a representative for the coset Gx∩Hy
(if nonempty). This problem is called Colored Coset Intersection.

Theorem 5 (Theorem 4 in [1]). There is an algorithm that solves Colored
Coset Intersection in time O(17bn9 + sn5) where n = |Ω| and s is the size
of the generating sets for G and H.

We will also need the following lemma which is well known in the computational
group theory literature. A proof of this lemma can be found in [1].

Lemma 6. Let Hi = 〈Si〉, 1 ≤ i ≤ t, be subgroups of Sym(Ω) given by generat-
ing sets Si, and yi, 1 ≤ i ≤ t, be permutations in Sym(Ω) such that

⋃t
i=1 Hiyi

is a coset Hy of some subgroup H of Sym(Ω). Then Hy = 〈S〉y1, where
S = ∪t

i=1Si ∪ {yiy
−1
1 | 1 ≤ i ≤ t}.

Rooted Trees. Let T be a rooted tree. The depth of a vertex v ∈ V (T) is
defined as the distance between v and the root of T . The height of v is defined
as the minimum distance between v and some leaf of T plus one. In particular,
each leaf of T has height one. If e is an edge in E(T), then we let t(e) be the
vertex in e which is closest from the root of T , and b(e) be the vertex in e that
is closest to a leaf of T . The depth of e is defined as the depth of t(e), while the
height of e is defined as the height of b(e). If u and u′ are vertices in V (T), then
we say that u is a child of u′ if there exists an edge e ∈ E(T) such that u = b(e)
and u′ = t(e). For each vertex u ∈ V (T) we let Tu denote the subtree of T
rooted at u. Analogously, for each edge e ∈ E(T) we let T e denote the subtree
of T rooted at e. More precisely, T e is the minimal subtree of T that contains
the subtree T b(e), the vertex t(e), and the edge e.

Proof of Theorem 3. Let G be a rooted Γ -colored graph of BFS color number
α and BFS width β, and let (T,X) be the unique BFS decomposition of G. For
each vertex u ∈ V (T) we let G(u) ..= G[Xu] be the Γ -colored subgraph of G

induced by Xu, and Ĝ(u) ..= G[
⋃

u′∈V (Tu) Xu′] be the Γ -colored subgraph of G
induced by the vertices occurring in bags of the tree Tu. Analogously, for each
edge e ∈ V (T) we let G(e) ..= G[Xt(e) ∪ Xb(e)] and Ĝ(e) ..= G[

⋃
u′∈V (T e) Xu′].

Let m be the depth of the tree T . For each i ∈ {0, . . . , m}, let Γi be the set
of colors crossing level i, Li = SetStab(Sym(Γ), Γi) be the set of permutations
in Sym(Γ) that map colors in Γi to colors in Γi, and let Ri = R∩Li. Finally, we
let R̂ = R ∩ ⋂m

j=0 Lj . We note that for any root preserving weak isomorphism
(ϕ,ψ) from T1 to T2, ψ must necessarily belong to R̂. Furthremore, since for
each i ∈ [m], |Γi| ≤ α, R̂ is α-bounded.

On Weak Isomorphism of Rooted Vertex-Colored Graphs 273

We say that two vertices u and u′ in V (T) are matchable if they have the same
number of children, the same depth and the same height. We say that two edges
e and e′ in E(T) are matchable if the vertices b(e) and b(e′) are matchable. If u
is matchable to u′ then we let Iso(u, u′) be the set of weak isomorphisms from
G(u) to G(u′), and Îso(u, u′) the set of all level-preserving6 weak isomorphisms
from Ĝ(u) to Ĝ(u′). Analogously, if e and e′ are matchable edges in T , then we
let Iso(e, e′) be the set of weak isomorphisms from G(e) to G(e′), and Îso(e, e′)
the set of weak isomorphisms from Ĝ(e) to Ĝ(e′). Note that for each u ∈ V (T)
and e ∈ E(T), Îso(u, u) and Îso(e, e) are the sets of weak automorphisms of
Ĝ(u) and Ĝ(e) respectively. In particular, Ĝ(r) is the group of root preserving
weak automorphisms of G.

For each pair u and u′ of matchable vertices of T , and for each weak isomor-
phism (ϕ,ψ) of G(u) to G(u′), we define the following sets.

Π(u, u′, ϕ, ψ) ..=
{

Ψ ∈ R̂ | ψ = Ψ |V (G(u))

}

Π̂(u, u′, ϕ, ψ) ..=
{

Ψ ∈ R̂ | ∃(ϕ̂, ψ̂) ∈ Îso(u, u′), ϕ = ϕ̂|V (G(u)),

ψ = Ψ |V (G(u)), ψ̂ = Ψ |V (̂G(u))

}

Intuitively, the set Π(u, u′, ϕ, ψ) is the set of all color permutations in R̂ that
are compatible with the coloring ψ and Π̂(u, u′, ϕ, ψ) is the set of all colorings
in R̂ that are compatible with the coloring ψ̂ of some weak isomorphism (ϕ̂, ψ̂)
of Îso(u, u′) that extends (ϕ,ψ). Going further, we define the following sets.

Π(u, u′) ..=
⋃

(ϕ,ψ)∈Iso(u,u′)
Π(u, u′, ϕ, ψ)

Π̂(u, u′) ..=
⋃

(ϕ,ψ)∈Iso(u,u′)
Π̂(u, u′, ϕ, ψ)

Intuitively, Π(u, u′) (resp. Π̂(u, u′)) is the set of colorings in R̂ that extend the
coloring of some weak isomorphism from G(u) to G(u′) (resp. from Ĝ(u) to
Ĝ(u′)). If e, e′ are matchable edges of T and (ϕ,ψ) ∈ Iso(e, e′) then we define
the sets Π(e, e′, ϕ, ψ), Π̂(e, e′, ϕ, ψ), Π(e, e′), Π̂(e, e′) analogously.

Observation 7. Let u and u′ be a pair of matchable vertices of T . Then there
is a weak isomorphism from Ĝ(u) to Ĝ(u′) if and only if Π̂(u, u′) is non-empty.

The following lemma, which is the main technical result of this section, pro-
vides us with an efficient way of deciding whether Π̂(u, u′) �= ∅ for any given
pair of matchable vertices u and u′.

Lemma 8. Let x and x′ be either a pair of matchable vertices or a pair of
matchable edges of T . Let (ϕ,ψ) be a weak isomorphism in Iso(x, x′). Then
the set Π̂(x, x′, ϕ, ψ) is either empty or a coset of some subgroup Π̂(x, ψ) of
6 Level preserving means that vertices at level i are mapped to vertices at level i.

274 L. Jaffke and M. de Oliveira Oliveira

R̂. Furthermore in the second case, a generator set for the group Π̂(x, ψ) and
a coset representative Ψ(x, x′, ϕ, ψ) for Π̂(x, x′, ϕ, ψ) can be computed in time
f(d, α, β) · nO(1) for some computable function f .

Proof. We prove the lemma by induction on the height of the pair x, x′.

Base Case: In the base case, both u and u′ are leaves of T . For each
(ϕ,ψ) ∈ Iso(u, u′), let X denote the domain of ψ and Ψ(u, u′, ϕ, ψ) ∈ R̂ be
any permutation such that Ψ(u, u′, ϕ, ψ)|X = ψ. We then have that

Π̂(u, u′, ϕ, ψ) = Π(u, u′, ϕ, ψ) = Stab(R̂,X)Ψ(u, u′, ϕ, ψ).

It follows that we can use Stab(R̂,X) as Π̂(x, ψ) for which we can compute a
generating set of size at most |Γ |2 in polynomial time using standard methods.

Inductive Step for Edges: Now let e ∈ E(T) and e′ ∈ E(T) be matchable
edges of height h and let (ϕ,ψ) be a weak isomorphism in Iso(e, e′). Assume
that generators for Π̂(u, ·) have been computed for every vertex u of height at
most h and that Ψ(u, u′, ϕ′, ψ′) has been computed for every pair of matchable
vertices u, u′ of height at most h, and every (ϕ′, ψ′) ∈ Iso(u, u′).

Let u ..= b(e) and u′ ..= b(e′). Furthermore, let X denote the domain of
ψ, then we have that Π(e, e′, ϕ, ψ) = Stab(R̂,X)Ψ where Ψ ∈ R̂ is such that
Ψ |X = ψ. Let ϕu

..= ϕ|V (G(u)) and ψu
..= ψ|V (G(u)) be the restrictions of ϕ and

ψ, respectively, to V (G(u)). Then,

Π̂(e, e′, ϕ, ψ) = Π̂(u, u′, ϕu, ψu) ∩ Π(e, e′, ϕ, ψ).

Since Π̂(u, u′, ϕu, ψu) and Π(e, e′, ϕ, ψ) are cosets of subgroups of R̂ (which is
α-bounded), we can apply the algorithm of Theorem5 to compute Π̂(e, e′, ϕ, ψ)
in time 17α ·|Γ |O(1). The output of the algorithm of Theorem5 (if nonempty) is a
coset, given by a set of |Γ |2 generators for the corresponding subgroup of R̂ and
a coset representative which we use as Π̂(e, ψ) and Ψ(e, e′, ϕ, ψ), respectively.

Inductive Step for Vertices: Now suppose that u and u′ are matchable non-
leaf vertices of height h + 1 and let (ϕ,ψ) be a weak isomorphism in Iso(u, u′).
Suppose the node u has degree d∗, and note that d∗ ≤ d · β. (The max. degree
of the BFS-decomposition is at most the max. degree of the underlying graph
times the width.) Since u and u′ are matchable, we know that u′ has degree d∗ as
well. Let u1, . . . , ud∗ and u′

1, . . . , u
′
d∗ be the children of u and u′ respectively, and

e1 = {u, u1}, . . . , ed∗ = {u, ud∗} and e′
1 = {u′, u′

1}, . . . , e′
d∗ = {u, u′

d∗} be the cor-
responding edges. Assume that for every pair of matchable edges e, e′ of height at
most h and every weak isomorphism (ϕ′, ψ′) ∈ Iso(e, e′), the coset Π̂(e, e′, ϕ′, ψ′)
has been computed. We show how to compute Π̂(u, u′, ϕ, ψ). (Keeping in mind
that (ϕ,ψ) ∈ Iso(u, u′)) for a pair of edges ei, e′

j as above, we define

Π̂(ϕ,ψ)(ei, e
′
j) ..=

{
Ψ ∈ Π̂(ei, e

′
j , ϕ

′, ψ′)
∣
∣
∣ (ϕ′, ψ′)|V (G(u)) = (ϕ,ψ)

}
.

On Weak Isomorphism of Rooted Vertex-Colored Graphs 275

Hence, Π̂(ϕ,ψ)(ei, e
′
j) is a subset of Π̂(ei, e

′
j) where we restrict the indexing weak

isomorphisms in Iso(ei, e
′
j) to act on V (G(u)) in the same way as (ϕ,ψ). Suppose

ψ̂ ∈ Π̂(u, u′, ϕ, ψ) and let ϕ̂ : V (Ĝ(u)) → V (Ĝ(u′)) be a bijection such that

(i) ϕ̂|V (G(u)) = ϕ (while we already have that ψ̂|V (G(u)) = ψ),
(ii) (ϕ̂, ψ̂) is a weak isomorphism from Ĝ(u) to Ĝ(u′).

Then ϕ̂ induces a permutation τ ∈ Sd∗ from the children of u to the children
of u′ (depending on where the corresponding vertices are mapped), and we have
that ψ̂ belongs to the intersection

⋂
j∈[d∗] Π̂(ϕ,ψ)(ej , e

′
τ(j)), implying that

Π̂(u, u′, ϕ, ψ) ⊆
⋃

τ∈Sd∗

⋂

j∈[d∗]
Π̂(ϕ,ψ)(ej , e

′
τ(j)).

For the converse direction, suppose that ψ̂ ∈ ⋃
τ∈Sd∗

⋂
j∈[d∗] Π̂(ϕ,ψ)(ej , e

′
τ(j)).

This means that there is a permutation τ ∈ Sd∗ from the children of u to the
children of u′ such that for each j ∈ [d∗], ψ̂ ∈ Π̂(ϕ,ψ)(ej , e

′
τ(j)).

We can conclude that there is a bijection ϕ̂ : V (Ĝ(u)) → V (Ĝ(u′)) such
that (ϕ̂, ψ̂) satisfies (i) and (iii) above. In particular the definitions guarantee
the existence of weak isomorphisms (ϕ̂j , ψ̂j) from Ĝ(ej) to Ĝ(eτ(j)) such that
(ϕ̂j , ψ̂j) acts in the same way as (ϕ,ψ) on V (G(u)) for all j ∈ [d∗]. Hence,

Π̂(u, u′, ϕ, ψ) =
⋃

τ∈Sd∗

⋂

j∈[d∗]
Π̂(ϕ,ψ)(ej , e

′
τ(j)).

For each pair of edges ei, e′
j as above, we can compute the coset Π̂(ϕ,ψ)(ei, e

′
j)

using Lemma 6 a number of times that only depends on α and β. Again since all
Π̂(ϕ,ψ)(ei, e

′
j) are cosets of subgroups of R̂, Π̂(u, u′, ϕ, ψ) can be computed using

2O(d∗ log d∗) calls to the algorithm of Theorem 5 taking in total FPT in d+α+β
time. We use Lemma 6 at most d∗! times to compute the union over all τ ∈ Sd∗ .
So, the algorithm takes time f(d, α, β) · nO(1) for some computable f . ��

Isomorphism Construction: Now, to finalize the proof of Theorem3 we need
to show how Lemma 8 can be used to compute a weak isomorphism between
rooted Γ -colored graphs H and H ′. Let r be the root of H and r′ the root
of H ′. Let G be the graph obtained by taking the disjoint union of H with
H ′, creating a new root r′′, and adding new edges {r′′, r} and {r′′, r′}. Then
in the tree T of the BFS-decomposition (T,X) of G, the root vertex v has two
children u and u′ with Xu = {r} and Xu′ = {r′}. Furthermore, Ĝ(u) = H and
Ĝ(u′) = H ′. Therefore, we have a weak isomorphism from H to H ′ if and only if
Π̂(u, u′, ϕ, ψ) is non-empty for some weak isomorphism (ϕ,ψ) ∈ Iso(u, u′) which
can be decided in time f(d, α, β) · nO(1) by Lemma 8.

Now suppose that Π̂(u, u′, ϕ, ψ) is not empty, and let Ψ ∈ Π̂(u, u′, ϕ, ψ).
Then there exists a mapping Φ : V (H) → V (H ′) such that (Φ, Ψ) is a weak
isomorphism from H to H ′. We explain how to determine such a mapping Φ.
Note that it is sufficient to determine Φ for each bag in Tu. For the vertices in

276 L. Jaffke and M. de Oliveira Oliveira

Xu, we can use Φ|Xu
= ϕ. Let u1, . . . ud∗ be the children of u and u′

1, . . . , u
′
d∗ the

children of u′. Then (as used in our algorithm) there is a permutation τ ∈ Sd∗

such that for each i ∈ [d∗], Ψ ∈ Π̂(ui, u
′
τ(i), ϕi, ψi) for some weak isomorphism

(ϕi, ψi) from G(ui) to G(u′
τ(i)) (with Ψ |Xui

= ψi). To determine τ and all ϕi’s,
we look up a number of table entries that only depends on d, α and β. For each
i ∈ [d∗], we let Φ|Xui

= ϕi. We continue this process inductively until we reached
the leaves of T and hence have determined Φ on all vertices of H. Clearly, this
reconstruction process also takes time f(d, α, β) · nO(1).

4 Bounded Color Class Hypergraph Isomorphism

In this section we show that weak isomorphism for rooted graphs of simultane-
ously bounded degree, BFS number and BFS width is intimately connected with
the notion of strong isomorphism for bounded color class hypergraphs.

We now show that the algorithm of Theorem3 can be used to solve strong
isomorphism of colored hypergraphs. A colored hypergraph is a hypergraph with
a partition of its vertex set the blocks of which we call the color classes. In the
corresponding Bounded Color Class Hypergraph Isomorphism problem
we are given two colored hypergraphs and the question is whether there is a
color-class preserving isomorphism from one to the other. The parameter in this
problem is the maximum size of any color class in the input hypergraphs.

Proposition 9 (�). Bounded Color Class Hypergraph Isomorphism
can be reduced in time mO(1) to Weak Isomorphism of colored trees of bounded
degree and bounded BFS color number, where m denotes the size of the input
hypergraphs.

We now address the question of determining whether two hypergraphs implic-
itly represented by leveled finite automata (LFA, formally defined below) are
isomorphic. We note that a set of strings can be represented by an LFA if and
only if it can be represented by an ordered decision diagram of similar size.

For each set X we let P(X) be the set of all subsets of X. Let H be a
hypergraph with color classes C1, . . . , Cn, each of size at most b. A hyperedge
in H may be represented as a sequence h = X1X2 . . . Xn where for each i ∈ [n],
Xi ⊆ Ci. Fixing a numbering on the vertices in each Ci, we can then represent
a hyperedge as a string of length n over the alphabet Σb

..= P([b]). This way,
a hypergraph with n color classes and color class size b can be represented by
an LFA A over Σb, such that the set of hyperedges of H corresponds to the
language L(A).

Let Σ be a finite set of symbols. A leveled finite automaton (LFA) over
Σ is a tuple A = (Q,Σ,R, I, F) where Q is a set of states with parti-
tion Q0, Q1, . . . , Qn, I ⊆ Q is a set of initial states, F ⊆ Q is a set of
final states, and R ⊆ ⋃

i∈[n] Qi−1 × Σ × Qi is a transition relation. We
say that A accepts a string w1w2 . . . wn ∈ Σ∗ if there exists a sequence
(q0, w1, q1)(q1, w2, q2) . . . (qn−1, wn, qn) of transitions in R such that q0 ∈ I and

On Weak Isomorphism of Rooted Vertex-Colored Graphs 277

qn ∈ F . We denote by L(A) the set of all strings accepted by A. We say that n
is the length of A. The width of A is defined as w(A) = maxn≤i≤n |Qi|. LFA’s
can only represent finite languages, but the number of strings in these languages
may be exponential in n.

Theorem 10 (�). Let H and H ′ be hypergraphs with n color classes and color
class size b. Let A and A′ be LFA’s of width w and length n over Σb representing
H and H ′ respectively. Then one can determine in time f(w, b) · nO(1) whether
H is isomorphic to H ′.

Acknowledgements. We would like to thank Daniel Lokshtanov for helpful discus-
sions and Laszlo Babai for clarifying many aspects of his algorithm during a workshop
on Symmetry in Finite and Infinite Structures.

References

1. Arvind, V., Das, B., Köbler, J., Toda, S.: Colored hypergraph isomorphism is fixed
parameter tractable. Algorithmica 71, 120–138 (2015)

2. Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In:
STOC, pp. 684–697. ACM (2016)

3. Babai, L., Grigoryev, D.Y., Mount, D.M.: Isomorphism of graphs with bounded
eigenvalue multiplicity. In: STOC, pp. 310–324. ACM (1982)

4. Babai, L., Kantor, W.M., Luks, E.M.: Computational complexity and the classifi-
cation of finite simple groups. In: FOCS, pp. 162–171. IEEE (1983)

5. Bollig, B.: On symbolic obdd-based algorithms for the minimum spanning tree
problem. Theor. Comput. Sci. 447, 2–12 (2012)

6. Bollig, B., Bury, M.: On the OBDD representation of some graph classes. Discret.
Appl. Math. 214, 34–53 (2016)

7. Bollig, B., Pröger, T.: On efficient implicit obdd-based algorithms for maximal
matchings. Inf. Comput. 239, 29–43 (2014)

8. Booth, K.S., Colbourn, C.J.: Problems polynomially equivalent to graph isomor-
phism. Computer Science Department, Univ. Waterloo (1979)

9. Chepoi, V., Dragan, F.: A note on distance approximating trees in graphs. Eur. J.
Combin. 21(6), 761–766 (2000)

10. Downey, R.G., Fellows, M.R.: Fundamentals of Paramterized Complexity. Springer,
London (2013). https://doi.org/10.1007/978-1-4471-5559-1

11. Furst, M., Hopcroft, J., Luks, E.: Polynomial-time algorithms for permutation
groups. In: FOCS, pp. 36–41. IEEE (1980)

12. Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded
minors. J. ACM 59(5), 27 (2012)

13. Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. SIAM J. Comp. 44(1), 114–159 (2015)

14. Grohe, M., Schweitzer, P.: Isomorphism testing for graphs of bounded rank width.
In: FOCS, pp. 1010–1029. IEEE (2015)

15. Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set
number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13731-0 9

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-3-642-13731-0_9

278 L. Jaffke and M. de Oliveira Oliveira

16. Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. In:
FOCS, pp. 186–195. IEEE (2014)

17. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci. 25(1), 42–65 (1982)

18. Miller, G.: Isomorphism testing for graphs of bounded genus. In: STOC, pp. 225–
235. ACM (1980)

19. Nunkesser, R., Woelfel, P.: Representation of graphs by OBDDs. In: Deng, X., Du,
D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1132–1142. Springer, Heidelberg
(2005). https://doi.org/10.1007/11602613 112

20. Sawitzki, D.: A symbolic approach to the all-pairs shortest-paths problem. In:
Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp.
154–167. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-
0 13

21. Seress, A.: Permutation Group Algorithms. Cambridge University Press, Cam-
bridge (2003)

22. Sims, C.C.: Computational methods in the study of permutation groups. In: Com-
putational Problems in Abstract Algebra, pp. 169–183 (1970)

23. Woelfel, P.: Symbolic topological sorting with OBDDs. J. Discret. Algorithms 4(1),
51–71 (2006)

24. Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for
graphs of bounded distance width. Algorithmica 24(2), 105–127 (1999)

https://doi.org/10.1007/11602613_112
https://doi.org/10.1007/978-3-540-30559-0_13
https://doi.org/10.1007/978-3-540-30559-0_13

Connected Vertex Cover
for (sP1 + P5)-Free Graphs

Matthew Johnson, Giacomo Paesani(B), and Daniël Paulusma

Department of Computer Science, Durham University, Durham, UK
{matthew.johnson2,giacomo.paesani,daniel.paulusma}@durham.ac.uk

Abstract. The Connected Vertex Cover problem is to decide if a
graph G has a vertex cover of size at most k that induces a connected
subgraph of G. This is a well-studied problem, known to be NP-complete
for restricted graph classes, and, in particular, for H-free graphs if H is
not a linear forest. On the other hand, the problem is known to be
polynomial-time solvable for sP2-free graphs for any integer s ≥ 1. We
prove that it is also polynomial-time solvable for (sP1 + P5)-free graphs
for every integer s ≥ 0.

1 Introduction

A set S of vertices in a graph G forms a vertex cover of G if every edge of G is
incident with a vertex of S. The set S is an independent set if no two vertices in S
are adjacent. These definitions lead to two classical graph problems, which are
both NP-complete: the Vertex Cover problem is to decide if a given graph G
has a vertex cover of size at most k for a given integer k; the Independent Set
problem is to decide if a given graph G has an independent set of size at least �
for a given integer �. A set S of at least k vertices of a graph G on n vertices is
a vertex cover if and only if VG \S is an independent set (of size at most n− k).
Hence Vertex Cover and Independent Set are polynomially equivalent. A
vertex cover of a graph G is connected if it induces a connected subgraph of G.
In our paper, we focus on the corresponding decision problem.

Connected Vertex Cover
Instance: a graph G and an integer k.
Question: does G have a connected vertex cover S with |S| ≤ k?

In 1977, Garey and Johnson [9] proved that Connected Vertex Cover is NP-
complete for planar graphs of maximum degree 4. More recently, Priyadarsini
and Hemalatha [18] and Fernau and Manlove [8] strengthened this result to 2-
connected planar graphs of maximum degree 4 and planar bipartite graphs of
maximum degree 4, respectively. Wanatabe et al. [22] proved that Connected
Vertex Cover is NP-complete even for 3-connected graphs. Very recently,

This work was supported by The Leverhulme Trust (Grant RPG-2016-258).

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 279–291, 2018.
https://doi.org/10.1007/978-3-030-00256-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_23&domain=pdf

280 M. Johnson et al.

Munaro [16] proved the same for line graphs of planar cubic bipartite graphs and
for planar bipartite graphs of arbitrarily large girth, and Li et al. [13] showed
NP-completeness for 4-regular graphs.

We now turn to tractable cases. Ueno et al. [21] proved that Connected
Vertex Cover is polynomial-time solvable for graphs of maximum degree at
most 3. Escoffier et al. [7] proved the same result for chordal graphs. As Vertex
Cover is also polynomial-time solvable for chordal graphs [10], the authors of [7]
proposed a general study on the complexity of Connected Vertex Cover on
graph classes for which Vertex Cover is polynomial-time solvable. This leads
us to the research question of our paper:
For which classes of graphs do the complexities of Vertex Cover and Con-
nected Vertex Cover coincide?
This question was addressed by Chiarelli et al. [6] who considered classes of
graphs characterized by a single forbidden induced subgraph H. Such graphs
are called H-free. They observed that the results of Munaro [16] imply that
Connected Vertex Cover is NP-complete for H-free graphs if H contains
a cycle or a claw. Using Poljak’s construction [17], Vertex Cover is readily
seen to be NP-complete for graphs of arbitrarily large girth and thus for H-
free graphs whenever H contains a cycle. When H is the claw, Vertex Cover
becomes polynomial-time solvable for H-free graphs [15,20]. Hence, there exist
graphs H such that Connected Vertex Cover and Vertex Cover have
different complexities when restricted to H-free graphs (assuming P �= NP).

So the complexity of Connected Vertex Cover is known for H-free
graphs unless H is a linear forest (the disjoint union of one or more paths).
Even the case where H is a single path on r vertices (denoted Pr) is settled nei-
ther for Vertex Cover nor for Connected Vertex Cover; it is not known
if there exists an integer r such that Vertex Cover or Connected Vertex
Cover is NP-complete for Pr-free graphs. Lokshtanov et al. [14] proved that
Independent Set, and thus Vertex Cover, is polynomial-time solvable for
P5-free graphs. Recently, Grzesik et al. [11] extended this to P6-free graphs. We
also note that if Vertex Cover is polynomial-time solvable on H-free graphs
for some graph H, then it is polynomial-time solvable on (P1 + H)-free graphs.
This follows from the folklore observation that to solve the complementary prob-
lem of Independent Set on a (P1 + H)-free graph one solves the problem on
each H-free graph obtained by removing a vertex and all its neighbours.

Theorem 1 ([11]). For every s ≥ 0, Vertex Cover can be solved in polyno-
mial time for (sP1 + P6)-free graphs.

By using the concept of the price of connectivity [3,5,12], Chiarelli et al. [6]
proved that Connected Vertex Cover is polynomial-time solvable for sP2-
free graphs for any integer s ≥ 1. For Vertex Cover this follows by combining
two classical results [2,19] (as is well-known). No other complexity results are
known for Connected Vertex Cover for H-free graphs if H is a linear forest.

Connected Vertex Cover for (sP1 + P5)-Free Graphs 281

Our Contribution. We continue the study of [6,7] and prove the following
result, which includes polynomial-time solvability for P5-free graphs.

Theorem 2. For every s ≥ 0, Connected Vertex Cover can be solved in
polynomial time for (sP1 + P5)-free graphs.

Our Method. It is easy to construct graphs with a minimum connected vertex
cover that do not contain a minimum vertex cover; see the graph G1 in Fig. 1. We
also note that the difference between a minimum vertex cover and a minimum
connected vertex cover in an (sP1 + P5)- free graph is at most 3 if s = 0 and at
most 3s+10 if s ≥ 1 [12]. We cannot exploit this property directly as that would
require an algorithm to enumerate all minimum vertex covers in polynomial
time. Moreover, the graph G2 in Fig. 1 shows that even if this were possible, it is
not immediately obvious how to proceed; one cannot necessarily hope to find a
minimum connected vertex cover by extending a minimum vertex cover. As an
extra complication, for Connected Vertex Cover one cannot extend results
on H-free graphs to results on (sP1 + H)-free graphs in a straightforward way
(certainly one cannot use the technique for Vertex Cover described before
Theorem 1).

Our method is based on an analysis of the structure of dominating sets in
(sP1 + P5)-free graphs using a characterization of P5-free graphs due to Bacsó
and Tuza [1]. We translate the problem into a problem in which we try to extend
a partial vertex cover into a full connected vertex cover. We solve this extension
variant of Connected Vertex Cover by using Theorem1 (applied to the
smaller class of (sP1 + P5)-free graphs). We show how to do this in Sect. 3 and
then show how to use this result to prove Theorem 2 in Sect. 4. An important
ingredient of our proof is to reduce the size of the input graph by contracting
an edge between two vertices u and v whenever we detect that u and v will
belong to the connected vertex cover. This idea stems from the observation that
a connected graph G on n vertices has a connected vertex cover of size k if and
only if G contains the star K1,n−k on n − k + 1 vertices as a contraction.

2 Preliminaries

Let G = (V,E) be a graph. For a set S ⊆ V , the graph G[S] denotes the subgraph
of G induced by S, and we say that S is connected if G[S] is connected. We write
G − S = G[V \ S], and if S = {u} we may simply write G − u. For a vertex
u ∈ V , we write NG(u) = {v | uv ∈ E} to denote the neighbourhood of u.
For a set S ⊆ V , we write NG(S) = (

⋃
u∈S NG(u)) \ S. A subset D ⊆ V is a

dominating set of G if every vertex of V \ D is adjacent to at least one vertex of
D. An edge uv of a graph G = (V,E) is dominating if {u, v} is dominating. The
contraction of an edge uv ∈ E is the operation that replaces u and v by a new
vertex adjacent to precisely those vertices of V \ {u, v} adjacent to u or v in G.
Recall that for a graph H, we say that another graph G is H-free if it does not
contain an induced subgraph isomorphic to H. The disjoint union G+H of two

282 M. Johnson et al.

Fig. 1. An example of a P5-free graph G1 with a minimum connected vertex cover
(coloured black in the right-hand drawing) that contains no minimum vertex cover
(there are exactly two, indicated by the sets of black and white vertices in the left-
hand drawing). The graph G2 is an example of a (P1 +P5)-free graph with a minimum
vertex cover (coloured black in the left hand drawing) that is not contained in any
minimum connected vertex cover; clearly any connected vertex cover that contains it
has at least five vertices and an example of a minimum connected vertex cover on four
vertices is indicated by the vertices coloured black in the right-hand drawing.

vertex-disjoint graphs G and H is the graph (VG ∪ VH , EG ∪ EH). The disjoint
union of r copies of a graph G is denoted by rG. A linear forest is the disjoint
union of one or more paths. The following, straightforward lemma holds for any
linear forest.

Lemma 1. Let G be a connected (sP1+P5)-free graph for some s ≥ 0. The graph
obtained from G after contracting an edge is also connected and (sP1 +P5)-free.

We will use the following result of Bacsó and Tuza [1] as a lemma.

Lemma 2. ([1]). Every connected P5-free graph G has a dominating set D,
computable in O(n3) time, that induces either a P3 or a complete graph.

Note that it is not difficult to compute the set D in polynomial time; this
also follows from a more general result of Camby and Schaudt [4] for Pr-free
graphs (r ≥ 1).

Proofs of some lemmas are omitted due to space restrictions.

3 An Auxiliary Problem

In this section we prove that a variant of Connected Vertex Cover can be
solved in polynomial time for (sP1 + P5)-free graphs for every integer s ≥ 0.

To prove Theorem 2 we will solve a polynomial number of instances of this
variant, which we show can be solved in polynomial time for (sP1 + P5)-free
graphs for every s ≥ 0. We introduce the variant by first describing its input.
Let G be a connected graph, let J ⊆ VG be a subset of the vertex set of G and
let y be a vertex of J . We call the triple (G, J, y) cover-complete if it has the
following properties (see also Fig. 2):

Connected Vertex Cover for (sP1 + P5)-Free Graphs 283

(A) J is an independent set;
(B) y is adjacent to every vertex of G − J ;
(C) the neighbours of each vertex in J \ {y} form an independent set in G − J .

We now describe the problem.

Connected Vertex Cover Completion
Instance: a cover-complete triple (G, J, y).

Goal: find a smallest connected vertex cover S of G such that J ⊆ S.

We will show how to solve this problem in polynomial time for (sP1 + P5)-free
graphs for any s ≥ 0.

Let (G, J, y) be a cover-complete triple, where G is a connected (sP1 + P5)-
free graph. For a vertex w ∈ NG(J \ {y}), we write Jw = NG(w) ∩ J . Note that,
by (B), y ∈ Jw. Let G′ be the graph obtained from G by contracting every edge
of G[Jw ∪ {w}]. As G[Jw ∪ {w}] is connected, contracting its edges reduces it
to a single vertex which we denote yw. We say that we have set-contracted G
into G′ via w and that we contracted Jw ∪ {w} into yw.

L

J y

w

Jw

L′

J ′
yw

Fig. 2. An example of a cover-complete triple (G, J, y) and the cover-complete triple
(G′, J ′, yw) obtained from set-contracting G via vertex w. The sets J ′ = (J\Jw) ∪ {yw},
L = NG(J \ {y}) and L′ = NG′(J ′ \ {yw}) are also displayed (the latter two sets will
be formally introduced later).

Lemma 3. Let (G, J, y) be a cover-complete triple, where G is a connected
(sP1 + P5)-free graph for some s ≥ 0. Let w ∈ NG(J \ {y}), and let G′ be
the graph obtained from G after set-contracting via w. Let J ′ = (J \Jw)) ∪ {yw}
and y′ = yw. Then the following hold:

1. G′ is a connected (sP1 + P5)-free graph;
2. (G′, J ′, y′) is a cover-complete triple;
3. A set S ⊆ VG is a (smallest) connected vertex cover of G that contains J ∪ {w}

if and only if (S \ (J ∪ {w}) ∪ J ′ is a (smallest) connected vertex cover of
G′ that contains J ′.

284 M. Johnson et al.

Let (G, J, y) be a cover-complete triple. We define LJ = NG(J \{y}). If there
is no ambiguity, we will just write L = LJ . Note that, by (C), L is the union of a
number of independent sets, but L itself might not be independent. However we
can deduce the following lemma, which follows immediately from property (C).

Lemma 4. Let (G, J, y) be a cover-complete triple. If w1 and w2 are two adja-
cent vertices in L, then no vertex of J \ {y} is adjacent to both w1 and w2.

We introduce two key definitions. Two vertices w1, w2 ∈ L form a pseudo-
dominating pair if w1 and w2 are non-adjacent; w1 has a neighbour x1 ∈ J not
adjacent to w2; and w2 has a neighbour x2 ∈ J not adjacent to w1. Three vertices
w1, w2, w3 ∈ L form a pseudo-dominating triple if w1 is adjacent to neither w2

nor w3; w2 and w3 are adjacent; J contains two distinct vertices x1 and x2 such
that x1 ∈ NG(w1) \ NG({w2, w3}) and x2 ∈ (NG(w1) ∩ NG(w2)) \ NG(w3). See
the illustrations in Fig. 3, from which we also observe that no pseudo-dominating
pair or pseudo-dominating triple can be found in a P5-free graph.

Fig. 3. Examples, on the left, of a pseudo-dominating pair (w1, w2), and, on the right,
of a pseudo-dominating triple (w1, w2, w3). As easily seen, the presence of either implies
the existence of at least one induced P5.

Let S be a connected vertex cover of G that contains J . Recall that J is an
independent set. A subset L∗ ⊆ L∩S is a connector of S if J ∪ L∗ is connected.

Lemma 5. Let (G, J, y) be a cover-complete triple, where G is an (sP1 + P5)-
free graph for some s ≥ 0. Let S be a connected vertex cover of G that contains
J . If S contains both vertices of a pseudo-dominating pair w1, w2, then S has a
connector of size at most s + 1 that contains both w1 and w2.

Lemma 6. Let (G, J, y) be a cover-complete triple, where G is an (sP1+P5)-free
graph for some s ≥ 0. Let S be a connected vertex cover of G that contains J .
If S contains all three vertices of a pseudo-dominating triple w1, w2, w3, then S
has a connector of size at most s + 2 that contains {w1, w2, w3}.

Let (G, J, y) be a cover-complete triple. Let S be a connected vertex cover of
G that contains J . If S contains both vertices of some pseudo-dominating pair of

Connected Vertex Cover for (sP1 + P5)-Free Graphs 285

G or all three vertices of some pseudo-dominating triple of G, then S is of type
1. Otherwise S must contain at most one vertex of any pseudo-dominating pair
and at most two vertices of any pseudo-dominating triple of G. In that case we
say that S is of type 2. We observe that G might have connected vertex covers
of only one type.

We will now see, in Lemma 8, how to find a smallest type 1 connected vertex
cover of a graph G of a cover-complete triple (G, J, y) in polynomial time (if it
exists). After that we shall prove how to find a smallest type 2 connected vertex
cover of G in polynomial time (if it exists). To compute these sets we need the
following lemma, which uses Theorem 1 in its proof.

Lemma 7. Let (G, {y}, y) be a cover-complete triple, where G is an (sP1 +P5)-
free graph for some s ≥ 0. Then it is possible to compute a smallest connected
vertex cover of G that contains y in polynomial time.

Using Lemmas 5–7, we can now prove the following lemma.

Lemma 8. Let (G, J, y) be a cover-complete triple. Then it is possible to find in
polynomial time a smallest type 1 connected vertex cover of G.

Let (G, J, y) be a cover-complete triple. Using Lemma 8 we can find a smallest
type 1 connected vertex cover of G. However, it might be possible that G has a
smaller connected vertex cover of type 2. To investigate this, we introduce two
reduction rules that will transform a cover-complete triple (G, J, y) into a triple
(G′, J ′, y′) with |J ′| < |J |. We say that such a rule is safe if the following holds:

1. If G is (sP1+P5)-free and connected, then G′ is (sP1+P5)-free and connected.
2. (G′, J ′, y′) is cover-complete.
3. Given a smallest connected vertex cover S′ of G′ that contains J ′, it is pos-

sible, in polynomial time, to find a smallest connected vertex cover S of G
that contains J .

Rule 1. Set-contract via x whenever x is a vertex in L ∩ NG(w1) ∩ NG(w2) for
some pseudo-dominating pair (w1, w2).

Rule 2. For any vertex w5 ∈ L that is not adjacent to any vertex of a clique
of four vertices w1, w2, w3, w4 in L, delete w5 and set-contract via u for every
u ∈ L ∩ NG(w5).

Lemma 9. Rules 1 and 2 are safe.

We call a cover-complete triple (G, J, y) free if G has no pseudo-dominating
pair with a common neighbour in L, and moreover, G[L] is (P1 + K4)-free. By
exhaustively applying Rules 1 and 2 in arbitrary order, which we may safely do
due to Lemma 9, we have the following lemma.

Lemma 10. A cover-complete triple (G, J, y) can be modified, in polynomial
time, into a free cover-complete triple (G′, J ′, y) with the following properties:

286 M. Johnson et al.

1. If G is (sP1+P5)-free and connected, then G′ is (sP1+P5)-free and connected.
2. Given a smallest connected vertex cover S′ of G′ that contains J ′, it is possible

to find in polynomial time a smallest connected vertex cover S of G that
contains J .

Let (G, J, y) be a free cover-complete triple. A connector of a connected vertex
cover S of G is minimal if it does not properly contain a smaller connector of S.

Lemma 11. Let (G, J, y) be a free cover-complete triple that has a pseudo-
dominating pair (w1, w2). Then every minimal connector L∗ of every type 2
connected vertex cover S of G has size at most 5.

Lemma 12. Let (G, J, y) be a free cover-complete triple that has no pseudo-
dominating pair. It is possible to find in polynomial time a clique K ⊆ L with
NG(K) ∩ J = J .

We are now ready to prove the following theorem.

Theorem 3. For every s ≥ 0, Connected Vertex Cover Completion can
be solved in polynomial time for (sP1 + P5)-free graphs.

Proof. Let s ≥ 0 and let (G, J, y) be a cover-complete triple, where G is an
(sP1 + P5)-free graph. We first apply Lemma 10 to obtain a free cover-complete
triple (G′, J ′, y′) in polynomial time. By the same lemma, G′ is (sP1 + P5)-free.
Our aim is to find a smallest connected vertex cover of G′ that contains J ′

in polynomial time, so that we can apply statement 2 of Lemma 10. We first
compute in polynomial time a smallest type 1 connected vertex cover S∗ of G′

using Lemma 8. We now need to compute a smallest type 2 connected vertex
cover S′ of G′ and compare |S′| with |S∗|.

First suppose that G′ contains a pseudo-dominating pair. We guess a minimal
connector of size at most 5 and apply Lemma 3 on its vertices. (By guess, we
mean choose a set of up to 5 vertices and test to see if they form a minimal
connector. We eventually look at all such sets.) If we obtain an instance of the
form (G′′, {y′′}, y′′), then we apply Lemma 7. Then we uncontract all contracted
edges to get a connected vertex cover of G′ of type 2. By Lemma 11, doing this
for every guessed minimal connector of size at most 5 gives us a smallest type 2
connected vertex cover S′ of G′. As we process each guess in polynomial time
and there are at most O(n5) guesses, we find S′ in polynomial time. We compare
S′ and S∗ and choose the smaller of the two.

Now suppose that G′ has no pseudo-dominating pair. Let L′ = NG′(J ′\{y′}).
By Lemma 12, we can obtain in polynomial time a clique K ⊆ L′ with NG′(K)∩
J ′ = J ′. Let K = {w1, . . . , wr} for some r ≥ 1. As K is a clique, every vertex
cover contains at least r − 1 vertices of K. We will do as follows: first we will
find in polynomial time a smallest connected vertex cover of G′ that contains
J ′ ∪ K, and then we will find in polynomial time, for i = 1, . . . , r, a smallest
connected vertex cover of G′ that contains J ′ ∪ (K \ {wi}) and that does not
contain wi. As there are O(n) cases, the total time is polynomial.

Connected Vertex Cover for (sP1 + P5)-Free Graphs 287

We start by computing a smallest connected vertex cover of G′ that contains
J ′ ∪ K by set-contracting via each vertex of K. By Lemma 3, this yields a cover-
complete triple (G′′, {y′′}, y′′) to which we apply Lemma 7. Then we uncontract
all contracted edges in polynomial time. By Lemma3, this yields a smallest
connected vertex cover SK of G′ that contains J ′ ∪ K.

We now show how to compute, in polynomial time, a smallest connected
vertex cover of G′ that contains J ′ ∪ (K \ {w1}) and that does not contain w1.
The case i ≥ 2 is done in the same way.

Let A = L′ \ NG′(w1) consist of all non-neighbours of w1 in L′. As G′[L′] is
(K4 + P1)-free by definition, we find that G′[A] is K4-free. As w1 is not in the
connected vertex cover we are looking for we remove w1, and we set-contract
via each neighbour of w1 in L. By Lemma 3, we may now consider the resulting
cover-complete triple (G′′, J ′′, y′′) where G′′ is connected and (sP1+P5)-free. As
G′ had no pseudo-dominating pairs, we have that G′′ has no pseudo-dominating
pairs. We write L′′ = NG′′(J ′′\{y′′}). As L′′ ⊆ A, we find that G′′[L′′] is K4-free.

Claim. Every minimal connector L∗ of every connected vertex cover of G′′ that
contains J ′′ has size at most 3.

We prove the claim by showing that L∗ is a clique, which implies that L∗

has size at most 3, as G′′[L′′] is K4-free. Suppose instead that L∗ is not a clique.
Then L∗ contains two non-adjacent vertices w1 and w2. As L∗ is a minimal
connector, w1 has a neighbour in J ′′ not adjacent to w2, and vice versa. But
then (w1, w2) is a pseudo-dominating pair of G′′: this is not possible, as G′′ has
no pseudo-dominating pairs. This contradiction proves the claim.

We now guess a minimal connector by considering all subsets in L′′ that have
size at most 3. For each guess we apply Lemma 3 on its vertices. If we obtain
an instance (G′′′, {y′′′}, y′′′), then we apply Lemma 7. Then we uncontract all
contracted edges to obtain in polynomial time a connected vertex cover of G′′

that contains J ′′. We take the smallest one of these connected vertex covers of
G′′. For this connected vertex cover of G′′, we uncontract all contracted edges
again to obtain in polynomial time a smallest connected vertex cover Sw1 of G′

that contains J ′ ∪ (K \ {w1}) and that does not contain w1.
As mentioned, we pick the smallest one out of the connected vertex covers

SK and Swi
, 1 ≤ i ≤ r, to obtain a smallest type 2 connected vertex cover of G′,

the size of which we compare with the size of S∗. We pick the smallest one.
Thus we obtain in polynomial time a smallest connected vertex cover of G′

that contains J ′ (both in the case where G′ has a pseudo-dominating pair and in
the case where G′ has no pseudo-dominating pair). As stated, it remains to apply
statement 2 of Lemma 10 to find in polynomial time a smallest connected vertex
cover of G that contains J . The correctness of our algorithm follows immediately
from the above case analysis and the description of the cases. 	

4 Our Main Result

In this section we prove Theorem 2. We need two more lemmas (we use Lemma 2
to prove the first one).

288 M. Johnson et al.

Lemma 13. Let s ≥ 0 and let G be a connected (sP1 + P5)-free graph. Then
G has a connected dominating set D that is either a clique or has size at most
2s2 + s + 3. Moreover, D can be found in O(n2s2+s+3) time.

Lemma 14. Let J be an independent set in a connected graph G such that J
has a vertex y that is adjacent to every vertex of G − J . Let J ′ consist of those
vertices of J \ {y} that have two adjacent neighbours in G − J (or equivalently,
in G). Then a subset S is a connected vertex cover of G that contains J if and
only if S \ J ′ is a connected vertex cover of G − J ′ that contains J \ J ′.

We are now ready to prove our main result.

Theorem 2 (Restated). For every s ≥ 0, Connected Vertex Cover can be
solved in polynomial time for (sP1 + P5)-free graphs.

Proof. Let G be an (sP1+P5)-free graph for some s ≥ 0. We may assume without
loss of generality that G is connected. By Lemma 13 we can first compute in
O(n2s2+s+3) time a connected dominating set D that either has size at most
2s2 + s + 3 or is a clique. We note that, if D is a clique, any vertex cover of G
contains all but at most one vertex of D. This leads to a case analysis where we
guess the subset D∗ ⊆ D of vertices not in a minimum connected vertex cover
of G. Because |D∗| ≤ 2s2 + s + 3, the number of guesses is polynomial. For each
guess of D∗, we compute a smallest connected vertex cover SD∗ that contains
all vertices of D \ D∗ and no vertex of D∗. Then, in the end, we return one that
has minimum size overall.

Let D∗ be a guess. We first show the following claim (proof omitted).

Claim 1. We may assume without loss of generality that D \ D∗ is connected.

Case 1. D∗ = ∅.
We compute a minimum vertex cover S′ of G − D in polynomial time by Theo-
rem 1. Clearly S′ ∪ D is a vertex cover of G. As D is a connected dominating set,
S′ ∪ D is a connected vertex cover of G. Let S∅ = S′ ∪ D. As S′ is a minimum
vertex cover of G−D, S∅ is a smallest connected vertex cover of G that contains
all vertices of D. We remember S∅, which we found in polynomial time.

Case 2. 1 ≤ |D∗| ≤ |D| (recall that |D| ≤ 2s2 + s + 3).
Recall that we are looking for a smallest connected vertex cover of G that con-
tains every vertex of D \ D∗ but does not contain any vertex of D∗. Hence D∗

must be an independent set and G − D∗ must be connected (if one of these
conditions is false, then we stop considering the guess D∗). Moreover, a vertex
cover that contains no vertex of D∗ must contain all vertices of NG(D∗). Hence
we can safely contract not only any edge between two vertices of D \ D∗, but
also any edge between two vertices in NG(D∗) or between a vertex of D \ D∗

and a vertex in NG(D∗). We perform edge contractions recursively and as long
as possible while remembering all the edges that we contract. Let G∗ be the
resulting graph.

Connected Vertex Cover for (sP1 + P5)-Free Graphs 289

Note that the set D∗ still exists in G∗, as we did not contract any edges with
an endpoint in D∗. By Claim 1, the set D \ D∗ in G corresponds to exactly one
vertex of G∗. We denote this vertex by y. We observe the following equivalence.

Claim 2. Every smallest connected vertex cover of G∗ that contains y and that
does not contain any vertex of D∗ corresponds to a smallest connected vertex
cover of G that contains D \D∗ and that does not contain any vertex of D∗, and
vice versa.

As we obtained G∗ in polynomial time, and we can uncontract all contracted
edges in polynomial time as well, Claim 2 tells us that we may consider G∗ instead
of G. As G is connected and (sP1 +P5)-free, G∗ is connected and (sP1 +P5)-free
as well by Lemma 1.

We write J∗ = NG∗(D∗) and note that y belongs to J∗ as D is connected
in G. We now consider the graph G∗ − D∗. As G − D∗ is connected, G∗ − D∗

is connected. By Claim 2, our new goal is to find a smallest connected vertex
cover of G∗ − D∗ that contains J∗. By our procedure, J∗ is an independent set
of G∗ − D∗. As D dominates G, we find that D \ D∗ dominates every vertex
of G − D∗ that is not adjacent to a vertex of D∗. Hence the vertex y, which
corresponds to the set D \ D∗, is adjacent to every vertex of (G∗ − D∗) − J∗ in
the graph G∗ − D∗.

Let J ⊆ J∗ consist of y and those vertices in J∗ whose neighbourhood in
G∗ −D∗ is an independent set. As y is adjacent to every vertex of (G∗ −D∗)−J∗

in G∗ − D∗, and we can remember the set J∗ \ J , we can apply Lemma 14 and
remove J∗ \ J . That is, it suffices to find a smallest connected vertex cover of
the graph G′ = (G∗ − D∗) − (J∗ \ J) that contains J .

As J∗ is an independent set of G∗ −D∗, we find that J is an independent set
of G′. By definition, y ∈ J . As y is adjacent to every vertex of (G∗ − D∗) − J∗

in G∗ − D∗, we find that y is adjacent to every vertex in G′ − J . By definition,
the neighbours of each vertex in J \ {y} form an independent set in G′ − J .
Hence the triple (G′, J, y) is cover-complete. This means that we can apply The-
orem 3 to find in polynomial time a smallest connected vertex cover S′ of G′

that contains J .
We translate S′ in polynomial time into a smallest connected vertex cover

S∗ of G∗ − D∗ that contains J∗ by adding J∗ \ J to S′. We translate S∗ in
polynomial time into a smallest connected vertex cover SD∗ of G that contains
no vertex of D∗ by uncontracting any contracted edges.

As mentioned, in the end we pick, in polynomial time, a smallest set of the
sets SD∗ . This set is then a minimum connected vertex cover of G, which is
obtained in polynomial time. We have not sought to optimize the running time
of the algorithm so do not provide a detailed analysis, but observe that, for
sufficiently large s, it is nO(s3). The running time is dominated by obtaining a
connected D \D∗ (in Claim 1). As D \D∗ has O(n2s2+s+3) components and the
paths required to join them each have O(s) vertices, the time required to find
them is nO(s3). The correctness of our algorithm follows immediately from the
above case analysis and the description of the cases. 	

290 M. Johnson et al.

5 Future Work

We pose two open problems. First, determine the complexity of Connected
Vertex Cover for P6-free graphs. Second, is there an integer r such that
Connected Vertex Cover is NP-complete for Pr-free graphs?

References

1. Bacsó, G., Tuza, Zs.: Dominating cliques in P5-free graphs, Periodica Mathematica
Hungarica 21, 303–308 (1990)

2. Balas, E., Yu, C.S.: On graphs with polynomially solvable maximum-weight clique
problem. Networks 19, 247–253 (1989)

3. Camby, E., Cardinal, J., Fiorini, S., Schaudt, O.: The price of connectivity for
vertex cover. Discret. Math. Theor. Comput. Sci. 16, 207–224 (2014)

4. Camby, E., Schaudt, O.: A new characterization of Pk-free graphs. Algorithmica
75, 205–217 (2016)

5. Cardinal, J., Levy, E.: Connected vertex covers in dense graphs. Theor. Comput.
Sci. 411, 2581–2590 (2010)

6. Chiarelli, N., Hartinger, T.R., Johnson, M., Milanic, M., Paulusma, D.: Minimum
connected transversals in graphs: new hardness results and tractable cases using
the price of connectivity. Theor. Comput. Sci. 705, 75–83 (2018)

7. Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for
the connected vertex cover problem in graphs and hypergraphs. Theor. Comput.
Sci. 8, 36–49 (2010)

8. Fernau, H., Manlove, D.: Vertex and edge covers with clustering properties: com-
plexity and algorithms. J. Discret. Algorithms 7, 149–167 (2009)

9. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32, 826–834 (1977)

10. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Comb. Theory, Ser. B 16, 47–56 (1974)

11. Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algo-
rithm for maximum weight independent set on P6-free graphs. Manuscript (2017)

12. Hartinger, T.R., Johnson, M., Milanic, M., Paulusma, D.: The price of connectivity
for transversals. Eur. J. Comb. 58, 203–224 (2016)

13. Li, Y., Yang, Z., Wang, W.: Complexity and algorithms for the connected vertex
cover problem in 4-regular graphs. Appl. Math. Comput. 301, 107–114 (2017)

14. Lokshtanov, D., Vatshelle, M., Villanger, Y.: Independent set in P5-free graphs in
polynomial time. In: Proceedings of SODA 2014, pp. 570–581 (2014)

15. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb.
Theory, Ser. B 28, 284–304 (1980)

16. Munaro, A.: Boundary classes for graph problems involving non-local properties.
Theor. Comput. Sci. 692, 46–71 (2017)

17. Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Mathe-
maticae Universitatis Carolinae 15, 307–309 (1974)

18. Priyadarsini, P.K., Hemalatha, T.: Connected vertex cover in 2-connected planar
graph with maximum degree 4 is NP-complete. Int. J. Math. Phys. Eng. Sci. 2,
51–54 (2008)

19. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM J. Comput. 6, 505–517 (1977)

Connected Vertex Cover for (sP1 + P5)-Free Graphs 291

20. Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un
graphe sans étoile. Discret. Math. 29, 53–76 (1980)

21. Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem
and feedback set problem for graphs with no vertex degree exceeding three. Discret.
Math. 72, 355–360 (1988)

22. Wanatabe, T., Kajita, S., Onaga, K.: Vertex covers and connected vertex covers in
3-connected graphs. In: Proceedings of IEEE ISCAS 1991, pp. 1017–1020 (1991)

Structurally Parameterized
d-Scattered Set

Ioannis Katsikarelis(B), Michael Lampis, and Vangelis Th. Paschos

Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243 LAMSADE,
75016 Paris, France

{ioannis.katsikarelis,michail.lampis,paschos}@lamsade.dauphine.fr

Abstract. In d-Scattered Set we are given an (edge-weighted) graph
and are asked to select at least k vertices, so that the distance between
any pair is at least d, thus generalizing Independent Set. We provide
upper and lower bounds on the complexity of this problem with respect to
various standard graph parameters. In particular, we show the following:

– For any d ≥ 2, an O∗(dtw)-time algorithm, where tw is the treewidth
of the input graph and a tight SETH-based lower bound match-
ing this algorithm’s performance. These generalize known results for
Independent Set.

– d-Scattered Set is W[1]-hard parameterized by vertex cover
(for edge-weighted graphs), or feedback vertex set (for unweighted
graphs), even if k is an additional parameter.

– A single-exponential algorithm parameterized by vertex cover for
unweighted graphs, complementing the above-mentioned hardness.

– A 2O(td2)-time algorithm parameterized by tree-depth (td), as well
as a matching ETH-based lower bound, both for unweighted graphs.

We complement these mostly negative results by providing an FPT
approximation scheme parameterized by treewidth. In particular, we
give an algorithm which, for any error parameter ε > 0, runs in time
O∗((tw/ε)O(tw)) and returns a d/(1 + ε)-scattered set of size k, if a d-
scattered set of the same size exists.

1 Introduction

In this paper we study the d-Scattered Set problem: given graph G = (V,E)
and a metric weight function w : E �→ N

+ that gives the length of each edge, we
are asked if there exists a set K of at least k selections from V , such that the
distance between any pair v, u ∈ K is at least d(v, u) ≥ d, where d(v, u) denotes
the shortest-path distance from v to u under weight function w. If w assigns
weight 1 to all edges, the variant is called unweighted.

The problem can already be seen to be hard, as it generalizes Independent
Set (for d = 2), even to approximate (under standard complexity assumptions),
i.e. the optimal k cannot be approximated to n1−ε in polynomial time [18], while
an alternative name is Distance-d Independent Set [12,13,28]. This hard-
ness prompts the analysis of the problem when the input graph is of restricted
c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 292–305, 2018.
https://doi.org/10.1007/978-3-030-00256-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_24&domain=pdf

Structurally Parameterized d-Scattered Set 293

structure, our aim being to provide a comprehensive account of the complex-
ity of d-Scattered Set through various upper and lower bound results. Our
viewpoint is parameterized: we consider the well-known structural parameters
treewidth tw, tree-depth td, vertex cover number vc and feedback vertex set
number fvs, that comprehensively express the intended restrictions on the input
graph’s structure (as they range in size and applicability), while we examine
both the edge-weighted and unweighted variants of the problem.

Our Contribution: First, in Sect. 3 we present a lower bound of (d − ε)tw · nO(1)

on the complexity of any algorithm solving d-Scattered Set parameterized
by tw, based on the Strong Exponential Time Hypothesis (SETH [19,20]). This
result can be seen as a non-trivial extension of the bound of (2 − ε)tw · nO(1)

for Independent Set [25] for larger values of d, for which the construction is
required to be much more compact in terms of encoded information per unit of
treewidth.

In Sect. 4 we provide a dynamic programming algorithm of running time
O∗(dtw), matching this lower bound, over a given tree decomposition of width
tw. The algorithm actually solves the counting version of d-Scattered Set,
making use of standard techniques (dynamic programming on tree decomposi-
tions), with an application of the fast subset convolution technique of [2] (or
state changes [7,30]) to bring the running time down to match the size of the
dynamic programming tables.

Having thus identified the complexity of the problem with respect to tw,
we next focus on the more restrictive parameters vc and fvs and we show in
Sect. 5 that the edge-weighted d-Scattered Set problem parameterized by
vc + k is W[1]-hard. If, on the other hand, all edge-weights are set to 1, then
d-Scattered Set (the unweighted variant) parameterized by fvs + k is W[1]-
hard. Our reductions also imply lower bounds based on the Exponential Time
Hypothesis (ETH [19,20]), yet we do not believe these to be tight, due to the
quadratic increase in parameter size (as the construction’s focus lies on the
edges). One observation we can make is that there are few cases where we can
expect to obtain an FPT algorithm without bounding the value of d.

We complement these results with a single-exponential algorithm for the
unweighted variant, of running time O∗(3vc) for the case of even d, while for odd
d the running time is O∗(4vc). The algorithm is based on defining a sub-problem
based on a variant of Set Packing that we solve via dynamic programming.
The difference in running times, depending on the parity of d, is due to the
number of possible situations for a vertex with respect to potential candidates
for selection.

Further, for the unweighted variant we also show in Sect. 7 the existence of an
algorithm parameterized by td of running time O∗(2O(td2)), as well as a match-
ing ETH-based lower bound. The upper bound follows from known connections
between the tree-depth of a graph and its diameter, while the lower bound comes
from a reduction from 3-SAT.

Finally, we turn again to tw in Sect. 8 and we present a fixed-
parameter-tractable approximation scheme (FPT-AS) on d of running time

294 I. Katsikarelis et al.

O∗((tw/ε)O(tw)), that finds a d/(1+ ε)-scattered set of size k, if a d-scattered set
of the same size exists. The algorithm is based on a rounding technique intro-
duced in [24] and can be much faster than any exact algorithm for the problem
(for large d, i.e. d ≥ O(log n)), even for the unweighted case and more restricted
parameters. Figure 1 illustrates the relationships between considered parameters
and summarizes our results, while we refer the reader to the full version [22] for
all omitted definitions, constructions and proofs.

Related Work: Our work can be considered as a continuation of the investigations
in [21], where the (k, r)-Center problem is similarly studied with respect to sev-
eral well-known structural parameters and a number of fine-grained upper/lower
bounds is presented, while some of the techniques employed for our SETH lower
bound are also present in [8].

The SETH-based lower bound of (2 − ε)tw · nO(1) on the running time of any
algorithm for Independent Set parameterized by tw comes from [25]. For d-
Scattered Set, Halldórsson et al. [17] showed a tight inapproximability ratio
of n1−ε for even d and n1/2−ε for odd d, while Eto et al. [13] showed that on
r-regular graphs the problem is APX-hard for r, d ≥ 3, while also providing
polynomial-time O(rd−1)-approximations and a polynomial-time approximation
scheme (PTAS) for planar graphs. For a class of graphs with at most a polyno-
mial (in n) number of minimal separators, d-Scattered Set can be solved in
polynomial time for even d, while it remains NP-hard on chordal graphs (con-
tained in the class) and any odd d ≥ 3 [28]. It remains NP-hard even for planar
bipartite graphs of maximum degree 3, while a 1.875-approximation is available
on cubic graphs [14]. Several hardness results for planar and chordal (bipartite)
graphs can be found in [12], while [16] shows the problem admits an EPTAS on
(apex)-minor-free graphs, based on the theory of bidimensionality. Finally, on a
related result, Marx and Pilipczuk recently offered an nO(

√
k)-time algorithm for

planar graphs, making use of Voronoi diagrams and based on ideas previously
used to obtain geometric QPTASs [27].

tw, Treewidth: Tight SETH LB [Th. 1, 2], FPT-AS [Th. 7] (w/u)

fvs, Feedback Vertex Set: W[1]-hard [Cor. 1] (u)
pw, Pathwidth

td, Tree-depth: Tight ETH LB [Th. 5, 6] (u)

vc, Vertex Cover: W[1]-hard [Th. 3] (w), FPT [Th. 4] (u)

Fig. 1. Relationships between parameters and an overview of our results (with theorem
numbers, for weighted/unweighted variants). In the downwards direction (from tw to
vc) parameter size increases and algorithmic results are inherited, while hardness results
are inherited in the upwards direction.

Structurally Parameterized d-Scattered Set 295

2 Definitions and Preliminaries

We use standard graph-theoretic notation. For a graph G = (V,E), n = |V |
denotes the number of vertices, m = |E| the number of edges, an edge e ∈ E
between u, v ∈ V is denoted by (u, v), and for a subset X ⊆ V , G[X] denotes the
graph induced by X. The functions �x� and 	x
, for x ∈ R, denote the maximum
integer that is not larger and the minimum integer that is not smaller than x,
respectively. Further, we assume the reader has some familiarity with standard
definitions from parameterized complexity theory (see [10,11,15]).

For a parameterized problem with parameter k, an FPT-AS is an algorithm
which for any ε > 0 runs in time O∗(f(k, 1

ε)) (i.e. FPT time when parameter-
ized by k + 1

ε) and produces a (1 + ε)-approximation (see [26]). We use O∗(·)
to imply omission of factors polynomial in n. In this paper we present approx-
imation schemes with running times of the form (log n/ε)O(k). These can be
seen to imply an FPT running time by a well-known win-win argument: If a
parameterized problem with parameter k admits, for some ε > 0, an algorithm
running in time O∗((log n/ε)O(k)), then it also admits an algorithm running in
time O∗((k/ε)O(k)).

Treewidth and pathwidth are standard notions in parameterized complexity
that measure how close a graph is to being a tree or path [3,4,23]. We will also use
the parameters vertex cover number and feedback vertex set number of a graph
G, which are the sizes of the minimum vertex set whose deletion leaves the graph
edgeless, or acyclic, respectively. Finally, we will consider the related notion of
tree-depth [29], which is defined as the minimum height of a rooted forest whose
completion (the graph obtained by connecting each node to all its ancestors)
contains the input graph as a subgraph. We will denote these parameters for
a graph G as tw(G),pw(G), vc(G), fvs(G), and td(G), and will omit G if it is
clear from the context. We recall the following well-known relations [5,9] between
these parameters which justify the hierarchy given in Fig. 1: For any graph G
we have tw(G) ≤ pw(G) ≤ td(G) ≤ vc(G), tw(G) ≤ fvs(G) ≤ vc(G).

We also recall here the two main complexity assumptions used in this paper
[19,20]. The Exponential Time Hypothesis (ETH) states that 3-SAT cannot be
solved in time 2o(n+m) on instances with n variables and m clauses. The Strong
Exponential Time Hypothesis (SETH) states that for all ε > 0, there exists an
integer q such that q-SAT (where q is the maximum size of any clause) cannot
be solved in time O((2 − ε)n).

3 Treewidth: SETH Lower Bound

In this section we show that for any fixed d > 2, the existence of any algorithm
for the d-Scattered Set problem of running time O∗((d − ε)tw), for some
ε > 0, would imply the existence of some algorithm for q-SAT on instances with
n variables, of running time O∗((2 − δ)n), for some δ > 0 and any q ≥ 3. First,
let us briefly summarize the reduction for the SETH lower bound of (2 − ε)tw

for Independent Set from [25]. The reduction is based on the construction of

296 I. Katsikarelis et al.

n paths (one for each variable) on 2m vertices each, conceptually divided into
m pairs of vertices (one for each clause), with each vertex signifying assignment
of value 0 or 1 to the corresponding variable. A gadget is introduced for each
clause, connected to the vertex of some path that signifies the assignment to the
corresponding variable that would satisfy the clause. The pathwidth of the graph
(and thus also its treewidth) is (roughly) equal to the number of paths and so
a correspondence between a satisfying assignment and an independent set can
be established, meaning an O∗((2− ε)tw)-time algorithm for Independent Set
would imply an O∗((2 − ε)n)-time algorithm for SAT, for any ε > 0.

Intuitively, the reduction for Independent Set needs to “embed” the 2n

possible variable assignments into the 2tw states of some optimal dynamic pro-
gram for the problem, while in our lower bound construction for d-Scattered
Set we need to be able to encode these 2n assignments by dtw states and thus
there can be no one-to-one correspondence between a variable and only one ver-
tex in some bag of the tree decomposition (that the optimal dynamic program
might assign states to); instead, every vertex included in some bag must carry
information about the assignment for a group of variables. Furthermore, as now
d > 2, in order to make the converse direction of our reduction to work, we
need to make our paths sufficiently long to ensure that any solution will even-
tually settle into a pattern that encodes a consistent assignment, as the optimal
d-scattered set may “cheat” by not selecting the same vertex from each part of
some long path (periodically), a situation that would imply a different assign-
ment for the appearances of the same variable for two different clauses (see also
[8] and the SETH-based lower bound for Dominating Set from [25]).

Clause Gadget Ĉ: We first describe the construction of our clause gadget Ĉ: this
gadget has N input vertices and its purpose is to only allow for selection of one
of these in any d-scattered set, along with another, standard selection. Given
vertices v1, . . . , vN , we first make N paths Ai = (a1

i , . . . , a
�d/2�−1
i),∀i ∈ [1, N]

on �d/2� − 1 vertices. We connect vertices a1
i to inputs vi, while only for even

d, we also make all vertices a
�d/2�−1
i into a clique (all other endpoints of each

path). We then make a path B = (b1, . . . , b�d/2�+1) and we connect its endpoint
b�d/2�+1 to all a

�d/2�−1
i . Observe that any d-scattered set can only include one

of the input vertices (as the distance between them is d − 1) and the vertex b1,
being the only option at distance d from all inputs.

Construction: We will describe the construction of a graph G, given some ε <
1, q ≥ 3, d > 2 and an instance φ of q-SAT with n variables, m clauses and at
most q variables per clause. We first choose an integer p = 	 1

(1−λ) log2(d)

, for

λ = logd(d−ε) < 1 (i.e. p depends only on d and ε) and then group the variables
of φ into t = 	n

γ
 groups F1, . . . , Ft, for γ = �log2(d)p�, being also the maximum
size of any such group.

For each group Fτ of variables of φ, with τ ∈ [1, t], we make a simple gadget
Ĝ1

τ that consists of p paths P l
τ = (pl

1, . . . , p
l
d) on d vertices each, for l ∈ [1, p]. We

then make m(tp(d − 1) + 1) copies of this “column” of t gadgets Ĝ1
1, . . . , Ĝ

1
t (i.e.

t vertically arranged gadgets), that we connect horizontally (so that we have tp

Structurally Parameterized d-Scattered Set 297

“long paths”): we connect each last vertex pl
d from a gadget Ĝj

τ to vertex pl
1 from

the following gadget Ĝj+1
τ , for all l ∈ [1, p], τ ∈ [1, t] and j ∈ [1,m(tp(d − 1))]

(see Fig. 2(b) for an example).
Next, for every clause Cμ, with μ ∈ [1,m], we make tp(d − 1) + 1 copies of

the clause gadget Ĉj , for j ∈ [1,m(tp(d − 1) + 1)], where for each μ ∈ [1,m], the
number of inputs in the tp(d−1)+1 copies is N = qμdp/2, where qμ is the number
of literals in clause Cμ. One clause is assigned to each column of gadgets, so that
the first m columns correspond to one clause each, with tp(d− 1)+1 repetitions
of this pattern giving the complete association. Then, for every τ ∈ [1, t] we
associate a set Sτ ⊂ ⋃

l∈[1,p] P
l
τ , that contains exactly one vertex from each of

the p paths in Ĝj
τ , with an assignment to the variables in group Fτ . As there are

at most 2γ = 2�log2(d)
p� assignments to the variables in Fτ and dp ≥ 2γ such sets

Sτ , the association can be unique for each τ (i.e. for each row of gadgets). Now,
for every literal appearing in clause Cμ, exactly half of the partial assignments
to the group Fτ in which the literal’s variable appears will satisfy it and thus,
each of the qμdp/2 input vertices of the clause gadget will correspond to one
literal and one assignment to the variables of the group that satisfy it.

Let v be an input vertex of a clause gadget Ĉj , corresponding to a literal
of clause Cμ that is satisfied by a partial assignment to the variables of group
Fτ that is associated with set Sτ ⊂ ⋃

l∈[1,p] P
l
τ , containing exactly one vertex

from each path P l
τ , l ∈ [1, p], from gadget Ĝj

τ . For even d, we then make a
path w1, . . . , wd/2−1 on d/2 − 1 vertices, connecting vertex w1 to v and for each
vertex pl

i /∈ S of each path P l
τ ∈ Ĝj

τ we also make a path y1, . . . , yd/2−1 on
d/2−1 vertices, attaching endpoint y1 to its corresponding path vertex pl

i, while
the other endpoints yd/2−1 are all attached to vertex wd/2−1 and to each other
(into a clique). For odd d, we make a similar construction for each such v, only
the number of vertices in constructed paths is now �d/2� instead of d/2 − 1 and
vertices y�d/2� are not made into a clique. Thus every input vertex v of some
clause gadget is at distance exactly d − 1 from every path vertex that does not
belong to the set associated with its corresponding partial assignment (and thus
exactly d from the only vertex per path that is), while the distances between
any pair of other (i.e. intermediate) vertices via these paths are ≤ d − 1. This
concludes our construction, while Fig. 2 provides illustrations of the above.

In this way, a satisfying assignment for φ would correspond to a d-scattered
set that selects the vertices in each gadget Ĝτ that match the partial assignment
Sτ for that group’s variables Fτ in all m(tp(d − 1) + 1) columns, along with the
corresponding input vertex from each clause gadget (implying the existence of a
satisfied literal within the clause). On the other hand, for any d-scattered set of
size (tp+2)m(tp(d− 1)+1) in G, the maximum number of times it can “cheat”
by not periodically selecting the “same” vertices in each column is tp(d−1). The
number of columns being m(tp(d − 1) + 1), by the pigeonhole principle, there
will always exist m consecutive columns for which the selection pattern does not
change, from which a consistent assignment for all clauses can be extracted.

298 I. Katsikarelis et al.

p11 p1d

pp
d

p

y1

yd/2−1

wd/2−1

w1
v

Ĉ

Ĝ

(a)

Ĝ1
1

Ĝ1
t

p11 p1d

pp
1

Ĉmo+π

m(tp(d− 1) + 1)

p

t

(b)

Fig. 2. (a): The connection of an input vertex v of a clause gadget Ĉ to its correspond-
ing path vertices in some Ĝ, where vertices of set Sτ are circled and boxed vertices
form a clique (for even d). (b): A simplified picture of the global construction, with
some exemplative connecting paths between clause gadgets and path vertices shown as
edges.

Theorem 1. For any fixed d > 2, if d-Scattered Set can be solved in O∗((d−
ε)tw(G)) time for some ε > 0, then there exists some δ > 0, such that q-SAT can
be solved in O∗((2 − δ)n) time, for any q ≥ 3.

4 Treewidth: Dynamic Programming Algorithm

In this section we present an O∗(dtw)-time dynamic programming algorithm for
the counting version of the d-Scattered Set problem. The input is a graph
G = (V,E), a nice tree decomposition (X , T) for G, where T = (I, F) is a tree
and X = {Xi|i ∈ I} is the set of bags, while maxi∈i |Xi| − 1 = tw, along with
two numbers k ∈ N

+, d ≥ 2, while the output is the number of d-scattered sets
of size k in G.

There is a table Di associated with every node i of the tree decomposition
with Xi = {v0, . . . , vt}, while each table entry Di[κ, s0, . . . , st] contains the num-
ber of (distinct) d-scattered sets K of size |K| = κ (its partial solution) and is
indexed by a number κ ∈ [1, k] and a t + 1-sized tuple (s0, . . . , st) of state-
configurations, assigning a state sj ∈ [0, d − 1] to each vertex vj in the bag.
There are d possible states for each vertex, designating its distance to the clos-
est selection for the d-scattered set at the “current” stage of the algorithm (i.e.
within the graph defined by each node of the tree decomposition), with vertices
of zero state sj = 0 being included in K, vertices of low state sj ∈ [1, �d/2�]
being at distance at least sj from their closest selection and d − sj from the
second closest, while vertices of high state sj ∈ [�d/2� + 1, d − 1] are at distance
at least sj from K. That is, each partial solution is described by a given budget
for selections (up to k) and the minimum distances of all vertices in the bag to
an already selected vertex.

Structurally Parameterized d-Scattered Set 299

Based on this scheme, the inductive computations for each type of node of the
nice tree decomposition are straightforward to obtain, yet a direct implementa-
tion would not lead to an algorithm of running time that matches the size of the
constructed tables (dtw): using the above state-representation, the computations
at a join node would require an additional 2tw factor, as this is the number of
possible combinations of previously computed partial solutions (from the tables
of its children) that could be combined to give a partial solution for the new
node. This can be avoided by an application of the state changing technique
(or fast subset convolution, see [2,7,30] and Chap. 11 from [10]), for which it is
also more convenient to count the number of solutions of each size κ ∈ [1, k],
instead of computing the maximum k for which a solution satisfying the given
state-configuration exists.

Theorem 2. Given graph G, along with d ∈ N
+ and nice tree decomposition

(X , T) of width tw for G, there exists an algorithm to solve the counting version
of the d-Scattered Set problem in O∗(dtw) time.

5 Vertex Cover, Feedback Vertex Set: W[1]-Hardness

In this section we show that the edge-weighted variant of the d-Scattered
Set problem parameterized by vc + k is W[1]-hard via a reduction from k-
Multicolored independent Set, a well-known W[1]-complete problem (see
[10]: given a graph G = (V,E), with V partitioned into k independent sets
V = V1 � · · · � Vk, |Vi| = n,∀i ∈ [1, k], where E only contains edges between
vertices of sets Vi, Vj with i �= j, we are asked to find a subset S ⊆ V , such that
G[S] forms an independent set and |S ∩ Vi| = 1,∀i ∈ [1, k].

Construction: Given an instance [G = (V,E), k] of k-Multicolored inde-
pendent Set, we construct an instance [G′ = (V ′, E′), k′] of edge-weighted
d-Scattered Set where d = 6n. First, for every color class Vi ⊆ V we create
a set Pi ⊆ V ′ of n vertices pi

l,∀l ∈ [1, n],∀i ∈ [1, k] (that directly correspond
to the vertices of Vi). Next, for each i ∈ [1, k] we make a pair of vertices ai, bi,
connecting ai to each vertex pi

l by an edge of weight n + l, while bi is connected
to each vertex pi

l by an edge of weight 2n− l. Next, for every non-edge e ∈ Ē (i.e.
Ē contains all pairs of vertices from V that are not connected by an edge from
E) between two vertices from different Vi1 , Vi2 (with i1 �= i2), we make a vertex
ue that we connect to vertices ai1 , bi1 and ai2 , bi2 . We set the weights of these
edges as follows: suppose that e is a non-edge between the j1-th vertex of Vi1 and
the j2-th vertex of Vi2 . We then set w(ue, ai1) = 5n − j1, w(ue, bi1) = 4n + j1
and w(ue, ai2) = 5n − j2, w(ue, bi2) = 4n + j2. Next, for every pair of i1, i2
we make two vertices gi1,i2 , g′

i1,i2
. We connect gi1,i2 to all vertices ue that cor-

respond to non-edges e between vertices of the same pair Vi1 , Vi2 by edges of
weight (6n − 1)/2 and also gi1,i2 to g′

i1,i2
by an edge of weight (6n + 1)/2. In

this way, a k-multicolored independent set in G corresponds to a 6n-scattered
set in G′ of size k2. This concludes the construction of G′, with Fig. 3 providing
an illustration.

300 I. Katsikarelis et al.

P1 Pi Pk

ai bi

pi
n

pi
1

n+ 1

2n

n+ l

n

2n− 1
2n− l

4n+ l5n− l6n−1
2

g1,i

g1,i

ue

6n+1
2

Fig. 3. A general picture of graph G′, where the circled vertex is pi
l and dotted lines

match weights to edges.

Theorem 3. The edge-weighted d-Scattered Set problem is W[1]-hard
parameterized by vc + k. Furthermore, if there is an algorithm for edge-weighted
d-Scattered Set running in time no(

√
vc+

√
k) then the ETH is false.

Using essentially the same reduction (with minor modifications) we also
obtain similar hardness results for unweighted d-Scattered Set parameter-
ized by fvs:

Corollary 1. The unweighted d-Scattered Set problem is W[1]-hard param-
eterized by fvs + k. Furthermore, if there is an algorithm for unweighted d-
Scattered Set running in time no(fvs+

√
k) then the ETH is false.

6 Vertex Cover: FPT Algorithm

We next show that unweighted d-Scattered Set admits an FPT algorithm
parameterized by vc, in contrast to its weighted version (Theorem 3). Given
graph G along with a vertex cover C of G and d ≥ 3, our algorithm first defines
an instance of Partial Set Packing, where elements may be partially included
in some sets and then solves the problem by dynamic programming. In this
variant, any element has a coefficient of inclusion in each set and a collection of
sets is a solution if there is no pair of sets for which the sum of any element’s
coefficients is >1.

We make a set for each vertex and an element for each vertex of C. Our
aim is to identify two vertices (sets) as incompatible selections if there is some
third “middle” vertex from C (elements), whose sum of distances to the other
two is <d, based on the observation that for any vertex not belonging to the
d-scattered set, only one selection can be at distance <d/2, yet any number of
selections can be at distance ≥d/2 (consider a star as an example).

Structurally Parameterized d-Scattered Set 301

These coefficients of inclusion are then used to assign vertices of C to their
closest possible selections, with complete inclusion (i.e. coefficient equal to 1)
implying the distance is <d/2 and no inclusion (equal to 0) that it is >d/2. For
the middle vertices, depending on the parity of d (and causing the difference
in running times), we require either one (i.e. 1/2) or two (1/3 and 2/3) extra
coefficients to be able to determine the exact position of a possible middle vertex
from C (element) on the path between two potential selections (sets). If the sum
of coefficients is ≤1, the vertex from C is either a middle vertex on the path
between the two selections or at distance <d/2 from only one of them. On the
other hand, if the sum of coefficients is >1, then the sum of distances from the
vertex to the two selections is <d and the incompatibility of the sets implies the
corresponding vertices cannot both belong in the d-scattered set.

Theorem 4. Given graph G, along with d > 2 and a vertex cover of size vc of
G, there exists an algorithm solving the unweighted d-Scattered Set problem
in O∗(3vc) time for even d and O∗(4vc) time for odd d.

7 Tree-Depth: Tight ETH Lower Bound

In this section we consider the unweighted version of the d-Scattered Set
problem parameterized by td. We first show the existence of an FPT algo-
rithm of running time O∗(2O(td2)) and then a tight ETH-based lower bound.
We begin with a simple upper bound argument, making use of the following fact
on tree-depth, while the algorithm then follows from the dynamic programming
procedure of Theorem2 and the relationship between d, td and tw:

Lemma 1. For any graph G = (V,E) we have D(G) ≤ 2td+1 − 2, where D(G)
denotes the graph’s diameter.

Theorem 5. Unweighted d-Scattered Set can be solved in time O∗(2O(td2)).

Next we show a lower bound matching Theorem5, based on the ETH, using
a reduction from 3-SAT and a construction similar to the one used in Sect. 5.

Theorem 6. If unweighted d-Scattered Set can be solved in 2o(td2) · nO(1)

time, then 3-SAT can be solved in 2o(n) time.

8 Treewidth Revisited: FPT-AS

In this section we present an FPT approximation scheme (FPT-AS) for d-
Scattered Set parameterized by tw. Given as input an edge-weighted graph
G = (V,E), k ∈ N

+, d ≥ 2 and an arbitrarily small error parameter ε > 0,
our algorithm is able to return a set K, such that any v, u ∈ K are at distance
d(v, u) ≥ d

1+ε , in time O∗((tw/ε)O(tw)), if G has a d-scattered set of size |K|.
Our algorithm makes use of a technique introduced in [24] (see also [1,21])

for approximating problems that are W-hard by treewidth. If the hardness of the

302 I. Katsikarelis et al.

problem arises from the need of the dynamic programming table to store tw large
numbers (in our case, the distances of the vertices in the bag from the closest
selection), we can significantly speed up the algorithm by replacing all values
by the closest integer power of (1 + δ), for some appropriately chosen δ, thus
reducing the table size from dtw to (log(1+δ) d)tw. Of course, the calculations may
result in values that are not integer powers of (1 + δ) that will thus have to be
“rounded” to maintain the table size. This might introduce the accumulation of
rounding errors, yet we are able to show that the error on any rounded value can
be bounded by a function of the height of its corresponding bag and then make
use of a theorem from [6] stating that any tree decomposition can be balanced so
that its width remains almost unchanged and its total height becomes O(log n).

The rounding technique as applied in [24] employs randomization and an
extensive analysis to procure the bounds on the propagation of error, while we
only require a deterministic adaptation of the rounding process without making
use of the advanced machinery there introduced, as for our particular case, the
bound on the rounding error can be straightforwardly obtained. The main tool
we require is the following definition of an addition-rounding operation, denoted
by ⊕: for two non-negative numbers x1, x2, we define x1⊕x2 := 0, if x1 = x2 = 0.
Otherwise, we set x1 ⊕ x2 := (1 + δ)�log(1+δ)(x1+x2)�.

The integers we would like to approximately store are the states sj ∈ [1, d−1],
representing the distance of a vertex vj in bag Xi of the tree decomposition to
the closest selection in the d-scattered set K, during computation of the dynamic
programming algorithm. Let Σδ := {0} ∪ {(1 + δ)l|l ∈ N}. Intuitively, Σδ is the
set of rounded states that our modified algorithm may use. Of course, Σδ as
defined is infinite, but we will only consider the set of values that are at most
d, denoted by Σd

δ . In this way, the size of Σd
δ is reduced to log(1+δ)(d), that

for δ = ε
O(log n) , gives |Σd

δ | = O(log(d) log(n)/ε) and we then rely on the well-
known win-win parameterized argument given in Sect. 2 to get a running time
of O∗((tw/ε)O(tw)).

Modifications: First, we make use of an adaptation of the algorithm of Theorem
2 that works for the maximization version of the problem (albeit not optimally).
We next explain the necessary modifications to the exact algorithm for use of
the rounded states σ ∈ Σd

δ . Consider a node i introducing vertex vt+1: for a
new entry to describe a proper extension to some previously computed partial
solution, if the new vertex is of state st+1 ∈ [1, d−1] in the new entry, then there
must be some vertex vj ∈ Xi, such that st+1 ≤ d(vt+1, vj)+sj (the one for which
this sum is minimized), i.e. we require that the new state of the introduced vertex
matches its distance to some other vertex in the bag plus the state of that vertex
(being the one “responsible” for connecting vt+1 to the partial solution). The
rounded state σt+1 for vt+1 must now satisfy: σt+1 ≤ d(vt+1, vj) ⊕ σj , where ⊕
is the operator defined above. Further, we define the symmetrical (around d/2)
state σ̄ for a given low state σ as the minimum state σ′ for which σ +σ′ ≥ d

(1+ε)

and we arbitrarily choose the computed states for the table of one of the children

Structurally Parameterized d-Scattered Set 303

nodes to represent the new entries and σ̄ to identify the symmetrical of each low
state (from the other node’s table).

Moreover, we require that the tree decompositions on which our algorithm is
to be applied are rooted and of maximum depth O(log n). In [6] (Lemma 1), it
is shown that any tree decomposition of width tw can be converted to a rooted
and binary tree decomposition of depth O(log n) and width at most 3tw + 2 in
O(log n) time and O(n) space. The following lemma employs the transformation
to bound the error of any value calculated in this way, based on an appropriate
choice of δ and therefore set Σd

δ of available values, by relating the rounded
states σ computed at any node to the states s that the exact algorithm would
use at the same node instead.

Lemma 2. Given ε and a tree decomposition (X , T) with T = (I, F),X =
{Xi|i ∈ I}, where T is rooted, binary and of depth O(log n), there exists a
constant C, such that for all rounded states σj ∈ Σd

δ it is σj ≥ sj

(1+ε) ,∀vj ∈
Xi,∀i ∈ I, where δ = ε

C log n .

Theorem 7. There is an algorithm which, given an edge-weighted instance of d-
Scattered Set [G, k, d], a tree decomposition of G of width tw and a parameter
ε > 0, runs in time O∗((tw/ε)O(tw)) and finds a d/(1 + ε)-scattered set of size k,
if a d-scattered set of the same size exists in G.

References

1. Angel, E., Bampis, E., Escoffier, B., Lampis, M.: Parameterized power vertex cover.
In: Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 97–108. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53536-3 9

2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast
subset convolution. In: STOC, pp. 67–74 (2007)

3. Bodlaender, H.L.: The algorithmic theory of treewidth. Electron. Notes Discret.
Math. 5, 27–30 (2000)

4. Bodlaender, H.L.: Treewidth: characterizations, applications, and computations.
In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg
(2006). https://doi.org/10.1007/11917496 1

5. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2),
238–255 (1995)

6. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)

7. Bodlaender, H.L., van Leeuwen, E.J., van Rooij, J.M.M., Vatshelle, M.: Faster
algorithms on branch and clique decompositions. In: Hliněný, P., Kučera, A. (eds.)
MFCS 2010. LNCS, vol. 6281, pp. 174–185. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15155-2 17

8. Borradaile, G., Le, H.: Optimal dynamic program for r-domination problems over
tree decompositions. In: IPEC, vol. 63, pp. 8:1–8:23 (2016)

9. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret.
Appl. Math. 101(1–3), 77–114 (2000)

https://doi.org/10.1007/978-3-662-53536-3_9
https://doi.org/10.1007/11917496_1
https://doi.org/10.1007/978-3-642-15155-2_17
https://doi.org/10.1007/978-3-642-15155-2_17

304 I. Katsikarelis et al.

10. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

11. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-
5559-1

12. Eto, H., Guo, F., Miyano, E.: Distance- d independent set problems for bipartite
and chordal graphs. J. Comb. Optim. 27(1), 88–99 (2014)

13. Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximability of the distance independent
set problem on regular graphs and planar graphs. In: Chan, T.-H.H., Li, M., Wang,
L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 270–284. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48749-6 20

14. Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximation algorithm for the distance-3
independent set problem on cubic graphs. In: Poon, S.-H., Rahman, M.S., Yen, H.-
C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 228–240. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-53925-6 18

15. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-29953-X

16. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Bidimensionality and
EPTAS. In: SODA, pp. 748–759. SIAM (2011)

17. Halldórsson, M.M., Kratochv́ıl, J., Telle, J.A.: Independent sets with domination
constraints. Discret. Appl. Math. 99(1–3), 39–54 (2000)

18. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182,
105–142 (1999)

19. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

20. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

21. Katsikarelis, I., Lampis, M., Paschos, V.Th.: Structural parameters, tight bounds,
and approximation for (k, r)-center. CoRR, abs/1704.08868 (2017)

22. Katsikarelis, I., Lampis, M., Paschos, V.Th.: Structurally parameterized d-
scattered set. CoRR, abs/1709.02180 (2017)

23. Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

24. Lampis, M.: Parameterized approximation schemes using graph widths. In:
Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8572, pp. 775–786. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43948-7 64

25. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs on bounded
treewidth are probably optimal. In: SODA, pp. 777–789 (2011)

26. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J.
51(1), 60–78 (2008)

27. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility loca-
tion problems using voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015.
LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48350-3 72

28. Montealegre, P., Todinca, I.: On distance-d independent set and other problems in
graphs with “few” minimal separators. In: Heggernes, P. (ed.) WG 2016. LNCS,
vol. 9941, pp. 183–194. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53536-3 16

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-3-319-48749-6_20
https://doi.org/10.1007/978-3-319-53925-6_18
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/978-3-662-43948-7_64
https://doi.org/10.1007/978-3-662-43948-7_64
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1007/978-3-662-53536-3_16
https://doi.org/10.1007/978-3-662-53536-3_16

Structurally Parameterized d-Scattered Set 305

29. Nesetril, J., Ossona de Mendez, P.: Tree-depth, subgraph coloring and homomor-
phism bounds. Eur. J. Comb. 27(6), 1022–1041 (2006)

30. van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic programming on
tree decompositions using generalised fast subset convolution. In: Fiat, A., Sanders,
P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04128-0 51

https://doi.org/10.1007/978-3-642-04128-0_51

Popular Matchings of Desired Size

Telikepalli Kavitha(B)

Tata Institute of Fundamental Research, Mumbai, India
kavitha@tcs.tifr.res.in

Abstract. Our input is an instance of the stable marriage problem
with strict and possibly incomplete lists, i.e., it is a bipartite graph
G = (A∪B,E) where each vertex has a strict preference list ranking its
neighbors. We consider a generalization of stable matchings called popu-
lar matchings: a matching M in G is popular if there is no matching M ′

such that the vertices that prefer M ′ to M outnumber those that prefer
M to M ′.

There are linear time algorithms to compute a min-size popular
matching and a max-size popular matching in G. The following ques-
tion is a natural variant of the min-size and max-size popular matching
problems:

– given a parameter k, is there a popular matching of size k in G?
Here min < k < max, where min and max are the sizes of a min-size
and a max-size popular matching in G. We show the above problem is
NP-hard. For any min < k < max, we also show a linear time algorithm
to construct a matching of size k whose unpopularity factor is at most 2.

1 Introduction

Let G = (A∪B,E) be a bipartite graph where every vertex has a strict preference
list ranking its neighbors. A matching M is stable if there is no pair (a, b) such
that a and b prefer each other to their respective assignments in M . The classical
result of Gale and Shapley [6] shows that stable matchings always exist in G and
such a matching can be computed in linear time.

Popularity is a notion of global stability that was proposed by Gärdenfors [8]
in 1975. We say a vertex u prefers matching M to matching M ′ if (i) u is either
matched in M and unmatched in M ′ or (ii) u is matched in both M,M ′ and u
prefers its partner in M to its partner in M ′. Let φ(M,M ′) be the number of
vertices that prefer M to M ′.

Definition 1. A matching M is popular if φ(M,M ′) ≥ φ(M ′,M) for all match-
ings M ′ in G.

Thus a matching M is popular if M never loses an election against any
matching M ′ in G: here each vertex casts a vote for the matching in {M,M ′}
that it prefers. Popular matchings always exist in G = (A ∪ B,E) since every
stable matching is popular [8]. In fact, all stable matchings have the same size [7]
and every stable matching is a min-size popular matching [10].
c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 306–317, 2018.
https://doi.org/10.1007/978-3-030-00256-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_25&domain=pdf

Popular Matchings of Desired Size 307

The main incentive to relax stability to popularity is to obtain larger match-
ings. Max-size popular matchings are useful in applications such as matching
students to projects or trainees to posts, where one wants a globally stable
matching with large size. A max-size popular matching in G = (A ∪ B,E) can
be computed in linear time [11].

A natural variant of the max-size popular matching problem is one where we
seek a popular matching of size k, for a given parameter k. So the input is an
instance G = (A ∪ B,E) along with an integer k, where min < k < max: here
min (similarly, max) is the size of a stable (resp., max-size popular) matching in
G. This problem arises in applications such as assigning internships to visiting
students where our resources are constrained. Hence rather than a max-size
popular matching that may be too large to suit our constraints, we seek a popular
matching of size k, for an appropriate parameter k.

Interestingly, G need not admit a popular matching of size k for every k
sandwiched between min and max. Consider the following instance on 8 vertices
ai, bi, ci, di for i = 0, 1. For i = 0, 1:

– the preference list of ai is bi � b1−i � ci

– the preference list of bi is a1−i � ai � di.

That is, the vertex ai’s top choice is bi, second choice is b1−i, and third choice is
ci while the vertex bi’s top choice is a1−i, second choice is ai, and third choice
is di. Each of the vertices c0, c1, d0, d1 has only 1 neighbor. That is, for i = 0, 1,
ci’s only neighbor is ai and di’s is bi.

This instance has 2 stable matchings: these are S = {(a0, b0), (a1, b1)} and
S′ = {(a0, b1), (a1, b0)}. The matching M = {(ai, ci), (bi, di) : i = 0, 1} is a
(max-size) popular matching of size 4. It can be checked that this instance has
no popular matching of size 3. We show the following result here.

Theorem 1. The problem of deciding whether G = (A∪B,E) admits a popular
matching of size k, for a given parameter k, is NP-hard.

While min-size and max-size popular matchings in G can be computed in
linear time, surprisingly, computing one of size k, for a given k, is NP-hard. We
show that a general graph H admits a vertex cover of size at most t if and only
if our bipartite instance G has a popular matching of size k ∈ {s+1, . . . , s+ t},
where s = 3mn+2m+ n (m and n are the number of edges and vertices in H).

The unpopularity factor u(M) of a matching M in G is defined below. Let

u(M) = max
N �=M

φ(N,M)
φ(M,N)

. (1)

If M is popular, then φ(N,M) ≤ φ(M,N) for all matchings N in G. Thus
u(M) ≤ 1 for a popular matching M . A matching M with u(M) = O(1) can
be regarded as a near-popular matching since in an election between M and any
matching N , the ratio of the number of votes for N and the number of votes for
M is O(1). We show the following result here.

308 T. Kavitha

Theorem 2. For any k, where min < k < max, a matching M of size k in
G = (A ∪ B,E) such that u(M) ≤ 2 can be computed in linear time.

Background. Algorithms for computing popular matchings were first studied
in instances G = (A ∪ B,E) where vertices in A have preferences over their
neighbors while the vertices in B have no preferences. Popular matchings need
not always exist in such an instance and there is a polynomial time algorithm [1]
to determine if such an instance admits a popular matching or not.

The notion of unpopularity factor was introduced in [15] and it was shown
that computing a least unpopularity factor matching in the above model is NP-
hard. Popular fractionalmatchings always exist here and such a fractional match-
ing can be computed in polynomial time by linear programming [14].

When every vertex in G = (A ∪ B,E) has a strict preference list, popular
matchings always exist in G since stable matchings are popular [8]. When ties are
allowed in preference lists, the problem of deciding whether G admits a popular
matching or not is NP-hard [2,3].

The first polynomial time algorithm to compute a max-size popular matching
in G = (A ∪ B,E) with strict preference lists was given in [10]. It was observed
in [10] that G need not admit popular matchings of all sizes between min and
max. The hardness result that we show here has been improved very recently in
[5] to show that deciding if G admits a popular matching of any intermediate
size between min and max (rather than a particular size k) is NP-hard.

Techniques. Our NP-hardness proof uses the LP framework for popular match-
ings from [14]. Every popular matching M is a max-weight (A ∪ B)-complete
matching in a bipartite graph G̃ with an edge weight function wtM . An optimal
solution to the dual LP will be called a witness to M ’s popularity.

Witnesses will play an important role in our hardness proof. Witnesses were
also recently used in [13] to show that computing a max-utility popular matching
in G = (A ∪ B,E) with edge utilities is NP-hard. Our algorithm to construct a
size k matching with unpopularity factor at most 2 is based on the linear time
algorithm from [11] to construct a max-size popular matching in G = (A∪B,E).

Organization of the paper. Section 2 describes the linear programming frame-
work for popular matchings. Section 3 proves the NP-hardness of the size k pop-
ular matching problem and Sect. 4 has our algorithm to construct a near-popular
matching of size k.

2 Preliminaries

Let G̃ be the graph G augmented with last resort vertices, that is, add the set
{�(u) : u ∈ A ∪ B} to the vertex set of G. The vertex �(u) will be at the bottom
of u’s preference list. The edge set Ẽ of G̃ is E ∪ {(u, �(u)) : u ∈ A ∪ B}.
Corresponding to any matching M in G, define the matching M̃ in G̃ as follows:

M̃ = M ∪ {(u, �(u)) : u is unmatched in M}.

Popular Matchings of Desired Size 309

Thus M̃ is the (A ∪ B)-complete matching in G̃ that corresponds to M in G.
To define the edge weight function wtM in G̃, we will first define the function

voteu(v, v′) for any vertex u and neighbors v, v′ of u. This is as follows:

voteu(v, v′) =

⎧
⎪⎨

⎪⎩

1 if u prefers v to v′

−1 if u prefers v′ to v

0 otherwise, i.e., v = v′.

For any edge (a, b) in G, let wtM (a, b) be votea(b, M̃(a)) + voteb(a, M̃(b)).
Observe that if (a, b) ∈ M then wtM (a, b) = 0.

For any u ∈ A ∪ B, if M̃(u) = �(u) then let wtM (u, �(u)) be 0; else let
wtM (u, �(u)) be −1. Thus wtM (u, �(u)) is u’s vote for �(u) versus its partner in
M̃ .

Let N be any matching in G. Ñ is the (A ∪ B)-complete matching in G̃
corresponding to N . We have:

wtM (Ñ) =
∑

(a,b)∈N

wtM (a, b) +
∑

(u,�(u))∈Ñ

wtM (u, �(u))

=
∑

u∈A∪B

voteu(Ñ(u), M̃(u)) = φ(N,M) − φ(M,N).

Since φ(N,M)−φ(M,N) = wtM (Ñ), the matching M is popular if and only
if wtM (Ñ) ≤ 0 for all matchings N in G. Observe that wtM (M̃) = 0. So M
is popular if and only if the optimal value of the max-weight (A ∪ B)-complete
matching in G̃ with edge weight function wtM is 0.

The linear program LP1 given below is the dual of the max-weight (A ∪ B)-
complete matching LP in G̃. It follows from LP-duality that M is popular if and
only if the optimal value of LP1 is 0.

minimize
∑

u∈A∪B

αu (LP1)

subject to

αu + αv ≥ wtM (u, v) ∀ (u, v) ∈ E

αu ≥ wtM (u, �(u)) ∀u ∈ A ∪ B.

Definition 2. For any popular matching M , an optimal solution α to LP1
above is called a witness of M .

The vector 0 is a witness of popularity of any stable matching. Note that a
popular matching may have several witnesses.

Lemma 1 ([12]). Every popular matching M in G = (A ∪ B,E) has a witness
in {0,±1}n, where n = |A| + |B|.

310 T. Kavitha

Let M be a popular matching and let α be a witness to M ’s popularity. Let N
be another popular matching in G. Then φ(M,N) = φ(N,M). So wtM (Ñ) = 0,
thus Ñ is an optimal solution to the max-weight (A ∪ B)-complete matching
linear program in G̃ with edge weight function wtM . Recall that α is an optimal
solution to the dual LP, i.e., LP1.

Call (a, b) ∈ E a popular edge if there is a popular matching in G that
contains (a, b), i.e., (a, b) ∈ N for some popular matching N . Lemma 2 follows
from complementary slackness. A vertex u is unstable if u is left unmatched in
any stable matching. The second part of Lemma2 follows from the observation
that (u, �(u)) ∈ S̃ for any unstable vertex u and stable matching S.

Lemma 2 ([13]). If (a, b) is a popular edge then αa + αb = wtM (a, b). Also,
αu = wtM (u, �(u)) for any unstable vertex u.

3 The NP-Hardness proof

Let H = (VH , EH) be an instance of the vertex cover problem on n vertices and
m edges. Let VH = [n]. We will now build a bipartite instance G = (A ∪ B,E).

Let e = (i, j) ∈ EH , where i < j. Corresponding to e, we will have a gadget
Ce on 6n + 4 vertices in G. The gadget Ce will consist of a 4-cycle on vertices
xe, ye, x

′
e, y

′
e along with n gadgets Dt

e for 1 ≤ t ≤ n. Each gadget Dt
e consists of

6 vertices: pt
e, r

t
e, u

t
e in A and qt

e, s
t
e, w

t
e in B.

For any e ∈ EH and 1 ≤ t ≤ n, the preference lists of the 6 vertices in the
gadget Dt

e are as follows. These preference lists are inspired by the gadget used
in [13] to show the NP-hardness of the max-utility popular matching problem in
bipartite instances.

– The preference list of pt
e is qt

e � wt
e and that of qt

e is pt
e � ut

e.
– The preference list of rt

e is st
e � wt

e and that of st
e is rt

e � ut
e.

Thus the vertices pt
e and qt

e are each other’s top choice neighbors. Similarly, the
vertices rt

e and st
e are each other’s top choice neighbors. The last choice of pt

e

(also, rt
e) is wt

e and the last choice of qt
e (also, st

e) is ut
e.

– The preference list of ut
e is qt

e � ye � st
e � y′

e.
– The preference list of wt

e is rt
e � xe � pt

e � x′
e.

Thus there are edges between ut
e and ye, y

′
e, and similarly, between wt

e and
xe, x

′
e, for every t. The preference lists of the vertices xe, ye, x

′
e, y

′
e are as follows.

– The preference lists of xe and x′
e are very similar: while xe’s list consists of

ye � y′
e � w1

e � · · · � wn
e , x′

e’s list is exactly the same as xe’s list with b′
i at

the bottom of its list.
– Similarly, the preference lists of ye and y′

e are very similar: while ye’s list
consists of xe � x′

e � u1
e � · · · � un

e , y′
e’s list is exactly the same as ye’s list

with a′
j at the bottom of its list.

Popular Matchings of Desired Size 311

Thus the last choices of x′
e and y′

e are b′
i and a′

j , respectively. Recall that e =
(i, j), the vertices b′

i and a′
j belong to the gadgets corresponding to vertices i

and j, respectively. We describe these vertex gadgets now.
Corresponding to each i ∈ VH , there will be 4 vertices ai, bi, a

′
i, b

′
i in G. Their

preference lists are:

– ai’s preference list is bi � b′
i while bi’s is ai � a′

i,
– a′

i’s preference list is bi � y′
e1

� · · · � y′
eh
, and

– b′
i’s preference list is ai � x′

e′
1

� · · · � x′
e′

�
.

Here e1, . . . , eh are edges incident to i in H with i as their higher valued
endpoint and e′

1, . . . , e
′
� are edges incident to i in H with i as their lower valued

endpoint. The order among y′
e1

, . . . , y′
eh

(similarly, x′
e′
1
, . . . , x′

e′
�
) in the preference

list of a′
i (resp., b′

i) does not matter.
It is known [10] that every popular matching matches all stable vertices (those

matched in a stable matching). For each e ∈ EH and t ∈ [n], the vertices ut
e and

wt
e are unstable since any stable matching in G includes the edges (pt

e, q
t
e), (r

t
e, s

t
e)

for all t, and also (xe, ye), (x′
e, y

′
e). Similarly, for any i ∈ VH , the vertices a′

i and
b′
i are unstable.

Vertex preferences have been set such that the following lemma holds for any
popular matching in G.

Lemma 3. Let M be any popular matching in G. Then for every e ∈ EH , either
{(xe, ye), (x′

e, y
′
e)} ⊆ M or {(xe, y

′
e), (x

′
e, ye)} ⊆ M .

Since xe, ye, x
′
e, y

′
e have to be matched in any popular matching in G, Claims 1

and 2 given below immediately imply Lemma3.

Claim 1. For any e = (i, j) ∈ EH , where i < j, neither (x′
e, b

′
i) nor (a′

j , y
′
e) is

a popular edge.

Proof. In order to show that neither (x′
e, b

′
i) nor (a

′
j , y

′
e) is a popular edge, con-

sider the following matching M :

M = ∪e{(xe, ye), (x′
e, y

′
e)} ∪e,t {(pt

e, q
t
e), (r

t
e, s

t
e)} ∪i {(ai, b

′
i), (a

′
i, bi)}.

The matching M is popular as witnessed by the following vector α:

– for all 1 ≤ i ≤ n: set αai
= αbi

= 1 and αa′
i
= αb′

i
= −1.

– for all e ∈ EH : set αv = 0 for all vertices v in the gadget Ce, i.e., for v ∈
{xe, ye, x

′
e, y

′
e} ∪ {pt

e, q
t
e, r

t
e, s

t
e, u

t
e, w

t
e : 1 ≤ t ≤ n}.

It is easy to check that the above vector α satisfies all the constraints of LP1,
i.e., for each edge (v, v′), we have αv +αv′ ≥ wtM (v, v′). Also αv ≥ wtM (v, �(v))
for all v. Moreover,

∑
v∈VG

αv = 0. Thus M is a popular matching.
For each e = (i, j) ∈ EH , wtM (x′

e, b
′
i) = wtM (a′

j , y
′
e) = −2 while αx′

e
= αy′

e
=

0 and αa′
j
= αb′

i
= −1. Thus αx′

e
+αb′

i
> wtM (x′

e, b
′
i) and αa′

j
+αy′

e
> wtM (a′

j , y
′
e).

It follows from Lemma2 that neither (x′
e, b

′
i) nor (a

′
j , y

′
e) is a popular edge. 	

312 T. Kavitha

Claim 2. For all e ∈ EH , t ∈ [n], neither (xe, w
t
e) nor (x′

e, w
t
e) is a popular

edge; similarly, neither (ut
e, ye) nor (ut

e, y
′
e) is a popular edge.

The proof of Claim 2 is similar to the proof of Claim 1. Let M be any popular
matching in G. Since all stable vertices have to be matched in every popular
matching in G, all the vertices pt

e, q
t
e, r

t
e, s

t
e for all t ∈ [n] in any edge gadget Ce

have to be matched in M .
Lemma 5 shows that for any e ∈ EH , a popular matching in G either matches

no unstable vertex in Ce or it matches all the 2n unstable vertices ut
e, w

t
e for

1 ≤ t ≤ n in Ce. Before we show Lemma 5, we will show the following useful
lemma. Let M be a popular matching in G and let α ∈ {0,±1}|VG| be a witness
of M .

Lemma 4. For any e ∈ EH , if M matches at least one unstable vertex in Ce,
then at least one of αx′

e
, αy′

e
is −1.

Proof. Let ut
e be an unstable vertex in Ce that is matched in M for some t ∈

{1, . . . , n}. So by Lemma3, either (ut
e, q

t
e), (p

t
e, w

t
e) are in M or (ut

e, s
t
e), (r

t
e, w

t
e)

are in M . So one of the following cases holds:

– (pt
e, w

t
e) ∈ M in which case wtM (xe, w

t
e) = 0 (since wt

e prefers xe to pt
e)

– (ut
e, s

t
e) ∈ M in which case wtM (ut

e, ye) = 0 (since ut
e prefers ye to st

e).

So either wtM (xe, w
t
e) = 0 or wtM (ut

e, ye) = 0. We know that αxe
+ αwt

e
≥

wtM (xe, w
t
e) and αut

e
+ αye

≥ wtM (ut
e, ye).

We know from Lemma2 that αut
e
= wtM (ut

e, �(u
t
e)). Since ut

e is matched in
M , we have wtM (ut

e, �(u
t
e)) = −1. Similarly, αwt

e
= −1. Since αut

e
= αwt

e
= −1,

in order to maintain the above constraints for edges (xe, w
t
e) and (ut

e, ye), at least
one of αxe

, αye
has to be 1.

We will now show that αx′
e
= −αye

and αy′
e
= −αxe

. We know that either
(i) (xe, ye), (x′

e, y
′
e) are in M or (ii) (xe, y

′
e), (x

′
e, ye) are in M (by Lemma3).

In both cases, note that wtM (xe, y
′
e) = wtM (x′

e, ye) = 0. In case (ii), we have
αxe

+ αy′
e
= 0 and αx′

e
+ αye

= 0 (by Lemma2).
In case (i), αxe

+αy′
e

≥ 0 and αx′
e
+αye

≥ 0; however αxe
+αye

= αx′
e
+αy′

e
=

0. This means αxe
+ αye

+ αx′
e
+ αy′

e
= 0 and so it has to be the case that

αxe
+ αy′

e
= αx′

e
+ αye

= 0.
So in both cases we have αx′

e
= −αye

and αy′
e
= −αxe

. Since at least one of
αxe

, αye
has to be 1, it follows that at least one of αx′

e
, αy′

e
is −1. 	

Lemma 5. For any edge e, if some unstable vertex in Ce is matched in a popular
matching M then all unstable vertices in Ce are matched in M .

Proof. Let ut
e be an unstable vertex in Ce that is matched in M for some t ∈

{1, . . . , n}. We know from Lemma4 that at least one of αx′
e
, αy′

e
is −1, where

α ∈ {0,±1}|VG| is a witness of M .

Popular Matchings of Desired Size 313

Suppose some unstable vertices uh
e , wh

e are unmatched in M for some h ∈
{1, . . . , n}. Then wtM (uh

e , y′
e) = 0, since uh

e prefers to be matched to y′
e than be

unmatched while y′
e prefers its partner in M (either xe or x′

e) to uh
e . Similarly,

wtM (x′
e, w

h
e) = 0.

Since wtM (uh
e , �(uh

e)) = wtM (wh
e , �(wh

e)) = 0, it follows from Lemma2 that
αuh

e
= αwh

e
= 0. Also αx′

e
= −1 or αy′

e
= −1. Thus either αuh

e
+ αy′

e
< 0 or

αx′
e
+ αwh

e
< 0.

Hence α violates some constraint of LP1, a contradiction to α being a feasible
solution to LP1. So every unstable vertex in Ce has to be matched in M . 	

Lemma 6. Let M be a popular matching in G of size more than m ·(3n+2)+n,
where |EH | = m. The set U = {i ∈ [n] : (ai, b

′
i) ∈ M} is a vertex cover of H.

Proof. The matching M has to match at least one unstable vertex in every Ce.
Otherwise Ce would contribute only 2n + 2 edges to M and this would make
|M | ≤ (2n + 2) + (3n + 2) · (m − 1) + 2n = m · (3n + 2) + n.

Since |M | > m · (3n + 2) + n, M has to match at least one unstable vertex
in every Ce. It now follows from Lemma4 that for every e ∈ EH , at least one of
αx′

e
, αy′

e
is −1, where α ∈ {0,±1}|VG| is a witness to M ’s popularity.

Let (i, j) ∈ EH , where i < j. We need to show that either i or j is in U .
Suppose not. Then both (ai, bi) and (aj , bj) are in M . This means αb′

i
= αa′

j
= 0

(by Lemma2). Also wtM (x′
e, b

′
i) = 0 since b′

i prefers x′
e to being unmatched,

while x′
e prefers both ye and y′

e (its possible partners in M) to b′
i. Similarly,

wtM (a′
j , y

′
e) = 0.

At least one of αx′
e
, αy′

e
is −1 (by Lemma4), so either αx′

e
+αb′

i
< wtM (x′

e, b
′
i)

or αa′
j
+ αy′

e
< wtM (a′

j , y
′
e). This is a contradiction to α being a witness to M ’s

popularity. Thus either i or j is in U for every edge (i, j) ∈ EH . 	

Theorem 3. For any integer c ≥ 1, the graph H has a vertex cover of size c if
and only if G has a popular matching of size m · (3n + 2) + n + c.

Proof. Suppose G has a popular matching M of size m · (3n+2)+ n+ c, where
c ≥ 1. We know from Lemma6 that the set U = {i ∈ [n] : (ai, b

′
i) ∈ M} is a

vertex cover of H. We will now show that |U | = c.
Since |M | > m ·(3n+2)+n, it follows from the proof of Lemma6 that M has

to match at least one unstable vertex in Ce, for every e ∈ EH . This means that
M has to match all vertices in Ce for all e ∈ EH (by Lemma5). Edges within
Ce for all e ∈ EH account for m · (3n + 2) many edges in M .

Corresponding to each i ∈ U , there are 2 edges (ai, b
′
i) and (a′

i, bi) in M
and corresponding to each i /∈ U , there is 1 edge (ai, bi) in M . Hence |M | =
m · (3n + 2) + 2|U | + n − |U | = m · (3n + 2) + n + |U |. Thus |U | = c.

We now show the converse. Let U ⊆ [n] be a vertex cover of size c in H. We
will use U to build a popular matching M of size m · (3n+2)+n+ c as follows:

– for every i ∈ U do: include edges (ai, b
′
i) and (a′

i, bi) in M .
– for every i /∈ U do: include the edge (ai, bi) in M .
– for every e = (i, j), where i < j, in EH do: include edges (xe, ye) and (x′

e, y
′
e)

in M ;

314 T. Kavitha

• if i ∈ U then add (pt
e, q

t
e), (r

t
e, w

t
e), (u

t
e, s

t
e) to M for all 1 ≤ t ≤ n

• if i /∈ U then add (pt
e, w

t
e), (r

t
e, s

t
e), (u

t
e, q

t
e) to M for all 1 ≤ t ≤ n

The size of M is m · (3n+2)+2|U |+n − |U | = m · (3n+2)+n+ c. In order
to prove the popularity of M , consider the vector α defined as follows:

– for every i ∈ U do: set αai
= αbi

= 1 and set αa′
i
= αb′

i
= −1

– for every i /∈ U do: set αai
= αbi

= αa′
i
= αb′

i
= 0

– for every e = (i, j), where i < j, in EH do:
• if i ∈ U then set αxe

= αx′
e
= −1 and αye

= αy′
e
= 1;

set αqt
e
= αrt

e
= αst

e
= 1 and αpt

e
= αut

e
= αwt

e
= −1 for all t ∈ [n].

• if i /∈ U then set αxe
= αx′

e
= 1 and αye

= αy′
e
= −1;

set αpt
e
= αqt

e
= αrt

e
= 1 and αst

e
= αut

e
= αwt

e
= −1 for all t ∈ [n].

It can be checked that α is a witness to M ’s popularity. Thus M is a popular
matching in G of size m · (3n + 2) + n + c. 	

This finishes the NP-hardness proof of the size k popular matching problem
in G = (A ∪ B,E). Thus we have proved Theorem1 stated in Sect. 1.

Note that it is easy to check if a given matching in G = (A∪B,E) is popular
or not [2,10]. Hence the problem of deciding whether G admits a size k popular
matching is NP-complete.

4 A Near-Popular Matching of Size k

Let G = (A ∪ B,E) be our input instance with strict preference lists. Given
a parameter k sandwiched between min and max, we consider the problem of
computing a matching M of size k in G with u(M) ≤ 2 (see (1) in Sect. 1 for the
definition of u(M)). Recall that min and max are the sizes of a stable matching
and a max-size popular matching in G.

Our algorithm is an adaptation of the linear time algorithm called the 2-level
Gale-Shapley algorithm from [11] to compute a max-size popular matching in G.
Running the 2-level Gale-Shapley algorithm in G is equivalent to running the
Gale-Shapley algorithm in a related graph G′, as shown in [4].

It is known that all max-size popular matchings match the same subset of
vertices [9], let Pop denote this subset of A ∪ B. Let Stab be the set of vertices
matched in a stable matching of G. It is known [7] that all stable matchings
in G match the same subset Stab of vertices. Note that |Stab ∩ A| = min and
|Pop ∩ A| = max.

Our algorithm computes the sets Stab and Pop using the linear time algo-
rithms in [6,11], respectively. It then picks any subset X of A such that
Stab ∩ A ⊆ X ⊆ Pop ∩ A and |X| = k.

A new graph GX on vertex set AX ∪B′ is constructed. Define AX and B′ as
follows: AX = {a0 : a ∈ A} ∪ {a1 : a ∈ X} and B′ = B ∪ {d(a) : a ∈ A}. Thus
for each a ∈ A, a new vertex d(a) is introduced in the set B′.

The vertices in {a0 : a ∈ A} will be called level 0 vertices and those in
{a1 : a ∈ X} will be called level 1 vertices.

Popular Matchings of Desired Size 315

For every a ∈ A, the edge set EX of GX consists of the edges (a0, d(a)) and
(a0, b) for every neighbor b of a in G. For a ∈ X, the edges (a1, d(a)) and (a1, b)
for every neighbor b also belong to the edge set of GX . Thus EX = {(ai, b) :
(a, b) ∈ E and ai ∈ AX} ∪ {(ai, d(a)) : ai ∈ AX}.

The preference lists of all vertices in GX are as follows:

– For any a ∈ A, the preference list of a0 is the same as a’s preference list in G
with the vertex d(a) as its least preferred neighbor.

– For any a ∈ X, the preference list of a1 is the same as a’s preference list in
G with the vertex d(a) as its most preferred neighbor.

– For a ∈ X, the preference list of d(a) is a0 � a1, i.e., d(a)’s top choice is a0

and second choice is a1.
– For each b ∈ B, the preference list of b in GX is all its level 1 neighbors as

per their order of preference in G followed by all its level 0 neighbors in their
original order of preference.
For instance, let b’s preference list in G be a � a′ � a′′ and let a, a′′ belong
to X and a′ /∈ X. Then b’s preference list in G′

X is a1 � a′′
1 � a0 � a′

0 � a′′
0 .

The main step of our algorithm is to run Gale-Shapley algorithm [6] in the
instance GX : so vertices in AX propose and those in B′ dispose. Let MX be the
stable matching in GX computed by this algorithm.

Let M be the matching obtained by deleting all (ai, d(a)) edges from MX

(for i = 0, 1) and projecting any (aj , b) edge in MX , where j ∈ {0, 1} and b ∈ B,
to (a, b). Lemmas 7 and 8 show that M is the matching we seek.

Lemma 7. The size of M is k.

Proof. We will show that every vertex in X is matched in M and no vertex in
A \ X is matched in M . Thus |M | = |X| = k.

Since a0 is d(a)’s most preferred neighbor, every vertex in {a0 : a ∈ A} has
to be matched in any stable matching in GX . Let a ∈ A \ X. We claim that a0

is matched to d(a) in the matching MX . In the Gale-Shapley algorithm in GX ,
the vertex a0 would be rejected by all its neighbors in B. This is because every
vertex in A \ X is unstable in G (since X ⊇ Stab ∩ A). Thus d(a) would be the
only neighbor to accept a0’s proposal. So (a0, d(a)) ∈ MX for every a ∈ A \ X.
Corresponding to any a ∈ A \ X, there is no level 1 vertex a1; thus the vertex a
is unmatched in M .

We will now show that every vertex in X is matched in M . Suppose a ∈ X
is not matched in M , i.e., a1 is unmatched in MX . Then a1 would also be
unmatched in the matching M∗ obtained by running Gale-Shapley algorithm in
the graph G′, which is the graph GX when X = A. The graph G′ is obtained by
adding the vertices a1 for a ∈ A \X along with appropriate edges (a1, b) to GX .

It was shown in [4] that running the Gale-Shapley algorithm in G′ computes
a max-size popular matching in G. Since every vertex in X has to be matched
in a max-size popular matching (recall that X ⊆ Pop), the vertex a1 is matched
in M∗. This is a contradiction to a being unmatched in M . Hence every a ∈ X
is matched in M . 	

316 T. Kavitha

We will partition the vertex set of G as follows: we already have A = X ∪
(A \ X) and now we will further partition X into X0 and X1. Let X0 = {a :
(a0, b) ∈ MX for some b in B} and X1 = {a : (a1, b) ∈ MX for some b in B}.

The set B will be partitioned into B0 ∪ B1 as follows: let B1 = {b ∈ B :
(a1, b) ∈ MX for some a in A} and let B0 = B \ B1.

Observe that M ⊆ (X0 × B0) ∪ (X1 × B1). The following properties were
proved for X = A in [11] and it can be shown that they hold for any X ⊆ A:

(∗) For any (a, b) ∈ X1×B0, a and b prefer their partners in M to each other.
(∗∗) For any (a, b) ∈ (X0 × B0) ∪ (X1 × B1), either a prefers M(a) to b or b
prefers M(b) to a. For any (a, b) ∈ (A \ X) × B0, b prefers M(b) to a.

It follows from (∗) and (∗∗) that any blocking edge (a, b) to M , i.e., where
both a and b prefer each other to their assignments in M , has to satisfy b ∈ B1

and a ∈ A \ X1, i.e., a ∈ X0 or a ∈ A \ X.
We are ready to prove the following lemma. The proof of Lemma8 is similar

to the proof of correctness of the max-size popular matching algorithm in [11].

Lemma 8. The unpopularity factor of M is at most 2.

Proof. We will show the following:

(i) for any alternating path ρ with respect to M , φ(M ⊕ρ,M) ≤ 2φ(M,M ⊕ρ).
(ii) for any alternating cycle ρ with respect to M , φ(M ⊕ ρ,M) ≤ φ(M,M ⊕ ρ).

Let ρ be an alternating path with respect to M . Consider the edges in ρ\M :
suppose ρ \ M has x edges from ((A \ X1) × B0) ∪ (X1 × B1), y edges from
(A \ X1) × B1, and z edges from X1 × B0.

We know from (∗) that for each edge (a, b) ∈ X1 × B0, both a and b prefer
M to M ⊕ ρ. We know from (∗∗) that for every edge (a, b) ∈ ((A \ X1) × B0) ∪
(X1 ×B1), at least one of a, b prefers M to M ⊕ρ. An edge in (A\X1)×B1 may
be a blocking edge to M . Hence among the vertices of ρ, the number of votes for
M ⊕ ρ versus M is at most x + 2y.

Suppose exactly one endpoint of ρ is unmatched in M . Then among the
vertices of ρ, the number of votes for M versus M ⊕ ρ is at least x+2z+1: here
the “1” counts the matched endpoint v of ρ. This vertex v prefers M to M ⊕ ρ
since it is matched in M but unmatched in M ⊕ ρ.

The crucial point here is that since M ⊆ (X0 × B0) ∪ (X1 × B1), we have
z ≥ y − 1. This is because between 2 occurrences of edges from (A \ X1)× B1 in
ρ \ M , there needs to be an edge from X1 × B0.

Thus φ(M,M ⊕ ρ) ≥ x + 2z + 1 ≥ x + 2y − 1. So we have:

φ(M ⊕ ρ,M)
φ(M,M ⊕ ρ)

≤ x + 2y
x + 2y − 1

≤ 2.

Suppose both endpoints of ρ are unmatched in M . Thus one endpoint of
ρ is in A \ X and the other endpoint is in B0. This implies z = y. Hence
the number of votes for M versus M ⊕ ρ is at least x + 2y. Thus we have
φ(M ⊕ ρ,M) ≤ φ(M,M ⊕ ρ) here.

Popular Matchings of Desired Size 317

The proof when both endpoints of ρ are matched in M is similar to the first
case: here z ≥ y − 1, however both the endpoints of ρ prefer M to M ⊕ ρ. Thus
φ(M,M ⊕ρ) ≥ x+2(y−1)+2 = x+2y. The proof in the case of alternating cycle
is the same as in the second case above: here z = y and so φ(M,M ⊕ρ) ≥ x+2y.
Thus in both these cases as well, we have φ(M ⊕ ρ,M) ≤ φ(M,M ⊕ ρ).

Let N �= M be any matching in G = (A ∪ B,E). So N ⊕ M is a collection of
alternating paths and cycles with respect to M . For every ρ ∈ N ⊕ M , we know
from (i) and (ii) above that φ(M ⊕ ρ,M) ≤ 2φ(M,M ⊕ ρ). This immediately
implies that φ(N,M)/φ(M,N) ≤ 2. Thus u(M) ≤ 2. 	

Since our algorithm runs in linear time, this proves Theorem2 from Sect. 1.

References

1. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings.
SIAM J. Comput. 37(4), 1030–1045 (2007)

2. Biró, P., Irving, R.W., Manlove, D.F.: Popular matchings in the marriage and
roommates problems. In: Proceedings of 7th International Conference on Algo-
rithms and Complexity (CIAC), pp. 97–108 (2010)

3. Cseh, Á., Huang, C.-C., Kavitha, T.: Popular matchings with two-sided preferences
and one-sided ties. SIAM J. Discret. Math. 31(4), 2348–2377 (2017)

4. Cseh, Á., Kavitha, T.: Popular edges and dominant matchings. In: Louveaux, Q.,
Skutella, M. (eds.) IPCO 2016. LNCS, vol. 9682, pp. 138–151. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33461-5 12

5. Faenza, Y., Kavitha, T., Powers, V., Zhang, X.: Popular matchings and limits to
tractability. http://arxiv.org/abs/1805.11473 (2018)

6. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69, 9–15 (1962)

7. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discret.
Appl. Math. 11, 223–232 (1985)

8. Gärdenfors, P.: Match making: assignments based on bilateral preferences. Behav.
Sci. 20, 166–173 (1975)

9. Hirakawa, M., Yamauchi, Y., Kijima, S., Yamashita, M.: On the structure of pop-
ular matchings in the stable marriage problem - who can join a popular matching?
In: The 3rd International Workshop on Matching Under Preferences (2015)

10. Huang, C.-C., Kavitha, T.: Popular matchings in the stable marriage problem. Inf.
Comput. 222, 180–194 (2013)

11. Kavitha, T.: A size-popularity tradeoff in the stable marriage problem. SIAM J.
Comput. 43(1), 52–71 (2014)

12. Kavitha, T.: Popular half-integral matchings. In: Proceedings of 43rd International
Colloquium on Automata, Languages, and Programming (ICALP), pp. 22.1–22.13
(2016)

13. Kavitha, T.: Max-size popular matchings and extensions (2018). http://arxiv.org/
abs/1802.07440

14. Kavitha, T., Mestre, J., Nasre, M.: Popular mixed matchings. Theor. Comput. Sci.
412, 2679–2690 (2011)

15. McCutchen, R.M.: The least-unpopularity-factor and least-unpopularity-margin
criteria for matching problems with one-sided preferences. In: Laber, E.S., Born-
stein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 593–
604. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-0 51

https://doi.org/10.1007/978-3-319-33461-5_12
http://arxiv.org/abs/1805.11473
http://arxiv.org/abs/1802.07440
http://arxiv.org/abs/1802.07440
https://doi.org/10.1007/978-3-540-78773-0_51

Convexity-Increasing Morphs of Planar
Graphs

Linda Kleist1, Boris Klemz2(B), Anna Lubiw3, Lena Schlipf4, Frank Staals5,
and Darren Strash6

1 Technische Universität Berlin, Berlin, Germany
2 Freie Universität Berlin, Berlin, Germany

klemz@inf.fu-berlin.de
3 University of Waterloo, Waterloo, Canada

4 FernUniversität in Hagen,
Hagen, Germany

5 Utrecht University, Utrecht, The Netherlands
6 Hamilton College, Clinton, USA

Abstract. We study the problem of convexifying drawings of planar
graphs. Given any planar straight-line drawing of a 3-connected graph
G, we show how to morph the drawing to one with convex faces while
maintaining planarity at all times. Furthermore, the morph is convexity
increasing, meaning that angles of inner faces never change from convex
to reflex. We give a polynomial time algorithm that constructs such a
morph as a composition of a linear number of steps where each step either
moves vertices along horizontal lines or moves vertices along vertical
lines.

1 Introduction

A morph between two planar straight-line drawings Γ0 and Γ1 of a graph G is
a continuous movement of the vertices from one to the other, with the edges
following along as straight-line segments between their endpoints. A morph is
planar if it preserves planarity of the drawing at all times.

Motivated by applications in animation and in reconstruction of 3D shapes
from 2D slices, the study of morphing has focused on finding a morph between
two given planar drawings. The existence of planar morphs was established long
ago [5,24], followed by algorithms that produce good visual results [11,13], and
algorithms that find “piece-wise linear” morphs with a linear number of steps [2].

Our focus is somewhat different, and more aligned with graph drawing
goals—our input is a planar graph drawing and our aim is to morph it to a
better drawing, in particular to a convex drawing. A morph convexifies a given
straight-line graph drawing if the end result is a convex graph drawing, i.e. a
planar straight-line graph drawing in which every face is a convex polygon. For
a survey on convex graph drawing, see [22].

Due to space constraints, some proofs in this manuscript are only sketched or omitted
entirely. Full proofs of all claims can be found in the full preprint version [16].

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 318–330, 2018.
https://doi.org/10.1007/978-3-030-00256-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_26&domain=pdf

Convexity-Increasing Morphs of Planar Graphs 319

1 2

34

Fig. 1. A sequence of convexity-increasing morphs (horizontal, vertical, horizontal)
that morph a straight-line drawing of a graph G (drawn in black) into a strictly convex
drawing of G.

We first observe that it is easy, using known results, to find a planar morph
that convexifies a given graph drawing—we can just create a convex drawing
with the same faces (assuming such a drawing exists), and morph to that spe-
cific drawing using the known planar morphing algorithms. In this paper, we
impose a stronger condition: we want to find a confexifying morph which is
also convexity-increasing, meaning that an angle of an inner face never switches
from convex to reflex. Besides the theoretical goal of studying continuous motion
that is monotonic in some measure (e.g. edge lengths [15]), another motivation
comes from visualization—a morph of a graph drawing should maintain the
user’s “mental map” [20] which means changing as little as possible, and making
observable progress towards a goal. Previous morphing algorithms fail to provide
convexity-increasing morphs even if the target is a convex drawing because they
all start by triangulating the drawing. This means that an original convex angle
may be subdivided by new triangulation edges, so there is no constraint that
keeps it convex.

Our main result is an algorithm to convexify any straight-line planar drawing
of a 3-connected graph via a planar convexity-increasing morph. In fact, we
show a surprising stronger property—that the morph can be composed of a
linear number of horizontal and vertical morphs. A horizontal morph moves all
vertices at constant speeds along horizontal lines, and a vertical morph is defined
similarly. See Fig. 1 for an illustration. Orthogonality is a very desirable and well-
studied criterion for graph drawing [9], in part because there is evidence that the
human visual cortex comprehends orthogonal lines more easily [4,21]. Similarly,

320 L. Kleist et al.

it seems natural that orthogonal motion should be easier to comprehend, though
morphing algorithms have so far not explored this criterion.

Related Work and Concepts. To the best of our knowledge there is no pre-
vious work on convexity-increasing morphs except for the case when the input
graph is a path or a cycle. Connelly et al. [7] and Canterella et al. [6] gave
algorithms to convexify a simple polygon while preserving edge lengths. Since
their motions are “expansive”, they are convexity-increasing. Aichholzer et al. [1]
gave an algorithm to find a “visibility-increasing” morph of a simple polygon to
a convex polygon; this condition also implies the condition of being convexity-
increasing.

In related work, there is an algorithm to morph one convex drawing to
another convex drawing of the same graph while preserving planarity and con-
vexity [3]. Such morphs are convexity-increasing by default, but do not address
our problem since our initial drawing is not convex.

Many previous morphing algorithms find “piece-wise linear” morphs, where
the morph is composed of discrete steps and each step moves vertices along
straight lines. A morph is called linear if each vertex moves along a straight
line at constant speed; different vertices are allowed to move at different speeds,
and some may remain stationary. A linear morph is completely specified by the
initial and final drawings. If, in addition, all the lines along which vertices move
are parallel, then the morph is called unidirectional [2]. Horizontal and vertical
morphs are a special kind of unidirectional morphs.

Alamdari et al. [2] gave an algorithm with runtime O(n3) that takes as input
two n-vertex planar straight-line drawings that are combinatorially the same,
and constructs a planar morph between them that consists of a sequence of
O(n) unidirectional morphs.

Our Results. Our main result is the following theorem.

Theorem 1. Let Γ be a planar straight-line drawing of a 3-connected graph G
on n vertices. Then Γ can be morphed to a strictly convex drawing via a sequence
of convexity-increasing planar morphs each of which is either a horizontal morph
or a vertical morph. If Γ has a convex outer face then the number of morphs in
the sequence is at most r+1, where r is the number of internal reflex angles in Γ .
In general, the number of morphs in the sequence is at most 1.5n. Furthermore,
there is an O(n1+ω/2) time algorithm to find the sequence of morphs, where ω is
the matrix multiplication exponent.

The run time is O(n2.5) with Gaussian elimination, improved to O(n2.1865)
using the current fastest matrix multiplication method with ω ≈ 2.3728639 [17].
Our model of computation is the real-RAM—we do not have a polynomial bound
on the bit-complexity of the coordinates of the vertices in the sequence of draw-
ings that specify the morph. However, previous morphing algorithms had no
such bounds either.

In terms of visualization, our algorithm has an advantage over the general
morphing algorithm of Alamdari et al. [2]. That algorithm “almost contracts”

Convexity-Increasing Morphs of Planar Graphs 321

vertices, which destroys the user’s mental model of the graph. We do not use
contractions, and therefore believe our morphs to be useful for visualizations.

As with some previous morphing results [2,3] a main ingredient of our proof
of Theorem 1 is a result of Hong and Nagamochi [14] that gives conditions (and
an algorithm) for redrawing a planar straight-line graph drawing to have convex
faces, while preserving the y-coordinates of the vertices (“level planar draw-
ings of hierarchical-st plane -graphs,” in their terminology). Angelini et al. [3]
strengthened Hong and Nagamochi’s result to strictly convex faces. We give a
new proof of the strengthened result for 3-connected graphs using Tutte’s graph
drawing algorithm. This speeds up Hong and Nagamochi’s algorithm from O(n2)
to O(nω/2). Our improvement in run-time also speeds up the run-time of the
morphing algorithm of Alamdari et al. [2] from O(n3) to O(n1+ω/2).

Organization. The proof of Theorem 1 is in Sect. 3, and the result about redraw-
ing with convex faces is in Sect. 4. We begin with preliminaries in Sect. 2.

2 Preliminaries

Two planar drawings of a graph G have the same combinatorial embedding if
they have the same clockwise cyclic ordering of edges around the outer face and
around each inner face.

Given a planar straight-line drawing Γ of a graph, its angles are formed by
pairs of consecutive edges around a face, with the angle measured inside the face.
An internal angle is an angle of an inner face. A reflex angle is one that exceeds
π. A convex angle is at most π, and a strictly convex angle is less than π. A
drawing Γ is convex if all its faces are drawn as convex polygons, i.e., angles of
the inner faces are convex and angles of the outer face are reflex or flat (of angle
180◦). The drawing is strictly convex if all faces are strictly convex.

A face of a planar graph drawing is y-monotone if the boundary of the face
consists of two y-monotone chains. A chain is y-monotone if the y-coordinates
of points along the chain are strictly increasing. These definitions apply to gen-
eral planar graph drawings, not just straight-line drawings. (We note that the
directed graphs that have drawings with y-monotone faces are the st-planar
graphs, which are well-studied [8].)

A linear morph is completely specified by the initial and final drawings. We
use the notation 〈Γ1, Γ2〉 to denote the linear morph from drawing Γ1 to Γ2.

Unidirectional Morphs. Restricting to linear morphs seems like a sensible way
to discretize morphs—essentially, it asks for the vertex trajectories to be piece-
wise linear. At first glance, the further restriction to unidirectional morphs seems
arbitrary and restrictive. However, as discovered by Alamdari et al. [2], it is easier
to prove the existence of unidirectional morphs. Also, unidirectional morphs
have many nice properties, as we explain in this section. Suppose we perform
a horizontal morph. Then every vertex must keep its y-coordinate. Alamdari
et al. gave conditions on the initial and final drawing that guarantee that the
horizontal morph between them is planar:

322 L. Kleist et al.

Lemma 1. [2, Lemma 13] If Γ and Γ ′ are two planar straight-line drawings
of the same graph such that every line parallel to the x-axis crosses the same
ordered sequence of edges and vertices in both drawings, then the linear morph
from Γ to Γ ′ is planar.

Observe that the conditions of the lemma imply that every vertex is at the
same y-coordinate in Γ and Γ ′ so the linear morph between them is horizontal.
Also note that the lemma generalizes in the obvious way to any direction, not
just the direction of the x-axis. We note several useful consequences of Lemma 1.

Lemma 2. Let Γ1, Γ2, Γ3 be three planar straight-line drawings where the linear
morphs 〈Γ1, Γ2〉 and 〈Γ2, Γ3〉 are horizontal and planar. Then the linear morph
〈Γ1, Γ3〉 is a horizontal planar morph.

Lemma 3. During a horizontal morph, the convexity-status of an angle changes
at most once. If 〈Γ1, Γ2〉 is a horizontal morph and every convex internal angle
of Γ1 is also convex in Γ2 then the morph is convexity-increasing.

Alamdari et al. gave a further condition that implies the hypothesis of
Lemma 1, and applies even to drawings that are not straight-line planar:

Observation 1. [2, Lemma 13] Let Γ be a planar drawing of a graph G in
which all faces (including the outer face) are y-monotone and let Γ ′ be another
planar drawing of G that has the same combinatorial embedding, the same y-
coordinates of vertices, and y-monotone edges. Then every line parallel to the
x-axis crosses the same ordered sequence of edges and vertices in both drawings.

Redrawing with Convex Faces while Preserving y-Coordinates. We
build upon an O(n2) time algorithm due to Hong and Nagamochi [14] that
redraws a planar graph to have convex faces while preserving the y-coordinates
of the vertices. Angelini et al. [3] strengthened the result to strictly convex faces
by perturbing vertices to avoid angles of 180◦. They did not analyze the run-
time. Both [3,14] expressed their results in terms of level planar drawings of
hierarchical-st plane graphs, and handled more generally the class of graphs that
have (strictly) convex drawings.

We limit ourselves to 3-connected graphs and improve the running time:

Lemma 4 (based on [3,14]). Let Γ be a planar drawing of a 3-connected
graph G such that every face is y-monotone (including the outer face). Let C
be a strictly convex straight-line drawing of the outer face of G such that every
vertex of C has the same y-coordinate as in Γ . Then there is a straight-line
strictly convex drawing Γ ′ of G that has C as the outer face and such that every
vertex of Γ ′ has the same y-coordinate as in Γ . Furthermore, Γ ′ can be found
in time O(nω/2), where ω is the matrix multiplication exponent.

We prove Lemma 4 in Sect. 4 using Tutte’s graph drawing algorithm. This is
quite different from the previous approaches, and gives the improved run-time.
Our run-time is O(n1.5) without fast matrix multiplication, O(n1.1865) with.

Convexity-Increasing Morphs of Planar Graphs 323

3 Computing Convexity-Increasing Morphs

To give some intuition about the proof of Theorem1, we first consider an easy
case where the outer face C of Γ is a strictly convex polygon and all faces are
y-monotone. In this case, we can immediately apply Lemma 4 with the outer face
fixed to obtain a new straight-line strictly convex drawing Γ ′ with all vertices
at the same y-coordinates. By Observation 1 every line parallel to the x-axis
crosses the same ordered sequence of edges and vertices in Γ and in Γ ′. Then
by Lemma 1 the morph from Γ to Γ ′ is planar. Also it is a horizontal morph.
Thus we have a morph from Γ to a strictly convex drawing Γ ′ by way of a single
horizontal morph. Furthermore, the morph is convexity-increasing by Lemma3.

Morphing Drawings with a Convex Outer Face. When the outer face is
convex, but the other faces are not necessarily y-monotone, we will still begin
with one horizontal morph. Assume Γ has no horizontal edges (we show how to
ensure this later on). A face f is y-monotone if and only if it has only one local
maximum and only one local minimum, where a vertex v is a local minimum
(local maximum) of face f if the neighbors of v in f lie above v (below v,
respectively). A local extremum refers to a local minimum or a local maximum.
Observe that a horizontal morph preserves the local extrema and does not change
their convex/reflex status. Thus the only reflex angles that can be made convex
via a horizontal morph are the h-reflex angles, where an angle of inner face f
is called h-reflex if it is reflex and occurs at a vertex that has one neighbor in
f above and the other below—equivalently, the angle is reflex and is not a local
extremum of f .

To obtain a horizontal morph we will apply Lemma4, and to do that, we must
first augment Γ to a drawing with y-monotone faces by inserting y-monotone
edges (not necessarily straight-line). For an example see Fig. 2. This is a standard
operation in upward planar (or “monotone”) drawing [8, Lemma 4.1] [19, Lemma
3.1], but we need the stronger property that new edges are only incident to local
extrema (otherwise we would relinquish control of convexity at that vertex). We
will use:

Proposition 1. Any straight-line planar drawing of a 3-connected graph can be
augmented to have y-monotone inner faces by adding edges such that each edge
can be drawn as a y-monotone curve joining two local extrema in some face.
Furthermore, these edges can be found in time O(n log n).

The proof idea is illustrated in Fig. 2. Proposition 1 allows us to prove the
following:

Lemma 5. Let Γ be a straight-line planar drawing of a 3-connected graph with
a convex outer face and no horizontal edge. There exists a horizontal planar
morph to a straight-line drawing Γ ′ such that Γ ′ has a strictly convex outer
face and every internal angle that is not a local extremum is strictly convex in
Γ ′. Furthermore, the morph is convexity-increasing, and can be found in time
O(nω/2), where ω is the matrix multiplication exponent.

324 L. Kleist et al.

)b()a(

Fig. 2. (a) A face (in gray) that is not y-monotone. Gray vertices are convex; black
vertices are reflex. Local minima are drawn with thin-bordered hollow vertices, and
local maxima with thick-bordered hollow vertices; other vertices are drawn solid, and
those that are reflex (black) will be convexified in the next morph. Red dashed edges
inside the face are added by Proposition 1. (b) The face after application of Lemma 5.
Angles at black solid vertices have become convex.

Proof. Use Proposition 1 to augment Γ with a set of edges A such that Γ ∪ A
is a planar drawing in which all faces are y-monotone, and any edge of A goes
between two local extrema in some inner face. This takes O(n log n) time. Let
C be the outer face of Γ . Create a new drawing of C, call it C ′, that is strictly
convex, but preserves the y-coordinates of vertices.

By Lemma 4 with the outer face C ′ we obtain (in time O(nω/2)) a new
straight-line strictly convex drawing Γ ′ ∪ A′ with all vertices at the same y-
coordinates as in Γ . (Here A′ is a set of straight-line edges corresponding to
A.) By Observation 1 every line parallel to the x-axis crosses the same ordered
sequence of edges and vertices in Γ ∪ A and in Γ ′ ∪ A′. Then by Lemma 1 the
morph from Γ to Γ ′ is a planar horizontal morph.

Any internal angle of Γ that is not a local extremum has no edge of A incident
to it, and thus becomes strictly convex in Γ ′. Any internal angle of Γ that is a
local extremum maintains its convex/reflex status in Γ ′. Thus by Lemma 3 the
morph is convexity-increasing. The run-time to find the morph (i.e., to find Γ ′)
is O(nω/2). ��

Lemma 5 generalizes to directions d other than the horizontal direction. In
order to prove Theorem1, the plan is to apply Lemma5 and, then, to conceptu-
ally “turn the paper” by 90◦ and perform a vertical morph to make any v-reflex
angle convex, where an angle of inner face f is called a v-reflex angle if it is reflex
and occurs at a vertex that has one neighbor in f to the left and the other to
the right. Under the assumption that each such horizontal or vertical morphing
step convexifies at least one angle, the proof of Theorem1 is obtained by simply
continuing to apply Lemma5 alternately in the horizontal and vertical direction.
To ensure that after each step there is at least one h-reflex or v-reflex vertex, we
provide the following strengthened version of Lemma 5.

Convexity-Increasing Morphs of Planar Graphs 325

(a) (b) (c)

Fig. 3. (a) A face that is not y-monotone. (b) The face after application of Lemma 5.
There is a vertical edge and the single reflex vertex is not v-reflex. (c) After applying a
horizontal shear transformation, the reflex vertex is v-reflex and there are no vertical
edges.

Lemma 6. Let Γ be a straight-line planar drawing with a convex outer face
and no horizontal edge. There exists a horizontal planar morph to a straight-line
drawing Γ ′′ such that

(i) the outer face of Γ ′′ is strictly convex,
(ii) every internal angle that is not a local extremum is convex in Γ ′′,
(iii) Γ ′′ has no vertical edge, and
(iv) if Γ ′′ is not convex, then it has at least one v-reflex angle.

Furthermore, the morph is convexity-increasing, and can be found in time
O(nω/2).

Proof sketch. We apply Lemma 5 to obtain a morph from Γ to a drawing Γ ′

that satisfies (i) and (ii). We apply a shearing transformation (along the x-axis)
to Γ ′ to obtained a drawing Γ ′′ which satisfies all four conditions, see Fig. 3(b,c).
By Observation 1 and Lemma 1 the horizontal morph 〈Γ ′, Γ ′′〉 is planar. Thus,
by Lemma 2 the horizontal morph 〈Γ, Γ ′′〉 is planar. Since shearing is an affine
transformation, Γ ′ and Γ ′′ have the same sets of convex/reflex angles. Hence,
〈Γ, Γ ′′〉 is convexity-concreasing. ��
Each application of Lemma 6 convexfies at least one reflex angle and, thus, after
at most r application we obtain a strictly convex drawing. If the initial drawing
contains a horizontal edge, we use one additional vertical morph to a sheared
drawing, resulting in a total of r + 1 ≤ n morphs. This concludes the proof
sketch of Theorem 1 for the case that the outer face is already realized as a
convex polygon.

Morphing Drawings with a Non-convex Outer Face. To prove the general
case of Theorem 1, where the outer face is not convex, we first augment the outer
face of Γ with edges from its convex hull to obtain a drawing of an augmented
graph with a convex outer face. We apply the algorithm for the convex case to
morph to a strictly convex drawing and then remove the extra edges one-by-one.
After each edge is removed we morph to a strictly convex drawing of the reduced
graph using at most three horizontal or vertical morphs. We now describe these
steps in more detail.

326 L. Kleist et al.

(a) (b) (c)

u

v

fe

e

puv

u

ve

puv
G

Fig. 4. (a) Schematic of the convex drawing of G ∪ A. Graph G is depicted in gray,
edges of A are dashed, and the pockets are white. (b)–(c) Cases 1 and 2 for Lemma 7,
where faint gray arrows indicate explicit placements on the convex hull.

Augmenting the Outer Face. Compute the convex hull of Γ . Any segment
of the convex hull that does not correspond to an edge of G becomes a new edge
that we add to G. Let A denote the new edges and G∪A denote the augmented
graph with straight-line planar drawing Γ ∪ ΓA. Each edge e ∈ A is part of the
boundary of an inner face fe of Γ ∪ΓA. We call fe the pocket of e. We apply the
algorithm for the convex case to obtain a strictly convex drawing of G ∪ A, see
Fig. 4(a). Note that said algorithm is guaranteed to to produce drawings without
horizontal or vertical edges.

Popping a Pocket Outward. We now describe a way to remove an edge of
A and “pop” out the vertices of its pocket so that they become part of the
convex hull. Lemma 4 serves once again as an important subroutine. We make
ample use of the fact that we may freely specify the desired subdrawing of the
outer face after each application of Lemma4, as long as we maintain either the
x-coordinates or the y-coordinates of all vertices.

Lemma 7. Let Γ be a strictly convex drawing of graph G, with an edge e on the
outer face. Suppose that G − e is 3-connected. Then Γ − e can be morphed to a
strictly convex drawing of G − e via at most three convexity-increasing morphs,
each of which is horizontal or vertical. Furthermore, the morphs can be found in
time O(nω/2).

Proof. Our morph will be specified by a sequence of drawings, Γ , Γ1, Γ2, Γ3,
where the first and last morphs are vertical and the second morph, which we can
sometimes skip, is horizontal.

Let e = (u, v). We first perform a vertical morph from Γ to a drawing Γ1 in
which vertex u is top-most or bottom-most. This can be done by choosing some
strictly convex drawing of the outer face in which u is extreme while maintaining
the x-coordinates of all vertices, and then using one application of Lemma4. For
the remainder of the proof, assume without loss of generality that u is the top-
most vertex and that v lies to the right of u in Γ1. The other cases are symmetric.
Let puv denote the path from u to v in fe−e. We distinguish two cases depending
on the shape of fe in Γ1.

Convexity-Increasing Morphs of Planar Graphs 327

Case 1: The path pu,v is an x-monotone chain in Γ1, see Fig. 4(b). In this case we
can skip the second step of the morph sequence. We will remove e and compute
a vertical morph from Γ1 − e to a strictly convex drawing Γ3 of G − e. This can
be done by Lemma 4 as long as we can specify a strictly convex drawing of the
outer face of Γ1 − e in which the x-coordinates match those of Γ1. It suffices to
compute a suitable new reflex chain for puv, see Fig. 4(b).

Case 2: The path puv is not an x-monotone chain. In this case we will compute
a horizontal morph from Γ1 to a strictly convex drawing Γ2 in which u and v are
the unique left-most and the unique right-most vertices. This can be done by
Lemma 4 as long as we can specify a strictly convex drawing of the outer face of
Γ1 in which u and v are at the left and right and the y-coordinates match those
of Γ1. This is possible because u is top-most, see Fig. 4(c).

In the drawing Γ2 the pocket fe is convex with extreme points u and v so
the path puv is x-monotone and, hence, by case 1, there is a vertical morph from
Γ2 − e to a strictly convex drawing Γ3 of G − e. ��

Each application of Lemma 7 increases the number of vertices of G on the
convex hull. Thus, by induction on said number we obtain the proof of Theo-
rem 1. We have used a constant number of morphs per pockets and, thus, O(n)
morphs in total. In [16] we improve this bound to 1.5n.

4 Using Tutte’s Algorithm to Find Convex Drawings
Preserving y-Coordinates

In this section, we sketch our proof of Lemma 4. In his paper, “How to Draw
a Graph,” [25] Tutte showed that any 3-connected planar graph G = (V,E)
with a fixed convex drawing C of its outer face has a convex drawing with
outer face C that can be obtained by solving a system of linear equations. Let
VI be the internal vertices of G and for v ∈ VI let variables (xv, yv) represent
the coordinates of vertex v. For each vertex v ∈ C let (xv, yv) be its (fixed)
coordinates. Let dv be the degree of vertex v. Consider the system of equations:

∀u ∈ VI (xu, yu) =
∑

(u,v)∈E

1
du

(xv, yv).

Tutte proved that this system of equations has a solution and that the solution
gives a convex drawing of G with outer face C. The drawing is strictly convex
so long as C is strictly convex.

In fact, Tutte’s proof carries over to more general “barycenter” weights
other than 1/du. The following result is proved in [10] (or see [12]). Assign a
weight wu,v > 0 to each ordered pair u, v with (u, v) ∈ E such that for each u,∑

v wu,v = 1. Then the system of equations

328 L. Kleist et al.

∀u ∈ VI (xu, yu) =
∑

(u,v)∈E

wu,v(xv, yv) (1)

has a unique solution that gives a convex drawing of G with outer face C (and
a strictly convex drawing of G if C is strictly convex).

The idea for our proof of Lemma4 is as follows: As a preprocessing step, we
compute barycenter weights wu,v which force the vertices to lie at the desired
y-coordinates. To this end, we solve the equation system (1) restricted to the
y-coordinates. Here, we consider the y’s as fixed vales, while the wu,v’s are the
variables. We add further constraints that ensure that for every internal vertex u
the obtained values wu,v sum up to 1. As a second step, we apply the generalized
version of Tutte’s algorithm to obtain the desired drawing using the weights
obtained in the preprocessing step. The efficient runtime is obtained by using
the generalized nested dissection method by Lipton et al. [18] (also see [23]).

5 Conclusions

In [16] we extend our results to internally 3-connected graphs. This prop-
erty is known to characterize the plane graphs which admit strictly convex
drawings [3,14]. We also show that our algorithm is worst-case optimal in the
sense that a linear number of morphing steps may be required to convexify a
given drawing. The following questions remain open: (1) Recall that during a
convexity-increasing morph, the set of internal convex angles never decreases. We
conjecture that every straight-line planar drawing of a (internally) 3-connected
graph admits a convexity-increasing morph to a convex drawing such that dur-
ing the morph the set of external reflex angles also never decreases. (2) Design
piece-wise linear morphs with a polynomial bound on the bit complexity of the
intermediate drawings. This would be a step towards having intermediate draw-
ings that lie on a polynomial-sized grid, i.e. with a logarithmic number of bits
for each vertex’s coordinates. This is open both for our problem of morphing to
a convex drawing and for the problem of morphing between two given planar
straight-line drawings.

Acknowledgments. We thank André Schulz for helpful discussions on generaliza-
tions of Tutte’s algorithm. This work was begun at Dagstuhl workshop 17072, “Appli-
cations of Topology to the Analysis of 1-Dimensional Objects.” We thank Dagstuhl,
the organizers, and the other participants for a stimulating workshop. In particular,
we thank Carola Wenk and Regina Rotmann for joining some of our discussions, and
Irina Kostitsyna for contributing many valuable ideas.

References

1. Aichholzer, O., Aloupis, G., Demaine, E.D., Demaine, M.L., Dujmovic, V., Hur-
tado, F., Lubiw, A., Rote, G., Schulz, A., Souvaine, D.L., Winslow, A.: Convexify-
ing polygons without losing visibilities. In: Canadian Conference on Computational
Geometry (CCCG) (2011)

Convexity-Increasing Morphs of Planar Graphs 329

2. Alamdari, S., Angelini, P., Barrera-Cruz, F., Chan, T.M., Da Lozzo, G., Di Bat-
tista, G., Frati, F., Haxell, P., Lubiw, A., Patrignani, M., Roselli, V., Singla, S.,
Wilkinson, B.T.: How to morph planar graph drawings. SIAM J. Comput. 46(2),
29 (2017)

3. Angelini, P., Da Lozzo, G., Frati, F., Lubiw, A., Patrignani, M., Roselli, V.: Opti-
mal morphs of convex drawings. In: Arge, L., Pach, J. (eds.) Proceedings of the
31st International Symposium on Computational Geometry (SoCG 2015), Leibniz
International Proceedings in Informatics (LIPIcs), vol. 34, pp. 126–140. Dagstuhl,
Wadern (2015)

4. Appelle, S.: Perception and discrimination as a function of stimulus orientation:
the “oblique effect” in man and animals. Psychol. Bull. 78(4), 266 (1972)

5. Cairns, S.: Deformations of plane rectilinear complexes. Am. Math. Monthly 51(5),
247–252 (1944)

6. Cantarella, J.H., Demaine, E.D., Iben, H.N., O’Brien, J.F.: An energy-driven app-
roach to linkage unfolding. In: Proceedings of the 20th Annual Symposium on
Computational Geometry (SoCG), pp. 134–143. ACM (2004)

7. Connelly, R., Demaine, E.D., Rote, G.: Straightening polygonal arcs and convexi-
fying polygonal cycles. Discret. Comput. Geom. 30, 205–239 (2003)

8. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic
digraphs. Theor. Comput. Sci. 61(2–3), 175–198 (1988)

9. Eiglsperger, M., Fekete, S.P., Klau, G.W.: Orthogonal graph drawing. In: Kauf-
mann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, pp. 121–171. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-44969-8 6

10. Floater, M.S.: Parametric Tilings and scattered data approximation. Int. J. Shape
Model. 4(03n04), 165–182 (1998)

11. Floater, M.S., Gotsman, C.: How to morph tilings injectively. J. Comput. Appl.
Math. 101(1–2), 117–129 (1999)

12. Gortler, S.J., Gotsman, C., Thurston, D.: Discrete one-forms on meshes and appli-
cations to 3D mesh parameterization. Comput. Aided Geomet. Des. 23(2), 83–112
(2006)

13. Gotsman, C., Surazhsky, V.: Guaranteed intersection-free polygon morphing. Com-
put. Graph. 25(1), 67–75 (2001)

14. Hong, S.-H., Nagamochi, H.: Convex drawings of hierarchical planar graphs and
clustered planar graphs. J. Discrete Algorithms 8(3), 282–295 (2010)

15. Iben, H.N., O’Brien, J.F., Demaine, E.D.: Refolding planar polygons. Discret. Com-
put. Geomet. 41(3), 444–460 (2009)

16. Kleist, L., Klemz, B., Lubiw, A., Schlipf, L., Staals, F., Strash, D.: Convexity-
increasing morphs of planar graphs. CoRR, abs/1802.06579 (2018)

17. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation, pp.
296–303. ACM (2014)

18. Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM J.
Numer. Anal. 16(2), 346–358 (1979)

19. Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1),
39–47 (2004)

20. Purchase, H.C., Hoggan, E., Görg, C.: How important is the “Mental map”? – An
empirical investigation of a dynamic graph layout algorithm. In: Kaufmann, M.,
Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 184–195. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70904-6 19

21. Purchase, H.C., Pilcher, C., Plimmer, B.: Graph drawing aesthetics–created by
users, not algorithms. IEEE Trans. Vis. Comput. Graph. 18(1), 81–92 (2012)

https://doi.org/10.1007/3-540-44969-8_6
https://doi.org/10.1007/978-3-540-70904-6_19

330 L. Kleist et al.

22. Rahman, S.: Convex graph drawing. In: Kao, M.-Y. (ed.) Encyclopedia of Algo-
rithms, pp. 1–7. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-
27848-8

23. Ribó Mor, A., Rote, G., Schulz, A.: Small grid embeddings of 3-polytopes. Discret.
Comput. Geomet. 45(1), 65–87 (2011)

24. Thomassen, C.: Deformations of plane graphs. J. Combin. Theory, Ser. B 34(3),
244–257 (1983)

25. Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. 3(1), 743–767 (1963)

https://doi.org/10.1007/978-3-642-27848-8
https://doi.org/10.1007/978-3-642-27848-8

Treedepth Bounds in Linear Colorings

Jeremy Kun1, Michael P. O’Brien2(B), and Blair D. Sullivan2

1 Google, Raleigh, USA
2 North Carolina State University, Raleigh, USA

mpobrie3@ncsu.edu

Abstract. Low-treedepth colorings are an important tool for algorithms
that exploit structure in classes of bounded expansion; they guarantee
subgraphs that use few colors have bounded treedepth. These colorings
have an implicit tradeoff between the total number of colors used and
the treedepth bound, and prior empirical work suggests that the former
dominates the run time of existing algorithms in practice. We introduce
p-linear colorings as an alternative to the commonly used p-centered
colorings. They can be efficiently computed in bounded expansion classes
and use at most as many colors as p-centered colorings. Although a set of
k < p colors from a p-centered coloring induces a subgraph of treedepth
at most k, the same number of colors from a p-linear coloring may induce
subgraphs of larger treedepth. A simple analysis of this treedepth bound
shows it cannot exceed 2k, but no graph class is known to have treedepth
more than 2k. We establish polynomial upper bounds via constructive
coloring algorithms in trees and intervals graphs, and conjecture that
a polynomial relationship is in fact the worst case in general graphs.
We also give a co-NP-completeness reduction for recognizing p-linear
colorings and discuss ways to overcome this limitation in practice.

1 Introduction

Algorithms for graph classes that exhibit bounded expansion structure [2,9–11]
offer a promising framework for efficiently solving many NP-hard problems on
real-world networks. The structural restrictions of bounded expansion, which
allow for pockets of localized density in globally sparse graphs, are compatible
with properties of many real-world networks such as clustering and heavy-tailed
degree distributions. Moreover, multiple random graph models designed to mimic
these properties have been proven to asymptotically almost surely belong to
classes of bounded expansion [3]. From a theoretical perspective, graphs belong-
ing to classes of bounded expansion can be characterized by low-treedepth color-
ings of bounded size, i.e. using only a small number of colors. Roughly speaking,
a low-treedepth coloring is one in which the subgraphs induced on each small
set of colors have small treedepth, a structural property stronger than treewidth.
This definition naturally implies an algorithmic pipeline [3,4,10] for classes of
bounded expansion involving four stages: computing a low-treedepth coloring,
using the coloring to decompose the graph into subgraphs of small treedepth,
c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 331–343, 2018.
https://doi.org/10.1007/978-3-030-00256-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_27&domain=pdf

332 J. Kun et al.

solving the problem efficiently on each such subgraph, and combining the subso-
lutions to construct a global solution. The complexities of algorithms using this
paradigm often are of the form O(

(
k
p

)
2d log d ·nc) where k is the coloring size and

d is the treedepth of the subgraphs.
A recent implementation [12] and experimental evaluation [13] of this pipeline

has identified that the coloring size has a much larger effect on the run time than
the treedepth in practice. Although graphs in classes of bounded expansion are
guaranteed to admit colorings of constant size with respect to the number of ver-
tices, the only known polynomial-time algorithms for computing these colorings
are approximations [2]. Consequently it is unclear to what extent our current
coloring algorithms can be altered to reduce the coloring size. A more viable
approach to improving the performance of the algorithmic pipeline without sig-
nificant high-level changes would be to develop a new type of low-treedepth
coloring that uses fewer colors but potentially has weaker guarantees about the
treedepth of the subgraphs.

The traditional low-treedepth colorings for classes of bounded expansion are
known as p-centered colorings. This name stems from the property that on any
subgraph H, a p-centered coloring either uses at least p colors or is a centered
coloring, which restricts the multiplicity of colors in induced subgraphs. In this
paper we introduce an alternative that closely mirrors this paradigm but only
extends the color multiplicity guarantees to path subgraphs. For this reason we
refer to them as p-linear colorings and linear colorings. We identify that p-linear
colorings share three important properties with p-centered colorings that allow
them to be used in the bounded expansion algorithmic pipeline.

1. The minimum coloring size is constant in graphs of bounded expansion.
2. A coloring of bounded size can be computed in polynomial time.
3. Small sets of colors induce graphs of small treedepth.

The third of these properties is of particular interest, since understanding
the tradeoffs between coloring size and treedepth in switching between p-
centered and p-linear colorings fundamentally depends on bounding the max-
imum treedepth of a graph that admits a linear coloring with k colors. Equiv-
alently, we frame this problem as determining the gap between the minimum
number of colors needed for a linear versus a centered coloring in any given
graph. A näıve analysis does not exclude the possibility that this gap is expo-
nentially large, despite the fact that the largest known difference is a constant
multiplicative factor. We conjecture that our proven constant factor lower bound
is also the upper bound; as evidence, we prove that in trees and interval graphs
the difference is polynomially bounded (in the coloring size) and give polynomial
time algorithms (with respect to the graph size) to certify this difference. Surpris-
ingly, we also prove that some p-linear colorings cannot be verified in polynomial
time unless P = co-NP and discuss the practical implications of these findings.
In the interest of space, the proofs of all lemmas are omitted from the main text
and can be found in [7].

Treedepth Bounds in Linear Colorings 333

2 Definitions and Background

In this section we detail the background and terminology necessary to understand
p-linear colorings.

2.1 Graph Terminology

We denote the vertices and edges of a graph G as V (G) and E(G), respectively,
and assume all graphs are simple and undirected except where specifically noted
otherwise. The open neighborhood of a vertex v, denoted N(v), is the set of
vertices u such that uv ∈ E(G), while the closed neighborhood, N [v] is defined as
N(v) ∪ {v}. Vertex a is an apex with respect to a subgraph H if V (H) ⊆ N(a).

We say P is a v1v�-path if V (P) = {v1, . . . , v�} and E(P) = {vivi+1 : 1 ≤ i ≤
� − 1}; we will notate this as P = v1, . . . , v�. Given disjoint paths P = v1, . . . , v�

and Q = u1, . . . , u�′ , the path P · Q = v1, . . . , v�, u1, . . . , u�′ is the concatenation
of P and Q if v� is adjacent to u1. A path is Hamiltonian with respect to subgraph
H if V (P) = V (H).

In a rooted tree T , we let Tv be the subtree of T rooted at v and the leaf paths
of Tv be the set of paths from a leaf of Tv to v. Vertices u and v are unrelated
in T if u is neither an ancestor nor a descendant of v.

A coloring φ of a graph G is a mapping of the vertices of G to colors 1, . . . , k
and has size |φ| = k. A coloring is proper if no pair of adjacent vertices have
the same color. For any subgraph H and color c, if there is exactly one vertex
v ∈ H such that φ(v) = c we say c appears uniquely in H and v is a center of
H. A subgraph with no unique color is said to be non-centered.

2.2 p-Centered Colorings and Bounded Expansion

Definition 1. A p-centered coloring φ of graph G is a coloring such that for
every connected subgraph H, H has a center or φ|H uses at least p colors.

Nešetřil and Ossana de Mendez established that bounding the minimum size of
a p-centered coloring is a necessary and sufficient condition for a graph class to
have bounded expansion.

Proposition 1 ([9]). A class of graphs C has bounded expansion iff there exists
a function f such that for all G ∈ C and all p ≥ 1, G admits a p-centered coloring
with f(p) colors.

There are varying methods to compute p-centered colorings, such as transitive-
fraternal augmentations [5,9] and generalized coloring numbers [17], we focus
here on distance-truncated transitive-fraternal augmentations (DTFAs) [14],
which iteratively augment the graph with additional edges to impose constraints
on proper colorings. This linear time algorithm guarantees that after (2 log p)p

DTFA iterations, any proper coloring of the augmented graph is a p-centered
coloring whose size is bounded in classes of bounded expansion.

334 J. Kun et al.

2.3 Centered Colorings and Treedepth

Note that if φ is a p-centered coloring of G and H is a subgraph of G whose ver-
tices use at most p−1 colors in φ, H must have a center. This relates p-centered
colorings to a more restricted class of graphs defined by centered colorings.

Definition 2. A centered coloring φ of graph G is a coloring such that every
connected subgraph has a center. The minimum size of a centered coloring of G
is denoted χ

cen(G).

Note that a centered coloring is also proper, or else there would be a connected
subgraph of size two with no center. Observe that if X is the set of all centers
of G, then G\X must either be empty or disconnected. This implies that if
|G| � χcen(G), then G breaks into many components after only a few vertex
deletions. This property is captured by treedepth decompositions.

Definition 3. A treedepth decomposition T of graph G is a rooted forest with
the same vertex set as G such that uv ∈ E(G) implies u is an ancestor of v in
T or vice versa. The depth of T is the length of the longest path from a leaf in
T to a root in its component. The treedepth of G, td(G), is the minimum depth
of a treedepth decomposition of G.

Given a centered coloring of size k, we can generate a treedepth decomposi-
tion of depth at most k by choosing any center v to be the root and setting the
children of v to be the roots of the treedepth decompositions of the components
of G\{v}. Likewise, given a treedepth decomposition of depth k, we can generate
a centered coloring using k colors by bijectively assigning the colors to levels of
the tree and coloring vertices according to their level. We refer to the colorings
and decompositions resulting from these procedures as canonical ; together they
imply that the treedepth and centered coloring numbers are equal for all graphs.

3 p-Linear and Linear Colorings

We introduce p-linear colorings as an alternative to p-centered colorings.

Definition 4. A p-linear coloring is a coloring ψ of a graph G such that for
every path1 P , either P has a center or ψ|P uses at least p colors.

It is proven in [14] that after performing 2p DTFA iterations, any proper coloring
of the augmented graph is a p-linear coloring. This implies that p-linear colorings
indeed have constant size in bounded expansion classes and can be constructed
in polynomial time (like p-centered colorings).

In the interest of maintaining consistency with prior terminology, we define
linear colorings analogously to centered colorings.

1 This includes non-induced paths.

Treedepth Bounds in Linear Colorings 335

Definition 5. A linear coloring is a coloring ψ of a graph G such that every
path has a center. The linear coloring number is the minimum number of colors
needed for a linear coloring and is denoted χlin(G).

Note that linear colorings must also be proper. A simple recursive argument
shows that every path of length d requires at least log2(d + 1) colors in a linear
coloring; thus a graph of linear coloring number k has no path of length 2k.
Because every depth-first search tree is a treedepth decomposition, td(G) ≤
2χ

lin(G), proving that small numbers of colors in p-linear colorings induce graphs
of bounded treedepth2.

Our study of the divergence between linear and centered coloring numbers
will naturally focus on linear colorings that are not also centered colorings. We
say ψ is a non-centered linear coloring (NCLC) of graph G if G contains a
connected induced subgraph with no center. For NCLC ψ, we say a connected
induced subgraph H is a witness to ψ if H is non-centered but every proper
connected subgraph of H has a center. For the sake of completeness, we prove
in Lemma 1 that many simple graph classes do not admit NCLCs.

Lemma 1. If G is a path, star, cycle, complete graph, or complete bipartite
graph, any linear coloring of G is also a centered coloring.

4 Treedepth Lower Bounds

To understand the tradeoff between the number of colors and treedepth of small
color sets when using p-linear colorings in lieu of p-centered colorings, it is impor-
tant to know the maximum treedepth of a graph of fixed linear coloring num-
ber k, tmax(k). In Lemmas 3 and 4, we prove lower bounds on tmax(k) through
explicit constructions of graph families. In order to show that these graphs have
large treedepth, we first establish assumptions about the structure of treedepth
decompositions that can be made without loss of generality.

Lemma 2. Let G be a graph and S ⊂ V (G) such that G[S] is connected and
with respect to some component C ∈ G\S, every vertex in S is an apex of C.
Then for any treedepth decomposition T of depth k, we can construct a treedepth
decomposition T ′ such that:

1. depth(T ′) ≤ k
2. Each vertex in S is an ancestor of every vertex in C in T ′

3. For each pair of vertices {u,w} ⊆ V (C) or {u,w} ⊆ V (G \ C), u is an
ancestor of w in T ′ iff it is an ancestor of w in T .

Using Lemma 2, we now show that tmax(k) ≥ 2k.

Lemma 3. There exists an infinite sequence of graphs R1, R2, . . . such that

lim
i→∞

χ
cen(Ri)

χlin(Ri)
= 2.

2 This tightens a bound in [14] from double to single exponential.

336 J. Kun et al.

The graphs in Lemma 3 contain large cliques. We now show that this is not
a necessary condition for the linear and centered coloring numbers to diverge
(Fig. 1).

Lemma 4. Let B� be the complete binary tree with � levels. Then

lim
�→∞

χcen(B�)
χlin(B�)

≥ 3
2

(a) R6 (Lemma 3).

w

x

y y

z

x y

(b) B3 (Lemma 4).

Fig. 1. Linear colorings of graphs in Lemmas 3–4. (Color figure online)

We conjecture that the construction in Lemma3 is optimal.

Conjecture 1. For any graph G, χcen(G) ≤ 2χlin(G).

While the exclusion of a path of length 2k indicates tmax(k) ≤ 2k, this nonethe-
less leaves a large gap between the upper and lower bounds on tmax(k). To
move towards a proof of Conjecture 1, we consider two restricted graph classes—
namely, trees and interval graphs—in the next two sections and establish poly-
nomial upper bounds on tmax(k) for graphs in these classes.

5 Treedepth Upper Bounds on Trees

Schäffer proved that there is a linear time algorithm for finding a minimum-sized
centered coloring of a tree T [16]. In this section we prove the following theo-
rem by showing a correspondence between the centered coloring from Schäffer’s
algorithm and colors on paths in any linear coloring of T .

Treedepth Bounds in Linear Colorings 337

Theorem 1. There exists a polynomial time algorithm that takes as input a tree
T and a linear coloring ψ of T with size k and outputs a centered coloring of T
whose size is at most O(k3).

Schäffer’s algorithm finds a particular centered coloring whose colors are
ordered in a way that reflects their roles as centers. For this reason, the coloring
is called a vertex ranking and the colors are referred to as ranks; it guarantees
that in each subgraph, the vertex of maximum rank is also a center. We will use
this terminology in this section to clearly distinguish between the ranks in the
vertex ranking and colors in the linear coloring. Note that the canonical centered
coloring of a treedepth decomposition is a vertex ranking if the colors are ranked
decreasing from the root downwards, which implies that every centered coloring
can be converted to a vertex ranking of the same size. Of central importance to
Schäffer’s algorithm are what we will refer to as rank lists.

Definition 6. For a vertex ranking r of tree T , the rank list of T , denoted L(T),
can be defined recursively as L(T) = L(T\Tv) ∪ {r(v)} where v is the vertex of
maximum rank in T .

Schäffer’s algorithm arbitrarily roots T and builds the ranking from the leaves
to the root of T , computing the rank of each vertex from the rank lists of each
of its children.

Proposition 2 ([16]). Let r be a vertex ranking of T produced by Schäffer’s
algorithm and let v ∈ T be a vertex with children u1, . . . , u�. If x is the largest
integer appearing on rank lists of at least two children of v (or 0 if all such rank
lists are pairwise disjoint) then r(v) is the smallest integer satisfying r(v) > x

and r(v) /∈
⋃�

i=1 L(ui).

Our proof of Theorem1 is based on tracking sets of colors of ψ on leaf paths
as Schäffer’s algorithm moves up the rooted tree. Define the color vector of a
path P with respect to linear coloring ψ to be the set of colors from ψ appearing
on P . Let S(v) be the set of all color vectors of all leaf paths in Tv. Let κ(v) be
the maximum cardinality of any color vector in S(v) and Sκ(v) = {C ∈ S(v) :
|C| = κ(v)}. We show below that every vertex v has a corresponding vertex u
that is “similar” in rank but “dissimilar” in values of κ and/or Sκ.

Lemma 5. Let v be a vertex of rank i > k. There exists a vertex u ∈ Tv such
that

• i − κ(v) − 1 < r(u) < i and
• Either κ(u) < κ(v) or |Sκ(u)| ≤ 	 1

2 |Sκ(v)|
.

Using Lemma 5 as a recursive step, we prove Theorem 1 by tracing the values of
functions κ and S down towards the leaves.

Proof (Theorem1). Let ui be the vertex of maximum rank in T . There is a
maximal sequence of vertices u2, . . . , uq such that ui+1 satisfies the properties of

338 J. Kun et al.

Lemma 5 with respect to Tui
. Note that the ranks of u1, . . . , uq are monotonically

decreasing and r(ui) − r(ui+1) ≤ κ(ui). Moreover, every vertex in T satisfies
1 ≤ |Sκ(v)| ≤

(
k

κ(v)

)
and 1 ≤ κ(v) ≤ k. Since the only vertices with κ(v) = 1 are

the leaves,

r(ui) ≤
k∑

i=1

i

(
log2

(
k

i

)
+ 1

)
≤ O(k3).

Consequently, r is a centered coloring of size at most O(k3) that can be computed
in linear time. ��

6 Treedepth Upper Bounds on Interval Graphs

Because linear colorings are equivalent to centered colorings when restricted to
paths, we turn our attention to the linear coloring numbers of “pathlike” graphs.
We investigate a particular class of “pathlike” graphs in this section and prove
a polynomial relationship between their centered and linear coloring numbers.

Definition 7. A graph G is an interval graph if there is an injective mapping
f from V (G) to intervals on the real line such that uv ∈ E(G) iff f(u) and f(v)
overlap.

We refer to the mapping f as the interval representation of G. Since the overlap
between intervals f(u) and f(v) is independent of the interval representations
of the other vertices, every subgraph of an interval graph is also an interval
graph. The interval representation of G implies a natural “left-to-right” layout
that gives it the “pathlike” qualities, which are manifested in restrictions on the
length of induced cycles (chordal) and paths between vertex triples (AT-free).

Definition 8. A graph is chordal if it contains no induced cycles of length ≥4.

Definition 9. Vertices u, v, w are an asteroidal triple (AT) if there exist uv-,
vw-, and wu-paths Puv, Pvw, and Pwu, respectively, such that N [w] ∩ Puv =
N [u] ∩ Pvw = N [v] ∩ Puv = ∅. A graph with no AT is called AT-free.

Proposition 3 ([8]). Graph G is an interval graph iff G is chordal and AT-free.

Intuitively, Definition 9 is a set of three vertices such that every pair is connected
by a path that avoids the neighbors of the third. Roughly speaking, in the context
of linear colorings, Proposition 3 indicates that if w is a center of a “long” uv-
path P in G, any vertex w′ such that ψ(w) = ψ(w′) must have a neighbor on P .
We devote the rest of this section proving Theorem2.

Theorem 2. There exists a polynomial time algorithm that takes as input an
interval graph G and a linear coloring of G with size k and outputs a centered
coloring of G with size at most k2.

Our algorithm makes extensive use of the following well-known property of max-
imal cliques in interval graphs.

Treedepth Bounds in Linear Colorings 339

Proposition 4 ([8]). If G is an interval graph, its maximal cliques can be lin-
early ordered in polynomial time such that for each vertex v, the cliques contain-
ing v appear consecutively.

In particular, we identify a prevailing path in G whose vertices “span” the maxi-
mal cliques and a prevailing subgraph that consists of the prevailing path as well
as vertices in maximal cliques “between” consecutive vertices on the prevailing
path. We will show that any linear coloring is a centered coloring when restricted
to the prevailing subgraph and that after removing the prevailing subgraph, the
remaining components each use fewer colors.

Let C1, . . . Cm be an ordering of the maximal cliques of G that satisfies
Proposition 4. We say vertex v is introduced in Ci if v ∈ Ci but v /∈ Ci−1, and
denote this as I(v) = i. Likewise, v is forgotten in Cj if v ∈ Cj but v /∈ Cj+1, and
denote this as F (v) = j. The procedure for constructing a prevailing subgraph
and prevailing path is described in Algorithm1. This algorithm selects the vertex
v from the current maximal clique that is forgotten “last” and adds v to the
prevailing path and CF (v) to the prevailing subgraph. We prove in Lemma6
that if P,Q are a prevailing path and subgraph, the vertices in Q\P can be
inserted between vertices of P to form a Hamiltonian path of Q.

Algorithm 1. Construction of a prevailing path and subgraph.
Input: interval graph G
Output: prevailing path P and prevailing subgraph Q
1: C1, . . . , Cm ← maximal cliques of G labeled in accordance with Proposition 4
2: P ← ∅
3: VQ ← ∅
4: i ← 1
5: j ← 1
6: while i < m do
7: vj ← arg maxu∈Ci

F (u)
8: P ← P · {vj}
9: i ← F (v)

10: VQ ← VQ ∪ V (Ci)
11: j ← j + 1
12: end while
13: Q ← G[VQ]
14: return P, Q

Lemma 6. Every prevailing subgraph has a Hamiltonian path.

Although the fact that the prevailing subgraph Q has a Hamiltonian path implies
Q has a center with respect to ψ, we must ensure that the proper subgraphs of
Q also have a center. In Lemma 7, we prove ψ|Q is centered by showing every
proper connected subgraph of Q also has a Hamiltonian path.

340 J. Kun et al.

Lemma 7. If Q is a prevailing subgraph of an interval graph G and ψ a linear
coloring of G, ψ|Q is a centered coloring.

Since any linear coloring ψ of the prevailing subgraph Q must also be a centered
coloring, td(Q) ≤ |ψ|. To get a bound on the treedepth of G, we focus on the
relationship between Q and G\Q. In particular, we show that the components
of G\Q use fewer than |ψ| colors by proving that each such component has an
apex in the prevailing path.

Lemma 8. Let P,Q be a prevailing path and subgraph of an interval graph G.
For each component X of G\Q, there is a vertex a ∈ P such that X ⊆ N(a).

We can now establish a polynomial upper bound on the treedepth of interval
graphs, proving Theorem2.

Proof (Theorem2). Let A be the algorithm that constructs a treedepth decom-
position T of G by finding a prevailing subgraph Q (Algorithm 1), using ψ|Q to
create a treedepth decomposition of Q, and recursively constructing treedepth
decompositions of G\Q. If depth(T) ≤ k2 and A runs in polynomial time, then
the canonical centered coloring of T is a centered coloring of G of size at most
k2. We prove A satisfies these requirements by induction on k = |ψ|. At k = 1,
the graph consists of isolated vertices and A trivially constructs a treedepth
decomposition of G of depth 1 in polynomial time.

Assume A has the desired properties for linear colorings of size at most k−1.
Because the maximal cliques of an interval graph can be enumerated and ordered
in polynomial time (Proposition 4), identifying Q via Algorithm 1 can be done
in polynomial time. By Lemma 7, the canonical treedepth decomposition of Q
has depth at most k. Since every component X of G\Q has an apex a in P
(Lemma 8), we can assume a is an ancestor in T of each vertex in X (Lemma 2).
Because ψ is proper, ψ(a) does not appear in ψ|X and since induced subgraphs of
interval graphs are themselves interval graphs, A finds a treedepth decomposition
of X whose depth is at most (k − 1)2. Thus T has depth k + (k − 1)2 ≤ k2. The
recursion only lasts k ≤ n steps, so A runs in polynomial time. ��

7 Hardness of Recognizing Linear Colorings

Based on the similarity in definition between linear and centered colorings, one
might assume that computing them should be roughly equally difficult. Finding
a centered coloring of a fixed size is NP-hard [1], but given a coloring of a graph,
we can recognize whether it is centered in polynomial time by attempting to
create the canonical treedepth decomposition; this procedure will identify a non-
centered subgraph if the coloring is not centered. To the contrary, we will prove
that Linear Coloring Recognition, the problem of recognizing whether a
coloring is linear, is co-NP-complete. In order to prove the hardness of Linear
Coloring Recognition, we first define a dual problem. The Non-centered
Path problem takes a graph G and coloring ψ as input and decides whether G

Treedepth Bounds in Linear Colorings 341

u1 u2 u3 w1 w2 w3 u0 u1 u2 u3 u0

w1,1

w1,2

w2,1 w2,2

w2,3 w3,1

w3,2PT
1 PT

2 PT
3

PF
1 PF

2 PF
3

Fig. 2. The graph G and coloring ψ for Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x2).
(Color figure online)

has a non-centered path P . We focus on proving the hardness of Non-centered
Path because a certificate to that problem is easily definable: a path where every
color appears at least twice (Fig. 2).

Theorem 3. Non-centered Path is NP-complete.

Corollary 1. Linear Coloring Recognition is co-NP-complete.

The co-NP-hardness of recognizing linear colorings is compounded by three
stronger hardness implications. First, the coloring ψ given in Theorem 3 has size
m+n+1, which means that unless the exponential time hypothesis [6] fails, there
is no 2o(k) algorithm to recognize a linear coloring of size k. Second, the graph
G is outerplanar with pathwidth two, which implies that neither treewidth-style
dynamic programming nor a Baker-style layering approach is likely to solve this
problem efficiently. Finally, by subdividing each edge and coloring all subdivi-
sion vertices with a (single) new color, we obtain a bipartite graph with degen-
eracy two, proving hardness for each of those classes. Nonetheless, the fact that
χcen(G) = O(log m + log n) while |ψ| = m + n + 1 leaves open the possibility
that Linear Coloring Recognition becomes easier for colorings of minimum
size.

8 Conclusion

We have introduced p-linear and linear colorings as an alternative to p-centered
and centered colorings for use in algorithms for classes of bounded expansion.
The p-linear colorings are computable in polynomial time and require a con-
stant number of colors in classes of bounded expansion, while inducing graphs
of bounded treedepth for all small sets of colors, allowing direct substitution
in existing algorithmic pipelines. A major direction for future work is to bring
the upper bound on tmax(k) of 2k closer to the lower bound of 2k. In par-
ticular, it appears our current toolkit for analyzing linear colorings must be
expanded in order to prove (or disprove) Conjecture 1. We also believe it is
worth studying whether recognizing linear colorings can be done in polynomial
time if we assume the coloring is of size χlin(G). Finally, using p-linear colorings

342 J. Kun et al.

in practice will require an efficient method for translating a linear coloring into
a treedepth decomposition. Although there exist general-purpose algorithms to
find treedepth decompositions efficiently in graphs of bounded linear coloring
number (e.g. [15]), a more specialized algorithm that avoids “heavy machinery”
is likely necessary to be practically useful.

Acknowledgments. The authors would like to thank Felix Reidl and Fernando
Sánchez-Villaamil for bringing these colorings to our attention, Marcin Pilipczuk for
his assistance in refining our upper and lower bounds on trees, and the anonymous
reviewers for their helpful suggestion. This work was supported in part by the DARPA
GRAPHS Program and the Gordon & Betty Moore Foundation’s Data-Driven Discov-
ery Initiative through Grants SPAWARN66001-14-1-4063 and GBMF4560 to Blair D.
Sullivan.

References

1. Bodlaender, H.L.: Rankings of graphs. SIAM J. Discrete Math. 11(1), 168–181
(1998)

2. Nešetřil, J., Ossona de Mendez, P.: Sparsity. Algorithms and Combinatorics, vol.
28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27875-4

3. Demaine, E.,D., et al.: Structural sparsity of complex networks: random graph
models and linear algorithms. CoRR, abs/1406.2587 (2015)

4. Dvořák, Z., Král, D., Thomas, R.: Testing first-order properties for subclasses of
sparse graphs. JACM 60(5), 36:1–36:24 (2013)

5. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere
dense graphs. J. ACM (JACM) 64(3), 17 (2017)

6. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

7. Kun, J., O’Brien, M.P., Sullivan, B.D.: Treedepth bounds in linear colorings.
CoRR, abs/1802.09665, May 2018

8. Lekkeikerker, C., Boland, J.: Representation of a finite graph by a set of intervals
on the real line. Fundam. Math. 51(1), 45–64 (1962)

9. Nešetťil, J., de Mendez, P.O.: Grad and classes with bounded expansion I. Decom-
positions. Eur. J. Comb. 29(3), 760–776 (2008)

10. Nešetťil, J., de Mendez, P.O.: Grad and classes with bounded expansion II. Algo-
rithmic aspects. Eur. J. Comb. 29(3), 777–791 (2008)

11. Nešetťil, J., de Mendez, P.O.: Grad and classes with bounded expansion III.
Restricted graph homomorphism dualities. Eur. J. Comb. 29(4), 1012–1024 (2008).
Homomorphisms: structure and highlights

12. O’Brien, M.P., Hobbs, C.G., Jasnick, K., Reidl, F., Rodrigues, N.G., Sullivan, B.D.:
CONCUSS, v2.0., June 2016. https://doi.org/10.5281/zenodo.30281

13. O’Brien, M.P., Sullivan, B.D.: An experimental evaluation of a bounded expansion
algorithmic pipeline. CoRR, abs/1712.06690, December 2017

14. Reidl, F.: Structural sparseness and complex networks. Dr. Aachen, Techn.
Hochsch., Aachen, 2015. Aachen, Techn. Hochsch., Dissertation (2015)

15. Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar, S.: A faster parameterized algo-
rithm for treedepth. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E.
(eds.) ICALP 2014. LNCS, vol. 8572, pp. 931–942. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43948-7 77

https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.5281/zenodo.30281
https://doi.org/10.1007/978-3-662-43948-7_77

Treedepth Bounds in Linear Colorings 343

16. Schäffer, A.A.: Optimal node ranking of trees in linear time. Inf. Process. Lett.
33(2), 91–96 (1989)

17. Zhu, X.: Colouring graphs with bounded generalized colouring number. Discrete
Math. 309(18), 5562–5568 (2009)

An Improved FPT Algorithm
for Independent Feedback Vertex Set

Shaohua Li and Marcin Pilipczuk(B)

Institute of Informatics, University of Warsaw, Warsaw, Poland
{Shaohua.Li,malcin}@mimuw.edu.pl

Abstract. We study the Independent Feedback Vertex Set
problem—a variant of the classic Feedback Vertex Set problem
where, given a graph G and an integer k, the problem is to decide whether
there exists a vertex set S ⊆ V (G) such that G\S is a forest and S is an
independent set of size at most k. We present an O∗((1+ϕ2)k)-time FPT
algorithm for this problem, where ϕ < 1.619 is the golden ratio, improv-
ing the previous fastest O∗(4.1481k)-time algorithm given by Agrawal
et al. [1]. The exponential factor in our time complexity bound matches
the fastest deterministic FPT algorithm for the classic Feedback
Vertex Set problem.

On the technical side, the main novelty is a refined measure of an
input instance in a branching process, that allows for a simpler and
more concise description and analysis of the algorithm.

Keywords: Independent feedback vertex set · FPT algorithm

1 Introduction

Given a graph G, a feedback vertex set of G is a set of vertices S ⊆ V (G) such
that G\S is a forest. The Feedback Vertex Set problem (FVS) asks to find
a feedback vertex set of the minimum size. This problem is a classic NP-hard
problem which has been studied extensively in many fields of complexity and
algorithms [2].

In this work, we take the point of view of parameterized complexity, where
every instance I of a problem at hand is accompanied with a parameter k,
intended to represent the complexity of the instance at hand. We ask for a
fixed-parameter algorithm (FPT algorithm for short) that solves an instance
I with parameter k in time f(k)|I|c for some computable function f and a

This research is a part of projects that have received
funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research
and innovation programme under grant agreements
No. 714704 .

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 344–355, 2018.
https://doi.org/10.1007/978-3-030-00256-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_28&domain=pdf

An Improved FPT Algorithm for Independent Feedback Vertex Set 345

constant c. That is, the exponential blow-up in the running time bound, probably
unavoidable for NP-hard problems, is confined to be a function of the parameter
only. For more on parameterized complexity, we refer to a recent textbook [3].

In the context of parameterized complexity of the Feedback Vertex Set
problem, there is a long line of work improving the upper bound of the FPT
algorithm for the standard parameterization of the solution size [4–11] (i.e.,
the input consists of a graph G and a parameter k, and the goal is to find
a feedback vertex set of size at most k or show that no such set exists). The
fastest randomized FPT algorithm for Feedback Vertex Set, which runs in
time O∗(3k), is given by Cygan et al. [12].1,2 If one asks for a deterministic
FPT algorithm, the champion runs in O∗(3.619k) and is due to Kociumaka and
Pilipczuk [11].

At the same time, many variants of Feedback Vertex Set received sig-
nificant attention, including Subset FVS [13–15], Group FVS [14,16–18], or
Simultaneous FVS [19].

In this paper, we focus on the parameterized version of the Independent
Feedback Vertex Set problem (IFVS), which is to decide if there exists a
feedback vertex set S of size at most k such that no two vertices of S are adjacent
in G. Misra et al. gave the first FPT algorithm running in time O(5knO(1)) and
an O(k3) kernel for IFVS [20].3 Agrawal et al. presented an improved FPT
algorithm running in time O∗(4.1481k) for IFVS [1]. In this paper, we propose
a faster FPT algorithm.

Theorem 1. The Independent Feedback Vertex Set problem, parame-
terized by the solution size, can be solved in O∗((1 + ϕ2)k) ≤ O∗(3.619k) time,
where ϕ = 1+

√
5

2 < 1.619 is the golden ratio.

We remark here that Theorem 1 is not “just another” improvement in the base of
the exponential function, but in some sense “the end of the road”. The exponen-
tial function of the time bound of Theorem1 matches the one of the algorithm of
Kociumaka and Pilipczuk [11] for the classic Feedback Vertex Set problem.
Since Feedback Vertex Set trivially reduces to Independent Feedback
Vertex Set (subdivide each edge once), any (deterministic) improvement to
the base of the exponential function of Theorem1 would give a similar improve-
ment for Feedback Vertex Set.

On the technical side, we follow the standard approach of iterative com-
pression as in [1] to reduce to a “disjoint” version of the problem. Here, our
approach diverges from the one of [1]. We follow a modified measure for the sub-
sequent branching process, somewhat inspired by the work of Kociumaka and

1 The O∗-notation suppresses factors that are polynomial in the input size.
2 Actually in the randomized FPT algorithm for FVS, the parameter is the treewidth

of the graph. Since the treewidth of a yes-instance (G, k) to FVS is at most k + 1,
the randomized algorithm for FVS runs in time O∗(3k).

3 A kernel of size g(k) for some computable function g is a polynomial-time procedure
that reduces an instance I with parameter k to an equivalent instance with size and
parameter value bounded by g(k).

346 S. Li and M. Pilipczuk

Pilipczuk [11]. This improved measure, together with a number of new notions
(generalized W -degree, potential nice vertices and tents), allow us to simplify
the algorithm and analysis as compared to [1].

2 Preliminaries

The graphs in our paper are all undirected and may contain multiple edges or
loops. For a graph G, we denote its vertex set by V (G) and edge multiset by
E(G). For a vertex v ∈ V (G), we use N(v) = {u ∈ V (G) : uv ∈ E(G)} to denote
the neighborhood of v; note that N(v) is a set, containing a vertex u only once
even in the presence of multiple edges uv. We define the closed neighborhood of
v as N [v] = N(v) ∪ {v}. For a vertex set A ⊆ V (G), the neighborhood of A
is N(A) =

⋃
v∈A N(v)\A. For a vertex set X ⊆ V (G), we denote the induced

subgraph of X by G[X]. For simplicity, we use G\X to denote G[V (G)\X].
For a vertex set X ⊆ V (G) and v ∈ V (G), we define X-degree of v as the
number of edges with one endpoint being v and the other lying in X, and we
denote it by degX(v). Note that the X-degree counts edges with multiplicities. A
connected component is a maximal connected subgraph. Contracting a connected
subgraph H is the operation of replacing the subgraph H with a vertex vH and
every edge xy with x ∈ V (H) and y ∈ V (G)\V (H) with an edge vHy (keeping
multiplicities).

3 An Algorithm for Independent Feedback Vertex Set

Given an instance (G, k), we first invoke the O∗((1 + ϕ2)k)-time FPT algorithm
for the classic Feedback Vertex Set problem [11]. If the algorithm returns
NO, we conclude that there is no independent feedback vertex set of size at
most k since an independent feedback vertex set is also a feedback vertex set.
Otherwise, the algorithm returns a feedback vertex set Z such that |Z| ≤ k.
Obviously, F = G\Z is a forest.

Suppose there is a solution S for the input instance (G, k). The algorithm
branches into 2|Z| directions, guessing a subset Z ′ of Z such that S ∩ Z = Z ′.
Let W = Z\Z ′. If G[Z ′] is not an independent set or G[W] is not a forest, the
algorithm rejects this guess. Hence, we can assume that G[Z ′] is an independent
set and G[Z\Z ′] is a forest. Let R = N(Z ′) ∩ F . Since the solution S is an
independent set and Z ′ ⊆ S, we have R ∩ S = ∅. Then the algorithm tries to
find an independent feedback vertex set S′ ⊆ F for G\Z ′ such that S′∩R = ∅ and
|S′| ≤ k − |Z ′|. Following [1], we call this subproblem Disjoint Independent
Feedback Vertex Set (DIS-IFVS for short). We give a faster FPT algorithm
for DIS-IFVS in the next section. The algorithm tries every possible Z ′ ⊆ Z
and solves the corresponding subproblem of DIS-IFVS. If the algorithm finds
a YES instance of DIS-IFVS, then it returns YES for the instance (G, k) of
IFVS. Otherwise, if the algorithm tries every possible Z ′ ⊆ Z and obtains a NO
answer for every corresponding instance of DIS-IFVS, it reports that (G, k) is
a NO instance.

An Improved FPT Algorithm for Independent Feedback Vertex Set 347

3.1 Disjoint Independent Feedback Vertex Set

We start with a formal definition of the problem.

Disjoint Independent Feedback Vertex Set
Input: An undirected (multi)graph G, a feedback vertex set W of G,
R ⊆ V (G)\W , and an integer k.
Question: Is there an independent feedback vertex set X ⊆ V (G)\(W∪R)
for G such that |X| ≤ k?

Let F = V (G\W). Obviously, G[F] is a forest since W is a feedback vertex set
of G. A vertex v ∈ F\R is a nice vertex if degW (v) = 2 and v has no neighbors
in F . A vertex v ∈ F\R is a tent if degW (v) = 3 and v has no neighbors in F .

As mentioned earlier, we rely on a measure different from the one in [1]. The
measure μ of an instance (G,W,R, k) is defined as

μ = k + ρ − (η + τ).

Here, ρ represents the number of connected components of G[W], η is the number
of nice vertices in F\R and τ is the number of tents in F\R.

We remark that the distinction between sets W and R is purely for the
sake of complexity of the algorithm. The set of feasible solutions to a Disjoint
Independent Feedback Vertex Set instance (G,W,R, k) would be the same
if we move vertices from R to W . However, the notions of tents, nice vertices,
and the measure μ strongly depends on the distinction between the sets W and
R. The algorithm maintains this distinction to ensure the promised running time
bound.

Our main technical result is the following.

Lemma 1. A Disjoint Independent Feedback Vertex Set instance I
with measure μ can be solved in time O∗(ϕµ), where ϕ = 1+

√
5

2 is the golden
ratio.

Theorem 1 follows by standard analysis as in [1]:

Proof (Proof of Theorem 1). The algorithm for FVS of [11] runs in time O∗((1+
ϕ2)k). In a branch with a set Z ′ ⊆ Z the routine for DIS-IFVS is passed an
instance with both W = Z\Z ′ and the parameter bounded by k − |Z ′|, and
hence with measure bounded by 2(k − |Z ′|). Since the algorithm for DIS-IFVS
runs in time O∗(ϕµ), the total running time of its applications is bounded by

k∑

i=0

(
k

i

)

O∗(ϕ2(k−i)) = O∗((1 + ϕ2)k) ≤ O∗(3.619k).

This completes the proof. �	
The remainder of this section is devoted to the proof of Lemma 1. We start

with showing that μ is nonnegative on YES instances.

348 S. Li and M. Pilipczuk

Lemma 2. Let I = (G,W,R, k) be a YES instance of Disjoint Feedback
Vertex Set. Then μ ≥ 0.

Proof. Let X be a solution to the instance I. Thus G′ = G\X is a forest. Let
N ⊆ V (G)\(W ∪ R) be the set of nice vertices and T ⊆ V (G)\(W ∪ R) be the
set of tents. Since X ∩ W = ∅, we have that H := G[W ∪ (N\X) ∪ (T\X)] is a
forest. Now we contract each component in H[W] into a single vertex and get a
forest H̃. Since there are at most ρ + |N\X| + |T \ X| vertices in H̃, there are
at most ρ+ |N\X|+ |T \X| − 1 edges in H̃. According to the definition of tents
and nice vertices, (N ∪ T)\X is an independent set. Moreover, since the degree
of any vertex in N\X and T\X is 2 and 3, respectively, we get the following
inequality:

2|N\X| + 3|T\X| ≤ |E(H̃)| ≤ ρ + |N\X| + |T\X| − 1.

It follows that:
|N\X| + |T\X| ≤ |N\X| + 2|T\X| ≤ ρ.

Hence, as |X| ≤ k,
|N | + |T | ≤ ρ + k.

As a result, μ = ρ + k − (η + τ) ≥ 0. �	
A small comment is in place. Our measure μ is different from the one of [1]:
μ′ = 2k + ρ − (η + 2τ). The change in the measure is one of the critical insights
in this paper: while it sometimes leads to weaker branching vectors as compared
to [1], the “starting value” in an application in the above proof of Theorem1
is 2(k − |Z ′|), not 3(k − |Z ′|) as in [1]. Thus, to obtain the promised running
time bound, we are fine with branching vectors of the form (1, 2); that is, we are
fine with branching steps in two directions, where in one direction the measure
drops by at least one, and in the other direction by at least two. The change in
the measure is similar to the one that happened in the work of Kociumaka and
Pilipczuk for Feedback Vertex Set [11], as compared to a previous champion
of Cao, Chen, and Liu [5].

We introduce now some definitions that will help us streamline later argu-
ments. Let (G,W,R, k) be an instance of DIS-IFVS and let F = V (G)\W . We
say that u ∈ F\R is a potential nice vertex or P-nice if u is of degree 2 and
exactly one of its neighbors is in W . For a vertex v in G[F], we define the nice
degree of v, denoted by Ndeg(v), as the number of P-nice neighbors of v. A gen-
eralized degree of v is GdegW (v) = Ndeg(v) + degW (v). We say that u ∈ F\R is
a potential tent or P-tent if GdegW (u) = 2 and deg(u) = 3. For a vertex v in F ,
we define the tent degree of v, denoted by Tdeg(v), as the number of neighbors
of v that are P-tents.

3.2 Reduction Rules for DIS-IFVS

Now we introduce some reduction rules for DIS-IFVS. We always apply the appli-
cable reduction rule of the lowest number. First, let us introduce five reduction
rules from [1].

An Improved FPT Algorithm for Independent Feedback Vertex Set 349

Reduction Rule 1: Delete any vertex of degree at most one.

Reduction Rule 2: Let u, v be two adjacent vertices of degree two in G\W
which are not nice vertices in F . Besides, u is adjacent to x while v is adjacent
to y (x and y could be the same vertex). If neither u nor v is in R or both are
in R, then delete one vertex in {u, v} arbitrarily and connect the neighbors of
the deleted vertex with a new edge. If exactly one of u and v is in R, say v ∈ R,
then delete v and add an edge between its neighbors (i.e., an edge uy).

Reduction Rule 3: If k < 0 or μ < 0, return that the input instance is a NO
instance.

Reduction Rule 4: If there is a vertex v ∈ R such that v has two neighbors in
the same component of W , then return that the input instance is a NO instance.

Reduction Rule 5: If there is a vertex v ∈ F\R such that v has at least
two neighbors in the same component of W , then remove v from G and add all
vertices in F ∩ N(v) to R. In this case, k decreases by one.

It is not difficult to verify the safeness of Reduction Rules 1–5 as shown in [1].
But when analyzing Reduction Rules 1 and 5, we need to be careful since we
use a different measure μ = k +ρ− (η + τ). In Reduction Rule 1, if one deletes a
neighbor w of a tent or a nice vertex v, then v stops being a tent or a nice vertex
(η + τ could decrease by one), but also {w} stops being a connected component
of G[W] (decreasing ρ by one). For Reduction Rule 5, it may happen that v is
a tent or a nice vertex, and its deletion decreases η + τ by one. However, the
removal of v also decreases k by one. Thus μ does not increase.

Now we introduce two new reduction rules.

Reduction Rule 6: If there is a vertex v ∈ R such that GdegW (v) ≥ 1 or
Tdeg(v) ≥ 1, then remove v from R and add v to W .

Reduction Rule 7: If there is a vertex v ∈ F\R such that every neighbor
w ∈ N(v)\(W ∪ R) is of degree 2, and at least one such neighbor exists, then
put N(v)\(W ∪ R) into R.

We first show their safeness.

Claim 1. Reduction Rules 6 and 7 are safe.

Proof. The safeness of Reduction Rule 6 is straightforward. For the safeness
of Reduction Rule 7, suppose that (G,W,R, k) is an input instance. Let v be
the vertex satisfying the condition of Reduction Rule 7 and (G,W,R ∪ (N(v) ∩
F), k) be the instance obtained after applying Reduction Rule 7. We claim that
(G,W,R, k) is a YES instance if and only if (G,W,R ∪ (N(v) ∩ F), k) is a YES
instance. The “if” direction is straightforward, since we only increased the set
R.

For the “only if” direction, let X be a solution of size at most k to the
instance (G,W,R, k). If X ∩ N(v) = ∅, then X is also a solution to (G,W,R ∪
(N(v)∩F), k). Otherwise, we construct a vertex set X ′ = (X ∪{v})\(N(v)∩F).
Obviously |X ′| ≤ k. We will show that X ′ is a solution to (G,W,R ∪ (N(v) ∩

350 S. Li and M. Pilipczuk

F), k). Clearly, it is disjoint with W ∪ R ∪ N((v) ∩ F) and independent, as it is
disjoint with N(v). To show that X ′ is a feedback vertex set in G, observe that
since every vertex w ∈ N(v)\(W ∪R) is of degree 2, every cycle passing through
w in G passes also through v. �	

Since Reduction Rule 7 only moves vertices to R, its application does not
change the measure; note that the neighbors of a vertex affected by Reduction
Rule 7 can be neither a nice vertex nor a tent. However, the situation is not that
easy for Reduction Rule 6, and we need to show that its application does not
increase μ. To this end, we show a number of generic observations on how the
measure μ changes if we modify a neighbor of a P-nice vertex or a P-tent.

Observation 1. Let v ∈ F be a vertex with a P-nice neighbor w. Consider the
operation of moving v to W . Then, the vertex w becomes nice and η goes up at
least by one.

Observation 2. Let v ∈ F be a vertex with a P-tent neighbor w such that v is
not P-nice. Consider the operation of putting v in a solution: deleting it from G
and putting N(v) ∩ F into R. Then the application of reduction rules on w and
its (possible) other neighbors in F decreases μ by at least one.

Proof. The operation moves w to R and decreases its degree to 2. Since w is a P-
tent and v is not a P-nice vertex, every neighbor u ∈ (N(w)∩F)\{v} is a P-nice
vertex. Consequently, Reduction Rule 2 reduces (N [w]∩F)\{v} to a single vertex
w′, which is in R if (N(w)∩F)\{v} ⊆ R. Furthermore, deg(w′) = degW (w′) = 2.
If w′ has both neighbors in the same connected component of G[W], then either
Reduction Rule 4 rejects the instance or Reduction Rule 5 decreases k by one.
Otherwise, if w′ ∈ R, Reduction Rule 6 moves w′ to W , decreasing ρ by one. If
w′ /∈ R, then w′ becomes a nice vertex, increasing η by one. Thus, in all cases,
μ decreases by at least one. �	
Observation 3. Let v ∈ F be a vertex with a P-tent neighbor w such that v is
not P-nice. Consider the operation of moving v into W . Then the application
of reduction rules on w and its (possible) other neighbors in F decrease μ by at
least one.

Proof. Since w is a P-tent and v is not P-nice, every neighbor u ∈ (N(w)∩F)\{v}
is P-nice. Consider such a vertex u; note that u ∈ F\R by the definition of P-
nice. Reduction Rule 7 is applicable to w; this rule would move u to R and then
Reduction Rule 6 would move u to W . Along this process, Reduction Rule 4 or
5 can be triggered on w, either rejecting the instance or decreasing k by one.
Otherwise, if w ∈ R, Reduction Rule 6 moves w to W , decreasing ρ by two.
Finally, in the last case we are left with w ∈ F\R with degW (w) = deg(w) = 3,
that is, w becomes a tent and increases τ by one. Thus, in all cases, μ decreases
by at least one. �	

Armed with the above observations, we can now show that Reduction Rule
6 on its own does not increase the measure.

An Improved FPT Algorithm for Independent Feedback Vertex Set 351

Claim 2. An application of Reduction Rule 6 does not increase the measure.

Proof. If v is a tent or a nice vertex, then η or τ decreases by one but ρ decreases
by at least one because Reduction Rule 4 or 5 is not applicable. In this case, μ
does not increase. If v is neither a tent nor a nice vertex and degW (v) ≥ 1, ρ
does not increase, and η and τ do not decrease. In this case, μ does not increase.

We are left with the case degW (v) = 0, and then ρ increases by one. If
GdegW (v) ≥ 1 but degW (v) = 0, we have a P-nice neighbor w of v. Then,
after v is moved to W , Observation 1 asserts that future application of reduction
rules on w cause a measure decrease of at least one, offsetting the increase of ρ.
Otherwise, Tdeg(v) ≥ 1, and we have a neighbor w of v that is a P-tent. Then,
after v is moved to W , Observation 3 asserts that future application of reduction
rules on w and its possible neighbors in F cause measure decrease of at least
one. This finishes the proof. �	

3.3 Branching for DIS-IFVS

Now we are ready to introduce the branching algorithm. We assume that all
reduction rules have been applied exhaustively. As a branching pivot, we pick
a vertex v ∈ F that is neither a nice vertex nor a tent and satisfies one of the
following three cases:

Case A: GdegW (v) ≥ 3.
Case B: GdegW (v) ≥ 1 and Tdeg(v) ≥ 1.
Case C: Tdeg(v) ≥ 2.

In case of more than one vertices of F satisfying one of the above cases, we
prefer to pick a vertex v that satisfies an earlier case.

First, note that the nonapplicability of Reduction Rule 6 implies that the
chosen branching pivot v does not lie in R.

No matter which case the chosen branching pivot v satisfies, we branch into
two cases. In one case we include v into the solution: we delete v from the graph,
include N(v) ∩ F into R, and decrease k by one. In the other case, we move v
to W .

We now show that in each of the cases, the branching gives a branching vector
(1, 2) or better with respect to the measure μ. That is, in one of the branches
the measure drops by at least one, and in the other by at least two.

Case A: GdegW (v) ≥ 3.

(i) Branch where v is deleted and all vertices in N(v) ∩ F are added to R. k
decreases by 1, ρ stays the same, and η and ρ does not decrease as v is
neither a nice vertex nor a tent. Thus, μ decreases by at least one.

(ii) Branch where v is moved from F to W . ρ decreases by degW (v) − 1 (which
may be −1 if degW (v) = 0) and η increases by Ndeg(v). Since GdegW (v) =
degW (v)+Ndeg(v) ≥ 3 and τ does not decrease μ decreases by at least two.

352 S. Li and M. Pilipczuk

Case B: GdegW (v) ≥ 1 and Tdeg(v) ≥ 1.

(i) Branch where v is deleted and all vertices in N(v) ∩ F are added to R.
First, k decreases by one. Furthermore, v has a P-tent neighbor w and
Observation 2 asserts that future applications of reduction rules on w and
its remaining neighbors in F decrease the measure by at least one. Thus,
in total μ decreases by at least two.

(ii) Branch where v is moved from F to W . For every P-tent neighbor w of
v, Observation 3 asserts that the application of reduction rules to w and
its remaining neighbors in F cause a measure decrease of at least 1. If
degW (v) ≥ 1, then moving v to W does not increase ρ, and we are done.
Otherwise, if degW (v) = 0, moving v to W increases ρ by 1 but the assump-
tion GdegW (v) ≥ 1 implies that there also exists a P-nice neighbor w of
v. For every such P-nice neighbor w of v, Observation 1 asserts that the
future application of reduction rules on w and its remaining neighbors in F
cause measure drop by at least 1. Consequently, in this case we also have a
measure drop of at least 1.

Case C: Tdeg(v) ≥ 2.

(i) Branch where v is deleted and all vertices in N(v)∩F are added to R. First,
k decreases by one. Furthermore, for every P-tent neighbor w of v, Observa-
tion 2 asserts that the application of reduction rules on w and its remaining
neighbors in F cause measure drop by at least one. Since Tdeg(v) ≥ 2,
together with the decrease of k we have a total measure decrease of at
least 3.

(ii) Branch where v is moved from F to W . The move itself may increase ρ by
one. For every P-tent neighbor w of v, Observation 3 asserts that the future
application of reduction rules on w and its remaining neighbors in F cause
measure drop by at least 1. Since Tdeg(v) ≥ 2, in total we have a measure
decrease by at least 1.

We are left with analysing what happens if no vertex of F satisfies any of
the three cases for the choice of the branching pivot. As in [1], we rely on the
following base case.

Lemma 3 ([1]). Let (G,W,R, k) be an instance of DIS-IFVS where every
vertex in V (G)\W is either a nice vertex or a tent. Then we can find an inde-
pendent feedback vertex set X ⊆ V (G)\(W ∪ R) for G of the minimum size in
polynomial time.

Lemma 3 follows from the observation by Cao et al. [5] and the fact that all nice
vertices and tents form an independent set.

We show the following.

Lemma 4. If no reduction rule can be applied and every vertex of F does not
satisfy any of the cases for the choice of the branching pivot, then the remaining
instance of DIS-IFVS can be solved in polynomial time.

An Improved FPT Algorithm for Independent Feedback Vertex Set 353

Proof. We claim that every vertex in F of the remaining graph G is either a tent
or a nice vertex; the claim then follows by Lemma3.

For contradiction, suppose that there is a connected component D of G[F]
that is not a singleton with a tent or a nice vertex. Since no vertex of D falls
into Case A, GdegW (v) ≤ 2 for every v ∈ D; in particular, every leaf (a vertex
in F that has only exactly one neighbor in F) v ∈ D satisfies degW (v) ∈ {1, 2}.
Root the tree G[D] at an arbitrary vertex, and consider a leaf v ∈ D that is
furthest from the root in G[D] and, among such leaves, choose one maximizing
degW (v). Note that v /∈ R as otherwise Reduction Rule 6 would move v to W .

First, assume degW (v) = 2. Since v is a leaf of D and is not nice, v has exactly
one neighbor u ∈ D, and v is a P-tent. Hence, Tdeg(u) ≥ 1. If deg(u) = 2, then
Reduction Rule 7 applies to v if u /∈ R and once u is in R, then Reduction Rule
6 applies to u, making v a tent. Consequently, deg(u) ≥ 3. However, by the
choice of v, degW (u) ≥ 1 or u is adjacent to another leaf v′ of D. However, this
implies that GdegW (u) ≥ 1 (if degW (u) ≥ 1 or v′ exists and degW (v′) = 1) or
Tdeg(u) ≥ 2 (if v′ exists and degW (v′) = 2), and Case B or C applies to u.

Second, assume degW (v) = 1, and again let u be the unique neighbor of v
in G[D]. If deg(u) = 2, then Reduction Rule 2 is applicable. By the choice of v,
every other leaf v′ adjacent to u also satisfies degW (v′) = 1; that is, every child
of u is P-nice as u /∈ R. If GdegW (u) ≥ 3, then Case A applies to u. Hence,
deg(u) = 3 and GdegW (u) = 2: u has a parent x in G[D] and either one more
child v′ that is P-nice or a neighbor in W . In particular, u is a P-tent, and
Tdeg(x) ≥ 1.

If deg(x) = 2, then Reduction Rule 7 would apply to u and move v to R,
and consequently Reduction Rule 6 would move v to W . If GdegW (x) ≥ 1, then
Case B applies to x. Hence, x has another child u′ that is not P-nice. By the
choice of v, the connected component of G[D]\{x} containing u′ is a star with
u′ as a center. Furthermore, every child w of u′ is P-nice (i.e., degW (w) = 1).
Since Case A is not applicable to u′, we have GdegW (u′) ≤ 2. If deg(u′) = 2,
then either u′ is P-nice (if degW (u′) = 1) or Reduction Rule 2 is applicable to u′

and its child (if degW (u′) = 0). We infer that deg(u′) = 3 and GdegW (u′) = 2;
in particular, u′ is a P-tent. Hence, Tdeg(x) ≥ 2 and case C applies to x. This
completes the proof of the lemma. �	

Every step of the reduction rules and branching can be executed in polyno-
mial time. In every case of branching, the branching vector is (1, 2). Thus we
get the following recurrence: T (μ) = T (μ − 1) + T (μ − 2). As a result, the run-
ning time of the algorithm for DIS-IFVS is O∗(ϕ2k). This concludes the proof
of Lemma 1 and thus of the whole Theorem1.

4 Conclusion

In this paper, we presented a faster FPT algorithm for the Independent Feed-
back Vertex Set problem by using a different measure, introducing some new
reduction rules and improving the branching algorithm for the Disjoint Inde-
pendent Feedback Vertex Set problem. Moreover, we introduce the notion

354 S. Li and M. Pilipczuk

of generalized degree and tent degree, which makes the reduction and branching
more concise. The running time of our algorithm is O∗(3.619k), which matches
the running time of the current fastest FPT algorithm for the Feedback Ver-
tex Set problem. As IFVS is a more general problem than FVS, any improve-
ment for IFVS will lead to an improvement for the FPT algorithm of FVS. We
conclude with re-iterating an open problem of [19]: does there exist a kernel of
size O(k2), as it is the case for FVS [21,22]?

References

1. Agrawal, A., Gupta, S., Saurabh, S., Sharma, R.: Improved algorithms and combi-
natorial bounds for independent feedback vertex set. In: 11th International Sym-
posium on Parameterized and Exact Computation, IPEC 2016, 24–26 August
2016, Aarhus, Denmark. LIPIcs, vol. 63, pp. 2:1–2:14. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2016)

2. Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, 2nd edn.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-74759-0

3. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

4. Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comput. Sci. 5(1), 59–68
(1994). https://doi.org/10.1142/S0129054194000049

5. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures.
In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13731-0 10

6. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for the
feedback vertex set problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS
2007. LNCS, vol. 4619, pp. 422–433. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73951-7 37

7. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In:
Complexity Theory: Current Research, Dagstuhl Workshop, 2–8 February 1992,
pp. 191–225. Cambridge University Press (1992)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-
0515-9

9. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization.
J. Comput. Syst. Sci. 72(8), 1386–1396 (2006). https://doi.org/10.1016/j.jcss.2006.
02.001

10. Kanj, I., Pelsmajer, M., Schaefer, M.: Parameterized algorithms for feedback ver-
tex set. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC 2004. LNCS, vol.
3162, pp. 235–247. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-28639-4 21

11. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Pro-
cess. Lett. 114(10), 556–560 (2014). https://doi.org/10.1016/j.ipl.2014.05.001

12. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011, pp. 150–159.
IEEE Computer Society (2011). https://doi.org/10.1109/FOCS.2011.23

https://doi.org/10.1007/978-0-387-74759-0
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1142/S0129054194000049
https://doi.org/10.1007/978-3-642-13731-0_10
https://doi.org/10.1007/978-3-540-73951-7_37
https://doi.org/10.1007/978-3-540-73951-7_37
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1016/j.jcss.2006.02.001
https://doi.org/10.1016/j.jcss.2006.02.001
https://doi.org/10.1007/978-3-540-28639-4_21
https://doi.org/10.1007/978-3-540-28639-4_21
https://doi.org/10.1016/j.ipl.2014.05.001
https://doi.org/10.1109/FOCS.2011.23

An Improved FPT Algorithm for Independent Feedback Vertex Set 355

13. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex
set is fixed-parameter tractable. SIAM J. Discrete Math. 27(1), 290–309 (2013).
https://doi.org/10.1137/110843071

14. Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching, and FPT
algorithms. SIAM J. Comput. 45(4), 1377–1411 (2016). https://doi.org/10.1137/
140962838

15. Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: Linear time parameterized algo-
rithms for subset feedback vertex set. ACM Trans. Algorithms 14(1), 7:1–7:37
(2018). https://doi.org/10.1145/3155299

16. Cygan, M., Pilipczuk, M., Pilipczuk, M.: On group feedback vertex set parame-
terized by the size of the cutset. Algorithmica 74(2), 630–642 (2016). https://doi.
org/10.1007/s00453-014-9966-5

17. Guillemot, S.: FPT algorithms for path-transversal and cycle-transversal problems.
Discrete Optim. 8(1), 61–71 (2011). https://doi.org/10.1016/j.disopt.2010.05.003

18. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: new tools
for kernelization. In: 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, 20–23 October 2012, pp. 450–459.
IEEE Computer Society (2012). https://doi.org/10.1109/FOCS.2012.46

19. Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for
connected feedback vertex set. J. Comb. Optim. 24(2), 131–146 (2012). https://
doi.org/10.1007/s10878-011-9394-2

20. Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent
feedback vertex set. Theor. Comput. Sci. 461, 65–75 (2012). https://doi.org/10.
1016/j.tcs.2012.02.012

21. Iwata, Y.: Linear-time kernelization for feedback vertex set. In: 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, 10–14 July
2017, Warsaw, Poland. LIPIcs, vol. 80, pp. 68:1–68:14. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.68

22. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms 6(2),
32:1–32:8 (2010). https://doi.org/10.1145/1721837.1721848

https://doi.org/10.1137/110843071
https://doi.org/10.1137/140962838
https://doi.org/10.1137/140962838
https://doi.org/10.1145/3155299
https://doi.org/10.1007/s00453-014-9966-5
https://doi.org/10.1007/s00453-014-9966-5
https://doi.org/10.1016/j.disopt.2010.05.003
https://doi.org/10.1109/FOCS.2012.46
https://doi.org/10.1007/s10878-011-9394-2
https://doi.org/10.1007/s10878-011-9394-2
https://doi.org/10.1016/j.tcs.2012.02.012
https://doi.org/10.1016/j.tcs.2012.02.012
https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://doi.org/10.1145/1721837.1721848

Construction and Local Routing
for Angle-Monotone Graphs

Anna Lubiw1 and Debajyoti Mondal2(B)

1 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
alubiw@uwaterloo.ca

2 Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
dmondal@cs.usask.ca

Abstract. A geometric graph in the plane is angle-monotone of width γ
if every pair of vertices is connected by an angle-monotone path of width
γ, a path such that the angles of any two edges in the path differ by at
most γ. Angle-monotone graphs have good spanning properties.

We prove that every point set in the plane admits an angle-monotone
graph of width 90◦, hence with spanning ratio

√
2, and a subquadratic

number of edges. This answers an open question posed by Dehkordi,
Frati and Gudmundsson.

We show how to construct, for any point set of size n and any angle
α, 0 < α < 45◦, an angle-monotone graph of width (90◦ + α) with
O(n

α
) edges. Furthermore, we give a local routing algorithm to find

angle-monotone paths of width (90◦ + α) in these graphs. The rout-
ing ratio, which is the ratio of path length to Euclidean distance, is at
most 1/ cos(45◦ + α

2
), i.e., ranging from

√
2 ≈ 1.414 to 2.613. For the

special case α = 30◦, we obtain the Θ6-graph and our routing algorithm
achieves the known routing ratio 2 while finding angle-monotone paths
of width 120◦.

1 Introduction

The problem of constructing a geometric graph on a given set of points in the
plane so that the graph is sparse yet has good spanning and/or routing prop-
erties has been very well-studied. The basic goal is to guarantee paths that are
relatively short, and to be able to find such paths using local routing. Two fun-
damental concepts in this regard are spanners and greedy graphs. A geometric
graph is a t-spanner if there is a path of stretch factor t between any two ver-
tices, i.e., a path whose length is at most t times the Euclidean distance between
the endpoints. A geometric graph is greedy if there is a path between every two
vertices such that each intermediate vertex is closer to the destination than the
previous vertex on the path. Greedy graphs permit greedy routing where a path
from source to destination is found by the local rule of moving from the current

This work is partially supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 356–368, 2018.
https://doi.org/10.1007/978-3-030-00256-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_29&domain=pdf

Construction and Local Routing for Angle-Monotone Graphs 357

vertex to any neighbor that is closer to the destination. However, greedy graphs
are not necessarily t-spanners for any constant t.

The most desirable goal would be to construct sparse geometric graphs
together with a local routing algorithm to find paths with bounded stretch factor
that always get closer to the destination. This is the topic of our paper. There
are two aspects to the goal: to construct sparse geometric graphs in which such
paths exist, and to find the paths via a local routing algorithm.

Recently, Dehkordi et al. [9] introduced a class of graphs with good path
properties: A graph is angle-monotone if there is a path between every two
vertices that, after some rotation, is x- and y-monotone—equivalently, there is
some 90◦ wedge such that the vector of every edge of the path lies in this wedge.
This class was explored (and named) by Bonichon et al. [3]. Any angle-monotone
path σ from s to t has the self-approaching property (see [1]) that a point moving
along σ always gets closer to t.

The concept can be generalized to wedges of angles other than 90◦—a path
is angle-monotone of width γ (“generalized angle-monotone”) if there is some
wedge of angle γ such that the vector of every edge of the path lies in this
wedge. Although graphs that are angle monotone of width greater than 90◦ are
not necessarily self-approaching, they have good spanning properties. A graph
that is angle-monotone of width γ < 180◦ is a (1/ cos γ

2)-spanner [3], thus a
√

2
spanner for γ = 90◦ (the factor

√
2 is obvious based on the path being x- and

y-monotone after some rotation).
Our specific goal in this paper is to construct sparse generalized angle-

monotone graphs and design local routing algorithms to find generalized angle-
monotone paths in them. There have been a few results on constructing angle-
monotone graphs, but no previous results on local routing to find angle-monotone
paths—except for some impossibility results.

Constructing Angle-Monotone Graphs. The best result on constructing planar
angle-monotone graphs is due to Dehkordi et al. [9] who proved that any set of n
points has a planar angle-monotone graph of width 90◦ using O(n) Steiner points.
They proved this by showing that a Gabriel triangulation is angle-monotone of
width 90◦ (see [12] for a simpler proof), and then using the result that any point
set can be augmented with O(n) Steiner points to obtain a point set whose
Delaunay triangulation is Gabriel. Without Steiner points, it is known that one
cannot guarantee planar angle-monotone graphs for all point sets [3]. For the
special case of n points in convex position, Dehkordi et al. [9] proved that there
exists a (non-planar) angle-monotone graph with O(n log n) edges. In this paper
we show that any point set has an angle-monotone graph with a subquadratic
number of edges.

Turning to angle-monotone graphs of larger width, Bonichon et al. [3] showed
that the half-Θ6-graph on a set of n points, which is planar, is an angle-monotone
graph of width 120◦.

358 A. Lubiw and D. Mondal

Local Routing on Angle-Monotone Graphs. A k-local routing algorithm finds a
path one vertex at a time using only local information about the current vertex
and its k-neighborhood plus the coordinates of the destination. The routing ratio
of a local routing algorithm is the maximum stretch factor of any path found
by the algorithm. The results mentioned in the previous two paragraphs imply
that Gabriel graphs are

√
2-spanners, and half-Θ6-graphs are 2-spanners (as was

previously known [4,8]). Are there local routing algorithms to find paths with
good stretch factors, or paths that are angle-monotone in these classes of graphs?
The answers are “yes” and“no”, respectively. Bonichon et al. [3] gave a 1-local
routing algorithm for Gabriel graphs that has routing ratio (1 +

√
2). On the

other hand, they proved that no local routing algorithm can find angle-monotone
paths in Gabriel graphs. Bose et al. [7] gave a 1-local routing algorithm for half-
Θ6-graphs that has routing ratio 2.887. They proved that this is the best ratio
possible for any local routing algorithm, which implies that no local routing
algorithm will find angle-monotone paths of width 120◦ in half-Θ6-graphs. We
construct a family of graphs together with a local routing algorithm that finds
generalized angle-monotone paths.

Contributions. Our main results are as follows:
1. Given n points in the plane we construct an angle-monotone graph of

width 90◦ with O(n2 log log n
log n) edges—a subquadratic number of edges. Since

angle-monotone graphs are increasing-chord graphs, this answers Open Problem
4 from [9]. (We refer to [1,2,13–15] for results on self-approaching and increasing-
chord graphs.)

2. Given n points in the plane and any α, 0 < α < 45◦, we construct an angle-
monotone graph of width 90◦ + α with O(n

α) edges. We give a 2-local routing
algorithm for these graphs that finds angle-monotone paths of width 90◦ + α,
thus of stretch factor 1/ cos(90

◦+α
2). In particular, for α = 30◦ our construction

yields the [full] Θ6-graph, and our local routing algorithm finds angle-monotone
paths of width 120◦ and stretch factor 2. For this case, our algorithm is 1-local
and very similar to the one of Bose et al. [7] that finds paths of stretch factor 2
in half-Θ6-graphs, but our proof of correctness is simpler.

2 Angle-Monotone Graphs of Width 90◦

In this section we show that any set of n points admits an angle-monotone graph
of width 90◦ with o(n2) edges.

To achieve this, we will use the Erdős-Szekeres theorem [10] to partition the
point set into subsets each with a logarithmic number of points in convex posi-
tion. We will then construct an angle-monotone graph on each pair of subsets.
Our construction is inspired by and builds upon a result in [9] that every ‘one-
sided convex point set’ admits an increasing-chord graph with a linear number
of edges. In fact, their proof yields an angle-monotone graph of width 90◦ (see
the full version [11]). We use this in Lemma 4 below.

Construction and Local Routing for Angle-Monotone Graphs 359

(b)

(a) (c)

(d)

o

w2

w1 vi

wj

v2

v1 (e)

Fig. 1. (a) An (x, −y)-convex path. (b) An (x, y)-convex path. (c) An (x, −y)-concave
path. (d) An (x, y)-concave path. (e) Illustration for Lemma 1.

We first introduce some preliminary definitions and notation. We will distin-
guish two types of x-monotone paths: an (x, y)-monotone path increases in both
x- and y-coordinates, and an (x,−y)-monotone path increases in x-coordinate
and decreases in y-coordinate. For each type of path we further distinguish con-
vex and concave subtypes. Traversed in increasing x order, a convex path turns
to the right, and a concave path turns to the left. Thus an (x, y)-convex path is
an (x, y)-monotone path that turns to the right when traversed in increasing x
order, and etc. for the other three types. See Figs. 1(a)–(d).

Lemma 1. Let P = (v1, . . . , vi) be an (x,−y)-monotone path, and let P ′ =
(w1, . . . , wj) be an (x, y)-monotone path. Then there exists an angle-monotone
graph of width 90◦ and size O(i + j) that spans P and P ′.

Proof. Assume without loss of generality that P and P ′ intersect, say at point
o. (If necessary, we can add points (−∞,∞) and (∞,−∞) at the start and end
of P respectively, and similarly for P ′.) We will solve four subproblems for the
points to the left of o, to the right of o, above o and below o, as illustrated in
Fig. 1(e). Observe that any two points in P ∪ P ′ either lie in the same path, or
in one of these half-spaces, so it suffices to find an angle-monotone graph of size
O(i + j) for each subproblem, and take the union.

Let v1, . . . , vi′ and w1, . . . , wj′ be the vertices to the left of the vertical line
through o. We now construct an angle-monotone graph spanning these vertices
as follows. Add an edge (v1, w1) and then move a vertical sweep-line � from
(−∞, 0) to o. Each time we encounter a new vertex q, we add the edges (q, v′)
and (q, w′), where v′ (resp., w′) is the rightmost vertex of P (resp., P ′) lying in
the left-half plane of �. We call v′ and w′ the predecessor of q in P and in P ′,
respectively. The resulting graph H has size O(i + j). We now show that H is
an angle-monotone graph. For any pair of vertices a, b, if a, b belong to the same
path, i.e., P or P ′, then they are already connected by an angle-monotone path.
Otherwise, assume without loss of generality that a ∈ P , b ∈ P ′, and b has a
larger x-coordinate than a. Let b′ be the predecessor of b in P . Follow the path
P from a to b′ and then take the edge (b′, b). This is an (x,−y)-monotone path,
and thus angle-monotone (equivalently, of width 90◦). ��

360 A. Lubiw and D. Mondal

(b) (c) (d)(a)

v1

R1 R2

R3

R4

R5

v2
v1

wvq vq

q
v1

2 3

4

5

w

q

vi

v1 v2

2

3

4

R0
1

2

4

5

R1 R2

R3

R4

5
R5

R0

1

1
3

w

R3

v3

vi

Fig. 2. (a)–(d) Illustration for Lemma 2.

Lemma 2. Let P = (v1, . . . , vi) be an (x,−y)-convex path, and let R be the
region (above P) bounded by P and the leftward and downward rays starting at
v1 and vi, respectively. Then for any set W of j points in R, there exists a graph
G of size O(i + j) such that any pair of vertices v ∈ P,w ∈ W is connected by
an angle-monotone path of width 90◦.

Proof. Let v0 be any point on the leftward ray starting at v1. For each q from
1 to i, let �q be the ray starting at vq that lies perpendicular to vq−1vq and
enters region R. Since P is convex, the rays �q subdivide the region R into
regions R0, R1, . . . , Ri, e.g., see Fig. 2(a). For each point vq, connect vq to all
the points in region (Rq ∩ W), e.g., see Fig. 2(b). Let G′ be the resulting graph
including the edges of P . We now claim that for any vertex vt, 1 ≤ t ≤ q and
for any w ∈ (Rq ∩ W) the path vt, . . . , vq, w is an angle-monotone path. If the
y-coordinate of w is smaller than that of vq, then this path is (x,−y)-monotone
and hence angle-monotone, e.g., see Fig. 2(b). Otherwise, one can observe that
all edges in the path have vectors that lie in the 90◦ clockwise wedge between �q

and the line extending (vq−1, vq), e.g., see Fig. 2(c). Thus the path vt, . . . , vq, w
is an angle-monotone path.

For each q from i to 1, we construct a graph G′′ symmetrically by defining the
perpendicular rays �′

1, . . . , �
′
i and regions R′

0, . . . , R
′
i, as illustrated in Fig. 2(d).

We construct the final graph G by taking the union of all the edges of G′ and
G′′. It is straightforward to observe that G has at most (i + 2j) edges.

To complete the proof, we must show that there is an angle-monotone path
from any vertex vt, 1 ≤ t ≤ i to any w ∈ W . Observe that Rq and R′

q−1 intersect
because P is convex. If w ∈ (Rt ∪ · · · ∪ Ri), then there is an angle-monotone
path from vt to w in G, and otherwise w ∈ (R′

t−1 ∪ · · · ∪ R′
0) and there is an

angle-monotone path from vt to w in G′′. ��
Lemma 3. Let P = (v1, . . . , vi) and P ′ = (w1, . . . , wj) be a pair of (x,−y)-
convex (or, concave) paths. Then there exists an angle-monotone graph (spanning
P and P ′) with width 90◦ and size O(i + j).

Proof. We prove the lemma assuming that P and P ′ are a pair of convex paths.
The case when they are concave is symmetric. We consider two cases depending
on whether P and P ′ intersect or not.

Construction and Local Routing for Angle-Monotone Graphs 361

(b) (c)

A1
A2

A3

At+1

(a)

o1 o2o3

A1

A2

A3

P

P

vm

A D

C E

P

P

Fig. 3. (a)–(c) Illustration for Lemmas 3–4.

Case 1: First consider the case when P and P ′ do not intersect, and assume
without loss of generality that P ′ lies above P . Since the vertices on P ′ are
already connected by an angle-monotone path, we can apply Lemma 2 to obtain
the required angle-monotone graph.

Case 2: Consider now the case when P and P ′ intersect. Let o1, . . . , ot be
the points of intersections ordered from left to right, e.g., see Fig. 3(a). Let A1

(resp., At+1) be the set of vertices of (P ∪P ′) with x-coordinates smaller (resp.,
larger) than that of o1 (resp., ot). For every q, where 2 ≤ q ≤ t, let Aq be the
set of vertices of (P ∪ P ′) that lie to the left of oq and to the right of oq−1.

We process the sets A1, . . . , At+1 independently using Case 1, and let GA1 ,
. . . , GAt+1 be the resulting graphs. Compute the final graph G by taking the
union of P, P ′, and GA1 , . . . , GAt+1 . It is straightforward to verify that every
pair of vertices in G is connected by an angle-monotone path. The number of
edges in G is at most

∑q
k=1 |Ak| ∈ O(i + j). ��

Lemma 4. Let P = (v1, . . . , vi) be an (x,−y)-convex path, and let P ′ = (w1,
. . . , wj) be an (x,−y)-concave path (or, vice versa). Then there exists an angle-
monotone graph (spanning P and P ′) of width 90◦ and size O(k log k), where
k = max{i, j}.
Proof. We extend P by adding leftward and downward rays starting at v1 and
vi, respectively, e.g., see Fig. 3(b). We extend P ′ symmetrically. We now consider
two cases depending on whether P, P ′ intersect or not.

Case A: If P ′ and P do not intersect, e.g., see Fig. 2(f), then P ′ lies above P .
In this scenario we can find an angle-monotone graph of size O(k) by applying
Lemma 2.

Case B: If P and P ′ intersect, then they intersect in at most two points
o1, o2, with o1 to the left of o2, e.g., see Fig. 3(c). The part to the left of o1 and
the part to the right of o2 can be handled using Case A. In the middle we have a
convex polygon, where the result of Dehkordi et al. [9] gives an angle-monotone
graph of size O(k log k). See [11] for further details. ��
Theorem 1. Let S be a point set with n points. Then there exists an angle-
monotone graph (spanning S) of width 90◦ and size O(n2 log log n

log n) edges.

362 A. Lubiw and D. Mondal

Proof. By the Erdős-Szekeres theorem [10], every point set with n points con-
tains a subset of O(log n) points in convex position. Urabe [16] observed that
by repeatedly extracting such a convex set, one can partition a point set into
O(n

log n) convex polygons each of size O(log n). We partition each of these convex
polygons into an (x, y)-convex path, an (x,−y)-convex path, an (x, y)-concave
path, and an (−x,−y)-concave path.

For each pair of these paths, we apply Lemmas 1–4, as appropriate. Finally,
we compute the required graph G by taking the union of all the O(n2

log2 n
) graphs.

Since any pair of points in S either lie on the same path, or in one of these
O(n2

log2 n
) graphs, they are connected by an angle-monotone path of width 90◦.

Since the length of each path is at most O(log n), the size of G is O(n2

log2 n
) ·

O(log n log log n) = O(n2 log log n
log n). ��

Corollary 1. Let S be a point set with t nested convex hulls. Then there exists
an angle-monotone graph (spanning S) of width 90◦ with O(t2n log n) edges.

Although the above construction of a subquadratic-size angle-monotone net-
work with width 90◦ is somewhat involved, one can easily construct an angle-
monotone graph with width (90◦ + α) and O(n3/2

α) edges, for any 0 < α ≤ 90◦,
as shown in [11].

3 Angle-Monotone Graphs of Width (90◦ + α)

In this section we show how to construct, for any point set of size n and any
angle α, 0 < α < 45◦, an angle-monotone graph of width (90◦ + α) with O(n

α)
edges. We call these layered 3-sweep graphs. First, in Sect. 3.1, we introduce a
3-sweep graph of a point set in which three lines are used to connect each point
to three of its neighbors. The special case where the three lines form 60◦ wedges
yields the half-Θ6-graph. In Sect. 3.1, we analyze angle-monotonicity properties
of 3-sweep graphs. Then, in Sect. 3.2, we define a k-layer 3-sweep graph as a
union of k different 3-sweep graphs. We prove that a layered 3-sweep graph with
an appropriate number of layers is an angle-monotone graph of width (90◦ + α)
with O(n

α) edges.

3.1 3-Sweep Graphs

Let ΔABC be an acute triangle in R
2 such that A,B,C appear in clockwise

order on the perimeter of ΔABC, e.g., see Fig. 4(a). Let θa, θb, θc be the angles
at A,B,C, respectively. For any point q let Wq,a (the “a-wedge” of q) be the
wedge with apex q such that the two sides of Wq,a are parallel to AB and AC,
i.e., ΔABC can be translated such that A coincides with q and two sides of
ΔABC lie along the sides of Wq,a. Similarly, we define the wedges Wq,b and
Wq,c, e.g., see Fig. 4(b). The a-nearest neighbor of q in Wq,a is defined to be the
first point p that we hit (after q) while sweeping Wq,a by a line Lbc parallel to

Construction and Local Routing for Angle-Monotone Graphs 363

(a)

A

B

C

θa

θb

θc

θa

θc
θb

q

Wq,a

p

Lbc

(b) (c)

q

Wq,a

Wq,b

Wq,c

(d)

q

Fig. 4. (a) ΔABC. (b) Wq,a, Wq,b, Wq,c. (c) The a-nearest neighbor of q, where (q, p)
is a θa-edge. (d) A 3-sweep graph.

BC (starting with the line through q). Figure 4(c) illustrates such an example. In
the case of ties, we can pick arbitrarily as far as the results in this subsection are
concerned. However, it is important that the local routing algorithm in Sect. 4
be able to find the a-nearest neighbor, so we break ties by choosing the most
clockwise point. We call the edge (q, p) a θa-edge. We define b- and c-nearest
neighbors and θb- and θc-edges analogously.

Given a set of points S, and three acute angles θa, θb, θc summing to 180◦, we
define a 3-sweep graph G on S with angles {θa, θb, θc} to be a geometric graph
obtained by connecting every point q ∈ S to its a-, b- and c-nearest neighbors,
e.g., see Fig. 4(d). If θa = θb = θc = 60◦, then G is equivalent to the well known
half-Θ6-graph.

Bonichon et al. [4] proved that half-Θ6-graphs are equivalent to Triangu-
lar Distance (TD) Delaunay triangulations, introduced by Chew [8]. A 3-sweep
graph is also the same as the half-Θ6-graph under a linear transformation (see
[11]).

Both half-Θ6 and 3-sweep graphs are special cases of convex Delaunay graphs,
which were studied by Bose et al. [5]. They proved that every convex Delaunay
graph is a t-spanner, but the value of t obtained from that proof is too large to
be useful for our triangle T ′—for details, see [11].

Every convex Delaunay graph is planar [5], and hence the following lemma
is immediate. An independent proof of Lemma 5 is included in [11].

Lemma 5. Every 3-sweep graph is planar.

In the remainder of this section we analyze angle-monotonicity properties of
3-sweep graphs. We will show that for points q and t in a 3-sweep graph G with
t in Wq,a there is an angle-monotone path from q to t whose width depends on
θa and on the position of t relative to the a-path of q. The a-path of q, denoted
Pq,a, is defined to be the maximal path q(= v0), . . . , vk in G such that for each
i from 1 to k, vi is the a-nearest neighbor of vi−1. We also define the extended
a-path P q,a to be the a-path Pq,a together with Wvk,a, which is empty of points
since the a-path is maximal. We define [extended] b- and c-paths similarly.

Observe that if t is a vertex of Pq,a then there is an angle-monotone path of
width θa from q to t. The following lemma handles the case where t ∈ Wq,a, and

364 A. Lubiw and D. Mondal

t does not lie on the a-path from q. The proof of the lemma is very similar to the
proof in [3] that the half-Θ6-graph is angle-monotone of width 120◦ (see [11]).

Lemma 6. Let q, t be two vertices in G such that t lies in Wq,a. If t lies to the
left (resp., right) of P q,a then there is an angle-monotone path of width (θa +θb)
(resp., (θa + θc)) from q to t. Furthermore, the path consists of one subpath of
the a-path of q followed by one subpath of the b-path (resp., c-path) of t.

3.2 Layered 3-Sweep Graphs

In this subsection we define an angle-monotone graph of width (90◦ +α) for any
angle α, 0 < α < 45◦, such that k = 180

α is an integer, and for any set S of n
points. Our graph is defined as a k-layer 3-sweep graph.

Let ΔABC be an acute triangle with A,B,C in clockwise order around the
triangle, and with angles θa = 2α, θb = θc = 90◦ − α. Orient ΔABC so that the
vertically upward ray starting at A bisects θa. Let G1 be the 3-sweep graph of
S with respect to the 3 lines through the sides of ΔABC.

We define Gi, 2 ≤ i ≤ k by successive rotations of ΔABC. Let ΔiABC be
the triangle obtained by rotating ΔABC clockwise around A with an angle of
i−1
k 360◦, and let Gi be the 3-sweep graph of S with respect to the three lines

through the sides of ΔiABC. The union of G1, . . . , Gk is defined to be the k-layer
3-sweep graph Hk of S with respect to α.

Theorem 2. Let Hk be a k-layer 3-sweep graph, with k = 180
α . Then Hk is an

angle-monotone graph of width (90◦+α) and the number of edges in Hk is O(n
α).

Proof. Let q and v be two points in S. Then v belongs to Wq,a in some Gi,
where 1 ≤ i ≤ k. By Lemma 6, there exists an angle-monotone path of width
2α + (90◦ − α) = (90◦ + α) between q and v in Gi, and hence also in Hk. By
Lemma 5, each Gi is planar. Hence Hk has O(nk) ∈ O(n

α) edges. ��
If 2α = 60◦, then k = 6. Because of symmetries, Gi = Gi+2 so we really only

have two 3-sweep graphs, and the resulting graph H6 is the full-Θ6-graph.
In the remainder of this section we compare k-layer 3-sweep graphs and full-

Θk graphs, e.g., see Fig. 5(a). On the one hand, for k > 6, Hk may have up to
3 times as many edges as the Θk-graph though this is less if k is congruent to
2 mod 4 (see [11]). On the other hand, every Hk is an angle-monotone graph
of width (90◦ + α), but it is not known whether Θk-graphs are angle-monotone
with bounded width. For every k = 4m + 4, where m is a positive integer, one
can construct a Θk graph of width approximately (90◦ + 2α). For example, if
k = 8, then 2α = 45◦, and H8 is an angle-monotone graph of width 112.5◦. A
Θ8-graph may have comparatively large width, e.g., Fig. 5(b) shows a Θ8-graph,
where any angle-monotone path between u and v has width approximately 135◦.

Construction and Local Routing for Angle-Monotone Graphs 365

(a)

q

(b)

α

90 + 2α

α
u

v

a
b

c

de

f

q

q

Fig. 5. (a) Illustration for the neighbors of q in (top) H10, and (bottom) Θ10. (b)
An angle-monotone path between u and v of width approximately (90◦ + 2α) = 135◦

(inspired by an illustration in [6]).

4 Local Routing in Layered 3-Sweep Graphs

In this section we give a local routing algorithm for k-layer 3-sweep graphs.
Specifically, our routing algorithm is 2-local, meaning that at each step we assume
knowledge of: the coordinates of the current vertex u, the coordinates of the
target vertex, and the 2-neighborhood of u, which consists of the neighbors of u
and their neighbors. In the special case when k = 6, i.e., for full-Θ6-graphs, we
can restrict ourselves to 1-locality.

Theorem 3. There is a 2-local routing algorithm that finds angle-monotone
paths of width 90◦ + α in any k-layer 3-sweep graph Hk, where α = 180◦/k.
The algorithm has routing ratio 1/cos(45◦ + α

2).

Before giving the algorithm, we explain why we need 2-locality. Given a start
vertex q and a target vertex t, we can find, based on the angle of line qt, which
of the k 3-sweep graphs, say Gi has t ∈ Wq,a. Our routing algorithm will only
use edges of Gi, so we need a way to tell if an edge of Hk belongs to Gi. Consider
an edge from current vertex u to some vertex v. From their coordinates, we can
decide whether v is in a positive wedge of u in Gi, i.e., one of Wu,a,Wu,b, or
Wu,c. If so, then, by checking the other neighbors of u, we can detect if v is the
unique a-, b-, or c-neighbor of u in that wedge in Gi. Otherwise, u is in a positive
wedge of v, and, using 2-locality, we can check the neighbors of v to detect if u
is the unique a-, b-, or c-neighbor of v in Gi.

For the special case of α = 30◦, Hk is the full-Θ6-graph and our algorithm
finds angle-monotone paths of width 120◦ and achieves routing ratio 2. In this
case our algorithm, operating on a single 3-sweep graph, can be viewed as a
slight variant of the algorithm of Bose et al. [7] for routing positively in a half-
Θ6-graph. Their algorithm achieves spanning ratio 2 but—as stated—includes
a tie-breaking rule that prevents it from finding angle monotone paths of width
120◦. See [11].for further details. Our contribution is to simplify the statement
of the algorithm, generalize to other angles, and give a much simpler proof of
correctness using angle-monotonicity.

366 A. Lubiw and D. Mondal

u

θa

u

u u

(a) (b) (c)

t t

θb
t

θc

u

t

(d)

v

u

t

(e)

u

Fig. 6. Illustration for algorithm A.

Algorithm A (Local Routing). Let Hk be a k-layer 3-sweep graph with angles
θa = 2α, θb = θc = 90◦ − α, and let q and t be two vertices in Hk. As discussed
above, we can find out which 3-sweep graph, Gi, has t in Wq,a. We will route
in Gi, using 2-locality to distinguish its edges as discussed above. For ease of
description, orient the plane with Wq,a pointing upward, centered on the vertical
axis, so that edge BC of the reference triangle is horizontal. See Fig. 6. The
general situation is that we have routed (forwarded the message) to some vertex
u. Initially u = q. The algorithm stops when u = t.

– While t is an internal point of Wu,a, forward the message to u′, where u′ is
the a-neighbor of u in Wu,a. See Fig. 6(a). Observe that u′ is below or on the
horizontal line through t.

– At this point, u either belongs to Wt,b or Wt,c (possibly lying on the bound-
ary of the wedge). See Figs. 6(b)–(c). If u belongs to Wt,b, call routine AL,
otherwise call routine AR.

Algorithm AL (Left Routing). Invariant: u ∈ Wt,b. Until u reaches t do the
following:

– Case 1. Forward the message to the first clockwise neighbor v of u in Gi such
that v ∈ Wt,b and u ∈ Wv,b, if such a vertex v exists. See Fig. 6(d).

– Case 2. If no such vertex v exists, then forward the message to vertex u′,
where u′ is the a-neighbor of u in Wu,a. See Fig. 6(e).

Algorithm AR (Right Routing). Invariant: u ∈ Wt,c. Symmetric to above.

We now prove that A finds an angle-monotone path of width (90◦ + α) from
the source q to the destination t. Since we execute only one of AL or AR and
they are symmetric, it suffices to consider the case where AL is executed. The
significant part of the proof is to show that the algorithm finds a path from
q to t. The fact that the path is angle monotone of width (90◦ + α) follows
immediately. In particular, the initial while loop of algorithm A uses only θa-
edges, and algorithm AL uses only θb- and θa-edges. Thus the path is angle
monotone of width (90◦ +α). Note that the algorithm does not find a path with
θa-edges appearing before θb-edges, as was guaranteed in Lemma 6.

In order to show that algorithm A finds a path from q to t we will show: (1)
the invariant u ∈ Wt,b holds for algorithm AL; (2) some measure improves at
each routing step of the algorithm.

Construction and Local Routing for Angle-Monotone Graphs 367

First consider the invariant u ∈ Wt,b. Wt,b is bounded by two lines, � and �′,
where � is the horizontal line through t. To show that u ∈ Wt,b, we must show
that u is below, or on, �, and to the right of, or on, �′. When we first call AL,
u is to the right of, or on, �′, and each step of AL preserves this property—see
Figs. 6(d) and (e). It remains to prove that u is below or on line �. We will prove
the stronger invariant that Pt,b goes through or above u, i.e. that Pt,b intersects
the ray going vertically upward from u.

We begin by showing that this is true when we first call AL. If we call AL

because q is on �′, then Pt,b must pass through or above q. The only other way
to call AL is because we just completed a step of the while loop of A where t
was internal to Wu,a but not internal to Wu′,a, e.g., see Fig. 6(a). By Lemma 5,
Pt,b cannot cross the edge (u, u′). Hence it must pass above or through u′.

Now consider a general step of AL. We route from u to vertex w which is
either vertex v in Case 1 (Fig. 6(d)) or vertex u′ in Case 2 (Fig. 6(e)). Suppose
(for a contradiction) that the path Pt,b does not go through or above w. By
induction we know that Pt,b goes through or above u. By Lemma 5, Pt,b cannot
cross the edge (u,w). (This is where we use the assumption that (u,w) is an
edge of Gi.) Thus Pt,b must go through u and the other points of edge (u,w)
must lie above the path. Let x be the vertex before u on Pt,b. Then x ∈ Wt,b

and u ∈ Wx,b. We now claim that the algorithm should have chosen x rather
than w. First note that x is a candidate for vertex v in Case 1 of AL. Thus the
algorithm would not have moved to Case 2. Next note that x comes before v in
clockwise order around u, so the algorithm would have chosen x rather than v.

It remains to show that something improves at every step of the algorithm.
Let da be the distance from u to the horizontal line through t. Let db be the
distance from t to the line determined by the right boundary of Wu,a. In every
iteration of the while loop of A, da decreases and db does not increase. In Case 2 of
AL, da decreases and db does not increase. Finally, in Case 1 of AL, db decreases
and da does not increase. Thus da +db strictly improves, and the algorithm must
terminate. The path found by the algorithm is an angle-monotone path of width
90◦ + θa

2 = (90 + α).
We show that for full-Θ6-graphs, it suffices to know the 1-neighborhood of

the current vertex. See [11] for further details.

Theorem 4. There is a 1-local routing algorithm that finds angle-monotone
paths of width 120◦ in any full-Θ6-graph.

5 Open Questions

1. (from [3]) What is γmin, the smallest γ such that every point set has a planar
angle-monotone graph of width γ? It is known that 90◦ < γmin ≤ 120◦.

2. We showed that every set of n points admits an angle-monotone graph of
width 90◦ with o(n2) edges, but can a better bound be proved? O(n log n)
edges? Even O(n) is not ruled out.

368 A. Lubiw and D. Mondal

3. Using Steiner points, we can construct angle-monotone graphs of width γ, for
any given γ > 0, however, the size of the graph depends on some distance
parameters of the point set (see [11]). What is the smallest γ such that every
point set has an angle-monotone Steiner graph with width γ and o(n2) edges?

References

1. Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching
graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 260–
271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2 23

2. Bahoo, Y., Durocher, S., Mehrpour, S., Mondal, D.: Exploring increasing-chord
paths and trees. In: Proceedings of the 29th Canadian Conference on Computa-
tional Geometry. CCCG (2017)

3. Bonichon, N., Bose, P., Carmi, P., Kostitsyna, I., Lubiw, A., Verdonschot, S.:
Gabriel triangulations and angle-monotone graphs: local routing and recognition.
In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 519–531. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-50106-2 40

4. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-
graphs, Delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.)
WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16926-7 25

5. Bose, P., Carmi, P., Collette, S., Smid, M.H.M.: On the stretch factor of convex
Delaunay graphs. J. Comput. Geom. 1(1), 41–56 (2010)

6. Bose, P., Carufel, J.D., Morin, P., van Renssen, A., Verdonschot, S.: Towards tight
bounds on theta-graphs: more is not always better. Theor. Comput. Sci. 616, 70–93
(2016)

7. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Optimal local routing on
Delaunay triangulations defined by empty equilateral triangles. SIAM J. Comput.
44(6), 1626–1649 (2015)

8. Chew, L.P.: There is a planar graph almost as good as the complete graph. In:
Proceedings of the 2nd Annual Symposium on Computational Geometry (SoCG),
pp. 169–177 (1986)

9. Dehkordi, H.R., Frati, F., Gudmundsson, J.: Increasing-chord graphs on point sets.
J. Graph Algorithms Appl. 19(2), 761–778 (2015)

10. Erdös, P., Szekeres, G.: A combinatorial theorem in geometry. Compos. Math. 2,
463–470 (1935)

11. Lubiw, A., Mondal, D.: Construction and local routing for angle-monotone graphs
(2015). https://arxiv.org/abs/1801.06290

12. Lubiw, A., O’Rourke, J.: Angle-monotone paths in non-obtuse triangulations. In:
Proceedings of the 29th Canadian Conference on Computational Geometry. CCCG
(2017)

13. Mastakas, K., Symvonis, A.: On the construction of increasing-chord graphs on
convex point sets. In: Proceedings of the 6th International Conference on Informa-
tion, Intelligence, Systems and Applications (IISA), pp. 1–6. IEEE (2015)

14. Nöllenburg, M., Prutkin, R., Rutter, I.: On self-approaching and increasing-chord
drawings of 3-connected planar graphs. J. Comput. Geom. 7(1), 47–69 (2016)

15. Rote, G.: Curves with increasing chords. Math. Proc. Camb. Philos. Soc. 115, 1–12
(1994)

16. Urabe, M.: On a partition into convex polygons. Discret. Appl. Math. 64(2), 179–
191 (1996)

https://doi.org/10.1007/978-3-642-36763-2_23
https://doi.org/10.1007/978-3-319-50106-2_40
https://doi.org/10.1007/978-3-642-16926-7_25
https://doi.org/10.1007/978-3-642-16926-7_25
https://arxiv.org/abs/1801.06290

Characterization and Recognition of Tree
3-Spanner Admissible Directed Path

Graphs of Diameter Three

B. S. Panda1(B) and Anita Das2

1 Department of Mathematics, Indian Institute of Technology Delhi,
Hauz Khas, New Delhi 110016, India

bspanda@maths.iitd.ac.in
2 Infosys Ltd., Bengaluru, India

anitadas01@infosys.com

Abstract. A spanning tree T of a graph G is a tree t-spanner, t an
integer, if the distance between any two vertices in T is at most t times
their distance in G. A graph that admits a tree t-spanner is called a
tree t-spanner admissible graph. The problem of deciding whether a
graph is tree t-spanner admissible is NP-complete for any fixed t ≥ 4
and is linearly solvable for t ≤ 2. The case t = 3 is still open and is
conjectured to be NP-complete. In this paper, we present a structural
characterization and a polynomial time recognition algorithm for tree
3-spanner admissible directed path graphs of diameter three.

Keywords: Tree spanners · Directed path graphs · NP-completeness

1 Introduction

A spanning tree T of a connected graph G is called a tree t-spanner, t an
integer, if the distance between any two vertices in T is at most t times their
distance in G. A graph that has a tree t-spanner is called a tree t-spanner
admissible graph. Tree spanners are used as models for broadcast operations
[19]. Tree spanners are also used in approximating bandwidth of graphs [21] and
in biology [2] and has been widely studied in the literature (see [1–6,12,13,17,19–
21]).

The problem of deciding whether an arbitrary graph is tree t-spanner admis-
sible for any fixed t ≥ 4 is shown to be NP-complete by Cai and Corneil [6] and
remains NP-complete even for chordal graphs [3]. The tree t-spanner problem
for t ≤ 2 can be solved in linear time for arbitrary graphs [6]. However, the
status of the case t = 3 is still open for arbitrary graphs and was conjectured to
be NP-complete [6]. Motivated by this conjecture, researchers have investigated
the tree 3-spanner problem for various special classes of graphs. The classes of
graphs which admit tree 3-spanners are split graphs, co-graphs, and comple-
ments of bipartite graphs [5], interval graphs and permutation graphs [13], and
c© Springer Nature Switzerland AG 2018
A. Brandstädt et al. (Eds.): WG 2018, LNCS 11159, pp. 369–381, 2018.
https://doi.org/10.1007/978-3-030-00256-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00256-5_30&domain=pdf

370 B. S. Panda and A. Das

very strongly chordal graphs [3]. The tree 3-spanner problem can be solved in
polynomial time for planar graphs [8] and 2-sep directed path graphs [17].

Le and Le [12] claimed that directed path graphs always admit tree 3-
spanners. However, Panda and Das [16] have disproved their result by showing
that not all directed path graphs of diameter three admit tree 3-spanners. Hence
it is interesting to characterize and recognize tree 3-spanner admissible directed
path graphs of diameter three.

In this paper, we present a structural characterization and a polynomial
time recognition algorithm for tree 3-spanner admissible directed path graphs of
diameter three.

The rest of the paper is organized as follows. In Sect. 2, we present some perti-
nent definitions and preliminary results. In Sect. 3, we first prove some properties
of directed path graphs of diameter three. We then characterize tree 3-spanner
admissible directed path graphs of diameter three. An O(n3) time recognition
algorithm for tree 3-spanner admissible directed path graphs of diameter three
is given in Sect. 4, where n denotes the number of vertices of the input graph.
Finally, Sect. 5 concludes the paper.

2 Preliminaries

All graphs considered in this paper are assumed to be connected. Let G = (V,E)
denote a graph and let n and m denote the number of vertices and number of
edges of G, respectively. A set S ⊆ V (G) is called a clique if G[S], the induced
subgraph of G on S, is a complete subgraph of G. A clique S is called a maximal
clique if no proper superset of S is a clique of G. Throughout this paper, by
a clique we mean a maximal clique unless otherwise mentioned. For a graph G,
let NG(v) = {w ∈ V |vw ∈ E} be the set of neighbors of v. We will use N(v) for
NG(v) if the graph G is clear from the context. Let NG[v] = NG(v) ∪ {v}. Let
dG(x, y) denote the distance between x and y in G. A tree T having n vertices is
called a star if it has a vertex v of degree n− 1. In this case, v is called the star
center of T . If T has exactly two vertices, say x and y, of degree more than one,
then T is called a bi-star and x and y are called the bi-star centers of T . A
graph G is chordal if every cycle in G of length at least four has a chord, i.e.,
an edge joining two non-consecutive vertices of the cycle.

A directed graph T is a directed tree if the underlying graph T ′ of T ,
which is obtained from T by ignoring the directions of the edges in T , is a tree.
A directed tree T is a rooted directed tree with root r(T) if r(T) is the only
vertex in T of zero in-degree (the number of arcs entering r(T)). Let T be a
rooted directed tree with root r(T). If xy is an arc in T from x to y, then x is
called the parent of y. All the vertices in the path from a vertex x to r(T) are
called ancestors of x. If x is an ancestor of y, then y is called a descendant of
x. If x is an ancestor of y and x �= y, then x is called a proper ancestor of y
and y is called a proper descendant of x. The least common ancestor of x
and y is the common ancestor z of x and y such that for any common ancestor
z′ of x and y, z′ is an ancestor of z. The depth of a vertex x is the length of
the path from r to x.

Characterization and Recognition 371

A vertex v of a graph G is called simplicial if N [v] induces a clique. It is
known [7] that every chordal graph G admits a simplicial vertex and if G is a non-
complete chordal graph, then it admits two non-adjacent simplicial vertices. An
ordering σ = (v1, v2, . . . , vn) of V (G) is called a perfect elimination ordering
(PEO) of G if vi is a simplicial vertex of G[{vi, vi+1, . . . , vn}] for all i, (1 ≤ i ≤ n).
A graph G is chordal if and only if it has a PEO [9].

If G − C is disconnected for a clique C and has components Hi =(Vi, Ei),
1 ≤ i ≤ r and r ≥ 2, then C is called a separating clique of G and Gi =
G[(Vi ∪ C)] is called a separated subgraph of G with respect to C, where
1 ≤ i ≤ r and r ≥ 2. Let W (Gi) = {v ∈ C| there is a w ∈ Vi with vw ∈ E(Gi)}.
Cliques of G other than C which intersect C are called relevant cliques of G
with respect to C. A relevant clique Cj of Gi for which (Cj ∩ C) = W (Gi) is
called a principal clique of Gi.

The existence of a principal clique of every separated subgraph of a chordal
graph is guaranteed by the following result due to Panda and Mohanty [18].

Lemma 1 ([18]). Every separated subgraph Gi of a chordal graph with respect
to the separating clique C has a principal clique.

The following lemma is used in next section.

Lemma 2 ([16]). If Gi is a separated subgraph of a chordal graph G with respect
to C and Cj is any non-principal clique of Gi, then there exists a vertex x ∈
Cj \ W (Gi) such that xy /∈ E(G) for all y ∈ W (Gi) \ Cj.

In the following definitions, only relevant cliques are considered. Let C1 and
C2 be two cliques of G. We say (1) C1 and C2 are unattached, denoted C1|C2,
if C1∩C2∩C = ∅; otherwise, they are attached; (2) C1 dominates C2, denoted
C1 ≥ C2, if C1∩C ⊇ C2∩C; (3) C1 properly dominates C2, denoted C1 > C2,
if C1 ∩C ⊃ C2 ∩C; and (4) C1 and C2 are antipodal, denoted C1 ↔ C2, if they
are attached and neither dominates the other.

Let G1 and G2 be two separated subgraphs of G with respect to C. We
say (1) G1 and G2 are unattached, denoted G1|G2, if C1|C2 for every clique
C1 in G1 and for every clique C2 in G2 (otherwise they are attached); (2) G1

dominates G2, denoted G1 ≥ G2, if they are attached and for every clique C1

in G1, C1 ≥ C2 for every cliques C2 in G2 or C1|C2 for all cliques C2 of G2; (3)
G1 properly dominates G2, denoted G1 > G2, if G1 ≥ G2 but not G2 ≥ G1;
and (4) G1 and G2 are antipodal, denoted G1 ↔ G2, if they are attached and
neither dominates the other.

The above concepts were introduced in [14].

Lemma 3 ([14]). A collection of pairwise non-antipodal subgraphs of a chordal
graph G can be arranged in such a way that Gi > Gj implies i < j.

Lemma 4. If G is a tree 3-spanner admissible chordal graph and σ =
(v1, v2, . . . , vn) is a PEO of G, then Gi = G[{vi, vi+1, . . . , vn}] is tree 3-spanner
admissible for each i, 1 ≤ i ≤ n.

372 B. S. Panda and A. Das

Proof. Let T be a tree 3-spanner of G. Now v1 is a simplicial vertex of G.
If dT (v1) = 1, then let T ′ = T − v1. If dT (v1) ≥ 2, then let NT (v1) =
{w1, w2, . . . , wk}. Let T ′ = (V ′, E′), where V ′ = V (T) \ {v1}, and E(T ′) =
(E(T) \ {v1w1, v1w2, . . . , v1wk}) ∪ {w1w2, w1w3, . . . , w1wk}, i.e., T ′ is obtained
from T by removing the vertex v1, hence removing the edges v1wi, 1 ≤ i ≤ k and
adding the edges w1wi, 2 ≤ i ≤ k. It is easy to see that T ′ is a tree 3-spanner
of G − v1 = G[{v2, v3, . . . , vn}]. Using the fact that vi is a simplicial vertex of
Gi, 2 ≤ i ≤ n, inductively we can construct a tree 3-spanner of Gi for each i,
2 ≤ i ≤ n, starting from a tree 3-spanner of G1 = G. Hence the result.

Lemma 5. Let G be a tree 3-spanner admissible chordal graph and let S =
{G1, G2, . . . , Gr}, r ≥ 2 be the set of all separated subgraphs of G with respect to
a separating clique C. Let S1 ⊂ S. Then

⋃
Gi∈S1

Gi is tree 3-spanner admissible.

Proof. Let |V (
⋃

Gi∈S1
Gi)| = l and let Gi be any separated subgraph. Let

|V (Gi)| = k and |C| = s. Let k − s = j. Since C is a clique of Gi and a non-
complete chordal graph has two non-adjacent simplicial vertices, it is easy to
construct a PEO α1 = (v1, v2, . . . , vk) of Gi such that {vj+1, vj+2, . . . , vk} = C,
i.e., the last s vertices of α1 constitute C. Using this fact, it it easy to construct
a PEO β of G such that the last l vertices of β constitute V (

⋃
Gi∈S1

Gi). So this
fact and Lemma 4 imply that

⋃
Gi∈S1

Gi admits a tree 3-spanner.

The following important result will be used extensively in the later sections.

Lemma 6 ([4]). Let T be a tree 3-spanner of a chordal graph G. For any clique
C of G, one of the following conditions holds:

(i) C induces a star in T .
(ii) Either C induces a bi-star in T or there is a vertex v /∈ C such that C ∪ {v}

induces a bi-star in T .

Remark 1. Suppose that T [C∪{x}], x /∈ C is a bi-star. If x is not a bi-star center
of T [C ∪{x}], then x must be a pendant vertex in T [C ∪{x}] and hence T [C] is a
bi-star. So x and y must be bi-star centers of T [C ∪{x}] for some y ∈ N(x)∩C.

A graph G = (V,E) is a directed path graph if there exists a rooted
directed tree B and a family of directed paths (v̄)v∈V in B such that for all
vertices v1 and v2, v1v2 ∈ E if and only if (v̄1) ∩ (v̄2) �= ∅. The class of directed
path graphs is properly contained in the class of chordal graphs. Directed path
graphs were introduced by Gavril [10] and are characterized as follows:

Theorem 1 ([10]). A graph G = (V,E) is a directed path graph if and only if
there exists a (rooted) directed tree B whose vertex set is the set of all cliques of
G and such that, for each vertex v of G, the cliques containing v form a directed
path v̄ in B. If such a tree B exists, the family (v̄)v∈V is a representing family
of directed paths on B for G.

Characterization and Recognition 373

The tree B in the above theorem is called a characteristic tree of G.
Directed path graphs are also known as rooted directed vertex (RDV)
graphs and characteristic trees of directed path graphs are also called as RDV
clique trees (see [14,15]).

Let Gi, 1 ≤ i ≤ r, r ≥ 2, be the separated subgraphs of G with respect to
the separating clique C.

Panda [15] has given the following characterization of RDV graphs (same as
directed path graphs).

Theorem 2 ([15]). G is an RDV graph if and only if each Gi is RDV, and
the Gi’s can be two-colored such that no antipodal pairs have the same color, in
one color every subgraph has an RDV clique tree rooted at C, in the other color
no two relevant cliques are unattached, and every subgraph (with one possible
exception) has an RDV clique tree rooted at a relevant clique. The exceptional
subgraph, should it exist, is dominated by every other subgraph of the same color,
and it has an RDV clique tree in which the vertex C has out degree zero.

A k-sun, k ≥ 3, is a graph with vertex set {v1, v2, . . . , vk} ∪ {x1, x2, . . . , xk}
such that {v1, v2, . . . , vk} forms a clique and {x1, x2, . . . , xk} forms an indepen-
dent set and xi is adjacent to vi and vi+1, for 1 ≤ i ≤ k − 1 and xk is adjacent
to vk and v1. For any integer k ≥ 3, a k-planet is obtained from the path of k
vertices v1, v2, . . . , vk and a triangle abc by adding edges bvi, 1 ≤ i ≤ k − 1 and
cvi, 2 ≤ i ≤ k. It is well known that a directed path graph is free from k-planet
for k = 3 and for k ≥ 5 and is free from k-sun for each k ≥ 3.

A graph G = (V,E) is called a path graph if there exists a tree T and a
family of paths (v̄)v∈V in T such that xy ∈ E for all vertices x, y ∈ V if and
only if (x̄) ∩ (ȳ) �= ∅.

Path graphs are also known as undirected vertex (UV) graphs and the
class of directed path graphs is a proper subclass of path graphs (see [14]).

Lemma 7 ([14]). Let C be a clique in the UV graph G. If C is not a separator,
then C is a leaf vertex (i.e., a vertex with degree 1) in any clique tree of G.

The following result follows from the above lemma.

Lemma 8. Let T be any RDV clique tree of a directed path graph G, and let T ′

be the tree obtained from T by ignoring the direction of the edges of T . If C is
any non-separating clique of G, then C is a leaf vertex (i.e., a vertex with degree
1) in T ′.

Lemma 9 ([14]). Let G be a UV graph having a clique tree T and let C be
a separating clique of G. Let C ′ and C ′′ be any two relevant cliques of G with
respect to C. If C ′ is present in the path from C to C ′′ in the clique tree T of
G, then C ′ ≥ C ′′.

Let T be any RDV clique tree of a directed path graph G, and let T ′ be
the tree obtained from T by ignoring the direction of the edges of T . Let C
be a separating clique of G. Let P = C,C ′, C ′′ be a path in T ′. By Lemma 9,
C ′ ≥ C ′′. If G1 is a separated subgraph of G with respect to C containing the

374 B. S. Panda and A. Das

clique C ′, then C ∩ C ′ ⊇ C ∩ C ′′ for any relevant clique C ′′ of G1. Hence C ′ is
a principal clique of G1.

The following result follows from the above discussion.

Lemma 10. Let T be any RDV clique tree of a directed path graph G and T ′

be the tree obtained from T by ignoring the direction of the edges of T . Let
P = C,C ′, C ′′ be a path in T ′. If C is a separating clique in G and Gi is a
separated subgraph containing the clique C ′, then C ′ is a principal clique of Gi.

Let C be a separating clique of G. Let Gi, 1 ≤ i ≤ r, r ≥ 2, be the separated
subgraphs of G with respect to C. A separated subgraph Gi is said to satisfy
property P if Ci ∩ Cj ∩ C �= ∅ for every pair of distinct relevant cliques Ci

and Cj of Gi. A family {Si}i∈I of subsets of a set S is said to satisfy Helly
Property if J ⊆ I and Si ∩ Sj �= ∅ for all i, j ∈ J imply

⋂
j∈J Sj �= ∅.

Lemma 11 ([16]). If the separated subgraph Gi satisfies the property P , then
the family S = {W (Gi) ∩ Cj | Cj �= C and Cj is a relevant clique of Gi} of
subsets of W (Gi) satisfies the Helly property.

Lemma 12 ([16]). Let Gi be a separated subgraph of G with respect to C such
that all the cliques of Gi are relevant cliques. If Gi satisfies the property P , then
there is an ordering C1, C2, . . . , Ck of the cliques of Gi other than C such that
Cj ∩ W (Gi) ⊆ Cj+1 ∩ W (Gi) for all j, 1 ≤ j ≤ k − 1.

3 Characterization

A separating clique C of G is called a dominating separating clique if it
intersects every clique of G. The following lemma whose proof is omitted proves
the existence of a dominating separating clique in every directed path graph of
diameter three.

Lemma 13. Every diameter three directed path graph admits a dominating sep-
arating clique.

Let G be a directed path graph of diameter three and C be a dominating
separating clique of G. Let Gi, 1 ≤ i ≤ r, r ≥ 2, be the separated subgraphs of
G with respect to C.

Since G is a directed path graph, all the separated subgraphs of G with
respect to C can be two colored satisfying the condition of Theorem2. Without
loss of generality, assume that each Gi has an RDV clique tree rooted at C if Gi

is assigned color 1. Let S1 = {Gi | Gi is assigned color 1} and S2 = {Gi | Gi is
assigned color 2}.

If G is tree 3-spanner admissible, then by Lemma 5, each Gi is tree 3-spanner
admissible. So the main idea behind our characterization of tree 3-spanner admis-
sible directed path graph of diameter three is to find the conditions under which
each Gi is tree 3-spanner admissible and to find the conditions under which G
is tree 3-spanner admissible given that each Gi is tree 3-spanner admissible.

Characterization and Recognition 375

Suppose that Gi satisfies the property P . Let C1, C2, . . . , Ck, k ≥ 1 be the
cliques of Gi other than C. So (∩k

i=1(C ∩ Ci)) �= ∅ by Lemma 11. Now each
x ∈ ∩k

i=1(C∩Ci) is a dominating vertex of Gi and x ∈ W (Gi). If W (Gi) contains
a dominating vertex, say x, of Gi, then x ∈ ∩k

i=1(C ∩ Ci). So Gi satisfies the
property P in this case.

In view of the above discussion, we have the following result.

Lemma 14. A separated subgraph Gi with respect to a dominating separating
clique C satisfies the property P if and only if W (Gi) contains a dominating
vertex of Gi.

The following lemma provides a sufficient condition for tree 3-spanner admis-
sibility.

Lemma 15. If each Gi, 1 ≤ i ≤ r, r ≥ 2, satisfies the property P , then G admits
a tree 3-spanner.

Proof. Since every separated subgraph Gi with respect to C satisfies the property
P , Gi has a dominating vertex, say xi, in C, 1 ≤ i ≤ r, by Lemma 14. Let T1 be
a star having vertex set C. Let T be such that E(T) = E(T1) ∪ (

⋃r
i=1{xix|x ∈

(V (Gi) \ C)}), and V (T) = V (G). It is easy to see that T is a tree 3-spanner of
G. So G admits a tree 3-spanner. ��
Definition 1. A pair of relevant cliques (Ci, C

′
i) of Gi is said to be a violating

pair with respect to C if Ci ∩ C ′
i ∩ C = ∅ and there exists a relevant clique Ck

such that Ci∩C ⊆ Ck, (Ci∩Ck)\C �= ∅, C ′
i ∩C ⊆ Ck, and (C ′

i ∩Ck)\C �= ∅. In
this case, Ck is called a base clique of the violating pair (Ci, C

′
i). Each vertex

of Ck which is present in either Ci or C ′
i is called a base vertex. The sets

X(Ci, C
′
i) = Ci ∩ Ck and Y (Ci, C

′
i) = C ′

i ∩ Ck are called the set of base vertices
of Ci and C ′

i, respectively. A clique Ci is called a violating clique with respect
to C if there exists another clique C ′

i such that (Ci, C
′
i) is a violating pair with

respect to C.

Lemma 16. If Gi does not satisfy the property P , then it contains a violating
pair of relevant cliques.

Lemma 17. If G1, G2, and G3 are three mutually unattached separated sub-
graphs of G with respect to C such that each Gi, 1 ≤ i ≤ 3, violates the property
P , then G does not admit a tree 3-spanner.

Recall that the set of all separated subgraphs of G with respect to the sep-
arating clique C can be two colored satisfying the condition of Theorem2. Let
Gi, 1 ≤ i ≤ r, r ≥ 2, be the separated subgraphs of G with respect to C. Let
S1 = {Gi|Gi is assigned color 1} and S2 = {Gi|Gi is assigned color 2}. Since
no two relevant cliques in the color class two are unattached, no two separated
subgraphs in S2 are unattached. Also no two separated subgraphs in S2 are
antipodal and all the cliques of Gi other than C are relevant with respect to C
for all Gi ∈ S2. So by Lemma 3, there is an ordering of the separated subgraphs

376 B. S. Panda and A. Das

of S2, say, G′
1, G

′
2, . . . , G

′
r, such that G′

i dominates G′
j if and only if i < j. By

Lemma 12, there is an ordering of the cliques of G′
i, say C1, C2, . . . , Cs, such that

Ci ∩W (Gi) ⊆ Ci+1 ∩ W (Gi) for all i, 1 ≤ i ≤ s − 1. If Gi, Gj ∈ S2, and Gi dom-
inates Gj , then each clique of Gi dominates every clique of Gj because no two
cliques of color class two are unattached. So concatenating the ordering of the
cliques of G′

r, G
′
r−1, . . . , G

′
1 in this order, we get an ordering, say C1, C2, . . . , Ct,

of the cliques of the separated subgraphs of S2 such that Ci ∩ C ⊆ Ci+1 ∩ C for
all i, 1 ≤ i ≤ t − 1. So we have the following result.

Lemma 18. There is an ordering of the cliques of the separated subgraphs of
S2, say, C1, C2, . . . , Ct, such that Ci ∩ C ⊆ Ci+1 ∩ C for all i, 1 ≤ i ≤ t − 1.

A separated subgraph Gi of S1 is called a maximal separated subgraph
if Gi is not dominated by any other separated subgraph of S1. If a separated
subgraph Gj of S1 is dominated by a maximal separated subgraph Gi, then Gj

is called a neighbor separated subgraph of Gi. Let N(Gi) denote the set
of all neighbor separated subgraphs of a maximal separated subgraph Gi and
N [Gi] = N(Gi) ∪ {Gi}. Let AS1 = {Gi|Gi ∈ S1 and Gi is a maximal separated
subgraph}. Let BS1 = {Gi|Gi ∈ AS1 and there is some Gj ∈ N [Gi] such that
Gj violates the property P}. Let CS1 = AS1 \ BS1 .

Lemma 19. Any two maximal separated subgraphs of S1 are unattached.

Proof. If possible suppose that Gi, Gj ∈ S1 are two maximal separated sub-
graphs such that Gi and Gj are attached. Since Gi, Gj ∈ S1, they are non-
antipodal to each other. Since they are attached and are non-antipodal, one will
dominate the other, say Gi > Gj . This contradicts the fact that Gj is a maximal
separated subgraph. Hence the result. ��
Lemma 20. If BS1 contains more than two separated subgraphs, then G does
not admit a tree 3-spanner.

Proof. The proof follows from Lemmas 17 and 19. ��
Lemma 21. Let G1, G2, . . . , Gr, r ≥ 2 be the separated subgraphs of a directed
path graph with respect to a separating clique C. Let Gi be such that W (Gi) ∩
W (Gj) = ∅ for i �= j. If G − (V (Gi) \ C) is tree 3-spanner admissible, then
G − (V (Gi) \ C) has a tree 3-spanner T such that dT (x, y) ≤ 2 for all x, y ∈
W (Gi).

Lemma 22 (Reduction Lemma). If Gk ∈ CS1 , then
⋃

Gi∈S1
Gi admits a

tree 3-spanner if and only if
⋃

Gi∈S1
Gi − ((

⋃
Gj∈N [Gk]

V (Gj)) \C) admits a tree
3-spanner.

Let S′
1 = S1 \ {Gj |there is some Gi ∈ CS1 such that Gj ∈ N [Gi]}. In view

of the above reduction lemma,
⋃

Gi∈S1
Gi admits a tree 3-spanner if and only if⋃

Gi∈S′
1
Gi admits a tree 3-spanner. So we concentrate on S′

1 instead of S1. Recall
that BS′

1
= {Gi |Gi ∈ AS′

1
and there is some Gj ∈ N [Gi] such that Gj violates

property P}. If BS′
1

has no separated subgraphs, then by Lemma 15 ∪Gi∈S′
1
Gi

Characterization and Recognition 377

admits a tree 3-spanner. If BS′
1

contains three or more separated graphs, then
by Lemma 20, G does not admit a tree 3-spanner. So assume that BS′

1
contains

at most two separated graphs. We deal two cases, i.e., |BS′
1
| = 1 and |BS′

1
| = 2

separately.

3.1 BS ′
1

Contains Exactly Two Maximal Separated Subgraphs

Let Gi be a maximal separated subgraph and V P (N [Gi]) = {(Ci, C
′
i)|(Ci, C

′
i) is

a violating pair of Gj such that Gj ∈ N [Gi]}, V C(N [Gi]) = {Ci| there exists C ′
i

such that (Ci, C
′
i) is a violating pair of Gj with respect to C, where Gj ∈ N [Gi]},

and V CV (N [Gi]) = {x|x ∈ Ci ∩ C, where Ci ∈ V C(N [Gi])}.

Definition 2. Let Gi be a maximal separated subgraph. We say that a subset
S of V C(N [Gi]) satisfies property P ∗ if there exists a vertex x ∈ W (Gi) such
that for each violating clique Ci ∈ S, if there exists another violating clique C ′

i

in S such that (Ci, C
′
i) is a violating pair, then either X(Ci, C

′
i) ⊆ N(x) or

Y (Ci, C
′
i) ⊆ N(x). Such a vertex x is called a root vertex of Gi with respect

to S. Note that Gi can contain more than one root vertex with respect to S. A
maximal separated subgraph Gi satisfies property P1 if V C(N [Gi]) satisfies the
property P ∗. Define RP1(V C(N [Gi])) = {x | x is a root vertex of Gi}.
For a vertex x ∈ V (G), let N i

G(x) = {y|dG(x, y) = i}, i ≥ 1. So N1
G(x) = NG(x).

Since G is of diameter three, N3
Gi

(x) = ∅ for all x ∈ W (Gi) and for each separated
subgraph Gi.

Lemma 23. A maximal separated subgraph G1 ∈ S′
1 satisfies the property P1 if

and only if there exists a vertex x in C such that for each connected component
D of N2

G1
(x) there exists a vertex vD ∈ N1

G1
(x) such that vD is adjacent to all

the vertices of D.

The following lemma shows that if a separated subgraph G1 satisfies the
property P1, then it admits a tree 3-spanner T such that C induces a star in T .

Lemma 24. If a maximal separated subgraph G1 ∈ S′
1 satisfies the property P1,

then H =
⋃

Gi∈N [G1]
Gi admits a tree 3-spanner T such that C induces a star

in T having star center at x, where x ∈ RP1(V C(N [G1])).

Lemma 25. Let G1 and G2 be two maximal separated subgraphs in S′
1 and

G∗ =
⋃

Gi∈N [G1]∪N [G2]
Gi. The following are true.

(i) If G∗ admits a tree 3-spanner, then C induces a bi-star in every tree 3-
spanner of G∗.

(ii) G∗ admits a tree 3-spanner if and only if each of G1 and G2 satisfies the
property P1.

(iii) If G∗ admits a tree 3-spanner, then C induces a bi-star in every tree 3-span-
ner of G∗ such that one of the bi-star centers belongs to RP1(V C(N [G1]))
and the other bi-star center belongs to RP1(V C(N [G2])).

378 B. S. Panda and A. Das

Let S′
1 = {G1, G2, . . . , Gr}, and S2 = {G′

1, G
′
2, . . . , G

′
s}. Let G′ = (

⋃r
i=1 Gi)∪

(
⋃s

i=1 G′
i).

Definition 3. G′ is said to satisfy property P2 if the following conditions are
true.

(i) S′
1 contains exactly two maximal separated subgraphs, say G1 and G2, such

that each of G1 and G2 satisfies the property P1.
Let α be an ordering of the cliques of the separated subgraphs of S2 satisfying
the condition of Lemma 18. Let Cmin be the clique having least index in α
such that Cmin∩W (G1) �= ∅ and Cmin∩W (G2) �= ∅. Let Csmin be the clique
having least index in the ordering α such that either Csmin ∩ W (G1) �= ∅
or Csmin ∩ W (G2) �= ∅. If Csmin exists, then without loss of generality
Csmin ∩ W (G1) �= ∅.

(ii) If Cmin exists, then either RP1(V C(N [G1])) ∩ Cmin �= ∅ or
RP1(V C(N [G2])) ∩ Cmin �= ∅.

(iii) If both Csmin and Cmin exist and Cmin is different from Csmin, then
RP1(V C(N [G1])) ∩ Cmin �= ∅.

Lemma 26. Suppose that S′
1 contains exactly two maximal separated subgraphs.

Then G admits a tree 3-spanner if and only if G′ = (
⋃r

i=1 Gi)∪(
⋃s

i=1 G′
i) satisfies

the property P2.

3.2 BS ′
1

Contains Exactly One Maximal Separated Subgraph

Definition 4. A maximal separated subgraph Gi satisfies property P3 if Gi

violates the property P1 and V C(N [Gi]) can be partitioned into two sets
V C1(N [Gi]) and V C2(N [Gi]) such that each of V C1(N [Gi]) and V C2(N [Gi])
satisfies the property P ∗.

Lemma 27. Let G1 be the only maximal separated subgraph in S′
1 and G1 vio-

lates the property P1. Let G′′ =
⋃

Gi∈N [G1]
Gi. The following are true.

(i) G′′ admits a tree 3-spanner if and only if G1 satisfies the property P3.
(ii) If G′′ admits a tree 3-spanner, then C induces a bi-star having one of

the bi-star centers in RP1(V C1(N [G1])) and the other bi-star center in
RP1(V C2(N [G1])) in every tree 3-spanner of G′.

Recall that G′ = (
⋃r

i=1 Gi) ∪ (
⋃s

i=1 G′
i).

Definition 5. G′ satisfies property P4 if the following conditions are true.

(i) S′
1 contains exactly one maximal separated subgraph, say G1, violating the

property P . Suppose that G1 violates the properties P1 but satisfies the prop-
erty P3. Let V C1(N [G1]) and V C2(N [G1]) be a partition of V C(N [G1])
with respect to which G1 satisfies P3. Let V V1(G1) = V C1V (N [G1]) and
V V2(G1) = V C2V (N [G1]).
Let α be an ordering of the cliques of the separated subgraphs of S2 sat-
isfying the condition of Lemma18. Let C ′

min be the clique having least

Characterization and Recognition 379

index in α such that Cmin ∩ V V1(G1) �= ∅ and C ′
min ∩ V V2(G2) �= ∅. Let

C ′
smin be the clique having least index in the ordering α such that either

C ′
smin∩V V1(G1) �= ∅ or C ′

smin∩V V2(G1) �= ∅. If C ′
smin exists, without loss

of generality, C ′
smin ∩ V V1(G1) �= ∅.

(ii) If C ′
min exists, then either RP1(V C1(N [G1])) ∩ C ′

min �= ∅ or
RP1(V C2(N [G1])) ∩ C ′

min �= ∅.
(iii) If both C ′

min and C ′
smin exists and C ′

smin is different from C ′
min, then

RP1(V C1(N [G1])) ∩ C ′
min �= ∅.

Lemma 28. Suppose that S′
1 contains exactly one maximal separated subgraph,

say G1. Let G1 violate the property P1. G admits a tree 3-spanner if and only if
G′ = (

⋃r
i=1 Gi) ∪ (

⋃s
i=1 G′

i) satisfies the property P4.

Lemma 29. If S′
1 contains exactly one maximal separated subgraph, say G1 and

G1 satisfies the property P1, then G admits a tree 3-spanner.

Proof. By Lemma 24, H =
⋃

Gi∈N [G1]
Gi admits a tree 3-spanner T such that C

induces a star in T having star center at x, where x ∈ RP1(V C(N [G1])). Let y ∈
C be a dominating vertex of H1 =

⋃
Gi∈S2

Gi. Let xj ∈ C be a dominating vertex
for Gj ∈ (S1 \ S′

1). Let T ′ = T ∪ {yz|z ∈ (V (H1) \ C)} ∪ (
⋃

Gj∈(S1\S′
1)

{xjx, x ∈
(V (Gj) \ C)}). Clearly T ′ is a tree 3-spanner of G. ��

3.3 Characterization Theorem

Next we present the characterization theorem whose proof follows from the above
lemmas.

Theorem 3. G admits a tree 3-spanner if and only if

(i) S′
1 contains at most two maximal separated subgraphs.

(ii) If S′
1 contains exactly two maximal separated subgraphs, then G′ satisfies

the property P2.
(iii) If S′

1 contains exactly one maximal separated subgraph, say G1, then either
G1 satisfies the property P1 or G′ satisfies the property P4.

Proof. Necessity: (i) follows from Lemma 17, (ii) follows from Lemma 26, and
(iii) follows from Lemma 28.
Sufficiency: Follows from Lemmas 26, 28, and 29. ��

4 Recognition

In this section, we show that all the conditions of Theorem3 can be tested in
polynomial time which leads to a polynomial time recognition algorithm for tree
3-spanner admissible directed path graph of diameter three.

Due to space restriction, we omit the details. First of all find a dominating
separating clique, say C, of G. Next we find all the separated subgraphs of G
with respect to C and compute S1 = {Gi|Gi is assigned color 1}, S2 = {Gi|Gi

380 B. S. Panda and A. Das

is assigned color 2}, S′
1, and H = (

⋃
Gi∈S′

1
Gi) ∪ (

⋃
Gi∈S2

Gi). We next find the
number of maximal separated graphs, say k, of S′

1. If k ≥ 3, then we declare
that G does not admit a tree 3-spanner.

Suppose that k = 2. Let G′ = H. We test whether G′ satisfies the property
P2. If G′ violates the property P2, then declare that G does not admit a tree
3-spanner.

Next suppose that k = 1. We check whether G′ satisfies the property P4.
If G′ does not satisfy the property P4, declare that G does not admit a tree
3-spanner; otherwise G admits a tree 3-spanner. It can be proved that all the
above steps require at most O(n3) time.

The following theorem follows from the above discussion.

Theorem 4. A tree 3-spanner admissible directed path graph of diameter three
can be recognized in O(n3) time.

5 Conclusion

We obtained a structural characterization of tree 3-spanner admissible directed
path graphs of diameter three. Based on this characterization, we proposed an
O(n3) time algorithm to recognize tree 3-spanner admissible directed path graphs
of diameter three. It would be interesting to characterize and recognize tree 3-
spanner admissible directed path graphs. This is an open problem.

References

1. Awerbuch, B., Baratz, A., Peleg, D.: Efficient broadcast and light-weighted span-
ners, Manuscript (1992)

2. Bandelt, H.J., Dress, A.: Reconstructing the shape of a tree from observed dissim-
ilarity data. Adv. Appl. Math. 7, 309–343 (1986)

3. Brandstädt, A., Chepoi, V., Dragan, F.F.: Distance approximating trees for chordal
and dually chordal graphs. J Algorithms 30, 166–184 (1999)

4. Brandstädt, A., Dragan, F.F., Le, H.O., Le, V.B.: Tree spanners on chordal graphs:
complexity and algorithms. Theor. Comput. Sci 310, 329–354 (2004)

5. Cai, L.: Tree spanners: spanning trees that approximate the distances, Ph.D. thesis,
University of Toronto (1992)

6. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discret. Math. 8, 359–387 (1995)
7. Dirac, G.A.: On rigid circuit graphs. Abh. Math. Sem Univ. Hamburg 25, 71–76

(1961)
8. Fekete, S.P., Kremer, J.: Tree spanners in planar graphs. Discret. Appl. Math. 108,

85–103 (2001)
9. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math.

15, 835–855 (1965)
10. Gavril, F.: A recognition algorithm for the intersection graphs of directed paths in

directed trees. Discret. Math. 13, 237–249 (1975)
11. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-

crete Mathematics, vol. 53. Elsevier, Amsterdam (2004)

Characterization and Recognition 381

12. Le, H.O., Le, V.B.: Optimal tree 3-spanners in directed path graphs. Networks 34,
81–87 (1999)

13. Madanlal, M.S., Venkatesan, G., Rangan, C.P.: Tree 3-spanners on interval, per-
mutation and regular bipartite graphs. Inform. Process. Lett. 59, 97–102 (1996)

14. Monma, C.L., Wei, V.K.: Intersection graphs of paths in a tree. J. Combin. Theory
Ser. B 41, 141–181 (1986)

15. Panda, B.S.: The separator theorem for rooted directed vertex graphs. J. Combin.
Theory Ser. B 81, 156–162 (2001)

16. Panda, B.S., Das, A.: On tree 3-spanners in directed path graphs. Networks 50,
203–210 (2007)

17. Panda, B.S., Das, A.: Tree 3-spanners in 2-sep directed path graphs: characteriza-
tion, recognition, and construction. Discret. Appl. Math. 157, 2153–2169 (2009)

18. Panda, B.S., Mohanty, S.P.: Intersection graphs of vertex disjoint paths in a tree.
Discret. Math. 146, 179–209 (1995)

19. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graph on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)

20. Peleg, D., Schaffer, A.A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)
21. Venkatesan, G., Rotics, U., Madanlal, M., Makowsky, J.A., Rangan, C.P.: Restric-

tions of minimum spanner problems. Inform. Comput. 136, 143–164 (1997)

Author Index

Alam, Jawaherul Md. 1

Beisegel, Jesse 15
Bekos, Michael A. 1, 27
Bellitto, Thomas 40
Bergougnoux, Benjamin 40
Bodewes, Jelco M. 52
Bodlaender, Hans L. 52
Bonamy, Marthe 65
Bonnet, Édouard 79

Carmi, Paz 91
Conte, Alessio 100
Cornelissen, Gunther 52

Da Lozzo, Giordano 111
Dabrowski, Konrad K. 125
Damaschke, Peter 139
Das, Anita 369
de Oliveira Oliveira, Mateus 152, 266
Di Giacomo, Emilio 27
Didimo, Walter 27
Dobbins, Michael Gene 164
Dross, François 125
Dudycz, Szymon 176
Dujmović, Vida 91
Dyer, Martin 190

Eppstein, David 111

Felsner, Stefan 203
Fluschnik, Till 216

Gómez, Renzo 228
Goodrich, Michael T. 111
Gronemann, Martin 1
Grossi, Roberto 100
Grüttemeier, Niels 239
Gupta, Siddharth 111

Hatzel, Meike 252

Jaffke, Lars 266
Jeong, Jisu 125
Johnson, Matthew 279

Kanté, Mamadou Moustapha 125
Katsikarelis, Ioannis 292
Kaufmann, Michael 1
Kavitha, Telikepalli 306
Kleist, Linda 164, 318
Klemz, Boris 318
Komusiewicz, Christian 239
Kowalik, Łukasz 65
Kun, Jeremy 331
Kwon, O-joung 125

Lampis, Michael 292
Li, Shaohua 344
Liotta, Giuseppe 27
Lubiw, Anna 318, 356

Marino, Andrea 100
Miltzow, Tillmann 164
Molter, Hendrik 216
Mondal, Debajyoti 356
Montecchiani, Fabrizio 27
Morin, Pat 91
Müller, Haiko 190

Nederlof, Jesper 65
Niedermeier, Rolf 216

O’Brien, Michael P. 331
Oum, Sang-il 125

Paesani, Giacomo 279
Paluch, Katarzyna 176
Panda, B. S. 369
Paschos, Vangelis Th. 292
Paulusma, Daniël 125, 279
Pilipczuk, Marcin 344

Pilipczuk, Michał 65
Pupyrev, Sergey 1

Raftopoulou, Chrysanthi 27
Rizzi, Romeo 100
Rzążewski, Paweł 79, 164

Schlipf, Lena 318
Schrezenmaier, Hendrik 203
Socała, Arkadiusz 65
Staals, Frank 318
Steiner, Raphael 203

Strash, Darren 318
Sullivan, Blair D. 331

Uno, Takeaki 100

van der Wegen, Marieke 52
Versari, Luca 100

Wakabayashi, Yoshiko 228
Wiederrecht, Sebastian 252
Wrochna, Marcin 65

Zschoche, Philipp 216

384 Author Index

	Preface
	Acknowledgments

	Organization
	Contents
	On Dispersable Book Embeddings
	1 Introduction
	2 The Dispersable Book Thickness of the Folkman Graph
	3 The Dispersable Book Thickness of the Gray Graph
	4 3-Connected 3-Regular Bipartite Planar Graphs
	5 Conclusions
	References

	Characterising AT-free Graphs with BFS
	1 Introduction
	2 Preliminaries
	3 Convex Geometries and AT-free Graphs
	4 AT-free BFS-Orders
	5 AT-free Orders in Claw-free AT-free Graphs
	6 Conclusion
	References

	Edge Partitions of Optimal 2-plane and 3-plane Graphs
	1 Introduction
	2 Preliminaries and Notation
	3 Edge Partitions of Optimal 2-plane Graphs
	3.1 Edge Partitions with Acyclic Subgraphs
	3.2 Edge Partitions with Bounded Vertex Degree Subgraphs

	4 Edge Partitions of Optimal 3-plane Graphs
	5 Open Problems
	References

	On Minimum Connecting Transition Sets in Graphs
	1 Introduction
	2 Polynomial Algorithms and Structural Results
	3 NP-hardness
	4 Conclusion
	References

	Recognizing Hyperelliptic Graphs in Polynomial Time
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Constraints
	2.3 Reduction Rules, Safeness and Completeness

	3 Reduction Rules for Divisorial Gonality
	4 Main Algorithm
	5 Conclusion
	References

	On Directed Feedback Vertex Set Parameterized by Treewidth
	1 Introduction
	2 Preliminaries
	3 Connectivity Patterns
	4 Lower Bound
	5 Concluding Remarks
	References

	Optimality Program in Segment and String Graphs
	1 Introduction
	2 Upper Bounds
	3 Lower Bounds
	4 Perspectives
	References

	Anagram-Free Chromatic Number Is Not Pathwidth-Bounded
	1 Introduction
	2 Proof of Theorem1
	3 Proof of Theorem2
	4 Remarks
	References

	Tight Lower Bounds for the Number of Inclusion-Minimal st-Cuts
	1 Introduction
	2 Number of st-Cuts in a Biconnected Graph
	2.1 Backbone of the Graph
	2.2 Case Analysis on the st-Cut Types
	2.3 Graphs that Allow for an st-Numbering

	3 Conclusions and Further Work
	References

	Subexponential-Time and FPT Algorithms for Embedded Flat Clustered Planarity
	1 Introduction
	2 Definitions and Preliminaries
	3 A Subexponential-Time Algorithm for C-Planarity
	4 An MSO2 Formulation for C-Planarity
	5 Conclusions and Open Problems
	References

	Computing Small Pivot-Minors
	1 Introduction
	2 When H Is Part of the Input
	3 When H Is Fixed
	3.1 When H Is 3P1-Free
	3.2 When H Is Not 3P1-Free

	4 Future Work
	References

	Saving Probe Bits by Cube Domination
	1 Introduction
	1.1 The Setting
	1.2 Contributions
	1.3 Background

	2 Preliminaries
	3 Cube Domination in Hypercubes
	4 Ignoring One Bit
	5 Ignoring Two Bits
	5.1 Approach
	5.2 Results
	5.3 Ignoring Even More Bits

	6 Conclusions
	References

	Graph Amalgamation Under Logical Constraints
	1 Introduction
	2 Preliminaries
	2.1 Concrete Tree Decompositions

	3 An Algorithm for Amalgamation Recognition
	4 Amalgamating Graphs Under CMSO Constraints
	4.1 Amalgamation Recognition
	4.2 Amalgamability
	4.3 (1,2)-Factors

	5 Conclusion
	References

	R-Completeness and Area-Universality
	1 Introduction
	2 Toolbox: Hard Variants of ETR and UETR
	3 Hardness of Area Universality for Triples PA
	4 Hardness of Prescribed Area PE
	5 Volume-Universality
	6 Potential Complete Problems
	References

	Optimal General Matchings
	1 Introduction
	2 Uniform B-matching
	3 Structure of General B-matchings
	4 Algorithm for Computing a Maximum Cardinality B-matching
	References

	Quasimonotone Graphs
	1 Introduction
	1.1 Definitions and Notation
	1.2 Structure of the Paper

	2 Quasi-classes and Pre-graphs
	2.1 Examples

	3 The Structure of Quasimonotone Graphs
	3.1 Flaws and Preholes
	3.2 Properties of Flawless Graphs
	3.3 Determining a Short Odd Hole

	4 Flawless Graphs Containing a Long Hole
	4.1 Triangles
	4.2 Long Odd Holes

	5 Preholes in Flawless Graphs
	5.1 Splitting
	5.2 Recognising Preholes

	6 Flawless Graphs Without Long Holes
	6.1 Minimal Preholes in Hole-Free Graphs
	6.2 Preholes Containing 5-Holes and Triangles

	7 Conclusion and Discussion
	References

	Equiangular Polygon Contact Representations
	1 Introduction
	2 The Existence of Equiangular K-gon Contact Representations
	3 The Combinatorial Structure of Equiangular Polygon Contact Representations
	4 Coloring K-contact-structures
	5 The Distributive Lattice of K-contact-structures
	6 System of Linear Equations
	7 A Heuristic
	References

	Temporal Graph Classes: A View Through Temporal Separators
	1 Introduction
	2 Preliminaries
	3 Structural Restrictions
	3.1 Layer-Wise Restrictions
	3.2 Underlying-Wise Restrictions

	4 Temporal Restrictions
	5 Conclusion
	References

	Covering a Graph with Nontrivial Vertex-Disjoint Paths: Existence and Optimization
	1 Introduction
	2 Forbidding Trivial Paths
	3 Concluding Remarks
	References

	On the Relation of Strong Triadic Closure and Cluster Deletion
	1 Introduction
	2 On Problem Kernelizations
	3 Fixed-Parameter Algorithms for the Parameterization by the Number of Strong or Cluster Edges
	4 STC and Cluster Deletion on H-free Graphs
	References

	On Perfect Linegraph Squares
	1 Introduction
	2 Preliminaries
	3 Induced Graphs in L(G)L(G)L(G)L(G)2
	3.1 Induced Paths in G2
	3.2 Linegraphs

	4 Conclusion (-Boundedness)
	References

	On Weak Isomorphism of Rooted Vertex-Colored Graphs
	1 Introduction
	2 Problem Definition and Statement of the Main Result
	3 FPT-Algorithm for Weak Isomorphism
	4 Bounded Color Class Hypergraph Isomorphism
	References

	Connected Vertex Cover for (sP1+P5)-Free Graphs
	1 Introduction
	2 Preliminaries
	3 An Auxiliary Problem
	4 Our Main Result
	5 Future Work
	References

	Structurally Parameterized d-Scattered Set
	1 Introduction
	2 Definitions and Preliminaries
	3 Treewidth: SETH Lower Bound
	4 Treewidth: Dynamic Programming Algorithm
	5 Vertex Cover, Feedback Vertex Set: W[1]-Hardness
	6 Vertex Cover: FPT Algorithm
	7 Tree-Depth: Tight ETH Lower Bound
	8 Treewidth Revisited: FPT-AS
	References

	Popular Matchings of Desired Size
	1 Introduction
	2 Preliminaries
	3 The NP-Hardness proof
	4 A Near-Popular Matching of Size k
	References

	Convexity-Increasing Morphs of Planar Graphs
	1 Introduction
	2 Preliminaries
	3 Computing Convexity-Increasing Morphs
	4 Using Tutte's Algorithm to Find Convex Drawings Preserving y-Coordinates
	5 Conclusions
	References

	Treedepth Bounds in Linear Colorings
	1 Introduction
	2 Definitions and Background
	2.1 Graph Terminology
	2.2 p-Centered Colorings and Bounded Expansion
	2.3 Centered Colorings and Treedepth

	3 p-Linear and Linear Colorings
	4 Treedepth Lower Bounds
	5 Treedepth Upper Bounds on Trees
	6 Treedepth Upper Bounds on Interval Graphs
	7 Hardness of Recognizing Linear Colorings
	8 Conclusion
	References

	An Improved FPT Algorithm for Independent Feedback Vertex Set
	1 Introduction
	2 Preliminaries
	3 An Algorithm for Independent Feedback Vertex Set
	3.1 Disjoint Independent Feedback Vertex Set
	3.2 Reduction Rules for DIS-IFVS
	3.3 Branching for DIS-IFVS

	4 Conclusion
	References

	Construction and Local Routing for Angle-Monotone Graphs
	1 Introduction
	2 Angle-Monotone Graphs of Width 90
	3 Angle-Monotone Graphs of Width (90+)
	3.1 3-Sweep Graphs
	3.2 Layered 3-Sweep Graphs

	4 Local Routing in Layered 3-Sweep Graphs
	5 Open Questions
	References

	Characterization and Recognition of Tree 3-Spanner Admissible Directed Path Graphs of Diameter Three
	1 Introduction
	2 Preliminaries
	3 Characterization
	3.1 BS1' Contains Exactly Two Maximal Separated Subgraphs
	3.2 BS1' Contains Exactly One Maximal Separated Subgraph
	3.3 Characterization Theorem

	4 Recognition
	5 Conclusion
	References

	Author Index

