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Preface

This volume contains the papers presented at RP 2018, the 12th International Con-
ference on Reachability Problems, organized on September 24-26, 2018 by
Aix-Marseille University, Marseille, France. Previous events in the series were located
at: Royal Holloway, University of London (2017), Aalborg University (2016), the
University of Warsaw (2015), the University of Oxford (2014), Uppsala University
(2013), the University of Bordeaux (2012), the University of Genoa (2011), Masaryk
University Brno (2010), Ecole Polytechnique (2009), the University of Liverpool
(2008), and Turku University (2007).

The aim of the conference is to bring together scholars from diverse fields with a
shared interest in reachability problems, and to promote the exploration of new
approaches for the modelling and analysis of computational processes by combining
mathematical, algorithmic, and computational techniques. Topics of interest include
(but are not limited to): reachability for infinite state systems; rewriting systems;
reachability analysis in counter/timed/cellular/communicating automata; Petri nets;
computational aspects of semigroups, groups, and rings; reachability in dynamical and
hybrid systems; frontiers between decidable and undecidable reachability problems;
complexity and decidability aspects; predictability in iterative maps, and new com-
putational paradigms.

Reachability is a fundamental problem that appears in several different contexts.
Typically, for a fixed system description given in some form (rewriting rules, trans-
formations by computable functions, systems of equations, logical formulas, etc.) a
reachability problem consists in checking whether a given set of target states can be
reached starting from a fixed set of initial states. The set of target states can be
represented explicitly or via some implicit representation (e.g., a system of equations, a
set of minimal elements with respect to some ordering on the states). Sophisticated
quantitative and qualitative properties can often be reduced to basic reachability
questions. Decidability and complexity boundaries, algorithmic solutions, and efficient
heuristics are all important aspects to be considered in this context. Algorithmic
solutions are often based on different combinations of exploration strategies, symbolic
manipulations of sets of states, decomposition properties, and reduction to linear
programming problems, and they often benefit from approximations, abstractions,
accelerations, and extrapolation heurisitics. Ad hoc solutions as well as solutions based
on general-purpose constraint solvers and deduction engines are often combined in
order to balance efficiency and flexibility.

The invited speakers at the RP 2018 were:

— Olivier Bournez - “On the Computational Complexity of Solving Ordinary Dif-
ferential Equations”

— Maria Prandini - “Reachability in Cyber-Physical Systems”

— Marcin Jurdzinski - “Universal Ordered Trees and Quasi-polynomial Algorithms
for Solving Parity Games”



VI Preface

— Jérémie Chalopin - “A Counterexample to Thiagarajan’s Conjecture on Regular
Event Structures”

— Marta Kwiatkowska - “Safety Verification for Deep Neural Networks with Provable
Guarantees”

The conference originally received 29 abstracts from which 21 full papers were
submitted. Each submission was carefully reviewed by three Program Committee
(PC) members. Based on these reviews, the PC decided to accept 11 papers, in addition
to the four invited talks (by Olivier Bournez, Maria Prandini, Marcin Jurdzinski,
Jérémie Chalopin) and one invited tutorial (by Marta Kwiatkowska). The members
of the PC and the list of external reviewers can be found on the next pages. The PC is
grateful for the high quality work produced by these external reviewers. Overall this
volume contains 11 contributed papers and the conference also provided the oppor-
tunity to other young and established researchers to give informal presentations, pre-
pared shortly before the event, informing the participants about current research and
work in progress. The informal presentations have not been included at this LNCS
proceedings, but may be found on the conference website.

It is a pleasure to thank the team behind the EasyChair system and the Lecture Notes
in Computer Science team at Springer, who together made the production of this
volume possible in time for the conference. Finally, we thank all the authors for their
high-quality contributions, and the participants for making RP 2018 a success. We are
also very grateful to Alfred Hofmann for the continuous support of the event in the last
decade and to LNCS Springer, EATCS, CNRS, Laboratoire d’Excellence Archimede,
the LIS Laboratory of Computing and Systems, and Aix-Marseille University for the
scientific and financial sponsorship of the event.

September 2018 Igor Potapov
Pierre-Alain Reynier
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On the Computational Complexity
of Solving Ordinary Differential Equations

Olivier Bournez

Ecole Polytechnique, LIX, 91128 Palaiseau Cedex, France

We consider Continuous Ordinary Differential Equations: That is to say x” = f(x) where
f:R" — R" is a continuous function. When an initial condition x(0) = x is added,
this is called an Initial Value Problem (IVP), also called a Cauchy’s Problem. A tra-
jectory is any solution of the problem, that is to say, any derivable function
&:1CRsy— R", where I is some interval containing 0 satisfying £(0) = xo, and
&' () = f(&(1)) on its domain. The solution is said to be maximal, if I is maximal (for
inclusion) with this property. For f continuous, IVP are known to always have solu-
tions, but possibly non unique, by Peano-Arzela’s Theorem. When in addition f is
Lipschitz (in particular if it is C') then unicity is guaranteed, by Cauchy-Lipschitz
theorem. When f is analytic, solutions are know to be analytic.

In this talk we will survey various results related to the difficulty of computing a or
the solutions for various classes of functions f.

In particular, we will discuss the case y' = p(t,y), y(to) = yo, where p is a vector of
polynomials). In this case, there is a polynomial time algorithm that, given the
initial-value problem, the time 7" at which we want to compute the solution of the IVP,
and the maximum allowable error ¢ > 0, outputs a value yr such that |[yr — y(T)|| <&
in time polynomial in 7, —loge, and in several quantities related to the polynomial IVP.

We will relate the discussion to questions related to the computational power of
several continuous time analog models such as the General Purpose Analog Computer
(GPAC) from Claude Shannon. The GPAC was introduced as a model of famous
mechanical, and later-on electronics, analog computers named Differential Analysers.



Reachability in Cyber-Physical Systems

Maria Prandini

Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
maria.prandini@polimi.it

Reachability analysis consists in determining the region of the state space that a
given dynamical system will visit starting from some set of initial states, subject to a
disturbance input modeling uncertainty in the system dynamics and/or the fact that the
system is operating in an uncertain environment that can affect its evolution.

A main application of reachability analysis — that makes it relevant to various
application domains — is the automatic verification of the correct behavior of a system,
which is typically coded by requiring that all its trajectories remain within some desired
range of operation and do not enter any forbidden region of the state space. If the
outcome of the verification is negative, then, the system has to be redesigned. The
availability of some counter-example showing a violation of the correct behavior can
be useful to this purpose.

In reachability analysis, the region of the state space that is visited by the system
during its evolution is determined by propagating the set of initial states through the
uncertain system dynamics, thus computing the so-call reach sets.

The main issue in reachability analysis is indeed the ability to compute with sets. In
systems with a finite state space, sets can be represented by enumeration and reach sets
can be computed starting from the given initial set and progressively adding one-step
successors. If we consider systems involving a continuous state space, then, repre-
sentation and propagation of reach sets generally become a challenge. One should in
fact choose a class of sets that can be efficiently represented and such that, when one
applies to these sets the operations involved in their propagation through the system
dynamics, then, sets in the same class are obtained. If this is not possible, some
outer-approximation of the obtained sets should be adopted to bring their description
back to the same class.

Scalability of reach set computations arises as an issue, and calls for abstraction of
models through simulation or approximate simulation relations. In the case of a sim-
ulation relation, the abstracted model can be used for verifying the correct behavior
of the original system since all trajectories of the original system can be generated by
simulating the abstracted model (but not vice-versa). For instance, a nonlinear con-
tinuous system with smooth dynamics can be reduced to a piecewise affine system that
satisfies a simulation relation if the abstraction procedure appropriately accounts for the
modeling error through a (fictitious) disturbance input.

We shall consider reachability analysis for cyber-physical systems that represent
engineering systems where communication, computation, and control (the cyber part)

Supported by the European Commission under the project UnCoVerCPS with grant number 643921.
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are integrated within natural and/or human-made systems (the physical part) governed
by the laws of physics. Hybrid models are used to describe this class of systems, since
the interleaved discrete and continuous state components of a hybrid model can rep-
resent the cyber and physical parts integrated in a cyber-physical system.

Reachability analysis of hybrid systems is challenging since their hybrid state has a
continuous component and the propagation of the reach sets in the continuous state
space depends on the value taken by the hybrid state. Typically, a reach set in the
continuous state space can split in subsets that propagate according to different con-
tinuous dynamics, thus growing the effort in reach set computations.

In this invited talk, we shall focus on discrete time piecewise affine systems, which
often arise as a model for cyber-physical systems and have also some potential as a
unifying modeling framework for automatic verification of nonlinear continuous sys-
tems. More specifically, we address verification of discrete time piecewise affine sys-
tems based on reach set computations, including the generation of counter-examples,
and the use of abstraction and invariant sets to improve scalability. We also address the
case when a control input is available to impose the correct system behavior via
disturbance compensation, and describe a set-based approach to feedback control
design integrating reach set computations.



Universal Trees and Quasi-Polynomial Algorithms
for Solving Parity Games

Marcin Jurdzinski

Department of Computer Science, University of Warwick, UK

Parity games have played a fundamental role in automata theory, logic, and their
applications to verification and synthesis since early 1990’s. Solving parity games is
polynomial-time equivalent to checking emptiness of automata on infinite trees and to
the modal mu-calculus model checking. It is a long-standing open question whether
there is a polynomial-time algorithm for solving parity games. The quest for a
polynomial-time algorithm has not only brought diverse algorithmic techniques to the
theory and practice of verification and synthesis, but it has also significantly con-
tributed to resolving long-standing open problems in other research areas, such as
Markov Decision Processes and Linear Programming.

All algorithms for solving parity games that were known until 2016 required time
that was exponential in the most important parameter of a parity game—the number of
distinct priorities. The major breakthrough was achieved by Calude, Jain,
Khoussainov, Li, and Stephan in 2017, who have given the first quasi-polynomial
algorithm and established that parity games are in FPT (fixed-parameter tractable). Two
other quasi-polynomial algorithms for solving parity games were subsequently devised
by Jurdzinski and Lazi¢, 2017, and by Lehtinen, 2018, and a space-efficient version of
Calude et al.’s algorithm was given by Fearnley, Jain, Schewe, Stephan, and Wojtczak,
2017. The conceptual and technical toolkits used by all the three algorithms seem rather
distinct: the breakthrough result of Calude et al. was based on computing play sum-
maries by succinct counting, Jurdzinski and Lazi¢ have devised a succinct coding of
ordered trees and applied it to the progress measure lifting algorithm, and Lehtinen has
developed novel concepts of register games and the register index.

In this talk we first focus on presenting the technical insights of the
quasi-polynomial algorithm for solving parity games that is based on progress measure
lifting and succinct coding of ordered trees. Following Czerwinski, Daviaud, Fijalkow,
Jurdzinski, Lazi¢, and Parys, 2018, we then argue that universal ordered trees—
implicit in the succinct tree-coding result of Jurdzifiski and Lazi¢—offer a unifying
perspective on the three distinct quasi-polynomial algorithms. Moreover, the analysis
of universal trees leads to an automata-theoretic quasi-polynomial lower bound that
forms a barrier that all the existing approaches, as well as other possible techniques that
follow the separation approach, must overcome in the quest for a polynomial-time
algorithm for solving parity games.

More specifically, we argue that the techniques underlying all the three
quasi-polynomial algorithms can be interpreted as constructions of automata on infinite
words that are of quasi-polynomial size and that facilitate solving parity games by the
separation approach formalized by Bojanczyk and Czerwinski, 2018, and implicit in
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the work of Bernet, Janin, and Walukiewicz, 2002. In particular, we point out how such
separating automata arise in a very natural way from universal ordered trees. Then we
present two lower bounds: one is a quasi-polynomial lower bound on the size of
universal trees that nearly matches (up to a small polynomial factor) the succinct
tree-coding upper bound of Jurdzinski and Lazié, and the other establishes that the set
of states in every separating automaton contains leaves of some universal tree, which
implies that every separating automaton is of at least quasi-polynomial size.

Keywords: Parity games - Quasi-polynomial algorithms - Progress measures
Universal ordered trees - Separating automata - Lower bounds



A Counterexample to Thiagarajan’s Conjecture
on Regular Event Structures

Jérémie Chalopin

LIS, CNRS, Aix-Marseille Université, and Universit de Toulon
jeremie.chalopin@lis-lab. fr

We provide a counterexample to a conjecture by Thiagarajan [8, 9] that regular
event structures correspond exactly to event structures obtained as unfoldings of finite
1-safe Petri nets. Event structures, trace automata, and Petri nets are fundamental
models in concurrency theory. There exist nice interpretations of these structures as
combinatorial and geometric objects and both conjectures can be reformulated in this
framework. Namely, from a graph theoretical point of view, the domains of prime
event structures correspond exactly to median graphs; from a geometric point of view,
these domains are in bijection with CAT(0) cube complexes.

A necessary condition for the conjecture to be true is that domains of regular event
structures admit a regular nice labeling (which corresponds to a special coloring of the
hyperplanes of the associated CAT(0) cube complex). To disprove these conjectures,
we describe a regular event domain that does not admit a regular nice labeling. Our
counterexample is derived from an example by Wise [10, 11] of a nonpositively curved
square complex X with six squares, whose edges are colored in five colors, and whose

universal cover X is a CAT(0) square complex containing a particular plane with an
aperiodic tiling. We prove that other counterexamples to Thiagarajan’s conjecture arise
from aperiodic 4-way deterministic tile sets of Kari and Papasoglu [6] and Lukkarila
[7].

On the positive side, we show that event structures obtained as unfoldings of finite
1-safe Petri nets correspond to the finite special cube complexes. This subclass of
nonpositively curved cube complexes was introduced by Haglund and Wise [4, 5] in
geometric group theory and is characterized by simple combinatorial properties satis-
fied by the hyperplanes. Using the breakthrough results by Agol [1] based on special
cube complexes, we prove that Thiagarajan’s conjecture is true for regular event
structures whose domains occur as principal filters of hyperbolic CAT(0) cube com-
plexes which are universal covers of finite nonpositively curved cube complexes.

Joint work with Victor Chepoi.

The full version of this paper is available on ArXiv [2], an extended abstract appeared
in the proceedings of ICALP 2017 [3].
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Safety Verification for Deep Neural Networks
with Provable Guarantees (Extended Abstract)

Marta Kwiatkowska

Department of Computing Science, University of Oxford, UK

Deep neural networks have achieved impressive experimental results in image classi-
fication, but can surprisingly be unstable with respect to adversarial perturbations, that
is, minimal changes to the input image that cause the network to misclassify it. With
potential applications including perception modules and end-to-end controllers for
self-driving cars, this raises concerns about their safety. This lecture will describe
progress with developing automated verification techniques for deep neural networks to
ensure safety of their classification decisions with respect to image manipulations, for
example scratches or changes to camera angle or lighting conditions, that should not
affect the classification. The techniques exploit Lipschitz continuity of the networks
and aim to approximate, for a given set of inputs, the reachable set of network outputs
in terms of lower and upper bounds, in anytime manner, with provable guarantees. We
develop novel algorithms based on games and global optimisation, and evaluate them
on state-of-the-art networks.

Robustness of neural networks is an active topic of investigation and a number of
approaches have been proposed to search for adversarial examples. They are based on
computing the gradients [1, 3], computing a Jacobian-based saliency map [6], trans-
forming the existence of adversarial examples into an optimisation problem [2], and
transforming the existence of adversarial examples into a constraint solving problem
[5]. In contrast, this lecture reports on research that aims to rule out the existence of
adversarial examples, which approaches based on heuristic search are not able to
achieve. In particular, we will adopt the definition of safety based on pointwise
robustness introduced in [4], where the first practical automated verification method
was developed, based on discretising the neighbourhood and searching it exhaustively
in a layer-by-layer manner. A brief overview will also be given of two approaches that
utilise Lipschitz continuity, one based on global optimisation [7], and capable of
expressing the safety of [4] as well as reachability, and the other [8, 9] on reducing
dimensionality by working with black or grey box feature extraction and searching for
adversarial examples using a two-player game, where the first player targets the fea-
tures and the second targets pixels within the feature. The game tree is traversed using
Monte Carlo tree search and variants of A* and Alpha-Beta pruning, which produces
successive lower and upper bounds on the maximum safe radius with asymptotic
convergence guarantees.
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Reachability Analysis of Nonlinear ODEs
Using Polytopic Based Validated
Runge-Kutta

Julien Alexandre dit Sandretto!®) and Jian Wan?

! U2IS, ENSTA ParisTech, 828 bd des Maréchaux, 91762 Palaiseau, France
alexandre@ensta.fr
2 School of Engineering, University of Plymouth, Plymouth, Devon PL4 8AA, UK
jian.wan@plymouth.ac.uk

Abstract. Ordinary Differential Equations (ODEs) are a general form
of differential equations. This mathematical format is often used to rep-
resent the dynamic behavior of physical systems such as control sys-
tems and chemical processes. Linear ODEs can usually be solved ana-
lytically while nonlinear ODEs may need numerical methods to obtain
approximate solutions. There are also various developments for validated
simulation of nonlinear ODEs such as explicit and implicit guaranteed
Runge-Kutta integration schemes. The implicit ones are mainly based
on zonotopic computations using affine arithmetics. It allows to compute
the reachability of a nonlinear ODE with a zonotopic set as its initial
value. In this paper, we propose a new validated approach to solve non-
linear ODEs with a polytopic set as the initial value using an indirectly
implemented polytopic set computation technique.

1 Introduction

Many scientific applications such as those in mechanics, robotics, chemistry and
electronics require the solution of ordinary differential equations (ODEs). In
the general case, nonlinear ODEs can not be solved analytically and a numerical
integration scheme is used instead to obtain approximate solutions. Nevertheless,
for some applications as in [3,6,9,15], an approximation of the solution is not
sufficient and a bound for the exact solution is mandatorily required.

The problem to be studied here is about the computation of the solution
for the set initial value problem (SIVP) of an autonomous Ordinary Differential
FEquation defined as follows:

y=1f(y) with y(0) €y and t€[0,tend]- (1)

The function f : R™ — R” is assumed to be nonlinear, y € R" is the vector of
state variables, and y is the derivative of y with respect to time ¢. The function f
is also assumed to be globally Lipschitz in y for Eq. (1) to have a unique solution
under the initial condition y [8]. Furthermore, the function f is further assumed
© Springer Nature Switzerland AG 2018
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to be continuously differentiable. Note that the initial value is given as a set,
i.e., there are some bounded uncertainties for the initial value. So the solution
for the corresponding problem is y(¢; Vo), which is defined as follows:

y(t:0) = {y(t;y0) : yo € o}

The solution of Eq. (1) cannot be computed straightforwardly for a general
set V. An alternative approach is to bound the set of initial values in a box
Yo C [yo] and then to use interval arithmetic to solve the resulting problem:

y=1f(y) with y(0)€[yo] and ¢ € [0,tenal. (2)

There exist several approaches to solve the above problem such as those in
[1,2,11-13]. However, the initial set for these approaches is constrained to be
a box and thus these approaches are rather limited in terms of flexibility and
accuracy. In fact, the initial set can also be represented by a zonotopic set, which
has a more flexible shape than a box. Accordingly, zonotopic set computation
has been used instead to solve nonlinear ODEs with a zonotopic set as the initial
set [1,2]. Zonotopic set computation can be implemented using affine arithmetic
[5].

Since polytopes are the most common convex sets restulting from linear
inequalities, it is more often to encounter an ODE with a polytopic set as the
initial set. Unlike zonotopes or boxes, the propagation of a polytopic set for a
nonlinear system cannot be computed directly. Using an indirectly implemented
polytopic set computation technique proposed in [16], the above problem can be
extended naturally to the case of having a polytopic set as the initial set.

The paper is organized as follows. In Sect. 2, the existing validated Runge-
Kutta method with a zonotopic set as the initial value is introduced. In Sect. 3,
the indirectly implemented polytopic set computation technique is described to
extend the existing validated Runge-Kutta method in terms of the shape for the
initial set. Section 4 proposes the extended validated Runge-Kutta method with
a polytopic set as the initial value and two illustrative examples are provided to
demonstrate the main contribution of the paper. Finally, some conclusions are
given in Sect. 5.

Notations. x denotes a real value while x represents a vector of real values. [z]
represents an interval value. An interval [z;] = [2;,7;] defines the set of reals x;
such that z; < z; < 7;. IR denotes the set of all intervals while R denotes the
set of real values. The size or the width of [z;] is w([x;]) = 77 — ; and m([z])
denotes the center of [z]. A vector of intervals, or a boz, [x] is the Cartesian

product of intervals [z1] X ... X [2;] X ... X [2,].

2 Zonotopic Based Validated Runge-Kutta
2.1 Initial Value Problem

Runge-Kutta methods can solve the initial value problem (IVP) of non-
autonomous ODEs defined by

y=1f(t,y) with y(0)=yo and ¢ € [0,tend]- (3)
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The function f : RxR™ — R" is called the vector field, y € R™ is called the vector
of state variables, and y denotes the derivative of y with respect to time ¢. f is
assumed to be globally Lipschitz in y, so Eq. (3) admits a unique solution for a
given initial condition yq [8]. f is also assumed to be continuously differentiable.
The exact solution of Eq. (3) is denoted by y(t;yo), often called the flow.

2.2 Validated Runge-Kutta

The goal of the numerical solution to Eq. (3) is to compute a sequence of time
instants 0 = tg < t; < -+ < ty = tenqa and a sequence of states yg, ..., YN
such that V¢ € [0, N], y¢ = y(t¢, yo—1), which is to be obtained by an integration
scheme.

A Runge-Kutta method, starting from an initial value y, at time ¢, and a
finite time horizon h, the step size, produces an approximation yyy; at time
tey1, with tg11 — tg = h, of the solution y(tsy1;ye). Furthermore, to compute
ye+1, a Runge-Kutta method computes s evaluations of f at predetermined
time instants. The number s is known as the number of stages of a Runge-Kutta
method. More precisely, a Runge-Kutta method is defined by

Y1 =ye+h i biki, (4)
i=1
with k; defined by
ki =1 (te+cih,ye+ hzs:aijkj . (5)
j=1
The coefficients ¢;, a;; and b;, for i,j = 1,2,--- , s, fully characterize the Runge-

Kutta methods, and they are usually synthesized in a Butcher tableau [4] of the

form
Ci|ai1 a12 ... A1s

C2|G21 A22 - .. G2s

Cs|Us1 As2 - .. Usg

‘ by by ... by
For example, the Butcher tableau of the well-known RK4 method is given by

0[0000
1

Hiooo

1

2otoo (6)
10010

1111

6 336
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To make Runge-Kutta validated [1], the challenging question is how to com-
pute a bound on the difference between the true solution and the numerical
solution, defined by y(t¢; y¢—1)—y¢. This distance is associated to the local trun-
cation error (LTE) of the numerical method. It has been shown that LTE can
be easily bounded by using the difference between the Taylor series of the exact
and the numerical solutions, which is reduced to be LTE = y®+1(¢,) — [yépﬂ)]
that is to say the difference of the (p + 1)** Taylor coefficients, with p the order
of the considered method. This difference has to be evaluated on a specific box,
obtained with the Picard-Lindel6f operator, but this is out of the scope of this
paper, see [1] for more details. For a method with interval coefficients, the LTE
is bounded with guarantee (even over-approximated), which is not the case for
a method with floating-point coefficients. For a validated method, the use of
interval coeflicients is therefore a requirement.

The problem of IVPs with the initial value given in a set is to be considered
in this paper. Validated Runge-Kutta approach works well with Interval IVPs
(IIVP), i.e.with yo € [yol.

)

2.3 Affine Arithmetic

In order to avoid or to limit the conservativeness from the dependency problem
of intervals, affine arithmetic [5,14] is to be used instead of interval arithmetic
for validated Runga-Kutta. Affine arithmetic can track linear correlations among
state variables. A set of values in this domain is represented by an affine form z,
which is a formal expression of the form & = «q +ZZL:1 «;e; where the coefficients
«; are real numbers, o being called the center of the affine form, and the ¢;
are formal variables ranging over the interval [—1,1]. Obviously, an interval a =
[a1, as] can be represented by the affine form & = ag+ a1e with ag = (a1 +a2)/2
and ay = (az — a1)/2. Moreover, affine forms encode linear dependencies among
variables: if « € [a1, as] and y is such that y = 2z, then x will be represented by
the affine form & above and y will be represented as § = 2ag + 2 €.

Usual operations on real numbers extend to affine arithmetic in the expected
way. For instance, if & = g+ >, a;&; and § = Bo + Y., Bigs, then with
a,b,c € R we have

ai + by + ¢ = (acg + bfy + ¢) + Z(aai + b06;)e;.

i=1

However, unlike the addition, most operations create new noise symbols. Multi-
plication for example is defined by

n
T Xy =oapar+ Z(ai o + aofi)ei + venta,
i=1

where v = (3°1" |a;|) x (X1, |8:|) over-approximates the error between the lin-
ear approximation of multiplication and multiplication itself. Example 2.1 illus-
trates the benefit of affine arithmetic.
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Ezample 2.1. Consider again e = z + h x (—z) with h = 0.5 and = = [0,1]
which is associated to the affine form & = 0.5 + 0.5¢;. Evaluating e with affine
arithmetic without rewriting the expression, we obtain [0,0.5] as a result. |

Example 2.1 also shows the important role of affine arithmetic when it is com-
bined with numerical integration methods. Most of all, it shows the necessity to
keep track of the linear dependency between state variables in order to reduce
the conservativeness.

Other operations, like sin, exp, are evaluated using either the Min-Range
method or a Chebychev approximation, see [5,14] for more details.

2.4 Zonotopes

Considering m affine forms #',...,2™, a joint range (#',...,2™) C R™ is

defined as the set of all tuples (z!,...,2™) of values compatible with those
affine forms. The set defined by (#!,...,2") is the parallel projection on R™ of
the hypercube U™ by the affine map (2!,...,2™). The projection is a zonotope,
a center-symmetric convex polytope in R™.

2.5 Scheme with Affine Arithmetic

With this affine arithmetic, the initial value can be taken in a zonotope Zy, such
that Yo € ZO = ap + Z?:l Q€5
Then, after time elapsed h with RK4 scheme:

k; = f(yo)
ko = f(yo + 0.5hk;)
ks = f(yo + 0.5hks) (7)

k4 = f(YO + hk3)
y(h) =Y + h(1/6k1 + 1/31{2 + 1/31(3 + 1/61{4) + LTE

These terms have to be evaluated with affine arithmetic, except the LTE
which is computed with interval arithmetic.

Running Example. Consider the Volterra system given by the following equa-

tion: ( )
g1 = 2y1(1 —y2
. 8
{yng(lyl) ()
1.0] _ [0.040.02] .,
30/ @ [0.020.02) 7~
We integrate one step with A = 0.00245, the computed LTE is then equal to
the box ([—7.6e—13, —4.6e—13]; [3.1e—13,4.6e—13]) (which is under the chosen
tolerance of 1le—10). Then, with the evaluation of Eq. (7) provides the solution:

(h) € 0.9902440 0.0395119 0.0197074 B2+ [—2e—06, 2¢06]
y 2.9999640 0.0202920 0.02014574 [—2e—06, 2e06]

with initial conditions: Zy =

The box added to the zonotope gathers the small noises, compacted to reduce
the number of generators, coming from the nonlinear operations.
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2.6 If Integration Fails

In validated numerical integration, it can happen that the integration fails.
Often, it is due to the too large LTE compared to the chosen tolerance, or
because the Picard operator itself fails (the existence and uniqueness cannot be
proved, see [1] for details).

In this case, it is common to reduce the step size h. Another method is
the bisection of the initial conditions such that Z, = Zi U Z3. After that,
two simulations are launched to obtain two solutions such that y(Zy,t;) =
Y(Zt%vtf) U Y(ngtf)'

This is a recursive approach: if simulation from Z3 fails as well, then

y(ZO7tf) = y(Z(%atf) U (y(Zgl7tf) U y(Zg27tf))'

Running Example. We reuse the example given in Sect.2.5. Validated sim-
ulation cannot reach the required solution at ty = 6, and fails at ¢ = 5.783.
The obtained solution is then y(Zo,t;) = ([—o0,00]; [—00, 00]) (which is cor-
rect anyway). Using the bisection method presented in Sect.3, we consider

0.98] . [0.020.02] . )
2.99] [0.01 0.02} B and Zy =

the two zonotopes described by Z§ = {
1.02| 10.020.02
3.01 0.01 0.02

and the results of reachability, after the union, are given in Fig. 2.

} B2, The initial conditions after bisections are given in Fig. 1,

3 Polytope Geometry
Polytope is a bounded polyhedron P C R™, which can be defined as follows:
P ={x € R"|Hx < k}, (9)

where H is a matrix of m x n and k is a column vector of dimension m. Basic
polytope manipulations such as the intersection of polytopes and the convex hull
for a union of polytopes are implemented in Multi-Parametric Toolbox [10].

Fig. 1. Initial conditions of running example after one bisection (left) and two bisec-
tions (right).
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Fig. 2. Solution at ¢t = 6 of running example after one bisection (left: two zonotopes,
one is fully included in the other one, a box) and two bisections (right: two zonotopes,
the union is the polytope in red). (Color figure online)

It is worthy to note that a zonotope is a centrally symmetric polytope. The
explicit representation of a zonotope or the representation of a zonotope in the
format of a polytope is the zonotope construction problem, which aims to list
all extreme points of a zonotope defined by its line segment generators. The
zonotope construction problem was addressed in [7], where the addition of line
segments was replaced by the addition of polytopes.

3.1 Represent a Polytope Exactly by the Intersection of Zonotopes

As shown in (7), the dynamic evolution of a nonlinear system with a zonotope as
the initial state can be computed directly using affine arithmetic. If the initial set
is a polytope, there is no direct method to compute the dynamic evolution of this
nonlinear system with the polytope as the initial state since its mathematical
format involves inequality constraints. However, a polytope can be represented
exactly by the intersection of zonotopes as proposed in [16]. Once the polytope
P has been represented exactly by the intersection of zonotopes, i.e., P = Z1 N
-++MNZy,, the dynamic evolution of the nonlinear system with the polytope as the
initial state can be computed as follows:

fPy=f(Zin---NnZ,) C f(Zy)N---Nf(Z), (10)
where f(Z1),---, f(Z,) can be computed using affine arithmetic and the inter-
section of zonotopes can be transformed to be the intersection of the constructed

polytopes.

As explained in [16], the general procedures to represent a polytope P C
R™ exactly by the intersection of zonotopes are: randomly select n inequality
constraints from the pool of all inequality constraints for the polytope and then
to use these n inequality constraints to construct a zonotope with the minimized
volume to contain the polytope until all inequality constraints for the polytope
have been used up.
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3.2 Bisect a Polytope

Similar to the bisection of a zonotope in case of failed integration, the initial
set of a polytope can also be bisected into two sub-polytopes. Any line passing
through the Chebyshev center of the polytope can be used to bisect the polytope.
Taking the following 2-D polytope in Fig. 3 as an example, it has been bisected
into two sub-polytopes by a line passing through its Chebyshev center.

Fig. 3. The bisection of a polytope

4 Nonlinear ODE Reachability of Polytopes

In this section, the main contribution of the presented paper is described.

4.1 Principle

The procedures of the proposed approach involve geometric operations on poly-
topes such as the bisection of a polytope, the representation of a polytope by
the intersection of zonotopes, the intersection of polytopes as well as the convex
hull for a union of polytopes. The nonlinear ODE reachability with a polytope
as the initial state can be computed by the following three steps:

— Represent the resulting polytope P; at each step exactly by the intersection
of m zonotopes: Z1,-++ , Zm;

— Compute the evolution of these m zonotopes Z1,- -, Z,, (if any integration
fails, either bisect the relevant zonotope or return to the previous step to
bisect the polytope);

— Compute the intersection of these m solutions of the ODE at time T so as to
obtain the renewed polytope P;1;

— Return to the first step;
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If the bisection of a zonotope or polytope is needed, the convex hull for the
union of the bisected individual solutions is used instead to update the polytope
P; at each step. To guarantee that the algorithm terminates, under a given
threshold on the volume of the zonotopes, the bisection is not performed, and
the reachability cannot be computed.

4.2 Examples

In this section, two examples are presented to show the results of our approach.

Circle. The first example is the circle system. This latter is well-known and often
used to demonstrate the robustness of an integration method to the wrapping
effect.

Problem and Initial Conditions:
The problem is defined by the following equation:

==Y

. 11

{ Y2= Y1 (11)

The initial condition is taken in a polytope given by the five vertices (—1, —3),
(-1.5,3), (0,6), (1.5,4), and (1, —4). Covered by the three zonotopes:

7, — [0.1957] © [1.6087 0.4130} B 7, = [0.25} o {1.8 1.55],

1.1522) ¥ | 0.8043  4.9565 0.5 24 3.1
~0.1538] _ [~1.3558 0.2981] ...
and Z3 = [1.0385] [1.8077 4.7692] (Fig-4).

Fig. 4. Initial conditions of circle problem

Integration. The problem consists on computing the set of solution of the IVP
at time t; = 50. The RK4 method is used, with a tolerance of 1e—10. The IVP is
solved with the three previous zonotopes as initial conditions (Fig.5). The IVP
is also solved starting from the hull (box) of the polytope, because this is a com-
mon approach. The results are: the polytope obtained by the intersection of the
solutions (zonotopes), the zonotope computed from the hull and the intersection
of these two solutions (Fig.6).
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Fig. 5. Circle solution from ¢ = 0 to ¢t = 50 given in the form of a list of boxes.

Fig. 6. Circle at t = 50: in black the three zonotopes, in red the polytope (left); and
in black the zonotope obtained by the integration from the hull of the initial polytope,
compared to the polytope (right). (Color figure online)

Discussion. In order to discuss the results, the volumes are computed and given
in Table 1. The results show that our approach is efficient and better than the
hull approach in terms of a smaller volume. It is also apparent that our solver
is stable and robust against wrapping effect (important in the circle problem).
This claim can be deduced by the fact that the volume of final set is close to the
initial one. Finally, the intersection of the solution obtained from the polytope
and the one obtained from the hull gives even a sharper result.

Volterra. The second example is the Volterra system. This latter is well-known
and often used to demonstrate the efficiency of an integration method (alterna-
tion of contractive and dispersive parts).

Problem and Initial Conditions. The problem is defined by the following equa-
tion: ( )
= 2y1(1 —y2

. 12

{y2:_y2(1_y1) (12)
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Table 1. Results in term of volume of the circle problem.

Initial polytope (IP) 21.25
Initial hull (IH) 30
Polytope (P) from IP |22.5046
Zonotope (Z) from IH |27.9348
Intersection of P and Z | 21.8109

The initial condition is taken in a polytope given by the eight
vertices (1.1035,3.0457), (1.1041,3.0386), (1.0981,3.0366), (1.1039,3.0358),
(1.0983,3.0339), (1.1020, 3.0320), (1.0989, 3.0498) and (1.0995, 3.0510). Covered
by the three zonotopes:

7 1.1007 —0.0032 —0.0008 B2 7 1.1000 —0.0036 0.0031
! 3.0422 0.0016 0.0099 2 3.0400 0.0048 0.0062|’
1.1012} [—0.00270.0006

and Z3 = {3.0395 0.0036 0.0095} (Fig. 7).

Fig. 7. Initial conditions of volterra problem

Integration. The problem consists on computing the set of solution of the IVP
at time ¢y = 6. The experimentation is the same than for the previous example
(solution in Figs. 8 and 9).

Discussion. As for the first example, the volumes are computed and given in
Table 2.

For this problem, as for the previous one, the polytopic approach is better in
term of volume, than the zonotopic approach. However, there is also an interest
to compute the solution with the both manner and to intersect the obtained
results.
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Fig. 8. Volterra solution

Fig. 9. Volterra problem at ¢t = 6: in black the three zonotopes, in red the polytope
(left); and in black the zonotope obtained by the integration from the hull of the initial
polytope, compared to the polytope (right). (Color figure online)

Table 2. Results in term of volume of the Volterra problem.

Initial polytope (IP)
Initial hull (IH)

8.2505e—05
1.14e—04

Polytope (P) from IP
Zonotope (Z) from IH

Intersection of P and Z

3.2273e—04
5.8018e—04
3.0337e—04

5 Conclusion

In this paper, an approach to compute the reachability of nonlinear ODE with a
polytopic set as the initial set is presented for the first time. Our method is based
on the zonotopic representation of polytopes and on the zonotopic Runge-Kutta
validated method. It has been shown through two well-known examples that our
approach is efficient and robust with reduced wrapping effect. The volumes of the
computed sets have been computed so as to validate this claim. The presented
method is interesting in the field of hybrid systems, for example to compute
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the reachable sets as a linear program with polytopes. This method is then
highly promising as a new approach for hybrid systems reachability. Moreover,
the polytopic based Runge-Kutta allows one to propagate a set of inequalities
(where the solution is a polytope) through a differential equation so as to obtain
a novel set of inequalities (defining the polytope solution).
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Grant EP/R005532/1.
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Abstract. The study of word equations is a central topic in mathemat-
ics and theoretical computer science. Recently, the question of whether
a given word equation, augmented with various constraints/extensions,
has a solution has gained critical importance in the context of string
SMT solvers for security analysis. We consider the decidability of this
question in several natural variants and thus shed light on the bound-
ary between decidability and undecidability for many fragments of the
first order theory of word equations and their extensions. In particular,
we show that when extended with several natural predicates on words,
the existential fragment becomes undecidable. On the other hand, the
positive Yo fragment is decidable, and in the case that at most one ter-
minal symbol appears in the equations, remains so even when length
constraints are added. Moreover, if negation is allowed, it is possible to
model arbitrary equations with length constraints using only equations
containing a single terminal symbol and length constraints. Finally, we
show that deciding whether solutions exist for a restricted class of equa-
tions, augmented with many of the predicates leading to undecidability
in the general case, is possible in non-deterministic polynomial time.

Keywords: Word equations - Decidability - Satisfiability

1 Introduction

A word equation is a formal equality U = V, where U and V are words (called
the left and right side of the equation respectively) over an alphabet AUX; A =
{a,b,c,...} is the alphabet of constants or terminals and X = {x1,z2,23,...}
is the set of wvariables. A solution to the equation U = V is a morphism h :
(AU X)* — A* that acts as the identity on A and satisfies h(U) = h(V); h is
called the assignment to the variables of the equation. For instance, U = zjabxs
and V = axizsb define the equation zjabxs = axjxob, whose solutions are the
morphisms h with h(z;) = a¥, for k > 0, and h(zz) = b’, for £ > 0. An equation
is satisfiable (in A*) if it admits a solution h : (AU X)* — A*. A set (or system)
of equations is satisfiable if there exists an assignment of the variables of the
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equations in this set that is a solution for all equations. In logical terms, word
equations are often investigated as fragments of the first order theory FO(A*, ) of
strings. Karhumiki et al. [18] showed that deciding the satisfiability of a system
of word equations, that is, checking the truth of formulas from the existential
theory 37 of FO(A*,-), can be reduced to deciding the satisfiability of a single
(more complex) word equation that encodes the respective system.

The existential theory of word equations has been studied for decades in
mathematics and theoretical computer science with a particular focus on the
decidability of the satisfiability of logical formulae defined over word equations.
Quine [28] proved in 1946 that the first-order theory of word equations is equiv-
alent to the first-order theory of arithmetic, which is known to be undecidable.
In order to solve Hilbert’s tenth problem in the negative [14], Markov later
showed a reduction from word equations to Diophantine equations (see [21,22]
and the references therein), in the hopes that word equations would prove to be
undecidable. However, Makanin [22] proved in 1977 that the satisfiability of word
equations is in fact decidable. Though Markov’s approach was unsuccessful, sim-
ilar ones, based on extended theories of word equations, can also be explored.
Matiyasevich [25] showed in 1968 a reduction from the more powerful theory of
word equations with linear length constraints (i.e., linear relations between word
lengths) to Diophantine equations. Whether this theory is decidable remains a
major open problem. More than a decade after Makanin’s decidability result,
the focus shifted towards identifying the complexity of solving word equations.
Plandowski [27] showed in 1999 that this problem is in PSPACE. Recently, in a
series of papers (see specifically e.g., [15,16]), Jez applied a new technique called
recompression to word equations. This lead to, ultimately, a proof that the sat-
isfiability of word equations can be decided in linear space. However, there is a
mismatch between this upper bound and the known lower bound: solving word
equations is NP-hard, but whether the problem is NP-complete remains open.

In recent years, deciding the satisfiability of systems of word equations has
also become an important problem in fields such as formal verification and secu-
rity where string solvers such as HAMPI [19], CVC4 [3], Stranger [31], ABC [2],
Norn [1], S3P [29] and Z3str3 [4] have become more popular. However, in prac-
tice more functionality than just word equations is required, so solvers often
extend the theory of word equations with certain functions (e.g., linear arith-
metic over the length, replace-all, extract, reverse, etc.) and predicates (e.g.,
numeric-string conversion predicate, regular-expression membership, etc.). Most
of these extensions are not expressible by word equations, in the sense introduced
by Karhumaéki et al. [18], and some of them lead to undecidable theories. On the
one hand, regular (or rational) constraints or constraints based on involutions
(allowing to model the mirror image, or, when working with equations in free
groups, inverse elements), are not expressible, see [6,18], but adding them to
word equations preserves the decidability [8]. As mentioned above, whether the
theory of word equations enhanced with a length function is decidable is still
a major open problem. On the other hand, the satisfiability of word equations
extended with a replace-all operator was shown to be undecidable in [20], and
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the same holds when a numeric-string conversion predicate is added. Due to
this very complex and fuzzy picture, none of the solvers mentioned above has a
complete algorithm.

Our Contributions: In this setting, our work aims to provide a better understand-
ing of the boundary between extensions and restrictions of the theory of word
equations for which satisfiability is decidable and, respectively, undecidable.

Firstly, we present a series of undecidability results for the X;-fragment of
FO(A*,-) extended with simple predicates or functions. In the main result on
this topic, we show that extending Y1 with constraints imposing that a string
is the morphic image of another one also leads to an undecidable theory. These
results are related to the study of theories of quantifier-free word equations
constrained by very simple relations, see, e.g., [6,13]. While our results do not
settle the decidability of the theory of word equations with length constraints,
they enforce the intuitive idea that enhancing the theory of word equations with
predicates providing very little control on the combinatorial structure of the
solutions of the equation leads to undecidability.

We further explore the border between decidability and undecidability when
considering formulae over word equations allowing at most one quantifier alter-
nation. We show that checking the truth of an arbitrary Ys-formula is equiva-
lent to, on the one hand, checking the truth of a 3*V*-quantified terminal-free
formula, or, on the other hand, to a single 3*V*-quantified inequation whose
sides contain at most two terminals. Since the Inclusion of Pattern Languages
problem (see [5,11,17]) can be reformulated as checking the truth of a single
F*V*-quantified inequation whose sides contain at most two terminals and are
variable disjoint, and it is undecidable, we obtain a clear image of the simplest
undecidable classes of Xs-formulae. Consequently, we consider decidable cases.
Complementary to the above, we show that the satisfiability in an arbitrary free
monoid A* of quantifier free positive formulae over word equations (formulae
obtained by iteratively applying only conjunction and disjunction to word equa-
tions of the form U = V), in which we have at most one terminal a € A (appear-
ing zero or several times) and no restriction on the usage of variables, enhanced
with linear length constraints, is decidable, and, moreover, NP-complete. The
decidability is preserved when considering positive Ys-formulae of this kind, as
opposed to the case of arbitrary Y5 terminal-free formulae, mentioned above.
Moreover, if we allow negated equations in the quantifier-free formulae (so arbi-
trary X;-formulae) with at most one terminal, and length constraints, we obtain
a decidable theory if and only if the general theory of equations with length
constraints is decidable. Putting together these results, we draw a rather precise
border between the decidable and undecidable subclasses of the Xs-fragment
over word equations, defined by restrictions on the number of terminals allowed
to occur in the equations and the presence or absence of inequations. As a corol-
lary, we can show that deciding the truth of arbitrary formulae from the positive
Yo-fragment of FO(A*,-) (i.e., 3*V* quantified positive formulae), without length
constraints, is decidable. The resulting proof follows arguments partly related
to those in [9,23]. This result is strongly related to the work of [10,12,28], in
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which it was shown that the validity of sentences from the positive I1>-fragment
of FO(A*,-) (i.e., where the quantifier alternation was V*3*) is undecidable, as
well as to the results of [30] in which it was shown that the truth of arbitrarily
quantified positive formulae over word equations is decidable over an infinite
alphabet of terminals.

We then extend our approach in a way partly motivated by the practical
aspects of solving word equations. Most equations that can be successfully solved
by string solvers (e.g., Z3str3) must be in solved form [12], or must not contain
overlapping variables [32]. In a sense, this suggests that in practice it is inter-
esting to find equations with restricted form that can be solved in reasonable
time. We analyse, from a theoretical point of view, one of the simplest classes
of equations that are not in solved form or contain equations with overlapping
variables, namely strictly regular-ordered equations (each variable occurs exactly
once in each side, and the order in which the variables occur is the same). We
show that the satisfiability of such equations, even when enhanced with various
predicates, is decidable. In particular we show that when extended with regu-
lar constraints (given by DFAs), linear length constraints, abelian equivalence
constraints (two variables should be substituted for abelian-equivalent words),
subword constraints (one variable should be a (scattered) subword of another),
and Fq, constraints (two variables should have the same number of occurrences
of a letter a), the satisfiability problem remains NP-complete. Thus, there is
hope that they can be solved reasonably fast by string solvers based on, e.g.,
SAT-solvers. This line of results is also related to the investigations initiated in
[7,24], in which the authors were interested in the complexity of solving equa-
tions of restricted form. In the most significant result of [7], it was shown that
deciding the satisfiability of strictly regular-ordered equations (with or without
regular constraints) is NP-complete, which makes this class of word equations
one of simplest known classes of word equations that are hard to solve. Although
these results regard a very restricted class of equations, they might provide some
insights in tackling harder classes, such as, e.g., quadratic equations.

The organization of the paper is as follows. In Sect. 2 we introduce the basic
notions we use. In Sect. 3, we present firstly the undecidability results related to
theories over word equations extended with various simple predicates, secondly
the undecidability and decidability results related to quantifier alternation, and
thirdly, we present the results related to strictly regular-ordered equations. Due
to space constraints, some proofs are omitted, or only briefly sketched.

2 Preliminaries

Let N be the set of natural numbers, and let N<,, be the set {1,2,...,n}. Let
A be an alphabet of letters (or symbols). Let A* be the set of all words over
A and ¢ be the empty word. Note that A* is a monoid w.r.t. the concatenation
of words. Let |w| denote the length of a word w and for each a € A, let |wl,
denote the number of occurrences of a in w. For 1 < ¢ < |w| we denote by wli]
the letter on the i*" position of w. A word w is p-periodic for p € N (p is called
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a period of w) if w[i] = w[i + p] for all 1 <14 < |w| — p; the smallest period of a
word is called its period. If w = v1v9v3 for some words vy, v9,v3 € A*, then vy is
called a prefix of w, v1,vs,v3 are factors of w, and v3 is a suffiz of w. Two words
w and u are called conjugate if there exist non-empty words vy, vs such that
w = v1vg and u = vav1. A word v € A* is a subword of w € A* if v = vy ... v,
with v; € A*, and w = wgviuq - - - vpug, with u; € A*. A word z € A* is in the
shuffle of u,v € A*, denoted z € uAwv, if z = uyvy - - - ukVE, wWith u;,v; € A*,
and u = Uy - uUg, v = vy V. Two words u,v € A* are abelian equivalent if
|ule = |v]q, for all @ € A. The following lemma is well known (see, e.g., [21]).

Lemma 1 (Commutativity Equation). Let vy,vs € A*. Then vive = vovy
if and only if there exist w € A* and p,q € Ny such that v1 = wP and vo = wi.

Let A = {a,b,c,...} be a finite alphabet of constants and let X =
{z1,x2,...} be an alphabet of variables. Note that we assume X and A are
disjoint, and unless stated otherwise, that |A| > 2. A word o € (AU X)*
is usually called a pattern. For a pattern « and a letter z € AU X, let |af,
denote the number of occurrences of z in «; var(«) denotes the set of variables
from X occurring in a. A morphism h : (AU X)* — A* with h(a) = a for
every a € A is called a substitution. A morphism h : A* — B* is a projec-
tion if h(a) € {e,a} for all a € A. We say that a« € (AU X)* is reqular if, for
every x € var(a), we have |a|, = 1; e.g., arjazqoczsasb is regular. Note that
L(a)) = {h(a) | h is a substitution} (the pattern language of «) is regular when
« is regular.

A (positive) word equation is a tuple (U,V) € (AU X)* x (AU X)*; we
usually denote such an equation by U = V', where U is the left hand side (LHS,
for short) and V the right hand side (RHS) of the equation. A negative word
equation, or inequation, is the negation of a word equation, i.e., =(U = V) or
U#V.

A solution to an equation U = V (resp., U # V), over an alphabet A,
is a substitution A mapping the variables of UV to words from A* such that
h(U) = h(V) (respectively, h(U) # h(V)); h(U) is called the solution word.
Note that we might ask whether a positive or negative equation has a solution
over an alphabet larger than the alphabet of terminals that actually occur in the
respective equation. A word equation is satisfiable over A if it has a solution over
A, and the satisfiability problem is to decide for a given word equation whether
it is satisfiable over a given alphabet A.

Karhumaéki et al. [18] have shown that, given two equations E and E’; one
can construct the equations Ey, Ey, and FE3 that are satisfiable in A*, with
|A] > 2, if and only if EA E’', EV E’, -F are satisfiable respectively in A*. In
this construction, F; contains exactly the variables of E and E’, while in Ey
and E3 new variables are added with respect to those in the given equations;
in all cases, even if £ and E’ were terminal-free, the new equations contain
terminals. We use this result to show that for every quantifier-free first order
formula over word equations we can construct a single equation that may contain
extra variables and terminals, and is satisfiable if and only if the initial formula
was satisfiable. Moreover, the values the variables of the initial equations may
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take in the satisfying assignments of the new equation are exactly the same
values they took in the satisfying assignments of the initial formula. We also use
in several occasions the following result from [18].

Lemma 2. Let U,V,U’, V' € (X U A)*, Z,=UaU'UbU’, Zy=VaV'VbV". For
any substitution h : X* — A*, h(Z1)=h(Zs) iff h(U)=h(V) and h(U")=h(V").

In this paper we address equations with restricted form. A word equation
U = V is regular if both U and V are regular patterns. We call a regular
equation ordered if the order in which the variables occur in both sides of the
equation is the same; that is, if x and y are variables occurring both in U
and V, then x occurs before y in U if and only if = occurs before y in V.
Moreover, we say a regular-ordered equation is strict if each variable occurs in
both sides. For instance xjarsrsb = xiaxsbrs is strictly regular-ordered while
x1a = xq1x9 is regular-ordered (but not strictly since x5 occurs only on one side)
and zjax3xrob = x1axsbrs is regular but not regular-ordered.

In Sect. 3.3 we also consider equations with regular and linear length con-
straints defined as follows. Given a word equation U = V', a set of linear length
constraints is a system 6 of linear Diophantine equations where the unknowns
correspond to the lengths of possible substitutions of each variable x € X. More-
over, given a variable x € X, a regular constraint is, in this paper, a regular
language L, given by a finite automaton; more general types of regular con-
straints, imposing that the image of a variable belongs to more than one lan-
guage, are sometimes used (see [8] and the references therein). The satisfiability
of word equations with linear length and/or regular constraints is the question of
whether a solution h exists satisfying the system 6 and/or such that h(x) € L,
for each x € X.

3 Results

3.1 Undecidability Results

In this section, we show the undecidability of various extensions of the existential
theory of word equations, defined as binary and 3-ary relations which may easily
be interpreted as predicates. In each case, undecidability is ultimately obtained
by showing that, for a unary-style encoding of integers following [6] (where a
number is represented using the length of a string in the form a*b, so ¢ is 0,
b is 1, etc.), the additional predicate(s) can be used to define a multiplication
predicate Multiply (z, y, z) which decides for numbers 4, j, k encoded in this way
(i.e., v = a'~ b,y = al~'b,z = a¥~1b), whether k£ = ij. Since a corresponding
addition predicate can easily be modelled for this encoding using only word
equations, undecidability follows immediately.

Definition 1. Let AbelianEq, Morphlm, Projection, Subword C A* x A* and
Shuffle, Insert, Erase C A* x A* x A* be the relations given by:

— (z,y) € AbelianEq iff x and y are abelian-equivalent,
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— (z,y) € MorphIm iff there exists a morphism h:A*— A* such that h(x)
— (z,y) € Projection iff there exists a projection m: A* — A* such that w(x)
- (z,y) € Subword iff x is a (scattered) subword of y.
- (z,y,2) € Shuffle iff z € xAy,
- (zy
- (

xz,
X

x,y, z) € Erase iff z is obtained from x by removing some occurrences of y,
x,y,z) € Insert iff z is obtained from x by inserting some occurrences of y.

For each of the above relations we can also define a predicate with the same name
which returns true iff the tuple of arguments belongs to the relation.

The membership problems for all the above relations are in NP, and therefore
decidable. Our main result of this section concerns the MorphIm predicate:

Theorem 1. Let |A| > 3. Then given the predicate Morphlm, the predicate
Multiply is definable by an existential formula.

Proof. Assume that A contains at least three distinct letters: a,b,c. We shall
actually define a predicate Multiply,(x,y, z) which returns true iff x = a’b,y =
a’b,z = a¥b and ij > 2. Note that we can immediately obtain Multiply from
this, as Multiply(x,y, z) = Multiply,(az, ay, az) for x,y, 2 # € (assuming also
x =y = z = b does not hold). The exceptional cases, when ij < 2 can easily
be handled individually. We define first a predicate checking some ‘initial condi-
tions’:

init(z, 2, 2"y, vy, 2,2") i=Fw, 0w w2 =wa Ny =w'an (2 =w"aaVvy =w"aa)

ANrt'la=ar' ANya=ay Ada=ar Ax=a'bAy=ybArz=2b ANa"z=x2".

Recalling Lemma 1, it is straightforward to see that init evaluates to true if and
only if there exist 4,4, k,¢,p € Ng with ij > 2 such that (1) 2/ = a%, ¢/ = a/,
2 =aF and (2) z = a'b, y = alb, z = a*b, and (3) 2” = (a’b)?. Now we give
the definition of Multiply, as follows:

Multiply, (z,y, 2):=3z", 2"y, 2', u, v. init(z, 2, 2", y,y’, 2, 2") A MorphIm(z", /)

A MorphIm(y’, ") A MorphIm(u,v) Au =z ccz”’z'ccb Av = 2'ccz’z’cc.

Suppose that Conditions (1)—(3) are met (i.e., init is satisfied). Consider the
subclause MorphIm(z”, y") AMorphIm(y’, ). This is satisfied if and only if there
exist morphisms g,h : A* — A* such that g((a’b)?) = a/ and h(a’) = (a’b)?.
Clearly, the latter implies that p is a multiple of j, while the former implies that j
is a multiple of p, and hence if both are satisfied then j = p. On the other hand, if
J = p, then it is easy to construct such morphisms (¢ maps b to a and a to & while
h maps a to a’b). Thus this subclause is satisfied in addition to the init predicate
if and only if Conditions (1)—(3) hold for p = j. By elementary substitutions,
the remaining part (i.e., MorphIm(u,v) Au = " cca”a’ccb Av = 2'ccz’/z’cc) is
also satisfied if and only if u = (a'b)icc(a’b)/a’cch, and v = (akcca®*ticc).
It remains to show that there exists a morphism f : A* — A* such that
f(w) = v if and only if k¥ = ¢j. In the case that £k = ij, the morphism
f may be given e.g.by f(a) = a, f(b) = ¢ and f(c) = c. For the other
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direction, assume that such a morphism f exists. Firstly, consider the case
that f(c) € {a,b}*. Then ¢ must occur in f(a) or f(b). However, under our
assumption that ij > 2, this implies |f(u)|c > 4 meaning f(u) # v which is
a contradiction. Consequently, we may infer that f(c) contains the letter c.
Then since |u|. = |v]¢, it follows that f(c) = vicvy where v1,v3 € {a,b}*.
Thus f(u) = f((a'b)?)vicvavicvef((a'b))atv;cvgvicuaf(b). It follows that
vy = vy = ¢, and thus that f(b) = . Hence, f(a¥) = a* and f(a¥+?) = a*+!
must hold. Clearly, f(a) = a™ for some n € N. Thus we have nij = k and
nij +ni = k +i. Hence, n = 1 and k = ij, as required. a

Unlike for the other predicates below, our construction for MorphIm relies
strictly on the alphabet A having at least three letters. This is in particular
contrast to many other results on the (un)decidability theories of word equa-
tions which are usually independent of alphabet size (provided |A| # 1). Thus
we consider it to be of particular interest to settle the remaining open case of
whether Theorem 1 holds also for binary alphabets A.

As previously mentioned, further to the predicate Morphlm, many other
natural predicates dealing with basic properties and relationships of words lead
to undecidability. The following result concerns the remaining predicates listed
in Definition 1, and it is obtained by reducing to predicates Onlyas(z,y) and
Onlybs(z,y) which return true if and only if y = al*l (respectively, y = bl*l).
Biichi and Senger [6] show how these predicates can easily be used to model
multiplication, and thus undecidability follows.

Proposition 1. Given any of the predicates AbelianEq, Shuffle, Projection,
Subword, Insert, Erase, the predicates Onlyas and Onlybs are definable by exis-
tential formulas.

The next theorem sums up the consequences of Proposition 1 and Theorem 1.

Theorem 2. The existential theory of word equations becomes undecidable when
augmented with any of the following predicates: AbelianEq, Shuffle, Projection,
Subword, MorphIm (if |A| > 3), Insert, Erase.

3.2 Quantifier Alternation

Next, we focus on extending the existential theory of word equations by allowing,
instead of new predicates, quantifier alternation.

Firstly, recall the Inclusion of Pattern Languages problem (IPL, for short,
see [5,17]): given two patterns o € (AU X)* and § € (AUY)*, where A is an
alphabet of constants with at least two distinct letters and X and Y are disjoint
sets of variables, decide whether L(a) C L(f3). IPL admits a reformulation in
terms of word equations: decide whether the formula Jz1, ..., 2, Yy1,..., ym. #
B holds in A*. As IPL is undecidable for terminal alphabets of size 2 or
more [5,11], it immediately follows that checking the truth value of 3*Vv*-
quantified inequation U # V in A*, with |A| > 2, is undecidable even when
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U and V do not contain any common variable, as long as the number of termi-
nals occurring in UV is at least two. This exhibits a very simple fragment of 3
that is undecidable.

Further, we show two normal form results for the Xy-fragment of FO(A*, ).

Proposition 2. Let A # 0 be an alphabet. For every formula ¢ in the Xs-
fragment of FO(A*,-) we can construct a Xo terminal-free formula v, which
holds in A* iff ¢ holds in A*.

Proposition 3. Let A be an alphabet, |A| > 2. For every formula ¢ in the
Yo-fragment of FO(A*,-) we can construct ¥ = 3x1,..., 0 YY1, .., ym.U £V,
with U,V € (AU{x1,...,Zn,Y1,---,Ym})*, such that ¢ holds in A* if and only
if ¥ holds in A*.

Note that Proposition3 does not follow directly by applying the results
of [18] to the initial arbitrary formula, in order to reduce it to a single equa-
tion. This would have lead to an 3*V*3*-quantified positive equation, so not to
a Yo-formula.

The results in Propositions 2 and 3 as well as the remarks regarding IPL show
that it is undecidable to check whether some very simple formulae hold in A*,
when |A| > 2. Also, it is worth noting that applying first Proposition 2 and then
Proposition 3 to an arbitrary Ys-formula would lead to a single 3*V*-quantified
inequation which contains two terminals, as the constructions in [18] (used in the
proof of Proposition 3) require at least two terminals in the equation. However,
unlike the inequations encoding IPL instances, the one we obtain by applying
our two propositions does not necessarily fulfil the condition that its sides are
variable disjoint. Thus, it is natural to ask whether every Xs-formula can be
reduced to an inequation encoding an instance of IPL. We conjecture that the
answer to this question is no.

We have showed that deciding whether a Ys-formula, whose sides contain
two terminals, holds in A* for some |A| > 2 is undecidable. It is possible to show
that, when |A| > 2, for every word equation (which can encode any formula
from the X4-fragment of FO(A*,-), by [18]) we can construct a word equation
whose sides contain exactly two terminals a and b, and whose solutions over
{a, b} bijectively correspond to the solutions of the initial equation. Thus, solving
a word equation whose sides contain two terminals is as complex as solving
arbitrary word equations.

Hence, we will investigate next which is the case of Y; and Xs-formulae
over word equations whose sides contain at most one terminal. Proposition 2
already gives us a first answer: checking whether a XYs-terminal-free formula
holds in A*, with |A| > 2, is undecidable. On the other hand, checking whether
a formula from FO(A*,-), whose sides contain at most one terminal a, holds in
{a}* is decidable, as it can be canonically seen as a formula in the Presburger
arithmetic.

We concentrate now on other decidable variants. In all these cases, we aug-
ment our signature with linear arithmetic over the lengths of variables; all decid-
ability results obtained in this setting hold canonically for the case when such
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restrictions do not appear. We first look at equations without any quantifier
alternation.

Proposition 4. Let a € A. The satisfiability in A* of quantifier-free positive
formulae over word equations U =V, with U,V € (X U{a})*, with linear length
constraints is NP-complete.

Complementing the above result, we show that the satisfiability of quantifier-
free first order formulae over word equations U = V (so including negation), such
that U,V € (X U {a})*, with linear length constraints is equivalent to solving
arbitrary word equations with length constraints. Hence, at the moment, we
cannot say anything about the decidability of such formulae. One direction of
our result is immediate, while the other follows similarly to Proposition 2.

Theorem 3. Let |A] > 2 and a € A. Given an equation U =V, with U,V €
(AUX)*, with linear length constraints 0, there exists a system S of positive and
negative equations U; = V; or U; # V; with U;,V; € (X' U{a})* and X C X'
with linear length constraints 6', such that S is satisfiable (in A*) if and only if
U =V is satisfiable.

Building on Proposition4, Theorem 4 considers the X5 fragment in the case
that only one terminal letter may appear in the equations. Note that this does not
necessarily imply |A| = 1. If the positive theory only is considered, augmented
with the Length predicate defined in the previous section (i.e., Length(z,y) is
true if and only if |x| = |y|), then we obtain a decidable fragment. Note in
particular that the Length predicate can be used in conjunction with simple
equations to model arbitrary linear length constraints.

Theorem 4. Let a € A. The positive Xs-fragment, restricted to word equations
containing only the terminal symbol a, augmented with Length, is decidable.

Firstly, we need the following lemma. Then, we give the full proof of Theo-
rem4.

Lemma 3. LetY = {y1,v2,...,yn} C X and let U,V € (YUA)*. Let k > |UV|
and let h : X* — A* be the substitution such that h(y;) = ab**a. Then h(U) =
h(V) if and only if U =V (the strings U and V coincide).

Proof. (Theorem4) W.1.0.g. we may assume that all arguments of the Length
predicate are either single variables or words in A*. Indeed, if we have a “longer”
argument o over (X U A)*, we can replace it with a new variable z and add the
equation x = «. For the purposes of this proof we shall say that a term is trivial
if, for all the word equations U = V, U and V are identical, and moreover, all
Length predicates of the form Length(z,y) where either z =y € X or x,y € A*
and |z| = |y|. If |A| = 1, decidability follows from the decidability of Presburger
arithmetic. Thus we may assume a,b € A with a # b. W.l.o.g. we may assume
that we have a sentence in disjunctive normal form as follows:

A1, T, T YY1, Y2, - Yme(€11A A€ ) Vo V(g1 A Aer,), (1)
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where the e; ; are either: (1) of the form Length(zq, z2) where z; and 2z, are in

{z1, . Tn, Y1, -, Ym t UA*, or (2) individual word equations over the variables
T1yeeeyTny Y1,y ---,Ym and the terminal a.
We shall show that an assignment for 1, xs,...,x, satisfies (1) if and only

if there exists s,1 < s <t such that all the resulting atoms e, ; become trivial.
The ‘if’ direction is straightforward, thus we consider the ‘only if’ direction.
Suppose the z1, 2, ..., x, are fixed, and consider the result of each e; ; under the
substitution. Suppose that for each s,1 < s <t there exists r5,1 < rs < kg such
that es ,_ is non-trivial. Let p be the maximum over the lengths of all constant
terms in the sentence, lengths of the x;, and lengths of equations given by the
type-(2) atoms e; j for 1 <i <t,1 < j < k;. Consider the choice of y1,y2,...,Ym
given by yj, = abP™*a for 1 < k < m. By Lemma3, if e, ., is of type (2), then it
will evaluate to false. If eg ., is of type (1), then we have three cases. Firstly, if
both arguments to the Length predicate are constant terms in A*, then clearly
es,r, will evaluate to false since it is non-trivial. Similarly, since the y; are longer
than all constant terms and substituted values of the xys, if exactly one of the
arguments is a constant in A* while the other is a variable in {y1,¥y2,...,Ym},
then es,, will also evaluate to false. Finally, since |y¢| # |y| for all £ # ¢, if
both arguments are variables, e, .. will again evaluate to false. Summarising the
above, for any given choice of z1, o, ..., z, there exists a choice of y1,y2,...,ym
such that any of the conjunctions containing a non-trivial equation or Length
predicate will be false. It follows that the sentence is satisfiable if and only if
there exists a choice for z1,22,...,2, and 5,1 < s < t such that all the e, ;
terms, 1 < i < kg become trivial.

For terms e; ; of type (2), this is reduced to solving a system of existentially
quantified word equations over x1, 2, ...,y as follows: suppose e; ; is the equ