
Igor Potapov
Pierre-Alain Reynier (Eds.)

 123

LN
CS

 1
11

23

12th International Conference, RP 2018
Marseille, France, September 24–26, 2018
Proceedings

Reachability Problems

Lecture Notes in Computer Science 11123

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Igor Potapov • Pierre-Alain Reynier (Eds.)

Reachability Problems
12th International Conference, RP 2018
Marseille, France, September 24–26, 2018
Proceedings

123

Editors
Igor Potapov
University of Liverpool
Liverpool
UK

Pierre-Alain Reynier
Aix-Marseille University
Marseille
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-00249-7 ISBN 978-3-030-00250-3 (eBook)
https://doi.org/10.1007/978-3-030-00250-3

Library of Congress Control Number: 2018953208

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at RP 2018, the 12th International Con-
ference on Reachability Problems, organized on September 24–26, 2018 by
Aix-Marseille University, Marseille, France. Previous events in the series were located
at: Royal Holloway, University of London (2017), Aalborg University (2016), the
University of Warsaw (2015), the University of Oxford (2014), Uppsala University
(2013), the University of Bordeaux (2012), the University of Genoa (2011), Masaryk
University Brno (2010), École Polytechnique (2009), the University of Liverpool
(2008), and Turku University (2007).

The aim of the conference is to bring together scholars from diverse fields with a
shared interest in reachability problems, and to promote the exploration of new
approaches for the modelling and analysis of computational processes by combining
mathematical, algorithmic, and computational techniques. Topics of interest include
(but are not limited to): reachability for infinite state systems; rewriting systems;
reachability analysis in counter/timed/cellular/communicating automata; Petri nets;
computational aspects of semigroups, groups, and rings; reachability in dynamical and
hybrid systems; frontiers between decidable and undecidable reachability problems;
complexity and decidability aspects; predictability in iterative maps, and new com-
putational paradigms.

Reachability is a fundamental problem that appears in several different contexts.
Typically, for a fixed system description given in some form (rewriting rules, trans-
formations by computable functions, systems of equations, logical formulas, etc.) a
reachability problem consists in checking whether a given set of target states can be
reached starting from a fixed set of initial states. The set of target states can be
represented explicitly or via some implicit representation (e.g., a system of equations, a
set of minimal elements with respect to some ordering on the states). Sophisticated
quantitative and qualitative properties can often be reduced to basic reachability
questions. Decidability and complexity boundaries, algorithmic solutions, and efficient
heuristics are all important aspects to be considered in this context. Algorithmic
solutions are often based on different combinations of exploration strategies, symbolic
manipulations of sets of states, decomposition properties, and reduction to linear
programming problems, and they often benefit from approximations, abstractions,
accelerations, and extrapolation heurisitics. Ad hoc solutions as well as solutions based
on general-purpose constraint solvers and deduction engines are often combined in
order to balance efficiency and flexibility.

The invited speakers at the RP 2018 were:

– Olivier Bournez - “On the Computational Complexity of Solving Ordinary Dif-
ferential Equations”

– Maria Prandini - “Reachability in Cyber-Physical Systems”
– Marcin Jurdzinski - “Universal Ordered Trees and Quasi-polynomial Algorithms

for Solving Parity Games”

– Jérémie Chalopin - “A Counterexample to Thiagarajan’s Conjecture on Regular
Event Structures”

– Marta Kwiatkowska - “Safety Verification for Deep Neural Networks with Provable
Guarantees”

The conference originally received 29 abstracts from which 21 full papers were
submitted. Each submission was carefully reviewed by three Program Committee
(PC) members. Based on these reviews, the PC decided to accept 11 papers, in addition
to the four invited talks (by Olivier Bournez, Maria Prandini, Marcin Jurdzinski,
Jérémie Chalopin) and one invited tutorial (by Marta Kwiatkowska). The members
of the PC and the list of external reviewers can be found on the next pages. The PC is
grateful for the high quality work produced by these external reviewers. Overall this
volume contains 11 contributed papers and the conference also provided the oppor-
tunity to other young and established researchers to give informal presentations, pre-
pared shortly before the event, informing the participants about current research and
work in progress. The informal presentations have not been included at this LNCS
proceedings, but may be found on the conference website.

It is a pleasure to thank the team behind the EasyChair system and the Lecture Notes
in Computer Science team at Springer, who together made the production of this
volume possible in time for the conference. Finally, we thank all the authors for their
high-quality contributions, and the participants for making RP 2018 a success. We are
also very grateful to Alfred Hofmann for the continuous support of the event in the last
decade and to LNCS Springer, EATCS, CNRS, Laboratoire d’Excellence Archimède,
the LIS Laboratory of Computing and Systems, and Aix-Marseille University for the
scientific and financial sponsorship of the event.

September 2018 Igor Potapov
Pierre-Alain Reynier

VI Preface

Organization

Program Committee

S. Akshay IIT Bombay, India
Christel Baier TU Dresden, Germany
Paul Bell Liverpool John Moores University, UK
Nathalie Bertrand Inria, France
Udi Boker Interdisciplinary Center (IDC) Herzliya, Israel
Krishnendu Chatterjee Institute of Science and Technology (IST), Austria
Laure Daviaud The University of Warwick, UK
Giorgio Delzanno DIBRIS, Università di Genova, Italy
Emmanuel Filiot Université Libre de Bruxelles, Belgium
Pierre Ganty IMDEA Software Institute, Spain
Matthew Hague Royal Holloway University of London, UK
Vesa Halava University of Turku, Finland
Petr Jancar Palacky Univ. Olomouc, Czech Republic
Martin Lange University of Kassel, Germany
Sławomir Lasota Warsaw University, Poland
Laurent Fribourg LSV, France
Benjamin Monmege Aix-Marseille Université, LIF, CNRS, France
Anca Muscholl LaBRI, Universite Bordeaux, France
Igor Potapov University of Liverpool, UK
Pavithra Prabhakar Kansas State University, USA
Alexander Rabinovich Tel Aviv University, Israel
Pierre-Alain Reynier Aix-Marseille Université, France
Thomas Schwentick Universität Dortmund, Germany
Helmut Seidl Technical University of Munich, Germany
Mikhail Volkov Ural Federal University, Russia

Additional Reviewers

Balaji, Nikhil
Chillara, Suryajith
Haase, Christoph
Kokkinis, Ioannis

Kwee, Kent
Perez, Guillermo
Totzke, Patrick
Yörük, Lara

Abstracts of Invited Talks

On the Computational Complexity
of Solving Ordinary Differential Equations

Olivier Bournez

Ecole Polytechnique, LIX, 91128 Palaiseau Cedex, France

We consider Continuous Ordinary Differential Equations: That is to say x’ = f(x) where
f : Rn ! R

n is a continuous function. When an initial condition xð0Þ ¼ x0 is added,
this is called an Initial Value Problem (IVP), also called a Cauchy’s Problem. A tra-
jectory is any solution of the problem, that is to say, any derivable function
n : I � R� 0 ! R

n, where I is some interval containing 0 satisfying nð0Þ ¼ x0, and
n0ðtÞ ¼ f ðnðtÞÞ on its domain. The solution is said to be maximal, if I is maximal (for
inclusion) with this property. For f continuous, IVP are known to always have solu-
tions, but possibly non unique, by Peano-Arzelà’s Theorem. When in addition f is
Lipschitz (in particular if it is C1) then unicity is guaranteed, by Cauchy-Lipschitz
theorem. When f is analytic, solutions are know to be analytic.

In this talk we will survey various results related to the difficulty of computing a or
the solutions for various classes of functions f .

In particular, we will discuss the case y0 ¼ pðt; yÞ, yðt0Þ ¼ y0, where p is a vector of
polynomials). In this case, there is a polynomial time algorithm that, given the
initial-value problem, the time T at which we want to compute the solution of the IVP,
and the maximum allowable error e[0, outputs a value ~yT such that ~yT � yðTÞk k� e
in time polynomial in T , �loge, and in several quantities related to the polynomial IVP.

We will relate the discussion to questions related to the computational power of
several continuous time analog models such as the General Purpose Analog Computer
(GPAC) from Claude Shannon. The GPAC was introduced as a model of famous
mechanical, and later-on electronics, analog computers named Differential Analysers.

Reachability in Cyber-Physical Systems

Maria Prandini

Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
maria.prandini@polimi.it

Reachability analysis consists in determining the region of the state space that a
given dynamical system will visit starting from some set of initial states, subject to a
disturbance input modeling uncertainty in the system dynamics and/or the fact that the
system is operating in an uncertain environment that can affect its evolution.

A main application of reachability analysis – that makes it relevant to various
application domains – is the automatic verification of the correct behavior of a system,
which is typically coded by requiring that all its trajectories remain within some desired
range of operation and do not enter any forbidden region of the state space. If the
outcome of the verification is negative, then, the system has to be redesigned. The
availability of some counter-example showing a violation of the correct behavior can
be useful to this purpose.

In reachability analysis, the region of the state space that is visited by the system
during its evolution is determined by propagating the set of initial states through the
uncertain system dynamics, thus computing the so-call reach sets.

The main issue in reachability analysis is indeed the ability to compute with sets. In
systems with a finite state space, sets can be represented by enumeration and reach sets
can be computed starting from the given initial set and progressively adding one-step
successors. If we consider systems involving a continuous state space, then, repre-
sentation and propagation of reach sets generally become a challenge. One should in
fact choose a class of sets that can be efficiently represented and such that, when one
applies to these sets the operations involved in their propagation through the system
dynamics, then, sets in the same class are obtained. If this is not possible, some
outer-approximation of the obtained sets should be adopted to bring their description
back to the same class.

Scalability of reach set computations arises as an issue, and calls for abstraction of
models through simulation or approximate simulation relations. In the case of a sim-
ulation relation, the abstracted model can be used for verifying the correct behavior
of the original system since all trajectories of the original system can be generated by
simulating the abstracted model (but not vice-versa). For instance, a nonlinear con-
tinuous system with smooth dynamics can be reduced to a piecewise affine system that
satisfies a simulation relation if the abstraction procedure appropriately accounts for the
modeling error through a (fictitious) disturbance input.

We shall consider reachability analysis for cyber-physical systems that represent
engineering systems where communication, computation, and control (the cyber part)

Supported by the European Commission under the project UnCoVerCPS with grant number 643921.

are integrated within natural and/or human-made systems (the physical part) governed
by the laws of physics. Hybrid models are used to describe this class of systems, since
the interleaved discrete and continuous state components of a hybrid model can rep-
resent the cyber and physical parts integrated in a cyber-physical system.

Reachability analysis of hybrid systems is challenging since their hybrid state has a
continuous component and the propagation of the reach sets in the continuous state
space depends on the value taken by the hybrid state. Typically, a reach set in the
continuous state space can split in subsets that propagate according to different con-
tinuous dynamics, thus growing the effort in reach set computations.

In this invited talk, we shall focus on discrete time piecewise affine systems, which
often arise as a model for cyber-physical systems and have also some potential as a
unifying modeling framework for automatic verification of nonlinear continuous sys-
tems. More specifically, we address verification of discrete time piecewise affine sys-
tems based on reach set computations, including the generation of counter-examples,
and the use of abstraction and invariant sets to improve scalability. We also address the
case when a control input is available to impose the correct system behavior via
disturbance compensation, and describe a set-based approach to feedback control
design integrating reach set computations.

Reachability in Cyber-Physical Systems XIII

UniversalTrees andQuasi-PolynomialAlgorithms
for Solving Parity Games

Marcin Jurdziński

Department of Computer Science, University of Warwick, UK

Parity games have played a fundamental role in automata theory, logic, and their
applications to verification and synthesis since early 1990’s. Solving parity games is
polynomial-time equivalent to checking emptiness of automata on infinite trees and to
the modal mu-calculus model checking. It is a long-standing open question whether
there is a polynomial-time algorithm for solving parity games. The quest for a
polynomial-time algorithm has not only brought diverse algorithmic techniques to the
theory and practice of verification and synthesis, but it has also significantly con-
tributed to resolving long-standing open problems in other research areas, such as
Markov Decision Processes and Linear Programming.

All algorithms for solving parity games that were known until 2016 required time
that was exponential in the most important parameter of a parity game—the number of
distinct priorities. The major breakthrough was achieved by Calude, Jain,
Khoussainov, Li, and Stephan in 2017, who have given the first quasi-polynomial
algorithm and established that parity games are in FPT (fixed-parameter tractable). Two
other quasi-polynomial algorithms for solving parity games were subsequently devised
by Jurdziński and Lazić, 2017, and by Lehtinen, 2018, and a space-efficient version of
Calude et al.’s algorithm was given by Fearnley, Jain, Schewe, Stephan, and Wojtczak,
2017. The conceptual and technical toolkits used by all the three algorithms seem rather
distinct: the breakthrough result of Calude et al. was based on computing play sum-
maries by succinct counting, Jurdziński and Lazić have devised a succinct coding of
ordered trees and applied it to the progress measure lifting algorithm, and Lehtinen has
developed novel concepts of register games and the register index.

In this talk we first focus on presenting the technical insights of the
quasi-polynomial algorithm for solving parity games that is based on progress measure
lifting and succinct coding of ordered trees. Following Czerwiński, Daviaud, Fijalkow,
Jurdziński, Lazić, and Parys, 2018, we then argue that universal ordered trees—
implicit in the succinct tree-coding result of Jurdziński and Lazić—offer a unifying
perspective on the three distinct quasi-polynomial algorithms. Moreover, the analysis
of universal trees leads to an automata-theoretic quasi-polynomial lower bound that
forms a barrier that all the existing approaches, as well as other possible techniques that
follow the separation approach, must overcome in the quest for a polynomial-time
algorithm for solving parity games.

More specifically, we argue that the techniques underlying all the three
quasi-polynomial algorithms can be interpreted as constructions of automata on infinite
words that are of quasi-polynomial size and that facilitate solving parity games by the
separation approach formalized by Bojańczyk and Czerwiński, 2018, and implicit in

the work of Bernet, Janin, and Walukiewicz, 2002. In particular, we point out how such
separating automata arise in a very natural way from universal ordered trees. Then we
present two lower bounds: one is a quasi-polynomial lower bound on the size of
universal trees that nearly matches (up to a small polynomial factor) the succinct
tree-coding upper bound of Jurdziński and Lazić, and the other establishes that the set
of states in every separating automaton contains leaves of some universal tree, which
implies that every separating automaton is of at least quasi-polynomial size.

Keywords: Parity games � Quasi-polynomial algorithms � Progress measures
Universal ordered trees � Separating automata � Lower bounds

Universal Trees and Quasi-Polynomial Algorithms for Solving Parity Games XV

A Counterexample to Thiagarajan’s Conjecture
on Regular Event Structures

Jérémie Chalopin

LIS, CNRS, Aix-Marseille Université, and Universit de Toulon
jeremie.chalopin@lis-lab.fr

We provide a counterexample to a conjecture by Thiagarajan [8, 9] that regular
event structures correspond exactly to event structures obtained as unfoldings of finite
1-safe Petri nets. Event structures, trace automata, and Petri nets are fundamental
models in concurrency theory. There exist nice interpretations of these structures as
combinatorial and geometric objects and both conjectures can be reformulated in this
framework. Namely, from a graph theoretical point of view, the domains of prime
event structures correspond exactly to median graphs; from a geometric point of view,
these domains are in bijection with CAT(0) cube complexes.

A necessary condition for the conjecture to be true is that domains of regular event
structures admit a regular nice labeling (which corresponds to a special coloring of the
hyperplanes of the associated CAT(0) cube complex). To disprove these conjectures,
we describe a regular event domain that does not admit a regular nice labeling. Our
counterexample is derived from an example by Wise [10, 11] of a nonpositively curved
square complex X with six squares, whose edges are colored in five colors, and whose
universal cover eX is a CAT(0) square complex containing a particular plane with an
aperiodic tiling. We prove that other counterexamples to Thiagarajan’s conjecture arise
from aperiodic 4-way deterministic tile sets of Kari and Papasoglu [6] and Lukkarila
[7].

On the positive side, we show that event structures obtained as unfoldings of finite
1-safe Petri nets correspond to the finite special cube complexes. This subclass of
nonpositively curved cube complexes was introduced by Haglund and Wise [4, 5] in
geometric group theory and is characterized by simple combinatorial properties satis-
fied by the hyperplanes. Using the breakthrough results by Agol [1] based on special
cube complexes, we prove that Thiagarajan’s conjecture is true for regular event
structures whose domains occur as principal filters of hyperbolic CAT(0) cube com-
plexes which are universal covers of finite nonpositively curved cube complexes.

Joint work with Victor Chepoi.

The full version of this paper is available on ArXiv [2], an extended abstract appeared
in the proceedings of ICALP 2017 [3].

References

1. Agol, I.: The virtual Haken conjecture. Doc. Math. 18, 1045–1087 (2013). with an appendix
by Ian Agol, Daniel Groves, and Jason Manning

2. Chalopin, J., Chepoi, V.: A counterexample to Thiagarajan’s conjecture on regular event
structures. arXiv preprint (2016)

3. Chalopin, J., Chepoi, V.: A counterexample to Thiagarajan’s conjecture on regular event
structures. In: ICALP. LIPIcs, vol. 80, pp. 101:1–101:14. Schloss Dagstuhl -Leibniz-Zentrum
für Informatik (2017)

4. Haglund, F., Wise, D.: Special cube complexes. Geom. Funct. Anal. 17(5), 1551–1620 (2008)
5. Haglund, F., Wise, D.: A combination theorem for special cube complexes. Annals Math. 176

(3), 1427–1482 (2012)
6. Kari, J., Papasoglu, P.: Deterministic aperiodic tile sets. GAFA, Geom. Funct. Anal. 9(2),

353–369 (1999)
7. Lukkarila, V.: The 4-way deterministic tiling problem is undecidable. Theor. Comput. Sci.

410(16), 1516–1533 (2009)
8. Thiagarajan, P.: Regular trace event structures. Technical report BRICS RS-96-32, Computer

Science Department, Aarhus University, Aarhus, Denmark (1996)
9. Thiagarajan, P.: Regular event structures and finite petri nets: a conjecture. In: Brauer, W.,

Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol.
2300, pp. 244–256. Springer, Heidelberg (2002)

10. Wise, D.: Non-positively curved squared complexes, aperiodic tilings, and non-residually
finite groups. Ph.D. thesis, Princeton University (1996)

11. Wise, D.: Complete square complexes. Comment. Math. Helv 82(4), 683–724 (2007)

A Counterexample to Thiagarajan’s Conjecture on Regular Event Structures XVII

Safety Verification for Deep Neural Networks
with Provable Guarantees (Extended Abstract)

Marta Kwiatkowska

Department of Computing Science, University of Oxford, UK

Deep neural networks have achieved impressive experimental results in image classi-
fication, but can surprisingly be unstable with respect to adversarial perturbations, that
is, minimal changes to the input image that cause the network to misclassify it. With
potential applications including perception modules and end-to-end controllers for
self-driving cars, this raises concerns about their safety. This lecture will describe
progress with developing automated verification techniques for deep neural networks to
ensure safety of their classification decisions with respect to image manipulations, for
example scratches or changes to camera angle or lighting conditions, that should not
affect the classification. The techniques exploit Lipschitz continuity of the networks
and aim to approximate, for a given set of inputs, the reachable set of network outputs
in terms of lower and upper bounds, in anytime manner, with provable guarantees. We
develop novel algorithms based on games and global optimisation, and evaluate them
on state-of-the-art networks.

Robustness of neural networks is an active topic of investigation and a number of
approaches have been proposed to search for adversarial examples. They are based on
computing the gradients [1, 3], computing a Jacobian-based saliency map [6], trans-
forming the existence of adversarial examples into an optimisation problem [2], and
transforming the existence of adversarial examples into a constraint solving problem
[5]. In contrast, this lecture reports on research that aims to rule out the existence of
adversarial examples, which approaches based on heuristic search are not able to
achieve. In particular, we will adopt the definition of safety based on pointwise
robustness introduced in [4], where the first practical automated verification method
was developed, based on discretising the neighbourhood and searching it exhaustively
in a layer-by-layer manner. A brief overview will also be given of two approaches that
utilise Lipschitz continuity, one based on global optimisation [7], and capable of
expressing the safety of [4] as well as reachability, and the other [8, 9] on reducing
dimensionality by working with black or grey box feature extraction and searching for
adversarial examples using a two-player game, where the first player targets the fea-
tures and the second targets pixels within the feature. The game tree is traversed using
Monte Carlo tree search and variants of A* and Alpha-Beta pruning, which produces
successive lower and upper bounds on the maximum safe radius with asymptotic
convergence guarantees.

References

1. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Blockeel, H.,
Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS, vol. 8190, pp. 387–
402. Springer, Heidelberg (2013)

2. Nicholas, C., David, W.: Towards evaluating the robustness of neural networks. In: 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

3. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
CoRR

4. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer,
Cham (2017)

5. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT
solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017)

6. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A: The limitations of
deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and
Privacy (EuroS&P), pp. 372–387. IEEE (2016)

7. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural networks with
provable guarantees. In: International Joint Conference on Artificial Intelligence (2018)

8. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing of deep
neural networks. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805,
pp. 408–426. Springer, Cham (2018)

9. Wu, M., Wicker, M., Ruan, W., Huang, X., Kwiatkowska, M.: A game-based approximate
verification of deep neural networks with provable guarantees. CoRR, abs/1807.03571 (2018)

Safety Verification for Deep Neural Networks with Provable Guarantees XIX

Contents

Reachability Analysis of Nonlinear ODEs Using Polytopic Based Validated
Runge-Kutta . 1

Julien Alexandre dit Sandretto and Jian Wan

The Satisfiability of Word Equations: Decidable and Undecidable
Theories. 15

Joel D. Day, Vijay Ganesh, Paul He, Florin Manea,
and Dirk Nowotka

Left-Eigenvectors Are Certificates of the Orbit Problem 30
Steven de Oliveira, Virgile Prevosto, Peter Habermehl,
and Saddek Bensalem

Constrained Dynamic Tree Networks. 45
Matthew Hague and Vincent Penelle

EXPSPACE-Complete Variant of Countdown Games, and Simulation
on Succinct One-Counter Nets . 59

Petr Jančar, Petr Osička, and Zdeněk Sawa

Revisiting MU-Puzzle. A Case Study in Finite Countermodels
Verification . 75

Alexei Lisitsa

Knapsack in Hyperbolic Groups . 87
Markus Lohrey

Generalized Tag Systems . 103
Turlough Neary and Matthew Cook

Certain Query Answering on Compressed String Patterns: From Streams
to Hyperstreams . 117

Iovka Boneva, Joachim Niehren, and Momar Sakho

Büchi VASS Recognise R1
1-complete x-languages 133

Michał Skrzypczak

Qualitative Reachability for Open Interval Markov Chains 146
Jeremy Sproston

Author Index . 161

Reachability Analysis of Nonlinear ODEs
Using Polytopic Based Validated

Runge-Kutta

Julien Alexandre dit Sandretto1(B) and Jian Wan2

1 U2IS, ENSTA ParisTech, 828 bd des Maréchaux, 91762 Palaiseau, France
alexandre@ensta.fr

2 School of Engineering, University of Plymouth, Plymouth, Devon PL4 8AA, UK
jian.wan@plymouth.ac.uk

Abstract. Ordinary Differential Equations (ODEs) are a general form
of differential equations. This mathematical format is often used to rep-
resent the dynamic behavior of physical systems such as control sys-
tems and chemical processes. Linear ODEs can usually be solved ana-
lytically while nonlinear ODEs may need numerical methods to obtain
approximate solutions. There are also various developments for validated
simulation of nonlinear ODEs such as explicit and implicit guaranteed
Runge-Kutta integration schemes. The implicit ones are mainly based
on zonotopic computations using affine arithmetics. It allows to compute
the reachability of a nonlinear ODE with a zonotopic set as its initial
value. In this paper, we propose a new validated approach to solve non-
linear ODEs with a polytopic set as the initial value using an indirectly
implemented polytopic set computation technique.

1 Introduction

Many scientific applications such as those in mechanics, robotics, chemistry and
electronics require the solution of ordinary differential equations (ODEs). In
the general case, nonlinear ODEs can not be solved analytically and a numerical
integration scheme is used instead to obtain approximate solutions. Nevertheless,
for some applications as in [3,6,9,15], an approximation of the solution is not
sufficient and a bound for the exact solution is mandatorily required.

The problem to be studied here is about the computation of the solution
for the set initial value problem (SIVP) of an autonomous Ordinary Differential
Equation defined as follows:

ẏ = f(y) with y(0) ∈ Y0 and t ∈ [0, tend]. (1)

The function f : Rn → R
n is assumed to be nonlinear, y ∈ R

n is the vector of
state variables, and ẏ is the derivative of y with respect to time t. The function f
is also assumed to be globally Lipschitz in y for Eq. (1) to have a unique solution
under the initial condition y0 [8]. Furthermore, the function f is further assumed
c© Springer Nature Switzerland AG 2018
I. Potapov and P.-A. Reynier (Eds.): RP 2018, LNCS 11123, pp. 1–14, 2018.
https://doi.org/10.1007/978-3-030-00250-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00250-3_1&domain=pdf

2 J. Alexandre dit Sandretto and J. Wan

to be continuously differentiable. Note that the initial value is given as a set,
i.e., there are some bounded uncertainties for the initial value. So the solution
for the corresponding problem is y(t;Y0), which is defined as follows:

y(t;Y0) =
{
y(t;y0) : y0 ∈ Y0

}
.

The solution of Eq. (1) cannot be computed straightforwardly for a general
set Y0. An alternative approach is to bound the set of initial values in a box
Y0 ⊂ [y0] and then to use interval arithmetic to solve the resulting problem:

ẏ = f(y) with y(0) ∈ [y0] and t ∈ [0, tend]. (2)

There exist several approaches to solve the above problem such as those in
[1,2,11–13]. However, the initial set for these approaches is constrained to be
a box and thus these approaches are rather limited in terms of flexibility and
accuracy. In fact, the initial set can also be represented by a zonotopic set, which
has a more flexible shape than a box. Accordingly, zonotopic set computation
has been used instead to solve nonlinear ODEs with a zonotopic set as the initial
set [1,2]. Zonotopic set computation can be implemented using affine arithmetic
[5].

Since polytopes are the most common convex sets restulting from linear
inequalities, it is more often to encounter an ODE with a polytopic set as the
initial set. Unlike zonotopes or boxes, the propagation of a polytopic set for a
nonlinear system cannot be computed directly. Using an indirectly implemented
polytopic set computation technique proposed in [16], the above problem can be
extended naturally to the case of having a polytopic set as the initial set.

The paper is organized as follows. In Sect. 2, the existing validated Runge-
Kutta method with a zonotopic set as the initial value is introduced. In Sect. 3,
the indirectly implemented polytopic set computation technique is described to
extend the existing validated Runge-Kutta method in terms of the shape for the
initial set. Section 4 proposes the extended validated Runge-Kutta method with
a polytopic set as the initial value and two illustrative examples are provided to
demonstrate the main contribution of the paper. Finally, some conclusions are
given in Sect. 5.

Notations. x denotes a real value while x represents a vector of real values. [x]
represents an interval value. An interval [xi] = [xi, xi] defines the set of reals xi

such that xi ≤ xi ≤ xi. IR denotes the set of all intervals while R denotes the
set of real values. The size or the width of [xi] is w([xi]) = xi − xi and m([x])
denotes the center of [x]. A vector of intervals, or a box, [x] is the Cartesian
product of intervals [x1] × . . . × [xi] × . . . × [xn].

2 Zonotopic Based Validated Runge-Kutta

2.1 Initial Value Problem

Runge-Kutta methods can solve the initial value problem (IVP) of non-
autonomous ODEs defined by

ẏ = f(t,y) with y(0) = y0 and t ∈ [0, tend]. (3)

Reachability Analysis of Nonlinear ODE 3

The function f : R×R
n → R

n is called the vector field, y ∈ R
n is called the vector

of state variables, and ẏ denotes the derivative of y with respect to time t. f is
assumed to be globally Lipschitz in y, so Eq. (3) admits a unique solution for a
given initial condition y0 [8]. f is also assumed to be continuously differentiable.
The exact solution of Eq. (3) is denoted by y(t;y0), often called the flow.

2.2 Validated Runge-Kutta

The goal of the numerical solution to Eq. (3) is to compute a sequence of time
instants 0 = t0 < t1 < · · · < tN = tend and a sequence of states y0, . . . , yN

such that ∀� ∈ [0, N], y� ≈ y(t�,y�−1), which is to be obtained by an integration
scheme.

A Runge-Kutta method, starting from an initial value y� at time t� and a
finite time horizon h, the step size, produces an approximation y�+1 at time
t�+1, with t�+1 − t� = h, of the solution y(t�+1;y�). Furthermore, to compute
y�+1, a Runge-Kutta method computes s evaluations of f at predetermined
time instants. The number s is known as the number of stages of a Runge-Kutta
method. More precisely, a Runge-Kutta method is defined by

y�+1 = y� + h

s∑

i=1

biki, (4)

with ki defined by

ki = f

⎛

⎝t� + cih,y� + h
s∑

j=1

aijkj

⎞

⎠ . (5)

The coefficients ci, aij and bi, for i, j = 1, 2, · · · , s, fully characterize the Runge–
Kutta methods, and they are usually synthesized in a Butcher tableau [4] of the
form

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
. . .

...
cs as1 as2 . . . ass

b1 b2 . . . bs

≡ c A
b

.

For example, the Butcher tableau of the well-known RK4 method is given by

0 0 0 0 0
1

2
1
2 0 0 0

1

2 0 1
2 0 0

1 0 0 1 0
1

6

1

3

1

3

1

6

(6)

4 J. Alexandre dit Sandretto and J. Wan

To make Runge-Kutta validated [1], the challenging question is how to com-
pute a bound on the difference between the true solution and the numerical
solution, defined by y(t�;y�−1)−y�. This distance is associated to the local trun-
cation error (LTE) of the numerical method. It has been shown that LTE can
be easily bounded by using the difference between the Taylor series of the exact
and the numerical solutions, which is reduced to be LTE = y(p+1)(t�)− [y(p+1)

�],
that is to say the difference of the (p + 1)th Taylor coefficients, with p the order
of the considered method. This difference has to be evaluated on a specific box,
obtained with the Picard-Lindelöf operator, but this is out of the scope of this
paper, see [1] for more details. For a method with interval coefficients, the LTE
is bounded with guarantee (even over-approximated), which is not the case for
a method with floating-point coefficients. For a validated method, the use of
interval coefficients is therefore a requirement.

The problem of IVPs with the initial value given in a set is to be considered
in this paper. Validated Runge-Kutta approach works well with Interval IVPs
(IIVP), i.e.with y0 ∈ [y0].

2.3 Affine Arithmetic

In order to avoid or to limit the conservativeness from the dependency problem
of intervals, affine arithmetic [5,14] is to be used instead of interval arithmetic
for validated Runga-Kutta. Affine arithmetic can track linear correlations among
state variables. A set of values in this domain is represented by an affine form x̂,
which is a formal expression of the form x̂ = α0+

∑n
i=1 αiεi where the coefficients

αi are real numbers, α0 being called the center of the affine form, and the εi

are formal variables ranging over the interval [−1, 1]. Obviously, an interval a =
[a1, a2] can be represented by the affine form x̂ = α0+α1ε with α0 = (a1+a2)/2
and α1 = (a2 − a1)/2. Moreover, affine forms encode linear dependencies among
variables: if x ∈ [a1, a2] and y is such that y = 2x, then x will be represented by
the affine form x̂ above and y will be represented as ŷ = 2α0 + 2α1ε.

Usual operations on real numbers extend to affine arithmetic in the expected
way. For instance, if x̂ = α0 +

∑n
i=1 αiεi and ŷ = β0 +

∑n
i=1 βiεi, then with

a, b, c ∈ R we have

ax̂ + bŷ + c = (aα0 + bβ0 + c) +
n∑

i=1

(aαi + bβi)εi.

However, unlike the addition, most operations create new noise symbols. Multi-
plication for example is defined by

x̂ × ŷ = α0α1 +
n∑

i=1

(αiβ0 + α0βi)εi + νεn+1,

where ν = (
∑n

i=1 |αi|)×(
∑n

i=1 |βi|) over-approximates the error between the lin-
ear approximation of multiplication and multiplication itself. Example 2.1 illus-
trates the benefit of affine arithmetic.

Reachability Analysis of Nonlinear ODE 5

Example 2.1. Consider again e = x + h × (−x) with h = 0.5 and x = [0, 1]
which is associated to the affine form x̂ = 0.5 + 0.5ε1. Evaluating e with affine
arithmetic without rewriting the expression, we obtain [0, 0.5] as a result. �
Example 2.1 also shows the important role of affine arithmetic when it is com-
bined with numerical integration methods. Most of all, it shows the necessity to
keep track of the linear dependency between state variables in order to reduce
the conservativeness.

Other operations, like sin, exp, are evaluated using either the Min-Range
method or a Chebychev approximation, see [5,14] for more details.

2.4 Zonotopes

Considering m affine forms x̂1, . . . , x̂m, a joint range 〈x̂1, . . . , x̂m〉 ⊂ R
m is

defined as the set of all tuples (x1, . . . , xm) of values compatible with those
affine forms. The set defined by 〈x̂1, . . . , x̂n〉 is the parallel projection on R

m of
the hypercube U

n by the affine map (x̂1, . . . , x̂m). The projection is a zonotope,
a center-symmetric convex polytope in R

m.

2.5 Scheme with Affine Arithmetic

With this affine arithmetic, the initial value can be taken in a zonotope Z0, such
that y0 ∈ Z0 = α0 +

∑n
i=1 αiεi.

Then, after time elapsed h with RK4 scheme:
⎡

⎢
⎢
⎢
⎢
⎣

k1 = f(y0)
k2 = f(y0 + 0.5hk1)
k3 = f(y0 + 0.5hk2)
k4 = f(y0 + hk3)

y(h) = y0 + h(1/6k1 + 1/3k2 + 1/3k3 + 1/6k4) + LTE

(7)

These terms have to be evaluated with affine arithmetic, except the LTE
which is computed with interval arithmetic.

Running Example. Consider the Volterra system given by the following equa-
tion: {

ẏ1 = 2y1(1 − y2)
ẏ2 = −y2(1 − y1)

(8)

with initial conditions: Z0 =
[
1.0
3.0

]
⊕

[
0.04 0.02
0.02 0.02

]
B2.

We integrate one step with h = 0.00245, the computed LTE is then equal to
the box ([−7.6e−13,−4.6e−13]; [3.1e−13, 4.6e−13]) (which is under the chosen
tolerance of 1e−10). Then, with the evaluation of Eq. (7) provides the solution:

y(h) ∈
[
0.9902440
2.9999640

]
⊕

[
0.0395119 0.0197074
0.0202920 0.02014574

]
B2 +

(
[−2e−06, 2e06]
[−2e−06, 2e06]

)

The box added to the zonotope gathers the small noises, compacted to reduce
the number of generators, coming from the nonlinear operations.

6 J. Alexandre dit Sandretto and J. Wan

2.6 If Integration Fails

In validated numerical integration, it can happen that the integration fails.
Often, it is due to the too large LTE compared to the chosen tolerance, or
because the Picard operator itself fails (the existence and uniqueness cannot be
proved, see [1] for details).

In this case, it is common to reduce the step size h. Another method is
the bisection of the initial conditions such that Z0 = Z1

0 ∪ Z2
0 . After that,

two simulations are launched to obtain two solutions such that y(Z0, tf) =
y(Z1

0 , tf) ∪ y(Z2
0 , tf).

This is a recursive approach: if simulation from Z2
0 fails as well, then

y(Z0, tf) = y(Z1
0 , tf) ∪ (y(Z21

0 , tf) ∪ y(Z22
0 , tf)).

Running Example. We reuse the example given in Sect. 2.5. Validated sim-
ulation cannot reach the required solution at tf = 6, and fails at t = 5.783.
The obtained solution is then y(Z0, tf) = ([−∞,∞]; [−∞,∞]) (which is cor-
rect anyway). Using the bisection method presented in Sect. 3, we consider

the two zonotopes described by Z1
0 =

[
0.98
2.99

]
⊕

[
0.02 0.02
0.01 0.02

]
B2, and Z2

0 =
[
1.02
3.01

]
⊕

[
0.02 0.02
0.01 0.02

]
B2. The initial conditions after bisections are given in Fig. 1,

and the results of reachability, after the union, are given in Fig. 2.

3 Polytope Geometry

Polytope is a bounded polyhedron P ⊂ R
n, which can be defined as follows:

P = {x ∈ R
n|Hx � k}, (9)

where H is a matrix of m × n and k is a column vector of dimension m. Basic
polytope manipulations such as the intersection of polytopes and the convex hull
for a union of polytopes are implemented in Multi-Parametric Toolbox [10].

Fig. 1. Initial conditions of running example after one bisection (left) and two bisec-
tions (right).

Reachability Analysis of Nonlinear ODE 7

Fig. 2. Solution at t = 6 of running example after one bisection (left: two zonotopes,
one is fully included in the other one, a box) and two bisections (right: two zonotopes,
the union is the polytope in red). (Color figure online)

It is worthy to note that a zonotope is a centrally symmetric polytope. The
explicit representation of a zonotope or the representation of a zonotope in the
format of a polytope is the zonotope construction problem, which aims to list
all extreme points of a zonotope defined by its line segment generators. The
zonotope construction problem was addressed in [7], where the addition of line
segments was replaced by the addition of polytopes.

3.1 Represent a Polytope Exactly by the Intersection of Zonotopes

As shown in (7), the dynamic evolution of a nonlinear system with a zonotope as
the initial state can be computed directly using affine arithmetic. If the initial set
is a polytope, there is no direct method to compute the dynamic evolution of this
nonlinear system with the polytope as the initial state since its mathematical
format involves inequality constraints. However, a polytope can be represented
exactly by the intersection of zonotopes as proposed in [16]. Once the polytope
P has been represented exactly by the intersection of zonotopes, i.e., P = Z1 ∩
· · ·∩Zn, the dynamic evolution of the nonlinear system with the polytope as the
initial state can be computed as follows:

f(P) = f(Z1 ∩ · · · ∩ Zn) ⊆ f(Z1) ∩ · · · ∩ f(Zn), (10)

where f(Z1), · · · , f(Zn) can be computed using affine arithmetic and the inter-
section of zonotopes can be transformed to be the intersection of the constructed
polytopes.

As explained in [16], the general procedures to represent a polytope P ⊂
R

n exactly by the intersection of zonotopes are: randomly select n inequality
constraints from the pool of all inequality constraints for the polytope and then
to use these n inequality constraints to construct a zonotope with the minimized
volume to contain the polytope until all inequality constraints for the polytope
have been used up.

8 J. Alexandre dit Sandretto and J. Wan

3.2 Bisect a Polytope

Similar to the bisection of a zonotope in case of failed integration, the initial
set of a polytope can also be bisected into two sub-polytopes. Any line passing
through the Chebyshev center of the polytope can be used to bisect the polytope.
Taking the following 2-D polytope in Fig. 3 as an example, it has been bisected
into two sub-polytopes by a line passing through its Chebyshev center.

0 1 2 3 4 5
0

1

2

3

4

5

x1

x 2

Fig. 3. The bisection of a polytope

4 Nonlinear ODE Reachability of Polytopes

In this section, the main contribution of the presented paper is described.

4.1 Principle

The procedures of the proposed approach involve geometric operations on poly-
topes such as the bisection of a polytope, the representation of a polytope by
the intersection of zonotopes, the intersection of polytopes as well as the convex
hull for a union of polytopes. The nonlinear ODE reachability with a polytope
as the initial state can be computed by the following three steps:

– Represent the resulting polytope Pi at each step exactly by the intersection
of m zonotopes: Z1, · · · , Zm;

– Compute the evolution of these m zonotopes Z1, · · · , Zm (if any integration
fails, either bisect the relevant zonotope or return to the previous step to
bisect the polytope);

– Compute the intersection of these m solutions of the ODE at time T so as to
obtain the renewed polytope Pi+1;

– Return to the first step;

Reachability Analysis of Nonlinear ODE 9

If the bisection of a zonotope or polytope is needed, the convex hull for the
union of the bisected individual solutions is used instead to update the polytope
Pi at each step. To guarantee that the algorithm terminates, under a given
threshold on the volume of the zonotopes, the bisection is not performed, and
the reachability cannot be computed.

4.2 Examples

In this section, two examples are presented to show the results of our approach.

Circle. The first example is the circle system. This latter is well-known and often
used to demonstrate the robustness of an integration method to the wrapping
effect.

Problem and Initial Conditions:
The problem is defined by the following equation:

{
ẏ1 = −y2
ẏ2 = y1

(11)

The initial condition is taken in a polytope given by the five vertices (−1,−3),
(−1.5, 3), (0, 6), (1.5, 4), and (1,−4). Covered by the three zonotopes:

Z1 =
[
0.1957
1.1522

]
⊕

[−1.6087 −0.4130
0.8043 4.9565

]
B2, Z2 =

[
0.25
0.5

]
⊕

[−1.8 1.55
2.4 3.1

]
,

and Z3 =
[−0.1538

1.0385

]
⊕

[−1.3558 0.2981
1.8077 4.7692

]
(Fig. 4).

Fig. 4. Initial conditions of circle problem

Integration. The problem consists on computing the set of solution of the IVP
at time tf = 50. The RK4 method is used, with a tolerance of 1e−10. The IVP is
solved with the three previous zonotopes as initial conditions (Fig. 5). The IVP
is also solved starting from the hull (box) of the polytope, because this is a com-
mon approach. The results are: the polytope obtained by the intersection of the
solutions (zonotopes), the zonotope computed from the hull and the intersection
of these two solutions (Fig. 6).

10 J. Alexandre dit Sandretto and J. Wan

Fig. 5. Circle solution from t = 0 to t = 50 given in the form of a list of boxes.

Fig. 6. Circle at t = 50: in black the three zonotopes, in red the polytope (left); and
in black the zonotope obtained by the integration from the hull of the initial polytope,
compared to the polytope (right). (Color figure online)

Discussion. In order to discuss the results, the volumes are computed and given
in Table 1. The results show that our approach is efficient and better than the
hull approach in terms of a smaller volume. It is also apparent that our solver
is stable and robust against wrapping effect (important in the circle problem).
This claim can be deduced by the fact that the volume of final set is close to the
initial one. Finally, the intersection of the solution obtained from the polytope
and the one obtained from the hull gives even a sharper result.

Volterra. The second example is the Volterra system. This latter is well-known
and often used to demonstrate the efficiency of an integration method (alterna-
tion of contractive and dispersive parts).

Problem and Initial Conditions. The problem is defined by the following equa-
tion: {

ẏ1 = 2y1(1 − y2)
ẏ2 = −y2(1 − y1)

(12)

Reachability Analysis of Nonlinear ODE 11

Table 1. Results in term of volume of the circle problem.

Initial polytope (IP) 21.25

Initial hull (IH) 30

Polytope (P) from IP 22.5046

Zonotope (Z) from IH 27.9348

Intersection of P and Z 21.8109

The initial condition is taken in a polytope given by the eight
vertices (1.1035, 3.0457), (1.1041, 3.0386), (1.0981, 3.0366), (1.1039, 3.0358),
(1.0983, 3.0339), (1.1020, 3.0320), (1.0989, 3.0498) and (1.0995, 3.0510). Covered
by the three zonotopes:

Z1 =
[
1.1007
3.0422

]
⊕

[−0.0032 −0.0008
0.0016 0.0099

]
B2, Z2 =

[
1.1000
3.0400

]
⊕

[−0.0036 0.0031
0.0048 0.0062

]
,

and Z3 =
[
1.1012
3.0395

]
⊕

[−0.0027 0.0006
0.0036 0.0095

]
(Fig. 7).

Fig. 7. Initial conditions of volterra problem

Integration. The problem consists on computing the set of solution of the IVP
at time tf = 6. The experimentation is the same than for the previous example
(solution in Figs. 8 and 9).

Discussion. As for the first example, the volumes are computed and given in
Table 2.

For this problem, as for the previous one, the polytopic approach is better in
term of volume, than the zonotopic approach. However, there is also an interest
to compute the solution with the both manner and to intersect the obtained
results.

12 J. Alexandre dit Sandretto and J. Wan

Fig. 8. Volterra solution

Fig. 9. Volterra problem at t = 6: in black the three zonotopes, in red the polytope
(left); and in black the zonotope obtained by the integration from the hull of the initial
polytope, compared to the polytope (right). (Color figure online)

Table 2. Results in term of volume of the Volterra problem.

Initial polytope (IP) 8.2505e−05

Initial hull (IH) 1.14e−04

Polytope (P) from IP 3.2273e−04

Zonotope (Z) from IH 5.8018e−04

Intersection of P and Z 3.0337e−04

5 Conclusion

In this paper, an approach to compute the reachability of nonlinear ODE with a
polytopic set as the initial set is presented for the first time. Our method is based
on the zonotopic representation of polytopes and on the zonotopic Runge-Kutta
validated method. It has been shown through two well-known examples that our
approach is efficient and robust with reduced wrapping effect. The volumes of the
computed sets have been computed so as to validate this claim. The presented
method is interesting in the field of hybrid systems, for example to compute

Reachability Analysis of Nonlinear ODE 13

the reachable sets as a linear program with polytopes. This method is then
highly promising as a new approach for hybrid systems reachability. Moreover,
the polytopic based Runge-Kutta allows one to propagate a set of inequalities
(where the solution is a polytope) through a differential equation so as to obtain
a novel set of inequalities (defining the polytope solution).

Acknowledgement. The second author was grateful for the financial support from
the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under
Grant EP/R005532/1.

References

1. Alexandre dit Sandretto, J., Chapoutot, A.: Validated explicit and implicit Runge-
Kutta methods. Reliab. Comput. Electron. Ed. 22, 78–108 (2016)

2. Bouissou, O., Chapoutot, A., Djoudi, A.: Enclosing temporal evolution of dynam-
ical systems using numerical methods. In: Brat, G., Rungta, N., Venet, A. (eds.)
NFM 2013. LNCS, vol. 7871, pp. 108–123. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38088-4 8

3. Bouissou, O., Goubault, E., Putot, S., Tekkal, K., Vedrine, F.: HybridFluctuat: a
static analyzer of numerical programs within a continuous environment. In: Boua-
jjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 620–626. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 46

4. Butcher, J.C.: Coefficients for the study of Runge-Kutta integration processes. J.
Aust. Math. Soc. 3, 185–201 (1963)

5. de Figueiredo, L.H., Stolfi, J.: Self-validated numerical methods and applications.
In: Brazilian Mathematics Colloquium Monographs, IMPA/CNPq (1997)

6. Eggers, A., Ramdani, N., Nedialkov, N., Fränzle, M.: Improving SAT modulo ODE
for hybrid systems analysis by combining different enclosure methods. In: Barthe,
G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 172–187.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24690-6 13

7. Fukuda, K.: From the zonotope construction to the minkowski addition of convex
polytopes. J. Symb. Comput. 38(4), 1261–1272 (2004). Symbolic Computation in
Algebra and Geometry

8. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I:
Nonstiff Problems, 2nd edn. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-540-78862-1

9. Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond HyTech:
hybrid systems analysis using interval numerical methods. In: Lynch, N., Krogh,
B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 130–144. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-46430-1 14

10. Kvasnica, M., Grieder, P., Baotić, M.: Multi-Parametric Toolbox (MPT) (2004)
11. Lohner, R.J.: Enclosing the solutions of ordinary initial and boundary value prob-

lems. In: Computer Arithmetic, pp. 255–286 (1987)
12. Moore, R.: Interval Analysis. Prentice Hall, Upper Saddle River (1966)
13. Nedialkov, N.S., Jackson, K., Corliss, G.: Validated solutions of initial value prob-

lems for ordinary differential equations. Appl. Math. Comp. 105(1), 21–68 (1999)
14. Rump, S.M., Kashiwagi, M.: Implementation and improvements of affine arith-

metic. In: Nonlinear Theory Applications, IEICE, vol. 6, no. 3, pp. 341–359 (2015)

https://doi.org/10.1007/978-3-642-38088-4_8
https://doi.org/10.1007/978-3-642-38088-4_8
https://doi.org/10.1007/978-3-642-02658-4_46
https://doi.org/10.1007/978-3-642-24690-6_13
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1007/3-540-46430-1_14

14 J. Alexandre dit Sandretto and J. Wan

15. Tucker, W.: A rigorous ode solver and smale’s 14th problem. Found. Comput.
Math. 2(1), 53–117 (2002)

16. Wan, J., Sharma, S., Sutton, R.: Guaranteed state estimation for nonlinear
discrete-time systems via indirectly implemented polytopic set computation. IEEE
Trans. Autom. Control (2019). https://doi.org/10.1109/TAC.2018.2816262

https://doi.org/10.1109/TAC.2018.2816262

The Satisfiability of Word Equations:
Decidable and Undecidable Theories

Joel D. Day1(B), Vijay Ganesh2, Paul He2, Florin Manea1, and Dirk Nowotka1

1 Kiel University, Kiel, Germany
{jda,flm,dn}@informatik.uni-kiel.de

2 University of Waterloo, Waterloo, Canada
vijay.ganesh@uwaterloo.ca, paul.he@edu.uwaterloo.ca

Abstract. The study of word equations is a central topic in mathemat-
ics and theoretical computer science. Recently, the question of whether
a given word equation, augmented with various constraints/extensions,
has a solution has gained critical importance in the context of string
SMT solvers for security analysis. We consider the decidability of this
question in several natural variants and thus shed light on the bound-
ary between decidability and undecidability for many fragments of the
first order theory of word equations and their extensions. In particular,
we show that when extended with several natural predicates on words,
the existential fragment becomes undecidable. On the other hand, the
positive Σ2 fragment is decidable, and in the case that at most one ter-
minal symbol appears in the equations, remains so even when length
constraints are added. Moreover, if negation is allowed, it is possible to
model arbitrary equations with length constraints using only equations
containing a single terminal symbol and length constraints. Finally, we
show that deciding whether solutions exist for a restricted class of equa-
tions, augmented with many of the predicates leading to undecidability
in the general case, is possible in non-deterministic polynomial time.

Keywords: Word equations · Decidability · Satisfiability

1 Introduction

A word equation is a formal equality U = V , where U and V are words (called
the left and right side of the equation respectively) over an alphabet A∪X; A =
{a, b, c, . . .} is the alphabet of constants or terminals and X = {x1, x2, x3, . . .}
is the set of variables. A solution to the equation U = V is a morphism h :
(A ∪ X)∗ → A∗ that acts as the identity on A and satisfies h(U) = h(V); h is
called the assignment to the variables of the equation. For instance, U = x1abx2

and V = ax1x2b define the equation x1abx2 = ax1x2b, whose solutions are the
morphisms h with h(x1) = ak, for k ≥ 0, and h(x2) = b�, for � ≥ 0. An equation
is satisfiable (in A∗) if it admits a solution h : (A∪X)∗ → A∗. A set (or system)
of equations is satisfiable if there exists an assignment of the variables of the

c© Springer Nature Switzerland AG 2018
I. Potapov and P.-A. Reynier (Eds.): RP 2018, LNCS 11123, pp. 15–29, 2018.
https://doi.org/10.1007/978-3-030-00250-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00250-3_2&domain=pdf

16 J. D. Day et al.

equations in this set that is a solution for all equations. In logical terms, word
equations are often investigated as fragments of the first order theory FO(A∗, ·) of
strings. Karhumäki et al. [18] showed that deciding the satisfiability of a system
of word equations, that is, checking the truth of formulas from the existential
theory Σ1 of FO(A∗, ·), can be reduced to deciding the satisfiability of a single
(more complex) word equation that encodes the respective system.

The existential theory of word equations has been studied for decades in
mathematics and theoretical computer science with a particular focus on the
decidability of the satisfiability of logical formulae defined over word equations.
Quine [28] proved in 1946 that the first-order theory of word equations is equiv-
alent to the first-order theory of arithmetic, which is known to be undecidable.
In order to solve Hilbert’s tenth problem in the negative [14], Markov later
showed a reduction from word equations to Diophantine equations (see [21,22]
and the references therein), in the hopes that word equations would prove to be
undecidable. However, Makanin [22] proved in 1977 that the satisfiability of word
equations is in fact decidable. Though Markov’s approach was unsuccessful, sim-
ilar ones, based on extended theories of word equations, can also be explored.
Matiyasevich [25] showed in 1968 a reduction from the more powerful theory of
word equations with linear length constraints (i.e., linear relations between word
lengths) to Diophantine equations. Whether this theory is decidable remains a
major open problem. More than a decade after Makanin’s decidability result,
the focus shifted towards identifying the complexity of solving word equations.
Plandowski [27] showed in 1999 that this problem is in PSPACE. Recently, in a
series of papers (see specifically e.g., [15,16]), Jez applied a new technique called
recompression to word equations. This lead to, ultimately, a proof that the sat-
isfiability of word equations can be decided in linear space. However, there is a
mismatch between this upper bound and the known lower bound: solving word
equations is NP-hard, but whether the problem is NP-complete remains open.

In recent years, deciding the satisfiability of systems of word equations has
also become an important problem in fields such as formal verification and secu-
rity where string solvers such as HAMPI [19], CVC4 [3], Stranger [31], ABC [2],
Norn [1], S3P [29] and Z3str3 [4] have become more popular. However, in prac-
tice more functionality than just word equations is required, so solvers often
extend the theory of word equations with certain functions (e.g., linear arith-
metic over the length, replace-all, extract, reverse, etc.) and predicates (e.g.,
numeric-string conversion predicate, regular-expression membership, etc.). Most
of these extensions are not expressible by word equations, in the sense introduced
by Karhumäki et al. [18], and some of them lead to undecidable theories. On the
one hand, regular (or rational) constraints or constraints based on involutions
(allowing to model the mirror image, or, when working with equations in free
groups, inverse elements), are not expressible, see [6,18], but adding them to
word equations preserves the decidability [8]. As mentioned above, whether the
theory of word equations enhanced with a length function is decidable is still
a major open problem. On the other hand, the satisfiability of word equations
extended with a replace-all operator was shown to be undecidable in [20], and

The Satisfiability of Word Equations: Decidable and Undecidable Theories 17

the same holds when a numeric-string conversion predicate is added. Due to
this very complex and fuzzy picture, none of the solvers mentioned above has a
complete algorithm.

Our Contributions: In this setting, our work aims to provide a better understand-
ing of the boundary between extensions and restrictions of the theory of word
equations for which satisfiability is decidable and, respectively, undecidable.

Firstly, we present a series of undecidability results for the Σ1-fragment of
FO(A∗, ·) extended with simple predicates or functions. In the main result on
this topic, we show that extending Σ1 with constraints imposing that a string
is the morphic image of another one also leads to an undecidable theory. These
results are related to the study of theories of quantifier-free word equations
constrained by very simple relations, see, e.g., [6,13]. While our results do not
settle the decidability of the theory of word equations with length constraints,
they enforce the intuitive idea that enhancing the theory of word equations with
predicates providing very little control on the combinatorial structure of the
solutions of the equation leads to undecidability.

We further explore the border between decidability and undecidability when
considering formulae over word equations allowing at most one quantifier alter-
nation. We show that checking the truth of an arbitrary Σ2-formula is equiva-
lent to, on the one hand, checking the truth of a ∃∗∀∗-quantified terminal-free
formula, or, on the other hand, to a single ∃∗∀∗-quantified inequation whose
sides contain at most two terminals. Since the Inclusion of Pattern Languages
problem (see [5,11,17]) can be reformulated as checking the truth of a single
∃∗∀∗-quantified inequation whose sides contain at most two terminals and are
variable disjoint, and it is undecidable, we obtain a clear image of the simplest
undecidable classes of Σ2-formulae. Consequently, we consider decidable cases.
Complementary to the above, we show that the satisfiability in an arbitrary free
monoid A∗ of quantifier free positive formulae over word equations (formulae
obtained by iteratively applying only conjunction and disjunction to word equa-
tions of the form U = V), in which we have at most one terminal a ∈ A (appear-
ing zero or several times) and no restriction on the usage of variables, enhanced
with linear length constraints, is decidable, and, moreover, NP-complete. The
decidability is preserved when considering positive Σ2-formulae of this kind, as
opposed to the case of arbitrary Σ2 terminal-free formulae, mentioned above.
Moreover, if we allow negated equations in the quantifier-free formulae (so arbi-
trary Σ1-formulae) with at most one terminal, and length constraints, we obtain
a decidable theory if and only if the general theory of equations with length
constraints is decidable. Putting together these results, we draw a rather precise
border between the decidable and undecidable subclasses of the Σ2-fragment
over word equations, defined by restrictions on the number of terminals allowed
to occur in the equations and the presence or absence of inequations. As a corol-
lary, we can show that deciding the truth of arbitrary formulae from the positive
Σ2-fragment of FO(A∗, ·) (i.e., ∃∗∀∗ quantified positive formulae), without length
constraints, is decidable. The resulting proof follows arguments partly related
to those in [9,23]. This result is strongly related to the work of [10,12,28], in

18 J. D. Day et al.

which it was shown that the validity of sentences from the positive Π2-fragment
of FO(A∗, ·) (i.e., where the quantifier alternation was ∀∗∃∗) is undecidable, as
well as to the results of [30] in which it was shown that the truth of arbitrarily
quantified positive formulae over word equations is decidable over an infinite
alphabet of terminals.

We then extend our approach in a way partly motivated by the practical
aspects of solving word equations. Most equations that can be successfully solved
by string solvers (e.g., Z3str3) must be in solved form [12], or must not contain
overlapping variables [32]. In a sense, this suggests that in practice it is inter-
esting to find equations with restricted form that can be solved in reasonable
time. We analyse, from a theoretical point of view, one of the simplest classes
of equations that are not in solved form or contain equations with overlapping
variables, namely strictly regular-ordered equations (each variable occurs exactly
once in each side, and the order in which the variables occur is the same). We
show that the satisfiability of such equations, even when enhanced with various
predicates, is decidable. In particular we show that when extended with regu-
lar constraints (given by DFAs), linear length constraints, abelian equivalence
constraints (two variables should be substituted for abelian-equivalent words),
subword constraints (one variable should be a (scattered) subword of another),
and Eqa constraints (two variables should have the same number of occurrences
of a letter a), the satisfiability problem remains NP-complete. Thus, there is
hope that they can be solved reasonably fast by string solvers based on, e.g.,
SAT-solvers. This line of results is also related to the investigations initiated in
[7,24], in which the authors were interested in the complexity of solving equa-
tions of restricted form. In the most significant result of [7], it was shown that
deciding the satisfiability of strictly regular-ordered equations (with or without
regular constraints) is NP-complete, which makes this class of word equations
one of simplest known classes of word equations that are hard to solve. Although
these results regard a very restricted class of equations, they might provide some
insights in tackling harder classes, such as, e.g., quadratic equations.

The organization of the paper is as follows. In Sect. 2 we introduce the basic
notions we use. In Sect. 3, we present firstly the undecidability results related to
theories over word equations extended with various simple predicates, secondly
the undecidability and decidability results related to quantifier alternation, and
thirdly, we present the results related to strictly regular-ordered equations. Due
to space constraints, some proofs are omitted, or only briefly sketched.

2 Preliminaries

Let N be the set of natural numbers, and let N≤n be the set {1, 2, . . . , n}. Let
A be an alphabet of letters (or symbols). Let A∗ be the set of all words over
A and ε be the empty word. Note that A∗ is a monoid w.r.t. the concatenation
of words. Let |w| denote the length of a word w and for each a ∈ A, let |w|a
denote the number of occurrences of a in w. For 1 ≤ i ≤ |w| we denote by w[i]
the letter on the ith position of w. A word w is p-periodic for p ∈ N (p is called

The Satisfiability of Word Equations: Decidable and Undecidable Theories 19

a period of w) if w[i] = w[i + p] for all 1 ≤ i ≤ |w| − p; the smallest period of a
word is called its period. If w = v1v2v3 for some words v1, v2, v3 ∈ A∗, then v1 is
called a prefix of w, v1, v2, v3 are factors of w, and v3 is a suffix of w. Two words
w and u are called conjugate if there exist non-empty words v1, v2 such that
w = v1v2 and u = v2v1. A word v ∈ A∗ is a subword of w ∈ A∗ if v = v1 . . . vk,
with vi ∈ A∗, and w = u0v1u1 · · · vkuk, with ui ∈ A∗. A word z ∈ A∗ is in the
shuffle of u, v ∈ A∗, denoted z ∈ uΔv, if z = u1v1 · · · ukvk, with ui, vi ∈ A∗,
and u = u1 · · · uk, v = v1 · · · vk. Two words u, v ∈ A∗ are abelian equivalent if
|u|a = |v|a, for all a ∈ A. The following lemma is well known (see, e.g., [21]).

Lemma 1 (Commutativity Equation). Let v1, v2 ∈ A∗. Then v1v2 = v2v1
if and only if there exist w ∈ A∗ and p, q ∈ N0 such that v1 = wp and v2 = wq.

Let A = {a, b, c, . . .} be a finite alphabet of constants and let X =
{x1, x2, . . .} be an alphabet of variables. Note that we assume X and A are
disjoint, and unless stated otherwise, that |A| ≥ 2. A word α ∈ (A ∪ X)∗

is usually called a pattern. For a pattern α and a letter z ∈ A ∪ X, let |α|z
denote the number of occurrences of z in α; var(α) denotes the set of variables
from X occurring in α. A morphism h : (A ∪ X)∗ → A∗ with h(a) = a for
every a ∈ A is called a substitution. A morphism h : A∗ → B∗ is a projec-
tion if h(a) ∈ {ε, a} for all a ∈ A. We say that α ∈ (A ∪ X)∗ is regular if, for
every x ∈ var(α), we have |α|x = 1; e. g., ax1ax2cx3x4b is regular. Note that
L(α) = {h(α) | h is a substitution} (the pattern language of α) is regular when
α is regular.

A (positive) word equation is a tuple (U, V) ∈ (A ∪ X)∗ × (A ∪ X)∗; we
usually denote such an equation by U = V , where U is the left hand side (LHS,
for short) and V the right hand side (RHS) of the equation. A negative word
equation, or inequation, is the negation of a word equation, i.e., ¬(U = V) or
U 	= V .

A solution to an equation U = V (resp., U 	= V), over an alphabet A,
is a substitution h mapping the variables of UV to words from A∗ such that
h(U) = h(V) (respectively, h(U) 	= h(V)); h(U) is called the solution word.
Note that we might ask whether a positive or negative equation has a solution
over an alphabet larger than the alphabet of terminals that actually occur in the
respective equation. A word equation is satisfiable over A if it has a solution over
A, and the satisfiability problem is to decide for a given word equation whether
it is satisfiable over a given alphabet A.

Karhumäki et al. [18] have shown that, given two equations E and E′, one
can construct the equations E1, E2, and E3 that are satisfiable in A∗, with
|A| ≥ 2, if and only if E ∧ E′, E ∨ E′, ¬E are satisfiable respectively in A∗. In
this construction, E1 contains exactly the variables of E and E′, while in E2

and E3 new variables are added with respect to those in the given equations;
in all cases, even if E and E′ were terminal-free, the new equations contain
terminals. We use this result to show that for every quantifier-free first order
formula over word equations we can construct a single equation that may contain
extra variables and terminals, and is satisfiable if and only if the initial formula
was satisfiable. Moreover, the values the variables of the initial equations may

20 J. D. Day et al.

take in the satisfying assignments of the new equation are exactly the same
values they took in the satisfying assignments of the initial formula. We also use
in several occasions the following result from [18].

Lemma 2. Let U, V, U ′, V ′ ∈ (X ∪ A)∗, Z1 =UaU ′UbU ′, Z2 =V aV ′V bV ′. For
any substitution h : X∗ →A∗, h(Z1)=h(Z2) iff h(U)=h(V) and h(U ′)=h(V ′).

In this paper we address equations with restricted form. A word equation
U = V is regular if both U and V are regular patterns. We call a regular
equation ordered if the order in which the variables occur in both sides of the
equation is the same; that is, if x and y are variables occurring both in U
and V , then x occurs before y in U if and only if x occurs before y in V .
Moreover, we say a regular-ordered equation is strict if each variable occurs in
both sides. For instance x1ax2x3b = x1ax2bx3 is strictly regular-ordered while
x1a = x1x2 is regular-ordered (but not strictly since x2 occurs only on one side)
and x1ax3x2b = x1ax2bx3 is regular but not regular-ordered.

In Sect. 3.3 we also consider equations with regular and linear length con-
straints defined as follows. Given a word equation U = V , a set of linear length
constraints is a system θ of linear Diophantine equations where the unknowns
correspond to the lengths of possible substitutions of each variable x ∈ X. More-
over, given a variable x ∈ X, a regular constraint is, in this paper, a regular
language Lx given by a finite automaton; more general types of regular con-
straints, imposing that the image of a variable belongs to more than one lan-
guage, are sometimes used (see [8] and the references therein). The satisfiability
of word equations with linear length and/or regular constraints is the question of
whether a solution h exists satisfying the system θ and/or such that h(x) ∈ Lx

for each x ∈ X.

3 Results

3.1 Undecidability Results

In this section, we show the undecidability of various extensions of the existential
theory of word equations, defined as binary and 3-ary relations which may easily
be interpreted as predicates. In each case, undecidability is ultimately obtained
by showing that, for a unary-style encoding of integers following [6] (where a
number is represented using the length of a string in the form a∗b, so ε is 0,
b is 1, etc.), the additional predicate(s) can be used to define a multiplication
predicate Multiply(x, y, z) which decides for numbers i, j, k encoded in this way
(i.e., x = ai−1b, y = aj−1b, z = ak−1b), whether k = ij. Since a corresponding
addition predicate can easily be modelled for this encoding using only word
equations, undecidability follows immediately.

Definition 1. Let AbelianEq, MorphIm, Projection, Subword ⊂ A∗ × A∗ and
Shuffle, Insert, Erase ⊂ A∗ × A∗ × A∗ be the relations given by:

– (x, y) ∈ AbelianEq iff x and y are abelian-equivalent,

The Satisfiability of Word Equations: Decidable and Undecidable Theories 21

– (x, y) ∈ MorphIm iff there exists a morphism h :A∗ →A∗ such that h(x) = y,
– (x, y) ∈ Projection iff there exists a projection π :A∗ →A∗ such that π(x) = y,
– (x, y) ∈ Subword iff x is a (scattered) subword of y.
– (x, y, z) ∈ Shuffle iff z ∈ xΔy,
– (x, y, z) ∈ Erase iff z is obtained from x by removing some occurrences of y,
– (x, y, z) ∈ Insert iff z is obtained from x by inserting some occurrences of y.

For each of the above relations we can also define a predicate with the same name
which returns true iff the tuple of arguments belongs to the relation.

The membership problems for all the above relations are in NP, and therefore
decidable. Our main result of this section concerns the MorphIm predicate:

Theorem 1. Let |A| ≥ 3. Then given the predicate MorphIm, the predicate
Multiply is definable by an existential formula.

Proof. Assume that A contains at least three distinct letters: a, b, c. We shall
actually define a predicate Multiply2(x, y, z) which returns true iff x = aib, y =
ajb, z = aijb and ij ≥ 2. Note that we can immediately obtain Multiply from
this, as Multiply(x, y, z) = Multiply2(ax, ay, az) for x, y, z 	= ε (assuming also
x = y = z = b does not hold). The exceptional cases, when ij < 2 can easily
be handled individually. We define first a predicate checking some ‘initial condi-
tions’:

init(x, x′, x′′, y, y′, z, z′) :=∃w,w′, w′′.x′ =wa ∧ y′ =w′a ∧ (x′ =w′′aa∨y′ =w′′aa)
∧ x′a = ax′ ∧ y′a = ay′ ∧ z′a = az′ ∧ x=x′b ∧ y=y′b ∧ z = z′b ∧ x′′x=xx′′.

Recalling Lemma 1, it is straightforward to see that init evaluates to true if and
only if there exist i, j, k, �, p ∈ N0 with ij ≥ 2 such that (1) x′ = ai, y′ = aj ,
z′ = ak, and (2) x = aib, y = ajb, z = akb, and (3) x′′ = (aib)p. Now we give
the definition of Multiply2 as follows:

Multiply2(x, y, z) :=∃x′, x′′, y′, z′, u, v. init(x, x′, x′′, y, y′, z, z′) ∧ MorphIm(x′′, y′)

∧ MorphIm(y′, x′′) ∧ MorphIm(u, v) ∧ u = x′′
ccx′′x′

ccb ∧ v = z′
ccz′x′

cc.

Suppose that Conditions (1)–(3) are met (i.e., init is satisfied). Consider the
subclause MorphIm(x′′, y′)∧MorphIm(y′, x′′). This is satisfied if and only if there
exist morphisms g, h : A∗ → A∗ such that g((aib)p) = aj and h(aj) = (aib)p.
Clearly, the latter implies that p is a multiple of j, while the former implies that j
is a multiple of p, and hence if both are satisfied then j = p. On the other hand, if
j = p, then it is easy to construct such morphisms (g maps b to a and a to ε while
h maps a to aib). Thus this subclause is satisfied in addition to the init predicate
if and only if Conditions (1)–(3) hold for p = j. By elementary substitutions,
the remaining part (i.e., MorphIm(u, v)∧u = x′′ccx′′x′ccb ∧ v = z′ccz′x′cc) is
also satisfied if and only if u = (aib)jcc(aib)jaiccb, and v = (akccak+icc).
It remains to show that there exists a morphism f : A∗ → A∗ such that
f(u) = v if and only if k = ij. In the case that k = ij, the morphism
f may be given e.g. by f(a) = a, f(b) = ε and f(c) = c. For the other

22 J. D. Day et al.

direction, assume that such a morphism f exists. Firstly, consider the case
that f(c) ∈ {a, b}∗. Then c must occur in f(a) or f(b). However, under our
assumption that ij ≥ 2, this implies |f(u)|c > 4 meaning f(u) 	= v which is
a contradiction. Consequently, we may infer that f(c) contains the letter c.
Then since |u|c = |v|c, it follows that f(c) = v1cv2 where v1, v2 ∈ {a, b}∗.
Thus f(u) = f((aib)j)v1cv2v1cv2f((aib)j)aiv1cv2v1cv2f(b). It follows that
v1 = v2 = ε, and thus that f(b) = ε. Hence, f(aij) = ak and f(aij+i) = ak+i

must hold. Clearly, f(a) = an for some n ∈ N. Thus we have nij = k and
nij + ni = k + i. Hence, n = 1 and k = ij, as required. �

Unlike for the other predicates below, our construction for MorphIm relies
strictly on the alphabet A having at least three letters. This is in particular
contrast to many other results on the (un)decidability theories of word equa-
tions which are usually independent of alphabet size (provided |A| 	= 1). Thus
we consider it to be of particular interest to settle the remaining open case of
whether Theorem 1 holds also for binary alphabets A.

As previously mentioned, further to the predicate MorphIm, many other
natural predicates dealing with basic properties and relationships of words lead
to undecidability. The following result concerns the remaining predicates listed
in Definition 1, and it is obtained by reducing to predicates Onlyas(x, y) and
Onlybs(x, y) which return true if and only if y = a|x|a (respectively, y = b|x|b).
Büchi and Senger [6] show how these predicates can easily be used to model
multiplication, and thus undecidability follows.

Proposition 1. Given any of the predicates AbelianEq, Shuffle, Projection,
Subword, Insert, Erase, the predicates Onlyas and Onlybs are definable by exis-
tential formulas.

The next theorem sums up the consequences of Proposition 1 and Theorem 1.

Theorem 2. The existential theory of word equations becomes undecidable when
augmented with any of the following predicates: AbelianEq, Shuffle, Projection,
Subword, MorphIm (if |A| ≥ 3), Insert, Erase.

3.2 Quantifier Alternation

Next, we focus on extending the existential theory of word equations by allowing,
instead of new predicates, quantifier alternation.

Firstly, recall the Inclusion of Pattern Languages problem (IPL, for short,
see [5,17]): given two patterns α ∈ (A ∪ X)∗ and β ∈ (A ∪ Y)∗, where A is an
alphabet of constants with at least two distinct letters and X and Y are disjoint
sets of variables, decide whether L(α) ⊆ L(β). IPL admits a reformulation in
terms of word equations: decide whether the formula ∃x1, . . . , xn.∀y1, . . . , ym.α 	=
β holds in A∗. As IPL is undecidable for terminal alphabets of size 2 or
more [5,11], it immediately follows that checking the truth value of ∃∗∀∗-
quantified inequation U 	= V in A∗, with |A| ≥ 2, is undecidable even when

The Satisfiability of Word Equations: Decidable and Undecidable Theories 23

U and V do not contain any common variable, as long as the number of termi-
nals occurring in UV is at least two. This exhibits a very simple fragment of Σ2

that is undecidable.
Further, we show two normal form results for the Σ2-fragment of FO(A∗, ·).

Proposition 2. Let A 	= ∅ be an alphabet. For every formula φ in the Σ2-
fragment of FO(A∗, ·) we can construct a Σ2 terminal-free formula ψ, which
holds in A∗ iff φ holds in A∗.

Proposition 3. Let A be an alphabet, |A| ≥ 2. For every formula φ in the
Σ2-fragment of FO(A∗, ·) we can construct ψ = ∃x1, . . . , xn.∀y1, . . . , ym.U 	= V,
with U, V ∈ (A ∪ {x1, . . . , xn, y1, . . . , ym})∗, such that φ holds in A∗ if and only
if ψ holds in A∗.

Note that Proposition 3 does not follow directly by applying the results
of [18] to the initial arbitrary formula, in order to reduce it to a single equa-
tion. This would have lead to an ∃∗∀∗∃∗-quantified positive equation, so not to
a Σ2-formula.

The results in Propositions 2 and 3 as well as the remarks regarding IPL show
that it is undecidable to check whether some very simple formulae hold in A∗,
when |A| ≥ 2. Also, it is worth noting that applying first Proposition 2 and then
Proposition 3 to an arbitrary Σ2-formula would lead to a single ∃∗∀∗-quantified
inequation which contains two terminals, as the constructions in [18] (used in the
proof of Proposition 3) require at least two terminals in the equation. However,
unlike the inequations encoding IPL instances, the one we obtain by applying
our two propositions does not necessarily fulfil the condition that its sides are
variable disjoint. Thus, it is natural to ask whether every Σ2-formula can be
reduced to an inequation encoding an instance of IPL. We conjecture that the
answer to this question is no.

We have showed that deciding whether a Σ2-formula, whose sides contain
two terminals, holds in A∗ for some |A| ≥ 2 is undecidable. It is possible to show
that, when |A| ≥ 2, for every word equation (which can encode any formula
from the Σ1-fragment of FO(A∗, ·), by [18]) we can construct a word equation
whose sides contain exactly two terminals a and b, and whose solutions over
{a, b} bijectively correspond to the solutions of the initial equation. Thus, solving
a word equation whose sides contain two terminals is as complex as solving
arbitrary word equations.

Hence, we will investigate next which is the case of Σ1 and Σ2-formulae
over word equations whose sides contain at most one terminal. Proposition 2
already gives us a first answer: checking whether a Σ2-terminal-free formula
holds in A∗, with |A| ≥ 2, is undecidable. On the other hand, checking whether
a formula from FO(A∗, ·), whose sides contain at most one terminal a, holds in
{a}∗ is decidable, as it can be canonically seen as a formula in the Presburger
arithmetic.

We concentrate now on other decidable variants. In all these cases, we aug-
ment our signature with linear arithmetic over the lengths of variables; all decid-
ability results obtained in this setting hold canonically for the case when such

24 J. D. Day et al.

restrictions do not appear. We first look at equations without any quantifier
alternation.

Proposition 4. Let a ∈ A. The satisfiability in A∗ of quantifier-free positive
formulae over word equations U = V , with U, V ∈ (X ∪{a})∗, with linear length
constraints is NP-complete.

Complementing the above result, we show that the satisfiability of quantifier-
free first order formulae over word equations U = V (so including negation), such
that U, V ∈ (X ∪ {a})∗, with linear length constraints is equivalent to solving
arbitrary word equations with length constraints. Hence, at the moment, we
cannot say anything about the decidability of such formulae. One direction of
our result is immediate, while the other follows similarly to Proposition 2.

Theorem 3. Let |A| ≥ 2 and a ∈ A. Given an equation U = V , with U, V ∈
(A∪X)∗, with linear length constraints θ, there exists a system S of positive and
negative equations Ui = Vi or Ui 	= Vi with Ui, Vi ∈ (X ′ ∪ {a})∗ and X ⊂ X ′

with linear length constraints θ′, such that S is satisfiable (in A∗) if and only if
U = V is satisfiable.

Building on Proposition 4, Theorem 4 considers the Σ2 fragment in the case
that only one terminal letter may appear in the equations. Note that this does not
necessarily imply |A| = 1. If the positive theory only is considered, augmented
with the Length predicate defined in the previous section (i.e., Length(x, y) is
true if and only if |x| = |y|), then we obtain a decidable fragment. Note in
particular that the Length predicate can be used in conjunction with simple
equations to model arbitrary linear length constraints.

Theorem 4. Let a ∈ A. The positive Σ2-fragment, restricted to word equations
containing only the terminal symbol a, augmented with Length, is decidable.

Firstly, we need the following lemma. Then, we give the full proof of Theo-
rem 4.

Lemma 3. Let Y = {y1, y2, . . . , yn} ⊆ X and let U, V ∈ (Y ∪A)∗. Let k > |UV |
and let h : X∗ → A∗ be the substitution such that h(yi) = abk+ia. Then h(U) =
h(V) if and only if U = V (the strings U and V coincide).

Proof. (Theorem 4) W. l. o. g. we may assume that all arguments of the Length
predicate are either single variables or words in A∗. Indeed, if we have a “longer”
argument α over (X ∪ A)∗, we can replace it with a new variable x and add the
equation x = α. For the purposes of this proof we shall say that a term is trivial
if, for all the word equations U = V , U and V are identical, and moreover, all
Length predicates of the form Length(x, y) where either x = y ∈ X or x, y ∈ A∗

and |x| = |y|. If |A| = 1, decidability follows from the decidability of Presburger
arithmetic. Thus we may assume a, b ∈ A with a 	= b. W.l.o.g. we may assume
that we have a sentence in disjunctive normal form as follows:

∃x1, x2, . . . , xn.∀y1, y2, . . . , ym.(e1,1∧ . . . ∧e1,k1) ∨ . . . ∨ (et,1 ∧ . . . ∧ et,kt
), (1)

The Satisfiability of Word Equations: Decidable and Undecidable Theories 25

where the ei,j are either: (1) of the form Length(z1, z2) where z1 and z2 are in
{x1, . . . , xn, y1, . . . , ym}∪A∗, or (2) individual word equations over the variables
x1, . . . , xn, y1, . . . , ym and the terminal a.

We shall show that an assignment for x1, x2, . . . , xn satisfies (1) if and only
if there exists s, 1 ≤ s ≤ t such that all the resulting atoms es,i become trivial.
The ‘if’ direction is straightforward, thus we consider the ‘only if’ direction.
Suppose the x1, x2, . . . , xn are fixed, and consider the result of each ei,j under the
substitution. Suppose that for each s, 1 ≤ s ≤ t there exists rs, 1 ≤ rs ≤ ks such
that es,rs

is non-trivial. Let p be the maximum over the lengths of all constant
terms in the sentence, lengths of the xi, and lengths of equations given by the
type-(2) atoms ei,j for 1 ≤ i ≤ t, 1 ≤ j ≤ ki. Consider the choice of y1, y2, . . . , ym

given by yk = abp+ka for 1 ≤ k ≤ m. By Lemma 3, if es,rs
is of type (2), then it

will evaluate to false. If es,rs
is of type (1), then we have three cases. Firstly, if

both arguments to the Length predicate are constant terms in A∗, then clearly
es,rs

will evaluate to false since it is non-trivial. Similarly, since the yi are longer
than all constant terms and substituted values of the xks, if exactly one of the
arguments is a constant in A∗ while the other is a variable in {y1, y2, . . . , ym},
then es,rs

will also evaluate to false. Finally, since |y�| 	= |y′
�| for all � 	= �′, if

both arguments are variables, es,rs
will again evaluate to false. Summarising the

above, for any given choice of x1, x2, . . . , xn there exists a choice of y1, y2, . . . , ym

such that any of the conjunctions containing a non-trivial equation or Length
predicate will be false. It follows that the sentence is satisfiable if and only if
there exists a choice for x1, x2, . . . , xn and s, 1 ≤ s ≤ t such that all the es,i

terms, 1 ≤ i ≤ ks become trivial.
For terms ei,j of type (2), this is reduced to solving a system of existentially

quantified word equations over x1, x2, . . . , xn as follows: suppose ei,j is the equa-
tion u0yi1u1yi2u2 . . . yipup = v0yj1v1yj2 . . . yjqvq, where p, q ∈ N0, ik, j� ∈ [1,m]
for 1 ≤ k ≤ p and 1 ≤ � ≤ q, and uk, v� ∈ ({x1, x2, . . . , xn} ∪ A)∗ for 1 ≤ k ≤ p
and 1 ≤ � ≤ q. Clearly, for a given choice of values for x1, . . . , xn, the equation
ei,j becomes trivial if and only if p = q, and u0 = v0, u1 = v1, . . . , up = vp,
that is, if x1, . . . , xn forms a solution to the system of equations u0 = v0, u1 =
v1, . . . , up = vp over the variables x1, . . . , xn and terminal symbols from A.

For a term ei,j of type (1), observe that they may only become trivial under
some substitution for the x�s either if it is already trivial, in which case it can
just be removed, or if both arguments are in {x1, x2, . . . , xn}. Thus, any of the
clauses (ei,1 ∧ . . . ∧ ei,ki

) containing a term ei,j not conforming to these two
cases can be removed entirely. After these two phases of removal, it remains to
solve, for each s, 1 ≤ s ≤ t, a system of equations (i.e., the conjunctions of
the systems derived from the es,j terms of type (2), as described above) subject
to a system of linear length constraints (derived from the terms of type (1)).
The resulting equations will also only contain the terminal symbol a, since they
are taken directly from the original equations, so the decidability follows from
Proposition 4. �

Note that the reasoning above can be modified in a straightforward way to get
decidability of the positive Σ2 fragment in the general case (but without length

26 J. D. Day et al.

constraints), by substituting any of the well-known algorithms for solving exis-
tentially quantified systems of equations (e.g. Makanin’s algorithm, Plandowski’s
algorithm, Recompression) in place of Proposition 4. The resulting proof has sim-
ilar arguments to those of [9,23], although these results do not address this case
directly. Also, the decidability result shown in Theorem 4 is, in a sense, optimal,
as checking the truth of terminal-free arbitrary Σ2-formulae is undecidable.

Corollary 1. The truth of Σ+
2 -formulae over A∗ is decidable.

3.3 Decidability with Restricted Form

Following the results of the previous section, we explore one more decidable
fragment of FO(A∗, ·). More precisely, instead of restricting the terminal symbols
appearing in the equation(s) we restrict the variables, considering one of the
simplest cases of equations that are not in solved form, thus right at the border
of the equations that can be solved by practical string solvers [12,32]. We are
able to obtain decidability when augmenting the theory simultaneously with
linear arithmetic over variable lengths, regular constraints given as DFAs, as
well as constraints based on the predicates Subword and Eqa from the previous
section. Formally, we say that subword (resp. Eqa, abelian) constraints are sets
of pairs of variables (x, y) ∈ X2. Solving equation with these constraints requires
asserting that for each such pair, the corresponding predicate returns true (so
that, e.g., for each abelian constraint (x, y), the substitutions for x and y are
abelian equivalent).

Theorem 5. The problem of solving strictly regular ordered equations with reg-
ular constraints given by DFAs, linear length constraints, Eqa constraints (for
each a ∈ A), abelian constraints, and subword constraints is NP-complete.

Proof. Here we present only a sketch of the proof of this theorem. The proof rests
on the fact that solutions to strictly regular ordered equations have a particularly
well-suited form for parameterisation. In particular, by applying some canonical
arguments from the field of combinatorics on words, it can be shown that the set
of solutions is spanned by parametric solutions of the form h(x) = (uxvx)nxux

where |uxvx| is linear in the length of the equation, and nx may be any positive
integer if x is “overlapping” (i.e., some part of h(x) on the LHS coincides with
part of h(x) on the RHS) and 0 otherwise. Thus, when deciding if a solution
exists to the equation which also satisfies the length and regular constraints, it
is sufficient to firstly guess such a parametric form, and then decide whether
there exist values for the parameters nx such that the additional constraints
are satisfied. Deciding which values of the parameters are also valid under the
regular constraints can be done in an efficient way (non-deterministically) due
to Lemma 4: simply guess them. Subword constraints are handled in the same
way due to a similar technical result, Lemma 5.

Lemma 4. Let L be a regular language given by a DFA, M , with n states. Let
u, v ∈ A∗. Then there exist q ∈ N≤n, P, S ⊆ N≤n ∪{0} such that the intersection
of (uv)+u and L is given by {(uv)su | s ∈ S} ∪ {(uv)qμ+pu | μ ∈ N ∧ p ∈ P}.

The Satisfiability of Word Equations: Decidable and Undecidable Theories 27

Lemma 5. Let u, v, u′, v′ ∈ A∗. Let S = {(p, q) | (uv)pu is a sub-
word of (u′v′)qu′}. Then either S = ∅, or there exist integers p1, p2,
q1, q2, q3,0, . . . , q3,p2−1, and r1, r2, . . . , rp1+p2−1, all polynomial in |uvu′v′|, such
that

S = S′ ∪
⋃

1≤i<p2

{(p, q) | p = p1 + kp2 + i ∧ q ≥ q1 + kq2 + q3,i ∧ k ∈ N}

where S′ = {(p, q) | p < p1 + p2 ∧ q ≥ rp}. Moreover, this representation of S
can be computed in (nondeterministic) polynomial time.

Having so-far obtained expressions for parametric solutions satisfying the
equation and the regular constraints and subword constraints, it remains to
check whether any of the remaining possibilities also satisfy the length, abelian,
and Eqa constraints. It is straightforward, having already guessed the values ux

and vx, to convert the latter two into length constraints. Thus finding solutions
satisfying all constraints is eventually reduced to solving a linear system of Dio-
phantine equations where the unknowns are the parameters. Since the resulting
coefficients can be shown to be at most exponentially large, this is possible in
non-deterministic polynomial time, see [26]. �

For regular-ordered equations without the strictness (i.e. variables may occur
in only one side), the equivalent of Theorem5 does not hold. It is a straight-
forward exercise that regular-ordered equations where each side has only one
singly-occurring variable, with regular constraints given by DFAs, is PSPACE-
complete. This follows from the fact that determining whether the intersection
of n DFAs is empty is PSPACE-hard. Similarly, the undecidability proofs for
the predicates described in Sect. 3.1 require only very restricted combinations
of equations, so we can expect that when such constraints are added, strict
restrictions on the structure are necessary for maintaining decidability.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y., Hoĺık, L., Rezine, A., Rümmer, P., Stenman,
J.: Norn: an SMT solver for string constraints. In: Kroening, D., Păsăreanu, C.S.
(eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21690-4 29

2. Aydin, A., Bang, L., Bultan, T.: Automata-based model counting for string con-
straints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
255–272. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 15

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 14

4. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: Proceedings of the FMCAD 2017, pp. 55–59. IEEE (2017)

5. Bremer, J., Freydenberger, D.D.: Inclusion problems for patterns with a bounded
number of variables. Inf. Comput. 220, 15–43 (2012)

https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14

28 J. D. Day et al.

6. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation and
undecidable extensions of this theory. Z. für math. Logik Grundlagen d. Math. 47,
337–342 (1988)

7. Day, J.D., Manea, F., Nowotka, D.: The hardness of solving simple word equations.
In: Proceedings of the MFCS 2017. LIPIcs, vol. 83, pp. 18:1–18:14 (2017)

8. Diekert, V., Jeż, A., Plandowski, W.: Finding all solutions of equations in free
groups and monoids with involution. Inf. Comput. 251, 263–286 (2016)

9. Diekert, V., Lohrey, M.: Existential and positive theories of equations in graph
products. Theory Comput. Syst. 37(1), 133–156 (2004)

10. Durnev, V.G.: Undecidability of the positive ∀∃-theory of a free semigroup. Sib.
Math. J. 36(5), 917–929 (1995)

11. Freydenberger, D.D., Reidenbach, D.: Bad news on decision problems for patterns.
Inf. Comput. 208(1), 83–96 (2010)

12. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length
constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012.
LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39611-3 21

13. Halfon, S., Schnoebelen, P., Zetzsche, G.: Decidability, complexity, and expressive-
ness of first-order logic over the subword ordering. In: Proceedings of the LICS
2017, pp. 1–12. IEEE Computer Society (2017)

14. Hilbert, D.: Mathematische probleme. Nachrichten von der Gesellschaft der Wis-
senschaften zu Göttingen, Mathematisch-Physikalische Klasse 1900, 253–297
(1900)

15. Jeż, A.: Recompression: a simple and powerful technique for word equations. In:
Proceedings of the STACS 2013. LIPIcs, vol. 20, pp. 233–244 (2013)

16. Jeż, A.: Word equations in nondeterministic linear space. In: Proceedings of the
ICALP 2017. LIPIcs, vol. 80, pp. 95:1–95:13 (2017)

17. Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. J.
Comput. Syst. Sci. 50(1), 53–63 (1995)

18. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and
relations by word equations. J. ACM (JACM) 47(3), 483–505 (2000)

19. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a solver
for string constraints. In: Proceedings of the ISSTA 2009, pp. 105–116. ACM (2009)

20. Lin, A.W., Barceló, P.: String solving with word equations and transducers:
towards a logic for analysing mutation XSS. In: ACM SIGPLAN Notices. vol.
51, pp. 123–136. ACM (2016)

21. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Boston (1983)
22. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Sb.:

Math. 32(2), 129–198 (1977)
23. Makanin, G.S.: Decidability of the universal and positive theories of a free group.

Math. USSR-Izv. 25(1), 75 (1985)
24. Manea, F., Nowotka, D., Schmid, M.L.: On the solvability problem for restricted

classes of word equations. In: Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS,
vol. 9840, pp. 306–318. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53132-7 25

25. Matiyasevich, Y.V.: A connection between systems of words-and-lengths equa-
tions and hilbert’s tenth problem. Zapiski Nauchnykh Seminarov POMI 8, 132–144
(1968)

26. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM (JACM)
28(4), 765–768 (1981)

https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-662-53132-7_25
https://doi.org/10.1007/978-3-662-53132-7_25

The Satisfiability of Word Equations: Decidable and Undecidable Theories 29

27. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. In:
Proceedings of the FOCS 1999, pp. 495–500. IEEE (1999)

28. Quine, W.V.: Concatenation as a basis for arithmetic. J. Symb. Log. 11(4), 105–
114 (1946)

29. Trinh, M.-T., Chu, D.-H., Jaffar, J.: Progressive reasoning over recursively-defined
strings. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 218–
240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 12

30. Vazenin, J.M., Rozenblat, B.V.: Decidability of the positive theory of a free count-
ably generated semigroup. Math. USSR Sb. 44(1), 109–116 (1983)

31. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol.
6015, pp. 154–157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12002-2 13

32. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Berzish, M., Dolby, J., Zhang,
X.: Z3str2: an efficient solver for strings, regular expressions, and length con-
straints. Form. Methods Syst. Des. 50(2–3), 249–288 (2017)

https://doi.org/10.1007/978-3-319-41528-4_12
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/978-3-642-12002-2_13

Left-Eigenvectors Are Certificates
of the Orbit Problem

Steven de Oliveira1,2(B), Virgile Prevosto2, Peter Habermehl3,
and Saddek Bensalem1

1 Université Grenoble Alpes, Grenoble, France
de.oliveira.steven@gmail.com
2 CEA, List, Palaiseau, France

3 IRIF, Université Paris Diderot - Paris 7, Paris, France

Abstract. This paper investigates the connection between the Kannan-
Lipton Orbit Problem and the polynomial invariant generator algorithm
PILA based on eigenvectors computation. Namely, we reduce the prob-
lem of generating linear and polynomial certificates of non-reachability
for the Orbit Problem for linear transformations with coefficients in Q

to the generalized eigenvector problem. Also, we prove the existence of
such certificates for any transformation with integer coefficients, which
is not the case with rational coefficients.

1 Introduction

Finding a suitable representation of the reachable set of configurations for a given
transition system or transformation is a fundamental problem in computer sci-
ence, notably in program analysis and verification. An exact representation of
the reachable set can generally not be exactly computed. In this context, invari-
ants often provide a good balance between precision, conciseness and ease of
use. Model-checking [13] and deductive verification [9] often require the user
to provide invariants in order to reach a given proof objective. In practice, for
large programs, manually writing each invariant for each loop is extremely costly
and becomes quickly infeasible. Users can rely on invariants synthesizers, that
manage to infer an over-approximation of the reachable set of configurations.
Abstract interpretation [1,3] for example is based on the propagation of abstract
values, such as e.g. intervals or octagons, that encompass the whole set of pos-
sible concrete inputs. Dynamic inference [7] tries to infer a candidate invariant
satisfied by a large amount of runtime executions. The quality of the synthesis is
here dependent of the chosen invariant pattern. Mathematical properties of spe-
cific kinds of transformations, such as the use of linear algebra properties [2,4] or
the search of algebraic dependencies [12] can elegantly facilitate the automated
search for invariants. For all of these techniques, the following issues arise:

1. they work under very specific hypotheses;
2. generated invariants may not be precise enough to succeed in proving or

disproving a given property.
c© Springer Nature Switzerland AG 2018
I. Potapov and P.-A. Reynier (Eds.): RP 2018, LNCS 11123, pp. 30–44, 2018.
https://doi.org/10.1007/978-3-030-00250-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00250-3_3&domain=pdf

Left-Eigenvectors Are Certificates of the Orbit Problem 31

As an example, [4,5] describe the PILA method for generating invariants of
linear transformations based on the eigenspace problem. This method relies on
the stability of left-eigenvectors of a linear transformation: a left-eigenvector ϕ
of a linear transformation f verifies ϕ ◦ f = λϕ for some constant λ. Depending
on the value of λ, ϕ leads to inductive invariants. For instance, if λ = 1, then
∀X,ϕ ◦ f(X) = ϕ(X), hence the relation ϕ(X) remains constant. When |λ| � 1
(respectively |λ| � 1), then the PILA technique generates inductive invariants
of the form |ϕ(X)| � k (respectively |ϕ(X)| � k). All polynomial equality invari-
ants (P (X) = k) and some inequality invariants (every P such that P (X) � k
and a subset of P such that P (X) � k) can be generated with this technique.
PILA has been developed in the context of polynomial invariant generation, an
already widely studied topic [2,14]. One of the purposes of this article is to study
the usefulness of such invariants for solving the Kannan-Lipton Orbit Problem.

The Kannan-Lipton Orbit Problem
A particular instance of the reachability problem is called the Kannan-Lipton
Orbit Problem [10,11], which can be stated as follows:

Given a square matrixA ∈ Md(Q) of size d and
two vectors X,Y ∈ Q

d, determine if there exists n such that AnX = Y.

This problem is decidable in polynomial time. In the case an instance of the
problem has no solution (in other words, Y is not reachable from X), [8] studies
the existence of non-reachability semialgebraic certificates for a given instance
of the Orbit Problem where Y is not reachable. Semialgebraic certificates are
sets described by conjunctions and disjunctions of polynomial inequalities with
integer coefficients that include the reachable set of states but not the target Y .
These certificates allow to quickly prove the non-reachability of the given vector
Y and all vectors outside of the certificate. [8] concludes on the existence of such
certificates under simple hypotheses on the eigenvalue decomposition of A.

These hypotheses are surprisingly similar to the hypotheses of PILA as, when
|λ| �= 1, left-eigenvectors represent polynomial inequality invariants while [8] uses
certificates defined by polynomial inequalities. The PILA technique is some-
times unable to infer invariants, especially when the studied matrix is non-
diagonalizable with all its eigenvalues λ such that |λ| = 1, while [8] is able
to infer certificates. A slight extension of PILA presented in this article solves
this problem by using generalized eigenvectors which we show can be used as
certificates. Also, we shortly conclude on non diagonalizable matrices with eigen-
values λ such that |λ| = 1 and on matrices with integer coefficients. Depending
on the cases presented in Table 1, we will prove that:

– in the first hypothesis, there exists a linear transformation of dimension O(n2)
(resp. O(2n)) computing an equivalent image of A such that its eigenvectors
can be used as real certificates (resp. semialgebraic certificates) for the non
reachability of the given instance;

32 S. de Oliveira et al.

Table 1. Comparaison between PILA, the results of [8] and the contributions of this
paper

Hypothesis 1 Hypothesis 2 Hypothesis 3

Hypotheses on
matrix A with
eigenvalue λ

|λ| �= 0 ∧ |λ| �= 1 A not diagonalizable
|λ| = 1

A diagonalizable
|λ| = 1

Pilat [4,5] Inequality
invariants P (X) �
0, P (X) � 0

Equality invariants
P (X) = 0

Equality invariants
P (X) = 0

[8] on the
existence of
certificates

General existence
of a semialgebraic
certificate

General existence of
a semialgebraic
certificate

Necessary &
sufficient conditions
for the existence of a
semialgebraic
certificate

Contributions – Existence of M
computing the
same image as A

– Existence of M
computing the same
image as A

– Eigenvectors can
be used as
certificates under
the same conditions

– Eigenvectors of
M are certificates

– Generalized
eigenvectors of M
are certificates

– in the second hypothesis, there exists a linear transformation of dimension
O(n2) (resp. O(2n)) computing an equivalent image of A such that its gen-
eralized eigenvectors can be used as real certificates (resp. semialgebraic cer-
tificates) for the non reachability for the given instance;

– in a more general case, a semialgebraic certificate for the Orbit Problem in Z

always exists.

It is worth noting that to our knowledge, there exists no proof about the decid-
ability of the existence of linear certificates directly on A.

Interest of Eigenvectors. The Jordan Normal form of a matrix used in [8] can
be calculated in polynomial time given eigenvectors and generalized eigenvectors.
It is however necessary to compute all eigenvectors and generalized eigenvectors
of a transformation to get the Jordan Normal form. Here, in most cases we only
need the calculation of a subset of eigenvectors.

2 Setting

Let K be a field and d ∈ N. Given two vectors u, v of same dimension, we
note 〈u, v〉 = ut.v, with . the usual dot product (i.e. the sum of the product of
each component of u and v). A linear combination of variables is defined by a
single vector ϕ such that v → 〈ϕ, v〉. Every linear transformation f : Kd → K

d

corresponds to a square matrix Af ∈ Md(K). For any vector ϕ ∈ K
d, ϕt :

Left-Eigenvectors Are Certificates of the Orbit Problem 33

K
d → K will denote a linear transformation. When the context is clear, we will

refer to Af as A. The transformation obtained by n successive applications of
a transformation f : Kd → K

d is denoted by fn and its matrix is An
f . Affine

transformations can be considered as linear transformation by adding an extra
dimension. For example, the transformation f(x) = x + 1 can be considered
equivalent to the transformation g(x,1) = (x + 1,1). In this way, every affine
transformation also admits a unique matrix representation.

Definition 1. Let f : Kd → K
d be a linear transformation and A its associated

matrix. Then, ϕ ∈ K
d (respectively ϕ ∈ K

d → K) is called a λ-right-eigenvector
(resp. λ-left-eigenvector) and λ its corresponding eigenvalue if A∗ϕ = λϕ (resp.
ϕt ∗ A = λϕt).

When a concept can be applied to either left or right-eigenvectors, we will simply
refer to them as eigenvectors.

Definition 2. A family of linked generalized λ-eigenvectors Ff = {e0, ..., ek}
for the transformation f are vectors verifying for all i � k, f(e0) = λe0 and
f(ei) = λei + ei−1.

The Orbit Problem. This article focuses on A ⊂ C, the field of algebraic
numbers. Elements of A are roots of polynomials with integer coefficients. Indeed,
the linear transformations we consider are in Q

d → Q
d, thus their eigenvalues

(as roots of the characteristic polynomial) are in A. Let f : Q
d → Q

d be a
linear transformation. We refer to the Orbit Problem of Af with an initial vector
X ∈ Q

d and a target vector Y ∈ Q
d as O(A,X, Y). In other words, O(A,X, Y) =

(∃n ∈ N.Y = AnX).

Definition 3. A non-reachability certificate or just certificate is a couple
(N,P) ∈ N × P(Qd) of an instance O(A,X, Y) such that:

– ∀n ∈ N, n < N ⇒ AnX �= Y
– ∀n ∈ N, n � N ⇒ AnX ∈ P
– Y /∈ P

N is called the certificate index and P the certificate set.

When the certificate set is described by conjunctions and disjunctions of lin-
ear (resp. polynomial) combinations of variables, the certificate is called linear
(resp. polynomial). Irrational, semialgebraic and rational certificates are linear or
polynomial certificates whose coefficients are respectively irrationals, algebraic
integers or rationals.

Semi-algebraic certificates, are always equivalent to rational certificates.
Indeed, every coefficient ϕi ∈ A is nullified by a polynomial Q with integer coef-
ficients. It is then possible to replace ϕi by a free variable that is constrained to
be a root of Q. For example, P = {x|√2x � 2} = {x|∃y.y2 = 2∧y � 0∧yx � 2}.

Remarks. This definition of certificates is slightly different than the notion of
certificates of [8] as it does not require an inductivity criterion. We have chosen
this notation so as to simplify the article.

34 S. de Oliveira et al.

The certificate sets we generate are future invariants of the transformation,
in the sense that fn(X) eventually reaches the set for some n and always remains
in it, whereas Y is outside the invariant. Different choices of X and Y may delay
the number of iterations needed to reach it. The certificate index solves this
issue by expressing the number of iterations necessary for fn(X) to reach the
certificate set. This information is crucial for the practical use of certificates, as
a solver can use it to shorten its analysis.

The existence of such a couple implies the non reachability of Y as AnX is
either different from Y or belongs to a set to which Y does not. For example, if
Y does not belong to the reachable set of states R = {AnX | n � 0}, the couple
(0, R) is a certificate. However, typically, R can not be described in a non-
enumerative way. We are interested in simple certificates, i.e. where proving that
the objective Y does not belong to the reachable set of states is straightforward.
That means that membership in P should be easy to solve. For example, let
R′ = {(v1, ..., vn) ∈ Q

n : v1 + v2 � 0} and assume R ⊂ R′. Testing whether Y is
in R′ or not is easy as this set is described by a linear combination of variables.
If Y /∈ R′, then R′ is generally a better (simpler) certificate set than R. On the
other hand, finding a good certificate index may be harder. Its search is studied
in Sect. 3.1.

3 Invariants by Generalized Eigenvectors

3.1 Certificate Sets of the Rational Orbit Problem

The decidability of the existence or the non-existence of semialgebraic certificates
for the Orbit Problem for rational linear transformations is proven in [8]. It
classifies four categories of rational matrices A:

– A admits null eigenvalues;
– A has at least an eigenvalue of modulus strictly greater or less than 1;
– A has all its eigenvalues of modulus 1, but it is not diagonalisable;
– A has all its eigenvalue of modulus 1 and is diagonalisable.

In the second case, linear transformations always admit a non reachability
certificate if the Orbit problem has no solution. The intuition behind this result
is to consider the Jordan normal form J of the matrix A. Let V be a vector of
variables and VJ the vector of variables in the base of J . In this form, for any
eigenvalue λ of A, there exists a variable vJ (representing a linear combination
of variables of V) such that J ∗ VJ |vJ = λvJ . Applied k times, the new value of
vJ is λkvJ , which diverges towards infinity or converges towards 0 when |λ| �= 1.
Checking if a value y is reachable or not can then be done by checking if there
exists k ∈ N such that λkvJ = y. We are now left to compute those certificates.

Case 1: There Exist Null Eigenvalues
This particular case leads to degenerate instances of the orbit problem. When a
linear transformation admits a null eigenvalue, there exists a linear combination
of variables that is always null. In other words, there exists a variable v that

Left-Eigenvectors Are Certificates of the Orbit Problem 35

can be expressed as a linear combination of the other variables. Therefore, this
variable doesn’t provide any useful information on the transformation other than
an easily checkable constraint on v. If the linear constraint is satisfied, we get
rid of this case by using Lemma 6 of [8], stating the following:

Lemma 1. The problem of generating non-reachability certificates for an orbit
instance O(A,X, Y) can be reduced to the problem of generating reachability
certificates for an orbit instance O(A′,X ′, Y ′) where A′ is invertible.

Case 2: There Exist Eigenvalues λ and |λ| �= 1.

Real Eigenvalues. The key of the following property lies in [5], stating that λ-
left eigenvectors ϕ of a linear transformation A are its invariants. More precisely,
we can see that if ϕ is a left-eigenvector of A, then by definition the following
holds:

∀v ∈ K
d, 〈ϕ,Av〉 = λ〈ϕ, v〉 (1)

If |λ| > 1 (resp. |λ| < 1), then the sequence (|〈ϕ,Anv〉|) (for n ∈ N) is strictly
increasing (resp. strictly decreasing),

Property 1. Let A ∈ Md(Q) a linear transformation and O(A,X, Y) an
instance of the Orbit problem with no solution. Searching for a non-reachability
certificate of an instance of the Orbit problem when A admits real eigenvalues
λ such that |λ| �= 0 and |λ| �= 1 can be reduced to computing the eigenvector
decomposition of A.

More precisely, if there exists ϕ a λ-left-eigenvector of A with |λ| �= 0 and |λ| �=
1, then the couple (N,P) defined as follows is a non-reachability certificate of
O(A,X, Y).

1. If |〈ϕ,X〉| �= 0 and |〈ϕ, Y 〉| = 0, then N = 0 and P = {v : 〈ϕ, v〉 �= 0}
2. If |〈ϕ,X〉| = 0 and |〈ϕ, Y 〉| �= 0, then N = 0 and P = {v : 〈ϕ, v〉 = 0}.
3. If |〈ϕ,X〉| �= 0 and |〈ϕ, Y 〉| �= 0, N = max(1, � ln(|〈ϕ,Y 〉|)−ln(|〈ϕ,X〉|)

ln(|λ|) � + 1) and
– If |λ| > 1, then P = {v : |〈ϕ, v〉| � |λ.〈ϕ, Y 〉|}.
– If |λ| < 1, then P = {v : |〈ϕ, v〉| � |λ.〈ϕ, Y 〉|}.

4. Otherwise, if d > 1 there exist a transformation B ∈ Md−1(Q) such that the
problem of finding a certificate for O(A,X, Y) can be reduced to the problem
of finding a certificate for O(B,X ′, Y ′) with X ′ and Y ′ ∈ Q

d−1. If d = 1,
then O(A,X, Y) has a solution.

The certificate is linear iff λ ∈ Q.

Proof. Let ϕ be a left-eigenvector of A associated to the eigenvalue λ. We know
that for all v, 〈ϕ, v〉 = k ⇒ 〈ϕ,Av〉 = λ.k. Let Un = |〈ϕ,AnX〉| be the n-th
reachable state from X. If |λ| < 1 (resp. |λ| > 1), then (Un) is strictly decreasing
(resp. strictly increasing).

1. Let kv = |〈ϕ, v〉|. If kX �= 0 and kY = 0, then the sequence (Un) never reaches
kY , as for all n, Un �= 0. In other words, |Un| > 0 for all n ∈ N. Then it is
clear that P = {X : |〈ϕ,X〉| �= 0} is a valid certificate set of index N = 0.

36 S. de Oliveira et al.

2. Similarly, if kX = 0 and kY �= 0, then P = {X : |〈ϕ,X〉| = 0} and N = 0.
3. Assume now that kX �= 0 and kY �= 0. If kX < kY and |λ| < 1 (respectively

kX > kY and |λ| > 1), then (1, {v : |〈ϕ, v〉| � |λ|.kY }) is a valid certificate set
(respectively (1, {v : |〈ϕ, v〉| � |λ|.kY })). Otherwise, let us assume |λ| < 1 and
kX ≥ kY . Un is strictly decreasing, thus there exists a N such that UN � kY

and UN+1 < kY . This implies that Y can only be reachable after a finite
number of iterations N . We also have that UN+1 � |λ|.kY and UN+2 < |λ|.kY .
If for all n ≤ N , Y �= AnX, we can define P = {v | 〈ϕ, v〉| < |λ|.kY }, and
obtain Y /∈ P and {AN+1+nX | nıN} ⊂ P . Therefore, the couple (N +1, P) is
a non-reachability certificate of O(A,X, Y). A similar proof for |λ| > 1 is valid
as the sequence Un is now strictly increasing and the couple (N, {|〈ϕ,X〉| �
|λ|.kY }) is the corresponding certificate. We will now study the exact value
of N . If Y is reachable, then there exists a unique value of N such that
|λ|N |〈ϕ,X〉| = kY . This value is precisely ln(|〈ϕ,Y 〉|)−ln(|〈ϕ,X〉|)

ln(|λ|) . If for every
value of n � N , Y is not reached and as Y does not belong to the certificate
set P , the couple (max(1, �N� + 1), P) is a non-reachability certificate.

4. Assume kX = kY = 0. In this case for every n, 〈ϕ,AnX〉 = 0. There exists a
base B of the transformation in which there exists a variable v which remains
null for every iteration of the transformation. In other words, there exist A′, Q
such that A′ = Q.A.Q−1.
Assume d > 1 and let B′ = A′

|V \v
and Q′ = Q|V \v

the transformations
restricted to all variables but v (by removing both the associated line and
column). Finding a certificate for A is reduced to finding a certificate for
B = Q′−1B′Q′.
If d = 1 and there exist a linear combination ϕ of X such that 〈ϕ,X〉 = 0,
then X = 0. Similarly, Y = 0.

Concerning the linearity of the certificate, if λ ∈ Q, then every coefficient
of ϕ also belongs to Q. Indeed A has rational coefficients, so does ϕA = λ.ϕ.
Similarly, if ϕ has rational coefficients, ϕ.A = λ.ϕ also does.

In the case of kX �= 0 and kY �= 0, we also have to get rid of the absolute value
around 〈ϕ, v〉 in the definition of the certificate set. If |λ| > 1, the certificate set
{v : (〈ϕ, v〉 � |λ〈ϕ, Y 〉|) ∧ (〈ϕ, v〉 � −|〈ϕ, Y 〉|)} is linear. A similar set can be
found for |λ| < 1. ��
Certificate Index. Being able to minimize the number of necessary unrollings
to prove the non reachability is useful. In this regard, notice that the certificate
index value N of Property 1 is such that for every n < N , 〈ϕ,AnX〉 /∈ P . In
other words, it is minimal for its associated certificate set.

Example. Consider the Orbit Problem O(A,X, Y) with

A =

⎛
⎜⎜⎝

0 3 0 0
−3 3 1 0
0 0 2 1
1 1 0 1

⎞
⎟⎟⎠

Left-Eigenvectors Are Certificates of the Orbit Problem 37

A admits two real eigenvalues λ1 ≈ 0.642 and λ2 ≈ 2.48 respectively asso-
ciated to the left-eigenvectors ϕ1 = (−0.522, 0.355,−0.261, 0.73) and ϕ2 =
(0.231,−0.36,−0.749,−0.506). This is enough to build two preliminary cer-
tificate sets that only depend on Y : P1 = {v.|〈ϕ1, v〉| � λ1.|〈ϕ1, Y 〉|} and
P2 = {v.|〈ϕ2, v〉| � λ2.|〈ϕ2, Y 〉|}. Those can be used for any initial valuation of
X.

Let’s now set X = (1, 1, 1, 1) and Y = (−9,−7, 28, 7). We have then

– 〈ϕ1,X〉 = 0.302 and 〈ϕ1, Y 〉 = 0.015, so N = 7.
– 〈ϕ2,X〉 = −1.384 and 〈ϕ2, Y 〉 = −24.073, so N = 4.

We can easily verify that for any n � 7, AnX �= Y , so the certificates (7, P1)
and (4, P2) are sufficient to prove the non reachability of Y .

Complex Eigenvalues. The treatment of complex eigenvalues can be reduced
to the Case 1 by the elevation method described in [4]. The idea is simple: if
variables evolves linearly (or affinely) then any monomial of those variables also
evolves linearly (or affinely). For example, given f(x) = x + 1, then the new
value of x2 after application of f is (x + 1)2 = x2 + 2x + 1, which is an affine
combination of x2, x and 1. f can be elevated to the degree 2 by expressing this
new monomial: f2(x2, x) = (x2 + 2x + 1, x + 1).

Definition 4. Let A ∈ Md(K). We denote Ψk(A) the elevation matrix such that
∀X ∈ K

n, Ψk(A).p(X) = p(A.X), with p ∈ (K[X]k) a polynomial associating X
to all possible monomials of degree k or lower.
By extension, we denote Ψk(v) a vector v elevated to the degree k.

A and Ψd(A) represents the same application, except that Ψd(A) also calcu-
lates monomial values of variables manipulated by A. Hence, certificates of
O(Ψd(A), Ψd(X), Ψd(Y)) are also certificates for O(A,X, Y), We also have the
following property [4]:

Property 2. Let A ∈ Md(Q), Λ(M) the eigenvalue set of a matrix M and k
an integer. Then for any product p of k or less elements of Λ(A), p ∈ Λ(Ψk(A))
where Ψk(A) is the elevation of A to the degree k.

The product of all eigenvalues is the determinant of the transformation, which
is by construction a rational. The elevation to the degree n where n is the size
of the matrix admits then at least one rational eigenvalue. We can deduce from
this the following theorem.

Theorem 1. Let O(A,X, Y) be an unsatisfiable instance of the Orbit problem
with A ∈ Mn(Q) admitting at least one eigenvalue λ ∈ C such that |λ| �= 0 and
|λ| �= 1. Then left eigenvectors of Ψd(A) provide:

– real linear semialgebraic certificates for d = 1 (Ψ1(A) = A) if there exist real
eigenvalues;

– real semialgebraic certificates of degree 2 for d = 2 if there exist complex
eigenvalues;

– at least one rational certificate of degree n for d = n if |det(A)| �= 1.

38 S. de Oliveira et al.

Proof. We treat each case separately:

– The case where A admits real eigenvalues is treated by Property 1;
– If A admits a complex eigenvalue λ, A also admits its conjugate λ̄ as eigen-

value. By Property 2, Ψ2(A) admits λ.λ̄ as a real eigenvalue, which is treated
by Property 1;

– The product of all eigenvalues of a rational matrix is rational. As such, Ψn

necessarily admit a rational eigenvalue which implies the existence of an asso-
ciated rational eigenvector that can be used, according to Property 1, as a
certificate.

��
Remark. The image of A ∈ Md(K) is a projection of the image of Ψk(A) for any
k, and semialgebraic certificates of A are, by extension, semilinear certificates of
Ψn(A). The size of Ψk(A) is

(
d+k

k

)
, which is O(d2) when k = 2 and O(dd) when

d = k. An eigenvector computation has a polynomial time complexity (slightly
better than O(d3)). The two first cases of Theorem 1 are thus computable in
polynomial time in the number of variables.

Example. The matrix from the previous example admits two complex eigen-
value λ ≈ 1.439 + 2.712i and λ̄. As λλ̄ ≈ 9.425, it also admits a polynomial
invariant ϕ (whose size is too long to fit in this article as it manipulates 10
monomials). However, 〈ϕ,X〉 = 0.220 and 〈ϕ, Y 〉 = 195.738, thus the associated
index is 4.

Case 3: All Eigenvalues Have a Modulus Equal to 1 and the Matrix
is Not Diagonalisable

Real Eigenvalues. This case is trickier as eigenvectors do not give information
about the convergence or the divergence of the linear combination of variables
they represent. For example, let us study the orbit problem O(A,X, Y) where A
is the matrix associated with the mapping f(x,1) = (x+2∗1,1), X = (0, 1) and
Y = (5, 1). xY is odd, thus Y is not reachable. f admits only ϕ = (0, 1) as left-
eigenvector associated to the eigenvalue λ = 1, meaning that 〈(0, 1), (x,1)〉 =
〈(0, 1), f(x,1)〉 for any x. As 〈(0, 1), (x,1)〉 = 1, we are left with the invariant
1 = 1. This invariant is clearly insufficient to prove that Y is not reachable.

f thankfully admits a generalized left-eigenvector μ = (12 , 1) associated to 1.
More precisely, μA = μ + ϕ, which implies that μAnX = (μ + nϕ).X. In other
words, we have 1

2x + 1 = 1
2xX + 1 + n which simplifies into 1

2x = n. The couple
(3, {(x, y) : ∃n > 3, 1

2x = n}) is a non reachability certificate.

Property 3. Let A be a non-diagonalisable linear transformation, X a vector
and {ei}i<N N linked 1-left eigenvectors1 (i.e. e0A = e0 and for 0 < i < N ,
eiA = ei + ei−1). For all 1 � i < N , 〈eiA

k,X〉 = Pi(k), where Pi(k) is a
polynomial of non null degree in the variable k if and only if there exist j < i
such that 〈ej ,X〉 �= 0.
1 The existence of such a family with N > 1 is guaranteed by the non diagonalisability

of A.

Left-Eigenvectors Are Certificates of the Orbit Problem 39

Proof. Let {ei}i<N a family of N linked 1-left eigenvectors. We can calculate
Pi(k) by induction on i. For i = 1, e0 verifies e0A

k = e0 + k ∗ e1. Hence,
〈e0Ak,X〉 = 〈e0,X〉 is a polynomial of non null degree iff 〈e0,X〉 �= 0.

Assume now ei.A
k = Pi(k) is a vector of polynomials of non null degree.

Then, we have ei+1.A
k+1 = (ei+1 + ei).Ak = ei+1A

k + Pi(k) Now, let Un+1 =

Uk + Pi(n). Then for U0, Uk = U0 +
k∑

l=0

Pi(l) is a vector of polynomials of non

null degree. As well as in the case i = 1, Pi+1(k) has a non null degree if and only
if for all j < i, 〈ej ,X〉 �= 0 as every polynomial expression of Pi+1(k) contains
〈ej ,X〉. ��
As every polynomial eventually diverges, there exists a linear combination of
variables of X that diverges if X follows the hypothesis of this property. Oth-
erwise, [8] have shown in Lemma 6 that the existence of a certificate for such
instances is equivalent to the existence of certificates that are treated in the Case
4. Indeed, expressing a matrix A in the Jordan Normal form is exactly expressing
A in the base of eigenvectors. The hypothesis of Property 3 matches the third
part of Lemma 6 from [8].

Remark. Even if the first eigenvector is enough to represent a non-reachability
certificate, every generalized eigenvector also can. By Property 3, the value of
the linear combination described by a generalized eigenvector ϕ evolves polyno-
mially, thus it eventually always decrease or increase (after the highest root of
its derivate). That is why for a given objective Y there exist a finite number of
n such that |ϕY | � |ϕAnX|, thus after this n, {v : |ϕv| > |ϕY |} is a certificate.

Complex Eigenvalues. If λ ∈ C, we will use the same trick we used for complex
eigenvalues of Case 2. As for every complex eigenvalue λ of A, λ̄ is also an
eigenvalue, then λ.λ̄ = 1 is an eigenvalue of Ψ2(A) by property 2. Thus:

Theorem 2. Let O(A,X, Y) be a non satisfiable instance of the Orbit Problem
such that for all eigenvalue λ of A, |λ| = 1 and A is not diagonalisable. Then
there exist a family of 1-left-eigenvectors F = {e0, ..., en} of Ψ2(A) such that for
all 1 � i � n, Qi(n) = 〈ei, Ψ2(A)nΨ2(X)〉 is a non-constant polynomial if and
only if there exist j < i such that 〈ei,X〉 �= 0 and (N,P) is a non reachability
certificate with:

– N = �max({0} ∪ {x ∈ R.Qi(x) = 〈ei, Ψ2(Ax)Ψ2(Y)〉})�
– P = {v : |〈ei, Ψ2(A)nΨ2(v)〉| � |Qi(N)|}

Proof. Let O(A,X, Y) be an instance of the Orbit Problem. We will reduce
the problem to the case where A has positive rational eigenvalues, i.e. λ = 1
and A admits a family F of left-eigenvectors of size |F| > 1. In this case, by
Property 3 we know that there exists a linear combination of variables v following
a polynomial evolution described by Q such that deg(Q) > 0. As Q eventually
diverges, there exists a N such that for all N ′ > N , |v(AN ′

X)| > |v(Y)|. This N
is the maximum between 0 and the highest value of x such that Q(x) = v(Y) as,
for any higher value of x, |Q(x)| > |v(Y)|. Also, the set {v.|〈ei, Ψ2(A)nΨ2(v)〉| �

40 S. de Oliveira et al.

|Q(N)|} contains all reachable configurations but does not contain Y , thus (N,P)
is a valid certificate.

In the general case where λ ∈ C, we will use Property 2 to show that if
there exist complex eigenvalues λ such that |λ| = 1, of multiplicity m > 1 with
m �= dim(ker(A − λId)), then Ψ2(A) admits 1 or −1 as an eigenvalue and its
multiplicity m′ > 1 �= dim(ker(Ψ2(A)−λId)). This implies directly the existence
of at least one generalized eigenvector, thus of a family of linked left-eigenvectors
of size strictly higher than 1. To this purpose, we refer to basic properties of Ψd:

Lemma 2.

1. Ψk(A.B) = Ψk(A).Ψk(B)
2. Ψk(A−1) = Ψk(A)−1

Proof.

1. Ψk(A).Ψk(B)p(X) = Ψk(A).p(B.X) = p(A.B.X) = Ψk(A.B)p(X)
2. Ψk(A−1).Ψk(A).p(X) = p(A.A−1X) = p(X) so Ψk(A−1).Ψk(A) = Id.

Let J the Jordan normal form of A, i.e. there exists P such that A = P−1JP .

We have that J =

⎛
⎜⎜⎜⎜⎝

J1 0 ... 0

0
.

...
...

. 0
0 ... 0 Jk

⎞
⎟⎟⎟⎟⎠

, and Jk =

⎛
⎜⎜⎜⎜⎝

λk 1 ... 0

0
.

...
...

. 1
0 ... 0 λk

⎞
⎟⎟⎟⎟⎠

From Lemma 2, it is easy to prove that Ψd(A) = Ψd(P)−1Ψd(J)Ψd(P). As
Ψd(A) and Ψd(J) are similar, they have the same eigenvalues. We know that
there exist v1, v2, v3 in the base of J such that

– v′
1 = λ.v1 + v2

– v′
2 = λ.v2

– v′
3 = λ̄.v3

where v′
i is the new value of vi in the base of J . Then the image of v1v3 (denoted

(v1v3)′) with respect to Ψ2(J) is v1v3+λ̄.v2.v3. Also, we know that (v2v3)′ = v2v3.
Let ϕ such that ϕ.Ψ2(J).V = v1v3.

ϕ.(Ψ2(J) − Id)V = v1v3λ̄.v2v3 − v1v3
= λ̄.v2v3

ϕ.(Ψ2(J) − Id)2V = λ̄.v2v3 − λ̄.v2v3 = 0

As this is true for any V , then ϕ.(Ψ2(J) − Id) �= 0 and ϕ.(Ψ2(J) − Id)2 = 0.
In conclusion, ϕ is a generalized eigenvector of Ψ2(J), thus Ψ2(A) also admits a
generalized eigenvector. ��

Example. We consider the Orbit problem O(A,X, Y) with A =

⎛
⎝

1 1 0
0 1 1
0 0 1

⎞
⎠,

X = (−2,−1, 1)t and Y = (2, 6, 1)t. A admits as 1-generalized-left-eigenvectors:

Left-Eigenvectors Are Certificates of the Orbit Problem 41

{e0 = (0, 0, 1); e1 = (0, 1, 0); e2 = (1, 0, 0)}. By the previous property, we know
that e2A

k = e2 + k.e1 + k(k−1)
2 .e0, thus

〈e2Ak, (xX , yX ,1)〉 = yX + kxX + k(k−1)
2

= 1
2k2 − 5

2k − 1
As we can see in Fig. 1, from k = 3, the value of x is strictly increasing and

after k = 7, the value of x is strictly superior to 2. Thus we have to check a
finite number of iterations before reaching x > 2, which is the certificate set
constraint of the non-reachability of Y . For k ∈ [0, 6], Y is not reached. The
couple (7, {(x, y,1).x > 2}) is thus a certificate of non reachability of Y .

1 2 3 4 5 6

−4

−3

−2

−1
0

1

2

k

y

Fig. 1. Graph of the polynomial y = 1
2
k2 − 5

2
k − 1

Case 4: Eigenvalues All Have a Modulus Equal to 1 and the Transfor-
mation is Diagonalizable

Some transformations do not admit generalized eigenvectors, namely diagonaliz-
able transformations. The previous theorem is then irrelevant if for every eigen-
value λ, |λ| = 1. Such transformations are rotations: they remain in the same set
around the origin. Take as example the transformation A of Fig. 2, taken from [8].
It defines a counterclockwise rotation around the origin by angle θ =arctan(35),
and θ

π is not rational. The reachable set of states from X, i.e. {X,AX,A2X, ...}
is strictly included in its closure, i.e. the set of reachable states and their neigh-
bourhood. As Y is not on the closure of the set, then we can easily provide a
non-reachability semi-algebraic invariant certificate of Y , that is the equation
of the circle. However, we cannot give such a certificate for Z though it is not
reachable. If it were reachable, there would exist a n such that AnX = Z, thus
A2nX = X. n would also satisfy θ ∗ n = 0[2π], which is impossible as θ

π is not
rational. More generally, the closure of the reachable set of states of diagonal-
isable transformations with eigenvalues of modulus 1 is a semialgebraic set [8].
Semialgebraic certificates for such transformations exist if and only if Y does
not belong to this closure [8].

Theorem 3. For a given instance O(A,X, Y) such that A is diagonalizable and
all its eigenvalues have a modulus of 1, eigenvectors can be used as semialgebraic
certificates iff Y is not in the closure.

42 S. de Oliveira et al.

Fig. 2. Closure of the reachable set of A starting with X

Proof. Let O(A,X, Y) be an instance of the Orbit Problem with A a diagonaliz-
able matrix only admitting eigenvalues λ such that |λ| = 1. Let ϕ an eigenvector
of A, we denote R = {v|∃k.AkX = v} the reachable set.

Lemma 3. Let (λi, ϕi) be d couples of eigenvalue/left-eigenvector of a diago-
nalizable matrix A of size d. Then R = {v|∃k,∀1 � i � d, 〈ϕiv,=〉λk

i .〈ϕi,X〉}

Proof. Let R′ = {v|∃k,∀1 � i � d, 〈ϕi, v〉 = λk
i 〈ϕi,X〉}. By the definitions of R

and ϕi, the inclusion R ⊂ R′ is trivially true. Now take v ∈ R′. As there exist d
different and independent eigenvectors, v is a solution of the following relation:
∃k.Φv = (λk

1x1, ...λ
k
dxd)t, where Φ is an invertible matrix whose lines are directly

defined by eigenvectors. As Φ is invertible, there exists only one solution for each
k. As v is one of those solutions, then v ∈ R.

By lemma 3, for any i between 1 and d, every element v of R verifies |〈ϕi, v〉| =
|〈ϕi,X〉|, thus R ⊂ Rϕ = {v : |〈ϕi, v〉| = |〈ϕi,X〉|}. Note that this inclusion is
strict, as X ′ = A−1X ∈ Rϕ but X ′ /∈ R. If Y does not belong to Rϕ, then
(0, Rϕ) is a non reachability certificate. ��

3.2 General Existence of a Certificate for the Integer Orbit Problem

The Orbit Problem is originally defined on Q. In practice, rational are not rep-
resented in computers that often require the use of integers or floats. We will
investigate in this section the Orbit Problem for integer transformations, i.e.
matrices with coefficients in Z. Basic matrix operations involving divisions (such
as inversion) are forbidden in Z as it is not a field, but the only relevant oper-
ation in our case is multiplication (does there exist a n such that AnX = Y ?)
which is consistent for integer matrices.

The following property holds for integer matrices and is fundamental for the
proof of the following theorem.

Property 4. Let A ∈ mathcalMn(Z). If all its eigenvalue λ have a modulus
inferior or equal to 1, then there exists n > 1 such that λn = λ.

Proof. Let A ∈ M(Z) such that for all eigenvalue λ, |λ| � 1.

Left-Eigenvectors Are Certificates of the Orbit Problem 43

If λ = 0, then we can conclude right away (02 = 0).
The characteristic polynomial P ∈ Z[X] of A is monic, i.e. its leading coeffi-

cient is 1. Thus by definition, every eigenvalue is an algebraic integer. We will use
the Kronecker theorem [15], stating that if a non null algebraic integer α has all
its rational conjugates (i.e. roots of its rational minimal polynomial) admitting
a modulus lower or equal to 1, then α is a root of unity.

Each eigenvalue λ admits a minimal rational polynomial Q. We can show
that Q necessarily divides P by performing an euclidian division : there exist
D,R ∈ Q[X] such that P (X) = Q(X)D(X)+R(X), with the degree of R strictly
inferior to Q. We know that P (λ) = 0 and Q(λ) = 0, thus R(λ) = 0. If R �= 0,
then R is the minimal polynomial of λ as its degree is inferior to the degree of
Q, which is absurd by hypothesis. Thus, the set of rational conjuguates of λ are
roots of P , by hypothesis of modulus inferior or equal to 1. By the Kronecker
theorem, λ is a root of unity, i.e. ∃n > 1.λn = λ. ��
Theorem 4. Any non-reachable instance of the Orbit problem O(A,X, Y)
where A ∈ Mn(Z) admits a closed semi-algebraic certificate.

Because of length constraints, the proof of this theorem cannot fit in this article.
It can be found on an extended version of this paper [6]. The idea is to consider
that if all eigenvalues have a modulus of 1, then by Property 4, the reachable
set of states is finite in any case.

4 Conclusion and Future Work

This paper presents new insights on the quality of certificates necessary to prove
the non-reachability of a given Orbit problem instance. In addition, in contrast
with [8], we gain simplicity and precision by not studying the Jordan normal
form of a linear transformation but only its eigenvector decomposition.

Eigenvectors are computable without knowledge of the initial state X and
the target Y . It means that certificates are intrinsequely linked only to the
transformation studied. In other words, for an instance of the Orbit Problem
O(A,X, Y), X and Y play a minor role in the expression of certificates. As a
consequence, generalizing the result of this paper to sets of initial states and
targets should be possible.

As this article explores the Orbit Problem for rationals, it is worth noting
that certificates may not necessarily be relevant for real-life programs manipu-
lating floats. For example, the Orbit problem (x �→ x

2 , 1, 0) has a solution for
some floating point implementations due to limited precision. The question of
certificates synthesis for such problems is also an interesting challenge.

References

1. Blazy, S., Bühler, D., Yakobowski, B.: Structuring abstract interpreters through
state and value abstractions. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017.
LNCS, vol. 10145, pp. 112–130. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52234-0 7

https://doi.org/10.1007/978-3-319-52234-0_7
https://doi.org/10.1007/978-3-319-52234-0_7

44 S. de Oliveira et al.

2. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 23

3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252. ACM (1977)

4. de Oliveira, S., Bensalem, S., Prevosto, V.: Polynomial invariants by linear algebra.
In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 479–
494. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 30

5. de Oliveira, S., Bensalem, S., Prevosto, V.: Synthesizing invariants by solving solv-
able loops. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 327–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 22

6. de Oliveira, S., Prevosto, V., Habermehl, P., Bensalem, S.: Left-eigenvectors
are certificates of the orbit problem. http://steven-de-oliveira.fr/content/publis/
certificates 2018.pdf

7. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. Softw. Eng.
27(2), 99–123 (2001)

8. Fijalkow, N., Ohlmann, P., Ouaknine, J., Pouly, A., Worrell, J.: Semialgebraic
invariant synthesis for the Kannan-Lipton orbit problem. In: STACS 2017. LIPIcs,
vol. 66, pp. 29:1–29:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

9. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

10. Kannan, R., Lipton, R.J.: The orbit problem is decidable. In: Proceedings of the
Twelfth Annual ACM Symposium on Theory of Computing, pp. 252–261. ACM
(1980)

11. Kannan, R., Lipton, R.J.: Polynomial-time algorithm for the orbit problem. J.
ACM (JACM) 33(4), 808–821 (1986)

12. Kovács, L.: Reasoning algebraically about P-solvable loops. In: Ramakrishnan,
C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 249–264. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78800-3 18

13. Rocha, H., Ismail, H., Cordeiro, L., Barreto, R.: Model checking embedded C
software using k-induction and invariants. In: 2015 Brazilian Symposium on Com-
puting Systems Engineering (SBESC), pp. 90–95. IEEE (2015)

14. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. J. Symb. Comput. 42(4), 443–476 (2007)

15. Schinzel, A., Zassenhaus, H.: A refinement of two theorems of Kronecker. Michigan
Math. J 12, 81–85 (1965)

https://doi.org/10.1007/978-3-642-14295-6_23
https://doi.org/10.1007/978-3-319-46520-3_30
https://doi.org/10.1007/978-3-319-68167-2_22
https://doi.org/10.1007/978-3-319-68167-2_22
http://steven-de-oliveira.fr/content/publis/certificates_2018.pdf
http://steven-de-oliveira.fr/content/publis/certificates_2018.pdf
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-540-78800-3_18

Constrained Dynamic Tree Networks

Matthew Hague1(B) and Vincent Penelle2

1 Royal Holloway, University of London, Egham, UK
matthew.hague@rhul.ac.uk

2 Université de Bordeaux, LaBRI, UMR 5800, Talence, France
vincent.penelle@labri.fr

Abstract. We generalise Constrained Dynamic Pushdown Networks,
introduced by Bouajjani et al., to Constrained Dynamic Tree Networks.
In this model, we have trees of processes which may monitor their chil-
dren. We allow the processes to be defined by any computation model for
which the alternating reachability problem is decidable. We address the
problem of symbolic reachability analysis for this model. More precisely,
we consider the problem of computing an effective representation of their
reachability sets using finite state automata. We show that backwards
reachability sets starting from regular sets of configurations are always
regular. We provide an algorithm for computing backwards reachability
sets using tree automata.

Keywords: Model-checking · Dynamic networks · Concurrency
Pushdown systems · Alternation · Higher-order
Collapsible pushdown systems

1 Introduction

Bouajjani et al. [2] defined Constrained Dynamic Networks of Pushdown Sys-
tems: a model of concurrent computation where configurations of processes are
tree structures, and each process is given by a pushdown system. During an
execution, new child processes can be created, and a parent can test the states
of its children before performing an execution step. They considered the global
backwards reachability problem for these systems. That is, given a regular set of
target configurations, compute the set of configurations that can reach the target
set. They showed that, under a stability constraint, this backwards reachability
set is regular and computable.

The stability constraint requires that once a test a parent may make on its
children is satisfied, then it will remain satisfied, even if the children continue
their execution. In the simplest case, this allows a parent to test for termination
in a given state of its children. In general, this constraint allows a parent to
(repeatedly) test whether its children have passed certain stages of execution
(and their state in doing so).

We show here that Bouajjani et al.’s result is not dependent on the processes
in the tree being modelled by pushdown systems. In fact, all that is required is
c© Springer Nature Switzerland AG 2018
I. Potapov and P.-A. Reynier (Eds.): RP 2018, LNCS 11123, pp. 45–58, 2018.
https://doi.org/10.1007/978-3-030-00250-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00250-3_4&domain=pdf

46 M. Hague and V. Penelle

that the alternating reachability problem is decidable for the systems labelling
the nodes in the tree. Intuitively, in the alternating reachability problem, some
steps during the run of the system may be required to split into separate paths.
From the initial state, we ask whether all paths of the execution reach a given
final state.

Thus, we introduce Constrained Dynamic Tree Networks, which are tree net-
works of processes as before, but the individual processes can be labelled by any
system for which the alternating reachability problem is decidable.

One particular instance of interest is the case of networks of collapsible push-
down systems [14]. Collapsible pushdown systems are a generalisation of push-
down systems that are known to be equi-expressive with Higher-Order Recursion
Schemes. The alternating reachability problem is known to be decidable for these
systems [32]. In fact, the backwards reachability sets of alternating collapsible
pushdown systems are also known to be computable and regular [4]. Thus, we
obtain a new model of concurrent higher-order programs for which the back-
wards reachability sets are also computable and regular. An advantage of our
approach is that we do not need to consider the technical difficulties of reason-
ing about collapsible pushdown systems. The proof presented here only needs to
take care of the concurrent aspects of the computations. Thus, we obtain results
for quite complex systems with a relatively modest proof.

Modern day programming increasingly embraces higher-order programming,
both via the inclusion of higher-order constructs in languages such as C++,
JavaScript and Python, but also via the importance of callbacks in highly popular
technologies such as jQuery and Node.js. For example, to read a file in Node.js,
one would write

In this code, the call to readFile spawns a new thread that asynchronously
reads f.txt and sends the data to the function argument. This function will
have access to, and frequently use, the closure information of the scope in which
it appears (for example, variables defined before the readFile statement). The
rest of the program runs in parallel with this call. This style of programming is
fundamental to both jQuery and Node.js programming, as well as being a pop-
ular for programs handling input events or slow IO operations such as fetching
remote data or querying databases (e.g. HTML5’s indexedDB).

Analysing such programs is a challenge for verification tools which usually
do not model higher-order recursion, or closures, accurately. However, several
higher-order model-checking tools have been recently developed. This trend was
pioneered by Kobayashi et al. [18]. The feasibility of higher-order model-checking
in practice has been demonstrated by numerous higher-order model-checking
tools [5,6,17,19,21,30,36]. Since all of these tools can handle the alternating
reachability problem, it is possible that our techniques may be used to provide
model checking tools for concurrent higher-order programs.

Our construction follows Bouajjani et al. and uses a saturation method to
construct a regular representation of the backwards reachability set. However,

Constrained Dynamic Tree Networks 47

our automaton representation is different: it separates the representation of the
system states from the tree structure. We also use different techniques to prove
correctness of the construction. In particular, our soundness proof works by
defining and showing soundness of each transition of the automaton, rather than
dissecting complete runs. This is an application of a technique first used for a
saturation technique for solving parity games over pushdown systems [15].

The full version of this article with appendices is available online [16].

1.1 Related Work

Dynamic pushdown networks have been studied without the process tree struc-
ture or constraints allowing a parent to inspect its children [26,39]. Various
decidability-preserving locking techniques have also been investigated [24]. Some
of these works also allow the tree structure to be taken into account [23,31]. Touili
and Atig have also considered communication structures that are not necessarily
trees [41]. However, these works consider pushdown networks only.

There has been some work studying concurrent variants of recursion
scheme model checking, including a context-bounded algorithm for recursion
schemes [20], and further underapproximation methods such as phase-bounded,
ordered, and scope-bounding [12,38]. These works allow only a fixed number of
threads.

Dynamic thread creation is permitted by both Yasukata et al. [42,43] and by
Chadha and Viswanathan [7]. In Yasukata et al.’s model, recursion schemes may
spawn and join threads. Communication is permitted only via nested locks. Their
work is a generalisation of results for order-1 pushdown systems [11]. Chadha and
Viswanathan allow threads to be spawned, but only one thread runs at a time,
and must run to completion. Moreover, the tree structure is not maintained.

The saturation technique was popularised by Bouajjani et al. [1] for the
analysis of pushdown systems, which was implemented in the successful Moped
tool [37,40]. Saturation methods also exist for ground tree rewrite systems and
related systems [3,25,27], though use different techniques.

Ground tree rewrite systems may also be generalised to trees where the nodes
are labelled by higher-order stacks. Penelle proves decidability of first order logic
with reachability over such systems [34]. However, this result does not allow
nodes to have an unbounded number of direct children, and does not consider
collapsible stacks in their full generality.

A related model of tree rewriting was introduced by Clemente et al. [8].
This model allows more powerful rewriting rules than ground tree rewrite sys-
tems while still enjoying decidability of alternating reachability. It is shown that
reachability over alternating variants of a number of pushdown system models
can be reduced to this model. In particular, this includes (ordered) annotated
pushdown systems which are tightly related to (concurrent) collapsible pushdown
systems. We believe it is likely that constrained dynamic networks of annotated
pushdown systems could also be encoded in this model. However, our result
applies to any system for which alternating reachability is decidable, and does
not require an encoding of the underlying model into any particular form.

48 M. Hague and V. Penelle

There is various research into meta-results on the analysis of concurrent sys-
tems, where the concurrent structure is the object of the research. Recent work
by La Torre et al. has shown that parameterised safety analysis is possible of
asynchronous networks of shared-memory systems [22], provided, amongst other
constraints, the downwards closure of the system is computable. Muscholl et al.
also consider a parameterised model where processes may spawn an arbitrary
(uncontrolled) amount of identical child processes [29]. Collapsible pushdown
systems are known to have these properties [9,13,33,44]. Other works have stud-
ied multi-stack pushdown systems and offered either bounded tree-width [28],
or split-width [10], as explanations for decidability. However, these results have
not been extended to higher orders.

2 Alternating Transition System

We define the notion of alternating transition system. An alternating transition
system accepts labels γ to which operations θ can be applied. Transitions of the
system are of the form s

θ−→ S. Where S is a set of states. A label γ is accepted
from s whenever θ(γ) is accepted from every state in S. If a state s is final, it
accepts all labels.

We will consider Γ to be a set of labels, and Ops a set of operations θ : Γ � Γ
over Γ . Note, we do not require that θ is defined over all elements of Γ . We also
define the special operation Id such that Id(γ) = γ for all γ ∈ Γ .

Definition 1 (Alternating transition systems over Γ,Ops). An alternating
transition system over Γ,Ops is a tuple N = (S, F, η), where S is a finite set of
states, F ⊆ S is the set of final states, η ⊆ S × Ops × 2S is the set of transitions.

Given γ ∈ Γ and s ∈ S, we inductively define acceptance of γ from s, denoted
γ � s. We have γ � s if s is final, or if there is a transition ν = (s, θ, S) such
that θ(γ) is defined and θ(γ) � s′ for every s′ ∈ S.

Requirement. In all the following, we suppose that for every alternating tran-
sition system N , given γ ∈ Γ and s ∈ S, we can decide whether γ � s.

Example 1. An alternating pushdown system with stack alphabet Σ is an alter-
nating transition system with Γ = Σ∗ and the set of operations Ops =
{(a, u) | a ∈ Σ, u ∈ Σ∗}. Where for all w ∈ Σ∗

(a, u)(w) =

{
uv w = av

undefined otherwise.

Here we represent a stack as a word, and the top of the stack appears leftmost.

A transition s
(a,u)−−−→ S represents an alternating transition from a configuration

(s, aw) of the pushdown system (with control state s and stack aw) to a set of
configurations containing (s′, uw) for each s′ ∈ S. We will have aw � s if we can
show s′ � uw for each s′ ∈ S.

Constrained Dynamic Tree Networks 49

3 Constrained Dynamic Tree Networks

We define constrained dynamic tree networks (CDTNs), which allow process
trees with dynamic thread creation and parents to inspect their children.

Definition 2 (Constrained Dynamic Tree Network over Γ,Ops). A
constrained dynamic network over Γ,Ops is a tuple M = (P,F, δ) with:

– P is a finite set of states and F ⊆ P is the set of final states,
– δ a finite set of transitions of the following form:

C1 φ : p
θ−→ pa, with θ ∈ Ops, p, pa ∈ P, and φ is a regular language over P∗.

C2 φ : p −→ pa � pb, with p, pa, pb ∈ P, and φ is a regular language over P∗.

An M-configuration is a tree labelled by P×Γ . Let T (P×Γ) denote the set of
these configurations. More explicitly, a configuration is either a leaf node (p, γ)(∅)
or a tree (p, γ)(t1, · · · , tm) with root (p, γ) and children t1, · · · , tm where p ∈ P,
γ ∈ Γ , and for each 1 ≤ i ≤ m we have that ti is an M-configuration. A context
C is a tree labelled by (P × Γ)∪{�} containing exactly one node labelled by �,
which is a leaf. We write C[t] to denote the configuration obtained by replacing
� by t in C. Furthermore, let

S((p, γ)(t1, · · · , tm)) = p

extract the internal state of the root node of a configuration.
Transitions of the form C1 apply θ to a node, while transitions of the form

C2 create a new child process. That is, the application of a transition of the
form C1 to a configuration C[(p, γ)(t1, · · · , tm)] yields C[(pa, θ(γ))(t1, · · · , tm)],
if θ(γ) is defined and S(t1) · · · S(tm) ∈ φ. The application of a transition of
the form C2 to a configuration C[(p, γ)(t1, · · · , tm)] yields the configuration
C[(pa, γ)(t1, · · · , tm, (pb, γ)(∅))] if S(t1) · · · S(tm) ∈ φ.

3.1 Stability Constraint

We give the restriction on child constraints φ that allows us to preserve decid-
ability of reachability for CDTNs. Intuitively, this constraint asserts that once a
constraint φ is satisfied, it will remain satisfied even if its children progress.

Definition 3 (Stability relation [2]). Given an alphabet Σ and a binary rela-
tion ρ over Σ, we say that a subset S of Σ is ρ-stable if for every a, b ∈ Σ,
ρ(a, b) ∧ a ∈ S ⇒ b ∈ S.

A language L is ρ-stable if it is defined by a regular expression of the form

e:: = S, ρ-stable set | e + e | e.e | e∗

In [2], it is shown that if a language L is ρ-stable, for every a, b ∈ Σ, u, v ∈ Σ∗,
uav ∈ L ∧ ρ(a, b) ⇒ ubv ∈ L. Given a CDTN M = (P,F, δ) we define

ρδ = {(p, p′) | ∃φ : p
θ−→ p′ ∈ δ ∨ ∃φ : p −→ p′ � p′′ ∈ δ} .

We say M is ρδ-stable iff for all φ : p
θ−→ pa ∈ δ and φ : p −→ pa � pb ∈ δ we have

φ is ρδ-stable (can be checked looking at regular expressions defining each φ).

50 M. Hague and V. Penelle

3.2 Automaton

We now define a notion of tree automata over the configurations of a constrained
dynamic tree network. As these configurations can have an unbounded arity, we
need to have an automaton model which can deal with unbounded arity, thus
we use an adapted version of hedge automata. Transitions of our automata are
of the form p(L) −→ q, meaning they can rewrite a tree to a state q, if

– the internal state of its root is p,
– the ith son of its root can be rewritten to the state qi, and
– q1 · · · qm is in the regular language L (if the node has m sons).

Moreover, the automaton checks that the element of the root is accepted by an
alternating transition system which is bound to the transition (more precisely, we
will use a single alternating transition system for the whole automaton, which has
a unique initial state for each rule of the automaton). In the following definition,
let Reg(Q) be the set of regular languages over alphabet Q.

Definition 4 (M-automaton). Given a CDTN M = (P,F, δ), an M-automa-
ton is a tuple A = (Q,F ,Δ,N), where:

– Q is a finite set of states and F ⊆ Q the set of final states,
– Δ ⊆ P × Reg(Q) × Q a finite set of transitions of the form p(L) −→ q,
– N = (S, F, η) an alternating transition system over Γ,Ops, such that for every

r ∈ Δ, there is a unique state sr ∈ S. Without loss of generality, we suppose
that these states have no incoming transition1 and that these states are not
final2. Intuitively, sr accepts the set of elements of Γ that allow r to fire.
A M-automaton is analogous to a tree automaton, with the difference that
letters are replaced with sets of labels accepted from a state of an alternating
transition system.

An A-configuration is a tree labelled by (P × Γ) ∪ Q, such that only leaves
can be labelled by Q. Given a transition r = p(L) −→ q and two A-configurations
t and t′, we have t

r−→ t′ if and only if t = C[(p, γ)(q1, · · · , qm)], t′ = C[q],
q1 · · · qm ∈ L and γ � sr.

Let ∗−→
Δ

be the transitive closure of
(⋃

r∈Δ
r−→

)
. The set of M-configurations

recognised by A from the state q is Lq(A) = {t ∈ T (P × Γ) | t
∗−→
Δ

q}.

Note, the membership problem for M-automata is decidable whenever it is decid-
able whether γ � s for a given γ and s. Similarly, emptiness is decidable whenever
it is decidable if ∃γ.γ � s for a given s.

1 If it is not the case, we create a copy of these states on which we conserve all the
transition as an “internal state”, and remove the incoming transitions to these states.

2 If so, for a state sr, we create a new final state s and add the transition sr
Id−→ s,

and remove sr from the set of final states.

Constrained Dynamic Tree Networks 51

Example 2. We can accept regular sets of pushdown networks as defined by
Bouajjani et al. [2] by defining the word automata used to recognise pushdown
stacks as alternating transition systems with operations of the form (a, ε), where
ε is the empty word, and operations have the same semantics as in Example 1.
That is, each operation consumes the leftmost character of the word represen-
tation of the stack. For this we will need an explicit end-of-stack marker.

4 Backwards Reachability

In this section, we show that we can compute the backwards reachability set of
CDTNs. That is, if a CDTN M is ρδ-stable, then the set of predecessors of a
regular set is regular. Here, by regular we mean the set is accepted by an M-
automaton. We remark in the conclusion how this notion of regularity may be
related to a more conventional one.

Given S a set of M-configurations, we denote pre∗
M(S) the set of predecessors

of elements of S, i.e., pre∗
M(S) = {s | ∃s′ ∈ S, s

∗−−→
M

s′}.

Theorem 1. Given M a ρδ-stable CDTN and A an M-automaton, it is possible
to compute a M-automaton A′ such that L(A′) = pre∗

M(L(A)).

For the proof, we construct the automaton A′ from A and M in two steps.

4.1 The Automaton Ap

First we add to the states of the automaton the internal state of the root of
the M-configuration that was reduced to this state. Informally, we replace every
transition p(L) −→ q with p(L) −→ (q, p), so given an M-configuration t such that
if t

∗−→
Δ

q, we have t
∗−−→

Δp

(q, S(t)). This will be useful in the actual construction

of A′, as to inversely apply M-rules, we will need to check if the constraint of
the rule is satisfied, which will be given by this information (using the stability
property, as we remember the final state of the root of each son). More formally,
we will also need to adapt the constraint L and to add states to the inner
alternating transition system. For notational convenience, let Qp = Q × P.

We define Ap = (Qp,F × P,Δp,Np), where

Δp =

⎧⎨
⎩p(LP) −→ (q, p) |

p(L) −→ q ∈ Δ,

LP =
{

(q1, p1) · · · (qm, pm) | q1 · · · qm ∈ L,
p1, · · · , pm ∈ P

}⎫⎬
⎭

and Np = (Sp, Fp, ηp), with

– Sp = S\{sr | r ∈ Δ} ∪ {sr | r ∈ Δp},
– Fp = F ∩ Sp ∪ {sr | r = p(LP) −→ (q, p), sr′ ∈ F, r′ = p(L) −→ q},

– ηp = η ∪ {sr
θ−→ S | sr′

θ−→ S ∈ η, r = p(LP) −→ (q, p), r′ = p(L) −→ q}.

Lemma 1. L(Ap) = L(A).

52 M. Hague and V. Penelle

Proof. We only have to observe that for every t, t
∗−−→

Δp

(q, S(t)) if and only if

t
∗−→
Δ

q, and that (q, p) is final if and only if q is final.

4.2 From Constraints over P to Constraints over Qp

In order to faithfully compute the automaton A′, we need to be able to trans-
fer the constraint of M to the states of A′. Indeed, we need to recognise
only valid predecessors of the configurations recognised by A, i.e. those which
satisfy the constraints φ. Given a regular language φ ⊆ P∗, we thus define
〈φ〉 = {(q1, p1) · · · (qm, pm) | p1 · · · pm ∈ φ, q1, · · · , qm ∈ Q}. It is straightforward
to see that this language is also regular.

4.3 Closed Set of Constraints

During the construction of A′, we add new transitions of the form p(L) −→ (q′, p′).
The constraints L will be constructed from those already appearing in Ap and
the constraints φ used in M, using intersection and right-quotient operations.
Intersection L∩〈φ〉 allows us to check that the guarding constraint of an M-rule
is satisfied at the considered position in the configuration. The right-quotient

L(q, p)−1 = {(q1, p1) · · · (qm, pm) | (q1, p1) · · · (qm, pm)(q, p) ∈ L}

allows us to get immediate predecessors by an operation of the form C2. We
define Λ to be the smallest family of languages over Qp such that:

– If r = p(L) −→ (q, p) ∈ Δp, then L ∈ Λ,
– If L ∈ Λ and τ = φ : p

θ−→ pa ∈ δ, or τ = φ : p −→ pa � pb ∈ δ, then
L ∩ 〈φ〉 ∈ Λ,

– If L ∈ Λ and (q, p) ∈ Qp, then L(q, p)−1 ∈ Λ.

Finiteness of Λ was shown by Bouajjani et al. [2]. To prove it, observe that as
the L and φ are regular, there are automata recognising them. Moreover there is a
finite number of such constraints. We can take the product of all these automata
to get a finite automaton, and associate each constraint with a set of final states
of the product. Indeed, each L ∈ Λ can be associated with a set of final states (as
taking the right-product is equivalent to moving backward by one transition, and
as we already have a product automaton, we don’t have to introduce new states
for the intersection). Thus, only a finite number of automata can be generated.

Lemma 2. [2, Lemma 3] Λ is finite.

4.4 Constructing A′

We now actually describe our saturation algorithm constructing A′. To do so we
start from Ap and only add new transitions: we will never add new states, so this

process terminates. The main idea is, for every M-rule r = φ : p
θ−→ pa and every

Constrained Dynamic Tree Networks 53

transition pa(L) −→ (q′, p′) starting with pa, to add a new transition starting with
p and ending in the same states (q′, p′). Moreover, we ensure the sons of the node
we apply the rule to satisfy φ by setting the constraint of the rule to L ∩ 〈φ〉.
We also ensure that the elements recognised from the state associated with the
new rule are predecessors by θ of those recognised from the one associated with
the old rule. For the spawning rule φ : p −→ pa � pb, we moreover ensure that
there is exactly one son less and the label was also accepted by the last son. We
need that the label was also accepted by the last son since the spawn operation
creates a copy of the parent process’s label. Hence, the label of the parent must
also be the label of the last son.

We construct A′ = (Q × P,F × P,Δ′,N ′), with N ′ = (Sp, Fp, η
′). We give

the formal definition of the construction first, and then informally explain the
two rules R1 and R2.

We define Δ′ and η′ inductively as the fixed point of the following sequence.
We begin with Δ′

0 = Δp and η′
0 = ηp. Now, suppose Δ′

i−1 and η′
i−1 are defined.

We construct Δ′
i and η′

i to be at least Δ′
i−1 and η′

i−1 plus transitions added with
one of the following rules:

R1. if we have:
– τ = φ : p

θ−→ pa ∈ δ,
– r = pa(L) −→ (q′, p′) ∈ Δ′

i−1,
we add

– r′ = p(L ∩ 〈φ〉) −→ (q′, p′) to Δ′
i,

– ν′ = sr′
θ−→ {sr} to η′

i.
R2. if we have:

– τ = φ : p −→ pa � pb ∈ δ,
– r1 = pa(L1) −→ (q′, p′) ∈ Δ′

i−1,
– r2 = pb(L2) −→ (q′′, p′′) ∈ Δ′

i−1, with ε ∈ L2,
we add

– r′ = p(L1(q′′, p′′)−1 ∩ 〈φ〉) −→ (q′, p′) to Δ′
i,

– ν′ = sr′
Id−→ {sr1 , sr2} to η′

i.

This process terminates when Δ′
i−1 = Δ′

i and η′
i−1 = η′

i. As the set of states is
fixed, there is a finite number of possible rules, thus we terminate and A′ exists.

Intuitively, R1 works as follows. We want to extend the automaton to recog-
nise the result of a reverse application of φ : p

θ−→ pa. That is, whenever a con-
figuration t′ with the root node having internal state pa is accepted, we should
now accept a configuration t with root internal state p. Hence, we look for a
transition (r) that will read and accept the root node of t′ and introduce a new
transition (r′) that will read and accept the root of t. In addition, we need to
take care of the children of the root. In particular, to be able to apply τ the chil-
dren must satisfy φ. This is why we intersect with 〈φ〉. Furthermore, to simulate
the (reverse) update to γ, we add the transition sr′

θ−→ {sr} to assert that the
label accepted by r′ would be accepted by r after an application of θ.

The rule R2 works similarly to R1, except we need to deal with the addition
of a new child in the transition from t to t′. This is a removal when applied in

54 M. Hague and V. Penelle

reverse, hence the introduced transition performs a right-quotient on the lan-
guage of children. In addition, we have to ensure that the spawned child has
the same label as the parent. To do this, we look at the transition r2 used to
accept the final child. Note, the right quotient removes the target (q′′, p′′) of this
transition. When applying this transition is reverse, the label γ of the root of t
must be the same as the label of the root of t′ and its final child. This explains
the transition sr′

Id−→ {sr1 , sr2} which ensures γ is accepted at both the root and
its final child.

5 Correctness

We show that A′ accepts pre∗
M(L(A)). It is sufficient to prove the following

property, which we discuss in the following subsections.

Proposition 1. Given (q, p) ∈ Qp, we have L(q,p)(A′) = pre∗
M(L(q,p)(Ap)).

5.1 Soundness

Proposition 2. Given (q, p) ∈ Qp, we have L(q,p)(A′) ⊆ pre∗
M(L(q,p)(Ap)).

We give the complete proof of this proposition in the full version. Intuitively,
to prove this proposition, we associate to each state of an automaton (and the
inner alternating transition system as well) a meaning that is intimately con-
nected to the backwards reachability set we want to construct. We consider a
transition r = p(L) −→ (q, p′) to be sound under the following condition: if we
take elements satisfying the meaning of each state appearing at the left of the
transition, then the configuration including all these elements satisfies the mean-
ing of the right state of the transition. Intuitively this says that, assuming all
actions taken by other transitions in the automaton are correct, the current tran-
sition does nothing wrong. We inductively show that every transition appearing
in A′ is sound. Finally, we show that if an automaton is sound and contains Ap,
it satisfies the proposition, showing that it is the case for A′.

5.2 Completeness

The proof of completeness of A′ is conceptually simpler than the soundness proof.
It proceeds by a straightforward induction over the length of the run showing
a configuration is in the backwards reachability set. In the base case we have
the configuration is accepted by Ap and the proof is immediate. In the inductive
case, we have t reaches t′ by a single transition, and an accepting run of A′ over
t′. We then inspect the transition from t to t′ and show that our construction
of A′ ensures that we can modify the accepting run of t′ to obtain an accepting
run of t. For space reasons, we give the proof in the full version.

Proposition 3. Given (q, p) ∈ Qp, we have pre∗
M(L(q,p)(Ap)) ⊆ L(q,p)(A′).

Constrained Dynamic Tree Networks 55

6 Conclusion

We have shown that the saturation algorithm for constrained dynamic pushdown
networks introduced by Bouajjani et al. [2] can be generalised to not only push-
down networks, but networks of any system for which the alternating reachability
problem is decidable. In particular, this includes collapsible pushdown systems,
or higher-order recursion schemes, which thus allows the analysis of a kind of
concurrent higher-order programs.

We showed that, given a target set of configurations represented by an M-
automata, the backwards reachability set is computable and also representable
by an M-automaton. We make some remarks on M-automata as a notion of
regularity. In order to accept a configuration, an automaton must perform sev-
eral alternating reachability checks. This is not regular in the conventional sense.
However, for alternating pushdown systems, and indeed alternating collapsible
pushdown systems, the backwards reachability set of a regular set of stacks is
known to have a regular representation [1,4]. Thus, we can replace the alternat-
ing reachability tests with regular automata which run over the stack contents
labelling each node. Thus we obtain a truly regular representation of the back-
wards reachability sets of CDTNs over these systems.

A natural avenue of future work is to attempt to generalise our model further,
to permit more intricate communication between processes. One option is to
allow the child nodes to inspect the internal state of their parent processes. In
general this leads to an undecidable model. It is an open problem to discover
a form of interesting upwards communication that is decidable. Similarly, we
may seek to relax the stability constraint. One such option is to use the stability
constraint defined by Touili and Atig [41] where internal states are grouped into
mutually reachable equivalence classes. Thus, any run moves through a bounded
number of equivalence classes. We can then insist that constraints are over the
equivalence classes rather than individual states. This is reminiscent of context-
bounded analysis [35]. We can adapt our construction to allow downwards and
upwards communication of this form, but it is not clear whether Λ remains finite.

Acknowledgement. We thank the anonymous reviewers for their remarks. This
work was supported by the Engineering and Physical Sciences Research Council
[EP/K009907/1].

References

1. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0 10

2. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452 36

https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/11539452_36
https://doi.org/10.1007/11539452_36

56 M. Hague and V. Penelle

3. Brainerd, W.S.: Tree generating regular systems. Inf. Control 14(2), 217–231
(1969)

4. Broadbent, C.H., Carayol, A., Hague, M., Serre, O.: A saturation method for col-
lapsible pushdown systems. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer,
R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 165–176. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31585-5 18

5. Broadbent, C.H., Carayol, A., Hague, M., Serre, O.: C-SHORe: a collapsible app-
roach to higher-order verification. In: ICFP (2013)

6. Broadbent, C.H., Kobayashi, N.: Saturation-based model checking of higher-order
recursion schemes. In: CSL (2013)

7. Chadha, R., Viswanathan, M.: Decidability results for well-structured transition
systems with auxiliary storage. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR
2007. LNCS, vol. 4703, pp. 136–150. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74407-8 10

8. Clemente, L., Parys, P., Salvati, S., Walukiewicz, I.: Ordered tree-pushdown sys-
tems. In: FSTTCS (2015)

9. Clemente, L., Parys, P., Salvati, S., Walukiewicz, I.: The diagonal problem for
higher-order recursive schemes is decidable. In: LICS (2016)

10. Cyriac, A., Gastin, P., Kumar, K.N.: MSO decidability of multi-pushdown systems
via split-width. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol.
7454, pp. 547–561. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32940-1 38

11. Gawlitza, T.M., Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Join-lock-
sensitive forward reachability analysis for concurrent programs with dynamic pro-
cess creation. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp.
199–213. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-
4 15

12. Hague, M.: Saturation of concurrent collapsible pushdown systems. In: FSTTCS
(2013)

13. Hague, M., Kochems, J., Ong, C.-H.L.: Unboundedness and downward closures of
higher-order pushdown automata. In: POPL (2016)

14. Hague, M., Murawski, A.S., Ong, C.-H.L., Serre, O.: Collapsible pushdown
automata and recursion schemes. In: LICS (2008)

15. Hague, M., Ong, C.-H.L.: Winning regions of pushdown parity games: a saturation
method. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp.
384–398. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-
8 26

16. Hague, M., Penelle, V.: Constrained dynamic tree networks (2018). https://doi.
org/10.17637/rh.6850508, https://figshare.com/articles/main pdf/6850508

17. Kobayashi, N.: Model-checking higher-order functions. In: PPDP (2009)
18. Kobayashi, N.: Higher-order model checking: from theory to practice. In: LICS

(2011)
19. Kobayashi, N.: A practical linear time algorithm for trivial automata model check-

ing of higher-order recursion schemes. In: Hofmann, M. (ed.) FoSSaCS 2011. LNCS,
vol. 6604, pp. 260–274. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19805-2 18

20. Kobayashi, N., Igarashi, A.: Model-checking higher-order programs with recursive
types. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 431–
450. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6 24

21. Kobayashi, N.: GTRecS2: a model checker for recursion schemes based on games
and types (2012). http://www-kb.is.s.u-tokyo.ac.jp/∼koba/gtrecs2/

https://doi.org/10.1007/978-3-642-31585-5_18
https://doi.org/10.1007/978-3-540-74407-8_10
https://doi.org/10.1007/978-3-540-74407-8_10
https://doi.org/10.1007/978-3-642-32940-1_38
https://doi.org/10.1007/978-3-642-32940-1_38
https://doi.org/10.1007/978-3-642-18275-4_15
https://doi.org/10.1007/978-3-642-18275-4_15
https://doi.org/10.1007/978-3-642-04081-8_26
https://doi.org/10.1007/978-3-642-04081-8_26
https://doi.org/10.17637/rh.6850508
https://doi.org/10.17637/rh.6850508
https://figshare.com/articles/main_pdf/6850508
https://doi.org/10.1007/978-3-642-19805-2_18
https://doi.org/10.1007/978-3-642-19805-2_18
https://doi.org/10.1007/978-3-642-37036-6_24
http://www-kb.is.s.u-tokyo.ac.jp/~koba/gtrecs2/

Constrained Dynamic Tree Networks 57

22. La Torre, S., Muscholl, A., Walukiewicz, I.: Safety of parametrized asynchronous
shared-memory systems is almost always decidable. In: CONCUR (2015)

23. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 525–539. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4 39

24. Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Contextual locking for
dynamic pushdown networks. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013.
LNCS, vol. 7935, pp. 477–498. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38856-9 25

25. Löding, C.: Infinite graphs generated by tree rewriting. Ph.D. thesis, RWTH
Aachen (2003)

26. Lugiez, D.: Forward analysis of dynamic network of pushdown systems is easier
without order. Int. J. Found. Comput. Sci. 22(4), 843–862 (2011)

27. Lugiez, D., Schnoebelen, P.: The regular viewpoint on PA-processes. In: Sangiorgi,
D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 50–66. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055615

28. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: POPL (2011)
29. Muscholl, A., Seidl, H., Walukiewicz, I.: Reachability for dynamic parametric pro-

cesses. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp.
424–441. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52234-0 23

30. Neatherway, R.P., Ramsay, S.J., Ong, C.-H.L.: A traversal-based algorithm for
higher-order model checking. In: ICFP (2012)

31. Nordhoff, B., Müller-Olm, M., Lammich, P.: Iterable forward reachability analysis
of monitor-DPNs. In: Semantics, Abstract Interpretation, and Reasoning About
Programs: Essays Dedicated to David A. Schmidt on the Occasion of his Sixtieth
Birthday (2013)

32. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS (2006)

33. Parys, P.: The complexity of the diagonal problem for recursion schemes. In:
FSTTCS (2018)

34. Penelle, V.: Rewriting higher-order stack trees. In: Beklemishev, L.D., Musatov,
D.V. (eds.) CSR 2015. LNCS, vol. 9139, pp. 364–397. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-20297-6 24

35. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 7

36. Ramsay, S.J., Neatherway, R.P., Ong, C.-H.L.: A type-directed abstraction refine-
ment approach to higher-order model checking. In: POPL (2014)

37. Schwoon, S.: Model-checking pushdown systems. Ph.D. thesis, Technical University
of Munich (2002)

38. Seth, A.: Games on higher order multi-stack pushdown systems. In: Bournez, O.,
Potapov, I. (eds.) RP 2009. LNCS, vol. 5797, pp. 203–216. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04420-5 19

39. Song, F., Touili, T.: Model checking dynamic pushdown networks. Form. Asp.
Comput. 27(2), 397–421 (2015)

40. Suwimonteerabuth, D., Berger, F., Schwoon, S., Esparza, J.: jMoped: a test envi-
ronment for java programs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 164–167. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73368-3 19

https://doi.org/10.1007/978-3-642-02658-4_39
https://doi.org/10.1007/978-3-642-02658-4_39
https://doi.org/10.1007/978-3-642-38856-9_25
https://doi.org/10.1007/978-3-642-38856-9_25
https://doi.org/10.1007/BFb0055615
https://doi.org/10.1007/978-3-319-52234-0_23
https://doi.org/10.1007/978-3-319-20297-6_24
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-642-04420-5_19
https://doi.org/10.1007/978-3-540-73368-3_19
https://doi.org/10.1007/978-3-540-73368-3_19

58 M. Hague and V. Penelle

41. Touili, T., Atig, M.F.: Verifying parallel programs with dynamic communication
structures. Theor. Comput. Sci. 411(38–39), 3460–3468 (2010)

42. Yasukata, K., Kobayashi, N., Matsuda, K.: Pairwise reachability analysis for higher
order concurrent programs by higher-order model checking. In: Baldan, P., Gorla,
D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 312–326. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44584-6 22

43. Yasukata, K., Tsukada, T., Kobayashi, N.: Verification of higher-order concurrent
programs with dynamic resource creation. In: Igarashi, A. (ed.) APLAS 2016.
LNCS, vol. 10017, pp. 335–353. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47958-3 18

44. Zetzsche, G.: An approach to computing downward closures. In: Halldórsson, M.,
Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp.
440–451. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-
6 35

https://doi.org/10.1007/978-3-662-44584-6_22
https://doi.org/10.1007/978-3-319-47958-3_18
https://doi.org/10.1007/978-3-319-47958-3_18
https://doi.org/10.1007/978-3-662-47666-6_35
https://doi.org/10.1007/978-3-662-47666-6_35

EXPSPACE-Complete Variant
of Countdown Games, and Simulation

on Succinct One-Counter Nets

Petr Jančar1(B), Petr Osička1, and Zdeněk Sawa2

1 Department of Computer Science, Faculty of Science,
Palacký University Olomouc, Olomouc, Czechia

petr.jancar@upol.cz, osicka@acm.org
2 Department of Computer Science, FEI, Technical University of Ostrava,

Ostrava, Czechia
zdenek.sawa@vsb.cz

Abstract. We answer an open complexity question for simulation pre-
order of succinct one-counter nets (i.e., one-counter automata with no
zero tests where counter increments and decrements are integers written
in binary), by showing that all relations between bisimulation equivalence
and simulation preorder are EXPSPACE-hard for these nets. We describe
a reduction from reachability games whose EXPSPACE-completeness in
the case of succinct one-counter nets was shown by Hunter [RP 2015], by
using other results. We also provide a direct self-contained EXPSPACE-
completeness proof for a special case of such reachability games, namely
for a modification of countdown games that were shown EXPTIME-
complete by Jurdzinski, Sproston, Laroussinie (LMCS 2008); in our mod-
ification the initial counter value is not given but is freely chosen by the
first player.

Keywords: Succinct one-counter net · Simulation
Countdown game · Complexity

1 Introduction

One-counter automata (OCA), i.e., finite automata equipped with a nonnegative
counter, are studied as one of the simplest models of infinite-state systems. They
can be viewed as a special case of Minsky counter machines, or as a special case
of pushdown automata. In general, OCA can test the value of the counter for
zero, i.e., some transitions could be enabled only if the value of the counter
is zero. One-counter nets (OCN) are a “monotonic” subclass of OCA where
every transition enabled for zero is also enabled for nonzero values. As usual,

This research has been supported by Grant No. 18-11193S, Grant Agency of the
Czech Rep. (P. Jančar and P. Osička), and by Grant No. SP2018/172, VŠB-Techn.
Univ. Ostrava (Z. Sawa).

c© Springer Nature Switzerland AG 2018
I. Potapov and P.-A. Reynier (Eds.): RP 2018, LNCS 11123, pp. 59–74, 2018.
https://doi.org/10.1007/978-3-030-00250-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00250-3_5&domain=pdf

60 P. Jančar et al.

we can consider deterministic, nondeterministic, and/or alternating versions of
OCA and/or OCN. The basic versions are unary, where the counter can be
incremented and decremented by one in one step, while in the succinct versions
the possible changes can be arbitrary integers (but fixed for a given transition);
as usual, the changes are assumed to be written in binary in a description of
a given automaton.

Problems that have been studied on OCA and OCN include reachability,
equivalence, model checking, and also different kinds of games played on these
automata. One of the earliest results showed decidability of (language) equiva-
lence for deterministic OCA [24]. (The open polynomiality question in [24] was
positively answered in [2].)

Later other behavioural equivalences (besides language equivalence) have
been studied. Most relevant for us is the research started by Abdulla and Čerāns
who showed in [1] that simulation preorder on one-counter nets is decidable. An
alternative proof of this fact was given in [14]; it was also noted that simulation
equivalence is undecidable for OCA. A relation to bisimulation problems was
shown in [12]. Kučera showed some lower bounds in [19]; Mayr [20] showed the
undecidability of weak bisimulation equivalence on OCN.

Simulation preorder on one-counter nets turned out PSPACE-complete: the
lower bound was shown by Srba [23], and the upper bound by Hofman, Lasota,
Mayr, and Totzke [10]. It was also shown in [10] that deciding weak simulation
on OCN can be reduced to deciding strong simulation on OCN, and thus also
solved in polynomial space. (Strong) bisimulation equivalence on OCA is also
known to be PSPACE-complete [3].

The mentioned results deal with unary OCA and OCN. Succinct (and para-
metric) OCA were considered, e.g., in [9], where reachability on succinct OCA
was shown to be NP-complete. We note that PSPACE-membership of prob-
lems for the unary case easily yields EXPSPACE-membership for the succinct
(binary) case. Games studied on OCA include, e.g., parity games on one-counter
processes (with test for zero) [22], and are closely related to counter reachability
games (e.g. [21]). Model checking problems on OCA were studied for many types
of logics, e.g., LTL [5], branching time logics [7], or first-order logics [8]. DP-lower
bounds for some model-checking (and also equivalence checking) problems were
shown in [13].

An involved result by Göller, Haase, Ouaknine, Worrell [6] shows that model
checking a fixed CTL formula on succinct one-counter automata is EXPSPACE-
hard. Their proof is interesting and nontrivial, and uses two involved results from
complexity theory. The technique of this proof was referred to by Hunter [11], to
derive EXPSPACE-hardness of reachability games on succinct one-counter nets.

Our Contribution. In this paper we close a complexity gap for the simulation
problem that was mentioned in [10], noting that there was a PSPACE lower
bound and an EXPSPACE upper bound for the problem. We show EXPSPACE-
hardness (and thus EXPSPACE-completeness) of the problem, using a defender-
choice technique (cf., e.g., [16]) to reduce reachability games to any relation
between simulation preorder and bisimulation equivalence.

EXPSPACE-Complete Variant of Countdown Games 61

The EXPSPACE-hardness can be derived by [6,11]. Here we present a direct
proof of EXPSPACE-hardness (and completeness) of a special case of reach-
ability games, which we call the “existential countdown games”. It is a mild
relaxation of the countdown games from [17] (or their variant from [18]) which
is an interesting EXPTIME-complete problem. We thus provide a complete
EXPSPACE-hardness proof, independent of [11] or [6].

Organization of the Paper. Section 2 gives the basic definitions. In Sect. 3 we
show the “existential” countdown games and their EXPSPACE-completeness.
Section 4 describes the reductions from reachability games to (bi)simulation rela-
tions. We finish with some additional remarks in Sect. 5.

2 Basic Definitions

By Z and N we denote the sets of integers and of nonnegative integers, respec-
tively. We use [i, j], where i, j ∈ Z, for denoting the set {i, i + 1, . . . , j} (which
is empty when i > j).

Labelled Transition Systems and (Bi)simulations. A labelled transition
system, an LTS for short, is a tuple

L = (S,Act, (a−→)a∈Act)

where S is the set of states, Act is the set of actions, and a−→ ⊆ S × S is the set
of a-transitions (transitions labelled with a), for each a ∈ Act. We write s

a−→ t

instead of (s, t) ∈ a−→. By s
a−→ we denote that a is enabled in s, i.e., s

a−→ t for
some t.

Given L = (S,Act, (a−→)a∈Act), a relation R ⊆ S×S is a simulation if for every
(s, s′) ∈ R and every s

a−→ t there is s′ a−→ t′ such that (t, t′) ∈ R; if, moreover, for
every (s, s′) ∈ R and every s′ a−→ t′ there is s

a−→ t such that (t, t′) ∈ R, then R is
a bisimulation.

The union of all simulations (on S) is the maximal simulation, denoted �;
it is a preorder, called simulation preorder. The union of all bisimulations is
the maximal bisimulation, denoted ∼; it is an equivalence, called bisimulation
equivalence (or bisimilarity). We obviously have ∼ ⊆ �.

(Labelled) One-Counter Nets (OCNs and SOCNs). A labelled one-
counter net, or just a one-counter net or even just an OCN for short, is a
triple

N = (Q,Act, δ),

where Q is the finite set of control states, Act the finite set of actions, and
δ ⊆ Q × Act × {−1, 0,+1} × Q is the finite set of (labelled transition) rules. By
allowing δ ⊆ Q × Act × Z × Q, and presenting z ∈ Z in the rules (q, a, z, q′) in
binary, we get a succinct one-counter net, or a SOCN for short. (One-counter
automaton arises by adding the ability to test explicitly if the counter is zero.)
We present rules (q, a, z, q′) rather as q

a,z−−→ q′.

62 P. Jančar et al.

Each OCN or SOCN N = (Q,Act, δ) has the associated LTS

LN = (Q × N, Act, (a−→)a∈Act) (1)

where (q,m) a−→ (q′, n) iff q
a,n−m−−−−→ q′ is a rule in δ. We often write a state

(q,m), which is also called a configuration, in the form q(m), and we view m

as a value of a nonnegative counter. A rule q
a,z−−→ q′ thus induces transitions

q(m) a−→ q′(m + z) for all m ≥ max{0,−z}.

Reachability Games (r-Games), Winning Areas, Ranks of States. By
a reachability game, or an r-game for short, we mean a tuple

G = (V, V∃,−→, T),

where V is the set of states (or vertices), V∃ ⊆ V is the set of Eve’s states,
−→ ⊆ V × V is the transition relation (or the set of transitions), and T ⊆ V is
the set of target states. By Adam’s states we mean the elements of V∀ = V �V∃.

Eve’s winning area is Win∃ =
⋃

λ∈Ord Wλ, for Ord being the class of ordinals,
where the sets Wλ ⊆ V are defined inductively as follows.

We put W0 = T ; for λ > 0 we put W<λ =
⋃

λ′<λ Wλ′ , and we stipulate:

(a) if s �∈ W<λ, s ∈ V∃, and s −→ s̄ for some s̄ ∈ W<λ, then s ∈ Wλ;
(b) if s �∈ W<λ, s ∈ V∀, and we have ∅ �= {s̄ | s −→ s̄} ⊆ W<λ, then s ∈ Wλ.

(If (a) applies, then λ is surely a successor ordinal.)
For each s ∈ Win∃, by rank(s) we denote (the unique) λ such that s ∈ Wλ.

A transition s −→ s̄ is rank-reducing if rank(s) > rank(s̄). We note that for
any s ∈ Win∃ with rank(s) > 0 we have: if s ∈ V∃, then there is at least one
rank-reducing transition s −→ s̄ (in fact, rank(s) = rank(s̄) + 1 in this case);
if s ∈ V∀, then there is at least one transition s −→ s̄ and all such transitions
are rank-reducing. This entails that Win∃ is the set of states from which Eve
has a winning strategy that guarantees reaching (some state in) T when Eve is
choosing a next transition in Eve’s states and Adam is choosing a next transition
in Adam’s states.

We are primarily interested in the games that have (at most) countably many
states and are finitely branching (the sets {s̄ | s −→ s̄} are finite for all s). In such
cases we have rank(s) ∈ N for each s ∈ Win∃.

We now define specific r-games, presented by (unlabelled) SOCNs with par-
titioned control-state sets.

Succinct One-Counter Net r-Games (socn-r-Games), Problem SOC-
NRG. By a succinct one-counter net r-game, a socn-r-game for short, we mean
a tuple

N = (Q,Q∃, δ, pwin)

where Q is the finite set of (control) states, Q∃ ⊆ Q is the set of Eve’s (control)
states, pwin ∈ Q is the target (control) state, and δ ⊆ Q × Z × Q is the finite
set of (transition) rules. We often present a rule (q, z, q′) ∈ δ as q

z−→ q′. By

EXPSPACE-Complete Variant of Countdown Games 63

Adam’s (control) states we mean the elements of Q∀ = Q � Q∃. A socn-r-game
N = (Q,Q∃, δ, pwin) has the associated r-game

GN = (Q × N, Q∃ × N,−→, {(pwin, 0)}) (2)

where (q,m) −→ (q′, n) iff q
n−m−−−→ q′ is a rule (in δ). We often write q(m) instead

of (q,m) for states of GN . We define the problem SOCNRG (to decide succinct
one-counter net r-games) as follows:

Instance: a socn-r-game N (with integers z in rules q
z−→ q′ written in

binary), and a control state p0.
Question: is p0(0) ∈ Win∃ in the game GN ?

Remark. We have defined the target states (in GN) to be the singleton set
{pwin(0)}. There are other natural variants (e.g., one in [11] defines the target
set {p(0) | p �= p0}) that can be easily shown to be essentially equivalent.

3 EXPSPACE-Completeness of Existential Countdown
Games

The EXPSPACE-hardness of SOCNRG was announced in [11], where an idea
of a proof is sketched, also using a reference to an involved result [6] (which
is further discussed in Sect. 5). Here we give a direct self-contained proof that
does not rely on [11] or involved techniques from [6], and that even shows that
SOCNRG is EXPSPACE-hard already in the special case that slightly gener-
alizes the countdown games from [17]. (The EXPSPACE-membership follows
from [11], but we add a short proof to be self-contained.)

We define a countdown game as a socn-r-game N = (Q,Q∃, δ, pwin), where
in every rule q

z−→ q′ in δ we have z < 0. The problem CG is defined as follows:

Instance: a countdown game N (with integers in rules written in binary),
and an initial configuration p0(n) where n ∈ N (n in binary).
Question: is p0(n) ∈ Win∃?

The problem CG (in an equivalent form) was shown EXPTIME-complete in [17].
Here we define an existential version, i.e. the problem ECG:

Instance: a countdown game N and a control state p0.
Question: is there some n ∈ N such that p0(n) ∈ Win∃?

ECG can be indeed viewed as a subproblem of SOCNRG: given an instance of
ECG, it suffices to add a new Eve’s state p′

0 and rules p′
0

1−→ p′
0, p′

0
0−→ p0; the

question then is if p′
0(0) ∈ Win∃.

In the rest of this section we prove the following theorem.

Theorem 1. ECG (existential countdown games) is EXPSPACE-complete.

64 P. Jančar et al.

EXPSPACE-Hardness of ECG. We use a “master” reduction. We thus fix an
arbitrary language L ⊆ Σ∗ in EXPSPACE, decided by a (deterministic) Turing
machine M in space 2p(n) for a fixed polynomial p. For any word w ∈ Σ∗ there
is the respective computation of M using at most m = 2p(n) tape cells (where
n = |w|), which is accepting iff w ∈ L. We show a construction of a countdown
game N M

w,m with an initial control state p0 such that there exists k ≥ 0 where
p(k) ∈ Win∃ if, and only if, M accepts w. Moreover, for the fixed M , logarithmic
space (with respect to n) is sufficient to construct N M

w,m. Thus, there is a logspace
reduction from the membership problem for L to the problem ECG.

$
$

$

$
$

$a2 a3 an � � � ��

β

β1 β2 β3

q0
a1

q+
x

0 1 2 3 n

0

1

2

3

t

t−1

n+1 m−1j

i

Cw
t

Cw
t−1

Cw
3

Cw
2

Cw
1

Cw
0

Cw
i

Fig. 1. A table of configurations in the computation of M on word w = a1a2 . . . an

Construction Informally. The construction of the countdown game N M
w,m elab-

orates an idea that is already present in [4] (in Theorem 3.4) and that was also
used, e.g., in [15]. We first present the game informally; this is then formalized
in a straightforward technical way.

Figure 1 presents an accepting computation of M , on a word w = a1a2 . . . an;
it starts in the initial control state q0 with the head scanning a1. The computation
is a sequence of configurations Cw

0 , Cw
1 , . . . , Cw

t , where Cw
t is accepting (since the

control state is q+). We assume that M never leaves its input to the left, hence

EXPSPACE-Complete Variant of Countdown Games 65

the tape position 0, which is filled with a special “left sentinel” ¢ for transparency,
is never visited. On the other hand, the position m − 1 of the right sentinel $
is never visited either; the space complexity of the computation is thus at most
m − 2.

Let us imagine a game where Eve, given w, claims that w is accepted by M .
Nevertheless she does not present a respective accepting computation; she only
produces a “row” r ∈ N and a “column” c ∈ N, and a tape-symbol x, claiming
that if we constructed the computation Cw

0 , Cw
1 , . . . , Cw

t , then we would find that
(r = t and) Cw

r is the accepting configuration and the symbol on position c in
Cw

r is (q+, x) (i.e., the tape symbol is x, and the head happens to scan position
c, and the control state is q+).

Generally, if Eve claims that in the row i and the column j we would find β
if we constructed the computation (where β is either a tape symbol or a tape
symbol combined with a control state), she must present a triple (β1, β2, β3) in
the previous row i − 1 as depicted in Fig. 1, and Adam chooses one of symbols
β1, β2, β3 for the next round; the triple must be consistent with β w.r.t. the rules
of M . If in the row 0 Adam chooses a symbol that is correct in Cw

0 , then Eve
wins (otherwise Adam wins). It is easy to verify that Eve has a winning strategy
in this game iff w is accepted by M .

We note that the described game uses a pair of number-variables i, j, to deter-
mine the current cell in the computation table. But we can ask Eve to provide
some m ∈ N in the beginning (claiming that the head only moves between posi-
tions 1 and m−2 during the computation); the pair (i, j) can be then represented
by the value z = i ·m+ j (and going from i to i− 1 amounts to subtract m from
z). If Eve sometimes claims that β1 = ¢, then the respective column-position is
0, which entails that the respective value z = i · m + j should be divisible by m;
if Adam doubts this, it can be verified by subtracting m repeatedly. Similarly, if
Eve claims β3 = $, then by subtracting m − 1 we should get a number divisible
by m. If Eve claims something else than ¢ in a position corresponding to the
¢-column, or something else than $ in a position corresponding to the $-column,
then Adam just keeps choosing this column, and Eve’s cheating is revealed in
the row 0.

Construction Formally. Now we formalize the above idea, which is a routine
technical work, in fact.

Assume a fixed deterministic Turing machine M = (Q,Σ, Γ, δ, q0, {q+, q−}),
where Q is the set of (control) states, q0 ∈ Q the initial state, q+ ∈ Q the
accepting state, q− ∈ Q the rejecting state, Σ the input alphabet, Γ ⊇ Σ the
tape alphabet, satisfying � ∈ Γ � Σ for the special blank tape-symbol �, and
δ : (Q � {q+, q−}) × Γ → Q × Γ × {−1,+1} is the transition function.

Putting Δ = Γ ∪ (Q × Γ), we define the consistency relation � ⊆ Δ3 × Δ in
a standard way: (β1, β2, β3) � β (to be read “β is consistent with (β1, β2, β3)”)
if βi ∈ Q × Γ for at most one i ∈ {1, 2, 3} and the following conditions hold:

– if β1β2β3 = (q, x)yz and δ(q, x) = (q′, x′, d), then β = (q′, y) if d = +1 and
β = y otherwise (i.e., if d = −1);

66 P. Jančar et al.

– if β1β2β3 = x(q, y)z and δ(q, y) = (q′, y′, d), then β = y′ (for any d ∈
{−1,+1});

– if β1β2β3 = xy(q, z) and δ(q, z) = (q′, z′, d), then β = (q′, y) if d = −1 and
β = y otherwise;

– if β1β2β3 = xyz, then β = y.

We note that � is a partial function, in fact. By a configuration of M we mean
a mapping C : Z → Δ where C(j) �= � for only finitely many j ∈ Z and
C(j) ∈ Q × Γ for precisely one j ∈ Z, called the head-position; if C(j) = (q+, x)
for the head-position j (and x ∈ Γ) then C is accepting, and if C(j) = (q−, x)
then C is rejecting.

We put C � C ′ (thus overloading the symbol �) if
(
C(j−1), C(j), C(j+1)

)
�

C ′(j) for all j ∈ Z. This relation � is again a partial function; if C is final, i.e.
accepting or rejecting, then there is no C ′ such that C � C ′.

Given a word w = a1a2 · · · an ∈ Σ∗ (hence |w| = n), we define the respective
initial configuration as Cw

0 where Cw
0 (1) = (q0, a1) if n ≥ 1 and Cw

0 (1) = (q0,�)
if n = 0, Cw

0 (j) = aj for all j ∈ [2, n], and Cw
0 (j) = � for all j ≤ 0 and all j > n.

If Cw
i is not final, then we define Cw

i+1 so that Cw
i � Cw

i+1. The computation on w
is either the finite sequence Cw

0 , Cw
1 , Cw

2 , . . . , Cw
t where Cw

t is final (accepting or
rejecting), or the infinite sequence Cw

0 , Cw
1 , Cw

2 , . . . ; formally we put Cw
i (j) = ⊥

(for ⊥ �∈ Δ) if there is a final Cw
t and i > t.

By L(M) we denote the language accepted by M , i.e. the set {w ∈ Σ∗ | the
computation on w finishes with an accepting configuration}.

Now we assume that the Turing machine M uses a bounded space for the
input w = a1a2 . . . an, and in particular that we have m ∈ N such that during the
computation of M on w the head-position is never outside [1,m−2]; for technical
convenience and without loss of generality we also assume that m ≥ n ≥ 1 and
m > 3. We can imagine that the computation is presented as a table depicted
in Fig. 1, and the columns 0 and m − 1 are filled with special symbols ¢ and $
(where ¢, $ �∈ Δ), i.e., Cw

i (0) = ¢ and Cw
i (m − 1) = $ for each i ≥ 0. We also

extend relation � accordingly to incorporate these special symbols. In particular,
whenever (β1, β2, β3) � β, we have β ∈ Δ, β1 ∈ Δ∪{¢}, β2 ∈ Δ, and β3 ∈ Δ∪{$},
and we exclude those combinations of β1, β2, β3 that would correspond to a move
of the head of the machine M to a position containing ¢ or $.

Given a Turing machine M , its input w = a1a2 · · · an, and a number m,
satisfying the above assumptions, we construct a corresponding countdown game

N M
w,m = (Q,Q∃, δN , pwin)

where

– Q∃ = {p0, p2, pwin, pbad, s¢, s$} ∪ {sβ | β ∈ Δ},
– Q∀ = {p1}∪{s(β1,β2,β3) | βi ∈ Δ}∪{s(¢,β2,β3) | βi ∈ Δ}∪{s(β1,β2,$) | βi ∈ Δ}

(recall that Q∀ = Q � Q∃), and the set δN consists of the rules in Fig. 2 (for all
β ∈ Δ, β1 ∈ Δ ∪ {¢}, β2 ∈ Δ, β3 ∈ Δ ∪ {$}).

The relation of the countdown game N M
w,m to the computation of M on w is

stated in the following proposition.

EXPSPACE-Complete Variant of Countdown Games 67

Fig. 2. Rules of NM
w,m

Proposition 2. For the countdown game N M
w,m there exists k ≥ 0 such that

p0(k) ∈ Win∃ iff the computation of M on w never moves the head out of
[1,m − 2] and finishes in an accepting configuration.

Proof. The configurations of N M
w,m of the form sβ(k) with β ∈ Δ ∪ {¢, $} and

k = 2+i·m+j where i ≥ 0 and 0 ≤ j < m correspond to the situation where Eve
claims that in the table of configurations of computation of M on w (see Fig. 1)
the cell in row i and column j contains symbol β. We will show that she has
a winning strategy from sβ(k) exactly when this is the case, i.e., sβ(k) ∈ Win∃
iff Cw

i (j) = β. (In our construction, we need to add number 2 to i · m + j to
ensure that in every move in the game the value of the counter is decremented
by at least 1. It would not be necessary if we allow moves that do not change
the counter value.)

To prove that sβ(k) ∈ Win∃ iff Cw
i (j) = β (for k = 2 + i · m + j), we

start by the following facts that are easy to check (recall that Eve wins iff the
configuration pwin(0) is reached):

(a) s¢(k) ∈ Win∃ iff k = 2 + i · m for some i ∈ N;
(b) s$(k) ∈ Win∃ iff k = 2 + i · m + (m − 1) for some i ∈ N;
(c) for 1 ≤ j ≤ n, sβ(2 + j) ∈ Win∃ iff β = Cw

0 (j);
(d) p1(k) ∈ Win∃ iff 2 ≤ k < m − n;
(e) for n < j < m − 1, sβ(2 + j) ∈ Win∃ iff β = �.

Assume now that β ∈ Δ ∪ {¢, $}, i ≥ 0, 0 ≤ j < m, and k = 2 + i · m + j. To
show sβ(k) ∈ Win∃ iff Cw

i (j) = β, we proceed by induction on i:

– Base case i = 0: In this case k = 2 + j, so we need to show that sβ(2 +
j) ∈ Win∃ iff Cw

0 (j) = β. This follows easily from facts (a), (b), (c), (e)
mentioned above because the initial configuration Cw

0 consists of symbol ¢
(j = 0, fact (a)), the input word with the initial control state (1 ≤ j ≤ n,
fact (c)), blanks (n < j < m−1, fact (e)), and symbol $ (j = m−1, fact (b)).

– Induction step i > 0: If β = ¢, Eve wins iff j = 0 (by fact (a)). Similarly, if
β = $, she wins iff j = m − 1 (by fact (b)).
Assume now that β ∈ Δ. Eve will lose if she uses any rule from groups (5)
or (6) in sβ(k), as can be easily checked, and she cannot play rules from

68 P. Jančar et al.

group (4), so she is forced to use some rule from group (2). By playing
sβ(k) m−2−−−→ s(β1,β2,β3)(k

′), where k′ = 2 + (i − 1) · m + j + 2, she chooses
a triple (β1, β2, β3) satisfying (β1, β2, β3) � β, where β1, β2, β3 are symbols
supposedly occurring on positions j − 1, j, j + 1 in configuration Cw

i−1. If β
is incorrect (i.e., if Cw

i (j) �= β), then at least one of β1, β2, β3 must be also
incorrect, and if β is correct, then Eve can choose correct β1, β2, β3. Now
Adam can challenge some of the symbols β1, β2, β3 by choosing � ∈ {1, 2, 3}
and playing s(β1,β2,β3)(k

′)
−(4−�)−−−−−→ sβ�

(k′′), for k′′ = 2+(i−1) ·m+j +(�−2).
By the induction hypothesis he thus has a possibility to preclude Eve’s win
precisely when one of β1, β2, β3 is incorrect. In particular, if j = 0 and β �= ¢,
or if j = m − 1 and β �= $, then Adam repeatedly chooses � = 2, thus staying
in the same column, and Eve has no possibility to install the correct ¢, resp. $,
in this column anymore.

It is now clear that if the computation of M on w never moves the head outside
[1,m − 2] and finishes in an accepting configuration Cw

r with Cw
r (j) = (q+, x)

for some x ∈ Γ and 1 ≤ j < m − 1, then Eve can force her win in p0(k) where
k = 3+r ·m+j by playing p0(k) −1−−→ s(q+,x)(2+r ·m+j). It is also easy to check
that if the computation moves the head outside [1,m − 2] or is not accepting,
then Eve cannot force her win from p0(k) for any k ∈ N. ��

We note that the control states in N M
w,m are determined by M . The rules of

N M
w,m, except those in group (5), depend only on M and “parameters” n = |w|

and m.
To finish the EXPSPACE-hardness part of the proof of Theorem1, we assume

an arbitrary fixed language L in EXPSPACE. There is thus a Turing machine
M and a polynomial p such that M accepts L and the head-position in the
computation of M on any w (in the alphabet of L) never moves out of the
interval [1,m − 2] where m = 2p(n) for n = |w|. Given w, it is straightforward to
construct N M

w,m, by filling the parameters n,m, and the rules in group (5), into
a fixed scheme. Since m can be presented in binary by using p(n) + 1 bits, we
can construct N M

w,m in logarithmic work-space (from a given w).

ECG Is in EXPSPACE. Given an ECG-instance N = (Q,Q∃, δ, pwin), p0, we
can stepwise construct W (0),W (1),W (2), . . . where W (j) = (Q × {j})∩Win∃.
For determining W (n) it suffices to know the segment W (n−m), W (n−m+1),
. . . , W (n − 1) where m is the maximum value by which the counter can be
decremented in one step. By the pigeon-hole principle, such exponential-size
segments must repeat inside W (0),W (1), . . . ,W (2|Q|m). Hence if there is n such
that p0(n) ∈ Win∃, then there is such n of double-exponential size; exponential
space is thus sufficient for finding such n.

4 Reachability Game Reduces to (Bi)simulation Game

We show a reduction for general r-games, and then apply it to the case of socn-
r-games. This yields a log-space reduction of SOCNRG to behavioural relations.

EXPSPACE-Complete Variant of Countdown Games 69

Fig. 3. Eve’s state s1 in G (left) is mimicked by the pair (s1, s
′
1) in L(G) (right); it is

thus Attacker who chooses (s2, s
′
2) or (s3, s

′
3) as the next current pair.

Fig. 4. In (s1, s
′
1) it is, in fact, Defender who chooses (s2, s

′
2) or (s3, s

′
3) (when Attacker

avoids pairs with equal states); to take the counter-changes into account correctly, we
put x′ = min {x, 0}, x′′ = max {x, 0}, and y′ = min {y, 0}, y′′ = max {y, 0} (hence
x = x′ + x′′ and y = y′ + y′′). (The dashed edges are viewed as the other edges.)

4.1 Reduction in a General Framework

We assume an r-game G, and below we define a “mimicking” LTS L(G). In
illustrating Figs. 3 and 4 we now ignore the bracketed parts of transition-labels;
hence, e.g., in Fig. 3 we can see the transition s1 −→ s2 in G on the left and

the (corresponding) transitions s1
a1
2−→ s2 and s′

1

a1
2−→ s′

2 in L(G) on the right.
We also use an informal (bi)simulation game terminology: in a current pair of
states (e.g., in (s1, s′

1) in L(G)), Attacker performs a transition on one side, and
Defender responds with a “same-label” transition on the other side, which yields
a new current pair; in the bisimulation game Attacker chooses the sides freely,
in the simulation game he must always choose the left-hand side.

So let G = (V, V∃,−→, T) be an r-game, where V∀ = V �V∃; we define L(G) =
(S,Act, (a−→)a∈Act) as follows. We put

S = V ∪ V ′ ∪ {〈s, s̄〉 | s ∈ V∀, s −→ s̄} ∪ {〈s,X〉 | s ∈ V∀,X = {s̄ | s −→ s̄} �= ∅}

where V ′ = {s′ | s ∈ V } is a “copy” of V . (In Fig. 4 we write, e.g., s13 instead of
〈s1, s3〉, and s123 instead of 〈s1, {s2, s3}〉.)

70 P. Jančar et al.

We put Act = {ac, awin} ∪ {a〈s,s̄〉 | s −→ s̄} and define a−→ for a ∈ Act as

follows. If s ∈ V∃ and s −→ s̄, then s
a〈s,s̄〉−−−→ s̄ and s′ a〈s,s̄〉−−−→ s̄′ (in Fig. 3 we write,

e.g., a1
3 instead of a〈s1,s3〉). If s ∈ V∀ and X = {s̄ | s −→ s̄} �= ∅, then:

(a) s
ac−→ 〈s,X〉, and s

ac−→ 〈s, s̄〉, s′ ac−→ 〈s, s̄〉 for all s̄ ∈ X (cf. Fig. 4 where
s = s1 and X = {s2, s3} and consider dashed edges as normal edges; ac is a
“choice-action”);

(b) for each s̄ ∈ X we have 〈s,X〉
a〈s,s̄〉−−−→ s̄ and 〈s, s̄〉

a〈s,s̄〉−−−→ s̄′; moreover, for

each ¯̄s ∈ X�{s̄} we have 〈s, s̄〉
a〈s,¯̄s〉−−−→ ¯̄s (e.g., in Fig. 4 we thus have s12

a1
2−→ s′

2

and s12
a1
3−→ s3).

For each s ∈ T we have s
awin−−−→ s (for special awin that is not enabled in s′).

Lemma 3. For an r-game G = (V, V∃,−→, T) and its “mimicking” LTS L(G) =
(S,Act, (a−→)a∈Act), the following conditions hold for every s ∈ V and every
relation ρ satisfying ∼ ⊆ ρ ⊆ �:

(a) if s ∈ Win∃ (in G), then s �� s′ (in L(G)) and thus (s, s′) �∈ ρ;
(b) if s �∈ Win∃, then s ∼ s′ and thus (s, s′) ∈ ρ.

Proof. (a) For the sake of contradiction suppose that there is s ∈ Win∃ such
that s � s′; we consider such s with the least rank. We note that rank(s) > 0,
since s ∈ T entails s �� s′ due to the transition s

awin−−−→ s. If s ∈ V∃, then let
s −→ s̄ be a rank-reducing transition. Attacker’s move s

a〈s,s̄〉−−−→ s̄, from the pair
(s, s′), must be responded with s′ a〈s,s̄〉−−−→ s̄′; but we have s̄ �� s̄′ by the “least-
rank” assumption, which contradicts with the assumption s � s′. If s ∈ V∀, then
X = {s̄ | s −→ s̄} is nonempty (since s ∈ Win∃) and rank(s̄) < rank(s)
for all s̄ ∈ X. For the pair (s, s′) we now consider Attacker’s move s

ac−→ 〈s,X〉.
Defender can choose s′ ac−→ 〈s, s̄〉 for any s̄ ∈ X (recall that rank(s̄) < rank(s)).
In the current pair (〈s,X〉, 〈s, s̄〉) Attacker can play 〈s,X〉

a〈s,s̄〉−−−→ s̄, and this must
be responded by 〈s, s̄〉

a〈s,s̄〉−−−→ s̄′. But we again have s̄ �� s̄′ by the “least-rank”
assumption, which contradicts with s � s′.

(b) It is easy to verify that the following set is a bisimulation in L(G):

I ∪ {(s, s′) | s ∈ V � Win∃} ∪ {(〈s,X〉, 〈s, s̄〉) | s ∈ V∀ � Win∃, s̄ ∈ V � Win∃}

where I = {(s, s) | s ∈ S}. ��

We note that the transitions corresponding to the dashed edges in Fig. 4 could
be omitted if we only wanted to show that s ∈ Win∃ iff s �� s′.

4.2 SOCNRG Reduces to Behavioural Relations on SOCNs

We now note that the LTS L(GN) “mimicking” the r-game GN associated with a
socn-r-game N (recall (2)) can be presented as LN ′ for a SOCN N ′ (recall (1))
that is efficiently constructible from N :

EXPSPACE-Complete Variant of Countdown Games 71

Lemma 4. There is a log-space algorithm that, given a socn-r-game N , con-
structs a SOCN N ′ such that the LTSs L(GN) and LN ′ are isomorphic.

Proof. We again use Figs. 3 and 4 for illustration; now si are viewed as control
states and the bracketed parts of edge-labels are counter-changes (in binary).

Given a socn-r-game N = (Q,Q∃, δ, pwin), we first consider the r-game
N csg = (Q,Q∃,−→, {pwin}) (“the control-state game of N”) arising from N
by forgetting the counter-changes ; hence q −→ q̄ iff there is a rule q

z−→ q̄. In fact,
we will assume that there is at most one rule q

z−→ q̄ in δ (of N) for any pair
(q, q̄) ∈ Q × Q; this can be achieved by harmless modifications.

We construct the (finite) LTS L(N csg) (“mimicking” N). Hence each q ∈ Q
has the copies q, q′ in L(N csg), and other states are added (as also depicted in
Fig. 4 where si are now in the role of control states); there are also the respective
labelled transitions in L(N csg), with labels a〈q,q̄〉, ac, awin.

It remains to add the counter changes (integer increments and decrements
in binary), to create the required SOCN N ′. For q ∈ Q∃ this adding is simple,
as depicted in Fig. 3: if q

z−→ q̄ (in N), then we simply extend the label a〈q,q̄〉 in

L(N csg) with z; for q
a〈q,q̄〉−−−→ q̄ and q′ a〈q,q̄〉−−−→ q̄′ in L(N csg) we get q

a〈q,q̄〉,z
−−−−−→ q̄

and q′ a〈q,q̄〉,z
−−−−−→ q̄′ in N ′.

For q ∈ Q∀ (where Q∀ = Q � Q∃) it is tempting to the same, i.e. to extend
the label a〈q,q̄〉 with z when q

z−→ q̄, and extend ac with 0. But this might allow
cheating for Defender: she could thus mimic choosing a transition q(k) x−→ q̄(k+x)
even if k + x < 0. This is avoided by the modification that is demonstrated in
Fig. 4 (by x = x′ + x′′, etc.); put simply: Defender must immediately prove
that the transition she is choosing to mimic is indeed performable. Formally,
if X = {q̄ | q −→ q̄} �= ∅ (in L(N csg)), then in N ′ we put q

ac,0−−→ 〈q,X〉 and
〈q,X〉

a〈q,q̄〉,z
−−−−−→ q̄ for each q

z−→ q̄ (in N); for each q
z−→ q̄ we also define z′ =

min{z, 0}, z′′ = max{z, 0} and put q′ ac,z′
−−−→ 〈q, q̄〉, 〈q, q̄〉

a〈q,q̄〉,z′′
−−−−−−→ q̄′. Then for

any pair q
z̄−→ q̄, q

¯̄z−→ ¯̄q where q̄ �= ¯̄q we put 〈q, q̄〉
a〈q, ¯̄q〉,¯̄z−z̄′
−−−−−−−→ ¯̄q.

Finally, pwin
awin−−−→ pwin in L(N csg) is extended to pwin

awin,0−−−−→ pwin

in N ′. ��

Recalling the EXPSPACE-hardness of SOCNRG (from [11] or from Theo-
rem 1), Lemmas 3 and 4 yield:

Theorem 5. For succinct labelled one-counter nets (SOCNs), deciding any rela-
tion containing bisimulation equivalence and contained in simulation preorder is
EXPSPACE-hard.

72 P. Jančar et al.

5 Additional Remarks

Theorem 5 shows the hardness, but simulation preorder on succinct one-counter
nets and bisimulation equivalence (even) on succinct one-counter automata are
also in EXPSPACE (as follows by the membership of their unary versions in
PSPACE), hence they are EXPSPACE-complete. Hunter [11] also shows that
various extensions of the problem SOCNRG are in EXPSPACE as well.

We recall that our EXPSPACE-hardness proof of ECG (in Sect. 3) is, in fact,
a particular instance of a simple general method. A slight modification also yields
a proof of EXPTIME-hardness of countdown games that is an alternative to the
proof in [17].

One particular application of countdown games was shown by Kiefer [18]
who modified them to show EXPTIME-hardness of bisimilarity on BPA pro-
cesses. Our EXPSPACE-complete modification does not seem easily imple-
mentable by BPA processes, hence the EXPTIME-hardness result in [18] has
not been improved here. (The known upper bound for bisimilarity on BPA is
2-EXPTIME.)

We have not discussed the upper bounds here. The proofs in [1,10,14] reveal
a periodicity of simulation preorder, captured by “linear-belt” theorems. It is
worth to note that the period of a simulation-belt can be double-exponential in
the size of the respective succinct one-counter net. This is derivable by recalling
the reduction from exponential-space Turing machines and by noting that we
can choose a machine M such that for every n there is an accepted word of
length n for which M performs 22

Ω(n)
steps.

Finally we mention that the involved result in [6] shows that, given any fixed
language L in EXPSPACE, for any word w (in the alphabet of L) we can con-
struct a succinct one-counter automaton that performs a computation which is
accepting iff w ∈ L. Such a computation needs to access concrete bits in the
(reversed) binary presentation of the counter value. A straightforward direct
access to such bits is destructive (the counter value is lost after the bit is read)
but this can be avoided: instead of a “destructive reading” the computation just
“guesses” the respective bits, and it is forced to guess correctly by a carefully
constructed CTL formula that is required to be satisfied by the computation.
This result is surely deeper than the EXPSPACE-hardness of existential count-
down games, though the former does not seem to entail the latter immediately.

References

1. Abdulla, P.A., Čerāns, K.: Simulation is decidable for one-counter nets. In: San-
giorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 253–268.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055627

2. Böhm, S., Göller, S., Jančar, P.: Equivalence of deterministic one-counter automata
is NL-complete. In: STOC 2013, pp. 131–140. ACM (2013)

3. Böhm, S., Göller, S., Jančar, P.: Bisimulation equivalence and regularity for real-
time one-counter automata. J. Comput. Syst. Sci. 80(4), 720–743 (2014). Prelim-
inary versions appeared at CONCUR 2010 and MFCS 2011

https://doi.org/10.1007/BFb0055627

EXPSPACE-Complete Variant of Countdown Games 73

4. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981)

5. Demri, S., Lazić, R., Sangnier, A.: Model checking freeze LTL over one-counter
automata. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 490–504.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-9 34

6. Göller, S., Haase, C., Ouaknine, J., Worrell, J.: Model checking succinct and para-
metric one-counter automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010 Part II. LNCS, vol. 6199, pp.
575–586. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-
1 48

7. Göller, S., Lohrey, M.: Branching-time model checking of one-counter processes.
In: STACS 2010. LIPIcs, vol. 5, pp. 405–416. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2010)

8. Göller, S., Mayr, R., To, A.W.: On the computational complexity of verifying one-
counter processes. In: LICS 2009, pp. 235–244. IEEE Computer Society (2009)

9. Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and
parametric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR
2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04081-8 25

10. Hofman, P., Lasota, S., Mayr, R., Totzke, P.: Simulation problems over one-
counter nets. Log. Methods Comput. Sci. 12(1), 46 pp. (2016). Preliminary versions
appeared at FSTTCS 2013, LICS 2013, and in Totzke’s Ph.D. thesis (2014)

11. Hunter, P.: Reachability in succinct one-counter games. In: Bojańczyk, M., Lasota,
S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 37–49. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24537-9 5

12. Jančar, P., Kučera, A., Moller, F.: Simulation and bisimulation over one-counter
processes. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 334–
345. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46541-3 28

13. Jančar, P., Kučera, A., Moller, F., Sawa, Z.: DP lower bounds for equivalence-
checking and model-checking of one-counter automata. Inf. Comput. 188(1), 1–19
(2004)

14. Jančar, P., Moller, F., Sawa, Z.: Simulation problems for one-counter machine.
In: Pavelka, J., Tel, G., Bartošek, M. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp.
404–413. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-47849-3 28

15. Jančar, P., Sawa, Z.: A note on emptiness for alternating finite automata with a
one-letter alphabet. Inf. Process. Lett. 104(5), 164–167 (2007)

16. Jančar, P., Srba, J.: Undecidability of bisimilarity by defender’s forcing. J. ACM
55(1), 5:1–5:26 (2008)

17. Jurdzinski, M., Sproston, J., Laroussinie, F.: Model checking probabilistic timed
automata with one or two clocks. Log. Methods Comput. Sci. 4(3), 28 pp. (2008)

18. Kiefer, S.: BPA bisimilarity is EXPTIME-hard. Inf. Process. Lett. 113(4), 101–106
(2013)

19. Kučera, A.: Efficient verification algorithms for one-counter processes. In: Monta-
nari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 317–328.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X 28

20. Mayr, R.: Undecidability of weak bisimulation equivalence for 1-counter processes.
In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 570–583. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-45061-0 46

21. Reichert, J.: On the complexity of counter reachability games. Fundam. Inform.
143(3–4), 415–436 (2016)

https://doi.org/10.1007/978-3-540-78499-9_34
https://doi.org/10.1007/978-3-642-14162-1_48
https://doi.org/10.1007/978-3-642-14162-1_48
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.1007/978-3-319-24537-9_5
https://doi.org/10.1007/3-540-46541-3_28
https://doi.org/10.1007/3-540-47849-3_28
https://doi.org/10.1007/3-540-45022-X_28
https://doi.org/10.1007/3-540-45061-0_46
https://doi.org/10.1007/3-540-45061-0_46

74 P. Jančar et al.

22. Serre, O.: Parity games played on transition graphs of one-counter processes. In:
Aceto, L., Ingólfsdóttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 337–351.
Springer, Heidelberg (2006). https://doi.org/10.1007/11690634 23

23. Srba, J.: Beyond language equivalence on visibly pushdown automata. Log. Meth-
ods Comput. Sci. 5(1), 22 pp. (2009)

24. Valiant, L.G., Paterson, M.: Deterministic one-counter automata. J. Comput. Syst.
Sci. 10(3), 340–350 (1975)

https://doi.org/10.1007/11690634_23

Revisiting MU-Puzzle. A Case Study
in Finite Countermodels Verification

Alexei Lisitsa(B)

Department of Computer Science, University of Liverpool, Liverpool, UK
A.Lisitsa@liverpool.ac.uk

Abstract. In this paper we consider well-known MU puzzle from
Goedel, Escher, Bach: An Eternal Golden Braid book by D. Hofstadter,
as an infinite state safety verification problem for string rewriting sys-
tems. We demonstrate fully automated solution using finite countermod-
els method (FCM). We highlight advantages of FCM method and com-
pare it with alternatives methods using regular invariants.

1 MIU System and MU Puzzle

In his famous book Goedel, Escher, Bach: An eternal Golden Braid, 1979, Dou-
glas Hofstadter introduced a simple formal system, named MIU-system, which
operates on strings made of three symbols, M, I and U . The system consists of
one axiom, that is MI and four derivation rules:

I. If xI is a theorem, so is xIU .
II. If Mx is theorem, so is Mxx.

III. In any theorem III can be replaced by U .
IV. UU can be dropped from any theorem.

In other words, MIU system is a string rewriting system with an initial
string MI and the set of rewriting rules R = {xI ⇒ xIU ;Mx ⇒ Mxx;xIIIy ⇒
xUy;xUUy ⇒ xy}. We denote the language generated by this rewriting system
by LMIU . From now on we use interchangeably expressions “a string S is a
theorem of MIU system” and “string S belongs to the language LMIU”.

MU puzzle is a specific problem about MIU system, that is “Is MU a theorem
of MIU system?” The problem is discussed at length in [4] and the answer is
negative. It follows from a simple necessary condition: “the number of I symbols
in any string in LMIU cannot be multiple of three”. The authors of [11] show that
this condition augmented with structural requirement that any MIU theorem
should start with M followed by an arbitrary word in I’s and U ’s is also sufficient,
obtaining thereby a simple decision procedure for MIU theorems.1

We show here an alternative way to get an answer (with a proof) for MU
puzzle automatically, from first principles and not assuming the knowledge of the
1 They also notice that Hofstadter was aware about the decision procedure, but never
formally wrote a proof.

c© Springer Nature Switzerland AG 2018
I. Potapov and P.-A. Reynier (Eds.): RP 2018, LNCS 11123, pp. 75–86, 2018.
https://doi.org/10.1007/978-3-030-00250-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00250-3_6&domain=pdf

76 A. Lisitsa

decision procedure. First notice that there are infinitely many theorems in MIU ,
so the negative answer can not be obtained just by exhaustion of all derivable
strings. It is essentially infinite state verification problem.

2 First-Order Logic Encoding and Disproving for MIU

In order to deal with a problem automatically we formulate a natural theory
TMIU in first-order logic which encodes the rewriting process. The vocabulary of
the TMIU consists of one unary predicate symbol T binary functional symbol ∗
which we use in infix notation an three constants M, I and U. Intended meaning
of T(x) is “x is a theorem of MIU” and ∗ denotes concatenation to be used to
build strings out of constants.

The theory TMIU consist the following axioms:

1. (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity of concatenation);
2. e ∗ x = x;
3. x ∗ e = x;
4. T (M ∗ I) (MI is a theorem of MIU);
5. T (x ∗ I) → T (x ∗ I ∗ U) (rule I of MIU);
6. T (M ∗ x) → T (M ∗ x ∗ x) (rule II of MIU);
7. T (x ∗ I ∗ I ∗ I ∗ y) → T (x ∗ U ∗ y) (rule III of MIU);
8. T (x ∗ U ∗ U ∗ y) → T (x ∗ y) (rule IV of MIU).

Now we have a simple proposition.

Proposition 1. If S ∈ LMIU then TMIU �FO T (tS) where tS is a term encod-
ing of S; e.g. tIUM ≡ I ∗ U ∗ M .

Proof. Straightforward induction on the derivation of S in MIU . Indeed T (M ∗
I) ≡ T (tMI) is an axiom of TMIU , so the base of induction holds true: TMIU �FO

T (tMI). Assume the proposition holds true for a string S in LMIU , and S′ is
obtained from S by application of the rule I. Then we have: (1) TMIU � T (tS)
by induction assumption; (2) TMIU �FO T (tS) → T (tS′) by axiom 3 and finally,
(3) TMIU � T (tS′)) by Modus Ponens applied to (2) and (3). The cases of S′

obtained from S by rules II–IV are considered similarly using axioms 4–6. The
step of induction is proven.

We have an immediate corollary.

Corollary 1. – If T (tS) is not FO provable from TMIU , that is TMIU ��FO

T (tS) then S �∈ LMIU ;
– For any non-ground term t(x̄) in vocabulary {∗,M, I, U} over the set of vari-

ables X, if TMIU ��FO ∃x̄T (t(x̄)) then none of S such that tS is a ground
instance of t(x̄) belongs to LMIU .

Returning to MU puzzle it should be clear now that to answer its question
negatively it is sufficient to find a countermodel for TMIU → T (tMU), or, in
other words, a model for TMIU ∧ ¬T (tMU). We delegate this problem to Mace4

Revisiting MU-Puzzle. A Case Study in Finite Countermodels Verification 77

[9], the automated finite model finder for first-order logic. The countermodel of
size 3 is found in 0.05s2. The property is proven: MU is not a theorem of MIU
system. On the face of it, we have a simple logical argument: should MU be a
theorem of MIU the formula T (tMU) would be provable from TMIU ; since we
found a countermodel for TMIU → T (tMU), this is impossible. This argument
does not explain though “the reasons” for impossibility. To recover more detailed
argument let us have a look at the generated countermodel.

The domain M of the model is the set 0, 1, 2 the interpretations of constants
M , I and U are 0, 0 and 1, respectively. The interpretation [∗] of concatenation
(monoid) operation * is given by the table.

[*] 0 1 2

0 |2,0,1
1 |0,1,2
2 |1,2,0

The interpretation [T] of unary predicate T includes elements 1, 2 of the
domain, meaning T is true on 1, 2 and false on 0. Now we notice that the model
provides with an interpretation [tS] ∈ {0, 1, 2} of any term tS . The following
property holds: for any theorem S of MIU the interpretation [tS] should be
an element of {1, 2} = [T] (as M is a model of TMIU and by Proposition 1).
Returning to MU puzzle, we have interpretation [tMU] = [M ∗ U] = 0[∗]1 =
0 �∈ {1, 2} = [T]. Therefore MU is not a theorem of MIU. In summary, the
interpretation [∗] above defines the set of strings LM = {s | [ts]M ∈ {0, 1}} for
which (1) LMIU ⊆ LM; (2) MU �∈ LM. Thus, LM is an invariant separating the
theorems of MIU system and the string in question, MU . It is easy to see also that
the invariant is a regular language. It follows from an algebraic characterization
of the regular languages by inverse homomorphisms of finite monoids, see e.g.
[6].

Interestingly, LM �= LMIU as, for example, [M ∗ M] = 2 ∈ [T] hence MM ∈
LM but MM �∈ LMIU by decision procedure of [11]. Applying our method to
show MM �∈ LMIU we formulate the formula to disprove: TMIU → T (M ∗ M).
Mace4 finds a countermodel LM′ of size 2, with the domain {0, 1}, the interpre-
tations of constants M, I and U as 1, 0 and 0, respectively; the interpretation [T]
of T = {1}. the interpretation of * is given by the table.

[*] 0 1

0 |0,1
1 |1,0

The corresponding invariant {s | [ts]M′ = 1} captures the “oddness” of M
count in strings, which is sufficient to separate MM from LMIU .
2 We used Prover9 and Mace4 version 0.5 (December 2007) [9] running on AMD A6-
3410MX APU 1.60Ghz, RAM 4 GB, Windows 7 Enterprise.

78 A. Lisitsa

2.1 Assumptions on Model Building Procedure

Before we continue with the exploration of the MIU problem we need to make
some implicit so far assumptions on Mace4 procedure explicit. In what follows
we assume that Mace4 is used with the default iterative search strategy: the
search for a model starts with the size 2; if no model is found by an exhaustive
search of models of a certain size, the size is increased by 1 and the search
continues. It is clear then if a finite model is found it is a minimal one in a
partial order defined as M1 ≤ M2 iff |M1| ≤ |M2|, where Mi denotes a domain
of Mi. Another obvious assumption is that the implementation of Mace4 is
correct, and in particular if it returns something, it is indeed a minimal model.
We notice that for any concrete result produced by Mace4, its verification is a
finite problem which can be tackled independently. The checking that the result
is indeed a required model can be done in polynomial in the size of the model
time, while checking minimality requires an exponential in the size of the model
time. In what follows we assume correctness of Mace4 procedure.

2.2 Exact Invariant by Model Building

The natural question appears as to whether by an appropriate choice of tar-
get “non-theorems” of MIU one can get a minimal countermodel defining an
exact invariant coinciding with LMIU . We answer this question positively by
introducing “disjunctive targets” formulas.

Consider the formula

ϕd ≡ ∃x∃yT (M ∗ x ∗ M ∗ y) ∨ ∃xT (I ∗ x) ∨ ∃xT (U ∗ x) ∨ T (M ∗ U)

Notice that neither MU (occurring in the last disjunct of the formula) nor
any of the ground instances of existential disjuncts are elements of LMIU (by
decision procedure). For the formula TMIU → ϕd finite model finder Mace4 finds
a minimal countermodel M′′ of size 8.

The domain of M′′ is the set {0, 1, 2, 3, 4, 5, 6, 7}; the interpretations of the
constants M ,I, U and e are 1, 0, 2 and 3 respectively. The interpretation [T] of
T is {4, 5} and [∗] is given by the following multiplication table.

0 1 2 3 4 5 6 7
[*] -----------------

0 | 6,7,0,0,7,7,2,7,
1 | 4,7,1,1,7,7,5,7,
2 | 0,7,2,2,7,7,6,7,
3 | 0,1,2,3,4,5,6,7,
4 | 5,7,4,4,7,7,1,7,
5 | 1,7,5,5,7,7,4,7,
6 | 2,7,6,6,7,7,0,7,
7 | 7,7,7,7,7,7,7,7

Revisiting MU-Puzzle. A Case Study in Finite Countermodels Verification 79

Proposition 2. The invariant LM′′ defined by the countermodel M′′ coincides
with LMIU , that is the interpretation of any term tS belongs to the interpretation
[T] of T iff “S starts with symbol M, followed by an arbitrary word in symbols I
and U with a number of I being not multiple of 3.”

Proof. By the decision procedure of [11] any non-theorem of MIU system is
either (i) a word starting with I letter; or (ii) a word starting with U letter;
or (iii) a word starting from M letter and having two or more M letters; or
(iv) a word starting from M letter following by a word in I and U letters with
multiplicity of I being multiple of 3. All other words are theorems. It follows that
to prove Proposition, it is sufficient to show that for a term encoding τ of any
word in (i)–(iv) T (τ) is false in M′′. First notice that for any ground instance τ
of M ∗ x ∗ M ∗ y, I ∗ x, or U ∗ x, that is term encoding of any word in (i)–(iii)
the formula T (τ) is false in M′′ by M′′ �|= ϕd. We notice also that the same
argument can be applied for a word MU from category (iv). What about all
other words from the category (iv)? We have

Lemma 1. For a term encoding τ of any word in (iv) M′′ �|= T (τ).

The Lemma can be proved by a straightforward induction on the length of
the word. We demonstrate an alternative argument using automated reasoning.
Consider a theory CIV (“Condition IV”) consisting of the following formulae.

– C(e)
– C(x) → C(x ∗ I ∗ I ∗ I)
– C(x) → C(x ∗ U)
– C(x ∗ y) → C(y ∗ x)

If a word belongs to a category (iv), that is it is a word starting from M
letter following by a word in I and U letters with multiplicity of I being multiple
of 3 then for its term encoding τ we have CIV � C(τ). Now we update target
formula ϕd to

ϕCIV

d ≡ ∃x∃yT (M ∗ x ∗ M ∗ y) ∨ ∃xT (I ∗ x) ∨ ∃xT (U ∗ x) ∨ ∃x(T (M ∗ x) ∧ C(x))

and consider disproving task for TMIU ∧ CIV → ϕCIV

d . The model finder
returns a countermodel which we denote M′′

C which in fact is an extension of
M′′ above. That means it has the same domain as M′′ and the same inter-
pretations of M ,U ,I, ∗ and e. The only difference is an additional interpre-
tation of C which is [C] = {2, 3}. To conclude the proofs of Lemma, and
Proposition we notice for any word w from category (iv) and its term encod-
ing τw we have M′′

C �|= T (τw) (by M′′
C �|= ∃x(T (M ∗ x) ∧ C(x))) and

M′′ |= T (τ) ⇔ M′′
C |= T (τ) for any ground τ . ��

By classical Herbrand theorem we have the following

Corollary 2. There is a finite set of words w, . . . wn such that LMIU coincides
with an invariant defined by a countermodel for TMIU → ∨i=1...nT (τwi

).

80 A. Lisitsa

The natural question appears as to whether one can simplify the definition
of LLIU via minimal countermodels further and obtain it using a single target
formula T (τ) with a ground term τ .

Proposition 3. There is no single target formula T (τ) with a ground τ for
which a minimal countermodel defines LMIU .

Proof. By the decision procedure of [11] any non-theorem of MIU system is
either (i) a word starting with I letter; or (ii) a word starting with U letter;
or (iii) a word starting from M letter and having two or more M letters; or
(iv) a word starting from M letter following by a word in I and U letters with
multiplicity of I being multiple of 3. We consider all these cases in their turn.

(i) For the formula TMIU → ∃xT (I ∗ x) Mace4 model finder generates the
following minimal countermodel (in Mace4 output syntax):

interpretation(2, [number = 1,seconds = 0], [
function(*(_,_), [

0,0,
1,1]),

function(I, [0]),
function(M, [1]),
function(U, [0]),
relation(T(_), [0,1])]).

It follows that for any ground instance τ of I ∗x the above is a countermodel,
and therefore the minimal countermodel for any such τ is no larger than the
above model.

(ii) For the formula TMIU → ∃xT (U ∗ x) Mace4 model finder generates
the same minimal countermodel as presented above in (i). The same argument
follows.

(iii) For the formula TMIU → ∃x∃yR(M ∗ x ∗ M ∗ y) Mace4 generates the
following minimal countermodel.

interpretation(3, [number = 1,seconds = 0], [
function(*(_,_), [

0,1,2,
1,2,2,
2,2,2]),

function(I, [0]),
function(M, [1]),
function(U, [0]),
relation(T(_), [0,1,0])]).

It follows that for any ground instance τ of M ∗ x ∗ M ∗ y the above is
a countermodel, and therefore the minimal countermodel for any such τ is no
larger than the above model.

(iv) For the formula TMIU ∧CIV → ∃xT (M ∗x)∧C(x)) Mace4 model finder
generates the following countermodel MC .

Revisiting MU-Puzzle. A Case Study in Finite Countermodels Verification 81

interpretation(3, [number = 1,seconds = 0], [
function(*(_,_), [

2,0,1,
0,1,2,
1,2,0]),

function(I, [0]),
function(M, [0]),
function(U, [1]),
function(e, [1]),
relation(C(_), [0,1,0]),
relation(T(_), [0,1,1])]).

It follows that for any word w from (iv) the minimal countermodel for
TMIU → T (τw) is not larger than M obtained from MC above by omitting
the interpretation of C. ��

We can strengthen Proposition 3.

Proposition 4. There are no two words w1 and w2 such that a minimal coun-
termodel for TMIU → ∨i=1,2T (τwi

) defines LMIU .

Proof. By the argument used in the proof of Proposition 3, it is sufficient to show
that a minimal countermodel for TMIU ∧CIV → φ′

d where φ′
d is any two disjunct

subformula of ϕCIV

d , is less (in the partial order ≤) than a minimal model for
TMIU ∧ CIV → ϕCIV

d . This is indeed the case. The minimal countermodels for
all such subformulae found by Mace4 are shown in the Appendix. ��

2.3 Variations: Symmetric MIU Problem

Let MIUSYM be a symmetric variant of MIU, that is a string rewriting system
where all rules of MIU can be applied in forward and backward direction. The
first-order theory TMIUSY M is naturally defined as

1. (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity of concatenation);
2. e ∗ x = x;
3. x ∗ e = x;
4. T (M ∗ I) (MI is a theorem of MIUSYM);
5. T (x ∗ I) ↔ T (x ∗ I ∗ U) (rule ISYM);
6. T (M ∗ x) ↔ T (M ∗ x ∗ x) (rule IISYM);
7. T (x ∗ I ∗ I ∗ I ∗ y) ↔ T (x ∗ U ∗ y) (rule IIISYM)
8. T (x ∗ U ∗ U ∗ y) ↔ T (x ∗ y) (rule IVSYM).

The next proposition strengthens the answer to the original MU puzzle.

Proposition 5. MU �∈ LMIUSY M and LMIU �= LMIUSY M .

Proof. (i) Consider the formula TMIUSY M → T (M ∗U). Mace4 finds the follow-
ing countermodel for it.

82 A. Lisitsa

interpretation(3, [number = 1,seconds = 0], [
function(*(_,_), [

2,0,1,
0,1,2,
1,2,0]),

function(I, [0]),
function(M, [0]),
function(U, [1]),
function(e, [1]),
relation(T(_), [0,1,1])]).

By the analogue of Corollary 1 for symmetric rewriting it follows that MU �∈
LMIUSY M .

(ii) UUMI ∈ LMIUSY M (apply IVSYM to the initial word MI), while
UUMI �∈ LMIU . ��

3 String Rewriting and Regular Invariants

The solution of MU puzzle we presented here is an instance of the application of
very general finite countermodel safety verification method (FCM) from [3,5,7,8,
10]. Its instantiation to the general string rewriting systems is discussed in [7].

Abstracting from the details of particular model finding procedures the work
of FCM method can be ascribed as follows. Given a string rewriting system S
and a target string s, find a (minimal) regular separator, that is a regular set R
subsuming all reachable strings RS and disjoint with a target string s, that is
RS ⊆ R ∧ s �∈ R. A few observations are in order.

Obviously, if the set of all reachable strings RS is regular then RS itself is
a regular separator for any target non-reachable string s. For a target s though
such RS is not necessarily minimal3 separator. Recall MM can be separated
from LMIU by a very simple, as compared with the whole regular LMIU , odd-
ness/parity separator. This is the one of the distinctive features of FCM as com-
pared with other safety verification methods using regular invariants, notably
regular model checking [1], that it does not rely on computing regular approxi-
mations of all reachable states independently of safety conditions. It rather takes
an account of a safety condition (target non-reachable strings in our case) and
searches for a separator. That may lead to favorable performance as was noticed
in [8]. We showed in this paper that in particular case of MU puzzle, by careful
choice of target formulae/(sets of) strings one can use FCM to find the set of all
reachable strings LMIU . In this process however we used previous knowledge of
LMIU and applied ad hoc reasoning.

Question 1. Is it possible to have systematic procedure using first-order prov-
ing/disproving for generation of regular approximations for sets of reachable
strings for string rewriting systems?
3 In a reasonably defined partial order. Instead of a partial order ≤ motivated by the
iterative finite model building procedure, one may consider a partial order defined
by inclusion of corresponding languages.

Revisiting MU-Puzzle. A Case Study in Finite Countermodels Verification 83

We showed also that for MIU system the set of reachable strings LMIU can
not be generated by FCM using less than three target strings. For a string
rewriting system S with a regular RS , one can define a separation dimension
Dim(S) as a minimal number of target words required to generate RS . In these
terms Dim(MIU) ≥ 3. We leave the following questions for further exploration
elsewhere.

Question 2. What is Dim(MIU)?

Question 3. Does Dim(S) form proper hierarchy, that is if there is an infinite
sequence Si, i ≥ 1 of string rewriting systems, such that Dim(Si) = i?

4 Conclusion

We have shown in this paper how to solve MU puzzle by first-order theorem
disproving (finite model finding) fully automatically and from the first principles.
As far we are aware, no fully automatic solution of this puzzle has been presented
in the literature so far. We have further shown that the known decision procedure
can be re-interpreted in terms of a single finite countermodel. MU puzzle in a
instance of an infinite state verification problem and as such it was used as
a case study to illustrate the verification methods based on Counter Example
Guided Refinement (CEGAR) in [2]. The verification presented in [2] was not
fully automated and required a creative step in the choice of invariants. The
efficiency of FCM method can be explained in part by targeted building of
regular separators for particular targets, instead of regular approximations of all
reachable states. Further investigation of related questions in terms of separation
dimension is a topic for future work.

Appendix

To the Proof of Proposition 4. We present here all minimal countermodels
found by Mace4 for all formulae TMIU ∧ CIV → φ′

d with φ′
d being two disjunct

subformulae of ϕCIV

d ≡ ∃x∃yT (M ∗x∗M ∗y)∨∃xT (I∗x)∨∃xT (U ∗x)∨∃x(T (M ∗
x) ∧ C(x)). Notice that all of them are less wrt ≤ than a minimal countermodel
for TMIU ∧ CIV → ϕCIV

d whose domain size is 8.

(1) φ′
d ≡ ∃x∃yT (M ∗ x ∗ M ∗ y) ∨ ∃xT (I ∗ x)

interpretation(4, [number = 1,seconds = 0], [
function(*(_,_), [

0,3,0,3,
1,3,1,3,
0,1,2,3,
3,3,3,3]),

function(I, [0]),
function(M, [1]),

84 A. Lisitsa

function(U, [0]),
function(e, [2]),
relation(C(_), [1,0,1,0]),
relation(R(_), [0,1,0,0])]).

(2) φ′
d ≡ ∃x∃yT (M ∗ x ∗ M ∗ y) ∨ ∃xT (U ∗ x)

interpretation(4, [number = 1,seconds = 0], [
function(*(_,_), [

0,3,0,3,
1,3,1,3,
0,1,2,3,
3,3,3,3]),

function(I, [0]),
function(M, [1]),
function(U, [0]),
function(e, [2]),
relation(C(_), [1,0,1,0]),
relation(R(_), [0,1,0,0])]).

(3) φ′
d ≡ ∃x∃yT (M ∗ x ∗ M ∗ y) ∨ ∃x(T (M ∗ x) ∧ C(x))

interpretation(7, [number = 1,seconds = 0], [
function(*(_,_), [

5,1,0,3,4,2,6,
3,4,1,4,4,6,4,
0,1,2,3,4,5,6,
6,4,3,4,4,1,4,
4,4,4,4,4,4,4,
2,1,5,3,4,0,6,
1,4,6,4,4,3,4]),

function(I, [0]),
function(M, [1]),
function(U, [2]),
function(e, [2]),
relation(C(_), [0,0,1,0,0,0,0]),
relation(R(_), [0,0,0,1,0,0,1])]).

(4) φ′
d ≡ ∃xT (I ∗ x) ∨ ∃xT (U ∗ x)

interpretation(3, [number = 1,seconds = 0], [
function(*(_,_), [

0,0,0,
1,1,1,
0,1,2]),

function(I, [0]),
function(M, [1]),

Revisiting MU-Puzzle. A Case Study in Finite Countermodels Verification 85

function(U, [0]),
function(e, [2]),
relation(C(_), [1,1,1]),
relation(R(_), [0,1,0])]).

(5) φ′
d ≡ ∃xT (I ∗ x) ∨ ∃x(T (M ∗ x) ∧ C(x))

interpretation(7, [number = 1,seconds = 0], [
function(*(_,_), [

4,0,0,4,6,6,0,
3,1,1,3,5,5,1,
0,1,2,3,4,5,6,
5,3,3,5,1,1,3,
6,4,4,6,0,0,4,
1,5,5,1,3,3,5,
0,6,6,0,4,4,6]),

function(I, [0]),
function(M, [1]),
function(U, [2]),
function(e, [2]),
relation(C(_), [0,1,1,0,0,0,1]),
relation(R(_), [0,0,0,1,0,1,0])]).

(6) φ′
d ≡ ∃xT (U ∗ x) ∨ ∃x(T (M ∗ x) ∧ C(x))

interpretation(7, [number = 1,seconds = 0], [
function(*(_,_), [

5,0,0,0,5,3,3,
4,1,1,1,4,6,6,
0,1,2,3,4,5,6,
0,3,3,3,0,5,5,
6,4,4,4,6,1,1,
3,5,5,5,3,0,0,
1,6,6,6,1,4,4]),

function(I, [0]),
function(M, [1]),
function(U, [3]),
function(e, [2]),
relation(C(_), [0,1,1,1,0,0,0]),
relation(R(_), [0,0,0,0,1,0,1])]).

86 A. Lisitsa

References

1. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 3

2. Clarke, E.M., et al.: Abstraction and counterexample-guided refinement in model
checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)

3. Goubault-Larrecq, J.: Finite models for formal security proofs. J. Comput. Secur.
18(6), 1247–1299 (2010)

4. Hofstadter, D.R.: Godel, Escher, Bach: An Eternal Golden Braid. Basic Books Inc.,
New York (1979)

5. Jürjens, J., Weber, T.: Finite models in FOL-based crypto-protocol verification. In:
Degano, P., Viganò, L. (eds.) ARSPA-WITS 2009. LNCS, vol. 5511, pp. 155–172.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03459-6 11

6. Lallement, G.: Semigroups and Combinatorial Applications. Wiley, Hoboken (1979)
7. Lisitsa, A.: Finite models vs tree automata in safety verification. In: 23rd Interna-

tional Conference on Rewriting Techniques and Applications, RTA 2012, Nagoya,
Japan, pp. 225–239, 28 May–2 June 2012

8. Lisitsa, A.: Finite reasons for safety - parameterized verification by finite model
finding. J. Autom. Reason. 51(4), 431–451 (2013)

9. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/∼mccune/
prover9/

10. Selinger, P.: Models for an adversary-centric protocol logic. Electron. Notes Theor.
Comput. Sci. 55(1), 69–84 (2003). LACPV 2001, Logical Aspects of Cryptographic
Protocol Verification (in connection with CAV 2001)

11. Swanson, L., McEliece, R.J.: A simple decision procedure for Hofstadter’s MIU-
system. Math. Intell. 10(2), 48–49 (1988)

https://doi.org/10.1007/978-3-540-28644-8_3
https://doi.org/10.1007/978-3-642-03459-6_11
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/

Knapsack in Hyperbolic Groups

Markus Lohrey(B)

Universität Siegen, Siegen, Germany
lohrey@eti.uni-siegen.de

Abstract. Recently knapsack problems have been generalized from the
integers to arbitrary finitely generated groups. The knapsack problem
for a finitely generated group G is the following decision problem:
given a tuple (g, g1, . . . , gk) of elements of G, are there natural numbers
n1, . . . , nk ∈ N such that g = gn1

1 · · · gnk
k holds in G? Myasnikov, Niko-

laev, and Ushakov proved that for every hyperbolic group, the knapsack
problem can be solved in polynomial time. In this paper, it is shown
that for every hyperbolic group G, the knapsack problem belongs to
the complexity class LogCFL, and it is LogCFL-complete if G contains a
free group of rank two. Moreover, it is shown that for every hyperbolic
group G and every tuple (g, g1, . . . , gk) of elements of G the set of all
(n1, . . . , nk) ∈ N

k such that g = gn1
1 · · · gnk

k in G is effectively semilinear.

1 Introduction

In [22], Myasnikov, Nikolaev, and Ushakov initiated the investigation of dis-
crete optimization problems, which are usually formulated over the integers,
for arbitrary (possibly non-commutative) groups. One of these problems is the
knapsack problem for a finitely generated group G: The input is a sequence of
group elements g1, . . . , gk, g ∈ G (specified by finite words over the generators
of G) and it is asked whether there exists a tuple (n1, . . . , nk) ∈ N

k such that
gn1
1 · · · gnk

k = g in G. For the particular case G = Z (where the additive notation
n1 · g1 + · · · + nk · gk = g is usually preferred) this problem is NP-complete
(resp., TC0-complete) if the numbers g1, . . . , gk, g ∈ Z are encoded in binary
representation [9,11] (resp., unary notation [2]).

In [22], Myasnikov et al. encode elements of the finitely generated group G
by words over the group generators and their inverses, which corresponds to the
unary encoding of integers. There is also an encoding of words that corresponds
to the binary encoding of integers, so called straight-line programs, and knapsack
problems under this encoding have been studied in [18]. In this paper, we only
consider the case where input words are explicitly represented. Here is a list of
known results concerning the knapsack problem:

– Knapsack can be solved in polynomial time for every hyperbolic group [22]. In
[4] this result was extended to free products of any finite number of hyperbolic
groups and finitely generated abelian groups.

c© Springer Nature Switzerland AG 2018
I. Potapov and P.-A. Reynier (Eds.): RP 2018, LNCS 11123, pp. 87–102, 2018.
https://doi.org/10.1007/978-3-030-00250-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00250-3_7&domain=pdf

88 M. Lohrey

– There are nilpotent groups of class 2 for which knapsack is undecidable.
Examples are direct products of sufficiently many copies of the discrete
Heisenberg group H3(Z) [12], and free nilpotent groups of class 2 and suf-
ficiently high rank [20].

– Knapsack for H3(Z) is decidable [12]. In particular, together with the previous
point it follows that decidability of knapsack is not preserved under direct
products.

– Knapsack is decidable for every co-context-free group [12], i.e., groups where
the set of all words over the generators that do not represent the identity
is a context-free language. Lehnert and Schweitzer [14] have shown that the
Higman-Thompson groups are co-context-free.

– Knapsack belongs to NP for all virtually special groups (finite extensions of
subgroups of graph groups) [19]. The class of virtually special groups is very
rich. It contains all Coxeter groups, one-relator groups with torsion, fully
residually free groups, and fundamental groups of hyperbolic 3-manifolds.
For graph groups (also known as right-angled Artin groups) a complete clas-
sification of the complexity of knapsack was obtained in [19]: If the underlying
graph contains an induced path or cycle on 4 nodes, then knapsack is NP-
complete; in all other cases knapsack can be solved in polynomial time (even
in LogCFL).

– Decidability of knapsack is preserved by finite extensions, HNN-extensions
over finite associated subgroups and amalgamated products over finite sub-
groups [18].

In this paper we further investigate the knapsack problem in hyperbolic groups.
The definition of hyperbolic groups requires that all geodesic triangles in the
Cayley-graph are δ-slim for a constant δ; see Sect. 3 for details. The class of
hyperbolic groups has several alternative characterizations (e.g., it is the class of
finitely generated groups with a linear Dehn function), which gives hyperbolic
groups a prominent role in geometric group theory. Moreover, in a certain prob-
abilistic sense, almost all finitely presented groups are hyperbolic [8,23]. Also
from a computational viewpoint, hyperbolic groups have nice properties: it is
known that the word problem and the conjugacy problem can be solved in linear
time [3,10]. As mentioned above, knapsack can be solved in polynomial time for
every hyperbolic group [22]. Our first main result of this paper provides a precise
characterization of the complexity of knapsack for hyperbolic groups: for every
hyperbolic group, knapsack belongs to LogCFL, which is the class of all prob-
lems that are logspace-reducible to a context-free language. LogCFL has several
alternative characterizations, see Sect. 5 for details. The LogCFL upper bound
for knapsack in hyperbolic groups improves the polynomial upper bound shown
in [22], and also generalizes a result from [15], stating that the word problem
for a hyperbolic group is in LogCFL. For hyperbolic groups that contain a copy
of a non-abelian free group (such hyperbolic groups are called non-elementary)
it follows from [19] that knapsack is LogCFL-complete. Hyperbolic groups that
contain no copy of a non-abelian free group (so called elementary hyperbolic

Knapsack in Hyperbolic Groups 89

groups) are known to be virtually cyclic, in which case knapsack can be shown
to be in NL ⊆ LogCFL.

In Sect. 6 we prove our second main result: for every hyperbolic group G
and every tuple (g, g1, . . . , gk) of elements of G the set of all (n1, . . . , nk) ∈ N

k

such that g = gn1
1 · · · gnk

k in G is effectively semilinear. In other words: the
set of all solutions of a knapsack instance in G is semilinear. Groups with this
property are also called knapsack-semilinear. For the special case G = Z this is
well-known (the set of solutions of a linear equation is Presburger definable and
hence semilinear). Clearly, knapsack is decidable for every knapsack-semilinear
group (due to the effectiveness assumption). In a series of recent papers it turned
out that the class of knapsack-semilinear groups is surprisingly rich. It contains
all virtually special groups [16] and all co-context-free group [12] and is closed
under the following constructions: going to a finitely generated subgroup (this is
trivial), going to a finite group extension [18], HNN-extensions over finite associ-
ated subgroups [18], amalgamated free products over finite subgroups [18], direct
products (this follows from the closure of semilinear sets under intersection), and
restricted wreath products [5].

Our proof of the knapsack-semilinearity of a hyperbolic group shows an addi-
tional quantitative statement: If the group elements g, g1, . . . , gk are represented
by words over the generators and the total length of these words is N , then the
set {(n1, . . . , nk) ∈ N

k | g = gn1
1 · · · gnk

k in G} has a semilinear representation,
where all vectors only contain integers of size at most p(N). Here, p(x) is a
fixed polynomial that only depends on G. Groups with this property are called
knapsack-tame in [19]. In [19], it is shown that the class of knapsack-tame groups
is closed under free products and direct products with Z.

Missing proofs can be found in the long version [17].

2 General Notations

We assume that the reader is familiar with basic concepts from group theory and
formal languages. The empty word is denoted with ε. For a word w = a1a2 · · · an

let |w| = n be the length of w, and for 1 ≤ i ≤ j ≤ n let w[i] = ai, w[i : j] =
ai · · · aj , w[: i] = w[1 : i] and w[i :] = w[i : n]. Moreover, let w[i : j] = ε for i > j.

We let N = {0, 1, 2, . . .}. A set of vectors A ⊆ N
k is linear if there exist vec-

tors v0, . . . , vn ∈ N
k such that A = {v0 + λ1 · v1 + · · · + λn · vn | λ1, . . . , λn ∈ N}.

The tuple of vectors (v0, . . . , vn) is a linear representation of A. Its magnitude
is the largest number appearing in one the vectors v0, . . . , vn. A set A ⊆ N

k is
semilinear if it is a finite union of linear sets A1, . . . , Am. A semilinear repre-
sentation of A is a list of linear representations for the linear sets A1, . . . , Am.
Its magnitude is the maximal magnitude of the linear representations for the
sets A1, . . . , Am. The magnitude of a semilinear set A is the smallest magnitude
among all semilinear representations of A.

In the context of knapsack problems, we will consider semilinear subsets as
mapping f : {x1, . . . , xk} → N for a finite set of variables X = {x1, . . . , xk}. Such
a mapping f can be identified with the vector (f(x1), . . . , f(xk)). This allows

90 M. Lohrey

to use all vector operations (e.g. addition and scalar multiplication) on the set
N

X of all mappings from X to N. The pointwise product f · g of two mappings
f, g ∈ N

X is defined by (f · g)(x) = f(x) · g(x) for all x ∈ X. Moreover, for
mappings f ∈ N

X , g ∈ N
Y with X ∩ Y = ∅ we define f ⊕ g : X ∪ Y → N by

(f ⊕ g)(x) = f(x) for x ∈ X and (f ⊕ g)(y) = g(y) for y ∈ Y . All operations on
N

X will be extended to subsets of NX in the standard pointwise way.
It is well-known that the semilinear subsets of Nk are exactly the sets defin-

able in Presburger arithmetic. These are those sets that can be defined with a
first-order formula ϕ(x1, . . . , xk) over the structure (N, 0,+,≤) [7]. Moreover, the
transformations between such a first-order formula and an equivalent semilin-
ear representation are effective. In particular, the semilinear sets are effectively
closed under Boolean operations.

3 Hyperbolic Groups

Let G be a finitely generated group with the finite symmetric generating set
Σ, i.e., a ∈ Σ implies that a−1 ∈ Σ. The Cayley-graph of G (with respect to
Σ) is the undirected graph Γ = Γ (G) with node set G and all edges (g, ga)
for g ∈ G and a ∈ Σ. We view Γ as a geodesic metric space, where every
edge (g, ga) is identified with a unit-length interval. It is convenient to label
the directed edge from g to ga with the generator a. The distance between two
points p, q is denoted with dΓ (p, q). For g ∈ G let |g| = dΓ (1, g). For r ≥ 0, let
Br(1) = {g ∈ G | dΓ (1, g) ≤ r}.

Paths can be defined in a very general way for metric spaces, but we only need
paths that are induced by words over Σ. Given a word w ∈ Σ∗ of length n, one
obtains a unique path P [w] : [0, n] → Γ , which is a continuous mapping from the
real interval [0, n] to Γ . It maps the subinterval [i, i+1] ⊆ [0, n] isometrically onto
the edge (gi, gi+1) of Γ , where gi (resp., gi+1) is the group element represented
by the word w[: i] (resp., w[: i + 1]). The path P [w] starts in 1 = g0 and ends in
gn (the group element represented by w). We also say that P [w] is the unique
path that starts in 1 and is labelled with the word w. More generally, for g ∈ G
we denote with g · P [w] the path that starts in g and is labelled with w. When
writing u·P [w] for a word u ∈ Σ∗, we mean the path g·P [w], where g is the group
element represented by u. A path P : [0, n] → Γ of the above form is geodesic if
dΓ (P (0), P (n)) = n; it is a (λ, ε)-quasigeodesic if |a−b| ≤ λ·dΓ (P (a), P (b))+ε for
all a, b ∈ [0, n]; and it is ζ-local (λ, ε)-quasigeodesic if |a−b| ≤ λ·dΓ (P (a), P (b))+ε
for all a, b ∈ [0, n] with |a − b| ≤ ζ.

A word w ∈ Σ∗ is geodesic if the path P [w] is geodesic, which means that
there is no shorter word representing the same group element from G. Similarly,
we define the notion of (ζ-local) (λ, ε)-quasigeodesic words. A word w ∈ Σ∗ is
shortlex reduced if it is the length-lexicographically smallest word that represents
the same group element as w. For this, we have to fix an arbitrary linear order
on Σ. Note that if u = xy is shortlex reduced then x and y are shortlex reduced
too. For a word u ∈ Σ∗ we denote with shlex(u) the unique shortlex reduced
word with shlex(u) = u in G.

Knapsack in Hyperbolic Groups 91

P1

P2

Fig. 1. Paths that asynchronously K-fellow travel

A geodesic triangle consists of three points p, q, r ∈ G and geodesic paths
P1 = Pp,q, P2 = Pp,r, P3 = Pq,r (the three sides of the triangle), where Px,y

is a geodesic path from x to y. The geodesic triangle is δ-slim for δ ≥ 0, if
for all i ∈ {1, 2, 3}, every point on Pi has distance at most δ from a point on⋃

j∈{1,2,3}\{i} Pj . The group G is called δ-hyperbolic, if every geodesic triangle
is δ-slim. Finally, G is hyperbolic, if it is δ-hyperbolic for some δ ≥ 0. Finitely
generated free groups are for instance 0-hyperbolic. The property of being hyper-
bolic is independent of the chosen generating set Σ. The word problem for a
hyperbolic group can be solved in real time [10].

Let us fix a δ-hyperbolic group G with the finite symmetric generating set Σ
for the rest of the section, and let Γ be the corresponding geodesic metric space.
We will apply a couple of well-known results for hyperbolic groups.

Lemma 1 ([6, 8.21]). Let g ∈ G be of infinite order and let n ≥ 0. Let u be
a geodesic word representing g. Then the word un is (λ, ε)-quasigeodesic, where
λ = N |g|, ε = 2N2|g|2 + 2N |g| and N = |B2δ(1)|.
Consider paths P1 : [0, n1] → Γ , P2 : [0, n2] → Γ and let K be a positive real
number. We say that P1 and P2 asynchronously K-fellow travel if there exist two
continuous non-decreasing mappings ϕ1 : [0, 1] → [0, n1] and ϕ2 : [0, 1] → [0, n2]
such that ϕ1(0) = ϕ2(0) = 0, ϕ1(1) = n1, ϕ2(1) = n2 and for all 0 ≤ t ≤ 1,
dΓ (P1(ϕ1(t)), P2(ϕ2(t))) ≤ K. Intuitively, this means that one can travel along
the paths P1 and P2 asynchronously with variable speeds such that at any time
instant the current points have distance at most K. By slightly increasing K one
obtains a ladder graph of the form shown in Fig. 1, where the edges connecting
the horizontal P1- and P2-labelled paths represent paths of length at most K
that connect elements from G.

Lemma 2 ([21]). Let P1 and P2 be (λ, ε)-quasigeodesic paths such that Pi starts
in gi and ends in hi. Assume that dΓ (g1, h1), dΓ (g2, h2) ≤ h. There exists a
computable bound K = K(δ, λ, ε, h) ≥ h such that P1 and P2 asynchronously
K-fellow travel.

Finally we need the following lemma, see [17].

Lemma 3. Fix constants λ, ε and let κ = K(δ, λ, ε, 0) be taken from Lemma 2.
Let v1, v2 ∈ Σ∗ be geodesic words and u1, u2 ∈ Σ∗ (λ, ε)-quasigeodesic words
such that v1u1 = u2v2 in G. Consider a factorization u1 = x1y1 with |x1| ≥
λ(|v1|+2δ+κ)+ε and |y1| ≥ λ(|v2|+2δ+κ)+ε Then there exists a factorization
u2 = x2y2 and c ∈ B2δ+2κ(1) such that v1x1 = x2c and cy1 = y2v2 in G.

92 M. Lohrey

4 Knapsack Problems

Let G be a finitely generated group with the finite symmetric generating set
Σ. Moreover, let X be a set of variables that take values from N. A knapsack
expression over G is a formal expression of the form E = ux1

1 v1u
x2
2 v2 · · · uxk

k vk

with k ≥ 1, x1, . . . , xk ∈ X, xi �= xj for i �= j, and u1, v1, . . . , uk, vk ∈ Σ∗. Let
XE = {x1, . . . , xk} be the set of variables that occur in E. A solution for E is
a mapping σ ∈ N

XE such that the word u
σ(x1)
1 v1u

σ(x2)
2 v2 · · · uσ(xk)

k vk represents
the identity element of G. With sol(E) we denote the set of all solutions of E.
The length of E is defined as |E| =

∑k
i=1 |ui| + |vi|, whereas k is its depth. The

knapsack problem for G is the following decision problem: Given a knapsack
expression E over G, is sol(E) non-empty?

The group G is called knapsack-semilinear if for every knapsack expression
E over G, the set sol(E) is semilinear and a semilinear representation can be
effectively computed from E. The discrete Heisenberg group H3(Z) (which con-
sists of all upper triangular (3×3)-matrices over the integers, where all diagonal
entries are 1) is an example of a group which is not knapsack-semilinear, but for
which the knapsack problem is decidable, see [12].

The group G is called polynomially knapsack-bounded if there is a fixed poly-
nomial p(n) such that for a given a knapsack expression E over G, one has
sol(E) �= ∅ if and only if there exists ν ∈ sol(E) with ν(x) ≤ p(|E|) for all vari-
ables x in E. Finally, G is called knapsack-tame if there is a fixed polynomial
p(n) such that for a given a knapsack expression E over G one can compute a
semilinear representation for sol(E) of magnitude at most p(|E|). Thus, every
knapsack-tame group is knapsack-semilinear as well as polynomially knapsack-
bounded.

5 Complexity of Knapsack in Hyperbolic Groups

In this section we show that for every hyperbolic group the knapsack prob-
lem belongs to the complexity class LogCFL. This class consists of all compu-
tational problems that are logspace reducible to a context-free language. The
class LogCFL is included in the parallel complexity class NC2 and has several
alternative characterizations; see [24,26] for details. For our purposes, a charac-
terization via AuxPDAs is most suitable. An AuxPDA (for auxiliary pushdown
automaton) is a nondeterministic pushdown automaton with a two-way input
tape and an additional work tape. Here we only consider AuxPDAs with the
following two restrictions:

– The length of the work tape is restricted to O(log n) for an input of length n
(logspace bounded).

– There is a polynomial p(n), such that every computation path of the AuxPDA
on an input of length n has length at most p(n) (polynomially time bounded).

Whenever we speak of an AuxPDA in the following, we implicitly assume that
the AuxPDA is logspace bounded and polynomially time bounded. The class of

Knapsack in Hyperbolic Groups 93

languages that are accepted by such AuxPDAs is exactly LogCFL [24]. A one-
way AuxPDA is an AuxPDA that never moves the input head to the left. Hence,
in every step, the input head either does not move, or moves to the right.

In order to show that knapsack for a hyperbolic group belongs to LogCFL,
we use the following important result from [22]:

Theorem 4 ([22]). Every hyperbolic group is polynomially knapsack-bounded.

This result is also a direct corollary of Theorem 7 from the next section.
In [15] it is shown that the word problem for a hyperbolic group belongs to

LogCFL. Here, we extend the proof from [15] to the knapsack problem. First, we
consider another problem of independent interest. An acyclic NFA is a nonde-
terministic finite automaton A = (Q,Σ,Δ, q0, F) (Q is a finite set of states, Σ
is the input alphabet, Δ ⊆ Q × Σ∗ × Q is the set of transition triples, q0 ∈ Q
is the initial state, and F ⊆ Q is the set of final states) such that the rela-
tion {(p, q) ∈ Q × Q | ∃w ∈ Σ∗ : (p,w, q) ∈ Δ} is acyclic. Note that we allow
transitions labelled with words; this will be convenient in the proof of the next
theorem. For a finitely generated group G with the finite generating set Σ (the
concrete choice of Σ is not relevant), the membership problem for acyclic NFAs
over G is the following computational problem: Given an acyclic NFA A with
input alphabet Σ, does A accept a word w ∈ Σ∗ such that w = 1 in G?

Theorem 5. Membership for acyclic NFAs over a hyperbolic group belongs to
LogCFL.

Proof. Let G be a hyperbolic group with the symmetric generating set Σ and let
A be the input NFA. Let W = {w ∈ Σ∗ | w = 1 in G} be the word problem for
G. In [15] it is shown that W is a growing context-sensitive language, i.e., it can
be generated by a grammar where all productions are strictly length-increasing
(except for the start production S → ε). Hence, by the main result of [1], W can
be recognized by a one-way AuxPDA P in logarithmic space and polynomial
time.

An AuxPDA for the membership problem for acyclic NFAs over G guesses a
path in the NFA A and thereby simulates the AuxPDA P on the word spelled
by the guessed path. If the final state of the input NFA A is reached and the
AuxPDA P accepts at the same time, then the overall AuxPDA accepts. It
is important that the AuxPDA P works one-way since the guessed path in A
cannot be stored in logspace. This implies that the AuxPDA cannot re-access
input symbols that have already been processed. The AuxPDA is clearly logspace
bounded and polynomially time bounded since A is acyclic. �
Theorem 6. For every hyperbolic groups G, knapsack can be solved in LogCFL.
Moreover, if G contains a copy of F2 (the free group of rank 2) then knapsack
for G is LogCFL-complete.

Proof. Let G be a hyperbolic group. It is straightforward to present a logspace
reduction from knapsack for G to the membership problem for acyclic NFAs.

94 M. Lohrey

By Theorem 5, this proves the first statement of the theorem. Consider a knap-
sack expression E = ux1

1 v1u
x2
2 v2 · · · uxk

k vk over G. By Theorem 4, there exists
a polynomial p(x) such that sol(E) �= ∅ if and only if there exists a solution
(n1, . . . , nk) ∈ sol(E) such that ni ≤ p(|E|) for all 1 ≤ i ≤ k. For our reduc-
tion it therefore suffices to construct an acyclic NFA for the finite language
{un1

1 v1u
n2
2 v2 · · · unk

k vk | 0 ≤ n1, . . . , nk ≤ p(|E|)}, which is easy (see also [19,
Sect. 4.2.5]).

The second statement from the theorem follows from [19, Proposition 4.26],
where it was shown that knapsack for F2 is LogCFL-complete. �

6 Hyperbolic Groups Are Knapsack-Semilinear

In this section, we prove the following strengthening of Theorem4:

Theorem 7. Every hyperbolic group is knapsack-tame.

Let us remark that the total number of vectors in a semilinear representation can
be exponential, even for the simplest case G = Z. Take the (additively written)
knapsack expression E = x1+x2+ · · ·+xn −n. Then sol(E) is finite and consists
of

(
2n−1

n

) ≥ 2n vectors.
Let us fix a δ-hyperbolic group G for the rest of Sect. 6 and let Σ be a finite

symmetric generating set for G.

6.1 Knapsack Expressions of Depth Two

We first consider knapsack expressions of depth 2 where all powers are quasi-
geodesic. It is well known that the semilinear sets are exactly the Parikh images
of the regular languages. We need the following quantitative version of this result:

Theorem 8 ([25, Theorem 4.1], see also [13]). Let k be a fixed constant. Given
an NFA A over an alphabet of size k with n states, one can compute in polynomial
time a semilinear representation of the Parikh image of L(A). Moreover, all
numbers appearing in the semilinear representation are polynomially bounded
in n.

Lemma 9. Let λ and ε be fixed constants. For all geodesic words u1, v1, u2, v2 ∈
Σ∗ such that u1 �= ε �= u2 and un

1 , un
2 are (λ, ε)-quasigeodesic for all n ≥ 0,

the set {(x1, x2) ∈ N × N | v1u
x1
1 = ux2

2 v2 in G} is effectively semilinear with
magnitude bounded by p(|u1| + |v1| + |u2| + |v2|) for a fixed polynomial p(n).

Proof. Let S := {(x1, x2) ∈ N×N | v1u
x1
1 = ux2

2 v2 in G}. We will define an NFA
A over the alphabet {a1, a2} such that the Parikh image of L(A) is S. Moreover,
the number of states of A is polynomial in |u1| + |u2| + |v1| + |v2|. This allows
us to apply Theorem 8. We will allow transitions that are labelled with words
(having length polynomial in |u1|+|u2|+|v1|+|v2|). Moreover, instead of writing

Knapsack in Hyperbolic Groups 95

v1 v2

x′ y′
z′

x
y z

u2
u2

u2
u2 u2 u2 u2 u2 u2 u2

u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1
u1

u1
u1

c = c0 d = c24

Fig. 2. Example for the construction from the proof of Lemma 9.

in the transitions these words, we write their Parikh images (so, for instance, a

transition p
a1a2a1−−−−→ q is written as p

(2,1)−−−→ q.
Let �i = |ui| and mi = |vi|. Take the constant κ from Lemma 3 and define

N1 = λ(m1 + 2δ + κ) + ε and N2 = λ(m2 + 2δ + κ) + ε. We split the solution
set S into S1 = S ∩ {(n1, n2) ∈ N × N | n1 < (N1 + N2)/�1} and S2 = S \ S1.
For all (n1, n2) ∈ S1 we have |un1

1 | = n1�1 < N1 + N2. Hence, |shlex(un2
2)| =

|shlex(v1un1
1 v−1

2)| < N1 + N2 + m1 + m2. Since un2
2 is (λ, ε)-quasigeodesic we get

|un2
2 | = n2�2 < λ(N1+N2+m1+m2)+ε, i.e., n2 < (λ(N1+N2+m1+m2)+ε)/�2.

Hence, S1 is finite and its magnitude is bounded by O(m1 + m2).
We now deal with pairs (n1, n2) ∈ S2. Consider such a pair (n1, n2) and the

quasigeodesic rectangle consisting of the four paths Q1 = P [v1], P1 = v1 ·P [un1
1],

P2 = P [un2
2], and Q2 = un2

2 ·P [v2]. Since |un1
1 | ≥ N1 +N2, we factorize the word

un1
1 as un1

1 = xyz with |x| = N1 and |z| = N2. By Lemma 3 we can factorize
un2
2 as un2

2 = x′y′z′ such that there exist c, d ∈ B2δ+2κ(1) with v1x = x′c and
dz = z′v2 in G, see Fig. 2 (where n1 = 20, n2 = 10, �1 = 2 and �2 = 4). Since
un2
2 is (λ, ε)-quasigeodesic, we have

|x′| ≤ λ(m1 + |x| + 2δ + 2κ) + ε = λ(m1 + N1 + 2δ + 2κ) + ε, (1)
|z′| ≤ λ(m2 + |z| + 2δ + 2κ) + ε = λ(m2 + N2 + 2δ + 2κ) + ε. (2)

Consider now the subpath P ′
1 of P1 from P1(|x|) to P1(n1�1−|z|) and the subpath

P ′
2 of P2 from P2(|x′|) to P2(n2�2 − |z′|). These are the paths labelled with y

and y′, respectively, in Fig. 2. By Lemma 2 these paths asynchronously γ-fellow
travel, where γ := K(δ, λ, ε, 2δ + 2κ) is a constant. In Fig. 2 this is visualized by
the part between the c-labelled edge and the d-labelled edge. W.l.o.g. we assume
that γ ≥ 2δ + 2κ.

We now define the NFA A over the alphabet {a1, a2} (recall the we replace
edge labels from {a1, a2}∗ by their Parikh images). The state set of A is

Q = {q0, qf} ∪ {(i, b, j) | 0 ≤ i < �1, 0 ≤ j < �2, b ∈ Bγ(1)}.

The unique initial (resp., final) state is q0 (resp., qf). To define the transitions of
A set p = �N1/�1� = �|x|/|u1|�, r = N1 mod �1 = |x| mod |u1|, s = �N2/�1� =
�|z|/|u1|�, t = −N2 mod �1 = −|z| mod |u1|. Thus, we have x = up

1u1[: r] and
z = us

1[t + 1 :]. There are the following types of transitions (transitions without

96 M. Lohrey

a label are implicitly labelled by the zero vector (0, 0)), where 0 ≤ i < �1,
0 ≤ j < �2, b, b′ ∈ Bγ(1).

1. q0
(p,p′)−−−→ (r, c, r′) if there exists a number 0 ≤ k ≤ λ(m1 + N1 + 2δ + 2κ) + ε

(this is the possible range for the length of x′ in (1)) such that p′ = �k/�2�,
r′ = k mod �2, and v1u

p
1u1[: r] = up′

2 u2[: r′]c in G.
2. (i, b, j) −→ (i + 1, b′, j) if i + 1 < �1 and bu1[i + 1] = b′ in G.

3. (�1 − 1, b, j)
(1,0)−−−→ (0, b′, j) if bu1[�1] = b′ in G.

4. (i, b, j) −→ (i, b′, j + 1) if j + 1 < �2 and b = u2[j + 1]b′ in G.

5. (i, b, �2 − 1)
(0,1)−−−→ (i, b′, 0) if b = u2[�2]b′ in G.

6. (t, d, t′)
(s,s′)−−−→ qf if there exists a number 0 ≤ k ≤ λ(m2 + N2 + 2δ + 2κ) + ε

(this is the possible range for the length of z′ in (2)) such that s′ = �k/�2�,
t′ = −k mod �2, and du1[t + 1 :]us

1 = u2[t′ + 1 :]us′
2 v2 in G.

The construction is best explained using the example in Fig. 2. As mentioned
above, the vertical lines between c = c0 and d = c24 represent the asyn-
chronous γ-fellow travelling. The vertical lines are labelled with group elements
c0, c1, . . . , c23, c24 ∈ Bγ(1) from left to right. In order to not overload the figure
we only show c0 and c24. Note that x = u6

1u1[1], x′ = u3
2u2[1], z = u1[2]u7

1,
z′ = u2[2 : 4]u3

2. Basically, the NFA A moves the vertical edges from left to right
and thereby stores (i) the label ci of the vertical edge, (ii) the position in the cur-
rent u2-factor where the vertical edge starts (position 0 means that we have just
completed a u2-factor), and (iii) the position in the current u1-factor where the
vertical edge ends. If a u1-factor (resp., u2-factor) is completed then the automa-
ton makes a (1, 0)-labelled (resp., (0, 1)-labelled) transition. The complete run
that corresponds to Fig. 2 is:

q0
(6,3)−−−→(1, c0, 1)

(1,0)−−−→ (0, c1, 1) → (1, c2, 1) → (2, c3, 1) →
(3, c4, 1)

(0,1)−−−→ (0, c5, 1)
(1,0)−−−→ (0, c6, 0) → (0, c7, 1) →

(1, c8, 1)
(1,0)−−−→ (0, c9, 1) → (1, c10, 1) → (1, c11, 2) →

(1, c12, 3)
(0,1)−−−→ (1, c13, 0)

(1,0)−−−→ (0, c14, 0) → (0, c15, 1) →
(1, c16, 1)

(1,0)−−−→ (0, c17, 1) → (1, c18, 1) → (1, c19, 2) →
(1, c20, 3)

(1,0)−−−→ (0, c21, 3)
(0,1)−−−→ (0, c22, 0) → (0, c23, 1) →

(1, c24, 1)
(8,4)−−−→ qf

With the above intuition it is straightforward to show that the Parikh image
of L(A) is indeed S2. Also note that the number of states of A is bounded by
O(�1�2). The statement of the lemma then follows directly from Theorem 8. �

6.2 Reduction to Quasi-geodesic Knapsack Expressions

Let us call a knapsack expression E = ux1
1 v1u

x2
2 v2 · · · uxk

k vk over G (λ, ε)-quasi-
geodesic if all u1, . . . , uk, v1, . . . , vk are geodesic and for all 1 ≤ i ≤ k and all

Knapsack in Hyperbolic Groups 97

n ≥ 0 the word un
i is (λ, ε)-quasigeodesic. We say that E has infinite order, if

all ui represent group elements of infinite order. The goal of this section is to
reduce a knapsack expression to a finite number (in fact, exponentially many) of
(λ, ε)-quasigeodesic knapsack expressions of infinite order for certain constants
λ, ε:

Proposition 10. There are fixed constants λ, ε such that from a given knapsack
expression E over G one can compute a finite list of knapsack expressions Ei

(i ∈ I) over G such that

– sol(E) =
⋃

i∈I

(
(mi · sol(Ei) + di) ⊕ Fi

)
,

– every Fi is a semilinear subset of NY for a subset Y ⊆ XE,
– the magnitude of every Fi is bounded by a constant that only depends on G,
– every Ei is a (λ, ε)-quasigeodesic knapsack expression of infinite order with

variables from Z := XE \ Y ,
– the size of every Ei is bounded by O(|E|), and
– all mi and di are vectors from N

Z where all entries are bounded by a constant
that only depends on G (here, mi · sol(Ei) = {mi · z | z ∈ sol(E)} and mi · z
is the pointwise multiplication of the vectors mi and z).

Once Proposition 10 is shown, we can conclude the proof of Theorem 7 by show-
ing that all sets sol(Ei) are semilinear and that their magnitudes are bounded
by p(|Ei|) for a fixed polynomial p(n). This will be achieved in the next section.

A detailed proof of Proposition 10 can be found in the long version
[17]; here we only provide a sketch. Consider a knapsack expression E =
ux1
1 v1u

x2
2 v2 · · · uxk

k vk. We can assume that every ui is shortlex reduced. Let gi ∈ G
be the group element represented by the word ui. Reducing to the case, where
all gi have infinite order is relatively easy. In a hyperbolic group G the order of
torsion elements is bounded by a fixed constant that only depends on G, see also
the proof of [22, Theorem 6.7]). This allows to check for each gi whether it has
finite order, and to compute the order in the positive case. Let Y ⊆ {x1, . . . , xk}
be those variables xi such that gi has finite order. For xi ∈ Y let oi < ∞ be the
order of gi. Let F be the set of mappings f : Y → N such that 0 ≤ f(xi) < oi

for all xi ∈ Y . For every such mapping f ∈ F let Ef be the knapsack expression
that is obtained from E by replacing for every xi ∈ Y the power uxi

i by u
f(xi)
i

(which is merged with the word vi). Moreover, let Ff be the set of all mappings
g : Y → N such that g(xi) ≡ f(xi) mod oi for every xi ∈ Y . Then the set sol(E)
can be written as sol(E) =

⋃
f∈F sol(Ef) ⊕ Ff . Note that Ff is a semilinear set

of magnitude O(1).
In a second step we reduce every Ef (which has infinite order) to (λ, ε)-

quasigeodesic knapsack expressions for fixed constants λ and ε. Let us again
write Ef = ux1

1 v1u
x2
2 v2 · · · uxk

k vk. We first use Lemma 1, which tells us that for
every n ≥ 0 and 1 ≤ i ≤ k, the word un

i is (λi, εi)-quasigeodesic for λi = N |ui|,
εi = 2N2|ui|2+2N |ui|. In order to reduce these λi, εi to fixed constants we mainly
use the following two results from [3], where L = 34δ+2 and K = |B4δ(1)|2 (these
are constants):

98 M. Lohrey

– Let u = u1u2 be shortlex reduced, where |u1| ≤ |u2| ≤ |u1| + 1, and ũ =
shlex(u2u1). If |ũ| ≥ 2L + 1 then for every n ≥ 0, the word ũn is L-local
(1, 2δ)-quasigeodesic [3, Lemma 3.1].

– Let u be geodesic such that |u| ≥ 2L + 1 and for every n ≥ 0, the word un is
L-local (1, 2δ)-quasigeodesic. Then one can compute c ∈ B4δ(1) and 1 ≤ m ≤
K such that (shlex(c−1umc))n is geodesic for all n ≥ 0 [3, Sect. 3.2]. �

6.3 Proof of Theorem7

In this subsection we sketch the proof of Theorem 7; a detailed proof can be found
in the full version [17]. Consider a knapsack expression E = ux1

1 v1u
x2
2 v2 · · · uxk

k vk.
We can assume that all ui, vi are geodesic. By Proposition 10 we can moreover
assume that for all 1 ≤ i ≤ k, ui represents a group element of infinite order and
that un

i is (λ, ε)-quasigeodesics for all n ≥ 0, where λ, ε are fixed constants. We
want to show that sol(E) is semilinear and has a magnitude that is polynomially
bounded by |E|.

For the case k = 1 we have to consider all n ∈ N with un
1 = v−1

1 in G.
Since u1 represents a group element of finite order there is at most one such
n. Moreover, since un

i is (λ, ε)-quasigeodesic, such an n has to satisfy |u1| · n ≤
λ|v1| + ε, which yields a linear bound on n. For the case k = 2 we can directly
use Proposition 9. Now assume that k ≥ 3. We want to show that the set sol(E)
is a semilinear subset of N

k (later we will consider the magnitude of sol(E)).
For this we construct a Presburger formula with free variables x1, . . . , xk that
is equivalent to E = 1. We do this by induction on the depth k. Therefore, we
can use in our Presburger formula also knapsack equations of the form F = 1,
where F has depth at most k − 1. One can also easily observe that it suffices to
construct a Presburger formula for sol(E) ∩ (N \ {0})k.

Consider a tuple (n1, . . . , nk) ∈ sol(E)∩ (N\{0})k and the corresponding 2k-
gon that is defined by the (λ, ε)-quasigeodesic paths Pi = (un1

1 v1 · · · uni−1
i−1 vi−1) ·

P [uni
i] and the geodesic paths Qi = (un1

1 v1 · · · uni
i) · P [vi], see Fig. 3a for the

case k = 3. Since all paths Pi and Qi are (λ, ε)-quasigeodesic, we can apply [22,
Lemma 6.4]: Every side of the 2k-gon is contained in the h-neighborhoods of the
other sides, where h = ξ + ξ log(2k) for a constant ξ that only depends on the
constants δ, λ, ε.

Let us now consider the side P2 of the quasigeodesic (2k)-gon. It is labelled
with ux2

2 . Every point on P2 must have distance at most h from one of the sides
P1, Q1, Q2, P3, . . . , Pk, Qk. We distinguish several cases. In each case we cut the
2k-gon into smaller pieces along paths of length ≤ 2h+1 (in fact, length h except
for one case), and these smaller pieces will correspond to knapsack expressions
of depth < k. This is done until all knapsack expressions have depth at most
two. Let us consider one typical case, the other cases are considered in the long
version [17].

Assume that there is a point p ∈ P2 that has distance at most h from a
point q ∈ Qi, where 3 ≤ i ≤ k. The situation looks as shown in Fig. 3b. For
every tuple t = (w, u2,1, u2,2, vi,1, vi,2) such that w ∈ Σ∗ is of length at most h,
u2 = u2,1u2,2 and vi = vi,1vi,2, we construct two new knapsack expressions Ft =

Knapsack in Hyperbolic Groups 99

un2
2v1

un1
1

v3

un3
3

v2

(a) The 2k-gon for k = 3.

u2,2u2,1

uz2
2uy2

2

v1

ux1
1

v3,2 v3,1

ux3
3

v2

w

(b) Splitting the 2k-gon into two parts.

Fig. 3. Planar diagrams from the proof of Theorem 7.

ux1
1 v1u

y2
2 (u2,1wvi,2)u

xi+1
i+1 vi+1 · · · uxk

k vk, Gt = u2,2u
z2
2 v2u

x3
3 v3 · · · uxi

i (vi,1w
−1) and

the formula ∨

t

∃y2, z2 : x2 = y2 + 1 + z2 ∧ Ft = 1 ∧ Gt = 1, (3)

where t ranges over all tuples of the above form. Here y2, z2, yi, zi are new vari-
ables. Note that Ft and Gt have depth at most k − 1.

There are several other cases in which we can similarly split E into several
(at most three) knapsack expressions of depth <k. In each case, we get a formula
similar to (3), and we take the disjunction of all these formulas. This shows that
sol(E) is semilinear.

It remains to argue that the magnitude of sol(E) is bounded polynomially in
|E|. Iterating the splitting procedure results in a disjunction of formulas of the
form

∃y1, . . . , ym

∧

i∈I

Ei = 1
∧

j∈J

zj = z′
j + z′′

j + 1, (4)

where every Ei is a knapsack expression of depth at most two. Moreover, for
i �= j, Ei and Ej have no common variables. The existentially quantified
variables y1, . . . , ym are the new variables that were introduced when split-
ting factors uxi

i (e.g., y2, z2 in (3)). The variables zj , z
′
j , z

′′
j in (4) are from

{x1, . . . , xk, y1, . . . , ym}. The equations zj = z′
j + z′′

j + 1 in (4) result from the
splitting of factors uxi

i . For instance, x2 = y2 +1+z2 in (3) is one such equation.
In order to bound the magnitude of sol(E) it suffices to consider a single

conjunctive formula of the form (4), since disjunction corresponds to union of
semilinear sets, which does not increase the magnitude. We can also ignore the
existential quantifiers in (4), because existential quantification corresponds to
projection onto some of the coordinates, which cannot increase the magnitude.
Hence, we have to consider the magnitude of the semilinear set A defined by the
subformula

∧
i∈I Ei = 1

∧
j∈J zj = z′

j + z′′
j + 1 of (4). To bound the magnitude

of A, we show that (i) the size of every Ei in (4) is bounded by O(|E|2) and
(ii) that the size of the index set I is bounded by O(k2). From (i) it follows
that the magnitude of every set sol(Ei) is bounded polynomially in |E|. For the

100 M. Lohrey

additional variables that are defined by the equations zj = z′
j + z′′

j + 1 in (4)
one has to notice that these equations zj = z′

j + z′′
j + 1 result in a tree-shaped

additive circuit whose input gates are the variables that appear in the Ei (i ∈ I).
By (ii) this circuit has O(k2) input gates. From this, one can finally deduce that
the magnitude of the set A is indeed polynomially bounded in E. �

7 More Groups with Knapsack in LogCFL

Let C be the smallest class of groups such that (i) every hyperbolic group belongs
to C, (ii) if G ∈ C then also G × Z ∈ C, and (iii) if G,H ∈ C then also G ∗ H ∈
C (where G ∗ H is the free product of G and H). From Theorem 7 and [19,
Propositions 4.11 and 4.17] it follows that every group G ∈ C is knapsack-tame
and hence polynomially knapsack-bounded. Hence, knapsack for a group G ∈ C
is logspace reducible to membership for acyclic NFAs over G (the reduction in
the proof of Theorem 6 works for any group). Finally, it was shown in the full
version [17] that the word problem for every group in C can be accepted by a one-
way AuxPDA in logarithmic space and polynomial time (the proof is essentially
the same as in [19, Lemma 4.8]). This allows to generalize the proof of Theorem 5
to groups from C. Hence, for every group G ∈ C, membership for acyclic NFAs
over G and knapsack for G can be solved in LogCFL.

8 Conclusion

In this paper, it is shown that every hyperbolic group is knapsack-tame and that
the knapsack problem can be solved in LogCFL. Here is a list of open problems
that one might consider for future work.

– For the following important groups, it is not known whether the knapsack
problem is decidable: braid groups Bn (with n ≥ 3), solvable Baumslag-
Solitar groups BS1,p = 〈a, t | t−1at = ap〉 (with p ≥ 2), and automatic groups
which are not in any of the known classes with a decidable knapsack problem.

– In [12], it was shown that knapsack is decidable for every co-context-free
group. The algorithm from [12] has an exponential running time. Is there a
more efficient solution?

– Is there a polynomially knapsack-bounded group which is not knapsack-tame?

Acknowledgement. This work has been supported by the DFG research project LO
748/13-1.

References

1. Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser
languages. Inf. Comput. 141, 1–36 (1998)

2. Elberfeld, M., Jakoby, A., Tantau, T.: Algorithmic meta theorems for circuit classes
of constant and logarithmic depth. Electron. Colloq. Comput. Complex. (ECCC)
18, 128 (2011)

Knapsack in Hyperbolic Groups 101

3. Epstein, D.B.A., Holt, D.F.: The linearity of the conjugacy problem in word-
hyperbolic groups. Int. J. Algebra Comput. 16(2), 287–306 (2006)

4. Frenkel, E., Nikolaev, A., Ushakov, A.: Knapsack problems in products of groups.
J. Symb. Comput. 74, 96–108 (2016)

5. Ganardi, M., König, D., Lohrey, M., Zetzsche, G.: Knapsack problems for wreath
products. In: Proceedings of STACS 2018. LIPIcs, vol. 96, pp. 32:1–32:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2018)

6. Ghys, E., de La Harpe, P.: Sur les groupes hyperboliques d’après Mikhael Gromov.
Progress in mathematics. Birkhäuser, Basel (1990)

7. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pac.
J. Math. 16(2), 285–296 (1966)

8. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory.
MSRI, vol. 8, pp. 75–263. Springer, New York (1987). https://doi.org/10.1007/
978-1-4613-9586-7 3

9. Haase, C.: On the complexity of model checking counter automata. Ph.D. thesis,
University of Oxford, St Catherine’s College (2011)

10. Holt, D.F.: Word-hyperbolic groups have real-time word problem. Int. J. Algebra
Comput. 10, 221–228 (2000)

11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, New York (1972)

12. König, D., Lohrey, M., Zetzsche, G.: Knapsack and subset sum problems in nilpo-
tent, polycyclic, and co-context-free groups. In: Algebra and Computer Science.
Contemporary Mathematics, vol. 677, pp. 138–153. American Mathematical Soci-
ety (2016)

13. Kopczynski, E., To, A.W.: Parikh images of grammars: complexity and applica-
tions. In: Proceedings of LICS 2010, pp. 80–89. IEEE Computer Society (2010)

14. Lehnert, J., Schweitzer, P.: The co-word problem for the Higman-Thompson group
is context-free. Bull. Lond. Math. Soc. 39(2), 235–241 (2007)

15. Lohrey, M.: Decidability and complexity in automatic monoids. Int. J. Found.
Comput. Sci. 16(4), 707–722 (2005)

16. Lohrey, M., Zetzsche, G.: Knapsack in graph groups, HNN-extensions and amal-
gamated products. CoRR, abs/1509.05957 (2015)

17. Lohrey, M.: Knapsack in hyperbolic groups. CoRR, abs/1807.06774 (2018).
https://arxiv.org/abs/1807.06774

18. Lohrey, M., Zetzsche, G.: Knapsack in graph groups, HNN-extensions and amalga-
mated products. In: Proceedings of STACS 2016. LIPIcs, vol. 47, pp. 50:1–50:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

19. Lohrey, M., Zetzsche, G.: Knapsack in graph groups. Theory Comput. Syst. 62(1),
192–246 (2018)

20. Mishchenko, A., Treier, A.: Knapsack problem for nilpotent groups. Groups Com-
plex. Cryptol. 9(1), 87–98 (2017)

21. Myasnikov, A., Nikolaev, A.: Verbal subgroups of hyperbolic groups have infinite
width. J. Lond. Math. Soc. 90(2), 573–591 (2014)

22. Myasnikov, A., Nikolaev, A., Ushakov, A.: Knapsack problems in groups. Math.
Comput. 84, 987–1016 (2015)

23. Ol’shanskii, A.Yu.: Almost every group is hyperbolic. Int. J. Algebra Comput.
2(1), 1–17 (1992)

24. Sudborough, I.H.: On the tape complexity of deterministic context-free languages.
J. ACM 25(3), 405–414 (1978)

https://doi.org/10.1007/978-1-4613-9586-7_3
https://doi.org/10.1007/978-1-4613-9586-7_3
https://arxiv.org/abs/1807.06774

102 M. Lohrey

25. To, A.W.: Parikh images of regular languages: complexity and applications. CoRR,
abs/1002.1464 (2010). http://arxiv.org/abs/1002.1464

26. Vollmer, H.: Introduction to Circuit Complexity. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-3-662-03927-4

http://arxiv.org/abs/1002.1464
https://doi.org/10.1007/978-3-662-03927-4

Generalized Tag Systems

Turlough Neary(B) and Matthew Cook

Institute of Neuroinformatics, University of Zürich and ETH Zürich,
Zürich, Switzerland

tneary@ini.phys.ethz.ch

Abstract. Tag systems and cyclic tag systems are forms of rewriting
systems which, due to the simplicity of their rewrite rules, have become
popular targets for reductions when proving universality/undecidability
results. They have been used to prove such results for the smallest uni-
versal Turing machines, the elementary cellular automata Rule 110, for
simple instances of the Post correspondence problem and related prob-
lems on simple matrix semi-groups, and many other simple systems. In
this work we compare the computational power of tag systems, cyclic
tag systems and a straightforward generalization of these two types of
rewriting system. We explore the relationships between the various sys-
tems by showing that some variants simulate each other in linear time
via simple encodings, and that linear time simulations between other
variants are not possible using such simple encodings. We also give a
cyclic tag system that has only four instructions and simulates repeated
iteration of the Collatz function.

1 Introduction

Tag systems were created in 1920 (and published in 1943) by Post [17] to explore
the intractability of simple term rewriting systems. A β-tag system operates on
a string W by reading the leftmost symbol from W and appending a word
(that depends on the read symbol) onto the rightmost end of the W while also
deleting the leftmost β symbols from W . The same process is then repeated on
the resulting string and so on. It has long been known that simple tag systems
exhibit complex behaviour. In fact Post’s 3-tag system (read 0 append 00, read
1 append 1101) [17], has given rise to a question that remains intractable to this
day: Given an arbitrary binary string will Post’s tag system enter a periodic
cycle or halt by producing a word of length <3?

Cyclic tag systems were created in 1994 (and published in 2004) by Cook
[4] as a stepping stone in proving that the cellular automata Rule 110 is Turing
universal. The simple type of circular control flow used by cyclic tag systems
allowed Cook to simulate the list of appendants (binary words) that define a
cyclic tag system’s program as a repeated periodic pattern in a Rule 110 config-
uration. Simple cyclic tag systems are also known to exhibit complex behaviour:

This work is supported by Swiss National Science Foundation grant numbers 200021-
153295 and 200021-166231.

c© Springer Nature Switzerland AG 2018
I. Potapov and P.-A. Reynier (Eds.): RP 2018, LNCS 11123, pp. 103–116, 2018.
https://doi.org/10.1007/978-3-030-00250-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00250-3_8&domain=pdf

104 T. Neary and M. Cook

The cyclic tag system (111, 0) of Cook remains intractable, regarding whether
periodicity ever arises in the infinite sequence for which when we consider all the
indices of the positions of the ones, and replace the odd indices with 111 and
the even indices with 0, and prepend a single 1, then we get the original infinite
sequence.

Both of these systems are special cases of a formalism we introduce in this
paper, which we call generalized tag systems. Like tag systems and cyclic tag sys-
tems, generalized tag systems also operate on a string of symbols, reading from
the beginning, and appending to the end based on what is read. At every time
step t, they remove the first symbol σ from the string, and append ft mod β(σ)
to the end of the string. The function fi(σ) is defined for i ∈ 0, .., β − 1 and
σ ∈ Σ, where Σ is the alphabet used for the string, and β is a positive integer
that defines the ‘cycle’, the cyclic period of the system.

Tag systems correspond to the special case of generalized tag systems where
fi(σ) yields the empty string for all symbols σ whenever i > 0. Cyclic tag systems
correspond to the special case of generalized tag systems where Σ = {0, 1}, and
fi(0) yields the empty string for all i.

In this paper we will present each of these systems, and we give straightfor-
ward reductions between them, showing that they can simulate each other in
linear time. The reductions between tag systems and generalized tag systems
keep the same ‘cycle’. It appears to be very difficult for such systems with cycle
lengths that are relative prime to simulate each other in linear time. We give a
theorem showing that any such simulation cannot work in linear time if it uses
a direct encoding of the string being operated on. Previous results where the
time efficiency of tag systems and cyclic tag systems is explored are to be found
in [14,16,19].

Various authors have given universality results [3,4,15,18] for tag systems
and cyclic tag systems and while DeMol [7] and Cook [5] have both given decid-
ability results, with DeMol showing that the reachability problem is decidable for
2-tag systems with 2 symbols, and Cook showing that the reachability problem
is decidable for non-deterministic 1-tag systems, there remains a lot of unex-
plored space between the simplest universal tag systems and known decidability
results. Due to the well documented difficulty of the Collatz Problem [8–10] it
is often implemented as instances of models that lie between known decidability
upper and lower bounds thereby indicating that decidability results would be
difficult to find for such restrictions of the model (see for example [1,2,11–13]).
DeMol [6] has given a 3-symbol tag system with deletion number 2 that sim-
ulates iterations of the Collatz function. Here we give a simple generalized tag
system with only three non-blank instructions and a cyclic tag system with only
four instructions both of which simulate iterations of the Collatz function.

2 Preliminaries

We write c1 � c2 if a configuration c2 is obtained from c1 via a single computation
step. We let c1 �t c2 denote a sequence of t computation steps. The length of a

Generalized Tag Systems 105

word W is denoted |W |, and ε denotes the empty word. We let 〈v〉 denote the
encoding of v, where v is a symbol or a word. We use the binary modulo operation
a = m mod n, where a = m − ny, 0 � a < n, and a,m, n, and y are integers.

The well known Collatz function [9,10] is given by

f(x) =

{
x
2 if 0 = x mod 2
3x+1

2 if 1 = x mod 2,
(1)

2.1 Generalized Tag Systems

Here we introduce generalized tag systems which are a straightforward general-
ization of both tag systems and cyclic tag systems.

Definition 1. A generalized tag system consists of a finite alphabet of symbols
Σ, a possibly empty set of halt symbols H disjoint from Σ, a cycle number β ∈ N

with β � 1, and a set of rules R : k ×Σ → {Σ ∪H}∗ where 0 ≤ k < β and there
is exactly one rule for each (k,Σ) pair.

We call the word on the right hand side of each rule in R an appendant. It is
convenient to represent the program of a generalized tag system as a table of
appendants as shown in Table 1.

Table 1. Appendants for a generalized tag system with alphabet Σ = {σ1, σ2, · · · , σm},
cycle length β, and rules of the form (k, σi) → Ak,i where Ak,i ∈ {Σ ∪ H}∗

k Σ

σ1 σ2 σ3 · · · σm

0 A0,1 A0,2 A0,3 · · · A0,m

1 A1,1 A1,2 A1,3 · · · A1,m

2 A2,1 A2,2 A2,3 · · · A2,m

...
...

...
... · · ·

...

β − 1 Aβ−1,1 Aβ−1,2 Aβ−1,3 · · · Aβ−1,m

A configuration of a generalized tag system is a pair (k,W) where k is a
number that points to a row in the table of appendants and W = w1w2 . . . wn

(where each wj ∈ Σ∪H) is a word which we call the dataword. In a configuration
where w1 = σi ∈ Σ, the rule for (k, σi) → Ak,i is applied by appending Ak,i to the
right end of W , σi is deleted from W , and k is incremented to give (k+1) mod β.
So a computation step of a generalized tag system is deterministic and is given
by:

(k, σiw2 . . . wn) � ((k + 1) mod β,w2 . . . wnAk,i)

A generalized tag system halts if w1 ∈ H (i.e. the leftmost symbol of the data-
word W is a halt symbol), or if W is the empty word. In an initial configuration

106 T. Neary and M. Cook

of a generalized tag system k = 0 and W ∈ Σ∗ is the input word. The generalized
tag system given in Table 2 computes iterations of the Collatz function: given a
configuration of the form (0, (bb)x) it computes (0, (bb)f(x)) in two passes over
the dataword. Below is an example of this system started on (0, (bb)3) computing
f(3) = 5 followed by f(5) = 8 and f(8) = 4.

(0, b6) � (1, b5cbcc) � (2, b4cbcc) � (3, b3cbcc)

� (0, b2cbcc) �2 (2, (cbcc)2) �4 (2, cbccb6) �4 (2, b12)

�2 (0, b10) �24 (0, b16) �32 (0, b8)

For an arbitrary value x the system in Table 2 computes an iteration of the
Collatz function as follows:

Table 2. Generalized tag system that simulates iterations of the Collatz function

b c

0 cbcc bb

1 ε bbbb

2 ε ε

3 ε ε

(0, (bb)x) �2x (0, (cbcc)
x
2) �2x (0, (bb)

x
2) if 0 = x mod 2

(0, (bb)x) �2x (2, (cbcc)
x+1
2) �2x+2 (2, (bb)

3x+3
2) �2 (0, (bb)

3x+1
2)

if 1 = x mod 2

During the first pass for each (bb)2 we cyclic through the program once
appending a single cbcc thus producing (cbcc)

x
2 , and if x is odd the final bb pair

appends an cbcc without completing the final cycle giving (cbcc)
x+1
2 . If x is even

we begin the second pass at program row 0 and so each cbcc that is read appends
bb giving (bb)

x
2 . If x is odd we begin the second pass at program row 2 and so

each cbcc that is read appends (bb)3 giving (bb)
3x+3

2 and after the last cbcc is
read we take 2 further steps to move program control to row 0 by reading a bb

pair giving (bb)
3x+1

2 .

2.2 Restrictions of Generalized Tag Systems

2.2.1 Tag Systems
Definition 2. A tag system consists of a finite set of symbols Σ, a finite set of
halt symbols H disjoint from Σ, a set of rules R : Σ → {Σ ∪ H}∗ with exactly
one rule for each element of Σ, and a deletion number β ∈ N with β � 1.

Generalized Tag Systems 107

A tag system configuration is a word W = w1w2 . . . wn (here each wi ∈ Σ ∪ H).
In a configuration where w1 = σi ∈ Σ the symbols σiw2w3 . . . wβ are deleted and
we apply the rule for σi, i.e. a rule of the form σi → Ai (here Ai ∈ {Σ ∪ H}∗),
by appending the word Ai onto the right end of W . So a computation step of a
tag system is deterministic and is given as follows:

σiw2w3 . . . wn � wβ+1 . . . wnAi (2)

A tag system halts if |W | < β or if the leftmost symbol in the dataword is a halt
symbol (i.e. w1 ∈ H). It is not difficult to see that for each arbitrary tag system
T there is an equivalent generalized tag system of the form given in Table 3. We
say that the two systems are equivalent as the sequence of datawords produced
by T is the same as the sequence of datawords produced by the generalized
tag system at times t where 0 = t mod β. That is given a word W as input,
T produces the dataword W ′ in n time steps if and only if the generalized tag
system in Table 3 also produces dataword W ′ in βn time steps when given W
as input. To see this note that β steps of the generalized tag system in Table 3
on a configuration of the form (0, σiw2w3 . . . wn) gives

(0, σiw2w3 . . . wn) �β (0, wβ+1 . . . wnAi)

and so produces the same dataword as the arbitrary tag system computation
step in Eq. (2).

Table 3. Arbitrary tag system T with alphabet Σ = {σ1, σ2, . . . , σm}, rules of the form
σi → Ai and deletion number β converted to its equivalent generalized tag system

k Σ

σ1 σ2 σ3 · · · σm

0 A1 A2 A3 · · · Am

1 ε ε ε · · · ε
...

...
...

... · · ·
...

β − 1 ε ε ε · · · ε

2.2.2 Cyclic Tag Systems
Definition 3. A cyclic tag system C = A0, A1, . . . , Aβ−1 is a list of words Ai ∈
{0, 1}∗ called appendants.

A configuration of a cyclic tag system is a pair (k,W) where k is a number
that points to an appendant Ak and W = w1w2 . . . wn is a binary word (where
each wj ∈ {0, 1}). A computation step acts on a configuration by deleting w1,
incrementing k to ((k + 1) mod β), and appending the word Ak onto the right

108 T. Neary and M. Cook

end of W if w1 = 1 and appending nothing to W if w1 = 0. So the two possible
cases for a cyclic tag system computation step are given by:

(k, 0w2 . . . wn) � ((k + 1) mod β,w2 . . . wn)
(k, 1w2 . . . wn) � ((k + 1) mod β,w2 . . . wnAk)

Intuitively the list C is a program with k pointing to instruction Ak. In the
initial configuration k = 0 and W is the binary input word. A cyclic tag system
completes its computation if (i) the dataword is the empty word or (ii) it enters
a repeating sequence of configurations. It is clear that a cyclic tag system is an
instance of a generalized tag system of the form given in Table 4. The cyclic
tag system given in Table 5 computes iterations of the Collatz function: given a
configuration of the form (0, (10)n) it computes (0, (10)f(n)) in two rounds over
the dataword. Below is an example of the system in Table 5 started on (0, (10)3)
computing f(3) = 5 followed by f(5) = 8 and f(8) = 4.

(0, (10)3) �6 (2, (0100)2) �8 (2, (10)6) �2 (0, (10)5)

�10 (2, (0100)3) �12 (2, (10)9) �2 (0, (10)8) �32 (0, (10)4)

Table 4. A cyclic tag system is a generalized tag system with a binary alphabet where
all the appendants for one of the symbols are the empty word

k Σ

1 0

0 A0,1 ε

1 A1,1 ε
...

...
...

β − 1 Aβ−1,1 ε

Table 5. A cyclic tag system that simulates iterations of the Collatz function

k Σ

1 0

0 0100 ε

1 10 ε

2 ε ε

3 101010 ε

Generalized Tag Systems 109

For an arbitrary value x the system in Table 5 computes an iteration of the
Collatz function as follows:

(0, (10)x) �2x (0, (0100)
x
2) �2x (0, (10)

x
2)

if 0 = x mod 2

(0, (10)x) �2x (2, (0100)
x+1
2) �2x+2 (2, (10)

3x+3
2) �2 (0, (10)

3x+1
2)

if 1 = x mod 2

During the first pass for each (10)2 we cyclic through the program once
appending a single 0100 thus producing (0100)

x
2 , and if x is odd the final 10

pair appends an 0100 without completing the final cycle giving (0100)
x+1
2 . If x

is even we begin the second pass at program row 0 and so each 0100 that is read
appends 10 giving (10)

x
2 . If x is odd we begin the second pass at program row

2 and so each 0100 that is read appends (10)3 giving (10)
3x+3

2 and after the last
0100 is read we take 2 further steps to move program control to row 0 by reading
a 10 pair giving (10)

3x+1
2 .

3 Simulating Generalized Tag Systems in Linear Time

In Sect. 2.2.1 we saw that tag systems are simulated by generalized tag systems
in linear time without any encoding to the tag systems dataword. In Sect. 2.2.2
we noted that cyclic tag systems are simply a restricted form of generalized tag
system. In this section we show that tag systems and cyclic tag system simulate
generalized tag systems in linear time.

Theorem 1. Given an arbitrary generalized tag system G with cycle number β
there is a tag system T that simulates t steps of G in time t + 	 t

β
.

Proof. We construct a tag system T with deletion number β that simulates
the arbitrary generalized tag system given in Table 1. The alphabet Σ′ of T
is obtained from the alphabet Σ of G as follows: for each σi ∈ Σ there are β
symbols σ1,i, σ2,i, σ3,i, . . . σβ−1,i ∈ Σ′. There is one further symbol e in Σ′ and
so we have

Σ′ = {e, σ0,1, σ1,1, . . . σβ−1,1, σ0,2, σ1,2, . . . σβ−1,2, . . . σ0,m, σ1,m, . . . σβ−1,m}.

The set of halt symbols H ′ of T is similarly obtained from G’s set of halt symbols
H = {h1, h2, . . . hs} giving

H ′ = {h0,1, h1,1, . . . hβ−1,1, h0,2, h1,2, . . . hβ−1,2, . . . h0,s, h1,s, . . . hβ−1,s}.

An arbitrary configuration (k,w1w2w3 . . . wn) of G where each wj ∈ Σ ∪ H is
encoded as the tag system dataword

〈w1〉
[k]

〈w2〉〈w3〉 . . . 〈wn〉 (3)

110 T. Neary and M. Cook

where 〈σi〉 = eσβ−1,i, . . . σ1,i, σ0,i and 〈hi〉 = ehβ−1,i, . . . h1,ih0,i, and 〈w1〉
[k]

is

the word obtained by deleting all but the rightmost k + 1 symbols from 〈w1〉 to
give a word of the form σk,i, . . . σ1,i, σ0,i or hk,i, . . . h1,ih0,i.

In T the rule for e is e → ε and all other rules have the form σk,i → 〈Ak,i〉
where (k, σi) → Ak,i is a rule in G, with Ak,i = ak,i,1ak,i,2 . . . ak,i,l and ak,i,p ∈
Σ ∪ H for 1 � p � l, and 〈Ak,i〉 = 〈ak,i,1〉〈ak,i,2〉 . . . 〈ak,i,l〉.

Equation (4) below gives an arbitrary computation step of G. Equation (5)
shows how T simulates the step in Eq. (4) for the case k < β − 1. From (3)
above the configurations on the left and right of Eq. (5) respectively encode the
configurations on the left and right of Eq. (4) and so it only remains to verify
that the dataword on the left of Eq. (5) produces the dataword on the right.

(k, σiw2 . . . wn) � ((k + 1) mod β,w2 . . . wnAk,i) (4)

〈σi〉
[k]

〈w2〉〈w3〉 . . . 〈wn〉 � 〈w2〉
[k+1]

〈w3〉 . . . 〈wn〉〈Ak,i〉 (5)

〈σi〉
[β−1]

〈w2〉〈w3〉 . . . 〈wn〉 �2 〈w2〉
[0]

〈w3〉 . . . 〈wn〉〈Ak,i〉 (6)

From above 〈σi〉
[k]

= σk,i, . . . σ1,i, σ0,i and so since σk,i is the leftmost symbol in

the dataword on the left of Eq. (5), T applies the rule σk,i → 〈Ak,i〉 to append
〈Ak,i〉 as shown in the configuration on the right. Recall that the deletion number
is β and so T deletes 〈σi〉

[k]

(which has length k+1) and the first β−k−1 symbols

of 〈w2〉. Since |〈w2〉| = β + 1 deleting it leftmost β − k − 1 symbols gives 〈w2〉
[k+1]

as

shown in the dataword on the right of Eq. (5). We have now shown that given the
dataword on the left of Eq. (5) T takes a single step to produces the dataword on
the right of Eq. (5). Equation (6) covers the remaining case of the step in Eq. (4)
when k = β−1. In this case T takes 2 computation steps as shown in Eq. (6) the
first step is similar to the step taken in Eq. (5) it appends 〈Ak,i〉 and deletes 〈σi〉

[β−1]

without deleting any symbols in 〈w2〉 since | 〈σi〉
[β−1]

| = β. For the second step in

Eq. (6) the leftmost symbol in 〈w2〉 is read, which we know from above must be
e, and so we apply the rule e → ε which appends the empty word and deletes the
first β symbols from 〈w2〉 giving 〈w2〉

[0]

. So given dataword on the left of Eq. (6)

T takes a two step to produces the dataword on the right of Eq. (6).
When k < β − 1 T simulates a step of G in one step (Eq. (5)) and when

k = β − 1 T simulates a step of G in two steps (Eq. (6)) and so T simulates t
steps of G in time t + 	 t

β
. ��

Generalized Tag Systems 111

Theorem 2. Given an arbitrary generalized tag system G with alphabets Σ and
H, there is a cyclic tag system C that simulates t steps of G in time tr, where
r = |Σ| + |H|.

Proof. We give a cyclic tag system C that simulates the arbitrary generalized
tag system given in Table 1. This cyclic tag system is given by

C = 〈A0,1〉, 〈A0,2〉, . . . 〈A0,m〉, ε1, ε2, . . . εr−m,

〈A1,1〉, 〈A1,2〉, . . . 〈A1,m〉, ε1, ε2, . . . εr−m,

...
...

〈Aβ−1,1〉〈Aβ−1,2〉, . . . 〈Aβ−1,m〉, ε1, ε2, . . . εr−m,

where r − m = |H|, |Σ| = m, Ak,i = ak,i,1ak,i,2 . . . ak,i,l with ak,i,p ∈ Σ ∪ H
for 1 � p � l, and 〈Ak,i〉 = 〈ak,i,1〉〈ak,i,2〉 . . . 〈ak,i,l〉 with 〈σi〉 = 0i−110r−i and
〈hj〉 = 0m+j−110r−m−j .

An arbitrary configuration (k,w1w2w3 . . . wn) of G where each wj ∈ Σ ∪ H
is encoded as the cyclic tag system configuration

(rk, 〈w1〉〈w2〉〈w3〉 . . . 〈wn〉) (7)

An arbitrary computation step of G is given in Eqs. (8), and (9) shows how C
takes r steps to simulate this single step of G. From (7) above the configurations
on the left and right of Eq. (9) respectively encode the configurations on the on
the left and right of Eq. (8), and so it only remains to verify that the dataword
on the left of Eq. (9) produces the dataword on the right of Eq. (9). In the
configuration on the left of Eq. (9) the value rk points to appendant 〈Ak,1〉 in
C’s program. The word 〈σi〉 = 0i−110r−i is read in r steps as shown in Eq. (9).
Cyclic tag systems appending nothing when reading a 0 and so the 0’s in 〈σi〉
append nothing. The first i steps when we read 0i−1 the pointer is incremented
by one at each step and so when we read the single 1 in 〈σi〉 the pointer is at
〈Ak,i〉 and so 〈Ak,i〉 gets appended.

(k, σiw2 . . . wn) � ((k + 1) mod β,w2 . . . wnAk,i) (8)
(rk, 〈σi〉〈w2〉 . . . 〈wn〉) �r (r(k + 1) mod βr, 〈w2〉 . . . 〈wn〉〈Ak,i〉) (9)

��

4 Relative Prime Tag Systems and the Impossibility of
Linear Time Simulation Using Simple Encodings

In Definition 4 below we define what we call a simple encoding. Note that in
Theorems 1 and 2 we respectively proved that tag systems and cyclic tag sys-
tems simulate generalized tag systems in linear time using encodings that satisfy
Definition 4.

112 T. Neary and M. Cook

Definition 4 (Simple encoding). Given alphabets Σ and Σ′ we call an encod-
ing function f : Σ∗ → Σ′∗ simple if f(w1w2 . . . wn) = 〈w1〉〈w2〉 . . . 〈wn〉 where
wi ∈ Σ, 〈wi〉 ∈ Σ′∗ and for all wi = wj where i = j, 〈wi〉 = 〈wj〉.

Before we continue we introduce some further notation and technical terms
for tag systems that will be used in Lemma 3. For a tag system we say a symbol
σi is read if and only if at the start of a computation step it is the leftmost
symbol (i.e. the rule σi → Ai is applied), and we say a word W = w1w2 . . . wn is
entered with shift z < β if wz+1 is the leftmost symbol that is read in W (see for
example Fig. 1). We use the term round to describe the 	 |W |

β
 computation steps
that traverse a word W exactly once. A word W has a shift change of 0 � s < β
if |w| = yβ − s where y ∈ N and y > 0 (for example the word V in Fig. 1 has a
shift change of 2). The proof of Lemma 1 is left to the reader.

Lemma 1 (shift change). Given a tag system T with deletion number β and
the word UW ∈ Σ∗, where the word U has a shift change of s and |W | � β,
after one round of T on U entered with shift z the word W is entered with shift
(z + s) mod β.

Theorem 3. Let T and T ′ be tag systems with deletion number β and β′ respec-
tively such that there exists p ∈ N with 0 = β mod p and 0 = β′ mod p, then
using a simple encoding T ′ cannot simulate T in linear time.

read with
shift 0

read with
shift 2

read with
shift 1

read with
shift 0

read with
shift 2

read with
shift 1

w1w2w3w4 w1w2w3w4 w1w2w3w4 w1w2w3w4 w1w2w3w4 w1w2w3w4

Fig. 1. Sequence of symbols read in dataword with deletion number 3. The symbols
that will be read are marked with an underline. The entire dataword consists of the
word V = w1w2w3w4 repeated 6 times. The leftmost occurrence of V is entered with
shift 0 which means w1 and w4 are read, the second V from the left is entered with
shift 2 which means w3 is read, etc.

Proof. Let Σ = {σ1, σ2, . . . σm} be the alphabet of T . Below we show that if
a simple encoding is used to encode (σi)s, there exists no c ∈ N such that
in c rounds (i.e. linear time) T ′ simulates T reading words of the form (σi)s.
From Definition 4 a simple encoding function gives a dataword of the form
f((σi)s) = 〈σi〉s. The deletion number of T is β so it only reads 	 s

β
 symbols
in (σi)s. To simulate this T ′ must distinguish exactly 	 s

β
 of the 〈σi〉 words in
〈σi〉s. Note that the only way a tag system can distinguish between identical
words is to enter the words with different shift values so that different sequences
of symbols are read in each word. In Fig. 1 the rules of the tag system can be
used to record which shift value each V was entered with by mapping each word
to a new word. For example if V is entered with shift 0, 1, or 2 it can be mapped

Generalized Tag Systems 113

to the words V0, V1 and V2 respectively. So from Fig. 1 after one round over
the word V 6 we would get the word V0V1V2V0V1V2. With another round we can
further distinguish each word by mapping Vi (i ∈ {0, 1, 2}) to the words Vi,0,
Vi,1 or Vi,2 when it is entered with shifts of 0, 1, or 2 respectively, and we can
continue in this way with subsequent rounds over the dataword.

In Fig. 2 we show how the computation of T ′ progresses with each subsequent
round over the dataword. The deletion number of T ′ is β′ which means there
are only β′ possible shift values with which a word can be entered. So during the
first round after reading l0 + 1 of the 〈σi〉 words (where l0 � β′), two 〈σi〉 words
will have been entered with the same shift value. It follows that the sequence of
shift values for the first l0 〈σi〉 words will be the same as the sequence of shift
values for the second l0 〈σi〉 words and the third and so on as shown at the top
of Fig. 2. Recall that the shift value determines which symbols are read in each
word, and so the sequence of symbols read in each 〈σi〉l0 word entered with shift
x0,1 remains the same through out the dataword. So if we let W1 be the word
appended when the word 〈σi〉l0 is read with shift x0,1, after one round we get a

dataword of the form W
s
l0
1 as shown in Fig. 2. The same arguments as those we

have just made can be used to show that the subsequent datawords produced
are of the form given in Fig. 2.

From above we know that a 〈σi〉l0 word produces a W1 word in one round
and a (W1)l1 word produces a W2 word in one round, and so a 〈σi〉l0l1 word
produces W2 in two rounds. Similarly a 〈σi〉l0l1l2 word produces a W3 word in
three rounds and a 〈σi〉l0l1...lc−1 word produces Wc in c rounds. It follows from
Fig. 2 that if a pair of 〈σi〉 words are separated by vl0l1 . . . lc−1 − 1 〈σi〉 words
(for v ∈ N) in the initial dataword they both produce the same word after c
rounds. To see this we write Wc as Wc = Wc,1Wc,2 . . . Wc,l0l1...lc−1 where in the
word 〈σi〉l0l1...lc−1 that produces Wc the leftmost 〈σi〉 produces Wc,1, the second
〈σi〉 from the left produces Wc,2, the third produces Wc,3 and so on. So if a pair
of 〈σi〉 words are separated by vl0l1 . . . lc−1 − 1 〈σi〉 words they both produce
the word Wc,r in Wc words that are separated by v − 1 Wc words in the final
configuration of Fig. 2.

Recall that T ′ is attempting to distinguish 	 s
β
 of the 〈σi〉 words so it can

simulate T reading 	 s
β
 of the σi symbols. Assuming that each Wc,j word (for

1 � j � l0l1 . . . lc−1) occurs only once in WC , T ′ can distinguish 	 s
l0l1...lc−1

 (or
� s

l0l1...lc−1
�) of the 〈σi〉 words by choosing one of the Wc,j words as there are

	 s
l0l1...lc−1

 (or � s
l0l1...lc−1

�) of the Wc words and as mentioned above a single
〈σi〉 produces a single Wc,j word. So the li values determine how many of the s
〈σi〉 values T ′ distinguishes. Below we show that the li values are relative prime
to p a factor of β and so T ′ cannot distinguish 	 s

β
 of the 〈σi〉 words. Since
0 = β′ mod p we can we prove that li is relative prime to p by showing that
each li value is either 1, β′ or a factor of β′. Recall that the value li tells us
how many Wi words we must read before we have entered two Wi words with
the same shift. From Lemma 1 if a word has a shift change of 0 the next word
is entered with the same shift, which means that li must give a word (Wi)li

114 T. Neary and M. Cook

s σi words

first round on dataword

shift

σi σi . . . σi σi σi . . . σi . . . σi σi . . . σi σi σi . . . σi

x0,1 x0,2 . . . x0,l0 x0,1 x0,2 . . . x0,l0 . . . x0,1 x0,2 . . . x0,l0 x0,1 x0,2 . . . x0,s mod (l0+1)

s
l0

W1 words

second round on dataword

shift

W1 W1 . . . W1 W1 W1 . . . W1 . . . W1 W1 . . . W1 W1 W1 . . . W1
x1,1 x1,2 . . . x1,l1 x1,1 x1,2 . . . x1,l1 . . . x1,1 x1,2 . . . x1,l1 x1,1 x1,2 . . . x1, s

l0
mod (l1+1)

s
l0l1

W2 words

third round on dataword

shift

W2 W2 . . . W2 W2 W2 . . . W2 . . . W2 W2 . . . W2 W2 W2 . . . W2
x2,1 x2,2 . . . x2,l2 x2,1 x2,2 . . . x2,l2 . . . x2,1 x2,2 . . . x2,l2 x2,1 x2,2 . . . x2, s

l0l1
mod (l2+1)

...
...

...

s
l0l1 ... lc−1

Wc words after
c roundsWc · · · Wc · · · Wc

Fig. 2. Successive words produced by T ′ on each subsequent round of the dataword
when the word 〈σi〉s is read on the first round. Each word produced by T ′ following y
rounds on the dataword has the form Wy

∗ where Wy ∈ Σ′∗. Below each Wy word is
given the shift value xy,j with which the word is entered. Note that in each dataword
above the rightmost Wy may not be complete.

that has a shift change of 0 (i.e. 0 = li|Wi| mod β′). If 0 = |Wi| mod β′ then
li = 1. If gcd(|Wi|, β′) = 1 then li = β′ is the smallest natural number that
satisfies 0 = li|Wi| mod β′. If gcd(|Wi|, β′) = r with 1 < r < β′ then li = β′

r is
the smallest natural number that satisfies 0 = li|Wi| mod β′. So l0l1 . . . lc−1 is
a product of 1, β′, and factors of β′ and so does not have p as a factor. From
above there are at most l0l1 . . . lc−1 different types of Wc,j word with each Wc,j

word allowing T ′ to distinguish either 	 s
l0l1...lc−1

 (or � s
l0l1...lc−1

�) encoded σi

symbols and so T ′ may choose z � l0l1 . . . lc−1 different types of Wc,j word to
distinguish between z	 s

l0l1...lc−1

 and z� s

l0l1...lc−1
� encoded σi symbols. However

for z	 s
l0l1...lc−1

 � r � z� s
l0l1...lc−1

� we know that r = 	 s
β
 for sufficiently large s

values as p is a factor of β and we have shown that p is not a factor of l0l1 . . . lc−1.
It follows that when using a simple encoding, T ′ cannot distinguish the correct
number of encoded read symbols to give a linear time simulation of a round of
T on words of the form (σi)s. ��

Generalized Tag Systems 115

Corollary 1. Let T be a tag system with deletion number β and G′ be a gen-
eralized tag system with cycle number β′ such that there exists p ∈ N with
0 = β mod p and 0 = β′ mod p, then using a simple encoding G′ cannot simulate
T in linear time.

Proof. In the proof of Theorem 1 we give a tag system with deletion number β
that simulates a generalized tag system that has cycle number β. The simulation
runs in linear time and uses a simple encoding (Definition 4). If G′ uses a simple
encoding to simulate T in linear time, then we can give a tag system TG that
simulates T in linear time and uses a simple encoding but has a deletion number
of β′. It follows from Theorem 3 that such a simulation is not possible. ��

References

1. Baiocchi, C.: 3n+1, UTM e tag-system. Technical report Pubblicazione 98/38,
Dipartimento di Matematico, Università di Roma (1998). (In Italian)

2. Baiocchi, C., Margenstern, M.: Cellular automata about the 3x+1 problem. In:
Proceedings of LCCS 2001, Université Paris 12, pp. 37–45 (2001)

3. Cocke, J., Minsky, M.: Universality of tag systems with P = 2. J. ACM 11(1),
15–20 (1964)

4. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40
(2004)

5. Cook, S.: The solvability of the derivability problem for one-normal systems. J.
ACM 13(2), 223–225 (1966)

6. De Mol, L.: Tag systems and Collatz-like functions. Theoret. Comput. Sci. 390(1),
92–101 (2008)

7. De Mol, L.: Solvability of the halting and reachability problem for binary 2-tag
systems. Fundamenta Informaticae 99(4), 435–471 (2010)

8. Lagarias, J.C.: The Ultimate Challenge: The 3x+1 Problem. American Mathemat-
ical Society, Providence (2010)

9. Lagarias, J.C.: The 3x+1 problem: an annotated bibliography (1963–1999). Tech-
nical report arXiv:math/0309224v13 [math.NT], January 2011

10. Lagarias, J.C.: The 3x+1 problem: an annotated bibliography, ii (2000–2009). Tech-
nical report arXiv:math/0608208v6 [math.NT], February 2012

11. Margenstern, M.: Frontier between decidability and undecidability: a survey. The-
oret. Comput. Sci. 231(2), 217–251 (2000)

12. Michel, P.: Busy beaver competition and Collatz-like problems. Archive Math.
Logic 32(5), 351–367 (1993)

13. Michel, P.: Small Turing machines and the generalized busy beaver competition.
Theoret. Comput. Sci. 326, 45–56 (2004)

14. Neary, T.: Small universal Turing machines. Ph.D. thesis, Department of Computer
Science, National University of Ireland, Maynooth (2008)

15. Neary, T.: Undecidability in binary tag systems and the Post correspondence prob-
lem for five pairs of words. In: 32nd International Symposium on Theoretical
Aspects of Computer Science, STACS. LIPIcs, vol. 30, pp. 649–661 (2015)

16. Neary, T., Woods, D.: P-completeness of cellular automaton Rule 110. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
132–143. Springer, Heidelberg (2006). https://doi.org/10.1007/11786986 13

http://arxiv.org/abs/math/0309224v13
http://arxiv.org/abs/math/0608208v6
https://doi.org/10.1007/11786986_13

116 T. Neary and M. Cook

17. Post, E.: Formal reductions of the general combinatorial decision problem. Am. J.
Math. 65(2), 197–215 (1943)

18. Wang, H.: Tag systems and lag systems. Math. Ann. 152(4), 65–74 (1963)
19. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal

Turing machines. In: 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 439–448, October 2006

Certain Query Answering on Compressed
String Patterns: From Streams

to Hyperstreams

Iovka Boneva1, Joachim Niehren2, and Momar Sakho2(B)

1 Université de Lille, Lille, France
2 Inria Lille, Lille, France
momar.sakho@inria.fr

Abstract. We study the problem of certain query answering (Cqa) on
compressed string patterns. These are incomplete singleton context-free
grammars, that can model systems of multiple streams with references
to others, called hyperstreams more recently. In order to capture regular
path queries on strings, we consider nondeterministic finite automata
(Nfas) for query definition. It turns out that Cqa for Boolean Nfa
queries is equivalent to regular string pattern inclusion, i.e., whether
all strings completing a compressed string pattern belong to a regular
language. We prove that Cqa on compressed string patterns is PSpace-
complete for Nfa queries. The PSpace-hardness even applies to Boolean
queries defined by deterministic finite automata (Dfas) and without
compression. We also show that Cqa on compressed linear string pat-
terns can be solved in PTime for Dfa queries.

1 Introduction

A stream is a sequence of events that arrive incrementally one by one from the
left to the right. Most typically, streams are produced by social networks such as
Twitter, database systems as for producing financial transactions, information
systems, sensor systems, or more generally when communicating semi-structured
data over the internet. We are interested in the problem of monitoring streams in
a reactive manner [16,22,23,25]. The objective is to select the relevant events of a
stream as quickly as possible upon their arrival. This requires to decide whether
an event of the stream is a certain answer of the logical query that defines the
relevant events of the monitoring task. Lowering the latency of this decision
process increases the reactivity of the stream processing system and reduces its
memory costs. A limitation to constant memory may seem ideal in theory, but is
too restrictive for many monitoring tasks in practice. A less restrictive objective
is thus to minimize the latency and thereby to reduce the memory consumption.

In the present paper we study a generalization of streams to multiple streams
with references as introduced by Maneth, Ordóñez and Seidl [21]. The references
point to unknown parts in the middle of a stream. The same reference may be

c© Springer Nature Switzerland AG 2018
I. Potapov and P.-A. Reynier (Eds.): RP 2018, LNCS 11123, pp. 117–132, 2018.
https://doi.org/10.1007/978-3-030-00250-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00250-3_9&domain=pdf

118 I. Boneva et al.

Fig. 1. The hyperstream G1 and its string pattern p1.

Fig. 2. Landscape from streams to hyperstreams.

used multiple times, allowing to share unknown parts. Streams with similar ref-
erences were named hyperstreams in own previous work [20]. Here, we propose
to formalize hyperstream containing words (rather than linearizations of trees
or nested words) as incomplete versions of singleton context-free grammars [24]
(also termed straight line programs [3]), where the rules of some nonterminals
may be missing. The hyperstream G1 = (Σ,N,R, S) is illustrated graphically in
Fig. 1. It has the terminals in Σ = {a, b, c}, the nonterminals in N = {S,X, Y, Z},
the set R with the rules S → aXbbY aX and X → Y cZa, and the start symbol S.
The nonterminals are called the references of the hyperstream. For some of these
references there exists a rule in the grammar, and if so, this rule is unique. For
any grammar rule, the reference on its left is said to refer to the string pattern
on its right. The hyperstream G1 has a rule for S and X, while it misses those of
Y and Z. The missing rules for these references may be added in the future one
by one by the hyperstream’s environment. Alternatively, hyperstreams can be
identified with compressed string patterns. The hyperstream G1 for instance rep-
resents the string pattern p1 = aYcZabbYaYcZa, while sharing the underlined
factors substituted for the two occurrences of X. Streams are a special case of
string patterns that have a unique occurrence of a variable in their last position.
The landscape from streams to hyperstreams, over linear string patterns, string
patterns, and compressed string patterns is illustrated in Fig. 2.

In this paper, we study the decision problem of certain query answering
(Cqa) on compressed string patterns, i.e., whether a tuple of positions is a
certain answer of a query on a compressed string pattern. Here we consider the
positions of the string pattern after decompression rather than the positions of
the grammar. Intuitively, a tuple of positions is a certain query answer on a
compressed string pattern G if it is an answer to the query on all completions

Certain Query Answering on Hyperstreams 119

of G, up to the offsets raised by the completion of G on its decompression. We
will also consider the symmetric problem for certain query non-answers.

Motivated by regular path queries [1], we consider nondeterministic finite
automata (Nfas) for defining such queries. For instance, the query Q1 on strings
over Σ = {a, b, c} that selects all a-positions that are followed eventually by bb
can be defined by the following regular path in XPath-like notation:

Q1 = successor∗::a[successor∗::b/successor::b].

It can also be defined by the x-pointed regular expression Σ∗axΣ∗bbΣ∗ where x is
a variable for the position that is to be selected. Now, consider the case, where the
string is not given explicitly but only described partially by some (compressed)
string pattern. On the string pattern p1, for instance, the a-positions 1 and 5
are certain query answers for Q1, while the a-positions 9 and 13 are not. The
position 13 is even a certain non-answer.

When restricted to Boolean Nfa queries, Cqa becomes equivalent to the
problem of whether all strings described by the completions of a compressed
string pattern are accepted by the Nfa. For the string pattern Y (for some vari-
able Y), this problem clearly generalizes on the universality problem of Nfas,
which is well-known to be PSpace-complete [17]. The following questions, how-
ever, are open to the best of our knowledge, even in the case of string patterns
without compression: Is Cqa on (compressed) string patterns decidable for Nfa-
defined queries, and if yes, what is the complexity? Does Cqa on (compressed)
string patterns remain hard for queries defined by deterministic finite automata
(Dfas)? For which restrictions of (compressed) string patterns is Cqa in PTime?
And what about the symmetric questions concerning certain query non-answers?
The objective of the present paper is to answer these questions in all possible
cases.

Our first contribution is that Cqa on string patterns is PSpace-complete,
both for Nfa queries and Dfa queries, with and without compression, Boolean or
not, see Fig. 3. This upper bound is not fully obvious, as the set of strings defined
by a string pattern may be non-regular and even non-context-free. Furthermore,
the lower bound may be surprising in that Cqa for Dfa queries on string patterns
is more complex than on streams, where it is in PTime (Theorem 1 of [13]), and
also more complex than string pattern matching, which is np-complete (Theorem
3.6 of [2]) even with compression (Theorem 4.10 of [11]).

Our second contribution is that Cqa for Dfa queries can be decided in
PTime on compressed linear string patterns, see Fig. 4. The linearity restriction
matches with the worst case complexity for streams, even though linear com-
pressed string patterns allow for unknown factors and compression in addition.
This result (Corollary 2) is based on a novel algorithm for partial decompression
of compressed string patterns that we present (Lemma 6), followed by a test of
a reachability property (Theorem 3).

Our third contribution is that the certainty of query non-answers on com-
pressed string patterns is PSpace-complete, both for Boolean and non-Boolean
queries, and independently of whether they are defined by Dfas or Nfas. In the

120 I. Boneva et al.

Fig. 3. Query certainty on (compressed)
string patterns or hyperstreams.

Fig. 4. Query certainty on (compressed)
linear string patterns or streams.

Boolean case, the problem is equivalent to whether a compressed string pattern
does not match the regular language accepted by the automaton. This problem
generalizes on the complement of compressed string pattern matching, and thus
is coNP-hard. So while certain query non-answering can be solved in PTime
on streams, the complexity increases to PSpace on compressed string patterns.
Finally, we show that the restriction of the problem to compressed linear string
patterns – that is, regular compressed linear string pattern matching – can also
be solved in PTime even for queries defined by Nfas.

Outline. In Sect. 2 we start with some preliminaries on finite automata theory.
Section 3 recalls the notion of compressed string patterns and in Sect. 4 we study
the problems of regular compressed pattern inclusion and matching. Section 5
recalls how to define non-Boolean queries on strings by automata. In Sects. 6
and 7 we generalize the notions of certain query answers and non-answers to
(compressed) string patterns and study their complexity. All omitted proofs can
be found in the long online version1.

Related Work. The notion of certain query answers for incomplete relational
structures is standard in databases research [9]. In the context of stream pro-
cessing, certain query answers were called answers that are safe for selection
and certain query non-answers were called safe for rejection [12]. Certain query
non-answers were studied for fast failure [4] and for reducing the memory con-
sumption of streaming systems. The problem of certain query answering and
non-answering on streams has been shown to be computationally hard even for
queries defined in tiny fragments of first-order logic [12]. Certain query non-
answering was shown to be hard in the context of online verification [4,19].

As shown by [12], those classes of queries on strings for which the problem of
certain query answering on streams is known to be feasible, are either such that
certainty is always determined with 0-delay [4,14,22]) or such that the queries
in the class can be compiled to Dfas in PTime.

Algorithms for processing Xml streams or complex event streams raised
much interest in the literature [15,16,25] and motivated the work on hyper-
streams. Xml streams contain nested words [18,22] rather than strings with-
out bracket structure. The best existing algorithms for answering navigational
XPath queries (i.e. first-order logic queries) on Xml streams are based on

1 The long version can be found at the address https://hal.inria.fr/hal-01846016.

https://hal.inria.fr/hal-01846016
https://hal.inria.fr/hal-01846016

Certain Query Answering on Hyperstreams 121

compilation to nested word automata [10,23]. Low but not lowest latency is
achieved with high efficiency by approximating certain answers for queries
defined by nondeterministic nested word automata.

2 Preliminaries

Words. The set of natural numbers with 0 is denoted by N. For any set Σ, a
word over Σ is a tuple (a1, . . . , an) ∈ Σn where n ∈ N. We denote such words
by a1 . . . an and by ε if n = 0. We denote the ith letter of a word u = a1 . . . an by
u[i] =def ai. The set of all words over Σ is denoted by Σ∗. The concatenation of
two words u1, u2 ∈ Σ∗ is denoted by u1 ·u2 ∈ Σ∗. For instance, if Σ = {a, b} then
aba ·a = abaa. The set of positions of a word u = a1 . . . an is pos(u) = {1, . . . , n}.
For any subset Σ′ ⊆ Σ the set posΣ′(u) is the subset of positions i of u such
that ai ∈ Σ′. Given a word w = a1 . . . an and a second word u = b1 . . . bn of the
same length possibly on a different alphabet, we define the zipped word over the
product alphabet by w ∗ u = (a1, b1) . . . (an, bn). As a convention throughout the
paper, we use the term string for words over the default alphabet Σ, as opposed
to words over other alphabets such as Σ ∪ Y for string patterns, and ΣV for
V-annotated strings, that will be introduced later on.

Monoids. A monoid is a triple (M, ·M , 1M) where M is a set, ·M : M ×M → M
is an associative binary operation and 1M ∈ M is the neutral element, i.e.
1M ·M m = m ·M 1M = m for all m ∈ M . Given a word u = m1 . . .mn ∈ M∗ we
define its evaluation by uM = m1 ·M . . . ·M mn where εM = 1M .

Most typically, we will consider the monoid of words (Σ∗, ·, ε) on some alpha-
bet Σ, with the concatenation operation · : Σ∗ ×Σ∗ → Σ∗, and the empty word
ε as neutral element. Alternatively, given another set Q, we will consider the
transition monoid (TQ, ◦, id), where TQ = 2Q×Q is the set of binary relations
over Q, ◦ : TQ × TQ → TQ is the composition operation of binary relations on
Q, and id = {(q, q) | q ∈ Q} is the identity transition.

Finite Automata. A nondeterministic finite-state automaton (Nfa) is a tuple
A = (Q,Σ, δ, I, F) where Q and Σ are finite sets, δ ⊆ Q×Σ ×Q, and I, F ⊆ Q.
We call Q the state set, Σ the alphabet, δ the transition relation, I the set
of initial states, and F the set of final states of the automaton. An Nfa A is
deterministic, or a Dfa, if it has exactly one initial state and the transition
relation δ forms a partial function from Q × Σ to Q. The elements of TQ are
called the transitions of A. Any transition relation δ : Q×Σ×Q can be extended
homomorphically to a transition function δ : Σ∗ → TQ that assigns to any string
a transition of A. Here we overload the symbol δ to stand for the transition
relation and the transition function. The transition δ(a) of a letter a ∈ Σ is
{(q, q′) | (q, a, q′) ∈ δ} and the transition δ(w) of a string w = a1 . . . an ∈ Σ∗

is δ(w) = (δ(a1) . . . δ(an))TQ . This is the composition of the transitions of all
letters of w based on the operations of the transition monoid TQ, and its neutral

122 I. Boneva et al.

q0 q1 q2 q3

Σ

a

Σ

b b

Σ

Fig. 5. Automaton A2 defining the Boolean query Q2 with alphabet Σ = {a, b, c}

element for the empty word. Note that if A is a Dfa then all transitions δ(w)
are partial functions. A transition τ is called I, F -successful if τ ∩ (I × F) 	= ∅.
The language of an Nfa A = (Q,Σ, δ, I, F) is the set L(A) = {w ∈ Σ∗ |
δ(w) is I, F -successful}. The size of an automaton is |A| = |Q| + |δ|.
Example 1. Nfas can be used to define Boolean queries on strings such as query
Q2 which tests whether some position will be selected by query Q1, i.e., whether
a string contains an a-letter followed eventually by a factor bb. The language of
all such strings is defined by the automaton on Fig. 5.

A transition τ is called δ-inhabited if there exists a word w ∈ Σ∗ such that
δ(w) = τ . Transition inhabitation InhΣ is the decision problem that receives
as input a finite set Q, a transition relation δ ⊆ Q × Σ × Q and a transition
τ ∈ TQ, and outputs whether τ is δ-inhabited. InhΣ is also called the membership
problem of the transition monoid δ(Σ∗) ⊆ TQ [7].

Theorem 1 (Kozen [17]). For any set Σ with at least 2 elements, the transition
inhabitation problem InhΣ is PSpace-complete.

The PSpace hardness proof can be done by reduction from the problem of
non-emptiness of the intersection of sequences of Dfas, which was shown to be
PSpace-complete in [17] too.

3 Compressed String Patterns

We fix an infinite set Y of string variables for the rest of the paper. A string
pattern over a finite alphabet Σ is a word in (Σ ∪ Y)∗. The set of all string
patterns over Σ is denoted by PatΣ . The set of variables that occur in a string
pattern p is denoted by fv(p). An instance of a string pattern p ∈ PatΣ is
a string that can be obtained by substituting the variables of p by strings in
Σ∗. Any substitution σ : Y → Σ∗ can be lifted to a substitution on string
patterns σ̂ : PatΣ → Σ∗ such that for all p, p′ ∈ PatΣ , a ∈ Σ, and Y ∈ Y:
σ̂(pp′) = σ̂(p) · σ̂(p′), σ̂(ε) = ε, σ̂(a) = a, and σ̂(Y) = σ(Y). We define the set of
instances of a string pattern p ∈ PatΣ as:

Inst(p) = {σ̂(p) | σ : Y → Σ∗}.

For example, the string acbcbabbcba is an instance of the pattern aY cZabbY a,
obtained with the substitution [Y/cb, Z/b]. A string pattern is called linear, if
all its variables occur at most once. The set of all linear string patterns over Σ
is denoted LinPatΣ .

Certain Query Answering on Hyperstreams 123

Definition 1 (Compressed string pattern). A compressed string pattern is
an acyclic CFG G = (N,Σ,R, S) where N ⊆ Y is a finite set of nonterminals,
Σ is an alphabet of terminal symbols disjoint from Y, the ruling function R is
a partial function that maps some of the nonterminals in N to string patterns
in (N ∪ Σ)∗, and S ∈ N is the start symbol. The set of all compressed string
patterns over Σ is denoted by cPatΣ.

We recall that a CFG G is acyclic if the binary relation >G= {(Y,Z) |
Y ∈ dom(R), Z ∈ fv(R(Y))} is acyclic. The compressed string pattern from the
introduction for instance has the rules R(S) = aXbbY aX,R(X) = Y cZa. These
rules induce the binary relation {(S,X), (S, Y), (X,Y), (X,Z)} which is acyclic.
The size of G is |G| = |N | +

∑
Y ∈dom(R) |R(Y)|. The set of free variables of

G is fv(G) = N \ dom(R). A compressed string pattern G is called a singleton
context-free grammar (sCFG) if it has no free variables, that is fv(G) = ∅. It is
well-known that any sCFG defines a single string in Σ∗. The object of interest
here is the set of strings that can be obtained by completing a compressed string
pattern G to a sCFG, or equivalently, the set of instances of the string pattern
of G defined as follows. For any compressed string pattern G = (N,Σ,R, S), the
grammar G′ = (N\fv(G), Σ∪fv(G), R, S) is a sCFG. We define the string pattern
pat(G) ∈ PatΣ∪fv(G) as the unique word in the language of G′. Formally, for
every Y ∈ dom(R), let GY be the compressed string pattern GY = (N,Σ,R, Y).
If S ∈ dom(R) then pat(G) = σ̂(R(S)) where σ(Y) = pat(GY) for all Y ∈
dom(R) \ {S}. This recursive definition is well-founded because G is an acyclic
CFG. Otherwise, if S ∈ fv(G), then pat(G) = S. For instance, if G1 is the
hyperstream from the introduction, then pat(G1) = p1.

A compressed string pattern G is called a compressed linear string pattern if
pat(G) is linear. The set of all compressed linear string patterns over Σ is denoted
cLinPatΣ . Finally for any string pattern p ∈ PatΣ there exists a compressed
string pattern Gp having p as pattern, namely Gp = ({S} ∪ fv(p), Σ,R, S) with
dom(R) = {S} and R(S) = p. Clearly pat(Gp) = p. Therefore we will identify p
with Gp, so that PatΣ ⊆ cPatΣ .

4 Regular Pattern Inclusion and Matching

We consider the problems of regular compressed pattern inclusion, i.e. testing
whether all strings described by a completion of a compressed string pattern to
a sCFG are accepted by a finite automaton, and of regular compressed pattern
matching, whether some string described by a completion of a compressed string
pattern is accepted by a finite automaton.

A class of compressed string patterns G is a function from finite sets Σ to
subsets GΣ ⊆ cPatΣ such as for instance G ∈ {Pat, cPat,LinPat, cLinPat}. A
class of Nfas A is a function from finite sets Σ to subsets AΣ ⊆ NfaΣ , where
NfaΣ is the set of Nfas with alphabet Σ. Most typically, A ∈ {Dfa,Nfa}. For
any class G of compressed string patterns, any class A of Nfas, and any finite
set Σ we define the following two decision problems.

124 I. Boneva et al.

Regular compressed pattern inclusion. InclΣ(G,A). Input: A compressed
string pattern G ∈ GΣ and a finite automaton A ∈ AΣ .
Output: The truth value of whether Inst(pat(G)) ⊆ L(A).

Regular compressed pattern matching. MatchΣ(G,A). Input: A com-
pressed string pattern G ∈ GΣ and a finite automaton A ∈ AΣ .
Output: The truth value of whether Inst(pat(G)) ∩ L(A) 	= ∅.

The problem coMatchΣ(G,A) is the complement of the problem MatchΣ

(G,A), and thus outputs for a given compressed string pattern G ∈ GΣ and a
finite automaton A ∈ AΣ whether Inst(pat(G)) ∩ L(A) = ∅.

Example 2. Any instance of pat(G1) = aYcZabbYaYcZa answers the Boolean
query Q2 = [successor∗::a/successor∗::b/successor::b] from Example 1,
i.e., the instance set of pat(G1) is included in the language of Nfa A2 in Fig. 5.

Let sDfa be the subclass of Dfas that recognize a singleton language. Note
that the well-known problem of string pattern matching is MatchΣ(Pat, sDfa),
and MatchΣ(cPat, sDfa) is its extension with compression. We recall from [11]
that string pattern matching with and without compression respectively are np-
complete for all alphabets Σ with at least 2 letters, but in PTime when restricted
to linear string patterns even with compression.

Our first main contribution is the following complexity result for regular
compressed pattern matching and inclusion (see Fig. 3).

Theorem 2 (Non-linear patterns). For any G ∈ {Pat, cPat} and A ∈ {Dfa,
Nfa} and for any finite alphabet Σ with at least 2 letters, the problems of regu-
lar compressed pattern inclusion InclΣ(G,A) and matching MatchΣ(G,A) are
PSpace-complete.

This shows that these problems are decidable even though the instance
sets of nonlinear patterns like Inst(Y Y Y) are neither regular nor context-free.
The theorem also shows that regular pattern matching MatchΣ(Pat,Dfa) is
PSpace-complete and thus harder than compressed string pattern matching
MatchΣ(Pat, sDfa) which is np-complete.

Proof. We will present a sequence of PSpace reductions from Lemma 1 until
Lemma 4 that imply the theorem when composed as in Fig. 6.

For two decision problems A and B, we write A =p B when A reduces
polynomially to B and B reduces polynomially to A.

Lemma 1. InclΣ(LinPat,Nfa) is PSpace-hard if |Σ| ≥ 2.

The proof is straightforward by reduction from the universality of Nfas.
We now show the PSpace upper bound for InclΣ(cPat,Nfa). For any tran-

sition relation δ ⊆ Q × Σ × Q and any substitution into the transition monoid
σ : Y → TQ, we define δσ to be the function that takes a string pattern in PatΣ
as input, and returns a transition, such that for all p, p′ ∈ PatΣ , w ∈ Σ∗, and
Y ∈ Y:

δσ(w) = δ(w), δσ(y) = σ(y), δσ(pp′) = δσ(p) ◦ δσ(p′).

Certain Query Answering on Hyperstreams 125

Fig. 6. Regular inclusion and matching problems relationship and complexity classes

Lemma 2. Given a transition relation δ ⊆ Q × Σ × Q of some Nfa, a substi-
tution σ : Y → TQ and a compressed string pattern G ∈ cPatΣ, the transition
δσ(pat(G)) ∈ TQ can be computed in time O(|Q|3|G|).
Proposition 1. InclΣ(cPat,Nfa) is in PSpace.

Proof. Given an Nfa A, a compressed string pattern G over Σ, we have to
check whether Inst(pat(G)) ⊆ L(A). By definition, this is equivalent to checking
whether δ(ŝ(pat(G))) is I, F -successful for every substitution s : fv(G) → Σ∗.
The latter is equivalent to checking whether δσ(pat(G)) is I, F -successful for
all substitution σ : fv(G) → TQ that maps the free variables of G to δ-
inhabited transitions. A decision procedure can thus enumerate all substitu-
tions σ : fv(G) → TQ to δ-inhabited transitions, compute δσ(pat(G)) and check
whether it is I, F -successful. The number of substitutions σ that is to be checked
is exponential, but they can be enumerated in PSpace. Whether σ maps only
to δ-inhabited transition can be tested in PSpace by Theorem 1. Computing
δσ(pat(G)) can be done in PTime by Lemma 2.

So far we have shown that InclΣ(cPat,Nfa) is PSpace-complete. We next
consider regular matching. This will permit us to show that InclΣ(cPat,Dfa)
is PSpace-hard too.

Proposition 2. MatchΣ(cPat,Nfa) is in PSpace.

The proof is analogous to that of Proposition 1, except that it is now sufficient
to guess some substitution to δ-inhabited transition.

Proposition 3. MatchΣ(Pat,Dfa) is PSpace-hard.

The proof is by reduction from the non-emptiness problem of the intersection
of a sequence of n Dfas A1, . . . , An over Σ by matching the non-linear string
pattern y# . . . #y of length n against a Dfa A over Σ �{#} recognizing L(A) =
L(A1)# . . . #L(An).

Lemma 3. The problem coMatchΣ(Pat,Dfa) is PSpace-complete.

In order to complete the proof of Theorem2 it remains to relate regular
inclusion and matching in the case of Dfas.

126 I. Boneva et al.

Lemma 4. coMatchΣ(G,Dfa) =p InclΣ(G,Dfa) for all G up to PTime
red.

Proof. This follows from Inst(pat(G)) ∩ L(A) = ∅ ⇔ Inst(pat(G)) ⊆ L(A) and
the fact that any Dfa A can be complemented in PTime to some Dfa A such
that L(A) = L(A).

The complexity of inclusion and matching decreases for linear string patterns,
with or without compression. We indeed obtain the same complexity as known for
streams (see Fig. 4), even though unknown factors and compression are permitted
in addition.

Theorem 3 (Linear patterns). Restricted to linear string patterns, regular
compressed pattern inclusion and matching have the following complexities:

1. InclΣ(LinPat,Nfa) and InclΣ(cLinPat,Nfa) are PSpace-complete if
|Σ| ≥ 2 while the problem InclΣ(cLinPat,Dfa) can be solved in PTime.

2. MatchΣ(cLinPat,Nfa) is in PTime.

For any linear compressed string pattern G there exist a Dfa of that rec-
ognizes Inst(pat(G)), but this Dfa may be of exponential size in |G| due to
compression. Instead, the PTime proof for InclΣ(cLinPat,Dfa) relies on an
evaluator of compressed string patterns in the transition monoid, that replaces
free variables by the accessibility transition of the Dfa, thereby testing a reach-
ability property.

5 Defining Queries by Automata

We now recall the notion of queries on strings over some alphabet Σ with vari-
ables in some finite set V and relate them to languages of V-annotated strings
called V-structures in [26]. We fix two disjoint finite sets Σ and V.

Definition 2 (Query). A query with variables in V on strings over Σ, or a Σ,
V-query for short, is a function Q that maps any string w ∈ Σ∗ to a set Q(w)
of total assignments from V to pos(w). A Boolean query is a Σ, ∅-query.
Example 3. Let V = {x, x′}. The query Q1 selects all pairs of letters (x, x′)
such that position x is labeled by a, position x′ immediately follows x and is
labeled by b. This query then satisfies Q1(aa) = ∅, Q1(ab) = {[x/1, x′/2]},
Q1(abab) = {[x/1, x′/2], [x/3, x′/4]}, etc.

We next show how a Σ, V-query can be identified with a language of V-
annotated strings, i.e., of words over the alphabet ΣV = Σ × 2V . A (query
variable) assignment α to positions of a string w ∈ Σ∗ is a partial function from
V to pos(w). We will identify such variable assignments with words whose letters
are sets of variables. For any partial function α from V to pos(w) where w ∈ Σn,
we define a corresponding word in (2V)n by word(α) = α−1(1) . . . α−1(n). That
is, word(α)[i] is the set of variables x ∈ dom(α) s.t. α(x) = i. Furthermore, for

Certain Query Answering on Hyperstreams 127

any string w ∈ Σ∗ and variable assignment α into positions of w, we define the
V-annotated string w ∗ α as a word over ΣV by w ∗ α = w ∗word(α). In examples
we will write aV instead of letters (a, V) ∈ ΣV . For instance, ab ∗ [x/1, x′/2] is
written as a{x}b{x′}.

Definition 3 (V-structure [26]). The set of V-structures over Σ is the follow-
ing set of V-annotated strings, i.e., of words over ΣV :

StructV = {w ∗ α ∈ (ΣV)∗ | w ∈ Σ∗, α : V → pos(w)}.

We note that all the assignments α in the definition of V-structures are total
functions. For instance for V = {x, x′} and Σ = {a, b}, the words a∅b{x′,x}

and a{x′}b{x} are V-structures while the words a∅b{x′} and a{x′}b{x′,x} are not.
Essentially, V-structures represent total variable assignments to the positions of
a string without naming the positions.

Definition 4 (Language of V-structure of a query). For any Σ, V-query
Q, the language of V-structures of Q is L(Q) = {w ∗ α | w ∈ Σ∗, α ∈ Q(w)}.

We will be interested in queries whose languages are definable by Nfas.

Definition 5 (Query automata). An Σ, V-query automaton is an Nfa A
such that L(A) is a language of V-structures over Σ. The unique Σ, V-query such
that L(Q) = L(A) is called the query defined by A and is denoted by Q(A) = Q.

6 Certain Query Answers and Non-answers

We next formalize the notions of certain query answers and non-answers on string
patterns. For streams, these definitions coincide with the notions of earliest query
answers from [12] and fast-failure from [4], respectively.

A Σ-assignment for V on p ∈ PatΣ is a partial function α from V to posΣ(p),
the Σ-positions of the pattern p. For any Σ-assignment α on p, the word p ∗ α
is a string pattern over ΣV , still with string variables in Y. Therefore, the set
Inst(p ∗ α) is a well-defined set of words over ΣV . Note, however, that some of
these V-annotated strings may not be V-structures. For instance, if x ∈ V, a ∈ Σ,
and Y ∈ Y, then a{x}a{x} ∈ Inst(Y ∗ []) is not a V-structure since x occurs twice
(where [] is the empty Σ-assignment).

Definition 6 (Certain query answers and non-answers). Let Q be a Σ,
V-query, and let p ∈ PatΣ be a string pattern. A Σ-assignment α for V on p is:

– a certain answer for query Q on p if α is total and Inst(p ∗ α) ∩ StructV ⊆
L(Q),

– and a certain non-answer for query Q on p if Inst(p ∗ α) ∩ L(Q) = ∅.

128 I. Boneva et al.

Given an instance w ∈ Inst(p), each Σ-assignment α on p defines a set of
total Σ-assignments on w, where all variables not in dom(α) must be mapped
to some Σ-positions “created” by the instantiation. More formally:

Cp,w(α) = {α′ | α′ is a total Σ-assignment on w, w ∗ α′ ∈ Inst(p ∗ α)}.

The offsets of positions of query variables due to the instantiation of pattern
variables raise two issues that we illustrate in the following example: 1. even a
total Σ-assignment α of p might have several completions for the same string w,
and 2. it might be the case that α 	∈ Cp,w(α).

Example 4. Consider the string pattern p = ay1ay2, the string w = aaba in
Inst(p), V = {x}, and the total Σ-assignment α = [x/3] on p. In order to make p
match w, the second a-letter of p matches either the second or the fourth position
in w. Therefore, there are exactly two substitutions that make p match w, which
are σ1 = [y1/ε, y2/ba] and σ2 = [y1/ab, y2/ε]. Now, σ̂1(p ∗ α) = σ̂1(ay1a

{x}y2) =
aa{x}ba = w ∗ [x/2], thus [x/2] ∈ Cp,w(α). Also, σ̂2(p ∗ α) = σ̂1(ay1a

{x}y2) =
aaba{x} = w ∗ [x/4], thus [x/4] ∈ Cp,w(α). Given that there is no further way to
match p with w, there is no further completion. That is, Cp,w(α) = {[x/2], [x/4]},
and α 	∈ Cp,w(α).

The next proposition relates certain query answers (resp. non-answers) on a
pattern p to query answers (resp. non-answers) on its instances.

Proposition 4. Let α be a Σ-assignment on string pattern p and Q be a Σ,
V-query. It then holds for all instances w ∈ Inst(p):

– If α is a certain answer for query Q on p then Cp,w(α) ⊆ Q(w).
– If α is a certain non-answer for query Q on p then Cp,w(α) ∩ Q(w) = ∅.

7 Certain Query Answering and Non-answering

We introduce the problems of certain query answering and non-answering for
classes of compressed string patterns G and of query Nfas A:

Certain query answering. Certans
Σ,V(G,A). Input: a compressed string pattern

G ∈ GΣ , a Σ-assignment α for V on pat(G), and a query Nfa A ∈ AΣV .
Output: whether α is a certain answer for query Q(A) on pat(G).

Certain query non-answering. Cert¬ans
Σ,V (G,A). Input: as above

Output: whether α is a certain non-answer for query Q(A) on pat(G).

Note that α is an assignment to positions of pat(G) and not to positions of
G. This is necessary because due to compression, a position of G might corre-
spond to several positions of the underlying word which need to be distinguished.
Indeed, considering G to be the compressed string pattern in the introduction,
the a-letter in the rule for X corresponds to positions 5 and 13 in the decom-
pressed pattern aYcZabbYaYcZa, and position 5 is a certain answer for query
Q1, while position 13 is a certain non-answer.

The following straightforward lemma relates certain query answering to reg-
ular inclusion and certain query non-answering to regular matching.

Certain Query Answering on Hyperstreams 129

Fig. 7. G with red thick path to the
shared position 5. (Color figure online)

Fig. 8. G′ on ΣV with pat(G′) =
pat(G) ∗ [x/5].

Lemma 5 (Boolean Queries). For any classes G and A, InclΣ(G,A) =p

Certans
Σ,∅(G,A) and coMatchΣ(G,A) =p Cert¬ans

Σ,∅ (G,A).

Since PSpace-complete problems are closed by complement, Lemma 5
implies together with Theorem 2 that Certans

Σ,∅(Pat,Dfa) and Cert¬ans
Σ,∅

(Pat,Dfa) are PSpace-complete, even though these problems are restricted
to Dfas, without compression, and for Boolean queries. Therefore, all cer-
tainty problems CertB

Σ,∅(G,A) where B ∈ {¬ans, ans}, G ∈ {Pat, cPat}, and
A ∈ {Dfa,Nfa} are PSpace-hard. In the sequel we show that all these problems
can be solved in PSpace for arbitrary finite sets Σ and V. Basically, these results
will be corollaries of Theorem 2, Lemma 5 on Boolean queries, and the following
partial decompression lemma. This result is new to the best of our knowledge,
even though its proof relies on similar techniques as used for instance in [5] for
computing in PTime the letter at the n-th position of pat(G) for a singleton
grammar G.

Lemma 6 (Partial Decompression). For any G ∈ cPatΣ and any Σ-assign-
ment α for V on pat(G), we can compute in PTime some G′ ∈ cPatΣV such
that pat(G) ∗ α = pat(G′). In particular, if pat(G) was linear then pat(G′) is
linear.

For illustration, let V = {x}, α = [x/5]. Figure 8 shows a compressed string
pattern G′ obtained by partially decompressing the compressed string pattern
G in Fig. 7 at the position 5 of its pattern, such that pat(G) ∗ α = pat(G′).

Proposition 5. For all B in {ans,¬ans}, all G in {Pat, cPat,LinPat, cLinPat},
and all A in {Dfa,Nfa}, there is a PTime reduction from CertB

Σ,V(G,A) to
CertB

ΣV ,∅(G,A).

Corollary 1 (Non-linear patterns). For all B ∈ {ans,¬ans}, G ∈
{Pat, cPat} and A ∈ {Dfa,Nfa}, the problem CertB

Σ,V(G,A) is PSpace-
complete.

130 I. Boneva et al.

Corollary 2 (Linear patterns). For all A ∈ {Dfa,Nfa}, the certainty
problems Cert¬ans

Σ,V (cLinPat,A) (1) and Certans
Σ,V(cLinPat,Dfa) (2) can be

solved in PTime. The problem Certans
Σ,V(G,Nfa) is PSpace-complete for all

G ∈ {LinPat, cLinPat} (3).

8 Conclusion

There exist highly efficient streaming algorithms for answering queries defined
by Nfas [10] on complex event streams with low latency, but not with low-
est latency, since they approximate the sets of certain query answers at any
event. The positive results presented here yield good hope that similar algo-
rithms could be developed for hyperstreams when approximated by compressed
linear string patterns. As shown by the authors in a follow-up paper, the lin-
earity restriction is not sufficient. But with a further restriction it is possible
to approximate certain query answers efficiently and with decent precision [8].
However, this still requires more research. First, one needs to understand how
such algorithms may deal with unknown factors incrementally, without requir-
ing cubic time per step such as previous algorithms on incremental evaluation
of queries defined by Nfas [6]. Second, one has to understand how to deal with
nested word automata rather than Nfas for dealing with regular path queries
on complex event streams. Another point is to develop streaming algorithms for
hyperstreams with data values from an infinite signature. Finally, the feasibility
of hyperstreaming algorithms needs to be proven in practice.

Acknowledgments. We are thankful to C. Paperman, who saw the PSpace-hardness
of regular string pattern matching in a discussion on the topic. We thank S. Salvati and
S. Tison for discussions on regular string pattern matching. It is a pleasure to thank
all the anonymous reviewers for their extraordinary helpful feedback.

References

1. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Founda-
tions of modern graph query languages. CoRR, abs/1610.06264 (2016)

2. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci.
21, 46–62 (1980)

3. Babai, L., Szemeredi, E.: On the complexity of matrix group problems i. In: Pro-
ceedings of the 25th Annual Symposium on Foundations of Computer Science,
SFCS 1984, pp. 229–240. IEEE Computer Society, Washington, DC (1984)

4. Benedikt, M., Jeffrey, A., Ley-Wild, R.: Stream firewalling of XML constraints. In:
ACM SIGMOD International Conference on Management of Data, pp. 487–498.
ACM-Press (2008)

5. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings and trees. SIAM J. Comput. 44(3),
513–539 (2015)

6. Björklund, H., Gelade, W., Martens, W.: Incremental XPath evaluation. ACM
Trans. Database Syst. 35(4), 29 (2010)

Certain Query Answering on Hyperstreams 131

7. Blondin, M., Krebs, A., McKenzie, P.: The complexity of intersecting finite
automata having few final states. Comput. Complex. 25(4), 775–814 (2016)

8. Boneva, I., Niehren, J., Sakho, M.: Approximating certain query answering on
hyperstreams. Technical report, June 2018

9. David, C., Libkin, L., Murlak, F.: Certain answers for XML queries. In: Proceedings
of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2010, Indianapolis, Indiana, USA, 6–11 June 2010,
pp. 191–202. ACM (2010)

10. Debarbieux, D., Gauwin, O., Niehren, J., Sebastian, T., Zergaoui, M.: Early nested
word automata for XPath query answering on XML streams. Theor. Comput. Sci.
578, 100–125 (2015)

11. Gascón, A., Godoy, G., Schmidt-Schauß, M.: Context matching for compressed
terms. In: Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in
Computer Science, LICS 2008, Pittsburgh, PA, USA, 24–27 June 2008, pp. 93–102.
IEEE Computer Society (2008)

12. Gauwin, O., Niehren, J.: Streamable fragments of forward XPath. In: Bouchou-
Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011.
LNCS, vol. 6807, pp. 3–15. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22256-6 2

13. Gauwin, O., Niehren, J., Tison, S.: Earliest query answering for deterministic
nested word automata. In: Kuty�lowski, M., Charatonik, W., G ↪ebala, M. (eds.)
FCT 2009. LNCS, vol. 5699, pp. 121–132. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03409-1 12

14. Gauwin, O., Niehren, J., Tison, S.: Queries on XML streams with bounded delay
and concurrency. Inf. Comput. 209, 409–442 (2011)

15. Green, T.J., Gupta, A., Miklau, G., Onizuka, M., Suciu, D.: Processing XML
streams with deterministic automata and stream indexes. ACM Trans. Database
Syst. 29(4), 752–788 (2004)

16. Kay, M.: A streaming XSLT processor. In: Balisage: The Markup Conference 2010.
Balisage Series on Markup Technologies, vol. 5 (2010)

17. Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October
- 1 November 1977, pp. 254–266. IEEE Computer Society (1977)

18. Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown automata for
streaming XML. In: 16th International Conference on World Wide Web, pp. 1053–
1062. ACM-Press (2007)

19. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Form. Methods
Syst. Des. 19(3), 291–314 (2001)

20. Labath, P., Niehren, J.: A functional language for hyperstreaming XSLT. Technical
report, INRIA Lille (2013)

21. Maneth, S., Ordóñez, A., Seidl, H.: Transforming XML streams with references.
In: Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp.
33–45. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5 4

22. Mozafari, B., Zeng, K., Zaniolo, C.: High-performance complex event processing
over XML streams. In: Candan, K.S., et al. (eds.) SIGMOD Conference, pp. 253–
264. ACM (2012)

23. Olteanu, D.: SPEX: streamed and progressive evaluation of XPath. IEEE Trans.
Know. Data Eng. 19(7), 934–949 (2007)

24. Plandowski, W.: The complexity of the morphism equivalence problem for
context-free languages. Ph.D. thesis. Department of Informatics, Mathematics, and
Mechanics, Warsaw University (1995)

https://doi.org/10.1007/978-3-642-22256-6_2
https://doi.org/10.1007/978-3-642-22256-6_2
https://doi.org/10.1007/978-3-642-03409-1_12
https://doi.org/10.1007/978-3-642-03409-1_12
https://doi.org/10.1007/978-3-319-23826-5_4

132 I. Boneva et al.

25. Schmidt, M., Scherzinger, S., Koch, C.: Combined static and dynamic analysis
for effective buffer minimization in streaming XQuery evaluation. In: 23rd IEEE
International Conference on Data Engineering, pp. 236–245 (2007)

26. Straubing, H.: Finite Automata, Formal Logic and Circuit Complexity. Progress
in Computer Science and Applied Series. Birkhäuser, Basel (1994)

Büchi VASS Recognise Σ1
1-complete

ω-languages

Micha�l Skrzypczak(B)

University of Warsaw, Warsaw, Poland
mskrzypczak@mimuw.edu.pl

Abstract. This paper exhibits an example of a Σ1
1-complete ω-language

that can be recognised by a Büchi automaton with one partially blind
counter (or equivalently a Büchi VASS with only one place). It fol-
lows as a corollary that there is no equivalent model of deterministic
automata, even if we allow much richer data structures than just coun-
ters. The same holds for weaker forms of determinism, like for unam-
biguous or countably-unambiguous machines. This shows that even in
the one counter case, non-determinism of Büchi VASS is inherent.

Keywords: Petri nets · Infinite words · Non-determinism

In this work we study the strength of non-determinism in the context of
partially blind multi-counter Büchi automata. This is a model of finite automata
over infinite words with the Büchi acceptance condition (also known as “repeated
reachability condition”). Additionally, each such automaton is equipped with
a finite set of counters taking non-negative integer values. The automaton can
freely increment and decrement the values of the counters, however it cannot
test these values (i.e. no zero nor equality test). The only way in which the
values of the counters influence the behaviour of the automaton is that they
must stay non-negative during a run. The studied class of automata is strongly
connected with other models based on Petri nets: a partially blind multi-counter
Büchi automaton can be seen as a Büchi Vector Addition System with States
(i.e. Büchi VASS) and vice versa.

Similarly as in the case of Petri nets, the considered model is naturally
equipped with non-determinism. The main result of [10] implies that Büchi VASS
are able to recognise ω-languages that cannot be recognised by the deterministic
variant of the machines. This was achieved by topological methods: the paper
provides an example of a Büchi VASS recognising an ω-language complete for
the third level of the hierarchy of Borel sets (Σ0

3-complete); while deterministic
Büchi VASS can only recognise ω-languages in the second level of the hierarchy
(in Π0

2).

This work has been supported by Poland’s National Science Centre (NCN) grant
no. 2016/21/D/ST6/00491.

c© Springer Nature Switzerland AG 2018
I. Potapov and P.-A. Reynier (Eds.): RP 2018, LNCS 11123, pp. 133–145, 2018.
https://doi.org/10.1007/978-3-030-00250-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00250-3_10&domain=pdf
http://orcid.org/0000-0002-9647-4993

134 M. Skrzypczak

While the result of [10] separates non-deterministic Büchi VASS from the
deterministic ones, it does not settle the question of the upper bounds on the
topological complexity for these machines. Moreover, the lower bound of Σ0

3 does
not rule out the possibility of having a model of automata with a limited form
of non-determinism that still captures the expressive power of non-deterministic
Büchi VASS. To counterbalance the lack of full non-determinism, one could con-
sider adding new counter operations (like min and max, see e.g. [1,3]); extending
the acceptance condition to a topologically harder one, like Rabin, lim inf-parity,
or something like the ωBS condition from [2]; or adding a richer data struc-
ture, e.g. a stack. Also, instead of a fully deterministic model, one could hope
for an intermediate form of non-determinism, as in the case of unambiguous
machines [5]; or when the non-deterministic choices appear only finitely many
times in the accepting runs. The latter assumption implies that there are at most
countably many accepting runs over a fixed ω-word, we will call such a machine
countably-unambigous. This last restriction finds justification in the actual exam-
ple provided in [10], where the whole non-deterministic choice of the machine
reduces to choosing a single natural number at the beginning of a run.

In general, topological complexity suits well to make a distinction between
determinism and non-determinism. Firstly, in the case of all standard models of
machines, the relation run(α, ρ) of “being a run” is a closed1 relation between ω-
words α ∈ Aω and sequences of configurations ρ ∈ Cω. Moreover, for all the stan-
dard acceptance conditions mentioned above, the property of being an accepting
run acc(ρ) is Borel. This implies that all deterministic devices, which can be seen
as transducers of an input ω-word into a sequence of configurations, recognise
only Borel sets. The situation is different in the case of non-deterministic devices,
where the language of such a machine can be written as a projection of a Borel
set:

{α ∈ Aω | ∃ρ ∈ Cω. run(α, ρ)∧acc(ρ)} = πAω

(
{(α, ρ) | run(α, ρ)∧acc(ρ)}

)
. (1)

It is known that in general, projections of Borel sets might not be Borel—they
form a wider class of analytic sets (denoted Σ1

1). Thus, Σ1
1 is the upper bound

for the topological complexity of general non-deterministic devices. The above
formula, together with a theorem by Lusin and Novikov [12, Theorem 18.10],
imply that countably-unambiguous machines recognise only Borel ω-languages.
This means that in terms of topological complexity they are closer to determin-
istic than to non-deterministic ones.

The above topological results say that the distinction between weak vs. full
forms of non-determinism can be topologically understood as the difference
between Borel and analytic sets. The purpose of the present paper is to use
this correspondence by showing the following theorem.

Theorem 1. There exists an ω-language that is recognised by a Büchi VASS
with one counter (i.e. with one place) that recognises a Σ1

1-complete ω-language.

1 Equivalently: a relation given by a safety condition.

Büchi VASS Recognise Σ1
1-complete ω-languages 135

As noted above, all ω-languages recognised by non-deterministic Büchi VASS
are in Σ1

1. Thus, the above result solves the question of the upper bounds for
the topological complexity of these machines. Moreover, the theorem translates
to the automata theoretic realms as the following corollary.

Corollary 1. No model of deterministic, unambiguous, nor even countably-
unambiguous automata with countably many configurations and a Borel accep-
tance condition can capture the class of ω-languages recognisable by Büchi VASS
with one counter.

The crucial difficulty in proving Theorem1 is the fact, that Büchi VASS
are partially blind: they cannot test their counters for exact values. As a con-
sequence, there is a natural simulation order on the configurations of a Büchi
VASS: a configuration (q,�a) simulates (q,�c) if they have the same state and the
counter values A and B satisfy coordinate-wise �a ≥ �c. In such a case, the lan-
guage recognised from (q,�a) contains the language recognised by (q,�c); because
each accepting run from (q�c) can be lifted to an accepting run from (q,�a) just by
increasing the counter values. In particular, when there is exactly one counter,
the maximal size of an anti-chain of the simulation order is bounded by the
number of states; what limits the possible structure of the so-called residual
ω-languages of the device.

Although the construction of the paper is expressed in terms of topologi-
cal complexity, the actual core of the proof is a combinatorial idea allowing to
simulate a Σ1

1-hard behaviour (i.e. one that involves full non-determinism) by
an efficient way of storing information in the value of a unique partially blind
counter of the automaton. The idea is not very complex, and the overall con-
struction should be considered as rather direct.

To simplify the presentation of the proof it is performed in three steps. In
Sect. 2 we provide an easy example of a Σ1

1-complete ω-language recognised by
a Büchi VASS with two counters. Then, in Sect. 3 we characterise a specific Σ1

1-
complete set (namely IFinf). This set is in a certain sense monotone, which is
used to reflect the simulation order on configurations of our automata. In Sect. 4
we reduce the set IFinf to an ω-language recognised by a Büchi VASS with only
one counter, which concludes the proof of Theorem1. Section 5 is devoted to
Corollary 1. Finally, Sect. 6 gives some concluding remarks.

Acceptance Condition. The results of the paper speak about VASS with the
Büchi acceptance condition. Since non-deterministic Büchi automata recognise
all ω-regular languages, these machines can simulate all other ω-regular accep-
tance conditions. Thus, the Büchi condition seems to be one of the canonical
ones (with most of them actually equivalent). On the other hand, the situation
is different for certain weaker acceptance conditions: the safety, reachability, and
co-Büchi conditions can be written as countable unions of closed sets (i.e. Σ0

2).
A known topological fact says that a projection of a Σ0

2 set contained in a com-

136 M. Skrzypczak

pact2 topological space is also Σ0
2. Therefore, none of these weaker conditions

allows a non-deterministic VASS to recognise a non-Borel ω-language. A reason-
able task (although out of the scope of the present paper) is to design deter-
ministic or almost deterministic models for VASS with these weaker acceptance
conditions.

Related Work. There is a number of papers studying the topological complex-
ity of sets recognisable by various models of machines [4,6–8,13]. In certain cases,
the topological lower bounds were used to separate models of machines [1,10].
Also, high topological complexity of some classes of languages can influence their
decidability [11].

The question of upper bounds on the topological complexity for Büchi VASS
was left as an open problem in [10]. After publication of that article, the authors
independently managed to solve this problem. In [9], Finkel has found a family of
Büchi VASS with four counters that recognise ω-languages at all Wadge degrees
of non-deterministic Turing machines. This result implies that there are Büchi
VASS with 4 counters recognising Σ1

1-complete ω-languages. Moreover, it shows
that many intermediate classes of topological complexity are also inhabited by
such ω-languages. However, it is not clear whether the number of counters in
that construction can be reduced. This paper provides a construction of a single
Σ1

1-complete ω-language recognised using only one counter. Thus, the two results
are mathematically incomparable.

1 Preliminary Notions

We use ω = {0, 1, . . .} to denote the set of natural numbers. If A is a non-
empty set then A∗ and Aω are respectively sets of finite and infinite sequences
of elements of A. The elements of A∗ are called words and the elements of Aω

are called ω-words. An ω-language is a set of ω-words. If v ∈ A∗ then by |v| ∈ ω
we denote the length of v (i.e. the number of symbols in v). By v · x we denote
the concatenation of the two sequences, with |v · x| = |v| + |x|. If the context is
clear, we skip the concatenation symbol ·. If n ≤ |v| then by v�n ∈ An we denote
the restriction of the sequence to its first n symbols.

Büchi VASS. A Büchi VASS (or shortly VASS, as we consider only the Büchi
acceptance condition) is a tuple A = 〈A,Q, qI, F, C, δ〉, where:

– A is a finite input alphabet,
– Q is a finite set of states,
– qI ∈ Q is an initial state,
– F ⊆ Q is a set of accepting states,
– C is a finite set of counters,
– δ is a finite transition relation, its elements are transitions (q, a, τ, q′) where

q, q′ ∈ Q, a ∈ A, and τ : C → Z.
2 The space of runs is compact because the automata do not admit ε-transitions and
therefore the possible counter values are bounded at each fixed place of the input
ω-word.

Büchi VASS Recognise Σ1
1-complete ω-languages 137

Without loss of generality we assume that the set of counters C has the form C =
{1, 2, . . . , k} for some k (in this work 1 or 2). We visually represent a transition

(q, a, τ, q′) by q
a:
(
τ(1),τ(2),...,τ(k)

)

−−−−−−−−−−−−−→ q′. We say that such a transition is over the

letter a. If A′ ⊆ A then q
A′:

(
τ(1),τ(2),...,τ(k)

)

−−−−−−−−−−−−−−→ q′ means that for each a ∈ A′ there

is a respective transition. Similarly, q
a−→ q′ and q

A′
−→ q′ denote the respective

transitions that do not modify the counter values (i.e. τ is constant 0).
A configuration of a VASS A is a tuple (q, c1, c2, . . . , ck) where q ∈ Q,

c1, . . . , ck ∈ ω, and {1, . . . , k} = C. The initial configuration is (qI, 0, . . . , 0). We

say that a transition q
a:
(
τ(1),...,τ(k)

)

−−−−−−−−−−→ q′ goes from a configuration (q, c1, . . . , ck)
to a configuration

(
q′, c1 + τ(1), . . . , ck + τ(k)

)
(note that by the definition it

requires all the numbers ci + τ(i) to be non-negative).
Let α ∈ Aω be an ω-word over the input alphabet. A run of a VASS A

over α is an infinite sequence ρ of configurations, such that ρ(0) is the initial
configuration and for every i ∈ ω there is a transition of A over the letter α(i)
that goes from the configuration ρ(i) to the configuration ρ(i+1). A run ρ is
accepting if for infinitely many i the configuration ρ(i) = (qi, . . .) satisfies qi ∈ F
(i.e. it visits infinitely many times an accepting state). A VASS A accepts an ω-
word α if there exists an accepting run of A over α. The language of A (denoted
L(A)) is the set of ω-words accepted by A.

Topology. We will use the standard notions of topology on Polish spaces [12].
The space Aω of all ω-words over a finite alphabet A can be naturally endowed
with a topology where open sets are those obtained as unions of basic open
sets of the form Nu

def= {u · α | α ∈ Aω}. A set whose complement is open is
called closed. Closed subsets C of Aω can be equivalently characterised as those
satisfying the following safety property:

∀α ∈ Aω.
(
∀n ∈ ω .∃β ∈ Aω . α�n · β ∈ C

)
=⇒ α ∈ C. (2)

The family of Borel sets in a topological space X is the smallest σ-algebra
that contains all the open sets in X. By Σ1

1 we denote the family of analytic
sets, i.e. projections of Borel sets. A function f : X → Y between two topological
spaces is continuous if the pre-image f−1(U) ⊆ X is open for every open3 set
U ⊆ Y . If A ⊆ X and B ⊆ Y are two subsets of topological spaces then we
call f : X → Y a reduction of A to B if f−1(B) = A. If Γ is a class of sets and
G ⊆ X is a subset of a topological space X, we say that G is Γ -hard if for every
set A ∈ Γ there exists a continuous reduction of A to G. If additionally G ∈ Γ
then we say that G is Γ -complete. Since continuous reductions can be composed,
we obtain the following fact.

Fact 2. If G is Γ -hard and G continuously reduces to G′ then also G′ is Γ -hard.

Orders. Consider a set X and a relation o ⊆ X × X on X. We say that o is
a linear order if it is reflexive, transitive, and anti-symmetric. We interpret a pair
3 Since f−1

(⋃F)
=

⋃
f−1

(F)
, it is enough to consider basic open sets U .

138 M. Skrzypczak

(x, x′) ∈ o as representing the fact that x is o-smaller-or-equal than x′. A linear
order o is ill-founded if there exists an infinite sequence x0, x1, . . . of pairwise
distinct elements of X such that for all n we have (xn+1, xn) ∈ o. Such a sequence
indicates an infinite o-descending chain. An order that is not ill-founded is called
well-founded.

Binary Trees. The binary tree is the set of all sequences of directions T def=
{L, R}∗ where the directions L, R are two fixed distinct symbols. For technical
reasons we sometimes consider a third direction M (it does not occur in the
binary tree).

A set X ⊆ T can be naturally identified with its characteristic function

X ∈ {0, 1}
(
{L,R}∗

)
. Thus, the family of all subsets of the binary tree, with the

natural product topology, is homeomorphic with the Cantor set {0, 1}ω.
The elements v, x ∈ T are called nodes. Nodes are naturally ordered by the

following three orders:

– the prefix order: v x if x can be obtained by concatenating something at
the end of v,

– the lexicographic order: v ≤lex x if v is lexicographically smaller than x (we
assume that L <lex M <lex R),

– the infix order: v ≤inf x if vM
ω (i.e. the ω-word obtained by appending

infinitely many symbols M after v) is lexicographically less or equal than xM
ω.

Notice that, for every fixed n, when restricted to {L, R}n, the lexicographic
and infix orders coincide. However, L <inf ε <inf R but ε is the minimal element
of ≤lex. Both the lexicographic and infix orders are linear.

Since the infix order is countable, dense, and has no minimal nor maximal
elements, we obtain the following fact.

Fact 3. (T ,≤inf) is isomorphic to the order of rational numbers (Q,≤).

Hardness. In the following part of the paper we will use the following two sets:

IFpre
def= {X ⊆ T | X contains an infinite-ascending chain},

IFinf
def= {X ⊆ T | X contains an infinite≤inf -descending chain}.

The following lemma is a standard topological observation.

Lemma 1. The sets IFpre and IFinf are Σ1
1-complete.

Proof. Both sets belong to Σ1
1 just by the form of the definition. IFpre is Σ1

1-hard
by an easy reduction from the set of ill-founded ω-branching trees, the proof is
similar to [12, Exercise 27.3].

IFinf is Σ1
1-hard by a reduction from the set of ill-founded linear orders on ω

(seen as elements of {0, 1}ω×ω). Let us prove this fact more formally. Consider
an element o ∈ {0, 1}ω×ω that is a linear order on ω. The latter set is Σ1

1-
complete by a theorem by Lusin and Sierpiński [12, Theorem 27.12]. We will

Büchi VASS Recognise Σ1
1-complete ω-languages 139

inductively define Xo ⊆ T in such a way to ensure that o �→ Xo is a continuous
mapping and o is ill-founded if and only if Xo ∈ IFinf .

Let us proceed inductively, defining a sequence of nodes (xn)n∈ω ⊆ T . Our
invariant says that |xk| = k and the map k �→ xk is an isomorphism of the orders(
{0, 1, . . . , n}, o

)
and

(
{x0, x1, . . . , xn},≤inf

)
. We start with x0 = ε (i.e. the root

of T). Assume that x0, . . . xn are defined and satisfy the invariants. By the
definition of ≤inf , there exists a node x ∈ {L, R}n+1 such that for k = 0, 1, . . . , n
we have x ≤inf xk if and only if (n+1, k) ∈ o. Let xn+1 be such a node.

The above induction defines an infinite sequence of nodes x0, x1, . . . Let
Xo

def= {xn | n ∈ ω} ⊆ T . By the definition of Xo, the mapping o �→ Xo is
continuous—the fact whether a node x ∈ T belongs to Xo depends only on
o ∩ {0, 1, . . . , |x|}2. Using our invariant, we know that the map k �→ xk is an iso-
morphism of the orders

(
ω, o

)
and

(
Xo,≤inf

)
. Thus, o is ill-founded if and only

if Xo ∈ IFinf . ��

2 Hardness for Two Counters

In this section we provide a simple example of an ω-language that is Σ1
1-complete

and can be recognised by a VASS A2 with two counters. This example should
be seen as a preliminary step towards the one counter example given in Sect. 4.

The VASS A2 is depicted in Fig. 1. Let A0
def=

{
<, d1, d2, |, i1, i2,+,−, >

}

and let the alphabet A
def= A0 ∪ {}. The initial state is q0, the single accepting

state is qa. The only non-determinism occurs in q0 when reading <—the VASS
can stay in q0 or move to q1. Only the states q1 and q2 modify the counter values.

q0 q1 q2

qa

qr

q3

A0

<

d1 : (−1, 0)

d2 : (0,−1)

|

i1 : (+1, 0)

i2 : (0,+1)

+

−

>

>

A0

Fig. 1. The VASS A2 with two counters that recognises a Σ1
1-complete ω-language

Lemma 2. There exists a continuous reduction from IFpre to the ω-language
recognised by A2.

140 M. Skrzypczak

Intuition. An ω-word accepted by A2 consists of infinitely many phases sepa-
rated by . Each phase is a finite word over the alphabet A0. In our reduction
we will restrict to phases being sequences of blocks, each block being a finite
word of the form given by the following definition (for n1, n2,m1,m2 ∈ ω and
s ∈ {+,−}):

Bs(−n1,−n2,+m1,+m2)
def= < dn1

1 dn2
2 | im1

1 im2
2 s > ∈ A∗

0. (3)

Such a block is accepting if s = +, otherwise s = − and the block is rejecting.
If A2 starts reading a block and moves from q0 to q1 over < then we say that
it chooses this block. Otherwise A2 stays in q0 and it does not choose the given
block. By the construction of the VASS A2, in every run it needs to choose
exactly one block from each phase. Additionally, the run is accepting if and only
if infinitely many of the chosen blocks are accepting.

In our reduction we will represent a given set X ⊆ T by an appropriately
defined sequence of phases. We will control the set of configurations the VASS
can reach at the beginning of each phase. These configurations will form an anti-
chain with respect to the coordinate-wise (or simulation) order: if the VASS can
reach two distinct configurations (q0, c1, c2) and (q0, c′

1, c
′
2) then either c1 < c′

1

and c2 > c′
2; or c1 > c′

1 and c2 < c′
2. Each block in the successive phase will be of

the form Bs(−c1,−c2,+m1,+m2) for some reachable configuration (q0, c1, c2)—
this will be the only reachable configuration in which the automaton can choose
the considered block. After choosing it, the automaton will finish reading the
phase in the configuration (q3,m1,m2).

Proof of Lemma 2. For the rest of this section we prove Lemma 2. Let us fix
a set X ⊆ T . We will construct an ω-word α(X) ∈ Aω. The ω-word α(X) will
consist of infinitely many phases α(X) = u0u1 · · · , for un ∈ A∗

0. The n-th phase
un (for n = 0, 1, . . .) will depend on X ∩ {L, R}n. This will guarantee that the
function α : 2T → Aω is continuous. The proof will be concluded by the following
claim.

Claim. X has an infinite -ascending chain if and only if A2 accepts α(X).

To simplify the construction, let us define inductively the function b : T → ω,
assigning to nodes v ∈ T their binary value b(v):

– b(ε) = 0,
– b(vL) = 2 · b(v),
– b(vR) = 2 · b(v) + 1.

Let b′(v) = 2n − b(v) − 1 for n = |v| (i.e. v ∈ {L, R}n). Note that for every n ∈ ω
we have

b
(
{L, R}n

)
= b′({L, R}n

)
= {0, 1, . . . , 2n − 1},

and both b and b′ are bijective between these sets. Additionally, if v �= v′ ∈ {L, R}n

then either b(v) < b(v′) and b′(v) > b′(v′); or b(v) > b(v′) and b′(v) < b′(v′).

Büchi VASS Recognise Σ1
1-complete ω-languages 141

We take any n = 0, 1, . . . and define the n-th phase un. Let un be the con-
catenation of the following blocks, for all v ∈ {L, R}n and d ∈ {L, R}:

Bs
(
−b(v),−b′(v),+b(vd),+b′(vd)

)
,

where s = + if v ∈ X and s = − otherwise. Thus, the n-th phase is a concate-
nation of 2n+1 blocks, one for each node vd in {L, R}n+1.

To prove Claim 2 it is enough to notice the following fact.

Fact 4. There is a bijection between infinite branches β ∈ {L, R}ω and runs ρ of
A2 over α(X). The bijection satisfies that the configuration in ρ before reading
the n-th phase of α(X) is

(
q0, b(vn), b′(vn)

)
for vn = β�n ∈ {L, R}n. A2 visits

an accepting state in ρ while reading the n-th phase of α(X) if and only if
vn ∈ X.

Proof. Easy induction. ��

This concludes the proof of Lemma 2.

3 Representation of IFpre

To construct our continuous reduction in the one-counter case, we need the
following simple lemma that provides an alternative characterisation of the
set IFinf . Let us introduce the following definition.

Definition 1. A sequence v0, v1 . . . ∈ T is called a correct chain if v0 = ε and
for every n = 0, 1, . . .:

1. |vn+1| = |vn| + 1,
2. vn+1 ≤inf vnR (or equivalently vn+1 ≤lex vnR).

A correct chain is witnessing for a set X ⊆ T if for infinitely many n we
have vn ∈ X and vn+1 ≤inf vnL.

Intuitively, the definition forces the sequence to be not so-much increasing
in the infix order ≤inf : the successive element vn+1 needs to be to the left in the
tree from vnR. Such a sequence is witnessing for a set X if infinitely many times
it belongs to X and at these moments it actually drops in ≤inf .

Lemma 3. A set X ⊆ T belongs to IFinf if and only if there exists a correct
chain witnessing for X.

Proof. First take a correct chain witnessing for X. Let x0, x1, . . . be the sub-
sequence that shows that (vn)n∈ω is witnessing for X. In that case, by the
definition, for all n we have xn ∈ X and xn+1 <inf xn (because xn+1M

ω ≤lex

xnLR
ω <lex xnM

ω). Thus, X has an infinite ≤inf -descending chain and belongs
to IFinf .

Now assume that X ∈ IFinf and x0 >inf x1 >inf x2 >inf . . . is a sequence wit-
nessing that. Without loss of generality we can assume that |xn+1| > |xn| because

142 M. Skrzypczak

for each fixed depth k there are only finitely many nodes of T in {L, R}≤k. We
can now add intermediate nodes in-between the sequence (xn)n∈ω to construct
a correct chain witnessing for X; the following pseudo-code realises this goal:

n := 0;
i := 0;
while (true) {

if (n > |xi|) {
i := i + 1;

}
vn := xi�n;
n := n + 1;

}

Clearly, Property 1 in the definition of a correct chain is guaranteed. Let i ∈ ω
and n = |xi|. By the fact that xi+1 <inf xi we know that xi+1�n+1 ≤inf xiL.
Therefore, for every n ∈ ω we have vn+1 ≤inf vnR and if n = |xi| for some i then
vn+1 ≤inf vnL. It implies that the sequence (vn)n∈ω satisfies Property 1 in the
definition of a correct chain. It is clearly witnessing for X because it contains
(xn)n∈ω as a subsequence. ��

4 Hardness for One Counter

In this section we provide an example of an ω-language that is Σ1
1-complete and

can be recognised by a VASS A1 with one counter. A1 is depicted in Fig. 2, it
is very similar to A2, but simpler. Let A0

def= {<, d, |, i,+,−, >} and let the
alphabet A

def= A0 ∪ {}.

q0 q1 q2

qa

qr

q3

A0

<

d : −1

|

i : +1

+

−

>

>

A0

Fig. 2. The VASS A1 with one counter that recognises a Σ1
1-complete ω-language

Proposition 1. There exists a continuous reduction from IFinf to the ω-
language recognised by A1.

Büchi VASS Recognise Σ1
1-complete ω-languages 143

Similarly as before, we will use the notion of phases and blocks. Since there
is only one counter now (and only two letters modifying its value: d and i) we
exchange the definition of a block (see (3)) by the following one (for n,m ∈ ω
and s ∈ {+,−}):

Bs(−n,+m) def= < dn | im s > ∈ A∗
0. (4)

Similarly as before, we will take a set X ⊆ T and construct an ω-word α(X).
This ω-word will be a concatenation of infinitely many phases u0u1 · · · . The n-
th phase un will depend on X ∩{L, R}n. The configurations (q0, c) reached at the
beginning of an n-th phase will be in correspondence with the nodes v ∈ {L, R}n.
The bigger the value c, the higher in the infix order (or the lexicographic order,
as they overlap here) the respective node v is.

To precisely define our ω-word α(X) we need to define fast-growing functions:
m : {−1} ∪ ω → ω and e : T → ω:

m(−1) = 1,
m(n) = m(n − 1) · 2n forn ∈ ω,

e(v) = m(|v| − 1) · b(v) for v ∈ T .

These functions allow to use a big range of the possible values of a single counter
of a VASS to represent particular nodes of the tree. We will use the following
two invariants of this definition, for n ∈ ω and v, v′ ∈ {L, R}n:

v <inf v′ ⇐⇒ e(v) ≤ e(v′), (5)
e(v) + m(|v| − 1) ≤ m(|v|). (6)

We take any n = 0, 1, . . . and define the n-th phase un. Let un be the con-
catenation of the following blocks, for all v ∈ {L, R}n and d ∈ {L, R}:

Bs
(
−e(v),+e(vd)

)
,

where s = + if v ∈ X and d = L; otherwise s = −. Thus, the n-th phase is
a concatenation of 2n+1 blocks, one for each node vd in {L, R}n+1.

To conclude the proof of Proposition 1 it is enough to prove the following two
lemmas.

Lemma 4. If there exists a correct chain witnessing for X then α(X) ∈ L(A1).

Lemma 5. If α(X) ∈ L(A1) then there exists a correct chain witnessing for X.

Proof of Lemma 4. Consider a correct chain (vn)n∈ω witnessing for X. Assume
that I ⊆ ω is an infinite set such that for n ∈ I we have vn ∈ X and vn+1 ≤inf

vnL. Let us construct inductively a run ρ of A1 on α(X). The invariant is that
for each n ∈ ω the configuration of ρ before reading the n-th phase of α(X) is of
the form (q0, cn) with cn ≥ e(vn). To define ρ it is enough to decide which block
to choose from an n-th phase of α(X):

144 M. Skrzypczak

– if n ∈ I then choose the block B+
(
−e(vn),+e(vnL)

)
,

– otherwise choose the block B−(
−e(vn),+e(vnR)

)
.

Notice that by the invariant, it is allowed to choose the respective blocks as cn ≥
e(vn). Because of (5) and the fact that (vn)n∈ω is a correct chain, the invariant
is preserved. As the set I is infinite, the constructed run chooses an accepting
block infinitely many times and thus is accepting. ��
Proof of Lemma 5. Assume that ρ is an accepting run of A1 over α(X). For
n = 0, 1, . . . let (q0, cn) be the configuration in ρ before reading the n-th phase
of α(X) and assume that ρ chooses a block of the form Bsn

(
−e(vn),+e(vndn)

)

in the n-th phase of α(X). Our aim is to show that (vn)n∈ω is a correct chain
witnessing for X. First notice that by the construction of α(X) we have |vn| = n.

Clearly, as the counter needs to be non-negative, we have e(vn) ≤ cn. Notice
that by (6) we obtain inductively for n = 0, 1, . . . that cn < m(n). Therefore, we
have

m(n) · b(vn+1) = e(vn+1) ≤ cn+1

= cn − e(vn) + e(vndn) < m(n) + e(vndn)
= m(n) + m(n) · b(vndn).

By dividing by m(n) we obtain b(vn+1) < 1 + b(vndn), thus b(vn+1) ≤ b(vndn)
and therefore vn+1 ≤inf vndn ≤inf vnR. Moreover, if sn = + (i.e. the n-th chosen
block is accepting) then vn ∈ X and dn = L. Therefore, as ρ chooses infinitely
many accepting blocks, (vn)n∈ω is witnessing for X. ��

This concludes the proof of Proposition 1.

5 Inherent Non-determinism

In this section we formally state and prove Corollary 1. It is expressed in the same
spirit as the corresponding Theorem 5.5 in [11]: we consider an abstract model
of automata A with a countable set of configurations C, an initial configuration
cI ∈ C, a transition relation δ ⊆ C×A×C, and an acceptance condition W ⊆ Cω.
The notions of a run run(α, ρ); an accepting run acc(ρ); and the language L(A)
are defined in the standard way. Thus, under the assumption that the acceptance
condition W is Borel, the set

P
def=

{
(α, ρ) ∈ Aω × Cω | run(α, ρ) ∧ acc(ρ)

}
,

as in (1) is also Borel. The assumptions that the machine is deterministic, unam-
biguous, or countably-unambiguous imply that the cardinality of the sections
Pα

def= {ρ | (α, ρ) ∈ P} for α ∈ Aω is at most countable. Therefore, the following
small section theorem by Lusin and Novikov applies.

Theorem 2 (see [12, Theorem 18.10]). Let X, Y be standard Borel spaces and
let P ⊆ X × Y be Borel. If every section Px is countable, then P has a Borel
uniformization and therefore πX(P) is Borel.

Büchi VASS Recognise Σ1
1-complete ω-languages 145

Therefore, we know that L(A) = πAω (P) is Borel. Thus, no such machine
can recognise L(A1) for the Büchi VASS A1 from Sect. 4, as that language is
non-Borel.

6 Concluding Remarks

The core result of this paper is a technique of encoding a Σ1
1-complete set in

a monotone way using only one partially blind counter—Proposition 1. This
shows that even in that restricted case, the non-determinism of the machines
is inherent, and cannot be simulated by any restricted form (like countable-
unambiguity).

The question whether one counter Büchi VASS recognise languages at all
levels of the Wadge hierarchy that are occupied by non-deterministic Büchi Tur-
ing machines (see [9]) is left open. The construction provided in [9] involves four
counters and at the moment it is not clear whether one can reduce that number.

References

1. Bojańczyk, M.: Weak MSO with the unbounding quantifier. Theory Comput. Syst.
48(3), 554–576 (2011)

2. Bojańczyk, M., Colcombet, T.: Bounds in ω-regularity. In: LICS, pp. 285–296
(2006)

3. Bojańczyk, M., Toruńczyk, S.: Deterministic automata and extensions of weak
MSO. In: FSTTCS, pp. 73–84 (2009)

4. Cabessa, J., Duparc, J., Facchini, A., Murlak, F.: The Wadge hierarchy of max-
regular languages. In: FSTTCS, pp. 121–132 (2009)

5. Colcombet, T.: Forms of determinism for automata. In: STACS, pp. 1–23 (2012)
6. Duparc, J., Finkel, O., Ressayre, J.P.: Computer science and the fine structure of

Borel sets. Theor. Comput. Sci. 257(1–2), 85–105 (2001)
7. Duparc, J., Finkel, O., Ressayre, J.-P.: The Wadge hierarchy of petri nets ω-

languages. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp.
179–193. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35722-
0 13

8. Finkel, O.: Borel ranks and Wadge degrees of context free omega-languages. Math.
Struct. Comput. Sci. 16(5), 813–840 (2006)

9. Finkel, O.: Wadge degrees of ω-languages of Petri nets (2018)
10. Finkel, O., Skrzypczak, M.: On the topological complexity of w-languages of non-

deterministic Petri nets. Inf. Process. Lett. 114(5), 229–233 (2014)
11. Hummel, S., Skrzypczak, M.: The topological complexity of MSO+U and related

automata models. Fundam. Inform. 119(1), 87–111 (2012)
12. Kechris, A.: Classical Descriptive Set Theory. Springer, New York (1995). https://

doi.org/10.1007/978-1-4612-4190-4
13. Thomas, W., Lescow, H.: Logical specifications of infinite computations. In: de

Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803,
pp. 583–621. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58043-
3 29

https://doi.org/10.1007/978-3-642-35722-0_13
https://doi.org/10.1007/978-3-642-35722-0_13
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.1007/3-540-58043-3_29
https://doi.org/10.1007/3-540-58043-3_29

Qualitative Reachability for Open
Interval Markov Chains

Jeremy Sproston(B)

Dipartimento di Informatica, University of Turin, Turin, Italy
sproston@di.unito.it

Abstract. Interval Markov chains extend classical Markov chains with
the possibility to describe transition probabilities using intervals, rather
than exact values. While the standard formulation of interval Markov
chains features closed intervals, previous work has considered also open
interval Markov chains, in which the intervals can also be open or half-
open. In this paper we focus on qualitative reachability problems for
open interval Markov chains, which consider whether the optimal (max-
imum or minimum) probability with which a certain set of states can be
reached is equal to 0 or 1. We present polynomial-time algorithms for
these problems for both of the standard semantics of interval Markov
chains. Our methods do not rely on the closure of open intervals, in con-
trast to previous approaches for open interval Markov chains, and can
characterise situations in which probability 0 or 1 can be attained not
exactly but arbitrarily closely.

1 Introduction

The development of modern computer systems can benefit substantially from a
verification phase, in which a formal model of the system is exhaustively ver-
ified in order to identify undesirable errors or inefficiencies. In this paper we
consider the verification of probabilistic systems, in which state-to-state transi-
tions are accompanied by probabilities that specify the relative likelihood with
which the transitions occur, using model-checking techniques; see [1,2,11] for
general overviews of this field. One drawback of classical formalisms for proba-
bilistic systems is that they typically require the specification of exact probability
values for transitions: in practice, it is likely that such precise information con-
cerning the probability of system behaviour is not available. A solution to this
problem is to associate intervals of probabilities with transitions, rather than
exact probability values, leading to interval Markov chains (IMCs) or interval
Markov decision processes. IMCs have been studied in [14,15], and considered in
the qualitative and quantitative model-checking context in [5,6,18]. Qualitative
model checking concerns whether a property is satisfied by the system model
with probability (equal to or strictly greater than) 0 or (equal to or strictly less
than) 1, whereas quantitative model checking considers whether a property is
satisfied with probability above or below some threshold in the interval [0, 1], and

c© Springer Nature Switzerland AG 2018
I. Potapov and P.-A. Reynier (Eds.): RP 2018, LNCS 11123, pp. 146–160, 2018.
https://doi.org/10.1007/978-3-030-00250-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00250-3_11&domain=pdf

Qualitative Reachability for Open Interval Markov Chains 147

s0 s1

(0, 1)

(0, 1)

[1, 1]

Fig. 1. An open IMC O1.

s0 s1 s2

(0, 0.6)

(0.5, 1)

[0, 0.5]
[0.6, 0.8]

(0, 0.2]

[1, 1]

Fig. 2. An open IMC O2.

generally involves the computation of the probability of property satisfaction,
which is then compared to the aforementioned threshold.

In [5,6,18], the intervals associated with transitions are closed. This limita-
tion was adressed in [4], which considered the possibility of utilising open (and
half-open) intervals, in addition to closed intervals. Example of such open IMCs
are shown in Figs. 1 and 2. In [4], it was shown that the probability of the satis-
faction of a property in an open IMC can be approximated arbitrarily closely by
a standard, closed IMC obtained by changing all (half-)open intervals featured
in the model to closed intervals with the same endpoints. However, although
the issue of the determining the existence of exact solutions is mentioned in [4],
closing the intervals can involve the loss of information concerning exact solu-
tions. Take, for example, the open IMC in Fig. 1: changing the intervals from
(0, 1) to [0, 1] on both of the transitions means that the minimum probability
of reaching the state s1 after starting in state s0 becomes 0, whereas the prob-
ability of reaching s1 from s0 is strictly greater than 0 for all ways of assigning
probabilities to the transitions in the original IMC.

In this paper we propose verification methods for qualitative reachability
properties of open IMCs. We consider both of the standard semantics for IMCs.
The uncertain Markov chain (UMC) semantics associated with an IMC comprises
an infinite number of standard Markov chains, each corresponding to a certain
choice of probability for each transition. In contrast, the interval Markov decision
process (IMDP) semantics associates a single Markov decision process (MDP)
with the IMC, where from each state there is available an uncountable number of
distributions, each corresponding to one assignment of probabilities belonging to
the intervals of the transitions leaving that state. The key difference between the
two semantics can be summarised by considering the behaviour from a particular
state of the IMC: in the UMC semantics, the same probability distribution over
outgoing transitions must always be used from the state, whereas in the IMDP
semantics the outgoing probability distribution may change for each visit to the
state. We show that we can obtain exact (not approximate) solutions for both
semantics in polynomial time in the size of the open IMC.

For the UMC semantics, and for three of the four classes of qualitative reach-
ability problem in the IMDP semantics, the algorithms presented are inspired
by methods for finite MDPs. In the case of the IMDP semantics, these algo-
rithms rely on the fact that retaining the memory of previous choices along the
behaviour of an IMC is not necessary. A direct method for the construction of a
finite MDP that represents an IMC and which can be used for the verification of
qualitative properties is the following: the set of states of the finite MDP equals
that of the IMC and, for each state s and each set X of states, there exists a

148 J. Sproston

single distribution from s in the finite MDP that assigns positive probability to
each state in X if and only if there exists at least one probability assignment for
transitions in the IMC that assigns positive probability to each transition from
s with target state in X. Intuitively, a distribution associated with s and X in
the finite MDP can be regarded as the representative distribution of all proba-
bility assignments of the IMC that assign positive probability to the transitions
from s to states in X. However, such a finite MDP construction does not yield
polynomial-time algorithms in the size of the open IMC, because the presence of
transitions having zero as their left endpoint can result in an exponential number
of distributions in the number of IMC transitions. In our methods, apart from
considering issues concerning the difference between closed and open intervals
and the subsequent implications for qualitative reachability problems, we avoid
such an exponential blow up. In particular, we show how the predecessor opera-
tions used by some qualitative reachability algorithms for MDPs can be applied
directly on the open IMC.

The fourth class of reachability problem in the IMDP semantics concerns
determining whether the probability of reaching a certain set of states from
the current state is equal to 1 for all schedulers, where a scheduler chooses an
outgoing probability distribution from a state on the basis of the choices made
so far. For this class of problem, retaining memory of previous choices can be
important for showing that the problem is not satisfied, i.e., that there exists
a scheduler such that the reachability probability is strictly less than 1. As an
example, we can take the open IMC in Fig. 1. Consider the memoryful scheduler
that assigns probability 1

2i to the i-th attempt to take a transition from s0 to s1,
meaning that the overall probability of reaching s1 when starting in s0 under this
scheduler is 1

2 + 1
2 (14 + 3

4 (18 + · · ·)) < 1. Instead a memoryless scheduler will reach
s1 with probability 1: for any λ ∈ (0, 1) representing the (constant) probability
of taking the transition from s0 to s1, the overall probability of reaching s1 is
limk→∞ 1− (1−λ)k = 1. Hence our results for this class of reachability problem
take the inadequacy of memoryless schedulers into account; indeed, while the
algorithms presented for all other classes of problems (and all problems for the
UMC semantics) proceed in a manner similar to that introduced in the literature
for finite MDPs, for this class we present an ad hoc algorithm, based on an
adaptation of the classical notion of end components [9].

After introducing open IMCs in Sect. 2, the algorithms for the UMC seman-
tics and the IMDP semantics are presented in Sects. 3 and 4, respectively. The
proofs of the results can be found in [20].

Related Work. Model checking of qualitative properties of Markov chains (see,
for example, [7,21]) relies on the fact that transition probability values are fixed
throughout the behaviour of the system, and does not require that exact prob-
ability values are taken into account during analysis. The majority of work
on model checking for IMCs considers the more general quantitative prob-
lems: [5,18] present algorithms utilising a finite MDP construction based on
encoding within distributions available from a state the extremal probabilities
allowed from that state (known as the state’s basic feasible solutions). Such a

Qualitative Reachability for Open Interval Markov Chains 149

construction results in an exponential blow up, which is also not avoided in [5] for
qualitative properties (when transitions can have 0 as their left endpoint). [6,17]
improve on these results to present polynomial-time algorithms for reachabil-
ity problems based on linear or convex programming. The paper [12] includes
polynomial-time methods for computing (maximal) end components, and for
computing a single step of value iteration, for interval MDPs. We note that IMCs
are a special case of constraint Markov chains [3], and that the UMC semantics
of IMCs corresponds to a special case of parametric Markov chains [8,16]. As
far as we are aware, only [4] considers open IMCs.

2 Open Interval Markov Chains

Preliminaries. A (probability) distribution over a finite set Q is a function
μ : Q → [0, 1] such that

∑
q∈Q μ(q) = 1. Let Dist(Q) be the set of distributions

over Q. We use support(μ) = {q ∈ Q | μ(q) > 0} to denote the support set of
μ, i.e., the set of elements assigned positive probability by μ, and use {q �→ 1}
to denote the distribution that assigns probability 1 to the single element q.
Given a binary function f : Q × Q → [0, 1] and element q ∈ Q, we denote
by f(q, ·) : Q → [0, 1] the unary function such that f(q, ·)(q′) = f(q, q′) for
each q′ ∈ Q. We let I denote the set of (open, half-open or closed) intervals
that are subsets of [0, 1] and that have rational-numbered endpoints. Given an
interval I ∈ I, we let left(I) (respectively, right(I)) be the left (respectively,
right) endpoint of I. The set of closed (respectively, left-open, right-closed; left-
closed, right-open; open) intervals in I is denoted by I [·,·] (respectively, I(·,·];
I [·,·); I(·,·)). Hence we have I = I [·,·] ∪ I(·,·] ∪ I [·,·) ∪ I(·,·). Furthermore, we
let I〈+,·〉 (respectively, I [0,·〉; I(0,·〉) be the set of intervals in I such that the
left endpoint is positive (respectively, left-closed intervals with the left endpoint
equal to 0; left-open intervals with the left endpoint equal to 0). Finally, let
I〈0,·〉 = I [0,·〉 ∪I(0,·〉 be the set of intervals in I with left endpoint equal to zero.

A discrete-time Markov chain (DTMC) D is a pair (S,P) where S is a set
of states, and P : S × S → [0, 1] is a transition probability matrix, such that, for
each state s ∈ S, we have

∑
s′∈S P(s, s′) = 1. Note that P(s, ·) is a distribution,

for each state s ∈ S. A path of DTMC D is a sequence s0s1 · · · such that
P(si, si+1) > 0 for all i ≥ 0. Given a path ρ = s0s1 · · · and i ≥ 0, we let ρ(i) = si

be the (i + 1)-th state along ρ. The set of paths of D starting in state s ∈ S is
denoted by PathsD(s). In the standard manner (see, for example, [2,11]), given
a state s ∈ S, we can define a probability measure PrD

s over PathsD(s).
A Markov decision process (MDP) M is a pair (S,Δ) where S is a finite set

of states and Δ : S → 2Dist(S) is a transition function such that Δ(s) �= ∅ for all
s ∈ S. We say that an MDP is finite if Δ(s) is finite for all s ∈ S.

A(n infinite) path of an MDP M is a sequence s0μ0s1μ1 · · · such that μi ∈
Δ(si) and μi(si+1) > 0 for all i ≥ 0. Given a path ρ = s0μ0s1μ1 · · · and
i ≥ 0, we let ρ(i) = si be the (i + 1)-th state along ρ. A finite path is a
sequence r = s0μ0s1μ1 · · · μμn−1sn such that μi ∈ Δ(si) and μi(si+1) > 0 for
each 0 ≤ i < n. Let last(r) = sn denote the final state of r. Let PathsM

∗ be the

150 J. Sproston

set of finite paths of the MDP M. Let PathsM(s) and PathsM
∗ (s) be the sets

of infinite paths and finite paths, respectively, of M starting in state s ∈ S.
A scheduler is a mapping σ : PathsM

∗ → Dist(
⋃

s∈S Δ(s)) such that
σ(r) ∈ Dist(Δ(last(r))) for each r ∈ PathsM

∗ . Let ΣM be the set of schedulers
of the MDP M. Given a state s ∈ S and a scheduler σ, we can define a count-
ably infinite-state DTMC Dσ

s that corresponds to the behaviour of the scheduler
σ from state s, which in turn can be used to define a probability measure Prσ

s

over PathsM(s) in the standard manner (see [2,11]). A scheduler σ ∈ ΣM is
memoryless if, for finite paths r, r′ ∈ PathsM

∗ such that last(r) = last(r′), we
have σ(r) = σ(r′). Let ΣM

m be the set of memoryless schedulers of M. Note
that, for a memoryless scheduler σ ∈ ΣM

m , we can construct a finite DTMC
D̃σ = (S, P̃) with P̃(s, s′) =

∑
μ∈Δ(s) σ(s)(μ) · μ(s′): we call this DTMC the

folded DTMC of σ. It can be shown that Prσ
s and PrD̃σ

s assign the same prob-
abilities to measurable sets of paths, because the state s of the DTMC Dσ

s is
probabilistic bisimulation equivalent to the state s of the folded DTMC D̃σ (for
a definition of probabilistic bisimulation and more information on this point,
see [2, Sect. 10.4.2]).

Interval Markov Chains: Syntax. An (open) interval Markov chain (IMC)
O is a pair (S, δ), where S is a finite set of states, and δ : S × S → I is a
interval-based transition function.

In the following, we refer to edges as those state pairs for which the transition
function does not assign the probability 0 point interval [0, 0]. Formally, let the
set of edges E of O be defined as {(s, s′) ∈ S × S | δ(s, s′) �= [0, 0]}. We use edges
to define the notion of path for IMCs: a path of an IMC O is a sequence s0s1 · · ·
such that (si, si+1) ∈ E for all i ≥ 0. Given a path ρ = s0s1 · · · and i ≥ 0, we
let ρ(i) = si be the (i + 1)-th state along ρ. We use PathsO to denote the set of
paths of O, PathsO

∗ to denote the set of finite paths of O, and PathsO(s) and
PathsO

∗ (s) to denote the sets of paths and finite paths starting in state s ∈ S.
Given a state s ∈ S, we say that a distribution a ∈ Dist(S) is an assign-

ment for s if a(s′) ∈ δ(s, s′) for each state s′ ∈ S. We say that the IMC
O is well formed if there exists at least one assignment for each state. Note
that an assignment for state s ∈ S exists if and only if the following condi-
tions hold: (1a)

∑
s′∈S left(δ(s, s′)) ≤ 1, (1b)

∑
s′∈S left(δ(s, s′)) = 1 implies

that δ(s, s′) is left-closed for all s′ ∈ S, (2a)
∑

s′∈S right(δ(s, s′)) ≥ 1, and
(2b)

∑
s′∈S right(δ(s, s′)) = 1 implies that δ(s, s′) is right-closed for all s′ ∈ S.

We henceforth consider IMCs that are well formed. We define the size of an IMC
O = (S, δ) as the size of the representation of δ, which is the sum over all states
s, s′ ∈ S of the binary representation of the endpoints of δ(s, s′), where rational
numbers are encoded as the quotient of integers written in binary.

Interval Markov Chains: Semantics. IMCs are typically presented with
regard to two semantics, which we consider in turn. Given an IMC O = (S, δ),
the uncertain Markov chain (UMC) semantics of O, denoted by [O]U, is the

Qualitative Reachability for Open Interval Markov Chains 151

smallest set of DTMCs such that (S,P) ∈ [O]U if, for each state s ∈ S, the
distribution P(s, ·) is an assignment for s. The interval Markov decision process
(IMDP) semantics of O, denoted by [O]I, is the MDP (S,Δ) where, for each
state s ∈ S, we let Δ(s) be the set of assignments for s.

Reachability. Let O = (S, δ) be an IMC and let T ⊆ S be a set of states.
We define Reach(T) ⊆ PathsO to be the set of paths of O that reach at least
one state in T . Formally, Reach(T) = {ρ ∈ PathsO | ∃i ∈ N.ρ(i) ∈ T}. In the
following we assume without loss of generality that states in T are absorbing in
all the IMCs that we consider, i.e., δ(s, s) = [1, 1] for all states s ∈ T .

Edge Sets. Let O = (S, δ) be an IMC. Let s ∈ S be a state of
O, and let E(s) = {(s, s′) ∈ E | s′ ∈ S} be the set of edges of O with
source s. Let � ∈ {[·, ·], (·, ·], [·, ·), (·, ·), 〈+, ·〉, [0, ·〉, (0, ·〉, 〈0, ·〉}, and let E� =
{(s, s′) ∈ E | δ(s, s′) ∈ I�}. Given X ⊆ S, and given s and � as defined above,
let E(s,X) = {(s, s′) ∈ E(s) | s′ ∈ X} and E�(s,X) = E(s,X) ∩ E�.

Valid Edge Sets. We are interested in identifying the sets of edges from state
s ∈ S that result from assignments. Such a set is characterised by two syntactic
conditions: the first condition requires that the sum of the upper bounds of the
set’s edges’ intervals is at least 1, whereas the second condition specifies the
edges from state s that are not included in the set can be assigned probability
0. Formally, we say that a non-empty subset B ⊆ E(s) of edges from s is large
if either (a)

∑
e∈B right(δ(e)) > 1 or (b)

∑
e∈B right(δ(e)) = 1 and B ⊆ E〈·,·].

The set B is realisable if E(s)\B ⊆ E[0,·〉. Then we say that B ⊆ E(s) is valid
if it is large and realisable. The following lemma specifies that a valid edge set
for state s characterises exactly the support sets of some assignments for s.

Lemma 1. Let s ∈ S and B ⊆ E(s). Then B is valid if and only if there exists
an assignment a for s such that {(s, s′) | s′ ∈ support(a)} = B.

A consequence of Lemma 1 is that, because we consider only well-formed
IMCs, there exists at least one valid subset of outgoing edges from each state.

For each state s ∈ S, we let V alid(s) = {B ⊆ E(s) | B is valid}. Note that,
in the worst case (when all edges in E(s) are associated with intervals [0, 1]),
|V alid(s)| = 2|E(s)| − 1. Let V alid =

⋃
s∈S V alid(s) be the set of valid sets

of the IMC. Given a valid set B ∈ V alid, we let V alidAssign(B) be the
set of assignments a that witness Lemma 1, i.e., all assignments a such that
{(s, s′) | s′ ∈ support(a)} = B. A witness assignment function w : V alid →
Dist(S) assigns to each valid set B ∈ V alid an assignment from V alidAssign(B).

Example 1. For the state s1 of the IMC O2 of Fig. 2, the valid edge sets are B1 =
{(s1, s0), (s1, s1), (s1, s2)} and B2 = {(s1, s0), (s1, s2)}, reflecting the intuition
that the edge (s1, s1) can be assigned (exactly) probability 0. Note that reducing
the right endpoint of (s1, s0) to 0.7 would result in B1 being the only valid set

152 J. Sproston

associated with s1, because B2 would not be large. An example of a witness
assignment function w for state s1 of O2 is w(B1)(s0) = 0.7, w(B1)(s1) = 0.12
and w(B1)(s2) = 0.18, and w(B2)(s0) = 0.8 and w(B2)(s2) = 0.2.

Qualitative MDP Abstractions. The qualitative MDP abstraction of O with
respect to witness assignment function w is the MDP [O]w = (S,Δw), where Δw

is defined by Δw(s) = {w(B) | B ∈ V alid(s)} for each state s ∈ S.

3 Qualitative Reachability: UMC Semantics

Qualitative reachability problems can be classified into four categories, depend-
ing on whether the probability of reaching the target set T is 0 or 1 for some or
for all ways of assigning probabilities to intervals. For the UMC semantics, we
consider the computation of the following sets:

– S0,U
∀ = {s ∈ S | ∀D ∈ [O]U .PrD

s (Reach(T)) = 0};
– S0,U

∃ = {s ∈ S | ∃D ∈ [O]U .PrD
s (Reach(T)) = 0};

– S1,U
∃ = {s ∈ S | ∃D ∈ [O]U .PrD

s (Reach(T)) = 1};
– S1,U

∀ = {s ∈ S | ∀D ∈ [O]U .PrD
s (Reach(T)) = 1}.

The remainder of this section is dedicated to showing the following result.

Theorem 1. The sets S0,U
∀ , S0,U

∃ , S1,U
∃ and S1,U

∀ can be computed in polynomial
time in the size of the IMC.

Computation of S0,U
∀ . The case for S0,U

∀ is straightforward. We compute the
state set S\S0,U

∀ = {s ∈ S | ∃D ∈ [O]U .PrD
s (Reach(T)) > 0}, which reduces to

reachability on the graph of the IMC according to the following lemma.

Lemma 2. Let s ∈ S. There exists D ∈ [O]U such that PrD
s (Reach(T)) > 0 if

and only if there exists a path r ∈ PathsO
∗ (s) such that last(r) ∈ T .

Hence the set S0,U
∀ is equal to the complement of the set of states from which

there exists a path reaching T in the graph of the IMC (that is, the graph
(S,E)). Given that the latter set of states can be computed in polynomial time,
we conclude that S0,U

∀ can be computed in polynomial time.

Computation of S0,U
∃ . We show that S0,U

∃ can be obtained by computing the
set of states from which there exists a scheduler for which T is reached with
probability 0 in the qualitative MDP abstraction [O]w = (S,Δw) of O with
respect to some (arbitrary) witness assignment function w.

First we establish that the set of states of [O]w for which there exists a
scheduler such that T is reached with probability 0 (respectively, probability 1)
is equal to the set of states of O for which there exists a DTMC in [O]U such
that T is reached with probability 0 (respectively, probability 1).

Qualitative Reachability for Open Interval Markov Chains 153

Lemma 3. Let s ∈ S, 	
∈ {<,=, >} and λ ∈ {0, 1}. There exists D ∈ [O]U
such that PrD

s (Reach(T)) 	
 λ if and only if there exists a scheduler σ ∈ Σ[O]w

such that Prσ
s (Reach(T)) 	
 λ.

In particular, Lemma3 allows us to reduce the problem of computing
S0,U

∃ to that of computing the set {s ∈ S | ∃σ ∈ Σ[O]w .Prσ
s (Reach(T)) = 0}

on [O]w. As in the case of standard finite MDP techniques (see [11]),
we proceed by computing the complement of this set, i.e., we compute
the set {s ∈ S | ∀σ ∈ Σ[O]w .Prσ

s (Reach(T)) > 0}. For a set X ⊆ S, let
CPre(X) = {s ∈ S | ∃μ ∈ Δw(s) . support(μ) ⊆ X} be the set of states for
which there exists a distribution such that all states assigned positive prob-
ability by the distribution are in X. Furthermore, we let CPre(X) =
{s ∈ S | ∀μ ∈ Δw(s) . support(μ) ∩ X �= ∅} be the dual of the CPre operator (i.e.,
CPre(X) = S\CPre(S\X)), that is the set of states from which it is inevitable
to make a transition to X with positive probability. The standard algorithm for
computing the set of states of a finite MDP for which all schedulers are such that
a set T of target states is reached with probability strictly greater than 0 oper-
ates in the following way: starting from X0 = T , we let Xi+1 = Xi ∪ CPre(Xi)
for progressively larger values of i ≥ 0, until we reach a fixpoint (that is, until we
obtain Xi∗+1 = Xi∗ for some i∗). However, a direct application of this algorithm
to [O]w would result in an exponential-time algorithm, given that the size of the
transition function Δw of [O]w may be exponential in the size of O. For this
reason, we propose an algorithm that operates directly on the IMC O, without
needing the explicit construction of [O]w. We proceed by establishing that CPre
can be implemented in polynomial time in the size of O.

Lemma 4. Let s ∈ S and X ⊆ S. Then s ∈ CPre(X) if and only if
(1) E(s, S\X) ⊆ E[0,·〉, and (2) E(s,X) is large. The set CPre(X) can be com-
puted in polynomial time in the size of the IMC O.

The intuition underlying Lemma4 is that conditions (1) and (2) encode real-
isibility and largeness, i.e., validity, of edge set E(s,X). From Lemma 1, their
satisfaction means that there exists a distribution in Δw(s) with support set
equal to the set of target states of edges in E(s,X). We consider the largest
edge set with target states in X, i.e., E(s,X), because taking smaller edge sets
with targets in X would make the conditions (1) and (2) more difficult to satisfy.

The final part of Lemma 4 follows from the fact that conditions (1) and
(2) in Lemma 4 can be checked in polynomial time in the size of O. Hence
our algorithm avoids the construction of the qualitative MDP abstraction
[O]w, and instead consists of direct computation of the sets X0 = T and
Xi+1 = Xi ∪ S\CPre(S\Xi) for increasing indices i until a fixpoint is reached.
Given that a fixpoint must be reached within |S| steps, and the computation of
CPre(Xi) can be done in polynomial time in the size of O, we have that the set
{s ∈ S | ∀σ ∈ Σ[O]w .Prσ

s (Reach(T)) > 0} can be computed in polynomial time
in the size of O. The complement of this set is equal to S0,U

∃ , as established by
Lemma 3, and hence we can compute S0,U

∃ in polynomial time in the size of O.

154 J. Sproston

Computation of S1,U
∃ . We proceed in a manner analogous to that for

the case of S0,U
∃ . First we note that, by Lemma 3, we have that S1,U

∃ is
equal to the set of states of [O]w such that there exists a scheduler for
which T is reached with probability 1. Hence, our aim is to compute the set
{s ∈ S | ∃σ ∈ Σ[O]w .Prσ

s (Reach(T)) = 1} on [O]w. We recall the standard algo-
rithm for the computation of this set on finite MDPs [9,10]. Given state sets
X,Y ⊆ S, we let

APre(Y,X) = {s ∈ S | ∃μ ∈ Δw(s) . support(μ) ⊆ Y ∧ support(μ) ∩ X �= ∅}
be the set of states for which there exists a distribution such that all states
assigned positive probability by the distribution are in Y and there exists a state
assigned positive probability by the distribution that is in X. The standard algo-
rithm proceeds by setting Y0 = S and X0

0 = T . Then the sequence X0
0 ,X0

1 , · · · is
computed by letting X0

i0+1 = X0
i0

∪APre(Y0,X
0
i0

) for progressively larger indices
i0 ≥ 0 until a fixpoint is obtained, that is, until we obtain X0

i∗
0+1 = X0

i∗
0

for some
i∗0. Next we let Y1 = X0

i∗
0
, X1

0 = T and compute X1
i1+1 = X1

i1
∪ APre(Y1,X

1
i1

)
for larger i1 ≥ 0 until a fixpoint X1

i∗
1

is obtained. Then we let Y2 = X1
i∗
1

and
X2

0 = T , and repeat the process. We terminate the algorithm when a fixpoint is
reached in the sequence Y0, Y1, · · · .1 The algorithm requires at most |S|2 calls to
APre. In an analogous manner to CPre in the case of S0,U

∃ , we show that APre
can characterised by efficiently checkable conditions on O.

Lemma 5. Let s ∈ S and let X,Y ⊆ S. Then s ∈ APre(Y,X) if and only if
(1) E(s,X ∩ Y) �= ∅, (2) E(s, S\Y) ⊆ E[0,·〉, and (3) E(s, Y) is large. The set
APre(Y,X) can be computed in polynomial time in the size of the IMC O.

The intuition underlying Lemma5 is similar to that of Lemma 4.
Hence we obtain an overall polynomial-time algorithm for computing

{s ∈ S | ∃σ ∈ Σ[O]w .Prσ
s (Reach(T)) = 1} which, from Lemma 3, equals S1,U

∃ .

S1,U
∀ . We recall the standard algorithm for determining the set of states for which

all schedulers reach a target set with probability 1 on a finite MDP (see [11]):
from the set of states of the MDP, we first remove states from which the target
state can be reached with probability 0 (for some scheduler), then successively
remove states for which it is possible to reach a previously removed state with
positive probability. For each of the remaining states, there exists a scheduler
that can reach the target set with probability 1.

We propose an algorithm for IMCs that is inspired by this standard algorithm
for finite MDPs. Our aim is to compute the complement of S1,U

∀ , i.e., the state
set S\S1,U

∀ = {s ∈ S | ∃D ∈ [O]U .PrD
s (Reach(T)) < 1}.

Lemma 6. Let s ∈ S. There exists D ∈ [O]U such that PrD
s (Reach(T)) < 1 if

and only if there exists a path r ∈ PathsO
∗ (s) such that last(r) ∈ S0,U

∃ .

1 Readers familiar with μ-calculus will observe that the algorithm can be expressed
using the term νY . μX(T ∪ APre(Y, X)) [10].

Qualitative Reachability for Open Interval Markov Chains 155

Hence the set S1,U
∀ can be computed by taking the complement of the set of

states for which there exists a path to S0,U
∃ in the graph of O. Given that S0,U

∃ ,
and the set of states reaching S0,U

∃ , can be computed in polynomial time, we
have obtained a polynomial-time algorithm for computing S1,U

∀ . Together with
the cases for S0,U

∀ , S0,U
∃ and S1,U

∃ , this establishes Theorem 1.

4 Qualitative Reachability: IMDP Semantics

We now focus on the IMDP semantics, and consider the computation of the
following sets:

– S0,I
∀ = {s ∈ S | ∀σ ∈ Σ[O]I .Prσ

s (Reach(T)) = 0};
– S0,I

∃ = {s ∈ S | ∃σ ∈ Σ[O]I .Prσ
s (Reach(T)) = 0};

– S1,I
∃ = {s ∈ S | ∃σ ∈ Σ[O]I .Prσ

s (Reach(T)) = 1};
– S1,I

∀ = {s ∈ S | ∀σ ∈ Σ[O]I .Prσ
s (Reach(T)) = 1}.

This section will be dedicated to showing the following result. We note that
the cases for S0,I

∀ , S0,I
∃ and S1,I

∃ proceed in a manner similar to the UMC case
(using either graph reachability or reasoning based on the qualitative MDP
abstraction); instead the case for S1,I

∀ requires substantially different techniques.

Theorem 2. The sets S0,I
∀ , S0,I

∃ , S1,I
∃ and S1,I

∀ can be computed in polynomial
time in the size of the IMC.

Computation of S0,I
∀ . As in the case of UMCs, the computation of S0,I

∀ reduces
to straightforward reachability analysis on the graph of the IMC O. The cor-
rectness of the reduction is based on the following lemma.

Lemma 7. Let s ∈ S. There exists σ ∈ Σ[O]I such that Prσ
s (Reach(T)) > 0 if

and only if there exists a path r ∈ PathsO
∗ (s) such that last(r) ∈ T .

Therefore, to obtain S0,I
∀ , we proceed by computing the state set S\S0,I

∀ =
{s ∈ S | ∃σ ∈ Σ[O]I .Prσ

s (Reach(T)) > 0}, which reduces to reachability on the
graph of the IMC according to Lemma7, and then taking the complement.

Computation of S0,I
∃ and S1,I

∃ . In the following we fix an arbitrary witness
assignment function w of O. Lemma 8 establishes that S0,I

∃ (respectively, S1,I
∃)

equals the set of states of the qualitative MDP abstraction [O]w with respect to
w for which there exists some scheduler such that T is reached with probability
0 (respectively, probability 1).

Lemma 8. Let s ∈ S and λ ∈ {0, 1}. There exists σ ∈ Σ[O]I such that
Prσ

s (Reach(T)) = λ if and only if there exists a scheduler σ′ ∈ Σ[O]w such that
Prσ′

s (Reach(T)) = λ.

156 J. Sproston

Given that we have shown in Sect. 3 that the set of states of the qualita-
tive MDP abstraction [O]w for which there exists some scheduler such that T
is reached with probability 0 (respectively, probability 1) can be computed in
polynomial time in the size of O, we obtain polynomial-time algorithms for com-
puting S0,I

∃ (respectively, S1,I
∃).

Computation of S1,I
∀ . This case is notably different from the other three cases

for the IMDP semantics, because schedulers that are not memoryless may influ-
ence whether a state is included in S1,I

∀ . In particular, we recall the example of
the IMC of Fig. 1: as explained in Sect. 1, we have s0 �∈ S1,I

∀ . In contrast, we
have s0 ∈ S1,U

∀ , and s0 would be in S1,I
∀ if we restricted the IMDP semantics to

memoryless (actually finite-memory, in this case) schedulers. For this reason, a
qualitative MDP abstraction is not useful for computing S1,I

∀ , because it is based
on the use of witness assignment functions that assign constant probabilities to
sets of edges available from states: on repeated visits to a state, the (finite) set
of available distributions remains the same in a qualitative MDP abstraction.
Therefore we require alternative analysis methods that are not based on the
qualitative MDP abstraction. Our approach is based on the notion of end com-
ponents, which is a standard concept in the field of MDP verification [9]. In this
section we introduce an alternative notion of end components, defined solely in
terms of states of the IMC, which characterises situations in which the IMC
can confine its behaviour to certain state sets with positive probability in the
IMDP semantics (for example, the IMC of Fig. 1 can confine itself to state s0
with positive probability in the IMDP semantics).

An IMC-level end component (ILEC) is a set C ⊆ S of states that is strongly
connected and such that the total probability assigned to edges that have a source
state in C but a target state outside of C can be made to be arbitrarily small
(note that such edges must have an interval with a left endpoint of 0). Formally,
C ⊆ S is an ILEC if, for each state s ∈ C, we have (1) E〈+,·〉(s, S\C) = ∅,
(2)

∑
e∈E(s,C) right(δ(e)) ≥ 1, and (3) the graph (C,E ∩ (C × C)) is strongly

connected.

Example 2. In the IMC O1 of Fig. 1, the set {s0} is an ILEC: for condition (1),
the edge (s0, s1) (the only edge in E(s0, S\{s0})) is not in E〈+,·〉, and, for con-
dition (2), we have right(δ(s0, s1)) = 1. In the IMC O2 of Fig. 2, the set {s0, s1}
is an ILEC: for condition (1), the only edge leaving {s0, s1} has 0 as its left end-
point, i.e., δ(s1, s2) = (0, 0.2], hence E〈+,·〉(s0, {s2}) = E〈+,·〉(s1, {s2}) = ∅;
for condition (2), we have right(δ(s0, s0)) + right(δ(s0, s1)) = 1.6 ≥ 1 and
right(δ(s1, s0)) + right(δ(s1, s1)) = 1.3 ≥ 1. In both cases, the identified sets
clearly induce strongly connected subgraphs, thus satisfying condition (3).

Remark 1. Both conditions (1) and (2) are necessary to ensure that the proba-
bility of leaving C in one step can be made arbitrarily small. Consider an IMC
with state s ∈ C such that E(s, C) = {e1} and E(s, S\C) = {e2, e3}, where
δ(e1) = [0.6, 0.8], δ(e2) = [0, 0.2] and δ(e3) = [0, 0.2]. Then condition (1) holds
but condition (2) does not: indeed, at least total probability 0.2 must be assigned

Qualitative Reachability for Open Interval Markov Chains 157

to the edges (e2 and e3) that leave C. Now consider an IMC with state s ∈ C
such that E(s, C) = {e1, e2} and E(s, S\C) = {e3}, where δ(e1) = [0, 0.5],
δ(e2) = [0, 0.5] and δ(e3) = [0.1, 0.5]. Then condition (2) holds (because the
sum of the right endpoints of the intervals associated with e1 and e2 is equal
to 1), but condition (1) does not (because the interval associated with e3 speci-
fies that probability at least 0.1 must be assigned to leaving C). Note also that
if E(s, C) ⊆ E[·,·) ∪ E(·,·) (all edges in E(s, C) have right-open intervals) and∑

e∈E(s,C) right(δ(e)) = 1, there must exist a least one edge in E(s, S\C) by well
formedness.

Let I be the set of ILECs of O. We say that an ILEC C ∈ I is maximal if
there does not exist any C ′ ∈ I such that C ⊂ C ′. For a path ρ ∈ Paths[O]I(s),
let infst(ρ) ⊆ S be the states that appear infinitely often along ρ, i.e., for ρ =
s0μ0s1μ1 · · · , we have infst(ρ) = {s ∈ S | ∀i ∈ N .∃j > i . sj = s}. We present a
result for ILECs that is analogous to the fundamental theorem of end components
of [9]: the result specifies that, with probability 1, a scheduler of the IMDP
semantics of O must confine itself to an ILEC.

Lemma 9. For s ∈ S and σ ∈ Σ[O]I , we have Prσ
s ({ρ | infst(ρ) ∈ I}) = 1.

We now show that there exists a scheduler that, from a state within an ILEC,
can confine the IMC to the ILEC with positive probability. This result is the
ILEC analogue of a standard result for end components of finite MDPs that
specifies that there exists a scheduler that, from a state of an end component,
can confine the MDP to the end component with probability 1 (see [2,9]). In
the case of IMCs and ILECs, it is not possible to obtain an analogous result
for probability 1; in the example of Fig. 1, the singleton set {s0} is an ILEC,
but it is not possible to find a scheduler that remains in s0 with probability 1,
because with each transition the IMC goes to s1 with positive probability. For
our purposes, it is sufficient to have a result stating that, from an ILEC, the
IMC can be confined to the ILEC with positive probability.

Lemma 10. Let C ∈ I and s ∈ C. There exists σ ∈ Σ[O]I such that
Prσ

s ({ρ | ρ �∈ Reach(S\C) ∧ infst(ρ) = C}) > 0.

The key point of the proof of Lemma10 is the definition of a scheduler that
assigns progressively decreasing probability to all edges in E〈0,·〉 that leave ILEC
C, in such a way as to guarantee that the IMC is confined in C with positive
probability. This is possible because condition (2) of the definition of ILECs
specifies that there is no lower bound on the probability that must be assigned to
edges that leave C. Furthermore, the scheduler is defined so that the remaining
probability at each step that is assigned between all edges that stay in C is
always no lower than some fixed lower bound; this characteristic of the scheduler,
combined with the fact that we remain in C with positive probability and the
fact that C is strongly connected, means that we visit all states of C with positive
probability under the defined scheduler.

158 J. Sproston

Let U¬T =
⋃{C ∈ I | C ∩ T = ∅} be the union of states of ILECs that do

not contain states in T . Using Lemmas 9 and 10 in a standard way, we can show
that the existence of a scheduler of [O]I that reaches T with probability strictly
less than 1 is equivalent to the existence of a path in the graph of O that reaches
U¬T .

Proposition 1. Let s ∈ S. There exists σ ∈ Σ[O]I such that Prσ
s (Reach(T)) < 1

if and only if there exists a finite path r ∈ PathsO
∗ (s) such that last(r) ∈ U¬T .

Hence we identify the set S1,I
∀ by computing the complement of S1,I

∀ , i.e.,
the set S\S1,I

∀ = {s ∈ S | ∀σ ∈ Σ[O]I .Prσ
s (Reach(T)) < 1}. Using Proposition 1,

this set can be computed by considering reachability on the graph of O of the
set U¬T . The set U¬T can be computed in polynomial time in the size of O
in a manner similar to the computation of maximal end components of MDPs
(see [2,9]). First we compute all strongly connected components (C1, E ∩ (C1 ×
C1)), · · · , (Cm, E ∩ (Cm × Cm)) of the graph (S\T,E ∩ ((S\T) × (S\T))) of O.
Then, for each 1 ≤ i ≤ m, we remove from Ci all states for which conditions
(1) or (2) in the definition of ILECs do not hold with respect to Ci (these
conditions can be checked in polynomial time for each state), to obtain the
state set C ′

i. Next, we compute the strongly connected components of the graph
(C ′

i, E ∩ (C ′
i ×C ′

i)), and for each of these, repeat the procedure described above.
We terminate the algorithm when it is not possible to remove a state (via a
faliure to satisfy a least one of the conditions (1) and (2) in the definition of
ILECs) from any generated strongly connected component. The generated state
sets of the strongly connected components obtained will be be the maximal
ILECs that do not contain any state in T , and their union is U¬T . Hence the
overall algorithm for computing S1,I

∀ is in polynomial time in the size of O.

5 Conclusion

We have presented algorithms for qualitative reachability properties for open
IMCs. In the context of qualitative properties of system models with fixed prob-
abilities on their transitions, probability can be regarded as imposing a fairness
constraint, i.e., paths for which a state is visited infinitely often and one of its
successors is visited only finitely often have probability 0. In open IMCs, the
possibility to make the probability of a transition converge to 0 in the IMDP
semantics captures a different phenomenon, which is key for problems concern-
ing the minimum reachability probability being compared to 1. We conjecture
that finite-memory strategies are no more powerful than memoryless strategies
for this class of problem. For the three other classes of qualitative reachability
problems, we have shown that the UMC and IMDP semantics coincide. We note
that the algorithms presented in this paper require some numerical computa-
tion (a sum and a comparison of the result with 1 in the CPre, APre and ILEC
computations), but these operations are simpler than the polynomial-time solu-
tions for quantitative properties of (closed) IMCs in [6,17]. Similarly, the CPre
and APre operators are simpler than the polynomial-time step of value iteration

Qualitative Reachability for Open Interval Markov Chains 159

used in the context of quantitative verification of [12]. For the IMDP semantics,
our methods give directly a P-complete algorithm for the qualitative fragment
of the temporal logic Pctl [13]. Future work could consider quantitative prop-
erties and ω-regular properties, and applying the results to develop qualitative
reachability methods for interval Markov decision processes or for higher-level
formalisms such as clock-dependent probabilistic timed automata [19].

References

1. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilis-
tic systems. Handbook of Model Checking, pp. 963–999. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 28

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.:
Constraint Markov chains. Theor. Comput. Sci. 412(34), 4373–4404 (2011)

4. Chakraborty, S., Katoen, J.-P.: Model checking of open interval Markov chains. In:
Gribaudo, M., Manini, D., Remke, A. (eds.) ASMTA 2015. LNCS, vol. 9081, pp.
30–42. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18579-8 3

5. Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking ω-regular properties of
interval Markov chains. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp.
302–317. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-
9 22

6. Chen, T., Han, T., Kwiatkowska, M.: On the complexity of model checking interval-
valued discrete time Markov chains. Inf. Process. Lett. 113(7), 210–216 (2013)

7. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

8. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0 21

9. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford
University, Department of Computer Science (1997)

10. Alfaro, L.: Computing minimum and maximum reachability times in probabilistic
systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 66–81. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48320-9 7

11. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

12. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2018)

13. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

14. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: 1991 Proceedings of LICS, pp. 266–277. IEEE Computer Society (1991)

15. Kozine, I.O., Utkin, L.V.: Interval-valued finite Markov chains. Reliable Comput.
8(2), 97–113 (2002)

16. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition
systems for system design and analysis. Formal Aspects Comput. 19(1), 93–109
(2007)

https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-18579-8_3
https://doi.org/10.1007/978-3-540-78499-9_22
https://doi.org/10.1007/978-3-540-78499-9_22
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/3-540-48320-9_7
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3

160 J. Sproston

17. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 35

18. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the pres-
ence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 394–410. Springer, Heidelberg (2006). https://doi.org/10.1007/
11691372 26

19. Sproston, J.: Probabilistic timed automata with clock-dependent probabilities. In:
Hague, M., Potapov, I. (eds.) RP 2017. LNCS, vol. 10506, pp. 144–159. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67089-8 11

20. Sproston, J.: Qualitative reachability for open interval Markov chains. CoRR (2018)
21. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs.

In: 1985 Proceedings of FOCS, pp. 327–338. IEEE Computer Society (1985)

https://doi.org/10.1007/978-3-642-39799-8_35
https://doi.org/10.1007/11691372_26
https://doi.org/10.1007/11691372_26
https://doi.org/10.1007/978-3-319-67089-8_11

Author Index

Alexandre dit Sandretto, Julien 1

Bensalem, Saddek 30
Boneva, Iovka 117

Cook, Matthew 103

Day, Joel D. 15
de Oliveira, Steven 30

Ganesh, Vijay 15

Habermehl, Peter 30
Hague, Matthew 45
He, Paul 15

Jančar, Petr 59

Lisitsa, Alexei 75
Lohrey, Markus 87

Manea, Florin 15

Neary, Turlough 103
Niehren, Joachim 117
Nowotka, Dirk 15

Osička, Petr 59

Penelle, Vincent 45
Prevosto, Virgile 30

Sakho, Momar 117
Sawa, Zdeněk 59
Skrzypczak, Michał 133
Sproston, Jeremy 146

Wan, Jian 1

	Preface
	Organization
	Abstracts of Invited Talks
	On the Computational Complexity of Solving Ordinary Differential Equations
	Reachability in Cyber-Physical Systems
	Universal Trees and Quasi-Polynomial Algorithms for Solving Parity Games
	A Counterexample to Thiagarajan’s Conjecture on Regular Event Structures
	Safety Verification for Deep Neural Networks with Provable Guarantees (Extended Abstract)
	Contents
	Reachability Analysis of Nonlinear ODEs Using Polytopic Based Validated Runge-Kutta
	1 Introduction
	2 Zonotopic Based Validated Runge-Kutta
	2.1 Initial Value Problem
	2.2 Validated Runge-Kutta
	2.3 Affine Arithmetic
	2.4 Zonotopes
	2.5 Scheme with Affine Arithmetic
	2.6 If Integration Fails

	3 Polytope Geometry
	3.1 Represent a Polytope Exactly by the Intersection of Zonotopes
	3.2 Bisect a Polytope

	4 Nonlinear ODE Reachability of Polytopes
	4.1 Principle
	4.2 Examples

	5 Conclusion
	References

	The Satisfiability of Word Equations: Decidable and Undecidable Theories
	1 Introduction
	2 Preliminaries
	3 Results
	3.1 Undecidability Results
	3.2 Quantifier Alternation
	3.3 Decidability with Restricted Form

	References

	Left-Eigenvectors Are Certificates of the Orbit Problem
	1 Introduction
	2 Setting
	3 Invariants by Generalized Eigenvectors
	3.1 Certificate Sets of the Rational Orbit Problem
	3.2 General Existence of a Certificate for the Integer Orbit Problem

	4 Conclusion and Future Work
	References

	Constrained Dynamic Tree Networks
	1 Introduction
	1.1 Related Work

	2 Alternating Transition System
	3 Constrained Dynamic Tree Networks
	3.1 Stability Constraint
	3.2 Automaton

	4 Backwards Reachability
	4.1 The Automaton Ap
	4.2 From Constraints over P to Constraints over Qp
	4.3 Closed Set of Constraints
	4.4 Constructing A'

	5 Correctness
	5.1 Soundness
	5.2 Completeness

	6 Conclusion
	References

	EXPSPACE-Complete Variant of Countdown Games, and Simulation on Succinct One-Counter Nets
	1 Introduction
	2 Basic Definitions
	3 EXPSPACE-Completeness of Existential Countdown Games
	4 Reachability Game Reduces to (Bi)simulation Game
	4.1 Reduction in a General Framework
	4.2 SOCNRG Reduces to Behavioural Relations on SOCNs

	5 Additional Remarks
	References

	Revisiting MU-Puzzle. A Case Study in Finite Countermodels Verification
	1 MIU System and MU Puzzle
	2 First-Order Logic Encoding and Disproving for MIU
	2.1 Assumptions on Model Building Procedure
	2.2 Exact Invariant by Model Building
	2.3 Variations: Symmetric MIU Problem

	3 String Rewriting and Regular Invariants
	4 Conclusion
	References

	Knapsack in Hyperbolic Groups
	1 Introduction
	2 General Notations
	3 Hyperbolic Groups
	4 Knapsack Problems
	5 Complexity of Knapsack in Hyperbolic Groups
	6 Hyperbolic Groups Are Knapsack-Semilinear
	6.1 Knapsack Expressions of Depth Two
	6.2 Reduction to Quasi-geodesic Knapsack Expressions
	6.3 Proof of Theorem7

	7 More Groups with Knapsack in LogCFL
	8 Conclusion
	References

	Generalized Tag Systems
	1 Introduction
	2 Preliminaries
	2.1 Generalized Tag Systems
	2.2 Restrictions of Generalized Tag Systems

	3 Simulating Generalized Tag Systems in Linear Time
	4 Relative Prime Tag Systems and the Impossibility of Linear Time Simulation Using Simple Encodings
	References

	Certain Query Answering on Compressed String Patterns: From Streams to Hyperstreams
	1 Introduction
	2 Preliminaries
	3 Compressed String Patterns
	4 Regular Pattern Inclusion and Matching
	5 Defining Queries by Automata
	6 Certain Query Answers and Non-answers
	7 Certain Query Answering and Non-answering
	8 Conclusion
	References

	Büchi VASS Recognise 11-complete -languages
	1 Preliminary Notions
	2 Hardness for Two Counters
	3 Representation of IFpre
	4 Hardness for One Counter
	5 Inherent Non-determinism
	6 Concluding Remarks
	References

	Qualitative Reachability for Open Interval Markov Chains
	1 Introduction
	2 Open Interval Markov Chains
	3 Qualitative Reachability: UMC Semantics
	4 Qualitative Reachability: IMDP Semantics
	5 Conclusion
	References

	Author Index

