
Latency and Lifetime Optimization
for k-Anycast Routing Algorithm

in Wireless Sensor Networks

Lucas Leão(B) and Violeta Felea

FEMTO-ST Institute, University of Bourgogne Franche-Comté, CNRS,
DISC, 16 route de Gray, 25030 Besançon, France

{lucas.leao,violeta.felea}@femto-st.fr

Abstract. Wireless Sensor Network (WSN) applications frequently
require different objectives, such as reliability, timely communication and
longevity. To cope with that, a WSN can be conceived with multiple sinks
and routing protocols designed over different communication schemes.
In this paper, we address the communication latency and the network
lifetime issues in Multi-Sink WSN deployment. We propose GeoK, a k-
anycast geographic routing protocol that considers a linear combination
of network metrics during the decision process of the next hop. Pack-
ets are forwarded over exactly k sinks, with targets and duplications
being defined on the fly. Simulation results show a better performance for
GeoK, with improvements of approximately 13% for the average latency,
and 30% for the maximum energy consumption, compared to existing
work.

Keywords: Wireless Sensor Networks · Routing · k-anycast
Latency · Network lifetime · Geographic routing

1 Introduction

The Multi-Sink Wireless Sensor Network (MS-WSN) is a particular case of the
WSN containing multiple sinks. Compared to Single Sink solutions, the use of
several sinks normally leads to better network performance. On top of that, it
also improves the network manageability, providing more flexibility and conti-
nuity [8]. By increasing the number of sinks, the number of hops a packet has
to travel before reaching any of the sinks is decreased. It has a direct impact on
the performance of metrics such as energy consumption and latency.

There are different communication schemes in MS-WSN implementations.
Unicast: a path towards one of the sinks is defined and reused for future com-
munications. Anycast: data is addressed to a group of sinks. It can be 1-anycast,
when data is forwarded to anyone of the sinks, or k-anycast when data must reach
any k sinks. Multicast: information is routed towards all sinks.

The k-anycast is a flexible communication scheme. A k-anycast routing pro-
tocol may behave as 1-anycast routing solution when k = 1 or even as a multicast
c© Springer Nature Switzerland AG 2018
N. Montavont and G. Z. Papadopoulos (Eds.): ADHOC-NOW 2018, LNCS 11104, pp. 39–50, 2018.
https://doi.org/10.1007/978-3-030-00247-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00247-3_4&domain=pdf

40 L. Leão and V. Felea

routing protocol when k equals the number of all sinks. However, the complexity
of the algorithm increases, specially when the target sinks and duplications are
decided on the fly, during the packet forwarding. In those cases, the packet is not
addressed to one specific sink, but to a group of sinks, and the final destination
is decided on the way based on the network metrics at each hop.

In this paper we propose GeoK, a k-anycast geographic routing algorithm
focused on network lifetime and latency optimizations, capable of assuring the
packet routing to exactly k different sinks. Our algorithm differs from the liter-
ature by combining several techniques to reduce both the latency and the max-
imum energy consumption. The next hop decision is taken using a linear com-
bination of network metrics, along with dynamic weights. The metrics weights
vary according to the ratio of k and the available sinks. Because of that, the
paths are constantly changed during the lifetime of the network, which balances
the energy consumption. Both duplication and target sinks are decided on the
fly. We also combine and adapt two different void handling techniques, making
use of the face routing and the passive participation [3]. Finally, when packets
must be duplicated, we benefit from MAC-level information to create an ordered
sending list based on the duty-cycle schedule of the neighbor nodes participating
in the forwarding task.

The remainder of this paper is organized as follows. Section 2 presents a
brief discussion on the existing works in MS-WSN adressing k-anycast routing.
Section 3 traces our assumptions and the system model. The description of our
solution is detailed in Sect. 4, along with the testing scenarios and the discussion
of the performance evaluation in Sect. 5. We conclude the paper in Sect. 6 with
the future perspectives.

2 Related Works

The number of works dedicated to k-anycast routing is limited. Most of the
solutions are designed as 1-anycast routing protocols. Nevertheless, an 1-anycast
routing solution could be used as k-anycast if we assume that packets are dupli-
cated at source and forwarded in sequence. The problem with this strategy is
that there is no guarantee that k different sinks will be reached. Depending on
the forwarding criteria, chances are that the k packets will be forwarded to the
exactly same sink. In that sense, k-anycast solutions are essentially different from
1-anycast protocols, with added complexity and special objectives.

The authors in [2] propose RelBAS, a data gathering algorithm with a fault
recovery scheme specially designed to assure reliability. The algorithm considers
the construction of disjoint trees, rooted at each sink. However, the sensor nodes
serving as forwarders are also disjoint, meaning that a node serves as forwarder to
exactly one tree. In order to improve reliability, the solution considers forwarding
the packet to exactly k sinks, which are decided in advance. The nodes are always
part of exactly k trees, in order to forward the packet to the k sinks.

In [5] we find RPKAC, a routing protocol for Rechargeable MS-WSN
designed to reduce network latency and optimize the energy consumption, but

Latency and Lifetime Optimization 41

focused on assuring the delivery by forwarding the packets to k sinks. The algo-
rithm builds spanning trees rooted at the source node, with nodes sending route
request messages in order to define the routing path. The neighbor nodes reply
with their cost to reach a sink, and the current node decides to join an existing
path with the lowest cost. The cost is calculated based on the linear combination
of four metrics: hop count to sink, latency, energy cost and energy replenish rate.

The main objective in KanGuRou [7] is to guarantee the packet delivery to
exactly k sinks and at the same time reduce the overall energy consumption.
The strategy considers a geographic routing towards a set of sinks. The path is
constructed in a greedy way. The current node builds a spanning tree to k sinks
with minimum cost. The next hop is decided based on the cost of the energy-
weighted shortest path (ESP). The solution assumes an adaptable transmission
range in order to reduce the energy cost. At each hop, the algorithm calculates
the cost over progress and decides to duplicate the packet towards different paths
in order to reach k sinks. When a packet is duplicated, it is targeted to a set
of specific sinks, in order to assure the reception by k-sinks. The void areas are
handled using a recovery mode with face routing.

Routing solutions [2,5] are based on the hop-count distance to the sinks.
This strategy implies either higher network topology knowledge or an important
setup phase, with nodes discovering their hop-count distance to each sink. In [7]
the focus is on reducing the energy consumption, favoring transmissions to closer
nodes. Since the transmission range is variable, the energy cost to transmit a
packet to a closer node is reduced. However, the number of hops is increased and
consequently the latency.

3 System Model and Assumptions

We represent a MS-WSN as a graph G = (V,E), where V represents the set of
all nodes and E the set of existing wireless links. Each e ∈ E corresponds to
a pair of nodes (i, j) as long as i and j, with i, j ∈ V , are within each other’s
transmission range (symmetric link). The set of neighbors of i is represented by
Vi. We also specify that V = {S ∪ N} where S represents the set of sink nodes
and N the set of sensor nodes, with S ∩ N = ∅. The number of sinks to be
reached is denoted by k, with 0 < k ≤ |S|.

We assume that every node is aware of its own geographic position and the
geographic position of all sinks. For simplification, the geographic positions are
represented by the Cartesian coordinates (x, y), and the distance is always the
euclidean distance represented as |ij| with i, j ∈ V . We also assume that packets
are generated by sensor nodes only, and that k is given and remains constant for
each packet generation. For the energy consumption, we follow the radio model
in [6], which considers distance and packet size for the dissipated energy during
transmission and reception.

We consider two types of networks: with void areas and without void areas.
A network with void areas is defined by the existence of a specific node out of the
transmission range of a particular sink and for which there is no other neighbor

42 L. Leão and V. Felea

node that presents a better geographic progress towards that sink than the node
itself. In summary, ∃{n, si}, n ∈ V, si ∈ S, (n, si) /∈ E such that |nsi| < |vjsi|
for all vj ∈ Vn. In a MS-WSN it is possible for a node to be in the void area
of one or more sinks. The amount of void areas is a fixed number based on a
particular node and the set of sinks. However, since k sinks must be reached, the
probability of entering a void area increases with a higher k. It is because the
selection of a sink is a conditional event that depends on the previous selection.

4 Geographic k-Anycast Routing

We propose GeoK, a geographic routing protocol for MS-WSN that assures
the packet routing to exactly k sinks using a k-anycast communication scheme,
focused on reducing the overall latency and maximizing the network lifetime. The
next hop is selected by the current node based on the calculation of weighted
metrics. The selection of the targeted sinks is done based on the ordered list of
energy cost to reach each of the available sinks. The algorithm can be divided
into three steps with a preprocessing at the beginning of the algorithm, and the
actual routing at the end. The preprocessing is responsible for retrieving the
packet information and triggering the GeoK processing. We denote the current
value of k as kcurr and the set of available sinks as Sa. The first processing step
is responsible for filtering the neighbor nodes, in order to create a list of can-
didate forwarders. The filtering takes place by eliminating the neighbor nodes
with negative progress and neighbors in void areas. If no neighbor is found,
the recovery mode is triggered and a neighbor is selected using a void handling
technique. The second processing step is dedicated to effectively selecting the
forwarders. The candidates are evaluated based on the weighted metrics, and a
forwarder is selected for each sink, respecting the size of kcurr. The third process-
ing step is triggered only if kcurr < |Sa|, and it is responsible for distributing the
remaining sinks throughout the selected forwarders. Finally, the actual routing
is responsible for the packet transmission and an eventual duplication.

Preprocessing. The solution starts at the current node with the execution of
the pre-processing whenever a new packet is generated or received and has to
be forwarded. The first step is to check if the current node is a sink itself and
if it is in the list of target sinks. If the current node is one of the target sinks,
the kcurr must be decremented, and the current node must be removed from the
list of available sinks. If kcurr is still greater than zero, the multi-hop process
continues with the selection of the new forwarder with the Algorithm1.

First Step: Candidates Filtering. The candidate filtering step is responsible
for creating a list L of candidate forwarders. The list can be composed entirely of
candidates with positive progress, candidates issued from the recovery mode, or
a mixed list, with candidates presenting positive progress and candidates issued
from the recovery mode. Since the algorithm has to find a suitable forwarder for
each packet, it is possible that for networks with void areas, only part of the k
can be covered by candidates with positive progress. Because we need to assure

Latency and Lifetime Optimization 43

the delivery to exactly k sinks, it is necessary to complete the candidate list
with the neighbor nodes issued from the recovery mode. The filtering process is
described in Algorithm 1.

The filtering starts by checking if the node itself offers a positive progress in
relation to the previous hop (line 3). If the current node n progress to the set of
available sinks (Sa) is smaller than the value from the previous hop, it means that
the packet was in recovery mode and no positive progress was yet found. In this
case, the packet must keep the recovery mode status and the next hop is selected
using the face routing [3]. The recovery algorithm follows the same principles of

Algorithm 1. [F, pnew] = GeoK(n, kcurr, Sa, Vn,H, pprev)
Input: n: current node, kcurr: current number of sinks to be reached, Sa: set of avail-

able sinks, Vn: set of neighbors of n, H: set of neighbor nodes in void areas for a
set of sinks, pprev: previous value for the packet progress towards Sa

Output: F : forwarders with the sinks and k, pcurr: current progress towards Sa

1: F ← ∅; L ← ∅ /* Set of pairs [candidate, sink] */
2: pnew ← ProgressTowards(n, Sa)
3: if pnew > pprev then
4: S′ ← ∅ /* Set of found sinks */
5: for all vj ∈ Vn do
6: for all si ∈ Sa do
7: if dist(n, si) > dist(vj , si) and {[vj , si]} /∈ H then
8: L ← L ∪ {[vj , si]}
9: if S′ ∩ {si} = ∅ then

10: S′ ← S′ ∪ {si}
11: end if
12: end if
13: end for
14: end for
15: k′ ← |S′|
16: if k′ < kcurr then
17: /* Lack of candidates, void handling is triggered */
18: if k′ > 0 then
19: F ← Fwd(n,L, S′, k′) /* Select the forwarders among the candidates */
20: kcurr ← kcurr − k′

21: end if
22: S′ ← Sa\S′

23: SendV oidNotification(n, Vn, S
′)

24: L = Recovery(Vn, S
′, kcurr) /* Recovery mode using face routing */

25: end if
26: else
27: /* Current node does not offer a positive progress */
28: L = Recovery(Vn, Sa, kcurr) /* Recovery mode using face routing */
29: pnew ← pprev

30: end if
31: F ← F ∪ Fwd(n,L, Sa, kcurr)
32: return [F, pnew]

44 L. Leão and V. Felea

the work in [7]. If the current node offers a positive progress in relation to the
previous hop, the normal candidate selection is started. The algorithm selects
only the neighbor nodes with positive progress to at least one sink, and excludes
the neighbors that have already announced being in a void area (line 7). The
values in H represent the set of pairs [vj , si] having the neighbor node in a void
area for a given sink. The algorithm creates a second sink list, with the sinks
for which a neighbor with positive progress was detected (line 10). The size of
this list represents the maximum possible k′. If k′ is smaller than the kcurr, it
means that it was not possible to find a positive progress towards all necessary
sinks (line 18). In this case, the algorithm tries to create a preliminary list of
forwarders for the found sinks and neighbors (line 19), and completes the list
with the candidates issued from the recovery mode (line 24). At the same time,
and for the set of sinks the algorithm cannot find a suitable neighbor candidate,
the void announcement is triggered (line 23). The algorithm creates a list of
sinks for which the current node is in a void area, and a broadcast message is
sent with the list in order to inform the neighbor nodes. Each node receiving the
broadcast message updates its own H set with the information from n.

Second Step: Forwarders Selection. The forwarders selection stage is
focused on selecting the most suitable forwarders (the F list) based on the deci-
sion metrics (distance, consumed energy and duplication avoidance) and the
defined weights for each metric. Each entry in the F list represents a different

Algorithm 2. F = Fwd(n,L, Sa, kcurr)
Input: n: current node, L: set of candidate forwarders with respective sinks, Sa: set

of available sinks, kcurr: number of sinks to be reached
Output: F : list with the set of forwarders with the respective sinks and k
1: F ← ∅; Sused ← ∅ /* Set of selected target sinks */
2: pk ← kcurr/|Sa| alg:forwarders:4
3: S′ ← OrderSinksByEnergyCost(n, Sa) alg:forwarders:1 /* S’: sinks ordered by

energy cost */
4: for all si ∈ S′|i ≤ kcurr do
5: Sused ← Sused ∪ {si}; R ← {vj |[vj , si] ∈ L}
6: v ← SelectForwarder(n,R, F, si, pk)
7: f ← find(F, v) /* returns the index of the position of v or −1 if nonexistent */
8: if f < 0 then
9: f ← |F |

10: end if
11: F [f].neighbor ← v; F [f].sinks ← F [f].sinks ∪ {si}; F [f].k ← F [f].k + 1
12: end for
13: S′′ ← S′\Sused /* S”: set of other possible target sinks */
14: if S′′ �= ∅ then
15: /* Distributes the remaining sinks based on the energy cost */
16: F = DistributeRemainingSinks(F, S′′)
17: end if
18: return F

Latency and Lifetime Optimization 45

forwarder for the packet. It means that if |F | > 1 a duplication takes place. The
F list contains a structure with the neighbor node responsible for the forwarding
task, the list of target sinks and the size of the new k (knew). The list of tar-
get sinks may contain exactly knew sinks or more. It depends on the number of
available sinks in comparison to kcurr and the proximity of the already selected
target sink (Sused) in relation to the ones not yet selected (S′′).

The target sinks must be chosen in a way to reduce the energy consumption
and the packet latency. To cope with that, the solution creates an ordered list
of sinks based on the energy cost (Algorithm2, line 3). The first iteration of the
ascending ordering process considers the energy cost from the current node to
the closest sinks. The energy cost is calculated and the sink having the smallest
value is inserted in the list. Then, the next sink is selected based on the minimum
energy cost to either the current node or the already selected sink. This process
is repeated iteratively until all the available sinks are inserted in the ordered list.

Once the sink list is created, the algorithm starts the process of searching for
the most suitable forwarder. The set of candidates having the sink si as target
is extracted from L (Algorithm 2, line 5), and the selection of the forwarder v is
started (Algorithm 2, line 6).

The selection of the most suitable forwarder is executed using the decision
metrics and their respective weights. The weights vary according to the ratio
between the kcurr and the number of available sinks |Sa|. Initially, the value of
the aggregated metric ω[vj , si] is computed using the process in 1.

α × D[vj , si] − min(D[∗, si])
max(D[∗, si]) − min(D[∗, si])

+ β × E[vj] − min(E)
max(E) − min(E)

+ δ × G(vj) (1)

where D is the list of distances, E is the list consumed energy, G represents a
function that returns 0 if the neighbor vj is already a forwarder and 1 otherwise,
α represents the relative weight for the distance metric, β represents the rela-
tive weight for the consumed energy metric and δ represents the relative weight
for the duplication avoidance metric. Each metric has a different objective. As
for instance, the distance metric is focused on selecting the candidate with the
highest positive progress towards the target sink. This is important in order to
reduce the overall hop count and consequently the latency. The consumed energy
metric regards the selection of the node with the smallest consumption, which in
time balances the energy consumption, prolonging the network lifetime. Finally,
the duplication avoidance accounts for both latency and energy consumption,
since the increase of packets in the network not only intensifies the energy con-
sumption, but also multiplies the possibility of congestion and delays. As already
mentioned, the weights for each metric are dynamic and adjustable depending
on the situation. For a scenario where k is much lower than S, only few duplica-
tions may be triggered, and the focus must be on progressing towards the closest
sinks, so the weights for the distance metric and energy consumption are higher.
On the other hand, if k = |S| the objective changes, and avoiding duplications
becomes more important.

The aggregated decision metric ω is calculated using the weighted relative
values of the metrics from each candidate. The node having the smallest ω is

46 L. Leão and V. Felea

selected as forwarder. If the selected forwarded v is already part of the forwarders
list F , the k value of the existing entry is incremented and the target sink si is
added to the list of sinks. Otherwise, a new entry is created in F with the new
forwarder, which ultimately triggers a duplication (Algorithm2, lines 7 to 11).

Third Step: Sink Distribution. Since k may be smaller than |S|, the des-
tination sink is not fixed, and it may change during the packet forwarding.
Even if the forwarders selection makes use of a particular sink as destination to
decide on the most suitable forwarder, there are cases where it changes, as for
instance when the packet encounters a void area. The change is only possible if
|Sa| > kcurr. In this case, after the forwarders selection, not all sinks are used
as destinations {Sa\Sused} 	= ∅, and there are remaining sinks to be distributed
over the forwarders in F . The distribution process considers the same principle
of the sink list ordering, assigning each of the remaining sinks to the forwarder
containing the neighbor node or the sinks with the smallest energy cost.

For a remaining sink sr ∈ {Sa\Sused}, the algorithm calculates the trans-
mission energy cost Etx from sr to the forwarder fi.neighbor where fi ∈ F and
each of the sinks in fi.sinks. Then, the remaining sink sr is included in the sink
list of the fi that presents the lowest Etx.

Routing. The actual routing takes place after the forwarders selection. Dur-
ing the actual routing, the packet is duplicated if |F | > 1, and it is updated
with the forwarder address, the data of the new list of available sinks and the
corresponding k. Also as part of the routing process, and for the case a dupli-
cation is necessary, the sending order is decided based on the duty cycle of the
selected forwarders. The first packet to be sent is the one of the first forwarder to
wake-up. The algorithm makes use of the duty-cycle schedule information from
the neighbor nodes to determine the encounter moment in order to define the
sending order.

5 Simulation and Results

GeoK protocol was developed using Contiki OS [4] and evaluated through sim-
ulations using Cooja [4]. The performance of our solution was compared to an
existing approach (KanGuRou) [7], that was adapted to Contiki OS and tested
with Cooja under the same configurations. The simulation environment and
details are outlined in Table 1.

As in Eq. (2) in Table 1, when the number of deployed nodes changes, and
if the network area is kept the same, the network deployment density changes.
Since we want to keep a similar deployment density over all variations of |V |, we
make the network area vary with the number of deployed nodes.

The solution performance is evaluated by observing the average latency,
defined by the average time a packet takes to be routed from the source to each
of the sinks, and the maximum energy consumption, which gives an indication of
the network lifetime. As per explanation, we consider a network to be alive as long
as all nodes have some energy. Therefore, network lifetime is considered to be the
earliest moment at which a node’s battery is completely depleted.

Latency and Lifetime Optimization 47

Table 1. Configuration for the simulations

Simulation settings

Deployment density (d) 8 neighbors (on average)

Network area (variable) π×r2

d
× |V | (2)

Comm. range (r) 50m

of sensors (|N |) 50, 100, 150, 200, 250, 300

of sinks (|S|) 10% of the # of sensors

k 20% to 100% of the # of sinks

of gen. networks 300 with voids / 300 without voids

Packet size 240 bytes

Packet generation 20% chance at every minute for each sensor

Radio type 802.15.4

MAC protocol CX-MAC, modified version of [1]

Execution time 120min

The simulation considered two main network scenarios: with void areas and
without void areas. The simulation outcome is given likewise considering two
series of results. One with a fixed number of sensors and sinks with a variation
of k, in order to evaluate the performance of the solution when k increases,
reaching k = |S|. And the other where the relative k value is fixed and the
number of sensors and sinks varies, in order to evaluate the solution scalability.

5.1 Fixed Number of Sensors and Sinks

Networks Without Void Areas: For the scenario with no void areas and
a fixed number of nodes and sinks, we can see in Fig. 1a that GeoK shows a
better latency performance in relation to KanGuRou, with a growing gain with
the increase of k. Although for a small k the options of sinks are better, with
nodes being able to choose the closest sinks, the performance of the two solutions
are relatively close, with a gain of approximately 4% in favor of GeoK. When
k becomes larger, the options of sinks become limited, and the packet must be
forwarded to sinks that are much farther. In those scenarios, GeoK shows an
improvement of over 10% in relation to KanGuRou. It is explained by the fact
that for farther sinks our algorithm is able to find better routes, performing in
average 20% fewer hops to reach the more distant sinks. Regarding the maximum
energy consumption, we can see in Fig. 1b that GeoK has also a better perfor-
mance when compared to KanGuRou. We can notice a maximum gain of almost
30% and a minimum of approximately 13%. That is explained by the nature of
our solution that is designed in a way to use different routes during the protocol
execution. It means that the energy consumption is distributed, which reduces
the chances of nodes depleting their batteries in early stages. Contrarily to the
average latency, the performance gain of the maximum energy consumption eases
with the increase of k. It is justified by the increase of packets being forwarded.

48 L. Leão and V. Felea

(a) Average Latency (no voids) (b) Max Consumed Energy (no voids)

(c) Average Latency (with voids) (d) Max Consumed Energy (with voids)

Fig. 1. 300 sensors, 30 sinks and k varying with a step of 20% of the sinks

When k is larger, it means that at some point the packet is duplicated. Since
there are more packets circulating in the network, the energy consumption raises
and the performance decreases. In average, packet duplication is in 30% higher
with GeoK when compared to KanGuRou. In order to have a faster progress
towards a sink, GeoK is constrained to diverge the path in a earlier stage of the
forwarding process, so duplications take place more frequently.

Networks with Void Areas: When the network with void areas are considered
for the same number of sensors and sinks, we can also notice a good performance
for GeoK. For the latency, we can see in Fig. 1c that GeoK has even better results
when compared to KanGuRou. That is explained by the void announcement
strategy. Since nodes in void areas advertise on their situation, the neighbor
nodes may avoid forwarding packets through the problematic area, resulting in
better delivery time. However, the performance gain decreases with the increase
of k. That happens because with the increment of k the possibility of entering in
a void area grows as well. Packets must enter in Recovery Mode more frequently,
which increases the hop count. Nevertheless, similarly to the case without void
areas, the average hop count for GeoK is smaller than KanGuRou, resulting in
lower latencies. GeoK presents a maximum gain of almost 13% and a minimum
of approximately 8%.

In terms of maximum energy consumption, GeoK also performed better
than KanGuRou, with a maximum gain of almost 26% and a minimum of
approximately 7%, as displayed in Fig. 1d. The same tendency observed in the
scenario without void areas is noticed when void areas are present. The gain
is reduced with the increase of k. Once again, it can be justified by the fact

Latency and Lifetime Optimization 49

(a) Average Latency (no voids) (b) Max Consumed Energy (no voids)

(c) Average Latency (with voids) (d) Max Consumed Energy (with voids)

Fig. 2. 50 to 300 sensors, sinks as 10% of sensors and k as 40% of sinks

that more duplications are necessary, increasing the number of packets in the
network. When a void area is detected for a specific sink, the node may decide
to split the packet in different ways, so the void area is bypassed.

5.2 Variable Number of Sensors and Sinks

Networks Without Void Areas: With the relative k fixed to 40% of the sinks,
and the number of sensors and sinks varying, we intend to analyze the behavior
of the solution in terms of scalability. For the scenario without void areas, we can
notice that GeoK has better performances for both average latency and maximum
energy consumption, as in Figs. 2a and b respectively. The increase in network
size translates to even better results for GeoK in terms of maximum energy con-
sumption, with a gain of approximately 30%, and a moderate improvement of the
Latency of 7% on average. By increasing the network size, the possibilities of dif-
ferent paths is also increased. The packets are able to alternate through different
route paths, leading to better energy balance and consequently a smaller maxi-
mum energy consumption. However, the gain on the average latency performance
becomes stable, even with the increase of the network size. It is because the ratio
k/sinks/sensors is kept the same. The k is a ratio of the number of sinks, and the
number of sinks is a ratio of the number of sensors.

Networks with Void Areas: for the case with void areas, we can also notice
a performance gain of approximately 12% for the Average Latency, as shown in
Fig. 2c. The better results for GeoK are again due to the void announcements
strategy. And the stability of the gain comes from the proportionality of the

50 L. Leão and V. Felea

triplet k/Sinks/Sensors. In terms of Maximum Energy Consumption, we can
notice in Fig. 2d a smaller gain for GeoK, with a maximum of approximately
20%. Because for some cases the packet enters in Recovery Mode, as per the
recovery strategy, the used path is always the same. Consequently, the Maximum
Energy Consumption increases, since there are fewer variations in routing paths.

6 Conclusion

This paper presented a new k-Anycast Geographic Routing solution for Wire-
less Sensor Networks with multiple sinks. Our strategy makes use of variable
weighted metrics to establish the list of forwarders, as well as the necessity of
packet duplication. The main goal was to find a balance between Latency and
Network Lifetime optimizations. We tested our solutions through simulations
against an existing strategy called KanGuRou. The simulation results indicate
that our solution has an overall better performance than the existing protocol,
with maximum gains of approximately 13% for Latency and 30% for Maximum
Energy Consumption.

As future work, we plan to find ways of reducing the packet duplication rate,
without affecting the Latency performance. We also foresee the execution of
real-life experiments using a testbed with Contiki OS compatible motes.

Acknowledgments. This work was partially supported by the Brazilian National
Council for Scientific and Technological Development (CNPq). Computations were per-
formed on the supercomputer facilities of the Mésocentre de calcul de Franche-Comté.

References

1. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC
protocol for duty-cycled wireless sensor networks. In: Proceedings of the 4th Inter-
national Conference on Embedded Networked Sensor Systems, pp. 307–320. ACM
(2006)

2. Chakraborty, S., Chakraborty, S., Nandi, S., Karmakar, S.: Fault resilience in sen-
sor networks: distributed node-disjoint multi-path multi-sink forwarding. J. Netw.
Comput. Appl. 57, 85–101 (2015)

3. Chen, D., Varshney, P.K.: A survey of void handling techniques for geographic
routing in wireless networks. IEEE Commun. Surv. Tutor. 9(1), 50–67 (2007)

4. Contiki OS: The OS for the IoT. http://www.contiki-os.org/. Accessed 20 Mar 2018
5. Gao, D., Lin, H., Liu, X.: Routing protocol for k-anycast communication in recharge-

able wireless sensor networks. Comput. Stand. Interfaces 43, 12–20 (2016)
6. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communi-

cation protocol for wireless microsensor networks. In: 33rd Annual Hawaii Interna-
tional Conference on System Sciences, pp. 1–10. IEEE (2000)

7. Mitton, N., Simplot-Ryl, D., Voge, M.-E., Zhang, L.: Energy efficient k -anycast rout-
ing in multi-sink wireless networks with guaranteed delivery. In: Li, X.-Y., Papavas-
siliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2012. LNCS, vol. 7363, pp. 385–398.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31638-8 29

8. Poe, W.Y., Schmitt, J.B.: Self-organized sink placement in large-scale wireless sensor
networks. In: IEEE International Symposium on Modeling, Analysis & Simulation
of Computer and Telecommunication Systems, pp. 1–3. IEEE (2009)

http://www.contiki-os.org/
https://doi.org/10.1007/978-3-642-31638-8_29

	Latency and Lifetime Optimization for k-Anycast Routing Algorithm in Wireless Sensor Networks
	1 Introduction
	2 Related Works
	3 System Model and Assumptions
	4 Geographic k-Anycast Routing
	5 Simulation and Results
	5.1 Fixed Number of Sensors and Sinks
	5.2 Variable Number of Sensors and Sinks

	6 Conclusion
	References

