
Generative Model Driven Design
for Agile System Design and Evolution:

A Tale of Two Worlds

Tiziana Margaria(B)

Chair of Software Systems, University of Limerick, and Lero, Limerick, Ireland
tiziana.margaria@ul.ie

Abstract. In order to mainstream the production and evolution of IT at
the levels of speed, scale, affordability and collaborative effort needed to
truly make IT enter the fabric of every economical and societal endeav-
our, as is the projected future of our society in the next decade, the
ease of learning, understanding, and applying new disruptive technolo-
gies must drastically improve. We argue that the needs of the people,
the economical sectors, and the large-scale trends can only be met if the
IT professions embrace and adopt a new way of producing and consum-
ing IT, based on more formal descriptions, more models, more reasoning
and analysis before expensive implementations are incurred, coupled with
automatic transformations, generations, and analyses that take advan-
tage of the models and formalized knowledge.

We analyse briefly the various dimensions, derive a specification for
the new IT and IT platforms, and provide a few examples of how the new
thinking can disrupt the status quo but empower a better understand-
ing, a more efficient organization, and a more automatic management
of the many cross-dimensional issues that future connected software and
systems will depend upon.

1 Introduction

In the increasingly connected and heterogeneous world in which the modern
and future industrial critical systems will operate, agility and evolution are of
paramount importance. As in Alice in Wonderland, solution providers and tech-
nology providers need to run fast in the technology and context evolution race
in order to not fall back. The steady evolution of products, infrastructure, as
well as design and implementation/manufacturing environments is a continu-
ous source of change. It is additionally topped by disruptions: examples are
the inception and then the steady adoption of online-X, self-X and now smart-X
approaches across the economy sectors. These disruptions are pervasive and irre-
versible trends that subvert, one after the other, the well established power and
dominance structures in the sectoral, local and global economy. This happens
over and over again: in little more than a decade we have seen the inception and
then mainstreaming of online communication, marketing, service, and commerce

c© Springer Nature Switzerland AG 2018
F. Howar and J. Barnat (Eds.): FMICS 2018, LNCS 11119, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-030-00244-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00244-2_1&domain=pdf


4 T. Margaria

channels, to the point that Amazon has been for years among the most valuable
companies worldwide. The self-X economy has eliminated many service profes-
sions though the adoption of online access and individual recognition of the user:
travel agencies, ticketing services, booking platforms, and the corresponding ser-
vice desks of the large providers (like airlines, railways, and event managers like
ticket.com or eventbrite), or in the case of science and research, online paper
submission systems and online conference management systems. The smart-X
economy is the new incipient wave, fuelled by data collection and analysis readily
available in a connected and cloud based fashion. The “Smart Anything Every-
where”1 paradigm builds upon increasingly cheap storage, increasingly cheap
and efficient computation power, increasingly powerful and pervasive communi-
cation networks, and various advances in traditional algorithms for analysis and
optimization, and now also AI/ML style reasoning. Clearly, all these changes
separate the current world, as we know it, from a future world where all these
connections and enhancements will be accepted, considered normal, and essential
part of the established “business practices” for all organisations and companies.

So in such an accelerating, convergent, and individualized socio-technical
and economical world, what kind of design and implementation technologies for
software and systems will be needed in the future to survive and possibly thrive?

The specification for the fundamental traits of a new generation of tech-
nologies comes from the kind of changes demanded by customers and users
(at the individual and corporate level). These are either enforced by the eco-
nomic actors (like the providers of components, systems, the integrators, and
the various granularities of cooperation practiced in complex and global supply
chains), or mandated by those entities that are responsible for policies and regu-
lations (like the EU in GDPR, the governments, or oversight and standardization
bodies, etc.).

So let us have a look at these dimensions of change and forces (Sects. 2–4),
in order to derive a characterization of what needs to fundamentally become
different if we wish to be ready for the new roaring twenties ahead (2020–2030)
in Sect. 5 and propose a new paradigm in Sect. 6.

This space is characterized by a large prevalence of contradictory “needs”
and desires, that can only be faced by thinking in a fundamentally different way.
Putting a new thinking into practice requires a welcoming adoption of innova-
tions, in spite of the fact that innovations are by definition new unproven paths
and means, and as such scary and risky. The lines of resistance to innovation are
accordingly high-profile and deeply rooted in the individual fear and organisa-
tional inertia. The specific micro- to macrolevel contexts I am prevalently looking
at and from which I draw the observations are those of Lero and Confirm, two
Irish national research centres that include 8 resp. 10 universities and research
institutions, and over 40 companies (SME to multinationals) each. Such centres
run 6 years research programs comprising tens of projects, and are embedded in
the various layers of decision and management at the single partner level, centre
level, national level and EU/international/global level. The global level is due

1 See the EU initiative at https://smartanythingeverywhere.eu.

http://ticket.com
https://smartanythingeverywhere.eu


Generative Model Driven Design for Agile System Design and Evolution 5

to strategic partnerships, e.g. with Fraunhofer in Germany, NII in Japan, and
CSIRO in Australia and the practice of international collaborations, but also
to the fact that several industry partners are Irish branches of multinational
corporations.

Examples of the new, future-oriented way of dealing with complex inter-
faces, new architecture paradigms and security-injecting generative approaches
are then provided in Sect. 7.

2 The People

Looking at users as consumers of technology and products, the demand is for
significant change already in the close and even immediate future: how can peo-
ple achieve more complex, more specialized and technically advanced goals and
operations by using “simpler” and more supportive tools and infrastructure? In
other words, by using tools and systems that “know” more themselves, humans
with less and less technical mastery should be quickly enabled to achieve in a
more reliable way and at higher quality a wealth of more complex, more precise,
more secure and higher quality design, implementation, production, maintenance
goals. At the same time, the need for engineers and specialists is growing much
faster than their production along the established paths. Along the universities
and the universities of applied science, here I see as “producers” of IT specialists
also the technical courses in high schools for those countries like e.g. Italy and
Germany that have a rich vocational school offering2.

The requests for producing more specialists and faster are increasingly insis-
tent. These requests come from companies and from professional organizations,
both nationally, e.g. from the Irish Computer Society, and internationally, from
ACM and IEEE. They also come from the governments and their proxies, like
the Irish Higher Education Authority, that design and enforce the policies and
programs for the workforce of the future. They ask Universities and research
centres to train more people with a large variety of non-traditional backgrounds
in these new and wonder-achieving technologies. They dream of an educational
system that (a) in a short time span of typically a few weeks to a few months,
(b) possibly without direct contact with the teachers nor in-person monitoring
(i.e. through online education, or blended forms whereby the on-site presence
is extremely compact - one weekend to one week per academic year), and (c)
largely virtually, i.e. surely without the need of daily physical presence in ded-
icated equipped spaces (like classrooms and laboratories), these “fast tracked”
individuals become proficient professionals in the new technologies, and future-
proof employees of these advanced, leading edge companies.

2 In Italy there is a rich tradition of excellent Istituti Tecnici that form at thou-
sands of qualified experts at the upper secondary school level, leading to chartered
professional profiles (e.g. Perito tecnico) under the control of professional Charters
(Albo Professionale). The German system has a strong tradition of dual education
(duale Berufsausbildung) combining formal education with a training on the job
component.



6 T. Margaria

The characteristics and slogans we hear in this context span typically agile
workforce training; training on demand; workforce evolution; off-site approach;
flexible, adaptable and smart-sized education; ad-hoc education pills; life-long
upskilling; competence building; capability-oriented approaches.

3 The Economic Domains and Their Convergence

Referring to the Irish and global situation, a number of “needs” are mentioned
over and over again:

– the need to integrate across specialization domains, spanning across various
disciplines of research and professions;

– the need to become increasingly agnostic about the specific technolo-
gies: the programming language, the operating system, the data manage-
ment/information system, the communication networks, the runtime plat-
forms, and more;

– the need to be future-ready: projects, collaborations, consortia and alliances
change. No IT product can afford being locked into technological walled gar-
dens, the need is voiced over and over again to be as technology- and as
platform-independent as possible;

– the need to be able to try fast and improve fast: time to market is important,
but time to test/time to retest are equally important. What is called “con-
tinuous development” or “continuous integration” needs to be supported as
the new mainstream paradigm of system design and evolution.

Such demands are brought up consistently across all the economic domains:
when we talk about large scale software development and global software devel-
opment as in Lero or at the EU level, when we address smart advanced manu-
facturing as in the Irish Confirm or Industry 4.0 in Germany, or smart bio and
smart energy (as in the MAREI centre in Ireland), or smart agri (as in an ongo-
ing EU initiative), or new smart materials (as in the Bernal Institute at UL and
the ADAPT research centre in Ireland). This uniformity indicates very clearly
the convergence of these domains not only in the factual collaboration (e.g. inte-
gration to embed smart energy aspects in smart manufacturing and smart agri)
but also a higher-level, strategic convergence when anticipating and forecasting
what capabilities will be essential to thrive in the next decade.

The characteristics and slogans we hear in this context span agile develop-
ment; continuous quality control; evolution-driven design; seamless integration;
seamless evolution; continuous development; continuous integration, data-driven
development; technology and vendor lock-in.

4 The Big Picture Context

At a higher abstraction level, the strategists think in terms of paradigms, mega-
trends, and metaforces that guide the 5 to 10 years cycle length of the market



Generative Model Driven Design for Agile System Design and Evolution 7

movement and technology adoptions. The moves to connected, mobile, online,
individual, social, green and now also smart fall in this category of strategic,
long term and large scale concerns. These cycles are slower, and as such they
are both slower to introduce and also slower to pace out. Some consider them
to be generation-defining: they lock into the fundamental imprinting and belief
system an individual human feels comfortable with. Therefore they are almost
impossible to “undo” or to transition to the “next generation values”. The digital
natives vs. digital immigrants distinction was an example of this generation-gap
defining skill at the turn of the century, and the internet (i.e. the pervasiveness
of online, mobile) followed short thereafter. The problem with the big picture is
that it suffers disruption too. In a low frequency, long cycle system, a wave of
disruption can be even more subversive than in the “normal” tech world. Exam-
ples of such fundamental discontinuities have been the oil crisis in the ’70s, the
internet bubble burst in the ’00s, the 9/11-induced shock, freeze and consoli-
dation in a number of markets, like e.g. aviation. Now, we face the potential
de-globalization of supply chains following the trade changes due to e.g. Brexit,
the current uncertainty concerning trade agreements like the TPP, NAFTA or
the Iran deal, and the quick and unexpected resurgence of tariffs.

What we hear in this context sounds like survival of the fittest is survival
of the fastest; agility and quick evolution; flexible contracts; globalization and
de-globalization; reframing of supply chains; glocalization.

5 The Tools and Techniques for the New World

In the new world, the answer in terms of which IT tool and techniques should
be researched, produced, and then studied, adopted, and taught today to the
traditional and non-traditional students and professionals in order for them to
be future-ready needs to capture the essence of these “keywords”, which can be
summarized in speed, uncertainty, and change. Accordingly, the new IT needs
to deliver a correspondingly updated, simplified and flexible approach to pro-
ducing software and systems. It also needs to provide a much simplified and
technology-shielding software infrastructure and platform for software and sys-
tem development itself. This need induces a significant disruption from the past
and current culture, where IT production was and is in the hands of (trained
or self-taught) specialists who (need to) master coding and (need to) know the
details of development systems, programming frameworks, operating systems,
communication systems, virtualization systems down to the hardware. In the
new world, there is no time and no long-term value anymore in mandating all
this knowledge from whoever professionally uses IT and systems and produces
IT and systems. So we face deep change, disruptive of how we teach and educate.

As long as we as a community keep practicing and teaching a code-driven
and test-driven approach to (complex) system design, understanding what a
system does based on source code will remain a challenge. It is a challenge
already now for professionals, as witnessed for meanwhile over 50 years at general
software engineering conferences like ICSE and OOPSLA as well at conferences



8 T. Margaria

and workshops on software testing, software quality and software maintenance.
Works like [5] show that even recovering just the feature level architecture of
existing software systems is hard work: it requires both specialized tools and
quite some detective work, coupled with technical and domain knowledge, affinity
for experimentation and a good pinch of intuition. Few people, even in Software
Engineering, satisfy this profile. The mass of people and professionals in need
of a system’s refactoring, extension, and integration described as “the people”
in Sect. 2 isn’t equipped to add all these skills to their professional portfolio.
The educational system currently for IT is not made either to mainstream deep
technology competences. The outcome is that for most IT change projects the
need is recognized but there is no follow up. This freeze into past solutions locks
entire companies and organisation into outdated systems that impose outdated
working patterns. This status quo counters the increasingly flexible workflows
and collaborations mandated by both the collaborative economy and the many
disruptive opportunities, trends and threats.

The problem is not solved by the run to open source: even if the source
code is open, and in theory reusable and modifiable, it still requires comprehen-
sion first, then mapping to the concrete situation, and thus all the capabilities
mentioned above: it is in practice like starting with legacy. The big boost to
adoption of open source has been extremely beneficial for the sharing economy,
the commoditization of essential layers of software, the globalisation and mass
accessibility of technology and its related knowledge in ways unthinkable even
20 years ago, when entire domains were in the hands of proprietary systems with
closed APIs. So, OSS and FOSS [37] work very well, but again they are for
specialists.

The Agile movement has sparked a new attitude towards collaborative and
fast paced system development, including frequent and consensual meetings with
stakeholders that are users and customers, and it is gladly adopted in industry.
However, agile thinking addresses the software development process and is agnos-
tic to the means and artefacts. In practice, software is developed again within the
“standard best practice”: starting from code and with “test first” as a maxime
for quality assurance. What this means is twofold:

– Because it is code, the artefacts are out of the cultural reach for most of
these users and customers, as well as for most of the professional roles essen-
tial to the software business that are not directly code-related: sales, mar-
keting, legal, etc. These people have to rely on expert “translation” from the
artefacts to the understandable (but possibly incomplete, ambiguous, biased)
interpretation of those artefacts and their characteristics into some IT-layman
description, that most often is in some natural language prose. We are still
trapped here in the business-IT translation gap.

– Because quality assurance is prevalently if not exclusively handled via test-
ing, it can take place only post-factum: a system is implemented to the code
level, and only then it is amenable to validation, verification etc. Given that
it is very expensive to write code as well as to debug and test code, this is an
inherently and systematically wasteful way of managing the production of



Generative Model Driven Design for Agile System Design and Evolution 9

software and systems. Also simulation based approaches still require writing
simulation code that is quite akin to the production code. Also the verifica-
tion is still conducted case by case, configuration by configuration, run by run.
Once a system is out, any change requires reassessment through regression
testing, possibly recertification, skewing even more toward the testing costs
the already onerous ratio of cost to develop an increment vs. cost to test that
increment.

6 Generative Approaches as the Next Wave

The creation of a software or system is itself innovation, and the change or
evolution of an existing system is innovation too. Consistently with the widely
successful school of lean approaches to innovation, one needs to fail fast and
eliminate waste. The key is to recognize as early as possible that something is
not as wished, possibly before investing time and resources into producing what
will need to be amended, and make changes right away on the artefacts that are
available at that stage.

An efficient way to deal with this paradigm addresses a variety of aspects
and innovation directions, that we briefly summarize.

– The cultural aspect is made accessible by resorting to the description of
artefacts within domain models, rather than code: model driven design and
development, and model driven and model based testing are already going in
this direction.

– The code aspect is addressed by separating the (application specific or
reusable) “logic” from the implementation of the operations and the system.
Service oriented computing leverages component based design together with
a high level description of the interfaces and properties of the components
as well as the behaviours (described as processes or as APIs) and data they
operate upon.

– The testing aspect is streamlined by choosing modelling languages that
facilitate an early stage “checking” of the model structure, of the architec-
tural and behavioural compatibilities. Architecture Analysis and Description
Languages (AADLs) cover the architectural and static aspects, while the use
of formal models like the KTS used in jABC [24], DIME [2] and in gen-
eral graph-based models supported by CINCO [29] allow also a behavioural
analysis e.g. by model checking and in some cases a correct-by-construction
synthesis of property-conform models, thus delivering the “speed” of early
detection and even avoidance of errors that makes then testing on the code
much faster.

– The dissemination aspect is taken care of by sharing such models (under-
standable to the domain experts) and possibly also the implementations of
the building blocks, this by using for example the existing OSS facilities and
structures. Libraries of services have been in use in the telecommunication
domain since the ’80s [35], they are increasingly in use in bioinformatics, geo-
information systems, and are slowly taking a center stage attention also in the



10 T. Margaria

advanced manufacturing community, albeit mostly still in form of reference
architectures and shared component models for which standards need to be
developed.

– The speed to change is accelerated by using generative approaches that
transform the models into lower level descriptions, possibly into code, adding
one or more model-to-code layers on top of the already long chain of com-
pilers that take UML classes and create skeletons, or Java code and produce
bytecode, or C/C++ code and produce executables, and from the executa-
bles goes down to the specific instruction set and firmware of the processors,
FPGAs and other ASICS. Generation can be partial, as in the UML commu-
nity, or more extended as e.g. in the Grammatical Evolution approach by [27],
that creates in fact programs by successive approximation based on a specific
flavour of genetic algorithms that operate along a grammar-driven DSL of
the specific domain and operations under consideration. In jABC, CINCO
and DIME we use both model-to-model and model-to-code transformations,
starting from the Genesys approach of [16,17], up to the generalized approach
that Cinco adopts also at the tool metalevel [29].

– The rich description of the single components, data, and applications is
achieved by means of both domain-independent and domain-specific knowl-
edge about the functionalities, the data and business objects, and the applica-
tion’s requirements and quality profile, as in language-oriented programming
[6,39] or language-driven engineering [31].

– The scalability and speed of education are supported by teaching domain
specialists to deal with these domain specific models, their analysis and com-
position, and the validation using tools that exploit the domain-specific and
contextual knowledge to detect the suitability or not of the current version
of the application’s models for solving a certain problem in a certain (regula-
tory, technological, economic) context. We have had successes in the context
of school pupils [1,20], postgraduate students with a background in biology
and geography [19], and more recently first year students and mature CS
students that take a 1 year Higher Diploma [11].

– The quick evolution is delivered by means of integrated design environments
that support the collaboration of all the professional profiles and stakeholders
on the same set of models and descriptions, as in the XMDD and One Thing
Approach, applied to models of systems but also of test cases [30].

– The structuring approaches based e.g. on hierarchy [32,33], on several
notions of features like in [5,14,15,18,25,34], or contracts for abstraction and
compositionality as in [13]. These structures allow a nice and incremental
factoring of well characterized system components to aide the hierarchical
and collaborative organisation of complex or large systems, while supporting
the intuition of the domain experts, and the most opportune units of reuse
(for development, evolution and testing), and units of localized responsibility,
e.g. for maintenance, evolution and support.

Some of this is already in the making even at the level of hardware and platforms,
which are essential for the connected and evolving industrial critical systems of
tomorrow.



Generative Model Driven Design for Agile System Design and Evolution 11

7 Examples of Future-Oriented Rethinking

On the hardware side the foundation of all software executions is the computer
architecture, possibly enhanced by various layers of virtualization and resource
management. In terms of properties, guarantees, contracts, service level agree-
ments, upper layers of the software and system management stack must rely upon
what is known and guaranteed by the underlying layers. So, what is known today
about computer architectures and the software layers that enforce essential plat-
form properties? We look at three recent contributions that provide a glimpse
of the promising research directions that are amenable to bring formal thinking
and generative approaches closer to the mainstream.

7.1 Rich, Formally Specified Interfaces from the Bare Metal
Upward

Margaret Martonosi, recent recipient of the IEEE Computer Society Technical
Achievement Award “for contributions to power-aware computing and energy-
constrained mobile sensor networks”, reflected in her recent keynote at IEEE
COMPSAC that computer architects are until now required yet to a good
extent also restricted to measure in architectures only execution performance,
thus sticking to a one-dimensional characterisation of quality that is short of
today’s architectural demands. Her plea for modern computer systems is towards
a far richer and multifaceted characterisation. Such a profile-like characterisation
includes next to figures of energy consumption also values for reliability, fairness,
portability, scalability, security, and many more. These rich descriptions of the
Computer Architecture interfaces should be formulated in an unambiguous lan-
guage, and she advocates using formal methods for describing and reasoning
about interface specification, modeling and metrics [26].

In recent work with Sharad Malik and Aarti Gupta, she used such formal
specifications, albeit simple, first to describe the capabilities of an instruction set,
an API, and equivalently specifiable behavioural mechanisms for the many other
components that do not have an instruction set (called non-ISA components, like
most Internet of Things devices), Subsequently they used those descriptions to
analyze both the real and the possible behaviours of systems in isolation and in
a friendly or hostile context. They used these capabilities and, in a linearized
world, the “happens before” behavioural relation that allows to think in terms of
system behaviours over sequences of operations, in a trace semantics approach.
This led to the development of simple but effective and efficient tools that work
as a set of concern-specific lenses to talk about global behaviours at the system
level. Tools like Wattch [4], PipeCheck [21] and COATCheck [22] have made the
systematic generation and exploration of architecture-level behavior
both possible and easy, regarding power optimisation, memory consistency,
and memory ordering at the hardware-OS interface, respectively.

Thanks to the rich interface formalisation, it is possible to describe exactly
what is intended, what is forbidden, and what happens in a situation-dependent
context, and it is consequently possible for the first time to build tools, in



12 T. Margaria

this case based on SAT solvers, that systematically explore and classify the
behavioural traces.

Eminent achievements have been the automatic and easy reproduction of the
Meltdown and Spectre security attacks using the above tools. Not only were such
attacks easily “discovered”: the discovery came together with an understanding
of which design features and mechanisms of interaction led to them, and this
understanding of course led to an entire design space of ways to detect and
prevent such and similar attacks. Additionally, they were able to generate a
large number of other so far unreported attacks that are possible on the same
architectures and mechanisms, some of which so relevant that they were reported
back to the companies that designed such systems.

Thanks to such behavioural analysis tools, it is made easy for designers of
higher level infrastructure software and of applications, to check and recheck that
their own designs do not incur in behavioral risks or inconsistencies. Weighted
edges on automata-like models can represent latency, power or reliability figures,
and provide rich analysis models down to the instruction set layer, which is so
far not possible. Upper layers can then rely on the data measured at the lower
layers, and enable a systematic design space exploration driven by rich models
that embody detailed and multifaceted knowledge at the underlying levels: still
a dream for today’s system designers, as we will see in Sect. 7.3.

7.2 Ad-Hoc Computing in the World Beyond von Neumann’s
Architectures

However, considering the future needs, it is even likely that the Von Neumann
architectural paradigm will be superseded. As HP Labs Dejian Milojicic fore-
sees [28], architectures for large scale in-memory computing will revolution the
operating systems as we know them today and change the entire organization
of what is a computer due to he emergence of new nanocomponents. Current
research on emerging technologies for memory design, like memristors in HP but
also other emergent memory components like Magnetic Random Access Mem-
ory (MRAM)3, studied among others in the TRUDEVICE EU COST Action
UL belonged to, are hot candidates to successfully replace actual DRAM-based
main memory technology. On the MRAM technology roadmap, the goal is to
design and develop ?Service-Oriented? emerging memory devices based on non-
volatile MRAM technology, with characteristics and mode of functioning tun-
able in an ad-hoc fashion by individual application designers, as needed to meet
their specific project/work needs. Rapid reconfigurability of the work is here
the main benefit, but configurable and controllable (1) reliability, (2) variabil-
ity, (3) endurance, (4) access time, (5) bandwidth, (6) latency, and (7) power
consumption will allow application designers and programmers direct QoS con-
trol on memory access services. On the memristor technology roadmap, research
leads mainly towards the development of a new kind of passive storage. However,
it is known how to produce memristor based devices that implement negation

3 ITRS 2013, http://public.itrs.net/.

http://public.itrs.net/


Generative Model Driven Design for Agile System Design and Evolution 13

and implication and thus generic logic functions. Accordingly, we can envisage
scalable architectures where memristor-based memories manage the data, and
efficient tiling and interconnections of memristor-based logic organized in cross-
bar architectures (like for FPGAs) provide easily reconfigurable “control” units
that supersede the current Von Neumann architectures. The consequence is a
new generation of architectures that provide a memristor-based generic memory
and control capability that can be configured and used completely on-demand.

Fully exploiting either the Service Oriented MRAM Memory device or the
memristor-based architecture requires revolutionizing the current programming
model, and the way we organize and handle data, control, and even the set of
instructions at the hardware level. In such a post-Neumann architecture, com-
putations consist of

– the data, to be stored e.g. in the memristor storage,
– the “program”, to be e.g. “loaded” on the memristor-based control architec-

ture, but whereby
– the Instruction Set of the architecture (i.e., the primitives of the programming

language) is not predefined and static like in current architectures, but easily
and fully reconfigurable beyond the level of reconfigurability that we know
today from FPGAs. In this future, the definition of the instructions in terms
of hardware implementation of the primitives will be provided together with
the “program”, and the instructions will be “mapped” themselves on the
control architecture in order to define the set of functionalities available to
the specific program.

Taken together, we see here the proposal of a completely ad-hoc and dynamic
computation model and system: a Domain Specific Language, and potentially
even an Application Specific Language, can be “deployed” case by case, program
by program, onto an instruction set-agnostic architecture. By configuring a sea
of memristors into instruction-executing logic components, this new paradigm
effectively creates a Domain Specific Computer. This computer is then asked to
execute a program in that DSL onto given data. When that execution terminates
it is ready for a complete reconfiguration to another domain or application. In
other words, this future paradigm ditches the inherent dicothomy of the Von Neu-
mann paradigm, and embraces a thorough and generic service-orientation from
the hardware up. Once such an architecture is available, implementing language-
oriented programming [6,39] and language-driven engineering [31] throughout
the entire stack of software layers, down to the hardware, becomes natural and
obvious.

Once this is in place, it will be then finally possible to have formally char-
acterized capabilities and interfaces for a new kind of service-oriented general
purpose efficient hardware, that is pliable to fast and efficient reconfiguration,
and that brings a rich description of both functionality and quality of service
in terms of properties and behaviours. The approach just described applies not
only to instruction set-based hardware like today’s CPUs, but also to API-based
components like e.g. Smartcards, which support at different abstraction layers



14 T. Margaria

interfaces like the Transmission Protocol Data Units and the Application Pro-
tocol Data Units. It applies even to non-ISA components like the FPGAs and
most accelerators and IoT devices.

7.3 Security-Injecting Compilers

This is exactly the situation we are currently facing in the project with Blu5
Labs: the SEcube (TM) chip they provide includes three open source compo-
nents (a CPU, an FPGA and a Smartcard) [38] and is therefore an advanced
and open System-on-a-Chip specialised for security applications from the hard-
ware up. However, no formal description of the interfaces of these components is
available, as demanded in Sect. 7.1, no formally robust behavioural characteriza-
tion is available, and as a consequence we cannot bootstrap the formal reasoning
from the hardware up as should be the case for an SoC component that is cen-
tral to a holistic security concept, and responsible for the hardware layers of a
security architecture used commercially for top-level security applications.

On the basis of the open source descriptions of the three components and
through testing with the SoC programming boards, it is possible to manually
write drivers (in machine language and C) that realize several layers of ser-
vices [8], that are subsequently thoroughly tested in the laboratory. This is still
the current state of the art in security architectures: at the hardware inter-
face and at the driver and relative protocols nothing is formal, architectures are
designed case by case, software for protocols and low level features is imple-
mented in “coding first” fashion, and architects and designers mostly do not feel
the need for introducing formality at all.

In this situation, we built our own model driven, service oriented and gener-
ative approach on top of the software layers produced manually by the partners.
We produced a DSL library for the multifaceted characterization of security
primitives [3], a service library for the primitives at the programming language
level, in this case the C language, embedded in the C-IME, our C-applications
Integrated Modelling Environment [10,12], and we provided libraries for other
domains as in [7,9]. On this basis it is also possible to provide a smart compila-
tion platform, itself realized in a model driven paradigm, that is a model-to-code
compiler to normal C or to C with security added through the SEcube platform.
This compiler takes security-agnostic models of applications designed in the C-
IME environment, and injects during compilation where needed the appropriate
security primitives. The result is the same C application, but where all the com-
munication is correctly secured using through the C language libraries and the
SEcube security libraries [12].

This generative and model driven approach works in a model driven, ser-
vice oriented and generative fashion, on security-agnostic application models
that are far away from the level of programming, hardware and security com-
petence needed today to create comparably secure software. It successfully frees
the application designer from the need of specialized knowledge about secu-
rity mechanisms and their implementation details. However, in today’s world,
this ability of modelling, analyzing and proving properties of behaviours is still



Generative Model Driven Design for Agile System Design and Evolution 15

limited to aim at the provision of executable functionality (of an application).
We’d rather like instead to provide a provably bug-free and attack-resilient hard-
ware/software stack. This limitation is due to the informal treatment of hard-
ware interfaces, and to the customary code-based approach to the production
and documentation of the low level layers of the SEcube-close software, which
are directly implemented in machine language and C and are not accompanied
by specifications nor models and are thus in practice not verifiable.

8 The Perspectives Ahead

In spite of the difficulties, we are convinced that this is the way to go in order
to mainstream the production and evolution of IT at the levels of speed, scale,
affordability and collaborative effort needed to truly make IT enter the fabric of
every economical and societal endeavour. It needs to be achieved at a level of
competence that can be acquired quickly, in a targeted fashion, and such that the
collaboration with the IT specialists is likely to become natural and pervasive.
Specialists will still exist and be essential for the implementation and mainte-
nance of the code and of the infrastructure. But the acceptance of formality as a
means to clarify interfaces, behaviours and properties and as a precondition to
verify and prevent, instead of implementing, testing, and then repairing case by
case, is essential to meet the challenges and demands for the future platforms of
IT provision and use. In this sense, we need both Archimedean points [36] and
future oriented knowledge management for change management [23] in order
to make future platforms easy but powerful for the many, and complex yet well
structured for the few.

Acknowledgment. This work was supported, in part, by Science Foundation Ireland
grant 13/RC/2094 and co-funded under the European Regional Development Fund
through the Southern & Eastern Regional Operational Programme to Lero - the Irish
Software Research Centre (www.lero.ie).

References

1. Bakera, M., Jörges, S., Margaria, T.: Test your strategy: graphical construction
of strategies for connect-four. In: Proceedings of the 2009 14th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, pp. 172–181,
ICECCS 2009. IEEE Computer Society, Washington, DC (2009). http://dx.doi.
org/10.1109/ICECCS.2009.51

2. Boßelmann, S., et al.: DIME: a programming-less modeling environment for web
applications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp.
809–832. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 60

3. Boßelmann, S., Neubauer, J., Naujokat, S., Steffen, B.: Model-driven design of
secure high assurance systems: an introduction to the open platform from the
user perspective. In: Margaria, T., Solo, M.G.A. (eds.) The 2016 International
Conference on Security and Management (SAM 2016). Special Track “End-to-
end Security and Cybersecurity: from the Hardware to Application”, pp. 145–151.
CREA Press (2016)

http://www.lero.ie
http://dx.doi.org/10.1109/ICECCS.2009.51
http://dx.doi.org/10.1109/ICECCS.2009.51
https://doi.org/10.1007/978-3-319-47169-3_60


16 T. Margaria

4. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for architectural-level
power analysis and optimizations. In: Proceedings of 27th International Symposium
on Computer Architecture, vol. ISSN=1063-6897, pp. 83–94. IEEE (2000)

5. Buckley, J., Rosik, J., Herold, S., Wasala, A., Botterweck, G., Exton, C.: Flints: a
tool for architectural-level modeling of features in software systems. In: Proceedings
of the 10th European Conference on Software Architecture Workshops, ECSAW
2016, pp. 14:1–14:7. ACM, New York (2016). http://doi.acm.org/10.1145/2993412.
3003390

6. Dmitriev, S.: Language oriented programming: the next programming paradigm.
JetBrains onBoard Online Mag. 1 (2004). http://www.onboard.jetbrains.com/is1/
articles/04/10/lop/

7. Farulla, A., Lamprecht, A.L.: Model checking of security properties: a case study
on human-robot interaction processes. In: 12th International Conference on Design
Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6. IEEE Com-
puter Society (2017). https://doi.org/10.1109/DTIS.2017.7930158

8. Farulla, G.A., Prinetto, P., Varriale, A.: Holistic security via complex HW/SW
platforms. In: 12th International Conference on Design Technology of Integrated
Systems in Nanoscale Era (DTIS), pp. 1–6. IEEE Computer Society (2017).
https://doi.org/10.1109/DTIS.2017.7930156

9. Farulla, G.A., Indaco, M., Legay, A., Margaria, T.: Model driven design of secure
properties for vision-based applications: a case study. In: Margaria, T., Solo,
M.G.A. (eds.) The 2016 International Conference on Security and Management
(SAM 2016). Special Track “End-to-end Security and Cybersecurity: from the
Hardware to Application”, pp. 159–167. CREA Press (2016)

10. Gossen, F., Tiziana Margaria, J.N.B.S.: A model-driven and generative approach
to holistic security. In: Flammini, F. (ed.) Resilience of Cyber-Physical Systems:
From Risk Modeling to Threat Counteraction. Advanced Sciences and Technologies
for Security Applications. Springer, Heidelberg (2018). ISBN: 978-3-319-95597-1

11. Gossen, F., Kühn, D., Margaria, T., Lamprecht, A.L.: Computational thinking:
learning by doing with the Cinco adventure game tool. In: 42nd IEEE Annual
Computer Software and Applications Conference (COMPSAC), CELT Sympo-
sium, Tokyo, Japan, 24–27 July 2018. IEEE Computer Society (in press)

12. Gossen, F., Neubauer, J., Steffen, B.: Securing C/C++ applications with a
secubeTM-based model-driven approach. In: 12th International Conference on
Design & Technology of Integrated Systems in Nanoscale Era, DTIS 2017, Palma
de Mallorca, Spain, 4–6 April 2017, pp. 1–7. IEEE (2017). https://doi.org/10.1109/
DTIS.2017.7930157

13. Graf, S., Quinton, S., Girault, A., Gössler, G.: Building correct cyber-physical
systems: why we need a multiview? In: Howar, F., Barnat, J. (eds.) FMICS 2018.
LNCS, vol. 11119, pp. 19–31. Springer, Cham (2018)

14. Jonsson, B., Margaria, T., Naeser, G., Nyström, J., Steffen, B.: Incremental require-
ment specification for evolving systems. In: Calder, M., Magill, E.H. (eds.) Feature
Interactions in Telecommunications and Software Systems VI (FIW 2000), pp.
145–162. IOS Press, May 2000

15. Jonsson, B., Margaria, T., Naeser, G., Nyström, J., Steffen, B.: Incremental require-
ment specification for evolving systems. Nordic J. Comput. 8, 65–87 (2001). http://
dl.acm.org/citation.cfm?id=774194.774199

16. Jörges, S.: Construction and Evolution of Code Generators. A Model-Driven and
Service-Oriented Approach. LNCS, vol. 7747. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36127-2

http://doi.acm.org/10.1145/2993412.3003390
http://doi.acm.org/10.1145/2993412.3003390
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
https://doi.org/10.1109/DTIS.2017.7930158
https://doi.org/10.1109/DTIS.2017.7930156
https://doi.org/10.1109/DTIS.2017.7930157
https://doi.org/10.1109/DTIS.2017.7930157
http://dl.acm.org/citation.cfm?id=774194.774199
http://dl.acm.org/citation.cfm?id=774194.774199
https://doi.org/10.1007/978-3-642-36127-2
https://doi.org/10.1007/978-3-642-36127-2


Generative Model Driven Design for Agile System Design and Evolution 17

17. Jörges, S., Margaria, T., Steffen, B.: Genesys: service-oriented construction of prop-
erty conform code generators. Innov. Syst. Softw. Eng. 4(4), 361–384 (2008)

18. Karusseit, M., Margaria, T.: Feature-based modelling of a complex, online-
reconfigurable decision support service. Electron. Notes Theor. Comput.
Sci. 157(2), 101–118 (2006). http://www.sciencedirect.com/science/article/pii/
S1571066106002489

19. Lamprecht, A.-L., Margaria, T. (eds.): Process Design for Natural Scientists.
An Agile Model-Driven Approach. CCIS, vol. 500. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45006-2

20. Lamprecht, A., Margaria, T., McInerney, C.: A summer computing camp using
ChainReaction and jABC. In: 40th IEEE Annual Computer Software and Appli-
cations Conference, COMPSAC Workshops 2016, Atlanta, GA, USA, 10–14 June
2016, pp. 275–280. IEEE Computer Society (2016). https://doi.org/10.1109/
COMPSAC.2016.41

21. Lustig, D., Pellauer, M., Martonosi, M.: PipeCheck: specifying and verifying
microarchitectural enforcement of memory consistency models. In: 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 635–646. No.
ISSN=1072-4451. IEEE (2015)

22. Lustig, D., Sethi, G., Martonosi, M., Bhattacharjee, A.: COATCheck: Verifying
memory ordering at the hardware-OS interface. SIGPLAN Not. 51(4), 233–247
(2016). http://doi.acm.org/10.1145/2954679.2872399

23. Margaria, T.: Knowledge management for inclusive system evolution. In: Steffen,
B. (ed.) Transactions on Foundations for Mastering Change I. LNCS, vol. 9960,
pp. 7–21. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46508-1 2

24. Margaria, T., Steffen, B.: Lightweight coarse-grained coordination: a scalable
system-level approach. Softw. Tools Technol. Transfer 5(2–3), 107–123 (2004)

25. Margaria, T., Steffen, B., Reitenspieß, M.: Service-oriented design: the roots. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
450–464. Springer, Heidelberg (2005). https://doi.org/10.1007/11596141 34

26. Martonosi, M.: New metrics and models for a Post-ISA era: managing complex-
ity and scaling performance in heterogeneous parallelism and internet-of-things
(keynote talk). In: 42nd IEEE Annual Computer Software and Applications Con-
ference (COMPSAC), CELT Symposium, Tokyo, Japan, 24–27 July 2018. IEEE
Computer Society (2018, in press)

27. Medernach, D., Fitzgerald, J., Azad, R.M.A., Ryan, C.: A new wave: a dynamic
approach to genetic programming. In: Proceedings of the Genetic and Evolution-
ary Computation Conference 2016, pp. 757–764. GECCO 2016. ACM, New York
(2016). http://doi.acm.org/10.1145/2908812.2908857

28. Milojicic, D.: Generalize or die: operating systems support for memristor-based
accelerators (keynote talk). In: 42nd IEEE Annual Computer Software and Appli-
cations Conference (COMPSAC), CELT Symposium, Tokyo, Japan, 24–27 July
2018. IEEE Computer Society (2018, in press)

29. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools. Softw.
Tools Technol. Transf. 20, 327 (2017)

30. Niese, O., Steffen, B., Margaria, T., Hagerer, A., Brune, G., Ide, H.-D.: Library-
based design and consistency checking of system-level industrial test cases. In:
Hussmann, H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 233–248. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45314-8 17

http://www.sciencedirect.com/science/article/pii/S1571066106002489
http://www.sciencedirect.com/science/article/pii/S1571066106002489
https://doi.org/10.1007/978-3-662-45006-2
https://doi.org/10.1109/COMPSAC.2016.41
https://doi.org/10.1109/COMPSAC.2016.41
http://doi.acm.org/10.1145/2954679.2872399
https://doi.org/10.1007/978-3-319-46508-1_2
https://doi.org/10.1007/11596141_34
http://doi.acm.org/10.1145/2908812.2908857
https://doi.org/10.1007/3-540-45314-8_17


18 T. Margaria

31. Steffen, B., Gossen, F., Naujokat, S., Margaria, T.: Language-driven engineering:
from general-purpose to purpose-specific languages. In: Steffen, B., Woeginger, G.
(eds.) Computing and Software Science: State of the Art and Perspectives. LNCS,
vol. 10000. Springer, Heidelberg (2018)

32. Steffen, B., Margaria, T., Braun, V., Kalt, N.: Hierarchical service definition. Ann.
Rev. Commun. ACM 51, 847–856 (1997)

33. Steffen, B., Margaria, T., Claßen, A.: Heterogeneous analysis and verification for
distributed systems. Softw. Concepts Tools 17(1), 13–25 (1996)

34. Steffen, B., Margaria, T., Claßen, A., Braun, V.: Incremental formalization: A key
to industrial success. Softw. Concepts Tools 17(2), 78–95 (1996)

35. Steffen, B., Margaria, T., Claßen, A., Braun, V., Reitenspieß, M.: An environment
for the creation of intelligent network services. In: Intelligent Networks: IN/AIN
Technologies, Operations, Services and Applications - A Comprehensive Report,
pp. 287–300. IEC: International Engineering Consortium (1996)

36. Steffen, B., Naujokat, S.: Archimedean points: the essence for mastering change.
In: Steffen, B. (ed.) Transactions on Foundations for Mastering Change I. LNCS,
vol. 9960, pp. 22–46. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46508-1 3

37. Steinmacher, I., Robles, G., Fitzgerald, B., Wasserman, A.I.: Free and open source
software development: the end of the teenage years. J. Internet Serv. Appl. 8(1),
17:1–17:4 (2017). https://doi.org/10.1186/s13174-017-0069-9

38. Varriale, A., di Natale, G., Prinetto, P., Steffen, B., Margaria, T.: SEcubeTM: an
open security platform: general approach and strategies. In: Margaria, T., Solo,
M.G.A. (eds.) The 2016 International Conference on Security and Management
(SAM 2016). Special Track “End-to-end Security and Cybersecurity: from the
Hardware to Application”, pp. 131–137. CREA Press (2016)

39. Ward, M.P.: Language oriented programming. Softw. Concepts Tools 15(4), 147–
161 (1994)

https://doi.org/10.1007/978-3-319-46508-1_3
https://doi.org/10.1007/978-3-319-46508-1_3
https://doi.org/10.1186/s13174-017-0069-9

	Generative Model Driven Design for Agile System Design and Evolution: A Tale of Two Worlds
	1 Introduction
	2 The People
	3 The Economic Domains and Their Convergence
	4 The Big Picture Context
	5 The Tools and Techniques for the New World
	6 Generative Approaches as the Next Wave
	7 Examples of Future-Oriented Rethinking
	7.1 Rich, Formally Specified Interfaces from the Bare Metal Upward
	7.2 Ad-Hoc Computing in the World Beyond von Neumann's Architectures
	7.3 Security-Injecting Compilers

	8 The Perspectives Ahead
	References




