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Preface

This volume contains the papers presented at FMICS 2018, the 23rd International
Conference on Formal Methods for Industrial Critical Systems, which was held during
September 3–4, 2018, in NUIM, Maynooth, Ireland. The FMICS 2018 conference took
place as a collocated event of the 14th International Conference on integrated Formal
Methods, iFM 2018.

After 22 successful FMICS workshops held from 1996 to 2017, FMICS has become
a conference — such a long-awaited change is probably not a surprise in itself. The aim
of the FMICS conference series is to provide a forum for researchers who are interested
in the development and application of formal methods in industry. In particular, FMICS
brings together scientists and engineers who are active in the area of formal methods
and interested in exchanging their experiences in the industrial usage of these methods.
The FMICS conference series also strives to promote research and development for the
improvement of formal methods and tools for industrial applications. The topics of
interest include, but are not limited to:

• Design, specification, code generation, and testing based on formal methods
• Methods, techniques, and tools to support automated analysis, certification,

debugging, learning, optimization, and transformation of complex, distributed,
real-time systems and embedded systems

• Automated verification (model checking, theorem proving, SAT/SMT constraint
solving, abstract interpretation, etc.) of critical systems

• Verification and validation methods that address shortcomings of existing methods
with respect to their industrial applicability (e.g., scalability and usability issues)

• Tools for the development of formal design descriptions
• Case studies and experience reports on industrial applications of formal methods,

focusing on lessons learned or identification of new research directions
• Impact of the adoption of formal methods on the development process and asso-

ciated costs
• Application of formal methods in standardization and industrial forums
• Formal methods for mobile and autonomous systems

This year we received 17 submissions. Each of these submissions went through a
rigorous review process in which each paper received at least 3 reports. We selected 9
papers for presentation during the workshop and inclusion in these proceedings. The
workshop also featured invited talks by Tiziana Margaria (University of Limerick,
Lero, and Confirm - Limerick, Ireland) and Susanne Graf (Director of Research at
VERIMAG Grenoble, France) and a panel on “Next generation Smart Systems.” In
addition, 9 invited presentations were given in honour of the 60th birthday of Susanne
Graf. The proceedings contain a separate topical part for the accompanying invited
contributions.



We would like to thank the ERCIM FMICS working group coordinator Tiziana
Margaria for her counselling and support during the organization of FMICS 2018. The
iFM 2018 general chair and FMICS local organizer Rosemary Monahan gave us
essential help with the local arrangements in Maynooth. We would also like to thank
Science Foundation Ireland, Fáilte Ireland, and Maynooth University for the generous
sponsoring of the joint events. ERCIM supported the event through the FMICS
Working Group, EASST provided the best paper award, and Springer Nature produced
the conference proceedings. We would like to thank Bernhard Steffen and Tiziana
Margaria for organizing the invited contributions in honor of Susanne Graf’s 60th
birthday. Finally, we would like to thank the Program Committee members and
external reviewers for their useful and detailed reviews and discussions, all authors for
their submissions, and all presenters and attendees of the conference.

September 2018 Jiří Barnat
Falk Howar
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The Quest for Optimality in Stateless Model
Checking of Concurrent Programs

Bengt Jonsson

Uppsala University

Abstract. Testing and verification of concurrent programs is hard, as it requires
reasoning about all the ways in which operations executed by different processes
(or threads) can interfere. Model checking [7, 16] addresses this problem by
systematically exploring the state space of a given program and verifying that
each reachable state satisfies a given property. A problem in applying model
checking to realistic programs is to capture and storing a large number of global
states. Two approaches for coping with this problem are abstraction and stateless
model checking. Abstraction techniques construct a sound overapproximation
ofthe state-transition graph, which can then be tractably analyzed. A pioneering
work by Graf and Saidi [12] showed how infinite-state systems can be auto-
matically verified in this way. Stateless model checking (SMC) [11] explores the
state space of the program without explicitly storing global states. The technique
requires taking control of the scheduler and subsequently executing the program
multiple times, each time imposing a different scheduling of the processes. By
considering every process at every execution step, however, the number of
possible schedulings grows exponentially wrt. the total length of program
execution. Consequently, a number of techniques for reducing this number,
without unnecessarily sacrificing coverage, have been developed. The most
prominent is Partial order reduction (POR) [8, 10, 15, 17], adapted to SMC as
Dynamic POR (DPOR) [9], which exploits the fact that schedulings with the
same ordering of dependent operations can be regarded as belonging to the same
equivalence class (sometimes called a Mazurkiewicz trace), and that it is suf-
ficient to explore one of them.
In recent years, several techniques have been develop that further increase the
efficiency of stateless model checking. One approach has been to develop
techniques that are optimal in the sense that they explore exactly one scheduling
in each Mazurkiewicz trace [2]. Corresponding minimization techniques for
classical (stateful) model checking were pioneered by Graf and Steffen [13].
Other approaches are based on the observation that the notion of Mazurkiewicz
trace is unnecessarily refined for the purpose of determining the outcome of a
program scheduling. Hence, coarser equivalences have been defined: e.g., based
on mapping each read operation to the corresponding write operation that
produces its value [6, 14]. For such coarser equivalences, the question of
developing optimal exploration algorithms becomes interesting.
In this presentation, we will survey some recent developments and results for
making stateless model checking more efficient, also considering different
memory models for concurrency [1, 3, 5, 4]. It builds on joint work with Parosh
Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Carl Leonardsson,
Magnus Lång, Tuan Phong Ngo, and Konstantinos Sagonas.
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The Cause-Effect Latency Problem
in Real-Time Systems

Wang Yi

Uppsala University, Sweden

Abstract. Real-time systems are often implemented as a set of communicating
tasks scheduled and executed with different rates. Functions in such systems are
chains of tasks, processing data streams. Ideally each data item (i.e. the “cause”)
in an input stream corresponds to a data item (i.e. the “effect”) in the corre-
sponding output stream. However some input data may be dropped due to the
different task execution rates. Data exchange among tasks must be implemented
using carefully designed non-blocking protocols to preserve the functional
semantics of task chains. In this paper we study such a protocol, the Data
Buffering Protocol (DBP) by Paul Caspi et al and the corresponding cause-effect
latency problem for DBP. We provide a precise characterization of the problem
and a method for estimating the worst-case cause-effect latency of task chains.
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Generative Model Driven Design
for Agile System Design and Evolution:

A Tale of Two Worlds

Tiziana Margaria(B)

Chair of Software Systems, University of Limerick, and Lero, Limerick, Ireland
tiziana.margaria@ul.ie

Abstract. In order to mainstream the production and evolution of IT at
the levels of speed, scale, affordability and collaborative effort needed to
truly make IT enter the fabric of every economical and societal endeav-
our, as is the projected future of our society in the next decade, the
ease of learning, understanding, and applying new disruptive technolo-
gies must drastically improve. We argue that the needs of the people,
the economical sectors, and the large-scale trends can only be met if the
IT professions embrace and adopt a new way of producing and consum-
ing IT, based on more formal descriptions, more models, more reasoning
and analysis before expensive implementations are incurred, coupled with
automatic transformations, generations, and analyses that take advan-
tage of the models and formalized knowledge.

We analyse briefly the various dimensions, derive a specification for
the new IT and IT platforms, and provide a few examples of how the new
thinking can disrupt the status quo but empower a better understand-
ing, a more efficient organization, and a more automatic management
of the many cross-dimensional issues that future connected software and
systems will depend upon.

1 Introduction

In the increasingly connected and heterogeneous world in which the modern
and future industrial critical systems will operate, agility and evolution are of
paramount importance. As in Alice in Wonderland, solution providers and tech-
nology providers need to run fast in the technology and context evolution race
in order to not fall back. The steady evolution of products, infrastructure, as
well as design and implementation/manufacturing environments is a continu-
ous source of change. It is additionally topped by disruptions: examples are
the inception and then the steady adoption of online-X, self-X and now smart-X
approaches across the economy sectors. These disruptions are pervasive and irre-
versible trends that subvert, one after the other, the well established power and
dominance structures in the sectoral, local and global economy. This happens
over and over again: in little more than a decade we have seen the inception and
then mainstreaming of online communication, marketing, service, and commerce

c© Springer Nature Switzerland AG 2018
F. Howar and J. Barnat (Eds.): FMICS 2018, LNCS 11119, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-030-00244-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00244-2_1&domain=pdf
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channels, to the point that Amazon has been for years among the most valuable
companies worldwide. The self-X economy has eliminated many service profes-
sions though the adoption of online access and individual recognition of the user:
travel agencies, ticketing services, booking platforms, and the corresponding ser-
vice desks of the large providers (like airlines, railways, and event managers like
ticket.com or eventbrite), or in the case of science and research, online paper
submission systems and online conference management systems. The smart-X
economy is the new incipient wave, fuelled by data collection and analysis readily
available in a connected and cloud based fashion. The “Smart Anything Every-
where”1 paradigm builds upon increasingly cheap storage, increasingly cheap
and efficient computation power, increasingly powerful and pervasive communi-
cation networks, and various advances in traditional algorithms for analysis and
optimization, and now also AI/ML style reasoning. Clearly, all these changes
separate the current world, as we know it, from a future world where all these
connections and enhancements will be accepted, considered normal, and essential
part of the established “business practices” for all organisations and companies.

So in such an accelerating, convergent, and individualized socio-technical
and economical world, what kind of design and implementation technologies for
software and systems will be needed in the future to survive and possibly thrive?

The specification for the fundamental traits of a new generation of tech-
nologies comes from the kind of changes demanded by customers and users
(at the individual and corporate level). These are either enforced by the eco-
nomic actors (like the providers of components, systems, the integrators, and
the various granularities of cooperation practiced in complex and global supply
chains), or mandated by those entities that are responsible for policies and regu-
lations (like the EU in GDPR, the governments, or oversight and standardization
bodies, etc.).

So let us have a look at these dimensions of change and forces (Sects. 2–4),
in order to derive a characterization of what needs to fundamentally become
different if we wish to be ready for the new roaring twenties ahead (2020–2030)
in Sect. 5 and propose a new paradigm in Sect. 6.

This space is characterized by a large prevalence of contradictory “needs”
and desires, that can only be faced by thinking in a fundamentally different way.
Putting a new thinking into practice requires a welcoming adoption of innova-
tions, in spite of the fact that innovations are by definition new unproven paths
and means, and as such scary and risky. The lines of resistance to innovation are
accordingly high-profile and deeply rooted in the individual fear and organisa-
tional inertia. The specific micro- to macrolevel contexts I am prevalently looking
at and from which I draw the observations are those of Lero and Confirm, two
Irish national research centres that include 8 resp. 10 universities and research
institutions, and over 40 companies (SME to multinationals) each. Such centres
run 6 years research programs comprising tens of projects, and are embedded in
the various layers of decision and management at the single partner level, centre
level, national level and EU/international/global level. The global level is due

1 See the EU initiative at https://smartanythingeverywhere.eu.

http://ticket.com
https://smartanythingeverywhere.eu
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to strategic partnerships, e.g. with Fraunhofer in Germany, NII in Japan, and
CSIRO in Australia and the practice of international collaborations, but also
to the fact that several industry partners are Irish branches of multinational
corporations.

Examples of the new, future-oriented way of dealing with complex inter-
faces, new architecture paradigms and security-injecting generative approaches
are then provided in Sect. 7.

2 The People

Looking at users as consumers of technology and products, the demand is for
significant change already in the close and even immediate future: how can peo-
ple achieve more complex, more specialized and technically advanced goals and
operations by using “simpler” and more supportive tools and infrastructure? In
other words, by using tools and systems that “know” more themselves, humans
with less and less technical mastery should be quickly enabled to achieve in a
more reliable way and at higher quality a wealth of more complex, more precise,
more secure and higher quality design, implementation, production, maintenance
goals. At the same time, the need for engineers and specialists is growing much
faster than their production along the established paths. Along the universities
and the universities of applied science, here I see as “producers” of IT specialists
also the technical courses in high schools for those countries like e.g. Italy and
Germany that have a rich vocational school offering2.

The requests for producing more specialists and faster are increasingly insis-
tent. These requests come from companies and from professional organizations,
both nationally, e.g. from the Irish Computer Society, and internationally, from
ACM and IEEE. They also come from the governments and their proxies, like
the Irish Higher Education Authority, that design and enforce the policies and
programs for the workforce of the future. They ask Universities and research
centres to train more people with a large variety of non-traditional backgrounds
in these new and wonder-achieving technologies. They dream of an educational
system that (a) in a short time span of typically a few weeks to a few months,
(b) possibly without direct contact with the teachers nor in-person monitoring
(i.e. through online education, or blended forms whereby the on-site presence
is extremely compact - one weekend to one week per academic year), and (c)
largely virtually, i.e. surely without the need of daily physical presence in ded-
icated equipped spaces (like classrooms and laboratories), these “fast tracked”
individuals become proficient professionals in the new technologies, and future-
proof employees of these advanced, leading edge companies.

2 In Italy there is a rich tradition of excellent Istituti Tecnici that form at thou-
sands of qualified experts at the upper secondary school level, leading to chartered
professional profiles (e.g. Perito tecnico) under the control of professional Charters
(Albo Professionale). The German system has a strong tradition of dual education
(duale Berufsausbildung) combining formal education with a training on the job
component.
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The characteristics and slogans we hear in this context span typically agile
workforce training; training on demand; workforce evolution; off-site approach;
flexible, adaptable and smart-sized education; ad-hoc education pills; life-long
upskilling; competence building; capability-oriented approaches.

3 The Economic Domains and Their Convergence

Referring to the Irish and global situation, a number of “needs” are mentioned
over and over again:

– the need to integrate across specialization domains, spanning across various
disciplines of research and professions;

– the need to become increasingly agnostic about the specific technolo-
gies: the programming language, the operating system, the data manage-
ment/information system, the communication networks, the runtime plat-
forms, and more;

– the need to be future-ready: projects, collaborations, consortia and alliances
change. No IT product can afford being locked into technological walled gar-
dens, the need is voiced over and over again to be as technology- and as
platform-independent as possible;

– the need to be able to try fast and improve fast: time to market is important,
but time to test/time to retest are equally important. What is called “con-
tinuous development” or “continuous integration” needs to be supported as
the new mainstream paradigm of system design and evolution.

Such demands are brought up consistently across all the economic domains:
when we talk about large scale software development and global software devel-
opment as in Lero or at the EU level, when we address smart advanced manu-
facturing as in the Irish Confirm or Industry 4.0 in Germany, or smart bio and
smart energy (as in the MAREI centre in Ireland), or smart agri (as in an ongo-
ing EU initiative), or new smart materials (as in the Bernal Institute at UL and
the ADAPT research centre in Ireland). This uniformity indicates very clearly
the convergence of these domains not only in the factual collaboration (e.g. inte-
gration to embed smart energy aspects in smart manufacturing and smart agri)
but also a higher-level, strategic convergence when anticipating and forecasting
what capabilities will be essential to thrive in the next decade.

The characteristics and slogans we hear in this context span agile develop-
ment; continuous quality control; evolution-driven design; seamless integration;
seamless evolution; continuous development; continuous integration, data-driven
development; technology and vendor lock-in.

4 The Big Picture Context

At a higher abstraction level, the strategists think in terms of paradigms, mega-
trends, and metaforces that guide the 5 to 10 years cycle length of the market
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movement and technology adoptions. The moves to connected, mobile, online,
individual, social, green and now also smart fall in this category of strategic,
long term and large scale concerns. These cycles are slower, and as such they
are both slower to introduce and also slower to pace out. Some consider them
to be generation-defining: they lock into the fundamental imprinting and belief
system an individual human feels comfortable with. Therefore they are almost
impossible to “undo” or to transition to the “next generation values”. The digital
natives vs. digital immigrants distinction was an example of this generation-gap
defining skill at the turn of the century, and the internet (i.e. the pervasiveness
of online, mobile) followed short thereafter. The problem with the big picture is
that it suffers disruption too. In a low frequency, long cycle system, a wave of
disruption can be even more subversive than in the “normal” tech world. Exam-
ples of such fundamental discontinuities have been the oil crisis in the ’70s, the
internet bubble burst in the ’00s, the 9/11-induced shock, freeze and consoli-
dation in a number of markets, like e.g. aviation. Now, we face the potential
de-globalization of supply chains following the trade changes due to e.g. Brexit,
the current uncertainty concerning trade agreements like the TPP, NAFTA or
the Iran deal, and the quick and unexpected resurgence of tariffs.

What we hear in this context sounds like survival of the fittest is survival
of the fastest; agility and quick evolution; flexible contracts; globalization and
de-globalization; reframing of supply chains; glocalization.

5 The Tools and Techniques for the New World

In the new world, the answer in terms of which IT tool and techniques should
be researched, produced, and then studied, adopted, and taught today to the
traditional and non-traditional students and professionals in order for them to
be future-ready needs to capture the essence of these “keywords”, which can be
summarized in speed, uncertainty, and change. Accordingly, the new IT needs
to deliver a correspondingly updated, simplified and flexible approach to pro-
ducing software and systems. It also needs to provide a much simplified and
technology-shielding software infrastructure and platform for software and sys-
tem development itself. This need induces a significant disruption from the past
and current culture, where IT production was and is in the hands of (trained
or self-taught) specialists who (need to) master coding and (need to) know the
details of development systems, programming frameworks, operating systems,
communication systems, virtualization systems down to the hardware. In the
new world, there is no time and no long-term value anymore in mandating all
this knowledge from whoever professionally uses IT and systems and produces
IT and systems. So we face deep change, disruptive of how we teach and educate.

As long as we as a community keep practicing and teaching a code-driven
and test-driven approach to (complex) system design, understanding what a
system does based on source code will remain a challenge. It is a challenge
already now for professionals, as witnessed for meanwhile over 50 years at general
software engineering conferences like ICSE and OOPSLA as well at conferences
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and workshops on software testing, software quality and software maintenance.
Works like [5] show that even recovering just the feature level architecture of
existing software systems is hard work: it requires both specialized tools and
quite some detective work, coupled with technical and domain knowledge, affinity
for experimentation and a good pinch of intuition. Few people, even in Software
Engineering, satisfy this profile. The mass of people and professionals in need
of a system’s refactoring, extension, and integration described as “the people”
in Sect. 2 isn’t equipped to add all these skills to their professional portfolio.
The educational system currently for IT is not made either to mainstream deep
technology competences. The outcome is that for most IT change projects the
need is recognized but there is no follow up. This freeze into past solutions locks
entire companies and organisation into outdated systems that impose outdated
working patterns. This status quo counters the increasingly flexible workflows
and collaborations mandated by both the collaborative economy and the many
disruptive opportunities, trends and threats.

The problem is not solved by the run to open source: even if the source
code is open, and in theory reusable and modifiable, it still requires comprehen-
sion first, then mapping to the concrete situation, and thus all the capabilities
mentioned above: it is in practice like starting with legacy. The big boost to
adoption of open source has been extremely beneficial for the sharing economy,
the commoditization of essential layers of software, the globalisation and mass
accessibility of technology and its related knowledge in ways unthinkable even
20 years ago, when entire domains were in the hands of proprietary systems with
closed APIs. So, OSS and FOSS [37] work very well, but again they are for
specialists.

The Agile movement has sparked a new attitude towards collaborative and
fast paced system development, including frequent and consensual meetings with
stakeholders that are users and customers, and it is gladly adopted in industry.
However, agile thinking addresses the software development process and is agnos-
tic to the means and artefacts. In practice, software is developed again within the
“standard best practice”: starting from code and with “test first” as a maxime
for quality assurance. What this means is twofold:

– Because it is code, the artefacts are out of the cultural reach for most of
these users and customers, as well as for most of the professional roles essen-
tial to the software business that are not directly code-related: sales, mar-
keting, legal, etc. These people have to rely on expert “translation” from the
artefacts to the understandable (but possibly incomplete, ambiguous, biased)
interpretation of those artefacts and their characteristics into some IT-layman
description, that most often is in some natural language prose. We are still
trapped here in the business-IT translation gap.

– Because quality assurance is prevalently if not exclusively handled via test-
ing, it can take place only post-factum: a system is implemented to the code
level, and only then it is amenable to validation, verification etc. Given that
it is very expensive to write code as well as to debug and test code, this is an
inherently and systematically wasteful way of managing the production of
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software and systems. Also simulation based approaches still require writing
simulation code that is quite akin to the production code. Also the verifica-
tion is still conducted case by case, configuration by configuration, run by run.
Once a system is out, any change requires reassessment through regression
testing, possibly recertification, skewing even more toward the testing costs
the already onerous ratio of cost to develop an increment vs. cost to test that
increment.

6 Generative Approaches as the Next Wave

The creation of a software or system is itself innovation, and the change or
evolution of an existing system is innovation too. Consistently with the widely
successful school of lean approaches to innovation, one needs to fail fast and
eliminate waste. The key is to recognize as early as possible that something is
not as wished, possibly before investing time and resources into producing what
will need to be amended, and make changes right away on the artefacts that are
available at that stage.

An efficient way to deal with this paradigm addresses a variety of aspects
and innovation directions, that we briefly summarize.

– The cultural aspect is made accessible by resorting to the description of
artefacts within domain models, rather than code: model driven design and
development, and model driven and model based testing are already going in
this direction.

– The code aspect is addressed by separating the (application specific or
reusable) “logic” from the implementation of the operations and the system.
Service oriented computing leverages component based design together with
a high level description of the interfaces and properties of the components
as well as the behaviours (described as processes or as APIs) and data they
operate upon.

– The testing aspect is streamlined by choosing modelling languages that
facilitate an early stage “checking” of the model structure, of the architec-
tural and behavioural compatibilities. Architecture Analysis and Description
Languages (AADLs) cover the architectural and static aspects, while the use
of formal models like the KTS used in jABC [24], DIME [2] and in gen-
eral graph-based models supported by CINCO [29] allow also a behavioural
analysis e.g. by model checking and in some cases a correct-by-construction
synthesis of property-conform models, thus delivering the “speed” of early
detection and even avoidance of errors that makes then testing on the code
much faster.

– The dissemination aspect is taken care of by sharing such models (under-
standable to the domain experts) and possibly also the implementations of
the building blocks, this by using for example the existing OSS facilities and
structures. Libraries of services have been in use in the telecommunication
domain since the ’80s [35], they are increasingly in use in bioinformatics, geo-
information systems, and are slowly taking a center stage attention also in the
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advanced manufacturing community, albeit mostly still in form of reference
architectures and shared component models for which standards need to be
developed.

– The speed to change is accelerated by using generative approaches that
transform the models into lower level descriptions, possibly into code, adding
one or more model-to-code layers on top of the already long chain of com-
pilers that take UML classes and create skeletons, or Java code and produce
bytecode, or C/C++ code and produce executables, and from the executa-
bles goes down to the specific instruction set and firmware of the processors,
FPGAs and other ASICS. Generation can be partial, as in the UML commu-
nity, or more extended as e.g. in the Grammatical Evolution approach by [27],
that creates in fact programs by successive approximation based on a specific
flavour of genetic algorithms that operate along a grammar-driven DSL of
the specific domain and operations under consideration. In jABC, CINCO
and DIME we use both model-to-model and model-to-code transformations,
starting from the Genesys approach of [16,17], up to the generalized approach
that Cinco adopts also at the tool metalevel [29].

– The rich description of the single components, data, and applications is
achieved by means of both domain-independent and domain-specific knowl-
edge about the functionalities, the data and business objects, and the applica-
tion’s requirements and quality profile, as in language-oriented programming
[6,39] or language-driven engineering [31].

– The scalability and speed of education are supported by teaching domain
specialists to deal with these domain specific models, their analysis and com-
position, and the validation using tools that exploit the domain-specific and
contextual knowledge to detect the suitability or not of the current version
of the application’s models for solving a certain problem in a certain (regula-
tory, technological, economic) context. We have had successes in the context
of school pupils [1,20], postgraduate students with a background in biology
and geography [19], and more recently first year students and mature CS
students that take a 1 year Higher Diploma [11].

– The quick evolution is delivered by means of integrated design environments
that support the collaboration of all the professional profiles and stakeholders
on the same set of models and descriptions, as in the XMDD and One Thing
Approach, applied to models of systems but also of test cases [30].

– The structuring approaches based e.g. on hierarchy [32,33], on several
notions of features like in [5,14,15,18,25,34], or contracts for abstraction and
compositionality as in [13]. These structures allow a nice and incremental
factoring of well characterized system components to aide the hierarchical
and collaborative organisation of complex or large systems, while supporting
the intuition of the domain experts, and the most opportune units of reuse
(for development, evolution and testing), and units of localized responsibility,
e.g. for maintenance, evolution and support.

Some of this is already in the making even at the level of hardware and platforms,
which are essential for the connected and evolving industrial critical systems of
tomorrow.
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7 Examples of Future-Oriented Rethinking

On the hardware side the foundation of all software executions is the computer
architecture, possibly enhanced by various layers of virtualization and resource
management. In terms of properties, guarantees, contracts, service level agree-
ments, upper layers of the software and system management stack must rely upon
what is known and guaranteed by the underlying layers. So, what is known today
about computer architectures and the software layers that enforce essential plat-
form properties? We look at three recent contributions that provide a glimpse
of the promising research directions that are amenable to bring formal thinking
and generative approaches closer to the mainstream.

7.1 Rich, Formally Specified Interfaces from the Bare Metal
Upward

Margaret Martonosi, recent recipient of the IEEE Computer Society Technical
Achievement Award “for contributions to power-aware computing and energy-
constrained mobile sensor networks”, reflected in her recent keynote at IEEE
COMPSAC that computer architects are until now required yet to a good
extent also restricted to measure in architectures only execution performance,
thus sticking to a one-dimensional characterisation of quality that is short of
today’s architectural demands. Her plea for modern computer systems is towards
a far richer and multifaceted characterisation. Such a profile-like characterisation
includes next to figures of energy consumption also values for reliability, fairness,
portability, scalability, security, and many more. These rich descriptions of the
Computer Architecture interfaces should be formulated in an unambiguous lan-
guage, and she advocates using formal methods for describing and reasoning
about interface specification, modeling and metrics [26].

In recent work with Sharad Malik and Aarti Gupta, she used such formal
specifications, albeit simple, first to describe the capabilities of an instruction set,
an API, and equivalently specifiable behavioural mechanisms for the many other
components that do not have an instruction set (called non-ISA components, like
most Internet of Things devices), Subsequently they used those descriptions to
analyze both the real and the possible behaviours of systems in isolation and in
a friendly or hostile context. They used these capabilities and, in a linearized
world, the “happens before” behavioural relation that allows to think in terms of
system behaviours over sequences of operations, in a trace semantics approach.
This led to the development of simple but effective and efficient tools that work
as a set of concern-specific lenses to talk about global behaviours at the system
level. Tools like Wattch [4], PipeCheck [21] and COATCheck [22] have made the
systematic generation and exploration of architecture-level behavior
both possible and easy, regarding power optimisation, memory consistency,
and memory ordering at the hardware-OS interface, respectively.

Thanks to the rich interface formalisation, it is possible to describe exactly
what is intended, what is forbidden, and what happens in a situation-dependent
context, and it is consequently possible for the first time to build tools, in
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this case based on SAT solvers, that systematically explore and classify the
behavioural traces.

Eminent achievements have been the automatic and easy reproduction of the
Meltdown and Spectre security attacks using the above tools. Not only were such
attacks easily “discovered”: the discovery came together with an understanding
of which design features and mechanisms of interaction led to them, and this
understanding of course led to an entire design space of ways to detect and
prevent such and similar attacks. Additionally, they were able to generate a
large number of other so far unreported attacks that are possible on the same
architectures and mechanisms, some of which so relevant that they were reported
back to the companies that designed such systems.

Thanks to such behavioural analysis tools, it is made easy for designers of
higher level infrastructure software and of applications, to check and recheck that
their own designs do not incur in behavioral risks or inconsistencies. Weighted
edges on automata-like models can represent latency, power or reliability figures,
and provide rich analysis models down to the instruction set layer, which is so
far not possible. Upper layers can then rely on the data measured at the lower
layers, and enable a systematic design space exploration driven by rich models
that embody detailed and multifaceted knowledge at the underlying levels: still
a dream for today’s system designers, as we will see in Sect. 7.3.

7.2 Ad-Hoc Computing in the World Beyond von Neumann’s
Architectures

However, considering the future needs, it is even likely that the Von Neumann
architectural paradigm will be superseded. As HP Labs Dejian Milojicic fore-
sees [28], architectures for large scale in-memory computing will revolution the
operating systems as we know them today and change the entire organization
of what is a computer due to he emergence of new nanocomponents. Current
research on emerging technologies for memory design, like memristors in HP but
also other emergent memory components like Magnetic Random Access Mem-
ory (MRAM)3, studied among others in the TRUDEVICE EU COST Action
UL belonged to, are hot candidates to successfully replace actual DRAM-based
main memory technology. On the MRAM technology roadmap, the goal is to
design and develop ?Service-Oriented? emerging memory devices based on non-
volatile MRAM technology, with characteristics and mode of functioning tun-
able in an ad-hoc fashion by individual application designers, as needed to meet
their specific project/work needs. Rapid reconfigurability of the work is here
the main benefit, but configurable and controllable (1) reliability, (2) variabil-
ity, (3) endurance, (4) access time, (5) bandwidth, (6) latency, and (7) power
consumption will allow application designers and programmers direct QoS con-
trol on memory access services. On the memristor technology roadmap, research
leads mainly towards the development of a new kind of passive storage. However,
it is known how to produce memristor based devices that implement negation

3 ITRS 2013, http://public.itrs.net/.

http://public.itrs.net/
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and implication and thus generic logic functions. Accordingly, we can envisage
scalable architectures where memristor-based memories manage the data, and
efficient tiling and interconnections of memristor-based logic organized in cross-
bar architectures (like for FPGAs) provide easily reconfigurable “control” units
that supersede the current Von Neumann architectures. The consequence is a
new generation of architectures that provide a memristor-based generic memory
and control capability that can be configured and used completely on-demand.

Fully exploiting either the Service Oriented MRAM Memory device or the
memristor-based architecture requires revolutionizing the current programming
model, and the way we organize and handle data, control, and even the set of
instructions at the hardware level. In such a post-Neumann architecture, com-
putations consist of

– the data, to be stored e.g. in the memristor storage,
– the “program”, to be e.g. “loaded” on the memristor-based control architec-

ture, but whereby
– the Instruction Set of the architecture (i.e., the primitives of the programming

language) is not predefined and static like in current architectures, but easily
and fully reconfigurable beyond the level of reconfigurability that we know
today from FPGAs. In this future, the definition of the instructions in terms
of hardware implementation of the primitives will be provided together with
the “program”, and the instructions will be “mapped” themselves on the
control architecture in order to define the set of functionalities available to
the specific program.

Taken together, we see here the proposal of a completely ad-hoc and dynamic
computation model and system: a Domain Specific Language, and potentially
even an Application Specific Language, can be “deployed” case by case, program
by program, onto an instruction set-agnostic architecture. By configuring a sea
of memristors into instruction-executing logic components, this new paradigm
effectively creates a Domain Specific Computer. This computer is then asked to
execute a program in that DSL onto given data. When that execution terminates
it is ready for a complete reconfiguration to another domain or application. In
other words, this future paradigm ditches the inherent dicothomy of the Von Neu-
mann paradigm, and embraces a thorough and generic service-orientation from
the hardware up. Once such an architecture is available, implementing language-
oriented programming [6,39] and language-driven engineering [31] throughout
the entire stack of software layers, down to the hardware, becomes natural and
obvious.

Once this is in place, it will be then finally possible to have formally char-
acterized capabilities and interfaces for a new kind of service-oriented general
purpose efficient hardware, that is pliable to fast and efficient reconfiguration,
and that brings a rich description of both functionality and quality of service
in terms of properties and behaviours. The approach just described applies not
only to instruction set-based hardware like today’s CPUs, but also to API-based
components like e.g. Smartcards, which support at different abstraction layers
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interfaces like the Transmission Protocol Data Units and the Application Pro-
tocol Data Units. It applies even to non-ISA components like the FPGAs and
most accelerators and IoT devices.

7.3 Security-Injecting Compilers

This is exactly the situation we are currently facing in the project with Blu5
Labs: the SEcube (TM) chip they provide includes three open source compo-
nents (a CPU, an FPGA and a Smartcard) [38] and is therefore an advanced
and open System-on-a-Chip specialised for security applications from the hard-
ware up. However, no formal description of the interfaces of these components is
available, as demanded in Sect. 7.1, no formally robust behavioural characteriza-
tion is available, and as a consequence we cannot bootstrap the formal reasoning
from the hardware up as should be the case for an SoC component that is cen-
tral to a holistic security concept, and responsible for the hardware layers of a
security architecture used commercially for top-level security applications.

On the basis of the open source descriptions of the three components and
through testing with the SoC programming boards, it is possible to manually
write drivers (in machine language and C) that realize several layers of ser-
vices [8], that are subsequently thoroughly tested in the laboratory. This is still
the current state of the art in security architectures: at the hardware inter-
face and at the driver and relative protocols nothing is formal, architectures are
designed case by case, software for protocols and low level features is imple-
mented in “coding first” fashion, and architects and designers mostly do not feel
the need for introducing formality at all.

In this situation, we built our own model driven, service oriented and gener-
ative approach on top of the software layers produced manually by the partners.
We produced a DSL library for the multifaceted characterization of security
primitives [3], a service library for the primitives at the programming language
level, in this case the C language, embedded in the C-IME, our C-applications
Integrated Modelling Environment [10,12], and we provided libraries for other
domains as in [7,9]. On this basis it is also possible to provide a smart compila-
tion platform, itself realized in a model driven paradigm, that is a model-to-code
compiler to normal C or to C with security added through the SEcube platform.
This compiler takes security-agnostic models of applications designed in the C-
IME environment, and injects during compilation where needed the appropriate
security primitives. The result is the same C application, but where all the com-
munication is correctly secured using through the C language libraries and the
SEcube security libraries [12].

This generative and model driven approach works in a model driven, ser-
vice oriented and generative fashion, on security-agnostic application models
that are far away from the level of programming, hardware and security com-
petence needed today to create comparably secure software. It successfully frees
the application designer from the need of specialized knowledge about secu-
rity mechanisms and their implementation details. However, in today’s world,
this ability of modelling, analyzing and proving properties of behaviours is still
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limited to aim at the provision of executable functionality (of an application).
We’d rather like instead to provide a provably bug-free and attack-resilient hard-
ware/software stack. This limitation is due to the informal treatment of hard-
ware interfaces, and to the customary code-based approach to the production
and documentation of the low level layers of the SEcube-close software, which
are directly implemented in machine language and C and are not accompanied
by specifications nor models and are thus in practice not verifiable.

8 The Perspectives Ahead

In spite of the difficulties, we are convinced that this is the way to go in order
to mainstream the production and evolution of IT at the levels of speed, scale,
affordability and collaborative effort needed to truly make IT enter the fabric of
every economical and societal endeavour. It needs to be achieved at a level of
competence that can be acquired quickly, in a targeted fashion, and such that the
collaboration with the IT specialists is likely to become natural and pervasive.
Specialists will still exist and be essential for the implementation and mainte-
nance of the code and of the infrastructure. But the acceptance of formality as a
means to clarify interfaces, behaviours and properties and as a precondition to
verify and prevent, instead of implementing, testing, and then repairing case by
case, is essential to meet the challenges and demands for the future platforms of
IT provision and use. In this sense, we need both Archimedean points [36] and
future oriented knowledge management for change management [23] in order
to make future platforms easy but powerful for the many, and complex yet well
structured for the few.
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Abstract. The design and verification of critical cyber-physical systems
is based on a number of models (and corresponding analysis techniques
and tools) representing different viewpoints such as function, timing,
security and many more. Overall correctness is guaranteed by mostly
informal, and therefore basic, arguments about the relationship between
these viewpoint-specific models. We believe that a more flexible contract-
based approach could lead to easier integration, to relaxed assumptions,
and consequently to more cost efficient systems while preserving the
current modelling approach and its tools.

1 Introduction

Building correct Cyber-Physical Systems (CPS) is a challenge in critical appli-
cation domains such as avionics, automotive, etc. It is getting ever more difficult
because CPSs are of increasing complexity: indeed, CPS are nowadays composed
of a large number of components and subsystems of heterogeneous nature and
of different criticality levels. In addition, non-functional aspects, or viewpoints –
such as timing, memory footprint, energy, dependability, temperature, and more
recently also security – are as important as functionality.

There exist many analyses and tools for verifying CPS, but their under-
lying model is always specific to a single viewpoint, and there is currently
limited support to relate viewpoints semantically. In practice, the assumptions
that a viewpoint-specific analysis makes on the other viewpoints remain mostly
implicit, and whenever explicit they are handled mostly manually. In this paper,
we argue that the current design process overconstrains the set of possible sys-
tem designs and that there is a need for methods and tools to formally relate
viewpoint-specific models and corresponding analysis results.

More specifically, we claim that contract-based design can be relevant to
address the challenges raised by the use of multiple viewpoints. The term “design
by contract” has been introduced in [30].
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The rest of this paper is organized as follows. Section 2 provides a short
overview of some viewpoint-specific models and techniques. Section 3 describes
existing efforts toward some level of integration of viewpoints. In Sect. 4 we moti-
vate the need for a flexible contract-based approach to formally relate viewpoint-
specific models and analysis results. Finally, we present in Sect. 5 initial remarks
and possible research directions toward such a framework.

2 Multiple Models for Multiple Viewpoints

In practice, CPS designers make use of several models focusing on specific aspects
of a system, called viewpoints – typical examples are function, timing, safety,
reliability, security, energy, etc. Often, different viewpoints correspond to dis-
tinct disciplines, possibly very different levels of granularity, and are supported
by their own domain-specific software tools. We now briefly discuss the most
relevant ones for CPS.

2.1 Function

The functionality of a system consists of a set of control functions, some of them
intended to be executed cyclically with a cycle time that may be specific to each
function, and others sporadically, typically for the treatment of alarms. The
functionality is itself split between a continuous part (automatic control laws)
and a discrete part (finite state machines), hence two viewpoints. Usual require-
ments for the former part include observability and stability, but also robustness
to perturbations, delays, noise, and so on. For the latter part, engineers are con-
cerned with safety and reachability properties. For all of these, a large body of
results has been developed.

Function design is nowadays done in a component-based manner, sometimes
using directly the C language or using domain specific languages proposed by
design environment such as MATLAB Simulink (well suited for ODE based
models), Scade [13] (well suited for safety critical systems), or Modelica [33]
(well suited for DAE based systems). Most of these design environments include
analysis tools to ensure that the control algorithms, provided by the control
engineer, are correctly implemented (based on the semantics of the programming
language). Analysis tools have also been developed to take into account both the
continuous and discrete viewpoints, with tools such as PHAVer [19] or d/dt [4].

2.2 Timing

Timing requirements on CPSs are typically expressed in terms of deadlines on
the Worst-Case Response Time (WCRT) of the system. The WCRT is the time
required to compute and send the outputs of the system to its actuators starting
from the values on the inputs obtained from its sensors. Depending on how
the system’s functionalities are implemented, these deadlines will be expressed
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in different ways: e.g., end-to-end latency for a task based implementation, or
worst-case reaction time for a periodic loop implementation.

The schedulability of a system, that is, the guarantee that no deadline can
be missed, is proven in two steps: (i) computing the Worst-Case Execution Time
(WCET) of the basic components of the system (e.g., its tasks, its C functions, ...),
and (ii) performing the schedulability analysis strictly speaking. The goal of the
WCET analysis is to upper bound the time it may take for a program to complete
on a given hardware platform, assuming there is no interference from other pro-
grams that may concurrently execute. WCET analysis is based on low-level code
(obtained by compilation from C) and on an abstraction of the hardware platform
of the system under analysis, including memory access policies, caches, pipelines,
and so on. Commercial tools like aiT [1,42] from Absint perform such an analysis.

Schedulability analysis integrates the results of the WCET analysis with an
analysis of how different programs (or tasks) may interfere due to the fact that
they share computation and communication resources (e.g., on a multi-core pro-
cessor). Schedulability analysis is based on a model of the software represented
as a set of tasks scheduled according to some scheduling policy. Tools performing
schedulability analysis include SymTA/S from Symtavision [25] and RT-Druid
from Evidence [2].

2.3 Dependability

Dependability is a crucial notion for CPS systems. It is defined as the ability for
the system to “deliver a service that can justifiably be trusted” [6]. This generic
notion encompasses many concepts, including availability, reliability and safety.
Among those, the one on which we focus in this section is reliability, which
is defined as the probability that the systems works correctly during a given
time interval. Being a probability, it varies in the interval [0, 1]. For instance,
fly-by-wire civil flight control systems must exhibit a reliability greater than
1 − 10−9 = 0.999999999 over 10 h (the “nine nines rule”) [37].

When addressing the dependability viewpoint, engineers must provide the
fault model, which identifies how the components of the CPS being designed
can fail: this concerns both the hardware (processors, communication media,
memory banks, sensors, actuators, and so on) and the software (tasks, OS, and
middleware). For instance, the hardware failures can be transient or permanent.
The fault model depends not only on the physical environment of the CPS (the
temperature range, vibrations, radiations, and so on), but also on the chosen
manufacturing technology (which CMOS size, which packaging), and on the
operating mode (which voltage, frequency, and so on).

Then, the user specifies a minimal reliability r that the CPS under design
must comply to. Improving the reliability requires some form of redundancy,
which can be spatial or temporal when dealing with hardware failures [21]. Engi-
neers thus use dedicated analysis tools to derive how much redundancy must be
added to the system, and where it must be added, to achieve this bound r.
Examples of such tools include fault-trees, reliability block diagrams, and so on.
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3 Efforts Toward Integration of Viewpoints

In addition to viewpoint-specific techniques, an increasing number of methods
and tools provide some support for handling multiple viewpoints.

3.1 Tool Integration

There exist integration mechanisms between design tools such as MATLAB
Simulink, Scade, TargetLink1, schedulability analysis tools such as SymTA/S
or RT-Druid and WCET analysis tools, in particular aiT. This means that the
functional model can be annotated with task information allowing for

– the extraction of a scheduling model so as to guarantee that there is always
a well defined mapping relating functions and tasks;

– the extraction of low level code for WCET analysis;
– the injection of the computed WCETs into the scheduling model to perform

the schedulability analysis.

Such tool support is obviously very useful for guaranteeing the consistency
between viewpoint-specific models. Yet, the exchange of information between
viewpoints takes place mostly at a syntactical level. For example, the assump-
tion made in the functional model on schedulability is implicit.

3.2 Theoretical Results Relating Automatic Control and Other
Viewpoints

Several approaches have been proposed to formally link automatic control objec-
tives with discrete computation and real-time scheduling. Consider for instance
the stability objective mentioned in Sect. 2.1. For a given control law, this issue
can be addressed purely from the continuous viewpoint (e.g., by defining a suit-
able Lyapunov function and proving its convergence), but doing so ignores the
discrete changes occurring in the system, which may cause the system to switch
from one control law to another. Such switches between several control laws make
the stability problem very difficult to solve. Taking into account both viewpoints
is therefore necessary, and attempts at this have been made in a contract-based
manner.

With the goal of reasoning about how discretized signals evolve over time,
change and delay contracts have been proposed in [32], while [28] introduces a
theory of stochastic contracts over Stochastic Signal Temporal Logic.

Co-design of control and real-time scheduling has been studied by many
authors, see e.g. [18,20,27]. A set of timing contracts between control and soft-
ware engineers is proposed in [15]. Stability of embedded control systems under
timing contracts, synthesis of timing contracts ensuring stability, and synthesis
of scheduling policies ensuring satisfaction of timing contracts are studied in [3].

1 TargetLink is a production code generation tool from dSPACE.
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In contrast, [14] proposes a component library for bottom-up construction of
hybrid controllers ensuring safety and stability properties.

Of particular interest for multiview contracts is the symbolic control [41] app-
roach operating on a finite abstraction of the infinite state space. Control aspects
may interfere with other aspects in particular through the system state, the com-
puting power spent to compute the control actions, and through delays and jitter.
Consider for instance the delays: they can occur at three places of a controlled
closed-loop system: at the inputs (due to sensors dynamics), in the state (due to
modeling assumptions), and at the outputs (due to actuators dynamics). These
delays have been addressed by the automatic control community and given rise
to the “delay systems” research area. Taking into account delay systems within a
multiview contract approach and studying the robustness to delays raises several
interesting challenges: from the systems and control viewpoint, the control engi-
neer could study the stability, observability, and controllability of their system
without considering the delays, and then from the timing viewpoint they could
study the robustness of their control law with respect to the delays.

3.3 Other Approaches for the Integration of Multiple Viewpoints

As seen in Sect. 2.1, the continuous and the discrete viewpoints belong both to
the functionality of the system. To exemplify the benefits of multiview contracts,
it is essential to address also non-functional viewpoints. Consider for instance the
timing and the reliability viewpoints. As explained in Sect. 2.3, improving the
system’s reliability requires some form of redundancy. For instance, a given task
(or C function) can be replicated to reach the desired reliability, and potentially,
each task can be replicated a different number of times. But this has an obvious
negative impact on the timing of the system, because the system’s WCRT will
increase due to these task replications. So both viewpoints must be addressed
jointly, as in [22].

Furthermore, consider now in addition the energy viewpoint. Decreasing the
energy consumption of the system is classically achieved thanks to Dynamic
Voltage and Frequency Scaling (DVFS) by choosing a lower (frequency, voltage)
operating point for some tasks of the system. Potentially, each task can use a
different (frequency, voltage) operating point. Again, this incurs an obvious neg-
ative impact on the timing viewpoint, because lowering the frequency increases
the WCET of the tasks. But, perhaps less known is the negative impact on the
system’s reliability, because lowering the voltage makes the system sensitive to
noise and lower energy particles, which are likely to create a critical charge lead-
ing to a transient failure [44]. Here again, these intricate dependencies between
the viewpoints call for integrated methods and tools, as in [39] for the timing,
energy, and temperature viewpoints, or in [5] for the timing, energy, and relia-
bility viewpoints.

A large number of results exist as well on the connection between real-time
and fault tolerance [7,12], and more recently on the integration of real-time and
security [17,26].
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Still, these multiview approaches consider two, at most three viewpoints and
are not compatible with the existing workflow discussed previously.

In practice, the overview on all models and corresponding analysis activities
is mostly in the hands of a human. As a consequence, the reasoning must be
kept simple and thus the constraints imposed on each individual model are very
restrictive, as we discuss in more detail in the next section.

4 Problem Statement

We have explained in the previous sections that the verification of cyber-physical
systems is mostly performed on viewpoint-specific models. If all these models
were completely independent, this would be sufficient [29] but this is of course
not the case, as discussed in Sect. 3.3. We see two main issues with the current
situation:

1. There is no theoretical framework that can encompass all viewpoints.
2. As a result, the interface between viewpoints must be simple enough to be

handled manually, possibly while remaining implicit.

Let us illustrate the above mentioned shortcomings on an example. Func-
tional analysis is based on some ideal (possibly mathematical) semantics of a
programming language. In practice, the actual platform on which the code will
be running may be compromised by various kinds of failures occurring at run-
time, which can be due to insufficient resources (memory, computation time,
etc.) or due to physical faults of the hardware platform. In particular, a major
verification effort is spent to guarantee the absence of such runtime errors due
to timing (thanks to schedulability analysis), as well as to guarantee a very low
probability of failures due to the hardware components (thanks to dependability
analysis).

Note that in the function model a property requiring absence of runtime
errors cannot even be expressed. This property is an assumption to guarantee
the validity of the idealized mathematical semantics used to make functional
analysis feasible. It must be guaranteed by the platform, and at analysis level
by the viewpoints dealing with those errors explicitly.

In the current methodology, this assumption is not explicitly formulated, and
this means also that it cannot be relaxed.

Indeed, it has been proven to be unnecessarily restrictive for a large class
of CPSs. A system may still satisfy its functional requirements under a weaker
assumption: for example, a component implementing some continuous control
law may still be perfectly safe (i.e., stable in the sense of automatic control)
even if a deadline is missed – that is, an increased control delay is observed –
from time to time [16,20].

This example underlines the need for a comprehensive tool support backed
by a strong formal theory to handle explicitly the dependencies between any two
viewpoints. The contract framework we are aiming at must permit to guaran-
tee system properties based on analysis results obtained on viewpoint-specific
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models. In this context, contracts are attached to viewpoints which may be of
very different nature, but all model the same system. Note that existing contract
frameworks do not solve our problem.

In the Design-by-Contract approach introduced in [30] for the programming
language Eiffel, and in all similar frameworks, proving contract satisfaction boils
down to pre/post condition reasoning, which does clearly not fit our needs. Closer
to our needs are general frameworks proposed for components composed under
some parallel composition operators.

The meta-theory of contracts proposed in [11] extends many existing con-
tract frameworks. It proposes a set of interesting concepts based on work done
in the SPEEDS project [34] and a very powerful theory at semantic level. Unfor-
tunately, it assumes a unifying formalism and all concepts are represented as an
algebra on sets of runs. We want to reason at a higher level.

Rely/Guarantee2 reasoning frameworks [31,36] consider, like we, contracts
(A,G) where A is an assumption on the environment under which the component
is able to guarantee G, and they propose proof rule based reasoning frameworks.
In our case, contracts are attached with viewpoints instead of components. In
the already mentioned project, we have also developed a general contract frame-
work, with proof rules for avoiding the composition of heterogeneous models by
composing verification results instead [23] but it is too abstract to be directly
usable.

We aim at building domain specific reasoning frameworks adapted to a multi-
model and multi-tool based methodology: basic facts should be derived on indi-
vidual viewpoint models using their specialized tools, the system designer should
be able to prove integration correctness using a set of domain specific contracts
and proof rules, where the deep semantic level proofs requiring reasoning on the
underlying global system model are only used to prove the correctness of the
framework, or to extend the framework when needed.

5 Discussion

In this section, we emphasize what we believe are key issues that must be taken
into account by a multiview contract theory. Our aim is to provide the system
engineer who is currently in charge with system integration in a multi-model
based approach, with additional tool support for guaranteeing their consistency.

5.1 On Abstraction and Proof Rules

Recall that the proof system that we want to develop is meant to ensure system
properties from viewpoint specific analysis results. For now, let us consider some
of the problems we may face with preserving properties from viewpoints to the
system.

2 more commonly called Assume/Guarantee reasoning, but we adopt here the termi-
nology of [11].
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In the simplest case, a viewpoint model Mvp is an abstraction of the global
model MG, that is, Mvp = α(MG) for a function α preserving a class of properties
Φ. In this case, using results on property preserving abstractions (e.g. [29]), for
any ϕ ∈ Φ we get immediately the proof rule3

if (1) Mvp satisfies ϕ then (2) MG satisfies ϕ

In practice, the mapping α does quite often not define such a “property pre-
serving abstraction”. Only when some property A holds, α is a Φ-preserving
abstraction. We say that Mvp is a conditional abstraction, and the assumption
A is the condition that guarantees that it is a Φ-preserving abstraction. As an
example take the already mentioned condition of absence of failures and tim-
ing errors, or more generally that no other viewpoint can “break” the function
model, which is indeed required to guarantee that the function model MFun

represents a correct abstraction of the system. This gives us immediately the
proof rule

if (1) MG satisfies A and (2) Mvp satisfies ϕ then (3) MG satisfies ϕ

Because of the restriction that verification should be restricted to individual
viewpoint models (or small groups of them that can be handled jointly by the
same tool), (1) cannot be checked directly, but A has to be “projected” on
individual viewpoints, and therefore (1) can be replaced by verification condition
of the form

(1’) M1
vp satisfies A1, ..., and Mk

vp satisfies Ak

On our running example, this means: in all viewpoints one has to identify
events that could “break” MFun, and prove that such events will never occur.
This demonstrates that projecting A on individual viewpoints may be reasonably
simple.

We now have given a hint on how to formalize the current proof methodology
for strong “cannot break” assumptions. But our aim is to be able to propose more
relaxed assumptions. For example, in [24] we have proposed “interface automata”
to represent more general “no break” conditions.

But we want to go beyond conditional abstraction. What can we propose, if
for example, the condition “absence of deadline misses” is not satisfied, that is,
the function model MFun is not an abstraction, at least not for the standard defi-
nition4? Current practice cannot handle this case in a satisfactory manner. Even
if one knows that occasional deadline misses do not harm, it makes it mandatory
to achieve schedulability (if needed by adding more resources) because there is
no possibility to modify the “contract”.

Could one replace this “contract”? Could one come up with a set of proof
rules that would allow us to conclude from (1) Msched satisfies schedulable 9
3 where it may be necessary to “translate” the viewpoint property to a system prop-

erty, but this requires technical arguments which beyond the purpose of this paper.
4 Note that sometimes it may be sufficient to relax the notion of abstraction to obtain

a conditional abstraction.
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times out of 10, (2) MFun satisfies always outputs a correct control action or does
nothing – that is, we replace the guarantee by a weaker one, and (3) possibly
some more proofs, that MFun satisfies outputs a correct control action 9 times
out of 10? This would then allow us to come up with a set of contracts to be
satisfied by the set of viewpoint models.

Finally, could one systematize this approach for more complex “conditions”
involving several viewpoints? possibly in a very viewpoint specific manner, using
results mentioned in Sect. 3.

5.2 Viewpoint Composition

In order to prove the correctness of the reasoning framework to be defined, one
obviously needs to reason on the global semantic model MG , hopefully without
ever building it. There are many proposals of unifying semantic frameworks pro-
posed with the aim to provide a uniform representation of systems consisting
of heterogeneous viewpoints or composed from parts based on different models
of computation. We can here discuss only a few of them. One may in particular
distinguish work on unified behaviour models whose purpose is the expression of
behaviours stemming from heterogeneous viewpoints. We would like to mention
in particular stochastic hybrid automata (SHA) [35] or at a lower semantic level
Tag machines [10]. Another line of interesting work is on heterogeneous compo-
sition, in particular Metropolis [8], Ptolemy [43] or BIP [9]. There is also some
work with a similar motivation as ours, where unifying models explicitly address
viewpoint integration. We would like to mention [38] which defines a framework
for a discrete setting and discusses problems of inter-viewpoint validation, and
[40] which discusses a framework for service oriented systems. It proposes to
restrict inter-viewpoint verification to verification of their consistency.

To summarize, in order to define a global model representing all relevant
viewpoints, we need:

1. a common semantic model, rich enough to represent the behaviour of any
viewpoint model

2. define the actual mappings from viewpoint models to the common semantic
model

3. a notion of viewpoint composition

Let us discuss some of the needs and difficulties.
1. Behaviour semantics: the needs depend on the considered viewpoints. In

those we are aware of, runs can be naturally represented as sequences of events
representing discrete state changes, where between events, the discrete state
remains stable, and the continuous state evolves according some laws. Some
viewpoints may constrain the frequency of the occurrence of events by probabil-
ities, occurrence patterns or other distributions. For the viewpoints mentioned
in Sect. 2, a formalism such as the already mentioned SHA may be an option.

2. Semantic mapping: A difficulty for defining such a mapping stems from
the fact that in different viewpoints, events may have a different granularity. To
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obtain a set of behaviour models that can be composed, each viewpoint model
has to be refined sufficiently to be able to interact with other viewpoints on all
relevant events.

Consider a well-known example that illustrates the granularity problem: in
a function model according to a synchronous approach, in the simplest case,
events are “ticks” representing the cycle period in which states and outputs
are updated “instantaneously”. This semantic model is useful as it simplifies
verification of temporal properties, but using it makes the implicit assumption
that the computation can always be completed within the cycle period. And
the combined semantic model of both, the function and the corresponding task
model, requires to refine “tick events” into event sequences such that all events
of the kind start task and end task of the task model can be identified with some
event in the function model.

This combined model may for example be used to easily prove the correctness
of the contract saying that “as long as no deadline misses occur, the task model
cannot disturb/break the function model”.

6 Conclusion

This paper has been motivated by actual difficulties that system designers of
large safety-critical cyber-physical systems have to face: how to keep consistent
a system design without overconstraining it, in a context where multiple view-
points are addressed separately using specialized tools. There is presently no
framework that would allow a system engineer to manage the interplay between
all viewpoints and the overall consistency in a flexible way.

There is a large body of theoretical work addressing interdependency and
contracts for specific pairs or small groups of viewpoint; few of them are used
in actual design processes. Among the contract frameworks that have been pro-
posed for the purpose of achieving consistent integration, most consist in general
theory.

The framework we have in mind would provide viewpoint specific contract
patterns guaranteeing inter-viewpoint consistency in a flexible manner. We tried
to motivate that this is a meaningful approach on hand of examples.

But most of the work remains to be done. On the application side, we need a
more complete picture of existing inter-viewpoint models. The theory that will
allow us to do the correctness proofs is also needed, but the theory should be
done depending on the needs on the application side.
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Abstract. In this paper, we present a method to assess functional safety
of architectures for Automated Driving Systems (ADS). The ISO 26262
standard defines requirements and processes in support of achieving func-
tional safety of passenger vehicles, but does not address in particular
autonomous driving functions. Autonomous driving will bring with it a
number of fundamental changes affecting functional safety. First, there
will no longer be a driver capable of controlling the vehicle in case of a
failure of the ADS. Second, the hardware and software architectures will
become more complex and flexible than those used for conventional vehi-
cles. We present an automated method to assert functional safety of ADS
systems in the spirit of ISO 26262 in light of these changes. The app-
roach is model-based and implemented in the QuantUM analysis tool.
We illustrate its use in functional safety analysis using a proposed prac-
tical ADS architecture and address, in particular, architectural variant
analysis.

1 Introduction

The functional safety of software-driven functions in passenger vehicles is cur-
rently the subject of the ISO 26262 [8] international standard. It specifies devel-
opment processes and requirements ensuring functional safety of software defined
safety-critical functions, also referred to as items, in automobiles. The ISO 26262
standard focuses primarily on the safety of the software-defined items in the pres-
ence of systematic software and random hardware faults.

The advent of assisted and autonomous driving is fundamentally changing the
architecture of software-defined critical automotive systems. As a consequence
the methodological foundations of asserting functional safety of such systems
will have to be redeveloped. The current version of the ISO 26262 standard, as
well as the current proposed revision on this standard [9], do not account for the
functional safety of autonomous driving functions.

First, the development of autonomous driving systems (ADS) will at some
point lead to vehicles in which a human driver will no longer be available to
take over control of the vehicle. Following the classification in the SAE J3016
standard [20], this will be the case starting at level 4. Whereas classical functional
safety approaches follow a fail-safe approach, which in case of a failure relies
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on a driver being able to take over control of the vehicle and bring it into a
safe state, ADS systems have to be designed to operate in a fail-operational
manner. This means that in the presence of the failure of some ADS function,
the overall vehicle system will remain operational for a certain period of time,
with a given probability, in order to navigate the vehicle automatically into a
safe location, for instance the shoulder [24]. This is frequently also referred to as
“limp-home” mode. For the analysis of functional safety properties this means
that the availability of these limp-home mode functions in the presence of a
system failure needs to be proven.

Second, the conventional approach to functional safety, as reflected by the
current ISO 26262 standard, is highly “item-oriented”. This means in particular
that one driving function, or item, is implemented by one software component
executing exclusively on one hardware unit, referred to as electronic control unit
(ECU). Current systems already break with this strict concept and run a low
number of functions on a single ECU. However, safety arguments largely rely
on execution in isolation, with the exception that some degree of freedom of
interference, including that caused by concurrency problems, at the level of the
underlying execution platform has to be proven. This will not be the appro-
priate paradigm for ADS. In those systems, many sub-functions will co-operate
and be highly interdependent in order to implement an overall system func-
tion, namely to drive safely from location A to location B [18]. Furthermore,
for cost, performance, flexibility and dependability reasons, ADS will be imple-
mented on networked computing platforms that encompass a low number of
processors, connected by high bandwidth real-time networks, and potentially
possessing multiple cores [13]. To increase reliability, redundant software func-
tions can be mapped to different hardware components, both statically and
possibly also dynamically. As a consequence, many functions will be mapped to
a single or more hardware components, which means that a software-hardware
mapping problem needs to be considered in the system and safety design. Again,
current ISO 26262-type functional safety analyses do not account for this type
of architectures.

Third, ADS will be highly concurrent, due to the parallel processing of sen-
sor data and decision making to support different driving functions, leading to
concurrency non-determinism. Another change with ADS is the application of
non-linear machine-learning algorithms based on neural networks that are heav-
ily used in environment perception. Non-determinism and non-linearity make
it particularly difficult to use classical safety analysis techniques, such as Fault
Tree Analysis (FTA) or Failure Mode and Effects Analysis (FMEA) proposed
for piloted driving in ISO 26262, in a non-automated, manual fashion.

In this paper we propose a method to analyze functional safety of ADS
“in the spirit” of ISO 26262, to the extent that it is applicable, and address
some of the challenges pointed out above. The method is model-based and relies
on SysML [19] models that describe the nominal and the failure behavior of
components, as well as software-hardware mappings. We embed these mod-
els into the QuantUM method and tool [15,17] for analyzing causes of safety
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violations. QuantUM employs automated causality checking [16] in order to com-
pute, depicted as a probabilistic fault tree, ordered sequences of events that are
deemed to be causes for safety violations. The benefits of this approach include
the following aspects.

– The algorithmic model analysis methods employed in QuantUM (model
checking, causality checking) are well suited to deal with concurrency induced
non-determinism. Dealing adequately with the non-linearity caused by using
neural networks based machine learning is not addressed in this paper.

– The proposed analysis avails itself to an implementation in an automated soft-
ware tool. Once the models and properties are defined, the analysis performed
by QuantUM requires no further interaction with an engineer.

– The SysML models can easily be modified, for instance to analyze architec-
tural alternatives as well as alternative software-hardware mappings during
design space exploration. The functional safety analysis can then easily be
repeated at little cost by invoking QuantUM on the modified model.

– The developed tools can be qualified according to, for instance, ISO 26262.

We evaluate our approach by applying it to a case study in which we perform a
functional safety analysis for a practical ADS architecture [5] for which we ana-
lyze two mappings of ADS functions to hardware. The analyzed system failures
can be used to assess the impact of single or multiple faults on the overall failure
probability, as requested by ISO 26262. The analysis also enables an engineer
to select efficient failure handling concepts and to evaluate different possible
architectures while meeting safety goals as specified by ISO 26262.
Related Work. The most closely related work on automated model-based safety
analysis for autonomous vehicles is [7]. It uses a block definition diagram and
a manually created fault tree to compute probabilities for the purpose of safety
analysis. In contrast to our work, no causal explanations for failures are auto-
matically derived from the model.

Model-based techniques are applied to evaluate an automotive architecture
in several papers. The approach of [6] is not automated, and it does not address
the specifics of ADS. UML models, which are similar to SysML models, are also
verified in [2,22], but both do not quantify system failures.

The paper [1] also addresses safety engineering for autonomous vehicles. It
proposes an approach that differs from that of ISO 26262 by focussing on safety
mechanism to detect all malfunctions.
Structure of the Paper. In Sect. 2 we present the foundations of our work which
includes the demands of ISO 26262 on vehicles, the change in the architecture
with the development of ADS and the QuantUM approach, which we will extend.
In Sect. 3 we explain the analysis steps to verify an ADS architecture in the
“spirit” of ISO 26262. In Sect. 4 illustrate our approach by applying the steps
on two ADS architectures. In Sect. 5 we draw conclusions and suggest future
developments.
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2 Preliminaries

Functional Safety and Autonomous Driving. The ISO standard 26262 [8] as well
as its recently proposed revision [9] define requirements on software development
processes for safety-critical functions of an automotive passenger vehicle. This
is to ensure that the functional safety of a passenger vehicle is challenged by no
more than an acceptable residual risk. The standard is focused on mechanisms
that ensure functional safety of critical software-driven functions in the presence
of systematic faults and random hardware faults. It assumes that systematic
faults can be eliminated by verification and validation techniques, in particular
testing. The standard does not tackle random software failures, which happen
non-deterministic, for instance, due to concurrency issues or special environment
influences. Notice that the ISO 26262 standard does not address techniques to
ensure “Safety of the Intended Function” (SOTIF), i.e., the safety of intended
functionalities of the vehicle itself. A standard addressing this safety aspect is
currently under development [10].

Two characteristics of the ISO 26262 standard are important in the con-
text of this work. First, the standard is “item-oriented”, which means that it
addresses safety mechanisms for items, such as airbag control, steering, braking,
light control, etc., in isolation. This approach is inappropriate for ADS since dif-
ferent vehicle functions will be interdependent by acting as backup functions for
others. Further, the driver as the function integrator and coordinator in piloted
driving is not available, which means that the software has to take over these
integration functions. Second, neither the published version of the ISO 26262
standard nor the its proposed revision address assisted or autonomous driving
per se [11]. To the contrary, the ISO 26262 standard allows safety mechanisms
to rely on the driver taking over control of the vehicle in order to mitigate the
impact of function failures, which in ADS at SAE level 3 is likely not to be prac-
tical [23], and at levels 4 and 5 is not even foreseen [20]. Nonetheless, we show
how formal analysis techniques can be used to support the safety engineering
of ADS in the spirit of ISO 26262. According to ISO 26262, different driving
functions, referred to as “items”, are assigned an Automotive Safety Integrity
Level (ASIL), ranging from the least critical ASIL A to the most critical ASIL
D. The determined ASIL implies the design methods that are to be used. As
argued above, we will consider the ADS driving function as a unique “item” in
the ISO 26262 sense and perform a safety analysis on this set of functions as a
whole, including an assignment of an ASIL.

According to ISO 26262, safety goals need to be defined to ensure that the
failure probability of software functions in the presence of random hardware
faults lies at an acceptable minimum. For each ASIL, a maximum tolerable
probability of failing a safety goal due to random hardware faults is specified.
A system failure may be a result of a single fault (single-point failure) or a
combination of faults (multiple-point failure). From the safety goals, functional
safety requirements are derived. In safety analyses one will also have to consider
fault rates of the underlying hardware, for instance sensor faults, as well as the
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hardware-specific fault detection rates. Those will later occur as parameters of
our models.

Following ISO 26262, the system architecture design is derived from technical
safety requirements. For ASILs A to D, the standard recommends documenting
the architecture using a semi-formal notation, such as the SysML, for ASIL A
and B, and strongly recommends this for ASIL C and D [9, Part 6]. The system
architecture then needs to be verified against the safety requirements [8, Part 4].
The process mandated by ISO 26262 for this verification includes a system design
analysis to identify possible effects of faults, the causes of possible failures and a
quantification of failures. Applicable methods include Fault Tree Analysis (FTA)
and Markov models. The use of formal verification techniques, including model
checking [4], is recommended for software architecture verification for ASIL C
and D [8, Part 6]. This includes a verification that certain safety goals are met
by a given system design [8, Part 8]. We propose that an automated approach
based on a formal analysis of the state space described by the system architecture
helps to detect and explain safety goal violations at an early stage in the safety
engineering process, thereby meeting the requirements of ISO 26262. It also
enables automated, tool-supported architectural variant analysis during safety
and system engineering, greatly contributing to reducing the related costs.
Model-Based Safety Analysis - The QuantUM Approach. Safety analysis relies on
the establishment of cause-effect relationships between states or events in a sys-
tem. Causality checking [16] is an automated, algorithmic approach to compute
cause-effect relationships for events in a model of a system. It is based on model
checking and systematic, complete state space exploration. Based on a counter-
factual reasoning argument, it computes ordered sequences of events as being
causal for the violation of a safety specification, defined as the (un-)reachability
of a hazard state. In the context of the QuantUM toolset [15,17], causality check-
ing is used to automatically compute sequences of sequentially ordered events
with minimal length which are causal for violations of the reachability property
representing the hazard. The SysML model is given by block definition diagrams
(bdd) to depict units of the architecture, and state chart diagrams (stm) to spec-
ify their behavior. The SysML model contains both the nominal and the failure
behavior of the architectural components. In QuantUM, the computed causal
events are then depicted as a fault tree [17], with the considered hazard forming
the top level event.

The causes for a model failure that QuantUM calculates are represented by a
fault tree including the calculated probabilities. In the interpretation of the fault
tree notation that QuantUM uses, the nodes in the graph do not all correspond
to subsystem faults, but rather to events belonging to the causal process leading
up to a hazard. The top level event is connected to an or gate. The or gate is
connected to a number of ordered and gates, each one representing a causality
class. A causality class is specified by a minimal ordered sequence of events
that jointly, and in that order, cause the occurrence of the hazard. Notice that
QuantUM can also determine the non-occurrence of single events as the cause
of a hazard.
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System Architectures for ADS. A functional architecture for autonomous driv-
ing is proposed in [5]. The authors extract, from several conceptual as well as
practical implemented architectures, a layered architecture. The semantic under-
standing of the external world is calculated in the perception layer. It computes
an external world model based on a fusion of the various forms of external sensor
information that it receives. The external world model in conjunction with the
internal state of the car, which is defined among others by the energy manage-
ment and failure states of the platform, are used by the decision and control layer
to make decisions about the execution of a trajectory. The trajectory is then used
by the vehicle platform manipulation layer to drive the actors, like steering and
braking, and keeping the platform overall stable. All three layers have a complex
structure of interdependent, cooperating elements, each representing a specific
function.
Functional Safety Goals for ADS. A predominant idea in ISO 26262 is that a
system needs to reach a safe state in the event of a system failure, in other
words, that it is fail-safe. When the driving is piloted, this can often be achieved
by switching the defective subsystem off and leaving it up to the driver to deal
with the situation. In autonomous driving, this option does not exist, as argued
above. The objective here needs to be that in the presence of the failure of one
function in an ADS, the overall system architecture needs to remain operational
for a certain period of time so as to ensure that a safe state can be reached. This
capability is often referred to as “fail-operational”. The ISO 26262 standard
states: “If a safe state cannot be reached by a transition within an acceptable
time interval, an emergency operation shall be specified.” [8, Part 3]. This means
that designing safety mechanisms that ensure a limited backup capability for a
defective functionality for a certain period of time is within the practices rec-
ommended by ISO 26262. A typical example would be that the braking system
takes over functionalities of a failed steering control system by applying differen-
tial torque or braking for a limited period of time so as to “limp home” to a safe
part of the road, such as the shoulder. The safety goals that we pursue in our
analysis will, hence, have to reflect the probabilities of remaining fail-operational
for a certain period of time.

3 Safety Analysis of an ADS Architecture

Safety Goals for an ADS. Following the earlier made argument we consider the
driving function of an ADS to be one item, i.e., one driving function. Using this
assumption we perform a safety analysis for this item in the spirit of ISO 26262.

As argued above, we need to consider a fail-operational architecture. When
reaching a failure state, the ADS reacts by switching to an emergency mode
that handles the failure situation. For a safety analysis of an ADS, we consider
possible hazards of an architecture and derive appropriate safety goals to prevent
the hazards:

1. When a vehicle is operating as an ADS it has to control the vehicle platform
even if it is in an emergency mode. If the control is lost, then the vehicle will
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crash. To prevent this hazard we derive the safety goal SG1: Ensure that the
ADS provides driving information to the vehicle platform at any time.

2. The ADS can have an undetected failure. As a consequence, the emergency
mode may not be activated. The detection of a failure ensured by the safety
goal SG2: Ensure that the emergency mode is enabled when a failure of the
ADS occurs.

3. If the system cannot enter or remain in the emergency operation mode for a
specified period of time, a safe state may not be reachable. We assume the
period of time necessary to reach a safety state to be t1 seconds and derive
the safety goal SG3: Ensure that the emergency mode of the ADS is available
on demand for at least t1 seconds.

The ASIL classification of a safety goal is determined according to the severity of
a function failure caused by a hazard, the probability of exposure to a situation
with a potential failure, and the controllability of the failure situation by the
driver. We assume the severity of each hazard of the ADS to be potentially life-
threatening (S3 according to [8, Part 3]). Since the ADS system will be active
most of the time when the vehicle is in operation, certainly during more than
10% of the operation time, we assume the probability of exposure to be high
(E4 according to [8, Part 3]). We also assume the controllability to be very
low (C3 according to [8, Part 3]), since in the case of SAE level 3 driving the
driver may be surprised by a failure situation, or unable to handle it due to
the low occurrence rate of such a situation. These valuations hold for all three
safety goals and consequently this implies, according to ISO 26262, an ASIL-D
classification for each safety goal.

As argued above, ISO 26262 recommends the use of formal methods, includ-
ing model checking, for the analysis of ASIL D safety goals.

Fig. 1. Mapping 1
(Color figure online)

Fig. 2. Stm hw (Color
figure online)

Fig. 3. Stm func1

(Color figure online)

Automated Safety Analysis of an ADS Architecture. We now describe how an
extended version of the QuantUM tool can be used to perform an automated
safety analysis for a given ADS architecture with respect to safety goals SG1 -
SG3.
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Step 1: ADS Modeling. The system architecture of a vehicle consists of several
software function units executing on a number of hardware units. Each unit is
represented by a block in a SysML bdd, see the example in Fig. 1. It depicts
two software function units, represented by blocks colored blue, executing on
one hardware unit, colored yellow. Assigning a software function to a hardware
unit on which the function is executed is referred to as software-hardware map-
ping. In our bdds, mappings are depicted using dashed arrows with the label
<<allocate>>. The behavior of each unit is modeled by a SysML stm. The stms
of different units execute concurrently. For the example in Fig. 1 the behavior of
the blocks hw and func1 are exemplified in Figs. 2 and 3, respectively.

In the stms, the blue states represent the nominal behavior of the units, and
the red states represent its failure behavior. The state machines execute their
normal behavior by staying in a “work” state. To reach a failure state, a fault
event has to occur. The first type of fault directly leads to a failure of the unit.
This can for instance be caused by a loss of power, or by a permanent error such
as a broken hardware element. These faults are modeled by a transition to a
failure state, such as hw error1 in Fig. 2. The unit remains in this state until
it is repaired, represented by a repair transition to the work state. As a result
of entering a failure state, a hardware unit stops executing and any software
function, executing on this hardware unit, will cease to operate as well. To model
this behavior, the Boolean variable hw bad is set to true and all transitions
of the function unit are disabled by a guard !hw bad (see Fig. 3). The second
type of fault leads to an error inside of the hardware unit, such as a bit flip,
even though the unit continues to operate. The hardware unit is not corrupted,
but an error is propagated to functions executing on that unit. In the SysML
model, error propagation is modeled by message passing. In the example in Fig. 2,
two errors are propagated by messages error2 and error3 to the respective
software functions. With the receive of such an error the function 1 enters the
func1 error2 state and function 2 enters the func2 error3 state upon receiving
error3. From these states, the function can return to its normal behavior by a
transition representing failure repair.

Step 2: System Failure Modeling. The ADS fails if one of the safety goals SG1-
SG3 is violated. The violation of these system goals needs to be mapped to
states that the different stms in the system are entering. QuantUM offers the
possibility to tag states in the stms of different blocks as error states, and then
permits to either use a logical or or a logical and between all tagged states in
order to characterize a violation state of the system. To model the safety goals
needed here we extend this rather inflexible scheme. An ADS has the structure
of a set of channels. Sensory input data is processed by a function and the output
data is forwarded to the next function, forming one channel called the primary
channel. The emergency mode adds a second, partly redundant backup channel
to the ADS. The ADS fails and violates SG1 if there is a function failure in
each of the channels. We attach a Boolean variable bad to each function and
permit forming logical expressions on these variables to express the failure of
one channel. We combine the failure expressions of each channel with an “and”
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and add the result to the property. For example, in order to check two redundant
channels the resulting property has the form it is never the case that step1 or
step2 or . . . of channel1 is bad and step1 or step2 or . . . of channel2 is bad.

Step 3: Analysis of Emergency Mode Failures. A violation of SG3 implies that
the normal ADS behavior has a failure and either the emergency mode function-
ality is not available on demand, or it is not provided for at least a certain period
of time and therefore constitutes a fundamental challenge to the safety of the
vehicle. In the following we compute the probability Pfail for a violation of SG3.
The analysis performed by QuantUM works on a global state graph obtained by
interleaving the local behaviors of the concurrent system hardware and software
components. A path in this graph, representing an execution of the ADS, consti-
tutes a violation of SG3 if in a state the emergency mode is being activated but
not going to be available for at least a period of time t1. We characterize the set
of all emergency activation states S in the global state graph using a Boolean
expression e formed as described in Step 2. In accordance with the foundations
of probabilistic model checking we will consider reaching a first state si ∈ S as a
stochastic event, with the path consisting of a stochastic experiment. The event
of reaching a state si first, denoted by reach si, precludes the event of reaching
another state s′

i ∈ S first, which means that stochastic events we consider do not
overlap. As a consequence we may partition the sample space, which consists of
all possible paths in the global state graph, according to the events reach si.
In a first probabilistic model checking step performed by QuantUM we com-
pute the probability P (reach si) to reach each state in S within a period of a
driving cycle t dc. In a second model checking step we compute the probability
P (faili|reach si) to reach a failure from state si within a time t1. To enable the
first model checking step we change the model in such a way that we conjoin ¬e
with all transition guards. This means that when the system enters a state in
which e becomes true, this state is turned into an end state with no enabled exit
transition. For each end state we calculate its probability. For the second model
checking step we compute the probability P (fail si|reach si) by starting in any
state defined by expression e. The probability Pfail is computed by a summa-
tion over all products of P (faili|reach si) ·P (reach si), which is justified by the
memoryless nature of CTMCs. No causality checking will be performed and no
fault trees will be computed by QuantUM during SG3 violation analysis.

Step 4: Probability Rates. Probability rates, in particular for hardware failures,
repairs and failure detection, are difficult to determine and usually depend on a
specific domain and the concrete hardware used. However, even if precise rates
are not available, the comparison of the relative failure probabilities of architec-
tural variants with identical and with different estimated or assumed rates can
be of great importance. This can for instance answer the question how architec-
tural variants will affect failure probabilities, or what error detection rates are
required to achieve a desired level of failure probability. In QuantUM, the SysML
model is labeled with probability rates, for instance for the probability of execut-
ing a failure or repair transition. QuantUM uses probabilistic model checking, in
particular model checking for Continuous Time Markov Chains (CTMCs) [3], in
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order to compute the probabilities for the causes leading to a violation of safety
properties. A fault event of the hardware may lead to different faults in a system.
In this situation we distribute the fault rate over the different fault transitions.
The portion of the fault rate that each transition receives relies on domain spe-
cific knowledge that the designer needs to provide. For example, in Fig. 2, a bit
flip with a probability rate of 10−4 can cause an error2 or an error3. Notice
that throughout the paper, rates are assumed to be per hour. Assume that it is
typical that 40% of the errors are of type error2 and 60% are of type error3.
This leads to a fault rate of 0.4 · 10−4 for error2 and a fault rate of 0.6 · 10−4

for error3. To split the fault rate in this way is appropriate for CTMCs, cf. [3].
A potential threat to the validity of the failure probabilities computed by

QuantUM and the probabilistic model checker Prism [12] that QuantUM uses, is
the fact that the original SysML model mixes non-probabilistic and probabilistic
transitions. For the non-probabilistic transitions Prism assumes a default rate of
1. Assuming that we consider one time step, based on the negative exponential
distribution on which CTMCs are based this translates into a probability of less
that 1 of taking this transition with which the accumulated path probability
up to this step will be multiplied. However, we do not experience a negative
effect on the total failure probability since the SysML model structure that
we propose implies that the system will cycle through non-probabilistic normal
behavior, for which the path probability is 1, until it performs one probabilistic
failure transition to enter a failure state. For example, the state func1 work in
Fig. 3 has non-probabilistic transitions between the states func1 calculation
and func1 idle with a default rate of 1, remaining is state func1 run until the
probabilistic transition error2 is taken.

4 Case Study: A Comparison of Autonomous Driving
Architectures

Step 1: ADS Modeling. [5] proposes a functional architecture generalized from
real architectures. We use part of this functional model and add several hard-
ware units. The resulting mapping problem leads to a number of architectures.
The SysML bdd in Fig. 4 gives an overview of the structure of the first archi-
tectural variant that we consider. We model the perception layer by a block
Perception and the motion and control layer by a block Trajectory. Since
the functions represented by these two blocks are critical for the proper func-
tioning of the ADS we add blocks PerceptionSafe and TrajectorySafe to
provide redundant backup functionality. The function represented by the block
Trajectory Selection selects by default the trajectory of block Trajectory,
but switches in case of a failure of these blocks to the alternative trajectory
computed by block TrajectorySafe. The block MotionControl represents the
interface with the vehicle platform manipulation layer by providing it with con-
trol parameters, such as steering angle, braking force or differential torque, that
the vehicle platform will translate into commands for the actuators of the vehicle.
Figure 4 also illustrates the software-hardware mapping that we propose for the
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first architectural variant. Notice that the primary functionalities for perception
and trajectory computation are mapped to the hardware block ADS primary,
while the backup functionality ADS backup is mapped to a separate hardware
unit ADS backup, thus increasing the probability that the backup functionality
will be available even in the case of a failure of the primary hardware represented
by block ADS primary.

Fig. 4. Architectural variant 1 for ADS

The state machine modeling the behavior or block ADS primary is given in
Fig. 5. The hardware operates correctly in state run. In this state, the occur-
rence of a detected error inside the hardware, for instance a memory bit flip, is
communicated to the Perception block using a perception error message in
case the perception function is currently executing on ADS primary. In case a
trajectory computation function is executing, the hardware error will be com-
municated using a trajectory error message to the Trajectory block. If in
the run state an undetected hardware error occurs, the impact on the hardware
is unknown. We model this by a transition into state undetected along which
we set the failure variable bad to true. In this state, no software function can be
executed on the hardware.

The behavior of the block Perception is defined by the hierarchical state
machine in the stm diagram in Fig. 6. The normal behavior is modeled in the
nested state Normal. The function starts its computation in the state idle and
cycles through states idle and calculate, which represents the processing of
sensor information, as long as the variable ADS primary.bad is false. When
returning to idle it sends the message trajectory input to the function trajec-
tory in order to indicate that input data for the trajectory function is available.
Upon receipt of a message perception error, the perception function can decide
either to handle this message and remain in the Normal state, or it can decide to
enter the ErrorData state and set its bad value to true. Upon repair it can return
to the idle state and resume execution. Deviating from the classical ISO 26262
viewpoint to only consider hardware failures, we also consider software failures.
Such a failure in the block Perception is modeled by a non-deterministic group
transition from the Normal state to the CalculationError state in the course
of which the bad variable will be set to false. We assume that these errors can
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Fig. 5. Stm ADS primary Fig. 6. Stm Perception

also be repaired, modeled by a return to the Normal state. Space limitations do
not allow us to present the complete behavioral model of the ADS. The other
blocks representing hardware and software functions have behaviors similar to
the ones described above.

Step 2: System Failure Modeling. We characterize a system failure of the ADS
violating SG1 or SG2 using different Boolean expressions for each architectural
variant and safety goal. The Boolean propositions refer to the bad variables of
the blocks in the SysML model. For architectural variant 1, a system failure
violating SG1 happens when a software function or a hardware unit fails in
both channels, or when at least one of the functions TrajectorySelection or
MotionControl or the hardware X ECU fails. This leads to the Boolean failure
expression

((ADS primary.bad ∨ Perception.bad ∨ Trajectory.bad)
∧(ADS backup.bad ∨ PerceptionSafe.bad ∨ TrajectorySafe.bad))
∨(TrajectorySelection.bad) ∨ (MotionControl.bad ∨ X ECU.bad).

(1)

Architectural variant 2 differs from the first in that the block
TrajectorySelection is mapped to the block ADS backup. As a consequence,
architectural variant 2 fails under the same failure condition as variant 1,
and additionally by a failure of ADS backup. This leads to the Boolean failure
expression

((ADS primary.bad ∨ Perception.bad ∨ Trajectory.bad)
∧(ADS backup.bad ∨ PerceptionSafe.bad ∨ TrajectorySafe.bad))

∨(ADS backup.bad ∨ TrajectorySelection.bad)
∨(MotionControl.bad ∨ X ECU.bad).

(2)

The function TrajectorySelection is responsible for selecting the emergency
trajectory in case of a failure. The function fails if the function itself or the
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underlying hardware is in a failure state. This leads to a violation of
SG2, expressed by the Boolean failure expression TrajectorySelection.bad ∨
X ECU .bad for architectural variant 1 and TrajectorySelection.bad ∨
ADS backup.bad for variant 2.

Step 3: Analysis of Emergency Mode Failures. For the computation of the failure
probability of the emergency mode we need to determine the expected operation
time of the emergency mode t1, a Boolean expression representing a failure of
the ADS and a Boolean expression characterizing the activation of the emer-
gency mode. We assume t1 to be 10 s. The failure states of the ADS for the two
architectural variants are encoded by the Boolean expressions 1 or 2, respec-
tively. The emergency mode of the ADS is activated in both architectural vari-
ants if a software function running on hardware ADS primary or the hardware
ADS primary itself fails. We encode these states using the Boolean expression
(ADS primary .bad ∨ Perception.bad ∨ Trajectory .bad).

Step 4: Probability Rates. In order to determine rates in the context of our case
study we assume ADS primary and ADS backup to be implemented using “stan-
dard” hardware without hardware checks in order to meet the high computing
power demands of the software functions executing on them. In such hardware
components most faults happen because of memory errors [21], and we assume
typical fault rates of 10−4. Since there are no special computing power demands
that apply to X ECU and since we have not accounted for any redundancy here we
assume safety hardware to be used with a fault rate of 10−8. We further assume
a hardware fault detection rate of 99%, i.e., 1% of the errors remain undetected.
As described above, the probability of detected hardware faults are distributed
evenly over all software functions running on the considered hardware unit. For
instance, perception error and trajectory error are assumed to each have
a probability of 49.5%, i.e., a rate of 0.495 · 10−4. We assume that a software
function affected by a detected hardware error handles the error with a prob-
ability of 90%, but will fail with a probability of 10%. For software failures of
the perception function we assume a fault rate of 10−4. Functions in a failure
state can resume by a repair transition. We assume a repair rate of 4 · 10−2 for
software functions (cf. [7]).
Analysis using QuantUM. We assume a driving cycle duration tdc of 1 h in all
of the analyses. The result of the analysis for violating SG1 is a fault tree with
the state representing the SG1 violation as top level event, and 19 disjunctive
tree branches for architectural variant 1 and 16 disjunctive tree branches for
architectural variant 2. We call the disjunctive tree branches causes. For both
variants, space limitations do not permit us to present the full fault tree here.
Architectural variant 1 has the probability of 1.31998187 ·10−8 and architectural
variant 2 the probability of 4.30677042 · 10−6 to violate SG1. Due to the redun-
dant structure of the architecture in both variants, analyzing SG2 in isolation
leads to two single source failures already detected by SG1. One single source
failure involves trajectory selection error for both variants and the other
failure involves X ECU undetected for variant 1 and ADAS backup undetected
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Table 1. Computational effort for SG violation analyses

Architectural variant 1 Architectural variant 2

Memory Time States Memory Time States

SG1 143.27 MB 63.79 min 235,765 124.84 MB 57.14 min 207,052

SG2 284.11 MB 4.93 min 321,133 310.35 MB 1.12 min 324,464

SG3 99.25 MB 6.59 min 349,937 160.04 MB 4.96 min 354,943

Fig. 7. Cause 5 of architectural variant
1 (Color figur online)

Fig. 8. Cause 1 of architectural vari-
ant 2

for variant 2. The probability of a violation of SG3 is 6.399474 · 10−9 for variant
1 and 6.164128 · 10−9 for variant 2.

The experiments were performed on a computer with an i7-6700K CPU
(4.00 GHz), 60 GB of RAM and a Linux operation system. The computational
efforts in memory, time and for the architectural variants are depicted in Table 1.
The column States gives the number of states explored by QuantUM, in the case
of SG3 this only comprises the number of states analyzed by Prism.

The memory effort for SG1 and SG2 is small in comparison to previous mod-
els [14]. The small memory effort is due to the fact, that the current implementa-
tion of QuantUM, does not compute duplicate state prefix matching as described
in [14]. However, for the analyzed models, the current version of QuantUM com-
putes all causes, since each failure state of the stms is only reached by a single
trace. All other traces leading to a failure state are extensions of the single trace
and so not minimal.

Result Interpretation. The architectural variant 1 has a lower probability of vio-
lating SG1. This result can be explained as follows. The fault trees for the two
architectural variants differ mainly in the probability of the causes that contain
the event ADS backup undetected, representing an undetected hardware failure
in the hardware unit that is subject to the altered software-hardware mapping.
The fault tree of architectural variant 1 contains four causes that contain the event
ADS backup undetected, of which one cause is depicted in Fig. 7, with a probabil-
ity of 9.91367948 · 10−11 and thus not contributing significantly to the total SG1
violation probability. All other causes that contain ADS backup undetected have
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a similarly insignificant probability. Notice that failure events in the fault trees
are marked in red.

The fault tree of architectural variant 2 contains one cause with this event,
depicted in Fig. 8, with a probability of 0.99899950 · 10−6, thus contributing sig-
nificantly to the SG1 violation. While in architectural variant 1 the ADS back-
up undetected fault needs to coincide with a Perception CalculationError,
in architectural variant 2 the occurrence of ADS backup undetected suffices to
lead to an SG1 violation. The difference in the probabilities of the two con-
sidered causes is due to the fact that the conditional occurrence of two failure
events, such as in cause 5 of architectural variant 1, is less probable than the
unconditional occurrence of a fault event as in cause 1 of architectural variant
2. Due to the software-hardware mapping in architectural variant 2, the fault
event ADS backup undetected directly leads to an SG2 violation, and this sce-
nario has a high probability. The difference in the probabilities of SG1 violations
can hence be traced back to the difference in the hardware-software mappings
used in both architectural variants.

In the following, we discuss the influence of the detection and error handling
rates. We first increase the detection rate of ADS backup for variant 2 from 99%
to 99.99%. The higher detection rate decreases the failure probability of cause
2 from 9.98999501 · 10−7 to 9.98999995 · 10−9. This change has no significant
effect since the probability of reaching error state undetected is decreased by
the same amount that the error probability of the functions running on the
hardware is increased. The probability of violating SG1 is now mainly due to
reaching failure state ErrorData of function TrajectorySelection, which is
3.32799547 · 10−6. In a second step we increase the error handling rate of func-
tion TrajectorySelection from 90% to 99%. This decreases the failure prob-
ability for ErrorData in function TrajectorySelection to 3.32805910 · 10−8.
As a consequence the overall failure probability of violating SG1 decreases from
4.30677042 · 10−6 to 5.60069041 · 10−8. We notice that detection and error han-
dling rates have an essential influence on the failure probability of the ADS.

A violation of SG3 is less probable than 10−9 for both variants. The small
probabilities are reasonable since the ADS remains in the emergency mode for
only 10 s, which is much shorter than the assumed driving cycle of one hour.
Unexpectedly, a violation of SG3 is more probable for variant 1 (6.399474 ·10−9)
than for variant 2 (6.164128 ·10−9). The difference is due to the fact that variant
2 fails more probable without entering the emergency mode.

ISO 26262 requires an analysis of single and multiple point failures, and
whether failures are detected or undetected. We extract this information from
the causes in the fault trees. A cause representing a single point failure contains a
single failure event, other causes are multiple point of failure. For example, Cause
1 of variant 2 is a single point failure since it contains the single failure event
ADS backup undetected. An undetected failure is represented by a cause that
contains at least one undetected failure event. Cause 5 of variant 1 represents
such an undetected failure. With this information it is possible to perform further
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analyses on undetected failure rates and to relate them to single and multiple
point faults, as required by ISO 26262.

5 Conclusion

We have presented an automated approach to support the design time func-
tional safety analysis for architectures supporting ADS. The paper addresses
the handling of the complexity of future ADS by analyzing a flexible mapping
of hardware and software functions. We have applied the proposed approach to
two variants of a practical ADS architecture and compared the two variants.
We have shown that the proposed approach gives necessary information to per-
form functional safety analyses in the spirit of ISO 26262. The analysis included
fail-operational behavior, software faults and interdependent driving functions
which are so far not adequately addressed by ISO 26262. We see great potential
in supporting ISO 26262 style functional safety analyses of innovative automotive
architectures using the formal algorithmic analyses that QuantUM supports.

Future research will address an improved integration of the analysis into
existing tools and methods, for instance by incorporating automated Failure
Mode and Effects Analysis (FMEA), more flexible property specification, and
an improved scalability of the method, in particular using symbolic analysis
techniques.
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Abstract. In several large scale systems (e.g. robotic plants or trans-
portation systems) safety is guaranteed by granting to some process or
physical object an exclusive access to a particular set of physical areas
or objects before starting its own action: some mechanism should in this
case interlock the action of the former with the availability of the latter.
A typical example is the railway interlocking problem, in which a train
is granted the authorisation to move only if the tracks in front of the
train are free. Although centralised control solutions have been imple-
mented since decades, the current quest for autonomy and the possibil-
ity of distributing computational elements without wired connection for
communication or energy supply has raised the interest in distributed
solutions, that have to take into account the physical topology of the
controlled areas and guarantee the same level of safety. In this paper
the interlocking problem is formalised as a particular class of distributed
mutual exclusion problems, addressing simultaneous locking of a pool of
distributed objects, focusing on the formalisation and verification of the
required safety properties. A family of distributed algorithms solving this
problem is envisioned, with variants related to where the data defining
the pool’s topology reside, and to how such data rules the communication
between nodes. The different variants are exemplified with references to
different distributed railway interlocking algorithms proposed in the lit-
erature. A final discussion is devoted to the steps needed to convert the
proposed definitions into a generic plug-and-play safety-certified solution.

1 Introduction

The current quest for autonomy of cyber-physical systems and the possibility of
distributing computational elements without wired connection for communica-
tion or energy supply has raised the interest in distributed software solutions in
which several computational elements cooperate to guarantee global properties.
In the case of safety-critical systems, mastering the complexity of distributed
solutions so to guarantee that safety is maintained is a hard task.

In this paper we address a particular class of safety-critical cyber-physical
systems, showing how a systematic adoption of known distributed algorithms
and of formal specifications can help to master the complexity.
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In several large scale systems (e.g. robotic plants or transportation systems)
safety is guaranteed by granting to some process or physical object an exclusive
access to a particular set of physical areas or objects before starting its own
action: some mechanism should in this case interlock the action of the former
with the availability of the latter. A typical example is the railway interlocking
problem, in which a train is granted the authorisation to move only if the track
segments in front of the train are free.

The problem resembles a classical mutual exclusion problem: there are several
active, or moving, physical objects (called from now on processes), that compete
for the exclusive access for one or more free areas, which are actually shared
resources.

Centralised solutions for this problem maintain the state of all shared
resources, receive access requests and grant the exclusive access to the requesting
process only if all the requested resources are free. Each resource can therefore
have state = {available, requested by Pi, accessed by Pi}.

Notice that, since we are actually dealing with physical systems, the state of
the resource has to reflect the actual state of a physical object: this may require
that the accessed state is actually split in a state in which the resource is locked
(meaning that the request by Pi has been met), and one in which the resource
is physically visited by the process (see Fig. 1). Furthermore, the requested state
may include not only a check that the related physical object is free, but also a
command to the object to physically prepare it to be available to be visited, and
a check that it is actually prepared, and this may take quite a long time. The
subsequent states as well require some interaction with the physical object. Since
a resource may be engaged in the requested state for long, concurrent requests by
other processes should be served in the meanwhile. Atomicity of the treatment
of a request is therefore guaranteed by denying requests of an already requested
resource by other processes.

Fig. 1. States of a shared resource (node)

To guarantee safety of an interlocking system built according to this prin-
ciple it is enough to prove that in any case two different processes cannot visit
simultaneously the same resource, that is, any resource is exclusively locked by
a single process. Putting this in temporal logic (CTL), it is sufficient to ver-
ify for each resource, and for each i �= j the formula AG ∼ (R visited by Pi ∧
R visited by Pj). Not a big task for a model checker, if the principles above
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are expressed in a single finite-state model that takes into account the actual
topology of the controlled areas. However, the experience with railway interlock-
ing systems says that when several trains (processes) may require tens of track
circuits and points, out of a pool of some hundreds, the combinatorial combina-
tion of the possibilities produces a state space explosion problem. This problem
asks for suitable abstraction or compositional techniques, and for the power of
recently available SAT and SMT-solvers to verify safety of the largest systems
of realistic size [9,28].

In this paper we suggest how a distributed formalisation of the interlocking
problem can decompose this verification problem into manageable verification
steps: the problem is formalised as a particular class of distributed mutual exclu-
sion problems (Sects. 2, 3, 4), addressing simultaneous locking of a pool of dis-
tributed objects, focusing on the formalisation and verification of the required
safety properties. A family of distributed algorithms solving this problem is
envisioned, with variants related to where the data defining the pool’s topology
reside, and to how such data rules the communication between nodes (Sect. 5).
The different variants are exemplified with reference to different distributed rail-
way interlocking algorithms proposed in the literature (Sect. 6). A final discussion
is devoted to the steps needed to convert the proposed definitions in a generic
plug-and-play safety-certified solution (Sect. 7).

2 Distributed Mutual Exclusion

In general, the Distributed Mutual Exclusion problem is typically characterised
by the following statements:

– Concurrent access of processes to a shared resource or data is executed in
mutually exclusive manner.

– Only one process is allowed to execute the critical section, that is, to access
the shared resources, at any given time.

– In a distributed system there are no shared variables that can be used to
implement mutual exclusion and semaphores.

– Message passing is the only means for exchanging information.

Either centralised or distributed Mutual Exclusion algorithms have typically
to satisfy the following properties:

1. Safety: At any instant, only one process can execute the critical section.
2. Liveness: (absence of deadlock and starvation). Two or more processes

should not endlessly wait for messages which will never arrive.
3. Fairness: Each process gets a fair chance to execute the critical section. Fair-

ness generally means that the critical section execution requests are executed
in the order of their arrival in the system.

Several Distributed Mutual Exclusion algorithms have been defined, espe-
cially in relation to distributed transactions, among which the most cited



Safety Interlocking as a Distributed Mutual Exclusion Problem 55

ones are Lamport’s Algorithm [19], Ricart-Agrawala Algorithm [24], Maekawa’s
Algorithm [21].

Such algorithms actually guarantee safety, that is Mutual Exclusion, as obvi-
ously expected, and guarantee fairness and deadlock freedom at different degrees,
with different performance parameters (number of messages, latency, through-
put, response time).

3 The Class of Distributed Mutual Exclusion Problems
of our Interest

In the case studied in this paper, we are interested in a Distributed Mutual
Exclusion algorithm that primarily guarantees safety. Liveness and fairness are
actually not a concern, since the focus is on guaranteeing that safety is not
violated by multiple requests. If any process gets a request denial, it can just
replay the request later: it is somehow assumed that this delay does not cause
any major availability problem, because the normal interval between requests is
largely greater than the time taken to accept or deny a request. If this assumption
does not hold and hence availability becomes a problem, liveness and fairness
should be then taken into consideration. This issue may impact on the definition
of criteria to choose among different mutual exclusion algorithm variants (see
Sect. 5), but we will not discuss it in details, leaving it to future work: the idea
is that we concentrate on safety first, and then we will study availability and
performability of the envisaged solutions.

We can recast the above problem as simultaneous locking of a pool of dis-
tributed nodes, in the following way:

– In this distributed setting, a physical resource is controlled by a dedicated
computer, which is a node of a network. Hence, we will speak of nodes, rather
than resources, from now on.

– A set of distributed nodes is visited by some computation processes (set of
nodes N , set of processes P ).

– In order to avoid conflicts between the computations of the processes, a pro-
cess can request to exclusively lock a pool of nodes for an exclusive visit
(pool of nodes S ⊆ N). We assume a predetermined set of possible pools
FS ⊆ 2N , ∅ �∈ FS , without loss of generality, since FS can also be 2N ; a
process request refers to a pool S ∈ FS .

– In order to lock a pool of nodes, all nodes should be in (or should be brought
to) a state in which they are available to be locked.

– If some node of the pool is not available, the lock request is denied.
– Otherwise, if all nodes are available, the lock is granted, and the process can

start the visit of the pool.
– The lock on a node is singularly released after the process has declared to

have finished visiting that node1.
1 This feature allows for partial release of the pool of nodes, at the advantage of other

processes that want to request those nodes, so increasing availability.
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Figure 1 gives an abstract view of the states of a shared resource, that is,
of a node; note that there may also be concrete transient states induced by the
locking algorithm, such as “requested but not available”.

This Distributed Mutual Exclusion problem is actually a simplified case of
the general one presented in Sect. 2. Indeed, it can be reduced to a Distributed
Transaction problem (Distributed Atomic Action): in this problem, a set of nodes
performs a distributed action, and the decision whether the action is committed
has to be agreed among all the participants: if they do not agree, the action is
aborted and the participants roll back to their previous state, so that either the
distributed action has been fully performed, or it has not at all. In our case, the
distributed action is the reservation of the requested pool of nodes.

4 2PC Protocol for Distributed Mutual Exclusion

Algorithms to solve the Distributed Transaction problem have been defined
since long time; the most popular one is the Two Phase Commit protocol
(2PC) [13,20].

4.1 Classical 2PC Protocol

As the name says, the protocol works in two phases, according to the following
steps for locking a pool of nodes S:

– Commit request phase (or Prepare phase)
• The coordinator (a specially selected node in S) sends a query to commit

message to all participants (all other nodes in S) and waits until it has
received a reply from all participants.

• Each participant replies with an agreement message or an abort message
(an abort message may be due to the explicit denial to commit or the
expiration of a timeout on the execution of an action or on a communi-
cation).

– Commit phase - Success
• If the coordinator received an agreement message from all participants

during the commit-request phase:
∗ The coordinator sends a commit message to all the participants.
∗ Each participant sends an acknowledgement to the coordinator.

– Commit phase - Failure
• If any participant sends an abort during the commit-request phase (or

the coordinator’s timeout expires):
∗ The coordinator sends a rollback message to all the participants.
∗ Each participant rolls back and sends an acknowledgement to the
coordinator.

This algorithm requires 4M messages, with M + 1 nodes in S, and assumes
that point to point communication is available, although broadcast communi-
cation from the coordinator can reduce the overall number of messages. The
algorithm is fail-safe w.r.t. communication failures, in the sense that commit
cannot be wrongly reached if communication fails somewhere.
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4.2 Linear 2PC Protocol for Distributed Mutual Exclusion

In this variant, participants are linearly ordered and each participant commu-
nicates with the previous and with the next participant. In the first phase, the
coordinator makes the request to the first element of the pool, and each partic-
ipant propagates the request to the next node in the list. In the second phase,
the last participant replies OK if it is ready to commit, and the OK message is
propagated backwards to the other participants; on its reception the first node
delivers the OK message to the requesting process. If any of the nodes decides to
abort, it propagates the abort messages in both directions. This algorithm needs
- in the success case - only 2M point to point messages, and is hence favoured
by a linear topology of the communication network.

4.3 Formalisation of the Linear 2PC Protocol

Already [26] presented a formal verification that 2PC was able to guarantee
commit only if all nodes had reached the commit point and no reason for aborting
the protocol was raised. This is what suffices for safety certification.

In order to discuss how a compositional formal verification of safety can
be conducted, we show in Fig. 2 a simplified formalisation of the nodes of the

Fig. 2. The Linear 2PC protocol: behaviours of the participating nodes
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Linear 2PC protocol, by means of UML Statecharts, representing respectively
the First node, any Intermediate node and the Last node of the linear sequence;
the Statecharts have been drawn by the UMC tool [5]. The charts show that
any Intermediate node goes in state Phase1 when it receives a request message
from the previous node, and propagates the message if the node is locally ready
to commit. In state Phase 2, it waits for the OK message from the next node in
order to reach the Commit state. The node rolls back to the initial state in case
of a local abort decision or an abort message from an adjacent node. The First
and Last nodes act similarly upon loosing the communication with the previous
or the next node, respectively. The input from the physical environment of the
node is abstracted by the incoming localcommit and localabort actions; the latter
abstract communication timeouts as well. Moreover, to keep them simple the
shown charts do not model the release feature, just exhibiting an unconditional
return to the initial state after the Commit state. UMC allows any number of
Intermediate objects to be instantiated, connected in a linear list by means of
the prev and next variables; UMC provides the capability to perform model
checking on the modelled network of nodes.

The safety property we are interested to prove can be expressed as: the First
node reaches the Commit state only if all the nodes have locally committed.
This can be directly proved on a model consisting of n+ 2 nodes (First, Last, n
Intermediate nodes), but when n is already in the order of ten, the state space
explosion problem makes the verification time too long to be practical.

We can however decompose this proof noting that it is actually enough to
prove that each node can reach its own Commit state only if the next one
has reached the Commit state. This amounts to discharge the following proof
obligations:

– locally prove, for each type of node, that reaching the Commit states is always
preceded by the local commit and by (for the First and the Intermediate
nodes) the reception of the OK message from the next node;

– locally prove, for the Last and Intermediate nodes, that sending the OK
message to the previous node is always preceded by the local commit;

– prove that the communication means does not forge fake OK messages (a
received OK message has always been sent by the next node).

The first two items above can be easily proved locally for each node. Actually
the authors have proved them by model checking for the Statecharts shown in
Fig. 2 by means of UMC: the property to be proved has been expressed as a CTL
universally quantified “precedes” formula – e.g. the first property above for the
Last node is: not E [not (localcommit) U Commit]. The last item above is
actually a security assumption over the communication between nodes.

A similar principle can be used to prove safety of the release features when
included in the model, that is, to prove that reserved nodes cannot be released
before they have been visited.

While safety is easily assured by employing 2PC, proving liveness and fairness
would need to take into account several factors we do not address here, such as
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synchronous or asynchronous communication, communications faults, ordering
of messages, modelling of timeouts, distinguishing successive requests to the
same pool, etc.

5 Distributed Mutual Exclusion Variants

The topology of the pool of partners engaged in the 2PC protocol can change at
every new invocation of the protocol, since the requesting process may differ, and
it might request to lock a different pool of nodes. Different distributed mutual
exclusion algorithms can be envisioned, with variants related to the topology of
the pool, to where the data defining the pool’s topology reside, and how such data
rules the communication between nodes. For example, when applied to mutual
exclusion of a pool of nodes, the Linear 2PC protocol assumes the knowledge of
the linear sequence of nodes of the pool: in particular the formalisation of Linear
2PC provided above assumes that each node can send/receive messages to/from
the next and previous elements of the pool. But the list of nodes could also be
passed along with the request message from the requesting process.

We identify three main variants:

– Variant (1) The Classical 2PC algorithm is adopted: the requesting process
knows the set S of nodes in the pool and is able to broadcast the request
to all the nodes in the pool. The nodes are able to reply to the requesting
process.

– Variant (2A) The Linear 2PC algorithm is adopted: the pool of nodes S
has a linear structure, that is, is composed by a list of nodes. The commu-
nication between nodes follows the order of the list. The requesting process
knows the list S and sends its request with the list S to the first element of
S, each element takes the next and the previous element from the list S and
propagates the request, with the list S, according to 2PC: the OK messages
are propagated backwards from the last node to the first, by using the knowl-
edge of the previous element for each node. In the case abort messages are
generated, they are propagated back and forth in a similar way.

– Variant (2B) The Linear 2PC algorithm is adopted, as in Variant 2A: the
pool of nodes S has a linear structure, and communication between nodes
follows the order of the list. Each node has the knowledge of the previous
and next elements for any pool S ∈ FS to which it is participating, that is,
it knows the adjacent nodes in the pool’s topology for each pool to which
it belongs. The requesting process sends its request with the requested pool
identifier S to the first element of S, and propagates the request, with the S
pool id, according to 2PC. Adjacency may be related to physical adjacency or
connection between the physical elements controlled by the nodes. Routing
mechanisms common to communication networking may be used in each node
to determine the next node to which propagate the request, and hence this
variant may include limited local rerouting features for availability.

Another source of variability is that actual interlocking algorithms for Cyber-
Physical Systems might require two rounds, each employing a 2PC protocol to
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complete the procedure. In the first round the pool of nodes is locked. In the
second round commands are issued to physical objects associated to nodes to
move to the desired state, and the acknowledge messages include the check that
the physical nodes have actually reached the desired state. Only then the process
can start the visit. This behaviour can be needed, e.g., for energy efficiency,
because it avoids useless physical movements in case a reservation is aborted.

6 Distributed Interlocking as Distributed Mutual
Exclusion

Railway interlocking systems are those systems that are responsible to grant to
a train the exclusive access to a route: a route is a sequence of track elements
that are exclusively assigned for the movement of a train through a station or a
network. Actually, railway interlocking systems are the most complex (in term
of topological size and structure) instances of the safety interlocking concept
defined above.

Granting to a train the exclusive access to a route typically means (i) checking
that the route is free from other trains, by means of track circuits or other pres-
ence sensors, (ii) commanding points in their correct position, (iii) checking that
the points have actually reached the commanded position, and (iv) setting the
signals so to give the driver the permission to move. The instantiation of these
generic rules on a station topology (made of the track layout and the set of
routes) is usually defined in a data structure named control table, that is specific
for the station where the system resides. The control table drives the subsequent
development of a centralised interlocking system. In the usual meaning of rail-
way interlocking, we intend therefore a system that simply receives requests of
reservations, and grants reservations or not on the ground of safety rules, until
the reservation has been fully used (the track is again free) or has been safely
revoked. It is not a burden of the interlocking to look for alternative routes in
case the requested one is busy, in order to optimise traffic throughput param-
eters, nor to guarantee that a train does not enter a not reserved track. These
two functions are traditionally in charge of separate systems, namely Automatic
Train Supervision (ATS) and Automatic Train Protection (ATP) respectively.

Centralised interlockings are complex and costly to design and especially
to be certified against safety guidelines. The complexity is due to the need of
verifying every possible conflicting combinations of different routes through the
station: adopting model checking to verify the interlocking logic of large stations
has indeed proved challenging [11,28].

The distribution of the interlocking logic over a network of computing nodes,
according to the spirit of cyber-physical systems, has also the side effect of
partitioning the verification effort. According to what was said in Sect. 4, we can
think to split the safety certification into simpler and repetitive (hence factorised)
proofs that each node verifies the safety requirements, plus a security proof
for the employed 2PC protocol. The idea of distributed interlocking has been
proposed in several papers [2,8,15], where advantages and possible drawbacks of
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such a solution are discussed: in practice, preference is still given to centralised
solutions, but this may change with the general trend to distribute intelligence.

In a distributed solution, track elements are directly controlled by a set of
distributed communicating nodes: each node controls a given layout element.

However, a route is still a global notion: a route has to be established
by proper cooperation between the distributed elements. The communication
among nodes follows the physical topology of the station/yard and a route is
established by the status of the elements that lie along the route.

The following correspondence can be established to consider a distributed
railway interlocking as an instance of the general distributed safety interlocking
concept:

– Track circuit, point → Node.
– Route → Pool of nodes.
– Trains → Processes.
– A route is requested by a train → A process sends a request for locking a pool

- including reserving track circuits and locking points in a specific position.
– A route is reserved for a train → Requested pool is locked - if track elements

are free and points are positioned.
– A train occupies a track circuit or a point → Visit of a node.
– A train leaves a track circuit or a point → Release of a node.

A specific characteristic of railway interlocking is that nodes of a route are
visited by the movement of the train along the route, hence are visited in a
sequential predetermined way. As soon as a track circuit or a point is left by
a train, it is available for possibly setting another route: this feature is called
sequential release, a common feature not needed for safety (a route could also
be collectively released when the visit of the last node has ended), but desired
to improve availability. Another specific characteristic is that cancellation of an
already reserved route may be asked (for example when a train is not able to
leave a station due to a mechanical problem). Safe cancellation can be achieved
in a similar way to safe reservation.

Some proposed distributed railway interlocking algorithms are discussed in
the following and use instances of the Distributed Mutual Exclusion variants
shown in Sect. 5:

– Variant (1) [12,15]. The engineering concept was originally developed by
INSY GmbH Berlin for their railway control system RELIS 2000 designed
for local railway networks. In this solution, the train has an onboard com-
puter with route information. Instead of signals, the computer gives Move-
ment Authorities to the driver. The train broadcasts the request of a route
to distributed switch boxes that control the track elements. This is actually
a special case of Variant 1, since it does not require the locking of the com-
plete route, before the train is allowed to move (sequential locking): it is as
if the train route is divided into sub-routes, each just containing one track
segment, and that the train then sequentially locks these small routes. The
protocol implicitly includes sequential release. In [15] the concept has been
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formalised in the RAISE Specification Language, RSL [27], and the RAISE
theorem prover was used for verification. In [12] an extension of RSL, called
RSL-SAL [23] was used for the formalisation, and the formal verification was
performed using the SAL symbolic model checker.

– Variant (1) US patent 8820685 B2 [22]. A controller onboard the train first
identifies a group of resources permitting the vehicle to continue its mission,
by querying a local database (which contains the data of the whole railway
network) with the mission received from a regulating center. Although details
of the communication protocol are not given, the onboard controller broad-
casts the locking request to the identified group of resources, and gives the
consensus to move only when all the resources are locked in the desired state.
Sequential release is considered as well.

– Variant (1) US patent 20120323411 A1 [18]. The concept is not much different
from that of patent [22], with the added complexity that the reservation of
a route is negotiated first with other trains as well, and the state of the
wayside elements is also recorded at a central location as a back-up. Also in
this case, details of the protocol are not given, but in reference to our scheme,
the distributed protocol concerns the other processes as well, and the central
location can be considered as a further node. This patent also includes higher
level negotiation mechanisms on board trains to improve availability.

– Variant (2A) [10]. In this proposal, the linear 2PC is adopted. The information
about the route to be reserved (that is, the list of nodes) is propagated to
the nodes, from the first to the last node of the route: each node knows from
this list its adjacent nodes in the route, with which it directly communicates.
The concept has been modelled by UML Statecharts, using UMC for formal
verification of safety properties.

– Variant (2B) [7]. Again, this proposal adopts linear 2PC. Each node is ini-
tialised with a table containing, for each route traversing the node, the adja-
cent elements with which it has to communicate. Only the route identifier
is propagated along the locking request. The concept has been modelled by
UML Statecharts, using UMC for formal verification of safety properties.

– Variant (2B) [4]. This paper formalises in SPIN an interlocking system, con-
sidered at the level of sections between stations of a metro line: the proposed
interlocking model is shown, by model checking, to guarantee that two trains
cannot enter the same section. Due to the linear topology of the line, the
model is a direct instance of Variant 2B, and does not include the aborting
possibility.

A few other attempts at distributing the interlocking logic in separate com-
putations have been developed, starting from the so-called geographic approach
[1,3,6], which encodes the interlocking logic in separate objects that each take
care of the control of a physical element (point, track circuit, signal, . . . ) by
means of predefined composition rules, mimicking the topology of the specific
layout, although the obtained control software is still centralised. In particular,
[2] proposes to start from a Statechart geographic model that uses shared vari-
ables as a communication means between objects, and to allocate each object on
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a distributed node. The adoption of standard distributed consistency protocols
guarantees that the exchange of information is the same of the full centralised
model. However, this approach requires the safety proof of the centralised model,
with no attempt to decompose it into simpler proofs. Similarly, in [16,17] an
overall Petri Net model of a distributed interlocking system is proposed, by con-
necting Petri Nets representing the behaviour of each node. Again, the analysis
of the model does not employ any decomposition strategy.

Different criteria could be used in practice to choose among the variants;
these include for example:

– replicating the network database onboard all trains running in a network can
be practically done for a closed network, such as a metro network. Instead,
in an open infrastructure, such that envisioned by European interoperability
that foresee a train crossing many borders between national network, the
size of the database and frequency of its updates would be very high: since
these data are critical for safety, trains running with a previous release of
the database (maybe due to poor communication) would become dangerous.
It seems more reasonable that missions received by a train include a list of
identifiers of routes to be followed in each traversed station, to be asked to a
local, either distributed or centralised, interlocking system.

– on the other end, keeping route tables on the distributed trackside elements
requires robust distributed initialisation, configuration and reconfiguration
algorithms to maintain consistency [8].

– resilience to faults of single elements - in view of higher availability, which is
one of the advantages of distribution - may require redundancy, replication
of data and specific policies that could be favoured by one of the variants.

– another criterion pertains to energy efficiency and reliability of track machin-
ery: if points are soon moved in an attempt to set a route that will fail due to
conflicting requests, this may result in a lower reliability and energy waste.

The proposals according to Variant 1 show that moving the network map
onboard the train may favour the moving of route decision on board as well:
routes are currently predetermined in terms of a pool of elements, and allocated
to trains in a centralised way (e.g. by an Automatic Train Supervision (ATS)
system). Instead, routes could be dynamically generated in front of the train,
allowing for last minute choice according to optimisation strategies computed
on board. The push towards a train-centric vs. infrastructure-centric decision
making is one of the challenges considered in the Multiannual Programme of the
Shift2Rail Joint Undertaking Initiative [25].

7 Certification

The certification of safety of a distributed interlocking system, according to
what was discussed in Sect. 4, amounts to verify that each component locally
complies with the standard communication protocol, plus the verification that
the protocol does not forge messages. This makes the basis for a simpler and
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less expensive certification process. First, the safety distributed protocol should
be formally verified once for all – this includes proper security measures against
attacks. Assembling off-the-shelf plug-in controller elements, manufactured by
different vendors, on top of this safety layer will automatically guarantee overall
safety, if they are certified to comply with the standard interlocking protocol.

As we have seen, the verification of the safe behaviour of a node can be
cheaply done by automated formal verification. One element that we have
ignored so far is that the proofs envisaged in Sect. 4 assume the local knowl-
edge of the previous and next element of the pool. The different variants have
different views on how these data are available to the nodes: routing tables may
be injected in the node at configuration (or reconfiguration) time, or routing
information may arrive together with the locking request. Assuring that the
data is always consistent with the physical track layout in each node becomes
indeed the major certification effort. The possible application of static analysis
techniques, such as those described in [14], is a promising research direction at
this regard.

8 Conclusions

In this paper we have shown that safety interlocking can be seen as a particu-
lar class of Distributed Mutual Exclusion problems and consequently distributed
algorithms solving this problem can be used for safety interlocking. We presented
variants of such distributed algorithms and exemplified them with references to
different distributed railway interlocking algorithms proposed in the literature.
Finally, we discussed the steps needed to convert the proposed solutions into
generic plug-and-play safety-certified solutions. Regarding the possible applica-
tions in the railway field, we believe that the achieved gains in the certification
effort can significantly decrease costs in the production and deployment of inter-
locking systems, once a standard communication protocol is emerging: variants
presented in this paper aims to be a first step in this direction.

Distributed safety interlocking systems may find application in any domain
where safety depends on the guarantee that a set of objects is in a determined
state. To our knowledge, however, the only example found in the literature is
the one reported (with no details about the adopted algorithms) in [29], aimed
to guarantee a safe access to a large physics experiment installation.

We have on purpose focused only on safety, mostly ignoring availability: the
proposed protocols do not guarantee liveness and fairness under several con-
ditions, and an accurate analysis of different factors (timing, fault models,. . . )
affecting these attributes would be needed. In the case of railway interlocking,
low availability can severely impact service performability. Given that safety is
granted by principles like those put forward by this paper, distributed solutions
can be adopted in practice only if sufficient availability is demonstrated, possibly
employing quantitative analysis techniques, as suggested in [8].



Safety Interlocking as a Distributed Mutual Exclusion Problem 65

References

1. FP7 Project INESS - Deliverable D.1.5 report on translation of requirements from
text to UML. Technical report (2009)

2. Banci, M., Fantechi, A., Gnesi, S.: The role of formal methods in developing a
distribuited railway interlocking system. In: Proceedings of Formal Methods for
Automation and Safety in Railway and Automotive Systems, FORMS/FORMAT,
Braunschweig, Germany, pp. 79–91 (2004)

3. Banci, M., Fantechi, A.: Geographical versus functional modelling by statecharts of
interlocking systems. Electr. Notes Theor. Comput. Sci. 133, 3–19 (2005). https://
doi.org/10.1016/j.entcs.2004.08.055

4. Basagiannis, S., Katsaros, P., Pombortsis, A.: Interlocking control by distributed
signal boxes: design and verification with the SPIN model checker. In: Guo, M.,
Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) ISPA 2006.
LNCS, vol. 4330, pp. 317–328. Springer, Heidelberg (2006). https://doi.org/10.
1007/11946441 32

5. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011). https://doi.org/10.1016/j.scico.2010.07.002

6. van Dijk, F., Fokkink, W., Kolk, G., van de Ven, P., van Vlijmen, B.: EURIS, a
specification method for distributed interlockings. In: Ehrenberger, W. (ed.) SAFE-
COMP 1998. LNCS, vol. 1516, pp. 296–305. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-49646-7 23

7. Fantechi, A.: Distributing the challenge of model checking interlocking control
tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7610, pp. 276–
289. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34032-1 26

8. Fantechi, A., Gnesi, S., Haxthausen, A., van de Pol, J., Roveri, M., Treharne, H.:
SaRDIn - A safe reconfigurable distributed interlocking. In: Proceedings of 11th
World Congress on Railway Research, WCRR. Ferrovie dello Stato Italiane, Milano
(2016)

9. Fantechi, A., Haxthausen, A.E., Macedo, H.D.: Compositional verification of inter-
locking systems for large stations. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017.
LNCS, vol. 10469, pp. 236–252. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66197-1 15

10. Fantechi, A., Haxthausen, A.E., Nielsen, M.B.R.: Model checking geographically
distributed interlocking systems using UMC. In: 25th Euromicro International
Conference on Parallel, Distributed and Network-based Processing, PDP, pp. 278–
286 (2017). https://doi.org/10.1109/PDP.2017.66

11. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT, pp. 107–
115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14261-1 11

12. Geisler, S., Haxthausen, A.E.: Stepwise development and model checking of a dis-
tributed interlocking system - using RAISE. In: Havelund, K., Peleska, J., Roscoe,
B., de Vink, E. (eds.) Formal Methods. FM 2018. Lecture Notes in Computer
Science, vol. 10951. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
95582-7 16

13. Gray, J.N.: Notes on data base operating systems. In: Bayer, R., Graham, R.M.,
Seegmüller, G. (eds.) Operating Systems. LNCS, vol. 60, pp. 393–481. Springer,
Heidelberg (1978). https://doi.org/10.1007/3-540-08755-9 9, http://dl.acm.org/
citation.cfm?id=647433.723863

https://doi.org/10.1016/j.entcs.2004.08.055
https://doi.org/10.1016/j.entcs.2004.08.055
https://doi.org/10.1007/11946441_32
https://doi.org/10.1007/11946441_32
https://doi.org/10.1016/j.scico.2010.07.002
https://doi.org/10.1007/3-540-49646-7_23
https://doi.org/10.1007/3-540-49646-7_23
https://doi.org/10.1007/978-3-642-34032-1_26
https://doi.org/10.1007/978-3-319-66197-1_15
https://doi.org/10.1007/978-3-319-66197-1_15
https://doi.org/10.1109/PDP.2017.66
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-319-95582-7_16
https://doi.org/10.1007/978-3-319-95582-7_16
https://doi.org/10.1007/3-540-08755-9_9
http://dl.acm.org/citation.cfm?id=647433.723863
http://dl.acm.org/citation.cfm?id=647433.723863


66 A. Fantechi and A. E. Haxthausen

14. Haxthausen, A.E., Østergaard, P.H.: On the use of static checking in the verifi-
cation of interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016.
LNCS, vol. 9953, pp. 266–278. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47169-3 19

15. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Softw. Eng. 26(8), 687–701 (2000)

16. Hei, X., Takahashi, S., Nakamura, H.: Distributed interlocking system and its safety
verification. In: Proceedings of 6th World Congress on Intelligent Control and
Automation, Dalian, China, vol. 2, pp. 8612–8615 (2006). https://doi.org/10.1109/
WCICA.2006.1713661

17. Hei, X., Ma, W., Gao, J., Xie, G.: A concurrent scheduling model of distributed
train control system. In: Proceedings of IEEE International Conference on Service
Operations, Logistics, and Informatics, SOLI, pp. 478–483 (2011)

18. Kanner, F.W.A.: Control of automatic guided vehicles without wayside interlock-
ing, Patent US 20120323411 A1 (2012)

19. Lamport, L.: The implementation of reliable distributed multiprocess systems.
Comput. Netw. 2, 95–114 (1978). https://doi.org/10.1016/0376-5075(78)90045-4

20. Lampson, B., Sturgis, H.: Crash recovery in a distributed storage system. Technical
report, Comput. Sci. Lab., Xerox Parc, Palo Alto, CA (1976)

21. Maekawa, M.: A
√
N algorithm for mutual exclusion in decentralized systems.

ACM Trans. Comput. Syst. 3(2), 145–159 (1985). https://doi.org/10.1145/214438.
214445

22. Michaut, P.: Method for managing the circulation of vehicles on a railway network
and related system, Patent US 8820685 B2 (2014)

23. Perna, J.I., George, C.: Model checking RAISE applicative specifications. In: Pro-
ceedings of the Fifth IEEE International Conference on Software Engineering and
Formal Methods, SEFM, pp. 257–268. IEEE Computer Society Press (2007)

24. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer
networks. Commun. ACM 24(1), 9–17 (1981). https://doi.org/10.1145/358527.
358537

25. Shift2Rail Joint Undertaking: Multi-annual action plan, November 2015. http://
ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-maap-
shift2rail en.pdf

26. Skeen, D., Stonebraker, M.: A formal model of crash recovery in a distributed
systems. IEEE Trans. Softw. Eng. 9, 219–228 (1983)

27. George, C., Haff, P., Havelund, K., Haxthausen, A.E., Milne, R., Nielsen, C.B.,
Prehn, S., Wagner, K.R.: The RAISE Language Group. The RAISE Specification
Language. The BCS Practitioners Series, Prentice Hall Int. (1992)

28. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of
interlocking systems featuring sequential release. Sci. Comput. Program. (2016).
https://doi.org/10.1016/j.scico.2016.05.010

29. Walz, H.V., Agostini, R.C., Barker, L., Cherkassky, R., Constant, T., Matheson, R.:
Distributed supervisory protection interlock system SLC acceleration. Proceedings
of the IEEE Particle Accelerator Conference: Accelerator Science and Technology,
vol. 3, pp. 1928–1930 (1989). https://doi.org/10.1109/PAC.1989.72972

https://doi.org/10.1007/978-3-319-47169-3_19
https://doi.org/10.1007/978-3-319-47169-3_19
https://doi.org/10.1109/WCICA.2006.1713661
https://doi.org/10.1109/WCICA.2006.1713661
https://doi.org/10.1016/0376-5075(78)90045-4
https://doi.org/10.1145/214438.214445
https://doi.org/10.1145/214438.214445
https://doi.org/10.1145/358527.358537
https://doi.org/10.1145/358527.358537
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-maap-shift2rail_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-maap-shift2rail_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-maap-shift2rail_en.pdf
https://doi.org/10.1016/j.scico.2016.05.010
https://doi.org/10.1109/PAC.1989.72972


Checking Consistency of Real-Time
Requirements on Distributed Automotive

Control Software Early in the
Development Process Using UPPAAL

Jan Toennemann1(B), Andreas Rausch1, Falk Howar2(B), and Benjamin Cool1

1 Clausthal University of Technology, Clausthal-Zellerfeld, Germany
jan.toennemann@tu-clausthal.de

2 Dortmund University of Technology and Fraunhofer ISST, Dortmund, Germany
falk.howar@tu-dortmund.de

Abstract. The next generation of automotive control software will
run on complex networks of control units, connected by a multitude
of different bus systems. With a rising number of safety-critical func-
tions being realized (at least partly) in software, real-time requirements
for distributed functions become more important (e.g., time until a
system reacts to a perceived driving situation). Defining and refining
such requirements consistently during system development is not trivial.
Inconsistencies or unrealizability can easily be introduced when decom-
posing requirements (e.g., time budgets) for functions that run on multi-
ple control units. The automotive industry is actively pursuing methods
for finding such problems as early as possible in the system design. In
this paper, we present some initial work on the automated verification
of requirements on distributed control functions that are deployed to
networks of automotive control units. The presented analysis provides
insights into the consistency of requirements and relies only on infor-
mation available at the end of the planning stage in the development
process.

1 Introduction

Automotive systems, consisting of a large number of communicating Electronic
Control Units (ECUs), are required to handle an ever increasing number of com-
plex tasks and also need to fulfill a multitude of specific requirements related to
safety and reliability [15]. Considering a network of real-time systems introduces
a whole new layer of complexity, resulting in more complex simulation and anal-
ysis. For each new system introduced into the network an additional real-time
clock needs to be considered, which might not run synchronous to that of the
other systems in the network [20]. Established commercial analysis tools used to
test automotive software systems, like TA Simulator [1] or SymTA/S [2], have
recently added support for distributed functions. On the one hand, these tools
are able to quite accurately simulate the system’s behavior and often give very
c© Springer Nature Switzerland AG 2018
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Fig. 1. Workflow for checking consistency of timed requirements with information
about system design.

detailed results of tests in the form of exportable statistics and graphs. On the
other hand, since the analysis is based on simulation, it requires a lot of informa-
tion about the final system, e.g., statistical information about bus communcation
delays obtained from actual recorded execution.

Moreover, each function or assistance system is mostly tested in isolation
by its supplier as the behavior and timing influences of integrating a multitude
of functions from various suppliers into a combined system is often very com-
plex [18]. A reliable simulation of the actual behavior and checks on whether the
real-time requirements are fulfilled when integrating multiple functions on a net-
work of control units can only be done very late in the development process [8].

Detecting inconsistencies at a stage this late in the development process
can require major changes to the system as a whole and introduce a lot of
additional work which may delay a project substantially, severely increasing
the cost. As defining and refining real-time requirements consistently during
system development is not trivial, the automotive industry is actively pursuing
methods for finding such problems as early as possible in the system design.
Inconsistencies or unrealizability can easily be introduced when decomposing
requirements (e.g., time budgets) for functions that run on multiple control units.
This calls for methods that enable analysis of real-time requirements even before
a final system design is fixed, let alone implemented and ready to be tested.

While analysis in early stages of a project cannot be as precise as late in the
process (during the planning phase, a non-negligible number of parameters affect-
ing the final system is still unknown), an approach based on over-approximation
of possible behavior can help to discover potential inconsistencies. Inconsisten-
cies can then be addressed by refining requirements or assumptions on system
behavior, e.g., when more precise timing information becomes available during
the development process.

In this paper, we present such an approach for checking inconsistencies
between multiple types of requirements early in the development process, requir-
ing only little information about the final system. Figure 1 shows a high-level
overview of the approach. We expect real-time requirements and basic infor-
mation about the anticipated system design as input. We analyze the following
types of requirements:

– Maximum execution time of tasks and reaction time of event chains,
– Data age of task output data,
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– Periodicity of tasks,
– Schedulability, and
– Synchronization of tasks.

The analysis is based on the information listed below from the system design:

– A decomposition of functions into sub-functions assigned to control units,
– Data-flow between sub-functions,
– Assumed schedules for electronic control units (ECUs) based on dynamic

Earliest Deadline First (EDF) or static priority-based scheduling similar to
that of OSEK OS, and

– Assumed best-case and worst-case execution times for sub-functions (includ-
ing times for bus communication).

Requirements and system design are translated into a network of timed
automata, encoding constraints on system behavior and Timed Computation
Tree Logic (TCTL) queries representing proof obligations for requirements. The
information about the automotive software system is then given as a system def-
inition in UPPAAL [3] utilizing parametrizable templates, encoding scheduling
constraints on possible executions and introducing clocks for observing some
properties, as well as structures defined in the C-like language provided by
UPPAAL. Consistency of requirements can then be evaluated through model
checking. We demonstrate the approach on a (fictional) distributed brake-by-
wire function.

Related Work. Timing constraints in automotive software systems, especially
distributed systems, have been a field of extensive research in recent years and
still continues to be. Analyzing and simulating the behavior of a single real-
time system is not trivial, but has been reliably accomplished for single core
architectures. In recent years many manufacturers of control units have switched
to a multi-core approach [10,12,19], where each processor has multiple cores
and allows for parallel execution. It has been shown that it is still possible
to completely simulate control units with multiple cores and parallel execution
in order to ensure that the deployed software will perform reliably under all
considered circumstances [5].

Considering a network of real-time systems introduces a whole new layer of
complexity, resulting in a more complex simulation and analysis. For each new
system introduced into the network an additional real-time clock needs to be
considered, which might not run synchronous to that of the other systems in
the network [20]. There exist various approaches to develop and test these inter-
connected systems and generally, the analysis of distributed real-time systems
inside certain bounds can also lead to reliable results [7]. But the thorough
analysis that is necessary for these results requires a large amount of data about
the system, requiring both the system development as well as its implementation
and configuration to be already finished when starting the tests.

Moreover, many tasks in automotive software systems do not run periodically
in a fixed time grid, but are triggered by events in a non-deterministic matter [16].
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Using classic model-checking, these cannot be reliably accounted for, since the
worst case assumptions made in the process would be that the event is constantly
triggered, resulting in an extremely overloaded system, which is not even close
to situations that occur in real-world examinations. There are also propositions
to only realize safety-critical functions using periodically triggered tasks [9,17],
but as of right now, event-triggered tasks are considered to be an integral part of
automotive software systems [16,18]. Several approaches exist to apply statistical
analysis to include this type of tasks. The approach presented in [11] uses the
experimental statistic model-checking toolkit integrated in the current UPPAAL
development snapshots to verify such event properties inside UPPAAL. The
model given in [11] is a very detailed representation of the system including a
representation of the functional behavior in addition to the timing properties.

An approach similar to the one we present in this paper that does not rely
on large amounts of data but rather on over-approximation of possible behavior
has been used successfully used for modeling and verification of the Controller
Area Network (CAN) bus in [6,14]. For later stages of a development process,
when the bus design and message structure are fixed, the behavioral templates
developed in these works could be incorporated into our approach in order to
generate more realistic model of the underlying bus network.

Outline. The next section presents our motivating example, a distributed brake-
by-wire function. Sections 3 and 4 provide technical details on the phenomena
that we model in automata templates and the types of properties that can be
analyzed using these templates, respectively. Finally, we present results from an
initial evaluation of the presented work on the motivating example in Sect. 5
before making some concluding remarks and discussing future work in Sect. 6.

2 Motivating Example

We will demonstrate the key ideas of our approach on the basis of a simplified
brake-by-wire architecture (inspired by the example given in [4]) that is broken
down into a set of functions running on a distributed system showcasing the
various covered types of requirements. While an industrial brake-by-wire system
may run on more control units and consist of more or different components than
our example, the general architecture of our example is representative of real
distributed driving functions, as are analyzed properties and modeled schedulers.

Fig. 2. Functional decomposition of brake-by-wire architecture.
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A brake-by-wire system replaces the mechanical connection between the
driver and the vehicle by electronic systems [13]. These systems have a number of
advantages over mechanical systems (e.g., weight reduction and increased cabin
space) and are essential for autonomous driving. Replacing mechanical brak-
ing, the software in brake-by-wire systems falls into the highest safety integrity
level with strong requirements imposed upon it, since any slightest error could
endanger lives.

A high-level point of view of our simplified brake-by-wire architecture is
shown in Fig. 2. The distributed brake-by-wire function works by periodically
polling the angle of the brake pedal to receive input from the driver, converting
the angle to an amount of force that is applied to the brakes, applying additional
assistance systems like electronic brake force distribution, and engaging the cor-
responding actuators in the brakes with the desired force. In addition to this
driver-based brake routine, our system includes an emergency brake assistant,
periodically analyzing data from various sensors of the car and activating the
brake actuators as fast as possible in case of an emergency. We assume several
real-time requirements for the functions shown in the figure:

1. The function calculating the force that shall be applied to the brakes must
always finish at most 28 ms after it started and the calculations must be done
at least every 40 ms.

2. The sensor data used by the assistance systems may at most be 12 ms old and
the already pre-processed data from the brake pedal may at most be 16 ms
old when the calculations of the brake force start.

3. The driver-triggered brake routine, from the polling of the brake pedal angle
to the finished activation of the brake actuators, must finish within 110 ms.

4. The path from the main brake controller calculating the brake force up to
the finished activation of the actuators may at most take 80 ms and the input
data to the function calculating the brake force must always be from within
a time frame of 10 ms.

5. The emergency brake routine, from the polling of the sensor data up to the
finished activation of brake actuators, may never surpass a total of 85 ms.

Since we are dealing with automotive software systems, we consider a net-
work of control units using a real-time operating system, where functions are
implemented using periodically triggered tasks with deterministic scheduling;
we will call such a software system a processing environment (PE). We assume
that we have a homogeneous hardware architecture, where all tasks have a fixed
best-case and worst-case execution time (BCET & WCET, respectively) regard-
less of the processing environment they are currently deployed on. Having no
detailed information about the actual hardware system, we assume each addi-
tional processing environment introduced into the system to have a slight clock
offset of 1 ms compared to the one added before due to networking and wiring
constraints, such that the offset between two processing environments pen, pem
can be calculated as m−nms, making the processing environment with the low-
est index the reference system. If verification is done on processing environments
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Table 1. Mapping of functions to tasks for brake-by-wire architecture including esti-
mated time budgets.

Task Function BCET WCET Description

τ1 getBrakePedalData 3 4 Receive and store information
about the current brake pedal angle

τ2 getSensorData 6 7 Receive and store information
about the sensors (accelero-,
gyrometer, camera, ultrasonic
sensor, . . . )

τ3 getConfiguration 3 5 Receive and store information
about the currently selected user
options (engine recuperation,
assistance systems, . . . )

τ4 calculateDriverTorque 2 3 Calculate relative torque from
brake pedal angle

τ5 calculateCurrentSpeed 8 10 Use stored sensor data to calculate
the current speed

τ6 detectEmergency 16 22 Use stored sensor data to detect
whether an emergency situation is
imminent

τ7 calculateBrakeForce 19 26 Combine current information from
the brake pedal, sensors and
settings to calculate the force to
apply to the brakes

τ8 applyAssistanceSystems 13 28 Apply enabled assistance systems
based on currently stored sensor
data and already calculated brake
force

τ9 applyBrakeForce 7 9 Apply the final result of the force
calculation to the brakes by
activating the brake actuators

modeled after already existing systems, measured data for the delay between the
systems should be used to more accurately represent the offset.

Sub-functions are described in Table 1. The noted BCET and WCET are
over-approximated and would – in case of a consistent system – be handed to
suppliers as timing requirements for the developed functions, since they are then
a fundamental base for a consistent system. Possible inconsistencies range from
rather simple cases, for example that the time grid assigned to a task fails to
make the function run as often as needed for a periodicity requirement to be
met, to very complex cases, like for instance when a group of tasks that needs
to be run sequentially in a given amount of time (an event chain) does not finish
fast enough in edge cases, e.g. when various offsets correlate in a way that is not
instantly obvious as the worst-case.
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3 Modeling

In this section, we walk through the development process of the templates which
we use to simulate the timing behavior of distributed automotive software sys-
tems. In order to use UPPAAL as a model-checking tool, we require a model
of automotive software systems that can be used as input for the verification.
Using UPPAAL global declarations, we have created basic data structures like
tasks and implemented several accompanying functions as well as the scheduling.
The processing environments are represented using templates, a combination of
a modeled timed automaton and accompanying code in the C-like language pro-
vided by UPPAAL; an overview of the created documents is shown in Fig. 3.
Before setting up the automata and their behavior, we will use the global decla-
rations to implement a task model and scheduling functions, which can then be
accessed from the templates.

Fig. 3. Resulting documents of UPPAAL modeling.

Tasks. To be able to refer to tasks, we use the basic structure Task composed
of a numeric identifier, the ID of the task, and the BCET and WCET as well.
Since we require tasks to have scheduling information, the structures EDF_Task,
comprised of a task, a relative deadline and a period, as well as OSEK_Task,
consisting of a task, priority and period tuple, were created.

Tasks are not spawned directly but rather as instances, defined as EDF_
Task_Instance and OSEK_Task_Instance, both of which allow us to save
their execution time as well as their start time; additionally, the EDF_Task_
Instance also saves the absolute deadline, which is the absolute deadline of
the instance calculated from the start time and the relative deadline of the
corresponding EDF_Task.

For each task we simulate, we want information about its runtime (its exe-
cution time, the time that has passed since the start of the execution) as well
as its data age (the time that has passed since the task last finished executing
and thus provided new output data). Since we assume tasks to be unique (in the
sense that each task ID is only assigned once, globally), we store the runtime
and data age clocks using arrays in the global declarations.

We also add broadcast channels to notify of the beginning and end of task
execution as well as a Boolean array to save whether a task is currently being
executed, as we are unable to compare clock values outside of guards in UPPAAL,
including custom functions.
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i n t [ 0 , TASK QUEUEMAX] EDF schedule (EDF Task Queue &tq ) {
EDF Task Instance n e x t e t i = tq [ 0 ] ;
i n t [ 0 , TASK QUEUEMAX] n e x t e t i p o s = 0 ;
i n t [ 1 , TASK QUEUEMAX + 1 ] i = 1 ;
whi le ( i < TASKQUEUEMAX && tq [ i ] != NULL EDF TI) {

i f ( tq [ i ] . d ead l ine < n e x t e t i . dead l ine ) {
n e x t e t i = tq [ i ] ;
n e x t e t i p o s = i ;

}
i++;

}
re turn n e x t e t i p o s ;

}
Listing 1. UPPAAL Code for EDF Scheduling.

Scheduling. To create an EDF task instance, we only pass the corresponding
task as a reference and the local time of the processing environment as the
parameters, since the rest can be calculated from there. The absolute deadline is
calculated from the local time of the task-spawning PE and the relative deadline
of the EDF task, the start time can be assumed to be the passed local time, and
the execution time is zero, since the instance has just been newly generated.

With an initialized system, we are working with EDF task instances in the
task queue represented by the data type EDF_Task_Instance. The queue is
represented as an array, initialized with the elements NULL_EDF_TI, ordered in
a way that we can consider the first encountered NULL_EDF_TI to be the end
of the queue. This is a consistency requirement needed by the functions used to
enqueue and dequeue the task instances.

Since each task instance in the queue has information about its absolute
deadline, the scheduling function shown in Listing 1 simply moves through the
queue and returns the instance with the lowest absolute deadline, that is, the
instance that needs to be finished next. Should multiple instances have the same
deadline, the index of the first one encountered is returned, which is the one
with a lower index. The scheduling function does not return the instance, but
rather its position in the task queue of the processing environment. This is due
to a limitation in UPPAAL, which – while allowing references to be passed to a
function – does not allow a function to return a reference. A way to circumvent
this would be to pass another reference and set this to the selected instance,
but both for consistency and compatibility reasons we chose the approach of
just returning the index in the queue. With OSEK instances, scheduling works
similar to the presented EDF function, using priority as a parameter instead of
a relative deadline.

Processing Environments. We have developed templates that represent pro-
cessing environments. We create one template for per number of tasks that run
on the system and add the tasks dynamically using the parameters. For each task
a unique ID, a BCET and a WCET are configured via parameter in the system
declarations. All templates share common definitions: two clocks independent
from the number of tasks handled (one for the automaton’s local time, one for
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Fig. 4. EDF-scheduled processing environment template with two tasks.

counting to the next time step during any task’s execution), a constant for the
amount of tasks handled by the template, a variable saving the current local
time and an array of the contained task’s periods, used as triggers for adding
them to the queue. Shorthands are defined to access the next action, determined
by the scheduler, for the queue index of the next task instance, the amount of
task instances currently in the queue and the execution time of the next task
instance, along with the corresponding tasks’ WCET and BCET.

Not only definitions, but also some functions are common to all templates.
Several functions are used to reset clocks after each tick, e.g. to only allow
runtime clocks to progress during actual task execution. While these functions
are present in all templates, regardless of the scheduling algorithm used, there
are minor differences in the implementations because of different data types.
Different functions are run for each task start, finish and execution step.

The generic template for an EDF-scheduled processing environment running
two tasks shown in Fig. 4 calls the functions initialize() upon system ini-
tialization, schedule() after each time step and idle() when leaving the Idle
location. For each task, there is a compound of six locations supplied with the
numerical task identifiers; in the respective transitions inbetween, the functions
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start_task(ID), execute_task(ID) and finish_task(ID) are called
and the broadcast channels for the task ID are used to send the start and finish
signals when appropriate.

The schedule() call first checks the period of the tasks simulated in the
processing environment and adds task instances to the queue in case the the time
grid is met. To this end, variable local_time keeps track of the current time,
as clock valuations cannot be checked against other variables using mathematical
operations, e.g., the time grid triggers, neither can they be passed to other func-
tions, e.g., when calling the function to generate a new EDF task instance. Then,
schedule() calls the template’s scheduling function (here EDF) to determine
the next task instance for the processing environment and sets up the short-
hands used in the template. It checks if one of the three auxiliary locations
needs to be entered; if the simulations has reached its end, the Done location
is entered, if the amount of items in the task queue is larger than allowed by
TASK_QUEUE_OVERLOAD, the Overload location is entered and if the deadline
of the currently selected task instance is already in the past, the SchedulingError
location is entered.

The auxiliary locations account for limitations of modeling the scheduling in
UPPAAL: clock values and integer variables are limited by int16 bounds of
the underlying C architecture (i.e., by 32, 767). Since a bound on time reduces
the analyzed state space, we allow setting it to even lower values: after having
reached the time set by the TIME_MAX constant, forces all automata to enter
the Done location, effectively reaching a verifiable end condition. As long as all
possible scheduling variations occur at least once during the time specified by
TIME_MAX (which has to be assured by the user), this is a sound optimization.

For systems with very large, diverse scheduling periods, the analysis can be
incomplete if not all variations are part of the simulation and verification process.
A possible mitigation might be to introduce an additional integer variable into
the system and increment these at a fixed interval, for example each 30, 000 time
steps, resetting the clock in the process. This would allow to keep track of larger
time spans but, on the other hand, increase the state space.

System Declarations. The system declarations are the last set of declara-
tions in UPPAAL and are used to describe the system, which is the network
of timed automata that shall be simulated and verified. For this system, the
processing environments need to be defined by instantiating the relevant tem-
plates. The instantiation of templates works similar to the creation of objects
in object-oriented languages, the parameters are given during creation. After all
templates have been instantiated, the simulatable system must be defined using
the system directive and a comma-separated list of already created templates.
An excerpt of the system definitions covering the tasks of the motivating exam-
ple is given in Listing 2. These structures cover just the basic task information;
for schedulability, they need to be embedded in either EDF or OSEK tasks and
passed to processing environments in arrays.
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// Task d e f i n i t i o n s ( ID , BCET, WCET)
const Task T1 = {1 , 3 , 4} ; // getBrakePedalData
const Task T2 = {2 , 6 , 7} ; // getSensorData
. . .
const OSEK Task OT3 = { T3 , 1 , 30 } ; // OSEK Task De f i n i t i o n s
const OSEK Task OT4 = { T4 , 2 , 30 } ; // (Task , Pr i o r i t y , Period )
const OSEK Task OT6 = { T6 , 3 , 30 } ;
const OSEK Task OT7 = { T7 , 1 , 30 } ;
const OSEK Task OT8 = { T8 , 1 , 30 } ;
const EDF Task ET1 = { T1 , 15 , 30 } ; // EDF Task De f i n i t i o n s
const EDF Task ET2 = { T2 , 20 , 30 } ; // (Task , r e l . Deadline , Period )
const EDF Task ET5 = { T5 , 25 , 30 } ;
const EDF Task ET9 = { T9 , 30 , 30 } ;
const EDF Task PE1 Tasks [ 4 ] = { ET1, ET2, ET5, ET9 } ; // Array
const OSEK Task PE2 Tasks [ 3 ] = { OT3, OT4, OT6 } ; // Compositions
const OSEK Task PE3 Tasks [ 1 ] = { OT8 } ;
const OSEK Task PE4 Tasks [ 1 ] = { OT7 } ;
PE1 = PE 4T EDF(PE1 Tasks , 0 ) ; // PE De f i n i t i o n s Template
PE2 = PE 3T OSEK(PE2 Tasks , 1 ) ; // (Task Array , O f f s e t to Reference PE)
PE3 = PE 1T OSEK(PE3 Tasks , 2 ) ;
PE4 = PE 1T OSEK(PE4 Tasks , 3 ) ;

Listing 2. System Declaration for some Tasks from the Motivating Example.

4 Verification

In this section, we describe how safety properties can be encoded as TCTL
queries using the the small example system from Sect. 3 for illustration. The
verification of synchronicity (i.e., multiple tasks finishing within a given period
of time) was realized but is not covered here in detail due to space constraints.
Due to the way the clocks in timed automata work, each task runtime clock
has a valuation of v(c) ∈ [0, 1] when the corresponding task’s simulation state
is currently neither executing nor suspended. As a consequence, we are unable
to reliably check whether a task has actually just started execution based on
the runtime clocks and need to resort to location names and the broadcast chan-
nels. The location names used are from the task compounds shown in Fig. 4 (e.g.,
t1_start) and the indices that need to be used are given using italicized mathe-
matical notation. Requirements are specified using function notation, where each
requirement is represented using a function over one or multiple tasks.

4.1 Verification of Properties Using TCTL

We start by covering real-time requirements which we can verify using TCTL
queries and the simulated network of timed automata representing processing
environments. The requirements covered here are requirements over a single or
over two tasks.

Maximum Execution Time of a Task. We will consider the maximum exe-
cution time (MET) of a task to describe the maximum amount of time that
is allowed to pass between the start and finish events of any pair of the task’s
instances. Due to the existence of runtime clocks, the maximum execution time
can easily be verified. As the UPPAAL model is time-bound by the constant
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TIME_MAX, we need to prepend a condition to account for this upper bound.
Otherwise a system state in which the requirement is not fulfilled can always be
found outside of the valid time bounds, as the automata enter the Done state
and do not continue resetting the clocks.

We have several clocks to choose from that can act as global clocks to compare
to this time bound, mainly the clock of the reference system and the runtime or
data age clocks of task ID 0; since PE IDs start at 1, those start at the beginning
of the simulation and are never reset. Since the reference system may be declared
with varying names, we will use rt c[0] as the global clock for the following
verification queries.

Assuming a specific task is represented using a task with the ID n in the
UPPAAL model, we use the query

A[] (rt_c[0] <= TIME_MAX) imply (rt_c[n] <= MET(τn))

to check for validity of the requirement MET(τn).

Maximum Data Age. We define the maximum data age (MDA) to express
the maximum amount of time that may pass between the finish event of one
task τn and the start event of another task τm, essentially the age of the output
data provided by τn used as input by τm. Just like with the execution time, the
verification of the data age requirement was made easy in the model-building
process by introducing the relevant clocks. Considering two tasks with IDs n, m
deployed on the same processing environment with ID i, we can use the formula

A[] (PEi.tj_start imply (da_c[n] <= MDA(τn, τm)))

to check whether MDA(τn, τm) is upheld by the given system; where j is the
index of task m on the processing environment pe, i.e., t1 start or t2 start
on a processing environment with two tasks where t1 start belongs to the first
task in the passed array and t2 start belongs to the second one.

Periodicity. We assume the periodicity (PER) requirement to be describing
the maximum amount of time that may pass between two finish events of the
same task. The verification of this requirement can be achieved easily as well,
due to the fact that the data age clock is reset in the time step after the finish
state, not before. Using the UPPAAL query

A[] (PEi.tj_finish imply (da_c[n] <= (PER(τn))))

we can verify whether a task with ID n running on the processing environment
with ID i and the task array index j satisfies the requirement PER(τn).

Schedulability and Queue Overload. While not specifically a requirement,
we can check whether a system might encounter an error during the simulation,
namely a runtime scheduling error or a queue overload. All auxiliary error states
in the templates are states with no outgoing edges. Since these error states are
the only states in the whole automaton without outgoing edges, we can check
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Fig. 5. Template for verification of an event chain of two tasks.

whether it is possible for the automaton to encounter a deadlock. We use the
query “A[] not deadlock” to check for deadlock-freeness.

Task Execution. If there is a state in which the runtime clock of a task has
a valuation exceeding that of a single time step, we know that the task was
executed at least once as there exists at least one system state in which the
corresponding runtime clock was not reset; note that this only works if the
WCET of the task is indeed larger than the duration of a single tick. To check
whether a task instance of a task with ID n is actually ever executed, we can
use the query

E[] (rt_c[0] <= TIME_MAX) and (rt_c[n] > 1)

using a conditional prefix depending on the time limit.

4.2 Verification Using Additional Automata and TCTL

All properties detailed in Sect. 4.1 expressed that either at a certain point in time
or at all times the corresponding property must hold. For requirements that need
information about a time span rather than a single point in time, or that react
based on previous input or actions that cannot be expressed using simple TCTL
queries, we will introduce additional automata into the simulated system. These
give us the ability to react to multiple events in a single verification run, enabling
state-aware verification for our model, which is necessary to verify both the
synchronization constraint as well as the maximum reaction time requirement.
Note that both of these requirements can range over an arbitrary amount of
tasks and span multiple events over a time span.

Maximum Reaction Time of an Event Chain. We consider event chains
to be a sequentially ordered set of events and only consider task start and finish
events here, such that we can also create parameterizable templates for event
chains. The idea is to move through the locations by reacting to the start and the
finish events of the contained tasks. To actually catch all valid flows through the
event chain, we introduce non-determinism, such that the event chain automaton
can switch to the start location from every other location using a non-guarded
transition, resetting its internal clock as well as its tick clock. As the automaton
is required to transition when receiving on the broadcast channel and because
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the non-determinism introduces the ability for the automaton to always return
to its start location, we need to ensure that there is no single valid event chain
flow that violates the requirement. This is accomplished by the verification of
the safety property using queries preceded by A[].

As parameters to the template, we can simply pass an array of numeric
task IDs representing the tasks in the order they appear in their event chain.
For an event chain template of n tasks, we define the parameters as const
int[1, TASK AMOUNT] t id[n], for n = 2 the template would look like
Fig. 5. The code of each event chain automaton template simply contains clock
c; clock tc; and does not require any adjustments when changing the
amount of tasks. When the automaton is properly defined, we can check for
the MRT requirement using the event chain automaton’s internal clock. Given
an event chain ecn, we can use a query

A[] (ecn.Finish imply ecn.c <= MRT(ecn))

to check whether each complete run of the event chain was within the specified
bounds. This of course only works when the event chain does reach a finish state,
which might not be true in every case. A query to check whether this happens
is E<> ecn.Finish.

5 Evaluation

In this section, we briefly demonstrate how the presented approach can be
applied using our motivational example. We have formalized the textual require-
ments from Sect. 2 and are using the system design from Listing 2, specified verifi-
cation automata and TCTL queries. Table 2 shows an overview of the properties,
the queries and their results. As indicated, most requirements are not met in the
initial design of the brake-by-wire system. In these cases, using UPPAALs Diag-
nostic Trace option, we can get a snapshot of the automata network in a state
where the requirement is violated. This helps us with identifying the root cause
of the inconsistencies, assisting in the development of a system consistent with
all requirements.

Table 2. TCTL queries and verdicts for the properties from Sect. 2.

Property UPPAAL query Verdict

MET(τ7) = 28 A[] (...) imply (rt c[7] <= 28) �

PER(τ7) = 40 A[] PE4.t1 finish imply (da c[7] <= 40) �

MDA(τ2, τ8) = 12 A[] PE3.t1 start imply (da c[2] <= 12) �

MDA(τ4, τ7) = 16 A[] PE4.t1 start imply (da c[4] <= 16) �

MRT(ec1) = 110 A[] ec1.Finish imply ec1.c <= 110 �

MRT(ec2) = 85 A[] ec2.Finish imply ec2.c <= 85 �

MRT(ec3) = 80 A[] ec3.Finish imply ec3.c <= 80 �

SYNC(τ3, τ4, τ5) = 10 A[] not sync1.Error �
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We are able to analyze all presented properties of the brake-by-wire example.
However, already when analyzing properties on this small example, it become
obvious that state space explosion has to be addressed in order to scale to indus-
trial processes and systems with several hundred functions and tens of control
units. The PSPACE-completeness of model-checking using Timed Automata
and TCTL can be partly mitigated by only incorporating the automata required
for the verification into the system for each query, but when complex require-
ments like the reaction time of an event chain need to be checked on very large
systems, additional assumptions that reduce the state space will become neces-
sary.

6 Conclusion

We have developed an approach that allows to model-check the consistency of
real-time requirements in distributed software systems using UPPAAL early in
the development process—and especially long before precise simulations are fea-
sible. With the provided set of UPPAAL templates, multiple timing requirements
over such a system can be checked for inconsistencies and used as an indicator
whether the basic assumptions require any modification. We have demonstrated
the approach on a small brake-by-wire system. In a next step, we plan to evaluate
performance and scalability in actual distributed automotive software systems.
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Abstract. A metasurface is a surface that consists of artificial mate-
rial, called metamaterial, with configurable electromagnetic properties.
This paper presents work in progress on the design and formal verifica-
tion of a programmable metasurface, the Hypersurface, as part of the
requirements of the VISORSURF research program (HORIZON 2020
FET-OPEN). The Hypersurface design is concerned with the develop-
ment of a network of switch controllers that are responsible for config-
uring the metamaterial. The design of the Hypersurface, however, has
demanding requirements that need to be delivered within a context of
limited resources. This paper shares the experience of a rigorous design
procedure for the Hypersurface network, that involves iterations between
designing a network and its protocols and the formal evaluation of each
design. Formal evaluation has provided results that, so far, drive the
development team in a more robust design and overall aid in reducing
the cost of the Hypersurface manufacturing.

1 Introduction

This paper reports on work-in-progress carried out in the context of the research
programme “VISORSURF: A Hardware Platform for Software-driven Functional
Metasurfaces” [1], funded by Horizon 2020 FET-OPEN. VISORSURF is an inter-
disciplinary programme between computer science (networks/nano-networks and
formal methods), computer engineering (circuit design and implementation),
and physics (meta-materials). Its main objective is to develop a hardware plat-
form, the HyperSurface (HSF), whose electromagnetic behavior can be defined
programmatically. The HSF’s enabling technology are metasurfaces, artificial
materials whose electromagnetic properties depend on their internal structure.
Controlling the HSF is a network of controller switches which receives external
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software commands and alters the metasurface structure yielding a desired elec-
tromagnetic behavior, thus allowing a number of high-impact applications. These
include electromagnetic invisibility of objects, filtering and steering of light and
sound, as well as ultra-efficient antennas for sensors and communication devices.

This paper is concerned with the requirement of the programme for the
rigorous design and formal evaluation of the controller-switches network and
its protocols. This requirement stems from the project’s challenge to provide
cutting-edge technology with limitations in both time and cost. Indeed, it is
of paramount importance for the produced hardware to adhere to its specifica-
tion from the very first version of the product, given the high cost of producing
the components and the fact that the project’s budget is fixed. The specifica-
tion includes qualitative properties, e.g., the controller network should route all
messages correctly to all network nodes, as well as quantitative properties, since
nodes need to be reached within specified time bounds in a fault-tolerant manner
while preserving power.

Typically, in the networks literature, evaluation of network topologies and
protocols is carried out via extensive simulation using discrete-event simulators
such as NS-2 or OPNET, or via testbed experiments. While these are important
evaluation methods, the results obtained are highly dependent on the physical-
layer models supported by the simulators and, in the case of experiments, they
are not suitable during the design phase of a protocol. At the same time, as
is well known, the simulative approach may discover flaws in a system but it
cannot prove their absence. On the other hand, formal analysis techniques allow
to formally verify that a system complies to its specifications and check for the
absence of flaws. Model checking, in particular, allows to investigate the behavior
of a model via an exhaustive search of its state space. Properties of interest may
be enunciated in temporal logic and subsequently checked for satisfaction on all
possible executions of the system. In case of property violation, counter-examples
can be provided to support the designer to diagnose the error. Model checking
has been applied for the analysis and design of network protocols in a number
of works including [3,10,11].

Unfortunately, a main drawback associated with model checking is the state-
space explosion problem and on many occasions analysis cannot be applied on
systems of a realistic size. To this effect, the use of statistical model check-
ing (SMC) has been advocated. Statistical model checking [18,20] is a formal-
analysis approach that combines ideas of model checking and simulation with
the aim of supporting quantitative analysis as well as addressing the state-space
explosion problem. It uses Monte Carlo style sampling and hypothesis testing
to provide evidence that a system satisfies a given property with high proba-
bility. The main idea is to simulate the system for finitely many runs and use
hypothesis testing to infer whether the samples provide a statistical evidence for
the satisfaction or violation of the specification. Naturally, the greater the num-
ber of simulations, the higher the precision achieved. The benefits of employing
statistical model checking towards the analysis of network algorithms have been
illustrated in various works including [8,12,13].
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As required by the project’s objectives, our goal has been to develop a set of
network protocols (network initialisation, routing and reporting) on a grid net-
work (a Manhattan style topology [16] imposed by the hardware requirements
of the project). In this paper we focus on the design of the routing algorithm,
which proved to be the main challenge of the work. Routing within grid networks
has been a topic of thorough investigation within the network community and
it has been of great interest in domains such as networks on chip [2,9]. Vari-
ous algorithms have been proposed in the literature for mesh topologies where
the main challenges posed were towards providing efficiency and tolerance to
faults [6,15,17,19]. While these works influenced the development of our routing
protocol, the various restrictions imposed by the specific application, such as the
limited connectivity as well as the limited resources available to each network
node (e.g. limited memory/buffering space, limited computational capabilities)
rendered the design of the routing algorithm quite challenging. Indeed, it turns
out that apparently innocent characteristics of our model (e.g. the lack of line/-
column wrap-arounds) create the risk of deadlocks, even in the absence of faults
in the network. To address this problem (discovered via model checking), it was
necessary to explore options such as introducing buffers in the nodes or adopting
different routing sequences so as to handle the congestion of parts of the net-
work, and to seek methods for assessing these options and provide guarantees
that they satisfy the set requirements.

Taking the requirements of VISORSURF into account has led us to employ
formal methods from the initial stages of the iterative design of the network
protocols via a continuous assessment of design proposals against requirements
using model checking. Early on, our experimentation confirmed that the state-
space explosion problem is a severe limitation when attempting to analyse a
network of a reasonable size. Thus, we turned towards Statistical Model Check-
ing (SMC) and we employed the UPPAAL tool and, more specifically, its SMC
extension [5]. In this paper we report on our experience of applying formal meth-
ods in the design phase of a routing algorithm on a grid network as imposed by
the hardware requirements of the project, and how this led to important design
decisions, thus significantly facilitating us towards our goal. Furthermore, we dis-
cuss the main challenges we faced in obtaining desired results which point out
directions for further research. We believe that our conclusions provide evidence
on the impact formal methods may have in the design and implementation of
technological applications in the context of small and medium-scale projects.

2 The Hypersurface: Requirements and Design
Parameters

In this section we present the main requirements and design parameters of the
Hypersurface, as imposed in the context of the VISORSURF programme and
as needed in the present discussion. We identify three levels of requirements:
(i) architectural/physical constraints as imposed by the physical level of the
HSF; (ii) VISORSURF programme requirements as approved by the funding
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authority; and (iii) resource/manufacturability limitations, in both time and
money that make the design phase a non-trivial task.

Architectural/Physical Constraints and Terminology. The metasurface tile is a
surface consisting of configurable meta-material strips arranged as a grid. A
set of four meta-material strips is configured via a controller switch, also called
the intra-tile controller. All intra-tile controllers of the HSF are interconnected
to constitute the intra-tile network. Intra-tile controllers will be designed and
implemented as a single hardware element and their purpose is to implement
basic functionalities, most importantly, support the rudimentary routing of con-
figuration packets for configuring the metamaterial.

The intra-tile network receives configuration data from one or more gateway
controllers. A gateway controller resides on the periphery of the metasurface
and it sends configuration packets to controllers throughout the network that,
in turn, are programmed by the user. A gateway controller has full computing
power. It is envisaged that tiles will be interconnected at the gateway controller
level to form larger metasurfaces.

VISORSURF Requirements. As already explained, an intra-tile controller’s main
task is to set the EM properties of the meta-material strips as directed via
configuration packets from the gateway. Note that these packets are directives
for appropriately implementing a desired functionality (e.g., to absorb or steer
impinging waves) and, for any given function, they consist of one message per
network controller. Such a set of configuration packets can be delivered in any
order, thus allowing the flexibility to the gateway to decide on the sequence in
which the packets will be delivered to the controller nodes. We refer to such
sequences as configuration sequences.

In addition, intra-tile controllers are expected to report acknowledgements
and status to the gateway, thus enabling the monitoring of the state of the
controller network in real time and hence “debug” the HyperSurface program.
As such, the intra-tile controller network needs to implement routing for both
data and acknowledgement packets. The routing should be flexible, scalable, and
robust. Furthermore, packets should be delivered in a timely manner (where the
timing constraints will be determined in the course of the project). Finally, the
intra-tile network needs to provide mechanisms that support a high degree of
fault tolerance, where data packets will continue to be delivered to the recipient
controllers despite hardware faults.

Resource/Manufacturability Limitations. The programme is required to deliver
a functioning HSF prototype within a specific amount of time, money, human,
and expertise resources.

The main hardware element to be manufactured is the intra-tile controller.
To limit the overall cost, a single uniform type of controller will be designed
and manufactured. The selected chip technology for the controller manufac-
turing allows for a maximum number of 25 pins per intra-tile controller chip.
The restriction limits the interconnection capabilities of an intra-tile controller
with other components of the metasurface such as its connectivity with its
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neighbouring controllers as well as with the gateway. A consequence of this
restriction is that intra-tile controllers will transmit data in a single bit-by-bit
scheme. Moreover, this communication will be implemented asynchronously via
an appropriate four-way asynchronous communication hardware protocol. Asyn-
chronous communication uses no clock for synchronisation. Instead, the sender
relies on the acknowledgement signal of the receiver to start and end a transmis-
sion. The restriction of asynchronous communication was imposed since adding
a clock to the chip of the controller would have the following undesirable impli-
cations: (i) require more components, such as a crystal that will increase the
chip size, and a phase-lock loop responsible for inter-controller synchronisation;
(ii) increase power consumption; and (iii) make a total metasurface absorber
impossible because of the clock’s electromagnetic emissions. Finally, we mention
that intra-tile chips will only possess volatile memory since non-volatile memory
is expensive and error-prone.

2.1 Hypersurface Manufacturing: Iteration-0

In order to mitigate the implementation risk, manufacturing of the intra-tile
chip will take place in iterations. The first manufacturing iteration is expected
to implement a basic but working prototype, and the entire design process will
be completed for the final deliverable.

The experience presented in this paper will be implemented in the first man-
ufacturing iteration: iteration-0. Despite its basic functionality, iteration-0 iden-
tifies the elements that are going to be used by all future iterations: controller
hardware and communication protocols, controller pin allocation, network topol-
ogy, packet format, basic extendable routing protocol, and basic functionalities.

The initial design for iteration-0 can be found in Figs. 1 and 2. The three
diagrams in Fig. 1 demonstrate the allocation of the pins and the communica-
tion channel endpoints on the intra-tile controller chip. Each channel endpoint
requires three pins to implement bit-by-bit asynchronous communication. The
limited number of pins (25) limits to a design where only four unidirectional
channel endpoints can be allocated (a total of 12 pins) per controller. The phys-
ical distribution of the pins is as in diagram (b).

Following the design of the intra-tile controller, the suggestion for a grid
topology is a variation of the Manhattan network topology [16] as presented in
Fig. 2. Its main characteristic is that the routing direction alternates at each

input2

output2

input1

output1

data bit 1
data bit 0

bit ack

data bit 1
data bit 0
bit ack

(a) Chip Pins (b) Two inputs/outputs (c) Communication: Pin allocation

Fig. 1. Pin allocation.
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Fig. 2. Manhattan topology with edge wraparound

consecutive row and column. The topology is achieved by rotating the single
design intra-tile controller by 90◦ each time to get the four different orientations
(a–d) that are shown in Fig. 3. The interconnection of the four orientations is
used to achieve the Manhattan topology; depending on the physical orientation
of each intra-tile controller an output endpoint is connected to the corresponding
input endpoint of a neighboring intra-tile controller. Each intra-tile controller has
knowledge about its type based on its address.

a b

c d

Fig. 3. Controller four different orientations

The proposed topology offers a flexible and robust network, which respects
the design constraints: it provides connectivity between the network nodes using
only two input and two output edges per node. Unlike the Manhattan net-
works considered in the literature, the proposed topology provides connections
(and consequently bidirectional communication) between neighbouring periph-
ery nodes, which we refer to as wrap-arounds, thus employing all communication
channels of the nodes and providing connectivity between all nodes. Our design
choice of connecting neighboring periphery nodes and not the ends of each row
and each column is due to the hardware implementation: crossing the intercon-
nection wires would require to add extra layers on the PCB board that embeds
the meta-surface. Furthermore, the edge controllers would require components,
e.g. transistors, with more signal drive to send signals over longer wires.

Moving now to the programming of the chip, we point out that there are two
modes of operation: the initialisation mode and the normal operation mode. This
paper is concerned with evaluating the normal operation mode. The initialisation
mode is used to initialise each intra-tile controller with a unique address and with
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additional initialisation data. This is necessary since, as already discussed, only
a single type of controller will be produced and will not possess any non-volatile
memory. This has led to the design of a simple initialisation protocol that will
assign an address to each controller (its X-Y coordinates), which will be stored
at its volatile memory, and, based on which each controller will determine its
“type” based on its coordinates.

In the normal operation mode, due to the limited computing power of the
intra-tile controller, we are experimenting with variants of the simple XY routing
protocol [6], adopted for the Manhattan topology. Below there is the simple XY
protocol variant adopted for the iteration-0 design (Table 1). The XY routing
protocol assumes a Cartesian coordination system at the intra-tile controllers
grid. The implementation assumes a gateway controller connected at the south
west corner of the network grid and sending routing packets to intra-tile con-
troller (0, 0). The protocol first routes a packet on the x-axis until it reaches the
target x-coordinate and then similarly on the y-axis until it reaches the target.
In a Manhattan topology we assume a standard mapping of the four directions
“up”, “down”, “left”, “right” on each intra-tile controller depending on its ori-
entation. Upon receiving a configuration packet, an intra-tile controller creates
an acknowledgement packet to be routed to a gateway controller.

Table 1. Pseudocode for the XY routing protocol variant

1 XY r o u t i n g a l g o r i t hm ( packet )
2 x , y : a dd r e s s a , b : t a r g e t add r e s s
3

4 ( a , b ) = packet
5 i f ( x == a ) {
6 i f ( y == b)
7 send ack ;
8 e l s e i f ( y < b )
9 send packet up

10 e l s e i f ( y > b )
11 send packet down
12 }
13 e l s e i f ( x < a − 1)
14 send packet r i g h t
15 e l s e i f ( x == a − 1) {
16 i f ( x mod 2 = 0 and y < b )
17 send packet up
18 e l s e
19 send packet r i g h t
20 }
21 e l s e i f ( x > a ) {
22 i f ( y == b)
23 send packet l e f t
24 e l s e i f ( y < b )
25 send packet up
26 e l s e i f ( y > b )
27 send packet l e f t
28 }

The development of the iteration-0 design has undergone several cycles
between design and analysis. The parameters considered at each iteration include
the number and position of the gateway controllers, the presence of buffer space
to store received packets at each intra-tile controller as well as the capability
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of the controllers for parallel processing/routing of packets. The next section
describe the model and the evaluation of each design following the design param-
eters of the topology.

3 Formal Evaluation

This section describes the encoding of the routing protocol in the input language
of the UPPAAL SMC model checker and its subsequent evaluation. UPPAAL SMC
is the statistical extension of UPPAAL, a model checker for real-time systems
represented by networks of timed automata [5]. The reasons for the selection
of the tool to carry out the formal evaluation of the protocols here considered
are threefold. First, our design is associated with dense time behaviour and
requirements. Second, UPPAAL implements statistical reasoning about properties
of timed systems. Given the large state space generated by the models, statistical
model checking enables the derivation of results for larger networks than if we
had used standard model checking. Second, it supports basic data structures
expressed in the syntax of the C programming language, thereby allowing for
concise encodings of the system’s features, e.g. buffers.

3.1 UPPAAL SMC Models

The modelling here presented admits the following assumptions. First, the net-
work is a 10 × 10 grid (as discussed in the future work section parameterised
model checking techniques are envisaged to enable the effective verification of
larger models [4]). Second, in line with the intended operation of the system,
the models account only for the routing of configuration sequences and not of
arbitrary sequences of packets. Finally, given that nodes are identical (thus have
the same speed) and are operating very fast, we assume the presence of a global
clock and we assume that at every tick of the clock all nodes that may fire a
transition will fire one transition. Following the manufacturing of the first proto-
type chip, timing measurements (in the form of time bounds for each operation)
will be provided and encoded in the model in order to obtain a more precise
timing analysis.

Table 2 summarises the system variants that have been considered during
the lifetime of the iteration-0 design process. The basic variant is as described
above and assumes a single gateway at the south-west corner of the grid. As
we show below, the basic system exhibits deadlocks in routing configuration
sequences. Consequently, alternative designs had to be evaluated so as to “elimi-
nate” the deadlocks while limiting the time requirements of the routing scheme.
In particular, the parallel variant assumes that nodes are equipped with a dif-
ferent processing unit per output. More precisely, this option is implemented in
the presence of buffers within the nodes. The buffers are used to store messages
received at a node until they are forwarded on the appropriate output, as per
their destination node and the XY algorithm. Note, however, that such sending
may fail if the recipient node is not ready to receive (e.g. because its buffer is
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Table 2. System variants

Variant Acknowledgements Parallel processing Queue size

basic SW No 0

parallel SW Yes 1 (to model parallelism)

acks-NE NE No 0

queue-X SW No X

already full). While in the basic mode the sending node will be forced to remain
idle and to retry sending the message in the next time unit, in the parallel
mode, and assuming there exist further messages in its buffer, the node will
attempt to send a message on its other output channel, assuming that such a
message exists. Note that this mode was implemented in order to explore the
design possibility of implementing two independent circuits within a controller
chip, one per output channel.

The acks-NE variant includes a second gateway taking input from the north-
east corner of the network where the acknowledgements are routed as per the
XY routing algorithm (see the topology in Fig. 2). Intuitively, this is expected to
limit the congestion emerging from routing acknowledgements from north-east
coordinates to south-west ones and data packets from south-west coordinates
to north-east ones in the basic variant. Note that this design choice is also
feasible given that multiple tiles, each with its own gateway, are expected to
be interconnected in the final metasurface, offering the possibility of connecting
multiple tiles to the same gateway. Finally the queue-X variant implements a
queue of size X for every node in the network.

All system variants are given by the parallel composition of 100 timed
automata modelling the nodes, and a timed automaton (automata, respectively)
representing the gateway (gateways, respectively). The communication between
the nodes is encoded by means of four-dimensional adjacency matrices of pair-
wise communication channels, where item [x][y][x′][y′] denotes the communica-
tion channel taking input from node (x, y) and outputting to node (x′, y′).

Figure 4 depicts the timed automaton modelling the nodes. The automaton
is composed of two states (locations) and ten transitions. Initially a node is in
state idle. On the receipt of a message from either input in1 or in2 (input1,
input2 in Fig. 1(b)), the node goes to state Processing. The state models the
processing of the data of the packet before the latter is routed to its destination.
Whilst in this state, a node may perform either one of the following actions:
(i) if it is not the destination node, then it can route the packet to one of its
neighbours according to the XY algorithm; (ii) if it is the destination node, then
it will create and route an acknowledgement to one of its neighbours towards
a gateway (either in the south-west or the north-east corner depending on the
mode of the experiment); (iii) if it is equipped with buffers, then it may receive
a second packet which it enqueues in its buffer. In the figure every transition
is guarded by a boolean condition determining whether or not the transition
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Fig. 4. Timed automaton for intra-tile controller

can be fired. The condition requires from the sender-receiver pair to respect the
XY routing scheme and from the receiver to be in a state where the packet can
be queued. Further conditions guarding the transitions enable the synchronous
evolution of the system. Specifically a node can perform an action only when its
local clock is equal to 1; following the action, the node resets its clock; if there
is no enabled action the node simply resets its clock whenever this equals 1.

The timed automata modelling the gateways are responsible for generat-
ing configuration sequences and for receiving the acknowledgements sent by the
nodes. Following the topology of the network, different orderings of the pack-
ets in a configuration sequence may induce different settings for deadlocks and
time requirements in routing the sequence. We therefore consider the following
configuration sequences generated by the gateway:

1. SW → NE(x). The packets are sent row by row from south to north, and the
packets in a row are sent from west to east.

2. SW → NE(y). The packets are sent column by column from west to east, and
the packets in a column are sent from south to north.

3. NE → SW(x). The packets are sent row by row from north to south, and the
packets in a row are sent from east to west.

4. NE → SW(y). The packets are sent column by column from east to west, and
the packets in a column are sent from north to south.

5. NE ↔ SW. The packets are sent alternating between the SW → NE(x) and
NE → SW(x) orderings at every packet sent.

Indeed, as we show below, the commitment to certain orderings can enable
the implementation of simple, deadlock-free designs by building smart gateways.

3.2 Evaluation

We report the experimental results obtained by checking the system variants
against specifications pertaining to deadlock-freedom and efficiency in routing
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configurations sequences:

φack � E[≤ 300; 1000](max : acks)
φtime � E[≤ 300; 1000](max : time)

Above, acks is a variable representing the number of acknowledgements that
have been received whereas time is a variable expressing the time taken for all
acknowledgements to be received. φack gives the expected maximum value of
acks whereas φtime determines the expected maximum value of time. These are
calculated on the first 300 time units, where empirical evaluation showed this to
be an upper bound for the completion of the protocol, and for 1000 traces. During
the lifespan of the iteration-0 design phase, the specifications were evaluated on
progressively more complicated designs so as to derive the simplest one for which
φack is maximised and φtime is minimised.

Table 3 summarises the results obtained. The cells with colour demonstrate
the cases where not all acknowledgements where received at the gateway, thus
the case where a deadlock is present. Note that the times acquired in case of a
deadlock include the deadlock traces and are thus irrelevant.

Table 3. Experimental results.

Order System variant

SW → NE(x)

basic 40.85 ± 1.23 299.78 ± 0.17
queue-1 100 216.7 ± 0.35
parallel 100 211.46 ± 0.34
acks-NE 99.14 ± 0.27 226.598 ± 0.79

acks-NE-queue-1 100 201.37 ± 0.22

SW → NE(y)

basic 2.77 ± 0.05 300
queue-5 100 243.03 ± 0.43
parallel 98.74 ± 0.68 244.98 ± 0.57
acks-NE 97.82 ± 0.22 267.38 ± 0.24

acks-NE-queue-1 100 213.38 ± 0.19

NE → SW(x)

basic 94.27 ± 0.72 258.49 ± 1.43
queue-5 100 259.54 ± 0.34
parallel 100 209.19 ± 0.31
acks-NE 100 218.58 ± 0.12

NE → SW(y)

basic 15.94 ± 0.86 300
queue-6 100 260.92 ± 0.31
parallel 98.06 ± 0.84 300
acks-NE 100 219.53 ± 0.14

NE ↔ SW

basic 71.65 ± 0.94 300
queue-1 100 216.6 ± 0.37
parallel 89.04 ± 0.27 300
acks-NE 100 200.36 ± 0.31
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Evidently, the basic model exhibits deadlocks under all of the configuration
sequence orderings. Figure 5 (left) shows an UPPAAL-generated simulation trace
showcasing a deadlock for the SW → NE(x) ordering. In the figure, node (0, 2)
is trying to route a data packet to node (1, 3) through node (0, 3), which in turn
is trying to route an acknowledgement packet to node (0, 1) through node (0, 3).
Consequently node (0, 2) is waiting on node (0, 3) and node (0, 3) is waiting on
node (0, 2), thereby creating a deadlock.

The inclusion of queue structures in the nodes may eliminate deadlocks.
Interestingly, to achieve this, different sizes of queues are required for different
configuration sequence orderings, ranging from size 1 for the SW → NE(x) and
NE ↔ SW orderings, to size 6 for the NE → SW(y) ordering. Furthermore, the
routing of packets under the former orderings is more efficient. The use of parallel
processing can also help to overcome deadlocks, but only in cases SW → NE(x),
NE → SW(x), while allowing for more efficient routing in the said cases.

The routing of the acknowledgements to a second gateway attached to the
north-east corner of the network can also help alleviate the deadlocks in the
NE → SW(x), NE → SW(y) and NE ↔ SW orderings by, intuitively, reducing
the congestion near the SW gateway. In the other cases, adding a queue of size 1
is sufficient to prohibit deadlocks from occurring. Given that the size of the
queues required is smaller than the corresponding cases with only one gateway,
routing in the presence of two gateways appears to be more efficient.

Since the gateways are cheaper than designing and implementing queue sys-
tems and/or parallel processing capabilities, the above experimental results sug-
gest the design of a system with two gateways as preferable for the purposes
of the project. Moreover, the second gateway design offers additional flexibility
and is compatible with the intended design of connecting tiles at the gateway
level to form larger metasurfaces.

A point of interest regarding the acks-NE design is the nature of the deadlock
as illustrated in Table 3. Figure 5 (right) shows a part of an UPPAAL-generated
simulation trace that demonstrates the deadlock in a 4 × 4 size grid. The prob-
lem arises when a configuration packet is routed towards controller (3, 1), as
shown with red colour. The packet necessarily needs to be routed through con-
troller (3, 2), which is connected to the acknowledgement gateway. Also, in the
problematic trace it happens that the configuration packet is interleaved with
acknowledgement packets, as shown with green colour, that are routed towards
controller (3, 2). The interleaving creates an input/output dependency between
controllers (2, 1), (2, 2), (3, 2), and (3, 1). Further experimentation revealed that
the presence of deadlocks in the acks-NE design is due to similar cyclical depen-
dencies among four interconnected controllers, where acknowledgement packets
and configuration packets towards different destinations are interleaved.

Note, however, that deadlocks are removed when adding a queue of size 1.
Moreover, further experiments carried out for different grid sizes and various
configuration-sequence orderings confirmed the absence of deadlock with such a
queue. Intuitively, this can be understood as follows: A queue allows for storing
the interleaved packets to the receivers buffer and proceed by processing the next
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Fig. 5. Left: Trace showcasing a deadlock for the basic system under the SW → NE(x)
configuration sequence ordering. Right: Trace showcasing a deadlock for the acks-NE

system under the SW → NE(x) configuration sequence ordering.

packet that will be sent to a different destination. In a set of nodes associated
with a circular dependency, there exists at least one node (in Fig. 5 (right) node
(3, 1)) that cannot receive input on both of its edges. Thus, the buffer of this
node will enable to break the circular dependency and allow the flow of packets
along the cycle. For instance, in the example of Fig. 5 (right) the configuration
packet from controller (3, 2) to controller (3, 1) can be stored in the queue of
controller (3, 1), thus breaking the circular dependency.

4 Conclusions and Future Work

The formal analysis here presented provided partial guarantees and useful
insights on the behaviour of the protocols and have driven their development.
These were used in iterations between designing the Hypersurface and verifying
its specifications. The formal evaluation was complemented through extensive
simulations via a simulator specifically built in the context of the project to sup-
port the protocol evaluation. It is worth mentioning that the formal evaluation
was able to pinpoint problems in instances of the model that were not discovered
by the simulator (though they were verified by it) and, additionally, the formal
approach had the advantage of building models and versions of the algorithm
much faster than implementing them within the simulator.

However, a number of obstacles were encountered in the process of analysing
the Hypersurface. To begin with, one of the main bottlenecks was that of time.
Indeed even in the context of statistical model checking, analysis of values
required a non-negligible time: our experiments took up to ten minutes when
run on a cluster of 12 dual-core CPUs with 24 GB RAM, and this only for
1000 simulations (which by experimentation we concluded provides an accept-
able estimation of the properties in question). Furthermore, also relating to the
state-space explosion problem is the fact that we have to limit our analysis for
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specific configuration sequences, though in principle it would be useful to check
algorithm correctness for arbitrary configuration sequences. Finally, the analysis
of the results, in the cases where they highlighted problems in the execution of
the algorithm, were difficult to interpret. Thus, in order to extract deadlocks in
problematic models, it was necessary to devise additional queries which we run
by standard model checking. In this respect, it would be useful if the tool could
be directed to store specific traces during the analysis.

As future work, there are various directions to explore. In the context of the
VISORSURF project, our efforts will continue to improve the design of the algo-
rithms and extend the models with more details (e.g. timing information). At the
same time, as the analysis metrics are being developed, further analysis will be
carried out to confirm that the network complies to more detailed specifications.

In addition, as we have already pointed out, due to the state-space explosion
problem our analysis is restricted by the size of the network and the packet
configuration sequences.

To alleviate this shortcoming, sophisticated state-space reduction techniques
need to be developed, thereby enabling the effective verification of the Hyper-
surface. In particular we will develop parameterised model checking techniques
that enable conclusions to be drawn irrespectively of the size of the network [4].
Specifically we believe the networks will admit cutoffs expressing the number
of nodes that is sufficient to consider in order to conclude correctness for any
number of nodes [7,14].

Finally, the HSF design needs not only to be shown correct but also robust
against adverse functioning conditions. Thus, we intend to analyse the behaviour
of our design under various fault models and extend our routing protocols to
fault-tolerant versions, as needed.
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13. Höfner, P., McIver, A.: Statistical model checking of wireless mesh routing proto-
cols. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp.
322–336. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-
4 22

14. Kouvaros, P., Lomuscio, A.: Parameterised verification for multi-agent systems.
Artif. Intell. 234, 152–189 (2016)

15. Li, M., Zeng, Q., Jone, W.: DyXY: a proximity congestion-aware deadlock-free
dynamic routing method for network on chip. In: Proceedings of DAC 2006, pp.
849–852. ACM (2006)

16. Maxemchuk, N.F.: Regular mesh topologies in local and metropolitan area net-
works. AT&T Tech. J. 64(7), 1659–1685 (1985)

17. Patooghy, A., Miremadi, S.: XYX: a power and performance efficient fault- tolerant
routing algorithm for network on chip. In: Proceedings of PDP 2009, pp. 245–251.
IEEE Computer Society (2009)

18. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: a statistical model-checker and
analyzer for probabilistic systems. In: Proceedings of QEST 2005, pp. 251–252.
IEEE Computer Society (2005)

19. Wu, J.: A fault-tolerant and deadlock-free routing protocol in 2D meshes based on
odd-even turn model. IEEE Trans. Comput. 52(9), 1154–1169 (2003)

20. Younes, H.S.: Verification and planning for stochastic processes with asyn-
chrounous events. Ph.D. thesis, Carnegie Mellon University (2004)

https://doi.org/10.1007/978-3-319-17524-9_9
https://doi.org/10.1007/978-3-319-17524-9_9
https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-642-40229-6_9
https://doi.org/10.1007/978-3-642-38088-4_22
https://doi.org/10.1007/978-3-642-38088-4_22


Modelling and Analysing ERTMS Hybrid
Level 3 with the mCRL2 Toolset

Maarten Bartholomeus1, Bas Luttik2(B), and Tim Willemse2

1 ProRail, Utrecht, The Netherlands
2 Eindhoven University of Technology, Eindhoven, The Netherlands

{s.p.luttik,t.a.c.willemse}@tue.nl

Abstract. ERTMS Hybrid Level 3 is a recent proposal for a train con-
trol system specification that serves to increase the capacity of the rail-
way network by allowing multiple trains with an integrity monitoring sys-
tem and a GSM-R connection to the trackside on a single section. In this
paper we model the principles of ERTMS Hybrid Level 3 in the mCRL2
process algebra and perform an analysis with its associated toolset. Our
analysis has resulted in suggestions for improvement of the principles
that will be taken into account in the next version of the specification.

1 Introduction

ERTMS (European Rail Traffic Management System) has become the de facto
international standard for railway traffic management. Its main goals are to
improve cross-border interoperability of the European railways, stimulate an
open market for equipment, and realise an increase of the capacity of the railway
network. ETCS, the train control system part of ERTMS, distinguishes three
levels of operation: Level 1, 2, and 3.

Especially Level 3 promises an increase in capacity. Whereas at Levels 1 and 2
train protection relies on train detectors installed at fixed positions along the
tracks, at Level 3 both train detection and the issuing of movement authorities to
trains is entirely by radio communication between trains and a Trackside System
(henceforth abbreviated as TS). Using such a train detection, track sections can
be partitioned (virtually) into arbitrarily small sections, and trains can follow
each other at close distance.

There are, however, also drawbacks to Level 3. First, to get a reliable posi-
tion report from a train regarding its location, it must have a train integrity
monitoring system (TIMS) to confirm not only the position of its front end, but
also the position of its rear end. Not every train on the network is currently
equipped with a TIMS, and it will be too costly, if not infeasible, to install a
TIMS on every train on short notice. Second, a Level 3 system is intolerant to
radio connection problems. As soon as a train loses connection to the TS an
unsafe situation occurs from which it is cumbersome to recover.

ERTMS Hybrid Level 3 (HL3) is considered by several European railway
inframanagers as an economically viable way to smoothen the transition to
c© Springer Nature Switzerland AG 2018
F. Howar and J. Barnat (Eds.): FMICS 2018, LNCS 11119, pp. 98–114, 2018.
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ERTMS Level 3 and increase the capacity on their dense railway networks [8].
ERTMS HL3 assumes a limited installation of conventional trackside train detec-
tors for separating trains without TIMS and for handling degraded situations.
The ensuing track sections (referred to as TTDs) are further partitioned into
Virtual Sub-Sections (VSSs). Multiple trains equipped with a TIMS and a work-
ing radio connection to the TS can be allowed simultaneously on different VSSs
of the same TTD, while the system is also still capable of handling trains not
equipped with TIMS or without a working radio connection.

TTDs autonomously change between status FREE and OCCUPIED upon
detecting trains entering and leaving a track. The status of a VSS, on the other
hand, is determined on the basis of position reports emitted by trains, the sta-
tus of TTDs or other VSSs and various timers. The ERTMS HL3 principles [6]
meticulously describe (in plain English) the conditions enabling status updates
for VSSs. They do not, however, address, e.g., how to implement the TS and,
in particular, the process of updating the status of the VSSs. This is to leave
sufficient implementation freedom to suppliers.

By the lack of guiding principles for implementing the TS it is, however,
not self-evident that different implementations lead to the same operational
behaviour of the TS, nor that interoperability between various TSs is guaran-
teed under different implementation choices. A further concern is the informal
description of how to update the status of VSSs upon external events. While
clearly a lot of care went into providing clear and concise descriptions of these
updates, each motivated and illustrated through examples, natural language
lacks the precision to admit an unambiguous implementation of these.

Ideally, the ERTMS HL3 principles are formulated such that they lead to a
correct system independent of the chosen implementation of the TS. To investi-
gate whether this is indeed the case, we have formally modelled those principles
and two natural implementations of the TS in mCRL2, a process algebra for
formalising specifications of system behaviour. Our models not only allow us to
simulate the various operational scenarios documented in [6], but also to analyse
exhaustively, using model checking, whether an instantiation of the ERTMS HL3
system with a particular track layout satisfies desirable correctness properties.
Moreover, they allow us to formally compare the different implementations of
the TS, in order to determine the robustness of the principles against implemen-
tation freedom.

There has been extensive research on applying formal methods in the railway
domain [7]. For a comparison of the applications directly related to ERTMS
[1–3,11,12] we refer to [1, Sect. 10]. Most of these works either focus on the
interlocking or on hybrid aspects of ERTMS. In the terminology of [1, Sect. 10],
our approach focusses on an extension of a subsystem at the design level. Recent
other works modelling and analysing the ERTMS HL3 principles include [5,10].

2 ERTMS HL3 Principles

The ERTMS HL3 principles defined in [6] focus on the different status that a
VSS may have and how they are influenced by detected events in the system;
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particular attention is paid to how the system should respond to trains losing
integrity, disconnecting from and reconnecting with the TS, and recovering from
such situations. Moreover, the document [6] discusses several hazards that may
affect the safety of the system (trains losing integrity or losing the radio connec-
tion with the TS), and how they are mitigated by the principles. The informal
description of the system culminates in a state-transition diagram (see Fig. 1)
that specifies how the TS should evaluate the status of an individual VSS, based
on position reports from trains, reports from train detectors and the expiration
of timers. Several scenarios are presented (also in natural language), provid-
ing an operational interpretation of the state-transition diagram under various
circumstances.

Fig. 1. The VSS state-transition diagram of [6].

As can be seen from Fig. 1, four status are distinguished for a VSS. A VSS
has the status FREE if the trackside system is certain that no train is located on
it. A VSS has the status OCCUPIED if there is a train located on it according
to the most recent position report of this train, and it is certain that there is
no other vehicle located in rear of this train on the same VSS. A VSS has the
status AMBIGUOUS if there is a train located on it according to the most recent
position report of this train, but it is not certain that there is no other vehicle
located in rear of this train on the same VSS. A VSS has the status UNKNOWN
if according to the most recent position reports from the trains there is no train
located on it, but still it is not certain that the VSS is free (e.g., because the TS
has reason to suspect that an unconnected train, or part of a train is located on
the VSS).

The TS uses the status of the VSSs, on the one hand, to compute so-called
Full-Supervison Movement Authorities, which it can issue to connected integer
trains, and, on the other hand, to present (human) train service controllers
with a real-time view on the situation on the railway tracks, allowing them to
issue movement authorities to unconnected trains. Full-Supervision Movement
Authorities are only issued by the TS for VSSs with the status FREE.

The numbers on transitions in the state-transition diagram in Fig. 1 refer to
conditions under which these transitions should take place. These conditions are
specified in a 3.5-page table in [6]. Table 1 reproduces, by way of example, a
fragment of this table. It shows the first of six parts (#1A–#1F) defining con-
dition #1; these six parts should be read in disjunction. It also shows the first
of the two disjuncts (#2A–#2B) defining condition #2. The third column for
condition #2A specifies that transition 2 (the transition from FREE to OCCU-
PIED) has priority over transition 3 (the transition from FREE to AMBIGUOUS)
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Table 1. A fragment of the table in [6] specifying the conditions enabling the transitions
in Fig. 1.

whenever both the condition for transition #2A and the condition for transition
3 evaluate to true. The last column refers to paragraphs of the document where
the rationale for the particular condition is explained.

As is illustrated in Table 1, to be able to evaluate the conditions of the tran-
sitions in the state-transition diagram for a particular VSS, the TS needs to be
aware of the association between VSSs and TTDs and their relative placement.
It needs to keep track of information regarding the status of VSSs and TTDs
in the vicinity of the particular VSS under evaluation. Furthermore, it needs
to keep track of information about connected trains (their positions, and their
movement authorities).

Fig. 2. The data model for the TS.

From the description in [6] we have derived the class diagram shown in Fig. 2.
It models the associations between three types of objects about which the TS
needs to maintain information: TRAIN, VSS and TTD.
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3 mCRL2 model of ERTMS HL3

mCRL2 is a formal language for modelling the behaviour of concurrent systems.
It is comprised of an expressive process algebraic language for specifying con-
current processes, a rich language for specifying data types and operations on
data, and a requirements language based on a first-order extension of the modal
μ-calculus. We explain the relevant mCRL2 language concepts as we go along;
for a more detailed account, we refer to [9]. In Sect. 3.1, we describe how we
have modelled the static aspects of the ERTMS HL3 principles such as the rele-
vant data types and the conditions governing the VSS state-transition diagram.
Section 3.2 describes, at a high level, how we have modelled the behaviour of
trains, TTDs and two implementations of the TS.

3.1 Modelling Data and Predicates

The mCRL2 data language is based on algebraic specification. Users can define
abstract data types (called sorts in mCRL2) by specifying their constructors.
As in a functional language, mappings are defined on those data types by means
of equations, which are interpreted internally as rewrite rules. Several standard
types (e.g., Booleans, natural numbers, integers) together with standard map-
pings are predefined; mCRL2 also offers the possibility to define lists and sets
over a standard or user-defined type. There are two features of the mCRL2 data
language that we have extensively used in modelling the ERTMS HL3 principles:
structured types and function types.

Structured types can, on the one hand, be used to specify an enumerated
type of constructors; e.g., we defined the sort VSS status as follows:
VSS_status =

struct free_vss | unknown_vss | ambiguous_vss | occupied_vss;

On the other hand, they can also be used to collect information pertaining to a
single object; e.g., the sort VSS info aggregates information regarding a VSS:
VSS_info =

struct vss_info(
status: VSS_status,
ttd: TTD_id,
t_d: TIMER_status, %% disconnect propagation
t_ilp: TIMER_status ); %% integrity loss propagation

Note that, compared to the class diagram in Fig. 2, the id and the associations
next and previous are omitted from the specification of the sort VSS info. To be
able to reuse mCRL2’s efficient standard interpretation of the natural numbers
and their ordering, it is convenient to, instead, model ids (TRAIN ids, VSS ids
and TTD ids) as natural numbers and assume, in particular, that VSSs and TTDs
are arranged in accordance with the standard ordering on natural numbers. The
TS stores the required information with respect to TRAINs, VSSs and TTDs as
functions from the respective ids to the structure type collecting the information
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per object; e.g., for storing information with respect to the VSSs, we declare a
function type VSSs:

VSSs = VSS_id -> VSS_info;

With the appropriate data types in place, it is, in principle, reasonably
straightforward to translate the conditions for the transitions as specified in [6]
to mCRL2. The main bottleneck in translating the conditions involves resolving
the ambiguity inherently present in a natural language specification. We followed
an iterative process of refining and analysing our models, adjusting and validat-
ing our interpretation. The excerpt below gives a flavour of our formalisation,
illustrating how we formalised condition #2A (cf. Table 1):
map

g_f2o_A: VSS_id#TRAIN_id#PTD#VVSs#VSSs#TTDs#TRAINs -> Bool;
var

v: VSS_id; previous_vs, vs: VSSs; ts: TTDs;
tr: TRAIN_id; p: PTD; trs: TRAINs;

eqn
g_f2o_A(v,tr,p,previous_vs,vs,ts,trs) =

ttd_is_occupied(v,vs,ts)
&& ptd_train_on_vss(v,p)
&& vss_is_occupied(front_pos(trs(tr)),previous_vs)
&& (forall v’: VSS_id.( (legal_vss(v’) && train_on_vss(tr,v’,trs))

=> !(vss_is_unknown(v’,vs))));

The mCRL2 code defines a predicate (a Boolean-valued mapping) g_f2o_A that
computes a Boolean value on the basis of several parameters. The first parameter
v is of type VSS_id and it simply refers to the VSS under consideration. The
second and third parameters refer to a train tr through its TRAIN_id and a
position report p sent by that train (PTD is a structured type that encapsulates
the information that a train sends to the TS). The idea, as will be explained
later, is that the evaluation of the conditions is triggered by events and the
(implicit) assumption for condition #2A is that it is triggered by the event
of a train sending its position report. The fourth and fifth parameters refer,
respectively, to the stable information registered by the TS about all VSSs after
the previous position report, and to the information currently registered about
all VSSs by the TS. Note that condition #2A refers to both types of information.
By means of the sixth and seventh parameters the information maintained by
the TS regarding TTD status and train positions are passed to the predicate.

The definition of the predicate g_f2o_A refers to several auxiliary predicates
(e.g., ttd_is_occupied, ptd_train_on_vss, vss_is_occupied, . . . ), and to
a mapping front_pos that retrieves the position of the front-end of train tr in
function trs.

3.2 Modelling the Behaviour of Trains, TTDs and the TS

Behaviour is specified in mCRL2 using standard process-algebraic construc-
tions. To denote basic events there is a facility to declare actions, which may
be parametrised by terms in the data language. The language includes opera-
tions for sequential composition, non-deterministic choice, interleaving parallel
composition with the facility to enforce communication between actions, and
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hiding (renaming actions to the special action τ , which can then be treated as
unobservable). For the purpose of specifying infinite behaviour, mCRL2 allows
the definition of parametrised processes by means of equations, admitting recur-
sive calls. Especially convenient features of the mCRL2 process language are
its operation for choice quantification (parametrised non-deterministic choice),
conditionals, and multi-actions.

The behaviours of trains, TTDs and the TS are not explicitly described in [6],
but the required functionality of these components can be deduced, to a large
extent, from explanations in [6]. We have only modelled the behaviour of these
components in as far as it is relevant for the analysis of ERTMS HL3 principles.1

Trains. Trains may consist of several carriages. To simplify matters, we assume
that the length of each individual carriage does not exceed the length of any
VSS. A composite train can split into multiple carriages; separated carriages can
announce themselves to the TS by means of a start mission action. We do not
yet consider combining trains.

For the purpose of modelling train detection by TTDs, we assume that every
carriage has two axles (a front and a rear axle, corresponding with the positions
of the front and rear of the carriage). Train movement then consists of an axle
moving from one VSS to the next (represented in the mCRL2 model by move
actions), in such a way that the front axle of a carriage is never more than
one VSS ahead of its rear axle and that similar constraints are obeyed to make
sure that carriages of combined trains stay together (cf. the move actions in the
specification of the processes Train_move and Train_move_notinteger and its
subprocesses). To be able to accurately model train detection by TTDs, a train
informs a TTD whenever an axle either enters or leaves the TTD. Furthermore,
by means of a multi-action, we achieve that leaving one TTD and entering the
next happens simultaneously.

Trains may be connected to the TS or not; to make this explicit in our
model, trains can execute connect and disconnect actions, switching between the
two states. Connected trains can emit their positions to the TS by means of
emit position actions, and can receive (extensions of their) movement authorities
from the TS through extend EoA actions. As parameter of an emit position action,
a train sends a so-called PTD to the TS, with information about its position and
integrity. Trains may be sure about their integrity and confirm it to the TS,
or unsure about their integrity and communicate to the TS that their integrity
is unknown. We explicitly model integrity loss of a train by including a break
action in the specification of train behaviour; we have assumed that after a break
action, a train can still continue onto the next VSS (if it has movement authority
for it), but then it will stop.
Trackside Train Detection. The TTD processes communicate with trains and
with the TS. They maintain an axle counter that is increased when a train
notifies the TTD that one of its axles enters the TTD, and it decreases when a
train notifies that one of its axles leaves the TTD. When the status of a TTD

1 The mCRL2 code is distributed with the mCRL2 toolset (git commit 2e671cb),
which is available from https://www.mcrl2.org.

https://www.mcrl2.org
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changes (i.e., the number of detected axles increases from 0 to ≥ 1 or decreases
from ≥ 1 to 0), it should notify the TS instantly by an emit status action. To
model this accurately in mCRL2 the communication with the train causing a
change of status of the TTD and the notification thereof to the TS are combined
in a multi-action.
Trackside System. The TS is the component that determines the status of the
VSSs, issues safe Full-Supervision Movement Authorities to connected trains,
and provides train controllers with an accurate view on the location of trains on
the track.

The ERTMS HL3 principles in [6] prescribe fairly precisely how, given a
certain state of the system, a new status for each individual VSS should be
determined. In our mCRL2 model, it can be determined what should become
the new status of a VSS in accordance with the VSS state-transition in Fig. 1
by evaluating the predicates associated with the outgoing transitions. The pred-
icate should take into account the current status of all VSSs, all TTDs, and the
locations of all trains, as known to the TS.

The ERTMS HL3 principles are less clear about what triggers the TS to
re-evaluate the status of a particular VSS. They do identify the notification
from a TTD of a change of status, an incoming position report from a train,
and the expiration of a timer as the events of the system, suggesting that such
events should trigger re-evaluation of the status of VSSs. Furthermore, from the
conditions associated with the transitions in Fig. 1 it can be seen that there is a
dependency between the status of VSSs; so also a change of status of one VSS
may trigger the change of status of another one.

We concluded from the above considerations that, upon the occurrence of an
event in the system, it is necessary to re-evaluate the status of every VSS, and
that the re-evaluation process should continue until a stable state (i.e., a state
in which for no VSS a transition is still enabled) is reached. The stabilisation
process can be carried out according to various event-handling strategies; in the
remainder of this paper we restrict our attention to the following strategies:

Immediate update: According to this strategy, upon the occurrence of an
event the TS repeatedly chooses non-deterministically a VSS for which a
transition is enabled and directly updates the status of this VSS. This process
is repeated until for no VSS a transition in its state-transition diagram is
enabled. Note that in the course of this process the status of a VSS may be
updated multiple times.

Simultaneous update: According to this strategy, upon the occurrence of an
event the TS computes, on the basis of the current status of all VSSs and
TTDs, and the last known location of every connected train, for which VSSs
a status change is enabled. Only after computing the required status changes
for all VSS, those status changes are carried out simultaneously. Since the
status change of one VSS may trigger the status change of another VSS, this
process must still be repeated until for no VSS a status change is enabled.

We note that the simultaneous update strategy is considerably more com-
plex. It requires the update process to proceed in stages. In each stage every VSS
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should be considered just once, in order to determine whether its status needs to
change, given the event that triggered the process and given the current status
of all VSSs in the present stage. Computing which updates are still necessary,
and whether the update process is completed, requires careful bookkeeping. We
therefore expect that the simultaneous update strategy will be harder to imple-
ment in practice; we have also observed this while specifying the strategy in
mCRL2.

4 Analysis

We have assessed the quality and consistency of our two models (and earlier
versions of our models) by attempting to replay the operational scenarios in [6]
with mCRL2’s simulator and by checking for desirable properties with mCRL2’s
verification tools. Both simulation and verification reveal issues with the current
description of the principles.

4.1 Simulating Operational Scenarios

Several operational scenarios, intended to illustrate the behaviours of the TS
are described in [6]. Such scenarios describe both a static track layout and the
dynamics, such as trains moving and emitting position and status reports, and
VSSs and TTDs changing status. We report on our analysis of two of the more
basic scenarios.
Scenario 1. The first scenario, described in [6, p. 29], illustrates nominal
behaviour of the TS. It considers a single train running on a track layout con-
sisting of 3 TTDs, see Fig. 3 (top). In the scenario, the train moves from its
initial location along TTD10 and TTD20 and reaches VSS31. It reports midway
each VSS that it has no integrity information, followed by a report confirming
integrity, shortly before leaving the VSS. While doing so, the VSSs on which it
resides (and the TTDs containing these VSSs) are expected to change from FREE
to OCCUPIED.

As a result of faulty logic in the state-transition diagram of [6], the desired
scenario cannot be simulated with our models. When the train enters the TTD20

Fig. 3. Configurations defined on [6, p. 29] (top) and [6, p. 31] (bottom).
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and the TS has not yet received a position report of a train reporting on TTD20,
VSS21-VSS23 all change from FREE to UNKNOWN. This change is triggered by
the event emitted by TTD20 which detects the train entering the TTD, enabling
condition #1A (see Table 1).
Scenario 2. The second scenario, described on [6, p. 31] describes the expected
behaviour of the TS in the presence of a train that splits. The track layout is the
same as that of [6, pp. 29], see Fig. 3 (bottom). The scenario starts with compos-
ite TRAIN1-2 confirming integrity after which it splits and becomes TRAIN1 and
TRAIN2. TRAIN1 confirms integrity and sends a changed train length to the TS
after which VSS12 is set to AMBIGUOUS. Next, TRAIN1 starts moving towards
VSS31 and reports its position to the TS whereas TRAIN2 remains on VSS12.
Each time TRAIN1 enters a new VSS, the status of that VSS becomes AMBIGU-
OUS, whereas the VSS it left changes from AMBIGUOUS to UNKNOWN. As
soon as TRAIN1 leaves TTD20, the TTD informs the TS that it is FREE. This
event triggers a change of status for all VSSs on TTD20, which all transition
from UNKNOWN to FREE as a result. When TRAIN1 enters VSS31 and reports
its presence, this VSS changes from AMBIGUOUS to OCCUPIED.

Again, this scenario cannot be simulated with our models. The status of
VSS12 changes to AMBIGUOUS after splitting the composite train. However,
the main issue is again that as soon as TRAIN1 enters TTD20, transition #1 is
enabled and triggers all VSSs on TTD20 to change from FREE to UNKNOWN
instead of the prescribed AMBIGUOUS for VSS21 and FREE for VSS22 and
VSS23. Continuing beyond this point for both models furthermore leads to
the undesirable situation in which the TS does not stabilise changing status of
VSS21, which oscillates between OCCUPIED and AMBIGUOUS. This is a result
from an intricate interplay between several conditions.

4.2 Formal Verification

It is not a priori clear whether both ways of updating the status of the VSSs
discussed in Sect. 3.2 lead to equally desirable implementations. We consider
an implementation to be desirable when it meets several high-level correctness
criteria that make the TS act reliably and predictably. In general, this means
that any implementation needs to satisfy basic sanity properties such as absence
of deadlock, whether certain actions are present in the state space, etc. Verify-
ing such generic requirements has helped us in debugging early versions of our
models.

Requirements. Properties that are specific to ERTMS HL3 include termina-
tion of stabilisation, two forms of determinism and absence of collisions. Observe
that, e.g., determinism is a property that typically requires a branching-time
logic and cannot be expressed in, e.g., LTL. We formalise these properties in the
first-order modal μ-calculus of mCRL2 and discuss the outcomes of verifying
these properties afterwards. We refer to [9] for an in-depth, formal account of
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this modal logic and here only offer a terse account of the informal reasoning
underlying these formulae.
Termination of Stabilisation. Upon receiving events from a train or a TTD, the
TS computes new status for the VSSs. Each status change of a VSS may enable
a change in another VSS. Once the process reaches a stable state, the TS reports
this state via an action stable. There is, however, no a priori guarantee that the
process stabilises; in fact, simulation of the scenario of [6, pp. 31] has already
revealed that the property is violated. We can check this more thoroughly using
the following formula; informally it asserts that invariantly (expressed by [true∗]),
whenever the TS performs a change action, a stable action is inevitable:

[true∗] [(∃v : VSS id, s1, s2 : VSS status. change(v, s1, s2))]φstable

where φstable is the subformula expressing that a stable action cannot be post-
poned indefinitely by actions taken from a set C of TS-actions involved in the
stabilisation computation:

μX.([C]X ∧ 〈C ∨ ∃l : List(VSS status).stable(l)〉true).

Determinacy. The conditions determining the status update of a VSS are
intrinsically complex. In particular, it is not obvious whether status updates
are deterministic or even desirable: non-determinism may, e.g., be built in to
offer freedom when implementing the principles differently by different vendors.
On the other hand, non-determinism may be a cause for errors, since it leads
to an increase in the number of possible scenarios. Strong determinacy, which
we define as the absence of non-deterministic status updates, is formalised as
[true∗]φstrong determinacy, where φstrong determinacy expresses that the state does
not have two distinct status updates for a single VSS:

∀v : VSS id, s, s1, s2 : VSS status.
((〈change(v, s, s1)〉true ∧ 〈change(v, s, s2)〉true) ⇒ s1 = s2)

Strong determinism does not guarantee deterministic stabilisation, the property
that a stable state reached after processing an event is uniquely determined.
The reason is that the status of a VSS may be updated based on the status of
other VSSs, and the order in which this is done may yield different stabilisations.
We deem such a situation highly undesirable as it has a negative impact on the
intuition operators have about how the TS operates. Ideally, every event should
lead to a stable state that is unique and that is ‘known’ immediately after the
event. Deterministic stabilisation is formalised as:

[true∗] [(∃t : TRAIN id, p : PTD. emit position(t, p))]φdeterministic stabilisation

where φdeterministic stabilisation is the subformula expressing that there is some
stable state l for the VSSs so that whenever the computation stabilises (after a
sequence without stable actions), it reaches stable state l:

∃l : List(VSS status).
[(¬∃l′ : List(VSS status). stable(l′))∗]∀l′′ : List(VSS status). [stable(l′′)](l′′ = l)
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Note that strong determinacy does not imply deterministic stabilisation, nor vice
versa.

No Collisions. The TS is responsible for sending out a Full-Supervision Move-
ment Authority to a train. It should only extend the movement authority for a
train to a VSS if on that VSS no train resides. The property that asserts that this
is the case is given by [true∗]φsafe where φsafe expresses that no unsafe situation
can be reported in a state:

¬(∃t, t′ : TRAIN id, v : VSS id.〈ExtendEoA(t, v)〉true
∧∃l, l′ : List(VSS id).(v = rear(l′) ∨ in between(rear(l′), front(l), v))∧

〈report location(t, l)〉true ∧ 〈report location(t′, l′)〉true)

It states that the TS cannot extend a movement authority for a train to a VSS
if another train is located in between.

Verification. We verify the requirements listed above on two configurations of
varying complexity: the configuration of [6, p. 29], which we also described in
Sect. 4.1 and which we here indicate by I, and a configuration inspired by the
configuration of [6, p. 31], which we indicate by II. For the latter configuration,
we have two TTDs, four VSSs, a composite train and an ordinary train, see Fig. 4.
The rear carriage of composite train TRAIN1-2 is located on VSS21 whereas the
front is located on VSS22.

Fig. 4. Track layout II, with initial position of TRAIN3 and composite TRAIN1-2.

In addition to considering multiple configurations, we analyse the two differ-
ent ways in which the TS computes the new stable VSS configurations following
an event (i.e., immediate versus simultaneous update). Table 2 describes the
sizes of the state spaces for the respective models and configuration combina-
tions, including the time needed for state space generation. Even though config-
uration II has fewer VSSs than configuration I, its state space is considerably
larger. This is due to the number and composition of trains in configuration II.

The state space for the simultaneous update model of configuration I is
smaller than that of the immediate update model. After abstracting from all
internal computations of the TS, the state space of the simultaneous update
model is weak-trace included in the immediate update model, but not vice versa.
This means that the immediate update permits more behaviours than the simul-
taneous update model. For configuration II, both models are equivalent modulo
divergence-preserving branching bisimulation. That means that the two modes of
updating VSSs are, for all intents and purposes, equivalent for this configuration.
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Table 2. Statistics for the state spaces of the various configurations. Time is reported
in seconds. For each cell, the first number indicates the result for the immediate update
mode (Imm) for stabilisation, whereas the second number indicates the simultaneous
update mode (Simult).

States Transitions Time (s)

Imm. Simult. Imm. Simult. Imm. Simult.

I 184 139 113 487 591 541 341 427 780 530

II 30 811 310 33 932 280 170 908 128 187 852 936 3 235 2 986

The mCRL2 toolset offers various alternatives for verifying modal formu-
lae. We have mainly used tools that operate directly on the state spaces:
ltsconvert is used to minimise the state spaces modulo strong, respectively
divergence-preserving branching bisimulation prior to verifying the properties
using lts2pbes and pbessolve. The most time consuming part in this work-
flow is the minimisation of the models, which takes up-to 9 min for the larger
models on a 2017 16 Gb Macbook Pro with a 3.5 GHz Intel Core i7. Verifying
a formula on the reduced models can be done in seconds. We comment on the
results of verifying the requirements formalised above.
On Termination. For both configurations, both the immediate and simultaneous
update models of the TS may enter a state in which the process of stabilising
the VSS status updates will not terminate. For configuration I this happens,
e.g., when a train leaves the TTD on which it resided, enters the new TTD and
only reports its position when its front is on the second VSS of the new TTD.
Since all VSSs on that TTD have status UNKNOWN, the TS cannot decide the
status of the VSS on which the front of the train resides and oscillates between
AMBIGUOUS and OCCUPIED, see also our explanation for scenario 2. A similar
scenario triggers non-termination for configuration II.
On Determinacy. Deterministic stabilisation fails for the immediate update
model of the TS for configuration I but holds for the simultaneous update model
for that configuration. The non-determinism results in two stable states in which
VSS23 is AMBIGUOUS in one case, but OCCUPIED in the other case. The root
cause is a train that moves to VSS23 where it reports to have unknown integrity.
The culprit here is a race condition between VSS21-22 changing status from
UNKNOWN to AMBIGUOUS, and VSS23 changing status from UNKNOWN to
OCCUPIED. If VSS21-22 first change their status, the change of status of VSS23
is stable. If, however, VSS23 first changes status, it can immediately proceed to
change its status to AMBIGUOUS. Figure 5 gives an impression of the shape of
the counterexample produced by the toolset. Both models for configuration II
violate the same requirement, non-deterministically reaching a stable configura-
tion with status FREE for VSS21 and another with status UNKNOWN for VSS21.

Strong determinacy holds for configuration I for both models of the TS and
fails for configuration II. In both models for configuration II, it is possible to
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Fig. 5. Shape of the counterexample for deterministic stability of section I. We use the
placeholders emit and stable1 and stable2 to indicate the transitions labelled with the
parameterised emit position and stable actions, and suppressed all other actions. We
compressed the path towards the emit action (indicated by the dotted edge).

reach a state in which VSS21 can choose to move from OCCUPIED to either
FREE or UNKNOWN.
On Collisions. Verifying this property required adding actions report location to
our models. These actions indicate the position of each train at every moment;
other than this, they do not affect the model. Both models of the TS for
configuration II fail to meet the basic safety requirement that the TS prevents
collisions (note that in configuration I only one train is involved, so collisions are
impossible). The basic scenario starts by splitting TRAIN1-2 on the TTD20. The
rear of that train then becomes a train by itself (viz. TRAIN2) but it is invisible
to the TS. As a result, TRAIN3, which is on TTD10, gets authorisation to move
to VSS21 on which TRAIN2 resides.

5 Lessons Learnt

The goal of [6] is to describe the ERTMS HL3 principles and control logic with-
out unnecessarily restricting vendors in implementing their own solutions. It is,
therefore, preferred that the principles do not exclude correct implementations
of the ERTMS HL3 idea. It is, however, also desirable that the principles do not
admit incorrect implementations. Our analyses of two natural ways of imple-
menting the logic has revealed several issues which are mostly due to the natural
language used to phrase the control logic. Moreover, our formalisation suggests
that different implementations lead to different functional characteristics of the
system. This may be a possible source for a compromised interoperability of
implementations by different vendors.

As this case study once more underlines, the act of formalising a specification
in itself helps to identify ambiguities and inconsistencies. The richness of the
mCRL2 data language, and in particular the possibility to use higher order data
types, universal and existential quantifiers, turn out to be essential in concisely
and intuitively formalising the required control logic.

Formal analyses, such as simulation and model checking proved to be instru-
mental in resolving ambiguities and studying the impact of alternative interpre-
tations on the overall system design. Counterexamples and witnesses to system
requirements were indispensable tools in this regard, but due to the expressive-
ness of the logic used in mCRL2, such tools were long missing from mCRL2.
The tool pbessolve [13], which implements the theory of [4] for constructing
comprehensive counterexamples such as Fig. 5, and which became available to
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us in the course of our work on this case study, helped to significantly reduce
the effort needed to improve our models. Vice versa, due to their size and scale,
the models and requirements produced in this case study serve as benchmarks
for speeding up the algorithmic machinery underlying the counterexample con-
struction, which we found to add a sometimes significant time penalty on top of
solving the model checking problem.

From a technical point of view, the deterministic stabilisation property and
its formalisation in the first-order modal μ-calculus is of interest, not only
because it clearly illustrates the strengths and needs for branching time log-
ics, but also because it poses a computational challenge. This challenge consists
of efficiently dealing with the outermost existential quantifier ranging over an
infinite domain. Using domain knowledge, one can restrict this quantification to
range over a finite domain by only considering lists of length n, where n is equal
to the number of VSSs in a track layout. While this makes checking determinis-
tic stability decidable for concrete configurations, it may still be intractable in
practice, as there are 4n such lists. However, most of these lists do not represent
reachable configurations. In our verification, we utilised this by extracting the
reachable configurations from our state spaces, and strengthening the property
by quantifying over reachable configurations. A more permanent solution, how-
ever, would be to develop different solving strategies such as a (symbolic) solving
algorithm that would process the formula essentially inside-out.

We furthermore note that there is an added value to studying the same prob-
lem from various angles using different formal methods, and adopting possibly
different operational assumptions. For instance, our formalisations of the basics
of the ERTMS HL3 principles are conceptually close to how these are formalised
in the Electrum language, see [5] and the Event-B language, see [10]. Yet, steered
by the strengths of the languages and tools, each method focusses on, and reveals
different issues. For instance, the fact that both Electrum and Event-B use a lin-
ear time logic means that properties such as deterministic stabilisation (see the
previous section) cannot be checked. On the other hand, a language such as Elec-
trum to some extent permits for reasoning about all possible scenarios, allowing
to search for scenarios that violate a specific requirement.

6 Conclusion

We formalised and analysed the ERTMS HL3 principles, documented in [6],
using the mCRL2 language and toolset. The expressive data language of mCRL2
allowed us to stay close to the concepts used in the informal phrasing of the
ERTMS HL3 principles while formalising these. Using simulation and model
checking, we revealed a number of hitherto unidentified issues with the current
principles. These issues have been communicated to the EEIG ERTMS Users
Group and have led to amendments of the document, eliminating several ambi-
guities in the natural language phrasings. Furthermore, our formal comparison
has revealed that the two implementations behave differently, which casts doubt
on the robustness of the specification.
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Our formalisation and analysis pertains to version 1A of the principles.
Recently, version 1B of the principles appeared, and a next version is due in
June 2018. It should be reasonably straightforward to adapt our models to the
new formulation of the principles and repeat the analysis. It will be interesting
to see whether the discovered issues have been resolved in the new versions. In
the document describing the principles, also a number of risks are identified and
it is explained how these are mitigated. An interesting next step is to, once the
currently discovered issues have been resolved, confirm, using model checking,
whether these risks have indeed been mitigated.

The recently added facility to generate counterexamples for model checking
problems in mCRL2 helped considerably in improving on our models and our
understanding of the principles. A strength, and at the same time, a weakness
of the mCRL2 toolset is the fact that a verification can be conducted in more
than one way. It requires expertise to understand which way is most effective
(e.g., fastest) for a particular case. While there is no one size fits all work flow,
non-expert users can be helped by documenting best-practices and principles.
This applies equally to other verification toolsets.
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Abstract. Verification of progress properties is both conceptually and
technically significantly more difficult than verification of safety and
deadlock properties. In this study we focus on the conceptual side. We
make a simple modification to a well-known model to demonstrate that
it passes progress verification although the resulting model is intuitively
badly incorrect. Then we point out that the error can be caught easily
by adding a termination branch to the system. We compare the use of
termination branches to the established method of addressing the same
need, that is, weak fairness. Then we discuss another problem that may
cause failure of catching progress errors even with weak fairness. Finally
we point out an alternative notion of progress that needs no explicit fair-
ness assumptions. Our ideas are especially well-suited for newcomers in
model checking, and work well with stubborn set methods.

Keywords: Usability of verification methods · Progress · Fairness
Fair testing

1 Introduction

To motivate the present study, let us consider the example system in Fig. 1.
It shows Peterson’s famous mutual exclusion algorithm [5], and this particular
model appears on the home page spinroot.com of the SPIN verification tool.

SPIN reports no errors in this model, as expect, because Peterson’s algorithm
is correct under the usual assumptions on the execution model. Swapping lines 7
and 8 and running SPIN results in assertion violated (ncrit==1). This is
because in the modified system the following scenario is possible: First process 0,
followed by process 1, executes turn = pid. Now turn = 1. Next process 1
continues to the critical section. It passes line 9 because process 0 has not yet
executed flag[ pid] = 1, due to swapping lines 7 and 8. Finally process 0
continues to the critical section. It passes line 9 because turn = 1. As both
processes are now in the critical section, the assertion is violated on line 11. We
call the swapping of lines 7 and 8 modification A from now on.

c© Springer Nature Switzerland AG 2018
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1 bool turn, flag[2]; // the shared variables, booleans

2 byte ncrit; // nr of procs in critical section

3 active [2] proctype user() // two processes

4 {

5 assert(_pid == 0 || _pid == 1);

6 again:

7 flag[_pid] = 1;

8 turn = _pid;

9 (flag[1 - _pid] == 0 || turn == 1 - _pid);

10 ncrit++;

11 assert(ncrit == 1); // critical section

12 ncrit--;

13 flag[_pid] = 0;

14 goto again

15 }

Fig. 1. Peterson’s algorithm from the SPIN homepage

Let us now take the original model and remove || turn == 1 - pid on
line 9, and call this modification B. For this model, SPIN reports invalid end
state, because when both processes execute lines 7 and 8, both flags contain
the value 1, and neither process can pass the modified line 9. That is, the system
is in a deadlock.

We have seeded two different errors to the model, and SPIN has caught them
immediately. Finally, let us take the original model and remove flag[1 - pid
== 0 || from line 9. Let us call this modification C. This time SPIN reports no
errors.

Should we conclude then, that flag[1 - pid] == 0 || is unnecessary in
Peterson’s algorithm? In its absence, if a process wants to enter the critical
section, it has to wait at line 9 until the other process also seeks entry. Then the
former process can enter the critical section. The latter process has to wait until
the former process has left the critical section, which is acceptable behaviour.
However, the latter process has to wait further still: The latter process is pre-
vented from entering the critical section as long as the former process is not
there and does not want to go there; it can only enter after the former process
has requested entry. Intuitively, this is clearly unacceptable.

The problem is that the (implicit) correctness specification in Fig. 1 is insuf-
ficient, and it fails to declare the above scenario as illegal.

Let us now make a small modification to Fig. 1. The modified model is shown
in Fig. 2. The cycle consisting of again: and goto again has been replaced by
a do–od-cycle, and a line has been added that makes it possible for each process
to exit the cycle. Immediately after exiting the process terminates. Each time
when on line 6, the process chooses nondeterministically between terminating
and trying to execute the statements in Fig. 1. SPIN reports no errors in this
model, and if modification A or B is made to this model, SPIN gives the same
error reports as before.



Progress Checking for Dummies 117

1 bool turn, flag[2]; // the shared variables, booleans

2 byte ncrit; // nr of procs in critical section

3 active [2] proctype user() // two processes

4 {

5 assert(_pid == 0 || _pid == 1);

6 do

:: break

::

7 flag[_pid] = 1;

8 turn = _pid;

9 (flag[1 - _pid] == 0 || turn == 1 - _pid);

10 ncrit++;

11 assert(ncrit == 1); // critical section

12 ncrit--;

13 flag[_pid] = 0;

14 od

15 }

Fig. 2. Peterson’s algorithm with a termination branch

However, now also modification C causes SPIN to report an error. It reports
invalid end state. Indeed, if one process terminates and the other goes to line 9,
the system is in a deadlock, because the process on line 9 cannot continue.

The theme of the present study is how so-called progress errors can some-
times be caught with small tricks that are easier than the standard approach
and less vulnerable to accidental misuse that causes failure of catching errors.
The addition of the termination branch as was done in Fig. 2 is such a trick.
The standard method of obtaining the same effect is via so-called weak fairness
assumptions [3], but it is so much more difficult that it was not done in the origi-
nal model. We do not claim that our tricks cover all progress properties, only that
they are an easy-to-use alternative that is much better than finding the standard
method too difficult to use and therefore not trying to verify progress properties
at all. Our tricks thus address usability shortcomings of existing methods with
respect to their industrial applicability.

Furthermore, we do not claim that our observations and tricks are funda-
mentally new. As a matter of fact, the key ideas are two decades old [2,10]. We
do claim, however, that their benefits are not sufficiently widely known or have
been under-appreciated. Although the addition of the termination branch is easy,
gives tangible added value, and is almost free from drawbacks (it makes the size
of the state space grow a bit), it seems that it is seldom done. The modelling style
in Fig. 1 seems to be the norm, for example among the BEEM benchmarks [4],
most models of clients in scheduler or resource allocation systems lack a similar
voluntary termination branch.

In Sect. 2 we analyse why the model in Fig. 1 failed and the model in Fig. 2
succeeded in revealing the error. We also compare the addition of the termination
branch with the standard solution to the same problem using weak fairness.
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In Sect. 3 we discuss a theory that makes it possible to design a model of the
user of a service that assumes as much as necessary, but not more, about the
behaviour of the user. There is also another kind of problem that may cause an
intuitively incorrect model to accidentally pass model checking. It will be solved
in Sect. 4. An easy generic approach to progress that is slightly weaker than the
standard approach is discussed in Sect. 5.

Full formal treatment of the material in this study would require repeating
numerous definitions that can be found in the literature. Because of lack of
space, we focus on the intuition and present formally only the concepts which,
we believe, are neither obvious nor widely known. Please note that even though
the proposed method is suitable “for dummies”, this article need not be.

2 Unforced Request

In this section we discuss why and how the addition of the termination branch
facilitates the detection of the error caused by modification C. We recall an anal-
ogous solution in linear temporal logic [3]. Lastly, we discuss the error detection
power and technical difficulty of the methods. When we refer to Fig. 1 or 2, unless
otherwise mentioned, we mean both the original figure and modifications A, B
and C.

We must first distinguish between a system and its correctness requirements.
Lines 2, 10, 11 and 12 of Fig. 1 are not part of Peterson’s algorithm, for exam-
ple, [5] contains nothing corresponding to them. Instead, they express a cor-
rectness requirement. They specify that the system should ensure that the two
processes are never in the critical section at the same time. This property is
usually called mutual exclusion. If line 11 is removed, the model loses its ability
to catch the error caused by modification A.

There is also an implicit correctness requirement arising from the semantics
of Promela and the default behaviour of the SPIN tool: in all terminal states,
both processes must be at the end of their code, that is, on line 15. (Also line 5 is
not part of the algorithm. It expresses a low-level technical correctness require-
ment related to debugging Promela specifications, and is not important for our
discussion.)

In addition to safety properties, systems are usually required to satisfy some
progress properties, which in mutual exclusion or resource allocation systems
would be called eventual access. It says that if a process has requested for access
to a resource, then it will eventually get it. In the case of Figs. 1 and 2, a process
requests for access by assigning 1 to its flag, that is, by executing line 7. There-
fore, eventual access is violated if and only if a process reaches line 8 but then
fails to reach line 11. Let Pi denote the line where process i is (at the beginning
of the line). In the case of Figs. 1 and 2, eventual access can be specified in linear
temporal logic as �(P0 = 8 → �(P0 = 11)) and �(P1 = 8 → �(P1 = 11)).

Figures 1 and 2 specify eventual access, to the extent they specify it, implic-
itly, via the requirement that the model must not stop while a process is on
line 8, 9, or 10 (which follows from the above-mentioned requirement that the
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model must not stop while a process is on any other line than 15). Indeed, the
error caused by modification B is a violation of eventual access, because when
both processes are waiting on line 9, process 0 has requested for access but will
never get to line 11 (and the same holds also on process 1). In Sect. 1, the error
was caught as an unintended terminal state. The users of linear temporal logic
would catch it as a violation of eventual access. We will return to this difference
towards the end of this section. For the time being, we focus on eventual access.

In the case of Fig. 2, but not Fig. 1, also the error caused by modification C is
a violation of eventual access. In the case of Fig. 1 with modification C, eventual
access holds formally, and thus it is formally correct not to report any error
although intuitively the system is badly wrong. The failure of the model in Fig. 1
to catch the error caused by modification C is not due to insufficient specification
of correctness requirements, but due to implicit over-specification of the users of
the algorithm. This is a subtle issue that we will discuss next.

It is obvious that if one process stays in the critical section forever and the
other process requests for access, then either safety or progress is violated: If
the algorithm lets also the other process enter the critical section, then mutual
exclusion is violated, and if it does not, eventual access is violated. This means
that to solve the mutual exclusion problem, it is necessary to assume something
about the behaviour of the clients. In particular, it is necessary to assume that
a client will not stay in the critical section forever.

Like most modelling languages and model checking tools, Promela and SPIN
implicitly assume that if something can happen in the model, then something will
happen. Most of the time this is a very appropriate assumption. Among other
things, if a process of Fig. 1 or 2 is in the critical section, the assumption forces
it to leave it at the latest when the other process is waiting on line 9 or 15.

On the other hand, in the case of Fig. 1 with modification C, this implies
that each process will always eventually request for access. This is because if we
try to execute the model so that one process stays on line 7, eventually the other
process reaches line 9, and the only thing that can happen in the model is that
the former process executes line 7.

Real-life users of such systems do not necessarily always eventually request
for access. This means that Fig. 1 makes an unjustified assumption about the
user. It is this assumption that makes Fig. 1 with modification C pass formal
verification, although it is intuitively badly incorrect. To avoid this problem, a
model where requests are issued should exhibit what we call unforced request.
Informally, it says that each process must be able to choose not to request for
access. We do not call it a property, to emphasize that it is not something that
the model checker should check about the system. Instead, it should be enforced
by building the model appropriately. It is not a restriction on the behaviour of
the processes; it is a requirement that a certain restriction is not made.

We conclude that there are two distinct reasons why model checking may
fail to reveal an error: under-specification of the requirements (such as leaving
out line 11) and over-specification of the model (such as assuming that each
process will always eventually request for access). In Sect. 3 we will discuss
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over-specification of the model in a solid theoretical framework that makes the
notion formally precise. In Sect. 4 we will encounter a third reason. We continue
this section by comparing two methods of implementing unforced request.

Figure 2 implements unforced request by adding a termination branch. When
a process is on line 6, it is not forced to go to and execute line 7 even when the
other process is waiting on line 9, because it can nondeterministically choose to
execute the break statement instead, thereby going to line 15.

In order to present a theorem later in this section, we make it more formal
what we mean by systems, processes, and termination branches. Due to lack of
space, we only discuss a minimal set of concepts that will be needed in the sequel.
A system consists of processes and variables. A process is a rooted directed edge-
labelled graph whose vertices are called (local) states, edges are called transitions,
and the root is called initial state. In addition to the tail and head states, a
transition has a guard and a body. The guard is a Boolean function on the values
of the variables. The body assigns values to zero or more variables as a function
of the values of the variables.

For instance, in the case of Promela, the set of states is implicit from the
code. Line 8 of Fig. 1 expresses a transition whose guard is identically true and
whose body may change the value of turn. Line 9 expresses a transition whose
tail state is the head state of the transition on line 8, body makes no assignments,
and guard is the condition written on the line.

The addition of a termination branch to state s of a process means the
addition of one state s′ and one transition whose tail state is s, head state is s′,
guard is the constant function true, and body makes no assignments.

In linear temporal logic, instead of adding a termination branch, it is custom-
ary to use so-called weak fairness assumptions. Intuitively, weak fairness towards
transition t means the assumption that if t is enabled for long enough, it will
eventually be executed. An execution is thus weakly unfair towards t if and only
if, from some point on, t is enabled in every state but does not occur. Weakly
unfair executions are not treated as valid counterexamples to a property. Typi-
cally weak fairness is assumed towards almost all transitions. Not assuming weak
fairness towards a transition is thus exceptional and indicates that the transition
need not occur even if it is enabled. Weak fairness may also be assumed towards
a set of transitions, but we skip that.

The assumption can be thought to reflect that processor time allocation of
a real system works well enough that weakly unfair executions do not occur.
Strictly speaking, only infinite executions can be weakly unfair, but by a weakly
unfair execution in the real world, we mean an execution where t is enabled
for “too long” without occurring. Real schedulers are not guaranteed to work
that well, of which the Mars Pathfinder priority inversion incident of 1997 [6] is
an example (to the extent that such an example can exist). However, to avoid
problems like this, schedulers are usually designed to guarantee (some real-world
approximation of) weak fairness. This is why it is usually considered reasonable
to assume weak fairness in model checking with Promela-like languages. As was
discussed in [1], weak fairness may not work as well with process algebras.
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To indicate that a process need not execute line 7 if it does not want to, weak
fairness is assumed towards every transition except the one that corresponds to
line 7. This implies that line 7 need not be executed, even if it is the only thing
that can happen in the model.

This method has the advantage that violations of eventual access are caught
independently of whether the problem is a deadlock or something else. For
instance, assume that line 9 of Fig. 1 is replaced by

if

:: flag[1-_pid] == 1 -> flag[_pid] = 0; goto again

:: else -> skip

fi;

Let us call this modification D. A scenario becomes possible where both processes
repeatedly go to this modified line 9, detect that also the other process has made
the request, cancel their own request, and go back. This cycle can repeat forever,
resulting in neither process ever getting to the critical section. It is weakly fair
towards every transition, and thus valid as a counter-example to eventual access.
In this case SPIN does not detect the error, but it could be made to detect the
error by using standard techniques for linear temporal logic that rely on detecting
certain kinds of cycles in the state space.

On the other hand, this approach is more complicated both for the mod-
eller and for the verification tools. Indeed, the authors of spinroot.com were wise
enough not to use linear temporal logic in the example, to keep it simple enough
to act as a first example to a newcomer who is not familiar with temporal logic.
We conclude that it makes sense to have deadlock detection in the toolbox,
although its ability to detect errors is restricted. Indeed, SPIN has it. Our con-
tribution here is the remark that it can be made to detect more errors by adding
termination branches. Although termination branches cannot catch the error
caused by modification D, they did catch the error caused by modification C,
which is better than nothing and took little extra effort.

We say that an execution is complete if and only if it is either infinite or
ends in a terminal state. In linear temporal logic, it is customary to extend
every complete finite execution to an infinite one by repeating its last state
forever, because doing so eliminates a special case and thus simplifies the theory.
Deadlocks become infinite executions where, from some point on, nothing useful
happens. The notion of weak fairness does not depend on this convention, so we
ignore it in the sequel. If the convention is obeyed also in the model checking
tool, then no errors are caught as unexpected deadlocks.

We still have to justify that termination branches do not cause false alarms.
We first need to introduce yet another concept.

Almost every linear temporal logic property that is relevant for model check-
ing in practice is stuttering-insensitive. The formal definition is not important for
the present study, so we skip it. Intuitively, a transition is visible with respect to
a linear temporal logic formula if and only if its occurrence may affect the truth
value of an atomic proposition in the formula. Stuttering-insensitivity means
that the number of invisible transitions that occur before the first, after the

http://spinroot.com
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last, or between any two visible transitions is irrelevant. In particular, eventual
access is stuttering-insensitive, and the break transition in Fig. 2 is invisible
with respect to it. By LTLX we mean the set of the stuttering-insensitive linear
temporal logic formulae.

The following theorem implies that violations against an LTLX formula
detected with the termination branch method are errors also when using the
weak fairness assumptions, assuming that the formula obeys a mild assumption.
The assumption rules out such formulae as �(P1 �= 15) that directly tests the
presence of the termination branch that was added in Fig. 2. Due to lack of space,
we formulate and prove the theorem for only a single addition of a termination
branch, but the proof can be generalized to multiple additions.

Theorem 1. Let S be a system, ϕ an LTLX formula on it, s a state of a process
of S, and t1, . . . , tn be the transitions whose tail state is s, such that weak fairness
is not assumed with respect to any of t1, . . . , tn. Let S′ be obtained from S by
adding the termination branch s −t′→ s′. We also assume that t′ is invisible
with respect to ϕ. If S′ has a deadlocking execution that violates ϕ and contains
t′, then S has a weakly fair execution that violates ϕ.

Proof. Let ξ′ be the execution of S′ in the claim. Because the guard of t′ tests
nothing and the body of t′ only changes the local state of the process from s to
s′, the execution of t′ can be removed from within ξ′. The result ξ is an execution
of both S and S′. It ends in s. It is weakly fair in S, because weak fairness does
not require the execution of any of t1, . . . , tn, and no other transition is enabled
because ξ′ is deadlocking. Because ϕ is stuttering-insensitive and t′ is invisible
with respect to it, ϕ has the same truth value on ξ as on ξ′. ��

Please notice that the theorem holds independently of what weak fairness
assumptions are made in S′, if any. This is because it follows from the definition
of weak fairness that all deadlocking executions are weakly fair.

3 Most General Client

In this section we discuss a theory that makes it possible to avoid over-specifi-
cation of the kind discussed in the previous section. The theory will lead to the
conclusion that the model used in the previous section is, in a rigorous sense,
optimal for the verification of eventual access.

If S is a system and ϕ is an LTLX-formula, then S |= ϕ means that ϕ holds
on S. The following theorem is from [9] and an earlier version appeared in [2]. It
establishes a useful link between LTLX and process algebras. We will introduce
the necessary process-algebraic concepts and discuss the link after the theorem.

Theorem 2. The CFFD-semantics preserves LTLX in the following sense: If ϕ
is an LTLX-formula whose atomic propositions do not refer to the local states of
Q, and if P1 ‖ · · · ‖ Pn ‖ Q |= ϕ and Q′ �CFFD Q, then P1 ‖ · · · ‖ Pn ‖ Q′ |= ϕ.
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In the theorem, a system is expressed as a parallel composition of labelled
transition systems, abbreviated LTS. Intuitively, an LTS is the representation of
the behaviour of a system, subsystem, or individual component of the system
as an edge-labelled directed graph. It is the state space of the subsystem, with
emphasis on transitions instead of states. Formally, it is a tuple L = (S,Σ,Δ, ŝ).
The set Σ is the set of the visible actions of L, also known as the alphabet of
L. The symbol τ is used to denote invisible actions, and τ /∈ Σ. The set of the
states of L is S, and ŝ ∈ S is the initial state. The set of the transitions of L is
Δ ⊆ S × (Σ ∪ {τ}) × S. The reachable part of an LTS (S,Σ,Δ, ŝ) is the LTS
(S′, Σ,Δ′, ŝ), where S′ and Δ′ are the smallest subsets of S and Δ such that
ŝ ∈ S′ and, if s ∈ S′ and (s, a, s′) ∈ Δ, then s′ ∈ S′ and (s, a, s′) ∈ Δ′.

For building a system from its components, many different operators have
been defined. We will only need the parallel composition operator ‖. Intuitively,
L1 ‖ L2 represents the parallel execution of L1 and L2, with those actions
executed jointly that are in the intersection of their alphabets. Formally, it is the
reachable part of (S,Σ,Δ, ŝ), where S = S1 ×S2, Σ = Σ1 ∪Σ2, ŝ = (ŝ1, ŝ2), and
Δ is defined as follows: ((s1, s2), a, (s′

1, s
′
2)) ∈ Δ if and only if either a ∈ Σ1∩Σ2,

(s1, a, s′
1) ∈ Δ1, and (s2, a, s′

2) ∈ Δ2; a /∈ Σ2, (s1, a, s′
1) ∈ Δ1, and s′

2 = s2 ∈ S2;
or a /∈ Σ1, (s2, a, s′

2) ∈ Δ2, and s′
1 = s1 ∈ S1. Because τ is not in any alphabet,

invisible actions are not executed jointly. The parallel composition operator is
associative and commutative (up to isomorphism on the names of states). So
P1 ‖ · · · ‖ Pn ‖ Q is now well-defined.

Figure 3 shows the overall structure and one client of a mutual exclusion
system as a client–server system. Assume that we want to verify that eventual
access holds on Client 0. Then we can let n = 1, P1 be Client 0 and Q be the
parallel composition of Server and Client 1 in Theorem2. Although Q is a single
LTS in the theorem, we can use Server ‖ Client 1 in its place, because Client 0
‖ Server ‖ Client 1 = Client 0 ‖ (Server ‖ Client 1) by the associativity of ‖.

Many process algebras are compositional. That is, a subsystem can be
replaced by a smaller, semantically equivalent subsystem before model check-
ing. This is a powerful tool for alleviating the state explosion problem. What is
more, many process algebras have a precongruence. It is defined with respect to
a set of operators for building systems from LTSs and subsystems. It is a partial
order relation � between LTSs such that if L1 � L2 and f is a process-algebraic
expression that only uses operators from the set, then f(L1) � f(L2).

req0

gra0

lve0

req1

gra1

lve1

Client
0

Server
Client

1 τ τ
req0

gra0

lve01 4

5 2 3

Fig. 3. (Left) A client–server mutual exclusion system (Right) Client 0 as an LTS
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By �CFFD wean mean the preorder in the Chaos-free Failures Divergences
Semantics [11]. It has some variants depending on the chosen set of operators
for building systems. The following is appropriate for the present context.

Let Σi denote the alphabet of Li. A trace of Li is any element of Σ∗
i that can

be obtained by picking a finite (not necessarily complete) execution of Li and
dropping all the states and τ -symbols from it. If the same is done to an infinite
execution, the resulting sequence of elements of Σi is either finite or infinite. If it
is finite, it is called a divergence trace, and otherwise an infinite trace. The sets
of divergence and infinite traces of Li are denoted with Div(Li) and Inf (Li).

A stable failure of Li is a pair (σ,A) ∈ Σ∗
i × 2Σi such that Li can reach a

state s via an execution whose trace is σ, such that no output transition of s is
labelled with any element of A∪{τ}. The set of the stable failures is denoted by
Sf (Li). This notion generalizes traces that lead to terminal states. In particular,
σ is a trace that leads to a terminal state if and only if (σ,Σi) ∈ Sf (Li). In [8]
it was proven that to obtain the congruence property with respect to ‖, the
semantics must preserve all stable failures.

We define L1 �CFFD L2 if and only if Σ1 = Σ2, Sf (L1) ⊆ Sf (L2), Div(L1) ⊆
Div(L2), and Inf (L1) ⊆ Inf (L2). We also define L1 ≈CFFD L2 if and only if
L1 �CFFD L2 and L2 �CFFD L1.

Intuitively, Theorem2 says that, when L �CFFD L′, replacing L by L′ as a
component of a system may introduce new violations of a given LTLX property.
Conversely, if a system with L′ is correct with respect to a given formula, replac-
ing it with L is also correct. To put this in another way, if we model a component
as L′ instead of L, we make fewer assumptions about its behaviour.

Consider now Client 0 in Fig. 3. Its interface consists of req0, gra0, and lve0. It
is a common assumption in system design that each component of a system may
interact via other components only via the interface that was specified in the
architecture of the system. Therefore, the alphabet of Client 0 is {req0, gra0, lve0}.

We require that every trace of Client 0 must be a prefix of (req0gra0lve0)ω.
That is, the client must not try to execute its visible actions in a wrong order.
In general in process algebras, the responsibility of this issue may be left on the
client or the server, or distributed between them. We could put the responsibility
on the server, by extending the client with the construction in automata theory
textbooks that extends the transition relation of a deterministic finite automaton
from a partial function to a full function. Then the server would have to be
designed so that it blocks the added transitions. This difference is not important
for the purpose of our present study, and to avoid spending space on it, we put
the responsibility on the client.

Our next observation is that Client 0 must have no divergence traces. Letting
a client diverge would mean letting it steal all processor time and thus prevent
the server and opposite client from making progress. In Sect. 2 we argued that
to solve the mutual exclusion problem, it is necessary to assume that a client
will not stay in the critical section forever. We are now in a similar situation and
make a similar conclusion.
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As a consequence, every trace σ of the client must eventually lead to a state
such that no output transition of the state is labelled with τ . That is, if σ is a
trace of Client 0, then (σ,A) is a stable failure at least when A = ∅. It follows
from the definition of stable failures that if (σ,A) ∈ Sf (L) and B ⊆ A, then
(σ,B) ∈ Sf (L). Therefore, for each trace σ of Client 0, we have the problem of
determining the maximal A’s such that (σ,A) is a stable failure of Client 0.

We again appeal to the fact that a client must not stay in the critical section
forever. We have chosen that after gra0, the next visible action of the client may
only be lve0. Together these mean that for the traces that end with gra0, there
is a unique maximal A which is {req0, gra0}.

Assume that Client 0 has executed req0 and the server has committed to give
it access. The server is thus ready to execute gra0 and not gra1. If Client 0 now
refuses to execute gra0, a correct mutual exclusion system cannot do anything
else than deadlock sooner or later. It cannot diverge or choose to execute gra1,
because by the properties of the parallel composition operator, if these options
were available now, they would be available also if Client 0 were willing to execute
gra0, compromising the eventual access property towards Client 0. We see that
it is not only the critical section where the client must be assumed to not stop.
Indeed, we pointed out in Sect. 2 that assuming weak fairness on a transition is
the norm and not assuming is exceptional. We conclude that for the traces that
end with req0, there is a unique maximal A which is {req0, lve0}.

Similar reasoning does not apply to the empty trace and the traces that end
with lve0. We concluded in Sect. 2 that the client must be given the permission
to not execute req0. So in this case, the maximal A is {req0, gra0, lve0}.

It follows from the definitions that every finite prefix of an infinite trace is a
trace. In the case of Client 0, the only infinite sequence that has this property
is (req0gra0lve0)ω. To avoid over-specification, the guiding principle is that if we
do not know whether some behaviour must be banned, we must not ban it. If
banning it is necessary, then verification will fail, and when analysing the reason
for failure, we will find out that banning would have been necessary. Guided
by this principle, we do not ban (req0gra0lve0)ω. That Fig. 2 passes verification
demonstrates that it need not be banned.

Figure 3(Right) shows a client with precisely the traces, etc., discussed above.
It is optimal for the verification of eventual access: if the client may have more
behaviour, then mutual exclusion cannot be solved, and if the client has less
behaviour, then it has been over-specified, running the risk of intuitively incorrect
solutions pass formal verification. From the point of view of this section, the τ -
transition from state 1 to state 2 is unnecessary; the req0-transition could start
at state 1. The motivation of the τ -transition will be discussed in Sect. 4.

Figures 1 and 2 do not conform to the architecture in Fig. 3(Left). However,
this is not a problem. Consider the system

Client 0 ‖ Server 0 ‖ flag[0] ‖ flag[1] ‖ turn ‖ Server 1 ‖ Client 1

where the clients are like in Fig. 3(Right); the servers are like in Fig. 1 with
communication with the clients added; and flag[0], flag[1], and turn model
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the variables in Fig. 1 in a standard fashion used in process algebras to model
shared variables. Because of compositionality, this system can be recast as

Client 0 ‖ (Server 0 ‖ flag[0] ‖ flag[1] ‖ turn ‖ Server 1) ‖ Client 1

making it match Fig. 3(Left). It can also be recast as

(Client 0 ‖ Server 0) ‖ flag[0] ‖ flag[1] ‖ turn ‖ (Server 1 ‖ Client 1)

which can be transformed to Fig. 2 by computing (Client 0 ‖ Server 0) and
(Server 1 ‖ Client 1), and then translating the system back to Promela.

4 Unprevented Request

In addition to under-specification of the requirements and over-specification of
the clients, there is a third way in which an intuitively badly incorrect system
may pass verification.

The model in Fig. 4 fails mutual exclusion and SPIN finds the error. Assume
that both clients execute line 9, the server executes line 17, and Client 0 continues
to the end of line 12. Then the server passes the guard req[0] == 0, and is thus
now at -> on line 18. If Client 0 acts fast, it can execute lines 9, 10 and the first
statement on line 11 a second time before the server continues. Then the server

1 bool req[2], gra[2], turn;

2 byte ncrit; // nr of procs in critical section

3 active [2] proctype client()

4 {

5 do

6 :: break;

7 :: // skip

8 // (!gra[_pid]);

9 req[_pid] = 1;

10 (gra[_pid]);

11 ncrit++; assert(ncrit == 1); ncrit--; // critical section

12 req[_pid] = 0;

13 od

14 }

15 active proctype server()

16 { end: do // ok for the server to be blocked here

17 :: (req[0] == 1 && (req[1] == 0 || turn == 0)) -> gra[0] = 1;

18 (req[0] == 0) -> gra[0] = 0; turn = 1;

19 :: (req[1] == 1 && (req[0] == 0 || turn == 1)) -> gra[1] = 1;

20 (req[1] == 0) -> gra[1] = 1; turn = 0;

21 od

22 }

Fig. 4. A client–server mutual exclusion system with handshake
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completes line 18 and executes line 19, letting also Client 1 continue to line 11.
Now both clients are in the critical section.

The problem is that Client 0 re-entered the critical section on the basis of
the permission that it was given in the previous time, before the server had
switched that permission off. This is a well-known problem and is solved by
making the client wait until the previous permission has been switched off [3,
p. 332]. This can be implemented by removing the comment symbol on line 8.
After this modification, SPIN reports no error.

However, if also the comment symbol on line 7 is removed, then SPIN reports
an invalid end state. Line 20 contains a bug. It assigns 1 to gra[1], while it should
assign 0 to it. As a consequence, after visiting the critical section once, Client 1
can never again pass line 8. This is clearly unacceptable, so it is good that SPIN
detects it. (Needless to say, the termination branch on line 6 is necessary for
detecting the bug. This further illustrates the benefit of termination branches.)

The problem is that the error was not detected while the skip statement on
line 7 was commented out. This illustrates another issue that we call unprevented
request. In the absence of the skip statement, the system does not fail to serve the
second, third, and later requests by Client 1, for the vacuous reason that Client 1
does not make such requests. It cannot, because it cannot pass line 8. So the
system is formally correct, although it is intuitively unacceptable. Unprevented
request means that a client must be able to freely choose whether to issue a
request, without being prevented by the rest of the system.

As a matter of fact, if eventual access is expressed as �(P1 = 10 → �(P1 =
11)), then it holds vacuously also in the presence of the skip statement. Then
the model fails unprevented request because of line 8. Therefore, to enforce
unprevented request, we must express eventual access as �(P1 = 8 → �(P1 =
11)). This works in the presence of the skip statement. In its absence it does
not work, because then SPIN treats lines 7 and 8 as the same state, making it
possible for the client to continue from line 8 by executing line 6, contradicting
the idea that it had requested.

The skip statement is thus necessary to enforce unprevented request. The
analogue of the skip statement in Fig. 3(Right) is the τ -transition from state 1
to state 2. It is this transition that expresses in the model that the client has
decided to seek access, and the next transition simply communicates this request
to the rest of the system. The first cannot be blocked by the system even if the
latter can be.

After fixing the bug on line 20, the model with line 8 commented out fails and
with line 8 present passes verification with SPIN, independently of the presence
or absence of the skip statement.

Unfortunately, defining eventual access as �(P1 = 8 → �(P1 = 11)) intro-
duces a problem. We will discuss it in the next section.

5 AG EF Intended Termination

Consider Fig. 4 after fixing line 20, without the comment symbols on lines 7
and 8, and with eventual access defined as �(P1 = 8 → �(P1 = 11)). In the
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absence of fairness assumptions, the system has the execution where Client 1
stays on line 8 or 9 while Client 0 repeatedly visits the critical section. The server
repeatedly serves Client 0, because it is not aware of the request by Client 1
before the latter has executed line 9. We see that to verify the formula, it is
necessary to assume weak fairness, because otherwise the formula does not hold.

On the other hand, this model did pass verification in the previous section,
although weak fairness was not used. This is because eventual access was not
checked. Instead, it was checked that the model does not deadlock when the
clients have not executed their termination branches.

This illustrates that catching errors as unexpected deadlocks is not sensitive
to the nuances of the formalization of eventual access as an LTLX formula. To the
extent that it works, it works without any formalization. It suffices to specify the
states where each process is allowed to be when the system terminates. This is
often easy, because the default conventions of SPIN and Promela do much of the
job. (In Fig. 4 we added end: on line 16 for this purpose.) This method specifies
progress in general (to the extent it specifies it), instead of specifying one or more
particular progress properties. This is an advantage for inexperienced users of
LTLX. On the other hand, as modification D in Sect. 2 demonstrates, not all
important progress errors can be caught as unexpected deadlocks.

In [7,13], a theory of fair testing was developed that facilitates an inter-
mediate approach between detecting errors as unintended deadlocks and with
standard LTLX-based methods. If it is possible to reach a state from which a
desired action d is not reachable, then both LTLX and fair testing declare that
progress was violated. If all paths eventually lead to d, then both declare that
progress holds. In the remaining case, there is an infinite path where d does not
occur, but repeatedly an alternative path is available that leads to the occur-
rence of d. Fair testing declares this as progress and LTLX as non-progress. In
terms of the Computation Tree Logic, AG AF d expresses progress in the LTLX

sense while AG EF d expresses progress in the fair testing sense.
Fair testing does not need explicit formulation of fairness assumptions. It

gives a weaker notion of progress than LTLX, but it is much better than nothing.
Checking it from the state space is technically simpler than that of LTLX. It is
exceptionally well suitable to be used together with stubborn set/partial order
methods for alleviating the state explosion problem [12].

A generic progress requirement can be stated as in all futures always, there is
a future where eventually all processes are in a legal termination state. This idea
reduces the catching of progress errors to catching terminal strong components
of the state space where some process is never in a legal termination state. If
all such components happen to be deadlocks, we are back in catching errors as
unexpected deadlocks.

6 Conclusions

We argued that a verification model should exhibit unforced request and unpre-
vented request, and this can be obtained by adding termination branches and
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commitment to request similarly to Fig. 3(Right) and lines 6 and 7 in Fig. 4.
Doing so widens the set of progress errors that are caught by catching unex-
pected deadlocks. This is an advantage, because this method does not need
formulating fairness assumptions, and, being technically simple, deadlock detec-
tion is available in many tools. Furthermore, the method is compatible with the
stubborn set method of alleviating state explosion, as explained in [12].

On the other hand, the method cannot catch all progress errors that can
be caught with the standard method based on LTLX and fairness assumptions.
Our method is useful when the standard method is considered too complicated.
Furthermore, our observations on the importance of unforced request and unpre-
vented request are worth considering also in the LTLX context.

We observed that such modelling style is rare. We do not interpret this as a
sign of it not being worth using, but as a sign of its benefits not being known,
although the idea has been in the literature for decades [10].
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Abstract. In component based design of embedded software, virtual
integration verifies hierarchical decomposition of components and con-
tracts. In this paper we present a virtual integration analysis that is
based on the Kind2 state-of-the-art model checker. Our method focuses
on pattern-based requirements with automata-based semantics. We pro-
pose the Simplified Universal Pattern that is used in the BTC Embed-
dedPlatform as a specification language, but other languages may be
used as well. The main contribution is a reduction of virtual integration
to a reachability problem on so-called counter automata that form the
semantics of the pattern language. The counter automata are translated
to the synchronous data flow language Lustre, that serves as input for
Kind2. Kind2 turns out to be quite powerful in proving the safety prop-
erties that result from the reachability problem for the automata. Thus,
it yields a positive sound (but not complete) verification technique that
gives a sufficient condition for virtual integration.

Keywords: Contract-based design · Formal methods
Virtual integration · Model checking · Requirements engineering
Verification

1 Introduction

In component based design, a system is hierarchically decomposed into compo-
nents. Component based design is part of recent modeling languages for embed-
ded systems such as Amalthea1, Autosar2 and Capella3, to name only a few.
Another popular example are dataflow languages such as Matlab Simulink and
Scade.
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Assumption: TRUE
Guarantee: G7 & G8

Assumption: TRUE
Guarantee: G3 & G4 & G5 & G6

Assumption: A2
Guarantee: G2

Assumption: A1
Guarantee: G1

Counter M2
M1

Rate_Transition

i1 o2o1
count

reset

Fig. 1. Running example

Figure 1 shows an imaginary component that is verified in this paper. The
component consists of three sub-components M1, M2 and Counter. The com-
ponent receives a boolean signal i1 and outputs two boolean signals o1 and o2.
The o1 signal is simply a delayed response of the i1 signal. As its name suggests,
the Counter component counts the occurrences of the o1 signal. If the counter
reaches three, the counter is reset and o2 is set to true.

Many development processes are requirement-driven. State-of-the-art indus-
trial specification tools like BTC EmbeddedPlatform4 (BTC EP) [2], SESAMM
Specifier [14] and STIMULUS [17] assist the engineer in specifying high-quality
requirements with unambiguous formal semantics. Pattern languages, such as
RSL [20], SPS [12] or TADL [19] are easy to use formalisms to specify func-
tional behavior. In this work we use the Simplified Universal Pattern (SUP) [6].
The SUP is the single pattern that is used for formalization in current versions
of the BTC EP. Combining requirements-driven development and component
based design leads to contract based design. We specify the components using
Assume/Guarantee Contracts [5]. A contract consists of an assumption that
describes the allowed behavior of the environment in that the component is
going to operate, and the guarantee that describes the allowed behavior of the
component itself in the environment. Having assumptions and guarantees for-
malized, it is possible to do formal reasoning among the contracts. The BTC
EP assists the engineer in the formalization process, providing traceability from
textual to formal requirements and to design and implementation models writ-
ten in C, Simulink or TargetLink [2]. The focus of BTC EP is verification of the
model/code against the formal requirements by formal testing or model check-
ing. Earlier work [1,2,13] already presented a consistency analysis for require-
ments on one level of the design. However, a virtual integration analysis between
requirements or contracts on different hierarchical levels has not yet been pro-
vided. The question is: Do the contracts on a lower level imply satisfaction of
contracts on a higher level? This work presents such an analysis for contracts
formalized with the SUP.

4 https://www.btc-es.de/en/products/btc-embeddedplatform/.

https://www.btc-es.de/en/products/btc-embeddedplatform/
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We can summarize our approach as follows: We represent the SUP semantics
as so-called counter automata that have already been used in [13] for similar
patterns. They can precisely encode the original SUP semantics from BTC EP.
Because the SUP describes temporal properties of discrete time models with
infinite domains, the system specification results in an infinite state transition
system. Since verification results shall hold for system runs of arbitrary length,
unbounded model checking techniques are needed. Kind2 is a state-of-the-art
model checker for verifying safety properties (invariants) of Lustre programs.
We choose Kind2 as a backend in our approach since it combines different tech-
niques, such as k-induction [21] and IC3 [7], that yield results for the unbounded
case as required. The Lustre language makes encoding of the counter automata
quite easy. Kind2 has been successfully applied in the past for verifying require-
ments in form of hand-written observers [8] and for virtual integration with
contracts written by the user in a Lustre dialect [9,11]. In this paper we will
(1) show how to encode counter automata in Lustre and (2) derive an invari-
ant property for the resulting Lustre program that is sufficient to prove virtual
integration.

The paper is structured as follows: In Sect. 2 we introduce the SUP and
present the details of our running example. In Sects. 3 and 4 counter automata
and virtual integration are formally defined. We introduce the Lustre language
briefly in Sect. 5. We explain the translation process in Sect. 6 including experi-
mental results.

2 Simplified Universal Pattern

The Simplified Universal Pattern (SUP) [6] by BTC is a single pattern with
15 parameters. Most of the parameters have default values. In the Embeddedd
Platform a graphical editor is used for formalization that allows the engineer
to fill in only needed parameters; parameters with default values are hidden
from the user. The SUP defines some trigger/action relationship. Usually, the
trigger is some behavior that the system under specification may observe at
its ports and the action some behavior it shall perform in response. There are
three interpretations for the SUP: progress (the trigger is followed by the action),
invariant5 (trigger and action occur at the same time) and ordering (the action is
always preceded by the trigger). In the following, we describe the most common
one, progress, from the view point of an observer. An observer is a component
that runs in parallel to the system, monitors the ports and rises a failure signal
if the specified behavior is violated.

Trigger Phase. The trigger phase is defined by the parameters Trigger Start
Event (TSE), Trigger Condition (TC), Trigger End Event (TEE) and Trigger
Exit Condition (TEC) as well as two time bounds Trigger Min (TMin) and
Trigger Max (TMax). Technically, events are the same as conditions. The term

5 The invariant interpretation is actually a shortcut for the progress interpretation
with default values.
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event is used to highlight the fact that the condition marks begin or end of
a phase. The trigger of the SUP is successfully observed if the TEE occurs
within [TMin, TMax] after TSE and TC holds in between. If the TEC occurs,
the observation cycle is aborted.

Action Phase. The action phase is defined by the parameters Action Start
Event (ASE), Action Condition (AC), Action End Event (AEE), Action Exit
Condition (AEC), Action Min (AMin) and Action Max (AMax) analogous
to the trigger phase. The AEE must occur within [AMin, AMax] after ASE
and AC must hold in between. Otherwise, the observation ends with a failure.
If the AEC occurs, the current observation cycle is aborted and a new one
starts. If the AEE has been observed successfully the current observation
cycle ends successful and a new one starts.

Local Scope. The local scope [LMin, LMax] consisting of two parameters
restricts the time span between the TEE and ASE; if the ASE is observed
too early or too late, the observation fails.

Furthermore, there is an optional global scope parameter that we don’t use here
and three different startup phases and activation modes that change the behavior
of the SUP. Note that an observer for the SUP is a state machine, so in every
observation cycle only the first occurrence of the trigger is noticed. As a default
TSE = TC = TEE, ASE = AC = AEE, TEC = AEC = false, AMin =
AMax = TMin = TMax = LMin = Lmax = 0. In the examples in this paper
we assume default values for the SUP and specify only needed values.

2.1 Running Example

As a running example we use the Rate Transition component from Fig. 1 the
introduction. In the following we will give a textual explanation of the contracts.
The SUP formalization is presented in Table 1. In textual form the assumption
for the whole (top-level) component is

(A1) i1 is true once every 35 ms

and the guarantee

(G1) whenever o1 is true, o2 is true within 160 ms.

The component M1 has some weaker assumption

(A2) i1 is true once every 30 ms to 40 ms.

and the guarantee

(G2) when i1 is true then o1 is true within 10 ms to 20 ms.

The counter and M2 components do not have assumptions. The guarantees for
the counter component are
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Table 1. SUP instances for the running example

ID Trigger Local Scope Action

TSE = TC = TEE [Lmin, Lmax] ASE AC AEE [Amin,Amax]

A1 true [0, 0] true ¬i1 i1 [35 ms, 35 ms]

A2 true [0, 0] true ¬i1 i1 [30 ms, 40 ms]

G1 o1 [0, 160ms] o2 [0, 0]

G2 i1 [10 ms, 20ms] o1 [0, 0]

G3 true [0, 0] count ≥ 0 [0, 0]

G4 o1 ∧ ¬reset [0, 0] count = last(count) + 1 [0, 0]

G5 o1 ∧ reset [0, 0] count = 1 [0, 0]

G6 ¬o1 [0, 0] count = last(count) [0, 0]

G7 count ≥ 3 [0, 5ms] o2 ∧ reset count < 3 [0,∞)

G8 true [0, 0] ¬reset ∨ last(count) ≥ 3 [0, 0]

(G3) count is always positive or zero.
(G4) when o1 is true and reset is false, count is inceremented
(G5) when both o1 and reset are true, count is set to 1
(G6) when o1 is false, count is stable

and the guarantee for M2 is

(G7) when count ≥ 3 then, after at most 5ms, o2 and reset are true until
count < 3 again.

(G8) reset is true only if count ≥ 3 in the last step.

3 Formal Pattern Semantics

We follow the approach in [13] for encoding semantics of pattern instances. A
pattern instance P = P(Q) consists of a pattern P and a parameter substitution
Q that assigns some expression Q(q) over the system variables to every pattern
parameter q. The semantics �P � of a pattern instance is a set of traces over the
system variables.

3.1 Counter Automata

We use so-called counter automata to describe pattern semantics. A counter
automaton representing a pattern instance accepts those system executions,
called traces, that satisfy the pattern semantics.

Definition 1 (Trace). An evolution εX for a variable X is a function εX :
N → Vtype(X) assigning some value Xt from the set of values associated with its
type to the variable X at time t ∈ N.
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A trace over some set X of variables is a function σ : X �→ εX that maps an
evaluation εX to every variable X ∈ X. The set of all traces over X is denoted
by T (X).

We denote the value of some variable X at time t in trace σ by σX(t).
A counter automata is a finite automaton that is equipped with counters.

The transitions are labeled with boolean expressions over the input variables
and counters, called guard, and with actions on the counters. Starting in the
initial state, in every step the guards are evaluated, a transition is taken and
the counter values are incremented, reset to an integer value or left unchanged
according to the transition’s action.

Every pattern P has a corresponding counter automata schema AP. The
automata schema AP is used as a template to construct an observer automa-
ton AP(Q). We derive AP(Q) from AP by applying the substitution Q to the
guards in AP. Technically there is no difference between an observer automa-
ton and an automata schema, except that the observer automaton is defined
over the system variables and the automata schema is defined over the pattern
parameters.

Definition 2 (Counter automaton). A counter automaton over a set X of
variables is a tuple A = 〈S,X,W, I, F, T 〉 with states S, integer counter variables
W distinct from X, initial and failure state I, F ∈ S and a set T of transitions.
A transition 〈s, g, γ, s′〉 ∈ T consists of source and target states s, s′ ∈ S, a
guard g ∈ ExprB(X ∪ W) (a boolean expression over X ∪ W) and a function
γ : W → N ∪ {INC, STABLE}.

A trace σ over X∪W∪ {s} (s 	∈ X∪W is a fresh variable with type(s) = S)
is a run for A if σs(0) = I, σc(0) = 0 for c ∈ W and for all t ∈ N exists
〈s, g, γ, s′〉 ∈ T such that σs(t) = s, σs(t + 1) = s′, σ(t) |= g and σc(t + 1) =⎧
⎪⎨

⎪⎩

γ(c) if γ(c) ∈ N

σc(t) + 1 if γ(c) = INC

σc(t) if γ(c) = STABLE

for c ∈ W. A run is accepting if σs(t) 	= F for

all t ∈ N.
We denote by T (A) = {σ ↓ X | σ is an accepting run for A} all the accepting

runs restricted to the variables in X.

Here, σ(t) |= g denotes satisfaction of g on σ in step t. For the guards we
can allow any expression that is valid in Lustre. As a direct consequence of
using automata for the pattern semantics, the semantics �P(Q)� of some pattern
instance are the traces accepted by its counter automaton, i.e.

�P(Q)� = T (AP(Q)).

In this paper we allow complete and deterministic counter automata only. A
counter automaton is deterministic if the guards of the outgoing transitions of
any state are mutually exclusive, and complete if always at least one outgoing
guard is satisfied. Furthermore, failure states are required to be sinks, meaning
they have a self-loop as the only outgoing transition.
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3.2 Counter Automata for the SUP

The formal semantics [22] that have been kindly provided by BTC Embed-
dedSystems to the author, use automata networks that are very close to counter
automata. Compared to counter automata, these automata

– synchronize with each other by events,
– may perform arbitrary many steps during one global (i.e. system-level) step,

provided that each transition is taken at most once.

Such an automata network can be translated to a single counter automaton by
constructing

1. the product of the automata in the network and
2. the transitive closure of the transitions possible during one global step.

Note that computing the transitive closure is a terminating process in our case,
since in one global step each transition is taken at most once. Because these steps
result in an exponential blow-up of the automaton, we apply standard reduction
techniques known from finite automata such as unifying indistinguishable states
and removing unreachable ones. From the formal definition of the SUP semantics
we derive a single counter automata schema for every combination of interpreta-
tion, activation mode and startup phase. Due to the complexity of the SUP that
has 15 parameters, the resulting automata are still very big. In practice only a
subset of the SUP parameters is used in an instance, e.g. the trigger start and
end events equal the trigger condition. This leads to unreachable states and tran-
sitions that are never enabled in the observer automaton. Therefore we optimize
the automata schema for each pattern instance with respect to the parameters
(formally we replace some pattern instance P(Q) by a pattern instance P′(Q′)
such that �P′(Q′)� = �P(Q)� and |AP′ | ≤ |AP|). The local optimization steps
include:

1. Substitute parameters that are set to 0, true, or false in the guards by their
value.

2. Unify parameters that have the same value
3. Substitute sub-expressions of the form X ≤ q in guards by true, if q is a

parameter and Q(q) = ∞, i.e. q is set to infinity; the same for other inequal-
ities

4. Remove transitions with unsatisfiable guards; we delegate satisfiability check-
ing to the Z3 SMT solver [18]

5. Remove unreachable states based on the results of step 4

As an example, we show in Fig. 2 the resulting automaton for the SUP instance
G1 from Table 1. The engine substituted TC and TEE by TSE, ASE and AC by
AEE, and eliminated all time parameters except LMax. Note that the automaton
in Fig. 2 is still an automata schema. We do not insert the variables o1 and o2
at this point.
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Fig. 2. Counter automaton for guarantee G1; state 0 is the initial and 1 the failure
state.

4 Formalizing Virtual Integration

We adopt the theory of dataflow A/G contracts from [5] as follows: In this
work a contract C = (A,G) consists of assumptions A and guarantees G which
are sets of pattern instances. We specify the semantics in saturated form, i.e.
EC =

⋂
P∈A�P � is the maximal environment and MC = (T (X) \EC)∪

⋂
P∈G�P �

is the maximal implementation of C. The semantics �C� = (EC ,MC) of a contract
describes all implementations MC = {M | M ⊆ MC} and allowed environments
EC = {M | M ⊆ EC} of C in form of trace sets.

When composing components, we simply connect signals with the same name
as seen in the introduction. In the theory of dataflow A/G contracts we can
specify composition and refinement of contracts.

Definition 3 (Contract operations). For contracts C1, C2, the composition
C1 ⊗ C2 is a contract such that

MC1⊗C2 = MC1 ∩ MC2 (1)
EC1⊗C2 = max{M | M ∩ MC2 ⊆ EC1 ∧ M ∩ MC1 ⊆ EC2} (2)

Contract C1 refines C2, written C1 � C2, if MC1 ⊆ MC2 and EC1 ⊇ EC2 .

The idea behind Eq. (1) is that an implementation for the composition C1 ⊗ C2

has to fulfill the guarantees of both C1 and C2. The idea behind Eq. (2) is that
we can allow the weakest environment in that both components can operate,
whereby part of the assumption of C1 is already guaranteed by C2 and vice
versa. Refinement C1 � C2 means that C1 can act as a replacement for C2, hence
the guarantee is stronger and the environment weaker.

For dataflow A/G contracts it is indeed possible to compute the composition
of contracts. In this work, however, we prefer to split virtual integration into
a set of containment relations that are checked separately. This allows better
feedback in case of a failed analysis.

Lemma 1 (Virtual integration). For contracts C0, C1, . . . , Cn refinement C1⊗
· · · ⊗ Cn � C0 is equivalent to

( n⋂

i=1

MCi
⊆ MC0

)
∧

n∧

i=1

((
EC0 ∩

n⋂

j=1,j �=i

MCj

)
⊆ ECi

)
. (VIT)
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Proof. We prove inductively over the number of sub-level contracts that, for
assertions M ⊆ T (X),

( n∧

i=1

((
M ∩

n⋂

j=1,j �=i

MCj

)
⊆ ECi

))

⇐⇒ (M ⊆ EC1⊗···⊗Cn
)

in the theory of dataflow A/G contracts. For n = 1 this follows directly from
Definition 3. Assume we have shown the induction hypothesis for some arbitrary
but fixed n. Then we have:

n+1∧

i=1

((
M ∩

n+1⋂

j=1,j �=i

MCj

)
⊆ ECi

)

⇔
n∧

i=1

((
(M ∩ MCn+1) ∩

n⋂

j=1,j �=i

MCj

)
⊆ ECi

)
∧

((
M ∩

n⋂

j=1

MCj

)
⊆ ECn+1

)

ind. hyp.⇔
(
(M ∩ MCn+1) ⊆ EC1⊗···⊗Cn

)
∧

(
(M ∩ MC1⊗···⊗Cn

) ⊆ ECn+1

)

⇔ M ⊆ max
(
M

∣
∣
∣
(
(M ∩MCn+1)⊆ EC1⊗···⊗Cn

)
∧

(
(M ∩ MC1⊗···⊗Cn

)⊆ ECn+1

))

⇔ M ⊆ EC1⊗···⊗Cn+1

Setting M = EC0 , the VIT condition (VIT) is equivalent to
(
MC1⊗···⊗Cn

⊆ MC0

)
∧

(
EC0 ⊆ EC1⊗···⊗Cn+1

)
.

5 Short Introduction to LUSTRE

Lustre [16] is a synchronous data flow language. In the following we give a short
overview about the key-features of Lustre that are relevant for this publication.

Dataflow and Operators. Variables represent streams of data. Analogous to
our definition of automata traces, the value of a variable X is an evolution
εX : N → Vtype(X) and εX : t �→ Xt. Lustre supports bool, int and real basic
datatypes and user-defined types such as enums. The usual arithmetic, boolean,
and comparison operators are defined and have a component-wise semantics,
that means

εX�Y : t �→ εX(t) � εY (t)

for binary operators � ∈ {+,−, <, . . . }. Furthermore we have the special unary
operator pre that returns the previous value of expression and binary operator →
that replaces the first component of a stream: εX→Y (0) = εX(0), and εpre X(t) =
εX(t − 1), εX→Y (t) = εY (t) for t > 0.

Since Lustre does not have imperative aspects, a control flow does not exist.
In Lustre, statements of the form if P then X else Y have the semantics

εif P then X else Y : t �→
{

εX(t) if εP (t) = true
εY (t) else

.
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1 type s t a t e s 1 = enum {S1 0 , S1 1 , S1 2 , S1 3 } ;
2 node pattern1 (TSE: bool ; Lmax : int ; AEE: bool ) returns ( f a i l : bool ) ;
3 var State : s t a t e s 1 ; c : int ;
4 l et
5 ( State , c ) = (
6 i f (not TSE) then ( S1 3 , 1)
7 else i f ( (AEE and (0 <= Lmax) ) and TSE) then ( S1 3 , 1)
8 else i f ( (not (0 <= Lmax) ) and TSE) then ( S1 1 , 1)
9 else ( S1 2 , 1)

10 ) −> (
11 i f pre ( State ) = S1 0 then
12 i f (not TSE) then ( S1 3 , 1)
13 else i f ( (AEE and (0 <= Lmax) ) and TSE) then ( S1 3 , 1)
14 else i f ( (not (0 <= Lmax) ) and TSE) then ( S1 1 , 1)
15 else ( S1 2 , 1)
16 else i f pre ( State ) = S1 1 then ( S1 1 , 1)
17 else i f pre ( State ) = S1 2 then
18 i f (not ( (pre c ) <= Lmax) ) then ( S1 1 , 1)
19 else i f ( ( ( not TSE) and AEE) and ( (pre c ) <= Lmax) )
20 then ( S1 3 , 1)
21 else i f ( (AEE and TSE) and ( (pre c ) <= Lmax) ) then
22 ( S1 2 , 1)
23 else ( S1 2 , ( (pre c ) + 1) )
24 else i f (not TSE) then ( S1 3 , 1)
25 else i f ( (AEE and (0 <= Lmax) ) and TSE) then ( S1 3 , 1)
26 else i f ( (not (0 <= Lmax) ) and TSE) then ( S1 1 , 1)
27 else ( S1 2 , 1)
28 ) ;
29 f a i l = f a l s e or ( State = S1 1 ) ;
30 te l ;

Listing 1.1. Lustre node for the SUP used in assertion G1

Nodes. A Lustre specification consists of a collection of nodes. From the con-
ceptual perspective, a node encapsulates some behavior as a reusable unit. From
the logical perspective, a node definition is a function definition that describes
the relation between the inputs and the output types of a node as a set of
equations.

6 Translation Schema

After the optimization (see Sect. 3.2) we translate the optimized automata to
Lustre nodes. The translation of the automaton if Fig. 2 is shown in List-
ing 1.1. Finally we generate the code for the main node that instantiates all
the assertions. An excerpt of the code for our running example is provided in
Listing 1.2. For every assertion P a variable failP is introduced that becomes
true upon violation of P . The variable GOAL that is returned by the main node,
encodes the virtual integration condition from Lemma 1. We check every part
of the conjunction in a separate run of the model checker. If for all parts GOAL
can be proven to be an invariant, virtual integration holds.

6.1 From Counter Automata to LUSTRE

Since the translation from counter automata to Lustre is quite straight forward,
we will not present a formal translation schema here. Instead we explain the
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1 node main ( count : int ; i 1 : bool ; o1 : bool ; o2 : bool ; r e s e t : bool )
2 returns (GOAL: bool ) ;
3 var f a i lA1 , fa i lA2 , fa i lG1 , (∗ . . . ∗) , f a i lG8 : bool ;
4 l et
5 fa i lG1 = pattern1 ( (∗ guarantee G1 ∗)
6 o1 (∗ TSE: o1 ∗) , 32 (∗ Lmax: 160ms ∗) ,
7 o2 (∗ AEE: o2 ∗) ) ;
8 (∗ . . . ∗)
9 (∗ same for fai lA1 , fai lA2 , fai lG2 , . . . , fa i lG8 ∗)

10
11 GOAL = (( f a i lA2 or not f a i lG2 ) and (not f a i lG3 )
12 and (not f a i lG4 ) and (not f a i lG5 ) and (not f a i lG6 )
13 and (not f a i lG7 ) and (not f a i lG8 ) ) => ( f a i lA1 or not f a i lG1 ) ;
14 −−%MAIN ;
15 −−%PROPERTY GOAL ;
16 te l ;

Listing 1.2. Main Lustre node

translation using the automata schema for guarantee G1, shown in Fig. 2. The
code is shown in Listing 1.1.

The node has an input variable for every parameter of the (optimized) pat-
tern, and returns the variable fail that is true if the counter automaton is in
the failure state. In line 3 a local variable State for the state and an integer
variable for the counter c are declared. The type of the State variable is an
enum declared in line 1, that has a literal for every state. Note that the State
and counter variables look ahead one step: They contain state and counter values
in the next instead of the current step. This saves us one unrolling step in the
analysis. As a consequence we have to encode the first step (lines 6–9) separately
from the other steps (lines 11–27).

The first step is encoded as an if-then-else clause with one branch for each
outgoing transition. For example, line 6 encodes the transition from state 0 to
state 3 with guard ¬TSE. The tuple (S1 3, 1) encodes the next state (S1 3 is
the enum literal for state 3) and the new value for c. Here, the translation engine
does some optimization: To keep the value range of c as small as possible, we
assign the value 1 instead of 0 (as required by Definition 2) to c. We can safely do
this, since the value of c is not relevant in state 3. On every path of transitions
starting in state 3, c is reset before it is used in a guard.

The encoding of the following steps is a nested if-then-else clause, where the
outer if ranges over the current state (the value of pre State) and the inner
if over the outgoing transitions of each state. For example, in lines 12–15 the
outgoing transitions of state 0 are handled and in the last branch, lines 24–27,
the outgoing transitions for state 3. Again, we alter the next value of the counter
if it is not relevant in the target state, e.g. in line 20 the new value for c is 1
instead of pre c.

In the initial version of this paper also upper and lower bounds for the counter
variables have been calculated during the translation. Experiments showed that
providing this information to Kind2 does not influence the results. It seems that
Kind2 finds those bounds itself during invariant generation.
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Lemma 2 (Correctness of translation). For some run σ of a pattern’s
automata schema AP and data stream ε for the corresponding Lustre node
nodeP with εq = σq for each parameter q of the pattern is, for all t ∈ N,
εfail(t) = true if σs(t + 1) = F .

Since we have not presented the translation formally, we will not give the proof
here. It follows quite straight forward from the translation.

Fig. 3. Calling Kind2

6.2 Checking the VIT Condition

We compose the observers for all pattern instances in a specification, as shown
in Fig. 3. An excerpt of the resulting code for the running example is shown
in Listing 1.2. For reasons of space we replaced some parts by a comment
(*...*). It has an input variable for every system variable (line 1). For every
pattern instance P = P(Q) we introduce some boolean variable failP =
nodeP(Q(qP1), . . . ,Q(qPoP)) (line 3 in Listing 1.2). For example, in line 5 of List-
ing 1.2 we instantiate the pattern node pattern1 from Listing 1.1 that we
explained in the last section. We choose a step size of 5 ms, so the node param-
eters are TSE = o1, Lmax = 32 and AEE = o2. Analogous code follows for the
remaining fail variables. The step size of 5ms is chosen because it is the largest
one that exactly divides all the time constants into integers. As the experimental
results in Sect. 6.3 show, a smaller step size would increase the analysis effort.

In order to prove refinement we have to check the set-inclusions
⋂n

i=1 MCi
⊆

MC0 and EC0 ∩
⋂

j �=i MCj
⊆ ECi

according to Lemma 1. The set expressions
reduce to union, intersection and complement of pattern semantics. We translate
them to boolean expressions over the fail variables:

Form(�P �) := ¬failP
Form(F1 ∪ F2) := Form(F1) ∨ Form(F2)
Form(F1 ∩ F2) := Form(F1) ∧ Form(F2)

Form(T (X) \ F ) := ¬Form(F )

where failP is the return value of nodeP(Q(qP1), . . . ,Q(qPoP)).
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Lemma 3. For every trace εX ∈ T (X) and F ⊆ T (X) such that Form(F ) is
defined, exists t ∈ N such that

∀t′ ≥ t : εForm(F )(t′) ⇔ εX ∈ F.

Proof. The basic case F = �P � follows from Lemma 2 together with the fact that
we derive AP(Q) from AP by substitution of the parameters and failure states of
AP are sinks.

For the case F = F1 ∪F2 (and F1 ∩F2 analogously): By induction hypothesis
there exist ti, i ∈ {1, 2} such that ∀t′ ≥ ti : εForm(Fi)(t

′) ⇔ εX ∈ Fi. The lemma
holds with t = max{t1, t2}.

For F = T (X) \ F we have εX ∈ T (X) \ F ⇔ ¬(εX ∈ F ) ⇔ ¬εForm(F )(t′) ⇔
ε¬Form(F )(t′).

Corollary 1. If on the parallel composition failP := nodeP(Q) for all the pat-
tern instances P = P(Q) in contracts C0, . . . , Cn

– globally Form(
⋂n

i=1 MCi
) ⇒ Form(MC0) and

– globally Form(EC0 ∩
⋂

j �=i MCj
) ⇒ Form(ECi

) with i, j ranging from 1 to n

holds, then refinement C1 ⊗ · · · ⊗ Cn � C0 holds.

Proof. This is a consequence of Lemmas 1 and 3.

Example 1. Listing 1.2, lines 11–13, shows the Lustre code for

Form((�A2� ∪ �G2�) ∩ (�G3� ∩ �G4� ∩ �G5� ∩ �G6�) ∩ (�G7� ∩ �G8�))

⇒ Form(�A1� ∪ �G1�))

which checks if the guarantee G1 of the top-level contract holds.

Note that Lemma 3 holds only in one direction, so the virtual integration analysis
using the corollary is sound, but incomplete.

6.3 Experimental Results

For the running example, checking virtual integration results in two Lustre pro-
grams to be verified, one that verifies satisfaction of the assumption A2 for the
sub-level component M1, and one that verifies satisfaction of the top-level guar-
antee G1. Running on a Linux PC with Intel Core i5-3210M CPU @2.50 GHz,
Kind2 version 1.1.0 with Z3 4.6.0 as SMT solver backend can prove both in
under 1 min.

To give an idea how our method scales, we run some simple experiments
with a growing number of requirements and varying time parameters. In the
following we denote by p

t−→ q an SUP instance with the following parameters:
TSE = TEE = TC = p, ASE = AEE = AC = q, Lmax = t steps, Tmin =
Tmax = Amin = Amax = Lmin = 0. We prove the refinement

(∅, {P0

�m
n �−−−→ P1, P1

�m
n �−−−→ P2, . . . , Pn−1

�m
n �−−−→ Pn}) � (∅, {P0

m−→ Pn})
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(1) with m = 20 and n = 2, 3, 4, . . . , 10 and (2) with n = 2 and m =
0, 4, 8, . . . , 40. Here P0, . . . , Pn are boolean system variables. The tests have been
run with the same setup as above. Roughly speaking, Kind2 unrolls the transi-
tion system until a k-inductive invariant is found. The empirical results in Fig. 4
suggest that the unrolling depth grows with the maximum time bound (in steps)
in the specification.

Fig. 4. Detailed results. Left: n = 2 and varrying m, right: m = 20 and varying n.
Box-and-whisker plots show solver run time, the dashed line the unrolling depth.

7 Conclusion and Related Work

In this work we presented an approach for formal verification of virtual integra-
tion using the state-of-the art model checker Kind2. Kind2 has been used in the
past in different contexts, e.g. the verification of Simulink models [8]. It turns out
that Kind2 is also quite powerful in proving virtual integration. In [11] Kind
(the predecessor of Kind2) is used in a virtual integration analysis for AADL
models, and in [9] the Lustre language itself is extended with a notion of con-
tracts in order to facilitate compositional verification of Lustre programs. In
both cases assertions are written by the end user in a Lustre dialect instead of a
pattern language that abstracts from the more complex mathematical notation.

We focus on contracts formalized with the SUP in order to integrate with
the BTC EmbeddedPlatform, but other pattern languages are possible as well,
as long as the semantics can be expressed as counter automata. As shown in [1],
most of the SPS patterns can be expressed with the SUP, so it is also possible
to define counter automata schemes for them. Automala-like process networks
are also verified in [3,4]. Here, the authors present a dedicated algorithm for
invariant generation with quite impressing results, that may also be used for
proving safety properties. It is not clear, however, if the techniques can be applied
to the observer automata used in this work. The counter automata here are
synchronous and the interactions, opposed to the presentation in [3,4], purely
relies on data. Instead of using a specialized proof system, our approach relies
on general purpose methods. In most of our experiments, including the one
presented in this paper, Kind2 proves virtual integration by a combination of
invariant generation and k-induction.
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State of practice virtual integration testing often uses simulation instead
of modelchecking. Although simulation-based approaches (e.g. [17]) may scale
better, they can only produce counter examples but do not give a formal proof.
In other words, simulation, in opposite to our approach, does not give a guarantee
that all possible violations of the top level contract are found.

Virtual integration for pattern-based contracts using model checking has
already been investigated earlier in [15] based on UPPAAL. However, in [15]
only (boolean) events and time constants are allowed as pattern parameters,
whereas our approach supports integer band real typed system variables. The
OCRA tool [10] also implements a virtual integration analysis that is somewhat
closer to our approach. The contract theory behind OCRA is quite similar to
the one from [5] that we use in this work. The main difference is that the Oth-
ello language that is used for describing contracts in OCRA is more close to
LTL extended to numerical data types. OCRA uses the nuXmv model checker
as backend and seems not to use k-induction. There is no direct translation
between the SUP and Othello and a quantitative comparison of our approach to
OCRA is future work.
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Abstract. In this paper, we present the application of our active learn-
ing algorithm for Systems of Procedural Automata (SPAs) for inferring
Document Type Definitions (DTDs) via testing of corresponding docu-
ment validators. The point of this specification mining approach is to
reveal unknown (lost or hidden) syntactic document constraints that
are automatically imposed by document validators in order to support
document writers or to validate whether a certain validator implementa-
tion does indeed satisfy its specification. This is particularly interesting
in the context of today’s General Data Protection Regulation (GDPR)
as their violation might lead to substantial penalties. The practicality
of this approach is supported by the fact that for inferred complex
DTDs, context-free model checking may be used to automatically vali-
date whether business-critical rules are enforced by a validator and there-
fore automatically prohibited by a corresponding documentation process
once and for all.

Keywords: Active automata learning
System of procedural automata · Context-free languages
Document type definitions

1 Introduction

Data integrity is an important aspect of today’s software systems. Often, this
aspect is only considered from a technical point of view: data integrity should
be established in order to guarantee the correct execution of a program. With
the ever-growing impact of digitalization on the everyday life, “data” emerges
more and more as a political and social issue as well. A prominent example for
this effect can be seen in the current enacting of the General Data Protection
Regulation (GDPR) [6]. Amongst other, this regulation requires companies that
work with user-centric data, to be able to precisely specify, which data is stored,
for how long it is stored and for what purpose it is stored. Failing to do so and not
confirming to these regulations will result in legal notices causing huge monetary
and often prestigious damage, thus making this is a highly critical issue for the
industry.
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A powerful means to address this problem is to enforce constraints at the
data-storage or data-transmission level, to ensure the documentation required
by GDPR. A popular format for this regard is the eXtensible Markup Language
(XML), because it is easily parsable by machines but still readable for humans.
XML as a meta-language, however, only enforces generic constraints (opening
tags, closing tags, etc.) and does not allow to specify domain-specific constraints
(e.g. “data-usage must be documented”). This either needs to be checked by
some custom validation logic or by using one of the many format specifications
available (e.g. XML Schema Definitions (XSDs), Document Type Definitions
(DTDs) or RELAX NG). In both cases, having an automated approach for
inferring constraint specifications (in our case DTDs) proves useful:

– if no actual format specification is used, it allows to extract a DTD specifica-
tion and consequently allows to check if the (custom) validation logic works
correctly.

– if an existing validation framework is used, it allows to check (limited to the
capabilities of DTDs) if the expected constraints are correctly implemented
in the chosen framework. Especially with the more complex specifications
languages (XSD), one faces the difficulty to intuitively express the desired
needs.

In this paper, we present the application of our active learning algorithm for
inferring Systems of Procedural Automata (SPAs). We show how our algorithm
and tool of [7] can be applied in practice in order to infer Document Type
Definitions (DTDs) via testing of corresponding document validators. For this
presentation, we take a look at a fictitious e-commerce shop, that is storing
transaction data (e.g. online orders) along with contact information of their
customers. To adhere to GDPR, our shop wants to ensure, that for every contact
information, the purpose and duration (if applicable) of its storage is documented
alongside the data. To further introduce the running example for this showcase
and give a conceptual overview of the learning setup, let us introduce the three
fundamental layers of abstraction we pursuit throughout this paper. These are
shown in Figs. 1, 2 and 3:

The first layer (cf. Fig. 1) shows the target DTD of our running example
as well as an exemplary XML document conforming to the DTD. The DTD
describes the structure of records, that store information about transaction
information and contact information. Each transaction (tInf, e.g. an order in
the shop) needs to reference some sort of external resource (reference) in order
to describe the contents of a transaction. For every transaction, it is furthermore
possible to store additional contact information (cInf, e.g. delivery address)
about persons involved in the transaction. However, for every contact informa-
tion, it is necessary to document the purpose of their storage (purpose): Trans-
actional information (trans) are only relevant to the specific transaction and will
be deleted after the transaction is successfully completed (delDate). Customer-
relationship-management data (crm, e.g. account information) are usually stored
indefinitely, unless the user explicitly asks for their deletion (disclaimer).
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Fig. 1. Document Type Definition (DTD) and a valid example document for our run-
ning example.
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Fig. 2. An context-free grammar (in EBNF form) representing an exemplary procedu-
ral view on the DTD of our running example.

Fig. 3. An SPA representation of the context-free grammar of our running DTD
example.
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Using contact information for advertisement purposes (adv), needs an explicit
agreement from the involved contact (agreement).

The goal of our active mining approach is to extract these characteristics
by testing a corresponding document validator (whose internal checking logic
is not known beforehand) to verify that indeed no document that violates the
required documentation is accepted by the system. Our learning algorithm [7]
infers systems of procedural automata, which are based on context-free gram-
mars (CFGs). Therefore, let us present how we see XML documents and DTDs
as a system of procedures.

The second layer (cf. Fig. 2) shows a context-free grammar that resembles
a procedural view of the DTD of Fig. 1. Our procedural interpretation is as
follows: Each non-terminal corresponds to a procedure that can perform certain
actions which are defined in its corresponding production rules. A procedure may
either perform atomic actions (represented by terminal symbols) or call other
procedures (represented by other non-terminal symbols).

In the case of DTDs, we interpret tags as procedures that can perform actions
corresponding to the allowed content of the tag. On the one hand, these may be
atomic actions, such as specifying attributes or having arbitrary fixed content.
On the other hand, these could be calls to other procedures, which in our case
correspond to nested tags.

When setting up the learning process, one usually has to define an input
alphabet of the system under learning (SUL) which allows to control the gran-
ularity of the inferred model. In our example, we are interested in the inner
structure of tags such as <record> or <purpose>, so we model them as pro-
cedures (non-terminal symbols). For other components, such as the <crm> tag
or the id attribute, we are just interested if they have to be specified inside a
tag or not, so we model them as terminal symbols. It is worth noting, that we
normally speak about abstract words on this level of abstraction. However, with
a concrete input alphabet definition, we can always transform an abstract word
into a concrete word (XML document) and transform between the XML/DTD
representation and the CFG representation. For a complete alphabet definition
of the running example and an exemplary transformation, see Sect. 2.

The third layer (cf. Fig. 3) shows the SPA representation of the context-free
grammar of Fig. 2. An SPA is the formal model, that is returned by our learning
algorithm. For each non-terminal of the grammar, there exists an independent
DFA that accepts the language of right-hand sides of the production rules of
the corresponding non-terminal. It is easy to see, how one can construct a CFG
from an SPA and vice versa.

For inferring a context-free system by means of an SPA, our learning algo-
rithm requires the entry points and exit points of a procedure to be observable.
In the general case, this requires some sort of additional instrumentation of the
system under learning. For XML documents (or tag languages in general) this
necessary information is naturally integrated into its lexical structure: For each
procedure (tag) the entry point (opening tag) and exit point (closing tag) is
already given. As a result, no additional work or instrumentation is required,
which makes DTD inference a very well suited scenario for our algorithm.
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For the inference process, we especially focus on the syntactical structure
of XML documents and their description via DTDs and (to a further extent)
context-free grammars. The practicality of this approach is supported by the
fact that for our inferred complex DTDs, context-free model checking [5] may be
used to automatically validate whether business-critical rules are enforced by a
validator and therefore automatically prohibited by a corresponding documen-
tation process once and for all.

Outline. We continue in Sect. 2 with introducing the results of related fields
of research and preliminary terminology/concepts. Section 3 presents and sum-
marizes the main concepts of our active learning algorithm of [7]: Systems of
Procedural Automata and the key concepts that allow for learning these sys-
tems. Section 4 showcases the learning setup and the first steps of our algorithm
for the e-commerce example presented above. Section 5 concludes the paper and
gives an outlook on further concepts we plan to investigate in the future.

2 Preliminaries and Related Work

Specification Mining (as a sub category of the broader field of Data Mining)
describes the process of analyzing system traces in order to determine patterns
and establishing a specification of some sort to describe the system’s behavior.
There has been research particularly addressing the inference of DTDs from
XML documents [13]. However, many data-mining approaches work in a passive
fashion, meaning only a fixed set of traces is used for inferring models. As a
result, the quality of the inferred specifications highly depends on the quality of
the training set. To overcome this issue, our approach follows concepts of the
field of active automata learning (AAL).

Many AAL algorithms integrate into the minimal adequate teacher (MAT)
framework proposed by Angluin [4]. Key to this framework is the existence of
a teacher that is able to answer membership queries, i.e. questions, whether
a word is a member of the target language, and equivalence queries, i.e. ques-
tions, whether a tentative hypothesis exactly recognizes the target language. The
process of inferring a (regular) language is then given by discovering the equiv-
alence classes of the Myhill-Nerode congruence [14] for the target language. We
expect the reader to be familiar with the general process and formalities of active
automata learning. For a thorough introduction (to the regular case) see e.g. [15]
or [10, Chap. 8].

In the context of DTD mining, words of the target language are simply
XML documents and the membership question can be answered by checking
if a particular XML document is accepted by a validator. Equivalence queries
then check for XML documents that are accepted by the hypothesis but not by
the system under learning (or vice versa). However, regular languages are not
powerful enough to capture the key characteristics of XML documents, which
inherently support (potentially infinite) recursive nesting of tags. DTDs exhibit
a very similar structure to context-free grammars (which has been exploited in
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the past [12]), making context-free languages a promising abstraction level for
XML documents and DTDs. Angluin herself already reasoned about the infer-
ence of context-free languages [4], but her extensions required for answering e.g.
membership queries have – at least to the knowledge of the authors – prevented
any practical application.

A particularly fruitful contribution was made by Alur et al. who proposed
the idea of visibly pushdown languages [2,3], a subset of context-free languages.
The main concept of these languages is that the stack operations of the corre-
sponding visibly pushdown automaton (VPA) are bound to the observation of
certain symbols. The characterizations given by Alur et al. have been used by
Kumar et al. [11] and Isberner [9, Chap. 6] to formulate learning algorithms for
visibly pushdown languages, requiring only classic membership queries.

The idea of having special input symbols with special semantics is simi-
lar to our required instrumentation of making entry points and exit points of
procedures observable. Indeed, one can interpret XML documents as a special
kind of visibly pushdown language. However, our algorithm not only shows bet-
ter performance compared to the general-purpose VPL approach [7], but also
infers models/specifications that directly correspond to the originating context-
free grammar. As discussed in the previous section, the knowledge about the
inferred context-free grammar in combination with the specific input alphabet
definition allows to directly extract the key properties of the originating DTD.

In the following, we partition the input alphabet to allow for a better distinc-
tion of atomic and procedural (entry and exit) actions. For the learning process,
we define Σ̂ = (Σc, Σi, Σr) as the input alphabet, where Σc denotes the call
alphabet, Σi denotes the internal alphabet and Σr denotes the return alphabet.
For the running example of Fig. 2 the partition is as follows:

– Σc = {RECORDS, RECORD, PURPOSE, CINF}
– Σi = {id, type, date, reference, tinf, trans, crm, adv, delDate,
disclaimer, agreement, pcdata}

– Σr = {R}
Note, that on the abstract language level, we only need a single return symbol.

Transforming an abstract word with explicit entry and exit points into a valid
XML document can be ensured by using a (context-aware) symbol mapper.
For example, the abstract word RECORDS RECORD date tInf reference R R
(where we choose arbitrary content for the terminal symbols date, etc.) can be
transformed into the following XML document:

<records >

<record >

<date>...</date>

<tInf>...</tInf>

<reference >...</reference >

</record >

</records >

Listing 1.1. An XML document transformed from the abstract word RECORDS RECORD

date tInf reference R R.
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Fig. 4. Our active learning loop for the inference of DTDs.

With this transformation step, we can now show in Fig. 4 the overall configura-
tion of our learning setup for inferring (black-box) DTDs.

The transformed queries of our learning algorithm resemble XML documents,
thus the membership queries can be answered by the document validator we
want to test (➊). Its response (acceptance, rejection) is directly interpreted as
the answer to the query (➋). Refinement steps (➌, ➍) by means of equivalence
queries can be realized via (context-free) model-based testing. However, this
topic is beyond the scope of this paper – for our example in Sect. 4 we used a
set of manually constructed checks. Ultimately, the learning algorithm returns
a hypothesis in form of an SPA (➎), which can directly be used to construct a
DTD specification for the documents accepted by the tested document validator
(➏). Either models may be used for further context-free model checking [5] (➐).

3 Learning Systems of Procedural Automata

In the following subsections we report from [7], the key concepts of our approach:
the orchestration of regular systems to obtain a procedural system and how to
learn the individual regular systems and the overall procedural system. Proce-
dural automata are the core components of our notion of SPAs and are defined
as follows:

Definition 1 (Procedural Automaton). Let Σ̂ = (Σc, Σi, {R}) be an input
alphabet and cj ∈ Σc denote the j-th procedure (for an arbitrary but fixed order,
with j ∈ {1, ..., |Σc|}). A procedural automaton for procedure cj over Σ̂ is a
deterministic finite automaton P j = (Qj , qj

0, δ
j , Qj

F ), where

– Qj denotes the finite, non-empty set of states,
– qj

0 ∈ Qj denotes the initial state,
– δj : Qj × (Σc ∪ Σi) → Qj denotes the transition function, and
– Qj

F ⊆ Qj denotes the set of accepting states.
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Procedural automata resemble regular DFAs over the joined alphabet of call
symbols and internal symbols. Intuitively, they represent the production rules of
a non-terminal and the accepted language of a procedural automaton coincides
with the language of right-hand sides of the production rules.

A system of procedural automata is then given by the set {P 1, ..., P |Σc|}. An
example for such a system of procedural automata is given by the four DFAs in
Fig. 3. SPAs are fully characterized by their internal procedures and therefore,
the process of learning SPAs essentially consists of inferring each of the individual
procedures. We capitalize on this circumstance by delegating the inference of the
procedures to existing learning algorithms for regular systems. Thus, the main
task for the learning algorithm of an SPA is managing the learning algorithms of
the procedures and serving as a mediator for communication with the (global)
learning environment.

3.1 Global and Local Queries

Key to our approach is a translation layer that bridges between the view of the
entire system and the local view concerning the individual procedural automata:
Local queries of procedural automata are expanded to global queries of the SUL,
and global counterexample traces are projected onto local counterexample traces of
the concerned procedural automata. Key to being able to perform these transla-
tions is the maintenance of so-called access-, terminating- and return-sequences.
Intuitively, these sequences store information about how a procedural automa-
ton can be accessed, how a successfully terminating run of a procedure looks
like and how global termination can be achieved after executing a procedure
(accessed by the matching access sequence). Notation-wise we refer to the access-,
terminating- and return sequence of a procedure p as as[p], ts[p], rs[p] respec-
tively. The following two subsections explain the two objectives of the translation
layer, where we begin with the simpler query expansion:

Membership Query Expansion. Membership query expansion proceeds by
symbol-wise processing of the proposed (local) query, which leaves each internal
symbol unchanged and replaces each call symbol with the concatenated sequence
of the call symbol, the corresponding terminating sequence and the return sym-
bol. Afterwards, the access-sequence of the procedure in question is prepended to
the translated query and the corresponding return-sequence is appended as illus-
trated in Fig. 5. By providing the regular learners with specialized membership
oracles that perform this translation steps automatically, no further configura-
tion is necessary as everything is abstracted in the oracle. Technically this is
dealt with by a mapper that expands abstract (local) membership queries to
concrete (global) ones (similar to [1]). The responses for local queries are simply
taken over from the responses of the global queries.

Counterexample Projection. Global counterexamples need to be translated
into local counterexamples in order to allow the regular learner to refine the
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Fig. 5. The expansion of a local query of a procedural automaton p to a global query
of the SUL.

corresponding local hypothesis. Counterexample analysis allows to pin-point a
single input symbol, for which the hypothesis and the SUL transition into two
distinct states. This allows us to identify the procedure that needs refinement
and to translate the isolated trace into a local context. This is again done by
symbol-wise processing, which leaves internal symbols unchanged and whenever
a call (return) symbol is encountered, it removes all following symbols until the
matching return (call) symbol is encountered. See Fig. 6 for illustration. For refin-
ing the concerned hypothesis automaton, we can simply delegate the refinement
step to the corresponding learner using the translated counterexample.

Fig. 6. The projection of a global counterexample with critical input i4 to a local
counterexample for the concerned procedural automaton of c2.

3.2 The Learner

With the concept of query translation, we presented a method that allows to
transfer information between local procedures and the global procedural sys-
tem. Key aspect of this communication is the utilization of access-, terminat-
ing and return sequences. Positive counterexamples (i.e. counterexamples that
are rejected by the tentative hypothesis but are accepted by the system under
learning) play a special role throughout the learning process, because they are
witnesses for a successful run of the SUL. In particular, since we are observ-
ing well-matched words (i.e. words, in which every call symbol has exactly one
matching return symbol), for every procedural call (call symbol) in a positive
counterexample, we can automatically extract:

– a corresponding access sequence (everything up until the call symbol),
– a terminating sequence for the procedure (everything in between the call

symbol and the matching return symbol), and
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– a return sequence for the procedure (everything after the matching return
symbol).

Initially, our learning algorithm has no information about any of the required
sequences. As a consequence, it is also not possible to construct an initial
hypothesis (e.g. a tentative DTD). Instead, an initial (dummy) hypothesis is
constructed, that simply rejects all input words. This ensures that the first coun-
terexample our (global) learning algorithm will receive, will always be a positive
one1 , which gives us access to the required sequences and ensures progress.

Upon receiving a (positive) counterexample, we analyze the counterexam-
ple to extract the required sequences as described above. Generally, we cannot
expect a single counterexample to contain all procedural call symbols at once
and therefore giving us access to the information required for activating all local
learners and reasoning about procedural invocations. We tackle this issue by
introducing the concept of partiality. We keep track of active procedures (i.e.
procedures for which we have the required sequences) in a special alphabet Σact.
For every procedure in Σact we can activate the corresponding learning process
of the individual procedural automaton and every active (sub-)learner can use
Σact∪Σi as its input alphabet. By rejecting words that would traverse undefined
transitions, counterexamples that introduce previously unobserved call symbols
will always be positive, allowing us to activate the local learner for the corre-
sponding procedure. After repeated refinement steps until no further counterex-
amples are found (cf. Fig. 4), our algorithm terminates with an SPA hypothesis
corresponding to the context-free grammar of the target system.

3.3 Correctness and Complexity

Throughout this section we fix the following notation. A canonical SPA is given
by the tuple S = (P 1, ..., P l), such that each P j is a canonical automaton for
the corresponding procedure cj ∈ Σc. The size of an SPA is the sum of the
individual sizes of the procedures, i.e. the number of their states, so that |S| =
∑l

j=1 |P j | =
∑l

i=j nj = n.
Similar to the original work by Angluin [4], we assume that so-called equiva-

lence queries are available to indicate discrepancies between inferred hypothesis
models and the considered SUL (MAT framework). Our following correctness
and complexity considerations are based on the assumption that the individ-
ual procedural automata are learned using one of the well-known algorithms for
regular inference, which incrementally construct hypotheses requiring at most
nj equivalence queries and kn2

j + nj log2 m membership queries (for procedure
cj ∈ Σc) where m denotes the length of the longest counterexample and k the
input alphabet size. Under these assumptions it is easy to prove:

Theorem 1 (Correctness and termination [7]). Having access to a MAT
teacher for an instrumented context-free language L (e.g. a DTD), our learning

1 We assume that a DTD describes at least a root tag.
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algorithm determines a canonical SPA S = (P 1, ..., P l) for L requiring at most n

equivalence queries and O((
∑l

j=1(|Σi|+|Σc|)n2
j )+n log2 m) membership queries.

4 Example Run of the Algorithm

In order to demonstrate the inner workings of the algorithm and to give a more
visual presentation of the learning process, let us present the first steps of the
algorithm for our running example of Figs. 2 and 3. As presented in Sect. 3.2, the
initial hypothesis of the algorithm is a dummy hypothesis, which rejects all words
– thus we will start this example with handling the first positive counterexample.

Let us assume, the first counterexample that is passed to the refinement step
is ce1 = RECORDS RECORD date tInf reference R R, which – when translated
– corresponds to the XML document in Listing 1.1. One easily verifies that this
document is conforming to the target DTD and thus poses a true counterexam-
ple. From this counterexample we can extract for the procedure RECORDS:

– as[RECORDS] = ε
– ts[RECORDS] = RECORD date tInf reference R
– rs[RECORDS] = ε

and for procedure RECORD:

– as[RECORD] = RECORDS
– ts[RECORD] = date tInf reference
– rs[RECORD] = R.

This information can now be used to start the local learning processes for the
procedural automata of procedures RECORDS and RECORD, because their local
queries can now be embedded into a global context using the access sequences
and return sequences. Furthermore, the set of active procedures Σact is updated
to {RECORDS, RECORD}, because we can now simulate their procedural invoca-
tion using the corresponding terminating sequence. The resulting intermediate
hypothesis for the SPA is shown in Fig. 7.

As one can see, there exist two procedural automata (one for each activated
procedure) and both accept their respective (abstracted) terminating sequence
that was extracted from the counterexample. However, one can also see their
hypothetical properties: The RECORD procedure currently accepts words that
may have multiple occurrences of the date symbol. These errors are subject to
further refinements triggered by negative counterexamples, i.e. words which are
accepted by the SPA, but whose translated XML document is not valid according
to the (unknown) DTD.

But to focus on the aspect of discovering new procedures and extending
existing knowledge, let us assume we receive the following positive counterex-
ample for our next refinement step: ce2 = RECORDS RECORD date CINF type R
PURPOSE trans delDate R R R. Since the SPA rejects any words that contain
unobserved procedures, this is indeed a valid counterexample again. Similar to
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Fig. 7. SPA hypothesis after the first counterexample ce1.

the first refinement step, we analyze the counterexample for unknown procedures
and thereby detect the procedures PURPOSE and CINF and continue to extract
the required sequences and adding both procedures to Σact.

On the one hand, we can now start the (local) learning algorithms for the
newly discovered procedures. On the other hand, the existing learners of RECORDS
and RECORD can now pose membership queries containing invocations of the new
procedures. This is realized by a dynamic extension of the (local) input alphabet
of the learner and constitutes one of the core ideas of our algorithm. The resulting
hypothesis of the SPA after this second refinement step is shown in Fig. 8.

As one can see, all local learners are activated due to knowledge about the
access sequences of the corresponding procedures. Similar to the first counterex-
ample, the initial hypotheses for the PURPOSE and CINF procedure only accept
the respective run extracted from the counterexample. However, for the hypoth-
esis of RECORD one can see, that the extension of the input alphabet lead to
new hypothesis states, that now describe the (tentative) behavior of the RECORD
procedure regarding invocations of PURPOSE and CINF.

From this point on, further equivalence checks may yield positive coun-
terexamples (e.g. the PURPOSE procedure does not accept the valid word crm
disclaimer) or negative counterexamples (e.g. the CINF procedure contains
accepting runs with multiple occurrences of the type attribute). Subsequent
refinement steps eventually lead to the hypothesis of the SPA shown in Fig. 3.
From this hypothesis, one can easily construct the corresponding context-free
grammar shown in Fig. 2, by performing a DFA-to-regular expression transfor-
mation. In combination with the chosen alphabet definition that was used for
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Fig. 8. SPA hypothesis after the second counterexample ce2.

the active learning process (e.g. mapping crm to <crm/>) one can ultimately
construct the originally unknown DTD of Fig. 1.

5 Conclusion and Future Work

In this paper, we have shown how our active learning algorithm for Systems of
Procedural Automata (SPAs) can be employed to infer Document Type Defi-
nitions (DTDs) via testing of corresponding document validators. The point of
this specification mining approach is to reveal unknown (lost or hidden) syntactic
document constraints that are automatically imposed by document validators.
Revealed DTDs are particularly interesting in the context of today’s GDPR as
their violation might lead to substantial penalties. Verifying data integrity (with
special regard to documentation) either by a DTD itself or by being able to
verify business-critical rules for inferred complex DTDs by context-free model
checking [5] suffices to validate whether these rules are enforced by a valida-
tor and therefore automatically prohibited by a corresponding documentation
process once and for all.

Currently, we are investigating how far this approach might reach. In par-
ticular, we are interested to explore which form of integrity checks are covered
by our approach and which may be covered by conceptual extensions, e.g. along
the lines of the learning of register automata [8].
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Abstract. Regression testing is an important activity to prevent the
introduction of regressions into software updates. Learn-based testing
can be used to automatically check new versions of a system for regres-
sions on a system level. This is done by learning a model of the system
and model checking this model for system property violations.

Learning the model of a large system can take an unpractical amount
of time however. In this work we investigate if the concept of adaptive
learning can improve the learning speed of a model in a regression testing
scenario.

We have performed several experiments with this technique on two
systems: ToDoMVC and SSH. We find that there can be a large benefit
to using adaptive learning. In addition we find three main factors that
influence the benefit of adaptive learning. There are however also some
shortcomings to adaptive learning that should be investigated further.

1 Introduction

Successful software systems are often continuously updated throughout their life
cycle [1]. Updates to the system often extend or alter the functionality. These
changes occasionally unintentionally alter the behavior of existing functionality.
This is what we call a regression.

In order to detect regressions, it is important to test from them [2]. Regres-
sions can occur at many different levels of functionality, such as unit or system
level.

In practice, regression testing is mostly performed on unit level. Here each
code unit is tested independently. Unit testing techniques enjoy a lot of popu-
larity, as it has proven to be an efficient way to identify regressions and it can
be automated to test each version of a system [3].

In this work we focus on a testing technique for system level testing called
Learn-Based Testing (LBT) [4]. The LBT testing technique is based on model
checking and capable of identifying different type of regressions than unit testing.
In addition it can also be automated to test each software version for system
level regressions.
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Importance of automated testing. To understand why automated testing is
important for regression testing, it is important to understand the nature of
regression testing. In regression testing there are often only a small number of
regressions to be found compared to the amount of functionality that is being
tested. Therefore, regression testing often requires a big effort to find only a few
regressions. In practice, this means that for many testing techniques, the effort
required to apply them is not considered worth the possible reward.

This is however were automated testing stands out. Another aspect of regres-
sion testing is that it tends to happen periodically. A lot of versions of the system
will all need to be tested for the same regressions. Unit testing can be setup to
take advantage of this fact and automatically test all versions in the same man-
ner. The initial setup of writing all unit tests will still require quite a bit of effort,
but after this it can be used to test each version with minimal manual effort.

Our hypothesis is that LBT has the same advantages as unit testing, but
enables regression testing at the system level. The purpose of this paper is to
investigate the use of LBT in the context of regression testing.

How LBT works. The core concept of LBT is to learn a behavioural model of the
system. Such a model describes how the system reacts to sequences of inputs.
Using such a model the system can then be tested for regressions.

Identifying regressions is done by determining if (the model of) a system
adheres to a set of predefined system properties. This can be performed auto-
matically by giving a set of properties and a model to a model checker such as
LTSmin [5].

Interaction bottleneck. Learning the behavioural model of a system can be per-
formed automatically. A learning algorithm will interact with the system by
performing sequences of actions and observing the outputs. Given a set of input-
output combinations a model hypothesis can be constructed.

However, depending on the size of a system (i.e. the amount of interaction
required) and how fast interaction with the system is, learning a model can take
a significant amount of time. For larger systems the learning time can make the
approach unpractical.

To combat this issue, there is an active area of research on the topic of
reducing the amount of interaction required with the system. There have been
a number of techniques proposed that can be used to reduce the amount of
interaction required, such as better learning algorithms or caching mechanisms.

Adaptive learning. When learning a model in the context of regression testing
however, there is a specific technique that we believe can aid in reducing the
time required to learn a model. We call this technique adaptive learning [6].

When performing regression testing on a system, in all but the first testing
of the system, there is a previous regression test of the same system. In the
previous regression testing of the system, the model of a previous version of the
system was already learned. In most cases, the previous system is very similar to
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the updated system in terms of behavior. Therefore, the models of these systems
will likely also be very similar.

With adaptive learning we want to reuse information about the system
learned during the previous test to speed up the new test. Conceptually this
is done by ‘adapting’ the existing model to the updated system.

Our contribution. There is however little known about the effectiveness of this
technique. Therefore we wanted to study how much benefit can be gained from
using adaptive learning when learning the model of a system in a regression
testing context.

In this work we setup an experiment to determine the benefit of adaptive
learning when learning a system in a regression testing context. We also discuss
several factors we found that influence the benefit of adaptive learning.

We find that in the right situations there can be a large benefit to using
adaptive learning. There are however also still some shortcomings that should
be investigated further.

Outline. In Sect. 2 we first give more background information about the adaptive
learning technique and learning the model of a system in general. In Sect. 3 we
then discuss the experiments we performed with adaptive learning and show
the outcome. We discuss the main factors that influence the benefit of adaptive
learning that we identified in Sect. 4. In the discussion Sect. 5 we discuss the
shortcomings of adaptive learning and the experiments and propose what should
be done to improve upon this work. Finally in Sect. 6 we conclude this work by
summarizing our findings.

2 Background

In this section we explain the technique of adaptive learning. Before that we
introduce the reader with the concept of automatically learning a behavioral
model of a system called active automata learning.

2.1 Active Automata Learning

In active automata learning, a learning algorithm is given a set of actions it can
perform and asked to produce a model that describes the behaviour of a system
[7]. It does this by interacting with the system through the set of actions it has
been given and observing the outputs. Based on this interaction it will try to
determine what states there are in the system and what the result is of applying
each action in each state. With this information it will then construct a model
hypothesis.

The difficulty lies in determining if all states have been identified. The learner
could try all infinite sequences of actions, but this does not scale very well.
Therefore the learning algorithm is designed to interact with the system until
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it has found a consistent set of observations and then produce a minimal model
hypothesis.

To determine if the learner has identified all possible states, the model
hypothesis is then given to a so called teacher. The teacher will determine if
the hypothesis is correct or not. If the hypothesis is not correct, it will return
its findings to the learner so the learner can improve the model.

There are different ways to implement the learner and the teacher. These
different implementations influence the benefit that can be gained from using
adaptive learning.

Learning Algorithms. In general the learning algorithms work by constructing
an observation table while interacting with the system. The rows of an obser-
vation table are (possible) access sequences to the different states of the system
that have been discovered. The columns are separating sequences that are used
to distinguish states from each other.

The learner will add access and/or separating sequences to the table when
it finds inconsistent observations. When the observations in the table are con-
sidered consistent, the learner will construct a model hypothesis. If the learner
receives a counterexample back from the teacher it will add this observation to
the table and extend the observation table to make it consistent for all observa-
tions.

When and how separating sequences are added to the observation table
depends on the specific learner implementation. We look at two implementa-
tions: L* and R&S.

– The idea of L* [8] is that it will try to learn as much from a counterexample
as possible. It will therefore add all prefixes of the counterexample to the
observation. By doing this it may find more new states and avoid work of
the teacher, but it will require more interaction with the system to fill the
observation table.

– R&S [9] will only add a minimal version of the counterexample to the obser-
vation table. This keeps the observation table small but reduces the chance
of finding additional states from one counter-example.

In addition to observation table based learners, there are also discrimination-
tree based learners. These learners are however not yet compatible with adaptive
learning, as is discussed in the next section.

Teacher Algorithms. The teacher algorithm is given a model hypothesis and
asked to determine if this hypothesis is correct. It does this by attempting to
find a counterexample, a sequence of actions that produces a different result in
the system compared to in the model. It will try a large set of sequences to see if
they are a counterexample. If it cannot find a counterexample, it will determine
that the hypothesis is correct.
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What sequences and how many sequences the teacher will try depends on
the specific implementation. We distinguish between two: the WMethod and
RandomWord method.

– The WMethod [10] is an FSM testing method which requires that an upper
bound on the number of states is known and systematically tries to find a
difference between a hypothesis and a system.

– The RandomWord algorithm will generate a random set of sequences that it
will try out on the system. The amount and length of the sequences is given
by the user. If the output of the system deviates from the system for one of
these sequences, a counterexample is found. Otherwise the model is finalized.

2.2 Adaptive Learning

A learning algorithm will iteratively try to discover all states of a system by
extending the access and separating sequences. Once it is able to distinguish
between all states using those sequences, it can fill the observation table and
construct a model hypothesis.

A large amount of the learning effort goes into discovering all the states of
a system. But in a regression testing scenario, an updated version of a system
will generally still have most of the states of the previous version. Adaptive
learning attempts to reuse knowledge about the states of a system from a previ-
ously learned model. This should reduce the amount of effort that goes into the
discovery of the states.

After a system is changed, we do now know how the states have changed.
So how can we give a learner information about the possible states of a system,
even though these states might not exist anymore? In related work there have
been two techniques proposed to steer the learning using an older model.

The first is the approach called Adaptive Model Checking by Groce et al. [6].
Their approach is based on calculating the access and separating sequences from
an existing model. This information is then added to the observation table before
the learner starts interacting with the system. After this the learner will proceed
as normal by filling the observation table and constructing a model hypothesis.

The second approach is part of the Active Continuous Quality Control app-
roach by Windmüller et al. [11]. The key idea of this approach is to extract the
set of separating sequences from the old observation table and add these to the
table of the new learner, and then proceed as normal.

They have found that this approach works well for the R&S learning algo-
rithm suggested by Rivest and Schapire [9]. In this learning algorithm each coun-
terexample is used to extend the set of separating sequences with exactly one
element. Therefore, this approach in essence reuses all counterexamples found
during the learning of the previous model.

Windmüller et al. also describe why the separating sequences discovered while
learning the previous model can be reused to learn the new model. The separating
sequences are used by a learner to distinguish between states. A learner will
initially start with a minimal set of separating sequences and add sequences
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to this set if it discovers it can otherwise not distinguish between two states.
If a new learner reuses these separating sequences, it will directly be capable
of distinguishing between states. Even if the system has been changed and a
sequence no longer helps to distinguish two states, the new observations will
show this and a correct model will be constructed.

In our experiments we used the second approach, as we believed it to be a
good fit for regression testing. It is easy to store the observation table of each
learner and initialize the new learner with this information.

2.3 The Role of Separating Sequences

In order to understand how much adaptive learning can help to reduce the
interaction needed to learn a model, it is important to better understand the
role of separating sequences when learning a model. In this section we give more
insight into separating sequences.

The role of separating sequences is to steer the observations the learner makes
when learning a model. Initially a learning algorithm does not know what obser-
vations to make. It is only given a set of actions it can perform.

Learning algorithms such as R&S will therefore try to develop a minimal
viable hypothesis. They will perform a minimal amount of interaction such as
performing each action once. If the observations are consistent with each other,
it will immediately produce a model hypothesis, otherwise it will keep adding
observations until they are consistent. If it cannot distinguish possible states
from one another with the observed outputs, the learner will merge these states.

The learner will then ask the teacher for a counterexample. When the learner
receives a counterexample, the learner can learn what sequence of actions dis-
tinguishes two states from one another. It will add this sequence to the set of
separating sequences and perform this sequence in all possible discovered states
to determine if it can distinguish two states from one another.

With each separating sequence, the learner learns what observations it should
make in order to identify more unique states. And the more states it discovers,
the more accurate the model becomes.

Therefore, the set of separating sequences tells the learning algorithm what
sequences it should try in the possible states it has discovered to determine if
the states can be distinguished from one another.

2.4 Example

In this section we attempt to illustrate the background information through an
example of learning a model. In this example we learn a simple system with just
two inputs: a and b. The system is shown in Fig. 1. Performing action a and
receiving output z is denoted as a/z.

We use the R&S learner and RandomWord teacher in this example.
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s0start s1 s2 s3
a/z

b/z

a/z

b/y

a/x

b/y

a/x, b/y

Fig. 1. Model of the system learned in the example

s0start a/z, b/z

Fig. 2. Model hypothesis 1

s0start s1
a/z

b/z

a/z, b/y

Fig. 3. Model hypothesis 2

Iteration 0. Input: The user has to specify a system and alphabet of the system
that should be learned.

Step 1: The first step of the learner is to process the input alphabet. In our
example a and b. Based on this the learner initializes access sequences
← [a,b] and separating sequences ← [].

Step 2: Then the learner starts filling the observation table with each combina-
tion of a access sequence and a separating sequence element. In the first
iteration it makes only two observations: a/z & b/z.

Step 3: Given these observations the learner constructs the model hypothesis
shown in Fig. 2. Based on these observations alone, it can only identify
one unique state.

Iteration 1. Input: The model hypothesis of iteration 0 is processed by a teacher
that attempts to find a counterexample. In our example the teacher finds the
following counterexample sequence: a/z,b/y.

Step 1: The learner starts with processing the given counterexample. From this
counterexample it determines that it should make more observations.
It adds action b to the set of separating sequences, as performing b
separates two possible states from one another.

Step 2: The learner will than fills the observation table with all combinations
of access sequence and separating sequence elements. It identifies that
the sequence of action a transitions the system into a unique state. It
than adds the sequences a,a and a,b as possible access sequences of new
states.

Step 3: The filled observation table produces the hypothesis shown in Fig. 3.
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Iteration 2. Input: The teacher will find another counterexample in the model
hypothesis. This time a/z,a/z,a/x.

Step 1: The learner will process this counterexample and identify that
the sequence a,a can be used to identify inconsistent behavior.
Therefore a,a will be added to the set of separating sequences.

Steps 2 and 3: We skip the details, but the observation table is extended, new
states are identified and new access sequences are added. The
resulting hypothesis matches the model shown in Fig. 1.

Output: This time the teacher does not find a counterexample. Therefore
the learner will return the model hypothesis as the final hypoth-
esis to the user.

Adaptive Learning. Now we learn the same system once again, but this time
we use adaptive learning.

Input: This time the input is the alphabet of the system and a set of separating
sequences from the previous learner: alphabet ← [a,b] and old separating
sequences ← [b,(a,a)].

Step 1: Once again the learner will use the alphabet to initialize the access
sequence. But this time the learner will set the separating sequences to
the old separating sequences.

Step 2: When the learner starts filling the observation table, it needs to makes
a lot more observations. Using these observations however it can iter-
atively identify new unique states and add the corresponding access
sequences while filling the observation table. While filling the observa-
tion table it identifies all possible states in the same iteration.

Step 3: The constructed model hypothesis in the first iteration is equivalent to
the system shown in Fig. 1.

3 Experiments

As stated previously, the main practical bottleneck for using learn-based testing
is the learning time of a model. Our goal is to determine how much adaptive
learning can help to reduce the amount of interaction required to learn a model.
In other words, when learning the model of a system, is it more efficient to adapt
a (similar) model or to learn a model from scratch?

There is no definitive answer to this question. It depends on the situation. For
example, how similar the model to adapt is to the system that is being learnt.

We are however specifically interested to determine the benefit of adaptive
learning in the context of regression testing. Here we assume that iterative ver-
sions of a system will all need to be learnt to be checked for regressions. This
means that for each version of the system that needs to be learnt, the model of
a relatively similar previous version was already learnt and that model can be
adapted. The result is that models to adapt from are often very similar to the
model that is being learnt, which is an optimal scenario for adaptive learning.
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To determine the benefit of adaptive learning in a regression testing context
in practice, we set up two experiments to compare the performance of adaptive
learning to regular learning. In the experiment we learn multiple versions of a
system through both adaptive and regular learning and compare the interaction
required to learn those versions.

In this section we discuss the setup, procedure and results of this experiment.

3.1 The Setup

In this section we discuss how the experiment was setup to produce a good
estimation of the benefit of adaptive learning in a general regression setting
context.

Chosen systems. The specific systems that are learnt have a large impact on the
interaction required to learn its model. Therefore experiments were performed
on two different systems. We chose systems already learnt in related work to
build upon those efforts and show the benefit of adaptive learning. In addition,
the learnt models of these systems are publicly available. This allowed us to
perform the experiments on a simulated version of the real system. We created
a simulator that simulates a system’s behavior based on a given model. This
simulator made it much faster to perform experiments compared to working
with a real system.

The chosen systems are as follows:

– ToDoMVC: ToDoMVC1 is a project that contains a large number of imple-
mentations of a standardized set of functionalities but implemented using
different frameworks/libraries. The main goal is to compare these frame-
works/libraries with one another. Bainczyk and Schieweck [12] have learnt
the model of a large number of the implementations and shown that they do
not all produce the same functionality.

– SSH: Models of SSH implementations were previously learnt by Fiterău-
Broştean et al. [13] in order to verify these systems using a list of system
properties. These system properties were also available and provides a nice
template that can be used for model checking different versions after their
model is learnt, and gives a good indication as to what type of changes
between versions should be detected. We focused our experiments on the
DropBear2 implementation.

Learning parameters. To account for and determine the influence of learning
parameters on the benefit of adaptive learning, the experiments were performed
with different combination of learning parameters. L* and R&S were used as the
learning algorithms, as these are the two main observation table based learn-
ers and our adaptive learning approach is developed for those. For the teacher
algorithms WMethod and RandomWord were used. See the background section
1 http://todomvc.com/.
2 https://matt.ucc.asn.au/dropbear/dropbear.html.

http://todomvc.com/
https://matt.ucc.asn.au/dropbear/dropbear.html
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for more information. While there are many variations of these learners and
teachers, we found that these four were a good representation of the different
behaviour we saw during experimentation.

Multiple versions. The difference between two versions of a system can vary. A
new version can be a code-refactoring were only the underlying code is changed
but the functionality remains the same, or a new version can change a large part
of the functionality. When the difference between two versions varies, the benefit
of adaptive learning also varies.

In order to take this into account, as well as to determine how much the differ-
ence between two versions influences the benefit of adaptive learning, the exper-
iment is based on learning multiple versions of a system with varying degrees of
difference to one another. The details are discussed in the next sections.

Measurements. The experiments focus only on the interaction required to learn a
model in different situations. The models are not actually checked for regressions,
as this is not relevant for measuring the benefit of adaptive learning.

The interaction required to learn a model is measured by the number of
queries that have to be processed by the system. We measure both the learning
and equivalence queries.

We do not count the queries used to test the final hypothesis for counterex-
amples. This is a fixed number for each learning experiment and is not rele-
vant when comparing the two approaches. In addition, this number depends on
user settings and a hypothesis can already be checked for regressions while the
hypothesis is still searched for counterexamples.

3.2 Learning ToDoMVC

In the ToDoMVC experiment we wanted to determine the benefit of adaptive
learning in the optimal situation. In the optimal situation, adaptive learning is
used to learn a model that is unchanged from the previously learnt model. In this
experiment we therefore learn the same system twice, once with regular learning
and once with adaptive learning.

We also look at the influence of the different learner and teacher algorithms.
We look at the benefit of adaptive learning for all combinations of the L*

Table 1. Queries needed to learn ToDoMVC with different learning parameters

Parameters Regular learning Adaptive learning

Learner Teacher Learner Teacher

L* + WMethod 2,534 1,944 1,634 0

L* + RandomWord 19,215 3 1,743 0

R& S + WMethod 549 2,037 544 0

R& S + RandomWord 337 2 326 0
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and R&S learner and the WMethod and RandomWord teacher algorithms. The
results of the experiment can be found in Table 1. We discuss these results in
Sect. 3.4

3.3 Learning SSH

For the SSH experiment we manually created several versions of the SSH program
with varying degrees of differences between those versions. The experiment is
based on learning these different versions of the program by adapting a model
of the base system and comparing this to learning from start.

We performed the experiments with the L* and R&S learning algorithms and
the WMethod equivalence oracle. The RandomWord oracle was not able to find
the required counterexamples within 10 million attempts.

In the following we discuss the versions of the program we created and how
we performed the experiment on that version.

Base System. The base system is the system learnt by Fiterău-Broştean
et al. [13]. This system is used to learn the initial model without adaptive learn-
ing.

Version 1: The first version of SSH that was created is functionally equivalent
to the base system. This is for example the case when non-functional changes
have been introduced, such as code refactoring or styling adjustments. Even with
such changes a system should be tested for regressions, to make sure that the
functionality did not change. This is an optimal situation for adaptive learning,
as the model will not need to be adapted at all. The model only needs to be
verified as correct.

Version 2: The second version of SSH is a system that introduces a regres-
sion into the system. We created a version that contains a property violation
according to the LTL formulae specified by BroStein et al.

Version 3: The third version of SSH is a system that introduces a special type
of new functionality to the system. Here an action needs to be performed twice in
order to proceed with a key-reset, which should require an additional separating
sequence to identify the new state.

The results of this experiment can be seen in Table 2.

3.4 Discussion

In the ToDoMVC experiment we see that there is a benefit to using adap-
tive learning with all combinations of learning parameters. However, the benefit
reduces when the required teacher queries using traditional learning is reduced.
We can summarize the findings as following:

1. When using RandomWord, the effort required to find all separating sequences
for ToDoMVC is very small. Therefore little effort can be saved by using
adaptive learning.
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2. RandomWord produces very long counterexamples. This results in L* cre-
ating a large observation table. L* benefits from the shorter counterexam-
ples produced by WMethod, while R&S is better capable of processing large
counterexamples.

Table 2. Queries needed to learn SSH with different learning parameters

System Parameters Regular learning Adaptive learning

Learner Teacher Learner Teacher

Version 1 L* 15,311 605,534 9,071 0

R&S 5,310 618,868 5,291 0

Version 2 L* 15,623 503,978 9,071 0

R&S 5,309 566,240 5,291 0

Version 3 L* 15,911 604,617 10,749 42,356

R&S 6,081 1,290,732 6,061 42,356

When learning the first version of SSH with regular learning, we saw that L*
and R&S performed similar. Both require around 620.000 queries to learn the
base system, although R&S required significantly less learning queries. In both
cases adapting a model requires significantly less queries than learning a model
from scratch.

L* however requires almost twice as much learning queries as R&S. We
believe this comes from the fact that the L* learner produces more distinguishing
suffixes and thus larger observation tables. Simply filling the observation table
of an L* learner requires significantly more queries.

For the learning of version 2 we see the same results as for learning version
1. This indicates that even though a bug has been introduced in version 2, this
version of the system can be learnt with the same distinguishing suffixes as the
base system. Therefore the learner only needs to fill the observation table to
learn the model of this version.

When learning version 3 we see that the learner needs to find additional
separating sequences. The effort required to identify the additional sequences is
however significantly smaller than finding all of them.

4 A Theory of Reuse

As discussed in Sect. 2, a learning algorithm needs a set of separating sequences
to determine what observations it should make to identify and distinguish the
states of a system. By reusing an existing set of separating sequences discovered
while learning a similar model, adaptive learning aims to reduce the interaction
needed to discover the set of separating sequences.

The goal of this research effort is to determine how much interaction can be
avoided by using adaptive learning. To this end we performed an experiment to
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compare adaptive learning to regular learning. We however also identified three
main factors that determine the benefit of adaptive learning. In this section we
discuss those factors.

4.1 Discovery

The main factor that determines the benefit of adaptive learning is the amount
of interaction required to discover a set of separating sequences in the model.
The difficulty of discovering a set of separating sequences depends mainly on the
behaviour of a system that is being learned and partially on the method used to
discover separating sequences.

We can see this when looking at the differences between the experiments on
ToDoMVC and SSH. SSH requires a lot more interaction to discover the set of
separating sequence, while ToDoMVC showed the difference the teacher algo-
rithm can have on the effort required to discover a set of separating sequences.

The effort that goes into the discovery of a set of separating sequences is a
combination of the following two aspects:

1. The number of suffixes that need to be discovered
2. The effort to discover a suffix

The number of suffixes required. A separating suffix is used to distinguish two
states from one another. The number of separating sequences required is there-
fore at most the number of pairs of states that need to be distinguished between,
but often pairs can reuse the same suffix. The number of separating sequences
is therefore related to the specific behaviour in a system.

Discovering a suffix. The discovery of suffixes is performed by a teacher algo-
rithm. Given a hypothesis, the teacher will attempt to find two states that should
be distinguished from each other. It does this by finding a sequence of actions
that shows these states have a different behavior/output, i.e. a counterexample.

The teacher algorithm tries to find such a sequences by simply trying (ran-
dom) sequences of actions on the system. The number of sequences that can be
tried and the percentage of sequences that result in a counterexample however
depend on the system.

The number of possible sequences of a certain length is simply the number
of actions to the power of the length of the sequence. Therefore the number
of possible actions significantly increases the average effort required to find a
counterexample. The required length of counterexamples and the percentage of
sequences that produce a counterexample depend on the behaviour of the system.

For example, a system that resets to the initial state when a wrong action is
performed requires a precise set of sequence of actions to reach certain states,
thus the percentage of sequences that are a counterexample is reduced. In the
experiments we saw for example that SSH resets back to the initial state when
a wrong actions is performed, therefore it required very specific sequences of
actions to reach certain states. This is also the reason why RandomWord did
not perform well for SSH.
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4.2 Reuse

Depending on the change between two versions of a system, the number of
distinguishing suffixes that can be reused and the number of new suffixes that
need to be discovered varies on how much the behaviour of the system changed.

Generally, the more the states of a system have been altered, the number of
suffixes that can be reused is reduced.

However, we believe that generally the difference in behaviour between two
versions of a system is minor. Therefore in most situations there should be a
high number of distinguishing suffixes that can be reused.

When creating versions of SSH we noticed that many small changes did not
require the discovery of additional separating sequences and we had to purpose-
fully make changes that would trigger this need.

4.3 Quality

The third factor that influences the benefit of adaptive learning is the quality of
the set of separating sequences. The separating sequences guide the learner in
what observations it should make. With a bad quality of separating sequences
however, the learner can make a large number of observations that does not
assist in identifying new states.

Generally a learner will attempt to find a sufficient set of separating
sequences, but in most cases it will not find a minimal set of separating sequences.

An example of this is the L* learner. This learner will add a large number
of sequences to the set op separating sequences. Not all of these sequences are
required. Therefore, this learner will generally make more observations than
required.

This can be seen in the ToDoMVC experiment. With adaptive learning, the
L* learner required almost twice as much queries compared to the R&S learner.
The reason for this is the large set of separating sequences that L* creates.

5 Discussion and Future Work

Our experiments confirm that adaptive learning improves the LBT approach for
regression testing: the number of queries needed to learn the adapted system is
significantly lower than the number of queries needed to learn a system from
scratch.

We also explained the factors that influence this gain. The reusability of the
learnt distinguishing suffixes depends on the complexity of the base system, the
difference with the updated system, and the quality of the set of suffixes.

These observations lead to two potential improvements that can be studied
in future work:

– Discrimination Tree based learners: The approach for adaptive learning
used in our work is based on observation tree-based learners such as L* and
R&S. More recent learners are based on a discrimination tree and have shown
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to be more efficient in the learning queries they require to create a hypothesis.
Therefore, we believe that an adaptive learning approach should be developed
for discrimination tree-based learners.

– Calculate the optimal set of separating sequences: The quality of the
set of separating sequences identified while learning a model can vary. Instead
of using a set that is discovered during the learning of a model we can also
calculate a set of separating sequences on a given model. An approach to do
this was proposed by Smetsers et al. [14]. This operation can be performed in
between learning two models. It should provide a better-quality set and also
remove sequences if they are no longer required.

6 Conclusion

In the experiments we have seen that adaptive learning can reduce the interaction
required to learn the model compared to regular learning. This is especially the
case when changes between models are small, such as a regression testing context.

The benefits of adaptive learning can vary a great deal however. We have
identified three main factors that influence the benefit of adaptive learning. The
first two of these are the specific behavior of the system that is being learned and
the amount of change between two versions of a system. These two factors can
be used to determine if adaptive learning should be applied when learn-based
regression testing a specific system. If the system needs a lot of difficult to find
separating sequences and the changes between versions are small, then adaptive
learning can provide a large benefit.

The third factor is the quality of the separating sequences and how they are
used. We have seen that the learning parameters have a large impact on this.
They determine what separating sequences are identified and how they are used
to make observations. We have also discussed two ways in which the quality of
the separating sequences can be improved.
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Scalability · Compositionality · Interface specifications
Predicate abstraction · CEGAR · Viewpoints · Cyber-physical systems
Contracts · Refinement · Real time · Security
Communication protocols

1 Introduction

CAV 1989, Grenoble, unforgettable! Who has been there will remember great
discussions, nice weather, fantastic food, and Susanne Graf in the middle of
all of this, taking care.1 These were the early days of the tools and tech-
niques that influenced the field for computer-aided verification as it is known
today. Spin [21] was in its very beginning, as were, e.g., CESAR/XESAR [34,37]
Auto/Autograph [38,39] and the Concurrency Workbench [7].

Susanne Graf’s impressive work is in the center of this development, and it is
not possible to list all her contributions in this introduction. We therefore focus
on a particularly interesting aspect of Susanne’s research and its impact, her
semantics-first perspective: the aim to characterize the essence of the problem
independently of the given (syntactic) representation. This line of work started
already in 1984 with her characterizing semantic relations between CCS expres-
sion in temporal logics [15] and later [16] following the characterization idea

1 For those who did not know that Susanne easily climbs more than 1000 meters of
height with her skies before breakfast, her energy was a miracle.
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inspired by [20], which was then generalized to a more general notion of char-
acteristic formulas for fully characterizing certain behavioural relations with a
single formula [40].

State explosion was a major issue at CAV 1989 as also visible from Susanne’s
contribution [11]. Already back then were solutions treating millions of states, an
impressive number, but still far from truly capturing industrial relevant exam-
ples. Compositional approaches [6]2 and reduction techniques leading to partial
order reduction [46] were proposed to achieve better scalability by avoiding full
state graph generation.

Susanne contributed also here, introducing the idea of exploiting interface
specifications for state space reduction [17,18]. In a sense, this work can be
seen as a predecessor for a number of (her) follow-up publications concerning
component-based systems and contracts [3,12,19,36]. The general idea here is
to constrain how a system can (i.e., is intended to) be used by the environment
and thereby reduce the state space required for analysis.

Another dimension of techniques for increasing scalability is abstraction
[2,27], whose perhaps most radical form from the semantic perspective is the
predicate abstraction [14]: Forget about the representational structure of the tar-
get system at all and characterize states just by their properties/predicates. In a
sense, this reminds of Nerode’s characterization of minimal deterministic accep-
tors [32], but in an approximative fashion, as, e.g., also used for active automata
learning [1] or later, more specifically, for a corresponding alphabet abstrac-
tion refinement [22,23]. The most visible impact of predicate abstraction, how-
ever, can be observed with the counter-example guided abstraction refinement
(CEGAR) approach, characterized by incrementally refining abstract models at
need [5]: Whenever verification results in terms of counter-example traces on the
model cannot be matched on the system, these traces are exploited to refine the
abstraction underlying the model by adding ‘distinguishing’ predicates in a way
that eliminates this ‘spurious’ counter example.

Susanne’s keynote “Building Correct Cyber-Physical Systems: Why we need
a Multiview Contract Theory” reflects on decades of experience with the verifi-
cation of, in particular, cyber-physical systems [13]: in order to scale to realistic
sizes, abstract models focusing on dedicated viewpoints (e.g., function, timing,
security) are essential, as is the consistent integration of such viewpoint models
to a comprehensive overall model, which is currently treated in a mostly infor-
mal way. Susanne advocates to establish a more flexible contract-based approach
aiming at a generalized notion of unifying models [41], while easing integration,
relaxing assumptions, and preserving current modeling approaches and their
tools.

Consistency across large scale systems is also at the core of the other FMICS
keynote presented by Margaria on Generative Model Driven Design for Agile
System Design and Evolution [29]. It has been an ongoing challenge, e.g., con-
cerning the adequate treatment of heterogeneity in Industrial Critical Systems

2 Particularly, entertaining was the related discussion between Ed Clarke and Willem
Paul de Roever of what compositionality really means.
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[43] and the use of features and their properties as a unit of analysis and config-
uration [25].

The remainder of this paper sketches the contributions to the FMICS event
for the celebration of Susanne’s 60th birthday. All contributions aim at increasing
the reliability of systems development, but from different angles.

2 Invited Contributions

The nine invited contributions fall into three categories that essentially concern
the state explosion problem (scalability), the problem of dealing with the gap
between models/programs and running systems, and with time.

2.1 Complex Systems: Components, Procedures, and Concurrency

The first four contributions concern generic approaches towards scalability of
distributed system verification.

The paper [9] by Garavel, Lang and Mounier, Compositional Verification
in Action, addresses compositional verification as a means to overcome the
state explosion problem. Specific emphasis is put on the impact of an interface
specification-based approach developed by Susanne [18], which can be regarded
as an early contribution towards a contract-based treatment of distributed
systems.

The second contribution [28], A Note on Refinement in Hierarchical Transi-
tion Systems by Gerald Lüttgen, sketches how modal transition systems may be
applied to formally capture hierarchical refinement. Gerald’s approach aims at a
formal, operational semantics-based underpinning of the incremental refinement
practices of engineers who are used to, e.g., place state machines inside states
or add outer transitions to states during design, hoping that no unwanted side
effects arise.

The third paper [45], Modal Meta Model Checking by Bernhard Steffen and
Alnis Murtovi, generalizes context-free model checking [4], a technique for ver-
ifying infinite state systems, to a technique for verifying properties for classes
of (domain-specific) languages. This technique aims at consistently dealing with
view point-specific languages, in particular, by establishing properties that may
drastically reduce the effort for the verification of individual systems.

Also the fourth contribution [24], The Quest for Optimality in Stateless Model
Checking of Concurrent Programs by Bengt Jonsson, aims at taming the state
explosion problem. It surveys some recent developments and results for making
stateless model checking more efficient, e.g. by considering different memory
models for concurrency. The main point here is to avoid the (often prohibitive)
construction of the global state graph without imposing too high a degree of
redundant computation.
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2.2 Formal Methods for IoT Systems

The two contributions of this section aim at extending the reach of verification
technology beyond the traditional boundaries.

The paper Wholly!: A Build System For The Modern Software Stack by Gelle,
Saidi and Gehani [10], presents a system designed for the reproducible and ver-
ifiable builds of optimized and bloatware-free software that runs uniformly on
traditional desktops, the cloud, and IoT devices. Wholly aims at closing the gap
between (verified) models/programs and fully deployed systems by explicitly
considering the built process as part of the development.

The paper A Modeling Language for Security Threats of IoT Systems by
Legay et al. [26] proposes a security-based modeling language for IoT systems
with two important features: (i) vulnerabilities are explicitly represented and
(ii) interactions are allowed or denied based on the information stored on the
IoT devices. This contribution can be regarded as a way to establish a specific
viewpoint for dealing with attacks explicitly and ways to prohibit them.

2.3 Analysis of Timed Systems

Time imposes very important and traditional viewpoints. The three contribu-
tions of this section deal with different timing issues and their treatment.

The contribution The Cause-Effect Latency Problem in Real-time Systems by
Yi [48] discusses the Data Buffering Protocol and the corresponding cause-effect
latency problem, which arises, e.g., when data items are lost. The problem of
preserving the functional semantics of task chains via non-blocking protocols for
data exchange among tasks establishes a viewpoint which must be consistently
integrated into the corresponding overall modelling.

The paper Revisiting Bounded Reachability Analysis of Timed Automata-
Based on MILP by Ober [33] studies the reduction of bounded reachability
analysis of timed automata to a Mixed Integer Linear Programming (MILP)
problem. This switch from the traditional way of dealing with bounded reach-
ability as a satisfiability problem to MILP is a good example for a switch of
viewpoint with a corresponding switch of mindset (cf. [42]) whose application
profile has to be validated in practice.

The paper Evaluation and Comparison of Real-Time Systems Analysis Meth-
ods and Tools by Sophie Quinton [35] discusses several experimental and the-
oretical methods to evaluate and compare real-time systems analysis methods
and tools concerning their adequacy for industrial use. In particular, it consid-
ers obstacles for industrial uptake and community efforts to overcome them,
e.g., based viewpoint-specific contract patterns for establishing inter-viewpoint
consistency.

3 Conclusions and Perspectives

Writing this introduction to the topical part for Susanne Graf’s 60th birthday
celebration and looking back all the way to the first instance of CAV in 89 was
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an interesting experience. A lot has been achieved in the last three decades as
also apparent from the papers of this topical part, but some hurdles seem to
be persistent. There are still no truly compositional methods for dealing with
concurrent systems, and much of today’s progress is due to Moore’s law and
intelligent heuristics. We had to learn that (problem) (de)composition requires
care which can rarely be automated. Susanne’s vision for viewpoint compositions
therefore foresees contracts as a way of manual support. It seems that this is the
way to go: Ease the required manual support, make it reusable, and automate
its use. In a sense, this pattern also underlies Wholly [10] as well as the idea
of domain-specific languages: factor complexity out and conquer! This approach
invites to a new art of development along the lines of language-oriented pro-
gramming [8,47] or language-driven engineering [42], supported by automated
composition, e.g. in the line of [30,44]. In fact, there is a trend to move from
the concrete level to the meta-level, which is also apparent in Susanne’s vision:
rather than establishing ways to show that certain properties are preserved in
a specific context, she aims at conditions that enforce the concept of property
preservation. We envision that this will lead to new generations of integrated
development environments which are themselves generated from meta model
specifications (cf. [31]) that may well comprise contracts.
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19. Gössler, G., Graf, S., Majster-Cederbaum, M., Martens, M., Sifakis, J.: An app-
roach to modelling and verification of component based systems. In: van Leeuwen,
J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOF-
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Abstract. Concurrent systems are intrinsically complex and their ver-
ification is hampered by the well-known “state-space explosion” issue.
Compositional verification is a powerful approach, based on the divide-
and-conquer paradigm, to address this issue. Despite impressive results,
this approach is not used widely enough in practice, probably because it
exists under multiple variants that make knowledge of the field hard to
attain. In this article, we highlight the seminal results of Graf & Stef-
fen and propose a survey of compositional verification techniques that
exploit (or not) these results.

1 Introduction

The present article was written in honour of Susanne Graf and Bernhard Steffen
at the occasion of their 60th birthdays.

Concurrent systems are commonly found in software programs, hardware cir-
cuits, and telecommunication networks, where many processes have to execute
simultaneously, synchronise to properly access shared resources, and communi-
cate together to achieve common tasks. Concurrent systems are notoriously hard
to design correctly, as they are prone to subtle errors, such as deadlocks, live-
locks, or synchronisation issues. To avoid or detect such errors, formal methods,
supported by computer-aided verification tools, are established techniques for
the design of concurrent systems [22].

Unfortunately, verification algorithms for concurrent systems are often ham-
pered by the “state-space explosion” issue, which arises when the complexity of
verification (which can be exponential in the number of concurrent processes)
exceeds the capabilities of the computer on which verification is performed. This
makes it difficult, if not unfeasible, to analyse large systems with many processes,
such as most industrial case studies. Various verification approaches have been
proposed to fight state-space explosion, but there is no silver bullet, as each
approach works under specific assumptions, for particular classes of problems.

The present article focuses on one of these approaches, compositional verifi-
cation, which relies on “divide-and-conquer” strategies that decompose a global
system into local concurrent processes and seek to exploit locality properties of
c© Springer Nature Switzerland AG 2018
F. Howar and J. Barnat (Eds.): FMICS 2018, LNCS 11119, pp. 189–210, 2018.
https://doi.org/10.1007/978-3-030-00244-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00244-2_13&domain=pdf


190 H. Garavel et al.

these processes. There are many different branches of formal methods and, con-
sequently, very diverse forms of compositional verification. The present article is
centred around a series of papers published between 1990 and 1996 by Susanne
Graf and Bernhard Steffen [36–40], the three latter ones being co-authored with
Gerald Lüttgen. More precisely, the scope of the present article is defined as
follows:

– We consider the established framework of asynchronous concurrency, in
which concurrent processes execute without assumption about their respec-
tive speeds. These processes can synchronise and communicate using Hoare’s
rendezvous1 [44]. Communicating automata [1] and process calculi [7] natu-
rally fit in this setting. Other communication schemes, such as shared mem-
ories or message queues, can be expressed, as particular cases, in terms of
rendezvous.

– We do not consider compositional verification techniques designed for theorem
proving or static analysis, but only those designed for enumerative verifica-
tion (or reachability analysis) methods, which rely on state-space exploration
and include both model checking (in which the properties to be verified are
expressed in some temporal logic) and equivalence checking (in which the
properties to be verified are expressed using bisimulations or behavioural
preorders).

– We do not consider state-based models, such as Kripke structures (in which
relevant information is attached to the states, usually in the form of state
variables, so that the properties to be verified are expressed using predi-
cates or invariants relating these variables); instead, we consider action-based
models, such as labelled transition systems (in which relevant information is
attached to the transitions, usually in the form of transition labels, so that
the properties are expressed as sequences, trees, or graphs of actions).

– We consider both explicit-state methods (in which reachable states and tran-
sitions are analysed individually) and symbolic methods (in which sets of
reachable states are analysed collectively). Actually, many papers discussed
in this survey use explicit-state methods, but symbolic methods are also appli-
cable. There is a common belief that symbolic methods systematically outper-
form explicit-state ones, which hardly exceed 1012 states on current machines;
this is a misconception and the situation is more contrasted. In particular,
explicit-state methods handle dynamic data structures (e.g., lists, trees, etc.)
more easily, and, even in the case of pure control structures (e.g., Petri nets),
recent results [49] show that explicit-state methods, combined with appropri-
ate reductions, compete well with symbolic methods.

The compositional verification approaches we consider here are traditionally
referred to as compositional minimisation or compositional reachability analy-
sis; they are action-based and rely on equivalence-checking concepts, especially

1 Some authors consider rendezvous as synchronous and message queues as asyn-
chronous.
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behavioural equivalence and preorder relations between labelled transition sys-
tems. In the sequel, compositional verification is often used as a synonym for
compositional minimisation, although the latter is clearly more specific.

There exist indeed alternative approaches, referred to as compositional rea-
soning, assume-guarantee, or rely-guarantee, which are often state-based and rely
on model-checking concepts, including assertions, logic formulas and satisfaction
relations. See, e.g., [33,67] for detailed presentations of these approaches.

The present article is organised as follows. Section 2 introduces compositional
minimisation in its simplest forms. Section 3 recalls the main concepts, namely
interfaces and semi-composition, put forward in the seminal papers of Graf,
Steffen & Lüttgen. Section 4 discusses enhanced compositional approaches that
use interfaces without semi-composition. Section 5 presents the most advanced
approach, in which interfaces and semi-composition are both used. Practical
applications of compositional verification to realistic case studies are reported
whenever possible. Finally, Sect. 6 gives a few concluding remarks.

2 Compositional Minimisation Without Interfaces

2.1 Principles

To perform compositional minimisation in an action-based setting, one needs six
ingredients carefully designed to fit well together:

1. A low-level model M , which is a state-transition formalism2 in which the
behaviour of the system S under verification can be encoded. This model is
usually very simple, with a low abstraction level, so that the properties to be
verified for S can be easily checked on M . As a counterpart, the encoding of
S in M can get large and verbose. Two famous examples of such models are:
labelled transition systems [64], which are the underlying semantic model of
most process calculi and play a central role in major functional verification
tools, and interactive Markov chains [42], which are performance evaluation
models that combine ordinary transitions and stochastic ones, the firing time
of the latter being governed by exponential distributions.

2. A parallel composition operator || that takes n models M1, ..., Mn and returns
a new model M ′ = M1||...||Mn. The notation || is a crude simplification, as
parallel composition operators usually carry extra information to determine
which synchronisations have to be done (see, e.g., [29]). The resulting model
M ′ is often referred to as a composition, while M1, ..., Mn are referred to
as components3. More often than not, the complexity of M ′ (measured in
number of states and transitions) is the product (rather than the sum) of the
complexities of M1, ..., Mn: the state-space explosion problem precisely lies
in such complexity growth.

2 For conciseness, we use the same term “model” and the same letter M to refer
both to the “meta-model” (i.e., the low-level formalism) and the “models” (i.e., all
particular instances expressed in this formalism).

3 Also called subsystems, agents, or processes in the literature.
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3. An equivalence relation ≈ defined over models. This relation (which differs
from graph isomorphism noted =) should be a congruence with respect to
parallel composition, i.e., if Mi ≈ M ′

i for all i ∈ {1, ..., n}, then M1||...||Mn ≈
M ′

1||...||M ′
n. Two examples of such equivalences are: strong bisimulation [61],

which is a congruence for the parallel composition operators of most process
calculi (see [88] for a discussion) and branching bisimulation [34]. Equivalence
relations may incorporate abstractions: for instance, branching bisimulation
can remove some τ -transitions (τ.M ≈ M), and Markov-chain lumpability
can merge some stochastic transitions (λ.M + μ.M ≈ (λ + μ).M).

4. A minimisation function min : M → M that maps each model to a dis-
tinguished element of its equivalence class in the quotient set M/ ≈; this
distinguished element is usually chosen to minimise some complexity crite-
rion. For bisimulation relations, for example, one chooses a labelled tran-
sition system that has the least number of states. Minimising a model
applies to this model the abstractions inherent to relation ≈. Because of
the congruence property, one has M1||...||Mn ≈ min(M1) ||...||min(Mn) and
min(M1||...||Mn) = min(min(M1) ||...||min(Mn)).

5. A high-level language L in which the system S can be specified. Theoretical
papers on compositional verification often use M in place of L, but this is
not realistic, as complex systems are never described using low-level models
only. The language L should be equipped with a concept of components and
a parallel composition, also noted ||, for assembling these components. A
composition C1||...||Cn is said to be flat if all components Ci are sequential,
or hierarchical if some components Ci are themselves compositions.

6. A translation function [[·]] : L → M that maps each system S written in L to
a corresponding low-level model [[S]]. This function should be able to trans-
late components taken individually, and should be a morphism for parallel
composition, meaning that, given n components C1, ..., Cn, [[C1||...||Cn]] ≈
[[C1]] ||...|| [[Cn]]. The translation of an entire system may very well fail due to
state explosion4, but the translation of individual components is expected to
succeed, at least for a majority of them.

Given a system S = C1||...||Cn such that [[S]] is excessively large, composi-
tional minimisation, in its simplest form, avoids to compute [[S]] directly and com-
putes min [[C1]] ||...||min [[Cn]] instead. This idea was advocated in many papers,
both in the functional verification setting [17,55,69,76,77,80,81,84,88] and in
the performance evaluation setting [23,42].

2.2 Strategies

In practice, compositional minimisation is more complex than the simple form
exposed above. For systems with many components, there are multiple ways
(called strategies) to perform compositional minimisation, and all strategies do

4 In theoretical papers that use M in place of L, there is a notational confusion between
Ci and [[Ci]], which is particularly annoying when the latter cannot be computed.
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not necessarily have the same efficiency, i.e., provide the same amount of state-
space reduction. The efficiency of a strategy is inversely proportional to the size
(e.g., number of states) of the largest intermediate model that is generated; a
good strategy strives to keep this size as small as possible, in order to avoid
state-space explosion during the compositional verification process. There are
several causes leading to the existence of multiple strategies.

First, if the system has a hierarchical structure, e.g., (C1||C2)||(C3||C4),
minimisation can be applied either to the leaf components only, i.e.,
(min [[C1]] ||min [[C2]])||(min [[C3]] ||min [[C4]]), or to every intermediate level in the
hierarchy, i.e., min(min(min [[C1]] ||min [[C2]])||min(min [[C3]] ||min [[C4]])), or any
intermediate combination between these two extremes. Such strategies are called
static as they are uniformly applied to all components.

Second, compositional minimisation is sometimes counterproductive. Replac-
ing, in a parallel composition M1||...||Mn, some model Mi by its quotient
min(Mi) never increases the complexity, but computing (min [[C1]]||...||min [[Cn]])
rather than [[C1||...||Cn]] may fail if the complexity of some [[Ci]] is larger than
that of [[C1||...||Cn]]. This may very well occur when components are so tightly
synchronised that the behaviour of a component Ci is strongly constrained by
the other components; ignoring such components may lead to a huge, or even
unbounded, state space for Ci. Shared memories, network links, and hardware
buses are typical examples of components Ci whose models [[Ci]] cannot be gen-
erated in isolation because they allow a potentially infinite number of read/write
or send/receive operations, whereas the components that use these memories,
links, or buses actually employ a much smaller set of operations. Thus, when
performing compositional minimisation on a system S = C1||...||Cn, it is not
necessarily optimal to minimise all components one by one; it might be more
efficient to consider them two by two, three by three, etc., leading to a number
of combinations that is an exponential of n.

Finding an optimal strategy is difficult, and computationally out of reach if
the number of components is large. So, one can only rely on heuristics. Rather
than using the aforementioned static strategies, which are probably suboptimal,
it is more suitable to use dynamic strategies that decide, at each verification
step, which subset of components is the best candidate for being generated and
minimised.

Such a heuristic (called smart reduction) is proposed in [16], based on metrics
that consider both the amount of synchronisations between components (trying
to compose the most tightly synchronised components first, to avoid state-space
explosion arising from the interleaving of loosely coupled components) and the
proportion of transitions that can be hidden after composition (the more hidden
transitions, the greater the gains during subsequent minimisation steps if a weak
equivalence, e.g., branching bisimulation, is used).

2.3 Applications

Implementing compositional minimisation is a difficult challenge, because many
software tools are required to implement M , ||, ≈, min, L, and [[·]]. Moreover,
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if any of these tools is poorly implemented, the entire tool chain may become
inefficient and useless for non-trivial applications.

A handful of tool prototypes have been developed in the 90s, but the best
implementation of compositional minimisation available today is unquestionably
the Cadp toolbox [26], the development of which started in the late 80s and
has been steadily pursued until now. Compositional verification, at large, is a
particular strength of Cadp [25]. Concerning compositional minimisation, Cadp

provides the following software tools and libraries:

– M is implemented by Bcg
5 (Binary-Coded Graphs), a compact format, with

its associated software tools and libraries, that enable large transition systems
(with billions of states and transitions) to be stored as computer files.

– || is implemented by Exp.Open
6, a tool that, among other features, computes

the parallel composition of transition systems executing concurrently and
synchronised using the parallel operators of various process calculi.

– ≈ and min are respectively implemented by Bcg Cmp
7 and Bcg Min

8, two
state-of-the-art tools (see [9] for an assessment) that compare and minimise
transition systems modulo various equivalence and preorder relations.

– L is implemented in multiple ways, as the Cadp toolbox supports several
high-level languages for describing value-passing concurrent systems. For
many years, Lotos (Iso/Iec international standard 8807) [46] has been the
language of choice but, since 2010, it has been progressively replaced by Lnt

[27], a modern specification language combining features from process calculi,
imperative languages, and functional languages.

– [[·]] is implemented by the two Lotos compilers Cæsar
9 and Cæsar.adt

10,
and by the Lnt2Lotos

11 translator, the combination of which delivers state-
of-the-art user-friendliness and performance (see [58,59] for an assessment).

Moreover, a unique feature of Cadp is its scripting language Svl
12 [24],

which can be seen as a process calculus extended with operations on labelled
transition systems, e.g., comparison, minimisation, hiding and renaming of tran-
sition labels, detection of deadlocks and livelocks, etc. Designed with the goal
of making compositional verification easily accessible to non-experts [52], Svl
and its associated compiler13 implement the aforementioned static and dynamic
strategies, including smart reduction.

Compositional minimisation, as implemented in Cadp, has been success-
fully used in many case studies. A dozen of small- or medium-size examples are

5 http://cadp.inria.fr/man/bcg.html.
6 http://cadp.inria.fr/man/exp.open.html.
7 http://cadp.inria.fr/man/bcg cmp.html.
8 http://cadp.inria.fr/man/bcg min.html.
9 http://cadp.inria.fr/man/caesar.html.

10 http://cadp.inria.fr/man/caesar.adt.html.
11 http://cadp.inria.fr/man/lnt2lotos.html.
12 http://cadp.inria.fr/man/svl-lang.html.
13 http://cadp.inria.fr/man/svl.html.

http://cadp.inria.fr/man/bcg.html
http://cadp.inria.fr/man/exp.open.html
http://cadp.inria.fr/man/bcg_cmp.html
http://cadp.inria.fr/man/bcg_min.html
http://cadp.inria.fr/man/caesar.html
http://cadp.inria.fr/man/caesar.adt.html
http://cadp.inria.fr/man/lnt2lotos.html
http://cadp.inria.fr/man/svl-lang.html
http://cadp.inria.fr/man/svl.html
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available online, as part of the Cadp demos14. In four of these examples (demos
No. 05, 18, 25, and 35, which have between 5 and 20 components), compositional
minimisation easily succeeds (generating intermediate models with 2.106 states
at most) where direct generation fails. In seven other examples (demos No. 01,
02, 08, 17, 27, 28, and 36, which have between 4 and 11 components), the largest
intermediate model generated by compositional minimisation is between 1.7 and
24 times smaller than the model obtained using direct generation.

Here is a chronological list (since 1991) of case studies in which compositional
minimisation, as implemented in Cadp, has been used to achieve functional
verification. For conciseness, we use the symbol � to indicate those case studies
in which the author’s laboratories (Inria Grenoble, Lig, and/or Verimag) have
been involved:

– rel/rel reliable atomic multicast protocol15 [3,18], Hewlett-Packard (uk)�.
– Transit Node message router16 [62]�.
– CoopScan framework for cooperative applications development17 [48]�.
– Transmission Control Protocol (Tcp)18 [74], Berlin (de).
– Distributed leader election for unidirectional ring networks19 [28]�.
– Bus arbitration of the Powerscale architecture20 [11], Bull, Les Clayes (fr)�.
– Eurocontrol’s Departure Clearance Protocol21 [47], Brussels (be).
– Om/rr protocol for traffic control22 [85,86], Eindhoven (nl).
– Inres protocol23 [54], Nokia Research Center (fi).
– Bull’s Cfs distributed file system for Aix

24 [65]�.
– Philips’ havi leader election protocol25 [68], Amsterdam (nl).
– Single pulser and bus arbitration hardware designs26 [41], Stirling (uk).
– Sync-stop & Chandi-Lamport checkpoint algorithms27 [35], Bucharest (ro)�.
– Chilean electronic invoices system28 [2,6], Sophia Antipolis (fr).
– Fractal software components29 [4,5], Sophia Antipolis (fr), London (uk).
– Faust asynchronous network-on-chip30 [72,73], Cea/Leti, Grenoble (fr)�.

14 http://cadp.inria.fr/demos.
15 http://cadp.inria.fr/case-studies/91-c-relrel.html.
16 http://cadp.inria.fr/case-studies/94-a-transitnode.html.
17 http://cadp.inria.fr/case-studies/95-c-groupware.html.
18 http://cadp.inria.fr/case-studies/96-d-tcp.html.
19 http://cadp.inria.fr/case-studies/96-f-leaderelection.html.
20 http://cadp.inria.fr/case-studies/96-h-powerscale.html.
21 http://cadp.inria.fr/case-studies/97-c-dcl.html.
22 http://cadp.inria.fr/case-studies/98-d-omrr.html.
23 http://cadp.inria.fr/case-studies/98-g-inres.html.
24 http://cadp.inria.fr/case-studies/98-i-cfs.html.
25 http://cadp.inria.fr/case-studies/99-a-havi.html.
26 http://cadp.inria.fr/case-studies/99-b-dill.html.
27 http://cadp.inria.fr/case-studies/01-d-checkpointing.html.
28 http://cadp.inria.fr/case-studies/04-a-electronic-invoices.html.
29 http://cadp.inria.fr/case-studies/05-c-components.html.
30 http://cadp.inria.fr/case-studies/07-a-faust.html.
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– Diagrams for choreographies31 [71], Málaga (es) and Santa Barbara (us).
– Trivial File Transfer Protocol (Tftp)32 [30], Airbus, Toulouse (fr)�.
– Cress diagrams for Web and grid services33 [78], Stirling (uk).
– Logical regulatory modules34 [60], Oeiras (pt), Evry-Paris-Marseille (fr)�.
– Fault-tolerant routing algorithm for a network-on-chip35 [89], Utah (us)�.
– Graphical user interfaces36 [63], Atos, Grenoble (fr)�.

Compositional minimisation has also been used for performance evaluation:

– Performance analysis of a Plain Old Telephone System37 [43], Erlangen (de).
– Scsi-2 bus arbitration protocol38 [23], Twente (nl)�.
– European Train Control System39 [8], Saarbrücken (de), Freiburg (de).

3 The Seminal Papers of Graf, Steffen, and Lüttgen

In spite of these achievements, compositional minimisation still faces practical
limitations when some components (such as the aforementioned shared mem-
ories, network links, and hardware buses) cannot be analysed separately from
their neighbour components. This problem was addressed, as early as 1990, by
Graf & Steffen in a series of five scientific papers:

– [36]: the original paper, published at the first Cav workshop in 1990, which
contains all the fundamental contributions;

– [37]: a technical report from Rwth Aachen, published in 1991, which gives
the proofs for the theorems of [36];

– [38]: a technical report from Universität Passau, with Gerald Lüttgen as third
author, published in 1995, which extends the theoretical developments of the
former papers and includes a running example that illustrates the key steps
of the approach;

– [39]: a 10-page extended abstract published in the paper version of the Jour-
nal on Formal Aspects of Computing ; due to constraints on the number of
pages, this paper does not contain more material than the initial paper [36];

– [40]: a 28-page journal article, which is based on [38] and can be considered as
the most complete version; this article is available online from the electronic
repository of the Journal on Formal Aspects of Computing40.

31 http://cadp.inria.fr/case-studies/09-a-collab-diag.html.
32 http://cadp.inria.fr/case-studies/09-h-tftp.html.
33 http://cadp.inria.fr/case-studies/09-p-web-and-grid.html.
34 http://cadp.inria.fr/case-studies/13-c-regulatory-modules.html.
35 http://cadp.inria.fr/case-studies/13-f-utahnoc.html.
36 http://cadp.inria.fr/case-studies/14-d-hmi.html.
37 http://cadp.inria.fr/case-studies/98-b-markov-pots.html.
38 http://cadp.inria.fr/case-studies/02-f-scsi-2.html.
39 http://cadp.inria.fr/case-studies/06-e-etcs.html.
40 Online manuscript at http://www-verimag.imag.fr/∼graf/PAPERS/GLS96.pdf.
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These papers are a breakthrough in compositional verification, as they target
the difficult case where some component Ci of a system S = C1||...||Cn cannot
be minimised in isolation from its environment, i.e., from the other components
C1||...||Ci−1||Ci+1||...||Cn. Precisely, this is the case where the behaviour of Ci

is potentially huge, so that state-space explosion occurs when computing [[Ci]],
but only a fraction of this behaviour is actually permitted by the environment of
Ci. To address such situations, Graf & Steffen propose the following approach,
which we reformulate here in a didactic manner:

– The constraints41 exerted on Ci by its neighbour components must be
expressed as an interface42 noted I, which is intended to be a set of traces con-
taining all the sequences of actions allowed by the environment. Concretely,
the interface is represented as a labelled transition system, and the traces are
the words of the language recognised by this automaton. In practice, I is usu-
ally specified in the same high-level language L as the components C1, ..., Cn

and later translated to the low-level formalism M . It is assumed that I is
small enough that state-space explosion never occurs when computing [[I]].

– Graf & Steffen assume that the interface I is provided by the user, based on
his/her own intuition of how the environment behaves. Thus, the interface is
not necessarily exact because of human errors or approximations:

• If the interface is too restrictive, i.e., if it contains less traces than allowed
by the environment, this is a severe problem, as the model computed for
Ci will be truncated, so that subsequent verification steps will be done
under false assumptions. In such case, the interface is said to be incorrect.

• If the interface is too permissive, i.e., if it contains more traces than
allowed by the environment, there is no correction problem, but there
might be a performance problem, as the model computed for Ci will be
larger than actually needed. The most permissive interface is the “chaos”
automaton that accepts all actions of Ci in any order, which is equivalent
to having no interface for Ci.

So, a correct interface should be a superset of the traces allowed by the
environment. Said differently, a correct interface should express some of, but
not necessarily all, the constraints exerted by the neighbour components.

– Graf & Steffen define a semi-composition43 operator ΠI(Ci) = π1([[Ci||I]]),
where || denotes the parallel composition operator of Csp [45] that forces
Ci and I to synchronise on their common actions, while letting Ci (resp. I)
interleave on its actions that are absent from I (resp. Ci), and where π1 is
a function that projects the product labelled transition system [[Ci||I]] onto
the states of [[Ci]], meaning that each product state (x, y) is mapped to x and

41 Also called context constraints or environment constraints in the literature.
42 Also called behavioural interface, interface specifications, or process interface.
43 This operator was actually named reduction in [36], but we prefer the term semi-

composition later introduced by Krimm & Mounier [51], because the former term
often denotes a minimisation operation that is incompletely done, yielding a smaller
yet not necessarily minimal result: partial-order reduction, symmetry reduction, tau-
confluence reduction, etc.
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each product transition (x, y) a−→ (x′, y′) is either mapped to x
a−→ x′ if a is

an action of Ci, or ignored otherwise.
– The semi-composition operator enjoys nice properties: (i) ΠI(Ci) is

behaviourally included in [[Ci]], in the sense that both models have the same
initial state and that any transition x

a−→ x′ of ΠI(Ci) is also a transition of
[[Ci]]; (ii) the number of states in ΠI(Ci) is thus less or equal to the number
of states in [[Ci]] (the more restrictive the interface, the smaller this num-
ber); (iii) if I is the chaos automaton allowing all the actions of Ci, then
ΠI(Ci) = [[Ci]]; (iv) interfaces can be safely minimised using language equiv-
alence or any stronger equivalence.

– But the most important property is the following one: if interface I is
correct, then [[C1||...||Cn]] = [[C1]] ||...|| [[Ci−1]] ||ΠI(Ci) || [[Ci+1]] ||...|| [[Cn]],
meaning that [[Ci]] can be safely replaced with ΠI(Ci), which is presum-
ably less complex44, or even with min(ΠI(Ci)), because [[C1||...||Cn]] ≈
[[C1]] ||...|| [[Ci−1]] ||min(ΠI(Ci)) || [[Ci+1]] ||...|| [[Cn]] since ≈ is a congruence.

– Graf & Steffen also address the case of incorrect interfaces by extending
ΠI(Ci) with undefinedness predicates that indicate, for each state, which
actions of Ci have been cut off by I. Later, when recombining ΠI(Ci) with
its environment, the parallel composition operator discharges those predicates
corresponding to transitions of Ci that the environment is never ready to syn-
chronise with, and would indeed never fire. If some predicates remain undis-
charged when the parallel composition is done, then I is incorrect; the user
should analyse these predicates to understand why/where I is too restrictive,
and restart compositional verification with a modified interface45.

Figure 1 illustrates the semi-composition of a component Ci with an inter-
face I, both having 0 as their initial state. All transitions of Ci labelled by actions
a0, a2, b0, b2, c0, and c2 are cut off, because they never synchronise in the parallel
composition with I. The action sets attached to the states 0, 2, and 5 of ΠI(Ci)
represent the undefinedness predicates; for instance, the set attached to state 0
indicates that transitions labelled by a0 and a2 have been cut off in this state.

Fig. 1. Reduction achieved using semi-composition with an interface

44 In some cases [36, Sect. 6], interfaces reduce complexity from exponential to linear.
45 Such an iterative approach based upon incremental refinement was very much the

Cegar idea published ten years later [15].
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4 Compositional Minimisation with Interfaces
but Without Semi-composition

We now examine two approaches that, given a set of asynchronous components
S = C1||...||Cn synchronised by rendezvous, reuse the idea of interfaces to avoid
state-space explosion when generating certain components. These approaches do
not borrow the semi-composition operator concept, and thus technically differ
from the work of Graf & Steffen.

The first approach was proposed by Cheung & Kramer [12–14] and imple-
mented in the Tracta tool [32]:

– In this approach, a component Ci having an interface I is replaced by [[Ci||I]]
instead of being replaced by the semi-composition ΠI(Ci) = π1([[Ci||I]]).

– To ensure that [[C1]] ||...|| [[Ci−1]] || [[Ci||I]] || [[Ci+1]] ||...|| [[Cn]] is strongly bisim-
ilar to [[C1||...||Cn]], the interface I must not only be correct in the sense of
Graf & Steffen, but also deterministic and free of internal actions46.

– The initial paper [12] assumes that interfaces are correct without check-
ing for correctness. In [13,14], the approach is refined as follows to deal
with incorrect interfaces. An output-completion operation is applied to trans-
form the user-given interface I into an extended interface I ′: this is done
by adding an undefined state π and by creating, for each state y of I and
each action a not enabled in y, an additional transition y

a−→ π. When
computing S′ = [[C1]] ||...|| [[Ci−1]] || [[Ci||I ′]] || [[Ci+1]] ||...|| [[Cn]], each transition
(x, y) a−→ (x′, π) of [[Ci||I ′]] should normally disappear (i.e., be blocked) unless
it can synchronise with another action a present in the environment of Ci,
i.e., [[C1]] ||...|| [[Ci−1]] || [[Ci+1]] ||...|| [[Cn]], thus signalling that I is too restric-
tive. Hence, interface I is correct iff S′ contains no reachable state whose ith

element has the form (x′, π).

The second approach was proposed by Valmari [82] and implemented in the
Ara tool [83]. This approach is similar to the one of Cheung & Kramer, with
two differences: interfaces are allowed to be nondeterministic, and the user must
explicitly introduce the undefined state47 π in the interface, i.e., provide an
interface I ′ rather than I.

At first sight, these two approaches may look simpler and more elegant than
the one of Graf & Steffen, because they do not require a semi-composition opera-
tor, but they are actually inferior (although they were published later than [36]),
for at least three reasons:

1. Semi-composition is a reduction, meaning that ΠI(Ci) is smaller than [[Ci]],
but parallel composition is not. Indeed, [[Ci||I]] can be (much) larger than
[[Ci]]. Figure 2 shows a simple example in which [[Ci||I]] has three times more
states than [[Ci]]. Thus, using interfaces without semi-composition can be
counter-productive, keeping in mind that [[Ci]] is expected to be huge.

46 Internal actions are usually noted τ in most process calculi.
47 This state is called cut state in [82].
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Fig. 2. Example where [[Ci||I]] is larger than [[Ci]]

2. The approach of Cheung & Kramer requires nondeterministic interfaces to be
determinised [12, Sect. 5.1]. In the worst case, this may cause an exponential
blowup in the number of states of the interface (e.g., a small interface with
40 states may get larger than one trillion states), thus compromising the
compositional verification approach.

3. The approach of Valmari requires the introduction of the state π and its asso-
ciated transitions into (possibly nondeterministic) interfaces. No algorithm is
provided for such an operation, which might be trivial only for determinis-
tic interfaces — unless determinisation (at the risk of exponential blowup)
is first applied to nondeterministic interfaces. Figure 3 shows indeed that the
aforementioned output-completion operation works for a deterministic inter-
face I1, but not for a nondeterministic interface I2 language-equivalent to I1:
the output-complete interfaces I ′

1 and I ′
2 are not language-equivalent (e.g., I ′

2

accepts a trace a.b ending in π, whereas I ′
1 does not).

For the sake of completeness, one can mention a third approach [87] that,
strictly speaking, does not use interfaces, but simulates their effect by introduc-
ing additional synchronisation actions sleep and wake. From a practical perspec-
tive, this approach is not suitable, as it requires to modify the code of components
to insert these actions, and also changes the well-established semantic rules for
the parallel composition operator, so as to perform look-ahead of sleep actions.

Fig. 3. Example where language equivalence is not preserved by output completion
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5 Compositional Minimisation with Interfaces
and Semi-composition

5.1 Principles

The first (and, to the best of our knowledge, the only) complete implementation
of the ideas of Graf & Steffen has been done by Krimm & Mounier [50,51], who
adapted the approach to the case of Lotos [46]. Such adaptation faces various
changes in the base assumptions:

– Graf & Steffen (but also Cheung & Kramer and Valmari) consider the parallel
composition operator || of Csp [45], which forces synchronisation on all com-
mon actions. On the contrary, the parallel composition operator |[g1, ..., gn]|
forces synchronisation only on actions whose gate48 belongs to the (possi-
bly empty) list g1, ..., gn, whereas all other actions do not synchronise (i.e.,
interleave).

– The Lotos operator enables components to have common, yet non-
synchronised actions, e.g., between two components C1 and C2 executing
in full interleaving (i.e., C1 |[ ]|C2) and proposing the same actions.

– The Lotos operator also enables nondeterministic synchronisations, e.g.,
between three components C1, C2, and C3 connected using (C1 |[ ]|C2) |[g]|C3:
any action having gate g proposed by C3 may synchronise either with C1 or
C2. This is a most useful pattern to describe pools of clients and servers.

– The parallel operator of Csp is associative whereas, in Lotos,
(C1 |[g]|C2) |[g′]|C3 may be different from C1 |[g]| (C2 |[g′]|C3) when g �= g′.

– The Lotos operator for action hiding, which was not considered by Graf &
Steffen, needs to be taken into account.

In a nutshell, the solution proposed by Krimm & Mounier works as follows:

– Interfaces are labelled transition systems, which can be nondeterministic and
contain internal actions (same as in the approach of Graf & Steffen).

– The semi-composition operator ΠI(Ci) is generalised to a new operator with
four arguments: (i) a component Ci; (ii) an interface I; (iii) a list of gates
g1, ..., gn on which Ci and I must synchronise; (iv) a Boolean stating whether
I is surely correct or possibly incorrect, the former case avoiding correctness
checks. The useful properties of ΠI(Ci) also hold for this new operator.

– The undefinedness predicates of [36], which are a state-based concept
incompatible with labelled transition systems, are encoded by means of
fail-transitions. In the labelled transition system computed by the semi-
composition operator for a possibly incorrect interface I, state s has a self-loop

transition s
fail(a)−→ s iff the interface has cut off action a in that state. The

parallel composition operator of Lotos is also slightly modified to handle
these fail-transitions.

48 A Lotos action can be seen as a value tuple, the first element of which is the gate.



202 H. Garavel et al.

The prototype tools developed by Krimm & Mounier have been rewritten and
integrated in Cadp, which has become the reference framework for compositional
minimisation techniques [25]. The Des2Aut tool has been subsumed by Svl

49.
The Projector tool50 implements the semi-composition operator; it is built
upon the Open/Cæsar application programming interface [21], which enables
ΠI(Ci) to be computed on the fly, without computing [[Ci]] first (this could cause
state-space explosion), and also enables Ci to be expressed in any specification
language connected to Open/Cæsar, including Lotos, Lnt, Exp, etc.

5.2 Interface Synthesis

Assume a system S = C1||...||Cn, some components of which are too large to be
generated separately from their neighbour components and thus require inter-
faces. Is it possible to generate automatically and correctly these interfaces,
rather than asking the user to provide them, at the risk of human mistakes?
This question has been studied in two papers.

The first paper [51] considers a process-algebraic setting in which components
are combined inside expressions by means of the Lotos operators for action
hiding and parallel composition. An algorithm is given [51, Sect. 3, operator Ψ ]
to automatically compute an interface for a given component, seen as a sub-
expression contained in a larger expression describing the entire system or a part
of it. This algorithm works recursively by structural induction on the syntax of
Lotos expressions and calculates the set of actions on which the component
and its environment have to synchronise.

The second paper [53] considers a more expressive setting, communicating-
automata networks, the components of which are combined using synchronisa-
tion vectors [1] that can encode action hiding, action renaming, and the parallel
composition operators of most process calculi (including Ccs, Csp, μCrl, Lnt,
Lotos, etc.) as particular cases. An algorithm is given, which explores the syn-
chronisation graph to compute a correct interface for a given component. This
algorithm, which has been implemented in Svl

51, improves over the one of [51]
in several respects:

– It is applicable to other process calculi than Lotos.
– It can compute an interface for a component, the environment of which can

be arbitrarily chosen to be any subset of components, without requiring these
components to be adjacent or closely connected in a process-algebraic expres-
sion (this is useful in presence of parallel composition operators that are not
associative because they synchronise on different action sets).

– It handles the possible existence of common, yet non-synchronised actions
between the component and its environment.

49 http://cadp.inria.fr/man/svl-lang.html (see “abstraction”).
50 http://cadp.inria.fr/man/projector.html.
51 http://cadp.inria.fr/man/svl-lang.html (see “refined abstraction”).

http://cadp.inria.fr/man/svl-lang.html
http://cadp.inria.fr/man/projector.html
http://cadp.inria.fr/man/svl-lang.html
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– It handles the possible existence of common, nondeterministically synchro-
nised actions between the component and its environment (i.e., the environ-
ment can synchronise on a given action either with the component or with
another component, and vice versa). Such actions are ignored in [51], leading
to over-permissive interfaces.

– It can generate, in the case of Lotos, less permissive interfaces than [51],
possibly leading to better reductions [53, Examples 2–3 and Fig. 1].

5.3 Applications

Four examples of compositional verification with interfaces and semi-composition
are available online, as part of the Cadp demos (see footnote 14). For these exam-
ples (demos No. 20, 33, 37, and 38, which have between 3 and 60 components),
both direct generation and compositional minimisation without interfaces fail,
but compositional minimisation with interfaces and semi-composition succeeds,
the largest intermediate model generated having less than 700, 000 states.

Compositional verification with interfaces and semi-composition, as imple-
mented in Cadp, has also been used with success in various (mostly industrial)
case-studies:

– rel/rel reliable atomic multicast protocol52 [51] Hewlett-Packard (uk)�.
– Distributed leader election for unidirectional ring networks53 [51]�.
– Atc (Air Traffic Control) system54 [70], Glasgow (uk).
– PolyKid cc-Numa multiprocessor architecture55 [31], Bull, Pregnana (it)�.
– ScalAgent’s deployment protocol for software components56 [79]�.
– Mutual exclusion protocols for cc-Numa architectures57 [56,57]�.
– Asynchronous circuit for the Des (Data Encryption Standard)58 [75]�.
– Asynchronous Memory Protection Unit59 [10], Tiempo, Grenoble (fr)�.

6 Conclusion

Although compositional verification is now thirty years old, and despite its true
potential in overcoming state-space explosion (as demonstrated in many con-
vincing case studies), it is not yet a widespread verification technique, and its
use for practical problems remains rather an exception than the rule.

A major breakthrough was made in 1990 with a series of papers by Graf,
Steffen & Lüttgen [36–40]. Unfortunately, the merits of these papers are not

52 http://cadp.inria.fr/case-studies/91-c-relrel.html
53 http://cadp.inria.fr/case-studies/96-f-leaderelection.html
54 http://cadp.inria.fr/case-studies/99-e-atc.html.
55 http://cadp.inria.fr/case-studies/00-c-polykid.html.
56 http://cadp.inria.fr/case-studies/03-e-parfums.html.
57 http://cadp.inria.fr/case-studies/10-f-mutex.html.
58 http://cadp.inria.fr/case-studies/15-f-des.html.
59 http://cadp.inria.fr/case-studies/18-1-mpu.html.

http://cadp.inria.fr/case-studies/91-c-relrel.html
http://cadp.inria.fr/case-studies/96-f-leaderelection.html
http://cadp.inria.fr/case-studies/99-e-atc.html
http://cadp.inria.fr/case-studies/00-c-polykid.html
http://cadp.inria.fr/case-studies/03-e-parfums.html
http://cadp.inria.fr/case-studies/10-f-mutex.html
http://cadp.inria.fr/case-studies/15-f-des.html
http://cadp.inria.fr/case-studies/18-1-mpu.html
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sufficiently understood. Either these papers are not mentioned in surveys [19,
20,66] or they are merely cited without any further comment on the significance
of their contributions [33]. These are injustices the present article tries to remedy.

The approach of [36] relies upon two key concepts: interfaces and semi-
composition. Using these concepts is not mandatory, as it is possible to per-
form compositional minimisation without interfaces (Sect. 2) or with interfaces
but without semi-composition (Sect. 4). We have shown, however, that the best
results are obtained when both concepts are taken advantage of (Sect. 5).

The approach of [36] has been generalised to the case of Lotos and its
descendent languages, and fully implemented in the Cadp verification toolbox
[25] and successfully applied to numerous case studies, the most recent of which
[10] shows impressive results, as an asynchronous hardware block containing not
less than 660 concurrent processes was fully verified in a few hours by an industry
engineer without prior training in formal methods. This is a clear indication that
compositional minimisation techniques have reached a maturity level sufficient
to enable their use in industry.

Concerning future research, we envision enhanced approaches for interface
synthesis so as to generate interfaces automatically in complex cases that, today,
must be dealt with manually, as well as applications of the ideas of Graf & Steffen
to quantitative verification, including probabilistic, timed, and hybrid systems.
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Abstract. Software engineers frequently employ notations and tools
based on transition systems, such as UML state machines and State-
charts, for specifying and reasoning about reactive behaviour. While
these notations are typically supported by an operational semantics, they
lack a formal underpinning of the incremental refinement practices of
engineers who, e.g., place state machines inside states or add outer tran-
sitions to states during design. This note sketches how modal transition
systems may be applied to formally capture such refinements along state
hierarchies, using a hierarchical extension of labelled transition systems
that permits engineers to explicitly allow or disallow state refinement
and transition extension at each state. A small example testifies to the
utility of this framework for hierarchically refining reactive systems.

1 Introduction

Context and motivation. Hierarchical state machines play an important role
when specifying and designing embedded systems. They are employed by soft-
ware and systems engineers, e.g., in the form of UML state machines or Stat-
echarts [6,16]. These visual notations are supported by modern tools for the
model-driven engineering of embedded and reactive systems, and are typically
equipped with operational semantics [7,14,17,19]. However, these semantics
focus only on formalizing reactive execution, and not on the refinement prac-
tices employed by engineers who often start with an empty canvas, i.e., a single
state. This is then refined incrementally by placing state machines inside states
– which leads to a sequential, vertical refinement – and next to each other –
which captures a concurrent, horizontal refinement.

Refinement has been studied intensively in the field of concurrency theory,
where systems are built of concurrently interacting components. There, refine-
ment means restricting nondeterminism [10], but not adding behaviour as is
required for vertical refinement. Care is taken for refinement preorders to be
pre-congruences, so as to enable compositional reasoning. Two examples of con-
currency settings based on labelled transition systems are the interface theory
Interface Automata [1] and the component framework BIP [2]. Interface theo-
ries model the assumptions and guarantees that a component expects from and
c© Springer Nature Switzerland AG 2018
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assures to its environment. A notion of compatibility defines when several com-
ponents are compatible to each other, and a compositional alternating simulation
preorder ensures that compatibility is preserved under refinement. Hence, inter-
face theories support horizontal but not vertical composition and refinement.

The BIP (Behaviour-Interaction-Priority) framework for composing hetero-
geneous components is more flexible than Interface Automata, as it permits the
specification of different kinds of component interaction, ranging from fully syn-
chronous to fully asynchronous, and of priorities between interactions. BIP has
been extended to hierarchical components in [11], thereby offering vertical com-
position, and has been equipped with contract-based reasoning along component
hierarchies. However, the concern here is guaranteeing safety and progress prop-
erties [13], such as freedom of component interference [11], rather than support-
ing vertical refinement. In general, it may be fair to say that concurrency theory
has focussed on horizontal refinement and often neglected vertical refinement.

Content and contributions. In this note, we sketch how vertical refinement of
hierarchical state machines can be supported by the popular concurrency frame-
work of Modal Transition Systems (MTS) [18]. MTS allows one to attach must-
and may-modalities to transitions in order to model required and permitted
behaviour, resp., and is equipped with the modal refinement preorder that sup-
ports the refinement of permitted to required behaviour. The utility of the MTS
framework is quite versatile, as can be seen in the contribution by Steffen and
Murtovi to this Festschrift volume [25].

To apply MTS for addressing vertical refinement, we first introduce in
Sect. 2.1 a hierarchical version of event-labelled transition systems, called Hierar-
chical Transition Systems (HTS). A state of an HTS has an inner and an outer
context, where the former allows one to place an HTS inside a simple state,
which then becomes compound, and where the latter permits one to extend the
outer state by adding transitions leaving that state [15,24]. Here, a compound
state describes the usual sequential behaviour as defined in Statecharts [16], i.e.,
when the outer state is active, the inner state machine executes from its ini-
tial state until it is aborted by a transition emanating from the outer state. To
indicate whether a state is refinable and open for extension wrt. a particular
event, it is annotated with a refinability flag and extensibility flags [24], resp., so
that an engineer can gradually disallow refinement and extension during vertical
refinement and, thereby, successively close the state.

We then give, in Sect. 2.2, each HTS a semantics as an MTS and lift modal
refinement to HTS. Intuitively, a transition in an HTS corresponds to a must-
transition in the MTS; a refinable state has a may-transition to itself, for each
event; a state has an outgoing may-transition to a special state tt, for each
event for which it is extensible; and state tt has a may-loop for each event
and no outgoing must-transition. We argue in Sect. 3.1 that this encoding is
sufficient to correctly capture vertical refinement as employed by engineers, by
considering popular refinement operations and proving that these do indeed
modally refine the MTS underlying the manipulated HTS. A small example in
Sect. 3.2 illustrates our semantic framework for hierarchically refining reactive
systems, while the implications of our approach are discussed in Sect. 4.
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Dedication. The author dedicates this paper to Susanne Graf, on the occasion of
her 60th birthday. My first ever publication on the compositional minimization
of finite state systems [12] has been a collaboration with Susanne (and Bernhard
Steffen). I have closely followed Susanne’s numerous scientific contributions ever
since, and share with her many interests in concurrency theory and automated
verification, especially on the utility of contracts and the importance of compo-
sitional reasoning. I wish her continued scientific success for years to come, and
that she remains the outstandingly sympathetic person she is.

2 Hierarchical Transition Systems

A hierarchical transition system is a labelled transition system over a set of
events, where states can themselves be hierarchical transition systems. Plain
states are referred to as simple, while states with an embedded transition system
are called compound. As in UML state machines and Statecharts [6,16], entering
a compound state means entering the initial state of the inner transition system,
and exiting some active state implies exiting also any active inner state. Hence,
state hierarchy allows for a compact representation when several transitions with
the same label and target state emanate from multiple states. Hierarchy has also
been introduced to automata, and hierarchical automata have been employed as
a model for Statecharts in the context of model checking [20].

Regarding vertical refinement, a state can be seen as having an inner and an
outer context. The state’s inner context refers to the transition system embedded
in the state, which is empty in the case of a simple state, while the state’s outer
context relates to transitions leaving the state. Because we wish to semantically
model vertical refinement as behaviour containment, we interpret a state as
permitting arbitrary behaviour. To restrict behaviour, we introduce a refinability
flag for each state and an extensibility flag for each state and event. If the
refinability flag of a state is switched to false, the state’s interior may no longer
be changed. Similarly, if the extensibility flag for a state and event is switched
to false, then no outgoing transition labelled with the event may be added to
the state. The addition of these flags thus allows one to switch off permitted but
optional behaviour, while retaining required behaviour.

2.1 Syntax of HTS

Let E be a set of events and N be set of state names, or states for short. In
practice, E and N are often finite. Moreover, we assume that every n ∈ N is
associated with a hierarchical transition system:

Definition 1 (HTS). The set HTS of Hierarchical Transition Systems over E
and N is inductively defined as follows:

– n = (ext, ref) is an HTS for any n ∈ N, extensibility flags ext(e) ∈ B =df

{true, false} for each e ∈ E, and refinability flag ref ∈ B.
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– Let HTS n1, . . . , nk for some k > 0 and n ∈ N be such that n does not
occur in any ni, for 1≤ i≤ k. Then, n = ({n1, . . . , nk}, �−→, n0, ext, ref)
is an HTS, where (a) n is the name of the hierarchical transition sys-
tem, (b) �−→⊆ {n1, . . . , nk} × E × {n1, . . . , nk} is the transition relation,
(c) n0∈{n1, . . . , nk} is the initial state, and (d) ext and ref are the extensi-
bility flags and the refinability flag as above. We require that such an HTS
satisfies the following conditions, where ref(m) and ext(m, e) stand for the
refinability flag of some m ∈ N and the extensibility flag of m wrt. e, resp.:

(e) ref(n) if ref(ni) for some 1≤ i≤ k;
(f) ref(n) if ext(ni, e) for some 1≤ i≤ k and some e ∈ E;
(g) ext(n, e) if ext(ni, e) for some 1≤ i≤ k.

In the following, we identify an HTS with its name n, and refer to n of the first
(second) kind above as simple state ( compound state). We also expect that the
outermost state n of an HTS satisfies ext(n, e) for all e ∈ E.

Intuitively, Condition (e) of a compound HTS demands that all ancestor states
of a refinable state are refinable or, equivalently, all descendant states of a non-
refinable state or also non-refinable. Conditions (f) and (g) require that all ances-
tor states of an extensible state are refinable and extensible, resp.

2.2 Semantics of HTS

Hierarchical transition systems are given a semantics in terms of modal transi-
tion systems (MTS) [18], and the standard notion of modal refinement on such
systems is lifted to HTS. An MTS is a transition system in which each transition
is labelled with an event and assigned a must- or may-modality, where a must-
transition (may-transition) specifies required (permitted) behaviour. Moreover,
each required behaviour must also be permitted, which is known as syntactic
consistency. Consequently, a state s that does not have an outgoing e-may-
transition, specifies that event e is forbidden in s.

Definition 2 (MTS). A Modal Transition System (MTS) over event set E is
a tuple (S,−→, ���, s0), where S is the set of states, s0∈S is the initial state,
and −→ ⊆ ��� ⊆ S × E × S are the must- and may-transition relations, resp.

In the following, we often abbreviate an MTS by its initial state. MTSs can be
related by an alternating simulation relation, called modal refinement [18]:

Definition 3 (MTS refinement). Given two MTS (S1,−→1, ���1, s01) and
(S2,−→2 , ���2, s02), a relation R ⊆ S1 × S2 is a modal refinement relation if
the following conditions hold, for all (s1, s2) ∈ R and e ∈ E:

1. s2
e−→2 s′

2 implies ∃s′
1. s1

e−→1 s′
1 and (s′

1, s
′
2) ∈ R,

2. s1
e���1 s′

1 implies ∃s′
2. s2

e���2 s′
2 and (s′

1, s
′
2) ∈ R.
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We write s1 �MTS s2 if (s1, s2) ∈ R for some modal refinement relation R, and
S1 �MTS S2 if s01 �MTS s02.

Modal refinement is a preorder, i.e., it is reflexive and transitive. Intuitively,
one MTS refines another MTS if the required behaviour of the latter can be
simulated by the former, and the permitted behaviour of the former is simulated
by the latter. Thus, refining an MTS allows changing permitted behaviour into
required behaviour, while adding non-permitted behaviour is prohibited.

Definition 4 (HTS semantics). The semantics of an HTS n is the modal
transition system MTS(n), which is inductively defined along the structure of n
as follows, where tt denotes a special state not in N:

If n = (ext, ref), then MTS(n) =df ({n, tt}, ∅, ���, n), where ��� is least such
that, for all e ∈ E, (a) n

e��� n if ref, (b) n
e��� tt if ext(e), and (c) tt

e��� tt.
If n = ({n1, . . . , nk}, �−→, n0, ext, ref) and MTS(ni) = (Si,−→i, ���i, s0i) for

1≤i≤k, then MTS(n) =df (S,−→, ���, n0), where S =df {tt} ∪ ⋃{n.s | s ∈
Si\{tt}, 1≤ i≤ k} and −→, ��� are the least relations satisfying, for all e ∈ E:

(a) n.s
e��� n.s if ref and s ∈ S\{tt}

(b) n.s
e��� tt if ext(e) and s ∈ S\{tt}

(c) tt
e��� tt

(d) n.si
e−→ n.sj if ni

e�−→ nj, si ∈ Si\{tt} and sj = init(nj)
(e) n.si

e��� n.sj if ni
e�−→ nj, si ∈ Si\{tt} and sj = init(nj)

(f) n.s
e−→ n.s′ if s

e−→i s
′ and s, s′ ∈ Si\{tt}

(g) n.s
e��� n.s′ if s

e���i s′ and s, s′ ∈ Si\{tt}
(h) n.s

e��� tt if s
e���i tt and s ∈ Si\{tt}

Here, init(m) =df m.init(m0) if m = ({m1, . . . ,mk}, �−→,m0, ext, ref) is com-
pound, and init(m) =df m if m is simple.

Intuitively, the MTS semantics of some HTS n flattens the state hierarchy of n,
so that states in MTS(n) are sequences of successively nested states in n. A tran-
sition ni

e�−→ nj of a compound HTS n is translated to a must-transition with
underlying may-transition (Conds. (d)–(e)). According to the semantics of state
hierarchy in Statecharts dialects [6,16], this implies that each flattened state of
the form n.ni. in MTS(n) has an outgoing e-must-transition to the initial state
to which nj points, which is inductively defined via function init() along the
hierarchy of nj . In addition, MTS(n) inherits all must- and may-transitions in
the semantics of its children ni, where states get prefix “n.” because ni is a child
of n (Conds. (f)–(h)). Refinability of some basic HTS n is naturally defined via
an e-may-loop on n for all events e (Condition (a)), while e-extensibility of n for
some e is realized by an e-may-transition to a special, universal state tt (Condi-
tion (b)). This state captures arbitrary behaviour and is thus also modelled in
MTS by an e-may-loop for all events e (Condition (c)). For compound HTS, the
semantic interpretation of refinability and extensibility is analogous.
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Regarding extensibility, Schmidt introduced in [24] the notion of n is open
for e, in the context of refinement patterns for the top-down refinement of hier-
archical state machines. This notion specifies that e-transitions leaving n can no
longer be added to and removed from n. Although he used transition systems
with simulation instead of MTS and modal refinement for defining the seman-
tics of hierarchical state machines, our notion of an e-extensible state n closely
relates to his open notion.

Definition 5 (HTS refinement). An HTS m refines an HTS n, in signs
m �HTS n, if MTS(m) �MTS MTS(n).

HTS refinement is compositional for substitution within a compound HTS n,
i.e., n is refined when replacing one of its children ni with a refined HTS m:

Definition 6 (Substitution). For states n,m,m′ ∈ N with m′ not occurring
in n, the name substitution n[m′/m] is defined by n[m′/m] =df m

′ if n = m,
and n[m′/m] =df n, otherwise.

For a compound HTS n = ({n1, . . . , nk}, �−→, n0, ext, ref), some HTS m and
1≤i≤k such that m does not occur in ni, the compound HTS n{m/ni} is given
by ({n1, . . . , ni−1,m, ni+1, . . . , nk}, �−→′, n0[m/ni], ext, ref), where n′[m/ni]

e�−→′

n′′[m/ni] if n′ e�−→ n′′, for all n′, n′′ ∈ {n1, . . . , nk}.
Theorem 7 [Compositionality]. Let n, m be HTS as in Definition 6 and such
that m �HTS ni for some 1≤ i≤ k. Then, n{m/ni} �HTS n.

Observe that compositionality as treated here is somewhat restricted in that
substitutions are only considered at the outermost hierarchy level of a compound
HTS, and not also at arbitrary inner levels. Such latter substitutions of some
deeper descendant n∗ of n must be conducted first for n∗, and the outer context
must be reconstructed step-by-step along the ancestors of n∗ until n is reached,
by repeatedly applying Theorem 7. We believe that a general compositionality
result can in principal be obtained, but this requires a more complex semantic
construction.

3 Vertical Refinement

This section (i) formally describes several vertical refinement operations that are
popular with software engineers, (ii) shows how these operations can be casted
in our HTS setting, and (iii) proves that each operation indeed refines an HTS
according to �HTS. Such operations may be understood as refinement patterns ;
more comprehensive pattern catalogues for the refinement of hierarchical state
machines may be found, e.g., in [15,24]. The utility of our refinement operations
and the HTS setting is then demonstrated by means of a small example that
illustrates the incremental, hierarchical design of an embedded controller.
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3.1 Refinement Operations

The following operations describe some typical refinement practices employed
by engineers (Ops. (A)–(C)) and the utility of closing states by declaring them
as non-refinable and non-extensible (Ops. (D) and (E), resp.). We refrain from
explicitly assigning names to operations, but we always refer to the original HTS
as n and the refined HTS as m, so that m �HTS n.

A. Refining a simple, refinable state by a compound state. Let n = (ext, true) be
a simple HTS and m = ({m1, . . . ,mk}, �−→,m0, ext′, ref ′) be a compound HTS
such that ext′(e) =⇒ ext(e) for all e ∈ E. Then, m �HTS n, because MTS(n)
has an e-may-loop for each e ∈ E and no must-transitions. Due to this and
Theorem 7, one may refine any simple, refinable state inside an HTS by a com-
pound state.

B. Adding an e-transition to an e-extensible state. Let n = ({n1, . . . , nk}, �−→,
n0, ext, true), e ∈ E and 1 ≤ i, j ≤ k such that ext(ni, e), and define m =df

({n1, . . . , nk}, �−→ ∪{(ni, e, nj)}, n0, ext, true). Then, m �HTS n; by Theorem 7,
this also holds for compound states inside a more complex HTS. The validity
of m �HTS n follows from the fact that there is an e-may-transition to tt for
all states of the form n.ni. in MTS(n). Thus, the (new) must-transitions (and
underlying may-transitions) of MTS(m) are permitted by MTS(n).

C. Adding a simple state to a refinable compound state. Let n = ({n1, . . . , nk},
�−→, n0, ext, true) and nk+1 = (ext′, ref ′) be a compound and a simple HTS, resp.
Then, m =df ({n1, . . . , nk, nk+1}, �−→, n0, ext, true) is a compound HTS, which
trivially satisfies m �HTS n as there are no transitions connected to nk+1.

D. Closing a refinable state. This operation recursively closes all inner states
by marking each state non-refinable and its inner states non-extensible for all
events. If n = (ext, true) is a simple HTS, let m =df (ext, false). Then, m �HTS n
as the e-may-loops are removed from the states in MTS(n), for all e ∈ E.

If n = ({n1, . . . , nk}, �−→, n0, ext, true) is a compound HTS, we define
m =df ({n1, . . . , nk}, �−→, n0, ext, false). Moreover, all children ni and all of their
descendants get their refinability flag and extensibility flags set to false. Then,
m �HTS n because the e-may-loops and, provided ext(e) = false, also the e-may-
transitions to tt are removed from all states of the form n. in MTS(n), for all
e ∈ E. Note that syntactic consistency is preserved.
E. Restricting an e-extensible state for event e. Let n = (ext, ref) be a simple HTS
with ext(e) = true, and define m =df (ext′, ref) where ext′(e′) = false if e′ = e,
and ext′(e′) = ext(e′), otherwise. Then, m �HTS n; only the e-may-transition
to tt is removed from MTS(n), and MTS(n) has no must-transitions.

Let n = ({n1, . . . , nk}, �−→, n0, ext, ref) be a compound HTS with ext(e) =
true, define m =df ({n1, . . . , nk}, �−→, n0, ext′, ref) with ext′ as above, and set
the e-extensibility flag of all descendants of n to false. Then, m �HTS n; again,
only the e-may-transitions to tt are removed from all states of the form n.ni.
in MTS(n), for all 1≤ i≤ k. Syntactic consistency is unaffected.
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3.2 Example Application

We illustrate the above refinement operations on HTS by means of a simple
example, the incremental development of a controller for a washing machine,
which is illustrated in Figs. 1 and 2. In the HTS shown on the left in these
figures, initial states are marked with a dangling incoming arrow, a refinable
(non-refinable) state n has an unfilled (filled) circle to the left of its name. If n
is e-extensible for all e ∈ E′ ⊆ E, then we draw an unfilled circle labelled E′

besides n’s top-right corner; we also write e for the event set E \ {e}. If n is not
extensible for any event, then the circle is filled and not labelled. Moreover, a
may-transition labelled E′ stands for a bunch of may-transitions, one for each
e ∈ E′. Finally, illustrating the complete MTS with all its may-transitions would
be visually overwhelming. Thus, we do not draw may-transitions that underlie
must-transitions. Additionally, all E-may-loops in the MTS on the right in Figs. 1
and 2 are omitted, and only those may-transitions with target tt that emanate
from the closest, still extensible outer context state are drawn.

The design of the controller starts with an empty canvas at Step (0), i.e., a
single, simple, refinable and extensible state WM. Refinement Step (1) applies
Op. A to place a state machine with states ON and OFF inside WM, between
which one can switch via events off and on. The non-off -extensibility of OFF
specifies that the machine cannot be switched off if it is already off, and analo-
gously for ON. Step (2) refines ON further, by declaring that an active washing

Fig. 1. Example illustrating incremental vertical refinement (Steps (0)–(3)), where the
HTS WM and MTS MTS(WM ) are displayed on the left and right, resp. Colour coding:
black (Step (0)), blue (Step (1)), green (Step (2)), red (Step (3)). (Colour figure online)
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Fig. 2. Example illustrating incremental vertical refinement (Steps (4)–(6)). Colour
coding: black (resulting HTS and MTS after Step (3), redrawn), pink (may-transitions
removed in Step (4)), orange (Step (5)), gray (all may-transitions removed in Step (6)).
(Colour figure online)

machine first washes (state W, for Washing), then drys (state D, for Drying)
after initiating to pump out the water (event pump), and finally finishes (event fin
leading to state F, for Finishing). Because this activity sequence is deemed com-
plete except for state D, only D is refinable and on-extensible. This state is
refined in Step (3) by a state machine that toggles between the simple, non-
refinable and non-extensible states P (Pumping) and S (Spinning).

Closing state ON in Step (4) via Ops. D and E means switching its refin-
ability flag and all refinability and extensibility flags of its inner states to false
(cf. Conds.(e) and (f) of Definition 1); thus, the refinability circle and exten-
sibility circle of state D are also filled and the extensibility label on vanishes.
Semantically, this leads to (i) the removal of the E-may-loops at states of the
form WM.ON. (not shown in Fig. 2, right) and (ii) the deletion of the on-may-
transition to tt at states of the form WM.ON.D. (shown). The latter transitions
are, however, re-inserted immediately (not shown), because ON itself is still on-
extensible. The analogue is true for the E-may-loops as state WM remains refin-
able. Note that these immediate reinsertions would not be automatic in case HTS
would be extended by a mechanism for event scoping. Step (5) adds via Op. C
state L (Loading/Emptying) as child state of WM, and successively inserts via
Op. B open-transitions to and close-transitions from the close-extensible state L
(opening and closing the washing machine’s door). Finally, Step (6) declares WM
as no longer refinable and extensible. The former implies by Condition (f) of
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Definition 1 that states OFF, ON and L are also becoming non-extensible; hence,
the now filled extensibility circles at those states and their crossed out labels.

This yields the final design of our washing machine controller, where all may-
transitions that do not underly must-transitions are deleted. By the results of
Sect. 3.1 and writing WM(i) for the HTS WM after refinement step i, we have
WM(6) �HTS WM(0) due to WM(i) �HTS WM(i−1) for all 1 ≤ i ≤ 6, as desired.

4 Conclusions

Hierarchical languages for specifying and designing reactive systems, such as
UML state machines and Statecharts [6,16], offer the ability to refine designs
by inserting states and transitions or by placing whole state machines inside
simple states. This vertical refinement along state hierarchies adds behaviour
and thus differs from the refinement concepts typically studied in concurrency
theory, which focus on restricting non-determinism, i.e., on reducing behaviour.

This note sketched a proposal of how this apparent contradiction can be
overcome. We demonstrated that the Modal Transition Systems (MTS) frame-
work [18] can very well support vertical refinement, assuming that simple states
are seen as empty canvases allowing arbitrary behaviour, and that inserting
states and transitions into the canvas specifies required behaviour. For this to
make practical sense, a state open for refinement or extension should be explic-
itly closed at some stage during the design process, thereby specifying that the
state is in its final form and semantically cutting permitted but not required
behaviour. As long as a state is open, required behaviour can be added and,
hence, gradually more progress properties can be verified. When a state is closed,
new safety properties can be verified. For example, the property “event fin can-
not occur without event pump having occurred before” of our washing machine
controller in the previous section can be proved once state ON becomes non-fin-
extensible, and assuming that the scope of these two events is state ON only.
Given that MTS has been well studied for component-based specification, e.g.,
in the context of interface theories [3–5,8] and assume-guarantee reasoning [22],
it ideally lends itself to settings requiring both vertical and horizontal refinement
and also demanding compositional reasoning.

Future work. Firstly, future work should evolve our semantics of HTS so that a
general compositionality result is obtained, supporting direct substitution also at
inner hierarchy levels. Secondly, because modal refinement is not fully abstract
wrt. the notion of refinement on HTS described in Sect. 3.1, we plan to explore
weaker refinement relations for hierarchical state machines. Thirdly, we wish to
integrate our ideas in more fully featured languages for reactive systems design:
HTS currently does not (i) permit any form of event scoping, which would imply
changes to the semantic rules in Definition 4, (ii) specify priority along state hier-
archy, (iii) consider concurrent behaviour, or (iv) address subtle questions such
as “What is in a step?” [21,23], which becomes relevant when the execution of
concurrent transitions may generate events. We also believe that the seminal
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compositional minimization technique co-invented by Graf [12], which is dis-
cussed by Garavel, Lang and Mounier in another contribution to this Festschrift
volume [9], can be extended to support state hierarchy and the MTS framework.
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Abstract. M3C is a method and tool supporting meta-level product
lining and evolution that comprises both context free system structure
and modal refinement. The underlying Context-Free Modal Transition
Systems can be regarded as loose specifications of meta models, and
modal refinement as a way to increase the specificity of allowed DSLs by
constraining the range of allowed syntax specifications. Model checking
with M3C allows one to verify properties specified in a branching-time
logic for all DSLs of a given level of specificity in one go, which is illus-
trated by looking at variations of an elementary programming language.
Technically, M3C is based on second-order model checking which deter-
mines how procedure calls affect the validity of the properties of interest.
The inherent compositionality of the second-order approach leads to a
runtime complexity linear in the size of the procedural system represen-
tation, whose corresponding transition systems typically have infinitely
many states. In fact, second-order model checking can be regarded as a
means to tame state explosion via ‘procedural abstraction’, a technique
which may well be beneficial also for regular (recursion-free) systems.

Keywords: Modal Transition Systems
Context-free/procedural transition systems · Modal refinement
Second-order model checking · Meta model
Domain-specific languages · Predicate/property transformers
Binary decision diagram · Compositionality

1 Introduction

In the last decades, model checking has developed as a very generic tool for
automated analysis that can be applied in very different scenarios and in many
variants. A particularly interesting development happened in the context of soft-
ware product lining and evolution, where model checking has e.g., been applied
to so-called modal transitions systems that, together with the inherent notion of
refinement, allow one to capture not only individual system/programs but entire
classes thereof. The point here is that the so-called modal refinement preserves
all properties specified in the popular linear-time and branching-time temporal
logics. Thus it is possible to verify properties of product lines or evolutionary
steps by in one go as long as they are captured by a system specification in terms
of a modal transitions system.
c© Springer Nature Switzerland AG 2018
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An alternative way to impose/control properties beyond single instances is
the way of tailored domain specific languages (DSLs): all systems developed in
such a language are typically guaranteed to satisfy the properties/constraints
imposed by the DSLs’ meta model (cf. [20]). Corresponding checks are typically
done by parsers, but using context-free model checking [2–4], it is also possible to
model check interesting properties of DSLs, whose impact on the individual sys-
tems typically increases with the specificity of the considered DSL. [19] proposes
an approach that elaborates on the idea to control/guide software evolution and
product lining by lifting the software evolution process (in part) to the meta
level.

In this paper, we present M3C, a method and tool supporting meta-level
product lining and evolution that comprises both context free system structure
and modal refinement. The underlying Context-Free Modal Transition Systems
(CFMTSs) can be regarded as loose specifications of meta models, and modal
refinement as a way to increase the specificity of allowed DSLs by constraining
the range of possible meta models (syntax specifications). Model checking with
M3C allows one to verify properties specified in a branching-time logic1 for all
DSLs of a given level of specificity in one go. Most of these properties can be
directly interpreted as DSL-enforced program properties.2

The paper will illustrate the impact of the M3C approach by interpreting
model checking results both at the meta level and at the system level. We will
show that the model checking results provide a good guidance in what one may
call meta model engineering. More concretely, we will discuss the evolution step
from a classical WHILE language to Wirth’s PL/0, which comprise procedures
[21]. We will start from a ‘naive’ modal specification of a family of languages
that comprise, in particular the WHILE (sub) language and the entire PL/0, and
discuss ways aiming at guaranteeing that called procedures are always declared
(cf. Sect. 4.1).

Technically, M3C is based on second-order model checking [2–4] which deter-
mines how procedure calls affect the validity of the properties of interest. The
corresponding second-order analysis for determining the predicate transform-
ers (the effects) for the individual procedures is characterized by its hierarchi-
cal fixpoint iteration: a higher-level iteration for exchanging approximate predi-
cate transformers of the involved procedures, and a (local) lower level iteration
for updating the individual predicates transformers on the basis of the current
approximate transformers for the procedures. These iterations, which conceptu-
ally separate the description of behavior of components from the way they interact
[11], may be arbitrarily intertwined because of monotonicity reasons.

The inherent compositionality of the second-order approach leads to a run-
time complexity linear in the size of the procedural system representation, whose
corresponding transition systems typically have infinitely many states. In fact,
second-order model checking can be regarded as a means to tame state explosion
via ‘procedural abstraction’, a technique which may well be beneficial also for

1 We are focusing here on the alternation-free mu-calculus.
2 Such properties are called rigid archimedean points in [20].
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regular (recursion-free) systems: during higher-level iterations, entire subsystems
are just considered as predicate transformers, i.e., as second-order versions of the
predicate abstractions introduced in [12].

Abstraction, the art of focusing on the essential details, is also a guiding
principle for modal refinement. In a sense, the may transitions of modal transi-
tion systems can be regarded as a form of don’t care transition, providing future
implementations with a freedom of choice, which may profitably be used for
optimization or future system evolution. The fact that modal refinement sup-
ports a notion of property-preserving abstraction in the sense of [17] allows one
to cover even infinite classes of implementations with one check or to minimize
given implementations in a don’t care fashion along the lines of [10,13,14].

After presenting the required background in Sect. 2, we present our model
meta model checking algorithm in Sect. 3 and discuss its application in Sect. 4.
The paper closes with our conclusions and direction to future work in Sect. 5.

2 Preliminaries

In this section we present Context-Free Modal Transition Systems (CFMTS)
which extend Modal Transition Systems (MTSs) to mutually recursive systems
of MTSs,3 sketch PL/0, the programming language serving as an application sce-
nario for our technology, and the considered property language, the (alternation-
free) modal μ-calculus.

2.1 Context-Free Modal Transition Systems

Modal transitions systems and their extension with mutual recursion presented
in this section come with a notion of refinement that establishes a powerful
specification-implementation relation. They allow one to model check prop-
erties at the specification-level that are then guaranteed to hold for each
implementation.

Definition 1 (Modal Transition Systems [15]). Let S be a set of states and
Act an alphabet of action symbols. M = (S, s0, Act, ���,−→) is called a (rooted)
Modal Transition System (MTS) with root s0 if the following condition holds:

−→⊆���⊆ (S × Act × S)

Elements of ��� are called may transitions, those of −→ must transitions.
As usual, we will write s

a−−→ s′ iff (s, a, s′) ∈−→ and s
a−−→ to abbreviate

∃s′. s a−−→ s′, s
a��� s′ and s

a��� are defined analogously.

3 Alternatively, one can regard CFMTS also as an extension of Context-Free Process
Systems [2] to also allow may transitions.
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MTSs denote sets of Labelled Transition Systems (LTS)s, which can simply
be defined as MTS where all transitions are must transitions. Modal refinement,
the corresponding specification-implementation relation, defines these sets as the
minimal elements of the refinement ordering:

Definition 2 (MTS refinement [15]). Let M1 = (S1, s
1
0, Act1, ���1,−→1),

M2 = (S2, s
2
0, Act2, ���2,−→2) be two MTSs. A relation ≤r ⊆ (S1×S2) is called

a refinement if the following holds for all (p, q) ∈≤r:

1. ∀(p, a, p′) ∈���1,∃(q, a, q′) ∈���2: (p′, q′) ∈≤r

2. ∀(q, a, q′) ∈−→2,∃(p, a, p′) ∈−→1: (p′, q′) ∈≤r

An MTS M1 refines an MTS M2, written M1 ≤r M2, if there exists a refine-
ment ≤r with (s10, s

2
0) ∈ ≤r. Intuitively, refinement is closed under node-

splitting/duplication of states, allows may transitions to be either turned into
must transitions or to be eliminated, while it requires all must transitions to be
maintained. Like bisimulation, it preserves all temporal properties of finite state
systems [16]. In fact, the restriction to finite state is not essential for the induc-
tion proof along the structure of the temporal formulas, which makes modal
refinement an ideal tool for product line verification also for the here considered
infinite state case.

The following notion of procedural modal transition system (PMTS) extends
MTS to comprise call transitions that allows one to define mutually recursive sets
of MTS, later formalized as Context-Free Modal Transition Systems (CFMTS).

Definition 3 (Procedural Modal Transition System). A procedural modal
transition system is defined as P = (ΣP , T rans := Act∪N, ���P ,−→P , σs

P , σe
P ),

where:

– ΣP is a set of state classes,
– Trans := Act ∪ N is a set of transformations (Act is a set of actions, N is a

set of procedure names),
– −→P :=−→Act

P ∪ −→N
P is the must transition relation

– ���P :=���Act
P ∪ ���N

P is the may transition relation,
where −→Act

P ⊆���Act
P ⊆ ΣP × Act × ΣP and −→N

P ⊆���N
P ⊆ ΣP × N × ΣP

– σs
P ∈ ΣP is a class of start states and σe

P ∈ ΣP is a class of end states.

A procedural MTS can be seen as an MTS that is extended by the possibility
of having transitions whose effect is described by another MTS. For technical
reasons, we require PMTSs P to satisfy the following two constraints:

1. The class of end states σe
P must be terminating in P , i.e. σe

P

α��� does not
hold.

2. P must be guarded, i.e. all initial transitions of P must be labeled with atomic
actions.
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We call P regular if ���N
P = ∅, i.e. P does not contain any process calls. In the

following we denote the set of all regular PMTSs by G and define:

Definition 4 (Context-Free Modal Transition Systems (CFMTS)). A
context-free modal transition system is a quadruple P = (N,Act, C, P0), where:

– N := {N0, . . . , Nn−1} is a set of names,
– Act is a set of actions,
– C := {Ni = PMTSi | 0 ≤ i < n} is a finite set of PMTS definitions where

PMTSi is a finite PMTS with name Ni ∈ N and
– P0 is the main PMTS. Moreover we denote Σ =

⋃n−1
i=0 ΣPi

, −→=
⋃n−1

i=0 −→Pi
and ��� =

⋃n−1
i=0 ���Pi

.

As detailed in [2,8,9],4 CFMTSs serve as finite representations of the com-
plete, typically infinite-state expansion of the corresponding main PMTS P0

[2]. Figure 2 illustrates one step of such an expansion.

2.2 PL/0

The programming language PL/0 introduced by Wirth [21] is a general-purpose
language which was intended to be used for educational purpose. Its Extended
Backus-Naur form(EBNF) is given below.

Program = Block "."
Block = ["const" Ident "="Number {"," Ident "="Number} ";"]

["var" Ident {","Ident} ";"]
{"procedure" Ident ";" Block ";"} Statement

Statement = [Ident ":=" Expression | "call" Ident | "?" Ident
| "!" Expression
| "begin" Statement {";" Statement } "end"
| "if" Condition "then" Statement
| "while" Condition "do" Statement]

Condition = "odd" Expression
| Expression ("=" | "#" | "<" | "<=" | ">" | ">=" ) Expression

Expression = ["+" | "-"] Term {("+" | "-") Term}
Term = Factor {("*"|"/") Factor}
Factor = Ident | Number | "("Expression")"

Applying our model checking technology to PL/0 requires to transform this
EBNF into a corresponding CFMTS, which comprises one PMTS for each non-
terminal.

Figure 1 shows the PMTSs for the non-terminals Factor, here enriched
with the possibility of using curly braces alternatively to round braces for

4 In [8,9] a conceptually similar structure to CFMTS is called Systems of Procedural
Automata (SPAs) to better match the terminology used in the field of automata
learning.
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Fig. 1. Factor and Expression as PMTSs

Fig. 2. Factor with Expression-calls expanded

an Expression as indicated by the outgoing may-transition from startF , and
Expression. The complete expansion process mentioned above is indicated in
Fig. 2 by inlining the PMTS for Expressions into the Factor PMTS.5

2.3 The Alternation-Free Modal µ-Calculus

The modal μ-Calculus is a branching-time logic that is used to specify properties
of transition systems. Characteristic are its greatest fixed point operator ν and a
least fixed point operator μ that provide an enormous expressive power, however
at the price of increased intricacy [1].

5 The figures generated by our tool.
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Let V ar be a (countable) set of variables, AP a set of atomic propositions
and Act a set of Actions. Furthermore let X ∈ V ar, A ∈ AP and a ∈ Act. The
syntax is then given by the following Backus-Naur form:

φ ::= A | X | φ ∨ φ | φ ∧ φ | 〈a〉φ | [a]φ | νX.φ | μX.φ.

The semantics are given with respect to an MTS (S,Act, ���,−→), a valuation
V which maps atomic propositions to subset of states of S and an environment
e, mapping variables to subsets of S. The semantic function [[·]]e maps a formula
to the set of states which satisfy the formula [2].

[[A]]e = V (A)
[[X]]e = e(X)

[[φ1 ∨ φ2]]e = [[φ1]]e ∪ [[φ2]]e
[[φ1 ∧ φ2]]e = [[φ1]]e ∩ [[φ2]]e

[[〈a〉φ]]e = {s | ∃s′.s a−−→ s′ ∧ s′ ∈ [[φ]]e}
[[[a]φ]]e = {s | ∀s′.s

a��� s′ ∧ s′ ∈ [[φ]]e}
[[νX.φ]]e =

⋃{T ⊆ S | T ⊆ [[φ]]e[X:=T ]}
[[μX.φ]]e =

⋂{T ⊆ S | [[φ]]e[X:=T ] ⊆ T}

Thus an atomic proposition A is true in a state s if s ∈ V (A), s satisfies X if
s ∈ e(X), and conjunction and disjunction are defined as usual. Special are the
‘diamond’ operator 〈a〉 and ‘box’ operator [a]. The diamond-operator is true if
there exists a s′ ∈ S with s

a−−→ s′ that satisfies φ, while the box-operator is
true if all successors of s that are connected by an edge labeled by the action a
satisfy φ.

The modal μ-Calculus is not very ‘user friendly’. On the other hand, it is a
very good basis for a tool as many more convenient temporal logics, like CTL,
can easily be expressed in the μ-calculus [5,7].

3 Model Checking Context-Free Modal Transition
Systems

We extend the second-order model checking algorithm described in [2] for captur-
ing context-free modal transition systems. This only requires minor modifications
in order to deal with the characteristics of may transitions. Our presentation fol-
lows the development given in [2]. Like there, our algorithmic description also
requires the representation of the μ calculus formulas that serve as input in terms
of hierarchical equational systems.

3.1 Hierarchical Equational Systems

Hierarchical equational systems are composed of equational blocks which, due
to the underlying hierarchy, can be evaluated in a hierarchical fashion.
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Definition 5 (Equational Block [2]). An equational block has one of two
forms, min{E} or max{E}, where E is a list of (mutually recursive) equations

X1 = φ1, . . . , Xn = φn

where φ1, . . . , φn are basic formulas, i.e., can be written using the following
grammar:

φbasic ::= A | X ∨ X | X ∧ X | 〈a〉X | [a]X

The set of all variables Xi appearing in a block B are denoted by VB, or simply
by V in case B is clear from the context.

Min-blocks are used for capturing the least fixed point operator and Max-blocks
for capturing the greatest fixed point operator, respectively. An equational sys-
tem is a list of equational blocks B = (B1, . . . , Bm) where the variables appearing
on the left-hand side of some block are all distinct.

x1

x2 x3

x4 x5

∧
∧

[·]

∨

∨
〈·〉

Fig. 3. Dependency graph of the equational system of φ

Example 1. Let φ = νX.[·]X ∧ (μY.A ∨ 〈·〉Y )
The formula φ specifies that “it is always possible that A will hold”. The dot ‘ · ’
specifies that the box-/diamond-operator holds regardless of the transition label.
In CTL we could express this as AG EF A [1]. The equational system consists of
two blocks. We need one block for greatest fixed point νX and one for the least
fixed point μY . The equational system corresponding to φ then looks as follows:

max{ X1 = X2 ∧ X3

X2 = [·]X1}
min{ X3 = X4 ∨ X5

X4 = A
X5 = 〈·〉X3}
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‘Hierarchical’ in the term hierarchical equational systems means that there are
no cyclic dependencies between blocks in the sense defined below:

Definition 6 (Hierarchical Equational System [2]). An Equational System
B = (B1, . . . , Bn) is hierarchical if the existence of a left-hand side variable of a
block Bj, 1 ≤ j ≤ n, appearing in a right-hand side formula of a block Bi implies
i ≤ j.

The constraint to exclude cyclic dependencies between blocks limits the expres-
sive power of hierarchical equational systems to the alternation-free fragment of
the μ calculus [6].

The model checking algorithm presented in the next section propagates infor-
mation between the variables of equational blocks in an ordering reverse to
the dependency relation: Fig. 3 shows the dependency graph of the formula
φ = νX.[·]X ∧ (μY.A ∨ 〈·〉Y ) presented in the previous example. Please note
that in this graph every loop has an edge labeled with some box or diamond
modality, a property of equational systems which we can enforce without loos-
ing expressive power, and which is sufficient to guarantee a hierarchical evalua-
tion/updating strategy for each state. In the following we will therefore assume
that the dependency graphs of all equational blocks have this property.

3.2 The Second-Order Model Checking Algorithm

The fact that we only consider basic formulas on the right hand side of equa-
tions guarantees that keeping track of the truth values of variables is sufficient
to propagate all the required information during the fixpoint computation of
(first order) model checking. (Classical) first-order model checking for a block
B computes a mapping that associates each state s of the considered MTS with
the subset of V that contains all formulas that are valid at s. This means that
model checking computes a fixpoint in the power set lattice 2V .

Second-order model checking lifts the fixpoint computation to the lattice of
corresponding (monotonic) predicate transformers D = 2V −→ 2V . This allows
one to formulate model checking as a fixpoint computation that computes a
predicate transformer PTσ ∈ D for each state class σ of a PMTS P in the
considered CFMTS that aggregates the effect of the fragment of P that starts in
σ and terminates with P ’s end state σe

P in the following sense: For any V ′ ∈ 2V ,
PTσ(V ′) is the set of all variables of V that hold at σ in case that all formulas
of V ′ hold at the end state of P . After this fixpoint computation the original
model checking problem can be answered for the considered CFMTS simply by
checking whether the input formula X1 lies in PTσs

P
(Vdeadlock), where Vdeadlock

denotes the set of variables that hold for the deadlocked state. E.g., for the
block whose dependency graph is shown in Fig. 3 this would only be X4 in case
A happens to hold at the considered deadlocked state, otherwise Vdeadlock would
just be the empty set.

In the following we sketch how PTσs
P

can be computed for all CFMTSs P
and equational systems E while focusing on the peculiarities of the second-order
approach and, in particular, of the implications of allowing also may transitions.
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The global structure for hierarchically dealing with hierarchical equational
systems in a ‘depth first’ fashion is identical to the first-order case. Thus we only
need to consider the treatment of blocks in more detail, and we can focus on
min blocks only, as the treatment of max blocks is completely dual.

Algorithm 1 shows the classical workset pattern for the corresponding fix-
point computation, which consists of an initialization phase, an iterative update
of the property transformers, and the update of the workset.

Initialize the property transformers PTσ of all state classes σ.
workset = Σ
while workset �= ∅ do

LET σ ∈ workset;
workset = workset\{σ};
PTσ.old = PTσ;
α1, . . . αn = outgoing edge labels of σ;
PTσ = �σ

j=1,...,nPT[aj ] ◦ PTσj ;

if PTσ �= PTσ.old then
if σ = σs

Pi
for some i ∈ N then

workset = workset ∪ {σ′ | σ′ Pi���� };
end

workset = workset ∪ {σ′ | σ′ α��� σ};

end

end
Algorithm 1. Algorithm: Model checking of context-free modal transition
systems [2]

The property transformers associated with end states are generally initialized
with the identity function, and this setting is maintained during the fixpoint
computation. As we are considering min blocks, all other property transformers
are initialized to the constant function false.

Also the update of the workset is simple. As in the classical case of a backward
analysis, all predecessors of a state whose property transformer has changed are
added to the workset. Special is only the situation for start states. Changes
there affect all states that ‘call’ the corresponding PMTS. Thus they must also
be added to the workset.

The most intricate part is the iterative update of the property transformers
for a state class σ which proceeds in two steps: the determination of the prop-
erty transformers for the individual choices of σ’s outgoing transitions, and the
aggregation of the common effect of all these individual property transformers
on σ’s property transformer.
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The property transformer for an outgoing transition σ
α−−→ σ′ is defined as

PT[α] ◦ PT[σ′]

where PT[α], the effect of taking step α, is defined as follows:
In case α = Pi, we have PT[α] = PT[Pi] = PTσs

Pi
, i.e., PT[α] is the current

approximation of the effect of Pi. Otherwise, i.e., in case α = a ∈ Act, PT[α] is
characterized by

Xi ∈ PT[α](M) iff

⎧
⎨

⎩

φi = 〈a〉Xj and Xj ∈ M and α−−→∈−→
φi = [a]Xj and Xj ∈ M
φi = [b]Xj and b �= a

⎫
⎬

⎭

for M ⊆ V and an equation Xi = φi of block B.
Please note that may transitions do not contribute when considering

diamond-subformulas, as they cannot be guaranteed to exist in an actual imple-
mentation. In contrast, box subformulas are insensitive to the nature of may and
must transitions.

Finally, the aggregation of the common effect of all the individual property
transformers for outgoing transitions on σ’s property transformer is defined by
the function (�σ

i=1,...,kPTi(M)) = M ′ which is characterized by

Xj ∈ M ′ iff

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φj = A and σ ∈ V (A)
φj = Xj1 ∧ Xj2 and (Xj1 ∈ M ′ and Xj2 ∈ M ′)
φj = Xj1 ∨ Xj2 and (Xj1 ∈ M ′ or Xj2 ∈ M ′)
φj = 〈a〉ψ and ∃.1 ≤ i ≤ k with Xj ∈ PTi(M)
φj = [a]ψ and ∀.1 ≤ i ≤ k with Xj ∈ PTi(M)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

for M ⊆ V , equations Xj = φj of B, and the convention that property trans-
formers belonging to outgoing must transitions are emphasized in bold face (see
line four). Like before, also here only the diamond subformulas are sensitive to
the distinction between may and must transitions.

The following section will discuss our modal meta model checking approach
along variations of Wirth’s PL/0.

4 M3C at Work

This section starts by considering variations of Wirth’s PL/0 in order to illustrate
how modal meta model checking can provide vital feedback when engineering
(specification/programming) languages. Subsequently, we present our M3C tool
by discussing one concrete iteration step of a second-order fixpoint computation.

4.1 Playing with Variations of PL/0

In order to illustrate the impact of may transitions, we will consider the eleven
variations of PL/0 listed in Table 1 which already also summarizes the model
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Table 1. Truth table for 1)–11) and A)–D)

Nr. Variant Decl Call A) B) C) D)

1) WHILE(W) - - 1 0 0 1

2) WD Must - 1 0 1 0

3) WC - Must 0 1 0 1

4) DC Must Must 0 1 1 1

5) DCt Must Must 1 1 1 1

6) dc May May ? ? ? ?

7) dct May May 1 ? ? ?

8) dC May Must 0 1 ? 1

9) dCt May Must 1 ? ? 1

10) Dc Must May ? ? 1 ?

11) Dct Must May 1 ? 1 ?

Fig. 4. The Statement PMTS

checking results for the four formulas we are going to discuss. The theme of this
discussion is set by the popular property that no call is possible unless the called
procedure is declared.

Figures 4, 5 and 6 illustrate essential differences between the considered vari-
ants. In Fig. 4 we see the PMTS for Statement which contains a ‘call’ transition.
Whenever we say that ‘call’ is a may-transition we mean the transition from start
to s3. We denote the standard PL/0 by DC, PL/0 with a may ‘call’-transition
by Dc, PL/0 with a may ‘decl’-transition by dC, and PL/0 where both, ‘call’
and ‘decl’ are may transitions, by dc.

The language WHILE(W) is the subset of PL/0 which contains neither decl-
nor call-transitions. Consequently, e.g., state s3 does not exist in the Statement
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PMTS of this language. The variants WD and WC are defined likewise, i.e.
WD is the WHILE language extended by procedure declarations and WC is the
WHILE language extended procedure calls.

For the ease of presentation we will assume for the rest of the section that
there is just one procedure which is declared by ‘Decl’ and called by ‘Call’. Then
property A) in Fig. 7 is a μ-calculus formulation of this (intuitive) property, i.e.
no call is possible unless the called procedure is declared.

The second and third column of Table 1 specify the variants by indicating
in which way the considered language supports declarations and calls. E.g.,
WHILE(W) does not support these features at all, while PL/0 supports both
of them in a must fashion. Not all of these languages make sense. E.g., every
program of WC that is not already in WHILE(W) is deemed to violate prop-
erty A, and any program in WD that is not in WHILE(W) has redundant
declarations. The situation is not as bad for dC and Dc, as they allow for lan-
guage implementations that permit programs with correct calls.

These are exactly the kind of properties we want to check automatically with
our M3C tool in order to, e.g., reveal transformations as the one indicated in
Figs. 5 and 6: As indicated in the fifth column of Table 1 the node split that
results in Fig. 6 is sufficient to guarantee property A for all corresponding spec-
ification variants (here are marked by an exponential ‘t’).6

Fig. 5. The Block PMTS of PL/0
(Nr.4 DC)

Fig. 6. The Block PMTS of PL/0t

(Nr.5 DCt)

In order to simplify the presentation of the four properties we are going to
discuss we use the following conventional notation

[¬α]φ =
∧

β∈Act,α�=β

[β]φ

where Act is the action alphabet and φ is an arbitrary formula of the modal
μ-calculus:

6 For readability, in comparison to the specification in Sect. 2, we factored the
constant-, variable- and procedure-declarations out here as own PMTSs.
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We have already briefly discussed that property A) does not hold for ‘stan-
dard’ PL/0 and how to overcome this problem by an easy transformation. Let
us nevertheless discuss Table 1 in more detail.

As mentioned above, already the interpretation of the first 5 rows is interest-
ing. They concern five individual languages of increasing power and specificity.
However, languages WD and WD are odd: as indicated by columns B and C,
all programs of WC with call statements are deemed to violate the property
that procedures need to be declared, whereas declarations of language WD will
never be used. Language DC, PL/0, requires, as traditional, users to keep track
of the declaration requirements, whereas language DCt guarantees the property
through its syntax definition. That language 1 (as well as 2) also satisfy property
A is a consequence of the fact that universal quantification over the empty set
is true.

The specifications of rows 6–11 are all the modal refinements of 6 which result
from turning may to must transitions: Whereas the mere switch from may to
must is sufficient to arrive at the specifications of rows 8 and 10, rows 7, 9, and
11 require some additional unrolling of the specification of row 6 along the lines
indicated in Figs. 5 and 6.7

The question marks in Table 1 indicate that the corresponding property can
neither be verified nor falsified. This means that the specification allows both
languages that satisfy the property and languages that do not. In particular,
the specification for row 6 allows the first five languages as implementations.
In fact it is the largest of the eleven specifications according to the refinement
ordering. The corresponding Hasse diagram, enriched to illustrate the fact that
the refinement ordering preserves all temporal properties, is shown in Fig. 8.

M3C allows one to check all temporal properties for each of the eleven lan-
guages. In particular, one can check the effectiveness of the transformation to
the transformed versions for establishing property A by a single check of dct.

In [20] we called properties that can be enforced directly by an appropriate
meta model rigid archimedean points. As grammar-based syntax specifications
certainly are considered part of a meta model, the four properties discussed here
can all be made rigid without imposing unwanted additional constraints.

A) : νX.([call]ff ∧ [¬decl]X)
B) : μX.(〈call〉tt ∨ 〈·〉X) (In CTL:EF 〈call〉tt)
C) : μX.(〈decl〉tt ∨ 〈·〉) (In CTL:EF 〈decl〉tt)
D) : νX.[decl](μY.〈call〉tt ∨ 〈·〉Y ) ∧ [·]X

Fig. 7. The properties to be checked

7 The reader is invited to consider other refinement options. Please note, due to
unrolling there are infinitely many options!
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dc
(?, ?, ?, ?)

dC
(0, 1, ?, 1)

Dc
(?, ?, 1, ?)

dct

(1, ?, ?, ?)

Dct

(1, ?, 1, ?)
dCt

(1, ?, ?, 1)

WC
(0, 1, 0, 1)

DC
(0, 1, 1, 1)

WD
(1, 0, 1, 0)

DCt

(1, 1, 1, 1)
W

(1, 0, 0, 1)

Fig. 8. Hasse-Diagram: Refinement ordering of variations

4.2 Second-Order Update with M3C

In this section, we consider a concrete update during the model checking process
for property A in the representation shown in Fig. 9 concerning:

– the red state class (s3) of the Block PMTS for PL/0t(= DCt) shown in
Fig. 10, and

– the approximate predicate transformers for the relevant state classes whose
representations as multi-source BDDs is shown in Fig. 11 (the correct asso-
ciation of these transformation to ‘their’ states is indicated by their color).

Fig. 9. The syntax tree of the input formula showing variable naming
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Fig. 10. The relevant states for the update (Color figure online)

Fig. 11. The property transformers of the states which are relevant for the update
(Color figure online)

The source nodes of these BDDs directly represent the subformulas (nodes)
shown in Fig. 9.

s3 has two outgoing edges. This means that we first have to determine their
corresponding predicate transformers as the composition of the predicate trans-
formers for the target states of these transitions with the predicate transformers
of the transitions themselves.

As the green transition is labeled with Statement, this means that we have
to compose the blue predicate transformer for the end state of the Block PMTS
with the (green) predicate transformer of the start state of the Statement PMTS.
This results in the leftmost white predicate transformer.
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Similarly, as the yellow (cyclic) transition is labeled with Procedure, this
means that we have to compose the red predicate transformer for state s3 of
the Block PMTS with the (yellow) predicate transformer of the start state of
the Procedure PMTS. This results in the other bottom-level white predicate
transformer.

The update step is now completed by applying the �σ-operator to the two
white predicates transformers at the bottom of Fig. 11. Intuitively, the resulting
(white at the top) predicate transformer very much resembles a conjunction
of the two composite argument transformers, because Proposition A does not
contain a diamond modality.

All pictures displayed in this section are taken from our M3C tool whose
visual support is ideal to support users in establishing a good intuition about our
second-order approach. In fact, we use M3C in lectures as educational support.

5 Conclusion

We have presented M3C, a method and tool supporting meta-level product lin-
ing and evolution that comprises both context free system structure and modal
refinement. The underlying CFMTSs can be regarded as loose specifications of
meta models, and modal refinement as a way to increase the specificity of allowed
DSLs by constraining the range of allowed syntax specifications. The inherent
compositionality of the second-order approach leads to a runtime complexity
linear in the size of the procedural system representation, whose correspond-
ing transition systems typically have infinitely many states. It has been shown
how model checking with M3C can be used to verify properties specified in a
branching-time logic for all DSLs of a given level of specificity in one go. This
has been illustrated by looking at variations of Wirth’s PL/0.

We are planning to experiment with M3C as a tool for validating the speci-
ficity of defined DSLs, in particular to better understand which properties of
a programming language can elegantly be realized as rigid archimedean points
[20], i.e., be expressed in terms of adequate syntactic definitions. The treatment
of Property A in Sect. 4.1 can be regarded as a first step in this direction. In the
long term it is our goal to integrate M3C in our CINCO Meta Tooling Suite [18]
as a guiding tool for what we call meta model engineering.
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Abstract. Wholly! is an automated build system for the modern soft-
ware stack. It is designed for reproducible and verifiable builds of opti-
mized and debloated software that runs uniformly on traditional desk-
tops, the cloud, and IoT devices. Wholly! uses Linux containers to ensure
the integrity and reproducibility of the build environment. It uses the
clang compiler to generate LLVM bitcode for all produced libraries and
binaries to allow for whole program analysis, specialization, and opti-
mization. The clang compiler and install tools are all built with Wholly!
as well. Wholly! has been applied to build Alpine Linux, Docker contain-
ers, microservices, and IoT software. We show that software packages
built in Wholly! are faster, smaller, and more amenable to whole pro-
gram analysis.

1 Introduction

The modern software stack has evolved from desktops to monolithic servers, and
finally to the cloud and IoT devices. Driven by the need for rapid scalability,
developers can either deploy an application on a thin operating system layer such
as OSv [14], an operating system designed for the cloud, or in a container such
as Docker [3] running on a traditional operating system. Applications can also
be broken up into a number of microservices. Microservices can run in individual
distinct containers, in virtual machines (VMs), as unikernels [8,10,16] running
on a hypervisor or on bare metal, or even as a single function as a service.
The diversity of these computing platforms creates new challenges for formal
verification. We are particularly interested in applying source code analysis such
as abstract interpretation [2] and predicate abstraction [6]. When analyzing source
code, it is necessary to understand the build process for different platforms, and
to account for all used libraries so that whole program analysis is possible. This
requires dealing with the following challenges:

Bloated software: Running a simple application in a container often involves
building a container image that includes a number of libraries that are not neces-
sary to run the application. For microservices, the bloatware is worse. Running a
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single Javascript function on Amazon Lambda or a service like Standard Library
[18] requires running the entire Node.js interpreter on top of an Ubuntu image
that contains libraries that are not needed for running Node.js. On a typical
desktop running a Linux distribution, hundreds of packages and thousands of
possibly extraneous libraries are installed.

Complex build processes and dependencies: gcc is the most popular compiler on
Linux platforms. Even when using clang, gcc libraries are used during com-
pilation. One has to carefully trace the build process to know precisely which
supporting libraries, which build scripts, which linker, and which install tools
have been used during any build process.

Lack of reproducibility: Given the complexity of build processes, and the reliance
on dynamic linking and bloated deployment environments, it is often impossible
to guarantee that software built in two different builds is going to behave exactly
the same. This is particularly important in domains such as scientific computing
[15], where reproducing the same results may be paramount to the integrity of
the scientific method.

We presentWholly! [20], a tool for building and packaging software that
explicitly defines dependencies, produces build processes that are repeatable and
verifiable, and allows for whole program analysis. The result is leaner, faster,
and debloated software packages that can be deployed on a variety of platforms.
Wholly! is a tool for building and releasing software packages with C/C++ code.
gcc is the de-facto standard compiler on Linux systems today. However, Wholly!
uses the clang compiler to generate LLVM bitcode. Wholly! uses musl-libc,
an efficient implementation of libc to produce leaner packages. clang has been
used to build entire operating systems, such as FreeBSD and macOS. musl-libc
is used to build Alpine Linux [1] with gcc. Wholly! is the first project to combine
both clang and musl-libc to build Alpine and Docker containers.

We use a clang compiler that was built in Wholly! producing a faster and
leaner compiler. The produced LLVM bitcode is used to further optimize the code
using partial evaluation [17] and software winnowing [11], and for applying formal
verification techniques [7]. In this paper, we describe the design, philosophy,
evaluation, and applications of Wholly!, explaining how it enables whole program
analysis of large and complex software.

2 System Overview

Each package is described in Wholly! by a simple recipe that contains all the
information needed to build the package. Builds are performed in Docker con-
tainers to control the environment and provide isolation. For each package,
build products are organized in fine-grained packages such as libraries, bina-
ries, headers, and runtime support. Wholly! eventually releases the fine-grained
sub-packages in the form of Docker images [3] that are easily reusable as depen-
dencies to build more complex packages, or as production software. Wholly! uses
static linking to produce small packages. Sub-packages can either be used as
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containers, or can be used on any Linux platform, making them highly portable
across the different flavors of the Linux operating system.

2.1 Package Description

Two files are needed to describe a Wholly! package: a recipe file that is used for
building the package, and a contents file that is used for releasing it. The recipe
file describes what happens at build time. It is a small YAML-formatted file that
contains the:

– link to download the source code for the package,
– name of the other Wholly! sub-packages that are build dependencies,
– invocations that need to be run in order to build the package, and
– for some packages, the path to additional resource files – patches for example

– that will be used during the build stage.

Figure 1 shows a Wholly! package recipe for the sqlite database, version 3.18.

1 release_date: 2017-07-18
2 variables:
3 - pkg_name: sqlite
4 - pkg_ver: ’3.18.0’
5

6 # Dependencies
7 dependencies:
8 musl-libc:
9 - headers

10 - libs
11 readline-7.0:
12 - headers
13

14 # Source
15 source:
16 http://www.sqlite.org/2017/{pkg_name}-autoconf-3180000.tar.gz
17

18 # Build stage
19 build:
20 - CC=gclang
21 CFLAGS="-static"
22 ./configure --prefix={__INSTALL_DIR__} --enable-shared=no
23 - make
24 - make install

Fig. 1. Recipe file for the package sqlite-3.18.

Figure 2 shows the contents file for the package. The contents file also uses the
YAML format. It splits the package into different sub-packages, each of which is
described by the:

– list of files that compose the sub-package, and
– checksum that is used to check the integrity of the build and to refine depen-

dency management.
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1 bc:
2 checksum: sha256:4f9170f7c2cb4f701dac9826509ed14de8a0aeb1597d36bbeb499dd8bdbee00c
3 files:
4 - /usr/bc
5 bin:
6 checksum: sha256:557f6deeeafc8dc3bff27f8ed97ef65ed15b5060f6e6f1f646e190db96573eb0
7 files:
8 - /usr/bin/sqlite3
9 headers:

10 checksum: sha256:0663e892fbb7fbcfb1f9402de9ff8efdaddb09c6730cfba88218273967880c38
11 files:
12 - /usr/include/sqlite3.h
13 - /usr/include/sqlite3ext.h
14 libs:
15 checksum: sha256:e99ccebd1c087ee4137fffe6cf5efb04cbb78b14a9460da60fdd2c7ce8038328
16 files:
17 - /usr/lib/libsqlite3.a

Fig. 2. Contents file for the package sqlite-3.18.

2.2 Building

Each package is built separately in a Docker container. This guarantees isolation
and control over the:

– system files that are present during the build,
– environment variables being set,
– compiler and tools being used, and
– dependencies that are brought in.

Docker is an open platform to build, ship, and run distributed applications
on desktops, data center VMs, or the cloud. Docker uses the resource isolation
features of the Linux kernel, such as cgroups and kernel namespaces, and a
union-capable file system, such as OverlayFS, to allow independent containers
to run within a single Linux instance, avoiding the overhead of starting and
maintaining virtual machines. Docker can build images automatically by reading
the instructions from a Dockerfile. A Dockerfile is a text document that contains
all the commands a user would issue at a shell command line to assemble an
image. The execution of each command defines a layer in the file system that is
cached by Docker. Each layer is referred to by a random identifier that can be
used to “pull” only that specific layer of the file system.

In order to build the desired package, Wholly! turns the recipe file into a
Dockerfile that will be read and executed by the Docker Engine. Each build
follows this pattern:

1. A Docker container is launched and populated with a base image that contains
the elements common to all the builds – compiler, linker, and environment.

2. Files from the dependency sub-packages are copied into the container.
3. Source code for the package to build is downloaded.
4. Build commands in the recipe file are executed (Fig. 3).

At the end of this process, the Docker image contains, among other artifacts,
the files from the desired package that have been built and installed. Using
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Fig. 3. Schematic view of the build stage for the Wholly! sqlite-3.18 package.

Docker’s layered file system, we can determine the exact list of files that have
been created during the build process. From these files, Wholly! creates a con-
tents file that lists the files contained in each produced sub-package.

2.3 Sub-packaging

The image that is obtained from the previous step contains a lot of extra-
neous files, since it reflects the final state of the entire build environment.
Starting from that, interesting files from the package are copied into different
sub-packages, based on the specification in the contents file. The sub-package
sqlite-3.18-bin, for example, only contains the file /usr/bin/sqlite3 that
has been built.

After all the sub-packages have been released in the form of new Docker
images, Wholly! verifies that the checksums of these images are consistent with
the ones provided in the contents file. This ensures the integrity of the build,
while at the same time serving as a proof of reproducibility. Initially, the check-
sum is written to the contents file when the subpackage is first created. Fine-
grained sub-packaging also enables fine-grained dependency management. The
package sqlite-3.18, for example, only requires the headers from musl-libc
and readline-7.0 and the libraries from musl-libc instead of the whole con-
tents of these packages (Fig. 4).

3 Design

In this section, we provide an in-depth description of the components and the
design motivations of our build mechanism. In particular, we describe how
Wholly! ensures traceability and reproducibility of builds.
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Fig. 4. Schematic view of the release stage for the Wholly! sqlite-3.18 package.

3.1 Traceability of Builds

Wholly! uses recipes that are as simple and small as possible. They are designed
to be understood easily, yet they contain every element that is necessary to
the build. In particular, the dependencies are clearly stated, and since we want
to keep the build environment as minimal as possible, only the required sub-
packages are imported at compile time. Wholly! then transforms this recipe into
a Dockerfile that will be used to launch the build container. Since Dockerfiles
are becoming increasingly complex as new features are implemented in Docker,
we chose a simple YAML format, completely independent from Docker, for our
recipes.

1 FROM wholly-readline-7.0-headers as wholly-readline-7.0-headers-files
2 FROM wholly-musl-libc-headers as wholly-musl-libc-headers-files
3 FROM wholly-musl-libc-libs as wholly-musl-libc-libs-files
4 FROM wholly-base-image
5

6 # Bringing dependencies in
7 COPY --from=wholly-readline-7.0-headers-files / /
8 COPY --from=wholly-musl-libc-headers-files / /
9 COPY --from=wholly-musl-libc-libs-files / /

10

11 # Getting source
12 WORKDIR /build
13 RUN curl \
14 "http://www.sqlite.org/2017/sqlite-autoconf-3180000.tar.gz" \
15 -o src.tar.gz
16 RUN mkdir sqlite-3.18 && tar xf src.tar.gz -C sqlite-3.18 \
17 --strip-components 1
18

19 # Building
20 WORKDIR /build/sqlite-3.18
21 RUN WLLVM_CONFIGURE_ONLY=1 CC=gclang CFLAGS="-static" \
22 ./configure --prefix=/usr --enable-shared=no
23 RUN make
24 RUN make install

Fig. 5. Dockerfile generated by Wholly! to build sqlite-3.18.
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Figure 5 describes the Dockerfile generated automatically by Wholly! from
the recipe file described in Fig. 1. The FROM command in the Dockerfile is used
to import a previously built Docker image to build a more complex one. It allows
users to control what goes into their Docker image. This is extremely important
when controlling how packages are built. On a desktop, a build script would often
look for dependencies in multiple locations, and will use whatever it can find in
the file system. Tracing a build therefore often involves monitoring every build
step for file accesses, for instance. Similarly, at runtime the execution of software
will depend on the version of the dynamically linked libraries that are installed
on the particular system. This makes it impossible to ensure that the software
will execute uniformly across platforms. We control exactly what goes into a
Docker image when we build a package. This allows us to trace the provenance
of every single build product.

The contents file also greatly improves the clarity and the traceability of the
builds. It can be used to account for every single file that is present in a released
sub-package, and then in a container that runs in production.

3.2 Systematic Production of LLVM Bitcode

Wholly! uses clang as its C/C++ compiler. clang is capable of generating LLVM
bitcode, an intermediate representation that is platform-independent and can be
used for program transformation and optimization.

In order to benefit from this feature, Wholly! uses gllvm [5], a fast and con-
current wrapper for clang that generates both native objects and LLVM bitcode
files. During a build, the bitcode for the whole package can easily be produced
by calling the wrapper gclang instead of clang. Using this, Wholly! produces
LLVM bitcode systematically for each of its packages, making it easier to ana-
lyze, transform, or optimize the packages at the LLVM bitcode level.

Wholly! uses musl-llvm [13], a fork of musl-libc [12]. musl’s efficiency is
unparalleled in Linux libc implementations. Designed from the ground up for
static linking, musl carefully avoids importing large amounts of code or data
that the application will not use. The advantage of musl-llvm over musl-libc
is that there is LLVM bitcode generated for all of musl-llvm except for a handful
of functions that require assembly for part of their implementation.

3.3 Clarity of Build Environment

The build environment is kept as minimal as possible. It runs atop an Alpine
Linux Docker image that contains only the tools necessary for the builds – in
particular, a compiler and a linker – and can be reproduced using the Dockerfile
below.

The minimalism of Alpine Linux as a build environment is consistent with
the idea of lean builds: only the necessary runtime is present to ensure work-
ing builds, and there are no extra files that are not needed. Additionally, the
build container is completely transparent and can be replicated by anyone using
Docker.
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An important aspect of the workflow is that the build environment is used
as a disposable container: it is launched, populated with the base build environ-
ment and the build dependencies; when building and release of the package have
completed successfully, the container is just killed and never reused. This way,
every build is performed in a fresh and isolated environment.

3.4 Reproducibility of Builds

The build environment is a mere container, populated by following simple Dock-
erfiles. It is thus easily replicable, ensuring that builds are always performed in
exactly the same way.

To imbue the builds with determinism and reproducibility, Wholly! also relies
on sub-package checksum verification. After every build, sub-package checksums
are consistently checked against the reference checksums in the contents file. A
match attests to the correctness of the package’s contents. To ensure that iden-
tical recipes produce the same sub-packages, Wholly! sets the last modification
and access time of every file that is copied into a sub-package image since this
metadata feeds into the checksum calculation.

3.5 Static Building

Although Wholly! can be used to build any suitable recipe, we chose to use only
static linking of binaries and libraries instead of dynamic linking (Fig. 6).

The reason is that we consider dynamic linking as being inconsistent with
deployments on the modern software stack. With the popularity of cloud com-
puting and emerging microservices, we need deployments that are smaller, faster
and more specialized. While dynamic linking is suitable for general-purpose desk-
tops, it leads to bloated and heavy deployments when applied to the container
ecosystem, the cloud in general, and IoT devices. Indeed, using shared libraries
instead of static binaries delays to runtime things that could have been deter-
mined at compile time:

– External symbols are resolved at runtime by a dynamic linker, adding a non
negligible overhead to execution time.

– Unused functions from shared libraries are included in the deployment,
whereas they could have been eliminated by link-time optimization.

– Dynamically-linked applications are dependent on a specific runtime that
needs to be replicated in the target platform – including correct libraries and
dynamic linker path and versions.

The Wholly! recipes that we created enforce the use of static linking so as to
get specialized and smaller deployments easily. It allows us to release packages
that make the most of link-time optimization to eliminate unused code while
ensuring that these packages can run on a wide range of Linux-based systems,
without assumptions being made about the runtime environment. Indeed, as
a positive side effect of this, our static deployments are smaller than the ones
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1 FROM alpine
2

3 # Building dependencies
4 RUN apk update
5 RUN apk add make binutils file git curl
6

7 # Copy build tools
8 RUN mkdir -p /tools/bin
9 COPY musl-clang/bin/* /tools/bin/

10 COPY clang-4.0/bin/* /tools/bin/
11 RUN ln -s /tools/bin/clang-4.0 /tools/bin/clang
12 RUN ln -s /tools/bin/clang-4.0 /tools/bin/clang++
13 RUN ln -s /tools/bin/clang-4.0 /tools/bin/clang-cpp
14

15 # Install gllvm
16 RUN apk add go musl-dev
17 ENV GOPATH="/usr/local/bin"
18 RUN go get github.com/SRI-CSL/gllvm/cmd/gclang
19 RUN go get github.com/SRI-CSL/gllvm/cmd/gclang++
20 RUN go get github.com/SRI-CSL/gllvm/cmd/get-bc
21 RUN mv ./usr/local/bin/bin/gclang /tools/bin
22 RUN mv ./usr/local/bin/bin/gclang++ /tools/bin
23 RUN mv ./usr/local/bin/bin/get-bc /tools/bin
24

25 RUN apk del go musl-dev
26

27 # Install tools
28 RUN chmod +x /tools/bin/*
29

30 # Folders
31 RUN mkdir -p /usr/bc
32 RUN mkdir -p /build
33 RUN mkdir -p /install
34

35 # Static environment variables
36 ENV PATH="/tools/bin:/root/go/bin:${PATH}"
37 ENV LLVM_CC_NAME musl-clang
38 ENV LLVM_CXX_NAME musl-clang++
39 ENV WLLVM_BC_STORE /usr/bc

Fig. 6. Dockerfile for Wholly! base build environment.

found in the Docker ecosystem, since our resulting binaries ship with less runtime
and library code. They are also faster, since they require no runtime symbol
resolution and thus less time is spent in kernel code and context switches.

4 Evaluation

Wholly! recipes and Docker containers can be used to build arbitrary software
packages for multiple target platforms. We applied Wholly! to Linux packages,
targeting the x86-64 platform, and focused on efficient and debloated packaging.
In this section, we evaluate the packages built by Wholly! against those provided
by the lightweight and minimal Alpine Linux distribution. We directly compare
selected packages from the two systems, using size and performance as met-
rics. We also evaluate how Wholly! contributes to performing GNU-independent
builds of packages.

4.1 Size of Packages

Wholly! particularly targets minimal Docker deployments of applications. Given
this, we compare the size of ready-to-deploy Docker images built on top of
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Wholly! packages on the one hand, and on Alpine Linux packages on the other
hand. In the interest of ensuring a fair comparison, the packages that we compare
have the same version, ship the same files, and are confirmed to run.

For the example of nginx-1.12, a small and popular HTTP server, Figs. 7
and 8 show the two Dockerfiles that we use to construct images that will be
compared. The Alpine Linux version is the smallest possible deployment that
we can make using Alpine and its apk package manager. Some Wholly! packages
need additional configuration and runtime details; in the case of nginx-1.12, we
need to import a busybox shell, set up directories, and create users. Since our
packages are independent of the platform and runtime, this configuration step
is not performed at build time.

1 FROM alpine:latest
2 RUN apk update
3 RUN apk add nginx

Fig. 7. Dockerfile for Alpine’s nginx-1.12 deployment. Only packages from distribu-
tion repositories are imported.

1 FROM wholly-nginx-1.12-bin as bin
2 FROM wholly-nginx-1.12-rt as rt
3 FROM wholly-nginx-1.12-conf as conf
4 FROM busybox
5

6 COPY --from=bin / /
7 COPY --from=rt / /
8 COPY --from=conf / /
9

10 RUN mkdir /var/cache && mkdir /var/cache/nginx && mkdir /var/run \
11 && touch /var/run/nginx.pid && addgroup -S nginx \
12 && adduser -D -S -h /var/cache/nginx -s /sbin/nologin -G nginx nginx \
13 && ln -sf /dev/stdout /var/log/nginx/access.log && ln -sf /dev/stderr /var/log/nginx/error.log
14

15 # Patch default configuration file to use port 80
16 COPY nginx.conf.patched /usr/conf/nginx.conf
17

18 EXPOSE 80
19

20 STOPSIGNAL SIGTERM
21

22 CMD ["nginx", "-g", "daemon off;"]

Fig. 8. Dockerfile that we use to build a runnable Wholly! nginx-1.12 server.

Table 1 compares the size of the Docker images built for a representative set
of packages.

For most of the packages, the Wholly! version is smaller, which is not surpris-
ing since the binaries are built statically and benefit from link-time optimization.
The only exception among the tested packages is Node.js; this is because the
vanilla Alpine package is built differently than the Wholly! version, and contains
less functionality. The size of Wholly! packages makes them more consistent with
small and specialized deployments in the cloud or in constrained environments,
such as embedded systems.
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Table 1. Size comparison for Docker images between Wholly! and Alpine. Wholly!
packages are usually significantly smaller than their Alpine equivalent.

Alpine-based image (in MB) Wholly! -based image (in MB)

nginx-1.12 6.44 4.32

bzip2-1.0 5.31 0.425

sqlite-3.18 8.73 1.24

python-2.7 43.6 35.4

nodejs-6.11 36.8 54.4

clang-4.0 225 165

4.2 Performance of Deployments

In what follows, we try to see how Wholly! packages compete with commonly
used applications and deployments in terms of performance. For this purpose,
we analyzed the performance of different nginx servers and clang compilers.

We use the Dockerfile shown in Fig. 8 to build our Wholly! nginx server.
Note that we include configuration commands so as to be able to connect to
the server on port 80. The other servers that we use for this comparison are
the official Docker images – available at Docker Hub – nginx:mainline-alpine
and nginx:official, the latter being the default image available for nginx. We
chose the other servers because they are amongst the most pulled and deployed
Docker images, according to Docker Hub [4]. We then apply the following process
to all three images:

1. Run the nginx image in a Docker container on the host machine.
2. Check that http://localhost:80/index.html is reachable and returns the

default nginx web page.
3. Run and benchmark 10,000 successive requests to this webpage using

Apache’s ab tool.

The results of the benchmark are available in Fig. 9. The Wholly! deployment
is slightly faster, and most importantly much smaller than the other ones.

We also compare Wholly! ’s clang compiler to the one provided by Alpine
Linux. To achieve this, we generate a number of random C files using Csmith
[21], and measure the time needed to compile all these files sequentially with
each compiler. We ensure that both compilers produce the exact same object files
using hash comparisons. The results of the benchmark are provided in Fig. 10
and show that Wholly! ’s version of clang is significantly faster than the Alpine
Linux version. Since we use our Wholly! -generated compiler in Wholly! , we get
very good build performance for our packages. More detailed benchmarks using
perf show that Wholly! ’s statically built version of clang triggers fewer time-
consuming operations, such as context switches.
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Fig. 9. Benchmarks for the nginx server show that the Wholly! -based version is slightly
faster and much smaller than equivalents pulled from the Docker Hub.
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Fig. 10. Performance benchmark for clang: the Wholly! -built binary outperforms the
one from the Alpine Linux repository by close to 40%.

4.3 Contribution to Environment-Independent Builds

One of the objectives of Wholly! is to make builds easily reproducible. We achieve
this by providing a Docker-based build environment that is minimal and easy
to replicate. We also note that most of Linux’s user space software is implic-
itly dependent on the GNU build environment and provide a workaround to
avoid this.

Like Alpine Linux, we chose to build all of our C packages against musl-libc,
a lightweight C standard library that is an alternative to GNU’s glibc. Unlike
Alpine, Wholly! uses clang instead of gcc as its C compiler. Indeed, this non-
GNU toolchain makes it harder to build packages that would compile without
modification using gcc and glibc. In particular, some functional differences
between musl-libc and glibc require patching, and we make use of wrapper
scripts for the compiler and linker to automatically build with our non-standard
libraries. Still, some packages like busybox just don’t support clang and require
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gcc to build. The Tuscan Catalog [19] illustrates how this issue plagues many
Linux packages.

However, most of the packages can be built using Wholly! , provided we create
appropriate patches for them. In what follows, we give examples of packages that
require such processing:

– nodejs-6.11 provides the fully-static flag to statically build the binary,
but still passes the --rdynamic flag to the compiler, which prevents the cre-
ation of a statically-linked executable. This shows that nodejs-6.11’s build
scripts were not even tested to build a real statically-linked executable. We
created a patch to fix the build in Wholly!.

– Statically building a full-featured python-2.7 executable is anticipated in the
build scripts, but is not officially documented. Designing a recipe to build it
is quite complicated and requires manually editing setup files.

– Surprisingly, clang-4.0 package required the most patching. Despite its aim
at being a replacement for gcc and related tools, it is incompatible out-of-the-
box with musl-libc’s macros, for which we needed 4 patch files. One extra
patch was required to remove the -Wl,-rpath-link flag that was consistently
passed at compile time. Figure 11 shows a sample patch.

1 diff -uNr cmake.old/modules/AddLLVM.cmake cmake/modules/AddLLVM.cmake
2 --- cmake.old/modules/AddLLVM.cmake 2017-01-17 13:47:58.000000000 -0800
3 +++ cmake/modules/AddLLVM.cmake 2017-06-05 08:40:55.000000000 -0700
4 @@ -671,7 +671,7 @@
5 list(APPEND ALL_FILES "${LLVM_MAIN_SRC_DIR}/cmake/dummy.cpp")
6 endif()
7 if( EXCLUDE_FROM_ALL )
8 add_executable(${name} EXCLUDE_FROM_ALL ${ALL_FILES})
9 else()

10 @@ -1314,7 +1314,7 @@
11 if(NOT ARG_OUTPUT_DIR)
12 @@ -1426,10 +1426,6 @@
13 if(${CMAKE_SYSTEM_NAME} MATCHES "(FreeBSD|DragonFly)")
14 set_property(TARGET ${name} APPEND_STRING PROPERTY
15 LINK_FLAGS " -Wl,-z,origin ")
16 - elseif(${CMAKE_SYSTEM_NAME} STREQUAL "Linux"
17 - AND NOT LLVM_LINKER_IS_GOLD)
18 - set_property(TARGET ${name} APPEND_STRING PROPERTY
19 - LINK_FLAGS " -Wl,-rpath-link,
20 - ${LLVM_LIBRARY_OUTPUT_INTDIR} ")
21 endif()
22 else()
23 return()

Fig. 11. The patch cmake fix no dynlinker build.patch is required for clang-4.0

to handle static building correctly.

Our effort shows that it is possible to build the Linux user space in an envi-
ronment that is not tied to the GNU toolchain. Indeed, Wholly! uses clang as
its C compiler and musl-libc/libc++ as its C/C++ standard libraries to build
Alpine Linux’s user space.
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5 Applications

Wholly! has been used to construct efficient and portable builds of software
packages for a number of platforms. We have built an entire Linux distribu-
tion, an entire Linux container ecosystem, and specialized virtual machines with
microservices using Wholly!.

Alpine Linux: This is an independent, non-commercial, general-purpose Linux
distribution. It is built around musl-libc and busybox. It is therefore smaller
and more resource efficient than traditional GNU/Linux distributions. Alpine
Linux uses its own package manager, called apk, and was designed with security
in mind. Alpine Linux has a dedicated build infrastructure that consists of a num-
ber of scripts used to build packages. We chose it as a target platform because
it is a Linux distribution that is built exclusively using musl-libc. However,
it uses gcc, and not clang. We aim to build an entire Linux distribution with
Wholly!, producing fine-grained packages, precise definitions of package depen-
dencies, and for each library and executable, produce the corresponding LLVM
bitcode to enable whole program analysis, transformations, and optimizations.

We have automatically translated Alpine build scripts to Wholly! recipe files.
Our recipes are often simpler, more intuitive, and readable than Alpine build
scripts. Another reason we chose Alpine Linux is the growing popularity of
Docker containers. Docker has started using Alpine Linux for its base container
images.

Docker Containers: Docker is the world’s leading software container manage-
ment platform. Containers are rapidly gaining traction as the preferred platform
for deploying cloud applications and microservices. Docker containers are built
using Dockerfiles and Wholly! uses Dockerfiles to build arbitrary software pack-
ages. As a result, it is possible to directly export packages and sub-packages as
Docker images. Because we use static linking and link-time optimization, Docker
images produced by Wholly! are both smaller in size and faster. When utilizing
microservices, it is desirable to support a fast deployment cycle. Being able to
build images efficiently also enhances developer productivity by speeding up the
debug and test cycle.

Minimal VMs: In 2017, Docker unveiled LinuxKit [9], a toolkit for building
secure, lean, and portable Linux subsystems. It allows to bundle a number of
Docker images, along with kernel support, to be built into a stand-alone VM.
Because our Docker images are leaner and faster than those provided by Docker,
we are able to produce more efficient VMs that can be booted on IoT devices,
as well as on typical cloud infrastructure.

6 Whole Program Analysis

It is well known that when applying formal verification to source code, what is
verified is not what is executed. Because an application can be compiled with
different compilers and may be deployed with different versions of libraries, it
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is not possible to guarantee that source code verification translates into correct
execution.

The systematic production of LLVM bitcode for any application built with
Wholly!, allows us to apply formal verification to all of the application code and
the libraries it is dependent on. We use SeaHorn [7], a fully automated analysis
framework for LLVM-based languages, to perform a number of program anal-
yses, such as abstract interpretation, invariant generation, memory safety, and
bounded model-checking. Because of the reproducibility of builds, guaranteed by
Wholly!, a formally analyzed applications is proved to exhibit the same behavior
on different platforms.

The verification at the LLVM bitcode level can be done after code specializa-
tion using partial evaluation and code winnowing techniques, such as the ones
implemented in OCCAM [11]. These techniques can be taken one step further so
that I/O operations are specialized and all read and writes to files are replaced
with in-memory loads and stores. This often improves performances by avoiding
the execution of expensive system calls. Of note is that it also ensures that what
is being verified is close to what is being executed.

7 Conclusion

We have presented Wholly!, a tool for building efficient, fine-grained, and LLVM-
based packages for Alpine Linux, Docker containers, and LinuxKit VMs. Wholly!
can be used in the future for cross-compiling these and arbitrary packages to sup-
port multiple architectures and operating systems. Wholly!’s uniform and repro-
ducible build process will avoid many of the portability issues reported in recent
studies [19], and can provide reproducible builds for a range of areas, including
scientific computing. Combined with LLVM-based software specialization and
optimization frameworks, such as OCCAM [11], and formal verification tools,
such as SeaHorn [7], Wholly!supports the production of debloated, efficient, and
verified code that can be deployed in practice.

Acknowledgement. This material is based upon work supported by the US National
Science Foundation (NSF) under Grant ACI-1440800, Department of Homeland Secu-
rity (DHS) Science and Technology Directorate, and the Office of Naval Research
(ONR) under Contract No. N68335-17-C-0558. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of NSF, DHS, or ONR.

References

1. Alpine Linux. https://alpinelinux.org/
2. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: 4th ACM
Symposium on Principles of Programming Languages (POPL) (1977)

3. Docker. https://www.docker.com/
4. Docker Hub. https://hub.docker.com/

https://alpinelinux.org/
https://www.docker.com/
https://hub.docker.com/


Wholly!: A Build System for the Modern Software Stack 257

5. gllvm. https://github.com/SRI-CSL/gllvm
6. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grum-

berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 10

7. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
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Abstract. We propose a security-based modeling language for IoT sys-
tems with two important features: (i) vulnerabilities are explicitly rep-
resented and (ii) interactions are allowed or denied based on the infor-
mation stored on the IoT devices. An IoT system is transformed in BIP,
a component-based modeling language, in which can execute the system
and perform security analysis. As proof-of-concept for our approach we
model an attack on the Amazon Smart-Key system.

Keywords: IoT systems · Component-based specifications · Security

1 Introduction

IoT systems are part of our daily lives, as we are surrounded by computing
devices that communicate through the Internet. The IoT devices often have
access to personal, confidential information that needs to be shared with other
devices in order to provide smart services. Security attacks on IoT systems
exploit the vulnerabilities of the different devices, and their interactions, to steal
the sensitive data [2,13].

We propose a modeling language for IoT systems in which vulnerabilities are
explicitly represented. A malicious entity, that we usually call an Attacker, tries
to break a security property of the system by using different attack scenarios.
The other entities in the system can accidentally help the Attacker by leaking
sensitive data. If one attack scenario violates the security property, our analysis
concludes that the system is vulnerable to security threats.

Another feature of our language is that the interactions are permitted only
between entities that share some knowledge. It is often the case that IoT devices
require a password or share security keys to ensure their identity and to com-
municate with the rest of the system. In our approach, protocols supervise the
interactions and verify that the two communicating entities have some common
knowledge. The Attacker assumes the identity of the other entities by obtaining
their knowledge.

c© Springer Nature Switzerland AG 2018
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Running Example. In the Amazon Smart-Key [1] system, shown in Fig. 1, Ama-
zon provides Home Owners with a Smart Lock and a Camera. The Camera can
communicate with the Amazon Server to send all its recordings. A Home Owner
asks for a delivery at a time when she is not home (step 1). The Delivery Guy
sends the package number to the Amazon server (step 2) from which it receives
a temporary code (step 3) that, if communicated to the Smart Lock, can open
the door (step 4). The Smart Lock is also in charge for turning on the Camera
as soon as the door is unlocked (step 5). The Delivery Guy leaves the package
inside and asks the Smart Lock to close the door (step 6) and to turn off the
Camera (step 7). The Camera sends the video of the delivery to the Amazon
Server (step 8) which forwards it to the Home Owner (step 9).

Fig. 1. Amazon Smart-Key

In our example, the security property is that the camera is recording as long
as the door is open, to prevent thefts. Let us suppose that an Attacker intercepts
the communication between the Delivery Guy and the Smart Lock. The Delivery
Guy leaks the code for closing the door, which never reaches the Smart Lock.
The communication between the Smart Lock and the Camera also has to be
intercepted. The Attacker assumes the identity of the Smart Lock and sends
a message to the Camera to turn off the recording. If this two-steps scenario
succeeds the home is vulnerable to thefts as the door is open and the camera is
turned off.

Outline. In Sect. 2 we introduce our language and show how we can model
the Amazon Smart-Key system. An IoT model is translated in BIP in Sect. 3,
which is equipped with an execution framework. We use the system’s executions
in Sect. 4 to verify whether a system is vulnerable to security attacks. As this
is preliminary work for integrating probabilities and performing more complex
analysis on IoT systems, we sketch the future works and conclude in Sect. 5.
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2 A Modeling Language for IoT Systems

We model interconnected devices in an IoT systems as entities, that have each
an identifier, ranged over by e1, · · · , en. Entities communicate using protocols
and exchange values. Formally we write E for the set of identifiers, C for the set
of protocols and Val for the set of values.

Protocols supervise the interactions, by verifying that some knowledge is
shared between the communicating entities. We model the knowledge of an entity
as a function k : E × C → PowerSet(Val) which associates to an entity e and
a protocol c a set of values. For simplicity we write kc

i for the application of k
to the entity ei and the protocol c. Then an interaction between entities e1 and
e2 is permitted by the protocol c if there exists one common value between kc

1

and kc
2.

Each entity has a CCS-like process [11] defined by the grammar in Fig. 2.
A process a.P executes an action a and continues as P . The process a.P + b.Q
chooses between two execution branches, either a.P or b.Q. We use A to denote
(recursive) definitions, and 0 to denote the inactive process.

Two entities communicate through a pair of actions (Send, Receive), that rep-
resent “safe” interactions or (Leak, Collect) which signal an inadvertent interac-
tion with a malicious entity. Actions have to specify the identifiers of the sender
and the receiver and a value v which is exchange during the interaction. Moreover
safe interactions also specify a protocol c. Entities can also compute internally,
without involving any interaction, represented by the action τ .

Process P, Q ::= a.P | a.P + b.Q | A | 0
Action a, b ::= e1

c−→
v

e2 (Send) | e1
c←− e2 (Receive)

| e1 �
v

e2 (Leak) | e1 � e2 (Collect) | τ (Internal)

Definition A
def= P

Fig. 2. The Syntax of the IoT calculus

IoT Transition Systems. An entity’s state 〈P, k〉 consists of a running process
and a current knowledge. A global state (of an IoT system) s is defined by the
following grammar:

s ::= ∅
∣
∣
∣ 〈P, k〉

∣
∣
∣ s | s.

that is it can be either empty, a local state or the composition of the local states
of each of its constituents. An IoT transition system consists of the tuple (S, T, i)
where S is a set of global states, i ∈ S is an initial state and T ⊆ S × S is a
set of transitions that are derived by the rules in Fig. 3. We write s → s′ for a
transition and s0 → s1 · · · sn−1 → sn for an execution of the system.
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SendReceive
kc
1 ∩ kc

2 �= ∅ c′ = protocol(v)

〈e1 c−→
v

e2.P1, k1〉|〈e2 c←−e1.P2, k2〉→ 〈P1, k1〉|〈P2, k
c′
2 	{v}〉

LeakCollect
c′ = protocol(v)

〈e1 �
v

e2.P1, k1〉|〈e2 � e1.P2, k2〉→ 〈P1, k1〉|〈P2, k
c′
2 	 {v}〉

Internal 〈τ.P, k〉 → 〈P, k〉 Congruence
s ≡s t → s′ ≡s t′

s → s′

Sum
〈Pi, ki〉|〈Pj , kj〉 → 〈P ′

i , k
′
i〉|〈P ′

j , k
′
j〉

〈Pi + Qi, ki〉|〈Pj + Qj , kj〉 → 〈P ′
i , k

′
i〉|〈P ′

j , k
′
j〉

Par
s → s′

s | t → s′ | t

Fig. 3. The Operational Semantics of the IoT calculus

The rules SendReceive and LeakCollect describe the communication
between two entities e1 and e2 with the knowledge functions k1 and k2, respec-
tively. The two entities exchange a value v which is added to the knowledge of
e2 under protocol c′. The SendReceive interaction also verifies that the two
entities share a common value in their knowledge for a protocol c. An internal
computation is derived by the rule Internal. The rules Par and Sum allow
derivations inside the state’s composition and the sum constructors. Lastly, the
rule Congruence rewrites a state or a process into a syntactic form that is suit-
able for a derivation. It uses two congruence relations ≡P and ≡S , defined as the
smallest equivalence relations on processes and states, respectively, such that

– ≡P includes the abelian monoid laws for + and the unfolding law for defini-
tions:

P + Q ≡P Q + P (P + Q) + R ≡P P + (Q + R) P + 0 ≡P P

A ≡P P if A
def= P.

– ≡S includes the abelian monoid laws for | and generalizes ≡P to states:

s|t ≡s t|s (s|t)|q ≡s s|(t|q) s|∅ ≡s s
P ≡P Q

〈P, k〉 ≡S 〈Q, k〉
The Amazon Smart-Key Example. In modeling our example, we have the fol-
lowing entities: the Home Owner H, the Amazon Server S, the Delivery Guy
D, the Smart Lock L, the Camera C and the Attacker A. The initial process
for each entity is given in Fig. 4. The protocols used in the example are delivery,
doorControl, cameraCom and customerCom.

We define the initial knowledge of each entity such that all safe commu-
nications are possible. For instance, the Amazon Server and the Home Owner
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AmazonServer =S
customerCom←− H.S

delivery←− D.S
delivery−→
doorCode

D.S
cameraCom←− C.

S
customerCom−→

video
H.AmazonServer

HomeOwner =H
customerCom−→
askDelivery

S.H
customerCom←− S.HomeOwner

DeliveryGuy =D
delivery−→

deliveryArrived
S.D

delivery←− S.D
doorControl−→
openDoor

L.

(τ.normal delivery + τ.hijack delivery)

normal delivery = D
doorControl−→
closeDoor

L.DeliveryGuy

hijack delivery = D �
lock1

A.DeliveryGuy

SmartLock =L
doorControl←− D.L

cameraCom−→
startRecording

C.(τ.normal lock + τ.hijack lock)

normal lock =L
doorControl←− D.L

cameraCom−→
stopRecording

C.SmartLock

hijack lock =L
doorControl←− A.L �

camera1
A.SmartLock

Camera =C
cameraCom←− L.(C cameraCom←− L.C

cameraCom−→
video

S.Camera+

C
cameraCom←− A.C

cameraCom−→
video

S.Camera)

Attacker =A � D.A
doorControl−→
getCameraId

L.A � L.A
cameraCom−→

stopRecording
C.Attacker

Fig. 4. The Amazon Smart-Key system

can communicate because they both know the identity of the Home Owner:
kcustomerCom

S = kcustomerCom
H = homeOwner1. However, initially the Attacker

only knows the identity of the Delivery Guy and it is through the LeakCollect
interactions that the Attacker acquires information that allows him to communi-
cate with the Smart Lock and the Camera. To model this behaviour, the Delivery
Guy and the Smart Lock have two execution branches, one called the normal
behaviour, when the Attacker does not interfere and a second one, the hijacked
one, where the system is vulnerable to the attack.

3 BIP: A Component-Based Modeling Language

BIP [3,10,12] is a component-based modeling language where a system is mod-
eled as the composition of a set of interacting components. BIP stands for
Behaviour (each component has an abstract behaviour), Interaction (compo-
nents interact with each other) and Priorities (interactions have a priority order,
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and higher priority interactions occur first). We start by introducing the com-
ponents, and then move on to the interactions and the priorities.

A component has an abstract behaviour, represented by a labeled transition
system (LTS). Components communicate with each other through ports. Tran-
sitions are labeled by ports and the set of ports used by a components is called
the interface of the component.

Definition 1. A component K is an LTS, denoted as (P,Q, q0, T ), where P is
a set of ports constituting the interface of K, Q is the set of states, q0 ∈ Q is
the initial state, and T ⊆ Q × P × Q is the set of transitions labeled by ports
from the interface P .

We write q1
a−→ q2 if the tuple (q1, a, q2) is in T . The previous transition is

said to be enabled when the component is at state q1. An execution is a sequence
of transitions that starts from the initial state q0

a1−→ q1 · · · qn−1 an−−→ qn.
The definition above can be extended by including variables in components.

In such an extended version, there are three additional mechanism:

– guards: each transition has a predicate, name guard, defined on the variables.
For a transition to be enabled, the guard must evaluate to true.

– variables exchange: each port exports a set of variables. Any interaction
through that port can read and write these variables.

– update functions: each transition is labeled with an update function that set
new values to the variables according to the previous ones.

These mechanisms interact as follows. First the guards are evaluated to list
the enabled transitions. Then, when an interaction takes place, the variables
exported by the associated port are potentially modified. Finally, the update
function is applied to modify the variables of the component. Sometimes there
are no variables to verify or update, in which case the guard function is the
constant true or the update function is the identity.

In our case, we use variables to encode the knowledge of the entities. As
an example, consider the component Amazon Server from Fig. 5, representing
the entity with the same name from our running example. The states S0, · · · S4

represent the reachable processes from the AmazonServer of Fig. 4. The pro-
tocols used in AmazonServer become the ports customerCom, develivery,
cameraCom. Initially the

Composition of BIP Components. BIP systems consists of several components
that interact with each other. An interaction consists of the synchronization
of some local transitions labeled by ports. In the following we define a BIP
system of n components. We write (Pi, Qi, q

0
i , Ti) for the transition system of

the component Ki for i ≤ n.

Definition 2. Let (Ki)i≤n be n components such that their interfaces are pair-
wise disjoint, that is i 
= j =⇒ Pi ∩ Pj = ∅. We define the set of all ports by
Ports =

⋃

i≤n Pi. An interaction (a, α) consists of an exported port a /∈ Ports,
a non-empty set of ports α ⊆ Ports such that there exists at most one port from
each interface Pi in α.
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Interactions involve at least one component. In the case where only one com-
ponent participate in the interaction, we say that it is internal transition and
we denote it with τ .

As for transitions in the atomic components, interactions can be extended
to handle data, using guards and update functions. For each interaction, the set
of variables exported by the participating ports defines the set of variables that
are visible to the interaction. The interaction can only take place if the guard
evaluates to true. When the interaction takes place, the update function modifies
the value of the variables exported by the port.

In Fig. 5 there is an interaction between the Amazon Server and the Home
Owner defined on the ports customerCom of two components. These ports
export the knowledge related to the corresponding protocol. The guard of inter-
action checks the existence of a common value between the the Amazon Server’s
knowledge and the Home Owner’s knowledge. The update function simply prop-
agates to the Amazon Server a message signaling a delivery request.

An interaction model γ is a set of interactions with distinct exported ports.
An useful notation for the next definition is Ia = {i : ∃a ∈ Pi, a ∈ αi} for the
set of indexes of the components Ki that participate in the interaction. Note
that, because in an interaction model the exported ports are distinct, we can
distinguish an interaction (a, α) by the port a.

Definition 3. Let γ be a set of interactions defined on the components (Ki)i≤n.
We denote with 〈γ〉(Ki)i≤n the component (Pγ , Q, q0, T ) where

– Pγ = a : (a, α) ∈ γ is the set of exported ports of γ;
– Q =

∏

i≤n Qi with q0 = (q01 , · · · q0n) and F =
∏

i≤n Fi;
– T is the least set of transitions such that:

(a, α) ∈ γ ∀i ∈ Ia,∃ai ∈ α, q1i
ai−→ q2i ∀i /∈ Ia, q2i = q1i

(q11 , · · · , q1n) a−→ (q21 , · · · , q2n)
.

Priorities. A priority order on a set of ports is a partial order, where each element
a < b of the order is called a priority. Whenever the system has a choice between
the two interactions on ports a or b, the interaction on b is chosen. Formally, we
introduce priorities as in Definition 3, following the approach in [10].

Definition 4. Let < be a priority order on the ports P of a component
K = (P,X,Q, q0, T ). We define 〈<〉(K) as the component (P,X,Q, q0, T ′) where
only T ′ is changed to be the least set of transitions such that

q1
a−→ q2 ∈ T �b ∈ P,∃q ∈ Q, (a < b ∧ q1

b−→ q)

q1
a−→ q2

.

We use a priority order, denoted �, which gives priority to the internal
transitions over the binary interactions. We can also use the method in [10] to
infer a priority order that avoids deadlocks (the system reaches states from which
no transition is possible) as much as possible.
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Fig. 5. The initial state of the Amazon Smart-Key transformed to BIP. Each IoT
entity is transformed into the BIP component with the same name. The LTS of a BIP
component represents the process of the corresponding IoT entity while the variables
represent the knowledge. Each state in the LTS represents a reachable process. Actions
connect the different states of the LTS. For simplicity, here the ports are the protocols,
for the SendReceive interactions, τ denote the internal transitions and leak , collect the
LeakCollect. Variables are sets of values, where each protocol has its own variable.
Interactions are defined between ports that have the name, or are internal transitions,
denoted τ .

Giving More Power to the Attacker. In our model, we explicitly model the knowl-
edge of the Attacker by using a set of values to represent it. Furthermore, this
knowledge focuses mainly on actual data rather than the state of a component.
However, some attacks might require to send a message when a component is in
a particular state, which makes it vulnerable to an attack. To that end we could
use techniques similar to the ones used for the distributed controller in [8,9].
A distributed controller knows the behaviour of a system and can observe its
executions to infer the global state of the system. An Attacker can analyze the
behaviour of a system to detect in which state it is most vulnerable. For exam-
ple, an Attacker that knows how Amazon Smart-Home works can detect when
the Delivery Guy opens the door of a user’s home and proceed with an attack
at that moment. A more powerful Attacker can also observe the data exchanged
during communications. An attack in our case could consists in reusing the code
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for opening and closing a door that was used during a “safe” execution of the
system.

Definition 5. A process π is a subset of states in a component. A property φ is
defined as a set of value for a variable x and it holds in a state q if x evaluates
to a value of φ in state q. We say that π knows φ if φ holds in all reachable
states of π.

These notions are well studied in BIP, and therefore if integrated in the IoT
language can enrich the security analysis of an IoT system.

Transformation of an IoT System to BIP. An IoT system is translated into a
BIP system. We do not show the transformation here, but is based on [4], along
with the proof of the following theorem.

Theorem 1. Let e1, · · · en be a set of IoT entities with the initial states 〈Pi, ki〉,
i ≤ n. The transformation in [4] from IoT to BIP produces a BIP component
Ki for each ei entity and a γ an interaction model such that there exists a
bisimulation relation between 〈�〉(〈γ〉(Ki)i≤n

)

and
∏

i≤n〈Pi, ki〉.
The theorem allows us to analyze the system transformed in BIP, instead

of the original one which is modeled in the IoT language. Any analysis on the
executions of the BIP system holds for the IoT system. We do this in the next
section.

4 Verification

The BIP language is equipped with a simulator that we use to obtain executions
of an IoT system. As future work we will use the simulations for more complicated
security analysis, based on statistical model checking [6]. For the moment, we
simply use the simulation framework to guide the executions of a system to
discover execution paths leading to security failures.

By simulating the system we can extract two executions for the Amazon
Smart-Key system. To clarify notations, in the following execution we write the
global state as a list of the local states of the different BIP components.

Let us informally describe an execution where the Attacker succeeds. Each
step of the attack also annotates the interactions in Fig. 5. The initial state is
(S0,H0, L0, C0,D0, A0).

1. the Home Owner contacts the Amazon Server using the protocol customer-
Com, which verifies that kcustomerCom

S ∩kcustomerCom
H = {homeOwner1}, that

is that both entities know the value homeOwner1. The Home Owner sends
the message askDelivery to the Amazon Sever. The global state becomes
(S1,H1, L0, C0,D0, A0);

2. when the delivery arrives, the Delivery Guy sends the message deliv-
eryArrived to the Amazon Server on protocol delivery, which verifies
that both entities know the Delivery Guy identity, kdelivery

D ∩ kdelivery
S =

{deliveryGuy1}. The state changes to (S2,H1, L0, C0,D1, A0);
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3. the Amazon Server sends back the value doorCode1 to the Delivery Guy,
using the same protocol and the state is now (S3,H1, L0, C0,D2, A0);

4. the Delivery Guy has the value doorCode1 needed to communicate with
the Smart Lock on protocol doorControl, kdoorControl

D ∩ kdoorControl
L =

{doorCode1}. The Delivery Guy sends the message openDoor and the state
changes to (S3,H1,L1, C0,D3, A0);

5. the Delivery Guy accidentally agrees to help the Attacker by choosing the
internal transition leading to the global state (S3,H1, L1, C0,D5, A0);

6. the Delivery Guy leaks to the Attacker the value doorCode1. The state
becomes (S3,H1, L1, C0,D0,A1);

7. the Smart Lock opens the door and sends the message startRecording to the
Camera using the protocol cameraCom, for which the guard kcameraCom

L ∩
kcameraCom

C = {camera1} holds. The state is now (S3,H1,L2,C1,D0, A1);
8. the Smart Lock is also recruited by the Attacker, when the Smart

Lock chooses the internal transition leading to the global state
(S3,H1,L4, C1,D0, A1);

9. the Attacker communicates with the Smart Lock using a safe commu-
nication, as now the Attacker knows the doorCode1. The condition of
the protocol doorControl: kdoorControl

A ∩ kdoorControl
L = {doorCode1} holds.

Then Attacker sends the message getCameraId and the state changes to
(S3,H1,L6, C1,D0, A2);

10. the Smart Lock leaks the value camera1 to the Attacker. The states is now
(S3,H1,L0, C1,D0,A3);

11. the Attacker sends the message stopRecording to the Camera using the pro-
tocol cameraComwhich verifies that kcameraCom

A ∩ kcameraCom
C = {camera1}.

The global state is now (S3,H1, L0,C3,D0,A0);
12. unaware of the attack, the Camera sends an uncompromising video to the

Amazon Server using the protocol cameraCom. The state is now (S4,H1, L0,
C0,D0, A0);

13. lastly, the Amazon Server forwards the video to the Home Owner
using the protocol customerCom. The system is back in its initial state
(S0,H0, L0, C0, D0, A0).

The Smart Lock never received a message for closing the door, while the
Camera did received a message to stop the recording. Therefore the door is
open, the Camera switched off, and the home is vulnerable to thefts.

The Attacker proceeds in two steps: it first compromises the Delivery Guy
and then compromises the Smart Lock. If either one of these two steps fails,
the attack fails. An example of a safe execution is one in which everything is as
above, except for the step 5, where the Delivery Guy does an internal transition
to the local state D4 (instead of state D5). The Attacker cannot then collect
the value doorCode1 and cannot communicate with the Smart Lock. Another
possibility is for the Delivery Guy to leak the value doorCode1 (and thus proceed
as in step 5 and 6 described above), but the Smart Lock does not collaborate
with the Attacker in step 8.
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5 Conclusion

We introduced a modeling language for IoT systems, where the malicious entities
are explicitly part of the system. The malicious entities interfere with the rest
of the system to steal confidential data and leave the system vulnerable. A
system modeled in our language is transformed into a BIP system which is
then executed. Execution traces leading to successful attacks are proofs of the
vulnerabilities of a system.

As future work we plan to add probabilities to the IoT language, similarly to
the probabilistic CCS [7] and use statistical BIP [5] to simulate these systems.
In the plasma tool [6] we can then apply statistical model checking techniques
to provide more complex security analysis.
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Abstract. We study the reduction of bounded reachability analysis of
timed automata (TA) to a Mixed Integer Linear Programming (MILP)
problem. While bounded model checking of timed automata has been
explored in the literature based on the satisfiability of Boolean con-
straint formulas over linear arithmetic constraints verified using SAT
Modulo Theory (SMT) solvers, the approach presented in this paper
opens up the alternative of using MILP solvers. We present some pre-
liminary results comparing the two approaches and provide ideas on how
linear optimization can be useful for analyzing the behavior of TA. The
results are supported by a prototype implementation which relies either
on a MILP solver (Gurobi) or an SMT solver (MathSAT). Certain tech-
niques for reducing the search space and improving the performance are
also discussed.

1 Introduction

Timed automata [1] allow the specification of time-dependent behavior and they
have been used as underlying semantic model for real-world, industry-grade lan-
guages used in the design and analysis of real-time systems, such as SDL [7,14]
and extensions of UML [11,15,17]. As S. Graf remarked in [14], “at the semantic
level, it is interesting to have a minimal number of basic primitives allowing
expression of all concepts” [related to time], and timed automata primitives fill
this need both for functional design elements and for non-functional aspects.

Since the applications for these models are often safety-critical (e.g., real-
time systems, communication protocols), their formal verification has received
wide attention in the research literature. There are several mature tools for
verifying or simulating various flavors of timed automata-based models, including
[3,8,26,27]. Although timed automata give raise to infinite state spaces due to
the dense domain of time, both reachability and model checking of various logics
are decidable based on finite representations of the state space. The tools and
analysis methods cited above rely on symbolic representations of state sets, such
as the Difference Bound Matrices (DBMs, introduced in [12]), or more efficient
ones such as CDDs, RED [18,26].

Bounded model checking (BMC) [5] on the other hand is a successful method
for analyzing models that yield very large state spaces. It relies on encoding the
c© Springer Nature Switzerland AG 2018
F. Howar and J. Barnat (Eds.): FMICS 2018, LNCS 11119, pp. 269–283, 2018.
https://doi.org/10.1007/978-3-030-00244-2_18
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next-state relationship as a logical formula and on instantiating this formula
a bounded number of times to encode all possible runs of depth equal to the
bound. Then, a valid run corresponds to an assignment of the variables that
satisfies the formula. The verification of properties on runs is hence reduced to
the Boolean satisfaction problem (SAT) for the logical formula encoding possible
runs. BMC was initially introduced for discrete state-transition systems and for-
mulas are expressed in plain propositional logic. BMC has also been studied for
timed automata (see Sect. 5), generally based on formulations that use Boolean
constraint formulas over linear arithmetic constraints, i.e., Boolean combinations
of propositional variables and linear relations over real variables that can be fed
to an SMT solver.

In this paper we study an alternative approach to bounded reachability anal-
ysis of timed automata, based on Mixed Integer Linear Programming (MILP).
We propose several formulations that aim to increasingly improve performance
through reducing the search space and we compare these formulations based on
two benchmark examples. Since the formulation is also expressible as a Boolean
constraint problem over linear arithmetic constraints, we are able to compare
the performance of the MILP-based method with one based on SMT. In this
first study we have limited the scope to the verification of simple reachability
properties; the method can nevertheless be extended to bounded model-checking
for more complex temporal properties.

The paper is structured as follows: Sect. 2 provides the definitions for the
version of timed automata used in the paper and introduces MILP. Section 3
discusses different formulations of the bounded reachability as a MILP problem.
Section 4 discusses and compares experimental results for the different variants
and solvers. Sections 5 and 6 discuss the related work before concluding.

2 Preliminaries

2.1 Timed Automata

We rely on a standard definition of timed automata [1]. A timed automaton is a
state-transition graph in which transitions may be guarded with conditions on
clock variables, used to measure the progress of time. Clocks may be reset when
a transition fires and they advance at the same rate.

Let X be a finite set of clock identifiers. A valuation is a function v : X → R

assigning a real value to each clock. A clock predicate ζ over X is a logical
conjunction of conditions of the form x �� c where x ∈ X, c ∈ Z (or c ∈ R when
the integrality hypothesis is not needed) and �� is one of <,≤, >,≥, or =. Our
notation will not distinguish between the predicate and the set of valuations that
satisfy it; thus, v ∈ ζ denotes that the valuation v satisfies the predicate ζ. Let
Cond(X) be the set of clock predicates over X.

A timed automaton is a tuple A = (L, linit,X, Inv, Ch, T ) where L is a finite
set of identifiers (the locations), linit ∈ L is the initial location, X is a finite set
of clocks, Inv : L → Cond(X) is a function associating an invariant to to each
location, Ch is a set of identifiers (the synchronization channels), and T is a
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set of tuples of the form t = (src, dst, syn, grd, rst) (the transitions) such that:
src, dst ∈ L, syn ∈ {ε}∪{?, !}×Ch, grd ∈ Cond(X), rst ⊆ X. The components
of t designate the source/destination location, synchronization action (ε for no
synchronization), the guard condition and respectively a set of clocks that are
reset to zero. When several automata are involved, we will use the superscripts
to refer to the components of a particular automaton B, e.g., LB , XB ; for the
components of transition tuples, we will use projection functions having the same
name as the respective component in the definition above (e.g., src(t), dst(t)).

The semantics of a timed automaton is given by its transition system, i.e.
a graph in which vertices are configurations and edges represent transitions. A
configuration is a pair (l,v) where l is a location and v is a clock valuation
such that v ∈ Inv(l). There are two kinds of transitions: elapsing of a duration
δ ∈ R, denoted (l,v) δ−→ (l,v + δ) (where v + δ is the valuation such that
(v + δ)(x) = v(x) + δ) and discrete transitions, denoted (l,v) t−→ (l′,v′) where
t ∈ T . Time elapsing is conditioned by v+δ ∈ Inv(l). The discrete transition t is
conditioned by l = src(t), l′ = dst(t), v ∈ grd(t) and v′(x) = 0 for all x ∈ rst(t)
and v′(x) = v(x) for all x ∈ X \ rst(t). A path in the transition system is called
a run. A run is in canonical form if it starts and ends with a time elapsing
transition (possibly of duration zero) and the sequence of transitions composing
it strictly alternates time elapsing transitions and discrete transitions. It is easy
to see that any run can be transformed into an equivalent cannonical run by
summing up the delay of successive time transitions and by inserting zero-delay
transitions where needed.

Given a set of timed automata A1, ..., An with pairwise disjoint sets of
locations and clocks, the system of timed automata A = A1 ‖ . . . ‖ An

is defined by its transition system as follows. The configurations are pairs
of the form ((l1, ..., ln),v1 	 ... 	 vn), where (l1, ..., ln) ∈ LA1 × ... × LAn

and 	 is the union operator for functions with disjoint domains. Time elaps-
ing transitions ((l1, ..., ln),v1 	 ... 	 vn) δ−→ ((l1, ..., ln),v′

1 	 ... 	 v′
n) are

possible iff ∀k, (lk,vk) δ−→ (lk,v′
k). Discrete transitions without synchroniza-

tion ((l1, ..., ln),v1 	 ... 	 vn) ε−→ ((l′1, ..., l
′
n),v′

1 	 ... 	 v′
n) are possible iff

∃k, (lk,vk) ε−→ (l′k,v′
k) and ∀j �= k, lj = l′j and vj = v′

j . Discrete transitions
with synchronization are possible only in pairs of an output (!) and an input (?):
((l1, ..., ln),v1	...	vn) c−→ ((l′1, ..., l

′
n),v′

1	...	v′
n) iff ∃c ∈ ChA1 ∪...∪ChAn , k, l

such that (lk,vk) !c−→ (l′k,v′
k), (ll,vl)

?c−→ (l′l,v
′
l) and ∀j �∈ {k, l}, lj = l′j and

vj = v′
j . This version of non-associative n-ary composition is commonly used in

practice, for example in the UPPAAL tool [3].
The reachability problem for timed automata is known to be decidable [1].

The decision procedure relies on the integrality of constants used in clock predi-
cates. Our bounded reachability method, as well as others proposed in the liter-
ature, can relax this hypothesis and work with real constants (e.g., represented
as floating point numbers). On the other hand, since MILP problems only admit
non-strict linear constraints (see next paragraph), we forbid strict comparisons
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in clock predicates. One can replace strict comparisons used in the automata
with non-strict ones by fixing a minimum gap.

2.2 MILP

A Linear Programming problem is a mathematical optimization problem in
which constraints are linear inequalities and the objective function is also a
linear. A Mixed-Integer Linear Programming (MILP) problem is an LP problem
in which some of the variables are constrained to be integers [23]. Like SAT,
MILP is NP-complete, but many solvers are capable of solving very large prob-
lems arising in practice and their performance has vastly improved during the
past decades.

Binaries (i.e., integer variables with value 0/1) can be used to represent
Booleans and MILP can encode arbitrary Boolean constraints through inequal-
ities, sometimes more compactly than using the standard logical operators.

In addition to inequalities, some solvers may accept a number of additional
constraint types, such as indicator constraints [16] which have the form b → C
where b is a binary variable and C is a linear inequality that has to be satisfied
by the solution only if b has the value 1. This is the only form of non-linear
constraint that we will use in our formulation of the reachability problem.

3 Formulating Bounded Reachability in MILP

Let A = A1 ‖ . . . ‖ An be a system of timed automata. We discuss here the
way in which reachable states and transitions of the system are encoded as
variables and constraints of a MILP problem. Several options are available for
the encoding, one of the goals of this section being to define the variants so that
their performance can be compared in the experiments section.

Let us remind first that the formulation concerns the states of the system
that can be reached through a sequence of transitions of bounded length. To
simplify the definitions, we consider first that there is a total order between
the states and between the transitions, although this constraint will be relaxed
later on.

3.1 Encoding of State

The state of the automaton Ak at step i is characterized by the location in which
it resides and the values of its clocks. To encode these, we use:

– a set of binary variables, one for each location of Ak:

V LAk
i = {li|l ∈ LAk , 0 ≤ i ≤ B}

– a set of continuous variables, one for each clock of Ak, which will designate
the last time (with respect to a time reference frame) when the clock was
reset:

V XAk
i = {resetxi |x ∈ XAk , 0 ≤ i ≤ B}
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Since Ak can only be in one state at a time, the following constraint holds:
∑

l∈V L
Ak
i

l = 1 (1)

To encode the initial state of each automaton, the following constraints have
to hold:

∀l ∈ LAk : l0 = 1 iff l = lAk
init (2)

∀x ∈ XAk : resetx0 = 0 (3)

The global state of the system at step i also includes the time since the
beginning of the run: nowi (with the constraint now0 = 0). For the moment we
consider the case where the transitions of the system are totally ordered in a
sequence, hence we can use a global time reference frame. This will no longer be
the case when the total order constraint is relaxed, later on.

The state of each automaton has to observe the invariant of its current loca-
tion. Since each location invariant is a conjunction of atomic clock conditions,
each of these can be treated as a separate MILP constraint. By notation abuse,
we will write c ∈ Inv(l) when c is an atomic clock condition part of the con-
junction Inv(l). At step i, an atomic condition x �� α is equivalent to the linear
expression nowi −resetxi �� α and an atomic condition x−y �� α is equivalent to
the linear expression resetyi − resetxi �� α. Let LEc

i denote the linear expression
corresponding to condition c at step i. Then, the following constraints have to
hold:

∀l ∈ LAk , ∀c ∈ Inv(l) : li → LEc
i (4)

The purpose of the model is to verify reachability of certain states. For
the experiments, we specified the searched state as a conjunction of conditions
on automata locations and clocks values at step B, for which the encoding is
straightforward.

3.2 Encoding of Transitions

To allow for an efficient formulation of the possible runs of the system, our MILP
model allows, by construction, only for canonical runs (in which discrete steps
and time elapsing steps strictly alternate). Thus, a step i is in our case formed
of a time elapsing step (possibly of delay equal to zero) followed by a discrete
step. Thus, when we refer to a sequence of length B, this is actually a sequence
of 2B + 1 steps: B pairs formed of a time step and a discrete step, plus a final
time step in order to allow for time to go on after the last discrete step. Steps
are numbered from 0 to B.

The time elapsing steps are not explicitly encoded, which further simplifies
the model. Instead, we simply add the condition that time has to progress in the
right direction:

∀i : nowi ≤ nowi+1 (5)
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With this in mind, nowi designates the current time before the pair (time
delay, discrete transition) of rank i. Thus the discrete transition i takes place at
time nowi+1.

A first consequence is that the constraint (4) given above models the satis-
faction of location invariants before the time step i but not after. In order to
ensure the satisfaction of the invariant after the step i (and hence, between the
two, since invariants are convex), we need an additional constraint. Let LEAc

i

denote the linear expression corresponding to condition c after step i. It is easy
to see that LEAc

i can be built similarly to LEc
i , based on nowi+1 (time after the

delay step i) and on the values of resetxi (reset dates before the discrete step i).

∀l ∈ LAk , ∀c ∈ Inv(l) : li → LEAc
i (6)

For each discrete transition we will use an auxiliary binary variable that
models the fact that the transition is triggered at step i. While this is not usually
done in other formulations used for BMC, we find that this makes it easier to
express the constraints and to reconstruct the sequence of transitions when the
solver finds a feasible solution. Thus:

V TAk
i = {ti|t ∈ TAk , 0 ≤ i < B}

Except for synchronization which is discussed in the next section, the other
necessary conditions for a discrete transition are given below. To simplify the
formulas, the components of a transition t (i.e., src(t), dst(t),...) will also be
denoted by src(vt), dst(vt), ..., for any vt ∈ V TAk

i that corresponds to t.

∀t ∈ V TAk
i : t → src(ti) ∧ dst(ti+1) (7)

∀t ∈ V TAk
i , ∀c ∈ grd(t) : t → LEAc

i (8)

∀t ∈ V TAk
i , ∀x ∈ V XAk

i s.t. x ∈ rst(t) : t → (resetxi+1 = nowi+1) (9)

∀t ∈ V TAk
i , ∀x ∈ V XAk

i s.t. x �∈ rst(t) : t → (resetxi+1 = resetxi ) (10)

Instead of a discrete transition, an automaton Ak may perform a special
“skip” transition at step any i, without changing either the state or the values of
reset variables. In the following section we will discuss some additional conditions
that ensure that skip steps of individual automata are only used under certain
conditions, so that the global system runs continue to have the canonical form.
To represent the skip transitions, a binary variable skipAk

i is introduced for each
i and Ak, along with these constraints:

∀i,∀x ∈ XAk : skipAk
i → (resetxi+1 = reseti) (11)

∀i,∀l ∈ LAk : skipAk
i → (li+1 = li) (12)

Skip transitions are also useful for encoding the fact that a bounded sequence
of length B may be followed by one final time step: we extend the length of the
sequence by one and we require that the last discrete step (numbered B) be a
skip.
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3.3 Relaxing the Order of Transitions and Handling Synchronization

From this point on, several variants of the model will be considered. They all
share the variables and constraints described previously and differ essentially
in the way in which transitions of individual automata are ordered within the
global run and in how synchronization between automata is handled.

A first variant (denoted SS for sequential steps) is to consider that transitions
are ordered sequentially. At each step, only one automaton may fire a discrete
transition. In order to account for synchronization, the constraints ensure that
an input on some channel can only be executed by an automaton immediately
after an output on the same channel was executed by a different automaton (i.e.,
in the next step and so that now does not change between the two). To preserve
the canonical form of runs, a constraint ensures that, once a skip transition
appears, all subsequent transitions are skips. Let inputs/outputs designate the
set of all transitions that specify an input (resp. output) synchronization and
conjugated(t) be a function that gives the set of all transitions t′ which specify
an output synchronization with the same channel name as t. We do not formally
define these, but it is relatively easy to see how they are syntactically derived
from the definition of a system. The formulation is as follows:

∀i :
∑

k

(skipAk
i +

∑

t∈V T
Ak
i

t) = 1 (13)

∀i,∀t ∈ outputs : ti →
∑

t′∈conjugated(t)

t′i+1 = 1 (14)

∀i > 0,∀t ∈ inputs : ti →
∑

t′∈conjugated(t)

t′i−1 = 1 (15)

∀i.0 < i < B,∀t ∈ inputs : ti → (nowi = nowi+1) (16)

By experimenting with this formulation, one rapidly concludes it is inefficient,
mainly for two reasons. Firstly, since only one automaton is allowed to step at
a time, one has to choose a relatively large bound B, which in itself penalizes
performance. Secondly, if the model is used for establishing the unreachability of
some configuration (as it is the case when one tries to verify a safety property), a
positive result is achieved when the model is infeasible (the term used by MILP
solvers, meaning unsatisfiable). However, the difficulty of proving infeasibility
is generally correlated with the size of the Infeasible Irreducible System (IIS,
equivalent of the UNSAT-core in SAT/SMT). Experiments show that with the
SS formulation, the IIS is generally the entire model (i.e., no constraint can be
removed without breaking infeasibility) – and therefore establishing infeasibility
is hard.

This finding led us to seek more efficient formulations. A first variant (MS1
for multi-step with unique time basis) is to allow for multiple automata to trigger
discrete transitions within the same step. This also allows a simpler handling of
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input/output synchronization, which can now be performed within the same
step. The formulation is as follows:

∀i,∀k : skipAk
i +

∑

t∈V T
Ak
i

t = 1 (17)

∀i,∀t ∈ outputs : ti →
∑

t′∈conjugated(t)

t′i = 1 (18)

∀i,∀t ∈ inputs : ti →
∑

t′∈conjugated(t)

t′i = 1 (19)

This formulation is more efficient as it allows to use a lower value for the
bound B, since several automata can trigger during a step. However, the use of
a unique time basis for all automata (the nowi variables) introduces dependencies
between their behaviors. As a consequence, even when a safety property could
in principle be proved locally on one or a small subset of the system’s automata,
the actual IIS is still usually the entire model, and therefore infeasibility remains
hard to prove.

A solution to this problem can be to de-correlate time progress in the dif-
ferent automata forming a system. As long as an automaton progresses without
synchronizing with others, it can use its own value of now which can be differ-
ent from the others’, in a way similar to what was proposed in [20]. Only when
two automata synchronize, they must agree on their respective value of now. To
encode this we replace each nowi variable by a set of variables nowAk

i , and the
constraints (4), (5), (6), (8) and (9) are rewritten to refer to the local now of
the concerned automaton. Of course, this implies that an automaton can only
read/reset its own clocks.

In this model, there are several ways to achieve input/output synchronization.
A first variant (denoted MSm for multi-step with multiple time bases) will rely
on the same constraints as MS1, i.e., (17), (18) and (19), while adding two more:

∀i, j, k,∀t ∈ V T
Aj

i ,∀t′ ∈ V TAk
i s.t. t′ ∈ conjugated(t) :

t ∧ t′ → (now
Aj

i+1 = nowAk
i+1) (20)

meaning that local nows agree in case of synchronization, and

∀j, k : now
Aj

B = nowAk

B ) (21)

meaning that local nows agree at the end of the sequence.
To ensure that we obtain a canonical run with MSm, we can add a constraint

enforcing that, if all automata perform a skip at step i, they will continue doing
the same for all steps j > i. However, even with this constraint, an individual
automaton may still perform a skip at step i and some discrete transition at
a later step. As this seems to be a source of combinatorial explosion, we have
sought to remove it, by no longer relying on the fact that inputs/outputs have to
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take place in the same step (constraints (18) and (19)). This opens up interesting
possibilities:

– The steps of the different automata forming the system are completely de-
correlated. The run is no longer a unique sequence of (multi-)steps but a set
of sequences, one for each automaton.

– The sequences can be of different length. One can imagine fixing the
depth bound B differently for each automaton (e.g., depending on its own
complexity).

– Each individual sequence can be constrained to be in canonical form, i.e., no
more spurious skip transitions (except at the end of each run).

However, this also raises new challenges, as the global coherence of the model
still has to be ensured. A solution is to use a matrix of auxiliary binary variables
to represent the fact that step i of an automaton An synchronizes with step j
of Am. Constraints were added to ensure that synchronizations take place at
the same time (similar to condition (20)), and that message overtaking does not
occur. Details are omitted here, they can be found in the code of the prototype.
Henceforth, this variant of the formulation will be denoted ISs (independent-
steps with synchronization).

3.4 MILP Objective

The difference between an SMT-based bounded model checker/reachability ana-
lyzer and one based on MILP is that the latter may integrate an optimization
objective. The objective has the form of a linear expression on model variables
(depending on the solver, other forms of expressions, such as quadratic forms,
may also be used). The objective proves to be useful for selecting a system run
out of the set of feasible ones based on minimizing/maximizing various criteria.
For example, for model debugging it is often convenient to obtain the shortest
run that leads to the searched state, i.e. the run that contains the smallest num-
ber of (non-skip) discrete transitions. This can be obtained by minimizing the
objective:

obj =
∑

i,k

t∈V T
Ak
i

t

Other examples of uses for the objective function include searching for runs
that optimize the time of residence in certain locations. It is also easy to
extend the model to handle weighted timed automata [6], which add costs on
states/locations, so as to search for runs that optimize the total cost.

4 Experimental Results

The method described in the previous section was implemented in a prototype1

written in Python and using Gurobi [16] as back-end MILP solver. In order to
1 https://www.irit.fr/∼Iulian.Ober/brat.

https://www.irit.fr/~Iulian.Ober/brat
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allow comparisons, the prototype can also encode the reachability problem as an
SMT problem over linear arithmetic constraints, and use MathSAT [21] as back-
end (via the pysmt API). Both formulations use exactly the same constraints,
therefore providing an interesting basis for comparison. The automata are speci-
fied programmatically directly in Python; however, the format is relatively close
to the textual format of UPPAAL, to the point that we could adapt some bench-
mark generation scripts2 to generate models for our experiments. Experiments
were performed on a Linux machine with 8 Intel Core 2.4 GHz CPUs and 16
GB of memory. Note that the version based on Gurobi exploits the platform
parallelism, whereas the one based on MathSAT only uses one of the processors.

4.1 Examples Used

Several examples have been built in order to exercise the prototype. We will con-
centrate in the following on two of them: the now-classical Train-Gate-Controller
(TGC) example [1] and the CSMA/CD (Carrier Sense, Multiple-Access with
Collision Detection) protocol, based on the model included in the UPPAAL
benchmarks [22]. The CSMA/CD protocol allows to assign a broadcast network
channel to one of several competing transmitters. A detailed description is given
in [27]; let us note that the model is parametric in the number of transmitters.

4.2 Results for Feasible Models (Reachable States)

In the first experiment reported here, we search for a state for which we know
that it may be reached at a certain depth. In the CSMA/CD example, for a
model with N transmitters, an interesting candidate is the state bus collisionN
of the automaton corresponding to the bus, since we know that it may be reached
at a minimum depth of N + 1. For each value of N two tests are performed, one
with a depth bound B = N + 1 and another one with a larger bound. For each
combination of N and depth, the different variants of formulation presented in
Sect. 3.3 have been tried, both using the MILP encoding (Gurobi) and the SMT
encoding (MathSAT). The quantitative results are listed in the Fig. 1; the green
background designates the solver which produced faster results for a particular
configuration. In all experiments the time limit was set to 1000 s.

On this experiment the speed of the two solvers is generally comparable,
with a slight advantage for the MILP solver for lower values of B and for the
SMT solver for larger ones. It is worth noting however that the MILP encoding
provides results that are qualitatively more interesting: we have set the objective
of finding traces with a minimum number of (non-skip) discrete transitions. In
the case where the bound is strictly larger than N +1, the runs provided by the
SMT solver contain many more transitions than necessary for reaching the goal
state, while the runs provided by the MILP solver have exactly N +1 transitions.
Thus, when reachability analysis is used for model understanding and debugging
purposes, the MILP solution provides more interesting results.

2 https://www.it.uu.se/research/group/darts/uppaal/benchmarks.

https://www.it.uu.se/research/group/darts/uppaal/benchmarks
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Fig. 1. Experiment 1 (CSMA/CD) – times in s.

As the numbers in Fig. 1 indicate, the CSMA/CD example does not benefit
from the partially ordered runs afforded by the MSm and ISs variants. This
is caused by the centralized nature of the example, as all the transitions of the
transmitting stations synchronize with a transition of the bus, whose behavior
is essentially sequential.

We proceed with a second experiment which exhibits an increased degree of
parallelism. Based on the TGC example [1], we build a system composed of N
Train-Gate-Controller triplets. In order to demonstrate the interest of having
multiple time bases (the case of the MSm and ISs variants), the waiting delay
before the Controller sends the signal to raise the Gate is set to a different value
in each triplet. The reachable configuration that will be searched is one in which
every Gate is in state raising, after a train has passed.

Fig. 2. Experiment 2 (TGC) – times in s.

The search times for different values of N are given in Fig. 2. Note that for
the MS1 variant, N+5 steps are necessary to reach the search state, whereas for
the variants that use a separate time basis for each automaton (MSm and ISs)
the same state can be reached in a constant number of steps (5). This explains
the wide difference in performance between the three variants. It is also to be
noted that the relative performance of the solvers is widely different depending
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on the variant: the SMT solver is orders of magnitude faster on MS1 while the
MILP solver is up to 50 times faster on MSm and ISs.

4.3 Results for Infeasible Models (Unreachable States)

When reachability analysis is used for verifying a safety property (i.e., that some
“bad state” is never reached), the MILP model (respectively the SMT problem)
will be infeasible (unsatisfiable) when the property is verified. Experiments show
that the performance of the solvers is not uniform whether the purpose is finding
scenarios in a feasible model or proving that the model is infeasible. This section
is dedicated to experiments for the latter case.

For the TGC example, a safety property is that the Gate cannot be in a
state other than closed when the Train passes the Gate. We try to prove this
property holds up to a “reasonable” bound for depth. The choice of the bound is
somewhat arbitrary, but is informed by the results of experiment 2, which show
that a full cycle of gate lowering – train passing – gate raising can be achieved
in N+5 steps for MS1 and in 5 steps for MSm and ISs. The bound is thus
chosen to be 2*N for MS1 and respectively 10 for MSm and ISs.

The computation times for deciding infeasibility are given in Fig. 3. Notice
that the SMT solver performs significantly better on this task than the MILP
solver. The MSm and ISs formulations also perform much better than MS1
for large models, ISs being the only formulation for which the MILP solver can
handle larger systems in a reasonable time.

Fig. 3. Experiment 3 (TGC with unreachable end state) – times in s.

5 Related Work

Applying bounded model checking [5] to timed automata has been the subject
of many studies in the past, beginning with [2,24,25]. The problem is reduced
to satisfiability of formulas in a decidable first order logic (e.g., propositional
logic with linear arithmetic constraints or difference logic). Most recent works
rely on SMT solvers, which have made significant progress in the past years and
are able to handle large specifications. To our knowledge, Mixed Integer Linear
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Programming has not yet been explored for formulating bounded model-checking
problems, except in the realm of linear hybrid automata [13]. The authors of
[13] concentrate on the integration of a DPLL-based SAT solver with a linear
programming routine in order to benefit from the capacity of the LP routine
to solve large conjunctive systems of linear inequalities over the reals. Although
the method proposed by [13] could be adapted to fit our needs, we have chosen
to rely on an off-the-shelf MILP solver and we concentrated on making the
formulation as efficient as possible and on comparing the MILP solution with
one based on SMT.

The idea of reducing the length of runs (and hence the size of the search
space) by allowing several automata to make discrete transitions in the same
(multi-)step has been explored in [20]. It follows up on work on partial order
reductions for timed automata [4,19]. We take the multi-step idea two steps
forward, first by allowing the clocks of different automata to be de-synchronized
in the same multi-step, and then by allowing synchronizing transitions to take
place in different steps, which allows to separate the representations of the runs
of different TAs and use different bounds on the run length for each automaton.
A similar approach was presented in [9] in the context of linear hybrid automata.

6 Conclusions

The results presented in this paper show that there is a place for MILP-based
bounded reachability analysis in the spectrum of analysis methods used for timed
systems. While the SMT-based method outperforms it when there are no satisfy-
ing runs, which makes SMT a better candidate for approaching model-checking
problems, the MILP-based method proves to be relatively fast for finding satis-
fying runs when they exist. Moreover, the method allows to search for runs that
optimize certain criteria. Since different criteria may be encoded in the opti-
mization objective, such as run length or time of residence in certain states, our
approach provides a convenient method for exploring behavior, model under-
standing and debugging.

The paper also discusses certain techniques for reducing the size of the search
space based on allowing as much as possible independent progress of the different
automata forming the system. Several different formulations of the reachability
problem are presented and we provide experimental data allowing to compare
their relative performance. One formulation (ISs) is particularly interesting,
both from the point of view of raw performance, and because it separates the
representations of the runs of different automata, which allows to set different
bounds on their respective length. We think that this should allow to handle
more efficiently large systems that mix components of varying complexity.

The prototype implemented for this study handles only a minimalist commu-
nicating timed automata model. Future work is needed for enriching the model,
e.g., with local/shared data, data communication over synchronization, shared
clocks, location and transition weights [6], etc. Although we do not aim for a
full-fledged bounded model checker, it would be interesting to provide counterex-
ample generation for more complex temporal logic properties.
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This paper is dedicated to Susanne Graf on the occasion of her anniversary event,
as a mark of my admiration and respect for her scientific achievements and for
her human qualities. It is an honor and an inspiration to have her as colleague
and friend.
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Abstract. The verification of real-time systems has been an active area
of research for several decades now. Some results have been success-
fully transferred to industry. Still, many obstacles remain that hinder
a smooth integration of academic research and industrial application.
In this extended abstract, we discuss some of these obstacles and ongo-
ing research and community efforts to bridge this gap. In particular, we
present several experimental and theoretical methods to evaluate and
compare real-time systems analysis methods and tools.

Keywords: Real-time systems · Verification · Formal methods

1 Introduction

Critical embedded systems such as cars, satellites or planes are real-time in the
sense that they must provide some type of timing guarantees, e.g., to ensure that
a system will always react sufficiently quickly to some external event.

The verification of real-time systems has been an active area of research for
several decades now since the seminal work of Liu and Layland [20] (see [8]
for a survey). Some results have been successfully transferred to industry, as
illustrated by the existence of numerous companies selling real-time systems
analysis tools which are spin-offs from research institutions, e.g., AbsInt1 (from
Saarland University), Symtavision2 (now part of Luxoft, from TU Braunschweig)
and RTaW3 (from INRIA). Four additional examples of successful technology
transfer are described in [7].

Still, many obstacles remain that hinder a smooth integration of academic
research and industrial application. To illustrate this on an example, the veri-
fication of timing properties in the automotive industry tends to be based on
simulations rather than static analysis, complemented with monitoring to handle
at runtime potential timing violations. The rapid evolution of real-time systems,
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LABX-0025-01).

1 https://www.absint.com/.
2 https://auto.luxoft.com/uth/timing-analysis-tools/.
3 http://www.realtimeatwork.com.
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with the advent of multicore architectures and the shift toward heterogeneous,
high-performance platforms, is increasing the gap between the analysis tools and
methods proposed by the research community and the needs of industry [25].

At the same time, this trend represents a unique opportunity, because sys-
tems are becoming so complex that simulation is not a viable verification method
anymore. There is currently a need for simple mechanisms to make these new,
complex platforms more predictable, and for associated verification techniques.
For example, several automotive OEMs and suppliers are now using the Log-
ical Execution Time (LET) [18] paradigm to achieve predictable communica-
tion [14,17]. This choice has led to renewed interactions between academia and
industry in order to identify where more research is needed on the topic [9].

In this context, we argue that one major obstacle to the application of aca-
demic results in industry is the difficulty, both for academics and practitioners,
to evaluate how existing analysis techniques and their associated tools can per-
form on real systems. In the following, we discuss some criteria for such an
evaluation that deserve more attention from the research community. We then
present current efforts toward experimental and theoretical methods to evaluate
and compare real-time systems analysis methods and tools.

2 Evaluation Criteria

In this section, we would like to draw attention to several criteria that are key
to evaluating the usability of a method or a tool, and which we feel are currently
underestimated.

2.1 Expressivity of the Underlying Model

One major difficulty that practitioners face whenever trying to use a tool from
academia, e.g. pyCPA4, MAST5 or Cheddar6, is the mismatch between the mod-
els they work with and the expressivity of the tool they would like to use [16].
Many papers still assume a simple model where independent software tasks exe-
cute on a uniprocessor. In practice, systems are now much more complex, with
multiple cores, communication buses, shared caches, etc. Even uniprocessor sys-
tems require more complex models than the one introduced in [20].

One example is illustrated in [15]: Due to minor uncertainties in clock imple-
mentations, the exact value of a task period (describing the frequency with which
the task is activated) may not be known. This means that the activations of two
tasks that are specified with the same period may shift if mapped onto differ-
ent processors, which must be taken into account by the analysis. This requires
support for parameters in the system model.

Another example related to the description of task activations concerns tasks
implementing engine control. Such tasks, which are commonly referred to as
4 https://pycpa.readthedocs.io.
5 https://mast.unican.es/mast.html.
6 http://beru.univ-brest.fr/∼singhoff/cheddar/.
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adaptive variable-rate (AVR) tasks, are activated whenever the crankshaft of the
engine reaches a specific angle. Recent theoretical works [3,22] provide solutions
for precisely analyzing such tasks, but most tools do not implement them.

These are just two examples to illustrate the complexity of modeling indus-
trial systems. Reality is even more complex, with tasks often implemented with
some degree of intra-task parallelism [23], and the additional complexity due to
multicore architectures. Many existing tools and analysis techniques do take into
account some level of complexity in their model, including those cited above, but
they apply to different, incomparable models with no systematic way of com-
paring them. Despite existing efforts [21], we still lack a clear understanding of
how different abstractions can be compared semantically.

2.2 Expressivity of the Provided Guarantees

A second, related issue is the fact that academic research has largely focused on
guaranteeing schedulability, that is, on ensuring that no task in a given task set
can ever miss its deadline. Schedulability is usually established by computing an
upper bound on the worst-case response time of tasks, i.e., the maximal delay
between the activation of a task resulting in the creation of a job to be executed,
and the completion of that job. This is often not the most critical issue.

First, one is generally not interested in the response time of a single task,
but rather in the end-to-end latency of a so-called cause-effect chain of tasks
which are independently activated but communicate via shared variables [10].
Although this problem was formalized ten years ago, it has only recently become
an active research topic [1].

Besides, the notion of schedulability itself (even if the notion of deadline
is applied to cause-effect chains rather than single tasks) is restrictive [2]: In
particular, it has been shown that many real-time systems are weakly-hard rather
than hard, meaning that they can tolerate a bounded number of deadline misses
without this leading to system failure [11,19].

These two examples illustrate the fact that researchers and tool providers
must pay closer attention to which timing guarantees are used in practice. A
better understanding about how the real-time aspects interface with other view-
points such as function or energy consumption is needed for that [13].

2.3 Precision of the Computed Results

Another problem that hinders the use of academic solutions for the verification
of real-time systems is the lack of support to estimate the precision of the com-
puted results. Indeed, for scalability reasons, existing solutions compute upper
bounds on worst-case behaviors, which introduces some pessimism in the anal-
ysis. The problem is that there is no method to quantify that pessimism, other
than comparing the computed upper bounds with results obtained by simula-
tion. In general, there is a large gap between the values thus obtained (through
analysis and simulation) and the user does not know whether it is due to the
imprecision of the simulation, or whether it results from the pessimism of the
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analysis. Exhibiting a possible scenario leading to a deadline miss would be valu-
able to practitioners because it would help them to redesign the system to make
it schedulable. The need to investigate this issue further and some initial results
are provided in [12].

3 Methods for Evaluation and Comparison

Let us now present several initiatives aiming to help researchers and practitioners
compare their methods and tools.

3.1 Empirical Approaches

The objective of the WATERS industrial challenge7 is to address the need for
closer interaction between academia and industry that is underlined by the obser-
vations made in the previous sections. The principle of the challenge is to provide
researchers with a concrete industrial problem related to real-time systems design
and analysis, which they try to solve with their preferred method and tool. So
far, Thales, Bosch and Dassault have contributed (Bosch has proposed multiple
challenges). The WATERS industrial challenge has proven over the years to be
an extremely attractive and valuable exercice to share and compare solutions
and results.

While we need more case studies such as the WATERS industrial challenge,
we also need synthetic test cases, or tools to generate them, on which there is a
consensus. Unfortunately, there is no such tool at the moment – authors use cus-
tom made generators for their publications. Some rules to generate meaningful
test cases are provided in [6], but the targeted models are too simple to tackle
realistic sytems and need to be extended.

RTSpec [24] represents a significant effort towards a unified format for
describing such test cases. It is a formalism for real-time systems specification
with flexible syntax and rigorous semantics based on UPPAAL models. Based
on this library, the timing model of various analyzers can be formalized, and
mappings between their respective input formats can be rigorously defined. The
overall target is a framework which comprises the RTSpec formalism, a tool
chain for automatically translating RTSpec into the input of various analysis
tools, and a set of benchmarks which are synthetic or derived from industrial
case studies. Such a framework would provide a systematic, automated and rig-
orous methodology for evaluating analyzers.

3.2 Theoretical Approaches

Few research papers have focused on the issue of comparing real-time systems
analysis techniques. A recent publication [5] (building upon [6]) is tackling the
problem while identifying pitfalls in the use of metrics such as resource augmen-
tation factors and utilization bounds to compare methods or tools.
7 https://www.ecrts.org/industrialchallenge.
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One theoretical tool which seems promising to provide a solid formal back-
ground for comparing models and analysis techniques is the Prosa8 library,
a repository of definitions and proofs for real-time schedulability analysis [4]
using the Coq proof assistant9. One of the objectives of the ongoing CASERM
project10 is to build the RTSpec framework on top of Prosa instead of UPPAAL,
thus allowing for formal proofs on model transformations, as needed for com-
parison purposes.

4 Conclusion

In this short paper, we have illustrated the need for a better theoretical and prac-
tical support to evaluate and compare methods and tools for real-time systems
analysis. We have underlined the importance of being able to formally relate
models used by different approaches, as well as the need to look beyond schedu-
lability analysis and to develop methods to quantify the pessimism of existing
analyses. In addition, we have presented recent and ongoing initiatives targeting
these goals, which we hope will help reducing the gap between academic research
and industrial practice.
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