
Chapter 6

The Chain Rule Inequality and
its Perturbations

In the previous chapter we showed that the chain rule operator equation shows
a remarkable stability and rigidity, under modifications of operators or additive
perturbations. In this chapter we study a different modification of the chain rule,
replacing equalities by inequalities. Suppose T : C1(R) → C(R) is a map satisfying
the chain rule inequality

T (f ◦ g) ≤ Tf ◦ g · Tg, f, g ∈ C1(R). (6.1)

Under mild assumptions on T , we determine the form of all operators T satisfying
this inequality, provided that the image of T contains functions attaining negative
values. There will be an assumption of non-degeneration of T which is a weak
surjectivity type requirement. Moreover, we impose a weak continuity condition
on T . In the case of the chain rule equation, the continuity of the operators was
not assumed, but it was a consequence of the solution formulas. Here we have less
information on T , and we require T to be pointwise continuous, as defined below.
Remarkably, for functions f with positive derivative, the solutions Tf of the chain
rule inequality (6.1) turn out to be the same as for the chain rule equation. For
general functions the solutions of the chain rule inequality are bounded from above
by corresponding solutions of the chain rule equality. This is a similar phenomenon
as in Gronwall’s inequality in its differential form, cf. Gronwall [G] or Hartman
[H], where the solution of a differential inequality is bounded by the solution
of the corresponding differential equation. We also state results for the opposite
inequality T (f ◦ g) ≥ Tf ◦ g · Tg. The proofs are based in part on a result about
submultiplicative functions on R, which is of independent interest.

© Springer Nature Switzerland AG 2018
H. König, V. Milman, Operator Relations Characterizing Derivatives,
https://doi.org/10.1007/978-3-030-00241-1_6

91

https://doi.org/10.1007/978-3-030-00241-1_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00241-1_6&domain=pdf


92 Chapter 6. Chain rule inequality & perturbations

6.1 The chain rule inequality

Studying the chain rule inequality, we will impose the following two conditions.

Definition. An operator T : C1(R) → C(R) is non-degenerate provided that, for
any open interval I ⊂ R and any x ∈ I, there exists a function g ∈ C1(R) with
g(x) = x, Im(g) ⊂ I and Tg(x) > 1. Let us call T negatively non-degenerate if
there is g ∈ C1(R) with g(x) = x, Im(g) ⊂ I and Tg(x) < −1.

Definition. An operator T : C1(R) → C(R) is pointwise continuous if for any
sequence of functions fn ∈ C1(R) and f ∈ C1(R) with fn → f and f ′

n → f ′ con-
verging uniformly on all compact subsets of R, we have the pointwise convergence
of limn→∞ Tfn(x) = Tf(x) for all x ∈ R.

Theorem 6.1 (Chain rule inequality). Let T : C1(R) → C(R) be an operator such
that the chain rule inequality holds:

T (f ◦ g) ≤ Tf ◦ g · Tg, f, g ∈ C1(R). (6.1)

Assume in addition that T is non-degenerate and pointwise continuous. Suppose
further that there exists x ∈ R with T (− Id)(x) < 0. Then there is a continuous
function H ∈ C(R), H > 0, and there are real numbers p > 0 and A ≥ 1, such
that T has the form

Tf =

{
H◦f
H f ′p, f ′ ≥ 0,

−AH◦f
H |f ′|p, f ′ < 0,

f ∈ C1(R). (6.2)

Remarks. (a) Let Sf := H◦f
H |f ′|p sgn f ′. Then S satisfies the chain rule equation

S(f ◦ g) = Sf ◦ g · Sg. Equation (6.2) means that Tf ≤ Sf . Thus, the solutions
of the chain rule inequality are bounded from above by solutions of the chain rule
equation for which A = 1. Note that −A = T (− Id)(0) ≤ −1. Thus under the
additional assumption T (− Id)(0) = −1 in Theorem 6.1, T satisfies the chain rule
equation.

(b) Let c > 0. The modified operator inequality T (f ◦ g) ≤ c ·Tf ◦ g ·Tg may
be treated by considering T1 := c · T which would satisfy T1(f ◦ g) ≤ T1f ◦ g · T1g.

(c) The condition T (− Id)(x) < 0 guarantees that there are sufficiently many
negative functions in the range of T . If this is violated, there are many positive
solution operators T of (6.1): Examples for non-negative solutions can be given
by

Tf(x) = F
(
x, f(x), |f ′(x)|),

where F : R2 × R≥0 → R≥0 is a continuous function satisfying

F (x, z, αβ) ≤ F (y, z, α)F (x, y, β) (6.3)
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for all x, y, z, α, β ∈ R. We might take, e.g.,

F (x, z, α) = exp(d(x, z)) ·K(α),

where d is either a metric on R or d(x, z) = z − x, and K : R≥0 → R≥0 is
continuous and submultiplicative, K(αβ) ≤ K(α) ·K(β) for α, β ≥ 0. Non-trivial
examples of such maps K besides power-type functions αp, p > 0 and maxima of
such functions are given, e.g., by K(α) = ln(α + c) with c ≥ e, cf. Gustavsson,
Maligranda, Peetre [GMP], and products of submultiplicative functions. Moreover,

for any continuous submultiplicative function K : R≥0 → R≥0, F̃ := K ◦ F will
also satisfy (6.3) if F does. There does not seem to be much hope of classifying
the solutions of (6.1) without any negativity assumption like T (− Id)(x) < 0 for
some x ∈ R.

6.2 Submultiplicative functions

Let K : R → R be continuous and define T : C1(R) → C(R) by Tf(x) :=
K(f ′(x)). This operator T will satisfy (6.1) if and only if K is submultiplicative,
i.e., K(αβ) ≤ K(α)K(β) for all α, β ∈ R. Hence, as a special case in the proof
of Theorem 6.1, we have to classify submultiplicative functions on R attaining
also negative values. This result is of independent interest and we formulate it as
Theorem 6.2.

Theorem 6.2 (Submultiplicative functions). Let K : R → R be a measurable func-
tion which is continuous in 0 and in 1 and submultiplicative, i.e.,

K(αβ) ≤ K(α)K(β), α, β ∈ R.

Assume further that K(−1) < 0 < K(1). Then there exist real numbers p > 0 and
A ≥ 1 such that

K(α) =

{
αp, α ≥ 0,

−A|α|p, α < 0.

Hence, K(−1) = −A ≤ 1. Note that K|R≥0
is multiplicative, and if K(−1) =

−1, K is multiplicative on R, i.e., K(α) = |α|p sgnα. As mentioned in Remark
(b) above, there are many continuous submultiplicative functions K : R≥0 → R≥0

besides powers K(α) = αp. However, these cannot be extended to continuous
submultiplicative functions K : R → R with K(−1) < 0. There is a corresponding
result for supermultiplicative functions on R, K(αβ) ≥ K(α)K(β), which gives the
same form of K, except that then 0 < A ≤ 1.

Examples. (a) The measurability assumption in Theorem 6.2 is necessary. Other-
wise, we may take a non-measurable additive function f : R → R as given in the
comments following Proposition 2.1 and A > 1, and define K(0) := 0 and

K(α) :=

{
exp(f(lnα)), α > 0,

−A exp(f(ln |α|)), α < 0.
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Then K : R → R is non-measurable and submultiplicative with K(−1) < 0 <
K(1).

(b) Let d ≥ 1, c ≥ 0, c �= d, and put

K(α) :=

⎧⎪⎨⎪⎩
1, α = 1,

−c, α = 0,

−d, α �∈ {0, 1}.

Then K is measurable and submultiplicative with K(−1) < 0 < K(1), but dis-
continuous at 0 and at 1.

The result corresponding to Theorem 6.1 in the supermultiplicative situation
is

Theorem 6.3. Let T : C1(R) → C(R) be an operator such that

T (f ◦ g) ≥ Tf ◦ g · Tg, f, g ∈ C1(R).

Assume also that T is negatively non-degenerate and pointwise continuous with
T (− Id)(x) < 0 for some x ∈ R. Then there exist numbers p > 0, 0 < B ≤ 1 and
a function H ∈ C(R), H > 0 such that

Tf =

{
H◦f
H f ′p, f ′ ≥ 0,

−BH◦f
H |f ′|p, f ′ < 0,

f ∈ C1(R).

We first prove Theorem 6.2 which is used in the proof of Theorem 6.1. For
this, we need two lemmas.

Lemma 6.4. Let K : R → R be submultiplicative with K(−1) < 0 < K(1). Assume
that K is continuous in 0 and in 1. Then:

(i) K(0) = 0, K(1) = 1 and K|R<0
< 0 < K|R>0

.

(ii) There is 0 < ε < 1 such that 0 < K(α) < 1 for all α ∈ (0, ε) and 1 < K(α) <
∞ for all α ∈ (1/ε,∞).

Proof. Since 0<K(1)=K(12)≤K(1)2, K(1) ≥ 1. Then 1 ≤ K(1) = K((−1)2) ≤
K(−1)2, implying K(−1) ≤ −1. By submultiplicativity K(−1) ≤ K(1)K(−1),
|K(−1)| ≥ K(1)|K(−1)|. Hence, K(1) ≤ 1, K(1) = 1. Since K is continuous at
1, there is ε > 0 such that K|[1/(1+ε),1+ε] > 0. For any α ∈ [1/(1 + ε), 1 + ε],
K(α) > 0 and K(1/α) > 0. Hence, 0 < K(α) ≤ K(1/α)K(α2), implying that
K(α2) > 0, i.e., K|[1/(1+ε)2,(1+ε)2] > 0. Inductively, we get that K|R>0

> 0, since
R>0 =

⋃
n∈N

[1/(1+ε)n, (1+ε)n]. The inequalityK(0) = K((−1)·0) ≤ K(−1)·K(0)
with K(−1) < 0 shows that K(0) ≤ 0. Since K|R>0 > 0 and K is continuous in
0, we get K(0) = 0. Then there is ε > 0 with 0 < K|(0,ε) < 1. Since 1 ≤
K(1) ≤ K(α) · K(1/α), it follows that K|(1/ε,∞) > 1. Moreover, for any α > 0,
K(−α) ≤ K(−1)K(α) < 0, i.e., K|R<0

< 0. �
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The second lemma is a well-known fact on subadditive functions on R.

Lemma 6.5. Assume that f : R → R is measurable and subadditive, i.e.,

f(s+ t) ≤ f(s) + f(t), s, t ∈ R.

Define p := supt<0
f(t)
t and q := inft>0

f(t)
t . Then f is bounded on compact in-

tervals, −∞ < p ≤ q < ∞ and f(0) ≥ 0. Moreover, the limits limt→−∞
f(t)
t ,

limt→∞
f(t)
t exist and p = limt→−∞

f(t)
t , q = limt→∞

f(t)
t .

Proof. (a) We first show that f is bounded from above on each compact subset
of (0,∞). Fix a > 0 and put A := f(a). Let E := {t ∈ (0, a) | f(t) ≥ A/2}.
Then E is measurable since f is measurable. Moreover, (0, a) = E ∪ ({a} − E),
since t1, t2 > 0 with a = t1 + t2 implies that t1 ∈ E or t2 ∈ E. Suppose there
are 0 < α < β < ∞ such that f |[α,β] is not bounded from above. There there
is a sequence (tn), α ≤ tn ≤ β with tn → t0, α ≤ t0 ≤ β and f(tn) ≥ 2n.
Let E′

n := {t ∈ (0, β) | f(t) ≥ n}. For a fixed n ∈ N, choose above a = tn,
A = f(tn) ≥ 2n. Then

|E′
n| ≥

∣∣{t ∈ (0, tn)
∣∣ f(t) ≥ n

}∣∣ =: |En| ≥ tn
2

≥ α

2
> 0.

Since E′
n ≥ E′

n+1, we get that
∣∣⋂

n∈N
E′

n

∣∣ ≥ α
2 . Therefore, f |(0,β) is infinite on a

set of strictly positive measure, which is a contradiction. Therefore, f is bounded
from above on any compact subset of (0,∞).

(b) Since f(0) ≤ f(0) + f(0), we have f(0) ≥ 0. Also, for any t ∈ R,

0 ≤ f(0) ≤ f(t) + f(−t). Hence, f(−t)
−t ≤ f(t)

t for any t > 0, and therefore

limt→-∞
f(t)
t ≤ limt→∞

f(t)
t .

Let q := inft>0
f(t)
t . We claim that the limit limt→∞

f(t)
t exists and that

q = limt→∞
f(t)
t . Assume that q ∈ R; the case q = −∞ is treated similarly. Let

ε > 0 and choose b > 0 with f(b)
b ≤ q + ε. For any t ≥ 3b, there is n ∈ N with

t ∈ [(n+2)b, (n+3)b]. Using the subadditivity of f , and the definition of q and b,
we find

q ≤ f(t)

t
=

f(nb+ (t− nb))

t
≤ n f(b) + f(t− nb)

t

=
nb

t

f(b)

b
+

f(t− nb)

t
≤ nb

t
(q + ε) +

f(t− nb)

t
.

By part (a), f is bounded from above on [2b, 3b]. Let M > 0 be such that f[2b,3b] ≤
M . Since t− nb ∈ [2b, 3b], we get

q ≤ f(t)

t
≤ nb

t
(q + ε) +

M

t
.
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For t → ∞, nb
t → 1 and M

t → 0. Therefore, for any ε > 0,

lim
t→∞

f(t)

t
≤ q + ε = inf

t>0

f(t)

t
+ ε,

which shows that the limit limt→∞
f(t)
t exists and is equal to q.

(c) Consider similarly g(t) := f(−t), t > 0. Then by (b)

p := sup
t>0

f(−t)

−t
= − inf

t>0

g(t)

t
= − lim

t→∞
g(t)

t
= lim

t→−∞
f(−t)

−t
.

Now f(−t)
−t ≤ f(t)

t implies for t → ∞ that p ≤ q. Moreover, since p > −∞, q > −∞,
and since q < ∞, p < ∞. Therefore, −∞ < p ≤ q < ∞. �

As a consequence of Lemma 6.5, we have that

f(t) = pt+ a(t), t < 0,

f(t) = qt+ a(t), t > 0,

where a(t) ≥ 0 for all t �= 0.

Proof of Theorem 6.2. (a) Let K : R → R be measurable and submultiplicative,
continuous in 0 and in 1 with K(−1) < 0 < K(1). By Lemma 6.4, K(0) = 0,
K(1) = 1, K|R<0

< 0 < K|R>0
and for a suitable 0 < ε < 1, 0 < K(α) < 1 for all

α ∈ (0, ε) and 1 < K(α) < ∞ for all α ∈ (1/ε,∞). Define f(t) := lnK(exp(t)),
t ∈ R. Then f is measurable and subadditive, and we have by Lemma 6.5

−∞ < p := sup
t<0

f(t)

t
= lim

t→−∞
f(t)

t
≤ q := inf

t>0

f(t)

t
= lim

t→∞
f(t)

t
< ∞.

Since f is negative for t < 0 and positive for t > 0, we have that 0 ≤ p ≤ q < ∞,
with

f(t) =: pt+ a(t), t < 0, f(t) =: qt+ a(t), t > 0,

where a(t) ≥ 0 for all t and limt→−∞
a(t)
t = limt→∞

a(t)
t = 0. This means, for all

0 < α < 1, that

K(α) = exp
(
f(lnα)

)
= αp exp

(
a(lnα)

) ≥ αp,

and, for all 1 < α < ∞, that

K(α) = exp
(
f(lnα)

)
= αq exp

(
a(lnα)

) ≥ αq.

(b) We claim that p = q > 0 holds. Using K|R<0
< 0 < K|R>0

, the submul-
tiplicativity of K implies that for all β < 0 < α

K(αβ) ≤ K(α)K(β), |K(αβ)| ≥ K(α)|K(β)|.
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Since K(1) = 1, f(0) = 0. Fix t < 0 and choose α < −1, 0 < β < 1, with t = αβ.
Then, by submultiplicativity,

K(t) = K
(
(−1)|α|β) ≤ K(−1)K(|α|)K(β) ≤ 0,

|K(t)| ≥ |K(−1)|K(|α|)K(β) ≥ |α|qβp = |t|qβp−q,

using that K(−1) ≤ −1 since 1 = K(1) ≤ K(−1)2. Assuming p �= q, i.e., p < q,
and letting β tend to 0 (and α to −∞), would yield the contradiction |K(t)| = ∞.
Hence, 0 ≤ p = q < ∞. In fact, 0 < p = q since K is continuous at 0 with K(0) = 0
and K(β) ≥ βp for 0 < β < 1.

(c) Let g(t) := ln |K(− exp(t))| for all t ∈ R. Since, for any s, t ∈ R,

K
(− exp(s) exp(t)

) ≤ K
(− exp(s)

)
K
(
exp(t)

) ≤ 0,

we get that

g(s+ t) = ln
∣∣K(− exp(s) exp(t)

)∣∣ ≥ ln
∣∣K(− exp(s))

∣∣+ lnK(exp(t))

= g(s) + f(t) = g(s) + pt+ a(t),

with a(t) ≥ 0, for all t, and limt→±∞
a(t)
t = 0. Since f(0) = 0, a(0) = 0. Putting

s = 0 yields

g(t) ≥ g(0) + pt+ a(t).

Putting t = −s and renaming s by t gives

g(0) ≥ g(t)− pt+ a(−t).

Hence,

g(0) + pt+ a(t) ≤ g(t) ≤ g(0) + pt− a(−t).

Since a ≥ 0, this implies that a = 0 on R. Therefore, for all t ∈ R, f(t) = pt and
g(t) = g(0) + pt. We then find, for all β < 0 < α,

K(α) = αp, |K(β)| = exp
(
g(ln |β|)) = exp(g(0))|β|p.

Since exp(g(0)) = |K(−1)| ≥ 1, g(0) ≥ 0. Thus, K(β) = K(−1)|β|p, proving
Theorem 6.2 with −A = K(−1) ≤ −1. �

6.3 Localization and Proof of Theorem 6.1

As the first step in the proof of Theorem 6.1 on the chain rule inequality , we
show that T is locally defined. More precisely, Tf(x) only depends on x, f(x) and
f ′(x).
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Proposition 6.6. Let T : C1(R) → C(R) be non-degenerate, pointwise continuous
and satisfy the chain rule inequality (6.1). Assume also that there exists x0 ∈ R

such that T (− Id)(x0) < 0. Then there is a function F : R3 → R such that, for all
f ∈ C1(R) and all x ∈ R,

Tf(x) = F
(
x, f(x), f ′(x)

)
. (6.4)

To show this, we need a lemma.

Lemma 6.7. Under the assumptions of Proposition 6.6 we have for any open in-
terval I ⊂ R:

(a) For all x ∈ I, there is g ∈ C1(I) with g(x) = x, Im(g) ⊂ I and Tg(x) < −1.

(b) For c ∈ R, f ∈ C1(R) with f |I = c, we have Tf |I = 0.

(c) For f ∈ C1(R) with f |I = Id |I , we have Tf |I = 1.

(d) Take f1, f2 ∈ C1(R) with f1|I = f2|I and assume that f2 is invertible. Then
Tf1|I ≤ Tf2|I . Hence, if f1 is invertible, too, Tf1|I = Tf2|I .

Proof. (a) By (6.1), T (Id)(x) ≤ T (Id)(x)2 for all x ∈ R. Hence, T (Id)(x) ≥ 1
or T (Id)(x) ≤ 0. If there would be x1 ∈ R with T (Id)(x1) ≤ 0, use that by
non-degeneration of T there is g ∈ C1(R), g(x1) = x1 and Tg(x1) > 1. Then,

1 ≤ Tg(x1) = T (g ◦ Id)(x1) ≤ Tg(x1)T (Id)(x1) ≤ 0,

a contradiction. Hence T (Id)(x) ≥ 1 for all x ∈ I. Also, T (− Id)(x) < 0: 1 ≤
T (Id)(x) = T ((− Id)2)(x) ≤ T (− Id)(−x)T (− Id)(x). By assumption, there is x0 ∈
R, with T (− Id)(x0) < 0. If there would be x1 ∈ R with T (− Id)(x1) > 0, by
continuity of the function T (− Id) there would be x2 ∈ R with T (− Id)(x2) = 0,
contradicting 1 ≤ T (− Id)(−x2)T (− Id)(x2). Hence, T (− Id)(x) < 0 for all x ∈ R.
Also 1 ≤ T (− Id)(0)2 yields T (− Id)(0) ≤ −1.

Now let I ⊂ R be an open interval and x1 ∈ I. Let ε > 0 with J = (x1−ε, x1+

ε) ⊂ I, J̃ := J − {x1} = (−ε, ε). Since T is non-degenerate, there is f ∈ C1(R)

with f(0) = 0, Im(f) ⊂ J̃ and Tf(0) > 1. Then

T (−f)(0) ≤ T (− Id)(0)Tf(0) < −1,

and Im(−f) ⊂ J̃ . We transport −f back to J by conjugation with a shift. For
y ∈ R, let Sy := Id+y ∈ C1(R) denote the shift by y. Since for yn → y, Syn → Sy

and S′
yn

→ S′
y converge uniformly on compacta, by the pointwise continuity of T ,

we have that T (Syn
)(x) → T (Sy)(x) for all x ∈ R, i.e., T (Sy)(x) is continuous in

y for every fixed x ∈ R. Since

1 ≤ T (Id)(x1) ≤ T (Sx1
)(0)T (S−x1

)(x1),
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we have T (Sx1)(0) �= 0. Using T (S0)(0) = T (Id)(0) ≥ 1, the continuity of T (Sy)(0)
in y implies that T (Sx1

)(0) > 0. Let g := Sx1
◦ (−f) ◦ S−x1

. Then g(x1) = x1,
Im(g) ⊂ J ⊂ I, and

Tg(x1) ≤ T (Sx1
)(0)T (−f)(0)T (S−x1

)(x1) < −1,

using T (−f)(0) < −1 and 1 ≤ T (Sx1
)(0)T (S−x1

)(x1).

(b) For the constant function c, c ◦ g = c, hence Tc(x) ≤ Tc(g(x))Tg(x) for
all g ∈ C1(R). By non-degeneration of T and (a), there are g1, g2 ∈ C1(R) with
gj(x) = x, Im(gj) ⊂ I (j ∈ {1, 2}), and Tg2(x) < −1, Tg1(x) > 1. Applying the
previous inequality to g = g1, g2, we find Tc(x) = 0.

Now suppose f ∈ C1(R) satisfies f |I = c. Let x ∈ I and g1, g2 be as before.
Since f ◦ gj = c, for any x ∈ I, we have 0 = Tc(x) ≤ Tf(x)Tgj(x), yielding
Tf(x) = 0. Hence Tf |I = 0.

(c) Assume that f ∈ C1(R) satisfies f |I = Id |I . Let x ∈ I and choose g1, g2
as in part (b). Then f ◦ gj = gj (j = 1, 2) and

Tgj(x) = T (f ◦ gj)(x) ≤ Tf(x)Tgj(x).

This inequality for g1 yields Tf(x) ≥ 1, the one for g2 that

|Tg2(x)| ≥ Tf(x)|Tg2(x)|, T f(x) ≤ 1.

Hence, Tf(x) = 1, Tf |I = 1.

(d) Assume that f1|I = f2|I and that f2 is invertible. Let g := f−1
2 ◦f1. Then

g ∈ C1(R) with f1 = f2 ◦g and g|I = Id |I . By (c), Tg|I = 1. Hence, for any x ∈ I,
we have g(x) = x and

Tf1(x) = T (f2 ◦ g)(x) ≤ Tf2(x)Tg(x) = Tf2(x).

Therefore, Tf1|I ≤ Tf2|I . �
Proof of Proposition 6.6. (i) Let C := {f ∈ C1(R) | f is invertible and f ′(x) �= 0
for all x ∈ R}. For any open interval I ⊂ R and f1, f2 ∈ C with f1|I = f2|I we have
by Lemma 6.7(d) that Tf1|I = Tf2|I , i.e., localization on intervals. Replacing a
function f ∈ C1(R) by its tangent line approximation on the right side of a point
x, and f on the left side of x is an operation inside C. Therefore, the method of
the proof of Proposition 3.3 yields that there is a function F : R2× (R�{0}) → R

such that for all f ∈ C and all x ∈ R,

Tf(x) = F
(
x, f(x), f ′(x)

)
.

(ii) We now consider functions f ∈ C1(R) which are not invertible. Suppose
I := (y0, y1) is an interval where f is strictly increasing with f ′(x) > 0, x ∈ I
and f ′(y0) = f ′(y1) = 0 (or y0 = −∞, f ′(y1) = 0 or f ′(y0) = 0, y1 = ∞, with

6.3. Localization and Proof of Theorem 6.1
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obvious modifications in the following). For ε > 0 sufficiently small, f ′(y0+ ε) > 0,

f ′(y1 − ε) > 0 for all 0 < ε ≤ ε0. Define f̃ ∈ C1(R) by

f̃(x) :=

⎧⎪⎪⎨⎪⎪⎩
f(y0), x ≤ y0,

f(x), x ∈ I,

f(y1), x ≥ y1.

Then f̃ ′(y0) = f̃ ′(y1) = 0 and f̃ is the limit of functions f̃ε ∈ C in the sense that

f̃ε → f̃ and f̃ ′
ε → f̃ ′ converge uniformly on compacta. One may choose

f̃ε(x) :=

⎧⎪⎪⎨⎪⎪⎩
f(y0 + ε) + f ′(y0 + ε)

(
x− (y0 + ε)

)
, x ≤ y0 + ε,

f(x), x ∈ (y0 + ε, y1 − ε),

f(y1 − ε) + f ′(y1 − ε)
(
x− (y1 − ε)

)
, x ≥ y1 − ε.

Note that f̃ε ∈ C for any 0 < ε ≤ ε0 since f̃ε is invertible with f̃ ′
ε(x) > 0 for all

x ∈ R. By (i) for any x ∈ Iε := (y0 + ε, y1 − ε)

T f̃ε(x) = F
(
x, f̃ε(x), f̃

′
ε(x)

)
= F

(
x, f(x), f ′(x)

)
.

Since T is pointwise continuous, for any x ∈ (y0, y1)

T f̃(x) = lim
ε→0

T f̃ε(x) = F
(
x, f(x), f ′(x)

)
.

By definition of f̃ε, f |Iε = f̃ε|Iε . Since f̃ε ∈ C, we have by Lemma 6.7(d) that

Tf(x) ≤ T f̃ε(x) = F (x, f(x), f ′(x)) for any x ∈ Iε. For ε → 0 this shows that

Tf(x) ≤ T f̃(x) = F
(
x, f(x), f ′(x)

)
, x ∈ (y0, y1).

(iii) We now show the converse inequality T f̃(x) ≤ Tf(x) for x ∈ (y0, y1).

We may write f̃ = f ◦ g where

g(x) =

⎧⎪⎪⎨⎪⎪⎩
y0, x ≤ y0,

x, x ∈ (y0, y1),

y1, x ≥ y1.

If g were in C1(R), g|(y0,y1) = Id, Tg|(y0,y1) = 1 so that

T f̃(x) ≤ Tf(x)Tg(x) = Tf(x),

which would prove the claim. However, g �∈ C1(R). Therefore, we approximate g
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by smooth functions gε ∈ C1(R). Let

gε(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y0 +
ε
2 , x < y0,

y0 +
ε2+(x−y0)

2

2ε , y0 ≤ x ≤ y0 + ε,

x, y0 + ε ≤ x ≤ y1 − ε,

y1 − ε2+(x−y1)
2

2ε , y1 − ε ≤ x ≤ y1,

y1 − ε
2 , x ≥ y1.

Then gε(y1) = y1 − ε
2 , g

′
ε(y1) = 0, gε(y1 − ε) = y1 − ε, g′ε(y1 − ε) = 1, and similar

equations hold for y0 and y0 + ε so that gε ∈ C1(R) for any ε > 0. Note that

f ◦ gε → f̃ , (f ◦ gε)′ → f̃ ′ uniformly on compacta, with f ◦ gε, f̃ ∈ C1(R): Namely,
we have g′ε = 1 in (y0 + ε, y1 − ε) and 0 ≤ g′ε ≤ 1 in (y1 − ε, y1), g

′
ε = 0 in (y1,∞).

Since gε|Iε = Id |Iε , we have Tgε|Iε = 1 by Lemma 6.7(c). Thus by (6.1) for all
x ∈ Iε

T (f ◦ gε)(x) ≤ Tf(gε(x))Tgε(x) = Tf(x).

Now the pointwise continuity of T implies for all x ∈ (y0, y1)

T f̃(x) = lim
ε→0

T (f ◦ gε)(x) ≤ Tf(x).

Together with part (ii), we get

T f̃(x) = Tf(x) = F
(
x, f(x), f ′(x)

)
, x ∈ (y0, y1).

(iv) We now know that (6.4) holds for all f ∈ C1(R) and all open intervals
(y0, y1) of strict monotonicity of f . On intervals J where f is constant, Tf |J = 0
by Lemma 6.7(b), and F (x, y, 0) = 0 is a result of continuity arguments like

limε→0 T f̃ε(x) = T f̃(x) for boundary points of J together with Tf |J = 0. Equation
(6.4) then means 0 = 0. Equation (6.4) similarly extends to limit points of intervals
of monotonicity of f or to limit points of intervals of constancy of f . Hence (6.4)
holds for all f ∈ C1(R) and all x ∈ I. �

Proof of Theorem 6.1. (a) By Proposition 6.6 there is F : R3 → R such that for
all f ∈ C1(R), x ∈ R,

Tf(x) = F
(
x, f(x), f ′(x)

)
.

The chain rule inequality is equivalent to the functional inequality for F ,

F (x, z, αβ) ≤ F (y, z, α)F (x, y, β) (6.5)

for all x, y, z, α, β ∈ R. Just choose f, g ∈ C1(R) with g(x) = y, f(y) = z, g′(x) =
β, f ′(y) = α. The equations Tc = 0, T (Id) = 1 imply that

F (x, y, 0) = 0, F (x, x, 1) = 1. (6.6)

6.3. Localization and Proof of Theorem 6.1
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Note that F (x, y, 1) = T (Sy−x)(x) where Sy−x = Id+(y−x) is the shift by y−x.
Since T (Sy−x)(x) depends continuously on y − x, cf. the proof of (a) of Lemma
6.7, and since by (6.5) and (6.6)

1 = F (x, x, 1) ≤ F (y, x, 1)F (x, y, 1),

we first get that F (x, y, 1) �= 0 and then F (x, y, 1) > 0 for all x, y ∈ R. We showed
in the proof of (a) of Lemma 6.7 that T (− Id)(0) ≤ −1. Hence, F (0, 0,−1) =
T (− Id)(0) ≤ −1 and for any x ∈ R

F (x, x,−1) ≤ F (0, x, 1)F (0, 0,−1)F (x, 0, 1) ≤ −1

using 1 = F (0, 0, 1) ≤ F (0, x, 1)F (x, 0, 1).

(b) Fix x0 ∈ R and put K(α) := F (x0, x0, α) for α ∈ R. By (6.5) for x =
y = z = x0, K is submultiplicative on R with K(−1) < 0 < K(1). Further K
is continuous as implied by the pointwise continuity of T : Assume αn → α in R.
Consider fn(x) := αn(x−x0)+x0, f(x) := α(x−x0)+x0. Then fn(x0) = f(x0) =
x0 and f ′

n(x) = αn → α = f ′(x). Hence, fn → f , f ′
n → f ′ converge uniformly on

compacta and therefore Tfn(x0) → Tf(x0), which means

K(αn) = F (x0, x0, αn) = Tfn(x0) → Tf(x0) = F (x0, x0, α) = K(α).

Theorem 6.2 yields that there are p(x0) > 0 and A(x0) = |F (x0, x0,−1)| ≥ 1 such
that

K(α) =

{
αp(x0), α ≥ 0,

−A(x0)|α|p(x0), α < 0.
(6.7)

For any x, y, z ∈ R by (6.5)

F (x, x, α) ≤ F (z, x, 1)F (z, z, α)F (x, z, 1) = d(x, z)F (z, z, α),

where d(x, z) := F (z, x, 1)F (x, z, 1) ≥ 1 is a number independent of α. Fixing x, z
with x �= z, we have for all α > 0 that αp(x)−p(z) ≤ d(x, z). If p(x) �= p(z), we
would get a contradiction for either α → 0 or for α → ∞. Hence, the exponent
p := p(x) is independent of x ∈ R.

(c) We next analyze the form of F (x, z, α) for x �= z. Let x, z ∈ R, x �= z. By
(6.5) and (6.7) for all α > 0, β ∈ R,

F (x, z, αβ) ≤ F (x, z, β)F (x, x, α) = αpF (x, z, β)

and

F (x, z, β) ≤ F (x, z, αβ)F

(
x, x,

1

α

)
=

1

αp
F (x, z, αβ).

Therefore,
F (x, z, αβ) ≤ αpF (x, z, β) ≤ F (x, z, αβ),
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and we have equality F (x, z, αβ) = αpF (x, z, β). Putting here β = 1 and β = −1,
we find that

F (x, z, α) =

{
F (x, z, 1)αp, α ≥ 0,

F (x, z,−1)|α|p, α < 0.
(6.8)

We know that F (x, z, 1) > 0. On the other hand,

F (x, z,−1) ≤ F (0, z, 1)F (0, 0,−1)F (x, 0, 1) < 0.

Let c±(x, z) := F (x, z,±1) and a(x, z) := |c−(x, z)|/c+(x, z). Since
c−(x, z) = F (x, z,−1) ≤ F (x, z, 1)F (x, x,−1) ≤ −F (x, z, 1) = −c+(x, z),

we have a(x, z) ≥ 1 for all x, z ∈ R. Choose α, β ∈ {+1,−1} in (6.5) to find that

c+(x, z) ≤ c+(y, z)c+(x, y),

c−(x, z) ≤ c−(y, z)c+(x, y) and

c−(x, z) ≤ c+(y, z)c−(x, y).

Using these inequalities and c−(x, z) < 0, we get

c+(x, z)max
(
a(y, z), a(x, y)

) ≤ c+(y, z)c+(x, y)max
(
a(y, z), a(x, y)

)
= max

(|c−(y, z)|c+(x, y), c+(y, z)|c−(x, y)|)
≤ |c−(x, z)| = c+(x, z)a(x, z). (6.9)

Since c+(x, z) > 0, this implies for all x, y, z ∈ R that max(a(y, z), a(x, y)) ≤
a(x, z), which yields a(x, y) ≤ a(x, 0) ≤ a(0, 0) and a(0, 0) ≤ a(x, 0) ≤ a(x, y).
Therefore, a is constant, a(x, y) = a(0, 0) for all x, y ∈ R. Let A := a(0, 0).
Then A ≥ 1 and c−(x, z) = −Ac+(x, z). Since we now have equalities every-
where in (6.9), we conclude c+(x, z) = c+(y, z)c+(x, y). For y = 0, c+(x, z) =
c+(0, z)c+(x, 0), 1 = c+(x, x) = c+(0, x)c+(x, 0). Put H(x) := c+(0, x). Then

H > 0 and c+(x, z) =
H(z)
H(x) . Hence, by (6.8),

F (x, z, α) =

{H(z)
H(x)α

p, α ≥ 0,

−AH(z)
H(x) |α|p, α < 0.

Note that H(z) = F (0, z, 1) = T (Sz)(0) depends continuously on z. Finally, using
(6.4), we have

Tf(x) =

{
H◦f(x)
H(x) f ′(x)p f ′(x) ≥ 0

−AH◦f(x)
H(x) |f ′(x)|p f ′(x) < 0

}
; f ∈ C1(R), x ∈ R.

This ends the proof of Theorem 6.1. �
The proof of Theorem 6.3 is similar to the one of Theorem 6.1.

6.3. Localization and Proof of Theorem 6.1
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6.4 Rigidity of the chain rule

In Theorem 5.8 we showed that the chain rule is rigid: the perturbed chain rule
equation

T (f ◦ g)(x)− Tf ◦ g(x) · Tg(x) = B
(
x, f ◦ g(x), g(x)) (6.10)

under weak conditions implies that B ≡ 0 and that (6.10) has the same solutions
as the unperturbed chain rule. We now consider an extension of (6.10) and study
the more general inequality∣∣T (f ◦ g)(x)− Tf ◦ g(x) · Tg(x)∣∣ ≤ B

(
x, f ◦ g(x), g(x)). (6.11)

Theorem 5.8 required no continuity assumption on T . Since (6.11) allows more
freedom than (6.10), we need a stronger condition of non-degeneration of T to
solve (6.11). We also assume that T is pointwise continuous.

Definition. An operator T : C1(R) → C(R) is strongly non-degenerate provided
that, for all open intervals I ⊂ R, all x ∈ I and all t > 0, there are functions
f1, f2 ∈ C1(R) with f1(x) = f2(x) = x, Im(f1) ⊂ I, Im(f2) ⊂ I, and Tf1(x) > t,
Tf2(x) < −t.

Note that the model chain rule equality has derivative-type solutions, and
then these assumptions are clearly satisfied.

We then have the following rigidity result for the chain rule.

Theorem 6.8 (Strong rigidity of the chain rule). Assume that T : C1(R) → C(R)
is strongly non-degenerate and pointwise continuous. Suppose there is a function
B : R3 → R such that T satisfies∣∣T (f ◦ g)(x)− Tf ◦ g(x) · Tg(x)∣∣ ≤ B

(
x, f ◦ g(x), g(x)). (6.11)

for all f, g∈C1(R), x∈R. Assume also that there is x0∈R such that T (− Id)(x0)<
0. Then (6.11) has the same solutions as the unperturbed chain rule, i.e., B can
be chosen to be zero: There is p > 0 and a function H ∈ C(R), H > 0, such that

Tf(x) =
H ◦ f(x)
H(x)

|f ′(x)|p sgn f ′(x), f ∈ C1(R), x ∈ R.

The proof of this theorem relies on the follow localization result.

Proposition 6.9. Under the assumptions of Theorem 6.8, there is a function F :
R3 → R such that, for all f ∈ C1(R) and all x ∈ R,

Tf(x) = F
(
x, f(x), f ′(x)

)
.

Proof. Using Proposition 3.3, it suffices to show that for any open interval I ⊂ R

and f1, f2 ∈ C1(R) with f1|I = f2|I we have Tf1|I = Tf2|I . Let x ∈ I. Since T
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is strongly non-degenerate, we may choose functions gn ∈ C1(R) with gn(x) = x,
Im(gn) ⊂ I and limn→∞ Tgn(x) = ∞. Then by (6.11)

−B
(
x, f1(x), x

) ≤ T (f1 ◦ gn)(x)− Tf1(x) · Tgn(x) ≤ B
(
x, f1(x), x

)
.

Since limn→∞
B(x,f1(x),x)

Tgn(x)
= 0, we get by dividing the previous inequalities by

Tgn(x) that

Tf1(x) = lim
n→∞

T (f1 ◦ gn)(x)
Tgn(x)

,

where the limit exists. Note that f1 ◦ gn = f2 ◦ gn since f1|I = f2|I . Therefore,
Tf1(x) = Tf2(x) and consequently Tf1|I = Tf2|I . �

Using Proposition 6.9, the operator chain rule inequality (6.11) for T is equiv-
alent to the functional inequality for F :∣∣F (x, z, αβ)− F (y, z, α)F (x, y, β)

∣∣ ≤ B(x, z, y), (6.12)

for all x, y, z, α, β ∈ R. For x = y = z and φx := F (x, x, · ), dx := B(x, x, x), this
means ∣∣φx(αβ)− φx(α)φx(β)

∣∣ ≤ dx. (6.13)

Since T is strongly non-degenerate, limα∈R φx(α) = ∞, limα∈R
φx(α) = −∞. Ac-

tually, we can show that limα→∞ φx(α) = ∞, limα→−∞ φx(α) = −∞, cf. [KM10].
The pointwise continuity of T implies that φx : R → R is continuous. These facts
suffice to show that the nearly multiplicative function φx is actually multiplicative:

Proposition 6.10. Suppose that φ : R → R is continuous with limα→∞ φx(α) = ∞
and limα→−∞ φx(α) = −∞. Assume also that there is d ∈ R such that for all
α, β ∈ R ∣∣φ(αβ)− φ(α)φ(β)

∣∣ ≤ d. (6.14)

Then φ is multiplicative, i.e., d may be chosen zero, and there is p > 0 such that

φ(α) = |α|p sgnα.

Proof. Choose βn ∈ R such that 0 < φ(βn) → ∞. Then by (6.14)∣∣∣∣φ(αβn)

φ(βn)
− φ(α)

∣∣∣∣ ≤ d

φ(βn)
→ 0,

and hence φ(α) = limn→∞
φ(αβn)
φ(βn)

, where the limit exists for all α ∈ R. In partic-

ular, φ(0) = 0, φ(1) = 1. We conclude that for any α, γ ∈ R

φ(α)φ(γ) = lim
n→∞

φ(αβn)

φ(βn)

φ(γβn)

φ(βn)
.
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Now φ(αβn)φ(γ βn) ≤ φ(αγ β2
n) + d and φ(βn)φ(βn) ≥ φ(β2

n)− d. Hence

φ(α)φ(γ) ≤ lim
n→∞

φ(αγβ2
n) + d

φ(β2
n)− d

= lim
n→∞

φ(αγβ2
n)

φ(β2
n)

= φ(αγ),

since φ(β2
n) → ∞, too, in view of |φ(βn)

2−φ(β2
n)| ≤ d. Similarly φ(αγ) ≥ φ(α)φ(γ).

Therefore φ is multiplicative and continuous, with negative values for α → −∞.
Proposition 2.3 implies that there is p > 0 such that φ(α) = |α|p sgnα. �
Proof of Theorem 6.8. By Proposition 6.9, Tf(x) = F (x, f(x), f ′(x)), where F
satisfies (6.12). We analyze the form of F . By Proposition 6.10 and (6.13), there
is p(x) > 0 such that F (x, x, α) = φx(α) = αp(x) for any α > 0. For x �= z, by
choosing successively y = x and y = z in (6.12), we find∣∣F (x, z, αβ)− F (x, z, α)βp(x)

∣∣ ≤ B(x, z, x), β > 0, α ∈ R,

and ∣∣F (x, z, αβ)− αp(z)F (x, z, β)
∣∣ ≤ B(x, z, z), α > 0, β ∈ R.

Exchange α and β in the first inequality. Then the triangle inequality yields
|αp(x) − αp(z)||F (x, z, β)| ≤ B(x, z, x) + B(x, z, z) for any α > 0, β ∈ R. This
obviously implies p(x) = p(z) for β = 1, α → ∞, since F (x, z, 1) �= 0, which is an
easy consequence of (6.12). Thus for any x, α ∈ R

F (x, x, α) = |α|p sgnα

with p := p(x) = p(z) > 0. Since B(x,z,x)
βp → 0 for β → ∞, we also conclude for all

α ∈ R

F (x, z, α) = lim
β→∞

F (x, z, αβ)

βp
. (6.15)

For any α > 0, αβ → ∞ if β → ∞, and therefore

F (x, z, α) = lim
β→∞

F (x, z, αβ)

βp
= αp lim

αβ→∞
F (x, z, αβ)

(αβ)p
= αpF (x, z, 1)

for any x, z ∈ R. For α < 0 we have

F (x, z, α) = lim
β→∞

F (x, z, αβ)

βp
= |α|p lim

|α|β→∞
F (x, z,−|α|β)

|α|pβp
= |α|pF (x, z,−1).

Dividing (6.12) by (αβ)p for α, β > 0, we get∣∣∣∣F (x, z, αβ)

αpβp
− F (y, z, α)

αp

F (x, y, β)

βp

∣∣∣∣ ≤ B(x, z, y)

αpβp
.

By (6.15), this implies F (x, z, 1) = F (y, z, 1)F (x, y, 1) for all x, y, z ∈ R. For
α → ±∞, β → ∓∞, a similar argument yields that for all x, y, z ∈ R, F (x, z,−1) =
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F (y, z, 1)F (x, y,−1) = F (y, z,−1)F (x, y, 1). Since F (x, x, 1) = φx(1) = 1p = 1 for
all x ∈ R, 1 = F (y, x, 1)F (x, y, 1) for all x, y ∈ R. Let H(y) := F (0, y, 1). Then
F (y, 0, 1) = 1

H(y) and

F (x, z, 1) = F (0, z, 1)F (x, 0, 1) =
H(z)

H(y)
,

F (x, z,−1) = F (z, z,−1)F (x, z, 1) = −F (x, z, 1) = −H(z)

H(y)
,

using that F (z, z,−1) = φz(−1) = −1. We conclude that

F (x, z, α) =
H(z)

H(x)
|α|p sgnα, x, z, α ∈ R.

Note that H(y) = F (0, y, 1) = T (Sy)(0) depends continuously on y, where Sy

denotes as before the shift by y. Using Proposition 6.9, we get

Tf(x) = F
(
x, f(x), f ′(x)

)
=

H ◦ f(x)
H(x)

|f ′(x)|p sgn f ′(x),

for any f ∈ C1(R), x ∈ R. This solves the chain rule operator equation, so that B
in (6.11) can be chosen to be zero, and proves Theorem 6.8. �

We now turn to a further extension of the chain rule, the one-sided perturbed
chain rule inequality. Let B : R3 → R be a function and T : C1(R) → C(R) be an
operator satisfying

T (f ◦ g)(x)− Tf ◦ g(x) · Tg(x) ≤ B
(
x, f ◦ g(x), g(x)), (6.16)

for all f ∈ C1(R), x ∈ R. This is more general than the two-sided inequality
considered in Theorem 6.8, and also more general than the one-sided chain rule
inequality considered in Theorem 6.1.

In the results proved so far, the operator T was localized. The operator
inequality (6.16), however, is too general that localization could always be shown,
even under strong non-degeneration and continuity assumptions on T . We provide
an example.

Example. Let H∈C(R) be a non-constant function with 4≤H≤5. For f∈C1(R),
x∈R, with f ′(x)∈(−1, 0), let If,x denote the interval If,x :=[x+f ′(x)(1+f ′(x)), x].
Then 0 < |If,x| ≤ 1/4. Let Jf(x) := 1

|If,x|
∫
If,x

f(y)dy denote the average of f in

If,x. Define an operator T : C1(R) → C(R) by putting, for any f ∈ C1(R), x ∈ R,

Tf(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H◦f(x)
H(x) f ′(x), f ′(x) ≥ 0,

H◦f(x)
H(x) 4f ′(x), f ′(x) ≤ −2,

H◦f(x)
H(x)

(
7 + 15

2 f ′(x)
)
, −2 < f ′(x) ≤ −1,

H◦Jf(x)
H(x)

1
2f

′(x), −1 < f ′(x) < 0.
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Then T satisfies, for all f, g ∈ C1(R), x ∈ R,

T (f ◦ g)(x)− Tf ◦ g(x) · Tg(x) ≤ 5. (6.17)

Obviously T is not localized since it depends on the integral average Jf if f ′(x) ∈
(−1, 0). Note here that for f ′(x) ≥ 0 or f ′(x) ≤ −2, Tf(x) has the form given
in Theorem 6.1 for B = 0, with p = 1, A = 4. For −2 < α = f ′(x) < 0 there
is a continuous perturbation of the line 4α by 1

2α if α ∈ (−1, 0) and by 7 + 15
2 α

if α ∈ (−2,−1]. Note that Tf is continuous for all f ∈ C1(R): if xn ∈ R are
such that f ′(xn) ∈ (−1, 0) and xn → x with f ′(xn) → −1 or f ′(xn) → 0, then
Jf(xn) → f(x) since |If,xn

| → 0.

To prove (6.17), use 4
5 ≤ H(z)

H(y) ≤ 5
4 for all y, z ∈ R, and distinguish the

following cases: (1) α, β ≥ 0; (2) α, β ≤ −2; (3) α, β ∈ (−2, 0); (4) α ≤ −2, β ∈
(−2,−1]; (5) α ≤ −2, β ∈ (−1, 0); (6) α > 0, αβ ≤ −2; (7) α > 0, αβ ∈ (−2,−1];
(8) α > 0, αβ ∈ (−1, 0). The estimates to show (6.17) are easy in each case but a
bit tedious. They can be found in detail in [KM10]. �

Assuming localization in addition to (6.16), i.e., that there is a function
F : R3 → R such that for all f ∈ C1(R), x ∈ R,

Tf(x) = F
(
x, f(x), f ′(x)

)
holds, the operator inequality (6.16) is equivalent to the functional inequality

F (x, z, αβ) ≤ F (y, z, α)F (x, z, β) +B(x, z, y) (6.18)

for all x, y, z, α, β ∈ R. Similar to the two-sided case in (6.12), the most important
special case to solve is the one of x = y = z which means

φx(αβ) ≤ φx(α)φx(β) + dx,

where φx := F (x, x, · ) and dx := B(x, x, x). We have the following result on these
nearly submultiplicative functions.

Theorem 6.11. Let φ : R → R be continuous with limα→∞ φ(α) = ∞. Suppose
that there is α0 < 0 with φ(α0) < 0 and that there is d ∈ R such that we have for
all α, β ∈ R

φ(αβ) ≤ φ(α)φ(β) + d.

Then d ≥ 0 and there are p > 0 and A ≥ 1 such that for all α > 0

φ(α) = αp , −Aαp ≤ φ(−α) ≤ min
(− 1

Aαp,−Aαp + d
)
.

Moreover, the limit limα→∞
φ(−α)
−αp exists and A = limα→∞

φ(−α)
−αp .
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Remarks. For d �= 0, φ|R<0 is not of power type, but is close to the power-type
function −A|α|p for large |α|, α < 0. Interestingly enough, φ|R≥0

is of power type
αp. For p = 1, A = 2, the function

φ(α) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α, α ≥ 0,
1
2α, α ∈ [−1, 0),

3 + 7
2α, α ∈ [−2,−1),

2α, α < −2

provides an explicit example satisfying the assumptions of Theorem 6.11 with
d = 3

2 , φ(αβ) ≤ φ(α)φ(β) + 3
2 , which is not of power type on R<0.

The proof of Theorem 6.11 is an asymptotic modification of the one of Theo-
rem 6.2 for submultiplicative functions when d = 0. We only provide the essential
steps of the proof, which are:

(a) Show limα→∞ φ(α) = ∞, limα→−∞ φ(α) = −∞.

(b) Choose b > 1 close to 1. Let φ1 := bφ, φ2 := 1
bφ. Then for large γ0 = γ0(b),

φ1(αβ) ≤ φ1(α)φ1(β) if αβ ≥ γ0 and φ2(αβ) ≤ φ2(α)φ2(β) if αβ ≤ −γ0:
φ1 and φ2 are submultiplicative for large αβ in the positive, respectively
negative range.

(c) Define f(t) := lnφ1(exp(t)), g(t) := ln |φ2(− exp(t))| for t ∈ R. Then, for
t0 := ln γ0,

0 ≤ p := inf
t≥t0

f(t)

t
= lim

t→∞
f(t)

t
< ∞, f(t) = pt+ a(t).

(d) For t, s ∈ R with t+ s ≥ t0,

g(t+ s) ≥ g(t) + f(s)− 2 ln b.

Using 0 ≤ f(t) + f(−t) for all t ∈ R, show that∣∣g(t)− [c+ pt+ a(t− t0)]
∣∣ ≤ 2 ln b,

for all t ≥ t0, where c := g(t0) − pt0, and a satisfies limt→∞
a(t)
t = 0 with

a(t) ≥ 0 for t ≥ t0.

(e) Improve the bound for a to a(t) ≤ 6 ln b for all t ≥ t1, for a suitable t1 ≥ t0.
Then φ1(α) = αp exp(a(lnα)), α > 0 is asymptotically αp for large α, if b is
close to 1 and thus ln b is close to 0. Further φ2(α) � −A|α|p exp(a(ln∣∣ α

α1

∣∣)),
α1 := exp(t1), for large negative α.

(f) Use φ = 1
bφ1 = bφ2, take the limit as b → 1 and prove that φ(α) = αp for

α > 0 and limα→−∞
φ(α)
−|α|p = A.
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We do not give the details here, but refer to [KM10].

Using Theorem 6.11, we may prove the following result on the one-sided
perturbed chain rule inequality, assuming localization which cannot be guaranteed
otherwise, as shown by the previous example.

Theorem 6.12. Assume that T : C1(R) → C(R) is strongly non-degenerate, point-
wise continuous, and that there is x0 ∈ R with T (− Id)(x0) < 0. Suppose that there
is a function B : R3 → R such that the perturbed chain rule inequality

T (f ◦ g)(x) ≤ Tf ◦ g(x) · Tg(x) +B
(
x, f ◦ g(x), g(x))

holds for all f, g ∈ C1(R), x ∈ R. Assume also that there is F : R3 → R, so that

Tf(x) = F
(
x, f(x), f ′(x)

)
, f ∈ C1(R), x ∈ R.

Then there are p > 0, A ≥ 1, H ∈ C(R), H > 0 and a function K : R2 × R<0 →
R<0 which is continuous in the second and the third variable satisfying

−Aαp ≤ K(x, z,−α)

≤ min

(
− 1

A
αp,−Aαp +

H(x)

H(z)
min

[
B(x, z, x), B(x, z, z)

])
for all x, z ∈ R, α > 0, and for which A = limβ→∞

K(x,z,−β)
−βp exists for all x, z ∈ R,

the limit A being independent of x and z, such that for all f ∈ C1(R) and x ∈ R

Tf(x) =

{
H◦f(x)
H(x) f ′(x)p, f ′(x) ≥ 0,

H◦f(x)
H(x) K

(
x, f(x), f ′(x)

)
, f ′(x) < 0.

The property of K means that for negative values of f ′(x), Tf(x) is reason-
ably close to −AH◦f(x)

H(x) |f ′(x)|p, deviating from this value by at most

min[B(x, f(x), x), B(x, f(x), f(x))],

i.e., deviating by at most this amount from the solution in Theorem 6.1 for B = 0.

For the proof of Theorem 6.12 we refer to [KM10]. Theorem 6.11 has an ana-
logue for nearly supermultiplicative functions φ(αβ) ≥ φ(α)φ(β)−d and Theorem
6.12 has an analogue for the perturbed supermultiplicative operator inequality

T (f ◦ g)(x) ≥ Tf ◦ g(x) · Tg(x)−B
(
x, f ◦ g(x), g(x)).

6.5 Notes and References

The result on the chain rule inequality, Theorem 6.1 and Proposition 6.6 on the lo-
calization of the operator T were shown by König and Milman in [KM9]. Theorem
6.2 on submultiplicative functions on R is also found in [KM9].
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The proof of Lemma 6.5 on subadditive functions on R follows Hille, Phillips,
[HP, Chap.VII]. If additionally in this lemma f is continuous at 0 and f(0) = 0
holds, f is continuous at any t ∈ R, cf. also Hille, Phillips, [HP]. A simpler variant
of Lemma 6.5 for sequences goes back to Fekete [Fe], p. 233, cf. also Pólya, Szegö
[PS], Problem 98.

The rigidity result Theorem 6.8 for the is taken from [KM10]. Theorems 6.11
and 6.12 as well as the example before Theorem 6.11 are shown in [KM10], too.

Submultiplicative maps may not only be considered on the real line as in
Theorem 6.2, but also on function spaces like Ck(I). But, as in the case of multi-
plicative operators, cf. [M], [MS], [AAFM] or [AFM], one assumes that the mapping
is bijective. Let us call T : Ck(I) → Ck(I) Ck-pointwise continuous provided that

for all sequences fn ∈ Ck(I) and all f ∈ Ck(I) with f
(j)
n → f (j) converging uni-

formly on compact subsets of I for all j ∈ {0, . . . , k} we have that Tfn(x) → Tf(x)
converges for all x ∈ I. Then the following result holds for submultiplicative op-
erators, cf. Faifman, König and Milman [FKM]:

Proposition 6.13. Let I ⊂ R be open and k ∈ N0. Suppose that T : Ck(I) → Ck(I)
is bijective, Ck-pointwise continuous and submultiplicative, i.e.,

T (f · g)(x) ≤ Tf(x) · Tg(x), f, g ∈ Ck(I), x ∈ I. (6.19)

Assume also that T (−11) < 0 and that Tf ≥ 0 holds if and only if f ≥ 0 for all
f ∈ Ck(I). Then there exist a homeomorphism u : I → I and two continuous
functions p,A ∈ C(I) with A ≥ 1, p > 0 such that

(Tf)(u(x)) =

{
f(x)p(x), f(x) ≥ 0,

−A(x) |f(x)|p(x), f(x) < 0.

Conversely, T defined this way satisfies (6.19).
For k ∈ N, we have that A = p = 1 and that u is a Ck-diffeomorphism, so

that
Tf(u(x)) = f(x).

Thus, for k ∈ N, the operator is even multiplicative and linear.

We indicate some steps of the proof.

Step 1. For x ∈ I, an approximate indicator at x is a function f ∈ Ck(I)
with f ≥ 0 such that there are open neighborhoods x ∈ J1 ⊂ J2 of x with
f |J1 = 11 and f |I\J2

= 0. Let AIx denote the set of all approximate indicators at
x. Define a set-valued map from I to the subsets of I by u(x) :=

⋂
f∈AIx

supp(Tf),
where supp(Tf) denotes the support of Tf . One shows that u(x) is either empty
or consists of only one point and that for f ∈ AIx, Tf |u(x) = 1. Also for any

f ∈ Ck(I) and x ∈ I, sgnTf |u(x) = sgn f(x). Here the fact that f ≥ 0 implies
Tf ≥ 0 is used.
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Step 2. Let G denote the set of all x ∈ I for which there is an approximate
indicator f ∈ AIx with compact support. Then obviously, u(x) is not empty and
hence consists of one point, and u : G → u(G) ⊂ I can be considered as a point
map. Using among other things that Tf ≥ 0 implies f ≥ 0, one proves that u(G)
and G are dense in I and that u : G → u(G) ⊂ I is continuous and injective.

Step 3. One shows that for any open subset J ⊂ I and any f1, f2 ∈ Ck(I)
with f1|J = f2|J we have that Tf1|u(J) = Tf2|u(J), after proving for any h ∈ Ck(I)
that h|J = 11 implies Th|u(J) = 11 and that h|J = −11 implies Th|u(J) = T (−11)|u(J).
This yields the localization of T on G: There is F such that

Tf(u(x)) = F (x, f(x), . . . , f (k)(x))

for any f ∈ Ck(I) and x ∈ G. Moreover, sgnF (x, α0, . . . , αk) = sgnα0.

Step 4. The operator inequality for T translates into a functional inequality
for F . One proves that F does not depend on the variables (α1, . . . , αk). Theorem
6.2 then yields that for any f ∈ Ck(I) and all x ∈ G

(Tf)(u(x)) =

{
f(x)p(x), f(x) ≥ 0,

−A(x) |f(x)|p(x), f(x) < 0,

where A ≥ 1 and p ≥ 0 are continuous functions on G. The functions and operators
are then extended by continuity to all of I, with u : I → I being a homeomorphism.
For k ∈ N, considering the inverse operator expressed with powers 1

p(x) , shows that

A = p = 1 and that u is a Ck-diffeomorphism. �
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