
Chapter 4

The Chain Rule

4.1 The chain rule on Ck(R)

The derivative D : C1(R) → C(R) satisfies the chain rule

D(f ◦ g) = (Df) ◦ g ·Dg

for all f, g ∈ C1(R). In this chapter, we study the question to which extent the
chain rule formula characterizes the derivative. We consider general operators
T : C1(R) → C(R) satisfying the chain rule operator equation

T (f ◦ g) = (Tf) ◦ g · Tg, f, g ∈ C1(R).

Due to the multiplicative structure of this equation, if T1 and T2 are operators
satisfying the chain rule, so does the pointwise product T1 · T2, and also do the
positive powers of the pointwise modulus |T1|. Suppose H ∈ C(R) is a strictly
positive continuous function. Then Tf := H ◦ f/H defines a map satisfying the
chain rule as well. It is even defined on C(R), not only on C1(R). Another example
of a map T : C1(R) → C(R) verifying the chain rule is given by

Tf :=

{
f ′, f ∈ C1(R) is bijective,

0, f ∈ C1(R) is not bijective.

To avoid degenerate cases like this one, we impose the condition that T should
not be identically zero on the half-bounded differentiable functions

C1
b (R) :=

{
f ∈ C1(R) | f is bounded from above or from below

}
,

i.e., that there exist f ∈ C1
b (R) and x ∈ R such that Tf(x) �= 0. For integers

k ∈ N, we also let Ck
b (R) := Ck(R) ∩ C1

b (R).
Our main result states that a multiplicative combination of the previous

examples, together with a possible factor sgn f ′, creates all possible solutions of
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the chain rule equation not only on C1(R) but also on Ck(R) for any k ∈ N. Again,
all solutions operators are local, i.e., pointwise defined.

Theorem 4.1 (Chain rule). Let k ∈ N∪{∞} and T : Ck(R) → C(R) be an operator
satisfying the chain rule equation

T (f ◦ g) = (Tf) ◦ g · Tg, f, g ∈ Ck(R). (4.1)

Assume that T |Ck
b (R)

�≡ 0. Then there exist p ≥ 0 and a positive continuous func-

tion H ∈ C(R), H > 0, such that either

Tf =
H ◦ f
H

|f ′|p (4.2)

or

Tf =
H ◦ f
H

|f ′|p sgn f ′. (4.3)

In the second case we need p > 0 to guarantee that the image of T consists of
continuous functions.

If k = 0 and T : C(R) → C(R) satisfies (4.1), all solutions of T are given by
Tf = H◦f

H .
Conversely, the operators given by (4.2) or (4.3) satisfy the chain rule equa-

tion (4.1).
Under the additional initial condition T (2 Id) = 2 (constant function), T has

the form Tf = f ′ or Tf = |f ′|.
If additionally to (4.1), T (−2 Id) = −2 holds, T is the derivative, Tf = f ′.

In the formulation of similar results later we will combine statements like
(4.2) and (4.3) by writing

Tf =
H ◦ f
H

|f ′|p{sgn f ′},

the brackets {·} indicating that two possible solutions are given, one with the ex-
pression sgn f ′ and one without. Formulas (4.1), (4.2) and (4.3) are meant point-
wise, e.g.,

T (f ◦ g)(x) = (Tf)(g(x)) · Tg(x), x ∈ R,

T f(x) =
H(f(x))

H(x)
|f ′(x)|p{sgn f ′(x)}, x ∈ R.

Remarks. (a) Note that we do not impose any a priori continuity condition on
the operator T . A suitable level of continuity of T , however, is an a-posteriori
consequence of the result.
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(b) The proof will show that p and H are completely determined by the
function T (2 Id) ∈ C(R): we have T (2 Id) > 0, p = log2 T (2 Id)(0) and H(x) =∏

n∈N
ϕ(x/2n) where ϕ is defined by ϕ(x) = T (2 Id)(x)/T (2 Id)(0), and where

the product converges uniformly on compact subsets of R, with normalization
H(0) = 1.

(c) For C∞(R), there are not more solutions of the chain rule equation than
for C1(R). Therefore, in the setup of spaces Ck(R), the space C1(R) constitutes
the natural domain of the chain rule. Of course, for k = 0, in C(R) there is the
non-surjective solution Tf = H◦f

H which does not depend on the derivative.

(d) For p > 0, let G be the antiderivative of H1/p > 0. Then G is a strictly
monotone C1(R)-function and

Tf =

∣∣∣∣ (G ◦ f)′
G′

∣∣∣∣p {sgn f ′} =

∣∣∣∣d(G ◦ f)
dG

∣∣∣∣p{sgn(d(G ◦ f)
dG

)}
.

In this sense, all solutions of (4.1) are p-th powers of some derivatives, up to signs.

As a consequence, the derivative is characterized by the Leibniz rule and the
chain rule:

Corollary 4.2. Let k ∈ N and suppose that T : Ck(R) → C(R) satisfies the Leibniz
rule and the chain rule,

T (f · g) = Tf · g + f · Tg, T (f ◦ g) = (Tf) ◦ g · Tg; f, g ∈ Ck(R).

Then T = 0 or T is the derivative, Tf = f ′ for all f ∈ Ck(R).

Again, no continuity assumption on T is required here.

Proof of Corollary 4.2. By Theorem 3.1, T has the form Tf = c f ln |f |+ d f ′ for
suitable functions c, d ∈ C(R). If T �≡ 0, c or d do not vanish identically and
therefore T satisfies T |Ck

b (R)
�≡ 0. Hence, by Theorem 4.1, Tf = H◦f

H |f ′|p{sgn f ′}
for some p ≥ 0 and H ∈ C(R), H > 0. Both forms of T can coincide only if
p = 1, H is constant and c = 0, d = 1 and the sgn f ′-term occurs. Then Tf = f ′,
f ∈ C(R). �

Example. On suitable subsets of Ck(I) or even C(I), we may define operations T
which satisfy the Leibniz rule and chain rule but are neither zero nor the derivative:
Let I = (1,∞) and C+(I) := {f : I → I | f is continuous}. Define H ∈ C(I) by
H(x) = x lnx. Then the operator T : C+(I) → C(I) given by Tf = H◦f

H is well
defined and satisfies the Leibniz rule and the chain rule.

We now state a stronger version of Corollary 4.2: The derivative is also the
only operator satisfying both the chain rule and the extended Leibniz rule studied
in Theorem 3.7:
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Corollary 4.3. Suppose T,A : C1(R) → C(R) satisfy the chain rule and the ex-
tended Leibniz rule for all f, g ∈ C1(R),

T (f ◦ g) = Tf ◦ g · Tg ,

T (f · g) = Tf ·Ag +Af · Tg ,

and that T does not vanish identically on the half-bounded functions and attains
some negative values. Then T is the derivative, Tf = f ′, and Af = f for all
f ∈ C1(R).

Proof of Corollary 4.3. Theorem 4.1 yields that Tf is given by

Tf =
H ◦ f
H

|f ′|p sgn f ′

for a suitable functionH ∈ C(R),H > 0 and p > 0. This form of Tf has to coincide
with one of the solutions of the extended Leibniz rule (3.7) for k = 1, which were
given by (3.8), (3.9) or (3.10) in Theorem 3.7. This is only possible for the first
solution (3.8), and then only in the special case when a(x) = d1(x) = p(x) = 1,
d0(x) = 0, and if the above functionH satisfiesH = 11 and p = 1, yielding Tf = f ′,
Af = f for all f ∈ C1(R). �

To prove Theorem 4.1 we first show, as in Chapter 3, that the operator T is
localized. For this, we need that there are sufficiently many non-zero functions in
the range of T .

Lemma 4.4. Suppose the assumptions of Theorem 4.1 hold. Then for any open
half-bounded interval I = (c,∞) or I = (−∞, c) with c ∈ R, any y ∈ I and any
x ∈ R, there exists g ∈ Ck(R) such that g(x) = y, Im(g) ⊂ I and (Tg)(x) �= 0.

Proof. (i) Let x ∈ R. We show that (Tg)(x) �= 0 for a suitable function g ∈ Ck
b (R):

Since T |Ck
b (R)

�≡ 0, there is x1 ∈ R and a half-bounded function h ∈ Ck
b (R) with

(Th)(x1) �= 0. Define ϕ, g ∈ Ck
b (R) by

ϕ(s) := s+ x− x1, g(s) := h ◦ ϕ−1(s); s ∈ R.

Then h = g ◦ ϕ, ϕ(x1) = x and

0 �= (Th)(x1) = (Tg)(ϕ(x1)) · (Tϕ)(x1) = (Tg)(x) · (Tϕ)(x1),

which implies (Tg)(x) �= 0. Clearly g ∈ Ck
b (R).

(ii) Suppose I = (c,∞) with c ∈ R. Pick any y ∈ I and x ∈ R. By (i) there
is g ∈ Ck

b (R) with (Tg)(x) �= 0. Let J be an open half-bounded interval with
Im(g) ⊂ J . Choose a bijective Ck-map f : I → J with f(y) = g(x), noting that
g(x) ∈ J . This may be done in such a way that f is extendable to a Ck-map

f̃ : R → R on R, f̃ |I = f . Let

g1 := f−1 ◦ g : R −→ I ⊂ R.
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Then g1 ∈ Ck(R), g1(x) = y and Im(g1) ⊂ I. Since g = f ◦ g1 = f̃ ◦ g1, we find,
using the chain rule equation (4.1),

0 �= (Tg)(x) = (T f̃)(y) · (Tg1)(x).

Hence (Tg1)(x) �= 0, g1(x) = y and Im(g1) ⊂ I. �

Lemma 4.5. Under the assumptions of Theorem 4.1, we have for any open, half-
bounded interval I and any f, f1, f2 ∈ Ck(R):

(i) If f |I = Id, then (Tf)|I = 1.

(ii) If f1|I = f2|I , then (Tf1)|I = (Tf2)|I .
Proof. (i) Assume f |I = Id. Take any y ∈ I, x ∈ R. By Lemma 4.4, there is
g ∈ Ck(R) with g(x) = y, Im(g) ⊂ I and (Tg)(x) �= 0. Then f ◦ g = g so that by
(4.1)

0 �= (Tg)(x) = T (f ◦ g)(x) = (Tf)(y) · (Tg)(x),
which implies that (Tf)(y) = 1. Since y ∈ I was arbitrary, we conclude (Tf)|I = 1.

(ii) Let f1|I = f2|I and x ∈ I be arbitrary. Choose a smaller open half-
bounded interval J ⊂ I and a function g ∈ Ck(R) such that x ∈ J , Im(g) ⊂ I and
g|J = Id. Then f1 ◦ g = f2 ◦ g and g(x) = x. By part (i), (Tg)|J = 1. Hence, again
using the chain rule (4.1),

(Tf1)(x) = (Tf1)(g(x)) · Tg(x) = T (f1 ◦ g)(x)
= T (f2 ◦ g)(x) = (Tf2)(g(x)) · Tg(x) = (Tf2)(x),

which shows (Tf1)|I = (Tf2)|I . �

Proposition 4.6. Let k ∈ N0 ∪ {∞} and T : Ck(R) → C(R) satisfy the chain rule
equation (4.1). Assume that T |Ck

b (R)
�≡ 0. Then there is a function F : Rk+2 → R

such that for all f ∈ Ck(R) and x ∈ R

Tf(x) = F
(
x, f(x), . . . , f (k)(x)

)
. (4.4)

In the case k = ∞, this is supposed to mean that Tf(x) depends on x and on all
derivative values f (j)(x).

Proof. The result follows immediately from Proposition 3.3 for I = R and Lemma
4.5(ii). Note that (3.3) is used in the proof of Proposition 3.3 only for half-bounded
intervals J . �

Proof of Theorem 4.1. (i) Let k ∈ N ∪ {∞}. We first show that Tf(x) does not
depend on any derivative values f (j)(x) of order j ≥ 2. Let x0, y0, z0 ∈ R and
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f, g ∈ Ck(R) satisfy g(x0) = y0, f(y0) = z0. Using the representation (4.4) of T ,
the chain rule equation (4.1) for T turns into a functional equation for F ,

T (f ◦ g)(x0) = F
(
x0, z0, f

′(y0)g′(x0), (f ◦ g)′′(x0), . . .
)

= (Tf)(y0)Tg(x0)

= F
(
y0, z0, f

′(y0), f ′′(y0), . . .
)
F
(
x0, y0, g

′(x0), g
′′(x0), . . .

)
. (4.5)

If z0 = x0, also (g ◦ f)(y0) is defined and

T (f ◦ g)(x0) = Tf(y0)Tg(x0) = Tg(x0)Tf(y0) = T (g ◦ f)(y0),
i.e.,

F
(
x0, x0, f

′(y0)g′(x0), (f ◦ g)′′(x0), . . .
)

= F
(
y0, y0, g

′(x0)f
′(y0), (g ◦ f)′′(y0), . . .

)
. (4.6)

By the Faà di Bruno formula, cf. Spindler [Sp], the derivatives of (f ◦ g) have the
form

(f ◦ g)(j) = f (j) ◦ g · (g′)j + ϕj(f
′ ◦ g, . . . , f (j−1) ◦ g, g′, . . . g(j−1)) + f ′ ◦ g · g(j),

for 2 ≤ j ≤ k, where ϕj depends only on the lower-order derivatives of f and g, up
to order (j − 1) (at y0 and x0). We have, e.g., ϕ2 = 0, ϕ3(f

′ ◦ g, f ′′ ◦ g, g′, g′′) =
3f ′′ ◦ g · g′ · g′′.

Also, for any x0, y0 ∈ R and any sequence (tn)n∈N of real numbers, there is g ∈
C∞(R) with g(x0) = y0 and g(n)(x0) = tn for any n ∈ N, cf. Hörmander [Ho, p. 16].
This may be shown by adding infinitely many small bump functions. Similarly,
given (sn)n∈N, we may choose f ∈ C∞(R) with f(y0) = x0 and f (n)(y0) = sn,
n ∈ N.

Therefore, (4.6) implies, for all x0, y0 ∈ R and all (sn), (tn),

F (x0, x0, s1t1, t
2
1s2 + s1t2, t

3
1s3 + s1t3 + ϕ31, . . . , t

j
1sj + s1tj + ϕj1, . . . )

= F (y0, y0, s1t1, t1s2 + s21t2, t1s3 + s31t3 + ϕ32, . . . , t1sj + sj1tj + ϕj2, . . . ), (4.7)

where ϕj1, ϕj2 ∈ R for j ≥ 3 depend only on the values of s1, . . . , sj−1 and
t1, . . . , tj−1, e.g., ϕ31 = 3s2t1t2, ϕ32 = 3t2s1s2. The last dots in (4.7) mean that
the variables extend up to j ≤ k if k ∈ N, or range over all j if k = ∞. Given
z0 ∈ R, the functions g and f may be chosen with respect to (z0, y0) instead of
(x0, y0) for the same sequences (tn) and (sn). Then (4.7) is also true with x0 being
replaced by z0 which means that F (x0, x0, s1, . . . , sj , . . . ) is independent of x0. We
put

K(s1, . . . , sj , . . . ) := F (x0, x0, s1, . . . , sj , . . . ).

Assume that s1, t1 are such that s1t1 �∈ {0, 1,−1}. We claim that for arbitrary
values (aj) and (bj)

K(s1t1, a2, . . . , aj , . . . ) = K(s1t1, b2, . . . , bj , . . . ),
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i.e., that K only depends on the first variable s1t1 if s1t1 �∈ {0, 1,−1}. To see

this, first note that det
(

tj1 s1

t1 sj1

)
= (s1t1)((s1t1)

j−1 − 1) �= 0 for j ≥ 2. Hence, we

may solve successively and uniquely the sequence of (2 × 2)-linear equations for
(s2, t2), (s3, t3), . . . , (sj , tj)

t21s2 + s1t2 = a2,

t31s3 + s1t3 = a3 − ϕ31,

...

tj1sj + s1tj = aj − ϕj1,

t1s2 + s21t2 = b2,

t1s3 + s31t3 = b3 − ϕ32,

...

t1sj + sj1tj = bj − ϕj2,

Here the values obtained for (s2, t2) are used to determine ϕ31 and ϕ32 according
to the Faà di Bruno formula, and the values up to (sj−1, tj−1) to determine ϕj1

and ϕj2 accordingly. We then conclude from (4.7)

K(s1t1, a2, . . . , aj , . . . ) = K(s1t1, b2, . . . , bj , . . . ).

This means that K(u1, u2, . . . , uj , . . . ) is independent of the variables

u2, . . . , uj , . . ., if u1 �∈ {0, 1,−1}. We then put K̃(u1) := K(u1, u2, . . . , uj , . . . ).
If u1 = 1 choose t1 = 2, s1 = 1/2, u1 = s1t1 = 1. Then by (4.5) and (4.6), we find
that for any s2, . . . , sj , . . . , t2, . . . , tj , . . . we have

K
(
1, 4s2 +

1
2 t2, . . . , 2

jsj +
1
2j tj + ϕj , . . .

)
= K̃(2)K̃

(
1
2

)
.

Given arbitrary real numbers u2, . . . , uj , . . . , we find successively s2, t2, s3, t3, . . .

such that the left-hand side equals K(1, u2, u3, . . . , uj , . . . ) and hence K̃(1) =
K(1, u2, . . . , uj , . . . ) is also independent of uj for j ≥ 2. A similar statement is
true for u1 = −1. To show that K(0, u2, . . . , uj , . . . ) is independent of the uj for
j ≥ 2, too, choose t1 = a, s1 = 0 in (4.7) to find

K(0, a2s2, . . . , a
jsj + ϕj1, . . . ) = K(0, as2, . . . , asj + ϕj2, . . . ),

for all a ∈ R, which again implies independence of further variables. We now write
K(u1) for K̃(u1). For values y0 �= x0 = z0, we then know by (4.5) that

F (x0, y0, t1, t2, . . . , tj , . . . ) =
K(s1t1)

F (y0, x0, s1, s2, . . . , sj , . . . )
.

Since the left-hand side is independent of s1, s2, . . . , sj , . . . and the right-hand side
is independent of t2, . . . , tj , . . . , this equation has the form

F (x0, y0, t1) =
K(t1)

F (y0, x0, 1)
. (4.8)

Note that F (y0, x0, 1) �= 0 since, using Lemma 4.5(i),

F (y0, x0, 1)F (x0, y0, 1) = K(1) = T (Id)(x0) = 1.
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Define G : R2 → R 	=0 by G(x0, y0) = 1/F (y0, x0, 1). Then by (4.8)

F (x0, y0, t1) = G(x0, y0)K(t1),

with G(x0, x0) = 1. Using the independence of the derivatives of order ≥ 2, (4.5)
implies, for all x0, y0, z0 ∈ R, that

F (x0, z0, 1) = F (y0, z0, 1)F (x0, y0, 1),

G(x0, z0) = G(y0, z0)G(x0, y0).

Define H : R → R 	=0 by H(y) := G(0, y). Then

G(x, y) = G(x, 0)G(0, y) = G(0, y)/G(0, x) = H(y)/H(x).

Again using (4.8), we get

F (x0, y0, t1) =
H(y0)

H(x0)
K(t1), (4.9)

and T has the form

Tf(x0) = F
(
x0, f(x0), f

′(x0)
)
=

H ◦ f(x0)

H(x0)
K(f ′(x0)), f ∈ Ck(R). (4.10)

(ii) To identify the form of K, note that by (4.5) for x0 = y0 = z0,

K(s1t1) = K(s1)K(t1), s1, t1 ∈ R,

i.e., K is multiplicative on R. Let b �= 0. Apply (4.10) to f(x) = bx, we get

that Tf(x) = H(bx)
H(x) K(b). Note that K(b) �= 0 since otherwise, by multiplicativity,

K ≡ 0. Since Tf ∈ C(R), also H(bx)
H(x) defines a continuous function in x which is

strictly positive since H is never zero. We may assume that H is positive. Then for
any b �= 0, ϕ(x) := lnH(x)− lnH(bx) defines a continuous function ϕ ∈ C(R). By
Proposition 2.8(a), lnH is measurable and hence also H is measurable. Choosing
f(x) = 1

2x
2 in (4.10), we conclude that

K(x) = Tf(x)
H(x)

H
(
1
2x

2
) .

Since Tf is continuous and H is measurable, also K is measurable. By Proposition
2.3, the multiplicative function K has the form K(x) = |x|p or K(x) = |x|p sgnx
for a suitable p ∈ R, x �= 0. Hence we conclude from (4.10) and the continuity
of Tf that H◦f

H is continuous for any f ∈ Ck(R) at any point x ∈ R such that
f ′(x) �= 0.

(iii) We now show that H is continuous. For any c ∈ R, let

b(c) := lim
y→c

H(y), a(c) := lim
x→c

H(x).
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We claim that b(c)
H(c) and a(c)

H(c) are constant functions of c. In the case that for some

c0, b(c0) or a(c0) are infinite or zero, this should mean that all other values b(c) or
a(c) are also infinite or zero. Assume to the contrary that there are c0 and c1 such

that b(c1)
H(c1)

< b(c0)
H(c0)

. Choose any maximizing sequence yn, limn→∞ yn = c0 with

limn→∞ H(yn) = b(c0). Since for f(t) = t+ c1 − c0,
H◦f
H is continuous by part (ii),

limn→∞
H(yn+c1−c0)

H(yn)
= H(c1)

H(c0)
exists and using limn→∞ H(yn + c1 − c0) ≤ b(c1), we

arrive at the contradiction

b(c0)

H(c0)
=

H(c1)

H(c0)

b(c0)

H(c1)
= lim

n→∞
H(yn + c1 − c0)

H(yn)

H(yn)

H(c1)

≤ lim
n→∞

H(yn + c1 − c0)

H(c1)
≤ b(c1)

H(c1)
<

b(c0)

H(c0)
.

The argument is also valid assuming b(c1) < b(c0) = ∞. The proof for a(c) is
similar.

If H would be discontinuous at some point, it would be discontinuous any-
where since the functions a

H and b
H and hence b

a are constant, under this assump-

tion with b
a > 1. Assume that this is the case, and choose a sequence (cn)n∈N of

pairwise disjoint numbers with limn→∞ cn = 0. Let δn := 1
4 min{|cn−cm| | n �= m}

and choose 0 < εn < δn such that
∑

n∈N
(εn/δn)

k < ∞ for all k ∈ N, i.e., (εn)n∈N

should decay much faster to zero than δn. Since H is discontinuous at any cn,
b(cn)
a(cn)

> 1. By the above argument, this is independent of n ∈ N, 1 < b
a := b(cn)

a(cn)
.

By definition of b(cn) and a(cn), we may find yn, xn ∈ R with

|yn − cn| < εn, |xn − cn| < εn,
H(yn)

H(xn)
>

b+ a

2a
> 1.

If b
a = ∞, choose them with H(yn)

H(xn)
> 2. Let ψ be a C∞-cutoff function like

ψ(x) = exp
(− x2

1−x2

)
for |x| < 1, and ψ(x) = 0 for |x| ≥ 1, and put gn(x) =

(yn − xn)ψ
(
x−xn

δn

)
. The functions (gn)n∈N have disjoint support since for any

m �= n

|xn − xm| ≥ |cn − cm| − 2εn ≥ 4δn − 2εn ≥ 2δn.

Hence gn(xm) = (yn − xn)δnm. Since

∑
n∈N

‖g(k)n ‖∞ ≤
∑
n∈N

( |yn − xn|
δn

)k

‖ψ(k)‖∞ ≤
∑
n∈N

(
2εn
δn

)k

‖ψ(k)‖∞ < ∞

holds for any k ∈ N,

f(x) := x+
∑
n∈N

gn(x), x ∈ R
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defines a C∞-function f with f(xn) = yn, f(0) = 0 and f ′(0) = 1 �= 0. Since
xn → 0, yn = f(xn) → 0, the continuity of H◦f

H yields the contradiction

1 =
H(0)

H(0)
= lim

n→∞
H(yn)

H(xn)
>

b+ a

2a
> 1.

This proves that H is continuous.

Now (4.10) implies that

Tf(x) =
H ◦ f(x)
H(x)

|f ′(x)|p{sgn f ′(x)},

for any f ∈ Ck(R), x ∈ R. By assumption Tf ∈ C(R) is continuous for any
f ∈ Ck(R). This requires p ≥ 0, choosing functions f whose derivatives have
zeros. In fact, if the term sgn f ′(x) is present, p > 0 is needed to guarantee the
continuity of all functions in the image of T .

(iv) If T (2 Id) = 2 is the constant function 2, then H(2x)
H(x) 2

p = 2 for all x,

which for x = 0 yields p = 1. For b = 1/2, the function ϕ in part (ii) is constant,

ϕ(x) = lnH(x)− lnH(x/2) = 0.

Hence, the argument in the proof of Proposition 2.8(a) shows that lnH(x) =
lnH(1), H(x) = H(1), taking L = lnH in Proposition 2.8(a). Hence, H◦f

H = 1 and
Tf = f ′ or Tf = |f ′|. If T (−2 Id) = −2, the only possible solution of Theorem
4.1 is Tf = f ′.

Clearly, the operators T given by formulas (4.2) and (4.3) satisfy the chain
rule (4.1). This proves Theorem 4.1. �

If the image of T consists of smooth functions, we have further restrictions
on H and p:

Proposition 4.7. Let k ∈ N, k ≥ 2 and suppose that T : Ck(R) → Ck−1(R) satisfies
the chain rule (4.1) with T |Ck

b (R)
�≡ 0. Then there exists H ∈ Ck−1(R), H > 0 and

p with either

p > k − 1 and Tf =
H ◦ f
H

|f ′|p{sgn f ′}
or

p ∈ {0, . . . , k − 1} and Tf =
H ◦ f
H

(f ′)p, f ∈ Ck(R).

If the chain rule holds for T : C∞(R) → C∞(R) with T |C∞
b (R) �≡ 0, there is

H ∈ C∞(R) and p ∈ N0 such that

Tf =
H ◦ f
H

(f ′)p, f ∈ C∞(R).
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Proof. By Theorem 4.1, T is of the above form with H ∈ C(R) and p ≥ 0. Suppose
T maps Ck(R) into Ck−1(R). Then the condition on p is needed to guarantee that
Tf is in Ck−1(R) for functions f whose derivatives have zeros.

We claim that H is smooth, i.e., H ∈ Ck−1(R). Let L := − logH. Obviously
L ∈ Ck−1(R) if and only if H ∈ Ck−1(R). Take f(x) = x/2. By assumption
Tf ∈ Ck−1(R) and, hence,

ϕ(x) := L(x)− L(x/2)

defines a function ϕ ∈ Ck−1(R). We prove by induction on k ≥ 2 that ϕ ∈ Ck−1(R)
and L ∈ Ck−2(R) imply that L ∈ Ck−1(R).

For k = 2, ϕ ∈ C1(R) and L ∈ C(R) since H ∈ C(R). By Proposition 2.8(b)
with ψ = ϕ and a = 1, we get L ∈ C1(R).

To prove the induction step, assume k ≥ 3, ϕ ∈ Ck−1(R) and
L(k−2) ∈ C(R). We have to show that L ∈ Ck−1(R). Let ψ(x) := ϕ(k−2)(x) =
L(k−2)(x) − 1

2k−2L
(k−2)

(
x
2

)
. Then ψ ∈ C1(R) and L(k−2) ∈ C(R). By Proposi-

tion 2.8(b) with a = 1
2k−2 , L

(k−2) ∈ C1(R), i.e., L ∈ Ck−1(R). This proves that

H ∈ Ck−1(R). �

4.2 The chain rule on different domains

In the case of C1-functions, there is an analogue of Theorem 4.1 for functions
f : Rn → Rn on Rn when n > 1. For finite-dimensional Banach spaces X and Y
and k ∈ N0, let

Ck(X,Y ) = {f : X → Y | f is k-times continuously Fréchet differentiable},

with C(X,Y ) = C0(X,Y ). Let L(X,Y ) := {f ∈ C(X,Y ) | f is linear} and
Ck

b (X,Rn) := {f ∈ Ck(X,Rn) | Im(f) ⊂ J for some open half-space J ⊂ Rn}.
The derivative D is a map D : C1(Rn,Rn) → C(Rn, L(Rn,Rn)) satisfying the
chain rule

D(f ◦ g)(x) = ((Df) ◦ g)(x) · (Dg)(x), f, g ∈ C1(Rn,Rn), x ∈ Rn.

More generally, we consider operators T : C1(Rn,Rn) → C(Rn, L(Rn,Rn)) satis-
fying the chain rule equation

T (f ◦ g)(x) = ((Tf) ◦ g)(x) · (Tg)(x), f, g ∈ C1(Rn,Rn), x ∈ Rn.

The multiplication on the right is the non-commutative composition of linear op-
erators on Rn. We do not write it with composition symbol ◦ to distinguish it
from the composition of the non-linear functions f, g. In fact, in the following we
will omit the symbol · for this composition. In stating the analogue of Theorem
4.1 for n > 1, we need another assumption on T .
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An operator T : C1(Rn,Rn) → C(Rn, L(Rn,Rn)) is locally surjective pro-
vided that there is x ∈ Rn so that{

(Tf)(x)
∣∣ f ∈ C1(Rn,Rn), f(x) = x, det f ′(x) �= 0

} ⊇ GL(n,R).

In the following result on the chain rule for maps of this type we use the notation
detT |C1

b
(Rn,Rn) �≡ 0 to mean that there should be a function f ∈ C1

b (R
n,Rn)

and a point x ∈ Rn such that det(Tf(x)) �= 0.

Theorem 4.8 (Multidimensional chain rule). Let n ≥ 2, and assume that T :
C1(Rn,Rn) → C(Rn, L(Rn,Rn)) satisfies the chain rule equation

T (f ◦ g)(x) = ((Tf) ◦ g)(x) Tg(x), f, g ∈ C1(Rn,Rn), x ∈ Rn. (4.11)

Assume also that detT |C1
b (R

n,Rn) �≡ 0 and that T is locally surjective. Then there

are p ≥ 0 and H ∈ C(Rn,GL(n,R)) such that, if n ∈ N is odd, for all f ∈
C1(Rn,Rn) and x ∈ Rn

(Tf)(x) =
∣∣det f ′(x)

∣∣p(H ◦ f)(x)f ′(x)H(x)−1.

If n ∈ N is even, T either has the same form or

Tf(x) = sgn
(
det f ′(x)

)∣∣det f ′(x)
∣∣p(H ◦ f)(x)f ′(x)H(x)−1,

the latter with p > 0.
Conversely, these formulas define operators T which satisfy the chain rule

and are locally surjective.
If additionally to (4.11), T (2 Id)(x) = 2 Id holds for all x ∈ Rn, then H = Id

and Tf = f ′ or, if n is even, possibly Tf = sgn(det f ′)f ′.

Remarks. (a) Note that a priori we do not impose any continuity condition on T .

(b) For odd integers n ∈ N, p > 0 and H ∈ C(Rn,GL(n,R)),

(Tf)(x) := sgn
(
det f ′(x)

)∣∣det f ′(x)
∣∣p(H ◦ f)(x)f ′(x)H(x)−1

also solves the chain rule equation, but is not locally surjective since in this case
det((Tf)(x)) ≥ 0 for all f ∈ C1(Rn,Rn) with f(x) = x.

(c) If T is not assumed to be locally surjective, there are various other solu-
tions of (4.11):

Take any continuous multiplicative homomorphism Φ : R → L(Rn,Rn) with
Φ(0) = 0 and Φ(1) = Id and any continuous function H ∈ C(Rn,GL(n,R)), and
define

(Tf)(x) = (H ◦ f)(x)Φ(det f ′(x)
)
H(x)−1,

x ∈ Rn, f ∈ C1(Rn,Rn). Then T satisfies (4.11). As for specific examples, take
as Φ a one-parameter group like Φ(t) = exp(ln |t|A) = |t|A for some fixed matrix
A ∈ L(Rn,Rn) and t ∈ R. Here ln |t| might also be replaced by (sgn t) · ln |t|.
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(d) As in the case of one variable (n = 1), the function H is completely
determined by the function T (2 Id). The inner automorphism defined by H, with
additional composition by f , applied to the derivative, essentially yields T up to
a character in terms of det f ′.

For the proof of Theorem 4.8 we refer to [KM2]. We will not reproduce it
here since it is not in line with our main goals. We just mention a few steps of the
proof.

The localization step for n ≥ 2 is similar to the case n = 1, yielding

Tf(x) = F
(
x, f(x), f ′(x)

)
,

for a suitable function F : Rn × Rn × L(Rn,Rn) → L(Rn,Rn). The analysis of
this representing function F is different from the case n = 1, due to the non-
commutativity of the composition of linear maps in L(Rn,Rn). However, again
one may show that

K(v) := F (x, x, v) ∈ GL(n,R), v ∈ GL(n,R)

is independent of x ∈ Rn and multiplicative, K(uv) = K(u)K(v) for all u, v ∈
GL(n,R), with K(Id) = Id, K(v)−1 = K(v−1). The proof proceeds identifying
these automorphisms K of GL(n,R) as inner automorphisms multiplied by char-
acters in terms of det v, i.e., powers of | det v|, possibly multiplied by sgn(det v).
This result on the automorphisms of GL(n,R) replaces (the simpler) Proposition
2.3. Additional arguments are also needed to prove the continuity of H.

We may also consider the chain rule equation on real or complex spaces of
polynomials or analytic functions. For K ∈ {R,C}, let P := P(K) denote the
space of polynomials with coefficients in K, E := E(K) the space of real-analytic
functions (K = R) or entire functions (K = C) and C := C(K). Moreover, let
Pn := Pn(K) be the subset of P consisting of polynomials of degree ≤ n. There are
simple operators T : P(K) → C(K) satisfying the chain rule T (f ◦g) = (Tf)◦g ·Tg
which have a different form than the solutions determined so far: For f ∈ P(K) and
c ∈ R, let Tf := (deg f)c, T mapping into the constant functions. Then T satisfies

the chain rule on P. More generally, if deg f =
∏r

j=1 p
lj
j is the decomposition of

deg f into prime powers and cj ∈ R, Tf =
∏r

j=1 p
cj lj
j will satisfy the chain rule

and also

Tf =

r∏
j=1

p
cj lj
j

H ◦ f
H

|f ′|p{sgn f ′}m

will define a map T : P → C satisfying the chain rule, if H ∈ C(K), H �= 0, p ≥ 0,
m ∈ N0. We do not know whether this yields the general solution of the chain rule
equation for T : P → C. However, we can give the general solution of the chain
rule equation for such maps under a mild continuity assumption.

Let X ∈ {P(K), E(K)} and Y ∈ {P(K), E(K), C(K)}. An operator T : X →
Y is pointwise continuous at 0 provided that for any sequence (fn)n∈N of functions
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in X converging uniformly on all compact sets of K to a function f ∈ X, we have
pointwise convergence of the images at zero, i.e., limn→∞(Tfn)(0) = (Tf)(0). For
ξ ∈ K� {0}, denote sgn ξ := ξ/|ξ|. We then have the following two results for the
chain rule.

Theorem 4.9. Let K ∈ {R,C} and suppose that T : P(K) → C(K), T �= 0, satisfies
the chain rule equation

T (f ◦ g) = (Tf) ◦ g · Tg, f, g ∈ P(K) (4.12)

and is pointwise continuous at 0. Then there is a nowhere vanishing continuous
function H ∈ C(K) and there are p ∈ K with Re(p) ≥ 0 and m ∈ Z such that

Tf =
H ◦ f
H

|f ′|p(sgn f ′)m. (4.13)

For K = R, m ∈ {0, 1} suffices and H > 0. For p = 0, only m = 0 yields a
solution with range in C(K). If T maps into the space P(K), H is constant and
p = m ∈ N0 so that T has the form Tf = f ′m.

The result for entire functions is

Theorem 4.10. Let K ∈ {R,C} and assume that T : E(K) → E(K), T �= 0, satisfies
the chain rule equation

T (f ◦ g) = (Tf) ◦ g · Tg, f, g ∈ E(K)

and is pointwise continuous at 0. Then there is a function h ∈ E(K) and there is
m ∈ N0 such that

Tf = exp(h ◦ f − f) · f ′m.

Proof of Theorem 4.9. (a) Since T �= 0, there are n0 ∈ N, g ∈ Pn0(K) and x1 ∈ K

such that Tg(x1) �= 0. Let n ∈ N, n ≥ n0. We restrict T to Pn(K) =: Pn and
apply (4.12) for f, g ∈ Pn with f ◦ g ∈ Pn. For any x0 ∈ K, consider the shift
S(x) := x+ x1 − x0, S ∈ P1 ⊂ Pn and put f := g ◦ S. Then by (4.12)

0 �= (Tg)(x1) = T (f ◦ S−1)(x1) = (Tf)(x0)T (S
−1)(x1).

Hence, Tf(x0) �= 0. Moreover, Th = T (h ◦ Id) = Th · T (Id) for all h ∈ Pn. Hence,
T (Id) = 1 is the constant function 1. For x ∈ K, let Sx(y) := x+y, Sx ∈ P1 ⊂ Pn.
Again by (4.12)

1 = T (Id) = T (S−x ◦ Sx) = T (S−x) ◦ Sx · T (Sx).

Thus for all y ∈ K, T (Sx)(y) �= 0. In particular, T (Sx)(0) �= 0 for all x ∈ K. Again
by (4.12)

T (f ◦ Sx)(0) = (Tf)(x) · T (Sx)(0),
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so that for any x ∈ K and f ∈ Pn

Tf(x) =
T (f ◦ Sx)(0)

T (Sx)(0)
. (4.14)

Let fj ∈ Pn be a sequence converging uniformly on compacta to f ∈ Pn. Then
(4.14) and the pointwise continuity assumption at 0 imply that limj→∞(Tfj)(x) =
(Tf)(x) for all x ∈ K, and not only for x = 0. By (4.14) it suffices to determine the

form of (Tf)(0) for any f ∈ Pn. Since, for any f ∈ Pn, f(x) =
∑n

j=0
f(j)(0)

j! xj is

determined by the sequence (f (j)(0))0≤j≤n, (Tf)(0) is a function of these values.
Hence, there is Fn : Kn+1 → K such that

(Tf)(0) = Fn

(
f(0), f ′(0), . . . , f (n)(0)

)
, f ∈ Pn. (4.15)

Since (f ◦ Sx)
(j) = f (j) ◦ Sx, (4.14) and (4.15) imply

Tf(x) =
Fn

(
f(x), f ′(x), . . . , f (n)(x)

)
Fn(x, 1, 0, . . . 0)

, (4.16)

with Fn(x, 1, 0, . . . , 0) = T (Sx)(0) �= 0 for any x ∈ K.

(b) We now show that Tf does not depend on the higher derivatives f (j) for
j ≥ 2. Fix x ∈ K and define Gn = Gn,x : Kn → K by

Gn(ξ1, . . . , ξn) :=
Fn(x, ξ1, . . . , ξn)

Fn(x, 1, 0, . . . , 0)
, ξi ∈ K. (4.17)

For any (η1, . . . , ηn) ∈ Kn, there is a polynomial g ∈ Pn, with g(x) = x and
g(j)(x) = ηj for j = 1, . . . , n. For ξ1 ∈ K, define f ∈ P1 ⊂ Pn by f(y) :=

ξ1(y − x) + x. Then f(x) = x, (f ◦ g)(j)(x) = ξ1ηj and (g ◦ f)(j)(x) = ξj1ηj .
Therefore, by (4.16) and (4.17)

Gn(ξ1η1, . . . , ξ1ηn) = Gn

(
(f ◦ g)′(x), . . . , (f ◦ g)(n)(x))

= T (f ◦ g)(x) = (Tf)(x)(Tg)(x) = (Tg)(x)(Tf)(x)

= T (g ◦ f)(x) = Gn(ξ1η1, . . . , ξ
n
1 ηn).

Given (t1, . . . , tn) ∈ Kn and α ∈ K, α �= 0, let ηi = ti/α.
Applying the previous equations with ξ1 = α, we conclude

Gn(t1, t2, . . . , tn) = Gn(t1, αt2, . . . , α
n−1tn). (4.18)

Fix t1 ∈ K and define G̃n : Kn−1 → K by G̃n(t2, . . . , tn) := Gn(t1, t2, . . . tn). Then

G̃n is continuous at zero: if t(m) = (t
(m)
2 , . . . , t

(m)
n ) → 0 ∈ Kn−1 for m → ∞,

choose polynomials fm ∈ Pn with fm(x) = x, f ′
m(x) = t1 and f

(j)
m (x) = t

(m)
j

for 2 ≤ j ≤ n. Clearly, fm converges uniformly on compact sets to f , where
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f(x) = t1(y − x) + x. By the assumption of pointwise continuity at 0 of T , (4.16)
and (4.17),

G̃n(t
(m)
2 , . . . , t(m)

n ) = Gn(t1, t
(m)
2 , . . . , t(m)

n ) = (Tfm)(x)

−→ (Tf)(x) = Gn(t1, 0, . . . , 0) = G̃n(0, . . . , 0).

Hence, G̃n is continuous at 0. Letting α → 0 in (4.18), we find

Gn(t1, t2, . . . , tn) = lim
α→0

Gn(t1, αt2, . . . , α
n−1tn) = Gn(t1, 0, . . . , 0), (4.19)

i.e., Gn = Gn,x does not depend on the variables (t2, . . . , tn) ∈ Kn−1: Therefore
Tf is independent of the higher derivatives of f .

(c) For any f ∈ Pn with f(x) = x and f ′(x) = ξ1, we now know by (4.16),
(4.17) and (4.19) that

(Tf)(x) = Gn

(
f ′(x), . . . f (n)(x)

)
= Gn(ξ1, 0, . . . , 0)

=
Fn(x, ξ1, 0, . . . , 0)

Fn(x, 1, 0, . . . , 0)
=: φ(x, ξ1). (4.20)

If g ∈ P1 satisfies g(x) = x, g′(x) = η1, we have by (4.12) and (4.20)

φ(x, ξ1η1) = T (f ◦ g)(x) = (Tf)(x)(Tg)(x) = φ(x, η1)φ(x, η1).

Therefore, φ(x, · ) : K → K is multiplicative for every fixed x ∈ K. It is also

continuous: for ξ
(m)
1 → ξ1 in K, put fm(y) = ξ

(m)
1 (y−x)+x, f(y) := ξ1(y−x)+x.

Then fm → f converges uniformly on compacta and hence

φ(x, ξ
(m)
1 ) = (Tfm)(x) −→ (Tf)(x) = φ(x, ξ1).

By Proposition 2.3 (K = R) and Proposition 2.4 (K = C) there are p(x) ∈ K with
Re(p(x)) ≥ 0 and m(x) ∈ Z such that

φ(x, ξ1) = |ξ1|p(x)(sgn ξ1)m(x), (4.21)

sgn ξ1 = ξ1/|ξ1| for ξ �= 0 and φ(x, 0) = 0, with m(x) = 0 if Re(p(x)) = 0 and
m(x) ∈ {0, 1} if K = R.

(d) Let H(x) = T (Sx)(0) = Fn(x, 1, 0, . . . , 0). Then H(x) �= 0 and by (4.16),
(4.19), (4.20) and (4.21),

Tf(x) =
Fx

(
f(x), f ′(x), 0, . . . , 0

)
Fn(x, 1, 0, . . . , 0)

=
H(f(x))

H(x)
φ
(
f(x), f ′(x)

)
=

(H ◦ f)(x)
H(x)

|f ′(x)|p(f(x))(sgn f ′(x)
)m(f(x))

. (4.22)
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Choosing f(x) = 2x, we find that p is a continuous function since Tf and H are
continuous. Actually, p is constant: Choosing arbitrary x, y, z ∈ K and functions
f, g ∈ P1 with g(x) = y, f(y) = z, we have by (4.12) and (4.22),∣∣f ′(y)g′(x)

∣∣p(yz)(sgn f ′(y)g′(x)
)m(yz)

= |f ′(y)|p(z)(sgn f ′(y)
)m(z)|g′(x)|p(y)(sgn g′(x))m(y)

.

Applying this first to polynomials with f ′(y) > 0, g′(x) > 0, we find that p(yz) =
p(z) = p(y) =: p for all y, z ∈ K, i.e., p is constant. Then, using functions with
arbitrary sgn-values in S1, we find that m(yz) = m(z) = m(y) = m ∈ Z may
be taken constant. With p = p(f(x)) and m = m(f(x)), (4.22) gives the general
solution for T : Pn → C, both for K = R and K = C.

(e) Since (4.22) is independent of n ∈ N, this is also the general solution for
T : P → C. In the case that T : P → P, i.e., that the range of T consists only of
polynomials, all functions

Tf =
H ◦ f
H

|f ′|p(sgn f ′)m, f ∈ P,

have to be polynomials. Here m ∈ Z, p ∈ K, Re(p) ≥ 0. For f(x) = 1
2x

2 this means

that
H( 1

2x
2)

H(x) |x|p(sgnx)m is a polynomial. For p = 0 also m = 0 and Tf = H◦f
H . For

p > 0, Tf has a zero of order p in x0 = 0. Since Tf is a polynomial, it follows that
p ∈ N is a positive integer, and Tf(x) = xpg(x) with g ∈ P, g(0) �= 0. This implies
that m ∈ Z has to be such that xp = |x|p(sgnx)m. Therefore Tf = H◦f

H f ′p ∈ P
for all f ∈ P, with p ∈ N0. Applying this to linear functions f(x) = ax + b,

f−1(y) = 1
ay − b

a = x, we find that p(x) = H(ax+b)
H(x) and H(x)

H(ax+b) = 1
p(x) are

polynomials in x. Therefore, H(ax+b)
H(x) =: ca,b is constant in x ∈ K for any fixed

values a, b ∈ K. In particular

H(2x)

H(x)
=

H(0)

H(0)
= 1 =: c2,0,

H(x+ b)

H(x)
=: c1,b.

We find that

H(2x+ 2b) = H(x+ b) = c1,bH(x) = c1,bH(2x) = H(2x+ b)

for all x, b ∈ K. Therefore, H(y + b) = H(y) for all y, b ∈ K. Hence, H is constant
and H◦f

H = 1 for all f ∈ P. We conclude that Tf = f ′p, p ∈ N0. �
Proof of Theorem 4.10. Since P(K) ⊂ E(K), Theorem 4.9 yields that T |P(K) has
the form

Tf =
H ◦ f
H

|f ′|p(sgn f ′)m, f ∈ P(K), (4.23)

with m ∈ Z, p ∈ K, Re(p) ≥ 0. We also know that H defined by H(x) = T (Sx)(0)
is continuous on K. Let c ∈ K, c �= 0 be arbitrary. Applying (4.23) to f(z) = cz
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and using that Tf ∈ E(K), we get that z �→ H(cz)
H(z) is in E(K), i.e., real or complex

analytic. Since H is nowhere zero, there exists an analytic function k(c, · ) ∈ E(K)

such that H(cz)
H(z) = exp(k(c, z)), with k(c, 0) = 0. For c, d ∈ K we find

exp
(
k(cd, z)

)
=

H(cdz)

H(z)
=

H(cdz)

H(dz)

H(dz)

H(z)
= exp

(
k(c, dz) + k(d, z)

)
,

hence k(cd, z)=k(c, dz)+k(d, z). In particular, for z=1, k(c, d)=k(cd, 1)− k(d, 1).
Let h(d) := k(d, 1) for d �= 0. Then k(c, d) = h(cd)− h(d), and with d replaced by
z, k(c, z) = h(cz) − h(z). Since H is continuous, k is continuous as a function of
both variables. Therefore,

lim
c→0

k(c, z) = lim
c→0

h(cz)− h(z) := h(0)− h(z)

exists z-uniformly on compact subsets of K. Since k(c, · ) ∈ E(K) for all c ∈ K, we
conclude that h ∈ E(K). For w, z ∈ K� {0} define c ∈ K by w = cz. Then

H(w)

H(z)
= exp

(
k(c, z)

)
= exp

(
h(w)− h(z)

)
.

This extends by continuity to w = 0 or z = 0. Hence H◦f
H = exp(h ◦ f − h) for all

f ∈ P(K). Since Tf , H
H◦f are in E(K), also |f ′|p(sgn f ′)m has to be real-analytic

(K = R) or analytic (K = C) for all polynomials f requiring that p = m ∈ N0,
taking into account that m ∈ Z, Re(p) ≥ 0. Therefore

Tf = exp(h ◦ f − h)f ′m, f ∈ P(K), (4.24)

m ∈ N0. Given any f ∈ E(K), its n-th order Taylor polynomials pn(f) ∈ P(K)
converge uniformly on compacta to f . By the assumption of pointwise continuity at
0 of T and (4.14), we have for any z ∈ K, Tf(z) = limn→∞ T (pn(f))(z). Moreover,
limn→∞ h ◦ pn(f)(z) = h ◦ f(z) and limn→∞ pn(f)

′(z) = f ′(z). Therefore, (4.24)
holds for all f ∈ E(K). �

Remark. Imposing the additional initial condition T (−2 Id) = −2 on T in Theo-
rems 4.9 and 4.10 will imply that p = m = 1 and that H and h are constant so
that Tf = f ′, i.e., T is the derivative.

4.3 Notes and References

Theorem 4.1 on the solution of the chain rule operator equation was shown by
Artstein-Avidan, König and Milman in [AKM].

The proof of the continuity of the function H in part (iii) of the proof of
Theorem 4.1 uses similar arguments as in the proof of Theorem 2.6 and as in Step
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12 of the proof of Theorem 2 of Alesker, Artstein-Avidan, Faifman and Milman
[AAFM].

If the “compound” product T (f ◦ g) · Tg on the right side of the chain rule
is replaced by a simple product of Tf and Tg, the resulting equation essentially
has only trivial solutions, since the right-hand side does not reflect the effects of
the composition. We have the following result, cf. Proposition 8 of [KM3]:

Proposition 4.11. Let k ∈ N0 and suppose that T : Ck(R) → C(R) satisfies

T (f ◦ g) = Tf · Tg, f, g ∈ Ck(R).

Assume also that for any x ∈ R and any open interval J ⊂ R there is g ∈ Ck(R)
with Im(g) ⊂ J such that Tg(x) �= 0. Then Tf = 11 for all f ∈ Ck(R).

Theorem 4.1 admits a cohomological interpretation. The semigroup G =
(Ck(R), ◦ ) with composition as operation acts on the abelian semigroup M =
(C(R), · ) with pointwise multiplication as operation by composition from the right,
G ×M → M , fH := H ◦ f . Thus, M is a module over G. Denote the functions
from Gn to M by Fn(G,M) and define the coboundary operators

dn : Fn(G,M) −→ Fn+1(G,M), n ∈ N0,

using the additive notation + for the operation · on M , by

dnϕ(g1, . . . , gn+1) = g1ϕ(g2, . . . , gn+1)

+
n∑

i=1

(−1)iϕ(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1) + (−1)n+1ϕ(g1, . . . , gn),

for ϕ ∈ Fn(G,M), g1, . . . , gn+1 ∈ G. Theorem 4.1 characterizes the cocycles in
Ker(d1) for n = 1. Then ϕ = T : G = Ck(R) → M = C(R) has coboundaries

d1T (g1, g2) = g1T (g2)− T (g1g2) + T (g2), g1, g2 ∈ G.

As for cocycles T , d1T = 0 means in multiplicative notation

T (g2 ◦ g1) = T (g2) ◦ g1 · Tg1,
and these are just the solutions of the chain rule. For n = 0, ϕ ∈ F 0(G,M) can
be identified with ϕ = H ∈ M = C(R) and we have in multiplicative notation
d0H(g) = H◦g

H for g ∈ G = Ck(R).
The cohomology group H1(G,M) = Ker(d1)/ Im(d0) is hence, by Theorem

4.1, represented by the maps g �→ |g′|p {sgn g′} from G to M .
We are grateful to L. Polterovich and S. Alesker for advising us on this

cohomological interpretation of Theorem 4.1.

Theorem 4.8 on the chain rule equation in Rn was proved by König and
Milman in [KM2]. The result on the inner automorphisms of GL(n,R), which
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replaces Proposition 2.3 in the proof for n > 1, is taken from Dieudonné [D]
and Hua [H]. We are grateful to J. Bernstein and R. Farnsteiner for discussions
concerning the proof of Theorem 4.8.

Theorems 4.9 and 4.10 were shown in [KM11]. We would like to thank P.
Domański for helpful discussions concerning these results.

Corollary 4.3 stated that the derivative is the only operator (not vanishing
on the half-bounded functions) satisfying the chain rule and the extended Leibniz
rule. It is interesting to note that on the complex plane there are different operators
satisfying the chain rule and the extended Leibniz rule, though not with image in
the continuous functions: By Aczél, Dhombres [AD], Theorem 7 in Chapter 5.2,
there is a non-zero additive and multiplicative function K : C → C which is not
the identity on C. Let C1(C) denote the continuously differentiable (i.e., entire)
functions from C to C and F (C) denote all functions from C to C. Define operators
T,A : C1(C) → F (C) by Tf := K(f ′) and Af := K(f). Then (T,A) satisfy

T (f ◦ g) = Tf ◦ g · Tg,
T (f · g) = Tf ·Ag +Af · Tg ; f, g ∈ C1(C),

but T is not the derivative and A is not the identity on C1(C).

The analogue of the chain rule in integration is the substitution formula. Let
c ∈ R be fixed, I : C(R) → C1(R) denote the operator of definite integration from
c to x and D : C1(R) → C(R) be the derivative. Then I is injective and

f ◦ g − (f ◦ g)(c) = I(Df ◦ g ·Dg)

holds for all f, g ∈ C1(R). Modeling this, more generally we consider operators
T : C1(R) → C(R) and J : C(R) → C1(R) such that for some fixed c ∈ R and all
f, g ∈ C1(R)

f ◦ g − (f ◦ g)(c) = J(Tf ◦ g · Tg).
The natural question then is whether T is closely connected to some derivative
and J to some definite integral. Let us call T : C1(R) → C(R) non-degenerate
if there is y ∈ R such that for all x ∈ R there is f ∈ C1

b (R) with f(x) = y and
Tf(x) �= 0. Also T (Id)(x) �= 0 is assumed for all x ∈ R. We then have by König,
Milman [KM12]:

Proposition 4.12. Assume that J : C(R) → C1(R) and T : C1(R) → C(R) are
operators such that for some fixed c ∈ R

f ◦ g − (f ◦ g)(c) = J(Tf ◦ g · Tg)

holds for all f, g ∈ C1(R). Suppose further that T is non-degenerate and that J is
injective. Then there are constants p > 0, d �= 0 such that for all f ∈ C1(R) and
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h ∈ C(R)

Tf(x) = d |f ′(x)|p sgn f ′(x), (4.25)

Jh(x) = d−2/p

∫ x

c

|h(s)|1/p sgnh(s) ds. (4.26)

If T additionally satisfies the initial condition T (2 Id) = 2, we have that p = d = 1
and

Tf(x) = f ′(x), Jf(s) =

∫ x

c

h(s) ds.

Hence T in (4.25) is a generalized derivative and J in (4.26) is a generalized
definite integral. For the proof we refer to [KM12].
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