
Chapter 3

The Leibniz Rule

We will show that the derivative as a map on classical function spaces of analysis is
characterized by the Leibniz rule as well as the chain rule. This is a consequence of
results in this and the next chapter. We first study the solutions of the Leibniz rule
equation as a map on the k-times continuously differentiable functions Ck. There
are many examples of derivations in algebra and differential geometry generalizing
the Leibniz rule for the derivative of products of functions. However, on Ck there
are only few examples of derivations. A priori, we assume neither linearity nor
continuity of the derivations which we characterize. However, the continuity of the
operator is a consequence of the results. Various solutions are actually non-linear.

3.1 The Leibniz rule in Ck

To formulate the basic result, we use the following notation:
Let I ⊂ R be an open set. In particular, I = (−∞, a), (a, b), (b,∞) with

a, b ∈ R or I = R are natural choices. For k ∈ N0 := N ∪ {0} let

Ck(I) :=
{
f : I → R | f is k-times continuously differentiable on I

}
.

We denote the continuous functions also by C(I) := C0(I) and put C∞(I) =⋂
k∈N

Ck(I). The basic result for the Leibniz rule operator equation is

Theorem 3.1 (Leibniz rule). Let k ∈ N0 and I ⊂ R be an open set. Suppose that
T : Ck(I) → C(I) is an operator satisfying the Leibniz rule equation

T (f · g) = Tf · g + f · Tg, f, g ∈ Ck(I). (3.1)

Then there are continuous functions c, d ∈ C(I) such that, if k ∈ N,

Tf = c f ln |f |+ d f ′, f ∈ Ck(I). (3.2)

Conversely, any map T given by (3.2) satisfies (3.1). For k = 0, if T : C(I) →
C(I) satisfies (3.1), there is c ∈ C(I) such that Tf = c f ln |f |.
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Since limx→0 x ln |x| = 0, 0 ln |0| should be read as 0.

Remarks. (a) The formulas (3.1) and (3.2) are meant pointwise, e.g., (3.2):

(Tf)(x) = c(x)f(x) ln |f(x)|+ d(x)f ′(x), f ∈ Ck(I), x ∈ I.

Thus the solutions of the Leibniz rule are linear combinations of the derivative and
the “entropy solution” f ln |f | which acts as a “derivative” on spaces of continuous
functions. Note that neither continuity nor linearity is imposed on the operator
T ; in fact, Tf = f ln |f | is a non-linear solution.

(b) For k ≥ 2, there are not more solutions than for k = 1. Hence, T :
Ck(I) → C(I) naturally extends by the same formula to T : C1(R) → C(R).
Therefore C1(I) is the “natural domain” for the Leibniz formula among the Ck(I)-
spaces.

(c) If T also maps C2(I) into C1(I), it has the form Tf = d f ′ with d ∈ C1(I),
since in general f ln |f | /∈ C1(I) for f ∈ C2(I). “Initial” conditions like T (Id) = 1
and T (2 Id) = 2 together with (3.1) also imply that Tf = f ′ is the derivative.

(d) If the image of T does not consist of continuous or at least measurable
functions, there are different solutions of the Leibniz rule equation. Let F (R)
denote the space of all functions f : R → R, and H : R → R be an additive but
not linear function, as constructed after Proposition 2.1. Let c ∈ F (R) and define
T : C(R) → F (R) by

Tf(x) = c(x)f(x)H
(
ln |f(x)|), f ∈ C(R), x ∈ R,

with Tf(x) := 0 if f(x) = 0. Then T satisfies the Leibniz rule

T (f · g) = Tf · g + f · Tg.

(e) For k ≥ 2, there are more solutions of (3.1) on the positive Ck-tfunctions
than those given in (3.2), cf. Corollary 3.4.

The proof of Theorem 3.1 consists of two steps. The first is to show lo-
calization, i.e., that T is defined pointwise in the sense that there is a function
F : I × Rk+1 → R such that for all f ∈ Ck(I) and x ∈ I

Tf(x) = F (x, f(x), . . . , f (k)(x)).

At that point no regularity of F is known. The operator equation (3.1) then is
equivalent to a functional equation for the representing function F . The second
step of the proof is to analyze the structure of F and to prove the continuity of
the coefficient functions occurring there, by using the fact that the image of T
consists of continuous functions. In the case of Theorem 3.1, we have to show that
F does not depend on the variables αj = f (j)(x) for j ≥ 2 and that the functions
c, d in (3.2) are continuous. To find the solutions of other operator equations in
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later chapters, we will use the same basic strategy in the proofs, although with
very different representing functions.

To prove Theorem 3.1, we first show that T is “localized on intervals”.

Lemma 3.2. Suppose T : Ck(I) → C(I) satisfies (3.1). Then T (11) = T (−11) = 0.
If J ⊂ I is open and f1, f2 ∈ Ck(I) satisfy f1|J = f2|J , then Tf1|J = Tf2|J .
Proof. For any f ∈ Ck(I), T (f) = T (f · 11) = T (f) · 11 + T (11) · f , which implies
T (11) = 0. Moreover 0 = T (11) = T ((−11)2) = −2T (−11), T (−11) = 0. If J ⊂ I is
open and f1|J = f2|J , let x ∈ J be arbitrary and choose g ∈ Ck(I) with g(x) = 1
and supp g ⊂ J . Then f1 · g = f2 · g and hence by (3.1)

f1 · Tg + Tf1 · g = T (f1 · g) = T (f2 · g) = f2 · Tg + Tf2 · g,

which implies Tf1(x) = Tf2(x) for any x ∈ J , yielding Tf1|J = Tf2|J . �

Localization on intervals always implies pointwise localization.

Proposition 3.3. Let k ∈ N0 and I ⊂ R be an open set. Suppose T : Ck(I) → C(I)
satisfies, for all open intervals J ⊂ I, that[

f1|J = f2|J =⇒ Tf1|J = Tf2|J , f1, f2 ∈ Ck(I)
]
. (3.3)

Then there is a function F : I × Rk+1 → R such that

Tf(x) = F
(
x, f(x), f ′(x), . . . , f (k)(x)

)
(3.4)

holds for all x ∈ I and f ∈ Ck(I). It suffices to have (3.3) only for all intervals J
of the form J = (−∞, x) ∩ I and J = (x,∞) ∩ I with x ∈ I.

Proof. Let x0 ∈ I be arbitrary but fixed. For any f ∈ Ck(I), let g be the Taylor
polynomial of order k at x0. Let J1 := (−∞, x0) ∩ I and J2 := (x0,∞) ∩ I and
define

h(x) :=

{
f(x), x ∈ J1,

g(x), x ∈ J2.

Then h ∈ Ck(I) and f |J1
= h|J1

, h|J2
= g|J2

. By assumption Tf |J1
= Th|J1

and Th|J2
= Tg|J2

. Since Tf , Th and Tg are continuous functions and
{x0} = J1 ∩ J2, we find Tf(x0) = Th(x0) = Tg(x0). Since g only depends on
(x0, f(x0), . . . , f

(k)(x0)), so does Tg(x0). Therefore, Tf(x0) = Tg(x0) only de-
pends on these values, i.e., there is a function F : I × Rk+1 → R such that

Tf(x0) = F
(
x0, f(x0), . . . , f

(k)(x0)
)
,

for any f ∈ Ck(I), x0 ∈ I. �
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Proof of Theorem 3.1. (i) We will first show that for any f > 0, Tf
f depends

linearly on ln f and its derivatives, and then that no derivatives of order ≥ 2 show
up in the formula for T . By Lemma 3.2 and Proposition 3.3 there is a function
F : I × Rk+1 → R such that, for any f ∈ Ck(I) and x ∈ I,

Tf(x) = F
(
x, f(x), f ′(x), . . . , f (k)(x)

)
.

Define a map S : Ck(I) → C(I) by

Sg(x) := T (exp(g))(x)/ exp(g)(x), g ∈ Ck(I), x ∈ I.

Then Sg(x)=F (x, exp(g)(x), . . . , exp(g)(k)(x))/ exp(g)(x) depends only on x, g(x)
and all derivatives of g up to g(k)(x). Hence, there is a function G : I ×Rk+1 → R

such that
Sg(x) = G

(
x, g(x), . . . , g(k)(x)

)
, g ∈ Ck(I), x ∈ I.

For any g1, g2 ∈ Ck(I), by the Leibniz rule equation on Ck(I),

S(g1 + g2) = T (eg1 · eg2)/(eg1 · eg2) = T (eg1)/eg1 + T (eg2)/eg2 = Sg1 + Sg2.

Since for any α = (αj)
k
j=0, β = (βj)

k
j=0 ∈ Rk+1 and x ∈ I, there are g1, g2 ∈ Ck(I)

with g
(j)
1 (x) = αj , g

(j)
2 (x) = βj for all j ∈ {0, . . . , k}, we have

G(x, α+ β) = G(x, α) +G(x, β), x ∈ I, α, β ∈ Rk+1.

Since Sg = T (eg)/eg is a continuous function on I, we also know that

G(x, g(x), . . . , g(k)(x))

is a continuous function of x ∈ I for all g ∈ Ck(I). By Theorem 2.6, there is a

continuous function c : I → Rk+1 so that G(x, α) = 〈c(x), α〉 =
∑k

j=0 cj(x)αj ,

writing c = (cj)
k
j=0, with continuous coefficient functions cj ∈ C(I).

For f ∈ Ck(I), f > 0, let g := ln f . Then f = exp g and

Tf(x) = f(x)S
(
ln f

)
(x) = f(x)

k∑
j=0

cj(x)(ln f)
(j)(x). (3.5)

Conversely, this formula defines a map on the strictly positive functions into the
continuous functions satisfying the Leibniz rule since(

ln(fg)
)(j)

= (ln f)(j) + (ln g)(j), f, g ∈ Ck(I).

(ii) Let us now consider the Leibniz rule for T : Ck(I) → C(I) when the
functions are negative. Suppose f ∈ Ck(I) and x ∈ I are given with f(x) < 0.
Then there is an open interval J ∈ I, x ∈ J with f |J < 0. Choose g ∈ Ck(I) with
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g < 0 on I and f |J = g|J . Then Tf(x) = Tg(x). To determine Tf(x), we may
therefore assume that f < 0 on I. Then f = −|f | and by the Leibniz rule and
Lemma 3.2

T (f) = T (−|f |) = −T (|f |) + |f |T (−11) = −T (|f |).
Using (3.5), we find

Tf = −T (|f |) = −|f |
k∑

j=0

cj(ln |f |)(j)

= f

k∑
j=0

cj(ln |f |)(j), f ∈ Ck(I).

To be defined on Ck(I), Tf needs to be continuous also for f and x with f(x) = 0.
However, for j ≥ 2, f(ln |f |)(j) is of order O(|f |−(j−1)) as |f | ↘ 0, if f ′ �= 0.
Therefore, using localization, in the above formula c2 = · · · = ck = 0 is required
for T : Ck(I) → C(I) to be well defined.

To be more specific, let k ≥ 2, x0 ∈ I and choose ε0 > 0 with (x0 − 2ε0, x0 +
2ε0) ⊂ I and consider f(x) := x − x0. Let 0 < ε < ε0 and h be a strictly
positive function with h|(x0+ε,∞)∩I = f |(x0+ε,∞)∩I , i.e., h has to bend upwards
for x < x0 + ε in a smooth way. Applying the above formula for h, we get for
Tf(x0 + ε) = Th(x0 + ε)

Tf(x0 + ε) = Th(x0 + ε) = c0(x0 + ε)ε ln ε+
k∑

j=1

cj(x0 + ε)(−1)j−1(j − 1)! ε1−j .

Since Tf and c0, . . . , ck are continuous functions, this implies for ε → 0 that
ck(x0) = · · · = c2(x0) = 0. This means that

Tf = c0f ln |f |+ c1f
′.

This also holds when f has isolated zeros x, f(x) = 0, since limy→0 y ln |y| = 0.
Note that Tf(x) = 0 in this case since we have continuous functions on both sides.
This is true by continuity of Tf , too, if x is a limit of isolated zeros of f . If f |J is
zero on a non-trivial interval J ⊂ I, Tf |J = 0. �
Corollary 3.4. Let k ∈ N and I ⊂ R be an open set. Suppose that T : Ck(I) →
C(I) satisfies the Leibniz rule equation (3.1). Then there are continuous functions
c0, . . . , ck ∈ C(I) such that for every strictly positive function f ∈ Ck(I), f > 0
and all x ∈ I

Tf(x) = f(x)

k∑
j=0

cj(x) (ln f)
(j)(x).

Conversely, T defined this way satisfies equation (3.1) for all positive functions
f ∈ Ck(I).
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This is a corollary to the proof of Theorem 3.1, which yielded (3.5) for positive
functions f > 0. Note, however, that we need T to be defined and to satisfy (3.1)
for all functions f ∈ Ck(I), and not only for the strictly positive ones, since in the
proof of Lemma 3.2 the operator T is applied to functions f1g = f2g which are
zero on a large part of the set I. For k ≥ 2, there are more solution operators T
on the positive functions than on all functions. For k = 1, we just recover (3.2).

3.2 The Leibniz rule on Rn

Theorem 3.1 gives the solutions of the Leibniz rule on I ⊂ R. It has an analogue
for functions on n-dimensional domains I ⊂ Rn. For n ∈ N, k ∈ N0, open sets
I ⊂ Rn and finite-dimensional real Banach spaces X let

Ck(I,X) := {f : I → X | f is k-times continuously differentiable on I},

with C(I,X) := C0(I,X) denoting the continuous functions. In this section, we in-
clude the image space X of functions in the notation Ck(I,X) to indicate whether
X is, e.g., R or Rn. Let L(Rn,Rn) denote the continuous linear maps for Rn into
itself. The derivative T = D maps C1(I,R) into C(I,Rn). The following theorem
extends Theorem 3.1 to this n-dimensional setting. We did not directly state the
result in the more general form, since its proof is a bit more elaborate and requires
further notations.

Theorem 3.5. Let n ∈ N, k ∈ N0 and I ⊂ Rn be an open set. Suppose that
T : Ck(I,R) → C(I,Rn) satisfies the Leibniz rule

T (f · g) = Tf · g + f · Tg, f, g ∈ Ck(I,R).

Then there are continuous functions c ∈ C(I,Rn) and d ∈ C(I, L(Rn,Rn)) such
that for all f ∈ Ck(I,R) and all x ∈ I

Tf(x) = c(x)f(x) ln |f(x)|+ d(x)(f ′(x)).

For k = 0, d should be zero. Conversely, any such map T satisfies the Leibniz rule.

Note that on the right-hand side of the Leibniz formula we have pointwise
multiplications of scalar and Rn-valued functions. In the result, d(x) is a matrix
operating on the vector f ′(x), and c(x) is a vector multiplying the scalar entropy
expression f(x) ln |f(x)| for any x ∈ I.

For k ≥ 2 there are no more solutions than for k = 1. Therefore T extends
by the same formula to C1(I,R), so that C1(I,R) is the “natural” domain of T .
If d = 0, T even extends to C(I,R).

The Leibniz rule immediately implies T 11 = 0 for the function 11 on I ⊂ Rn.
If J ⊂ I is open and f1, f2 ∈ Ck(I,R) satisfy f1|J = f2|J , we claim that Tf1|J =
Tf2|J : Let x ∈ J be arbitrary and choose g ∈ Ck(I,R) with g(x) = 1 and
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support of g in J . Then f1 ·g = f2 ·g and hence by the Leibniz rule (f1−f2) ·Tg =
(Tf1−Tf2)·g, so Tf1(x) = Tf2(x), Tf1|J = Tf2|J . Therefore we have localization
on (small) open sets. We now show that this implies pointwise localization, as in
the 1-dimensional case.

For 0 ≤ l ≤ k, the l-th derivative f (l)(x) of f ∈ Ck(I,R), I ⊂ Rn open,
at x ∈ I is an l-multilinear form f (l)(x) : Rn × · · · × Rn︸ ︷︷ ︸

l

→ R which we may

identify with the vector of all l-th order partial derivatives of f at x, a vector in

Rnl

. By Schwarz’ theorem, the iterated partial derivatives do not depend on the
order of taking them, so that we have only M(n, l) :=

(
n+l−1
n−1

)
different l-th order

partial derivatives, indexed by ( ∂lf(x)
∂xi1

···∂xil
)1≤i1≤···≤il≤n. As in Theorem 2.6, we will

identify f (l)(x) with this vector in RM(n,l) to allow for independent choices of the
values of these derivatives. Together the function and all derivatives of order ≤ k
constitute

N(n, k) :=
k∑

l=0

M(n, l) =

(
n+ k

n

)
independent variables. In this setup, we have:

Proposition 3.6. Let m,n ∈ N, k ∈ N0, I ⊂ Rn be open and T : Ck(I,R) →
C(I,Rm) be an operator. Suppose that for all open subsets J ⊂ I and all f1, f2 ∈
Ck(I,R) with f1|J = f2|J we have that Tf1|J = Tf2|J . Then there is a function
F : I × RN(n,k) → Rm such that

Tf(x) = F
(
x, f(x), f ′(x), . . . , f (k)(x)

)
for all f ∈ Ck(I,R) and x ∈ I.

Proof. Fix x0 = (x0i)
n
i=1 ∈ I. By assumption, Tf1(x0) = Tf2(x0) for every two

functions f1, f2 ∈ Ck(I,R) which coincide on a small open neighborhood of x0

in I. To prove that Tf(x0) depends only on (x0, f(x0), . . . , f
(k)(x0)), we may

therefore assume that I is a (possibly small) open cube or ball centered at x0. Let
f ∈ Ck(I,R). Define, for x = (xi)

n
i=1 ∈ I and i ∈ {1, . . . , n} the i-th partial k-th

order Taylor approximation to f at x0 by

hi(x) :=

k∑
l=0

1

l!
f (l)(x01, . . . , x0i, xi+1, . . . , xn)((x− x0)[i], . . . , (x− x0)[i]),

where (x − x0)[i] := (x1 − x01, . . . , xi − x0i, 0, . . . , 0) ∈ Rn. Here we consider f (l)

as an l-multilinear form from Rn × · · ·Rn to R. Note that h := hn is the k-th
order Taylor approximation to f at x0. Let h0 := f . Then the functions h0 and
h1 join Ck-smoothly at the intersection of the hyperplane x1 = x01 with I, since
by definition of (x − x0)[1] only the iterated derivatives with respect to x1 occur
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non-trivially in h1. Similarly hi−1 and hi join Ck-smoothly at the intersection of
the hyperplane xi = x0i with I, for all i ∈ {2, . . . , n}. Therefore, putting

gi(x) :=

{
hi−1(x), x ∈ I, xi < x0i,

hi(x), x ∈ I, xi ≥ x0i

for i ∈ {1, . . . , n}, we have that gi ∈ Ck(I,R). On J−
i := {x ∈ I | xi < x0i} and

J+
i := {x ∈ I | xi > x0i}, we have hi−1|J−

i
= gi|J−

i
, gi|J+

i
= hi|J+

i
. Hence, also

using that the image of T consists of continuous functions,

(Thi−1)(x0) = (Tgi)(x0) = (Thi)(x0),

since x0 ∈ J−
i ∩ J+

i . We conclude

(Tf)(x0) = (Th1)(x0) = · · · = (Thn)(x0) = (Th)(x0).

However, h only depends on (x0, f(x0), f
′(x0), · · · , f (k)(x0)). Therefore, there ex-

ists a function of these parameters which determines Tf(x0). Identifying f (l)(x0)
with vectors of iterated partial derivatives in RM(n,l) as described before, this
means that there is a function F : I × RN(n,k) → Rm such that

Tf(x0) = F
(
x0, f(x0), f

′(x0), · · · , f (k)(x0)
)

for all x0 ∈ I, f ∈ Ck(I,R), with N(n, k) :=
∑k

l=0 M(n, l). �
Proof of Theorem 3.5. We adapt the proof of Theorem 3.1 to the multidimen-
sional setting. By Proposition 3.6 for m = n and the localization on (small)
open sets which we proved before formulating Proposition 3.6, there is a func-
tion F : RN(n,k) → Rn such that for all f ∈ Ck(I,R), x ∈ I

Tf(x) = F (x, f(x), f ′(x), . . . , f (k)(x)).

Define S : Ck(I,R) → C(I,Rn) by

Sg(x) := T (exp(g))(x)/ exp(g)(x), g ∈ Ck(I,R), x ∈ I.

Then Sg(x)=F (x, exp(g)(x), . . . , exp(g)(k)(x))/ exp(g)(x) depends only on x, g(x)
and all derivatives of g up to g(k)(x). Therefore there is a functionG : I×RN(n,k) →
Rn such that

Sg(x) = G(x, g(x), . . . , g(k)(x)), g ∈ Ck(I,R), x ∈ I.

For any g1, g2 ∈ Ck(I,R) by the Leibniz rule

S(g1 + g2) = T (exp(g1) · exp(g2))/(exp(g1) · exp(g2))
= T (exp(g1))/ exp(g1) + T (exp(g2))/ exp(g2) = Sg1 + Sg2,
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i.e., S is additive in the function and derivative variables. We split any α ∈ RN(n,k)

as α = (αl)
k
l=0 where αl ∈ RM(n,l). Then for any x ∈ I and any α = (αl)

k
l=0 and

β = (βl)
k
l=0 ∈ RN(n,k) there are functions g1, g2 ∈ Ck(I,R) such that g

(l)
1 (x) = αl

and g
(l)
2 (x) = βl for all l ∈ {0, . . . , k}. Recall that all iterated partial derivatives

with indices 1 ≤ i1 ≤ · · · ≤ il ≤ n can be chosen independently. Therefore the
additivity of S is equivalent to the additivity of G in the sense that

G(x, α+ β) = G(x, α) +G(x, β), x ∈ I, α, β ∈ RN(n,k).

Since Sg = T (exp(g))/ exp(g) is a continuous function, we have that
G(x, g(x), · · · , g(k)(x)) is a continuous function of x for all g ∈ Ck(I,R). By The-
orem 2.6, applied with k instead of k − 1 to any coordinate function Gi : I → R

of G = (Gi)
n
i=1 (with respect to the canonical unit vector basis of Rn) separately,

there is a continuous function c : I → L(RN(n,k),Rn) so that

G(x, α) = c(x)(α) =

k∑
l=0

cl(x)(αl), x ∈ I, α = (αl)
k
l=0 ∈ RN(n,k),

with direct sum splitting c(x) =
∑k

l=0 cl(x), cl ∈ L(RM(n,l),Rn). The direct sum
splitting of c is a result of the coordinatewise application of Theorem 2.6.

For f ∈ Ck(I,R) with f > 0, let g := ln f . Then f = exp(g) and

Tf(x) = f(x) S(ln f)(x) = f(x)

k∑
l=0

cl(x)((ln f)
(l)(x)). (3.6)

Here the l-th derivative of ln f ∈ Ck(I,R) at x is identified with a vector in
RM(n,l). For l ≥ 2, in the regular derivative sense

(ln f)(l)(x) = (
f ′

f
)(l−1)(x) = (−1)l−1(l − 1)!(

f ′(x)
f(x)

)l + Pl(f(x), . . . , f
(l)(x)),

where f ′(x)l is the (tensor product) l-multilinear form

f ′(x)l(y1, . . . , yl) =
l∏

j=1

〈f ′(x), yj〉, y1, . . . , yl ∈ Rn,

and Pl is a sum of quotients of terms containing powers of f(x) of order ≤ l − 1
in the denominator and tensor product terms of derivatives in the numerator.

Therefore for f(x) ↘ 0, the order of singularity of f(x) (ln f)(l)(x) is f ′(x)l

f(x)l−1 ,

if f ′(x) �= 0, up to terms of smaller growth. Since Tf is continuous and hence
bounded on compact sets of I also for functions having zeros in I, in (3.6) we
need ck(x) = · · · = c2(x) = 0, x ∈ I. To be more precise, suppose that k ≥ 2,
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that x = 0 ∈ I for simplicity of notation and that the cube of side-length ε0 > 0
centered at 0 is contained in I. Choose any b = (bi)

n
i=1 ∈ (R>0)

n and consider
f(x) := 〈b, x〉 and Iε := {x = (xi)

n
i=1 ∈ I | xi > ε

2 , i ∈ {1, . . . , n}} for any
0 < ε < ε0. Let 11 := (1)ni=1 ∈ Rn. Then f |Iε ≥ ε

2 〈b, 11〉 > 0 and

∂l

∂xi1 · · · ∂xil

(ln f)(x) = (−1)l−1(l − 1)!

∏l
j=1 bij

〈b, x〉l

for x ∈ Iε, l ∈ N. Put ψl(b) := (−1)l−1(l − 1)! (
∏l

j=1 bij )1≤i1≤···≤il≤n . Let

h ∈ Ck(I,R) be a smooth strictly positive extension of f |Iε to I. By localization,
Tf(ε11) = Th(ε11) since ε11 ∈ Iε. Applying (3.6) to h yields at the point ε11 with
h|Iε = f |Iε

Tf(ε11) = Th(ε11) = c0(ε11) 〈b, ε11〉 ln(〈b, ε11〉)

+
k∑

l=1

cl(ε11)(ψl(b)) 〈b, ε11〉−(l−1).

Since Tf , c0, . . . , ck are continuous at 0, we get for ε → 0 that ck(0)(ψk(b)) = 0
for any b ∈ (R>0)

n. This implies ck(0) = 0. Recall that ck ∈ L(RM(n,k),Rn). If
k ≥ 3, we find successively in the same way ck−1(0) = 0, . . . , c2(0) = 0. Therefore
c2 = 0, . . . , ck = 0 on I and hence

Tf(x) = c0(x)f(x) ln f(x) + c1(x)(f
′(x))

for positive Ck-functions f . Note here that c0(x) can be identified with a vector in
Rn and c1(x) ∈ L(Rn,Rn). For general f ∈ Ck(I,R), which may be also negative
or zero, it has to be modified to

Tf(x) = c0(x)f(x) ln |f(x)|+ c1(x)(f
′(x)).

This is shown similarly as in part (ii) of the proof of Theorem 3.1 by proving that
T is odd, T (−f) = −T (f). �

3.3 An extended Leibniz rule

We study in this section some families of operator equations to which the Leibniz
rule belongs. These families turn out to be very rigid, in the sense that they admit
only very few “isolated” solutions, in our view a manifestation of the exceptional
role which the derivative plays in analysis.

We return to functions of one variable. Looking at derivations from a more
general point of view, we keep the operator T : Ck(I) → C(I), k ∈ N, but replace
the identity operation on the right-hand side of the Leibniz rule by some more
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general operators A1, A2 : Ck(I) → C(I) and study the solutions of the extended
Leibniz rule operator equation

T (f · g) = Tf ·A1g +A2f · Tg, f, g ∈ Ck(I).

Thus A1 = A2 = Id is the classical case of the Leibniz rule. Choosing A1f =
A2f = 1 for all f ∈ Ck(I) would result in the equation T (f · g) = Tf + Tg
mapping products to sums, as the logarithm does on the positive reals. However,
choosing g = 0, we conclude immediately that this equation only admits the trivial
solution T = 0. Therefore, adding operators A1, A2 to the formula plays a “tuning”
role, helping to create reasonable operators T which in some sense map products
to sums on classical function spaces.

The maps A1, A2 should be rather different from T since, for A1 = A2 = 1
2T ,

we would have the multiplicative equation T (f · g) = Tf · Tg, where bijective
solutions T : Ck(I) → Ck(I) have a very different form, e.g., for k = 0, Tf(x) =
|f(u−1(x))|p(x) {sgn f(u−1(x))} where u : I → I is a homeomorphism, cf. Milgram
[M], or for k ∈ N, Tf(x) = f(u−1(x)), where u : I → I is a diffeomorphism, cf.
Mrčun, Šemrl [MS] or Artstein-Avidan, Faifman, Milman [AFM].

Though, for A1 = A2 =: A, the operators T and A are closely intertwined by
the equation T (f ·g) = Tf ·Ag+Af ·Tg, there is more variability when solving an
operator equation for two unknown operators. Typically we have to impose a weak
assumption of “non-degeneration”, to guarantee that the operators are localized
and avoid examples like the above proportional one or the following:

Example. Define T : Ck(R) → C(R) and A : Ck(R) → C(R) by

Tf(x) := f(x)− f(x+ 1) , Af(x) :=
1

2
(f(x) + f(x+ 1)).

Then for all f, g ∈ Ck(R), T (f ·g) = Tf ·Ag+Af ·Tg since the mixed terms cancel.
This means that both operators are not localized. Here for functions with small
support supp f ⊂ (− 1

2 ,
1
2 ), we have Tf(x) = 2Af(x) = f(x) for all x ∈ (− 1

2 ,
1
2 ).

To be able to prove localization, we have to avoid that T and A are “locally
homothetic”, i.e., homothetic on functions with small support. To exclude this type
of “resonance” situation between T and A, we introduce the following condition
for the pair (T,A).

Definition. Let k ∈ N, I ⊂ R be an open set and T,A : Ck(I) → C(I) be
operators. The pair (T,A) is Ck-non-degenerate if, for every open interval J ⊂ I
and x ∈ J , there are functions g1, g2 ∈ Ck(I) with support in J such that zi :=
(Tgi(x), Agi(x)) ∈ R2 are linearly independent in R2 for i = 1, 2. We also assume
that, for every x ∈ R, there is g ∈ Ck(R) with Tg(x) = 0 and Ag(x) �= 1.

The first condition here is weaker than asking that T and A are not propor-
tional.
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We will assume a weak continuity assumption to simplify the proof of the
main theorem.

Definition. For k ∈ N, a map A : Ck(I) → C(I) is pointwise continuous provided

that, for any sequence (fn)n∈N of Ck(I)-functions and f ∈ Ck(I) such that f
(j)
n →

f (j) converge uniformly on all compact subsets of I for all j ∈ {0, . . . , k}, we have
pointwise convergence limn→∞ Afn(x) = Af(x) for every x ∈ I.

We now state the main result for the extended Leibniz rule equation.

Theorem 3.7 (Extended Leibniz rule). Let k ∈ N0. Assume that I ⊂ R is an open
interval and that T,A1, A2 : Ck(I) → C(I) are operators satisfying

T (f · g) = Tf ·A1g +A2f · Tg, f, g ∈ Ck(I). (3.7)

Suppose that (T,A1) are Ck-non-degenerate and that T,A1 and A2 are pointwise
continuous. Then T , A1 and A2 are localized.

There are three possible families of solutions for T and A1, A2, given by
the formulas below. They might be defined on disjoint subsets I1, I2 and I3 of the
interval I, being combined to yield a globally non-degenerate solution so that T
and A1, A2 have ranges in the continuous functions on I.

More precisely, there are three pairwise disjoint subsets I1, I2, I3 of I, one or
two of them possibly empty, with I2, I3 open, such that I = I1 ∪ I2 ∪ I3, and there
are functions a, d0, . . . , dk, p : I → R with p > 0 which are continuous on I \ N
where N := ∂I2 ∪ ∂I3, and functions γ ∈ C(I) and q ∈ C(I3) with q > 0 such that
A1−A2 = 2γT on Ck(I), and putting A := 1

2 (A1+A2), we have for all f ∈ Ck(I)
and x ∈ I1,

Tf(x) = a(x)
( k∑
l=0

dl(x) (ln |f |)(l)(x)
)
|f(x)|p(x){sgn f(x)},

Af(x) = |f(x)|p(x){sgn f(x)},
(3.8)

and for x ∈ I2,

Tf(x) = a(x) sin
( k∑
l=0

dl(x) (ln |f |)(l)(x)
)
|f(x)|p(x){sgn f(x)},

Af(x) = cos
( k∑
l=0

dl(x) (ln |f |)(l)(x)
)
|f(x)|p(x){sgn f(x)},

(3.9)

and for x ∈ I3,

Tf(x) =
1

2
a(x)

(
|f(x)|p(x){sgn f(x)} − |f(x)|q(x)[sgn f(x)]

)
,

Af(x) =
1

2

(
|f(x)|p(x){sgn f(x)}+ |f(x)|q(x)[sgn(x)]

)
.

(3.10)
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The terms {sgn f(x)} and [sgn f(x)] may be present in both formulas for T and A
or not at all, yielding different solutions.

The solution (3.8) requires that p(x) ≥ max{l ≤ k | dl(x) �= 0} to guarantee
that the range of T consists of continuous functions.

In (3.10), p(x) = 0 or q(x) = 0 are allowed, too, if the corresponding sign-
terms do not occur.

Conversely, let A1 := A+γT , A2 := A−γT where T and A are given by the
above formulas. Then (T,A1, A2) satisfy (3.7).

Remarks. (i) Theorem 3.7 shows that basically only three different types of com-
binations of operators (T,A1, A2) satisfying the extended Leibniz rule (3.7) are
possible. For k > 1, the first one is similar to the one for positive functions in
Corollary 3.4. Note that (ln |f |)(k)|f |p = ak|f |p−k(f ′)k + Qk,p where, for p ≥ k,
Qk,p is a polynomial in the function f and its derivatives, so that Tf(x) is well
defined by (3.8) for p ≥ p(x) (in the limit) also for functions f having zeros in x,
and equation (3.8) provides the solution in this situation, too. In (3.8), Tf depends
linearly on the highest derivative f (k), although with a factor which is a power of
f , e.g., for k = 2, Tf = ff ′′ − (f ′)2, Af = f2.

(ii) For k = 1, the first solution is similar to the one of the Leibniz rule in
Theorem 3.1, namely Tf = c0f ln |f | + c1f

′. Since (3.7) reminds of the addition
formula for the sin-function when logarithmic arguments occur, the second solution
is not surprising, cf. Proposition 2.13.

(iii) Note that only very few tuning operators A yield possible solutions of
(3.7), and that they then determine the main operator T to a large extent. E. g.
choosing A to be given by Af = |f |p{sgn f}, we get that Tf is a linear combination
of terms (ln |f |)(l) |f |p {sgn f}.

(iv) The following example shows that the three solutions in Theorem 3.7
may be combined on different subintervals of I to form a non-degenerate solution.

Example. Let I := (−1, 1) and f ∈ C(I). Define maps T,A on C(I) by

Tf(x) :=

⎧⎪⎨⎪⎩
1
x sin(x ln |f(x)|) f(x), x ∈ (−1, 0),

ln |f(x)| f(x), x = 0,
1
x (|f(x)|x − 1) f(x), x ∈ (0, 1),

Af(x) :=

⎧⎪⎨⎪⎩
cos(x ln |f(x)|) f(x), x ∈ (−1, 0),

f(x), x = 0,
1
2 (|f(x)|x + 1) f(x), x ∈ (0, 1).

On I1 := {0}, the pair (T,A) has the form of the first solution (3.8), on I2 :=
(−1, 0) the form of the second solution (3.9) and on I3 := (0, 1) the form of the
third solution (3.10). Note, however, that for x → 0, d(x) = x → 0, p3(x)− q(x) =
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x → 0 and that c2(x) = c3(x) =
1
x have a singularity at 0. Nevertheless, Tf and

Af define continuous functions on I since limy→0
sin(y)

y = 1 and

lim
x→0

1

x
(|f(x)|x − 1) = ln |f(x)| for f(x) �= 0.

For f(x) = 0, there is nothing to prove. Therefore T and Amap C(I) into C(I) and
satisfy (3.7). The solution is non-degenerate at zero: Just choose functions g1, g2
with small support and g1(0) = 3, g2(0) = 2. Then (gi(0) ln gi(0), gi(0)) ∈ R2 are
linearly independent for i = 1, 2.

(v) It is also possible to combine the two solutions involving derivative terms,
as the following example shows.

Example. Let I := (−1, 1), p > 1 and f ∈ C1(I). Define maps T,A on C1(I) by

Tf(x) :=

{
1
x sin(x f ′(x)

f(x) ) |f(x)|p, x ∈ (−1, 0),
f ′(x)
f(x) |f(x)|p, x ∈ [0, 1),

Af(x) :=

{
cos(x f ′(x)

f(x) ) |f(x)|p, x ∈ (−1, 0),

|f(x)|p, x ∈ [0, 1).

On [0, 1), the solution is of the first type (3.8), with (ln |f |)′ = f ′

f ; it could be

defined on R as well. But p ≥ 1 is required here. On (−1, 0), the solution is of
the second type (3.9) and requires only p > 0 to yield continuous functions. For
x → 0, d1(x) = x tends to zero and a(x) = 1/x has a singularity. This behavior
is needed to join the other solution in a continuous way. We note that there is
a delicate point about the continuity at zero. Both solutions are well defined for
p = 1. However, choosing p = 1 does not yield a solution T with range in the
continuous functions. Simply take f(x) = x. Then for p = 1, Tf(x) = 1 for x ≥ 0
while Tf(x) = sin(1) for x < 0; Tf is not continuous at 0. However, for any p > 1,
the range of T consists of continuous functions, since

|f
′(x)
f(x)

|f(x)|p − 1

x
sin(x

f ′(x)
f(x)

)|f(x)|p | ≤ 2|f(x)|p−1|f ′(x)|

as easily seen using | sin(t)| ≤ |t|, and this tends to zero as f tends to zero.

(vi) Let S : Ck(I) → C(I) satisfy the Leibniz rule and M : Ck(I) → C(I) be
multiplicative. Then the pointwise product T := S · M : Ck(I) → C(I) satisfies
equation (3.7) with A being given by A(f) := f ·M(f), f ∈ Ck(I). The solution
(3.8) is of this form.

Additional conditions will guarantee in the case k = 1 that the solutions have
a simple form:



3.3. An extended Leibniz rule 43

Corollary 3.8. Assume that T,A1, A2 : C1(I) → C(I) satisfy (3.7), with k = 1,
T �≡ 0, and that (T,A1) are C1-non-degenerate and pointwise continuous. Let
A := 1

2 (A1 +A2). Suppose further that T maps C∞(I) into C∞(I).
Then there are n,m ∈ N0 and a function c ∈ C∞(I) such that the solution of
(3.7) has one of the following two forms: either

Tf = c f ′ fn, Af = fn+1,

or

Tf = c (fn − fm), Af =
1

2
(fn + fm),

for any f ∈ C1(I). If additionally 0 ∈ I, T2 = 0 and T (2 Id) = 2, we have

Tf = f ′, Af = f.

Corollary 3.9. Assume that T,A1, A2 : C1(I) → C(I) satisfy (3.7), with k = 1,
T �≡ 0, and that (T,A1) are C1-non-degenerate and pointwise continuous. Let
A := 1

2 (A1 +A2). Suppose further that T maps linear functions into polynomials.
Then there are n,m ∈ N0 and a polynomial function c such that the solution of
(3.7) has one of the following two forms:
either

Tf = c f ′ fn, Af = fn+1,

or

Tf = c (fn − fm), Af =
1

2
(fn + fm),

for any f ∈ C1(I). If additionally T2 = 0 and T (2 Id) = 2, we have

Tf = f ′, Af = f.

In both corollaries, there is γ ∈ C(I) such that A1 = A+γT and A2 = A−γT .
Note that the second solution in both corollaries may be extended to any

f ∈ C(I).

We now turn to the proof of Theorem 3.7. We again start by showing that
T is localized.

Lemma 3.10. Under the assumptions of Theorem 3.7, we have

(i) T (0) = T (11) = 0 and A1(11) = A2(11) = 11.

(ii) If J ⊂ I is open and f1, f2 ∈ Ck(I) are such that f1|J = f2|J , then (Tf1)|J =
(Tf2)|J and (Aif1)|J = (Aif2)|J for i = 1, 2.
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Proof. (i) Choosing f = 0 in (3.7), we find for any x ∈ I and g ∈ Ck(I)

T (0)(x)
(
1−A1g(x)

)
= A2(0)(x)Tg(x).

By the Ck-non-degeneracy assumption, there is g ∈ Ck(I) with A1g(x) �= 1 and
Tg(x) = 0. Hence, T (0)(x) = 0, T (0) = 0. Therefore, 0 = A2(0)(x)Tg(x) for all
g ∈ Ck(I) which also yields A2(0) = 0. Taking g = 0 in (3.7), we get

Tf(x)A1(0)(x) = T (0)(x)
(
1−A2f(x)

)
= 0,

for all x ∈ I, f ∈ Ck(I). Hence also A1(0) =0.
Next, choose f = 1 in (3.7) to find

Tg(x)(1−A2(11)(x)) = T (11)(x)A1g(x), x ∈ I, g ∈ Ck(I).

By Ck-non-degeneracy, there are functions g1, g2 ∈ Ck(I) such that
(Tgi(x), A1gi(x)) ∈ R2 are linearly independent for i = 1, 2. Therefore the previ-
ous equation with g = g1 and g = g2 implies A2(11) = 11, T (11) = 0. Taking g = 11
in (3.7), we find similarly

Tf(x)(1−A1(11)(x)) = T (11)(x)A2f(x) = 0,

for all f ∈ Ck(I). This yields A1(11) = 11.

(ii) Let J ⊂ I be given and f1, f2 ∈ Ck(I) with f1|J = f2|J . Let g ∈ Ck(I)
with supp g ⊂ J . Then f1 · g = f2 · g. By (3.7)

Tf1 ·A1g +A2f1 · Tg = T (f1 · g) = T (f2 · g)
= Tf2 ·A1g +A2f2 · Tg,(

Tf1(x)− Tf2(x)
) ·A1g(x) =

(
A2f2(x)−A2f1(x)

) · Tg(x), x ∈ I.

For a given x ∈ J , choose g1, g2 ∈ Ck(I) with support in J such that
(Tgi(x), A1gi(x)) ∈ R2 are linearly independent for i ∈ 1, 2. The previous equa-
tion then yields for g = g1 and g = g2 that Tf1(x) = Tf2(x), A2f1(x) = A2f2(x),
i.e., Tf1|J = Tf2|J , A2f1|J = A2f2|J . The argument for A1f1|J = A1f2|J is
similar. �
Proof of Theorem 3.7. (i) Assume that (T,A1, A2) satisfy the extended Leibniz
rule (3.7). Then for all f, g ∈ Ck(I) and x ∈ I, using the symmetry in f and g,

T (f · g)(x) = Tf(x)A1g(x) +A2f(x)Tg(x) = Tg(x)A1f(x) +A2g(x)Tf(x),

hence Tf(x)(A1g(x) − A2g(x)) = Tg(x)(A1f(x) − A2f(x)). If A1 �≡ A2, there
is g ∈ Ck(I) and x ∈ I such that A1g(x) �= A2g(x). Then Tg(x) �= 0 since
otherwise Tf(x) = 0 for all f ∈ Ck(I) which would contradict the assumption of
non-degeneration of (T,A1), and therefore A1f(x)− A2f(x) = 2γ(x)Tf(x) holds

for all f ∈ Ck(I), where γ(x) := A1g(x)−A2g(x)
2Tg(x) . Since Tf,A1f,A2f are continuous
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functions, so is γ. Thus A1 −A2 = 2γT . Clearly, A1f(x) = A2f(x) is possible for
some x or all x ∈ I, with γ(x) = 0. Put A := 1

2 (A1 + A2). Then A1 = A + γT ,
A2 = T − γT . Equation (3.7) holds for (T,A) if A1 and A2 are replaced by the
one operator A.

In the following, we write equation (3.7) with T and A and analyze the
structure of these operators.

(ii) By Lemma 3.10 and Proposition 3.3 there are functions F̃ , B̃ : I×Rk+1 →
R such that for all f ∈ Ck(I) and x ∈ I

Tf(x) = F̃ (x, f(x), . . . , f (k)(x)), Af(x) = B̃(x, f(x), . . . , f (k)(x)).

We introduce operators S,R : Ck(I) → C(I) by Sh := T (exph), Rh := A(exph)
for all h ∈ Ck(I). Since the derivatives of exph of order l can be written as a
function of h and its derivatives of order ≤ l, the operators S and R are localized
as well, i.e., there exist functions F,B : I ×Rk+1 → R such that for all h ∈ Ck(I)
and x ∈ I

Sh(x) = F (x, h(x), . . . , h(k)(x)), Rh(x) = B(x, h(x), . . . , h(k)(x)).

Equation (3.7) yields for h1, h2 ∈ Ck(I)

S(h1 + h2) = T (exph1 exph2) = T (exph1)A(exph2) +A(exph1)T (exph2)

= S(h1)R(h2) +R(h1)S(h2). (3.11)

Let α = (αj)
k
j=0, β = (βj)

k
j=0 ∈ Rk+1 and x ∈ I be arbitrary. Choose h1, h2 ∈

Ck(I) with h
(j)
1 (x) = αj and h

(j)
2 (x) = βj for all j ∈ {0, . . . , k}. Then the operator

equation (3.11) is equivalent to the functional equation for F and B

F (x, α+ β) = F (x, α)B(x, β) + F (x, β)B(x, α) (3.12)

for all α, β ∈ Rk+1, x ∈ I.

We claim that for any fixed x ∈ I, B(x, ·) and F (x, ·) are continuous functions
on Rk+1. To verify this, take a sequence αn = (αn,j)

k
j=0 ∈ Rk+1 and α ∈ Rk+1 such

that αn → α in Rk+1. Consider the functions hn(t) :=
∑k

j=0
αn,j

j! (t− x)j , h(t) :=∑k
j=0

αj

j! (t−x)j . Then h
(l)
n → h(l) and fn := exp(hn)

(l) → f := exp(h)(l) converge

uniformly on all compact subsets of I for any l ∈ {0, . . . , k}. By the assumption
of pointwise continuity , we have Afn(x) → Af(x) and Tfn(x) → Tf(x) for all
x ∈ I. This means

B(x, αn,0, . . . , αn,k) = Afn(x) → Af(x) = B(x, α0, . . . , αk),

F (x, αn,0, . . . , αn,k) = Tfn(x) → Tf(x) = F (x, α0, . . . , αk).

Therefore for all x ∈ I, B(x, ·) and F (x, ·) are continuous functions which satisfy
(3.12). The solutions of (3.12) were studied in Chapter 2, Corollary 2.12.
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(iii) We now determine the form of Tf and Af for strictly positive functions
f > 0. By Corollary 2.12 for n = k + 1 there are vectors b(x), c(x), d(x) ∈ Rk+1

and a(x) ∈ R such that F (x, ·) and B(x, ·) have one of the following forms

(a) F (x, α) = 〈b(x), α〉 exp(〈c(x), α〉), B(x, α) = exp(〈c(x), α〉);
(b) F (x, α) = a(x) exp(〈c(x), α〉) sin(〈d(x), α〉),

B(x, α) = exp(〈c(x), α〉) cos(〈d(x), α〉);
(c) F (x, α) = a(x) exp(〈c(x), α〉) sinh(〈d(x), α〉),

B(x, α) = exp(〈c(x), α〉) cosh(〈d(x), α〉);
(d) F (x, α) = a(x) exp(〈c(x), α〉), B(x, α) = 1

2 exp(〈c(x), α〉), α ∈ Rn.

Since A(11) = 11 by Lemma 3.10, 1 = A(11)(x) = R(0)(x) = B(x, 0). Therefore the
last case (d) is impossible here since in that case B(x, 0) = 1

2 .

For positive functions f ∈ Ck(I), f > 0, let h := ln f , f = exph, so that in
case (a) with b = (bl)

k
l=0, c = (cl)

k
l=0

Af(x) = R(ln f)(x) = B(x, (ln f)(x), . . . , (ln f)(k)(x))

= exp
( k∑
l=0

cl(x)(ln f)
(l)(x)

)
,

T f(x) = S(ln f)(x) = F (x, (ln f)(x), . . . , (ln f)(k)(x))

=
( k∑
l=0

bl(x)(ln f)
(l)(x)

)
exp

( k∑
l=0

cl(x)(ln f)
(l)(x)

)
. (3.13)

Depending on x ∈ I, one of the formulas (a), (b) or (c) might apply. Let I1, I2
and I3, respectively, denote the subsets of I where Tf(x), Af(x) is determined by
(a), (b) and (c), respectively. For (a) and f > 0, we just wrote down the formulas
in (3.13). However, the sets are restricted by the requirement that Tf and Af
have to be continuous functions for all f ∈ Ck(I). Suppose that the interior of
the domain I1 where (3.13) gives the solution – for f > 0 – is not empty. Let
us show that the functions c0, . . . , ck and b0, . . . , bk have to be continuous in the
interior of I1. Indeed, starting with constant functions f , the continuity of Af
and Tf yields that c0 and b0 are continuous. Then choosing linear functions, it
follows that c1 and b1 are continuous. Repeat the argument with polynomials of
successively higher degree.

Since T and A are localized and have to be well defined also for functions
having zeros in the interior of I1, the formula for Af should never become singular,
i.e., unbounded when f ↘ 0. The argument for this is exactly the same as in the

proof of Theorem 3.1. However, (ln f)(l) is of order ( f
′

f )l, if f ′ �= 0 and l ∈ N, up

to terms of smaller order. Therefore we must have c1 = · · · = ck = 0 in (3.13)
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on I1. Put p(x) := c0(x). Then for f > 0, x ∈ I1,

Af(x) = f(x)p(x), T f(x) =
( k∑
l=0

bl(x)(ln f)
(l)(x)

)
f(x)p(x). (3.14)

The continuity of Tf for all f requires that p(x) ≥ max{l ≤ k | bl(x) �= 0} =: P (x).
If P (x) = 0, we need p(x) > 0. In this case, (3.14) provides a solution of (3.7) for
positive f .

The case (b) for T and A on I2 yields the formula

Af(x) = exp
( k∑
l=0

cl(x)(ln f)
(l)(x)

)
cos

( k∑
l=0

dl(x)(ln f)
(l)(x)

)
,

with continuous coefficient functions cl, dl on I2. Continuity for functions with
zeros requires that c1 = · · · = ck = 0. Then with p(x) := c0(x), for f > 0, x ∈ I2,

Af(x) = cos
( k∑
l=0

dl(x)(ln f)
(l)(x)

)
f(x)p(x),

T f(x) = a(x) sin
( k∑
l=0

dl(x)(ln f)
(l)(x)

)
f(x)p(x), (3.15)

where p(x) > 0 is required and a is continuous in I2. In the last case (c)

Af(x) = exp
( k∑
l=0

cl(x)(ln f)
(l)(x)

)
cosh

( k∑
l=0

dl(x)(ln f)
(l)(x)

)
,

and here necessarily c1 = · · · = ck = 0 and d1 = · · · = dk = 0. Then with
p(x) := c0(x) + d0(x) and q(x) := c0(x) − d0(x), Af(x) =

1
2 (f(x)

p(x) + f(x)q(x)),
p(x) ≥ 0, q(x) ≥ 0, yielding for f > 0, x ∈ I3

Af(x) =
1

2

(
f(x)p(x) + f(x)q(x)

)
, T f(x) = a(x)

(
f(x)p(x) − f(x)q(x)

)
. (3.16)

To be non-degenerate, the solution on I2 given by (3.15) requires that some
of the continuous functions dl are non-zero at any x ∈ I2, and the one on I3 given
(3.16) requires that p(x) �= q(x) for any x ∈ I3. They can be joined to another
one of the three solutions only when the dl or p− q tend to zero and at the same
time |a| becomes unbounded. Hence, by continuity of the parameter functions, the
subsets I2 and I3 are open. Of course, any of the sets I1, I2 or I3 could be empty;
the solution may be given on all of I by just one of the formulas, this being the
most natural case. However, I1 is not necessarily open. In the first example in
Remark (ii) after Theorem 3.7 we had I1 = {0}.
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(iv) It remains to determine the formulas for Tf(x) and Af(x) when f ∈
Ck(I) is negative or zero. Since Af and Tf are continuous and the coefficient func-
tions are continuous on their domains, the localized formulas (3.14), (3.15),(3.16)
extend by continuity to Tf(x) and Af(x) when f(x) = 0 and x is an isolated zero
of f or a limit of isolated zeros. If x ∈ J ⊂ I, J open and f |J = 0, we know by
Lemma 3.10 that Tf(x) = 0.

Suppose now that f ∈ Ck(I) and x ∈ I are such that f(x) < 0. We may
assume that f < 0 on the full set I, since Tf(x) and Af(x) are determined locally
near x with f(x) < 0. For constant functions f(x) = α0, g(x) = β0, we have

Tf(x) = F̃ (x, α0, 0, . . . , 0), Af(x) = B̃(x, α0, 0, . . . , 0).

Therefore the extended Leibniz rule (3.7) yields

F̃ (x, α0β0, 0, . . . , 0) = F̃ (x, α0, 0, . . . , 0)B̃(x, β0, 0, . . . , 0)

+ B̃(x, α0, 0, . . . , 0)F̃ (x, β0, 0, . . . , 0).

Proposition 2.13 gives the possible solutions of this functional equation. They
imply for constant functions f having negative values, too, that one of the following
three cases can occur:

Tf = b(ln |f |)|f |p{sgn f}, Af = |f |p{sgn f},
T f = b sin(d ln |f |)|f |p{sgn f}, Af = cos(d ln |f |)|f |p{sgn f},
T f = b(|f |p{sgn f} − |f |q[sgn f ]), Af =

1

2
(|f |p{sgn f}+ |f |q[sgn f ]),

leaving out the variable x. The fourth solution in Proposition 2.13 is not applicable
since there B(11) = 1

2 �= 1.
In the first two cases and in the last case when both sgn f -terms are present

or both are absent, we have T (−11) = 0 and A(−11) ∈ {11,−11}. Then by (3.7),
T (−f) = Tf A(−11)+Af T (−11) = Tf A(−11). Hence T is even or odd, depending
on whether A(−11) = 1 or A(−11) = −1. For A, we have similarly A(−f) =
Af A(−11), by the same arguments as in the proof of Proposition 2.13. In the
last case, when the sgn f -terms are different, T and A are neither even nor odd.
The determination of T (−f) and A(−f) in this case is similar to the last case in
the proof of Proposition 2.13. Using this, formulas (3.14), (3.15) and (3.16) yield
formulas (3.8), (3.9) and (3.10) in Theorem 3.7 for general functions f ∈ Ck(I).

Conversely, the operators T and A defined by these formulas satisfy (3.7). To
check this, e.g., in the case of (3.9), use the addition formula for the sin-function
and (ln |fg|)(l) = (ln |f |)(l) + (ln |g|)(l). This ends the proof of Theorem 3.7. �
Proof of Corollary 3.8. The operator T defined by (3.9) does not map C∞-func-
tions to C∞-functions, since – possibly large order – derivatives of Tf will become
singular in points where f has zeros. The operator given by (3.8) for k = 1 has
the form

Tf = (bf ln |f |+ af ′) |f |q{sgn f},
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q = p−1. Choosing for f constant or linear functions, we conclude that a, b, q ∈ C∞

is required. Since |f |q{sgn f} has to be a C∞-function for any C∞-function f , we
moreover need that |f |q{sgn f} = fn for a suitable n ∈ N0. If b would not be zero,
a suitable derivative of Tf would have a singularity of order ln |f | when |f | ↘ 0.
Hence Tf = af ′fn in the case of (3.8). Similarly, the solution (3.10) maps C∞-
functions into C∞-functions if and only if Tf = a(fn−fm) for suitable n,m ∈ N0

and a ∈ C∞. Both solutions cannot be combined on disjoint subsets partitioning I
since f ′ cannot be continuously approximated by differences fN − fM , in general.
Therefore we have two solutions defined on the full set I.

If additionally T2 = 0, the second solution would require n = m and then
T ≡ 0. Thus only the first solution is possible, with 2 = T (2 Id)(x) = a(x)2n+1xn,
i.e., a(x) = (2x)−n. Since x = 0 ∈ I and a ∈ C∞(I), it follows that n = 0 and
a ≡ 11, i.e., Tf = f ′ and Af = f for all f ∈ C1(I). �
Proof of Corollary 3.9. The operator T defined by (3.9) does not map arbitrary
linear functions f(x) = cx, c ∈ R to polynomials, if T �≡ 0. In the case of (3.8), T
again has the form

Tf = (bf ln |f |+ af ′) |f |q{sgn f}.
This will not yield polynomials for all linear functions f unless b ≡ 0, q = n ∈ N0

and a is a polynomial function, i.e., Tf = af ′fn, Af = fn+1 for all f ∈ C1(I).
Again, (3.10) yields the second solution with p = n, q = m ∈ N0.
If additionally T2 = 0, the second solution requires n = m, i.e., T ≡ 0. In

the case of the first solution T (2 Id) = 2 gives 2 = T (2 Id)(x) = a(x)2n+1xn, i.e.,
a(x) = (2x)−n. However, a is only a polynomial if n = 0, a ≡ 11. Then Tf = f ′

and Af = f for all f ∈ C1(I). �

3.4 Notes and References

The basic result on the Leibniz rule equation, Theorem 3.1, is due to König,
Milman [KM1]. The case k = 0 was shown before by Goldmann, Šemrl [GS].

Lemma 3.2 and Proposition 3.3 are taken from [KM1]. For k = 1, Theorems
3.5 and 3.7 were shown in [KM1], too.

The logarithm F = log satisfies F (xy) = F (x) + F (y) for positive x, y > 0.
However, there do not exist a function F : R → R and constants c, d ∈ R such
that F (xy) = cF (x)+dF (y) holds for all real numbers x, y ∈ R. A function of this
type sending products to sums requires replacing the constants c, d by functions,
yielding in the simplest case the Leibniz rule in R. On the real line R or the
complex plane C, there is the following version of the Leibniz rule:

Proposition 3.11. (a) Let F : R → R be a measurable function satisfying

F (xy) = F (x)y + xF (y), x, y ∈ R. (3.17)

Then there is d ∈ R such that F (x) = d x ln |x|, x ∈ R.
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(b) Let F : C → C be a measurable function satisfying

F (zw) = F (z)w + zF (w), z, w ∈ C.

Then there is d ∈ C such that F (z) = d z ln |z|, z ∈ C.

Proof. (a) F (1) = F (12) = 2F (1) implies F (1) = 0. Similarly F (−1) = 0, which
implies F (−x) = −F (x). For xy �= 0,

F (xy)

xy
=

F (x)

x
+

F (y)

y
.

Hence, H(s) := F (es)/es is measurable and additive. By Proposition 2.1 there is
d ∈ R with H(s) = ds. Then

F (x) = dx ln |x|.

(b) We show by induction on n that for any n ∈ N and z ∈ C, F (zn) =
nzn−1F (z): For n = 2 this is the assumption with z = w. Assuming this for n,
we have F (zn+1) = F (zn)z + znF (z) = (n+ 1)znF (z). Let ζ ∈ C be an n-th root
of unity. Then 0 = F (1) = F (ζn) = nζn−1F (ζ) implies that F (ζ) = 0. Define

G(z) := F (z)
z for z ∈ C \ {0}. Then G(zw) = G(z) + G(w) for all z, w ∈ C \ {0}.

Hence φ : R → C given by φ(t) := G(exp(it)), t ∈ R, is additive and measurable.
By Proposition 2.1 there is c ∈ C such that φ(t) = ct for all t ∈ R. Since F (ζ) = 0
for all roots of unity ζ, c = 0, i.e., G|S1 = 0. The polar decomposition of z ∈
C \ {0}, z = |z| exp(it) yields that G(z) = G(|z|) + G(exp(it)) = G(|z|) and for
z, w ∈ C \ {0}, G(|zw|) = G(|z|) +G(|w|). Similarly as in part (a) we find d ∈ C

such that G(z) = G(|z|) = d ln |z|. Hence F (z) = dz ln |z| for all z ∈ C \ {0}.
Clearly F (0) = 0. �
Remark. The equation

F (xy) = F (x)B(y) +B(x)F (y), x, y ∈ R (3.18)

for unknown functions F,B : R → R is a relaxation of equation (3.17). Proposition
2.13 gives the four (real) solutions of (3.18). The first of these, B(x) = |x|d{sgnx},
F (x) = b · ln |x| · B(x) has the property that B has a smaller order of growth as
|x| → ∞ than F . Comparing this with the operator functional equation (3.7),

T (f · g) = Tf ·A1g +A2f · Tg, f, g ∈ Ck(I),

which has an algebraically similar form, the first solution of (3.7) has the property
that A = A1 = A2 has a smaller order of differentiability than T .

We may also consider the Leibniz rule on real or complex spaces of polynomi-
als or analytic functions. For K ∈ {R,C}, let P(K) denote the space of polynomials
with coefficients in K and E(K) be the space of real-analytic functions (K = R)
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or entire functions (K = C) and C(K) be the space of continuous functions on K.
Moreover, let Pn(K) be the subset of P(K) consisting of polynomials of degree
≤ n.

On these spaces, there are different solutions of the Leibniz rule than those
given in Theorem 3.1.

Example 1. Define T : P(K) → P(K) by Tf := deg f · f , f ∈ P(K), where deg f
denotes the degree of the polynomial f . Since deg(f ·g) = deg f+deg g, T satisfies
the Leibniz rule T (f · g) = Tf · g + f · Tg on P(K).

Example 2. Fix x0 ∈ K. For f ∈ E(K), let n(f) denote the order of zero of f in
x0 (which may be zero if f(x0) �= 0). Define T : E(K) → E(K) by Tf := n(f) · f .
Since n(f · g) = n(f) + n(g), T satisfies the Leibniz rule T (f · g) = Tf · g + f · Tg
on E(K).

However, in both examples the operator T is not pointwise continuous in the
sense that there are functions fm, f ∈ P(K) or E(K) where fm → f converges
uniformly on compact sets but where Tfm(x) does not converge to Tf(x) for
some x ∈ K, since the degree and the order of zero are not pointwise continuous
operations. Let us therefore assume that T : P(K) → C(K) is pointwise continuous
and satisfies the Leibniz rule. Does this guarantee that we have the same solutions
as in Theorem 3.1? Again the answer is negative, as the following example due to
Faifman [F3] shows:

Example 3 (Faifman).. If T : P(K) → C(K) satisfies the Leibniz rule T (f · g) =
Tf · g + f · Tg for all f, g ∈ P(K), then for all f1, . . . , fn ∈ P(K)

T (

n∏
j=1

fj) =

n∑
j=1

(

n∏
i=1,i 	=j

fi) Tfj . (3.19)

Let us first consider the complex case K = C. Since any polynomial f ∈ P(C)
factors as a product of linear terms, f(z) = a

∏n
j=1(z − zj), with zeros zj ∈ C

and a ∈ C \ {0}, it suffices to define T (az + b), in order to define an operator
T : P(C) → C(C) by applying (3.19), and then verify that this map T actually
satisfies the Leibniz rule. Let φ : C → C be given by φ(z) := z ln |z|, with φ(0) = 0.
Define

T (az + b) := φ(a)z + φ(b). (3.20)

This map T satisfies the Leibniz rule on P1(C) in the sense that T (c(az + b)) =
T (c)(az + b) + cT (az + b), since φ satisfies the Leibniz rule on C. In terms of the
elementary symmetric polynomials we have for f ∈ Pn(C)

f(z) = a
n∏

j=1

(z − zj) =

n∑
k=0

(−1)k (
∑

1≤j1<···<jk≤n

azj1 · · · zjk) zn−k. (3.21)
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Using (3.20) and requiring that (3.19) holds, yields the formula for T : P(C) →
C(C)

(Tf)(z) =

n∑
k=0

(−1)k (
∑

1≤j1<···<jk≤n

φ(azj1 · · · zjk)) zn−k, (3.22)

as induction on n ∈ N shows. Conversely, one checks that the operator T defined by
(3.22) satisfies the Leibniz rule, using once more that φ satisfies it on C. Moreover,
this operator T is pointwise continuous on P(C), i.e., for any fm, f ∈ P(C) with
fm → f uniformly on compact sets, we have Tfm(z) → Tf(z) for any z ∈ C, since
the zeros depend continuously on the polynomials (in appropriate order) and φ
is continuous. We remark that the pointwise continuity statement also holds, if
deg f < lim infm→∞ deg fm.

Real polynomials f ∈ P(R) may be factored into linear and irreducible
quadratic factors, the latter corresponding to two complex conjugate zeros. Ap-
plying the Leibniz rule (in C) to such factors yields the real variable requirement
for T

T (x2 + px+ q) =
1

2
(p ln |q|)x+ q ln |q|, p2 < 4q.

Using this together with (3.20) and (3.19) then defines a pointwise continuous
operator T : P(R) → C(R) satisfying the Leibniz rule. In both cases K ∈ {R,C},
the image of T is actually again in P(K).

The question whether pointwise continuous operators T : E(K) → C(K) on
the space of entire functions satisfying the Leibniz rule are of the same form as in
Theorem 3.1 is open. The previous example does not extend to the space of entire
functions E(K) since the (polynomial) functions given by fm(z) = (1 + z

m )m tend
to f(z) = exp(z) uniformly on compact sets, but Tfm(z) = −z(1 + z

m )m−1 lnm
for fixed z �= 0 is a divergent sequence.

The extended Leibniz rule which was investigated in Theorem 3.7 in the
space Ck(I) may also be studied in the Schwartz space of complex-valued rapidly
decreasing functions S(R,C). The operator solutions Af are then expressed by
integer powers of the functions f and their complex conjugates, and the images Tf
are linear combinations of logarithmic derivatives of f and its complex conjugate
or a difference of powers of f and its complex conjugate. We refer to König,
Milman [KM13], where also criteria are given such that A is the identity and
T the derivative. The extended Leibniz rule in S(R,C) has applications to joint
characterizations of the Fourier transform and the derivative [KM13].
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