
Chapter 2

Regular Solutions of Some
Functional Equations

The derivative D is an operator which acts as a map from the continuously differ-
entiable functions C1(R) on R to the continuous functions C(R). It satisfies the
Leibniz and the chain rule

D(f · g) = Df · g + f ·Dg,

D(f ◦ g) = (Df) ◦ g ·Dg, f, g ∈ C1(R).

In this book, we show that operators T : C1(R) → C(R) obeying either the
Leibniz or the chain rule operator equation

T (f · g) = Tf · g + f · Tg, (2.1)

T (f ◦ g) = (Tf) ◦ g · Tg, f, g ∈ C1(R) (2.2)

are close to the standard derivative. Actually, we completely establish the form of
the solutions of either equation. We also consider more general operator equations
modeling second-order derivatives or the Laplacian. Only very mild conditions are
imposed on the map T .

The basic question mentioned already in the introduction is: Are classical
operators in analysis like differential operators characterized by very simple prop-
erties such as (2.1) or (2.2), and additional initial conditions, e.g., T (−2 Id) = −2?

Chapters 3 and 4 will be devoted to determine and describe all solutions of
either equation (2.1) or (2.2). The first step in solving equations like (2.1) and (2.2)
is to show that the operator T is localized, i.e., that there is a function F : R3 → R,
such that

Tf(x) = F
(
x, f(x), f ′(x)

)
, f ∈ C1(R), x ∈ R.

At this point, the function F and its possible regularity is unknown, but the
operator equation for T translates into a functional equation for F , in the above
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10 Chapter 2. Functional equations

cases into either

F (x, α0β0, α1β0 + α0β1) = F (x, α0, α1)β0 + F (x, β0, β1)α0,

or
F (x, z, α1β1) = F (y, z, α1)F (x, y, β1),

for all x, y, z, α0, β0, α1, β1 ∈ R.

Functional equations, of course, are a classic subject, and there is a vast
literature on the topic, cf., e.g., the books of Aczél [A], Aczél, Dhombres [AD],
Járai [J], Székelyhidi [Sz] or the recent book by Rassias, Thandapani, Ravi, Senthil
Kumar [RTRS]. Much less is known about the operator equations which we will
discuss in this book, and the specific functional equations which they generate.

In this chapter, we determine the solutions of a few functional equations
which originate by localization and various reduction steps from the operator
equations we will study, identifying the representing function F up to some para-
metric functions. To be self-contained, we provide the proofs of these results, even
though most of them are found in, e.g., [A] or [AD] or in more generality in [J] or
[Sz]. Some of the proofs are new, and we present them in more detail. In this chap-
ter we do not outline the general theory of functional equations as done, e.g., in
[J] or [Sz], but rather only solve those functional equations which will be relevant
in later chapters.

To show the regularity of the parameter functions occurring in the represent-
ing function F , we prove some new general continuity results under assumptions
which are easily verified in the case of the operator equations which we investigate.
A general reference when solutions of functional equations are smooth is Járai [J].

2.1 Regularity results for additive and multiplicative
equations

We start with the classical question when additive functions are linear.

Proposition 2.1. Let f : R → R be measurable and additive, i.e., satisfy the Cauchy
equation

f(x+ y) = f(x) + f(y), x, y ∈ R.

Then f is linear: there is c ∈ R such that f(x) = cx for all x ∈ R.

Clearly, additive functions satisfy f(rx) = rf(x) for all r ∈ Q. Thus, contin-
uous additive functions are linear, f(x) = cx with c = f(1), as already noted by
Cauchy.

Proof. Fix x �= 0 and define functions ϕ, ψ : R → R by

ϕ(t) := f(t)− f(x)

x
t, ψ(t) :=

1

1 + |ϕ(t)| , t ∈ R.
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By assumption ϕ and ψ are measurable with 0 ≤ ψ ≤ 1. Hence, ψ is integrable
on finite intervals. Note that ϕ(x) = 0, ϕ(t + x) = ϕ(t) + ϕ(x) = ϕ(t), and
ψ(t+ x) = ψ(t). Thus ϕ and ψ are periodic with period x. Therefore,∫ x

0

ψ(t)dt =
1

2

∫ 2x

0

ψ(t)dt =

∫ x

0

ψ(2t)dt,

0 =

∫ x

0

(
ψ(t)− ψ(2t)

)
dt =

∫ x

0

|ϕ(t)|
(1 + |ϕ(t)|)(1 + 2|ϕ(t)|)dt,

using |ϕ(2t)| = 2|ϕ(t)|. We conclude that ϕ = 0 almost everywhere, i.e., f(t) =
f(x)
x t for almost all t ∈ R. In particular, for x = 1, f(t) = f(1)t for almost all

t ∈ R. Hence, for any x �= 0, there is 0 �= t0 ∈ R such that f(t0) = f(x)
x t0 and

f(t0) = f(1)t0. Hence, f(x)
x = f(t0)

t0
= f(1), f(x) = f(1)x for all x �= 0. Obviously,

this also holds for x = 0. �

In general, additive functions are not linear: Let X ⊂ R be a Hamel basis of
R over Q (assuming the axiom of choice) and g : X → R be an arbitrary function.
Any x ∈ R can be written uniquely as x =

∑
i∈J λixi, xi ∈ X, λi ∈ Q, J a finite

index set. Define f : R → R by

f(x) =
∑
i∈J

g(xi)λixi, x =
∑
i∈J

λixi.

Then f is additive but not linear, unless g is constant. These pathological
functions need to be unbounded on any small interval.

Proposition 2.2. Let I ∈ R be a non-empty open interval and f : R → R be additive
and bounded on I. Then f is linear, f(x) = cx with c ∈ R.

Proof. Let |I| ≥ δ > 0 and M := supx∈I |f(x)|. Then for any t ∈ R with |t| < δ
there are x, y ∈ I with t = x− y,

|f(t)| = |f(x− y)| = |f(x)− f(y)| ≤ 2M.

Using the additivity again, we find for any s ∈ R with |s| < δ/n that |f(s)| ≤
2M/n. Let u ∈ R be arbitrary. Then, for any n ∈ N, there is r ∈ Q with |u− r| <
δ/n. We find∣∣f(u)− uf(1)

∣∣ = ∣∣f(u)− f(r) + rf(1)− uf(1)
∣∣

≤ ∣∣f(u− r)
∣∣+ |r − u|f(1) ≤ (

2M + δf(1)
)
/n,

which yields f(u) = f(1)u for all u ∈ R. �

The multiplicative analogue of Proposition 2.1 is
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Proposition 2.3. Let K : R \ {0} → R be measurable, not identically zero and
multiplicative, i.e.,

K(uv) = K(u)K(v), u, v ∈ R.

Then there is p ∈ R such that, for all u ∈ R, either K(u) = |u|p or K(u) =
|u|p sgn(u).
Proof. Since K is not identically zero, K(u) �= 0 if u �= 0. Therefore, we may define
f : R → R by f(x) = ln |K(ex)|. Then, for any x, y ∈ R, f(x + y) = f(x) + f(y).
Since f is measurable, too, by Proposition 2.1 there is p ∈ R such that f(x) = px
for all x ∈ R. Hence, |K(u)| = up for any u > 0. Since K(u) = K(

√
u)2 > 0,

we get K(u) = up for u > 0. Further, K(−1)2 = K(1)2 = K(1) = 1 implies
that K(−1) ∈ {+1,−1}. Then K(−u) = K(−1)K(u) implies that K(u) = |u|p or
K(u) = |u|p sgn(u), depending on whether K(−1) = 1 or K(−1) = −1. �

For the complex version of this result, we assume continuity. For z∈C�{0},
let sgn z := z

|z| . Also put sgn 0 := 0.

Proposition 2.4. Let f : C → C be continuous, not identically zero and multiplica-
tive,

f(zw) = f(z)f(w), z, w ∈ C.

Then there are p ∈ C with Re(p) ≥ 0 and m ∈ Z such that

f(z) = |z|p(sgn z)m, z ∈ C.

We prove Proposition 2.4 by applying the following proposition which we
need later not only for functions defined on C but on Cn. For z = (zj)

n
j=1, d =

(dj)
n
j=1 ∈ Cn, we denote by 〈·, ·〉 the linear form – not the scalar product – on Cn,

〈d, z〉 = ∑n
j=1 djzj . Moreover we put z̄ = (z̄j)

n
j=1.

Proposition 2.5. Let n ∈ N and suppose that F : Cn → C� {0} is continuous and
satisfies

F (z + w) = F (z) · F (w), z, w ∈ Cn.

Then there are c, d ∈ Cn such that

F (z) = exp(〈c, z〉+ 〈d, z̄〉), z ∈ Cn.

Proof of Proposition 2.5. Write z ∈ Cn as z = x + iy, x, y ∈ Rn and F in polar
decomposition form,

F (z) = G(x+ iy) exp
(
iH(x+ iy)

)
.

where G : Cn → R>0 is continuous and H : Cn → R may be chosen to be
continuous, too, since it may be constructed from continuous branches. Note that
H is defined on Cn and not on n-fold products of strips, so that it does not yield
an injective representation of F . (E.g., for n = 1 and F (z) = exp(2z), we would
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have H(x+ iy) = 2y and we would not identify 2y = +π and −π for y = +π
2 and

y = −π
2 .) Then, for all x, y, u, v ∈ Rn,

G
(
(x+ u) + i(y + v)

)
= G(x+ iy)G(u+ iv),

H
(
(x+ u) + i(y + v)

)
= H(x+ iy) +H(u+ iv) + 2πk,

for some k ∈ Z which is independent of x, y, u, v since H is continuous. Define
Φ : R2n → R by either Φ(x, y) := lnG(x+ iy) or Φ(x, y) := H(x+ iy)+2πk. Then
Φ is continuous and additive,

Φ(x+ u, y + v) = Φ(x, y) + Φ(u, v).

Selecting u = y = 0 and renaming v as y, we get Φ(x, y) = Φ(x, 0) + Φ(0, y)
and similarly Φ(x + u, 0) = Φ(x, 0) + Φ(u, 0). If x = (xj)

n
j=1 =

∑n
j=1 xjej ,

where (ej) denotes the canonical unit vector basis in Rn, we have by additiv-
ity Φ(x, 0) =

∑n
j=1 Φ(xjej , 0). Proposition 2.1 yields that there are αj , βj ∈ R

such that Φ(xjej , 0) = αjxj and Φ(0, yjej) = βjyj . Hence with α = (αj)
n
j=1,

β = (βj)
n
j=1, a := 1

2 (α− iβ) and b := 1
2 (α+ iβ) ∈ Cn,

Φ(x, y) = 〈α, x〉+ 〈β, y〉 = 〈a, z〉+ 〈b, z̄〉.
This means that G(z) = exp(Φ(x, y)) = exp(〈a, z〉+〈b, z̄〉), and with different

vectors ã, b̃ ∈ Cn, H(z) = 〈ã, z〉+ 〈b̃, z̄〉 − 2πk, so that

F (z) = exp(〈c, z〉+ 〈d, z̄〉), c := a+ iã, d := b+ ib̃ ∈ Cn. �

Proof of Proposition 2.4. We have f(w) �= 0 for w �= 0 since f �≡ 0. Define F :
C → C� {0} by F (z) := f(exp z). Then F is continuous and

F (z + w) = F (z)F (w), z, w ∈ C.

By Proposition 2.5 with n = 1, F (z) = exp(cz + dz̄), hence f(w) = wcw̄d, w ∈ C.
For w �= 0, let sgn(w) := w

|w| . Then f(w) = |w|p sgn(w)q with p = c + d ∈ C and

q = c − d ∈ C. Since f is continuous, q has to be an integer, q = m ∈ Z. Since f
is bounded near zero, Re(p) ≥ 0 is required. �

In later applications of Proposition 2.1, the measurable additive function f
will actually depend on parameters or independent variables, so the linearity factor
c will depend on these parameters. To prove the continuous dependence of c on
the variables, we use the following result. Before formulating it, we introduce some
notations. Let N0 := N ∪ {0}. For n ∈ N, k ∈ N0, I ⊂ Rn open, let

Ck(I,R) := {f : I → R | f is k-times continuously differentiable}
and C∞(I,R) :=

⋂
k∈N

Ck(I,R), C(I,R) := C0(I,R). Let l ∈ N, f ∈ Cl(I,R).

By Schwarz’ theorem, the l-th derivative f (l)(x) of f at x ∈ I can be rep-
resented by the M(n, l) :=

(
n+l−1
n−1

)
independent l-th order partial derivatives
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( ∂lf(x)
∂xi1

···∂xil
)1≤i1≤···≤il≤n. For k ∈ N, let N(n, k) :=

∑k−1
l=0 M(n, l) =

(
n+k−1

n

)
.

Then, using this representation of derivatives, we put

Jk(x, f) :=
(
f(x), . . . , f (k−1)(x)

) ∈ RN(n,k), f ∈ Ck−1(I,R), x ∈ I.

Theorem 2.6. Let n ∈ N, k ∈ N0 and I ⊂ Rn be an open set, possibly unbounded.
Let B : I × RN(n,k) → R be a function satisfying

(a) B(x, v1 + v2) = B(x, v1) +B(x, v2), x ∈ I , vi ∈ RN(n,k).

(b) B( · , Jk( · ; f)) is a continuous function from I to R for all f ∈ C∞(I,R).

Then there is a continuous function c : I → RN(n,k) so that

B(x, v) =
〈
c(x), v

〉
, x ∈ I, v ∈ RN(n,k).

By 〈 · , · 〉 we denote the standard scalar product on the appropriate RN -space, here
N = N(n, k). Then

B
(
x, Jk(x, f)

)
=

k−1∑
l=0

〈cl(x), f (l)(x)〉, x ∈ I, f ∈ Ck−1(I,R),

with continuous functions cl : I → RM(n,l).

For k = 0, the variable v and Jk( · ; f) are not present in (a) and (b).

Proof. To keep the notation simple, we give the proof only in dimension n = 1,
although the arguments in higher dimensions follow the same basic idea. For n = 1,
we may assume that I is an open interval. We proceed by induction on k = N(1, k).
For k = 0 there is nothing to prove. Assume k ∈ N and that the result holds for
k − 1.

(i) Define A := {x ∈ I | B(x, · , 0, . . . , 0) : R → R is discontinuous}. We
claim that A has no accumulation points in I. Assume to the contrary that xm ∈
A → x∞ ∈ I. We may assume that (xm) is strictly monotone, say decreasing, so
that xm > xm+1 > x∞. Fix a smooth, non-negative cut-off function ψ ∈ C∞(R)
with ψ|R�[−1,1] = 0, maxψ = ψ(0) = 1 and ψ(l)(0) = 0 for all l ∈ N. Denote

cl := max |Dlψ|. For m ∈ N, let

δm := min
(
1
2 min

{|xm − xj | : 1 ≤ j ≤ ∞, m �= j
}
, 1

2m

)
.

By assumption (a), B(xm, · , 0 . . . , 0) : R → R is an additive function which is
discontinuous for each m ∈ N. By Proposition 2.2 it must be unbounded on
(0, ε) for any ε > 0. Therefore, we may choose 0 < ym < exp

( − 1
δm

)
with

|B(xm, ym, 0, . . . , 0)| > 1. Define

gm(x) := ymψ

(
x− xm

δm

)
, x ∈ I.
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Then gm ∈ C∞(I) with gm(xm) = ym, g
(l)
m (xm) = 0 for all l ∈ N and gm(x) = 0 for

all x ∈ I with |x−xm| > δm. Moreover, |Dlgm| ≤ clymδ−l
m . Define g :=

∑
m∈N

gm.
We find, for any l ∈ N0,∑

m∈N

|Dlgm| ≤ cl
∑
m∈N

ymδ−l
m ≤ cl

∑
m∈N

δ−l
m exp

(
− 1

δm

)
< ∞,

so that g ∈ C∞(I). Note that g(xm) = ym since we have by definition of δj for any
m �= j that |xm − xj | ≥ 2δj so that gj(xm) = 0. Since xm → x∞ and ym → 0, we
have by continuity that g(x∞) = 0. Also g(l)(xm) = 0 for all l ∈ N, and again by
continuity g(l)(x∞) = 0 for all l ∈ N. Since B( · , Jk( · , g)) is a continuous function
by assumption (b),

B
(
xm, Jk(xm, g)

) −→ B
(
x∞, Jk(x∞, g)

)
= B(x∞, 0, . . . , 0) = 0.

However, |B(xm, Jk(xm, g))| = |B(xm, ym, 0, . . . , 0)| > 1, which is a contradiction.
Therefore, A has no accumulation points in I and its complement in I is dense in
I.

(ii) We next claim that A is empty. Take any x0 ∈ I. By (i) there is a
sequence (xm) with xm /∈ A, xm → x0. For all y0 ∈ R, B( · , y0, 0, . . . , 0) is
continuous on R, applying (b) to the constant function f(x) = y0, and there-
fore, B(xm, y0, 0, . . . , 0) → B(x0, y0, 0, . . . , 0). Hence, B(xm, · , 0, . . . , 0) →
B(x0, · , 0, . . . , 0) pointwise. This implies that B(x0, · , 0, . . . , 0) is a measurable
function, being the pointwise limit of continuous functions. By (a),
B(x0, · , 0, . . . , 0) is additive so that Proposition 2.1 yields that B(x0, · , 0, . . . , 0)
is linear and hence continuous so that x0 /∈ A. Hence, A = ∅.

We conclude that B(x, y, 0, . . . , 0) = c0(x)y for some function c0 : I → R.
Since c0(x) = B(x, 1, 0, . . . , 0), c0 is continuous by assumption (b). Finally write

B(x, y0, . . . , yk−1) = B(x, y0, 0, . . . , 0) +B(x, 0, y1, . . . , yk−1)

= c0(x)y0 +B(x, 0, y1, . . . , yk−1).

Note that conditions (a), (b) also hold for B(x, 0, y1, . . . , yk−1) as a function
from I × Rk−1 to R. Thus, by induction assumption, B(x, 0, y1, . . . , yk−1) =∑k−1

j=1 cj(x)yj , cj ∈ C(I). Hence,

B(x, y0, . . . , yk−1) =

k−1∑
j=0

cj(x)yj =
〈
c(x), y

〉
with c(x) = (cj(x))

k−1
j=0 , y = (yj)

k−1
j=0 . �

Theorem 2.6 will be used in the next chapter to analyze the solutions of the
Leibniz rule operator equation. We will also study perturbations of the Leibniz rule
equation. To show that the solutions of the perturbed equations are perturbations
of the solutions of the unperturbed Leibniz rule equation, we need a more technical
variant of Theorem 2.6 in dimension n = 1 which we will apply in Chapter 5.
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Proposition 2.7. Let k ∈ N, I ⊂ R be an open set and B, B̃,Ψ : I × Rk → R be
functions, Ψ measurable, and M : I → R+ be a locally bounded function such that

(i) B̃(x, v) = B(x, v) + Ψ(x, v) , x ∈ I , v ∈ Rk.

(ii) B̃(x, v1 + v2) = B̃(x, v1) + B̃(x, v2) , x ∈ I , v1, v2 ∈ Rk.

(c) B(·, Jk(·, f)) is a continuous function from I to R for all f ∈ C∞(R).

(d) sup{|Ψ(x, v)| | v ∈ Rk} ≤ M(x) < ∞ , x ∈ I.

Then B̃(x, ·) is linear for all x ∈ I, i.e., there is c(x) ∈ Rk such that B̃(x, v) =
〈c(x), v〉 for all v ∈ Rk.

Proof. (i) We adapt the previous proof and first claim that

A :=
{
x ∈ I

∣∣ B̃(x, · , 0, . . . , 0) : R → R is discontinuous
}

has no accumulation point in I. If this would be false, there would be a sequence
of pairwise disjoint, say strictly decreasing points xm ∈ A with xm → x∞ ∈ I.
Since M is locally bounded,

K := max
(
M(x∞), sup{M(xm) | m ∈ N}) < ∞.

Since B̃(xm, · , 0, . . . , 0) is discontinuous and additive, by Proposition 2.2, it attains
arbitrarily large values in any neighborhood of zero. Again, choosing δm and 0 <
ym < exp(−1/δm) as in the previous proof, such that |B̃(xm, ym, 0, . . . , 0)| >
3K + 1, we define g ∈ C∞(I) as before with

g(xm) = ym, g(x∞) = 0, g(l)(xm) = g(l)(x∞) = 0,

for all m, l ∈ N. By assumption (c)

B(xm, ym, 0, . . . , 0) = B
(
xm, Jk(xm, g)

)
−→ B

(
x∞, Jk(x∞, g)

)
= B(x∞, 0, . . . , 0).

But B̃(x∞, · ) is additive, hence B̃(x∞, 0)=0. Since B=B̃−Ψ and |Ψ(xm, · )|≤ K,
we arrive at the contradiction

2K < lim
m→∞

∣∣B(xm, ym, 0, . . . , 0)
∣∣ = ∣∣B(x∞, 0, . . . , 0)

∣∣ ≤ K.

(ii) Fix an arbitrary point x0 ∈ I. By (i) there are xm /∈ A with xm → x0.

Therefore, B̃(xm, · , 0, . . . , 0) is continuous for all m ∈ N and, by assumption (c),
B( · , y0, 0, . . . , 0) is continuous for any y0 ∈ R. Thus

B(xm, y0, 0, . . . , 0) −→ B(x0, y0, 0, . . . , 0).

Hence B(x0, · , 0, . . . , 0) is the pointwise limit of the functions

B(xm, · , 0, . . . , 0) = B̃(xm, · , 0, . . . , 0)−Ψ(xm, · , 0, . . . , 0),
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therefore measurable, so that∣∣B̃(x0, · , 0, . . . , 0)
∣∣ ≤ K +

∣∣B(x0, · , 0, . . . , 0)
∣∣,

i.e., B̃(x0, · , 0, . . . , 0) is additive and bounded by a measurable function. By a
result of Kestelman [Ke] – similar to Proposition 2.2 but slightly more general –

B̃(x0, · , 0, . . . , 0) is linear, i.e.,

B̃(x0, y0, 0, . . . , 0) = c0(x0)y0.

Induction on k using

B̃(x0, y0, . . . , yk−1) = B̃(x0, y0, 0, . . . , 0) + B̃(x0, 0, y1, . . . , yk−1)

ends the proof. �
In the case of the chain rule operator equation studied in chapter 4, we will

need different regularity results, yielding the regularity of a function from the
property that certain differences of the function are regular.

Proposition 2.8. (a) Let L : R → R be a function such that for any b ∈ R

ϕ(x) := L(x)− L(bx), x ∈ R

defines a continuous function ϕ ∈ C(R). Then L is the pointwise limit of contin-
uous functions and hence measurable.

(b) Let 0 < a ≤ 1 and L ∈ C(R) be a continuous function such that

ψ(x) := L(x)− aL
(
x
2

)
, x ∈ R

defines a C1-function ψ ∈ C1(R). Then L is a C1-function, L ∈ C1(R).

Proof. (i) For b = 1/2, ϕ(x) = L(x)− L(x/2) is continuous and for n ∈ N

n−1∑
j=0

(
ϕ
( x

2j

)
− ϕ

(
1

2j

))
=

(
L(x)− L(1)

)
+

(
L

(
1

2n

)
− L

( x

2n

))
.

For b = x, ϕ̃(y) = L(y)− L(xy) is continuous in y = 0, hence,

lim
n→∞

(
L

(
1

2n

)
− L

( x

2n

))
= ϕ̃(0) = 0.

Therefore, the limit exists for n → ∞ in the above equation and

L(x) = L(1) +

∞∑
j=0

(
ϕ
( x

2j

)
− ϕ

(
1

2j

))
.
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Hence L is the pointwise limit of continuous functions.

(ii) Fix M > 0 and let x, x1 ∈ [−M,M ]. For any n ∈ N

n−1∑
j=0

aj
(
ψ
( x

2j

)
− ψ

(x1

2j

))
=

(
L(x)− L(x1)

)− an
(
L
( x

2n

)
− L

(x1

2n

))
.

Since L is continuous, the last term on the right-hand side tends to 0 for n → ∞.
Since ψ ∈ C1(R), ψ′ is uniformly continuous in [−M,M ] and bounded in modulus,
say by N . Let ε > 0. Then there is δ > 0 such that for all y, z ∈ [−M,M ] with
|y − z| < δ, we have |ψ′(y) − ψ′(z)| < ε/2. Assume |x − x1| < δ. Then, by the
mean-value theorem,

ψ

(
x

2j

)
− ψ

(
x1

2j

)
= ψ′

(
x(j)

2j

)
x− x1

2j
,

for some x(j) between x and x1. Since
∣∣x(j)

2j − x1

2j

∣∣ ≤ |x− x1| < δ, we find∣∣∣∣∣∣
n−1∑
j=1

aj · ψ
(

x
2j

)− ψ
(
x1

2j

)
x− x1

−
n−1∑
j=0

(a
2

)j

ψ′
(x1

2j

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−1∑
j=0

(a
2

)j
(
ψ′

(
x(j)

2j

)
− ψ′

(x1

2j

))∣∣∣∣∣∣ ≤ ε

2

n−1∑
j=0

(a
2

)j

≤ ε.

Moreover,∣∣∣∣∣anL
(

x
2n

)− L
(
x1

2n

)
x− x1

∣∣∣∣∣ =
∣∣∣∣∣∣
∞∑
j=n

aj · ψ
(

x
2j

)− ψ
(
x1

2j

)
x− x1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
j=n

(a
2

)j

ψ′
(
x(j)

2j

)∣∣∣∣∣∣ ≤ N
∞∑
j=n

(a
2

)j

−→ 0,

uniformly in x, x1 ∈ [−M,M ] for n → ∞. Therefore,

L′(x1) = lim
x→x1

L(x)− L(x1)

x− x1
=

∞∑
j=0

(a
2

)j

ψ′
(x1

2j

)
exists and ψ′ ∈ C(R) implies L′ ∈ C(R), L ∈ C1(R). �

2.2 Functional equations with two unknown functions

In this section we discuss the solutions of some functional equations which involve
two unknown functions. It is an interesting subject by itself which was studied
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intensively, cf., e.g., the books by Aczél [A], Aczél, Dhombres [AD] and Székelyhidi
[Sz]. We will use these results in Chapters 7, 8 and 9 to study operator equations
which are inspired by the Leibniz rule or by the chain rule of the second order.
Several theorems in this section are special cases of results in [Sz]. Our intention
here is to give direct proofs.

The second derivative D2 satisfies the Leibniz and the chain rule type for-
mulas

D2(f · g) = D2f · g + f ·D2g + 2Df ·Dg,

D2(f ◦ g) = (D2f ◦ g) · (Dg)2 + (Df) ◦ g ·D2g, f, g ∈ C2(R).

To understand the structure of these equations, we will later consider a more
general setting: We will study operators T : C2(R) → C(R) and A,A1, A2 :
C1(R) → C(R) satisfying one of the following equations

T (f · g) = Tf · g + f · Tg +Af ·Ag,

T (f ◦ g) = Tf ◦ g ·A1g + (A2f) ◦ g · Tg, f, g ∈ C2(R).

Under mild assumptions, it will turn out that there are not too many choices
of operators (T,A) or (T,A1, A2) satisfying any one of these operator equations.
To solve them, after localization, we have to find the solutions of some specific
functional equations which involve two unknown functions.

We now discuss the solutions of these functional equations. The results of
this section will only be used later in Chapters 7, 8 and 9.

Proposition 2.9. Let m ∈ N and assume that F,B : Rm → R are functions such
that for any α, β ∈ Rm,

F (α+ β) = F (α) + F (β) +B(α)B(β). (2.3)

Then there are additive functions c, d : Rm → R and γ ∈ R such that F and B
have one of the following three forms:
Either

(a) F (α) = −γ2 + d(α), B(x) = γ,

or

(b) F (α) = 1
2c(α)

2 + d(α), B(α) = c(α),

or

(c) F (α) = γ2(exp(c(α))− 1) + d(α), B(α) = γ(exp(c(α))− 1),

for any α ∈ Rm.
Conversely, these functions satisfy equation (2.3).
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Proof. (i) If B = 0, then F is additive and we are in case (a) with γ = 0. Therefore,
we may assume that B �= 0. Choose a ∈ Rm with B(a) �= 0. For α ∈ Rm, define
functions f, b : Rm → R by

f(α) := F (α+ a)− F (α)− F (a), b(α) := B(α+ a)−B(α).

Then by (2.3)
f(α+ β) = f(α) + b(α)B(β), α, β ∈ Rm. (2.4)

For α = 0, f(β) = f(0) + b(0)B(β). Inserting this back into (2.3), we find

b(0)
(
B(α+ β)−B(α)

)
= b(α)B(β). (2.5)

Suppose first b(0) = 0. Since B(a) �= 0, (2.5) implies that b ≡ 0 identically and
that f = f(0) is a constant function. Since f(α) = B(a)B(α) by (2.3), also B is
constant, B = f(0)/B(a) =: γ. Let d(α) := F (α) + γ2. Then by (2.3)

d(α+ β) = F (α+ β) + γ2 =
(
F (α) + F (β) + γ2

)
+ γ2 = d(α) + d(β),

i.e., d is additive on Rm and F and B have the form given in (a).

(ii) Assume now b(0) �= 0. Putting α = 0 in (2.5), we find that B(0) = 0.
Moreover,

B(α+ β) = B(α) +
b(α)

b(0)
B(β). (2.6)

Suppose first that b is a constant function. Then c(α) := B(α) is additive and
d(a) := F (α)− 1

2c(α)
2 satisfies

d(α+ β) = F (α+ β)− 1
2

(
c(α) + c(β)

)2
=

(
F (α) + F (β) +B(α)B(β)

)− 1
2c(α)

2 − 1
2c(β)

2 − c(α)c(β)

= d(α) + d(β).

Hence, d is additive and F and B have the form given in (b).

(iii) Now assume b(0) �= 0 and that b is not constant. Choose α0 ∈ Rm with
b(α0) �= b(0). Since the left-hand side of (2.6) is symmetric in α and β, we have

B(α) +
b(α)

b(0)
B(β) = B(β) +

b(β)

b(0)
B(α).

For β = α0, B(α) = B(α0)
b(α0)−b(0) (b(α)− b(0)), and by (2.4),

f(α)− f(0) = b(0)B(α) = γ
(
b(α)− b(0)

)
, (2.7)

with γ := b(0)B(α0)/(b(α0) − b(0)). For γ = 0, B = 0, and we are again in case
(a).
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So assume γ �= 0. Then, by (2.4) and (2.7),

γ
(
b(α+ β)− b(0)

)
= f(α+ β)− f(0)

= f(α)− f(0) + b(α)B(β)

= γ
(
b(α)− b(0)

)
+

b(α)

b(0)
γ
(
b(β)− b(0)

)
= γ

(
b(α)b(β)

b(0)
− b(0)

)
.

Hence, b̃(α) := b(α)/b(0) satisfies b̃(α+β) = b̃(α)̃b(β), b̃(α) = b̃
(
α
2

)2
> 0. Note that

b̃(α) �= 0, since otherwise b̃(0) = b̃(α)̃b(−α) = 0, but b̃(0) = 1. Therefore, c(α) :=

ln b̃(α) is additive and b(α) = b(0) exp(c(α)). This yields B(α) = γ(exp(c(α))−1).
Put similarly as above d(α) := F (α)− γ2(exp(c(α))− 1). Then (2.3) and the
additivity of c yield

d(α+ β) =
(
F (α) + F (β) +B(α)B(β)

)− γ2
(
exp(c(α)) exp(c(β))− 1

)
= d(α) + d(β),

i.e., d is additive. Therefore, we have the solution given in (c),

F (α) = γ2
(
exp(c(α))− 1

)
+ d(α). �

In the case m = 1, we need a multiplicative analogue of Proposition 2.9.

Proposition 2.10. Assume that F,B : R → R are functions such that, for any
α, β ∈ R,

F (αβ) = F (α)β + F (β)α+B(α) B(β). (2.8)

Then there are additive functions c, d : R → R, and there is γ ∈ R such that F
and B have one of the following three forms:

(a) F (α) = α (c(ln |α|)− γ2), B(α) = γα;

(b) F (α) = α
(
1
2c(ln |α|)2 + d(ln |α|)), B(α) = αc(ln |α|);

(c) F (α) = α
(
γ2[{sgnα} exp (c(ln |α|))− 1] + d(ln |α|)),

B(α) = αγ
[{sgnα} exp(c(ln |α|))− 1

]
.

In (c), there are two possibilities, with sgnα present in both F and B and the other
one with sgnα replaced by 1.

Conversely, these functions satisfy equation (2.8).

Proof. (i) For a ∈ R, define f(a) := F (exp(a))/ exp(a), g(a) := B(exp(a))/ exp(a).
Then (2.8) implies

f(a+ b) = f(a) + f(b) + g(a)g(b), a, b ∈ R.
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The solutions of this equation (m = 1) were given in Proposition 2.9, e.g., in case
(b) with additive functions c, d : R → R,

f(a) = 1
2c(a)

2 + d(a), g(a) = c(a).

Then for α > 0, a := lnα, so that α = exp(a),

F (α) = α
(
1
2c(lnα)

2 + d(lnα)
)
, B(α) = αc(lnα).

The cases (a) and (c) are similar, which yields Proposition 2.10 if α > 0.

(ii) We will now determine F (α) and B(α) for negative α. In all cases except
one, F and B turn out to be odd functions. The exceptional one is the case
of the third solution when the sgnα-term appears. Unfortunately, this requires
distinguishing several cases in the basic equation (2.9) below. Choosing β = −1
in (2.8) and exchanging α and −α, we find

F (α) + F (−α) = F (−1)α+B(−1)B(α) = −F (−1)α+B(−1)B(−α),

i.e., B(−1)B(−α) = B(−1)B(α) + 2F (−1)α.

For α = 1, B(−1)2 = B(−1)B(1) + 2F (−1). Hence,

B(−1)B(−α) = B(−1)
[
B(α) + (B(−1)−B(1))α

]
,

F (α) + F (−α) = B(−1)
[
B(α) + 1

2 (B(−1)−B(1))α
]
.

(2.9)

If B(−1) = 0, also F (−1) = 0 and (2.9) implies that F (−α) = −F (α) and, using
(2.8),

B(−α)B(β) = F (−αβ)− F (−α)β + F (β)α

= −F (αβ) + F (α)β + F (β)α = −B(α)B(β),

i.e., F and B are odd functions, which means that in cases (a), (b) and (c) lnα
has to be replaced by ln |α| for α < 0.

(iii) Now assume B(−1) �= 0. In cases (b), (c), we know B(1) = F (1) = 0.
Then by (2.9)

B(−α) = B(α)+B(−1)α, F (α)+F (−α) = B(−1)
[
B(α) + 1

2B(−1)α
]
. (2.10)

Using (2.10) for αβ instead of α and (2.8), we find

B(−1)
[
B(αβ) + 1

2B(−1)αβ
]
= F (αβ) + F (−αβ)

=
(
F (α) + F (−α)

)
β +

(
B(α) +B(−α)

)
B(β)

= B(−1)
[
B(α)β + 1

2B(−1)αβ
]
+ 2B(α)B(β) +B(−1)B(β)α

= 2
(
B(α) + 1

2B(−1)α
) (

B(β) + 1
2B(−1)β

)
.
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Therefore, ϕ(α) := 2
B(−1)B(α) +α is multiplicative, ϕ(αβ) = ϕ(α)ϕ(β). For posi-

tive α > 0, this occurs only in case (c) when

B(α) = αγ
[
exp(c(lnα))− 1

]
.

This identifies γ = 1
2B(−1), and for α < 0 we have

B(α) = αγ
[
sgnα · exp(c(ln |α|))− 1

]
,

from the multiplicity of ϕ, where the term sgnα has to be present since otherwise
B(−1) = 0. For α < 0, we get from (2.10) and the known form of F (−α) for
−α = |α| > 0

F (α) = −F (−α) + 2γ
(
B(α) + γα

)
= α

[
γ2(exp(c(ln |α|))− 1) + d(ln |α|)]
+ 2γ

[− γα(exp(c(ln |α|)) + 1) + γα
]

= α
[
γ2(sgnα exp(c(ln |α|))− 1) + d(ln |α|)].

In this case B and F are not odd, in the other cases of (b) and (c) they are odd.

(iv) It remains to consider case (a) for α < 0, when B(−1) �= 0. Then
B(1) = γ and (2.9) yields for α > 0 that B(−α) = B(−1)α and

F (α) + F (−α) = 1
2B(−1)

(
γ +B(−1)

)
α.

Using this for αβ instead of α and (2.8) we find

1
2B(−1)

(
γ +B(−1)

)
αβ = F (αβ) + F (−αβ)

=
(
F (α) + F (−α)

)
β +

(
B(α) +B(−α)

)
B(β)

= 1
2B(−1)

(
γ +B(−1)

)
αβ +

(
γ +B(−1)

)
αB(β),

hence, B(−1) = −γ, B(−α) = −γα = −B(α), F (−α) = −F (α), so that B and
F are odd functions, which means, in the formula of (a), that lnα has to replaced
by ln |α| for α < 0. �

In Chapter 3 we will need the solution of a functional equation which re-
sembles the addition formula for the sin function. We first consider the complex
case.

Proposition 2.11. Let n ∈ N and F,B : Cn → C be continuous functions satisfying

F (z + w) = F (z) ·B(w) + F (w) ·B(z), z, w ∈ Cn. (2.11)

Suppose F is not identically zero. Then there are vectors c1, c2, d1, d2 ∈ Cn and
there are k ∈ C � {0} and ε1, ε2 ∈ {0, 1}, with ε1, ε2 not both zero, such that F
and B have one of the following two forms:
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(a) F (z) = (〈c1, z〉+ 〈c2, z̄〉) exp(〈d1, z〉+ 〈d2, z̄〉),
B(z) = exp(〈d1, z〉+ 〈d2, z̄〉);

(b) F (z) = 1
2k (ε1 exp(〈c1, z〉+ 〈c2, z̄〉)− ε2 exp(〈d1, z〉+ 〈d2, z̄〉)),

B(z) = 1
2

(
ε1 exp(〈c1, z〉+ 〈c2, z̄〉) + ε2 exp(〈d1, z〉+ 〈d2, z̄〉)

)
, z ∈ Cn.

Conversely, these functions satisfy equation (2.11).

In the real case we get

Corollary 2.12. Let F,B : Rn → R be continuous functions satisfying

F (α+ β) = F (α)B(β) + F (β)B(α), α, β ∈ Rn.

Suppose F is not identically zero. Then there are vectors b, c, d ∈ Rn and there is
a ∈ R such that F and B have one of the following four forms:

(a) F (α) = 〈b, α〉 exp(〈d, α〉), B(α) = exp(〈d, α〉);
(b) F (α) = a exp(〈c, α〉) sin(〈d, α〉), B(α) = exp(〈c, α〉) cos(〈d, α〉);
(c) F (α) = a exp(〈c, α〉) sinh(〈d, α〉), B(α) = exp(〈c, α〉) cosh(〈d, α〉);
(d) F (α) = a exp(〈d, α〉), B(α) = 1

2 exp(〈d, α〉), α ∈ Rn.

Conversely, these functions satisfy the above functional equation.

Proof of Proposition 2.11. (i) Fix t ∈ Cn \ {0}. We claim that F ,B and B( · + t)
are linearly dependent functions. For all x, y ∈ Cn

F (x+t)B(y)+B(x+t)F (y) = F (x+y+t) = F (x)B(y+t)+B(x)F (y+t). (2.12)

Since F is not identically zero, by (2.11) also B is not identically zero. Hence
there is y1 ∈ Cn such that B(y1) �= 0. Choosing y = y1, equation (2.12) shows
that F (·+t) is a linear combination of F , B and B(·+t) with coefficients depending
on the values B(y1), F (y1), B(y1+ t) and F (y1+ t). Inserting this back into (2.12)
yields for all x, y ∈ Cn

F (x)
(
B(y)B(y1 + t)−B(y1)B(y + t)

)
+B(x)

(
B(y)F (y1 + t)−B(y1)F (y + t)

)
+B(x+ t)

(
B(y1)F (y)−B(y)F (y1)

)
= 0. (2.13)

Suppose B(y1)F (y) − B(y)F (y1) = 0 holds for all y ∈ Cn. Then F = F (y1)
B(y1)

B,

and already F and B are linearly dependent. Else there is y2 ∈ Cn such that
B(y1)F (y2)−B(y2)F (y1) �= 0, and equation (2.13) shows that F , B and B(·+ t)
are linearly dependent.

(ii) Assume that B = kF for some k ∈ C. Then F (x + y) = 2kF (x)F (y),
and k �= 0 since F is not identically zero. Proposition 2.5 implies that there are
c1, c2 ∈ Cn such that F (z) = 1

2k exp(〈c1, z〉+〈c2, z̄〉), B(z) = 1
2 exp(〈c1, z〉+〈c2, z̄〉).

This is a solution of type (b) with ε2 = 0.
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(iii) We may now assume that B and F are linearly independent. Then by
(i) there are functions c1, c2 : Cn → C such that

B(x+ t) = c1(t)F (x) + c2(t)B(x), x, t ∈ Cn. (2.14)

The left-hand side is symmetric in x and t. Applying it to x + y + t, we get an
equation similar to (2.12). The arguments in (i) then show that c2, B and F are
linearly dependent: there are b1, b2 ∈ C such that

c2(x) = b1B(x) + b2F (x).

Inserting this back into (2.14) and using the symmetry in (x, t), we find

c1(t)F (x) +
(
b1B(t) + b2F (t)

)
B(x) = B(x+ t)

= c1(x)F (t) +
(
b1B(x) + b2F (x)

)
B(t),

c1(x)− b2B(x) =
c1(t)− b2B(t)

F (t)
F (x) =: b3F (x),

for any fixed t with F (t) �= 0. Hence c1(x) = b2B(x)+ b3F (x), and again by (2.14)

B(x+ t) =
(
b2B(t) + b3F (t)

)
F (x) +

(
b1B(t) + b2F (t)

)
B(x).

Insert this and formula (2.11) for F (x+t) into (2.12) to find, after some calculation,(
(1− b1)B(t)− b2F (t)

)(
F (x)B(y)− F (y)B(x)

)
= 0,

for all x, y, t ∈ Cn. Since B and F are linearly independent, we first conclude that
(1− b1)B(t) = b2F (t) for all t, and then that b1 = 1, b2 = 0. Therefore, c1 = b3F ,
c2 = B, and (2.14) yields

B(x+ t) = b3F (t)F (x) +B(t)B(x), x, t ∈ Cn.

Take k ∈ C with k2 = b3. Using (2.11) again, we find(
B(x+ y)± kF (x+ y)

)
=

(
B(x)± kF (x)

)(
B(y)± kF (y)

)
,

so that f := B ± kF solves the equation f(x + y) = f(x)f(y). Since f �≡ 0, by
Proposition 2.5, there are c1, c2, d1, d2 ∈ Cn such that

B(z) + kF (z) = exp(〈c1, z〉+ 〈c2, z̄〉),
B(z)− kF (z) = exp(〈d1, z〉+ 〈d2, z̄〉),

which gives solution (b) with ε1 = ε2 = 1, if k �= 0.

(iv) If k = 0, again by Proposition 2.5, B(z) = exp(〈d1, z〉 + 〈d2, z̄〉) for

suitable d1, d2 ∈ C. Define G(z) := F (z)
B(z) . Since B(z + w) = B(z)B(w), equation

(2.11) yields
G(z + w) = G(z) +G(w), z, w ∈ Cn.

Hence G is additive and continuous. As in the proof of Proposition 2.5 there are
c1, c2 ∈ Cn such that G(z) = 〈c1, z〉+ 〈c2, z̄〉, which yields with F (z) = G(z)B(z)
the form of F and B given in part (a). �
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Proof of Corollary 2.12. Extend F,B : Rn → R to F̃ , B̃ : Cn → C by F̃ (z) :=

F (�z), B̃(z) := B(�z) with �z = (�zj)nj=1 if z = (zj)
n
j=1. Here � denotes the

real part, and below � will stand for the imaginary part. Then F̃ , B̃ satisfy (2.11)
and are real valued. The functions B and F in part (a) of Proposition 2.11 are
real valued if and only if c1 = c̄2 and d1 = d̄2 yielding the solution in (a), when
restricted to Rn, with b = 2�c1 and d = 2�d1.

The formula for B in part (b) of Proposition 2.11 with ε1 = ε2 = 1 is real
valued if and only if either c1 = c̄2 and d1 = d̄2 or c1 = d̄2 and c2 = d̄1. In the first
case one gets a solution of type (c) with vectors c = �(c1 + d1), d = �(c1 − d1),
in the second case a solution of type (b) with c = �(c1 + c2) and d = �(c1 + c2).
In the first case k needs to be real, in the second case purely imaginary. The last
solution (d) originates from (b) in Proposition 2.11 for ε1 = 1, ε2 = 0 (or ε1 = 0,
ε2 = 1). �

In Chapter 9 we need a multiplicative one-dimensional analogue of Corollary
2.12 which is the following result.

Proposition 2.13. Let F,B : R → R be continuous functions satisfying

F (xy) = F (x)B(y) + F (y)B(x), x, y ∈ R. (2.15)

Suppose F is not identically zero. Then there are constants a, b, c, d ∈ R, c, d > 0,
so that F and B have one of the following four forms:

(a) F (x) = b(ln |x|)|x|d{sgnx}, B(x) = |x|d{sgnx};
(b) F (x) = b|x|d sin(a ln |x|){sgnx}, B(x) = |x|d cos(d ln |x|){sgnx};
(c) F (x) = b

2 (|x|c[sgnx]− |x|d{sgnx}), B(x) = 1
2 (|x|c[sgnx] + |x|d{sgnx});

(d) F (x) = b|x|d{sgnx}, B(x) = 1
2 |x|d{sgnx}, x ∈ R.

Here the terms {sgnx} and [sgnx] may be present or not, simultaneously in F and
B. If a sgn-factor is not present, the corresponding value of c or d could be 0, too,
Conversely, these functions satisfy the above functional equation.

Proof. (i) Let F̃ (α) := F (expα), B̃(α) := B(expα). Then F̃ (α+β) = F̃ (α)B̃(β)+

B̃(α)F̃ (β). Hence (F̃ , B̃) have one of the four forms given in Corollary 2.12. Then
for x > 0, substituting α = lnx = ln |x|, (F,B) have the form given in Proposition
2.13 with sgnx = 1.

(ii) It remains to determine F (x) and B(x) for x ≤ 0. In the first three
cases F (1) = 0. Then 0 = F (1) = F ((−1)2) = 2F (−1)B(−1). Assume first that
F (−1) = 0. Then F (x) = F (−x)B(−1) = F (x)B(−1)2, hence B(−1)2 = 1,
B(−1) ∈ {1,−1}. Thus F is even or odd, depending on whether B(−1) = 1 or
B(−1) = −1. Using F (x) = F (−x)B(−1), the functional equation implies for any
x, y ∈ R

F (x)B(−y) +B(−1)F (y)B(x) = F (x)B(−y) + F (−y)B(x) = F (−xy)

= B(−1)F (xy) = B(−1)[F (x)B(y) + F (y)B(x)].



2.3. Notes and References 27

Therefore F (x)B(−y) = F (x)B(−1)B(y) which yields B(−y) = B(−1)B(y).
Hence F and B are both even or both odd. This implies the formulas for F
and B for negative x in the first three cases. Since F and B and the right-hand
sides are continuous, the values at zero are obtained by taking the limit for x → 0
on both sides.

In the last case F (1) =: b �= 0. Equation (2.15) yields for y = 1 that F (x) =
F (x)B(1) + bB(x). Since B �≡ 0, we conclude that B(1) �= 1 and F (x) = λB(x)
with λ := b

1−B(1) �= 0. Inserting this into (2.15), we get B(xy) = 2B(x)B(y), so

that 2B is multiplicative on R. By Proposition 2.3, B(x) = 1
2 |x|d{sgnx}, F (x) =

λ
2 |x|d{sgnx}, so that b = λ

2 . �

2.3 Notes and References

The classical result for measurable additive functions, Proposition 2.1, is due to
Fréchet [Fr]. The paper [Fr] is written in Esperanto. Alternative proofs were given
by Banach [B] and Sierpinski [S]. The proofs in [Fr] and [B] use the axiom of
choice, the one in [S] does not require it. The simple proof presented here is due
to Alexiewicz and Orlicz [AO].

The proof of Proposition 2.2 follows Kestelman [Ke], where the linearity of
additive functions is shown under the even weaker assumption that f is bounded
from above by a measurable function on a set of positive Lebesgue measure. This
stronger result is used in the proof of Proposition 2.7.

Proposition 2.3 on measurable multiplicative functions is found, e.g., in Aczél
[A], Section 2.1.2.

Proposition 2.5 is shown by Aczél [A] in Section 5.1.1, Theorem 3, in the case
of n = 1. The generalization to n > 1 is straightforward. The result also holds if F
is assumed to be only measurable instead of being continuous, cf. Aczél, Dhombres
[AD], Theorem 5 of Section 5.1 (n = 1). The proof is slightly more elaborate than
in the continuous case.

Since Proposition 2.4 follows directly from Proposition 2.5, it is also true if
the non-zero function f is only assumed to be multiplicative and measurable.

Theorem 2.6 is due to Faifman, see the Appendix of [KM1].

Proposition 2.8 is a slight extension of Lemma 19 in [AKM].

Proposition 2.9 is a special case of Theorem 10.4. in Székelyhidi [Sz], which
is illustrated by the functional equation (10.6b) in this book. Theorem 10.4. also
covers solutions of functional equations with more than two unknown functions. In
the case m = 1, Proposition 2.9 is related to some functional equations in Section
3.1.3 of Aczél [A] and in Chapter 15, Theorem 1 of Aczél, Dhombres [AD] to which
this result could be reduced. Our direct proof uses ideas of Section 3.1.3 of Aczél
[A].
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Proposition 2.11 can be found in Székelyhidi [Sz], Theorem 12.2., as an appli-
cation of his general theory of functional equations on topological abelian groups,
cf. also Theorem 10.4. in [Sz]. We gave a direct proof which was inspired by the
book of Aczél [A], where the case n = 1 is considered in Section 4.2.5, Theorem 2
and its Corollary. For Corollary 2.12 in the case n = 1 cf. Aczél [A], p. 180.
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