
Chapter 1

Introduction

The purpose of this book is to explain some recent results in analysis, which
in general terms may be described as follows: Major constructions or operations
in analysis are often characterized in a natural and unique way by some very
elementary properties, relations or equations which they satisfy.

A simple example on the real line would be the exponential function mapping
sums to products.

To describe the basic theme of the book, let us consider the classical Fourier
transform F on Rn given by

F(f)(x) =

∫
Rn

exp(−2πi〈x, y〉) f(y) dy

on the Schwartz space S(Rn) of “rapidly” decreasing smooth functions f : Rn → C.
As well-known, F maps bijectively the Schwartz space onto itself and exchanges
products with convolutions. The interesting fact is that these properties (almost)
characterize the Fourier transform. As shown by Artstein-Avidan, Faifman and
Milman [AFM], any bijective transformation T : S(Rn) → S(Rn) satisfying

T (f · g) = T (f) ∗ T (g)
for all f, g ∈ S(Rn) is just a slight modification of the Fourier transform: there
exists a diffeomorphism ω : Rn → Rn such that either T (f) = F(f ◦ ω) for all
f ∈ S(Rn) or T (f) = F(f ◦ ω) for all f ∈ S(Rn).

Assuming in addition that T also maps convolutions into products,

T (f ∗ g) = T (f) · T (g)
for all f, g ∈ S(Rn), the diffeomorphism ω is given by a linear map A ∈ GL(n,R)
with | det(A)| = 1, i.e., T (f) = F(f ◦A) for all f ∈ S(Rn) or T (f) = F(f ◦A) for
all f ∈ S(Rn). Details are found in the papers by the above authors and Alesker
[AAM], [AAFM] and [AFM].
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Note that T is not assumed to be linear or continuous. Nevertheless the real
linearity and the continuity of T are a consequence of the result.

A priori the Fourier transform is an analytic construction. However, it is es-
sentially uniquely recovered by the basic properties which we mentioned. Starting
with the simple formula for a bijective map exchanging products and convolutions,
we get an operation which has a rich structure and extremely useful properties.

There are some other properties which also characterize the Fourier trans-
form, e.g., the Poisson summation formula, cf. Faifman [F1], [F2].

The exponential function e = exp : R → R on the real line is, up to multiples,
characterized by its functional equation

e(x+ y) = e(x) · e(y)

for all x, y ∈ Rn, if measurability of e is assumed, see Aczél [A]. In comparison, the
Fourier transform T = F : S(Rn) → S(Rn) is characterized, up to diffeomorphism
and complex conjugation, by being bijective and satisfying the operator functional
equation

T (f · g) = T (f) ∗ T (g)
for all f, g ∈ S(Rn). Therefore we recover a classical transform in analysis by an
elementary relation, namely the above operator functional equation. Note that the
operator T is not assumed to satisfy any regularity condition like continuity or
measurability as in the case of the above map e.

Following a similar approach, we will study in this book the question to which
extent the derivative is characterized by properties like the Leibniz rule operator
equation

T (f · g) = T (f) · g + f · T (g)
or the chain rule operator equation

T (f ◦ g) = T (f) ◦ g · T (g)

on classical function spaces like the spaces Ck of k-times continuously differentiable
functions, T : Ck → C, f, g ∈ Ck. We will determine all solutions of either
one equation and also of various extensions of them. In most cases, we will a
priori assume neither continuity nor linearity or another algebraic property of the
operator T . However, a posteriori, a natural type of continuity of T will be a
consequence of the result.

Simple additional initial conditions like T (−2 Id) = −2 in the case of the
chain rule will guarantee that T is actually the derivative, Tf = f ′, and, in
particular, linear, see Chapter 4.

Returning to the Fourier transform, suppose that T : S(Rn) → S(Rn) is
bijective and satisfies T (f · g) = T (f) ∗ T (g). By the properties of the Fourier
transform, J := F ◦ T then satisfies J(f · g) = J(f) · J(g) for all f, g ∈ S(Rn). To
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prove the result for T , it therefore suffices to determine all bijective multiplicative
maps J : S(Rn) → S(Rn), J(f ·g) = J(f) ·J(g), i.e., solve another simple operator
functional equation on a classical function space of analysis. In this case there is
a diffeomorphism ω : Rn → Rn such that either Jf = f ◦ ω for all f ∈ S(Rn) or
Jf = f ◦ ω for all f ∈ S(Rn), cf. [AFM]. Bijective multiplicative maps on relevant
functions spaces of analysis were studied before in the papers of Milgram [M] and
of Mrčun and Šemrl [Mr], [MS].

Another transformation which is important in analysis and geometry is the
Legendre transform L. Let Cn denote the class of all lower-semi-continuous func-
tions φ : Rn → R ∪ {±∞} and fix some scalar product 〈·, ·〉 on Rn. The Legendre
transform of φ, also called Legendre–Fenchel transform in higher dimensions, is
given by

L(φ)(x) = sup[〈x, y〉 − φ(y)], φ ∈ Cn, x ∈ Rn.

Then L(φ) ∈ Cn, L is an involution , i.e., L2(φ) = φ, and L is order-reversing,
i.e., φ ≤ ψ implies L(φ) ≥ L(ψ) for all φ, ψ ∈ Cn. Being an involution and order-
reversing are the most basic properties of a “duality” relation, which is a natural
operation having many other interesting and very useful consequences. In fact,
they nearly characterize the Legendre transform. By a result of Artstein-Avidan
and Milman [AM], for any order-reversing involution T : Cn → Cn there is a
symmetric linear map B ∈ GL(n,R) and there are v0 ∈ Rn and c0 ∈ R such
that T has the form T (φ) = L(φ ◦ B + v0) + 〈 ·, v0〉 + c0, φ ∈ Cn. So up to affine
transformations, T is the Legendre transform.

The general problem considered in this book, whether basic constructions
or operations in analysis or geometry are essentially characterized by very simple
properties like order-reversion or some functional operator equations, was actually
motivated by the question what “duality” or “polarity” means in convex geometry
and convex analysis. Let Kn denote the class of closed convex bodies with 0 in its
interior. For K ∈ Kn, the polar body K◦ ∈ Kn is given by

K◦ = {x ∈ Rn | for all y ∈ K : 〈x, y〉 ≤ 1}.

Then the map K �→ K◦ from Kn to itself is an involution which is order-reversing,
K ⊂ L implying K◦ ⊃ L◦ for all K,L ∈ Kn. Gruber [Gr] (in a different language),
Böröczky, Schneider [BS] and Artstein-Avidan, Milman [AM] (in different setups)
showed that conversely any involution T : Kn → Kn which is order-reversing, K ⊂
L implying T (K) ⊃ T (L), is actually the polar map, up to linear transformations:
There exists B ∈ GL(n,R) such that T is given by T (K) = (B(K))◦ for all
K ∈ Kn. The result for the Legendre transform is a corresponding duality result
for convex functions instead of convex bodies.

Let us turn back to analysis. The main attention in this book will be given to
the study of properties of the derivative, like the Leibniz or the chain rule, and to
the question to what extent any of these operator functional equations will nearly
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characterize the derivative, or what other solutions they admit. We also consider
characterizations of the Laplacian and other second-order derivative operations.

It is interesting to compare these classical operations in analysis with func-
tional equations which the exponential function or the logarithm satisfy. The log-
arithm log : R+ → R sends products to sums, log(xy) = log(x) + log(y) for
x, y ∈ R+. However, on a linear class of functions an analogous non-trivial oper-
ation T satisfying T (f · g) = T (f) + T (g) does not exist: considering g = 0, one
finds that Tf = 0 for all f , i.e., T = 0. Let us change this operator equation
slightly by allowing some “tuning” operators A1, A2 which will act on a larger
linear space of functions (of “lower” order). For example, consider T : C1 → C
and A1, A2 : C → C such that

T (f · g) = T (f) ·A1(g) +A2(f) · T (g) (1.1)

for all f, g ∈ C1. Then T still maps in some sense products to sums, with some
correction by the tuning operators A1 and A2. Clearly, if A1 = A2 = Id, we just
get the Leibniz rule equation, or simply Leibniz equation,

T (f · g) = T (f) · g + f · T (g), f, g ∈ C1.

In addition to the derivative, T (f) = f ′, also the entropy operation T (f) = f ln |f |
satisfies this equation in C1 or C, reflecting a logarithmic behavior. The general
solution of the Leibniz rule equation turns out to be a linear combination of the
derivative and the entropy operation. We prove this in Chapter 3. In this extended
interpretation, the derivative operation is an analogue of the logarithm on linear
spaces of functions. We also determine the solutions of the more general equation
(1.1) in Chapter 3.

Another algebraically inspired, interesting aspect of the derivative is illus-
trated by the chain rule equation

T (f ◦ g) = T (f) ◦ g · T (g) (1.2)

for all f, g ∈ Ck(R), k ∈ N. In this case T maps the composition f ◦ g = f(g)
to a “compound” product T (f) ◦ g · T (g). Since the information on the left-hand
side of the equation involves the composition f ◦ g and not individually f and g,
on the right-hand side also the composition with g is needed, when f appears,
to yield meaningful solutions. A simple product equation T (f ◦ g) = T (f) · T (g)
only admits the trivial solutions T = 0 and T = 1. The solutions of the chain rule
operator equation are classified in Chapter 4. There are other solutions besides the
derivative (and its powers), but the derivative can be characterized by the chain
rule and an additional initial condition, e.g., T (−2 Id) = −2.

Suppose the terms in the chain rule equation (1.2) for T are positive. Then
P := log T satisfies

P (f ◦ g) = P (f) ◦ g + P (g), f, g ∈ C1(R), (1.3)
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mapping compositions to a “compound sum”. Note that equation (1.3) makes
sense for all, and not only for positive functions. Again, compositions with g are
needed on both sides when terms with f appear.

On linear classes of functions like C1(R) or C(R), the solutions of equation
(1.3) are easily described: there is a continuous function H ∈ C(R) such that

Pf = H ◦ f −H.

This solution by itself is not very interesting. So let us add on the right-hand
side of (1.3) some “tuning” operators, as we did in (1.1). This yields the operator
equation

T (f ◦ g) = T (f) ◦ g ·A1(g) +A2(f) ◦ g · T (g) (1.4)

with three operators T,A1, A2.

One solution of this equation is well-known, namely the second derivative
T (f) = D2(f) = f ′′, with A1(f) = (f ′)2 and A2(f) = f ′. Natural domains are
C2(R) for T and C1(R) for A1, A2, so A1, A2 may be considered of “lower order”. In
our interpretation, this second-order chain rule equation appears after a logarith-
mic operation is applied to the first-order chain rule, which then is appropriately
“tuned”.

We study the solutions of equation (1.4) in Chapter 9 under a mild condition
of non-degeneration, and determine all triples of operators (T,A1, A2) on suitable
Ck(R)-spaces which lead to nontrivial solutions.

The operators (T,A1, A2) are intertwined by (1.4), and there are fewer types
of solutions than one might imagine at first. There are non-trivial solutions for T
on Ck(R)-spaces for k ∈ {0, 1, 2, 3}, with appropriately chosen tuning operators
A1, A2. On Ck(R)-spaces for k ≥ 4 there are no further solutions, i.e., solutions
which might depend on the fourth or higher derivatives. The only solution for
k = 0 was already described above, Tf = H ◦ f −H, with A1 = A2 = 11.

For k = 1 there are three different families of solutions, where all operators
act on C1. For k = 2, in addition to the solutions mentioned for k = 0, 1, there is
very little diversity for the operators A1, A2. They are again defined on C1 with
A1(f) = f ′ · A2(f) and A2(f) = |f ′|p {sgn f ′} for a suitable p ≥ 1. The term
{sgn f ′} may appear here or not, yielding two solutions. The main operator T is
described by the above value of p and two continuous parameter functions c,H,
c �= 0, namely

Tf = (cf ′′ + [H ◦ f −H] · f ′) · |f ′|p−1 {sgn f ′}.
So for H = 0, we essentially get the second derivative. Suitable additional initial
conditions determine the form of T . Requiring, e.g., T (Id2) = 2 and T (Id3) = 6 Id,
with Idl(x) = xl, l ∈ N, yields T (f) = f ′′, A1(f) = f ′2 and A2(f) = f ′.
The case k = 3, in addition to the solutions for k = 0, 1, 2, leads to solutions in
terms of the Schwarzian derivative S. In this case A1(f) = f ′2A2(f), where A2
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has the same form as for k = 2 but with p ≥ 2. The most interesting solution is
T (f) = f ′2S(f), A1(f) = f ′4 and A2(f) = f ′2, cf. Chapter 9.

One main step of our method is the localization technique, which allows to
reduce operator equations to functional equations. We show, e.g., in the case of the
chain rule equation (1.2) that any non-degenerate solution Tf(x) is determined
by some function F of the variables x, f(x) and the derivatives of f at x up to
order k, if f ∈ Ck(R) and x ∈ R. No regularity of this function F is known at
the outset but has to be proved later. We show that the operator equation for
T then turns into a functional equation for F , the solutions of which have to
be determined. Usually then we have to prove the continuity or regularity of the
coefficient functions appearing in the structure of the solutions of F . Functional
equations and regularity results for them are studied in Chapter 2, in preparation
for later application in subsequent chapters.

We already mentioned that various of our results are proved under some
condition of non-degeneration. There are two different forms and reasons for this
type of assumption.

One of them is a very weak form of surjectivity of the operator. This together
with the operator equation will often yield in the final result that T is actually
surjective. For example, the assumption in Theorem 4.1 for the chain rule equation
only requires as non-degeneration condition that T is not the zero operator on the
half-bounded functions, allowing a complete description of all solutions.

A very different type of non-degeneration is required when two or three dif-
ferent operators appear in the equation, such as in (1.1). We then need, e.g., that
a tuning operator A will not be proportional on some open interval to the oper-
ator T , cf. Theorem 3.7, or not be proportional to the identity, cf. Theorem 7.2.
By these conditions of non-degeneration we avoid a “resonance” behavior of two
different operators, which often has the consequence that they are not localized.
In the case of equation (1.1) there is, e.g., the following non-localized solution

T (f)(x) = f(x)− f(x+ 1), A1(f)(x) = A2(f)(x) =
1

2
(f(x) + f(x+ 1)),

where the operators T,A1 and A2 act from C(R) to itself. For functions with small
support around x, T here acts as identity and A1 and A2 are homothetic to the
identity. These effects typically appear with Leibniz rule type equations which are
studied in Chapters 3 and 7. The exact form of the non-degeneration condition
differs from one chapter to the other, but stays the same in each chapter.

In some cases we may avoid the assumption of non-degeneration and prove
theorems about the general structure of the solutions of equations like (1.1) with-
out localization. These results are found in Chapter 8.

Interestingly enough, the equations we consider in this book show some unex-
pected stability or even rigidity. Perturbing the Leibniz rule equation by a “small”
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additive term yields solutions which are perturbations of the original equation. In
the case of the chain rule, we even have rigidity: the perturbed solutions have
the same solutions as the original equation. The chain rule equation allows no
reasonable additive perturbation. This is shown in Theorems 5.6 and 5.8.

In the case of the chain rule, the rigidity even allows us to study the solutions
of the inequality

T (f ◦ g) ≤ T (f) ◦ g · T (g), f, g ∈ C1(R).

To completely describe the solutions of this operator inequality, under some non-
degeneration condition and a weak continuity assumption, we have to prove local-
ization and classify certain submultiplicative functions on the real line, which by
itself is a curious result, cf. Theorems 6.1 and 6.2.

Let us consider not necessarily small additive “perturbations” of the Leibniz
rule. Suppose, e.g., that we add to the Leibniz equation a product of two copies
of a “lower-order” operator A,

T (f · g) = Tf · g + f · Tg +Af ·Ag,

f, g ∈ Ck(R). This equation is not only motivated by a perturbation of the (first
order) Leibniz rule, but, in fact, reflects the behavior of the second derivative
T = D2. Indeed, choosing A =

√
2 D, the equation is satisfied for these operators

(T,A). The natural domain for T is C2(R), for A it is C1(R). Thus A is of “lower
order” than T .

This point of view leads to higher-order Leibniz rule type equations deter-
mining derivatives of any order, cf. Section 3 of Chapter 5. Moreover, it may be
considered for functions on Rn, too. The equations then yield characterizations of
the Laplacian under natural assumptions, e.g., orthogonal invariance and annihi-
lation of affine functions. We investigate this in Chapter 7.

In most of the results on operator equations for one operator T in this book
we do not make any continuity or regularity assumption on the operator T . A
posteriori, the theorems imply that the operator T is actually continuous in a
natural way. In the proofs we use the fact that the image of the operators is
contained in spaces of continuous functions. We feel, however, that the main reason
for the automatic continuity of the solution operators is a consequence of the non-
linearity of the equations, like the chain rule equation. Using the axiom of choice
and Hamel bases, it is of course easy to construct non-continuous and even non-
measurable solutions of linear equations on infinite-dimensional spaces. However,
this is not the case for non-linear equations.

Much of the material of the book is based on papers of the authors and their
coauthors. However, various theorems shown in this book extend published results
or relax the assumptions made there. The proofs of most results are provided in
detail. The book is addressed to a general mathematical audience.
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