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Chapter 1

Introduction

The purpose of this book is to explain some recent results in analysis, which
in general terms may be described as follows: Major constructions or operations
in analysis are often characterized in a natural and unique way by some very
elementary properties, relations or equations which they satisfy.

A simple example on the real line would be the exponential function mapping
sums to products.

To describe the basic theme of the book, let us consider the classical Fourier
transform F on Rn given by

F(f)(x) =

∫
Rn

exp(−2πi〈x, y〉) f(y) dy

on the Schwartz space S(Rn) of “rapidly” decreasing smooth functions f : Rn → C.
As well-known, F maps bijectively the Schwartz space onto itself and exchanges
products with convolutions. The interesting fact is that these properties (almost)
characterize the Fourier transform. As shown by Artstein-Avidan, Faifman and
Milman [AFM], any bijective transformation T : S(Rn) → S(Rn) satisfying

T (f · g) = T (f) ∗ T (g)
for all f, g ∈ S(Rn) is just a slight modification of the Fourier transform: there
exists a diffeomorphism ω : Rn → Rn such that either T (f) = F(f ◦ ω) for all
f ∈ S(Rn) or T (f) = F(f ◦ ω) for all f ∈ S(Rn).

Assuming in addition that T also maps convolutions into products,

T (f ∗ g) = T (f) · T (g)
for all f, g ∈ S(Rn), the diffeomorphism ω is given by a linear map A ∈ GL(n,R)
with | det(A)| = 1, i.e., T (f) = F(f ◦A) for all f ∈ S(Rn) or T (f) = F(f ◦A) for
all f ∈ S(Rn). Details are found in the papers by the above authors and Alesker
[AAM], [AAFM] and [AFM].

© Springer Nature Switzerland AG 2018
H. König, V. Milman, Operator Relations Characterizing Derivatives,
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2 Chapter 1. Introduction

Note that T is not assumed to be linear or continuous. Nevertheless the real
linearity and the continuity of T are a consequence of the result.

A priori the Fourier transform is an analytic construction. However, it is es-
sentially uniquely recovered by the basic properties which we mentioned. Starting
with the simple formula for a bijective map exchanging products and convolutions,
we get an operation which has a rich structure and extremely useful properties.

There are some other properties which also characterize the Fourier trans-
form, e.g., the Poisson summation formula, cf. Faifman [F1], [F2].

The exponential function e = exp : R → R on the real line is, up to multiples,
characterized by its functional equation

e(x+ y) = e(x) · e(y)

for all x, y ∈ Rn, if measurability of e is assumed, see Aczél [A]. In comparison, the
Fourier transform T = F : S(Rn) → S(Rn) is characterized, up to diffeomorphism
and complex conjugation, by being bijective and satisfying the operator functional
equation

T (f · g) = T (f) ∗ T (g)
for all f, g ∈ S(Rn). Therefore we recover a classical transform in analysis by an
elementary relation, namely the above operator functional equation. Note that the
operator T is not assumed to satisfy any regularity condition like continuity or
measurability as in the case of the above map e.

Following a similar approach, we will study in this book the question to which
extent the derivative is characterized by properties like the Leibniz rule operator
equation

T (f · g) = T (f) · g + f · T (g)
or the chain rule operator equation

T (f ◦ g) = T (f) ◦ g · T (g)

on classical function spaces like the spaces Ck of k-times continuously differentiable
functions, T : Ck → C, f, g ∈ Ck. We will determine all solutions of either
one equation and also of various extensions of them. In most cases, we will a
priori assume neither continuity nor linearity or another algebraic property of the
operator T . However, a posteriori, a natural type of continuity of T will be a
consequence of the result.

Simple additional initial conditions like T (−2 Id) = −2 in the case of the
chain rule will guarantee that T is actually the derivative, Tf = f ′, and, in
particular, linear, see Chapter 4.

Returning to the Fourier transform, suppose that T : S(Rn) → S(Rn) is
bijective and satisfies T (f · g) = T (f) ∗ T (g). By the properties of the Fourier
transform, J := F ◦ T then satisfies J(f · g) = J(f) · J(g) for all f, g ∈ S(Rn). To
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prove the result for T , it therefore suffices to determine all bijective multiplicative
maps J : S(Rn) → S(Rn), J(f ·g) = J(f) ·J(g), i.e., solve another simple operator
functional equation on a classical function space of analysis. In this case there is
a diffeomorphism ω : Rn → Rn such that either Jf = f ◦ ω for all f ∈ S(Rn) or
Jf = f ◦ ω for all f ∈ S(Rn), cf. [AFM]. Bijective multiplicative maps on relevant
functions spaces of analysis were studied before in the papers of Milgram [M] and
of Mrčun and Šemrl [Mr], [MS].

Another transformation which is important in analysis and geometry is the
Legendre transform L. Let Cn denote the class of all lower-semi-continuous func-
tions φ : Rn → R ∪ {±∞} and fix some scalar product 〈·, ·〉 on Rn. The Legendre
transform of φ, also called Legendre–Fenchel transform in higher dimensions, is
given by

L(φ)(x) = sup[〈x, y〉 − φ(y)], φ ∈ Cn, x ∈ Rn.

Then L(φ) ∈ Cn, L is an involution , i.e., L2(φ) = φ, and L is order-reversing,
i.e., φ ≤ ψ implies L(φ) ≥ L(ψ) for all φ, ψ ∈ Cn. Being an involution and order-
reversing are the most basic properties of a “duality” relation, which is a natural
operation having many other interesting and very useful consequences. In fact,
they nearly characterize the Legendre transform. By a result of Artstein-Avidan
and Milman [AM], for any order-reversing involution T : Cn → Cn there is a
symmetric linear map B ∈ GL(n,R) and there are v0 ∈ Rn and c0 ∈ R such
that T has the form T (φ) = L(φ ◦ B + v0) + 〈 ·, v0〉 + c0, φ ∈ Cn. So up to affine
transformations, T is the Legendre transform.

The general problem considered in this book, whether basic constructions
or operations in analysis or geometry are essentially characterized by very simple
properties like order-reversion or some functional operator equations, was actually
motivated by the question what “duality” or “polarity” means in convex geometry
and convex analysis. Let Kn denote the class of closed convex bodies with 0 in its
interior. For K ∈ Kn, the polar body K◦ ∈ Kn is given by

K◦ = {x ∈ Rn | for all y ∈ K : 〈x, y〉 ≤ 1}.

Then the map K �→ K◦ from Kn to itself is an involution which is order-reversing,
K ⊂ L implying K◦ ⊃ L◦ for all K,L ∈ Kn. Gruber [Gr] (in a different language),
Böröczky, Schneider [BS] and Artstein-Avidan, Milman [AM] (in different setups)
showed that conversely any involution T : Kn → Kn which is order-reversing, K ⊂
L implying T (K) ⊃ T (L), is actually the polar map, up to linear transformations:
There exists B ∈ GL(n,R) such that T is given by T (K) = (B(K))◦ for all
K ∈ Kn. The result for the Legendre transform is a corresponding duality result
for convex functions instead of convex bodies.

Let us turn back to analysis. The main attention in this book will be given to
the study of properties of the derivative, like the Leibniz or the chain rule, and to
the question to what extent any of these operator functional equations will nearly

Chapter 1. Introduction



4 Chapter 1. Introduction

characterize the derivative, or what other solutions they admit. We also consider
characterizations of the Laplacian and other second-order derivative operations.

It is interesting to compare these classical operations in analysis with func-
tional equations which the exponential function or the logarithm satisfy. The log-
arithm log : R+ → R sends products to sums, log(xy) = log(x) + log(y) for
x, y ∈ R+. However, on a linear class of functions an analogous non-trivial oper-
ation T satisfying T (f · g) = T (f) + T (g) does not exist: considering g = 0, one
finds that Tf = 0 for all f , i.e., T = 0. Let us change this operator equation
slightly by allowing some “tuning” operators A1, A2 which will act on a larger
linear space of functions (of “lower” order). For example, consider T : C1 → C
and A1, A2 : C → C such that

T (f · g) = T (f) ·A1(g) +A2(f) · T (g) (1.1)

for all f, g ∈ C1. Then T still maps in some sense products to sums, with some
correction by the tuning operators A1 and A2. Clearly, if A1 = A2 = Id, we just
get the Leibniz rule equation, or simply Leibniz equation,

T (f · g) = T (f) · g + f · T (g), f, g ∈ C1.

In addition to the derivative, T (f) = f ′, also the entropy operation T (f) = f ln |f |
satisfies this equation in C1 or C, reflecting a logarithmic behavior. The general
solution of the Leibniz rule equation turns out to be a linear combination of the
derivative and the entropy operation. We prove this in Chapter 3. In this extended
interpretation, the derivative operation is an analogue of the logarithm on linear
spaces of functions. We also determine the solutions of the more general equation
(1.1) in Chapter 3.

Another algebraically inspired, interesting aspect of the derivative is illus-
trated by the chain rule equation

T (f ◦ g) = T (f) ◦ g · T (g) (1.2)

for all f, g ∈ Ck(R), k ∈ N. In this case T maps the composition f ◦ g = f(g)
to a “compound” product T (f) ◦ g · T (g). Since the information on the left-hand
side of the equation involves the composition f ◦ g and not individually f and g,
on the right-hand side also the composition with g is needed, when f appears,
to yield meaningful solutions. A simple product equation T (f ◦ g) = T (f) · T (g)
only admits the trivial solutions T = 0 and T = 1. The solutions of the chain rule
operator equation are classified in Chapter 4. There are other solutions besides the
derivative (and its powers), but the derivative can be characterized by the chain
rule and an additional initial condition, e.g., T (−2 Id) = −2.

Suppose the terms in the chain rule equation (1.2) for T are positive. Then
P := log T satisfies

P (f ◦ g) = P (f) ◦ g + P (g), f, g ∈ C1(R), (1.3)
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mapping compositions to a “compound sum”. Note that equation (1.3) makes
sense for all, and not only for positive functions. Again, compositions with g are
needed on both sides when terms with f appear.

On linear classes of functions like C1(R) or C(R), the solutions of equation
(1.3) are easily described: there is a continuous function H ∈ C(R) such that

Pf = H ◦ f −H.

This solution by itself is not very interesting. So let us add on the right-hand
side of (1.3) some “tuning” operators, as we did in (1.1). This yields the operator
equation

T (f ◦ g) = T (f) ◦ g ·A1(g) +A2(f) ◦ g · T (g) (1.4)

with three operators T,A1, A2.

One solution of this equation is well-known, namely the second derivative
T (f) = D2(f) = f ′′, with A1(f) = (f ′)2 and A2(f) = f ′. Natural domains are
C2(R) for T and C1(R) for A1, A2, so A1, A2 may be considered of “lower order”. In
our interpretation, this second-order chain rule equation appears after a logarith-
mic operation is applied to the first-order chain rule, which then is appropriately
“tuned”.

We study the solutions of equation (1.4) in Chapter 9 under a mild condition
of non-degeneration, and determine all triples of operators (T,A1, A2) on suitable
Ck(R)-spaces which lead to nontrivial solutions.

The operators (T,A1, A2) are intertwined by (1.4), and there are fewer types
of solutions than one might imagine at first. There are non-trivial solutions for T
on Ck(R)-spaces for k ∈ {0, 1, 2, 3}, with appropriately chosen tuning operators
A1, A2. On Ck(R)-spaces for k ≥ 4 there are no further solutions, i.e., solutions
which might depend on the fourth or higher derivatives. The only solution for
k = 0 was already described above, Tf = H ◦ f −H, with A1 = A2 = 11.

For k = 1 there are three different families of solutions, where all operators
act on C1. For k = 2, in addition to the solutions mentioned for k = 0, 1, there is
very little diversity for the operators A1, A2. They are again defined on C1 with
A1(f) = f ′ · A2(f) and A2(f) = |f ′|p {sgn f ′} for a suitable p ≥ 1. The term
{sgn f ′} may appear here or not, yielding two solutions. The main operator T is
described by the above value of p and two continuous parameter functions c,H,
c �= 0, namely

Tf = (cf ′′ + [H ◦ f −H] · f ′) · |f ′|p−1 {sgn f ′}.
So for H = 0, we essentially get the second derivative. Suitable additional initial
conditions determine the form of T . Requiring, e.g., T (Id2) = 2 and T (Id3) = 6 Id,
with Idl(x) = xl, l ∈ N, yields T (f) = f ′′, A1(f) = f ′2 and A2(f) = f ′.
The case k = 3, in addition to the solutions for k = 0, 1, 2, leads to solutions in
terms of the Schwarzian derivative S. In this case A1(f) = f ′2A2(f), where A2

Chapter 1. Introduction
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has the same form as for k = 2 but with p ≥ 2. The most interesting solution is
T (f) = f ′2S(f), A1(f) = f ′4 and A2(f) = f ′2, cf. Chapter 9.

One main step of our method is the localization technique, which allows to
reduce operator equations to functional equations. We show, e.g., in the case of the
chain rule equation (1.2) that any non-degenerate solution Tf(x) is determined
by some function F of the variables x, f(x) and the derivatives of f at x up to
order k, if f ∈ Ck(R) and x ∈ R. No regularity of this function F is known at
the outset but has to be proved later. We show that the operator equation for
T then turns into a functional equation for F , the solutions of which have to
be determined. Usually then we have to prove the continuity or regularity of the
coefficient functions appearing in the structure of the solutions of F . Functional
equations and regularity results for them are studied in Chapter 2, in preparation
for later application in subsequent chapters.

We already mentioned that various of our results are proved under some
condition of non-degeneration. There are two different forms and reasons for this
type of assumption.

One of them is a very weak form of surjectivity of the operator. This together
with the operator equation will often yield in the final result that T is actually
surjective. For example, the assumption in Theorem 4.1 for the chain rule equation
only requires as non-degeneration condition that T is not the zero operator on the
half-bounded functions, allowing a complete description of all solutions.

A very different type of non-degeneration is required when two or three dif-
ferent operators appear in the equation, such as in (1.1). We then need, e.g., that
a tuning operator A will not be proportional on some open interval to the oper-
ator T , cf. Theorem 3.7, or not be proportional to the identity, cf. Theorem 7.2.
By these conditions of non-degeneration we avoid a “resonance” behavior of two
different operators, which often has the consequence that they are not localized.
In the case of equation (1.1) there is, e.g., the following non-localized solution

T (f)(x) = f(x)− f(x+ 1), A1(f)(x) = A2(f)(x) =
1

2
(f(x) + f(x+ 1)),

where the operators T,A1 and A2 act from C(R) to itself. For functions with small
support around x, T here acts as identity and A1 and A2 are homothetic to the
identity. These effects typically appear with Leibniz rule type equations which are
studied in Chapters 3 and 7. The exact form of the non-degeneration condition
differs from one chapter to the other, but stays the same in each chapter.

In some cases we may avoid the assumption of non-degeneration and prove
theorems about the general structure of the solutions of equations like (1.1) with-
out localization. These results are found in Chapter 8.

Interestingly enough, the equations we consider in this book show some unex-
pected stability or even rigidity. Perturbing the Leibniz rule equation by a “small”
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additive term yields solutions which are perturbations of the original equation. In
the case of the chain rule, we even have rigidity: the perturbed solutions have
the same solutions as the original equation. The chain rule equation allows no
reasonable additive perturbation. This is shown in Theorems 5.6 and 5.8.

In the case of the chain rule, the rigidity even allows us to study the solutions
of the inequality

T (f ◦ g) ≤ T (f) ◦ g · T (g), f, g ∈ C1(R).

To completely describe the solutions of this operator inequality, under some non-
degeneration condition and a weak continuity assumption, we have to prove local-
ization and classify certain submultiplicative functions on the real line, which by
itself is a curious result, cf. Theorems 6.1 and 6.2.

Let us consider not necessarily small additive “perturbations” of the Leibniz
rule. Suppose, e.g., that we add to the Leibniz equation a product of two copies
of a “lower-order” operator A,

T (f · g) = Tf · g + f · Tg +Af ·Ag,

f, g ∈ Ck(R). This equation is not only motivated by a perturbation of the (first
order) Leibniz rule, but, in fact, reflects the behavior of the second derivative
T = D2. Indeed, choosing A =

√
2 D, the equation is satisfied for these operators

(T,A). The natural domain for T is C2(R), for A it is C1(R). Thus A is of “lower
order” than T .

This point of view leads to higher-order Leibniz rule type equations deter-
mining derivatives of any order, cf. Section 3 of Chapter 5. Moreover, it may be
considered for functions on Rn, too. The equations then yield characterizations of
the Laplacian under natural assumptions, e.g., orthogonal invariance and annihi-
lation of affine functions. We investigate this in Chapter 7.

In most of the results on operator equations for one operator T in this book
we do not make any continuity or regularity assumption on the operator T . A
posteriori, the theorems imply that the operator T is actually continuous in a
natural way. In the proofs we use the fact that the image of the operators is
contained in spaces of continuous functions. We feel, however, that the main reason
for the automatic continuity of the solution operators is a consequence of the non-
linearity of the equations, like the chain rule equation. Using the axiom of choice
and Hamel bases, it is of course easy to construct non-continuous and even non-
measurable solutions of linear equations on infinite-dimensional spaces. However,
this is not the case for non-linear equations.

Much of the material of the book is based on papers of the authors and their
coauthors. However, various theorems shown in this book extend published results
or relax the assumptions made there. The proofs of most results are provided in
detail. The book is addressed to a general mathematical audience.

Chapter 1. Introduction
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Chapter 2

Regular Solutions of Some
Functional Equations

The derivative D is an operator which acts as a map from the continuously differ-
entiable functions C1(R) on R to the continuous functions C(R). It satisfies the
Leibniz and the chain rule

D(f · g) = Df · g + f ·Dg,

D(f ◦ g) = (Df) ◦ g ·Dg, f, g ∈ C1(R).

In this book, we show that operators T : C1(R) → C(R) obeying either the
Leibniz or the chain rule operator equation

T (f · g) = Tf · g + f · Tg, (2.1)

T (f ◦ g) = (Tf) ◦ g · Tg, f, g ∈ C1(R) (2.2)

are close to the standard derivative. Actually, we completely establish the form of
the solutions of either equation. We also consider more general operator equations
modeling second-order derivatives or the Laplacian. Only very mild conditions are
imposed on the map T .

The basic question mentioned already in the introduction is: Are classical
operators in analysis like differential operators characterized by very simple prop-
erties such as (2.1) or (2.2), and additional initial conditions, e.g., T (−2 Id) = −2?

Chapters 3 and 4 will be devoted to determine and describe all solutions of
either equation (2.1) or (2.2). The first step in solving equations like (2.1) and (2.2)
is to show that the operator T is localized, i.e., that there is a function F : R3 → R,
such that

Tf(x) = F
(
x, f(x), f ′(x)

)
, f ∈ C1(R), x ∈ R.

At this point, the function F and its possible regularity is unknown, but the
operator equation for T translates into a functional equation for F , in the above

© Springer Nature Switzerland AG 2018
H. König, V. Milman, Operator Relations Characterizing Derivatives,
https://doi.org/10.1007/978-3-030-00241-1_2

9

https://doi.org/10.1007/978-3-030-00241-1_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00241-1_2&domain=pdf


10 Chapter 2. Functional equations

cases into either

F (x, α0β0, α1β0 + α0β1) = F (x, α0, α1)β0 + F (x, β0, β1)α0,

or
F (x, z, α1β1) = F (y, z, α1)F (x, y, β1),

for all x, y, z, α0, β0, α1, β1 ∈ R.

Functional equations, of course, are a classic subject, and there is a vast
literature on the topic, cf., e.g., the books of Aczél [A], Aczél, Dhombres [AD],
Járai [J], Székelyhidi [Sz] or the recent book by Rassias, Thandapani, Ravi, Senthil
Kumar [RTRS]. Much less is known about the operator equations which we will
discuss in this book, and the specific functional equations which they generate.

In this chapter, we determine the solutions of a few functional equations
which originate by localization and various reduction steps from the operator
equations we will study, identifying the representing function F up to some para-
metric functions. To be self-contained, we provide the proofs of these results, even
though most of them are found in, e.g., [A] or [AD] or in more generality in [J] or
[Sz]. Some of the proofs are new, and we present them in more detail. In this chap-
ter we do not outline the general theory of functional equations as done, e.g., in
[J] or [Sz], but rather only solve those functional equations which will be relevant
in later chapters.

To show the regularity of the parameter functions occurring in the represent-
ing function F , we prove some new general continuity results under assumptions
which are easily verified in the case of the operator equations which we investigate.
A general reference when solutions of functional equations are smooth is Járai [J].

2.1 Regularity results for additive and multiplicative
equations

We start with the classical question when additive functions are linear.

Proposition 2.1. Let f : R → R be measurable and additive, i.e., satisfy the Cauchy
equation

f(x+ y) = f(x) + f(y), x, y ∈ R.

Then f is linear: there is c ∈ R such that f(x) = cx for all x ∈ R.

Clearly, additive functions satisfy f(rx) = rf(x) for all r ∈ Q. Thus, contin-
uous additive functions are linear, f(x) = cx with c = f(1), as already noted by
Cauchy.

Proof. Fix x �= 0 and define functions ϕ, ψ : R → R by

ϕ(t) := f(t)− f(x)

x
t, ψ(t) :=

1

1 + |ϕ(t)| , t ∈ R.
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By assumption ϕ and ψ are measurable with 0 ≤ ψ ≤ 1. Hence, ψ is integrable
on finite intervals. Note that ϕ(x) = 0, ϕ(t + x) = ϕ(t) + ϕ(x) = ϕ(t), and
ψ(t+ x) = ψ(t). Thus ϕ and ψ are periodic with period x. Therefore,∫ x

0

ψ(t)dt =
1

2

∫ 2x

0

ψ(t)dt =

∫ x

0

ψ(2t)dt,

0 =

∫ x

0

(
ψ(t)− ψ(2t)

)
dt =

∫ x

0

|ϕ(t)|
(1 + |ϕ(t)|)(1 + 2|ϕ(t)|)dt,

using |ϕ(2t)| = 2|ϕ(t)|. We conclude that ϕ = 0 almost everywhere, i.e., f(t) =
f(x)
x t for almost all t ∈ R. In particular, for x = 1, f(t) = f(1)t for almost all

t ∈ R. Hence, for any x �= 0, there is 0 �= t0 ∈ R such that f(t0) = f(x)
x t0 and

f(t0) = f(1)t0. Hence, f(x)
x = f(t0)

t0
= f(1), f(x) = f(1)x for all x �= 0. Obviously,

this also holds for x = 0. �

In general, additive functions are not linear: Let X ⊂ R be a Hamel basis of
R over Q (assuming the axiom of choice) and g : X → R be an arbitrary function.
Any x ∈ R can be written uniquely as x =

∑
i∈J λixi, xi ∈ X, λi ∈ Q, J a finite

index set. Define f : R → R by

f(x) =
∑
i∈J

g(xi)λixi, x =
∑
i∈J

λixi.

Then f is additive but not linear, unless g is constant. These pathological
functions need to be unbounded on any small interval.

Proposition 2.2. Let I ∈ R be a non-empty open interval and f : R → R be additive
and bounded on I. Then f is linear, f(x) = cx with c ∈ R.

Proof. Let |I| ≥ δ > 0 and M := supx∈I |f(x)|. Then for any t ∈ R with |t| < δ
there are x, y ∈ I with t = x− y,

|f(t)| = |f(x− y)| = |f(x)− f(y)| ≤ 2M.

Using the additivity again, we find for any s ∈ R with |s| < δ/n that |f(s)| ≤
2M/n. Let u ∈ R be arbitrary. Then, for any n ∈ N, there is r ∈ Q with |u− r| <
δ/n. We find∣∣f(u)− uf(1)

∣∣ = ∣∣f(u)− f(r) + rf(1)− uf(1)
∣∣

≤ ∣∣f(u− r)
∣∣+ |r − u|f(1) ≤ (2M + δf(1)

)
/n,

which yields f(u) = f(1)u for all u ∈ R. �

The multiplicative analogue of Proposition 2.1 is
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Proposition 2.3. Let K : R \ {0} → R be measurable, not identically zero and
multiplicative, i.e.,

K(uv) = K(u)K(v), u, v ∈ R.

Then there is p ∈ R such that, for all u ∈ R, either K(u) = |u|p or K(u) =
|u|p sgn(u).
Proof. Since K is not identically zero, K(u) �= 0 if u �= 0. Therefore, we may define
f : R → R by f(x) = ln |K(ex)|. Then, for any x, y ∈ R, f(x + y) = f(x) + f(y).
Since f is measurable, too, by Proposition 2.1 there is p ∈ R such that f(x) = px
for all x ∈ R. Hence, |K(u)| = up for any u > 0. Since K(u) = K(

√
u)2 > 0,

we get K(u) = up for u > 0. Further, K(−1)2 = K(1)2 = K(1) = 1 implies
that K(−1) ∈ {+1,−1}. Then K(−u) = K(−1)K(u) implies that K(u) = |u|p or
K(u) = |u|p sgn(u), depending on whether K(−1) = 1 or K(−1) = −1. �

For the complex version of this result, we assume continuity. For z∈C�{0},
let sgn z := z

|z| . Also put sgn 0 := 0.

Proposition 2.4. Let f : C → C be continuous, not identically zero and multiplica-
tive,

f(zw) = f(z)f(w), z, w ∈ C.

Then there are p ∈ C with Re(p) ≥ 0 and m ∈ Z such that

f(z) = |z|p(sgn z)m, z ∈ C.

We prove Proposition 2.4 by applying the following proposition which we
need later not only for functions defined on C but on Cn. For z = (zj)

n
j=1, d =

(dj)
n
j=1 ∈ Cn, we denote by 〈·, ·〉 the linear form – not the scalar product – on Cn,

〈d, z〉 =∑n
j=1 djzj . Moreover we put z̄ = (z̄j)

n
j=1.

Proposition 2.5. Let n ∈ N and suppose that F : Cn → C� {0} is continuous and
satisfies

F (z + w) = F (z) · F (w), z, w ∈ Cn.

Then there are c, d ∈ Cn such that

F (z) = exp(〈c, z〉+ 〈d, z̄〉), z ∈ Cn.

Proof of Proposition 2.5. Write z ∈ Cn as z = x + iy, x, y ∈ Rn and F in polar
decomposition form,

F (z) = G(x+ iy) exp
(
iH(x+ iy)

)
.

where G : Cn → R>0 is continuous and H : Cn → R may be chosen to be
continuous, too, since it may be constructed from continuous branches. Note that
H is defined on Cn and not on n-fold products of strips, so that it does not yield
an injective representation of F . (E.g., for n = 1 and F (z) = exp(2z), we would
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have H(x+ iy) = 2y and we would not identify 2y = +π and −π for y = +π
2 and

y = −π
2 .) Then, for all x, y, u, v ∈ Rn,

G
(
(x+ u) + i(y + v)

)
= G(x+ iy)G(u+ iv),

H
(
(x+ u) + i(y + v)

)
= H(x+ iy) +H(u+ iv) + 2πk,

for some k ∈ Z which is independent of x, y, u, v since H is continuous. Define
Φ : R2n → R by either Φ(x, y) := lnG(x+ iy) or Φ(x, y) := H(x+ iy)+2πk. Then
Φ is continuous and additive,

Φ(x+ u, y + v) = Φ(x, y) + Φ(u, v).

Selecting u = y = 0 and renaming v as y, we get Φ(x, y) = Φ(x, 0) + Φ(0, y)
and similarly Φ(x + u, 0) = Φ(x, 0) + Φ(u, 0). If x = (xj)

n
j=1 =

∑n
j=1 xjej ,

where (ej) denotes the canonical unit vector basis in Rn, we have by additiv-
ity Φ(x, 0) =

∑n
j=1 Φ(xjej , 0). Proposition 2.1 yields that there are αj , βj ∈ R

such that Φ(xjej , 0) = αjxj and Φ(0, yjej) = βjyj . Hence with α = (αj)
n
j=1,

β = (βj)
n
j=1, a := 1

2 (α− iβ) and b := 1
2 (α+ iβ) ∈ Cn,

Φ(x, y) = 〈α, x〉+ 〈β, y〉 = 〈a, z〉+ 〈b, z̄〉.
This means that G(z) = exp(Φ(x, y)) = exp(〈a, z〉+〈b, z̄〉), and with different

vectors ã, b̃ ∈ Cn, H(z) = 〈ã, z〉+ 〈b̃, z̄〉 − 2πk, so that

F (z) = exp(〈c, z〉+ 〈d, z̄〉), c := a+ iã, d := b+ ib̃ ∈ Cn. �

Proof of Proposition 2.4. We have f(w) �= 0 for w �= 0 since f �≡ 0. Define F :
C → C� {0} by F (z) := f(exp z). Then F is continuous and

F (z + w) = F (z)F (w), z, w ∈ C.

By Proposition 2.5 with n = 1, F (z) = exp(cz + dz̄), hence f(w) = wcw̄d, w ∈ C.
For w �= 0, let sgn(w) := w

|w| . Then f(w) = |w|p sgn(w)q with p = c + d ∈ C and

q = c − d ∈ C. Since f is continuous, q has to be an integer, q = m ∈ Z. Since f
is bounded near zero, Re(p) ≥ 0 is required. �

In later applications of Proposition 2.1, the measurable additive function f
will actually depend on parameters or independent variables, so the linearity factor
c will depend on these parameters. To prove the continuous dependence of c on
the variables, we use the following result. Before formulating it, we introduce some
notations. Let N0 := N ∪ {0}. For n ∈ N, k ∈ N0, I ⊂ Rn open, let

Ck(I,R) := {f : I → R | f is k-times continuously differentiable}
and C∞(I,R) :=

⋂
k∈N

Ck(I,R), C(I,R) := C0(I,R). Let l ∈ N, f ∈ Cl(I,R).

By Schwarz’ theorem, the l-th derivative f (l)(x) of f at x ∈ I can be rep-
resented by the M(n, l) :=

(
n+l−1
n−1

)
independent l-th order partial derivatives
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( ∂lf(x)
∂xi1

···∂xil
)1≤i1≤···≤il≤n. For k ∈ N, let N(n, k) :=

∑k−1
l=0 M(n, l) =

(
n+k−1

n

)
.

Then, using this representation of derivatives, we put

Jk(x, f) :=
(
f(x), . . . , f (k−1)(x)

) ∈ RN(n,k), f ∈ Ck−1(I,R), x ∈ I.

Theorem 2.6. Let n ∈ N, k ∈ N0 and I ⊂ Rn be an open set, possibly unbounded.
Let B : I × RN(n,k) → R be a function satisfying

(a) B(x, v1 + v2) = B(x, v1) +B(x, v2), x ∈ I , vi ∈ RN(n,k).

(b) B( · , Jk( · ; f)) is a continuous function from I to R for all f ∈ C∞(I,R).

Then there is a continuous function c : I → RN(n,k) so that

B(x, v) =
〈
c(x), v

〉
, x ∈ I, v ∈ RN(n,k).

By 〈 · , · 〉 we denote the standard scalar product on the appropriate RN -space, here
N = N(n, k). Then

B
(
x, Jk(x, f)

)
=

k−1∑
l=0

〈cl(x), f (l)(x)〉, x ∈ I, f ∈ Ck−1(I,R),

with continuous functions cl : I → RM(n,l).

For k = 0, the variable v and Jk( · ; f) are not present in (a) and (b).

Proof. To keep the notation simple, we give the proof only in dimension n = 1,
although the arguments in higher dimensions follow the same basic idea. For n = 1,
we may assume that I is an open interval. We proceed by induction on k = N(1, k).
For k = 0 there is nothing to prove. Assume k ∈ N and that the result holds for
k − 1.

(i) Define A := {x ∈ I | B(x, · , 0, . . . , 0) : R → R is discontinuous}. We
claim that A has no accumulation points in I. Assume to the contrary that xm ∈
A → x∞ ∈ I. We may assume that (xm) is strictly monotone, say decreasing, so
that xm > xm+1 > x∞. Fix a smooth, non-negative cut-off function ψ ∈ C∞(R)
with ψ|R�[−1,1] = 0, maxψ = ψ(0) = 1 and ψ(l)(0) = 0 for all l ∈ N. Denote

cl := max |Dlψ|. For m ∈ N, let

δm := min
(
1
2 min

{|xm − xj | : 1 ≤ j ≤ ∞, m �= j
}
, 1

2m

)
.

By assumption (a), B(xm, · , 0 . . . , 0) : R → R is an additive function which is
discontinuous for each m ∈ N. By Proposition 2.2 it must be unbounded on
(0, ε) for any ε > 0. Therefore, we may choose 0 < ym < exp

( − 1
δm

)
with

|B(xm, ym, 0, . . . , 0)| > 1. Define

gm(x) := ymψ

(
x− xm

δm

)
, x ∈ I.
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Then gm ∈ C∞(I) with gm(xm) = ym, g
(l)
m (xm) = 0 for all l ∈ N and gm(x) = 0 for

all x ∈ I with |x−xm| > δm. Moreover, |Dlgm| ≤ clymδ−l
m . Define g :=

∑
m∈N

gm.
We find, for any l ∈ N0,∑

m∈N

|Dlgm| ≤ cl
∑
m∈N

ymδ−l
m ≤ cl

∑
m∈N

δ−l
m exp

(
− 1

δm

)
< ∞,

so that g ∈ C∞(I). Note that g(xm) = ym since we have by definition of δj for any
m �= j that |xm − xj | ≥ 2δj so that gj(xm) = 0. Since xm → x∞ and ym → 0, we
have by continuity that g(x∞) = 0. Also g(l)(xm) = 0 for all l ∈ N, and again by
continuity g(l)(x∞) = 0 for all l ∈ N. Since B( · , Jk( · , g)) is a continuous function
by assumption (b),

B
(
xm, Jk(xm, g)

) −→ B
(
x∞, Jk(x∞, g)

)
= B(x∞, 0, . . . , 0) = 0.

However, |B(xm, Jk(xm, g))| = |B(xm, ym, 0, . . . , 0)| > 1, which is a contradiction.
Therefore, A has no accumulation points in I and its complement in I is dense in
I.

(ii) We next claim that A is empty. Take any x0 ∈ I. By (i) there is a
sequence (xm) with xm /∈ A, xm → x0. For all y0 ∈ R, B( · , y0, 0, . . . , 0) is
continuous on R, applying (b) to the constant function f(x) = y0, and there-
fore, B(xm, y0, 0, . . . , 0) → B(x0, y0, 0, . . . , 0). Hence, B(xm, · , 0, . . . , 0) →
B(x0, · , 0, . . . , 0) pointwise. This implies that B(x0, · , 0, . . . , 0) is a measurable
function, being the pointwise limit of continuous functions. By (a),
B(x0, · , 0, . . . , 0) is additive so that Proposition 2.1 yields that B(x0, · , 0, . . . , 0)
is linear and hence continuous so that x0 /∈ A. Hence, A = ∅.

We conclude that B(x, y, 0, . . . , 0) = c0(x)y for some function c0 : I → R.
Since c0(x) = B(x, 1, 0, . . . , 0), c0 is continuous by assumption (b). Finally write

B(x, y0, . . . , yk−1) = B(x, y0, 0, . . . , 0) +B(x, 0, y1, . . . , yk−1)

= c0(x)y0 +B(x, 0, y1, . . . , yk−1).

Note that conditions (a), (b) also hold for B(x, 0, y1, . . . , yk−1) as a function
from I × Rk−1 to R. Thus, by induction assumption, B(x, 0, y1, . . . , yk−1) =∑k−1

j=1 cj(x)yj , cj ∈ C(I). Hence,

B(x, y0, . . . , yk−1) =

k−1∑
j=0

cj(x)yj =
〈
c(x), y

〉
with c(x) = (cj(x))

k−1
j=0 , y = (yj)

k−1
j=0 . �

Theorem 2.6 will be used in the next chapter to analyze the solutions of the
Leibniz rule operator equation. We will also study perturbations of the Leibniz rule
equation. To show that the solutions of the perturbed equations are perturbations
of the solutions of the unperturbed Leibniz rule equation, we need a more technical
variant of Theorem 2.6 in dimension n = 1 which we will apply in Chapter 5.
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Proposition 2.7. Let k ∈ N, I ⊂ R be an open set and B, B̃,Ψ : I × Rk → R be
functions, Ψ measurable, and M : I → R+ be a locally bounded function such that

(i) B̃(x, v) = B(x, v) + Ψ(x, v) , x ∈ I , v ∈ Rk.

(ii) B̃(x, v1 + v2) = B̃(x, v1) + B̃(x, v2) , x ∈ I , v1, v2 ∈ Rk.

(c) B(·, Jk(·, f)) is a continuous function from I to R for all f ∈ C∞(R).

(d) sup{|Ψ(x, v)| | v ∈ Rk} ≤ M(x) < ∞ , x ∈ I.

Then B̃(x, ·) is linear for all x ∈ I, i.e., there is c(x) ∈ Rk such that B̃(x, v) =
〈c(x), v〉 for all v ∈ Rk.

Proof. (i) We adapt the previous proof and first claim that

A :=
{
x ∈ I

∣∣ B̃(x, · , 0, . . . , 0) : R → R is discontinuous
}

has no accumulation point in I. If this would be false, there would be a sequence
of pairwise disjoint, say strictly decreasing points xm ∈ A with xm → x∞ ∈ I.
Since M is locally bounded,

K := max
(
M(x∞), sup{M(xm) | m ∈ N}) < ∞.

Since B̃(xm, · , 0, . . . , 0) is discontinuous and additive, by Proposition 2.2, it attains
arbitrarily large values in any neighborhood of zero. Again, choosing δm and 0 <
ym < exp(−1/δm) as in the previous proof, such that |B̃(xm, ym, 0, . . . , 0)| >
3K + 1, we define g ∈ C∞(I) as before with

g(xm) = ym, g(x∞) = 0, g(l)(xm) = g(l)(x∞) = 0,

for all m, l ∈ N. By assumption (c)

B(xm, ym, 0, . . . , 0) = B
(
xm, Jk(xm, g)

)
−→ B

(
x∞, Jk(x∞, g)

)
= B(x∞, 0, . . . , 0).

But B̃(x∞, · ) is additive, hence B̃(x∞, 0)=0. Since B=B̃−Ψ and |Ψ(xm, · )|≤ K,
we arrive at the contradiction

2K < lim
m→∞

∣∣B(xm, ym, 0, . . . , 0)
∣∣ = ∣∣B(x∞, 0, . . . , 0)

∣∣ ≤ K.

(ii) Fix an arbitrary point x0 ∈ I. By (i) there are xm /∈ A with xm → x0.

Therefore, B̃(xm, · , 0, . . . , 0) is continuous for all m ∈ N and, by assumption (c),
B( · , y0, 0, . . . , 0) is continuous for any y0 ∈ R. Thus

B(xm, y0, 0, . . . , 0) −→ B(x0, y0, 0, . . . , 0).

Hence B(x0, · , 0, . . . , 0) is the pointwise limit of the functions

B(xm, · , 0, . . . , 0) = B̃(xm, · , 0, . . . , 0)−Ψ(xm, · , 0, . . . , 0),
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therefore measurable, so that∣∣B̃(x0, · , 0, . . . , 0)
∣∣ ≤ K +

∣∣B(x0, · , 0, . . . , 0)
∣∣,

i.e., B̃(x0, · , 0, . . . , 0) is additive and bounded by a measurable function. By a
result of Kestelman [Ke] – similar to Proposition 2.2 but slightly more general –

B̃(x0, · , 0, . . . , 0) is linear, i.e.,

B̃(x0, y0, 0, . . . , 0) = c0(x0)y0.

Induction on k using

B̃(x0, y0, . . . , yk−1) = B̃(x0, y0, 0, . . . , 0) + B̃(x0, 0, y1, . . . , yk−1)

ends the proof. �
In the case of the chain rule operator equation studied in chapter 4, we will

need different regularity results, yielding the regularity of a function from the
property that certain differences of the function are regular.

Proposition 2.8. (a) Let L : R → R be a function such that for any b ∈ R

ϕ(x) := L(x)− L(bx), x ∈ R

defines a continuous function ϕ ∈ C(R). Then L is the pointwise limit of contin-
uous functions and hence measurable.

(b) Let 0 < a ≤ 1 and L ∈ C(R) be a continuous function such that

ψ(x) := L(x)− aL
(
x
2

)
, x ∈ R

defines a C1-function ψ ∈ C1(R). Then L is a C1-function, L ∈ C1(R).

Proof. (i) For b = 1/2, ϕ(x) = L(x)− L(x/2) is continuous and for n ∈ N

n−1∑
j=0

(
ϕ
( x

2j

)
− ϕ

(
1

2j

))
=
(
L(x)− L(1)

)
+

(
L

(
1

2n

)
− L

( x

2n

))
.

For b = x, ϕ̃(y) = L(y)− L(xy) is continuous in y = 0, hence,

lim
n→∞

(
L

(
1

2n

)
− L

( x

2n

))
= ϕ̃(0) = 0.

Therefore, the limit exists for n → ∞ in the above equation and

L(x) = L(1) +

∞∑
j=0

(
ϕ
( x

2j

)
− ϕ

(
1

2j

))
.
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Hence L is the pointwise limit of continuous functions.

(ii) Fix M > 0 and let x, x1 ∈ [−M,M ]. For any n ∈ N

n−1∑
j=0

aj
(
ψ
( x

2j

)
− ψ

(x1

2j

))
=
(
L(x)− L(x1)

)− an
(
L
( x

2n

)
− L

(x1

2n

))
.

Since L is continuous, the last term on the right-hand side tends to 0 for n → ∞.
Since ψ ∈ C1(R), ψ′ is uniformly continuous in [−M,M ] and bounded in modulus,
say by N . Let ε > 0. Then there is δ > 0 such that for all y, z ∈ [−M,M ] with
|y − z| < δ, we have |ψ′(y) − ψ′(z)| < ε/2. Assume |x − x1| < δ. Then, by the
mean-value theorem,

ψ

(
x

2j

)
− ψ

(
x1

2j

)
= ψ′

(
x(j)

2j

)
x− x1

2j
,

for some x(j) between x and x1. Since
∣∣x(j)

2j − x1

2j

∣∣ ≤ |x− x1| < δ, we find∣∣∣∣∣∣
n−1∑
j=1

aj · ψ
(

x
2j

)− ψ
(
x1

2j

)
x− x1

−
n−1∑
j=0

(a
2

)j
ψ′
(x1

2j

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−1∑
j=0

(a
2

)j (
ψ′
(
x(j)

2j

)
− ψ′

(x1

2j

))∣∣∣∣∣∣ ≤ ε

2

n−1∑
j=0

(a
2

)j
≤ ε.

Moreover,∣∣∣∣∣anL
(

x
2n

)− L
(
x1

2n

)
x− x1

∣∣∣∣∣ =
∣∣∣∣∣∣
∞∑
j=n

aj · ψ
(

x
2j

)− ψ
(
x1

2j

)
x− x1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
j=n

(a
2

)j
ψ′
(
x(j)

2j

)∣∣∣∣∣∣ ≤ N
∞∑
j=n

(a
2

)j
−→ 0,

uniformly in x, x1 ∈ [−M,M ] for n → ∞. Therefore,

L′(x1) = lim
x→x1

L(x)− L(x1)

x− x1
=

∞∑
j=0

(a
2

)j
ψ′
(x1

2j

)
exists and ψ′ ∈ C(R) implies L′ ∈ C(R), L ∈ C1(R). �

2.2 Functional equations with two unknown functions

In this section we discuss the solutions of some functional equations which involve
two unknown functions. It is an interesting subject by itself which was studied
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intensively, cf., e.g., the books by Aczél [A], Aczél, Dhombres [AD] and Székelyhidi
[Sz]. We will use these results in Chapters 7, 8 and 9 to study operator equations
which are inspired by the Leibniz rule or by the chain rule of the second order.
Several theorems in this section are special cases of results in [Sz]. Our intention
here is to give direct proofs.

The second derivative D2 satisfies the Leibniz and the chain rule type for-
mulas

D2(f · g) = D2f · g + f ·D2g + 2Df ·Dg,

D2(f ◦ g) = (D2f ◦ g) · (Dg)2 + (Df) ◦ g ·D2g, f, g ∈ C2(R).

To understand the structure of these equations, we will later consider a more
general setting: We will study operators T : C2(R) → C(R) and A,A1, A2 :
C1(R) → C(R) satisfying one of the following equations

T (f · g) = Tf · g + f · Tg +Af ·Ag,

T (f ◦ g) = Tf ◦ g ·A1g + (A2f) ◦ g · Tg, f, g ∈ C2(R).

Under mild assumptions, it will turn out that there are not too many choices
of operators (T,A) or (T,A1, A2) satisfying any one of these operator equations.
To solve them, after localization, we have to find the solutions of some specific
functional equations which involve two unknown functions.

We now discuss the solutions of these functional equations. The results of
this section will only be used later in Chapters 7, 8 and 9.

Proposition 2.9. Let m ∈ N and assume that F,B : Rm → R are functions such
that for any α, β ∈ Rm,

F (α+ β) = F (α) + F (β) +B(α)B(β). (2.3)

Then there are additive functions c, d : Rm → R and γ ∈ R such that F and B
have one of the following three forms:
Either

(a) F (α) = −γ2 + d(α), B(x) = γ,

or

(b) F (α) = 1
2c(α)

2 + d(α), B(α) = c(α),

or

(c) F (α) = γ2(exp(c(α))− 1) + d(α), B(α) = γ(exp(c(α))− 1),

for any α ∈ Rm.
Conversely, these functions satisfy equation (2.3).
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Proof. (i) If B = 0, then F is additive and we are in case (a) with γ = 0. Therefore,
we may assume that B �= 0. Choose a ∈ Rm with B(a) �= 0. For α ∈ Rm, define
functions f, b : Rm → R by

f(α) := F (α+ a)− F (α)− F (a), b(α) := B(α+ a)−B(α).

Then by (2.3)
f(α+ β) = f(α) + b(α)B(β), α, β ∈ Rm. (2.4)

For α = 0, f(β) = f(0) + b(0)B(β). Inserting this back into (2.3), we find

b(0)
(
B(α+ β)−B(α)

)
= b(α)B(β). (2.5)

Suppose first b(0) = 0. Since B(a) �= 0, (2.5) implies that b ≡ 0 identically and
that f = f(0) is a constant function. Since f(α) = B(a)B(α) by (2.3), also B is
constant, B = f(0)/B(a) =: γ. Let d(α) := F (α) + γ2. Then by (2.3)

d(α+ β) = F (α+ β) + γ2 =
(
F (α) + F (β) + γ2

)
+ γ2 = d(α) + d(β),

i.e., d is additive on Rm and F and B have the form given in (a).

(ii) Assume now b(0) �= 0. Putting α = 0 in (2.5), we find that B(0) = 0.
Moreover,

B(α+ β) = B(α) +
b(α)

b(0)
B(β). (2.6)

Suppose first that b is a constant function. Then c(α) := B(α) is additive and
d(a) := F (α)− 1

2c(α)
2 satisfies

d(α+ β) = F (α+ β)− 1
2

(
c(α) + c(β)

)2
=
(
F (α) + F (β) +B(α)B(β)

)− 1
2c(α)

2 − 1
2c(β)

2 − c(α)c(β)

= d(α) + d(β).

Hence, d is additive and F and B have the form given in (b).

(iii) Now assume b(0) �= 0 and that b is not constant. Choose α0 ∈ Rm with
b(α0) �= b(0). Since the left-hand side of (2.6) is symmetric in α and β, we have

B(α) +
b(α)

b(0)
B(β) = B(β) +

b(β)

b(0)
B(α).

For β = α0, B(α) = B(α0)
b(α0)−b(0) (b(α)− b(0)), and by (2.4),

f(α)− f(0) = b(0)B(α) = γ
(
b(α)− b(0)

)
, (2.7)

with γ := b(0)B(α0)/(b(α0) − b(0)). For γ = 0, B = 0, and we are again in case
(a).
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So assume γ �= 0. Then, by (2.4) and (2.7),

γ
(
b(α+ β)− b(0)

)
= f(α+ β)− f(0)

= f(α)− f(0) + b(α)B(β)

= γ
(
b(α)− b(0)

)
+

b(α)

b(0)
γ
(
b(β)− b(0)

)
= γ

(
b(α)b(β)

b(0)
− b(0)

)
.

Hence, b̃(α) := b(α)/b(0) satisfies b̃(α+β) = b̃(α)̃b(β), b̃(α) = b̃
(
α
2

)2
> 0. Note that

b̃(α) �= 0, since otherwise b̃(0) = b̃(α)̃b(−α) = 0, but b̃(0) = 1. Therefore, c(α) :=

ln b̃(α) is additive and b(α) = b(0) exp(c(α)). This yields B(α) = γ(exp(c(α))−1).
Put similarly as above d(α) := F (α)− γ2(exp(c(α))− 1). Then (2.3) and the
additivity of c yield

d(α+ β) =
(
F (α) + F (β) +B(α)B(β)

)− γ2
(
exp(c(α)) exp(c(β))− 1

)
= d(α) + d(β),

i.e., d is additive. Therefore, we have the solution given in (c),

F (α) = γ2
(
exp(c(α))− 1

)
+ d(α). �

In the case m = 1, we need a multiplicative analogue of Proposition 2.9.

Proposition 2.10. Assume that F,B : R → R are functions such that, for any
α, β ∈ R,

F (αβ) = F (α)β + F (β)α+B(α) B(β). (2.8)

Then there are additive functions c, d : R → R, and there is γ ∈ R such that F
and B have one of the following three forms:

(a) F (α) = α (c(ln |α|)− γ2), B(α) = γα;

(b) F (α) = α
(
1
2c(ln |α|)2 + d(ln |α|)), B(α) = αc(ln |α|);

(c) F (α) = α
(
γ2[{sgnα} exp (c(ln |α|))− 1] + d(ln |α|)),

B(α) = αγ
[{sgnα} exp(c(ln |α|))− 1

]
.

In (c), there are two possibilities, with sgnα present in both F and B and the other
one with sgnα replaced by 1.

Conversely, these functions satisfy equation (2.8).

Proof. (i) For a ∈ R, define f(a) := F (exp(a))/ exp(a), g(a) := B(exp(a))/ exp(a).
Then (2.8) implies

f(a+ b) = f(a) + f(b) + g(a)g(b), a, b ∈ R.
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The solutions of this equation (m = 1) were given in Proposition 2.9, e.g., in case
(b) with additive functions c, d : R → R,

f(a) = 1
2c(a)

2 + d(a), g(a) = c(a).

Then for α > 0, a := lnα, so that α = exp(a),

F (α) = α
(
1
2c(lnα)

2 + d(lnα)
)
, B(α) = αc(lnα).

The cases (a) and (c) are similar, which yields Proposition 2.10 if α > 0.

(ii) We will now determine F (α) and B(α) for negative α. In all cases except
one, F and B turn out to be odd functions. The exceptional one is the case
of the third solution when the sgnα-term appears. Unfortunately, this requires
distinguishing several cases in the basic equation (2.9) below. Choosing β = −1
in (2.8) and exchanging α and −α, we find

F (α) + F (−α) = F (−1)α+B(−1)B(α) = −F (−1)α+B(−1)B(−α),

i.e., B(−1)B(−α) = B(−1)B(α) + 2F (−1)α.

For α = 1, B(−1)2 = B(−1)B(1) + 2F (−1). Hence,

B(−1)B(−α) = B(−1)
[
B(α) + (B(−1)−B(1))α

]
,

F (α) + F (−α) = B(−1)
[
B(α) + 1

2 (B(−1)−B(1))α
]
.

(2.9)

If B(−1) = 0, also F (−1) = 0 and (2.9) implies that F (−α) = −F (α) and, using
(2.8),

B(−α)B(β) = F (−αβ)− F (−α)β + F (β)α

= −F (αβ) + F (α)β + F (β)α = −B(α)B(β),

i.e., F and B are odd functions, which means that in cases (a), (b) and (c) lnα
has to be replaced by ln |α| for α < 0.

(iii) Now assume B(−1) �= 0. In cases (b), (c), we know B(1) = F (1) = 0.
Then by (2.9)

B(−α) = B(α)+B(−1)α, F (α)+F (−α) = B(−1)
[
B(α) + 1

2B(−1)α
]
. (2.10)

Using (2.10) for αβ instead of α and (2.8), we find

B(−1)
[
B(αβ) + 1

2B(−1)αβ
]
= F (αβ) + F (−αβ)

=
(
F (α) + F (−α)

)
β +

(
B(α) +B(−α)

)
B(β)

= B(−1)
[
B(α)β + 1

2B(−1)αβ
]
+ 2B(α)B(β) +B(−1)B(β)α

= 2
(
B(α) + 1

2B(−1)α
) (

B(β) + 1
2B(−1)β

)
.



2.2. Two unknown functions 23

Therefore, ϕ(α) := 2
B(−1)B(α) +α is multiplicative, ϕ(αβ) = ϕ(α)ϕ(β). For posi-

tive α > 0, this occurs only in case (c) when

B(α) = αγ
[
exp(c(lnα))− 1

]
.

This identifies γ = 1
2B(−1), and for α < 0 we have

B(α) = αγ
[
sgnα · exp(c(ln |α|))− 1

]
,

from the multiplicity of ϕ, where the term sgnα has to be present since otherwise
B(−1) = 0. For α < 0, we get from (2.10) and the known form of F (−α) for
−α = |α| > 0

F (α) = −F (−α) + 2γ
(
B(α) + γα

)
= α

[
γ2(exp(c(ln |α|))− 1) + d(ln |α|)]
+ 2γ

[− γα(exp(c(ln |α|)) + 1) + γα
]

= α
[
γ2(sgnα exp(c(ln |α|))− 1) + d(ln |α|)].

In this case B and F are not odd, in the other cases of (b) and (c) they are odd.

(iv) It remains to consider case (a) for α < 0, when B(−1) �= 0. Then
B(1) = γ and (2.9) yields for α > 0 that B(−α) = B(−1)α and

F (α) + F (−α) = 1
2B(−1)

(
γ +B(−1)

)
α.

Using this for αβ instead of α and (2.8) we find

1
2B(−1)

(
γ +B(−1)

)
αβ = F (αβ) + F (−αβ)

=
(
F (α) + F (−α)

)
β +

(
B(α) +B(−α)

)
B(β)

= 1
2B(−1)

(
γ +B(−1)

)
αβ +

(
γ +B(−1)

)
αB(β),

hence, B(−1) = −γ, B(−α) = −γα = −B(α), F (−α) = −F (α), so that B and
F are odd functions, which means, in the formula of (a), that lnα has to replaced
by ln |α| for α < 0. �

In Chapter 3 we will need the solution of a functional equation which re-
sembles the addition formula for the sin function. We first consider the complex
case.

Proposition 2.11. Let n ∈ N and F,B : Cn → C be continuous functions satisfying

F (z + w) = F (z) ·B(w) + F (w) ·B(z), z, w ∈ Cn. (2.11)

Suppose F is not identically zero. Then there are vectors c1, c2, d1, d2 ∈ Cn and
there are k ∈ C � {0} and ε1, ε2 ∈ {0, 1}, with ε1, ε2 not both zero, such that F
and B have one of the following two forms:
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(a) F (z) = (〈c1, z〉+ 〈c2, z̄〉) exp(〈d1, z〉+ 〈d2, z̄〉),
B(z) = exp(〈d1, z〉+ 〈d2, z̄〉);

(b) F (z) = 1
2k (ε1 exp(〈c1, z〉+ 〈c2, z̄〉)− ε2 exp(〈d1, z〉+ 〈d2, z̄〉)),

B(z) = 1
2

(
ε1 exp(〈c1, z〉+ 〈c2, z̄〉) + ε2 exp(〈d1, z〉+ 〈d2, z̄〉)

)
, z ∈ Cn.

Conversely, these functions satisfy equation (2.11).

In the real case we get

Corollary 2.12. Let F,B : Rn → R be continuous functions satisfying

F (α+ β) = F (α)B(β) + F (β)B(α), α, β ∈ Rn.

Suppose F is not identically zero. Then there are vectors b, c, d ∈ Rn and there is
a ∈ R such that F and B have one of the following four forms:

(a) F (α) = 〈b, α〉 exp(〈d, α〉), B(α) = exp(〈d, α〉);
(b) F (α) = a exp(〈c, α〉) sin(〈d, α〉), B(α) = exp(〈c, α〉) cos(〈d, α〉);
(c) F (α) = a exp(〈c, α〉) sinh(〈d, α〉), B(α) = exp(〈c, α〉) cosh(〈d, α〉);
(d) F (α) = a exp(〈d, α〉), B(α) = 1

2 exp(〈d, α〉), α ∈ Rn.

Conversely, these functions satisfy the above functional equation.

Proof of Proposition 2.11. (i) Fix t ∈ Cn \ {0}. We claim that F ,B and B( · + t)
are linearly dependent functions. For all x, y ∈ Cn

F (x+t)B(y)+B(x+t)F (y) = F (x+y+t) = F (x)B(y+t)+B(x)F (y+t). (2.12)

Since F is not identically zero, by (2.11) also B is not identically zero. Hence
there is y1 ∈ Cn such that B(y1) �= 0. Choosing y = y1, equation (2.12) shows
that F (·+t) is a linear combination of F , B and B(·+t) with coefficients depending
on the values B(y1), F (y1), B(y1+ t) and F (y1+ t). Inserting this back into (2.12)
yields for all x, y ∈ Cn

F (x)
(
B(y)B(y1 + t)−B(y1)B(y + t)

)
+B(x)

(
B(y)F (y1 + t)−B(y1)F (y + t)

)
+B(x+ t)

(
B(y1)F (y)−B(y)F (y1)

)
= 0. (2.13)

Suppose B(y1)F (y) − B(y)F (y1) = 0 holds for all y ∈ Cn. Then F = F (y1)
B(y1)

B,

and already F and B are linearly dependent. Else there is y2 ∈ Cn such that
B(y1)F (y2)−B(y2)F (y1) �= 0, and equation (2.13) shows that F , B and B(·+ t)
are linearly dependent.

(ii) Assume that B = kF for some k ∈ C. Then F (x + y) = 2kF (x)F (y),
and k �= 0 since F is not identically zero. Proposition 2.5 implies that there are
c1, c2 ∈ Cn such that F (z) = 1

2k exp(〈c1, z〉+〈c2, z̄〉), B(z) = 1
2 exp(〈c1, z〉+〈c2, z̄〉).

This is a solution of type (b) with ε2 = 0.
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(iii) We may now assume that B and F are linearly independent. Then by
(i) there are functions c1, c2 : Cn → C such that

B(x+ t) = c1(t)F (x) + c2(t)B(x), x, t ∈ Cn. (2.14)

The left-hand side is symmetric in x and t. Applying it to x + y + t, we get an
equation similar to (2.12). The arguments in (i) then show that c2, B and F are
linearly dependent: there are b1, b2 ∈ C such that

c2(x) = b1B(x) + b2F (x).

Inserting this back into (2.14) and using the symmetry in (x, t), we find

c1(t)F (x) +
(
b1B(t) + b2F (t)

)
B(x) = B(x+ t)

= c1(x)F (t) +
(
b1B(x) + b2F (x)

)
B(t),

c1(x)− b2B(x) =
c1(t)− b2B(t)

F (t)
F (x) =: b3F (x),

for any fixed t with F (t) �= 0. Hence c1(x) = b2B(x)+ b3F (x), and again by (2.14)

B(x+ t) =
(
b2B(t) + b3F (t)

)
F (x) +

(
b1B(t) + b2F (t)

)
B(x).

Insert this and formula (2.11) for F (x+t) into (2.12) to find, after some calculation,(
(1− b1)B(t)− b2F (t)

)(
F (x)B(y)− F (y)B(x)

)
= 0,

for all x, y, t ∈ Cn. Since B and F are linearly independent, we first conclude that
(1− b1)B(t) = b2F (t) for all t, and then that b1 = 1, b2 = 0. Therefore, c1 = b3F ,
c2 = B, and (2.14) yields

B(x+ t) = b3F (t)F (x) +B(t)B(x), x, t ∈ Cn.

Take k ∈ C with k2 = b3. Using (2.11) again, we find(
B(x+ y)± kF (x+ y)

)
=
(
B(x)± kF (x)

)(
B(y)± kF (y)

)
,

so that f := B ± kF solves the equation f(x + y) = f(x)f(y). Since f �≡ 0, by
Proposition 2.5, there are c1, c2, d1, d2 ∈ Cn such that

B(z) + kF (z) = exp(〈c1, z〉+ 〈c2, z̄〉),
B(z)− kF (z) = exp(〈d1, z〉+ 〈d2, z̄〉),

which gives solution (b) with ε1 = ε2 = 1, if k �= 0.

(iv) If k = 0, again by Proposition 2.5, B(z) = exp(〈d1, z〉 + 〈d2, z̄〉) for

suitable d1, d2 ∈ C. Define G(z) := F (z)
B(z) . Since B(z + w) = B(z)B(w), equation

(2.11) yields
G(z + w) = G(z) +G(w), z, w ∈ Cn.

Hence G is additive and continuous. As in the proof of Proposition 2.5 there are
c1, c2 ∈ Cn such that G(z) = 〈c1, z〉+ 〈c2, z̄〉, which yields with F (z) = G(z)B(z)
the form of F and B given in part (a). �
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Proof of Corollary 2.12. Extend F,B : Rn → R to F̃ , B̃ : Cn → C by F̃ (z) :=

F (�z), B̃(z) := B(�z) with �z = (�zj)nj=1 if z = (zj)
n
j=1. Here � denotes the

real part, and below � will stand for the imaginary part. Then F̃ , B̃ satisfy (2.11)
and are real valued. The functions B and F in part (a) of Proposition 2.11 are
real valued if and only if c1 = c̄2 and d1 = d̄2 yielding the solution in (a), when
restricted to Rn, with b = 2�c1 and d = 2�d1.

The formula for B in part (b) of Proposition 2.11 with ε1 = ε2 = 1 is real
valued if and only if either c1 = c̄2 and d1 = d̄2 or c1 = d̄2 and c2 = d̄1. In the first
case one gets a solution of type (c) with vectors c = �(c1 + d1), d = �(c1 − d1),
in the second case a solution of type (b) with c = �(c1 + c2) and d = �(c1 + c2).
In the first case k needs to be real, in the second case purely imaginary. The last
solution (d) originates from (b) in Proposition 2.11 for ε1 = 1, ε2 = 0 (or ε1 = 0,
ε2 = 1). �

In Chapter 9 we need a multiplicative one-dimensional analogue of Corollary
2.12 which is the following result.

Proposition 2.13. Let F,B : R → R be continuous functions satisfying

F (xy) = F (x)B(y) + F (y)B(x), x, y ∈ R. (2.15)

Suppose F is not identically zero. Then there are constants a, b, c, d ∈ R, c, d > 0,
so that F and B have one of the following four forms:

(a) F (x) = b(ln |x|)|x|d{sgnx}, B(x) = |x|d{sgnx};
(b) F (x) = b|x|d sin(a ln |x|){sgnx}, B(x) = |x|d cos(d ln |x|){sgnx};
(c) F (x) = b

2 (|x|c[sgnx]− |x|d{sgnx}), B(x) = 1
2 (|x|c[sgnx] + |x|d{sgnx});

(d) F (x) = b|x|d{sgnx}, B(x) = 1
2 |x|d{sgnx}, x ∈ R.

Here the terms {sgnx} and [sgnx] may be present or not, simultaneously in F and
B. If a sgn-factor is not present, the corresponding value of c or d could be 0, too,
Conversely, these functions satisfy the above functional equation.

Proof. (i) Let F̃ (α) := F (expα), B̃(α) := B(expα). Then F̃ (α+β) = F̃ (α)B̃(β)+

B̃(α)F̃ (β). Hence (F̃ , B̃) have one of the four forms given in Corollary 2.12. Then
for x > 0, substituting α = lnx = ln |x|, (F,B) have the form given in Proposition
2.13 with sgnx = 1.

(ii) It remains to determine F (x) and B(x) for x ≤ 0. In the first three
cases F (1) = 0. Then 0 = F (1) = F ((−1)2) = 2F (−1)B(−1). Assume first that
F (−1) = 0. Then F (x) = F (−x)B(−1) = F (x)B(−1)2, hence B(−1)2 = 1,
B(−1) ∈ {1,−1}. Thus F is even or odd, depending on whether B(−1) = 1 or
B(−1) = −1. Using F (x) = F (−x)B(−1), the functional equation implies for any
x, y ∈ R

F (x)B(−y) +B(−1)F (y)B(x) = F (x)B(−y) + F (−y)B(x) = F (−xy)

= B(−1)F (xy) = B(−1)[F (x)B(y) + F (y)B(x)].
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Therefore F (x)B(−y) = F (x)B(−1)B(y) which yields B(−y) = B(−1)B(y).
Hence F and B are both even or both odd. This implies the formulas for F
and B for negative x in the first three cases. Since F and B and the right-hand
sides are continuous, the values at zero are obtained by taking the limit for x → 0
on both sides.

In the last case F (1) =: b �= 0. Equation (2.15) yields for y = 1 that F (x) =
F (x)B(1) + bB(x). Since B �≡ 0, we conclude that B(1) �= 1 and F (x) = λB(x)
with λ := b

1−B(1) �= 0. Inserting this into (2.15), we get B(xy) = 2B(x)B(y), so

that 2B is multiplicative on R. By Proposition 2.3, B(x) = 1
2 |x|d{sgnx}, F (x) =

λ
2 |x|d{sgnx}, so that b = λ

2 . �

2.3 Notes and References

The classical result for measurable additive functions, Proposition 2.1, is due to
Fréchet [Fr]. The paper [Fr] is written in Esperanto. Alternative proofs were given
by Banach [B] and Sierpinski [S]. The proofs in [Fr] and [B] use the axiom of
choice, the one in [S] does not require it. The simple proof presented here is due
to Alexiewicz and Orlicz [AO].

The proof of Proposition 2.2 follows Kestelman [Ke], where the linearity of
additive functions is shown under the even weaker assumption that f is bounded
from above by a measurable function on a set of positive Lebesgue measure. This
stronger result is used in the proof of Proposition 2.7.

Proposition 2.3 on measurable multiplicative functions is found, e.g., in Aczél
[A], Section 2.1.2.

Proposition 2.5 is shown by Aczél [A] in Section 5.1.1, Theorem 3, in the case
of n = 1. The generalization to n > 1 is straightforward. The result also holds if F
is assumed to be only measurable instead of being continuous, cf. Aczél, Dhombres
[AD], Theorem 5 of Section 5.1 (n = 1). The proof is slightly more elaborate than
in the continuous case.

Since Proposition 2.4 follows directly from Proposition 2.5, it is also true if
the non-zero function f is only assumed to be multiplicative and measurable.

Theorem 2.6 is due to Faifman, see the Appendix of [KM1].

Proposition 2.8 is a slight extension of Lemma 19 in [AKM].

Proposition 2.9 is a special case of Theorem 10.4. in Székelyhidi [Sz], which
is illustrated by the functional equation (10.6b) in this book. Theorem 10.4. also
covers solutions of functional equations with more than two unknown functions. In
the case m = 1, Proposition 2.9 is related to some functional equations in Section
3.1.3 of Aczél [A] and in Chapter 15, Theorem 1 of Aczél, Dhombres [AD] to which
this result could be reduced. Our direct proof uses ideas of Section 3.1.3 of Aczél
[A].
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Proposition 2.11 can be found in Székelyhidi [Sz], Theorem 12.2., as an appli-
cation of his general theory of functional equations on topological abelian groups,
cf. also Theorem 10.4. in [Sz]. We gave a direct proof which was inspired by the
book of Aczél [A], where the case n = 1 is considered in Section 4.2.5, Theorem 2
and its Corollary. For Corollary 2.12 in the case n = 1 cf. Aczél [A], p. 180.



Chapter 3

The Leibniz Rule

We will show that the derivative as a map on classical function spaces of analysis is
characterized by the Leibniz rule as well as the chain rule. This is a consequence of
results in this and the next chapter. We first study the solutions of the Leibniz rule
equation as a map on the k-times continuously differentiable functions Ck. There
are many examples of derivations in algebra and differential geometry generalizing
the Leibniz rule for the derivative of products of functions. However, on Ck there
are only few examples of derivations. A priori, we assume neither linearity nor
continuity of the derivations which we characterize. However, the continuity of the
operator is a consequence of the results. Various solutions are actually non-linear.

3.1 The Leibniz rule in Ck

To formulate the basic result, we use the following notation:
Let I ⊂ R be an open set. In particular, I = (−∞, a), (a, b), (b,∞) with

a, b ∈ R or I = R are natural choices. For k ∈ N0 := N ∪ {0} let

Ck(I) :=
{
f : I → R | f is k-times continuously differentiable on I

}
.

We denote the continuous functions also by C(I) := C0(I) and put C∞(I) =⋂
k∈N

Ck(I). The basic result for the Leibniz rule operator equation is

Theorem 3.1 (Leibniz rule). Let k ∈ N0 and I ⊂ R be an open set. Suppose that
T : Ck(I) → C(I) is an operator satisfying the Leibniz rule equation

T (f · g) = Tf · g + f · Tg, f, g ∈ Ck(I). (3.1)

Then there are continuous functions c, d ∈ C(I) such that, if k ∈ N,

Tf = c f ln |f |+ d f ′, f ∈ Ck(I). (3.2)

Conversely, any map T given by (3.2) satisfies (3.1). For k = 0, if T : C(I) →
C(I) satisfies (3.1), there is c ∈ C(I) such that Tf = c f ln |f |.
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Since limx→0 x ln |x| = 0, 0 ln |0| should be read as 0.

Remarks. (a) The formulas (3.1) and (3.2) are meant pointwise, e.g., (3.2):

(Tf)(x) = c(x)f(x) ln |f(x)|+ d(x)f ′(x), f ∈ Ck(I), x ∈ I.

Thus the solutions of the Leibniz rule are linear combinations of the derivative and
the “entropy solution” f ln |f | which acts as a “derivative” on spaces of continuous
functions. Note that neither continuity nor linearity is imposed on the operator
T ; in fact, Tf = f ln |f | is a non-linear solution.

(b) For k ≥ 2, there are not more solutions than for k = 1. Hence, T :
Ck(I) → C(I) naturally extends by the same formula to T : C1(R) → C(R).
Therefore C1(I) is the “natural domain” for the Leibniz formula among the Ck(I)-
spaces.

(c) If T also maps C2(I) into C1(I), it has the form Tf = d f ′ with d ∈ C1(I),
since in general f ln |f | /∈ C1(I) for f ∈ C2(I). “Initial” conditions like T (Id) = 1
and T (2 Id) = 2 together with (3.1) also imply that Tf = f ′ is the derivative.

(d) If the image of T does not consist of continuous or at least measurable
functions, there are different solutions of the Leibniz rule equation. Let F (R)
denote the space of all functions f : R → R, and H : R → R be an additive but
not linear function, as constructed after Proposition 2.1. Let c ∈ F (R) and define
T : C(R) → F (R) by

Tf(x) = c(x)f(x)H
(
ln |f(x)|), f ∈ C(R), x ∈ R,

with Tf(x) := 0 if f(x) = 0. Then T satisfies the Leibniz rule

T (f · g) = Tf · g + f · Tg.

(e) For k ≥ 2, there are more solutions of (3.1) on the positive Ck-tfunctions
than those given in (3.2), cf. Corollary 3.4.

The proof of Theorem 3.1 consists of two steps. The first is to show lo-
calization, i.e., that T is defined pointwise in the sense that there is a function
F : I × Rk+1 → R such that for all f ∈ Ck(I) and x ∈ I

Tf(x) = F (x, f(x), . . . , f (k)(x)).

At that point no regularity of F is known. The operator equation (3.1) then is
equivalent to a functional equation for the representing function F . The second
step of the proof is to analyze the structure of F and to prove the continuity of
the coefficient functions occurring there, by using the fact that the image of T
consists of continuous functions. In the case of Theorem 3.1, we have to show that
F does not depend on the variables αj = f (j)(x) for j ≥ 2 and that the functions
c, d in (3.2) are continuous. To find the solutions of other operator equations in
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later chapters, we will use the same basic strategy in the proofs, although with
very different representing functions.

To prove Theorem 3.1, we first show that T is “localized on intervals”.

Lemma 3.2. Suppose T : Ck(I) → C(I) satisfies (3.1). Then T (11) = T (−11) = 0.
If J ⊂ I is open and f1, f2 ∈ Ck(I) satisfy f1|J = f2|J , then Tf1|J = Tf2|J .
Proof. For any f ∈ Ck(I), T (f) = T (f · 11) = T (f) · 11 + T (11) · f , which implies
T (11) = 0. Moreover 0 = T (11) = T ((−11)2) = −2T (−11), T (−11) = 0. If J ⊂ I is
open and f1|J = f2|J , let x ∈ J be arbitrary and choose g ∈ Ck(I) with g(x) = 1
and supp g ⊂ J . Then f1 · g = f2 · g and hence by (3.1)

f1 · Tg + Tf1 · g = T (f1 · g) = T (f2 · g) = f2 · Tg + Tf2 · g,

which implies Tf1(x) = Tf2(x) for any x ∈ J , yielding Tf1|J = Tf2|J . �

Localization on intervals always implies pointwise localization.

Proposition 3.3. Let k ∈ N0 and I ⊂ R be an open set. Suppose T : Ck(I) → C(I)
satisfies, for all open intervals J ⊂ I, that[

f1|J = f2|J =⇒ Tf1|J = Tf2|J , f1, f2 ∈ Ck(I)
]
. (3.3)

Then there is a function F : I × Rk+1 → R such that

Tf(x) = F
(
x, f(x), f ′(x), . . . , f (k)(x)

)
(3.4)

holds for all x ∈ I and f ∈ Ck(I). It suffices to have (3.3) only for all intervals J
of the form J = (−∞, x) ∩ I and J = (x,∞) ∩ I with x ∈ I.

Proof. Let x0 ∈ I be arbitrary but fixed. For any f ∈ Ck(I), let g be the Taylor
polynomial of order k at x0. Let J1 := (−∞, x0) ∩ I and J2 := (x0,∞) ∩ I and
define

h(x) :=

{
f(x), x ∈ J1,

g(x), x ∈ J2.

Then h ∈ Ck(I) and f |J1
= h|J1

, h|J2
= g|J2

. By assumption Tf |J1
= Th|J1

and Th|J2
= Tg|J2

. Since Tf , Th and Tg are continuous functions and
{x0} = J1 ∩ J2, we find Tf(x0) = Th(x0) = Tg(x0). Since g only depends on
(x0, f(x0), . . . , f

(k)(x0)), so does Tg(x0). Therefore, Tf(x0) = Tg(x0) only de-
pends on these values, i.e., there is a function F : I × Rk+1 → R such that

Tf(x0) = F
(
x0, f(x0), . . . , f

(k)(x0)
)
,

for any f ∈ Ck(I), x0 ∈ I. �
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Proof of Theorem 3.1. (i) We will first show that for any f > 0, Tf
f depends

linearly on ln f and its derivatives, and then that no derivatives of order ≥ 2 show
up in the formula for T . By Lemma 3.2 and Proposition 3.3 there is a function
F : I × Rk+1 → R such that, for any f ∈ Ck(I) and x ∈ I,

Tf(x) = F
(
x, f(x), f ′(x), . . . , f (k)(x)

)
.

Define a map S : Ck(I) → C(I) by

Sg(x) := T (exp(g))(x)/ exp(g)(x), g ∈ Ck(I), x ∈ I.

Then Sg(x)=F (x, exp(g)(x), . . . , exp(g)(k)(x))/ exp(g)(x) depends only on x, g(x)
and all derivatives of g up to g(k)(x). Hence, there is a function G : I ×Rk+1 → R

such that
Sg(x) = G

(
x, g(x), . . . , g(k)(x)

)
, g ∈ Ck(I), x ∈ I.

For any g1, g2 ∈ Ck(I), by the Leibniz rule equation on Ck(I),

S(g1 + g2) = T (eg1 · eg2)/(eg1 · eg2) = T (eg1)/eg1 + T (eg2)/eg2 = Sg1 + Sg2.

Since for any α = (αj)
k
j=0, β = (βj)

k
j=0 ∈ Rk+1 and x ∈ I, there are g1, g2 ∈ Ck(I)

with g
(j)
1 (x) = αj , g

(j)
2 (x) = βj for all j ∈ {0, . . . , k}, we have

G(x, α+ β) = G(x, α) +G(x, β), x ∈ I, α, β ∈ Rk+1.

Since Sg = T (eg)/eg is a continuous function on I, we also know that

G(x, g(x), . . . , g(k)(x))

is a continuous function of x ∈ I for all g ∈ Ck(I). By Theorem 2.6, there is a

continuous function c : I → Rk+1 so that G(x, α) = 〈c(x), α〉 =
∑k

j=0 cj(x)αj ,

writing c = (cj)
k
j=0, with continuous coefficient functions cj ∈ C(I).

For f ∈ Ck(I), f > 0, let g := ln f . Then f = exp g and

Tf(x) = f(x)S
(
ln f

)
(x) = f(x)

k∑
j=0

cj(x)(ln f)
(j)(x). (3.5)

Conversely, this formula defines a map on the strictly positive functions into the
continuous functions satisfying the Leibniz rule since(

ln(fg)
)(j)

= (ln f)(j) + (ln g)(j), f, g ∈ Ck(I).

(ii) Let us now consider the Leibniz rule for T : Ck(I) → C(I) when the
functions are negative. Suppose f ∈ Ck(I) and x ∈ I are given with f(x) < 0.
Then there is an open interval J ∈ I, x ∈ J with f |J < 0. Choose g ∈ Ck(I) with
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g < 0 on I and f |J = g|J . Then Tf(x) = Tg(x). To determine Tf(x), we may
therefore assume that f < 0 on I. Then f = −|f | and by the Leibniz rule and
Lemma 3.2

T (f) = T (−|f |) = −T (|f |) + |f |T (−11) = −T (|f |).
Using (3.5), we find

Tf = −T (|f |) = −|f |
k∑

j=0

cj(ln |f |)(j)

= f

k∑
j=0

cj(ln |f |)(j), f ∈ Ck(I).

To be defined on Ck(I), Tf needs to be continuous also for f and x with f(x) = 0.
However, for j ≥ 2, f(ln |f |)(j) is of order O(|f |−(j−1)) as |f | ↘ 0, if f ′ �= 0.
Therefore, using localization, in the above formula c2 = · · · = ck = 0 is required
for T : Ck(I) → C(I) to be well defined.

To be more specific, let k ≥ 2, x0 ∈ I and choose ε0 > 0 with (x0 − 2ε0, x0 +
2ε0) ⊂ I and consider f(x) := x − x0. Let 0 < ε < ε0 and h be a strictly
positive function with h|(x0+ε,∞)∩I = f |(x0+ε,∞)∩I , i.e., h has to bend upwards
for x < x0 + ε in a smooth way. Applying the above formula for h, we get for
Tf(x0 + ε) = Th(x0 + ε)

Tf(x0 + ε) = Th(x0 + ε) = c0(x0 + ε)ε ln ε+
k∑

j=1

cj(x0 + ε)(−1)j−1(j − 1)! ε1−j .

Since Tf and c0, . . . , ck are continuous functions, this implies for ε → 0 that
ck(x0) = · · · = c2(x0) = 0. This means that

Tf = c0f ln |f |+ c1f
′.

This also holds when f has isolated zeros x, f(x) = 0, since limy→0 y ln |y| = 0.
Note that Tf(x) = 0 in this case since we have continuous functions on both sides.
This is true by continuity of Tf , too, if x is a limit of isolated zeros of f . If f |J is
zero on a non-trivial interval J ⊂ I, Tf |J = 0. �
Corollary 3.4. Let k ∈ N and I ⊂ R be an open set. Suppose that T : Ck(I) →
C(I) satisfies the Leibniz rule equation (3.1). Then there are continuous functions
c0, . . . , ck ∈ C(I) such that for every strictly positive function f ∈ Ck(I), f > 0
and all x ∈ I

Tf(x) = f(x)

k∑
j=0

cj(x) (ln f)
(j)(x).

Conversely, T defined this way satisfies equation (3.1) for all positive functions
f ∈ Ck(I).
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This is a corollary to the proof of Theorem 3.1, which yielded (3.5) for positive
functions f > 0. Note, however, that we need T to be defined and to satisfy (3.1)
for all functions f ∈ Ck(I), and not only for the strictly positive ones, since in the
proof of Lemma 3.2 the operator T is applied to functions f1g = f2g which are
zero on a large part of the set I. For k ≥ 2, there are more solution operators T
on the positive functions than on all functions. For k = 1, we just recover (3.2).

3.2 The Leibniz rule on Rn

Theorem 3.1 gives the solutions of the Leibniz rule on I ⊂ R. It has an analogue
for functions on n-dimensional domains I ⊂ Rn. For n ∈ N, k ∈ N0, open sets
I ⊂ Rn and finite-dimensional real Banach spaces X let

Ck(I,X) := {f : I → X | f is k-times continuously differentiable on I},

with C(I,X) := C0(I,X) denoting the continuous functions. In this section, we in-
clude the image space X of functions in the notation Ck(I,X) to indicate whether
X is, e.g., R or Rn. Let L(Rn,Rn) denote the continuous linear maps for Rn into
itself. The derivative T = D maps C1(I,R) into C(I,Rn). The following theorem
extends Theorem 3.1 to this n-dimensional setting. We did not directly state the
result in the more general form, since its proof is a bit more elaborate and requires
further notations.

Theorem 3.5. Let n ∈ N, k ∈ N0 and I ⊂ Rn be an open set. Suppose that
T : Ck(I,R) → C(I,Rn) satisfies the Leibniz rule

T (f · g) = Tf · g + f · Tg, f, g ∈ Ck(I,R).

Then there are continuous functions c ∈ C(I,Rn) and d ∈ C(I, L(Rn,Rn)) such
that for all f ∈ Ck(I,R) and all x ∈ I

Tf(x) = c(x)f(x) ln |f(x)|+ d(x)(f ′(x)).

For k = 0, d should be zero. Conversely, any such map T satisfies the Leibniz rule.

Note that on the right-hand side of the Leibniz formula we have pointwise
multiplications of scalar and Rn-valued functions. In the result, d(x) is a matrix
operating on the vector f ′(x), and c(x) is a vector multiplying the scalar entropy
expression f(x) ln |f(x)| for any x ∈ I.

For k ≥ 2 there are no more solutions than for k = 1. Therefore T extends
by the same formula to C1(I,R), so that C1(I,R) is the “natural” domain of T .
If d = 0, T even extends to C(I,R).

The Leibniz rule immediately implies T 11 = 0 for the function 11 on I ⊂ Rn.
If J ⊂ I is open and f1, f2 ∈ Ck(I,R) satisfy f1|J = f2|J , we claim that Tf1|J =
Tf2|J : Let x ∈ J be arbitrary and choose g ∈ Ck(I,R) with g(x) = 1 and
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support of g in J . Then f1 ·g = f2 ·g and hence by the Leibniz rule (f1−f2) ·Tg =
(Tf1−Tf2)·g, so Tf1(x) = Tf2(x), Tf1|J = Tf2|J . Therefore we have localization
on (small) open sets. We now show that this implies pointwise localization, as in
the 1-dimensional case.

For 0 ≤ l ≤ k, the l-th derivative f (l)(x) of f ∈ Ck(I,R), I ⊂ Rn open,
at x ∈ I is an l-multilinear form f (l)(x) : Rn × · · · × Rn︸ ︷︷ ︸

l

→ R which we may

identify with the vector of all l-th order partial derivatives of f at x, a vector in

Rnl

. By Schwarz’ theorem, the iterated partial derivatives do not depend on the
order of taking them, so that we have only M(n, l) :=

(
n+l−1
n−1

)
different l-th order

partial derivatives, indexed by ( ∂lf(x)
∂xi1

···∂xil
)1≤i1≤···≤il≤n. As in Theorem 2.6, we will

identify f (l)(x) with this vector in RM(n,l) to allow for independent choices of the
values of these derivatives. Together the function and all derivatives of order ≤ k
constitute

N(n, k) :=
k∑

l=0

M(n, l) =

(
n+ k

n

)
independent variables. In this setup, we have:

Proposition 3.6. Let m,n ∈ N, k ∈ N0, I ⊂ Rn be open and T : Ck(I,R) →
C(I,Rm) be an operator. Suppose that for all open subsets J ⊂ I and all f1, f2 ∈
Ck(I,R) with f1|J = f2|J we have that Tf1|J = Tf2|J . Then there is a function
F : I × RN(n,k) → Rm such that

Tf(x) = F
(
x, f(x), f ′(x), . . . , f (k)(x)

)
for all f ∈ Ck(I,R) and x ∈ I.

Proof. Fix x0 = (x0i)
n
i=1 ∈ I. By assumption, Tf1(x0) = Tf2(x0) for every two

functions f1, f2 ∈ Ck(I,R) which coincide on a small open neighborhood of x0

in I. To prove that Tf(x0) depends only on (x0, f(x0), . . . , f
(k)(x0)), we may

therefore assume that I is a (possibly small) open cube or ball centered at x0. Let
f ∈ Ck(I,R). Define, for x = (xi)

n
i=1 ∈ I and i ∈ {1, . . . , n} the i-th partial k-th

order Taylor approximation to f at x0 by

hi(x) :=

k∑
l=0

1

l!
f (l)(x01, . . . , x0i, xi+1, . . . , xn)((x− x0)[i], . . . , (x− x0)[i]),

where (x − x0)[i] := (x1 − x01, . . . , xi − x0i, 0, . . . , 0) ∈ Rn. Here we consider f (l)

as an l-multilinear form from Rn × · · ·Rn to R. Note that h := hn is the k-th
order Taylor approximation to f at x0. Let h0 := f . Then the functions h0 and
h1 join Ck-smoothly at the intersection of the hyperplane x1 = x01 with I, since
by definition of (x − x0)[1] only the iterated derivatives with respect to x1 occur
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non-trivially in h1. Similarly hi−1 and hi join Ck-smoothly at the intersection of
the hyperplane xi = x0i with I, for all i ∈ {2, . . . , n}. Therefore, putting

gi(x) :=

{
hi−1(x), x ∈ I, xi < x0i,

hi(x), x ∈ I, xi ≥ x0i

for i ∈ {1, . . . , n}, we have that gi ∈ Ck(I,R). On J−
i := {x ∈ I | xi < x0i} and

J+
i := {x ∈ I | xi > x0i}, we have hi−1|J−

i
= gi|J−

i
, gi|J+

i
= hi|J+

i
. Hence, also

using that the image of T consists of continuous functions,

(Thi−1)(x0) = (Tgi)(x0) = (Thi)(x0),

since x0 ∈ J−
i ∩ J+

i . We conclude

(Tf)(x0) = (Th1)(x0) = · · · = (Thn)(x0) = (Th)(x0).

However, h only depends on (x0, f(x0), f
′(x0), · · · , f (k)(x0)). Therefore, there ex-

ists a function of these parameters which determines Tf(x0). Identifying f (l)(x0)
with vectors of iterated partial derivatives in RM(n,l) as described before, this
means that there is a function F : I × RN(n,k) → Rm such that

Tf(x0) = F
(
x0, f(x0), f

′(x0), · · · , f (k)(x0)
)

for all x0 ∈ I, f ∈ Ck(I,R), with N(n, k) :=
∑k

l=0 M(n, l). �
Proof of Theorem 3.5. We adapt the proof of Theorem 3.1 to the multidimen-
sional setting. By Proposition 3.6 for m = n and the localization on (small)
open sets which we proved before formulating Proposition 3.6, there is a func-
tion F : RN(n,k) → Rn such that for all f ∈ Ck(I,R), x ∈ I

Tf(x) = F (x, f(x), f ′(x), . . . , f (k)(x)).

Define S : Ck(I,R) → C(I,Rn) by

Sg(x) := T (exp(g))(x)/ exp(g)(x), g ∈ Ck(I,R), x ∈ I.

Then Sg(x)=F (x, exp(g)(x), . . . , exp(g)(k)(x))/ exp(g)(x) depends only on x, g(x)
and all derivatives of g up to g(k)(x). Therefore there is a functionG : I×RN(n,k) →
Rn such that

Sg(x) = G(x, g(x), . . . , g(k)(x)), g ∈ Ck(I,R), x ∈ I.

For any g1, g2 ∈ Ck(I,R) by the Leibniz rule

S(g1 + g2) = T (exp(g1) · exp(g2))/(exp(g1) · exp(g2))
= T (exp(g1))/ exp(g1) + T (exp(g2))/ exp(g2) = Sg1 + Sg2,



3.2. The Leibniz rule on Rn 37

i.e., S is additive in the function and derivative variables. We split any α ∈ RN(n,k)

as α = (αl)
k
l=0 where αl ∈ RM(n,l). Then for any x ∈ I and any α = (αl)

k
l=0 and

β = (βl)
k
l=0 ∈ RN(n,k) there are functions g1, g2 ∈ Ck(I,R) such that g

(l)
1 (x) = αl

and g
(l)
2 (x) = βl for all l ∈ {0, . . . , k}. Recall that all iterated partial derivatives

with indices 1 ≤ i1 ≤ · · · ≤ il ≤ n can be chosen independently. Therefore the
additivity of S is equivalent to the additivity of G in the sense that

G(x, α+ β) = G(x, α) +G(x, β), x ∈ I, α, β ∈ RN(n,k).

Since Sg = T (exp(g))/ exp(g) is a continuous function, we have that
G(x, g(x), · · · , g(k)(x)) is a continuous function of x for all g ∈ Ck(I,R). By The-
orem 2.6, applied with k instead of k − 1 to any coordinate function Gi : I → R

of G = (Gi)
n
i=1 (with respect to the canonical unit vector basis of Rn) separately,

there is a continuous function c : I → L(RN(n,k),Rn) so that

G(x, α) = c(x)(α) =

k∑
l=0

cl(x)(αl), x ∈ I, α = (αl)
k
l=0 ∈ RN(n,k),

with direct sum splitting c(x) =
∑k

l=0 cl(x), cl ∈ L(RM(n,l),Rn). The direct sum
splitting of c is a result of the coordinatewise application of Theorem 2.6.

For f ∈ Ck(I,R) with f > 0, let g := ln f . Then f = exp(g) and

Tf(x) = f(x) S(ln f)(x) = f(x)

k∑
l=0

cl(x)((ln f)
(l)(x)). (3.6)

Here the l-th derivative of ln f ∈ Ck(I,R) at x is identified with a vector in
RM(n,l). For l ≥ 2, in the regular derivative sense

(ln f)(l)(x) = (
f ′

f
)(l−1)(x) = (−1)l−1(l − 1)!(

f ′(x)
f(x)

)l + Pl(f(x), . . . , f
(l)(x)),

where f ′(x)l is the (tensor product) l-multilinear form

f ′(x)l(y1, . . . , yl) =
l∏

j=1

〈f ′(x), yj〉, y1, . . . , yl ∈ Rn,

and Pl is a sum of quotients of terms containing powers of f(x) of order ≤ l − 1
in the denominator and tensor product terms of derivatives in the numerator.

Therefore for f(x) ↘ 0, the order of singularity of f(x) (ln f)(l)(x) is f ′(x)l

f(x)l−1 ,

if f ′(x) �= 0, up to terms of smaller growth. Since Tf is continuous and hence
bounded on compact sets of I also for functions having zeros in I, in (3.6) we
need ck(x) = · · · = c2(x) = 0, x ∈ I. To be more precise, suppose that k ≥ 2,



38 Chapter 3. The Leibniz Rule

that x = 0 ∈ I for simplicity of notation and that the cube of side-length ε0 > 0
centered at 0 is contained in I. Choose any b = (bi)

n
i=1 ∈ (R>0)

n and consider
f(x) := 〈b, x〉 and Iε := {x = (xi)

n
i=1 ∈ I | xi > ε

2 , i ∈ {1, . . . , n}} for any
0 < ε < ε0. Let 11 := (1)ni=1 ∈ Rn. Then f |Iε ≥ ε

2 〈b, 11〉 > 0 and

∂l

∂xi1 · · · ∂xil

(ln f)(x) = (−1)l−1(l − 1)!

∏l
j=1 bij

〈b, x〉l

for x ∈ Iε, l ∈ N. Put ψl(b) := (−1)l−1(l − 1)! (
∏l

j=1 bij )1≤i1≤···≤il≤n . Let

h ∈ Ck(I,R) be a smooth strictly positive extension of f |Iε to I. By localization,
Tf(ε11) = Th(ε11) since ε11 ∈ Iε. Applying (3.6) to h yields at the point ε11 with
h|Iε = f |Iε

Tf(ε11) = Th(ε11) = c0(ε11) 〈b, ε11〉 ln(〈b, ε11〉)

+
k∑

l=1

cl(ε11)(ψl(b)) 〈b, ε11〉−(l−1).

Since Tf , c0, . . . , ck are continuous at 0, we get for ε → 0 that ck(0)(ψk(b)) = 0
for any b ∈ (R>0)

n. This implies ck(0) = 0. Recall that ck ∈ L(RM(n,k),Rn). If
k ≥ 3, we find successively in the same way ck−1(0) = 0, . . . , c2(0) = 0. Therefore
c2 = 0, . . . , ck = 0 on I and hence

Tf(x) = c0(x)f(x) ln f(x) + c1(x)(f
′(x))

for positive Ck-functions f . Note here that c0(x) can be identified with a vector in
Rn and c1(x) ∈ L(Rn,Rn). For general f ∈ Ck(I,R), which may be also negative
or zero, it has to be modified to

Tf(x) = c0(x)f(x) ln |f(x)|+ c1(x)(f
′(x)).

This is shown similarly as in part (ii) of the proof of Theorem 3.1 by proving that
T is odd, T (−f) = −T (f). �

3.3 An extended Leibniz rule

We study in this section some families of operator equations to which the Leibniz
rule belongs. These families turn out to be very rigid, in the sense that they admit
only very few “isolated” solutions, in our view a manifestation of the exceptional
role which the derivative plays in analysis.

We return to functions of one variable. Looking at derivations from a more
general point of view, we keep the operator T : Ck(I) → C(I), k ∈ N, but replace
the identity operation on the right-hand side of the Leibniz rule by some more
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general operators A1, A2 : Ck(I) → C(I) and study the solutions of the extended
Leibniz rule operator equation

T (f · g) = Tf ·A1g +A2f · Tg, f, g ∈ Ck(I).

Thus A1 = A2 = Id is the classical case of the Leibniz rule. Choosing A1f =
A2f = 1 for all f ∈ Ck(I) would result in the equation T (f · g) = Tf + Tg
mapping products to sums, as the logarithm does on the positive reals. However,
choosing g = 0, we conclude immediately that this equation only admits the trivial
solution T = 0. Therefore, adding operators A1, A2 to the formula plays a “tuning”
role, helping to create reasonable operators T which in some sense map products
to sums on classical function spaces.

The maps A1, A2 should be rather different from T since, for A1 = A2 = 1
2T ,

we would have the multiplicative equation T (f · g) = Tf · Tg, where bijective
solutions T : Ck(I) → Ck(I) have a very different form, e.g., for k = 0, Tf(x) =
|f(u−1(x))|p(x) {sgn f(u−1(x))} where u : I → I is a homeomorphism, cf. Milgram
[M], or for k ∈ N, Tf(x) = f(u−1(x)), where u : I → I is a diffeomorphism, cf.
Mrčun, Šemrl [MS] or Artstein-Avidan, Faifman, Milman [AFM].

Though, for A1 = A2 =: A, the operators T and A are closely intertwined by
the equation T (f ·g) = Tf ·Ag+Af ·Tg, there is more variability when solving an
operator equation for two unknown operators. Typically we have to impose a weak
assumption of “non-degeneration”, to guarantee that the operators are localized
and avoid examples like the above proportional one or the following:

Example. Define T : Ck(R) → C(R) and A : Ck(R) → C(R) by

Tf(x) := f(x)− f(x+ 1) , Af(x) :=
1

2
(f(x) + f(x+ 1)).

Then for all f, g ∈ Ck(R), T (f ·g) = Tf ·Ag+Af ·Tg since the mixed terms cancel.
This means that both operators are not localized. Here for functions with small
support supp f ⊂ (− 1

2 ,
1
2 ), we have Tf(x) = 2Af(x) = f(x) for all x ∈ (− 1

2 ,
1
2 ).

To be able to prove localization, we have to avoid that T and A are “locally
homothetic”, i.e., homothetic on functions with small support. To exclude this type
of “resonance” situation between T and A, we introduce the following condition
for the pair (T,A).

Definition. Let k ∈ N, I ⊂ R be an open set and T,A : Ck(I) → C(I) be
operators. The pair (T,A) is Ck-non-degenerate if, for every open interval J ⊂ I
and x ∈ J , there are functions g1, g2 ∈ Ck(I) with support in J such that zi :=
(Tgi(x), Agi(x)) ∈ R2 are linearly independent in R2 for i = 1, 2. We also assume
that, for every x ∈ R, there is g ∈ Ck(R) with Tg(x) = 0 and Ag(x) �= 1.

The first condition here is weaker than asking that T and A are not propor-
tional.
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We will assume a weak continuity assumption to simplify the proof of the
main theorem.

Definition. For k ∈ N, a map A : Ck(I) → C(I) is pointwise continuous provided

that, for any sequence (fn)n∈N of Ck(I)-functions and f ∈ Ck(I) such that f
(j)
n →

f (j) converge uniformly on all compact subsets of I for all j ∈ {0, . . . , k}, we have
pointwise convergence limn→∞ Afn(x) = Af(x) for every x ∈ I.

We now state the main result for the extended Leibniz rule equation.

Theorem 3.7 (Extended Leibniz rule). Let k ∈ N0. Assume that I ⊂ R is an open
interval and that T,A1, A2 : Ck(I) → C(I) are operators satisfying

T (f · g) = Tf ·A1g +A2f · Tg, f, g ∈ Ck(I). (3.7)

Suppose that (T,A1) are Ck-non-degenerate and that T,A1 and A2 are pointwise
continuous. Then T , A1 and A2 are localized.

There are three possible families of solutions for T and A1, A2, given by
the formulas below. They might be defined on disjoint subsets I1, I2 and I3 of the
interval I, being combined to yield a globally non-degenerate solution so that T
and A1, A2 have ranges in the continuous functions on I.

More precisely, there are three pairwise disjoint subsets I1, I2, I3 of I, one or
two of them possibly empty, with I2, I3 open, such that I = I1 ∪ I2 ∪ I3, and there
are functions a, d0, . . . , dk, p : I → R with p > 0 which are continuous on I \ N
where N := ∂I2 ∪ ∂I3, and functions γ ∈ C(I) and q ∈ C(I3) with q > 0 such that
A1−A2 = 2γT on Ck(I), and putting A := 1

2 (A1+A2), we have for all f ∈ Ck(I)
and x ∈ I1,

Tf(x) = a(x)
( k∑
l=0

dl(x) (ln |f |)(l)(x)
)
|f(x)|p(x){sgn f(x)},

Af(x) = |f(x)|p(x){sgn f(x)},
(3.8)

and for x ∈ I2,

Tf(x) = a(x) sin
( k∑
l=0

dl(x) (ln |f |)(l)(x)
)
|f(x)|p(x){sgn f(x)},

Af(x) = cos
( k∑
l=0

dl(x) (ln |f |)(l)(x)
)
|f(x)|p(x){sgn f(x)},

(3.9)

and for x ∈ I3,

Tf(x) =
1

2
a(x)

(
|f(x)|p(x){sgn f(x)} − |f(x)|q(x)[sgn f(x)]

)
,

Af(x) =
1

2

(
|f(x)|p(x){sgn f(x)}+ |f(x)|q(x)[sgn(x)]

)
.

(3.10)
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The terms {sgn f(x)} and [sgn f(x)] may be present in both formulas for T and A
or not at all, yielding different solutions.

The solution (3.8) requires that p(x) ≥ max{l ≤ k | dl(x) �= 0} to guarantee
that the range of T consists of continuous functions.

In (3.10), p(x) = 0 or q(x) = 0 are allowed, too, if the corresponding sign-
terms do not occur.

Conversely, let A1 := A+γT , A2 := A−γT where T and A are given by the
above formulas. Then (T,A1, A2) satisfy (3.7).

Remarks. (i) Theorem 3.7 shows that basically only three different types of com-
binations of operators (T,A1, A2) satisfying the extended Leibniz rule (3.7) are
possible. For k > 1, the first one is similar to the one for positive functions in
Corollary 3.4. Note that (ln |f |)(k)|f |p = ak|f |p−k(f ′)k + Qk,p where, for p ≥ k,
Qk,p is a polynomial in the function f and its derivatives, so that Tf(x) is well
defined by (3.8) for p ≥ p(x) (in the limit) also for functions f having zeros in x,
and equation (3.8) provides the solution in this situation, too. In (3.8), Tf depends
linearly on the highest derivative f (k), although with a factor which is a power of
f , e.g., for k = 2, Tf = ff ′′ − (f ′)2, Af = f2.

(ii) For k = 1, the first solution is similar to the one of the Leibniz rule in
Theorem 3.1, namely Tf = c0f ln |f | + c1f

′. Since (3.7) reminds of the addition
formula for the sin-function when logarithmic arguments occur, the second solution
is not surprising, cf. Proposition 2.13.

(iii) Note that only very few tuning operators A yield possible solutions of
(3.7), and that they then determine the main operator T to a large extent. E. g.
choosing A to be given by Af = |f |p{sgn f}, we get that Tf is a linear combination
of terms (ln |f |)(l) |f |p {sgn f}.

(iv) The following example shows that the three solutions in Theorem 3.7
may be combined on different subintervals of I to form a non-degenerate solution.

Example. Let I := (−1, 1) and f ∈ C(I). Define maps T,A on C(I) by

Tf(x) :=

⎧⎪⎨⎪⎩
1
x sin(x ln |f(x)|) f(x), x ∈ (−1, 0),

ln |f(x)| f(x), x = 0,
1
x (|f(x)|x − 1) f(x), x ∈ (0, 1),

Af(x) :=

⎧⎪⎨⎪⎩
cos(x ln |f(x)|) f(x), x ∈ (−1, 0),

f(x), x = 0,
1
2 (|f(x)|x + 1) f(x), x ∈ (0, 1).

On I1 := {0}, the pair (T,A) has the form of the first solution (3.8), on I2 :=
(−1, 0) the form of the second solution (3.9) and on I3 := (0, 1) the form of the
third solution (3.10). Note, however, that for x → 0, d(x) = x → 0, p3(x)− q(x) =
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x → 0 and that c2(x) = c3(x) =
1
x have a singularity at 0. Nevertheless, Tf and

Af define continuous functions on I since limy→0
sin(y)

y = 1 and

lim
x→0

1

x
(|f(x)|x − 1) = ln |f(x)| for f(x) �= 0.

For f(x) = 0, there is nothing to prove. Therefore T and Amap C(I) into C(I) and
satisfy (3.7). The solution is non-degenerate at zero: Just choose functions g1, g2
with small support and g1(0) = 3, g2(0) = 2. Then (gi(0) ln gi(0), gi(0)) ∈ R2 are
linearly independent for i = 1, 2.

(v) It is also possible to combine the two solutions involving derivative terms,
as the following example shows.

Example. Let I := (−1, 1), p > 1 and f ∈ C1(I). Define maps T,A on C1(I) by

Tf(x) :=

{
1
x sin(x f ′(x)

f(x) ) |f(x)|p, x ∈ (−1, 0),
f ′(x)
f(x) |f(x)|p, x ∈ [0, 1),

Af(x) :=

{
cos(x f ′(x)

f(x) ) |f(x)|p, x ∈ (−1, 0),

|f(x)|p, x ∈ [0, 1).

On [0, 1), the solution is of the first type (3.8), with (ln |f |)′ = f ′

f ; it could be

defined on R as well. But p ≥ 1 is required here. On (−1, 0), the solution is of
the second type (3.9) and requires only p > 0 to yield continuous functions. For
x → 0, d1(x) = x tends to zero and a(x) = 1/x has a singularity. This behavior
is needed to join the other solution in a continuous way. We note that there is
a delicate point about the continuity at zero. Both solutions are well defined for
p = 1. However, choosing p = 1 does not yield a solution T with range in the
continuous functions. Simply take f(x) = x. Then for p = 1, Tf(x) = 1 for x ≥ 0
while Tf(x) = sin(1) for x < 0; Tf is not continuous at 0. However, for any p > 1,
the range of T consists of continuous functions, since

|f
′(x)
f(x)

|f(x)|p − 1

x
sin(x

f ′(x)
f(x)

)|f(x)|p | ≤ 2|f(x)|p−1|f ′(x)|

as easily seen using | sin(t)| ≤ |t|, and this tends to zero as f tends to zero.

(vi) Let S : Ck(I) → C(I) satisfy the Leibniz rule and M : Ck(I) → C(I) be
multiplicative. Then the pointwise product T := S · M : Ck(I) → C(I) satisfies
equation (3.7) with A being given by A(f) := f ·M(f), f ∈ Ck(I). The solution
(3.8) is of this form.

Additional conditions will guarantee in the case k = 1 that the solutions have
a simple form:
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Corollary 3.8. Assume that T,A1, A2 : C1(I) → C(I) satisfy (3.7), with k = 1,
T �≡ 0, and that (T,A1) are C1-non-degenerate and pointwise continuous. Let
A := 1

2 (A1 +A2). Suppose further that T maps C∞(I) into C∞(I).
Then there are n,m ∈ N0 and a function c ∈ C∞(I) such that the solution of
(3.7) has one of the following two forms: either

Tf = c f ′ fn, Af = fn+1,

or

Tf = c (fn − fm), Af =
1

2
(fn + fm),

for any f ∈ C1(I). If additionally 0 ∈ I, T2 = 0 and T (2 Id) = 2, we have

Tf = f ′, Af = f.

Corollary 3.9. Assume that T,A1, A2 : C1(I) → C(I) satisfy (3.7), with k = 1,
T �≡ 0, and that (T,A1) are C1-non-degenerate and pointwise continuous. Let
A := 1

2 (A1 +A2). Suppose further that T maps linear functions into polynomials.
Then there are n,m ∈ N0 and a polynomial function c such that the solution of
(3.7) has one of the following two forms:
either

Tf = c f ′ fn, Af = fn+1,

or

Tf = c (fn − fm), Af =
1

2
(fn + fm),

for any f ∈ C1(I). If additionally T2 = 0 and T (2 Id) = 2, we have

Tf = f ′, Af = f.

In both corollaries, there is γ ∈ C(I) such that A1 = A+γT and A2 = A−γT .
Note that the second solution in both corollaries may be extended to any

f ∈ C(I).

We now turn to the proof of Theorem 3.7. We again start by showing that
T is localized.

Lemma 3.10. Under the assumptions of Theorem 3.7, we have

(i) T (0) = T (11) = 0 and A1(11) = A2(11) = 11.

(ii) If J ⊂ I is open and f1, f2 ∈ Ck(I) are such that f1|J = f2|J , then (Tf1)|J =
(Tf2)|J and (Aif1)|J = (Aif2)|J for i = 1, 2.
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Proof. (i) Choosing f = 0 in (3.7), we find for any x ∈ I and g ∈ Ck(I)

T (0)(x)
(
1−A1g(x)

)
= A2(0)(x)Tg(x).

By the Ck-non-degeneracy assumption, there is g ∈ Ck(I) with A1g(x) �= 1 and
Tg(x) = 0. Hence, T (0)(x) = 0, T (0) = 0. Therefore, 0 = A2(0)(x)Tg(x) for all
g ∈ Ck(I) which also yields A2(0) = 0. Taking g = 0 in (3.7), we get

Tf(x)A1(0)(x) = T (0)(x)
(
1−A2f(x)

)
= 0,

for all x ∈ I, f ∈ Ck(I). Hence also A1(0) =0.
Next, choose f = 1 in (3.7) to find

Tg(x)(1−A2(11)(x)) = T (11)(x)A1g(x), x ∈ I, g ∈ Ck(I).

By Ck-non-degeneracy, there are functions g1, g2 ∈ Ck(I) such that
(Tgi(x), A1gi(x)) ∈ R2 are linearly independent for i = 1, 2. Therefore the previ-
ous equation with g = g1 and g = g2 implies A2(11) = 11, T (11) = 0. Taking g = 11
in (3.7), we find similarly

Tf(x)(1−A1(11)(x)) = T (11)(x)A2f(x) = 0,

for all f ∈ Ck(I). This yields A1(11) = 11.

(ii) Let J ⊂ I be given and f1, f2 ∈ Ck(I) with f1|J = f2|J . Let g ∈ Ck(I)
with supp g ⊂ J . Then f1 · g = f2 · g. By (3.7)

Tf1 ·A1g +A2f1 · Tg = T (f1 · g) = T (f2 · g)
= Tf2 ·A1g +A2f2 · Tg,(

Tf1(x)− Tf2(x)
) ·A1g(x) =

(
A2f2(x)−A2f1(x)

) · Tg(x), x ∈ I.

For a given x ∈ J , choose g1, g2 ∈ Ck(I) with support in J such that
(Tgi(x), A1gi(x)) ∈ R2 are linearly independent for i ∈ 1, 2. The previous equa-
tion then yields for g = g1 and g = g2 that Tf1(x) = Tf2(x), A2f1(x) = A2f2(x),
i.e., Tf1|J = Tf2|J , A2f1|J = A2f2|J . The argument for A1f1|J = A1f2|J is
similar. �
Proof of Theorem 3.7. (i) Assume that (T,A1, A2) satisfy the extended Leibniz
rule (3.7). Then for all f, g ∈ Ck(I) and x ∈ I, using the symmetry in f and g,

T (f · g)(x) = Tf(x)A1g(x) +A2f(x)Tg(x) = Tg(x)A1f(x) +A2g(x)Tf(x),

hence Tf(x)(A1g(x) − A2g(x)) = Tg(x)(A1f(x) − A2f(x)). If A1 �≡ A2, there
is g ∈ Ck(I) and x ∈ I such that A1g(x) �= A2g(x). Then Tg(x) �= 0 since
otherwise Tf(x) = 0 for all f ∈ Ck(I) which would contradict the assumption of
non-degeneration of (T,A1), and therefore A1f(x)− A2f(x) = 2γ(x)Tf(x) holds

for all f ∈ Ck(I), where γ(x) := A1g(x)−A2g(x)
2Tg(x) . Since Tf,A1f,A2f are continuous
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functions, so is γ. Thus A1 −A2 = 2γT . Clearly, A1f(x) = A2f(x) is possible for
some x or all x ∈ I, with γ(x) = 0. Put A := 1

2 (A1 + A2). Then A1 = A + γT ,
A2 = T − γT . Equation (3.7) holds for (T,A) if A1 and A2 are replaced by the
one operator A.

In the following, we write equation (3.7) with T and A and analyze the
structure of these operators.

(ii) By Lemma 3.10 and Proposition 3.3 there are functions F̃ , B̃ : I×Rk+1 →
R such that for all f ∈ Ck(I) and x ∈ I

Tf(x) = F̃ (x, f(x), . . . , f (k)(x)), Af(x) = B̃(x, f(x), . . . , f (k)(x)).

We introduce operators S,R : Ck(I) → C(I) by Sh := T (exph), Rh := A(exph)
for all h ∈ Ck(I). Since the derivatives of exph of order l can be written as a
function of h and its derivatives of order ≤ l, the operators S and R are localized
as well, i.e., there exist functions F,B : I ×Rk+1 → R such that for all h ∈ Ck(I)
and x ∈ I

Sh(x) = F (x, h(x), . . . , h(k)(x)), Rh(x) = B(x, h(x), . . . , h(k)(x)).

Equation (3.7) yields for h1, h2 ∈ Ck(I)

S(h1 + h2) = T (exph1 exph2) = T (exph1)A(exph2) +A(exph1)T (exph2)

= S(h1)R(h2) +R(h1)S(h2). (3.11)

Let α = (αj)
k
j=0, β = (βj)

k
j=0 ∈ Rk+1 and x ∈ I be arbitrary. Choose h1, h2 ∈

Ck(I) with h
(j)
1 (x) = αj and h

(j)
2 (x) = βj for all j ∈ {0, . . . , k}. Then the operator

equation (3.11) is equivalent to the functional equation for F and B

F (x, α+ β) = F (x, α)B(x, β) + F (x, β)B(x, α) (3.12)

for all α, β ∈ Rk+1, x ∈ I.

We claim that for any fixed x ∈ I, B(x, ·) and F (x, ·) are continuous functions
on Rk+1. To verify this, take a sequence αn = (αn,j)

k
j=0 ∈ Rk+1 and α ∈ Rk+1 such

that αn → α in Rk+1. Consider the functions hn(t) :=
∑k

j=0
αn,j

j! (t− x)j , h(t) :=∑k
j=0

αj

j! (t−x)j . Then h
(l)
n → h(l) and fn := exp(hn)

(l) → f := exp(h)(l) converge

uniformly on all compact subsets of I for any l ∈ {0, . . . , k}. By the assumption
of pointwise continuity , we have Afn(x) → Af(x) and Tfn(x) → Tf(x) for all
x ∈ I. This means

B(x, αn,0, . . . , αn,k) = Afn(x) → Af(x) = B(x, α0, . . . , αk),

F (x, αn,0, . . . , αn,k) = Tfn(x) → Tf(x) = F (x, α0, . . . , αk).

Therefore for all x ∈ I, B(x, ·) and F (x, ·) are continuous functions which satisfy
(3.12). The solutions of (3.12) were studied in Chapter 2, Corollary 2.12.
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(iii) We now determine the form of Tf and Af for strictly positive functions
f > 0. By Corollary 2.12 for n = k + 1 there are vectors b(x), c(x), d(x) ∈ Rk+1

and a(x) ∈ R such that F (x, ·) and B(x, ·) have one of the following forms

(a) F (x, α) = 〈b(x), α〉 exp(〈c(x), α〉), B(x, α) = exp(〈c(x), α〉);
(b) F (x, α) = a(x) exp(〈c(x), α〉) sin(〈d(x), α〉),

B(x, α) = exp(〈c(x), α〉) cos(〈d(x), α〉);
(c) F (x, α) = a(x) exp(〈c(x), α〉) sinh(〈d(x), α〉),

B(x, α) = exp(〈c(x), α〉) cosh(〈d(x), α〉);
(d) F (x, α) = a(x) exp(〈c(x), α〉), B(x, α) = 1

2 exp(〈c(x), α〉), α ∈ Rn.

Since A(11) = 11 by Lemma 3.10, 1 = A(11)(x) = R(0)(x) = B(x, 0). Therefore the
last case (d) is impossible here since in that case B(x, 0) = 1

2 .

For positive functions f ∈ Ck(I), f > 0, let h := ln f , f = exph, so that in
case (a) with b = (bl)

k
l=0, c = (cl)

k
l=0

Af(x) = R(ln f)(x) = B(x, (ln f)(x), . . . , (ln f)(k)(x))

= exp
( k∑
l=0

cl(x)(ln f)
(l)(x)

)
,

T f(x) = S(ln f)(x) = F (x, (ln f)(x), . . . , (ln f)(k)(x))

=
( k∑
l=0

bl(x)(ln f)
(l)(x)

)
exp

( k∑
l=0

cl(x)(ln f)
(l)(x)

)
. (3.13)

Depending on x ∈ I, one of the formulas (a), (b) or (c) might apply. Let I1, I2
and I3, respectively, denote the subsets of I where Tf(x), Af(x) is determined by
(a), (b) and (c), respectively. For (a) and f > 0, we just wrote down the formulas
in (3.13). However, the sets are restricted by the requirement that Tf and Af
have to be continuous functions for all f ∈ Ck(I). Suppose that the interior of
the domain I1 where (3.13) gives the solution – for f > 0 – is not empty. Let
us show that the functions c0, . . . , ck and b0, . . . , bk have to be continuous in the
interior of I1. Indeed, starting with constant functions f , the continuity of Af
and Tf yields that c0 and b0 are continuous. Then choosing linear functions, it
follows that c1 and b1 are continuous. Repeat the argument with polynomials of
successively higher degree.

Since T and A are localized and have to be well defined also for functions
having zeros in the interior of I1, the formula for Af should never become singular,
i.e., unbounded when f ↘ 0. The argument for this is exactly the same as in the

proof of Theorem 3.1. However, (ln f)(l) is of order ( f
′

f )l, if f ′ �= 0 and l ∈ N, up

to terms of smaller order. Therefore we must have c1 = · · · = ck = 0 in (3.13)
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on I1. Put p(x) := c0(x). Then for f > 0, x ∈ I1,

Af(x) = f(x)p(x), T f(x) =
( k∑
l=0

bl(x)(ln f)
(l)(x)

)
f(x)p(x). (3.14)

The continuity of Tf for all f requires that p(x) ≥ max{l ≤ k | bl(x) �= 0} =: P (x).
If P (x) = 0, we need p(x) > 0. In this case, (3.14) provides a solution of (3.7) for
positive f .

The case (b) for T and A on I2 yields the formula

Af(x) = exp
( k∑
l=0

cl(x)(ln f)
(l)(x)

)
cos
( k∑
l=0

dl(x)(ln f)
(l)(x)

)
,

with continuous coefficient functions cl, dl on I2. Continuity for functions with
zeros requires that c1 = · · · = ck = 0. Then with p(x) := c0(x), for f > 0, x ∈ I2,

Af(x) = cos
( k∑
l=0

dl(x)(ln f)
(l)(x)

)
f(x)p(x),

T f(x) = a(x) sin
( k∑
l=0

dl(x)(ln f)
(l)(x)

)
f(x)p(x), (3.15)

where p(x) > 0 is required and a is continuous in I2. In the last case (c)

Af(x) = exp
( k∑
l=0

cl(x)(ln f)
(l)(x)

)
cosh

( k∑
l=0

dl(x)(ln f)
(l)(x)

)
,

and here necessarily c1 = · · · = ck = 0 and d1 = · · · = dk = 0. Then with
p(x) := c0(x) + d0(x) and q(x) := c0(x) − d0(x), Af(x) =

1
2 (f(x)

p(x) + f(x)q(x)),
p(x) ≥ 0, q(x) ≥ 0, yielding for f > 0, x ∈ I3

Af(x) =
1

2

(
f(x)p(x) + f(x)q(x)

)
, T f(x) = a(x)

(
f(x)p(x) − f(x)q(x)

)
. (3.16)

To be non-degenerate, the solution on I2 given by (3.15) requires that some
of the continuous functions dl are non-zero at any x ∈ I2, and the one on I3 given
(3.16) requires that p(x) �= q(x) for any x ∈ I3. They can be joined to another
one of the three solutions only when the dl or p− q tend to zero and at the same
time |a| becomes unbounded. Hence, by continuity of the parameter functions, the
subsets I2 and I3 are open. Of course, any of the sets I1, I2 or I3 could be empty;
the solution may be given on all of I by just one of the formulas, this being the
most natural case. However, I1 is not necessarily open. In the first example in
Remark (ii) after Theorem 3.7 we had I1 = {0}.
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(iv) It remains to determine the formulas for Tf(x) and Af(x) when f ∈
Ck(I) is negative or zero. Since Af and Tf are continuous and the coefficient func-
tions are continuous on their domains, the localized formulas (3.14), (3.15),(3.16)
extend by continuity to Tf(x) and Af(x) when f(x) = 0 and x is an isolated zero
of f or a limit of isolated zeros. If x ∈ J ⊂ I, J open and f |J = 0, we know by
Lemma 3.10 that Tf(x) = 0.

Suppose now that f ∈ Ck(I) and x ∈ I are such that f(x) < 0. We may
assume that f < 0 on the full set I, since Tf(x) and Af(x) are determined locally
near x with f(x) < 0. For constant functions f(x) = α0, g(x) = β0, we have

Tf(x) = F̃ (x, α0, 0, . . . , 0), Af(x) = B̃(x, α0, 0, . . . , 0).

Therefore the extended Leibniz rule (3.7) yields

F̃ (x, α0β0, 0, . . . , 0) = F̃ (x, α0, 0, . . . , 0)B̃(x, β0, 0, . . . , 0)

+ B̃(x, α0, 0, . . . , 0)F̃ (x, β0, 0, . . . , 0).

Proposition 2.13 gives the possible solutions of this functional equation. They
imply for constant functions f having negative values, too, that one of the following
three cases can occur:

Tf = b(ln |f |)|f |p{sgn f}, Af = |f |p{sgn f},
T f = b sin(d ln |f |)|f |p{sgn f}, Af = cos(d ln |f |)|f |p{sgn f},
T f = b(|f |p{sgn f} − |f |q[sgn f ]), Af =

1

2
(|f |p{sgn f}+ |f |q[sgn f ]),

leaving out the variable x. The fourth solution in Proposition 2.13 is not applicable
since there B(11) = 1

2 �= 1.
In the first two cases and in the last case when both sgn f -terms are present

or both are absent, we have T (−11) = 0 and A(−11) ∈ {11,−11}. Then by (3.7),
T (−f) = Tf A(−11)+Af T (−11) = Tf A(−11). Hence T is even or odd, depending
on whether A(−11) = 1 or A(−11) = −1. For A, we have similarly A(−f) =
Af A(−11), by the same arguments as in the proof of Proposition 2.13. In the
last case, when the sgn f -terms are different, T and A are neither even nor odd.
The determination of T (−f) and A(−f) in this case is similar to the last case in
the proof of Proposition 2.13. Using this, formulas (3.14), (3.15) and (3.16) yield
formulas (3.8), (3.9) and (3.10) in Theorem 3.7 for general functions f ∈ Ck(I).

Conversely, the operators T and A defined by these formulas satisfy (3.7). To
check this, e.g., in the case of (3.9), use the addition formula for the sin-function
and (ln |fg|)(l) = (ln |f |)(l) + (ln |g|)(l). This ends the proof of Theorem 3.7. �
Proof of Corollary 3.8. The operator T defined by (3.9) does not map C∞-func-
tions to C∞-functions, since – possibly large order – derivatives of Tf will become
singular in points where f has zeros. The operator given by (3.8) for k = 1 has
the form

Tf = (bf ln |f |+ af ′) |f |q{sgn f},
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q = p−1. Choosing for f constant or linear functions, we conclude that a, b, q ∈ C∞

is required. Since |f |q{sgn f} has to be a C∞-function for any C∞-function f , we
moreover need that |f |q{sgn f} = fn for a suitable n ∈ N0. If b would not be zero,
a suitable derivative of Tf would have a singularity of order ln |f | when |f | ↘ 0.
Hence Tf = af ′fn in the case of (3.8). Similarly, the solution (3.10) maps C∞-
functions into C∞-functions if and only if Tf = a(fn−fm) for suitable n,m ∈ N0

and a ∈ C∞. Both solutions cannot be combined on disjoint subsets partitioning I
since f ′ cannot be continuously approximated by differences fN − fM , in general.
Therefore we have two solutions defined on the full set I.

If additionally T2 = 0, the second solution would require n = m and then
T ≡ 0. Thus only the first solution is possible, with 2 = T (2 Id)(x) = a(x)2n+1xn,
i.e., a(x) = (2x)−n. Since x = 0 ∈ I and a ∈ C∞(I), it follows that n = 0 and
a ≡ 11, i.e., Tf = f ′ and Af = f for all f ∈ C1(I). �
Proof of Corollary 3.9. The operator T defined by (3.9) does not map arbitrary
linear functions f(x) = cx, c ∈ R to polynomials, if T �≡ 0. In the case of (3.8), T
again has the form

Tf = (bf ln |f |+ af ′) |f |q{sgn f}.
This will not yield polynomials for all linear functions f unless b ≡ 0, q = n ∈ N0

and a is a polynomial function, i.e., Tf = af ′fn, Af = fn+1 for all f ∈ C1(I).
Again, (3.10) yields the second solution with p = n, q = m ∈ N0.
If additionally T2 = 0, the second solution requires n = m, i.e., T ≡ 0. In

the case of the first solution T (2 Id) = 2 gives 2 = T (2 Id)(x) = a(x)2n+1xn, i.e.,
a(x) = (2x)−n. However, a is only a polynomial if n = 0, a ≡ 11. Then Tf = f ′

and Af = f for all f ∈ C1(I). �

3.4 Notes and References

The basic result on the Leibniz rule equation, Theorem 3.1, is due to König,
Milman [KM1]. The case k = 0 was shown before by Goldmann, Šemrl [GS].

Lemma 3.2 and Proposition 3.3 are taken from [KM1]. For k = 1, Theorems
3.5 and 3.7 were shown in [KM1], too.

The logarithm F = log satisfies F (xy) = F (x) + F (y) for positive x, y > 0.
However, there do not exist a function F : R → R and constants c, d ∈ R such
that F (xy) = cF (x)+dF (y) holds for all real numbers x, y ∈ R. A function of this
type sending products to sums requires replacing the constants c, d by functions,
yielding in the simplest case the Leibniz rule in R. On the real line R or the
complex plane C, there is the following version of the Leibniz rule:

Proposition 3.11. (a) Let F : R → R be a measurable function satisfying

F (xy) = F (x)y + xF (y), x, y ∈ R. (3.17)

Then there is d ∈ R such that F (x) = d x ln |x|, x ∈ R.
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(b) Let F : C → C be a measurable function satisfying

F (zw) = F (z)w + zF (w), z, w ∈ C.

Then there is d ∈ C such that F (z) = d z ln |z|, z ∈ C.

Proof. (a) F (1) = F (12) = 2F (1) implies F (1) = 0. Similarly F (−1) = 0, which
implies F (−x) = −F (x). For xy �= 0,

F (xy)

xy
=

F (x)

x
+

F (y)

y
.

Hence, H(s) := F (es)/es is measurable and additive. By Proposition 2.1 there is
d ∈ R with H(s) = ds. Then

F (x) = dx ln |x|.

(b) We show by induction on n that for any n ∈ N and z ∈ C, F (zn) =
nzn−1F (z): For n = 2 this is the assumption with z = w. Assuming this for n,
we have F (zn+1) = F (zn)z + znF (z) = (n+ 1)znF (z). Let ζ ∈ C be an n-th root
of unity. Then 0 = F (1) = F (ζn) = nζn−1F (ζ) implies that F (ζ) = 0. Define

G(z) := F (z)
z for z ∈ C \ {0}. Then G(zw) = G(z) + G(w) for all z, w ∈ C \ {0}.

Hence φ : R → C given by φ(t) := G(exp(it)), t ∈ R, is additive and measurable.
By Proposition 2.1 there is c ∈ C such that φ(t) = ct for all t ∈ R. Since F (ζ) = 0
for all roots of unity ζ, c = 0, i.e., G|S1 = 0. The polar decomposition of z ∈
C \ {0}, z = |z| exp(it) yields that G(z) = G(|z|) + G(exp(it)) = G(|z|) and for
z, w ∈ C \ {0}, G(|zw|) = G(|z|) +G(|w|). Similarly as in part (a) we find d ∈ C

such that G(z) = G(|z|) = d ln |z|. Hence F (z) = dz ln |z| for all z ∈ C \ {0}.
Clearly F (0) = 0. �
Remark. The equation

F (xy) = F (x)B(y) +B(x)F (y), x, y ∈ R (3.18)

for unknown functions F,B : R → R is a relaxation of equation (3.17). Proposition
2.13 gives the four (real) solutions of (3.18). The first of these, B(x) = |x|d{sgnx},
F (x) = b · ln |x| · B(x) has the property that B has a smaller order of growth as
|x| → ∞ than F . Comparing this with the operator functional equation (3.7),

T (f · g) = Tf ·A1g +A2f · Tg, f, g ∈ Ck(I),

which has an algebraically similar form, the first solution of (3.7) has the property
that A = A1 = A2 has a smaller order of differentiability than T .

We may also consider the Leibniz rule on real or complex spaces of polynomi-
als or analytic functions. For K ∈ {R,C}, let P(K) denote the space of polynomials
with coefficients in K and E(K) be the space of real-analytic functions (K = R)
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or entire functions (K = C) and C(K) be the space of continuous functions on K.
Moreover, let Pn(K) be the subset of P(K) consisting of polynomials of degree
≤ n.

On these spaces, there are different solutions of the Leibniz rule than those
given in Theorem 3.1.

Example 1. Define T : P(K) → P(K) by Tf := deg f · f , f ∈ P(K), where deg f
denotes the degree of the polynomial f . Since deg(f ·g) = deg f+deg g, T satisfies
the Leibniz rule T (f · g) = Tf · g + f · Tg on P(K).

Example 2. Fix x0 ∈ K. For f ∈ E(K), let n(f) denote the order of zero of f in
x0 (which may be zero if f(x0) �= 0). Define T : E(K) → E(K) by Tf := n(f) · f .
Since n(f · g) = n(f) + n(g), T satisfies the Leibniz rule T (f · g) = Tf · g + f · Tg
on E(K).

However, in both examples the operator T is not pointwise continuous in the
sense that there are functions fm, f ∈ P(K) or E(K) where fm → f converges
uniformly on compact sets but where Tfm(x) does not converge to Tf(x) for
some x ∈ K, since the degree and the order of zero are not pointwise continuous
operations. Let us therefore assume that T : P(K) → C(K) is pointwise continuous
and satisfies the Leibniz rule. Does this guarantee that we have the same solutions
as in Theorem 3.1? Again the answer is negative, as the following example due to
Faifman [F3] shows:

Example 3 (Faifman).. If T : P(K) → C(K) satisfies the Leibniz rule T (f · g) =
Tf · g + f · Tg for all f, g ∈ P(K), then for all f1, . . . , fn ∈ P(K)

T (

n∏
j=1

fj) =

n∑
j=1

(

n∏
i=1,i 	=j

fi) Tfj . (3.19)

Let us first consider the complex case K = C. Since any polynomial f ∈ P(C)
factors as a product of linear terms, f(z) = a

∏n
j=1(z − zj), with zeros zj ∈ C

and a ∈ C \ {0}, it suffices to define T (az + b), in order to define an operator
T : P(C) → C(C) by applying (3.19), and then verify that this map T actually
satisfies the Leibniz rule. Let φ : C → C be given by φ(z) := z ln |z|, with φ(0) = 0.
Define

T (az + b) := φ(a)z + φ(b). (3.20)

This map T satisfies the Leibniz rule on P1(C) in the sense that T (c(az + b)) =
T (c)(az + b) + cT (az + b), since φ satisfies the Leibniz rule on C. In terms of the
elementary symmetric polynomials we have for f ∈ Pn(C)

f(z) = a
n∏

j=1

(z − zj) =

n∑
k=0

(−1)k (
∑

1≤j1<···<jk≤n

azj1 · · · zjk) zn−k. (3.21)
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Using (3.20) and requiring that (3.19) holds, yields the formula for T : P(C) →
C(C)

(Tf)(z) =

n∑
k=0

(−1)k (
∑

1≤j1<···<jk≤n

φ(azj1 · · · zjk)) zn−k, (3.22)

as induction on n ∈ N shows. Conversely, one checks that the operator T defined by
(3.22) satisfies the Leibniz rule, using once more that φ satisfies it on C. Moreover,
this operator T is pointwise continuous on P(C), i.e., for any fm, f ∈ P(C) with
fm → f uniformly on compact sets, we have Tfm(z) → Tf(z) for any z ∈ C, since
the zeros depend continuously on the polynomials (in appropriate order) and φ
is continuous. We remark that the pointwise continuity statement also holds, if
deg f < lim infm→∞ deg fm.

Real polynomials f ∈ P(R) may be factored into linear and irreducible
quadratic factors, the latter corresponding to two complex conjugate zeros. Ap-
plying the Leibniz rule (in C) to such factors yields the real variable requirement
for T

T (x2 + px+ q) =
1

2
(p ln |q|)x+ q ln |q|, p2 < 4q.

Using this together with (3.20) and (3.19) then defines a pointwise continuous
operator T : P(R) → C(R) satisfying the Leibniz rule. In both cases K ∈ {R,C},
the image of T is actually again in P(K).

The question whether pointwise continuous operators T : E(K) → C(K) on
the space of entire functions satisfying the Leibniz rule are of the same form as in
Theorem 3.1 is open. The previous example does not extend to the space of entire
functions E(K) since the (polynomial) functions given by fm(z) = (1 + z

m )m tend
to f(z) = exp(z) uniformly on compact sets, but Tfm(z) = −z(1 + z

m )m−1 lnm
for fixed z �= 0 is a divergent sequence.

The extended Leibniz rule which was investigated in Theorem 3.7 in the
space Ck(I) may also be studied in the Schwartz space of complex-valued rapidly
decreasing functions S(R,C). The operator solutions Af are then expressed by
integer powers of the functions f and their complex conjugates, and the images Tf
are linear combinations of logarithmic derivatives of f and its complex conjugate
or a difference of powers of f and its complex conjugate. We refer to König,
Milman [KM13], where also criteria are given such that A is the identity and
T the derivative. The extended Leibniz rule in S(R,C) has applications to joint
characterizations of the Fourier transform and the derivative [KM13].



Chapter 4

The Chain Rule

4.1 The chain rule on Ck(R)

The derivative D : C1(R) → C(R) satisfies the chain rule

D(f ◦ g) = (Df) ◦ g ·Dg

for all f, g ∈ C1(R). In this chapter, we study the question to which extent the
chain rule formula characterizes the derivative. We consider general operators
T : C1(R) → C(R) satisfying the chain rule operator equation

T (f ◦ g) = (Tf) ◦ g · Tg, f, g ∈ C1(R).

Due to the multiplicative structure of this equation, if T1 and T2 are operators
satisfying the chain rule, so does the pointwise product T1 · T2, and also do the
positive powers of the pointwise modulus |T1|. Suppose H ∈ C(R) is a strictly
positive continuous function. Then Tf := H ◦ f/H defines a map satisfying the
chain rule as well. It is even defined on C(R), not only on C1(R). Another example
of a map T : C1(R) → C(R) verifying the chain rule is given by

Tf :=

{
f ′, f ∈ C1(R) is bijective,

0, f ∈ C1(R) is not bijective.

To avoid degenerate cases like this one, we impose the condition that T should
not be identically zero on the half-bounded differentiable functions

C1
b (R) :=

{
f ∈ C1(R) | f is bounded from above or from below

}
,

i.e., that there exist f ∈ C1
b (R) and x ∈ R such that Tf(x) �= 0. For integers

k ∈ N, we also let Ck
b (R) := Ck(R) ∩ C1

b (R).
Our main result states that a multiplicative combination of the previous

examples, together with a possible factor sgn f ′, creates all possible solutions of
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the chain rule equation not only on C1(R) but also on Ck(R) for any k ∈ N. Again,
all solutions operators are local, i.e., pointwise defined.

Theorem 4.1 (Chain rule). Let k ∈ N∪{∞} and T : Ck(R) → C(R) be an operator
satisfying the chain rule equation

T (f ◦ g) = (Tf) ◦ g · Tg, f, g ∈ Ck(R). (4.1)

Assume that T |Ck
b (R)

�≡ 0. Then there exist p ≥ 0 and a positive continuous func-

tion H ∈ C(R), H > 0, such that either

Tf =
H ◦ f
H

|f ′|p (4.2)

or

Tf =
H ◦ f
H

|f ′|p sgn f ′. (4.3)

In the second case we need p > 0 to guarantee that the image of T consists of
continuous functions.

If k = 0 and T : C(R) → C(R) satisfies (4.1), all solutions of T are given by
Tf = H◦f

H .
Conversely, the operators given by (4.2) or (4.3) satisfy the chain rule equa-

tion (4.1).
Under the additional initial condition T (2 Id) = 2 (constant function), T has

the form Tf = f ′ or Tf = |f ′|.
If additionally to (4.1), T (−2 Id) = −2 holds, T is the derivative, Tf = f ′.

In the formulation of similar results later we will combine statements like
(4.2) and (4.3) by writing

Tf =
H ◦ f
H

|f ′|p{sgn f ′},

the brackets {·} indicating that two possible solutions are given, one with the ex-
pression sgn f ′ and one without. Formulas (4.1), (4.2) and (4.3) are meant point-
wise, e.g.,

T (f ◦ g)(x) = (Tf)(g(x)) · Tg(x), x ∈ R,

T f(x) =
H(f(x))

H(x)
|f ′(x)|p{sgn f ′(x)}, x ∈ R.

Remarks. (a) Note that we do not impose any a priori continuity condition on
the operator T . A suitable level of continuity of T , however, is an a-posteriori
consequence of the result.
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(b) The proof will show that p and H are completely determined by the
function T (2 Id) ∈ C(R): we have T (2 Id) > 0, p = log2 T (2 Id)(0) and H(x) =∏

n∈N
ϕ(x/2n) where ϕ is defined by ϕ(x) = T (2 Id)(x)/T (2 Id)(0), and where

the product converges uniformly on compact subsets of R, with normalization
H(0) = 1.

(c) For C∞(R), there are not more solutions of the chain rule equation than
for C1(R). Therefore, in the setup of spaces Ck(R), the space C1(R) constitutes
the natural domain of the chain rule. Of course, for k = 0, in C(R) there is the
non-surjective solution Tf = H◦f

H which does not depend on the derivative.

(d) For p > 0, let G be the antiderivative of H1/p > 0. Then G is a strictly
monotone C1(R)-function and

Tf =

∣∣∣∣ (G ◦ f)′
G′

∣∣∣∣p {sgn f ′} =

∣∣∣∣d(G ◦ f)
dG

∣∣∣∣p{sgn(d(G ◦ f)
dG

)}
.

In this sense, all solutions of (4.1) are p-th powers of some derivatives, up to signs.

As a consequence, the derivative is characterized by the Leibniz rule and the
chain rule:

Corollary 4.2. Let k ∈ N and suppose that T : Ck(R) → C(R) satisfies the Leibniz
rule and the chain rule,

T (f · g) = Tf · g + f · Tg, T (f ◦ g) = (Tf) ◦ g · Tg; f, g ∈ Ck(R).

Then T = 0 or T is the derivative, Tf = f ′ for all f ∈ Ck(R).

Again, no continuity assumption on T is required here.

Proof of Corollary 4.2. By Theorem 3.1, T has the form Tf = c f ln |f |+ d f ′ for
suitable functions c, d ∈ C(R). If T �≡ 0, c or d do not vanish identically and
therefore T satisfies T |Ck

b (R)
�≡ 0. Hence, by Theorem 4.1, Tf = H◦f

H |f ′|p{sgn f ′}
for some p ≥ 0 and H ∈ C(R), H > 0. Both forms of T can coincide only if
p = 1, H is constant and c = 0, d = 1 and the sgn f ′-term occurs. Then Tf = f ′,
f ∈ C(R). �

Example. On suitable subsets of Ck(I) or even C(I), we may define operations T
which satisfy the Leibniz rule and chain rule but are neither zero nor the derivative:
Let I = (1,∞) and C+(I) := {f : I → I | f is continuous}. Define H ∈ C(I) by
H(x) = x lnx. Then the operator T : C+(I) → C(I) given by Tf = H◦f

H is well
defined and satisfies the Leibniz rule and the chain rule.

We now state a stronger version of Corollary 4.2: The derivative is also the
only operator satisfying both the chain rule and the extended Leibniz rule studied
in Theorem 3.7:
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Corollary 4.3. Suppose T,A : C1(R) → C(R) satisfy the chain rule and the ex-
tended Leibniz rule for all f, g ∈ C1(R),

T (f ◦ g) = Tf ◦ g · Tg ,

T (f · g) = Tf ·Ag +Af · Tg ,

and that T does not vanish identically on the half-bounded functions and attains
some negative values. Then T is the derivative, Tf = f ′, and Af = f for all
f ∈ C1(R).

Proof of Corollary 4.3. Theorem 4.1 yields that Tf is given by

Tf =
H ◦ f
H

|f ′|p sgn f ′

for a suitable functionH ∈ C(R),H > 0 and p > 0. This form of Tf has to coincide
with one of the solutions of the extended Leibniz rule (3.7) for k = 1, which were
given by (3.8), (3.9) or (3.10) in Theorem 3.7. This is only possible for the first
solution (3.8), and then only in the special case when a(x) = d1(x) = p(x) = 1,
d0(x) = 0, and if the above functionH satisfiesH = 11 and p = 1, yielding Tf = f ′,
Af = f for all f ∈ C1(R). �

To prove Theorem 4.1 we first show, as in Chapter 3, that the operator T is
localized. For this, we need that there are sufficiently many non-zero functions in
the range of T .

Lemma 4.4. Suppose the assumptions of Theorem 4.1 hold. Then for any open
half-bounded interval I = (c,∞) or I = (−∞, c) with c ∈ R, any y ∈ I and any
x ∈ R, there exists g ∈ Ck(R) such that g(x) = y, Im(g) ⊂ I and (Tg)(x) �= 0.

Proof. (i) Let x ∈ R. We show that (Tg)(x) �= 0 for a suitable function g ∈ Ck
b (R):

Since T |Ck
b (R)

�≡ 0, there is x1 ∈ R and a half-bounded function h ∈ Ck
b (R) with

(Th)(x1) �= 0. Define ϕ, g ∈ Ck
b (R) by

ϕ(s) := s+ x− x1, g(s) := h ◦ ϕ−1(s); s ∈ R.

Then h = g ◦ ϕ, ϕ(x1) = x and

0 �= (Th)(x1) = (Tg)(ϕ(x1)) · (Tϕ)(x1) = (Tg)(x) · (Tϕ)(x1),

which implies (Tg)(x) �= 0. Clearly g ∈ Ck
b (R).

(ii) Suppose I = (c,∞) with c ∈ R. Pick any y ∈ I and x ∈ R. By (i) there
is g ∈ Ck

b (R) with (Tg)(x) �= 0. Let J be an open half-bounded interval with
Im(g) ⊂ J . Choose a bijective Ck-map f : I → J with f(y) = g(x), noting that
g(x) ∈ J . This may be done in such a way that f is extendable to a Ck-map

f̃ : R → R on R, f̃ |I = f . Let

g1 := f−1 ◦ g : R −→ I ⊂ R.
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Then g1 ∈ Ck(R), g1(x) = y and Im(g1) ⊂ I. Since g = f ◦ g1 = f̃ ◦ g1, we find,
using the chain rule equation (4.1),

0 �= (Tg)(x) = (T f̃)(y) · (Tg1)(x).

Hence (Tg1)(x) �= 0, g1(x) = y and Im(g1) ⊂ I. �

Lemma 4.5. Under the assumptions of Theorem 4.1, we have for any open, half-
bounded interval I and any f, f1, f2 ∈ Ck(R):

(i) If f |I = Id, then (Tf)|I = 1.

(ii) If f1|I = f2|I , then (Tf1)|I = (Tf2)|I .
Proof. (i) Assume f |I = Id. Take any y ∈ I, x ∈ R. By Lemma 4.4, there is
g ∈ Ck(R) with g(x) = y, Im(g) ⊂ I and (Tg)(x) �= 0. Then f ◦ g = g so that by
(4.1)

0 �= (Tg)(x) = T (f ◦ g)(x) = (Tf)(y) · (Tg)(x),
which implies that (Tf)(y) = 1. Since y ∈ I was arbitrary, we conclude (Tf)|I = 1.

(ii) Let f1|I = f2|I and x ∈ I be arbitrary. Choose a smaller open half-
bounded interval J ⊂ I and a function g ∈ Ck(R) such that x ∈ J , Im(g) ⊂ I and
g|J = Id. Then f1 ◦ g = f2 ◦ g and g(x) = x. By part (i), (Tg)|J = 1. Hence, again
using the chain rule (4.1),

(Tf1)(x) = (Tf1)(g(x)) · Tg(x) = T (f1 ◦ g)(x)
= T (f2 ◦ g)(x) = (Tf2)(g(x)) · Tg(x) = (Tf2)(x),

which shows (Tf1)|I = (Tf2)|I . �

Proposition 4.6. Let k ∈ N0 ∪ {∞} and T : Ck(R) → C(R) satisfy the chain rule
equation (4.1). Assume that T |Ck

b (R)
�≡ 0. Then there is a function F : Rk+2 → R

such that for all f ∈ Ck(R) and x ∈ R

Tf(x) = F
(
x, f(x), . . . , f (k)(x)

)
. (4.4)

In the case k = ∞, this is supposed to mean that Tf(x) depends on x and on all
derivative values f (j)(x).

Proof. The result follows immediately from Proposition 3.3 for I = R and Lemma
4.5(ii). Note that (3.3) is used in the proof of Proposition 3.3 only for half-bounded
intervals J . �

Proof of Theorem 4.1. (i) Let k ∈ N ∪ {∞}. We first show that Tf(x) does not
depend on any derivative values f (j)(x) of order j ≥ 2. Let x0, y0, z0 ∈ R and
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f, g ∈ Ck(R) satisfy g(x0) = y0, f(y0) = z0. Using the representation (4.4) of T ,
the chain rule equation (4.1) for T turns into a functional equation for F ,

T (f ◦ g)(x0) = F
(
x0, z0, f

′(y0)g′(x0), (f ◦ g)′′(x0), . . .
)

= (Tf)(y0)Tg(x0)

= F
(
y0, z0, f

′(y0), f ′′(y0), . . .
)
F
(
x0, y0, g

′(x0), g
′′(x0), . . .

)
. (4.5)

If z0 = x0, also (g ◦ f)(y0) is defined and

T (f ◦ g)(x0) = Tf(y0)Tg(x0) = Tg(x0)Tf(y0) = T (g ◦ f)(y0),
i.e.,

F
(
x0, x0, f

′(y0)g′(x0), (f ◦ g)′′(x0), . . .
)

= F
(
y0, y0, g

′(x0)f
′(y0), (g ◦ f)′′(y0), . . .

)
. (4.6)

By the Faà di Bruno formula, cf. Spindler [Sp], the derivatives of (f ◦ g) have the
form

(f ◦ g)(j) = f (j) ◦ g · (g′)j + ϕj(f
′ ◦ g, . . . , f (j−1) ◦ g, g′, . . . g(j−1)) + f ′ ◦ g · g(j),

for 2 ≤ j ≤ k, where ϕj depends only on the lower-order derivatives of f and g, up
to order (j − 1) (at y0 and x0). We have, e.g., ϕ2 = 0, ϕ3(f

′ ◦ g, f ′′ ◦ g, g′, g′′) =
3f ′′ ◦ g · g′ · g′′.

Also, for any x0, y0 ∈ R and any sequence (tn)n∈N of real numbers, there is g ∈
C∞(R) with g(x0) = y0 and g(n)(x0) = tn for any n ∈ N, cf. Hörmander [Ho, p. 16].
This may be shown by adding infinitely many small bump functions. Similarly,
given (sn)n∈N, we may choose f ∈ C∞(R) with f(y0) = x0 and f (n)(y0) = sn,
n ∈ N.

Therefore, (4.6) implies, for all x0, y0 ∈ R and all (sn), (tn),

F (x0, x0, s1t1, t
2
1s2 + s1t2, t

3
1s3 + s1t3 + ϕ31, . . . , t

j
1sj + s1tj + ϕj1, . . . )

= F (y0, y0, s1t1, t1s2 + s21t2, t1s3 + s31t3 + ϕ32, . . . , t1sj + sj1tj + ϕj2, . . . ), (4.7)

where ϕj1, ϕj2 ∈ R for j ≥ 3 depend only on the values of s1, . . . , sj−1 and
t1, . . . , tj−1, e.g., ϕ31 = 3s2t1t2, ϕ32 = 3t2s1s2. The last dots in (4.7) mean that
the variables extend up to j ≤ k if k ∈ N, or range over all j if k = ∞. Given
z0 ∈ R, the functions g and f may be chosen with respect to (z0, y0) instead of
(x0, y0) for the same sequences (tn) and (sn). Then (4.7) is also true with x0 being
replaced by z0 which means that F (x0, x0, s1, . . . , sj , . . . ) is independent of x0. We
put

K(s1, . . . , sj , . . . ) := F (x0, x0, s1, . . . , sj , . . . ).

Assume that s1, t1 are such that s1t1 �∈ {0, 1,−1}. We claim that for arbitrary
values (aj) and (bj)

K(s1t1, a2, . . . , aj , . . . ) = K(s1t1, b2, . . . , bj , . . . ),
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i.e., that K only depends on the first variable s1t1 if s1t1 �∈ {0, 1,−1}. To see

this, first note that det
(

tj1 s1

t1 sj1

)
= (s1t1)((s1t1)

j−1 − 1) �= 0 for j ≥ 2. Hence, we

may solve successively and uniquely the sequence of (2 × 2)-linear equations for
(s2, t2), (s3, t3), . . . , (sj , tj)

t21s2 + s1t2 = a2,

t31s3 + s1t3 = a3 − ϕ31,

...

tj1sj + s1tj = aj − ϕj1,

t1s2 + s21t2 = b2,

t1s3 + s31t3 = b3 − ϕ32,

...

t1sj + sj1tj = bj − ϕj2,

Here the values obtained for (s2, t2) are used to determine ϕ31 and ϕ32 according
to the Faà di Bruno formula, and the values up to (sj−1, tj−1) to determine ϕj1

and ϕj2 accordingly. We then conclude from (4.7)

K(s1t1, a2, . . . , aj , . . . ) = K(s1t1, b2, . . . , bj , . . . ).

This means that K(u1, u2, . . . , uj , . . . ) is independent of the variables

u2, . . . , uj , . . ., if u1 �∈ {0, 1,−1}. We then put K̃(u1) := K(u1, u2, . . . , uj , . . . ).
If u1 = 1 choose t1 = 2, s1 = 1/2, u1 = s1t1 = 1. Then by (4.5) and (4.6), we find
that for any s2, . . . , sj , . . . , t2, . . . , tj , . . . we have

K
(
1, 4s2 +

1
2 t2, . . . , 2

jsj +
1
2j tj + ϕj , . . .

)
= K̃(2)K̃

(
1
2

)
.

Given arbitrary real numbers u2, . . . , uj , . . . , we find successively s2, t2, s3, t3, . . .

such that the left-hand side equals K(1, u2, u3, . . . , uj , . . . ) and hence K̃(1) =
K(1, u2, . . . , uj , . . . ) is also independent of uj for j ≥ 2. A similar statement is
true for u1 = −1. To show that K(0, u2, . . . , uj , . . . ) is independent of the uj for
j ≥ 2, too, choose t1 = a, s1 = 0 in (4.7) to find

K(0, a2s2, . . . , a
jsj + ϕj1, . . . ) = K(0, as2, . . . , asj + ϕj2, . . . ),

for all a ∈ R, which again implies independence of further variables. We now write
K(u1) for K̃(u1). For values y0 �= x0 = z0, we then know by (4.5) that

F (x0, y0, t1, t2, . . . , tj , . . . ) =
K(s1t1)

F (y0, x0, s1, s2, . . . , sj , . . . )
.

Since the left-hand side is independent of s1, s2, . . . , sj , . . . and the right-hand side
is independent of t2, . . . , tj , . . . , this equation has the form

F (x0, y0, t1) =
K(t1)

F (y0, x0, 1)
. (4.8)

Note that F (y0, x0, 1) �= 0 since, using Lemma 4.5(i),

F (y0, x0, 1)F (x0, y0, 1) = K(1) = T (Id)(x0) = 1.
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Define G : R2 → R 	=0 by G(x0, y0) = 1/F (y0, x0, 1). Then by (4.8)

F (x0, y0, t1) = G(x0, y0)K(t1),

with G(x0, x0) = 1. Using the independence of the derivatives of order ≥ 2, (4.5)
implies, for all x0, y0, z0 ∈ R, that

F (x0, z0, 1) = F (y0, z0, 1)F (x0, y0, 1),

G(x0, z0) = G(y0, z0)G(x0, y0).

Define H : R → R 	=0 by H(y) := G(0, y). Then

G(x, y) = G(x, 0)G(0, y) = G(0, y)/G(0, x) = H(y)/H(x).

Again using (4.8), we get

F (x0, y0, t1) =
H(y0)

H(x0)
K(t1), (4.9)

and T has the form

Tf(x0) = F
(
x0, f(x0), f

′(x0)
)
=

H ◦ f(x0)

H(x0)
K(f ′(x0)), f ∈ Ck(R). (4.10)

(ii) To identify the form of K, note that by (4.5) for x0 = y0 = z0,

K(s1t1) = K(s1)K(t1), s1, t1 ∈ R,

i.e., K is multiplicative on R. Let b �= 0. Apply (4.10) to f(x) = bx, we get

that Tf(x) = H(bx)
H(x) K(b). Note that K(b) �= 0 since otherwise, by multiplicativity,

K ≡ 0. Since Tf ∈ C(R), also H(bx)
H(x) defines a continuous function in x which is

strictly positive since H is never zero. We may assume that H is positive. Then for
any b �= 0, ϕ(x) := lnH(x)− lnH(bx) defines a continuous function ϕ ∈ C(R). By
Proposition 2.8(a), lnH is measurable and hence also H is measurable. Choosing
f(x) = 1

2x
2 in (4.10), we conclude that

K(x) = Tf(x)
H(x)

H
(
1
2x

2
) .

Since Tf is continuous and H is measurable, also K is measurable. By Proposition
2.3, the multiplicative function K has the form K(x) = |x|p or K(x) = |x|p sgnx
for a suitable p ∈ R, x �= 0. Hence we conclude from (4.10) and the continuity
of Tf that H◦f

H is continuous for any f ∈ Ck(R) at any point x ∈ R such that
f ′(x) �= 0.

(iii) We now show that H is continuous. For any c ∈ R, let

b(c) := lim
y→c

H(y), a(c) := lim
x→c

H(x).
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We claim that b(c)
H(c) and a(c)

H(c) are constant functions of c. In the case that for some

c0, b(c0) or a(c0) are infinite or zero, this should mean that all other values b(c) or
a(c) are also infinite or zero. Assume to the contrary that there are c0 and c1 such

that b(c1)
H(c1)

< b(c0)
H(c0)

. Choose any maximizing sequence yn, limn→∞ yn = c0 with

limn→∞ H(yn) = b(c0). Since for f(t) = t+ c1 − c0,
H◦f
H is continuous by part (ii),

limn→∞
H(yn+c1−c0)

H(yn)
= H(c1)

H(c0)
exists and using limn→∞ H(yn + c1 − c0) ≤ b(c1), we

arrive at the contradiction

b(c0)

H(c0)
=

H(c1)

H(c0)

b(c0)

H(c1)
= lim

n→∞
H(yn + c1 − c0)

H(yn)

H(yn)

H(c1)

≤ lim
n→∞

H(yn + c1 − c0)

H(c1)
≤ b(c1)

H(c1)
<

b(c0)

H(c0)
.

The argument is also valid assuming b(c1) < b(c0) = ∞. The proof for a(c) is
similar.

If H would be discontinuous at some point, it would be discontinuous any-
where since the functions a

H and b
H and hence b

a are constant, under this assump-

tion with b
a > 1. Assume that this is the case, and choose a sequence (cn)n∈N of

pairwise disjoint numbers with limn→∞ cn = 0. Let δn := 1
4 min{|cn−cm| | n �= m}

and choose 0 < εn < δn such that
∑

n∈N
(εn/δn)

k < ∞ for all k ∈ N, i.e., (εn)n∈N

should decay much faster to zero than δn. Since H is discontinuous at any cn,
b(cn)
a(cn)

> 1. By the above argument, this is independent of n ∈ N, 1 < b
a := b(cn)

a(cn)
.

By definition of b(cn) and a(cn), we may find yn, xn ∈ R with

|yn − cn| < εn, |xn − cn| < εn,
H(yn)

H(xn)
>

b+ a

2a
> 1.

If b
a = ∞, choose them with H(yn)

H(xn)
> 2. Let ψ be a C∞-cutoff function like

ψ(x) = exp
(− x2

1−x2

)
for |x| < 1, and ψ(x) = 0 for |x| ≥ 1, and put gn(x) =

(yn − xn)ψ
(
x−xn

δn

)
. The functions (gn)n∈N have disjoint support since for any

m �= n

|xn − xm| ≥ |cn − cm| − 2εn ≥ 4δn − 2εn ≥ 2δn.

Hence gn(xm) = (yn − xn)δnm. Since

∑
n∈N

‖g(k)n ‖∞ ≤
∑
n∈N

( |yn − xn|
δn

)k

‖ψ(k)‖∞ ≤
∑
n∈N

(
2εn
δn

)k

‖ψ(k)‖∞ < ∞

holds for any k ∈ N,

f(x) := x+
∑
n∈N

gn(x), x ∈ R



62 Chapter 4. The Chain Rule

defines a C∞-function f with f(xn) = yn, f(0) = 0 and f ′(0) = 1 �= 0. Since
xn → 0, yn = f(xn) → 0, the continuity of H◦f

H yields the contradiction

1 =
H(0)

H(0)
= lim

n→∞
H(yn)

H(xn)
>

b+ a

2a
> 1.

This proves that H is continuous.

Now (4.10) implies that

Tf(x) =
H ◦ f(x)
H(x)

|f ′(x)|p{sgn f ′(x)},

for any f ∈ Ck(R), x ∈ R. By assumption Tf ∈ C(R) is continuous for any
f ∈ Ck(R). This requires p ≥ 0, choosing functions f whose derivatives have
zeros. In fact, if the term sgn f ′(x) is present, p > 0 is needed to guarantee the
continuity of all functions in the image of T .

(iv) If T (2 Id) = 2 is the constant function 2, then H(2x)
H(x) 2

p = 2 for all x,

which for x = 0 yields p = 1. For b = 1/2, the function ϕ in part (ii) is constant,

ϕ(x) = lnH(x)− lnH(x/2) = 0.

Hence, the argument in the proof of Proposition 2.8(a) shows that lnH(x) =
lnH(1), H(x) = H(1), taking L = lnH in Proposition 2.8(a). Hence, H◦f

H = 1 and
Tf = f ′ or Tf = |f ′|. If T (−2 Id) = −2, the only possible solution of Theorem
4.1 is Tf = f ′.

Clearly, the operators T given by formulas (4.2) and (4.3) satisfy the chain
rule (4.1). This proves Theorem 4.1. �

If the image of T consists of smooth functions, we have further restrictions
on H and p:

Proposition 4.7. Let k ∈ N, k ≥ 2 and suppose that T : Ck(R) → Ck−1(R) satisfies
the chain rule (4.1) with T |Ck

b (R)
�≡ 0. Then there exists H ∈ Ck−1(R), H > 0 and

p with either

p > k − 1 and Tf =
H ◦ f
H

|f ′|p{sgn f ′}
or

p ∈ {0, . . . , k − 1} and Tf =
H ◦ f
H

(f ′)p, f ∈ Ck(R).

If the chain rule holds for T : C∞(R) → C∞(R) with T |C∞
b (R) �≡ 0, there is

H ∈ C∞(R) and p ∈ N0 such that

Tf =
H ◦ f
H

(f ′)p, f ∈ C∞(R).
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Proof. By Theorem 4.1, T is of the above form with H ∈ C(R) and p ≥ 0. Suppose
T maps Ck(R) into Ck−1(R). Then the condition on p is needed to guarantee that
Tf is in Ck−1(R) for functions f whose derivatives have zeros.

We claim that H is smooth, i.e., H ∈ Ck−1(R). Let L := − logH. Obviously
L ∈ Ck−1(R) if and only if H ∈ Ck−1(R). Take f(x) = x/2. By assumption
Tf ∈ Ck−1(R) and, hence,

ϕ(x) := L(x)− L(x/2)

defines a function ϕ ∈ Ck−1(R). We prove by induction on k ≥ 2 that ϕ ∈ Ck−1(R)
and L ∈ Ck−2(R) imply that L ∈ Ck−1(R).

For k = 2, ϕ ∈ C1(R) and L ∈ C(R) since H ∈ C(R). By Proposition 2.8(b)
with ψ = ϕ and a = 1, we get L ∈ C1(R).

To prove the induction step, assume k ≥ 3, ϕ ∈ Ck−1(R) and
L(k−2) ∈ C(R). We have to show that L ∈ Ck−1(R). Let ψ(x) := ϕ(k−2)(x) =
L(k−2)(x) − 1

2k−2L
(k−2)

(
x
2

)
. Then ψ ∈ C1(R) and L(k−2) ∈ C(R). By Proposi-

tion 2.8(b) with a = 1
2k−2 , L

(k−2) ∈ C1(R), i.e., L ∈ Ck−1(R). This proves that

H ∈ Ck−1(R). �

4.2 The chain rule on different domains

In the case of C1-functions, there is an analogue of Theorem 4.1 for functions
f : Rn → Rn on Rn when n > 1. For finite-dimensional Banach spaces X and Y
and k ∈ N0, let

Ck(X,Y ) = {f : X → Y | f is k-times continuously Fréchet differentiable},

with C(X,Y ) = C0(X,Y ). Let L(X,Y ) := {f ∈ C(X,Y ) | f is linear} and
Ck

b (X,Rn) := {f ∈ Ck(X,Rn) | Im(f) ⊂ J for some open half-space J ⊂ Rn}.
The derivative D is a map D : C1(Rn,Rn) → C(Rn, L(Rn,Rn)) satisfying the
chain rule

D(f ◦ g)(x) = ((Df) ◦ g)(x) · (Dg)(x), f, g ∈ C1(Rn,Rn), x ∈ Rn.

More generally, we consider operators T : C1(Rn,Rn) → C(Rn, L(Rn,Rn)) satis-
fying the chain rule equation

T (f ◦ g)(x) = ((Tf) ◦ g)(x) · (Tg)(x), f, g ∈ C1(Rn,Rn), x ∈ Rn.

The multiplication on the right is the non-commutative composition of linear op-
erators on Rn. We do not write it with composition symbol ◦ to distinguish it
from the composition of the non-linear functions f, g. In fact, in the following we
will omit the symbol · for this composition. In stating the analogue of Theorem
4.1 for n > 1, we need another assumption on T .
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An operator T : C1(Rn,Rn) → C(Rn, L(Rn,Rn)) is locally surjective pro-
vided that there is x ∈ Rn so that{

(Tf)(x)
∣∣ f ∈ C1(Rn,Rn), f(x) = x, det f ′(x) �= 0

} ⊇ GL(n,R).

In the following result on the chain rule for maps of this type we use the notation
detT |C1

b
(Rn,Rn) �≡ 0 to mean that there should be a function f ∈ C1

b (R
n,Rn)

and a point x ∈ Rn such that det(Tf(x)) �= 0.

Theorem 4.8 (Multidimensional chain rule). Let n ≥ 2, and assume that T :
C1(Rn,Rn) → C(Rn, L(Rn,Rn)) satisfies the chain rule equation

T (f ◦ g)(x) = ((Tf) ◦ g)(x) Tg(x), f, g ∈ C1(Rn,Rn), x ∈ Rn. (4.11)

Assume also that detT |C1
b (R

n,Rn) �≡ 0 and that T is locally surjective. Then there

are p ≥ 0 and H ∈ C(Rn,GL(n,R)) such that, if n ∈ N is odd, for all f ∈
C1(Rn,Rn) and x ∈ Rn

(Tf)(x) =
∣∣det f ′(x)

∣∣p(H ◦ f)(x)f ′(x)H(x)−1.

If n ∈ N is even, T either has the same form or

Tf(x) = sgn
(
det f ′(x)

)∣∣det f ′(x)
∣∣p(H ◦ f)(x)f ′(x)H(x)−1,

the latter with p > 0.
Conversely, these formulas define operators T which satisfy the chain rule

and are locally surjective.
If additionally to (4.11), T (2 Id)(x) = 2 Id holds for all x ∈ Rn, then H = Id

and Tf = f ′ or, if n is even, possibly Tf = sgn(det f ′)f ′.

Remarks. (a) Note that a priori we do not impose any continuity condition on T .

(b) For odd integers n ∈ N, p > 0 and H ∈ C(Rn,GL(n,R)),

(Tf)(x) := sgn
(
det f ′(x)

)∣∣det f ′(x)
∣∣p(H ◦ f)(x)f ′(x)H(x)−1

also solves the chain rule equation, but is not locally surjective since in this case
det((Tf)(x)) ≥ 0 for all f ∈ C1(Rn,Rn) with f(x) = x.

(c) If T is not assumed to be locally surjective, there are various other solu-
tions of (4.11):

Take any continuous multiplicative homomorphism Φ : R → L(Rn,Rn) with
Φ(0) = 0 and Φ(1) = Id and any continuous function H ∈ C(Rn,GL(n,R)), and
define

(Tf)(x) = (H ◦ f)(x)Φ(det f ′(x)
)
H(x)−1,

x ∈ Rn, f ∈ C1(Rn,Rn). Then T satisfies (4.11). As for specific examples, take
as Φ a one-parameter group like Φ(t) = exp(ln |t|A) = |t|A for some fixed matrix
A ∈ L(Rn,Rn) and t ∈ R. Here ln |t| might also be replaced by (sgn t) · ln |t|.
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(d) As in the case of one variable (n = 1), the function H is completely
determined by the function T (2 Id). The inner automorphism defined by H, with
additional composition by f , applied to the derivative, essentially yields T up to
a character in terms of det f ′.

For the proof of Theorem 4.8 we refer to [KM2]. We will not reproduce it
here since it is not in line with our main goals. We just mention a few steps of the
proof.

The localization step for n ≥ 2 is similar to the case n = 1, yielding

Tf(x) = F
(
x, f(x), f ′(x)

)
,

for a suitable function F : Rn × Rn × L(Rn,Rn) → L(Rn,Rn). The analysis of
this representing function F is different from the case n = 1, due to the non-
commutativity of the composition of linear maps in L(Rn,Rn). However, again
one may show that

K(v) := F (x, x, v) ∈ GL(n,R), v ∈ GL(n,R)

is independent of x ∈ Rn and multiplicative, K(uv) = K(u)K(v) for all u, v ∈
GL(n,R), with K(Id) = Id, K(v)−1 = K(v−1). The proof proceeds identifying
these automorphisms K of GL(n,R) as inner automorphisms multiplied by char-
acters in terms of det v, i.e., powers of | det v|, possibly multiplied by sgn(det v).
This result on the automorphisms of GL(n,R) replaces (the simpler) Proposition
2.3. Additional arguments are also needed to prove the continuity of H.

We may also consider the chain rule equation on real or complex spaces of
polynomials or analytic functions. For K ∈ {R,C}, let P := P(K) denote the
space of polynomials with coefficients in K, E := E(K) the space of real-analytic
functions (K = R) or entire functions (K = C) and C := C(K). Moreover, let
Pn := Pn(K) be the subset of P consisting of polynomials of degree ≤ n. There are
simple operators T : P(K) → C(K) satisfying the chain rule T (f ◦g) = (Tf)◦g ·Tg
which have a different form than the solutions determined so far: For f ∈ P(K) and
c ∈ R, let Tf := (deg f)c, T mapping into the constant functions. Then T satisfies

the chain rule on P. More generally, if deg f =
∏r

j=1 p
lj
j is the decomposition of

deg f into prime powers and cj ∈ R, Tf =
∏r

j=1 p
cj lj
j will satisfy the chain rule

and also

Tf =

r∏
j=1

p
cj lj
j

H ◦ f
H

|f ′|p{sgn f ′}m

will define a map T : P → C satisfying the chain rule, if H ∈ C(K), H �= 0, p ≥ 0,
m ∈ N0. We do not know whether this yields the general solution of the chain rule
equation for T : P → C. However, we can give the general solution of the chain
rule equation for such maps under a mild continuity assumption.

Let X ∈ {P(K), E(K)} and Y ∈ {P(K), E(K), C(K)}. An operator T : X →
Y is pointwise continuous at 0 provided that for any sequence (fn)n∈N of functions
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in X converging uniformly on all compact sets of K to a function f ∈ X, we have
pointwise convergence of the images at zero, i.e., limn→∞(Tfn)(0) = (Tf)(0). For
ξ ∈ K� {0}, denote sgn ξ := ξ/|ξ|. We then have the following two results for the
chain rule.

Theorem 4.9. Let K ∈ {R,C} and suppose that T : P(K) → C(K), T �= 0, satisfies
the chain rule equation

T (f ◦ g) = (Tf) ◦ g · Tg, f, g ∈ P(K) (4.12)

and is pointwise continuous at 0. Then there is a nowhere vanishing continuous
function H ∈ C(K) and there are p ∈ K with Re(p) ≥ 0 and m ∈ Z such that

Tf =
H ◦ f
H

|f ′|p(sgn f ′)m. (4.13)

For K = R, m ∈ {0, 1} suffices and H > 0. For p = 0, only m = 0 yields a
solution with range in C(K). If T maps into the space P(K), H is constant and
p = m ∈ N0 so that T has the form Tf = f ′m.

The result for entire functions is

Theorem 4.10. Let K ∈ {R,C} and assume that T : E(K) → E(K), T �= 0, satisfies
the chain rule equation

T (f ◦ g) = (Tf) ◦ g · Tg, f, g ∈ E(K)

and is pointwise continuous at 0. Then there is a function h ∈ E(K) and there is
m ∈ N0 such that

Tf = exp(h ◦ f − f) · f ′m.

Proof of Theorem 4.9. (a) Since T �= 0, there are n0 ∈ N, g ∈ Pn0(K) and x1 ∈ K

such that Tg(x1) �= 0. Let n ∈ N, n ≥ n0. We restrict T to Pn(K) =: Pn and
apply (4.12) for f, g ∈ Pn with f ◦ g ∈ Pn. For any x0 ∈ K, consider the shift
S(x) := x+ x1 − x0, S ∈ P1 ⊂ Pn and put f := g ◦ S. Then by (4.12)

0 �= (Tg)(x1) = T (f ◦ S−1)(x1) = (Tf)(x0)T (S
−1)(x1).

Hence, Tf(x0) �= 0. Moreover, Th = T (h ◦ Id) = Th · T (Id) for all h ∈ Pn. Hence,
T (Id) = 1 is the constant function 1. For x ∈ K, let Sx(y) := x+y, Sx ∈ P1 ⊂ Pn.
Again by (4.12)

1 = T (Id) = T (S−x ◦ Sx) = T (S−x) ◦ Sx · T (Sx).

Thus for all y ∈ K, T (Sx)(y) �= 0. In particular, T (Sx)(0) �= 0 for all x ∈ K. Again
by (4.12)

T (f ◦ Sx)(0) = (Tf)(x) · T (Sx)(0),
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so that for any x ∈ K and f ∈ Pn

Tf(x) =
T (f ◦ Sx)(0)

T (Sx)(0)
. (4.14)

Let fj ∈ Pn be a sequence converging uniformly on compacta to f ∈ Pn. Then
(4.14) and the pointwise continuity assumption at 0 imply that limj→∞(Tfj)(x) =
(Tf)(x) for all x ∈ K, and not only for x = 0. By (4.14) it suffices to determine the

form of (Tf)(0) for any f ∈ Pn. Since, for any f ∈ Pn, f(x) =
∑n

j=0
f(j)(0)

j! xj is

determined by the sequence (f (j)(0))0≤j≤n, (Tf)(0) is a function of these values.
Hence, there is Fn : Kn+1 → K such that

(Tf)(0) = Fn

(
f(0), f ′(0), . . . , f (n)(0)

)
, f ∈ Pn. (4.15)

Since (f ◦ Sx)
(j) = f (j) ◦ Sx, (4.14) and (4.15) imply

Tf(x) =
Fn

(
f(x), f ′(x), . . . , f (n)(x)

)
Fn(x, 1, 0, . . . 0)

, (4.16)

with Fn(x, 1, 0, . . . , 0) = T (Sx)(0) �= 0 for any x ∈ K.

(b) We now show that Tf does not depend on the higher derivatives f (j) for
j ≥ 2. Fix x ∈ K and define Gn = Gn,x : Kn → K by

Gn(ξ1, . . . , ξn) :=
Fn(x, ξ1, . . . , ξn)

Fn(x, 1, 0, . . . , 0)
, ξi ∈ K. (4.17)

For any (η1, . . . , ηn) ∈ Kn, there is a polynomial g ∈ Pn, with g(x) = x and
g(j)(x) = ηj for j = 1, . . . , n. For ξ1 ∈ K, define f ∈ P1 ⊂ Pn by f(y) :=

ξ1(y − x) + x. Then f(x) = x, (f ◦ g)(j)(x) = ξ1ηj and (g ◦ f)(j)(x) = ξj1ηj .
Therefore, by (4.16) and (4.17)

Gn(ξ1η1, . . . , ξ1ηn) = Gn

(
(f ◦ g)′(x), . . . , (f ◦ g)(n)(x))

= T (f ◦ g)(x) = (Tf)(x)(Tg)(x) = (Tg)(x)(Tf)(x)

= T (g ◦ f)(x) = Gn(ξ1η1, . . . , ξ
n
1 ηn).

Given (t1, . . . , tn) ∈ Kn and α ∈ K, α �= 0, let ηi = ti/α.
Applying the previous equations with ξ1 = α, we conclude

Gn(t1, t2, . . . , tn) = Gn(t1, αt2, . . . , α
n−1tn). (4.18)

Fix t1 ∈ K and define G̃n : Kn−1 → K by G̃n(t2, . . . , tn) := Gn(t1, t2, . . . tn). Then

G̃n is continuous at zero: if t(m) = (t
(m)
2 , . . . , t

(m)
n ) → 0 ∈ Kn−1 for m → ∞,

choose polynomials fm ∈ Pn with fm(x) = x, f ′
m(x) = t1 and f

(j)
m (x) = t

(m)
j

for 2 ≤ j ≤ n. Clearly, fm converges uniformly on compact sets to f , where
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f(x) = t1(y − x) + x. By the assumption of pointwise continuity at 0 of T , (4.16)
and (4.17),

G̃n(t
(m)
2 , . . . , t(m)

n ) = Gn(t1, t
(m)
2 , . . . , t(m)

n ) = (Tfm)(x)

−→ (Tf)(x) = Gn(t1, 0, . . . , 0) = G̃n(0, . . . , 0).

Hence, G̃n is continuous at 0. Letting α → 0 in (4.18), we find

Gn(t1, t2, . . . , tn) = lim
α→0

Gn(t1, αt2, . . . , α
n−1tn) = Gn(t1, 0, . . . , 0), (4.19)

i.e., Gn = Gn,x does not depend on the variables (t2, . . . , tn) ∈ Kn−1: Therefore
Tf is independent of the higher derivatives of f .

(c) For any f ∈ Pn with f(x) = x and f ′(x) = ξ1, we now know by (4.16),
(4.17) and (4.19) that

(Tf)(x) = Gn

(
f ′(x), . . . f (n)(x)

)
= Gn(ξ1, 0, . . . , 0)

=
Fn(x, ξ1, 0, . . . , 0)

Fn(x, 1, 0, . . . , 0)
=: φ(x, ξ1). (4.20)

If g ∈ P1 satisfies g(x) = x, g′(x) = η1, we have by (4.12) and (4.20)

φ(x, ξ1η1) = T (f ◦ g)(x) = (Tf)(x)(Tg)(x) = φ(x, η1)φ(x, η1).

Therefore, φ(x, · ) : K → K is multiplicative for every fixed x ∈ K. It is also

continuous: for ξ
(m)
1 → ξ1 in K, put fm(y) = ξ

(m)
1 (y−x)+x, f(y) := ξ1(y−x)+x.

Then fm → f converges uniformly on compacta and hence

φ(x, ξ
(m)
1 ) = (Tfm)(x) −→ (Tf)(x) = φ(x, ξ1).

By Proposition 2.3 (K = R) and Proposition 2.4 (K = C) there are p(x) ∈ K with
Re(p(x)) ≥ 0 and m(x) ∈ Z such that

φ(x, ξ1) = |ξ1|p(x)(sgn ξ1)m(x), (4.21)

sgn ξ1 = ξ1/|ξ1| for ξ �= 0 and φ(x, 0) = 0, with m(x) = 0 if Re(p(x)) = 0 and
m(x) ∈ {0, 1} if K = R.

(d) Let H(x) = T (Sx)(0) = Fn(x, 1, 0, . . . , 0). Then H(x) �= 0 and by (4.16),
(4.19), (4.20) and (4.21),

Tf(x) =
Fx

(
f(x), f ′(x), 0, . . . , 0

)
Fn(x, 1, 0, . . . , 0)

=
H(f(x))

H(x)
φ
(
f(x), f ′(x)

)
=

(H ◦ f)(x)
H(x)

|f ′(x)|p(f(x))(sgn f ′(x)
)m(f(x))

. (4.22)
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Choosing f(x) = 2x, we find that p is a continuous function since Tf and H are
continuous. Actually, p is constant: Choosing arbitrary x, y, z ∈ K and functions
f, g ∈ P1 with g(x) = y, f(y) = z, we have by (4.12) and (4.22),∣∣f ′(y)g′(x)

∣∣p(yz)(sgn f ′(y)g′(x)
)m(yz)

= |f ′(y)|p(z)(sgn f ′(y)
)m(z)|g′(x)|p(y)(sgn g′(x))m(y)

.

Applying this first to polynomials with f ′(y) > 0, g′(x) > 0, we find that p(yz) =
p(z) = p(y) =: p for all y, z ∈ K, i.e., p is constant. Then, using functions with
arbitrary sgn-values in S1, we find that m(yz) = m(z) = m(y) = m ∈ Z may
be taken constant. With p = p(f(x)) and m = m(f(x)), (4.22) gives the general
solution for T : Pn → C, both for K = R and K = C.

(e) Since (4.22) is independent of n ∈ N, this is also the general solution for
T : P → C. In the case that T : P → P, i.e., that the range of T consists only of
polynomials, all functions

Tf =
H ◦ f
H

|f ′|p(sgn f ′)m, f ∈ P,

have to be polynomials. Here m ∈ Z, p ∈ K, Re(p) ≥ 0. For f(x) = 1
2x

2 this means

that
H( 1

2x
2)

H(x) |x|p(sgnx)m is a polynomial. For p = 0 also m = 0 and Tf = H◦f
H . For

p > 0, Tf has a zero of order p in x0 = 0. Since Tf is a polynomial, it follows that
p ∈ N is a positive integer, and Tf(x) = xpg(x) with g ∈ P, g(0) �= 0. This implies
that m ∈ Z has to be such that xp = |x|p(sgnx)m. Therefore Tf = H◦f

H f ′p ∈ P
for all f ∈ P, with p ∈ N0. Applying this to linear functions f(x) = ax + b,

f−1(y) = 1
ay − b

a = x, we find that p(x) = H(ax+b)
H(x) and H(x)

H(ax+b) = 1
p(x) are

polynomials in x. Therefore, H(ax+b)
H(x) =: ca,b is constant in x ∈ K for any fixed

values a, b ∈ K. In particular

H(2x)

H(x)
=

H(0)

H(0)
= 1 =: c2,0,

H(x+ b)

H(x)
=: c1,b.

We find that

H(2x+ 2b) = H(x+ b) = c1,bH(x) = c1,bH(2x) = H(2x+ b)

for all x, b ∈ K. Therefore, H(y + b) = H(y) for all y, b ∈ K. Hence, H is constant
and H◦f

H = 1 for all f ∈ P. We conclude that Tf = f ′p, p ∈ N0. �
Proof of Theorem 4.10. Since P(K) ⊂ E(K), Theorem 4.9 yields that T |P(K) has
the form

Tf =
H ◦ f
H

|f ′|p(sgn f ′)m, f ∈ P(K), (4.23)

with m ∈ Z, p ∈ K, Re(p) ≥ 0. We also know that H defined by H(x) = T (Sx)(0)
is continuous on K. Let c ∈ K, c �= 0 be arbitrary. Applying (4.23) to f(z) = cz
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and using that Tf ∈ E(K), we get that z �→ H(cz)
H(z) is in E(K), i.e., real or complex

analytic. Since H is nowhere zero, there exists an analytic function k(c, · ) ∈ E(K)

such that H(cz)
H(z) = exp(k(c, z)), with k(c, 0) = 0. For c, d ∈ K we find

exp
(
k(cd, z)

)
=

H(cdz)

H(z)
=

H(cdz)

H(dz)

H(dz)

H(z)
= exp

(
k(c, dz) + k(d, z)

)
,

hence k(cd, z)=k(c, dz)+k(d, z). In particular, for z=1, k(c, d)=k(cd, 1)− k(d, 1).
Let h(d) := k(d, 1) for d �= 0. Then k(c, d) = h(cd)− h(d), and with d replaced by
z, k(c, z) = h(cz) − h(z). Since H is continuous, k is continuous as a function of
both variables. Therefore,

lim
c→0

k(c, z) = lim
c→0

h(cz)− h(z) := h(0)− h(z)

exists z-uniformly on compact subsets of K. Since k(c, · ) ∈ E(K) for all c ∈ K, we
conclude that h ∈ E(K). For w, z ∈ K� {0} define c ∈ K by w = cz. Then

H(w)

H(z)
= exp

(
k(c, z)

)
= exp

(
h(w)− h(z)

)
.

This extends by continuity to w = 0 or z = 0. Hence H◦f
H = exp(h ◦ f − h) for all

f ∈ P(K). Since Tf , H
H◦f are in E(K), also |f ′|p(sgn f ′)m has to be real-analytic

(K = R) or analytic (K = C) for all polynomials f requiring that p = m ∈ N0,
taking into account that m ∈ Z, Re(p) ≥ 0. Therefore

Tf = exp(h ◦ f − h)f ′m, f ∈ P(K), (4.24)

m ∈ N0. Given any f ∈ E(K), its n-th order Taylor polynomials pn(f) ∈ P(K)
converge uniformly on compacta to f . By the assumption of pointwise continuity at
0 of T and (4.14), we have for any z ∈ K, Tf(z) = limn→∞ T (pn(f))(z). Moreover,
limn→∞ h ◦ pn(f)(z) = h ◦ f(z) and limn→∞ pn(f)

′(z) = f ′(z). Therefore, (4.24)
holds for all f ∈ E(K). �

Remark. Imposing the additional initial condition T (−2 Id) = −2 on T in Theo-
rems 4.9 and 4.10 will imply that p = m = 1 and that H and h are constant so
that Tf = f ′, i.e., T is the derivative.

4.3 Notes and References

Theorem 4.1 on the solution of the chain rule operator equation was shown by
Artstein-Avidan, König and Milman in [AKM].

The proof of the continuity of the function H in part (iii) of the proof of
Theorem 4.1 uses similar arguments as in the proof of Theorem 2.6 and as in Step
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12 of the proof of Theorem 2 of Alesker, Artstein-Avidan, Faifman and Milman
[AAFM].

If the “compound” product T (f ◦ g) · Tg on the right side of the chain rule
is replaced by a simple product of Tf and Tg, the resulting equation essentially
has only trivial solutions, since the right-hand side does not reflect the effects of
the composition. We have the following result, cf. Proposition 8 of [KM3]:

Proposition 4.11. Let k ∈ N0 and suppose that T : Ck(R) → C(R) satisfies

T (f ◦ g) = Tf · Tg, f, g ∈ Ck(R).

Assume also that for any x ∈ R and any open interval J ⊂ R there is g ∈ Ck(R)
with Im(g) ⊂ J such that Tg(x) �= 0. Then Tf = 11 for all f ∈ Ck(R).

Theorem 4.1 admits a cohomological interpretation. The semigroup G =
(Ck(R), ◦ ) with composition as operation acts on the abelian semigroup M =
(C(R), · ) with pointwise multiplication as operation by composition from the right,
G ×M → M , fH := H ◦ f . Thus, M is a module over G. Denote the functions
from Gn to M by Fn(G,M) and define the coboundary operators

dn : Fn(G,M) −→ Fn+1(G,M), n ∈ N0,

using the additive notation + for the operation · on M , by

dnϕ(g1, . . . , gn+1) = g1ϕ(g2, . . . , gn+1)

+
n∑

i=1

(−1)iϕ(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1) + (−1)n+1ϕ(g1, . . . , gn),

for ϕ ∈ Fn(G,M), g1, . . . , gn+1 ∈ G. Theorem 4.1 characterizes the cocycles in
Ker(d1) for n = 1. Then ϕ = T : G = Ck(R) → M = C(R) has coboundaries

d1T (g1, g2) = g1T (g2)− T (g1g2) + T (g2), g1, g2 ∈ G.

As for cocycles T , d1T = 0 means in multiplicative notation

T (g2 ◦ g1) = T (g2) ◦ g1 · Tg1,
and these are just the solutions of the chain rule. For n = 0, ϕ ∈ F 0(G,M) can
be identified with ϕ = H ∈ M = C(R) and we have in multiplicative notation
d0H(g) = H◦g

H for g ∈ G = Ck(R).
The cohomology group H1(G,M) = Ker(d1)/ Im(d0) is hence, by Theorem

4.1, represented by the maps g �→ |g′|p {sgn g′} from G to M .
We are grateful to L. Polterovich and S. Alesker for advising us on this

cohomological interpretation of Theorem 4.1.

Theorem 4.8 on the chain rule equation in Rn was proved by König and
Milman in [KM2]. The result on the inner automorphisms of GL(n,R), which
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replaces Proposition 2.3 in the proof for n > 1, is taken from Dieudonné [D]
and Hua [H]. We are grateful to J. Bernstein and R. Farnsteiner for discussions
concerning the proof of Theorem 4.8.

Theorems 4.9 and 4.10 were shown in [KM11]. We would like to thank P.
Domański for helpful discussions concerning these results.

Corollary 4.3 stated that the derivative is the only operator (not vanishing
on the half-bounded functions) satisfying the chain rule and the extended Leibniz
rule. It is interesting to note that on the complex plane there are different operators
satisfying the chain rule and the extended Leibniz rule, though not with image in
the continuous functions: By Aczél, Dhombres [AD], Theorem 7 in Chapter 5.2,
there is a non-zero additive and multiplicative function K : C → C which is not
the identity on C. Let C1(C) denote the continuously differentiable (i.e., entire)
functions from C to C and F (C) denote all functions from C to C. Define operators
T,A : C1(C) → F (C) by Tf := K(f ′) and Af := K(f). Then (T,A) satisfy

T (f ◦ g) = Tf ◦ g · Tg,
T (f · g) = Tf ·Ag +Af · Tg ; f, g ∈ C1(C),

but T is not the derivative and A is not the identity on C1(C).

The analogue of the chain rule in integration is the substitution formula. Let
c ∈ R be fixed, I : C(R) → C1(R) denote the operator of definite integration from
c to x and D : C1(R) → C(R) be the derivative. Then I is injective and

f ◦ g − (f ◦ g)(c) = I(Df ◦ g ·Dg)

holds for all f, g ∈ C1(R). Modeling this, more generally we consider operators
T : C1(R) → C(R) and J : C(R) → C1(R) such that for some fixed c ∈ R and all
f, g ∈ C1(R)

f ◦ g − (f ◦ g)(c) = J(Tf ◦ g · Tg).
The natural question then is whether T is closely connected to some derivative
and J to some definite integral. Let us call T : C1(R) → C(R) non-degenerate
if there is y ∈ R such that for all x ∈ R there is f ∈ C1

b (R) with f(x) = y and
Tf(x) �= 0. Also T (Id)(x) �= 0 is assumed for all x ∈ R. We then have by König,
Milman [KM12]:

Proposition 4.12. Assume that J : C(R) → C1(R) and T : C1(R) → C(R) are
operators such that for some fixed c ∈ R

f ◦ g − (f ◦ g)(c) = J(Tf ◦ g · Tg)

holds for all f, g ∈ C1(R). Suppose further that T is non-degenerate and that J is
injective. Then there are constants p > 0, d �= 0 such that for all f ∈ C1(R) and
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h ∈ C(R)

Tf(x) = d |f ′(x)|p sgn f ′(x), (4.25)

Jh(x) = d−2/p

∫ x

c

|h(s)|1/p sgnh(s) ds. (4.26)

If T additionally satisfies the initial condition T (2 Id) = 2, we have that p = d = 1
and

Tf(x) = f ′(x), Jf(s) =

∫ x

c

h(s) ds.

Hence T in (4.25) is a generalized derivative and J in (4.26) is a generalized
definite integral. For the proof we refer to [KM12].



Chapter 5

Stability and Rigidity of the
Leibniz and the Chain Rules

Equations modeling physical and mathematical phenomena should preferably be
stable: reasonable perturbations of the equations should have solutions which
are controlled perturbations of the solutions of the unperturbed equations. Even
stronger, they may be rigid: this occurs if the perturbed equations turn out to
have the same solutions as the unperturbed equations, so that these equations
allow no reasonable perturbation.

In the previous chapter, we determined the solutions of the Leibniz rule
T (f · g) = Tf · g + f · Tg and of the chain rule T (f ◦ g) = Tf ◦ g · Tg, say for
operators T : Ck(R) → C(R). In this chapter, we show that these equations are
stable under relaxations and perturbations and that the chain rule is even rigid
in a certain setup. It is not too surprising that the chain rule is more stable than
the Leibniz rule, since its operation also exchanges points x ∈ R in the domain of
definition R, whereas the Leibniz rule fixes these points x ∈ R.

We consider relaxations and perturbations of two different types: firstly, we
relax the equation by replacing the one operator T by three possibly different
operators, V, T1, T2 : Ck(R) → C(R), and study, e.g., in the case of the Leibniz
rule, the solutions of

V (f · g) = T1f · g + f · T2g, f, g ∈ Ck(R),

introducing additional freedom with a rule of a similar form, and secondly, we
consider an additive perturbation

T (f · g) = Tf · g + f · Tg +B( · , f, g), f, g ∈ Ck(R),

where B is a given function of the independent and the function variables. The
Leibniz rule and the chain rule turn out to be stable or even rigid in these situa-
tions. The convolution equation T (f · g) = Tf ∗ Tg for bijective operators T on
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Schwartz space, characterizing the Fourier transform as mentioned in the intro-
duction, may be relaxed as well, see Section 5.5.

5.1 Changing the operators

We start with the stability of the Leibniz rule under a change of operators. All
function multiplications are meant to be defined pointwise.

Theorem 5.1 (Relaxed Leibniz rule). Let I ⊂ R be an open interval, k ∈ N0 and
V, T1, T2 : Ck(I) → C(I) be operators such that the relaxed Leibniz rule equation

V (f · g) = T1f · g + f · T2g (5.1)

holds for all f, g ∈ C(I). Then there are continuous functions c, d ∈ C(I) and
a1, a2 ∈ C(I) such that, with T : Ck(I) → C(I) defined by

Tf := c f ln |f |+ d f ′, f ∈ Ck(I),

we have

V f = Tf + (a1 + a2)f,

T1f = Tf + a1f,

T2f = Tf + a2f, f ∈ Ck(I).

For k = 0 we need d = 0. Conversely, these operators satisfy (5.1).

Remarks. The operator T satisfies the unperturbed Leibniz rule T (f · g) =
Tf · g + f · Tg, cf. Theorem 3.1. Adding (a1 + a2) Id, a1 Id, a2 Id to T obviously
yields operators V, T1, T2 satisfying (5.1). The interesting fact is that these simple
operations yield the general form of solutions of (5.1), so V, T1, T2 are very simple
relaxations of T . Hence, as a consequence of (5.1), V, T1 and T2 are closely related.
Actually, ai = Ti11.

Note that no continuity is imposed on any of the operators V, T1 or T2.
Neither is linearity assumed; in fact, the operators are non-linear if c �≡ 0.

Proof. Exchanging f, g ∈ Ck(I), we find

V (f · g) = T1f · g + f · T2g = T1g · f + g · T2f.

Hence, g · (T1f − T2f) = f · (T1g − T2g). Let a1 := T111 and a2 := T211. Since the
ranges of T1 and T2 are in C(I), a1 and a2 are continuous functions, a1, a2 ∈ C(I).
We get, for g = 11 and f ∈ Ck(I),

T1f − a1f = T2f − a2f,

and
V f = T1f + a2f = T2f + a1f.
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Define T : Ck(I) → C(I) by Tf := V f − (a1 + a2)f . Then Tf = T1f − a1 · f =
T2f − a2 · f and, using (5.1),

T (f · g) = V (f · g)− (a1 + a2) · f · g
= T1f · g + f · T2g − a1f · g − f · a2g
= Tf · g + f · Tg, f, g ∈ Ck(I).

Hence, T satisfies the (unperturbed) Leibniz rule (3.1), and by Theorem 3.1 there
are continuous functions c, d ∈ C(I) such that

Tf = c f ln |f |+ d f ′, f ∈ Ck(I).

We then have V f = Tf + (a1 + a2)f , T1f = Tf + a1f , T2f = Tf + a2f . �

Corollary 5.2. Assume that V, T1, T2 : Ck(I) → C(I) satisfy the relaxed Leibniz
rule equation (5.1). Suppose further that T1dj = T2dj = 0 holds for two constant
functions d1, d2 with values d1 �= d2, d1d2 �= 1. Then there is d ∈ C(I) such that

V f = T1f = T2f = d f ′.

Proof. In Theorem 5.1 the assumption T1dj = T2dj = 0 for j = 1, 2 implies that
c(x) ln |dj |+ai(x) = 0 for all i, j ∈ {1, 2}, x ∈ I. Since (1, ln |dj |) ∈ R2 are linearly
independent for j = 1, 2, we get c = a1 = a2 = 0. �

We now turn to a relaxed form of the chain rule equation. For this, we need
a weak condition of non-degeneration.

Definition. For k ∈ N, an operator V : Ck(R) → C(R) is non-degenerate provided
that:

(i) for any x ∈ R, there is f ∈ Ck
b (R) such that V f(x) �= 0; and

(ii) for any x ∈ R, there are y ∈ R and f ∈ Ck(R) such that f(y) = x and
V f(y) �= 0.

Condition (i) means, in particular, that V |Ck
b (R)

�≡ 0.
We then have

Theorem 5.3 (Relaxed chain rule). Let k ∈ N and V, T1, T2 : Ck(R) → C(R) be
operators such that the relaxed chain rule equation

V (f ◦ g) = T1f ◦ g · T2g, f, g ∈ Ck(R), (5.2)

holds. Assume that V is non-degenerate. Then there is p ≥ 0 and there are con-
tinuous functions H, c1, c2 ∈ C(R), H > 0, such that with

Tf :=
H ◦ f
H

|f ′|p{sgn f ′}, f ∈ Ck(R), (5.3)
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we have

V f = (c1 ◦ f) · c2 · Tf,
T1f = (c1 ◦ f) · Tf,
T2f = c2 · Tf.

Conversely, these operators V, T1, T2 satisfy (5.2).

Remarks. (a) As mentioned in Chapter 4, the notation {sgn f ′} in equation (5.3)
means that there are two possible operators T , one always with the term sgn f ′

and one without. If the term sgn f ′ appears, one needs p > 0 to ensure that
the ranges of T and V, T1 and T2 consist of continuous functions. By Theorem
4.1, the operator T represents the general form of the solutions of the original
chain rule T (f ◦ g) = Tf ◦ g · Tg. Multiplying Tf by c1 ◦ f · c2, c1 ◦ f , c2 yields
operators V f, T1f, T2f which obviously satisfy (5.2). The interesting fact here is
that these simple operations already provide the general solutions of (5.2). Again,
no continuity assumption is imposed on any of the operators V, T1 or T2.

(b) To illustrate the result, suppose that in Theorem 5.3 we have V = T2.
Then c1 = 11 and T = T1.

Proof. Let c1 := T1(Id), c2 := T2(Id). Then c1, c2 ∈ C(R). Choosing successively
g = Id and f = Id in (5.2), we find that

V f = c2 · T1f, V g = c1 ◦ g · T2g, f, g ∈ Ck(R).

Since V is non-degenerate, c1(x) �= 0 and c2(x) �= 0 for all x ∈ R. Using these
formulas for V and (5.2), we get

c2 · T1(f ◦ g) = V (f ◦ g) = T1f ◦ g · T2g

= T1f ◦ g · c2
c1 ◦ g · T1g.

Put Tf := 1
c1◦f · T1f . Then the last equalities mean that

T (f ◦ g) = Tf ◦ g · Tg, f, g ∈ Ck(R).

Hence, T satisfies the chain rule equation and is non-degenerate as well. By The-
orem 4.1, there are p ≥ 0 and H ∈ C(R), H > 0, such that

Tf =
H ◦ f
H

|f ′|p{sgn f ′},

with p > 0 if the term sgn f ′ is present. Hence, by the definition of T ,

T1f = c1 ◦ f · Tf, T2f = c2 · Tf, V f = c1 ◦ f · c2 · Tf.
Conversely, the maps (V, T1, T2) defined by these formulas satisfy (5.2). �
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Corollary 5.4. Assume that V, T1, T2 : Ck(R) → C(R) satisfy the relaxed chain rule
equation (5.2) and that V is non-degenerate. Suppose also that V (2 Id), T1(2 Id)
and T2(2 Id) are constant functions. Then there are constants c1, c2 ∈ R and p ≥ 0
such that, with Tf = |f ′|p{sgn f ′}, we have

V f = c1c2Tf, T1f = c1Tf, T2f = c2Tf.

If V (2 Id) = T1(2 Id) = T2(2 Id) = 2, either V f = T1f = T2f = f ′ or V f = T1f =
T2f = |f ′|.
Proof. By Theorem 5.3, c2 = V (2 Id)

T1(2 Id) and c1 ◦ (2 Id) = V (2 Id)
T2(2 Id) . Thus by assump-

tions, c1 and c2 are constant functions. Therefore, also H(2 Id)/H is a constant
function which, by the reasoning in part (iv) of the proof of Theorem 4.1, implies
that H is constant. If V (2 Id) = T1(2 Id) = T2(2 Id)= 2, c1 = c2 = 1 and p = 1. �
Corollary 5.5. Let k ∈ N and assume that the operators V, T1, T2, T3, T4 : Ck(R) →
C(R) satisfy the relaxed Leibniz rule

V (f · g) = T1f · g + f · T2g

and the relaxed chain rule

V (f ◦ g) = T3f ◦ g · T4g

for all f, g ∈ Ck(R). If, for any x ∈ R, there is f ∈ Ck
b (R) with V f(x) �= 0, then

V f = T1f = T2f = T3f = T4f = f ′.

Proof. By Theorem 5.1, V has the form

V f = c f ln |f |+ d f ′ + (a1 + a2)f.

Since for all x ∈ I there is f ∈ Ck
b (R) with Tf(x) �= 0, at least one of the functions

c, d, a1+a2 is non-zero at any given point x ∈ R. This implies that property (ii) of
the condition of non-degeneration of V is satisfied, too. Theorem 5.3 then gives the
general form of (V, T3, T4). The solutions in Theorems 5.1 and 5.3 will coincide only
if p = 1, the {sgn f ′}-term appears, H is constant and V f = T3f = T4f = b f ′.
Inserting this into (5.2) yields b2 = 1, b = 1, i.e., V f = f ′. �

This result should be compared with Corollary 4.3 where the derivative was
characterized by the ordinary chain rule and the extended Leibniz rule.

5.2 Additive perturbations of the Leibniz rule

In this section we do not replace the operator T in its occurrences in the Leibniz
or the chain rule by different operators. Instead, we allow perturbation terms and
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ask to what extent both equations are stable. We only consider perturbations that
are local in the functions involved. We start with the Leibniz rule on C1. Recall
that a function f : I → R is locally bounded if it is bounded on all compact subsets
of I.

Theorem 5.6 (Stability of the Leibniz rule). Let I ⊂ R be an open interval,
T : C1(I) → C(I) be an operator and B : I × R2 → R be a measurable func-
tion such that

T (f · g)(x) = Tf(x) · g(x) + f(x) · Tg(x) +B
(
x, f(x), g(x)

)
(5.4)

holds for all f, g ∈ C1(I) and any x ∈ I. Assume also that there exists a locally
bounded function M : I → R>0 such that for all x ∈ I, (y, z) ∈ R2∣∣B(x, y, z)

∣∣ ≤ M(x)|y||z|. (5.5)

Then there are continuous functions c, d ∈ C(I), a locally bounded function M̃ :

I → R and a function C : I × R → R with |C(x, y)| ≤ M̃(x)|y| for x ∈ I, y ∈ R,
such that C(x, f(x)) is continuous in x ∈ I for all f ∈ C1(I) and

Tf(x) = c(x)f(x) ln |f(x)|+ d(x)f ′(x) + C
(
x, f(x)

)
.

Remarks. (1) Theorem 5.6 implies that the solutions of the perturbed Leibniz
rule (5.4) are perturbations of continuous solutions of the unperturbed Leibniz
rule (cf. Theorem 3.1) by a continuous function C(x, f(x)) of controlled magni-

tude, |C(x, f(x))| ≤ M̃(x)|f(x)|. Note that the modulus of the entropy solution
|f(x)| ln |f(x)| grows faster than |C(x, f(x))| as |f(x)| → ∞. Again, we do not
impose any continuity assumptions on T .

(2) Let C(x, y) = xy2

x2+y4 for (x, y) �= (0, 0) and C(0, 0) = 0. Then, for any

f ∈ C1(R), C(x, f(x)) is continuous in x, in particular, for those with f(0) = 0,
but C is not continuous at (0, 0). However, C(x, f(x)) cannot be continuous in x
for any f ∈ C(R), cf. [AFM, Lemma 3.1]. So Theorem 5.6 does not claim that C
is continuous as a function of two variables.

(3) As a consequence of Theorem 5.6, any perturbation function B has to be
of the form

B(x, y, z) =
(
C1(x, y · z)− C1(x, y)− C1(x, z)

) · y · z,
where C1(x, y) =

C(x,y)
y . Conversely, if C1 : I × R → R is a continuous function

and M̃ : I → R is locally bounded with |C1(x, y)| ≤ M̃(x), define B by the above
equation. Then the perturbed Leibniz rule (5.4) with this function B has a solution
as given by Theorem 5.6.
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Proof of Theorem 5.6. (a) We first show that T is a local operator. Let J ⊂ I be
an open subinterval and f1, f2 ∈ C1(R) be given with f1|J = f2|J . Choose any
function g ∈ C1(I) with supp(g) ⊂ J . Then f1 · g = f2 · g, hence T (f1 · g) =
T (f2 · g). Using the perturbed Leibniz rule formula (5.4), we get for any x ∈ J ,
after rearranging terms,(

Tf1(x)− Tf2(x)
) · g(x)

=
(
f2(x)− f2(x)

) · Tf(x) +B
(
x, f2(x), g(x)

)−B
(
x, f1(x), g(x)

)
= 0,

since f1(x) = f2(x). Choosing g with g(x) �= 0, we find that Tf1(x) = Tf2(x), so
that Tf1|J = Tf2|J . Proposition 3.3 implies that there is a function F : I×R2 → R

such that
Tf(x) = F

(
x, f(x), f ′(x)

)
holds for all x ∈ I and f ∈ C1(I). Hence T is locally defined.

(b) For g ∈ C1(I), put Sg(x) := T (exp g)(x)
exp g(x) , x ∈ I. Then S : C1(I) → C(I) is

a local operator, too, and there is a function G : I × R2 → R with

Sg(x) = G
(
x, g(x), g′(x)

)
, g ∈ C1(I), x ∈ I.

The operator equation (5.4) for T translates into the following one for S

S(g + h)(x) = Sg(x) + Sh(x) + Ψ
(
x, g(x), h(x)

)
, (5.6)

for g, h ∈ C1(I) where Ψ(x, g(x), h(x)) := B(x,exp(g(x)),exp(h(x)))
exp(g(x)+h(x)) . In view of as-

sumption (5.5), we have, independently of g and h,∣∣Ψ(x, g(x), h(x))
∣∣ ≤ M(x), x ∈ I,

where M is locally bounded. For any x ∈ I and α = (α0, α1), β = (β0, β1) ∈ R2

choose g, h ∈ C1(I) with g(j)(x) = αj , h
(j)(x) = βj , j = 0, 1. Equation (5.6) then

means, in terms of the function G representing S,

G(x, α+ β) = G(x, α) +G(x, β) + Ψ(x, α0, β0).

In particular, G(x, 2α) = 2G(x, α)+Ψ(x, α0, α0). Iterating this equation, we find,
for any n ∈ N,

1

2n
G(x, 2nα) = G(x, α) +

n−1∑
j=0

1

2j+1
Ψ(x, 2jα0, 2

jα0). (5.7)

Since |Ψ(x, 2jα0, 2
jα0)| ≤ M(x),

∣∣∑∞
j=n

1
2j+1Ψ(x, 2jα0, 2

jα0)
∣∣ ≤ M(x)

2n → 0, as
n → ∞. Therefore, the series on the right-hand side of (5.7) converges, and the
left-hand side has a limit as n → ∞. Define

G̃(x, α) := lim
n→∞

1

2n
G(x, 2nα) =: G(x, α) + Φ(x, α0), x ∈ I, α ∈ R2
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with Φ(x, α0) := limn→∞
∑n−1

j=0
1

2j+1Ψ(x, 2jα0, 2
jα0). We have |Φ(x, α0)| ≤ M(x).

Since

1

2n
G(x, 2nα+ 2nβ) =

1

2n
G(x, 2nα) +

1

2n
G(x, 2nβ) +

1

2n
Ψ(x, 2nα0, 2

nβ0),

G̃(x, · ) : R2 → R is additive,

G̃(x, α+ β) = G̃(x, α) + G̃(x, β), x ∈ I, α, β ∈ R2.

Note that G(x, g(x), g′(x)) = Sg(x) = T (exp(g))(x)
exp(g)(x) defines a continuous function

of x since the images of T and S consist of continuous functions. Therefore, the
assumptions of Proposition 2.7 are satisfied for (G, G̃,Ψ), and we get that G̃(x, · )
is linear: for any x ∈ I there are c(x), d(x) ∈ R such that

G̃(x, α) = c(x)α0 + d(x)α1.

By definition of S and G we have, for any g ∈ C1(I) and x ∈ I,

T (exp(g))(x) = exp(g(x))Sg(x) = exp(g(x))G
(
x, g(x), g′(x)

)
= exp(g(x))

(
G̃(x, g(x), g′(x)

)− Φ(x, g(x))
)
.

This means that, for any f ∈ C1(I) with f > 0 and g := ln f , we have

Tf(x) = f(x)
(
c(x) ln |f |(x) + d(x)(ln |f |)′(x))− f(x)Φ

(
x, ln |f |(x))

= c(x)f(x) ln |f |(x) + d(x)f ′(x) + C
(
x, f(x)

)
, (5.8)

with C(x, f(x)) := −f(x)Φ(x, ln |f |(x)), |C(x, f(x))| ≤ M(x)|f(x)|. We wrote |f |
in some places in (5.8) even though f > 0: we will show now that in this form the
formula is also true when f ′ < 0.

(c) Since T is a local operator, we may consider independently the points
where f is positive and where it is negative. Applying (5.4) to f = g = 11 and to
f = g = −11, we find

T (11) = −B( · , 1, 1),
T (−11) = 1

2

(−T (11) +B( · ,−1,−1)
)
= 1

2

(
B( · , 1, 1) +B( · ,−1,−1)

)
,

with |T (11)| ≤ M , |T (−11)| ≤ M . Now, let f ∈ C1(I), x ∈ I, be given with
f(x) < 0. Then |f(x)| = −f(x), and applying (5.4), we find

Tf(x) = −T (−f)(x)− T (−11)(x)f(x) +B
(
x,−f(x), 1

)
.

For the positive |f(x)| we know by (5.8)

−T (|f |)(x) = −T (−f)(x) = c(x)f(x) ln |f(x)|+ d(x)f ′(x) + C
(
x,−f(x)

)
,
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so that
Tf(x) = c(x)f(x) ln |f(x)|+ d(x)f ′(x) + C̃

(
x, f(x)

)
,

where C̃(x, f(x)) := C(x,−f(x)) − T (−11)(x)f(x) + B(x,−f(x), 1) satisfies

|C̃(x, f(x))| ≤ 3M(x)|f(x)|. Take M̃(x) := 3M(x) in Theorem 5.6.

(d) We claim that c and d define continuous functions. If d would be dis-
continuous at some point x0 ∈ I, choose a sequence xk �= x0 in I such that the
limits limk→∞ xk = x0, limk→∞ d(xk) exist and limk→∞ d(xk) �= d(x0). Recall
that |C(x, y)|/|y| is locally bounded. Choosing f = 2 in (5.8) and using the conti-
nuity of Tf , it follows that c is a locally bounded function, too. Thus we may find
M ′ > 0 such that

sup
k∈N

|c(xk)| ≤ M ′, sup
k∈N

∣∣C(xk, y)
∣∣ ≤ M ′|y|, y ∈ R.

Choose ε > 0 so small that | limk→∞ d(xk) − d(x0)| ≥ 3M ′ε
(
1 + ln 1

ε

)
. Consider

f : I → R, f(x) := x − x0 + ε. Since Tf ∈ C(I), limk→∞ Tf(xk) = Tf(x0). By
(5.8)

Tf(xk)− d(xk) = c(xk)(xk − x0 + ε) ln |xk − x0 + ε|+ C(xk, xk − x0 + ε)

=: Δ(xk)

and
Tf(x0)− d(x0) = c(x0) ε ln |ε|+ C(x0, ε) =: Δ(x0).

This, however, leads to a contradiction, since

3M ′ε
(
1 + ln 1

ε

) ≤ ∣∣∣∣ limk→∞
d(xk)− d(x0)

∣∣∣∣
≤
∣∣∣∣ limk→∞

Tf(xk)− Tf(x0)

∣∣∣∣+ lim
k→∞

|Δ(xk)|+ |Δ(x0)|

= lim
k→∞

|Δ(xk)|+ |Δ(x0)| ≤ 2M ′ε
(
1 + ln 1

ε

)
.

Hence, d is continuous. If c were discontinuous at some point x0 ∈ I, choose
again xk �= x0 in I such that the limits limk→∞ xk = x0, limk→∞ c(xk) exist
and | limk→∞ c(xk) − c(x0)| =: ε > 0. With M ′ as above, choose N so large that
ε lnN > 2M ′. Let f be the constant function f = N . Since Tf is continuous, we
get from (5.8)

Tf(xk) = c(xk)N lnN + C(xk, N) −→ Tf(x0) = c(x0)N lnN + C(x0, N).

This yields the contradiction

0 =

∣∣∣∣ limk→∞
Tf(xk)− Tf(x0)

∣∣∣∣
≥
∣∣∣∣ limk→∞

c(xk)− c(x0)

∣∣∣∣N lnN − sup
k

∣∣C(xk, N)
∣∣− ∣∣C(x0, N)

∣∣
≥ (ε lnN − 2M ′)N > 0.
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Hence c is continuous, too. Since c, d and Tf are continuous, for any f ∈ C1(I),
so is C(x, f(x)) as a function of x ∈ I.

(e) If f(x) = 0 for some f ∈ C1(I), x ∈ I, we have B(x, f(x), g(x)) =
B(x, 0, g(x)) = 0 for any g ∈ C1(I) by (5.5). If there is an open interval J ⊂ I with
x ∈ J and f |J = 0, we know already that Tf |J = 0 and (5.8) holds. Otherwise,
choose xk → x, f(xk) �= 0, f(x) = 0. Since Tf is continuous, Tf(xk) → Tf(x).
Applying (5.8) to Tf(xk) and using the continuity of c and d, we get that formula
(5.8) also holds for Tf(x),

Tf(x) = d(x)f ′(x) + C(x, 0),

where we put C(x0, 0) := limk→∞ C(x0, f(xk)), the limit being independent of
the particular sequence xk tending to x0. Note that the limit of f(xk) ln |f(xk)| is
zero. �

5.3 Higher-order Leibniz rule

We next consider the Leibniz rule on Ck(I)-spaces for higher orders k of deriva-
tives. For f, g ∈ Ck(I),

(f · g)(k) = f (k) · g + f · g(k) +
k−1∑
j=1

(
k

j

)
f (j) · g(k−j).

The last sum might be considered as an additive perturbation of the Leibniz
rule by a function B(·, f, . . . , f (k−1), g, . . . , g(k−1)). Trying to characterize the k-
th derivative by equations like this, note that the k-th derivative annihilates all
polynomials of degree less that k, and then the perturbation term is zero. The
following result states the converse.

Proposition 5.7 (Higher-order Leibniz rule). Let k ∈ N, I ⊂ R be an open interval
and B be a function B : I × R2k → R. Suppose that T : Ck(I) → C(I) is an
operator satisfying

T (f · g)(x) = Tf(x) · g(x) + f(x) · Tg(x)
+B

(
x, f(x), . . . , f (k−1)(x), g(x), . . . , g(k−1)(x)

)
(5.9)

for all f, g ∈ Ck(I) and x ∈ I. Suppose further that T annihilates all polynomials
of degree ≤ k− 1. Then T is a multiple of the k-th derivative, Tf = d · f (k), for a
suitable fixed function d ∈ C(I), and B has the form

B
(
x, f(x), . . . , g(k−1)(x)

)
= d(x)

k−1∑
j=1

(
k

j

)
f (j)(x)g(k−j)(x), f, g ∈ Ck(I), x ∈ I.



5.3. Higher-order Leibniz rule 85

Proof. (i) The proof of the localization is similar to the one of Theorem 5.6: If
f1, f2 ∈ Ck(I) satisfy f1|J = f2|J for some open interval of J ⊂ I, and g ∈ Ck(I)
is a function with support in J , we have f1 ·g = f2 ·g. Hence, by (5.9) for all x ∈ I,

Tf1(x) · g(x) + f1(x) · Tg(x) +B
(
x, f1(x), . . . , g

(k−1)(x)
)

= T (f1 · g)(x) = T (f2 · g)(x)
= Tf2(x) · g(x) + f2(x) · Tg(x) +B

(
x, f2(x), . . . , g

(k−1)(x)
)
,

which yields for any x ∈ J that (Tf1(x)−Tf2(x))·g(x) = 0. Choosing g with g(x) �=
0, we conclude Tf1(x) = Tf2(x), hence Tf1|J = Tf2|J . Therefore Proposition 3.3
implies that there is a function F : I × Rk+1 → R such that for all f ∈ Ck(I),
x ∈ I,

Tf(x) = F
(
x, f(x), . . . , f (k)(x)

)
.

(ii) We claim that Tf(x) only depends on x and the highest derivative f (k)(x).
Let α0, . . . , αk, βk ∈ R and x ∈ I be arbitrary. Choose f ∈ Ck(I) with f (j)(x) = αj

for all j ∈ {0, . . . , k} and g ∈ Ck(I) with g(x) = 1, g(j)(x) = 0 for all j ∈
{1, . . . , k − 1} and g(k)(x) = βk. Then (f · g)(j)(x) = αj for all j ∈ {0, . . . , k − 1}
and (f · g)(k)(x) = αk + α0βk. An application of (5.9) to f and g yields for the
function F representing T that

F (x, α0, . . . , αk−1, αk + α0βk) = F (x, α0, . . . , αk−1, αk) + F (x, 1, 0, . . . , 0, βk)α0

+B(x, α0, . . . , αk−1, 1, 0, . . . , 0). (5.10)

Since T is zero on all polynomials of degree ≤ k− 1, in particular on the constant
functions, we have F (x, 1, 0, . . . , 0) = T 11(x) = 0. Hence, choosing α0 = 1, α1 =
· · · = αk−1 = 0 in (5.10), we get

F (x, 1, 0, . . . , 0, αk + βk) = F (x, 1, 0, . . . , 0, αk) + F (x, 1, 0, . . . , 0, βk)

+B(x, 1, 0, . . . , 0, 1, 0, . . . , 0).

For αk = βk = 0 this yields F (x, 1, 0, . . . , 0) + B(x, 1, 0, . . . , 0, 1, 0, . . . , 0) = 0,
B(x, 1, 0, . . . , 0, 1, 0, . . . , 0) = 0. Therefore, F (x, 1, 0, . . . 0, · ) is additive,

F (x, 1, 0, . . . , 0, αk + βk) = F (x, 1, 0, . . . , 0, αk) + F (x, 1, 0, . . . , 0, βk).

Put c(x, αk) := F (x, 1, 0, . . . , 0, αk). Let pk−1(t) :=
∑k−1

j=0
αj

j! (t − x)j . Since

the degree of the polynomial pk−1 is ≤ k − 1, we have Tpk−1(x) = 0, i.e.,

F (x, α0, . . . , αk−1, 0) = Tpk−1(x) = 0.

Using this and putting αk = 0 in (5.10), we find

F (x, α0, . . . , αk−1, α0βk) = F (x, α0, . . . , αk−1, 0) + F (x, 1, 0, . . . , 0, βk)α0

+B(x, α0, . . . , αk−1, 1, 0, . . . , 0)

= c(x, βk)α0 +B(x, α0, . . . , αk−1, 1, 0, . . . , 0).
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However, c(x, 0) = 0 by the additivity of c(x, · ). Putting βk = 0, we get that
B(x, α0, . . . , αk−1, 1, 0, . . . , 0) = 0. Hence, renaming α0βk as αk, we get for α0 �= 0

F (x, α0, . . . , αk−1, αk) = c

(
x,

αk

α0

)
α0,

and for all f ∈ Ck(I), x ∈ I with f(x) �= 0,

Tf(x) = F
(
x, f(x), . . . , f (k)(x)

)
= c

(
x,

f (k)(x)

f(x)

)
f(x).

Since Tf is continuous, c(x, g(x)) is continuous for any continuous function g ∈
C(I), just by taking a solution f ∈ Ck(I) of f (k) = g · f with f(x) �= 0. Theorem
2.6, applied to the additive function c(x, · ), yields that c(x, · ) is linear and that
there is a continuous function d ∈ C(I) such that c(x, β) = d(x) · β. Therefore,
Tf(x) = d(x)f (k)(x), provided that f(x) �= 0. This is true by continuity also if
f(x) = 0:

Indeed, if α0 = 0, (αj)
k
j=1 �= 0 and fixing x ∈ I, consider the polynomial px

given by px(t) =
∑k

j=1
αj

j! (t − x)j . Since px(t) �= 0 for t �= x close to x, we have

(Tpx)(t) = d(t)p
(k)
x (t). However, for t tending to x, both sides have the limit

F (x, 0, α1, · · · , αk) = (Tpx)(x) = d(x)p(k)x (x) = d(x)αk,

and hence Tf(x) = d(x)f (k)(x) is also true for f ∈ Ck(I) and x ∈ I with f(x) =
0. �

5.4 Additive perturbations of the chain rule

After studying additive perturbations of the Leibniz rule, we now turn to additive
perturbations of the chain rule. The chain rule turns out to be rigid, under a weak
condition of non-degeneration.

Definition. An operator T : C1(R) → C(R) is locally non-degenerate provided
that, for any interval J ⊂ R and any x ∈ J , there are g ∈ C1(R) and y ∈ R with
g(y) = x, Im(g) ⊂ J and Tg(y) �= 0.

Additive perturbations of the chain rule for T (f ◦ g) naturally should involve
functions of the values of f ◦ g and g since the information on f is coupled with
g. This explains the setup in the following rigidity result for the chain rule.

Theorem 5.8 (Rigidity of the chain rule). Assume that T : C1(R) → C(R) is an
operator and B : R3 → R is a function such that

T (f ◦ g)(x) = Tf ◦ g(x) · Tg(x) +B
(
x, f ◦ g(x), g(x)) (5.11)
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holds for all f, g ∈ C1(R), x ∈ R. Assume also that T is locally non-degenerate
and that Tf depends non-trivially on the derivative f ′. Then B = 0 and T satisfies
the chain rule. Hence, there are p > 0 and H ∈ C(R), H > 0 such that

Tf(x) =
H ◦ f(x)
H(x)

|f ′(x)|p{sgn f ′(x)}, f ∈ C1(R), x ∈ R.

Again, there are two types of solutions, one with the term sgn f ′(x) and one
without. The result means that the chain rule permits no additive perturbations
of the above type, if Tf depends non-trivially on f ′. If Tf does not depend on f ′,
B might just be defined by

B
(
x, f ◦ g(x), g(x)) = T (f ◦ g)(x)− Tf ◦ g(x) · Tg(x),

the right-hand side of which we will show to be localized, i.e., being of the form
F (x, f ◦ g(x))− F (g(x), f ◦ g(x))F (x, g(x)).

Proof. (i) To prove that T is localized, let J ⊂ R be an open interval and f1, f2 ∈
C1(R) satisfy f1|J = f2|J . We claim that Tf1|J = Tf2|J holds. Let x ∈ J . Since T
is assumed to be locally non-degenerate, there is g ∈ C1(R) and y ∈ R such that
g(y) = x, Im(g) ⊂ J and Tg(y) �= 0. Then f1 ◦ g = f2 ◦ g and, using (5.11)

Tf1(x) · Tg(y) +B
(
y, f1(x), x

)
= T (f1 ◦ g)(x) = T (f2 ◦ g)(x)
= Tf2(x) · Tg(y) +B

(
y, f2(x), x

)
.

Since f1(x) = f2(x), we get (Tf1(x) − Tf2(x)) · Tg(y) = 0, and since Tg(y) �=
0, Tf1(x) = Tf2(x). Therefore, Tf1|J = Tf2|J . By Proposition 3.3, there is a
function F : R3 → R such that

Tf(x) = F
(
x, f(x), f ′(x)

)
holds for any f ∈ C1(R) and x ∈ R.

(ii) We now analyze the form of F . For any x, y, z, α, β ∈ R, choose f, g ∈
C1(R) with g(x) = y, f(y) = z, g′(x) = α, f ′(y) = β. Then the operator equation
(5.11) for T is equivalent to the functional equation for F ,

F (x, z, αβ) = F (y, z, β)F (x, y, α) +B(x, z, y). (5.12)

Let x = y = z and put φz := F (z, z, · ) : R → R, ψz := B(z, z, z) ∈ R. Then

φz(αβ) = φz(α)φz(β) + ψz. (5.13)

For α = 1, we have φz(β)(1 − φz(1)) = ψz. If for some z ∈ R, ψz were �= 0,
φz(1) �= 1 and hence φz(β) = ψz

1−φz(1)
=: az would be a constant function of β.

Putting α = 1 and y = z in (5.12) would yield

F (x, z, β) = azF (x, z, 1) +B(x, z, z).
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Interchanging y and z in (5.12), we get for β = 1

F (x, y, α) = F (z, y, 1)F (x, z, α) +B(x, y, z)

= azF (x, z, 1)F (z, y, 1) + F (z, y, 1)B(x, z, z) +B(x, y, z).

The right-hand side is independent of the derivative variable α and hence Tf
would not depend on the derivative f ′, contrary to the assumption in Theorem
5.8. Therefore, ψz = B(z, z, z) = 0 for all z ∈ R.

(iii) We now know that φz = F (z, z, · ) is multiplicative by (5.13) and that
B(z, z, z) = 0 for all z ∈ R. Putting g = Id in (5.11), we find

Tf(x) = Tf(x) · T (Id)(x) +B
(
x, f(x), x

)
,

for all f ∈ C1(R), x ∈ R. If T (Id)(x) were �= 1 for some x ∈ R, Tf(x) =
B(x, f(x), x)/(1− T (Id)(x)) would be independent of the derivative f ′(x) at this
point x, and by applying (5.11) to shift functions g, Tf(z) would be indepen-
dent of f ′(z) for all z ∈ R, contradicting the assumption in Theorem 5.8. Hence
T (Id)(x) = 1 for all x ∈ R. We conclude for F and B that F (x, x, 1) = T (Id)(x) =
1 and B(x, z, x) = 0 for all x, z ∈ R. Putting f = Id in (5.11) gives

Tg(x) = T (Id)(g(x)) · Tg(x) +B
(
x, g(x), g(x)

)
= Tg(x) +B

(
x, g(x), g(x)

)
.

Therefore also B(x, z, z) = 0 for all x, z ∈ R.

Using this, we find, putting first y = z and then y = x in (5.12),

F (x, z, αβ) = F (z, z, α) · F (x, z, β) = F (x, z, β) · F (x, x, α). (5.14)

We also used the symmetry in α and β on the left-hand side.

We claim that for any x, z ∈ R, F (x, z, 1) �= 0. If there were x, z ∈ R with
F (x, z, 1) = 0, (5.14) would yield F (x, z, α) = 0 for all α ∈ R, putting β = 1. Then
for all v ∈ R by (5.12)

F (x, v, α) = F (z, v, α)F (x, z, 1) +B(x, v, z) = B(x, v, z),

and for all u ∈ R, again using (5.12)

F (u, v, α) = F (x, v, α)F (u, x, 1) +B(u, v, x)

= B(x, v, z)F (u, x, 1) +B(u, v, x)

would be independent of α for all u, v ∈ R. This is impossible since Tf is assumed
to depend non-trivially on f ′. Hence, F (x, z, 1) �= 0 for all x, z ∈ R.

Therefore, putting β = 1 in (5.14), we get for any x, z, α ∈ R

F (x, z, α)

F (x, z, 1)
= F (z, z, α) = F (x, x, α), (5.15)
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which is independent of x and z and multiplicative in α. Put

ϕ(α) := F (x, x, α) = F (z, z, α),

ϕ(αβ) = ϕ(α)ϕ(β) for all α, β ∈ R. By (5.15)

F (x, z, α) = F (x, z, 1)ϕ(α).

Note that for all α �= 0, ϕ(α) �= 0 since else by multiplicativity of ϕ, ϕ and F
would be identically 0. Inserting this formula for F into (5.12), we find

F (x, z, 1)ϕ(αβ) = F (y, z, 1)ϕ(β) · F (x, y, 1)ϕ(α) +B(x, z, y).

Dividing this by ϕ(αβ) = ϕ(α)ϕ(β), we conclude that

F (x, z, 1) = F (y, z, 1) · F (x, y, 1) +
B(x, z, y)

ϕ(αβ)
,

for all α �= 0 �= β. Comparing this with (5.12) for α = β = 1, we get

B(x, z, y) =
B(x, z, y)

ϕ(αβ)
,

for all x, y, z, α, β ∈ R. This implies that either B is identically zero or ϕ is
identically 1. If ϕ ≡ 1, F (x, z, α) = F (x, z, 1) again would be independent of
the derivative variable α, contrary to the assumption in Theorem 5.8. Therefore
B ≡ 0, and T satisfies the unperturbed chain rule equation,

T (f ◦ g)(x) = Tf ◦ g(x) · Tg(x), f, g ∈ C1(R), x ∈ R.

Hence, by Theorem 4.1, T has the form

Tf =
H ◦ f
H

|f ′|p{sgn f ′},

with p > 0 and H ∈ C(R), H > 0. Note that p = 0 is not allowed in Theorem 5.8
since then Tf = H◦f

H would be independent of the derivative f ′. �

5.5 Notes and References

Theorems 5.1 and 5.6 were shown by König, Milman [KM7] in the case I = R.
Theorems 5.3 and 5.8 are also taken from [KM7].

Proposition 5.7 was proven in [KM8].

As mentioned in the Introduction, the Fourier transform F on the Schwartz
space S(Rn) may be essentially characterized by the convolution equation

T (f · g) = T (f) ∗ T (g), f, g ∈ S(Rn),
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assuming that T : S(Rn) → S(Rn) is bijective, cf. [AAFM] and [AFM] . In the
spirit of Section 5.1, we may also solve a relaxation of this equation: Suppose that
T, T1, T2 : S(Rn) → S(Rn) are bijective operators satisfying

T (f · g) = T1(f) ∗ T2(g), f, g ∈ S(Rn).

Then there are C∞-functions a1, a2 ∈ C∞(Rn) which are never zero and a diffeo-
morphism ω : Rn → Rn such that either for all f ∈ S(Rn)

Tf = a1 ∗ a2 ∗ F(f ◦ ω), T1f = a1 ∗ F(f ◦ ω), T2f = a2 ∗ F(f ◦ ω),

or that for all f ∈ S(Rn)

Tf = a1 ∗ a2 ∗ F(f ◦ ω), T1f = a1 ∗ F(f ◦ ω), T2f = a2 ∗ F(f ◦ ω).

The proof is based on the papers [AAFM] and [AFM] and the techniques of Section
5.1, reducing the convolution equation to a multiplicative equation by applying
the Fourier transform.



Chapter 6

The Chain Rule Inequality and
its Perturbations

In the previous chapter we showed that the chain rule operator equation shows
a remarkable stability and rigidity, under modifications of operators or additive
perturbations. In this chapter we study a different modification of the chain rule,
replacing equalities by inequalities. Suppose T : C1(R) → C(R) is a map satisfying
the chain rule inequality

T (f ◦ g) ≤ Tf ◦ g · Tg, f, g ∈ C1(R). (6.1)

Under mild assumptions on T , we determine the form of all operators T satisfying
this inequality, provided that the image of T contains functions attaining negative
values. There will be an assumption of non-degeneration of T which is a weak
surjectivity type requirement. Moreover, we impose a weak continuity condition
on T . In the case of the chain rule equation, the continuity of the operators was
not assumed, but it was a consequence of the solution formulas. Here we have less
information on T , and we require T to be pointwise continuous, as defined below.
Remarkably, for functions f with positive derivative, the solutions Tf of the chain
rule inequality (6.1) turn out to be the same as for the chain rule equation. For
general functions the solutions of the chain rule inequality are bounded from above
by corresponding solutions of the chain rule equality. This is a similar phenomenon
as in Gronwall’s inequality in its differential form, cf. Gronwall [G] or Hartman
[H], where the solution of a differential inequality is bounded by the solution
of the corresponding differential equation. We also state results for the opposite
inequality T (f ◦ g) ≥ Tf ◦ g · Tg. The proofs are based in part on a result about
submultiplicative functions on R, which is of independent interest.
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6.1 The chain rule inequality

Studying the chain rule inequality, we will impose the following two conditions.

Definition. An operator T : C1(R) → C(R) is non-degenerate provided that, for
any open interval I ⊂ R and any x ∈ I, there exists a function g ∈ C1(R) with
g(x) = x, Im(g) ⊂ I and Tg(x) > 1. Let us call T negatively non-degenerate if
there is g ∈ C1(R) with g(x) = x, Im(g) ⊂ I and Tg(x) < −1.

Definition. An operator T : C1(R) → C(R) is pointwise continuous if for any
sequence of functions fn ∈ C1(R) and f ∈ C1(R) with fn → f and f ′

n → f ′ con-
verging uniformly on all compact subsets of R, we have the pointwise convergence
of limn→∞ Tfn(x) = Tf(x) for all x ∈ R.

Theorem 6.1 (Chain rule inequality). Let T : C1(R) → C(R) be an operator such
that the chain rule inequality holds:

T (f ◦ g) ≤ Tf ◦ g · Tg, f, g ∈ C1(R). (6.1)

Assume in addition that T is non-degenerate and pointwise continuous. Suppose
further that there exists x ∈ R with T (− Id)(x) < 0. Then there is a continuous
function H ∈ C(R), H > 0, and there are real numbers p > 0 and A ≥ 1, such
that T has the form

Tf =

{
H◦f
H f ′p, f ′ ≥ 0,

−AH◦f
H |f ′|p, f ′ < 0,

f ∈ C1(R). (6.2)

Remarks. (a) Let Sf := H◦f
H |f ′|p sgn f ′. Then S satisfies the chain rule equation

S(f ◦ g) = Sf ◦ g · Sg. Equation (6.2) means that Tf ≤ Sf . Thus, the solutions
of the chain rule inequality are bounded from above by solutions of the chain rule
equation for which A = 1. Note that −A = T (− Id)(0) ≤ −1. Thus under the
additional assumption T (− Id)(0) = −1 in Theorem 6.1, T satisfies the chain rule
equation.

(b) Let c > 0. The modified operator inequality T (f ◦ g) ≤ c ·Tf ◦ g ·Tg may
be treated by considering T1 := c · T which would satisfy T1(f ◦ g) ≤ T1f ◦ g · T1g.

(c) The condition T (− Id)(x) < 0 guarantees that there are sufficiently many
negative functions in the range of T . If this is violated, there are many positive
solution operators T of (6.1): Examples for non-negative solutions can be given
by

Tf(x) = F
(
x, f(x), |f ′(x)|),

where F : R2 × R≥0 → R≥0 is a continuous function satisfying

F (x, z, αβ) ≤ F (y, z, α)F (x, y, β) (6.3)
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for all x, y, z, α, β ∈ R. We might take, e.g.,

F (x, z, α) = exp(d(x, z)) ·K(α),

where d is either a metric on R or d(x, z) = z − x, and K : R≥0 → R≥0 is
continuous and submultiplicative, K(αβ) ≤ K(α) ·K(β) for α, β ≥ 0. Non-trivial
examples of such maps K besides power-type functions αp, p > 0 and maxima of
such functions are given, e.g., by K(α) = ln(α + c) with c ≥ e, cf. Gustavsson,
Maligranda, Peetre [GMP], and products of submultiplicative functions. Moreover,

for any continuous submultiplicative function K : R≥0 → R≥0, F̃ := K ◦ F will
also satisfy (6.3) if F does. There does not seem to be much hope of classifying
the solutions of (6.1) without any negativity assumption like T (− Id)(x) < 0 for
some x ∈ R.

6.2 Submultiplicative functions

Let K : R → R be continuous and define T : C1(R) → C(R) by Tf(x) :=
K(f ′(x)). This operator T will satisfy (6.1) if and only if K is submultiplicative,
i.e., K(αβ) ≤ K(α)K(β) for all α, β ∈ R. Hence, as a special case in the proof
of Theorem 6.1, we have to classify submultiplicative functions on R attaining
also negative values. This result is of independent interest and we formulate it as
Theorem 6.2.

Theorem 6.2 (Submultiplicative functions). Let K : R → R be a measurable func-
tion which is continuous in 0 and in 1 and submultiplicative, i.e.,

K(αβ) ≤ K(α)K(β), α, β ∈ R.

Assume further that K(−1) < 0 < K(1). Then there exist real numbers p > 0 and
A ≥ 1 such that

K(α) =

{
αp, α ≥ 0,

−A|α|p, α < 0.

Hence, K(−1) = −A ≤ 1. Note that K|R≥0
is multiplicative, and if K(−1) =

−1, K is multiplicative on R, i.e., K(α) = |α|p sgnα. As mentioned in Remark
(b) above, there are many continuous submultiplicative functions K : R≥0 → R≥0

besides powers K(α) = αp. However, these cannot be extended to continuous
submultiplicative functions K : R → R with K(−1) < 0. There is a corresponding
result for supermultiplicative functions on R, K(αβ) ≥ K(α)K(β), which gives the
same form of K, except that then 0 < A ≤ 1.

Examples. (a) The measurability assumption in Theorem 6.2 is necessary. Other-
wise, we may take a non-measurable additive function f : R → R as given in the
comments following Proposition 2.1 and A > 1, and define K(0) := 0 and

K(α) :=

{
exp(f(lnα)), α > 0,

−A exp(f(ln |α|)), α < 0.
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Then K : R → R is non-measurable and submultiplicative with K(−1) < 0 <
K(1).

(b) Let d ≥ 1, c ≥ 0, c �= d, and put

K(α) :=

⎧⎪⎨⎪⎩
1, α = 1,

−c, α = 0,

−d, α �∈ {0, 1}.

Then K is measurable and submultiplicative with K(−1) < 0 < K(1), but dis-
continuous at 0 and at 1.

The result corresponding to Theorem 6.1 in the supermultiplicative situation
is

Theorem 6.3. Let T : C1(R) → C(R) be an operator such that

T (f ◦ g) ≥ Tf ◦ g · Tg, f, g ∈ C1(R).

Assume also that T is negatively non-degenerate and pointwise continuous with
T (− Id)(x) < 0 for some x ∈ R. Then there exist numbers p > 0, 0 < B ≤ 1 and
a function H ∈ C(R), H > 0 such that

Tf =

{
H◦f
H f ′p, f ′ ≥ 0,

−BH◦f
H |f ′|p, f ′ < 0,

f ∈ C1(R).

We first prove Theorem 6.2 which is used in the proof of Theorem 6.1. For
this, we need two lemmas.

Lemma 6.4. Let K : R → R be submultiplicative with K(−1) < 0 < K(1). Assume
that K is continuous in 0 and in 1. Then:

(i) K(0) = 0, K(1) = 1 and K|R<0
< 0 < K|R>0

.

(ii) There is 0 < ε < 1 such that 0 < K(α) < 1 for all α ∈ (0, ε) and 1 < K(α) <
∞ for all α ∈ (1/ε,∞).

Proof. Since 0<K(1)=K(12)≤K(1)2, K(1) ≥ 1. Then 1 ≤ K(1) = K((−1)2) ≤
K(−1)2, implying K(−1) ≤ −1. By submultiplicativity K(−1) ≤ K(1)K(−1),
|K(−1)| ≥ K(1)|K(−1)|. Hence, K(1) ≤ 1, K(1) = 1. Since K is continuous at
1, there is ε > 0 such that K|[1/(1+ε),1+ε] > 0. For any α ∈ [1/(1 + ε), 1 + ε],
K(α) > 0 and K(1/α) > 0. Hence, 0 < K(α) ≤ K(1/α)K(α2), implying that
K(α2) > 0, i.e., K|[1/(1+ε)2,(1+ε)2] > 0. Inductively, we get that K|R>0

> 0, since
R>0 =

⋃
n∈N

[1/(1+ε)n, (1+ε)n]. The inequalityK(0) = K((−1)·0) ≤ K(−1)·K(0)
with K(−1) < 0 shows that K(0) ≤ 0. Since K|R>0 > 0 and K is continuous in
0, we get K(0) = 0. Then there is ε > 0 with 0 < K|(0,ε) < 1. Since 1 ≤
K(1) ≤ K(α) · K(1/α), it follows that K|(1/ε,∞) > 1. Moreover, for any α > 0,
K(−α) ≤ K(−1)K(α) < 0, i.e., K|R<0

< 0. �
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The second lemma is a well-known fact on subadditive functions on R.

Lemma 6.5. Assume that f : R → R is measurable and subadditive, i.e.,

f(s+ t) ≤ f(s) + f(t), s, t ∈ R.

Define p := supt<0
f(t)
t and q := inft>0

f(t)
t . Then f is bounded on compact in-

tervals, −∞ < p ≤ q < ∞ and f(0) ≥ 0. Moreover, the limits limt→−∞
f(t)
t ,

limt→∞
f(t)
t exist and p = limt→−∞

f(t)
t , q = limt→∞

f(t)
t .

Proof. (a) We first show that f is bounded from above on each compact subset
of (0,∞). Fix a > 0 and put A := f(a). Let E := {t ∈ (0, a) | f(t) ≥ A/2}.
Then E is measurable since f is measurable. Moreover, (0, a) = E ∪ ({a} − E),
since t1, t2 > 0 with a = t1 + t2 implies that t1 ∈ E or t2 ∈ E. Suppose there
are 0 < α < β < ∞ such that f |[α,β] is not bounded from above. There there
is a sequence (tn), α ≤ tn ≤ β with tn → t0, α ≤ t0 ≤ β and f(tn) ≥ 2n.
Let E′

n := {t ∈ (0, β) | f(t) ≥ n}. For a fixed n ∈ N, choose above a = tn,
A = f(tn) ≥ 2n. Then

|E′
n| ≥

∣∣{t ∈ (0, tn)
∣∣ f(t) ≥ n

}∣∣ =: |En| ≥ tn
2

≥ α

2
> 0.

Since E′
n ≥ E′

n+1, we get that
∣∣⋂

n∈N
E′

n

∣∣ ≥ α
2 . Therefore, f |(0,β) is infinite on a

set of strictly positive measure, which is a contradiction. Therefore, f is bounded
from above on any compact subset of (0,∞).

(b) Since f(0) ≤ f(0) + f(0), we have f(0) ≥ 0. Also, for any t ∈ R,

0 ≤ f(0) ≤ f(t) + f(−t). Hence, f(−t)
−t ≤ f(t)

t for any t > 0, and therefore

limt→-∞
f(t)
t ≤ limt→∞

f(t)
t .

Let q := inft>0
f(t)
t . We claim that the limit limt→∞

f(t)
t exists and that

q = limt→∞
f(t)
t . Assume that q ∈ R; the case q = −∞ is treated similarly. Let

ε > 0 and choose b > 0 with f(b)
b ≤ q + ε. For any t ≥ 3b, there is n ∈ N with

t ∈ [(n+2)b, (n+3)b]. Using the subadditivity of f , and the definition of q and b,
we find

q ≤ f(t)

t
=

f(nb+ (t− nb))

t
≤ n f(b) + f(t− nb)

t

=
nb

t

f(b)

b
+

f(t− nb)

t
≤ nb

t
(q + ε) +

f(t− nb)

t
.

By part (a), f is bounded from above on [2b, 3b]. Let M > 0 be such that f[2b,3b] ≤
M . Since t− nb ∈ [2b, 3b], we get

q ≤ f(t)

t
≤ nb

t
(q + ε) +

M

t
.
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For t → ∞, nb
t → 1 and M

t → 0. Therefore, for any ε > 0,

lim
t→∞

f(t)

t
≤ q + ε = inf

t>0

f(t)

t
+ ε,

which shows that the limit limt→∞
f(t)
t exists and is equal to q.

(c) Consider similarly g(t) := f(−t), t > 0. Then by (b)

p := sup
t>0

f(−t)

−t
= − inf

t>0

g(t)

t
= − lim

t→∞
g(t)

t
= lim

t→−∞
f(−t)

−t
.

Now f(−t)
−t ≤ f(t)

t implies for t → ∞ that p ≤ q. Moreover, since p > −∞, q > −∞,
and since q < ∞, p < ∞. Therefore, −∞ < p ≤ q < ∞. �

As a consequence of Lemma 6.5, we have that

f(t) = pt+ a(t), t < 0,

f(t) = qt+ a(t), t > 0,

where a(t) ≥ 0 for all t �= 0.

Proof of Theorem 6.2. (a) Let K : R → R be measurable and submultiplicative,
continuous in 0 and in 1 with K(−1) < 0 < K(1). By Lemma 6.4, K(0) = 0,
K(1) = 1, K|R<0

< 0 < K|R>0
and for a suitable 0 < ε < 1, 0 < K(α) < 1 for all

α ∈ (0, ε) and 1 < K(α) < ∞ for all α ∈ (1/ε,∞). Define f(t) := lnK(exp(t)),
t ∈ R. Then f is measurable and subadditive, and we have by Lemma 6.5

−∞ < p := sup
t<0

f(t)

t
= lim

t→−∞
f(t)

t
≤ q := inf

t>0

f(t)

t
= lim

t→∞
f(t)

t
< ∞.

Since f is negative for t < 0 and positive for t > 0, we have that 0 ≤ p ≤ q < ∞,
with

f(t) =: pt+ a(t), t < 0, f(t) =: qt+ a(t), t > 0,

where a(t) ≥ 0 for all t and limt→−∞
a(t)
t = limt→∞

a(t)
t = 0. This means, for all

0 < α < 1, that

K(α) = exp
(
f(lnα)

)
= αp exp

(
a(lnα)

) ≥ αp,

and, for all 1 < α < ∞, that

K(α) = exp
(
f(lnα)

)
= αq exp

(
a(lnα)

) ≥ αq.

(b) We claim that p = q > 0 holds. Using K|R<0
< 0 < K|R>0

, the submul-
tiplicativity of K implies that for all β < 0 < α

K(αβ) ≤ K(α)K(β), |K(αβ)| ≥ K(α)|K(β)|.
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Since K(1) = 1, f(0) = 0. Fix t < 0 and choose α < −1, 0 < β < 1, with t = αβ.
Then, by submultiplicativity,

K(t) = K
(
(−1)|α|β) ≤ K(−1)K(|α|)K(β) ≤ 0,

|K(t)| ≥ |K(−1)|K(|α|)K(β) ≥ |α|qβp = |t|qβp−q,

using that K(−1) ≤ −1 since 1 = K(1) ≤ K(−1)2. Assuming p �= q, i.e., p < q,
and letting β tend to 0 (and α to −∞), would yield the contradiction |K(t)| = ∞.
Hence, 0 ≤ p = q < ∞. In fact, 0 < p = q since K is continuous at 0 with K(0) = 0
and K(β) ≥ βp for 0 < β < 1.

(c) Let g(t) := ln |K(− exp(t))| for all t ∈ R. Since, for any s, t ∈ R,

K
(− exp(s) exp(t)

) ≤ K
(− exp(s)

)
K
(
exp(t)

) ≤ 0,

we get that

g(s+ t) = ln
∣∣K(− exp(s) exp(t)

)∣∣ ≥ ln
∣∣K(− exp(s))

∣∣+ lnK(exp(t))

= g(s) + f(t) = g(s) + pt+ a(t),

with a(t) ≥ 0, for all t, and limt→±∞
a(t)
t = 0. Since f(0) = 0, a(0) = 0. Putting

s = 0 yields

g(t) ≥ g(0) + pt+ a(t).

Putting t = −s and renaming s by t gives

g(0) ≥ g(t)− pt+ a(−t).

Hence,

g(0) + pt+ a(t) ≤ g(t) ≤ g(0) + pt− a(−t).

Since a ≥ 0, this implies that a = 0 on R. Therefore, for all t ∈ R, f(t) = pt and
g(t) = g(0) + pt. We then find, for all β < 0 < α,

K(α) = αp, |K(β)| = exp
(
g(ln |β|)) = exp(g(0))|β|p.

Since exp(g(0)) = |K(−1)| ≥ 1, g(0) ≥ 0. Thus, K(β) = K(−1)|β|p, proving
Theorem 6.2 with −A = K(−1) ≤ −1. �

6.3 Localization and Proof of Theorem 6.1

As the first step in the proof of Theorem 6.1 on the chain rule inequality , we
show that T is locally defined. More precisely, Tf(x) only depends on x, f(x) and
f ′(x).
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Proposition 6.6. Let T : C1(R) → C(R) be non-degenerate, pointwise continuous
and satisfy the chain rule inequality (6.1). Assume also that there exists x0 ∈ R

such that T (− Id)(x0) < 0. Then there is a function F : R3 → R such that, for all
f ∈ C1(R) and all x ∈ R,

Tf(x) = F
(
x, f(x), f ′(x)

)
. (6.4)

To show this, we need a lemma.

Lemma 6.7. Under the assumptions of Proposition 6.6 we have for any open in-
terval I ⊂ R:

(a) For all x ∈ I, there is g ∈ C1(I) with g(x) = x, Im(g) ⊂ I and Tg(x) < −1.

(b) For c ∈ R, f ∈ C1(R) with f |I = c, we have Tf |I = 0.

(c) For f ∈ C1(R) with f |I = Id |I , we have Tf |I = 1.

(d) Take f1, f2 ∈ C1(R) with f1|I = f2|I and assume that f2 is invertible. Then
Tf1|I ≤ Tf2|I . Hence, if f1 is invertible, too, Tf1|I = Tf2|I .

Proof. (a) By (6.1), T (Id)(x) ≤ T (Id)(x)2 for all x ∈ R. Hence, T (Id)(x) ≥ 1
or T (Id)(x) ≤ 0. If there would be x1 ∈ R with T (Id)(x1) ≤ 0, use that by
non-degeneration of T there is g ∈ C1(R), g(x1) = x1 and Tg(x1) > 1. Then,

1 ≤ Tg(x1) = T (g ◦ Id)(x1) ≤ Tg(x1)T (Id)(x1) ≤ 0,

a contradiction. Hence T (Id)(x) ≥ 1 for all x ∈ I. Also, T (− Id)(x) < 0: 1 ≤
T (Id)(x) = T ((− Id)2)(x) ≤ T (− Id)(−x)T (− Id)(x). By assumption, there is x0 ∈
R, with T (− Id)(x0) < 0. If there would be x1 ∈ R with T (− Id)(x1) > 0, by
continuity of the function T (− Id) there would be x2 ∈ R with T (− Id)(x2) = 0,
contradicting 1 ≤ T (− Id)(−x2)T (− Id)(x2). Hence, T (− Id)(x) < 0 for all x ∈ R.
Also 1 ≤ T (− Id)(0)2 yields T (− Id)(0) ≤ −1.

Now let I ⊂ R be an open interval and x1 ∈ I. Let ε > 0 with J = (x1−ε, x1+

ε) ⊂ I, J̃ := J − {x1} = (−ε, ε). Since T is non-degenerate, there is f ∈ C1(R)

with f(0) = 0, Im(f) ⊂ J̃ and Tf(0) > 1. Then

T (−f)(0) ≤ T (− Id)(0)Tf(0) < −1,

and Im(−f) ⊂ J̃ . We transport −f back to J by conjugation with a shift. For
y ∈ R, let Sy := Id+y ∈ C1(R) denote the shift by y. Since for yn → y, Syn → Sy

and S′
yn

→ S′
y converge uniformly on compacta, by the pointwise continuity of T ,

we have that T (Syn
)(x) → T (Sy)(x) for all x ∈ R, i.e., T (Sy)(x) is continuous in

y for every fixed x ∈ R. Since

1 ≤ T (Id)(x1) ≤ T (Sx1
)(0)T (S−x1

)(x1),
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we have T (Sx1)(0) �= 0. Using T (S0)(0) = T (Id)(0) ≥ 1, the continuity of T (Sy)(0)
in y implies that T (Sx1

)(0) > 0. Let g := Sx1
◦ (−f) ◦ S−x1

. Then g(x1) = x1,
Im(g) ⊂ J ⊂ I, and

Tg(x1) ≤ T (Sx1
)(0)T (−f)(0)T (S−x1

)(x1) < −1,

using T (−f)(0) < −1 and 1 ≤ T (Sx1
)(0)T (S−x1

)(x1).

(b) For the constant function c, c ◦ g = c, hence Tc(x) ≤ Tc(g(x))Tg(x) for
all g ∈ C1(R). By non-degeneration of T and (a), there are g1, g2 ∈ C1(R) with
gj(x) = x, Im(gj) ⊂ I (j ∈ {1, 2}), and Tg2(x) < −1, Tg1(x) > 1. Applying the
previous inequality to g = g1, g2, we find Tc(x) = 0.

Now suppose f ∈ C1(R) satisfies f |I = c. Let x ∈ I and g1, g2 be as before.
Since f ◦ gj = c, for any x ∈ I, we have 0 = Tc(x) ≤ Tf(x)Tgj(x), yielding
Tf(x) = 0. Hence Tf |I = 0.

(c) Assume that f ∈ C1(R) satisfies f |I = Id |I . Let x ∈ I and choose g1, g2
as in part (b). Then f ◦ gj = gj (j = 1, 2) and

Tgj(x) = T (f ◦ gj)(x) ≤ Tf(x)Tgj(x).

This inequality for g1 yields Tf(x) ≥ 1, the one for g2 that

|Tg2(x)| ≥ Tf(x)|Tg2(x)|, T f(x) ≤ 1.

Hence, Tf(x) = 1, Tf |I = 1.

(d) Assume that f1|I = f2|I and that f2 is invertible. Let g := f−1
2 ◦f1. Then

g ∈ C1(R) with f1 = f2 ◦g and g|I = Id |I . By (c), Tg|I = 1. Hence, for any x ∈ I,
we have g(x) = x and

Tf1(x) = T (f2 ◦ g)(x) ≤ Tf2(x)Tg(x) = Tf2(x).

Therefore, Tf1|I ≤ Tf2|I . �
Proof of Proposition 6.6. (i) Let C := {f ∈ C1(R) | f is invertible and f ′(x) �= 0
for all x ∈ R}. For any open interval I ⊂ R and f1, f2 ∈ C with f1|I = f2|I we have
by Lemma 6.7(d) that Tf1|I = Tf2|I , i.e., localization on intervals. Replacing a
function f ∈ C1(R) by its tangent line approximation on the right side of a point
x, and f on the left side of x is an operation inside C. Therefore, the method of
the proof of Proposition 3.3 yields that there is a function F : R2× (R�{0}) → R

such that for all f ∈ C and all x ∈ R,

Tf(x) = F
(
x, f(x), f ′(x)

)
.

(ii) We now consider functions f ∈ C1(R) which are not invertible. Suppose
I := (y0, y1) is an interval where f is strictly increasing with f ′(x) > 0, x ∈ I
and f ′(y0) = f ′(y1) = 0 (or y0 = −∞, f ′(y1) = 0 or f ′(y0) = 0, y1 = ∞, with

6.3. Localization and Proof of Theorem 6.1
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obvious modifications in the following). For ε > 0 sufficiently small, f ′(y0+ ε) > 0,

f ′(y1 − ε) > 0 for all 0 < ε ≤ ε0. Define f̃ ∈ C1(R) by

f̃(x) :=

⎧⎪⎪⎨⎪⎪⎩
f(y0), x ≤ y0,

f(x), x ∈ I,

f(y1), x ≥ y1.

Then f̃ ′(y0) = f̃ ′(y1) = 0 and f̃ is the limit of functions f̃ε ∈ C in the sense that

f̃ε → f̃ and f̃ ′
ε → f̃ ′ converge uniformly on compacta. One may choose

f̃ε(x) :=

⎧⎪⎪⎨⎪⎪⎩
f(y0 + ε) + f ′(y0 + ε)

(
x− (y0 + ε)

)
, x ≤ y0 + ε,

f(x), x ∈ (y0 + ε, y1 − ε),

f(y1 − ε) + f ′(y1 − ε)
(
x− (y1 − ε)

)
, x ≥ y1 − ε.

Note that f̃ε ∈ C for any 0 < ε ≤ ε0 since f̃ε is invertible with f̃ ′
ε(x) > 0 for all

x ∈ R. By (i) for any x ∈ Iε := (y0 + ε, y1 − ε)

T f̃ε(x) = F
(
x, f̃ε(x), f̃

′
ε(x)

)
= F

(
x, f(x), f ′(x)

)
.

Since T is pointwise continuous, for any x ∈ (y0, y1)

T f̃(x) = lim
ε→0

T f̃ε(x) = F
(
x, f(x), f ′(x)

)
.

By definition of f̃ε, f |Iε = f̃ε|Iε . Since f̃ε ∈ C, we have by Lemma 6.7(d) that

Tf(x) ≤ T f̃ε(x) = F (x, f(x), f ′(x)) for any x ∈ Iε. For ε → 0 this shows that

Tf(x) ≤ T f̃(x) = F
(
x, f(x), f ′(x)

)
, x ∈ (y0, y1).

(iii) We now show the converse inequality T f̃(x) ≤ Tf(x) for x ∈ (y0, y1).

We may write f̃ = f ◦ g where

g(x) =

⎧⎪⎪⎨⎪⎪⎩
y0, x ≤ y0,

x, x ∈ (y0, y1),

y1, x ≥ y1.

If g were in C1(R), g|(y0,y1) = Id, Tg|(y0,y1) = 1 so that

T f̃(x) ≤ Tf(x)Tg(x) = Tf(x),

which would prove the claim. However, g �∈ C1(R). Therefore, we approximate g
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by smooth functions gε ∈ C1(R). Let

gε(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y0 +
ε
2 , x < y0,

y0 +
ε2+(x−y0)

2

2ε , y0 ≤ x ≤ y0 + ε,

x, y0 + ε ≤ x ≤ y1 − ε,

y1 − ε2+(x−y1)
2

2ε , y1 − ε ≤ x ≤ y1,

y1 − ε
2 , x ≥ y1.

Then gε(y1) = y1 − ε
2 , g

′
ε(y1) = 0, gε(y1 − ε) = y1 − ε, g′ε(y1 − ε) = 1, and similar

equations hold for y0 and y0 + ε so that gε ∈ C1(R) for any ε > 0. Note that

f ◦ gε → f̃ , (f ◦ gε)′ → f̃ ′ uniformly on compacta, with f ◦ gε, f̃ ∈ C1(R): Namely,
we have g′ε = 1 in (y0 + ε, y1 − ε) and 0 ≤ g′ε ≤ 1 in (y1 − ε, y1), g

′
ε = 0 in (y1,∞).

Since gε|Iε = Id |Iε , we have Tgε|Iε = 1 by Lemma 6.7(c). Thus by (6.1) for all
x ∈ Iε

T (f ◦ gε)(x) ≤ Tf(gε(x))Tgε(x) = Tf(x).

Now the pointwise continuity of T implies for all x ∈ (y0, y1)

T f̃(x) = lim
ε→0

T (f ◦ gε)(x) ≤ Tf(x).

Together with part (ii), we get

T f̃(x) = Tf(x) = F
(
x, f(x), f ′(x)

)
, x ∈ (y0, y1).

(iv) We now know that (6.4) holds for all f ∈ C1(R) and all open intervals
(y0, y1) of strict monotonicity of f . On intervals J where f is constant, Tf |J = 0
by Lemma 6.7(b), and F (x, y, 0) = 0 is a result of continuity arguments like

limε→0 T f̃ε(x) = T f̃(x) for boundary points of J together with Tf |J = 0. Equation
(6.4) then means 0 = 0. Equation (6.4) similarly extends to limit points of intervals
of monotonicity of f or to limit points of intervals of constancy of f . Hence (6.4)
holds for all f ∈ C1(R) and all x ∈ I. �

Proof of Theorem 6.1. (a) By Proposition 6.6 there is F : R3 → R such that for
all f ∈ C1(R), x ∈ R,

Tf(x) = F
(
x, f(x), f ′(x)

)
.

The chain rule inequality is equivalent to the functional inequality for F ,

F (x, z, αβ) ≤ F (y, z, α)F (x, y, β) (6.5)

for all x, y, z, α, β ∈ R. Just choose f, g ∈ C1(R) with g(x) = y, f(y) = z, g′(x) =
β, f ′(y) = α. The equations Tc = 0, T (Id) = 1 imply that

F (x, y, 0) = 0, F (x, x, 1) = 1. (6.6)

6.3. Localization and Proof of Theorem 6.1
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Note that F (x, y, 1) = T (Sy−x)(x) where Sy−x = Id+(y−x) is the shift by y−x.
Since T (Sy−x)(x) depends continuously on y − x, cf. the proof of (a) of Lemma
6.7, and since by (6.5) and (6.6)

1 = F (x, x, 1) ≤ F (y, x, 1)F (x, y, 1),

we first get that F (x, y, 1) �= 0 and then F (x, y, 1) > 0 for all x, y ∈ R. We showed
in the proof of (a) of Lemma 6.7 that T (− Id)(0) ≤ −1. Hence, F (0, 0,−1) =
T (− Id)(0) ≤ −1 and for any x ∈ R

F (x, x,−1) ≤ F (0, x, 1)F (0, 0,−1)F (x, 0, 1) ≤ −1

using 1 = F (0, 0, 1) ≤ F (0, x, 1)F (x, 0, 1).

(b) Fix x0 ∈ R and put K(α) := F (x0, x0, α) for α ∈ R. By (6.5) for x =
y = z = x0, K is submultiplicative on R with K(−1) < 0 < K(1). Further K
is continuous as implied by the pointwise continuity of T : Assume αn → α in R.
Consider fn(x) := αn(x−x0)+x0, f(x) := α(x−x0)+x0. Then fn(x0) = f(x0) =
x0 and f ′

n(x) = αn → α = f ′(x). Hence, fn → f , f ′
n → f ′ converge uniformly on

compacta and therefore Tfn(x0) → Tf(x0), which means

K(αn) = F (x0, x0, αn) = Tfn(x0) → Tf(x0) = F (x0, x0, α) = K(α).

Theorem 6.2 yields that there are p(x0) > 0 and A(x0) = |F (x0, x0,−1)| ≥ 1 such
that

K(α) =

{
αp(x0), α ≥ 0,

−A(x0)|α|p(x0), α < 0.
(6.7)

For any x, y, z ∈ R by (6.5)

F (x, x, α) ≤ F (z, x, 1)F (z, z, α)F (x, z, 1) = d(x, z)F (z, z, α),

where d(x, z) := F (z, x, 1)F (x, z, 1) ≥ 1 is a number independent of α. Fixing x, z
with x �= z, we have for all α > 0 that αp(x)−p(z) ≤ d(x, z). If p(x) �= p(z), we
would get a contradiction for either α → 0 or for α → ∞. Hence, the exponent
p := p(x) is independent of x ∈ R.

(c) We next analyze the form of F (x, z, α) for x �= z. Let x, z ∈ R, x �= z. By
(6.5) and (6.7) for all α > 0, β ∈ R,

F (x, z, αβ) ≤ F (x, z, β)F (x, x, α) = αpF (x, z, β)

and

F (x, z, β) ≤ F (x, z, αβ)F

(
x, x,

1

α

)
=

1

αp
F (x, z, αβ).

Therefore,
F (x, z, αβ) ≤ αpF (x, z, β) ≤ F (x, z, αβ),
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and we have equality F (x, z, αβ) = αpF (x, z, β). Putting here β = 1 and β = −1,
we find that

F (x, z, α) =

{
F (x, z, 1)αp, α ≥ 0,

F (x, z,−1)|α|p, α < 0.
(6.8)

We know that F (x, z, 1) > 0. On the other hand,

F (x, z,−1) ≤ F (0, z, 1)F (0, 0,−1)F (x, 0, 1) < 0.

Let c±(x, z) := F (x, z,±1) and a(x, z) := |c−(x, z)|/c+(x, z). Since
c−(x, z) = F (x, z,−1) ≤ F (x, z, 1)F (x, x,−1) ≤ −F (x, z, 1) = −c+(x, z),

we have a(x, z) ≥ 1 for all x, z ∈ R. Choose α, β ∈ {+1,−1} in (6.5) to find that

c+(x, z) ≤ c+(y, z)c+(x, y),

c−(x, z) ≤ c−(y, z)c+(x, y) and

c−(x, z) ≤ c+(y, z)c−(x, y).

Using these inequalities and c−(x, z) < 0, we get

c+(x, z)max
(
a(y, z), a(x, y)

) ≤ c+(y, z)c+(x, y)max
(
a(y, z), a(x, y)

)
= max

(|c−(y, z)|c+(x, y), c+(y, z)|c−(x, y)|)
≤ |c−(x, z)| = c+(x, z)a(x, z). (6.9)

Since c+(x, z) > 0, this implies for all x, y, z ∈ R that max(a(y, z), a(x, y)) ≤
a(x, z), which yields a(x, y) ≤ a(x, 0) ≤ a(0, 0) and a(0, 0) ≤ a(x, 0) ≤ a(x, y).
Therefore, a is constant, a(x, y) = a(0, 0) for all x, y ∈ R. Let A := a(0, 0).
Then A ≥ 1 and c−(x, z) = −Ac+(x, z). Since we now have equalities every-
where in (6.9), we conclude c+(x, z) = c+(y, z)c+(x, y). For y = 0, c+(x, z) =
c+(0, z)c+(x, 0), 1 = c+(x, x) = c+(0, x)c+(x, 0). Put H(x) := c+(0, x). Then

H > 0 and c+(x, z) =
H(z)
H(x) . Hence, by (6.8),

F (x, z, α) =

{H(z)
H(x)α

p, α ≥ 0,

−AH(z)
H(x) |α|p, α < 0.

Note that H(z) = F (0, z, 1) = T (Sz)(0) depends continuously on z. Finally, using
(6.4), we have

Tf(x) =

{
H◦f(x)
H(x) f ′(x)p f ′(x) ≥ 0

−AH◦f(x)
H(x) |f ′(x)|p f ′(x) < 0

}
; f ∈ C1(R), x ∈ R.

This ends the proof of Theorem 6.1. �
The proof of Theorem 6.3 is similar to the one of Theorem 6.1.

6.3. Localization and Proof of Theorem 6.1
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6.4 Rigidity of the chain rule

In Theorem 5.8 we showed that the chain rule is rigid: the perturbed chain rule
equation

T (f ◦ g)(x)− Tf ◦ g(x) · Tg(x) = B
(
x, f ◦ g(x), g(x)) (6.10)

under weak conditions implies that B ≡ 0 and that (6.10) has the same solutions
as the unperturbed chain rule. We now consider an extension of (6.10) and study
the more general inequality∣∣T (f ◦ g)(x)− Tf ◦ g(x) · Tg(x)∣∣ ≤ B

(
x, f ◦ g(x), g(x)). (6.11)

Theorem 5.8 required no continuity assumption on T . Since (6.11) allows more
freedom than (6.10), we need a stronger condition of non-degeneration of T to
solve (6.11). We also assume that T is pointwise continuous.

Definition. An operator T : C1(R) → C(R) is strongly non-degenerate provided
that, for all open intervals I ⊂ R, all x ∈ I and all t > 0, there are functions
f1, f2 ∈ C1(R) with f1(x) = f2(x) = x, Im(f1) ⊂ I, Im(f2) ⊂ I, and Tf1(x) > t,
Tf2(x) < −t.

Note that the model chain rule equality has derivative-type solutions, and
then these assumptions are clearly satisfied.

We then have the following rigidity result for the chain rule.

Theorem 6.8 (Strong rigidity of the chain rule). Assume that T : C1(R) → C(R)
is strongly non-degenerate and pointwise continuous. Suppose there is a function
B : R3 → R such that T satisfies∣∣T (f ◦ g)(x)− Tf ◦ g(x) · Tg(x)∣∣ ≤ B

(
x, f ◦ g(x), g(x)). (6.11)

for all f, g∈C1(R), x∈R. Assume also that there is x0∈R such that T (− Id)(x0)<
0. Then (6.11) has the same solutions as the unperturbed chain rule, i.e., B can
be chosen to be zero: There is p > 0 and a function H ∈ C(R), H > 0, such that

Tf(x) =
H ◦ f(x)
H(x)

|f ′(x)|p sgn f ′(x), f ∈ C1(R), x ∈ R.

The proof of this theorem relies on the follow localization result.

Proposition 6.9. Under the assumptions of Theorem 6.8, there is a function F :
R3 → R such that, for all f ∈ C1(R) and all x ∈ R,

Tf(x) = F
(
x, f(x), f ′(x)

)
.

Proof. Using Proposition 3.3, it suffices to show that for any open interval I ⊂ R

and f1, f2 ∈ C1(R) with f1|I = f2|I we have Tf1|I = Tf2|I . Let x ∈ I. Since T
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is strongly non-degenerate, we may choose functions gn ∈ C1(R) with gn(x) = x,
Im(gn) ⊂ I and limn→∞ Tgn(x) = ∞. Then by (6.11)

−B
(
x, f1(x), x

) ≤ T (f1 ◦ gn)(x)− Tf1(x) · Tgn(x) ≤ B
(
x, f1(x), x

)
.

Since limn→∞
B(x,f1(x),x)

Tgn(x)
= 0, we get by dividing the previous inequalities by

Tgn(x) that

Tf1(x) = lim
n→∞

T (f1 ◦ gn)(x)
Tgn(x)

,

where the limit exists. Note that f1 ◦ gn = f2 ◦ gn since f1|I = f2|I . Therefore,
Tf1(x) = Tf2(x) and consequently Tf1|I = Tf2|I . �

Using Proposition 6.9, the operator chain rule inequality (6.11) for T is equiv-
alent to the functional inequality for F :∣∣F (x, z, αβ)− F (y, z, α)F (x, y, β)

∣∣ ≤ B(x, z, y), (6.12)

for all x, y, z, α, β ∈ R. For x = y = z and φx := F (x, x, · ), dx := B(x, x, x), this
means ∣∣φx(αβ)− φx(α)φx(β)

∣∣ ≤ dx. (6.13)

Since T is strongly non-degenerate, limα∈R φx(α) = ∞, limα∈R
φx(α) = −∞. Ac-

tually, we can show that limα→∞ φx(α) = ∞, limα→−∞ φx(α) = −∞, cf. [KM10].
The pointwise continuity of T implies that φx : R → R is continuous. These facts
suffice to show that the nearly multiplicative function φx is actually multiplicative:

Proposition 6.10. Suppose that φ : R → R is continuous with limα→∞ φx(α) = ∞
and limα→−∞ φx(α) = −∞. Assume also that there is d ∈ R such that for all
α, β ∈ R ∣∣φ(αβ)− φ(α)φ(β)

∣∣ ≤ d. (6.14)

Then φ is multiplicative, i.e., d may be chosen zero, and there is p > 0 such that

φ(α) = |α|p sgnα.

Proof. Choose βn ∈ R such that 0 < φ(βn) → ∞. Then by (6.14)∣∣∣∣φ(αβn)

φ(βn)
− φ(α)

∣∣∣∣ ≤ d

φ(βn)
→ 0,

and hence φ(α) = limn→∞
φ(αβn)
φ(βn)

, where the limit exists for all α ∈ R. In partic-

ular, φ(0) = 0, φ(1) = 1. We conclude that for any α, γ ∈ R

φ(α)φ(γ) = lim
n→∞

φ(αβn)

φ(βn)

φ(γβn)

φ(βn)
.
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Now φ(αβn)φ(γ βn) ≤ φ(αγ β2
n) + d and φ(βn)φ(βn) ≥ φ(β2

n)− d. Hence

φ(α)φ(γ) ≤ lim
n→∞

φ(αγβ2
n) + d

φ(β2
n)− d

= lim
n→∞

φ(αγβ2
n)

φ(β2
n)

= φ(αγ),

since φ(β2
n) → ∞, too, in view of |φ(βn)

2−φ(β2
n)| ≤ d. Similarly φ(αγ) ≥ φ(α)φ(γ).

Therefore φ is multiplicative and continuous, with negative values for α → −∞.
Proposition 2.3 implies that there is p > 0 such that φ(α) = |α|p sgnα. �
Proof of Theorem 6.8. By Proposition 6.9, Tf(x) = F (x, f(x), f ′(x)), where F
satisfies (6.12). We analyze the form of F . By Proposition 6.10 and (6.13), there
is p(x) > 0 such that F (x, x, α) = φx(α) = αp(x) for any α > 0. For x �= z, by
choosing successively y = x and y = z in (6.12), we find∣∣F (x, z, αβ)− F (x, z, α)βp(x)

∣∣ ≤ B(x, z, x), β > 0, α ∈ R,

and ∣∣F (x, z, αβ)− αp(z)F (x, z, β)
∣∣ ≤ B(x, z, z), α > 0, β ∈ R.

Exchange α and β in the first inequality. Then the triangle inequality yields
|αp(x) − αp(z)||F (x, z, β)| ≤ B(x, z, x) + B(x, z, z) for any α > 0, β ∈ R. This
obviously implies p(x) = p(z) for β = 1, α → ∞, since F (x, z, 1) �= 0, which is an
easy consequence of (6.12). Thus for any x, α ∈ R

F (x, x, α) = |α|p sgnα

with p := p(x) = p(z) > 0. Since B(x,z,x)
βp → 0 for β → ∞, we also conclude for all

α ∈ R

F (x, z, α) = lim
β→∞

F (x, z, αβ)

βp
. (6.15)

For any α > 0, αβ → ∞ if β → ∞, and therefore

F (x, z, α) = lim
β→∞

F (x, z, αβ)

βp
= αp lim

αβ→∞
F (x, z, αβ)

(αβ)p
= αpF (x, z, 1)

for any x, z ∈ R. For α < 0 we have

F (x, z, α) = lim
β→∞

F (x, z, αβ)

βp
= |α|p lim

|α|β→∞
F (x, z,−|α|β)

|α|pβp
= |α|pF (x, z,−1).

Dividing (6.12) by (αβ)p for α, β > 0, we get∣∣∣∣F (x, z, αβ)

αpβp
− F (y, z, α)

αp

F (x, y, β)

βp

∣∣∣∣ ≤ B(x, z, y)

αpβp
.

By (6.15), this implies F (x, z, 1) = F (y, z, 1)F (x, y, 1) for all x, y, z ∈ R. For
α → ±∞, β → ∓∞, a similar argument yields that for all x, y, z ∈ R, F (x, z,−1) =
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F (y, z, 1)F (x, y,−1) = F (y, z,−1)F (x, y, 1). Since F (x, x, 1) = φx(1) = 1p = 1 for
all x ∈ R, 1 = F (y, x, 1)F (x, y, 1) for all x, y ∈ R. Let H(y) := F (0, y, 1). Then
F (y, 0, 1) = 1

H(y) and

F (x, z, 1) = F (0, z, 1)F (x, 0, 1) =
H(z)

H(y)
,

F (x, z,−1) = F (z, z,−1)F (x, z, 1) = −F (x, z, 1) = −H(z)

H(y)
,

using that F (z, z,−1) = φz(−1) = −1. We conclude that

F (x, z, α) =
H(z)

H(x)
|α|p sgnα, x, z, α ∈ R.

Note that H(y) = F (0, y, 1) = T (Sy)(0) depends continuously on y, where Sy

denotes as before the shift by y. Using Proposition 6.9, we get

Tf(x) = F
(
x, f(x), f ′(x)

)
=

H ◦ f(x)
H(x)

|f ′(x)|p sgn f ′(x),

for any f ∈ C1(R), x ∈ R. This solves the chain rule operator equation, so that B
in (6.11) can be chosen to be zero, and proves Theorem 6.8. �

We now turn to a further extension of the chain rule, the one-sided perturbed
chain rule inequality. Let B : R3 → R be a function and T : C1(R) → C(R) be an
operator satisfying

T (f ◦ g)(x)− Tf ◦ g(x) · Tg(x) ≤ B
(
x, f ◦ g(x), g(x)), (6.16)

for all f ∈ C1(R), x ∈ R. This is more general than the two-sided inequality
considered in Theorem 6.8, and also more general than the one-sided chain rule
inequality considered in Theorem 6.1.

In the results proved so far, the operator T was localized. The operator
inequality (6.16), however, is too general that localization could always be shown,
even under strong non-degeneration and continuity assumptions on T . We provide
an example.

Example. Let H∈C(R) be a non-constant function with 4≤H≤5. For f∈C1(R),
x∈R, with f ′(x)∈(−1, 0), let If,x denote the interval If,x :=[x+f ′(x)(1+f ′(x)), x].
Then 0 < |If,x| ≤ 1/4. Let Jf(x) := 1

|If,x|
∫
If,x

f(y)dy denote the average of f in

If,x. Define an operator T : C1(R) → C(R) by putting, for any f ∈ C1(R), x ∈ R,

Tf(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H◦f(x)
H(x) f ′(x), f ′(x) ≥ 0,

H◦f(x)
H(x) 4f ′(x), f ′(x) ≤ −2,

H◦f(x)
H(x)

(
7 + 15

2 f ′(x)
)
, −2 < f ′(x) ≤ −1,

H◦Jf(x)
H(x)

1
2f

′(x), −1 < f ′(x) < 0.
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Then T satisfies, for all f, g ∈ C1(R), x ∈ R,

T (f ◦ g)(x)− Tf ◦ g(x) · Tg(x) ≤ 5. (6.17)

Obviously T is not localized since it depends on the integral average Jf if f ′(x) ∈
(−1, 0). Note here that for f ′(x) ≥ 0 or f ′(x) ≤ −2, Tf(x) has the form given
in Theorem 6.1 for B = 0, with p = 1, A = 4. For −2 < α = f ′(x) < 0 there
is a continuous perturbation of the line 4α by 1

2α if α ∈ (−1, 0) and by 7 + 15
2 α

if α ∈ (−2,−1]. Note that Tf is continuous for all f ∈ C1(R): if xn ∈ R are
such that f ′(xn) ∈ (−1, 0) and xn → x with f ′(xn) → −1 or f ′(xn) → 0, then
Jf(xn) → f(x) since |If,xn

| → 0.

To prove (6.17), use 4
5 ≤ H(z)

H(y) ≤ 5
4 for all y, z ∈ R, and distinguish the

following cases: (1) α, β ≥ 0; (2) α, β ≤ −2; (3) α, β ∈ (−2, 0); (4) α ≤ −2, β ∈
(−2,−1]; (5) α ≤ −2, β ∈ (−1, 0); (6) α > 0, αβ ≤ −2; (7) α > 0, αβ ∈ (−2,−1];
(8) α > 0, αβ ∈ (−1, 0). The estimates to show (6.17) are easy in each case but a
bit tedious. They can be found in detail in [KM10]. �

Assuming localization in addition to (6.16), i.e., that there is a function
F : R3 → R such that for all f ∈ C1(R), x ∈ R,

Tf(x) = F
(
x, f(x), f ′(x)

)
holds, the operator inequality (6.16) is equivalent to the functional inequality

F (x, z, αβ) ≤ F (y, z, α)F (x, z, β) +B(x, z, y) (6.18)

for all x, y, z, α, β ∈ R. Similar to the two-sided case in (6.12), the most important
special case to solve is the one of x = y = z which means

φx(αβ) ≤ φx(α)φx(β) + dx,

where φx := F (x, x, · ) and dx := B(x, x, x). We have the following result on these
nearly submultiplicative functions.

Theorem 6.11. Let φ : R → R be continuous with limα→∞ φ(α) = ∞. Suppose
that there is α0 < 0 with φ(α0) < 0 and that there is d ∈ R such that we have for
all α, β ∈ R

φ(αβ) ≤ φ(α)φ(β) + d.

Then d ≥ 0 and there are p > 0 and A ≥ 1 such that for all α > 0

φ(α) = αp , −Aαp ≤ φ(−α) ≤ min
(− 1

Aαp,−Aαp + d
)
.

Moreover, the limit limα→∞
φ(−α)
−αp exists and A = limα→∞

φ(−α)
−αp .
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Remarks. For d �= 0, φ|R<0 is not of power type, but is close to the power-type
function −A|α|p for large |α|, α < 0. Interestingly enough, φ|R≥0

is of power type
αp. For p = 1, A = 2, the function

φ(α) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α, α ≥ 0,
1
2α, α ∈ [−1, 0),

3 + 7
2α, α ∈ [−2,−1),

2α, α < −2

provides an explicit example satisfying the assumptions of Theorem 6.11 with
d = 3

2 , φ(αβ) ≤ φ(α)φ(β) + 3
2 , which is not of power type on R<0.

The proof of Theorem 6.11 is an asymptotic modification of the one of Theo-
rem 6.2 for submultiplicative functions when d = 0. We only provide the essential
steps of the proof, which are:

(a) Show limα→∞ φ(α) = ∞, limα→−∞ φ(α) = −∞.

(b) Choose b > 1 close to 1. Let φ1 := bφ, φ2 := 1
bφ. Then for large γ0 = γ0(b),

φ1(αβ) ≤ φ1(α)φ1(β) if αβ ≥ γ0 and φ2(αβ) ≤ φ2(α)φ2(β) if αβ ≤ −γ0:
φ1 and φ2 are submultiplicative for large αβ in the positive, respectively
negative range.

(c) Define f(t) := lnφ1(exp(t)), g(t) := ln |φ2(− exp(t))| for t ∈ R. Then, for
t0 := ln γ0,

0 ≤ p := inf
t≥t0

f(t)

t
= lim

t→∞
f(t)

t
< ∞, f(t) = pt+ a(t).

(d) For t, s ∈ R with t+ s ≥ t0,

g(t+ s) ≥ g(t) + f(s)− 2 ln b.

Using 0 ≤ f(t) + f(−t) for all t ∈ R, show that∣∣g(t)− [c+ pt+ a(t− t0)]
∣∣ ≤ 2 ln b,

for all t ≥ t0, where c := g(t0) − pt0, and a satisfies limt→∞
a(t)
t = 0 with

a(t) ≥ 0 for t ≥ t0.

(e) Improve the bound for a to a(t) ≤ 6 ln b for all t ≥ t1, for a suitable t1 ≥ t0.
Then φ1(α) = αp exp(a(lnα)), α > 0 is asymptotically αp for large α, if b is
close to 1 and thus ln b is close to 0. Further φ2(α) � −A|α|p exp(a(ln∣∣ α

α1

∣∣)),
α1 := exp(t1), for large negative α.

(f) Use φ = 1
bφ1 = bφ2, take the limit as b → 1 and prove that φ(α) = αp for

α > 0 and limα→−∞
φ(α)
−|α|p = A.



110 Chapter 6. Chain rule inequality & perturbations

We do not give the details here, but refer to [KM10].

Using Theorem 6.11, we may prove the following result on the one-sided
perturbed chain rule inequality, assuming localization which cannot be guaranteed
otherwise, as shown by the previous example.

Theorem 6.12. Assume that T : C1(R) → C(R) is strongly non-degenerate, point-
wise continuous, and that there is x0 ∈ R with T (− Id)(x0) < 0. Suppose that there
is a function B : R3 → R such that the perturbed chain rule inequality

T (f ◦ g)(x) ≤ Tf ◦ g(x) · Tg(x) +B
(
x, f ◦ g(x), g(x))

holds for all f, g ∈ C1(R), x ∈ R. Assume also that there is F : R3 → R, so that

Tf(x) = F
(
x, f(x), f ′(x)

)
, f ∈ C1(R), x ∈ R.

Then there are p > 0, A ≥ 1, H ∈ C(R), H > 0 and a function K : R2 × R<0 →
R<0 which is continuous in the second and the third variable satisfying

−Aαp ≤ K(x, z,−α)

≤ min

(
− 1

A
αp,−Aαp +

H(x)

H(z)
min

[
B(x, z, x), B(x, z, z)

])
for all x, z ∈ R, α > 0, and for which A = limβ→∞

K(x,z,−β)
−βp exists for all x, z ∈ R,

the limit A being independent of x and z, such that for all f ∈ C1(R) and x ∈ R

Tf(x) =

{
H◦f(x)
H(x) f ′(x)p, f ′(x) ≥ 0,

H◦f(x)
H(x) K

(
x, f(x), f ′(x)

)
, f ′(x) < 0.

The property of K means that for negative values of f ′(x), Tf(x) is reason-
ably close to −AH◦f(x)

H(x) |f ′(x)|p, deviating from this value by at most

min[B(x, f(x), x), B(x, f(x), f(x))],

i.e., deviating by at most this amount from the solution in Theorem 6.1 for B = 0.

For the proof of Theorem 6.12 we refer to [KM10]. Theorem 6.11 has an ana-
logue for nearly supermultiplicative functions φ(αβ) ≥ φ(α)φ(β)−d and Theorem
6.12 has an analogue for the perturbed supermultiplicative operator inequality

T (f ◦ g)(x) ≥ Tf ◦ g(x) · Tg(x)−B
(
x, f ◦ g(x), g(x)).

6.5 Notes and References

The result on the chain rule inequality, Theorem 6.1 and Proposition 6.6 on the lo-
calization of the operator T were shown by König and Milman in [KM9]. Theorem
6.2 on submultiplicative functions on R is also found in [KM9].
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The proof of Lemma 6.5 on subadditive functions on R follows Hille, Phillips,
[HP, Chap.VII]. If additionally in this lemma f is continuous at 0 and f(0) = 0
holds, f is continuous at any t ∈ R, cf. also Hille, Phillips, [HP]. A simpler variant
of Lemma 6.5 for sequences goes back to Fekete [Fe], p. 233, cf. also Pólya, Szegö
[PS], Problem 98.

The rigidity result Theorem 6.8 for the is taken from [KM10]. Theorems 6.11
and 6.12 as well as the example before Theorem 6.11 are shown in [KM10], too.

Submultiplicative maps may not only be considered on the real line as in
Theorem 6.2, but also on function spaces like Ck(I). But, as in the case of multi-
plicative operators, cf. [M], [MS], [AAFM] or [AFM], one assumes that the mapping
is bijective. Let us call T : Ck(I) → Ck(I) Ck-pointwise continuous provided that

for all sequences fn ∈ Ck(I) and all f ∈ Ck(I) with f
(j)
n → f (j) converging uni-

formly on compact subsets of I for all j ∈ {0, . . . , k} we have that Tfn(x) → Tf(x)
converges for all x ∈ I. Then the following result holds for submultiplicative op-
erators, cf. Faifman, König and Milman [FKM]:

Proposition 6.13. Let I ⊂ R be open and k ∈ N0. Suppose that T : Ck(I) → Ck(I)
is bijective, Ck-pointwise continuous and submultiplicative, i.e.,

T (f · g)(x) ≤ Tf(x) · Tg(x), f, g ∈ Ck(I), x ∈ I. (6.19)

Assume also that T (−11) < 0 and that Tf ≥ 0 holds if and only if f ≥ 0 for all
f ∈ Ck(I). Then there exist a homeomorphism u : I → I and two continuous
functions p,A ∈ C(I) with A ≥ 1, p > 0 such that

(Tf)(u(x)) =

{
f(x)p(x), f(x) ≥ 0,

−A(x) |f(x)|p(x), f(x) < 0.

Conversely, T defined this way satisfies (6.19).
For k ∈ N, we have that A = p = 1 and that u is a Ck-diffeomorphism, so

that
Tf(u(x)) = f(x).

Thus, for k ∈ N, the operator is even multiplicative and linear.

We indicate some steps of the proof.

Step 1. For x ∈ I, an approximate indicator at x is a function f ∈ Ck(I)
with f ≥ 0 such that there are open neighborhoods x ∈ J1 ⊂ J2 of x with
f |J1 = 11 and f |I\J2

= 0. Let AIx denote the set of all approximate indicators at
x. Define a set-valued map from I to the subsets of I by u(x) :=

⋂
f∈AIx

supp(Tf),
where supp(Tf) denotes the support of Tf . One shows that u(x) is either empty
or consists of only one point and that for f ∈ AIx, Tf |u(x) = 1. Also for any

f ∈ Ck(I) and x ∈ I, sgnTf |u(x) = sgn f(x). Here the fact that f ≥ 0 implies
Tf ≥ 0 is used.
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Step 2. Let G denote the set of all x ∈ I for which there is an approximate
indicator f ∈ AIx with compact support. Then obviously, u(x) is not empty and
hence consists of one point, and u : G → u(G) ⊂ I can be considered as a point
map. Using among other things that Tf ≥ 0 implies f ≥ 0, one proves that u(G)
and G are dense in I and that u : G → u(G) ⊂ I is continuous and injective.

Step 3. One shows that for any open subset J ⊂ I and any f1, f2 ∈ Ck(I)
with f1|J = f2|J we have that Tf1|u(J) = Tf2|u(J), after proving for any h ∈ Ck(I)
that h|J = 11 implies Th|u(J) = 11 and that h|J = −11 implies Th|u(J) = T (−11)|u(J).
This yields the localization of T on G: There is F such that

Tf(u(x)) = F (x, f(x), . . . , f (k)(x))

for any f ∈ Ck(I) and x ∈ G. Moreover, sgnF (x, α0, . . . , αk) = sgnα0.

Step 4. The operator inequality for T translates into a functional inequality
for F . One proves that F does not depend on the variables (α1, . . . , αk). Theorem
6.2 then yields that for any f ∈ Ck(I) and all x ∈ G

(Tf)(u(x)) =

{
f(x)p(x), f(x) ≥ 0,

−A(x) |f(x)|p(x), f(x) < 0,

where A ≥ 1 and p ≥ 0 are continuous functions on G. The functions and operators
are then extended by continuity to all of I, with u : I → I being a homeomorphism.
For k ∈ N, considering the inverse operator expressed with powers 1

p(x) , shows that

A = p = 1 and that u is a Ck-diffeomorphism. �



Chapter 7

The Second-Order Leibniz Rule

In the previous chapters we investigated the solutions and the stability properties
of the Leibniz and the chain rule operator equations. These equations formalized
properties of the first derivative of a function. In this and the next chapter we
study equations which are motivated by identities for the second derivative. One
of our goals is to find simple properties which characterize the Laplacian. In the
setup of Leibniz type equations, this will be done in Sections 7.1 and 7.2.

Let I ⊂ R be an open interval. Then for f, g ∈ C2(I)

D2(f · g) = D2f · g + f ·D2g + 2Df ·Dg,

where D2 and D denote the second and first derivative, respectively. This is a very
particular setting of the operator functional equation

T (f · g) = Tf · g + f · Tg +Af ·Ag, f, g ∈ Ck(I), (7.1)

for operators T,A : Ck(I) → C(I), namely for k = 2, T = D2 and A =
√
2D.

In this chapter we will study the general form of the solutions of (7.1) under
mild additional assumptions. Note that for A = 0, (7.1) is just the Leibniz rule
equation, so its solutions may be added to any solution of (7.1), and they can be
considered as the “homogeneous” solution. Actually, the operators T and A are
strongly coupled by (7.1) and there are fewer solutions (T,A) than one might at
first imagine.

To characterize the Laplacian, we also consider functions in C2(I)=C2(I,R),

where I ⊂ Rn is an open set. Then for the Laplacian Δ :=
∑n

i=1
∂2

∂x2
i
,

Δ(f · g) = Δf · g + f ·Δg + 2〈Df,Dg〉, f, g ∈ C2(I,R).

For x ∈ I ⊂ Rn,Df(x), Dg(x) ∈ Rn and 〈 · , · 〉 denotes the standard scalar product
on Rn. Formalizing this, we will also investigate the solutions of the operator
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equation

T (f · g) = Tf · g + f · Tg + 〈Af,Ag〉, f, g,∈ Ck(I,R), (7.2)

for operators T : Ck(I,R) → C(I,R) and A : Ck(I,R) → C(I,Rn). For clarity, we
include in the notation Ck(I,X) the space X ∈ {R,Rn}, into which Ck-smooth
functions f : I → X are mapped, unless evidently X = R.

We characterize the Laplacian by this equation, orthogonal invariance and
the annihilation of affine functions. But we also determine the general solution of
(7.2) under weak assumptions.

For f ∈ C1(I,R), I ⊂ Rn, we use the notation Df = f ′ instead of grad f
and D2f = f ′′ instead of the Hessian Hess f .

The second-order chain rule for f, g ∈ C2(R),

D2(f ◦ g) = D2f ◦ g · (Dg)2 +Df ◦ g ·D2g,

may be better understood if we ignore the form of the specific operator D and
study the “second-order-type” operator equation

T (f ◦ g) = Tf ◦ g ·A1g +A2f ◦ g · Tg, f, g ∈ Ck(R)

for a priori arbitrary operators T , A1 and A2. We will investigate the solutions of
this equation in Chapter 9.

7.1 Second-order Leibniz rule equation

If the operators T and A satisfying (7.1) would be localized, as most of the opera-
tors T in the previous chapters, equation (7.1) would turn into a functional equa-
tion for two unknown functions which then could be analyzed. However, without
further assumptions, T and A will not be localized as the following simple example
shows.

Example. Define T,A : C2(R) → C(R) by

Tf(x) := −f(x) + f(x+ 1), Af(x) := f(x)− f(x+ 1),

for f ∈ C2(R), x ∈ R. Then T and A satisfy (7.1) but Tf(x) is not a function of
(x, f(x), f ′(x), f ′′(x)), but depends also on the values of f at x + 1. Here, x + 1
might be replaced by x+ ϕ(x) for any continuous function ϕ ∈ C(R).

In the example, for functions f ∈ C2(R) supported in a small neighborhood
of x, Af(x) = f(x). We have to exclude this possibility to prove the localization
of T and A. To do so, we introduce a condition of non-degeneration of A, already
in the more general setup of functions on open subsets of Rn.

Chapter 7. The Second-Order Leibniz Rule
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Definition. Let k ∈ N0, n ∈ N and I ⊂ Rn be an open set. An operator A :
Ck(I,R) → C(I,Rm) is non-degenerate provided that for all open subsets J ⊂ I
and all x ∈ J there exist (m+ 1) functions gi ∈ Ck(I,R) with support in J such
that the (m + 1) vectors (gi(x), Agi(x)) ∈ Rm+1, i ∈ {1, . . . ,m + 1}, are linearly
independent in Rm+1.

In the case of (7.1), m = 1, (gi(x), Agi(x)) ∈ R2 should be linearly inde-
pendent for i = 1, 2: Locally near x, A should not be proportional to the identity
operator. This assumption of non-degeneration excludes a type of “resonance”
situation between two involved operators, namely A and the identity.

Under the assumption of non-degeneration of A, we determine the general
solution of (7.1). We do it slightly more generally for functions f : I → R on
domains I in Rn, to prepare for the solution of the operator equation (7.2) which
will be based on the following two theorems which are the central results of this
chapter.

The first theorem is, in fact, a special case of the second. However, it is much
easier to state. It is the most interesting special case of the second theorem.

Definition. Let k ≥ 2, n ∈ N and I ⊂ Rn be an open set. An operator A :
Ck(I,R) → C(I,R) depends non-trivially on the derivative if there is x ∈ I and
there are functions f1, f2 ∈ Ck(I,R) with f1(x) = f2(x) but Af1(x) �= Af2(x).

Theorem 7.1. Let n ∈ N, k ∈ N0 and I ⊂ Rn be open and connected. Assume that
T,A : Ck(I,R) → C(I,R) satisfy the second-order Leibniz rule equation

T (f · g) = Tf · g + f · Tg +Af ·Ag, f, g ∈ Ck(I,R),

and that A is non-degenerate and depends non-trivially on the derivative. Then
there are continuous functions a ∈ C(I,R) and b, c ∈ C(I,Rn) such that we have
for all f ∈ Ck(I,R) and all x ∈ I

Tf(x) =
1

2
〈f ′′(x)c(x), c(x)〉+Rf(x),

Af(x) = 〈f ′(x), c(x)〉.
where Rf(x) = 〈f ′(x), b(x)〉 + a(x)f(x) ln |f(x)| is an additive “homogeneous”
solution, i.e., a solution of the ordinary Leibniz rule.

Conversely, these operators satisfy the second-order Leibniz rule.

Hence, up to the additive homogeneous term, the solution for T is just a
second directional derivative. We now state the main result when no assumption
on the dependence on the derivative is imposed.

Theorem 7.2 (Second-order Leibniz rule). Let n ∈ N, k ∈ N0 and I ⊂ Rn be open
and connected. Assume that T,A : Ck(I,R) → C(I,R) satisfy the second-order
Leibniz rule equation

T (f · g) = Tf · g + f · Tg +Af ·Ag, f, g ∈ Ck(I,R), (7.3)
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and that A is non-degenerate. Then there are three possible families of solutions,
two of which possibly might be defined on subsets partitioning I and joined to form
solutions on the full set I. More precisely, there are two disjoint subsets I1, I2 ⊂ I,
one of them possibly empty, with I = I1 ∪ I2, I2 open, and there are functions
b, c : I → Rn and a, d : I → R which are continuous except possibly on ∂I2, and
there is p ∈ C(I2,R) with p > −1, such that after subtracting from T the solution
R of the homogeneous equation given by

Rf(x) = a(x)f(x) ln |f(x)|+ 〈f ′(x), b(x)
〉
, f ∈ Ck(I,R), x ∈ I,

the operators T1 := T −R and A have one of the following three forms:
either

• T1f(x) =
1
2 〈f ′′(x)c(x), c(x)〉, Af(x) = 〈f ′(x), c(x)〉, x ∈ I, k ≥ 2;

or

• T1f(x) =
1
2d(x)

2f(x)
(
ln |f(x)|)2, Af(x) = d(x)f(x) ln |f(x)|, x ∈ I1;

or

• T1f(x) = d(x)Af(x), Af(x) = d(x)f(x)
({sgn f(x)}|f(x)|p(x) − 1

)
, x ∈ I2.

In the first case, for k ≥ 2, the functions a, b, c are continuous on I, whereas in
the second and third case, for k ≥ 0, the functions a, b, d may have discontinuities
in points of ∂I2. In the last formula, there are two solutions on I2, one with
the {sgn f(x)}-term present and the second without it. If the {sgn f(x)}-term is
present, p = −1 is allowed, too.

If I1 �= I and I2 �= I, the last two solutions should be combined to form
a solution on I = I1 ∪ I2 where the images of T and A need to be contained
in the continuous functions C(I). This is possible by appropriate choices of the
parametric functions a, b, c and d, as an example below shows.

Conversely, the operators (T,A) defined by these formulas satisfy equation
(7.3).

Remarks. (a) The coupled solutions on I1 and I2 only depend on x and the function
values f(x), but not on the derivatives of f at x. Therefore Theorem 7.1 is a special
case of Theorem 7.2.

(b) We do not impose any continuity conditions on T or A. We also do not
require T or A to be linear, which, in fact, is only fulfilled in the case of the first
solution when a = 0, i.e., when T is essentially the second derivative and A is
essentially the first derivative.

(c) Note that for all solutions, the operator A can be extended from Ck(I,R)
to C1(I,R) if k ≥ 2, and the operator T from Ck(I,R) to C2(I,R), if k ≥ 3, by the
same formulas. Therefore, on Ck(I,R) with k ≥ 3, there are not more solutions
than on C2(I,R). In the case of the second and third solution, A can even be
extended to C(I,R) and T to C1(I,R) or C(I,R), depending on whether b �= 0 or
b = 0. Therefore,(

C2(I,R), C1(I,R)
)
,
(
C1(I,R), C(I,R)

)
, and

(
C(I,R), C(I,R)

)
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are the natural domain spaces for (T,A).

(d) In the first solution, the second derivative part in T is the second direc-

tional derivative of f at x in the direction of v(x) = c(x)
‖c(x)‖ , multiplied by 1

2‖c(x)‖2.
However, the direction v(x) changes continuously with x ∈ I. Similarly, Af(x) is
a multiple of the directional derivative ∂f

∂v(x) (x).

Starting with the derivations Rf = f ′ and Rf = f ln |f | solving the Leibniz
rule by Theorem 3.1, the main parts of the first two solutions might be considered
as “second iterated derivations”. In particular, on I1,

1
2f(ln |f |)2 plays the role of

the second iterated derivation, when starting with the entropy function f ln |f | as
first derivation, with natural domain C(I1,R). Nevertheless, the solutions of (7.3)
are slightly different from the second iterations of the solutions of the first-order
equation (3.1): Iterating Rf = f ln |f | gives

R2f = f (ln |f |)2 + f (ln | ln |f ||).

In the last solution on I2, when the {sgn f(x)}-term does not appear, actually
p > −1 is required to guarantee that the ranges of T and A consist of continuous
functions. In the third solution on I2, different from the first two formulas on I
and on I1, the operators T1 and A are proportional.

(e) Only very few tuning operators A are possible when solving (7.3), and
then they determine the main operator T to a large degree. Choosing, e.g., A =√
2 D, D being the derivative, yields that T1 is given by the second derivative.

(f) As in the case of the extended Leibniz rule, considered in Theorem 3.7,
the last couple of solutions for (T,A) in Theorem 7.2 on I1 and I2 could and should
be joined to provide solution operators (T,A) with ranges in C(I), I = I1 ∪ I2. To
indicate that this is possible, we adjust the example following Theorem 3.7 to the
second-order Leibniz rule.

Example. For n = 1, k ∈ N0, define operators T,A : Ck(−1, 1) → C(−1, 1) by

Tf(x) =

{
1
2f(x)

(
ln |f(x)|)2, x ∈ (−1, 0],

1
x2 f(x)

(|f(x)|x − 1− x ln |f(x)|), x ∈ (0, 1),

Af(x) =

{
f(x) ln |f(x)|, x ∈ (−1, 0],
1
xf(x)

(|f(x)|x − 1
)
, x ∈ (0, 1).

On I1 = (−1, 0], (T,A) is a solution of the second type, on I2 = (0, 1) one of
the third type, with − 1

xf(x) ln |f(x)| being the homogenous part of the solution
for T on (0, 1). For any f ∈ C(−1, 1), Af and Tf are continuous at x = 0 since
limx→0

1
x (|f(x)|x − 1) = ln |f(0)| and

lim
x→0

1

x2

(|f(x)|x − 1− x ln |f(x)|) = 1

2
(ln |f(0)|)2.
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The operator A is non-degenerate: For 0 ∈ J ⊂ (−1, 1) open, just choose
functions g1, g2 ∈ Ck(I) with supp(gi) ⊂ J and g1(0) = 2, g2(0) = 3. Then
(gi(0), gi(0) ln gi(0)) ∈ R2 are linearly independent for i = 1, 2. �

(g) Since there is no continuous approximation of derivative values f ′(x) by
only functions of x and f(x), the first solution cannot be continuously approx-
imated by one of the other two solutions. Hence, the first solution has the full
domain I if it occurs.

Corollary 7.3. Suppose that the assumptions of Theorem 7.2 are satisfied. Assume,
in addition, that T annihilates all constant functions. Then k ≥ 2 is required and
there are b, c ∈ C(I,Rn) such that for all f ∈ Ck(I,R) and all x ∈ I

Tf(x) =
1

2
〈f ′′(x)c(x), c(x)〉+ 〈f ′(x), b(x)〉, Af(x) = 〈f ′(x), c(x)〉.

If T also annihilates the linear functions, the function b is zero.

If I = Rn and T or A are isotropic, i.e., commute with all shifts Sy, y ∈ Rn,
ASy = SyA, where Syf(x) := f(x + y), x ∈ Rn, the vector functions c, b are
constant. Then T is a multiple of the second directional derivative in the fixed
direction of c at x plus a multiple of the first directional derivative in the direction
of b at x.

Proof of Corollary 7.3. Choosing different constant functions, the assumption that
T annihilates the constant functions shows that the parameter function d in the
second and third solution for T1 in Theorem 7.2 has to be zero, and also the func-
tion a in R. This leaves only the first solution for T1. Hence, under the assumptions
of Corollary 7.3, the solution of (7.3) has the form

Tf(x) =
1

2
〈f ′′(x)c(x), c(x)〉+ 〈f ′(x), b(x)〉, Af(x) = 〈f ′(x), c(x)〉.

If T also annihilates the linear functions, the function b has to be zero, too. Note
that c �= 0 since otherwise A would be degenerate. Therefore also T �= 0. �

To prove Theorem 7.2, we first show that the operators T and A are localized.
In the following we again represent the �-th derivative f (�)(x) of f at x by the
M(n, �) independent �-th order iterated partial derivatives

( ∂�f(x)

∂xi1 · · · ∂xi�

)
1≤i1≤···≤i�≤n

,

as done in Proposition 3.6.

Proposition 7.4. Let k ∈ N0, n,m ∈ N, I ⊂ Rn be open, and T : Ck(I,R) →
C(I,R) and A : Ck(I,R) → C(I,Rm) be operators such that

T (f · g)(x) = Tf(x) · g(x) + f(x) · Tg(x) + 〈Af(x), Ag(x)
〉
, (7.4)
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f, g ∈ Ck(I,R), x ∈ I. Assume that A is non-degenerate. Let M(n, �) :=
(
n+�−1

�

)
and N(n, k) :=

∑k
�=0 M(n, �)=

(
n+k
k

)
. Then there are functions F : I × RN(n,k) →

R and E : I × RN(n,k) → Rm such that for all f ∈ Ck(I,R) and x ∈ I

Tf(x) = F
(
x, f(x), f ′(x), . . . , f (k)(x)

)
and

Af(x) = E
(
x, f(x), f ′(x), . . . , f (k)(x)

)
.

In the case of equation (7.3) we need this result for m = 1, but in (7.2) – to
be considered later – we will use it for m = n.

Proof. Let J ⊂ I ⊂ Rn be open and f1, f2 ∈ Ck(I,R) satisfy f1|J = f2|J . For any
g ∈ Ck(I,R) with support in J we have f1 · g = f2 · g and hence by (7.4)

Tf1 · g + f1 · Tg + 〈Af1, Ag〉 = T (f1 · g) = T (f2 · g)
= Tf2 · g + f2 · Tg + 〈Af2, Ag〉.

Therefore, for any x ∈ J , with f1(x) = f2(x),(
Tf1(x)− Tf2(x)

) · g(x) + 〈Af1(x)−Af2(x), Ag(x)
〉
= 0. (7.5)

Since A is non-degenerate, we may find (m+1) functions g1, . . . , gm+1 ∈ Ck(I,R)
with support in J such that the (m + 1) vectors (gi(x), Agi(x)) ∈ Rm+1 for i ∈
{1, . . . ,m+1} are linearly independent. Applying (7.5) to these functions gi instead
of g, we conclude that Tf1(x)− Tf2(x) = 0 and Af1(x)−Af2(x) = 0. This yields
that Tf1|J = Tf2|J and Af1|J = Af2|J . Note here that Tfj is R-valued and
Afj is Rm-valued, for j ∈ {1, 2}. Hence by Proposition 3.6 there are functions
F : I × RN(n,k) → R and E : I × RN(n,k) → Rm such that

Tf(x) = F
(
x, f(x), . . . , f (k)(x)

)
and

Af(x) = E
(
x, f(x), . . . , f (k)(x)

)
, f ∈ Ck(I,R), x ∈ I. �

Proof of Theorem 7.2. (a) We use Proposition 7.4 for m = 1 to conclude that
there are functions F,E : I × RN(n,k) → R such that

Tf(x) = F
(
x, f(x), f ′(x), . . . , f (k)(x)

)
and

Af(x) = E
(
x, f(x), f ′(x), . . . , f (k)(x)

)
, f ∈ Ck(I,R), x ∈ I.

Putting f = 11 in (7.3) yields that, for all g ∈ Ck(I,R) and x ∈ I,

g(x) · T 11(x) +Ag(x) ·A11(x) = 0.
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By non-degeneracy of A, we may choose g1, g2 ∈ Ck(I,R) such that
(gi(x), Agi(x)) ∈ R2 are linearly independent for i = 1, 2. Applying the previ-
ous equality to g = g1 and g = g2 yields T 11(x) = 0, A11(x) = 0, i.e., T 11 = A11 = 0.
This means that F (x, 1, 0, . . . , 0) = E(x, 1, 0, . . . , 0) = 0 for all x ∈ I.

For g ∈ Ck(I,R), put f := exp(g). Then f > 0 and f ∈ Ck(I,R). In the
following, we will analyze the form of the solutions Tf and Af of (7.3) for strictly
positive functions f > 0. Only in part (e) of the proof we turn to general functions.

With f = exp(g) we may define operators S,B : Ck(I,R) → C(I,R) by

Sg := T (exp(g))/ exp(g), Bg := A(exp(g))/ exp(g), g ∈ Ck(I,R).

Then, for any g1, g2 ∈ Ck(I,R), by (7.3)

S(g1 + g2) =
T
(
exp(g1) · exp(g2)

)
exp(g1) · exp(g2)

=
T (exp(g1))

exp(g1)
+

T (exp(g2))

exp(g2)
+

A(exp(g1))

exp(g1)
· A(exp(g2))

exp(g2)

= Sg1 + Sg2 +Bg1 ·Bg2. (7.6)

Since the derivatives of f = exp(g) can be expressed in terms of functions of g
and the derivatives of g, the operators S and B are localized, too. Hence, there
are functions G,H : I × RN(n,k) → R such that, for all g ∈ Ck(I,R),

Sg(x) =
T (exp(g))(x)

exp(g)(x)
= G

(
x, g(x), . . . , g(k)(x)

)
and

Bg(x) =
A(exp(g))(x)

exp(g)(x)
= H

(
x, g(x), . . . , g(k)(x)

)
, (7.7)

G(x, 0, . . . , 0) = H(x, 0, . . . , 0) = 0.
By (7.6) and (7.7) we have, for all g1, g2 ∈ Ck(I,R) and x ∈ I,

G
(
x, (g1 + g2)(x), . . . , (g1 + g2)

(k)(x)
)
= G

(
x, g1(x), . . . , g

(k)
1 (x)

)
+G

(
x, g2(x), . . . , g

(k)
2 (x)

)
+H

(
x, g1(x), . . . , g

(k)
1 (x)

) ·H(x, g2(x), . . . , g(k)2 (x)
)
.

For any α = (α�)
k
�=0, β = (β�)

k
�=0 ∈ RN(n,k) with α�, β� ∈ RM(n,�) and x ∈ I, we

may choose functions g1, g2 ∈ Ck(I,R) such that g
(�)
1 (x) = α� and g

(�)
2 (x) = β�

for all � ∈ {0, . . . , k}, recalling that we represent g
(�)
1 (x) and g

(�)
2 (x) by M(n, �)

independent �-th order iterated partial derivatives. Therefore, (7.6) is equivalent
to the functional equation

G(x, α+ β) = G(x, α) +G(x, β) +H(x, α)H(x, β), x ∈ I, α, β ∈ RN(n,k) (7.8)
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for two unknown functions G and H. By Proposition 2.9, for each x ∈ I there are
additive functions C(x), D(x) : RN(n,k) → R and constants γ(x) ∈ R such that
any solution (G,H) of (7.8) has one of the following three forms:
either

G(x, α) = 1
2C(x)(α)2 +D(x)(α),

H(x, α) = C(x)(α),
(7.9)

or

G(x, α) = γ(x)2
[
exp(C(x)(α))− 1

]
+D(x)(α),

H(x, α) = γ(x)
[
exp(C(x)(α))− 1

]
,

(7.10)

or

G(x, α) = −γ(x) +D(x)(α),

H(x, α) = γ(x).

In the third case, Bg(x) = γ(x) for all g ∈ Ck(I,R), and hence Af = γf would be
a multiple of the identity, first on positive functions, but then also on all functions,
by an argument given in part (e) below. This map A would not be non-degenerate.
Therefore, we only have to investigate the specific solutions (7.9) and (7.10) of
(7.8).

By additivity, the functions C(x), D(x) split as a sum

C(x)(α) =
k∑

�=0

c�(x)(α�), D(x)(α) =

k∑
�=0

d�(x)(α�), α = (α�)
k
�=0,

where c�(x), d�(x) : RM(n,�) → R are additive functions, too. Hence, for all
g ∈ Ck(I,R),

C(x)
(
g(x), . . . , g(k)(x)

)
=

k∑
�=0

c�(x)(g
(�)(x)),

D(x)
(
g(x), . . . , g(k)(x)

)
=

k∑
�=0

d�(x)(g
(�)(x)).

Using this, (7.7) and (7.9) or (7.10), we have the following two possibilities for the
operator B:
either

Bg(x) = H
(
x, g(x), . . . , g(k)(x)

)
= C(x)

(
g(x), . . . , g(k)(x)

)
=

k∑
�=0

c�(x)(g
(�)(x)), g ∈ Ck(I,R) (7.11)
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or

Bg(x) = H
(
x, g(x), . . . , g(k)(x)

)
= γ(x)

[
exp

(
k∑

�=0

c�(x)(g
(�)(x))

)
− 1

]
, g ∈ Ck(I,R). (7.12)

We also know that Bg(x) = H(x, g(x), . . . , g(k)(x)) is continuous for all g ∈ Ck(I).
As indicated by the example after the remarks on Theorem 7.2, the solution for-
mulas may possibly change continuously in a “phase transition”. Therefore, we
put

I1 :=
{
x ∈ I

∣∣ (7.11) provides the formula for Bg(x) for all g ∈ Ck(I,R)
}
,

I2 :=
{
x ∈ I

∣∣ (7.12) provides the formula for Bg(x) for all g ∈ Ck(I,R)
}
.

Obviously, I1 ∩ I2 = ∅, I1 ∪ I2 = I. If I2 = ∅ or I1 = ∅, the solution for B, and
later also for T and A, is given by a single formula, (7.11) or (7.12). We claim that
I2 is open. If this would be false, there would be x0 ∈ I2 and a sequence xm ∈ I1
with limm→∞ xm = x0. We know that for all g ∈ Ck(I,R)

Bg(x0) = γ(x0)

[
exp

(
k∑

�=0

c�(x0)
(
g(�)(x0)

))− 1

]
,

γ(x0) �= 0, (c�(x0))
k
�=0 �= 0.

We will show that a contradiction to the assumption xm → x0 follows from the
fact that a rapidly growing exponential function cannot be well approximated by
additive functions as in (7.11).

Indeed, to show this, let us assume that c0(x0) : R → R is non-zero, to keep
the argument and the notation simple. Then there is a fixed α ∈ R such that
c0(x0)(α) > 0 (just multiplication of c0(x0) by α). By additivity, for any r ∈ N,
c0(x0)(rα) = rc0(x0)(α) Hence, for the constant functions gr, gr(x) := rα, we
have

Bgr(x0) = γ(x0)
[
exp(r c0(x0)(α))− 1

]
,

using c�(x0)(0) = 0 for all l ∈ N. By assumption, all Bgr(xm) are given by (7.11).
Hence there are additive functions c̃0(xm) : R → R such that, for any r ∈ N,

Bgr(xm) = c̃0(xm)(rα) = r c̃0(xm)(α)

approximates Bgr(x0) well as m → ∞. Hence there is m(r) ∈ N such that

c̃0(xm(r))(α) ≥ γ(x0)

2

1

r

[
exp(r c0(x0)(α))− 1

]
,

and therefore supm∈N c̃0(xm)(α) = ∞. We conclude that

sup
m∈N

Bg1(xm) = sup
m∈N

c̃0(xm)(α) = ∞,
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contradicting the continuity of Bg1, which requires that limm→∞ Bg1(xm) =
Bg1(x0) exists in R. Hence, I2 is open.

If I2 is dense in I, but I2 �= I, we will later get the formula for Bg (and
Tf,Af) by continuous extension from I2 to ∂I2 = I \ I2, using that all functions
Bg are continuous. Assume that I2 is not dense. Then I1 = I \ I2 has non-empty

interior
◦
I1, and it suffices to prove the formulas for Bg, Af and Tf – as stated in

Theorem 7.2 – for x ∈ I2 and x ∈
◦
I1. Both sets are open, and we will denote this

open set by J ∈ {
◦
I1, I2}, J ⊂ I ⊂ Rn.

(b) We now analyze the structure and regularity of the operator B given by
(7.11) and (7.12) on J .

By the remarks before, we may assume that (7.11) and (7.12) hold for all

g ∈ Ck(J,R) on the open sets J =
◦
I1 and J = I2, respectively. We also know that

Bg(x) = H
(
x, g(x), . . . , g(k)(x)

)
and Sg(x) = G

(
x, g(x), . . . , g(k)(x)

)
are continuous functions for any g ∈ Ck(J,R).

In the case of J =
◦
I1, (7.9) and (7.11), Theorem 2.6, with (k − 1) replaced

by k, yields directly that C(x) : RN(n,k) → R is linear and depends continuously
on x ∈ J . Hence, the c�(x) : R

M(n,l) → R are linear, continuous and

Bg(x) = C(x)
(
g(x), . . . , g(k)(x)

)
=

k∑
�=0

〈
c�(x), g

(�)(x)
〉
.

Using this, (7.9) and the continuity of Sg(x) = G(x, g(x), . . . , g(k)(x)) in x ∈ J
for all g ∈ Ck(J,R), D(x)(g(x), . . . , g(k)(x)) is continuous for all g ∈ Ck(J,R),
too. Hence, again by Theorem 2.6, the functions d�(x) : R

M(n,�) → R representing
D(x) are linear and depend continuously on x ∈ J , too. Therefore, by (7.7) and
(7.9)

Sg(x) =
1

2

(
k∑

�=0

〈
c�(x), g

(�)(x)
〉)2

+

k∑
�=0

〈
d�(x), g

(�)(x)
〉
,

Bg(x) =
k∑

�=0

〈
c�(x), g

(�)(x)
〉
. (7.13)

In the case of J = I2, C(x) is non-zero for any x ∈ J since otherwise A would be
degenerate. Therefore, for any x, C(x) attains infinitely many different values for
different functions gm. Forming quotients, we first find that the function γ : J → R

in (7.12) is continuous and has no zero in J , which in turn implies that once

more
∑k

�=0 c�(x)(g
(�)(x)) depends continuously on x ∈ J for all g ∈ Ck(J,R).
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Again Theorem 2.6 yields that the c�(x) : RM(n,�) → R are linear and depend
continuously on x ∈ J , so that by (7.12),

Bg(x) = γ(x)

[
exp

(
k∑

�=0

〈
c�(x), g

(�)(x)
〉)− 1

]
, x ∈ J. (7.14)

(c) We now analyze in detail the form of B,S,A and T in the first case

J =
◦
I1, where S and B are given by (7.13).

Then by (7.13) and the definition of B, for any f ∈ Ck(J,R) with f > 0, we
get, putting g := ln f , f = exp(g), that

Af(x) = f(x)Bg(x) = f(x)
k∑

�=0

〈
c�(x), (ln f)

(�)(x)
〉
, x ∈ J.

The �-th derivative of ln f has a singularity of order O( 1
f�

)
as f tends to zero, if

f ′ �= 0. More precisely, for � ≥ 2,

(ln f)(�) =

(
f ′

f

)(�−1)

= (−1)�−1(�− 1)!

(
f ′

f

)�

+ P�(f, . . . , f
(�)),

where P� is a sum of quotients with powers of f of order ≤ �−1 in the denominator
and product terms of derivatives of f of order ≤ � in the numerator. Therefore, the
order of singularity of f(ln f)(�) is O( 1

f�−1

)
as f tends to zero, if f ′ �= 0. Since Af

is continuous and hence bounded also in neighborhoods of points where f is zero,
the above formula for Af requires that ck(x) = 0, . . . , c2(x) = 0 if k ≥ 2. This
argument is the same as in the proof of Theorem 3.5. Hence, for all f ∈ Ck(J,R)
with f > 0,

Af(x) = f(x)B(ln f)(x) = c0(x)f(x) ln f(x) +
〈
c1(x), f

′(x)
〉
, x ∈ J.

Using this, (7.13) and the definition of S, we get for Tf , f > 0,

Tf(x) = f(x)S(ln f)(x) =
1

2

(
c0(x)f(x) ln f(x) + 〈c1(x), f ′(x)〉)

f(x)

2

+ f(x)

k∑
�=0

〈
d�(x), (ln f)

(�)(x)
〉
, x ∈ J. (7.15)

Since also Tf is bounded in neighborhoods of points where f is zero, we find that,
if c1 �= 0, the order O(1/f) of singularity in Tf in the first term on the right of
(7.15) has to be canceled by an opposite singularity in the second term on the
right. Since f(ln f)(�) has a singularity of order O( 1

f�−1

)
, only d0, d1 and d2 could

Chapter 7. The Second-Order Leibniz Rule



7.1. Second-order equations 125

possibly be non-zero. This yields two possibilities for solutions (T,A), as we will
show now. As a multilinear form, (ln f)′′(x) is given by

(u, v) ∈ R2n �−→ 〈f ′′(x)u, v〉
f(x)

− 〈f ′(x), u〉〈f ′(x), v〉
f(x)2

,

returning to regular derivative notation. Hence, symmetrizing our second deriva-
tive notation – and modifying d2(x) accordingly – we need in (7.15) that d2(x) =
1
2c1(x)⊗ c1(x), if d2(x) �= 0. In this case (7.15) gives

Tf(x) =

(
1

2
c0(x)

2f(x)(ln f(x))2 + c0(x) ln f(x)
〈
c1(x), f

′(x)
〉

+
1

2

〈c1(x), f ′(x)〉
f(x)

2
)

+

(
1

2

〈
f ′′(x)c1(x), c1(x)

〉− 1

2

〈c1(x), f ′(x)〉
f(x)

2
)

+
〈
d1(x), f

′(x)
〉
+ d0(x)f(x) ln f(x).

This requires that c0 = 0 since otherwise the second term on the right – involving
the factor ln f(x) – would possibly be unbounded. Thus we get, with d2 = 1

2c1⊗c1
and c0 = 0,

Tf(x) = 1
2

〈
f ′′(x)c1(x), c1(x)

〉
+
〈
f ′(x), d1(x)

〉
+ d0(x)f(x) ln f(x),

Af(x) =
〈
f ′(x), c1(x)

〉
, x ∈ J, f > 0.

This is the first solution in Theorem 7.2. If d2 = 0, no singularity is allowed in
the first term on the right of (7.15), requiring c1 = 0. We then obtain the second
solution in Theorem 7.2,

Tf(x) = 1
2c0(x)

2f(x)(ln f(x))2 +
〈
f ′(x), d1(x)

〉
+ d0(x)f(x) ln f(x),

Af(x) = c0(x)f(x) ln f(x), x ∈ J, f > 0.

(d) Concerning the solution B of (7.6) in the second case J = I2, when B is
given by (7.14), we have for any f ∈ Ck(J,R), f > 0, putting g = ln f ,

Af(x) = f(x)B(ln f)(x) = γ(x)f(x)

[
exp

(
k∑

�=0

〈
c�(x), (ln f)

(�)(x)
〉)− 1

]
,

x ∈ J . The boundedness of Af in the neighborhood of zeros of functions f requires
here that ck(x) = 0, . . . , c1(x) = 0. Only c0(x) may and should be non-zero. This
yields

Af(x) = γ(x)f(x)
[
exp(c0(x) ln f(x))− 1

]
= γ(x)f(x)

[
f(x)c0(x) − 1

]
.

For Tf we find similarly, using (7.7), (7.10) and the definition of S,

Tf(x) = f(x)S(ln f)(x)

= γ(x)2f(x)
[
f(x)c0(x) − 1

]
+ f(x)

k∑
�=0

〈
d�(x), (ln f)

(�)(x)
〉
.
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Here only d0 and d1 may possibly be non-zero, yielding

Tf(x) = γ(x)2f(x)
[
f(x)c0(x) − 1

]
+
〈
f ′(x), d1(x)

〉
+ d0(x)f(x) ln f(x), x ∈ J,

which is the third solution in Theorem 7.1. The boundedness of Af and Tf for
functions with f ↘ 0 requires moreover that c0(x) ≥ −1.

In the second and third solution Af(x) depends only on x and f(x), but not
on f ′(x). In the first solution, Af(x) depends on f ′(x) since c1(x) �= 0. However,
there is no continuous approximation of derivative values f ′(x) by only functions
of x and f(x) for general f ∈ Ck(J,R), f > 0. Therefore, the first solution cannot
be continuously approximated by one of the other two solutions. Hence, the first

solution has the full domain I =
◦
I1 (or ∅), since I is connected, whereas a non-

trivial combination of the last two solutions on domains I1, I2 with I = I1 ∪ I2
is possible, as the example following Theorem 7.2 showed. The formulas for the

second solution (T,A) in Theorem 7.2 can be extended from
◦
I1 to the relative

boundary I1 \
◦
I1 in I by continuity, since both functions on the left-hand side and

on the right-hand side of the formulas for (T,A) can be extended by continuity,
e.g.,

Af(x) = c0(x)f(x) ln f(x).

First, using the continuity of Af for constant functions f , we get that c0 can

be continuously extended to I1 \
◦
I1, and then this formula holds for all x ∈ I1,

f ∈ Ck(I,R), f > 0. The case of T is similar, first extending d0 and then d1 from
◦
I1 to I1 \

◦
I1 by applying the formula for Tf first to constants and then to linear

functions.

(e) We now study functions which also attain negative values or zeros. For
constant functions f(x) = α0, g(x) = β0, α0, β0 ∈ R, equation (7.3) means in
terms of the representing functions F and E with
Tf(x) = F (x, α0, 0, . . . , 0) and Af(x) = E(x, α0, 0, . . . , 0) that

F (x, α0β0, 0, . . . , 0) = F (x, α0, 0, . . . , 0)β0 + F (x, β0, 0, . . . , 0)α0

+ E(x, α0, 0, . . . , 0)E(x, β0, 0, . . . , 0).

By Proposition 2.10 there are additive functions c̃0(x), d̃0(x) : R → R and there
is γ̃(x) ∈ R such that the solutions of the equation for (F,E) have one of the
following three forms:

either

F (x, α0, 0, . . . , 0) = α0

[
1
2 c̃0(x)(ln |α0|)2 + d̃0(x)(ln |α0|)

]
,

E(x, α0, 0, . . . , 0) = α0c̃0(x)(ln |α0|),
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or

F (x, α0, 0, . . . , 0) = α0

(
γ̃(x)2[{sgnα0} exp(c̃0(x)(ln |α0|))−1]+d̃0(x)(ln |α0|)

)
,

E(x, α0, 0, . . . , 0) = α0γ̃(x)
[{sgnα0} exp(c̃0(x)(ln |α0|))− 1

]
,

or

F (x, α0, 0, . . . , 0) = α0

[
c̃0(x)(ln |α0|))− γ̃(x)2

]
,

E(x, α0, 0, . . . , 0) = γ̃(x)α0.

We now investigate the formulas for general functions in Ck(I,R). First look
at f ∈ Ck(I,R) in points x0 ∈ I where f(x0) = 0. On open subsets where f is
identically zero, both Tf(x) and Af(x) are zero.

If x0 is a limit point of points xn where f(xn) > 0, Tf(x0) and Af(x0) are
expressed by the same type formulas as in the points xn, since for any f ∈ Ck(I,R),
x ∈ I with f(x) �= 0, both sides in

Tf(x) = F (x, f(x), . . . , f (k)(x))

are continuous functions of x ∈ I, and similarly for Af(x). The same applies
to zeros of f when the values f(xn) are negative, once we have established the
formulas for negative f , which we proceed to do now.

Now consider f and x ∈ I with f(x) < 0. Since T and A are localized, we
may assume that f < 0 on the full set I, even though the original function may
be positive elsewhere.

Comparing the above formulas for F (x, α0, 0, . . . , 0) and E(x, α0, 0, . . . , 0)
to the already established formulas for Tf(x) and Af(x) when f(x) = α0 > 0,
the first two solutions for (F (x, α0, 0, . . . , 0), E(x, α0, 0, . . . , 0)) lead – as the only
possibility – to the general solutions

Tf(x) = 1
2c0(x)

2f(x)(ln |f(x)|)2 + d0(x)f(x) ln |f(x)|+
〈
d1(x), f

′(x)
〉
,

Af(x) = c0(x)f(x) ln |f(x)|,

and

Tf(x) = γ(x)2f(x)
[{sgn f(x)}|f(x)|c0(x) − 1

]
+ d0(x)f(x) ln |f(x)|+

〈
d1(x), f

′(x)
〉
,

Af(x) = γ(x)f(x)
[{sgn f(x)}|f(x)|c0(x) − 1

]
,

with c̃0 = c0, c̃1 = c1, γ̃ = γ. Calculation shows that, conversely, these formulas
define operators (T,A) which satisfy the operator equation (7.3). In the last case
the term {sgn f(x)} may appear both in T and A or not at all.



128

The last possible solution for (F,E), Ah(x) = γ(x)α for constant functions
h(x) = α, α ∈ R, corresponds to the solution Af = γ(x)f of (7.7) for positive
functions f ∈ Ck(I,R), f > 0, if γ �≡ 0. It therefore extends to the degenerate
solution Ag = γg for all g ∈ Ck(I,R), to be excluded. However, if γ ≡ 0, this
means that A annihilates all constants functions h(x) = α, also for α < 0.

For α > 0, among the three non-degenerate solutions for positive functions,
only the first solution for A has the property that it annihilates the constant
functions, since Ah = 〈h′, c〉 = 0. Then A(−11) = 0, and by the operator equation
(7.3) with T (11) = 0 , we also get that 0 = T ((−11)2) = −2T (−11) + A(−11)2,
T (−11) = 0. Again by (7.3), we have for all f ∈ Ck(I,R), choosing g = −11 that
T (−f) = −Tf . Therefore, T is odd, which leads to the formula for T for general
functions f ∈ Ck(I,R) in the case of the first solution.

The second and third solutions – without {sgn f(x)}-term – are also odd.
The operator T with the {sgn f(x)}-term is the only solution which is not odd.

This proves Theorem 7.2. �

7.2 Characterizations of the Laplacian

We now turn to characterizations of the Laplacian Δ =
∑n

i=1
∂2

∂x2
i
on C2(I,R)

for open sets I ⊂ Rn by the functional equation (7.2), orthogonal invariance and
annihilation of affine functions, i.e., functions of the form f(x) = 〈x, y0〉 + x0,
x ∈ I, for some fixed x0 ∈ R and y0 ∈ Rn.

Definition. Let n ∈ N, k ∈ N0 and I := {x ∈ Rn | ‖x‖ < r} be an open disc
with r > 0 or I = Rn, r = ∞. An operator T : Ck(I,R) → C(I,R) is O(n)-
invariant if for all f ∈ Ck(I,R) and all orthogonal maps u ∈ O(n), we have that
T (f ◦ u) = (Tf) ◦ u.

Clearly, the Laplacian Δ : C2(I,R) → C(I,R) is O(n)-invariant.

Theorem 7.5 (Characterization of the Laplacian). Let n ∈ N, k ∈ N0 and I :=
{x ∈ Rn | ‖x‖ < r} be an open disc with r > 0 or I = Rn, r = ∞. Suppose that
T : Ck(I,R) → C(I,R) and A : Ck(I,R) → C(I,Rn) are operators such that the
second-order Leibniz rule equation

T (f · g)(x) = Tf(x) · g(x) + f(x) · Tg(x) + 〈Af(x), Ag(x)
〉

(7.16)

holds for all f, g ∈ Ck(I,R) and x ∈ I. Assume also that A is non-degenerate and
that T is O(n)-invariant and annihilates the constant functions. Then there are
no solutions of (7.16) if k = 0 or k = 1. If k ≥ 2, there are continuous functions
c, d ∈ C([0, r),R), c > 0, and U : I → O(n) such that for all f ∈ Ck(I,R) and
x ∈ I,

Tf(x) = 1
2c(‖x‖)2Δf(x) + d(‖x‖)〈f ′(x), x〉, Af(x) = c(‖x‖) U(x)f ′(x). (7.17)
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If T annihilates all affine functions, d = 0, and then

Tf(x) = 1
2c(‖x‖)2Δf(x), Af(x) = c(‖x‖) U(x)f ′(x).

Conversely, these operators satisfy (7.16), and T is O(n)-invariant and annihilates
the constant or affine functions, respectively.

Remarks. (i) If d = 0, up to some radial function, T is the Laplacian and A
is essentially the first derivative; choosing the constant function c =

√
2, T is

precisely the Laplacian. If A is orthogonally invariant, too, U is given by a radial
function V : [0, r) → O(n), i.e., U(x) = V (‖x‖).

The natural domain for T is the space C2(I,R) and for A is C1(I,R): If
k > 2, the formula for T can be extended to C2(I,R), and if k ≥ 2, the formula
for A may be extended to C1(I,R).

(ii) There are many orthogonally invariant solutions T of (7.16), besides
those given by (7.17), which do not annihilate the constant functions: One may
take an arbitrary sum T of n solutions of equation (7.3) given in Theorem 7.2,
with the only condition that the parameter functions a, b, c, d are radial functions,
i.e., depend only on ‖x‖.

If T is not orthogonally invariant but annihilates the constant functions, we
may also classify the solutions of (7.16).

Theorem 7.6. Let n ∈ N, k ∈ N0 and I ⊂ Rn be open. Let T : Ck(I,R) → C(I,R)
and A : Ck(I,R) → C(I,Rn) be operators satisfying the second-order Leibniz rule
equation (7.16). Suppose that T annihilates the constant functions and that A is
non-degenerate.

If k = 0 or k = 1, there are no solutions of (7.16).
If k ≥ 2, there are continuous functions ci ∈ C(I,Rn), i ∈ {1, . . . , n}, and

d ∈ C(I,Rn) such that for all f ∈ Ck(I,R) and x ∈ I,

Tf(x) =
1

2

n∑
i=1

〈
f ′′(x)ci(x), ci(x)

〉
+
〈
f ′(x), d(x)

〉
,

‖Af(x)‖2 =

n∑
i=1

|〈f ′(x), ci(x)〉|2.
(7.18)

If T annihilates the affine functions, then d = 0.
Conversely, these operators satisfy (7.16), and T annihilates the constant or

affine functions, respectively.

Remarks. (1) This means that T is a sum of multiples of changing second-order
and first-order directional derivatives, and that A satisfies

〈Af(x), Ag(x)〉 =
n∑

i=1

〈f ′(x), ci(x)〉〈g′(x), ci(x)〉,
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f, g ∈ Ck(I,R), x ∈ I. If I = Rn and T or A are isotropic, i.e., commute with all
shifts Sy, y ∈ Rn, ASy = SyA, where Syf(x) := f(x + y), x ∈ Rn, the vectors ci
are constant. Then the directions of the directional derivatives do not depend on
x ∈ Rn. The same holds for d, if T is isotropic.

(2) Note that in Theorems 7.5 and 7.6 we do not impose any continuity
conditions on T or A. Neither is linearity assumed; most of the solutions are non-
linear, in fact.

There is a common part to the Proof of Theorems 7.5 and 7.6:
Suppose T : Ck(I,R) → C(I,R) and A : Ck(I,R) → C(I,Rn) satisfy (7.16),

T (f · g) = Tf · g + f · Tg + 〈Af,Ag〉, f, g ∈ Ck(I,R),

and that A is non-degenerate. For i ∈ {1, . . . , n} define the component operators
Ai : C

k(I,R) → C(I,R) by Af(x) = (Aif(x))
n
i=1, in terms of the standard unit

vector basis of Rn, for all f ∈ Ck(I,R), x ∈ I. Consider the equation for an
operator T1 : Ck(I,R) → C(I,R),

T1(f · g) = T1f · g + f · T1g +A1f ·A1g,

whose general solution we know by Theorem 7.2 since A1 is non-degenerate, too.
For f ∈ Ck(I,R), let T̃ f := Tf − T1f , Ãf := (0, A2f, . . . , Anf). Then

T̃ (f · g) = T̃ f · g + f · T̃ g + 〈Ãf, Ãg〉, f, g ∈ Ck(I,R).

Continuing inductively, we see that (7.16) decomposes into n scalar equations

Ti(f · g) = Tif · g + f · Tig +Aif ·Aig, f, g ∈ Ck(I,R), i ∈ {1, . . . , n},
of the type considered in Theorem 7.2, Ti, Ai : C

k(I,R) → C(I,R), such that

Tf(x) =

n∑
i=1

Tif(x), 〈Af(x), Ag(x)〉 =
n∑

i=1

Aif(x)Aig(x), (7.19)

f, g ∈ Ck(I,R), x ∈ I, where the operators (Ti, Ai) satisfy (7.3) and the Ai are
non-degenerate.

Therefore T uniquely determines the scalar products 〈Af(x), Ag(x)〉 and, in
particular, ‖Af(x)‖.

Hence, to prove Theorems 7.5 and 7.6 we have to add n solutions of the form
established in Theorem 7.2 and analyze them under the specific assumptions of
these theorems.

Proof of Theorem 7.6. By (7.19), T is a sum of n solutions Ti of (7.3) given in
Theorem 7.2. None of the solutions Ti occurring in this sum can be of the second
or third type, i.e., of the form

Tif = 1
2d

2
i f (ln |f |)2 + ai f (ln |f |) + 〈f ′, bi〉
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or
Tif = d2i f

({sgn f}|f |pi − 1
)
+ ai f (ln |f |) + 〈f ′, bi〉,

since choosing sufficiently many different constant functions fj = αj and using
that T annihilates them, Tfj = 0, we show that the resulting coefficient functions
of the linearly independent terms f (ln |f |)2, f (ln |f |) or f

({sgn f}|f |pi − 1
)

possibly occurring in the solution formula for T all have to be zero, pointwise for
any x ∈ I. Only the Tif = 〈f ′, bi〉 terms remain, but they may be considered as
part of the first solution type. Since we have f ′ = f ′′ = 0 for constant functions
f , the coefficient functions of terms involving first or second derivatives f ′ or f ′′

are not restricted, i.e., there is no limitation to add solutions of the first type.
Therefore we can and may only add solutions of the first type in Theorem 7.2.

This requires k ≥ 2 to get non-trivial solutions for T . If k ≥ 2, there are continuous
functions bi, ci ∈ C(I,Rn) for i ∈ {1, . . . , n} such that, with d(x) =

∑n
i=1 bi(x),

Tf(x) =
1

2

n∑
i=1

〈
f ′′(x)ci(x), ci(x)

〉
+
〈
f ′(x), d(x)

〉
and

〈Af(x), Ag(x)〉 =
n∑

i=1

〈f ′(x), ci(x)〉〈g′(x), ci(x)〉,

f, g ∈ Ck(I,R), x ∈ I. Since A is non-degenerate, c = (ci)
n
i=1 �= 0. This proves

Theorem 7.6. �
Proof of Theorem 7.5. (i) Theorem 7.5 is a special case of Theorem 7.6 which we
just proved. We have to determine which of the solutions T of Theorem 7.6 are
orthogonally invariant. Note that I is O(n)-invariant, being a disc or Rn. Since
T is O(n)-invariant, T (f ◦ u) = (Tf) ◦ u for all f ∈ Ck(I,R) and u ∈ O(n). By
the chain rule (f ◦ u)′(x) = f ′(u(x))u, (f ◦ u)′′(x) = f ′′(u(x))(u, u). Hence, using
(7.18)

T (f ◦ u)(x) = 1

2

n∑
i=1

〈
(f ◦ u)′′(x)ci(x), ci(x)

〉
+
〈
(f ◦ u)′(x), d(x)〉

=
1

2

n∑
i=1

〈
f ′′(u(x))u(ci(x)), u(ci(x))

〉
+
〈
f ′(u(x)), u(d(x))

〉
,

T f(u(x)) =
1

2

n∑
i=1

〈
f ′′(u(x))ci(u(x)), ci(u(x))

〉
+
〈
f ′(u(x)), d(u(x))

〉
.

The assumption of orthogonal invariance of T therefore means that

1

2

n∑
i=1

[〈
f ′′(u(x))u(ci(x)), u(ci(x))

〉− 〈f ′′(u(x))ci(u(x)), ci(u(x))
〉]

+
〈
f ′(u(x)), u(d(x))− d(u(x))

〉
= 0 (7.20)
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holds for all f ∈ Ck(I,R), u ∈ O(n) and x ∈ I. We claim that this implies
u(d(x)) = d(u(x)) and

n∑
i=1

〈
B u(ci(x)), u(ci(x))

〉
=

n∑
i=1

〈
B ci(u(x)), ci(u(x))

〉
(7.21)

for all u ∈ O(n), x ∈ I and all matrices B ∈ L(Rn,Rn). To verify this, let
b ∈ Rn be an arbitrary vector and apply (7.20) to f = 〈b, ·〉, hence f ′(z) = 〈b, ·〉
and f ′′(z) = 0 for all z ∈ Rn, so that 〈b, u(d(x)) − d(u(x))〉 = 0 holds for all b
which implies that u(d(x)) = d(u(x)) for all u ∈ O(n), x ∈ I. Therefore the first
derivative term in (7.20) is always zero.

Let B = Bt ∈ L(Rn,Rn) be an arbitrary symmetric matrix. Apply (7.20)
to f(x) = 1

2 〈Bx, x〉. Since then f ′′(z) = 〈B·, ·〉 for all z ∈ Rn, (7.20) implies
(7.21) for all symmetric matrices B, u ∈ O(n) and x ∈ I. For all antisymmetric

matrices B̃ = −B̃t ∈ L(Rn,Rn) and all v ∈ Rn we have 〈B̃v, v〉 = 0. Decomposing
an arbitrary matrix into a sum of a symmetric and an antisymmetric part, we
conclude that (7.21) holds for all matrices B ∈ L(Rn,Rn).

(ii) Fixing x ∈ I, for all u ∈ On−1 := {v ∈ O(n) | v(x) = x} � O(n− 1), we
have d(x) = u(d(x)). Hence, d(x) must be in the direction of x, d(x) = Λ(x) · x
with Λ(x) ∈ R. To be orthogonally invariant, we need that Λ is a radial function
of x, i.e., Λ(x) = λ(‖x‖) for some continuous function λ ∈ C([0, r),R). Hence
〈f ′(x), d(x)〉 = λ(‖x‖)〈f ′(x), x〉.

Let ci(x) = (cip(x))
n
p=1 ∈ Rn and C(x) = (cip(x))

n
i,p=1 ∈ L(Rn,Rn). Then

(7.21) is equivalent to

trace
(
B uC(x)tC(x)ut

)
= trace

(
BC(u(x))tC(u(x))

)
,

for all B ∈ L(Rn,Rn) and hence

uC(x)tC(x)u = C(u(x))tC(u(x)),

for all u ∈ O(n). Fixing x ∈ I again, any u ∈ On−1 := {v ∈ O(n) | v(x) = x}
� O(n − 1) maps H := x⊥ into itself and On−1 acts transitively on H. For u ∈
On−1, uC(x)tC(x)u = C(x)tC(x) and hence C(x)tC(x)|H is a positive multiple
of the identity on H and also maps x into a multiple of x. Therefore, there are
Σ(x),Γ(x) ∈ R such that

C(x)tC(x) = Σ(x) Id+Γ(x)Px,

where Px : Rn → Rn is the projection onto x, Px =
〈 · , x

‖x‖
〉

x
‖x‖ , x �= 0. We have

Chapter 7. The Second-Order Leibniz Rule



7.2. Characterizations of the Laplacian 133

with Δf(x) = trace(f ′′(x)) that

Tf(x) =
1

2

n∑
i=1

〈
f ′′(x)ci(x), ci(x)

〉
+
〈
f ′(x), d(x)

〉
=

1

2
trace

(
f ′′(x)C(x)tC(x)

)
+ λ(‖x‖)〈f ′(x), x

〉
=

Σ(x)

2
trace(f ′′(x)) +

Γ(x)

2
trace(f ′′(x)Px) + λ(‖x‖)〈f ′(x), x

〉
=

Σ(x)

2
Δf(x) +

Γ(x)

2

〈f ′′(x)x, x〉
‖x‖2 + λ(‖x‖)〈f ′(x), x

〉
.

Since f ′′(x) is zero on linear functions, 〈f ′′(x)x, x〉 = 0. Further, Σ(x) needs to be
O(n)-invariant as well. Hence there is a continuous function σ ∈ C([0, r),R) such
that Σ(x) = σ(‖x‖). We find that

Tf(x) =
σ(‖x‖)

2
·Δf(x) + λ(‖x‖) · 〈f ′(x), x

〉
, f ∈ Ck(I,R) , x ∈ I.

By (7.16), for all f, g ∈ Ck(I,R), x ∈ I,〈
Af(x), Ag(x)

〉
= T (f · g)(x)− Tf(x) · g(x)− f(x) · Tg(x)
= σ(‖x‖)〈f ′(x), g′(x)

〉
. (7.22)

(iii) For f = g this implies σ ≥ 0. In fact, since A is non-degenerate, σ(‖x‖) >
0 for any x ∈ I. Let μ(t) :=

√
σ(t) for t ∈ [0, r). We will show that Af(x) is, up to

some orthogonal matrix U(x), equal to μ(‖x‖) f ′(x). To construct the orthogonal
matrix, take any c ∈ Rn, consider the linear function fc = 〈·, c〉 and define a map
U(x) : Rn → Rn for any x ∈ I by U(x)(c) := 1

μ(‖x‖)A(fc)(x). Since f ′
c(x) = c for

any x ∈ I, we find for all c, d ∈ Rn, g ∈ Ck(I,R) and x ∈ I, using (7.22),

〈U(x)(c) + U(x)(d), Ag(x)〉 = 1

μ(‖x‖) 〈A(fc)(x) +A(fd)(x), Ag(x)〉

= μ(‖x‖)〈c+ d,Ag(x)〉 = 1

μ(‖x‖) 〈A(fc+d)(x), Ag(x)〉

= 〈U(x)(c+ d), Ag(x)〉. (7.23)

Let ei : I → R denote the i-th coordinate function, for i ∈ {1, . . . , n}. By (7.22),
the vectors A(ei)(x) are linearly independent and therefore span Rn. Choosing
g = ei, equation (7.23) implies that U(x)(c) + U(x)(d) = U(x)(c + d). Similarly,
U(x)(λc) = λU(x)(c). Hence U(x) is linear. Since by (7.22)

‖U(x)(c)‖2 =
1

σ(‖x‖)‖A(fc)(x)‖
2 = ‖f ′

c(x)‖2 = ‖c‖2,
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U(x) ∈ O(n) is an orthogonal matrix, and (7.22) yields for any g ∈ Ck(I,R), x ∈ I
and c ∈ Rn that

〈c, g′(x)〉 = 〈f ′
c(x), g

′(x)〉 = 1

σ(‖x‖) 〈A(fc)(x), Ag(x)〉

=
1

μ(‖x‖) 〈U(x)(c), Ag(x)〉 = 1

μ(‖x‖) 〈c, U(x)tAg(x)〉.

Therefore U(x)tAg(x) = μ(‖x‖)g′(x), Ag(x) = μ(‖x‖)U(x)g′(x). Clearly U :
I → O(n), mapping x to U(x), is continuous, since Af is continuous for all
f ∈ Ck(I,R). Hence

Tf(x) = 1
2μ(‖x‖)2Δf(x) + λ(‖x‖)〈f ′(x), x

〉
, Af(x) = μ(‖x‖) U(x)f ′(x),

which is the solution (7.17) of Theorem 7.5. If T is additionally assumed to anni-
hilate the affine functions, this requires λ = 0, and then

Tf(x) = 1
2μ(‖x‖)2Δf(x), Af(x) = μ(‖x‖) U(x)f ′(x),

proving Theorem 7.5. �

7.3 Stability of the Leibniz rule

In Theorem 5.1 we showed that the Leibniz rule equation is stable under changing
each occurrence of T to different operators. There is a similar relaxation result for
the second-order Leibniz rule which generalizes Theorem 7.2. It shows that even
if we significantly relax the second-order Leibniz rule equation, the solutions will
not change by much.

Theorem 7.7 (Relaxation of the Leibniz rule of second order). Let n ∈ N, k ∈ N0

and I ⊂ Rn be open. Suppose that V, T1, T2, A : Ck(I,R) → C(I,R) are operators
satisfying the equation

V (f · g) = T1f · g + f · T2g +Af ·Ag, (7.24)

for all f, g ∈ Ck(I,R), and that A is non-degenerate. Then there is a continuous
function γ ∈ C(I,R) such that T1f − T2f = γf for all f ∈ Ck(I,R).

Put T := 1
2 (T1 + T2). Then there are functions e1, e2 ∈ C(I,R), a, d, p : I →

R, p > −1 and b, c : I → Rn, which are continuous except in isolated points of I
where different solutions join, such that with the homogeneous solution

Rf = a f ln |f |+ 〈b, f ′〉, f ∈ Ck(I,R),

the operators V, T and A have the form

V f = Uf + (e21 + 2e2)f, Tf = Uf − e1Bf + e2f, Af = Bf + e1f,
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where (U,B) satisfy (7.3), i.e., are of one of the following three forms, possibly
combined:
either

Uf = 1
2 〈f ′′c, c〉+Rf, Bf = 〈f ′, c〉, with k ≥ 2,

or

Uf = 1
2d

2f(ln |f |)2 +Rf, Bf = d f ln |f |,

or

Uf = d2f
({sgn f}|f |p − 1

)
+Rf, Bf = d f

({sgn f}|f |p − 1
)
.

In the last case {sgn f} appears simultaneously in U and B or not at all. Con-
versely, the operators (V, T,A) satisfy (7.24) with T = T1 = T2.

Remarks. (a) Again, we do not impose continuity conditions on any of the oper-
ators (V, T1, T2, A). If Af depends non-trivially on the derivative of f , only the
first form of the solution is possible. Then, in dimension 1 (n = 1), the operators
V and T = 1

2 (T1 + T2) are general second-order differential operators, up to a
term involving f ln |f |. If V, T1, T2 and A are given, this type of solution con-
tains just one form when V is of Sturm-Liouville type, V f = (pf ′)′ + qf , with
p = 1

2c
2, p′ = cc′ = b and q = e21 + 2e2 = (A11)2 + 2(T 11). Thus in a certain way,

the relaxed Leibniz rule of the second order is just an algebraic understanding of
general second-order differential operators, and of Sturm-Liouville operators, in
particular, up to a term with f ln |f |. Note that V, T are naturally defined on
C2(I,R) and A on C1(I,R).

(b) In the case of the second and third solutions, V and T are naturally
defined on C1(I,R), or if b ≡ 0, even on C(I,R) whereas A is naturally defined
on C(I,R).

(c) To illustrate Theorem 7.7, suppose that n = 1 and V = D2 is just the
second derivative. Then c =

√
2, b = a = 0 and c2 = − 1

2e
2
1. Then Af =

√
2f ′+e1f

and Tf = f ′′ −√
2e1f

′ − 1
2e

2
1f .

Proof. Exchanging f, g ∈ Ck(I,R) in (7.24) and taking differences, we find (T1f−
T2f)·g = (T1g−T2g)·f . For g := 11 and γ := T111−T211, we get that T1f−T2f = γf .
Let T := 1

2 (T1 + T2). Then (7.24) holds with T1, T2 being both replaced by T

V (f · g) = Tf · g + f · Tg +Af ·Ag, f, g ∈ Ck(I,R). (7.25)

For g = 11 this means with e1 := A11 and e2 := T 11 that

V f = Tf + e1 ·Af + e2 · f.
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Inserting this back into (7.25), we find

T (f · g) + e1 ·A(f · g) + e2 · f · g = Tf · g + f · Tg +Af ·Ag. (7.26)

Define new operators U,B : Ck(I,R) → C(I,R) by

Uf := Tf + e1 ·Af − (e21 + e2) · f, Bf := Af − e1 · f,
for f ∈ Ck(I,R). Equation (7.26) means in terms of U and B for f, g ∈ Ck(I,R),

U(f · g) + (e21 + 2e2) · f · g =
(
Uf − e1 · (Bf + e1 · f) + (e21 + e2) · f

) · g
+ f · (Ug − e1(Bg + e1 · g) + (e21 + e2) · g

)
+ (Bf + e1 · f)(Bg + e1 · g),

which leads to
U(f · g) = Uf · g + f · Ug +Bf ·Bg. (7.27)

This is equation (7.3) for (U,B) instead of (T,A). Theorem 7.2 gives the form of
solutions, provided that B is non-degenerate. However, Bf = Af − e1 · f , and A
was assumed to be non-degenerate. This implies that also B is non-degenerate.
Now the form of solutions U and B of (7.27) follows directly from Theorem 7.2.

Using the definition of U and B and the formula V f = Tf + e1 · Af + e2f ,
we reconstruct V, T and A from U and B via

V f = Uf + (e21 + 2e2) · f, Tf = Uf − e1 ·Bf + e2 · f, Af = Bf + e1 · f.
It is easily checked by direct calculation that these maps (V, T,A) satisfy (7.24)
with T = T1 = T2 using that (U,B) satisfy (7.3). This proves Theorem 7.7. �

We may start from a different point of view, when investigating the structure
of the Leibniz type equation for the Laplacian

Δ(f · g)(x) = Δf(x) · g(x) + f(x) ·Δg(x) + 2
〈
f ′(x), g′(x)

〉
,

f, g ∈ C2(I,R), x ∈ I,

other than by the operator equation (7.16), namely: Consider 2〈f ′(x), g′(x)〉 as
a perturbation term of the Leibniz rule and replace it by a function B of the
parameters (x, f(x), f ′(x), g(x), g′(x)), leading to the equation

T (f · g)(x) = Tf(x) · g(x) + f(x) · Tg(x) +B
(
x, f(x), f ′(x), g(x), g′(x)

)
.

This is similar to our perturbation scheme in Section 5.3. The equation is not
directly comparable to (7.16): On the one hand, it is more special, since the per-
turbation is not by an operator term like 〈Af(x), Ag(x)〉 in (7.16) but is given by
a locally defined function B.

On the other hand, it is more general since B is not assumed to be given in
product form separating f and g. The analogue of Theorem 7.5 states in this case,
in the spirit of Proposition 5.7:
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Theorem 7.8 (Stability of the Laplacian). Let n ∈ N and I := {x ∈ Rn | ‖x‖ < r}
be an open disc with r > 0 or I = Rn with r = ∞. Assume that T : C2(I,R) →
C(I,R) is an operator and B : I × R× Rn × R× Rn → R a function such that

T (f · g)(x) = Tf(x) · g(x) + f(x) · Tg(x) +B
(
x, f(x), f ′(x), g(x), g′(x)

)
(7.28)

holds for all f, g ∈ C2(I,R) and x ∈ I. Suppose further that T is O(n)-invariant
and annihilates all affine functions. Then there is a continuous function d ∈
C([0, r),R) such that for all f ∈ C2(I,R), x ∈ I,

Tf(x) = 1
2d(‖x‖)Δf(x),

B
(
x, f(x), f ′(x), g(x), g′(x)

)
= d(‖x‖)〈f ′(x), g′(x)

〉
.

Proof. The localization of T is quickly verified. If J ⊂ I is open and f1, f2 ∈
C2(I,R) are such that f1|J = f2|J , we have for any x ∈ J and any function
g ∈ C2(I,R) with g(x) �= 0 and supp(g) ⊂ J that f1 · g = f2 · g and T (f1 · g) =
T (f2 · g). Hence, by (7.28), (Tf1(x) − Tf2(x)) · g(x) = (f2(x) − f1(x)) · Tg(x) =
0, since B(x, f1(x), f

′
1(x), g(x), g

′(x)) = B(x, f2(x), f
′
2(x), g(x), g

′(x)). Therefore,
Tf1(x) = Tf2(x), Tf1|J = Tf2|J . Hence, by Proposition 3.6 there is a function

F : I × RN → R with N := 1 + n+ n(n+1)
2 = (n+2)(n+1)

2 =
(
n+2
2

)
such that

Tf(x) = F
(
x, f(x), f ′(x), f ′′(x)

)
, f ∈ C2(I,R), x ∈ I,

holds. Here f ′′(x) is represented by the n(n+1)
2 independent partial derivatives( ∂2f(x)

∂xi∂xj

)
1≤i≤j≤n

.

For any α = (α0, α1, α2), β = (β0, β1, β2) ∈ RN = R× Rn × Rn(n+1)/2 and
x ∈ I, we may choose f, g ∈ C2(I,R) such that f(x) = α0, f

′(x) = α1, f
′′(x) = α2,

g(x) = β0, g
′(x) = β1, g

′′(x) = β2, with the above representation of the second
derivative. Therefore, the operator equation (7.28) is equivalent to the functional
equation for F ,

F (x, α0β0, α0β1 + β0α1, α0β2 + β0α2 + 2α1β1)

= F (x, α0, α1, α2)β0 + F (x, β0, β1, β2)α0 +B(x, α0, α1, β0, β1), (7.29)

for all α, β ∈ RN , where 2α1β1 has to be read as (α1,iβ1,j + α1,jβ1,i)1≤i≤j≤n. By
assumption, T 11 = 0, hence F (x, 1, 0, 0) = 0 for all x ∈ I, implying by (7.29) that
B(x, 1, 0, 1, 0) = 0. Choosing α0 = β0 = 1, α1 = β1 = 0 in (7.29) yields

F (x, 1, 0, α2 + β2) = F (x, 1, 0, α2) + F (x, 1, 0, β2) +B(x, 1, 0, 1, 0)

= F (x, 1, 0, α2) + F (x, 1, 0, β2).

Therefore, F (x, 1, 0, · ) is additive. For β0 = 1, β1 = 0, α2 = β2 = 0, we get from
(7.29)

F (x, α0, α1, 0) = F (x, α0, α1, 0) + F (x, 1, 0, 0)α0 +B(x, α0, α1, 1, 0),
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which implies that B(x, α0, α1, 1, 0) = 0 for all α0, α1. Next, putting β0 = 1, β1 = 0
and α2 = 0 in (7.29), we find that

F (x, α0, α1, α0β2) = F (x, α0, α1, 0) + F (x, 1, 0, β2)α0 +B(x, α0, α1, 1, 0).

Since T is zero on all affine functions f(y) = 〈α1, y〉 + (α0 − 〈α1, x0〉), where
x0 ∈ Rn is fixed, we have 0 = Tf(x0) = F (x0, α0, α1, 0). Therefore,

F (x, α0, α1, α0β2) = F (x, 1, 0, β2)α0,

and hence, for all α0 �= 0,

F (x, α0, α1, α2) = F

(
x, 1, 0,

α2

α0

)
α0.

Since F (x, 1, 0, · ) is additive and

Tf(x) = F
(
x, f(x), f ′(x), f ′′(x)

)
= F

(
x, 1, 0,

f ′′(x)
f(x)

)
f(x)

is continuous for all f ∈ C2(I,R), f(x) �= 0, Theorem 2.6 yields that there is a

continuous function c ∈ C(I,RM ), M = n(n+1)
2 , such that

F (x, 1, 0, α2) =
〈
c(x), α2

〉
,

implying F (x, α0, α1, α2) = 〈c(x), α2〉. Hence F is independent of α0 and α1.
Therefore,

Tf(x) = F
(
x, f(x), f ′(x), f ′′(x)

)
=
〈
f ′′(x), c(x)

〉
=

∑
1≤i≤j≤n

cij(x)
∂2f

∂xi∂xj
(x).

The requirement of orthogonal invariance of Tf(x) then yields, as in the proof
of Theorem 7.5, that there is a function d : [0, r) → R such that Tf(x) =
1
2d(‖x‖)Δf(x) for all f ∈ C2(I,R) and x ∈ I. Inserting this back into (7.28)
yields for B,

B
(
x, f(x), f ′(x), g(x), g′(x)

)
= 1

2d(‖x‖)
(
Δ(f · g)(x)−Δf(x) · g(x)− f(x) ·Δg(x)

)
= d(‖x‖)〈f ′(x), g′(x)

〉
.

This finishes the proof of Theorem 7.8. �
Remark. If conversely, in the setting of Theorem 7.8, the function B is given by

B
(
x, f(x), f ′(x), g(x), g′(x)

)
= d(‖x‖)〈f ′(x), g′(x)

〉
,

and T satisfies equation (7.28), T is just a multiple of the Laplacian,

Tf(x) = 1
2d(‖x‖)Δf(x).
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7.4 Notes and References

Theorem 7.2 is an extension of Theorem 1 in [KM4] and Theorem 2 in [KM5],
where the case I = Rn and k = 2 is studied and solved.

The special case I = Rn, k = 2 of Theorems 7.5 and 7.6 was proved in [KM5,
Theorem 1].

Theorem 7.7 was proved for k = 2, n = 1 in [KM7, Theorem 7].

Theorem 7.8 is found in [KM8], Theorem 2.



Chapter 8

Non-localization Results

In the case of the Leibniz-type equations (7.3) and (3.7) there were easy examples
that the intertwined operators T and A need not be localized, if the map A is not
non-degenerate. In this chapter we study what can be said about the solutions of
these equations if A is degenerate. In this situation, A is in a resonance state with
respect to other operators present.

8.1 The second-order Leibniz rule equation

Let I ⊂ R be open. We now return to study the solutions of the second-order
Leibniz rule operator equation

T (f · g) = Tf · g + f · Tg +Af ·Ag, f, g ∈ Ck(I,R), (8.1)

for operators T,A : Ck(I,R) → C(I,R), but now without the assumption of
non-degeneration of A. In this case the operators might not be localized, as the
following simple example mentioned in the last chapter shows:

Tf(x) = f(x+ 1)− f(x), Af(x) = f(x)− f(x+ 1), f ∈ C(R,R), x ∈ R.

In this section we study the consequences of the non-localization of T and A for
the solutions of equation (8.1) in the case of open subsets I of R. First of all, the
example mentioned may be extended in the following way.

Definition. Let I ⊂ R be open and k ∈ N0. An operator S : Ck(I,R) → C(I,R) is
multiplicative if S(f · g) = Sf · Sg holds for any f, g ∈ Ck(I,R).

Example. Suppose S : Ck(I,R) → C(I,R) is multiplicative. Define T,A : Ck(I,R)
→ C(I,R) by

Tf := Sf − f, Af := f − Sf, f ∈ Ck(I,R).
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Then T and A satisfy (8.1) since

T (f · g) = Sf · Sg − f · g = (Sf − f) · g + f · (Sg − g) + (f − Sf) · (g − Sg)

= Tf · g + f · Tg +Af ·Ag.

Simple examples of multiplicative maps S can be given in the form

Sf(x) :=

m∏
j=1

∣∣f(φj(x))
∣∣pj
{
sgn f(φj(x))

}
,

where m ∈ N, pj > 0 and φj : I → I are continuous functions,
j ∈ {1, . . . ,m}. If φj(x) �= x for some j and some x, then S, T and A are not
localized. Here the term {sgn f(φj(x))} may appear or not, independently for
each j. More generally, let (Ω, μ) be a measure space and φω : I → I be continu-
ous functions for all ω ∈ Ω such that ln |f(φω(x))| is μ-integrable in ω ∈ Ω for all
x ∈ I and f ∈ Ck(I,R). Then

Sf(x) := exp

(∫
Ω

ln
∣∣f(φω(x))

∣∣dμ(ω))
defines a multiplicative map S : Ck(I,R) → C(I,R).

The paper [LS] by Lešnjak, and Šemrl describes the continuous multiplicative
maps S : C(X,R) → C(Y,R) for compact Hausdorff spaces X and Y in terms of
operators of this form. However, this description only concerns the case k = 0
and compact spaces. Bijective multiplicative maps S : C(I,R) → C(I,R) were
characterized by Milgram [M], having the form Sf(x) = |f(ϕ(x))|p(x) sgn f(ϕ(x))
for some homeomorphism ϕ of I and some continuous function p on I. Bijective
multiplicative maps S : Ck(I,R) → Ck(I,R) for k ∈ N have the form Sf(x) =
f(ϕ(x)) for some Ck-diffeomorphism ϕ of I, cf. Mrčun, Šemrl [MS] and Alesker,
Artstein-Avidan, Faifman, Milman [AAFM], [AFM]. However, to the best of our
knowledge, non-bijective multiplicative operators S : Ck(I,R) → C(I,R), k ∈ N,
have not been classified. Hence there are very many non-localized solutions (T,A)
of (8.1).

Non-localized solutions of (8.1) such as

Tf(x) = f(ϕ(x))− f(x), Af(x) = f(x)− f(ϕ(x)),

where ϕ : I → I is continuous and ϕ(x) �= x for some x, yield degenerate operators
A in the sense of Chapter 7: They have the property that for such x there exists an
open interval J ⊂ I with x ∈ J such that all functions g ∈ Ck(I,R) with support
in J are annihilated by S, defined by Sf(x) := f(ϕ(x)), and hence Tg = −g,
Ag = g near x.

Motivated by this phenomenon, we introduce the following set P of points
x ∈ I where localization of T and A might fail:
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Definition. Let k ∈ N0 and I ⊂ R be open. Let A : Ck(I,R) → C(I,R) be an
operator. Define

P :=
{
x ∈ I

∣∣ ∃J ⊂ I open with x ∈ J ∃λ ∈ C(J,R) ∀g ∈ Ck(I,R),

supp g ⊂ J Ag|J = λg|J
}
.

By definition, P ⊂ I is an open set. Note that Ag = λg automatically implies that
λ is continuous since Im(A) ⊂ C(I,R). We also introduce a localization set L:

Definition. Let k ∈ N0 and I ⊂ R be open. Let T,A : Ck(I,R) → C(I,R) be
operators satisfying the Leibniz rule type equation (8.1). Define

L :=

{
x ∈ I

∣∣∣∣ ∃F (x, ·), E(x, ·) : Rk+1 → R

∀f ∈ Ck(I,R)

[
Tf(x) = F

(
x, f(x), . . . , f (k)(x)

)
Af(x) = E

(
x, f(x), . . . , f (k)(x)

)]} .

If T and A are not localized in x, x belongs to P :

Proposition 8.1. We have that P ∪ L = I. However, L ∩ P �= ∅ is possible.

Proof. Assume that x0 ∈ I �P . We claim that x0 ∈ L. Since I �P is open, there
is an open interval J̃ ⊂ I � P with x0 ∈ J̃ . Let J ⊂ J̃ be an arbitrary open
subinterval of J̃ and suppose that f1, f2 ∈ Ck(I,R) satisfy f1|J = f2|J . We claim
that Tf1|J = Tf2|J and Af1|J = Af2|J .

Take any y ∈ J . Since y �∈ P , for any open set J1 ⊂ J with y ∈ J1 we
may choose g1, g2 ∈ Ck(I,R) with supp(g1), supp(g2) ⊂ J1 such that (g1, Ag1)
and (g2, Ag2) are not proportional on J1, i.e., such that there is z1 ∈ J1 such
that (g1(z1), Ag1(z1)), (g2(z1), Ag2(z1)) ∈ R2 are linearly independent. We iterate
this procedure: Choose a decreasing set of open intervals J�+1 ⊂ J� ⊂ · · · ⊂ J1 ⊂ J
with y ∈ J� and lengths |J�| → 0 as � → ∞. Find functions g�1, g

�
2 ∈ Ck(I,R) with

supp(g�1), supp(g
�
2) ⊂ J� and z� ∈ J� such that (g�1(z�), Ag�1(z�)), (g

�
2(z�), Ag�2(z�)) ∈

R2 are linearly independent. Since f1 · g�j = f2 · g�j for all � ∈ N and j ∈ {1, 2},
using equation (8.1) for these functions and taking differences yields for j = 1, 2
and � ∈ N(

Tf1(z�)− Tf2(z�)
) · g�j(z�) + (Af1(z�)−Af2(z�)

) ·Ag�j(z�) = 0.

The linear independence of (g�j(z�), Ag�j(z�))∈R2 for j=1, 2 then implies Tf1(z�)=
Tf2(z�) and Af1(z�) = Af2(z�). Since |J�| → 0, lim�→∞ z� = y and the continuity
of the functions Tfj , Afj implies that Tf1(y) = Tf2(y) and Af1(y) = Af2(y).
Since y ∈ J was arbitrary, Tf1|J = Tf2|J and Af1|J = Af2|J .

Now Proposition 3.3, applied on the open interval J̃ , implies that T and
A are localized on J̃ , i.e., that there are functions F,E : J̃ × Rk+1 → R such
that Tf(x) = F (x, f(x), . . . , f (k)(x)) and Af(x) = E(x, f(x), . . . , f (k)(x)) for all

f ∈ Ck(I,R) and x ∈ J̃ ⊂ I � P . Hence x0 ∈ J̃ ⊂ L.
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The following example shows that P ∩ L �= ∅ is possible. Let λ ∈ C(I,R)
and define T,A : Ck(I,R) → C(I,R) by Tf := −λ2f , Af = λf for f ∈ Ck(I,R).
Then (8.1) is satisfied for (T,A), but every point x ∈ I is in L and in P .

Therefore, any point x ∈ I is either in L or in P or in ∂P = P � P . �
The following main result of this chapter explains the structure of the solution

of (8.1) in these three possible cases.

Theorem 8.2 (Second-order Leibniz rule with resonance). Suppose that k ∈ N0,
I ⊂ R is an open interval and T,A : Ck(I,R) → C(I,R) are operators satisfying
the second-order Leibniz rule equation

T (f · g) = Tf · g + f · Tg +Af ·Ag, f, g ∈ Ck(I,R). (8.1)

Let P be defined as above. Then there are pairwise disjoint subsets I1, I2, I3 ⊂ I,
some of which might be empty, I1 and I3 open, such that I � P = I1 ∪ I2 ∪ I3,
and there are functions a, b, d : I → R which are continuous on I � (∂P ∪ ∂I3)
such that after subtracting from T the solution R of the homogeneous Leibniz rule
equation given by

Rf(x) := a(x) f(x) ln |f(x)|+ b(x) f ′(x), f ∈ Ck(I,R), x ∈ I,

the operators T1 := T −R and A have the following form:

(a) On I � P the operators T and A are localized and

T1f(x) =
1
2d(x)

2f ′′(x), Af(x) = f ′(x), x ∈ I1 (k ≥ 2),

or

T1f(x) =
1
2d(x)

2f(x)
(
ln |f(x)|)2, Af(x) = f(x) ln |f(x)|, x ∈ I2,

or

T1f(x) = d(x)Af(x),

Af(x) = d(x)
[{sgn f(x)}|f(x)|p(x) − f(x)

]
, x ∈ I3.

Here p ∈ C(I3,R), p ≥ 0, and the term {sgn f(x)} may be present or not,
yielding two different solutions on I3.

(b) On P the operators T and A are possibly not localized, but T +dA is localized
and satisfies the (ordinary) Leibniz rule (3.1). Further, there is a multiplica-
tive operator S : Ck(I,R) → C(P,R),

S(f · g)(x) = Sf(x) · Sg(x), f, g ∈ Ck(I,R), x ∈ P,

such that

T1f(x) = d(x)Af(x), Af(x) = d(x)
(
Sf(x)− f(x)

)
, x ∈ P.
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In points x ∈ P where T and A are localized, we get the same solution as the
third one in part (a), i.e., x ∈ I3.

Conversely, any operators (T,A) described in (a) or (b) satisfy (8.1).

(c) For x ∈ ∂P = P � P , either the operators T,A and S can be continuously
extended from P to x with the same formulas as in (b), or they cannot be
continuously extended, and then the operator A fulfils the Leibniz rule in x

A(f · g)(x) = Af(x) · g(x) + f(x) ·Ag(x), f, g ∈ Ck(I,R).

Under the assumption of non-degeneration of A, Theorem 7.2 gave the pos-
sible solutions of (8.1): then P = ∅ and only case (a) applies. As the example
following Theorem 7.2 showed, local solutions on I2 and I3 could be combined to
a globally continuous and non-degenerate solution. In the degenerate situation of
Theorem 8.2 they can be also combined with the second derivative solution on I1,
though in a degenerate and non-localized way, but yielding operators with image
in the continuous functions on I.

Example 1. Let k = 2 and define for any f ∈ C2(R,R)

Tf(x) :=

{
1
x2

(
f(2x)− f(x)

)− 1
xf

′(x), x > 0,
1
2f

′′(x), x ≤ 0,

Af(x) :=

{
1
x

(
f(2x)− f(x)

)
, x > 0,

f ′(x), x ≤ 0.

Then limx↘0 Af(x) = f ′(0) and limx↘0 Tf(x) = 1
2f

′′(0). Therefore T and A
map C2(R,R) into the continuous functions C(R,R). They satisfy (8.1) since they
have the form given in (b) on P = (0,∞) with d(x) = 1

x , Rf(x) = − 1
xf

′(x),
S(x) = f(2x) for x ∈ P , ∂P = {0} and I1 = (−∞, 0) with d = 1 and R = 0 on I1.
Hence d ∈ C(R� ∂P,R), but d is not continuous in 0.

Example 2. Let k = 0 and ϕ : R≥0 → R≥0 be continuous. Define for any f ∈
C(R,R)

Tf(x) :=

{
1
x2

(|f(x+ϕ(x))|x+1 sgn(f(x)+ϕ(x))−f(x)[1+x ln |f(x)|]), x > 0,
1
2f(x)

(
ln |f(x)|)2, x ≤ 0,

Af(x) :=

{
1
x

(|f(x+ ϕ(x))|x+1 sgn f(x+ ϕ(x))− f(x)
)
, x > 0,

f(x) ln |f(x)|, x ≤ 0.

For ϕ = 0, this is the localized non-degenerate example given in Chapter 7 fol-
lowing Theorem 7.2. Now let ϕ(x) = x3. Then limx↘0 Af(x) = f(0) ln |f(0)| and
limx↘0 Tf(x) = 1

2f(x)(ln |f(x)|)2. On P = (0,∞), T and A are not localized
since x + ϕ(x) �= x. Again, T and A have the form given in (b) with d(x) = 1

x ,
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Rf(x) = − 1
xf(x) ln |f(x)|, Sf(x) = |f(x+ ϕ(x))|x+1 sgn(f(x+ ϕ(x))) for x ∈ P .

We have ∂P = {0} and I2 = (−∞, 0) in Theorem 8.2, with d = 1 and R = 0
on I2. Again, d ∈ C(R � ∂P,R) is not continuous in 0. For ϕ = 0, T and A
are localized and P = ∅, I2 = (−∞, 0], I3 = (0,∞), ∂I3 = {0}, with the same
function d belonging to C(R� ∂I3,R), again discontinuous at 0. This shows that
both exceptional sets ∂P and ∂I3 for the continuity of the coefficient functions are
required in Theorem 8.2.

In both examples, T and A cannot be extended by the same formulas as on
P = (0,∞) from P to ∂P = {0}, but, as stated in (c), A satisfies the Leibniz
rule in x = 0, A(f · g)(0) = Af(0) · g(0) + f(0) · Ag(0), with Af(0) = f ′(0) in
Example 1 and Af(0) = f(0) ln |f(0)|, in Example 2. Clearly, the two examples
might also be used to join solutions Tf = f ′′ on one interval and Tf = f(ln |f |)2
on a disjoint interval by connecting them via some intermediate interval belonging
to P . This will give solutions T,A : C2(I,R) → C(I,R) of (8.1) which are not
identically zero at any point x ∈ R. However, they would not satisfy the condition
of non-degeneration, being not localized.

Proposition 8.3. Under the assumptions of Theorem 8.2, if A is localized, also T
is localized.

Proof. For J ⊂ I open, f1, f2 ∈ Ck(I) with f1|J = f2|J , x ∈ J and g ∈ Ck(I)
with supp g ⊂ J and g(x) �= 0, we have

(Tf1(x)− Tf2(x))g(x) + (Af1(x)−Af2(x))Ag(x) = 0,

similar as in the proof of Proposition 8.1. Since A is assumed to be localized,
Af1(x) = Af2(x). Hence Tf1(x) = Tf2(x), showing that T is localized on intervals
and hence localized by Proposition 3.3. �
Example. If A is just the derivative, Af = f ′, A is localized and by part (a) of
Theorem 8.2, T1f = 1

2d
2f ′′ is essentially the second derivative.

We now turn to the proof of Theorem 8.2.

Proof of Theorem 8.2. (a) Applying (8.1) to f = g = 11 yields that T 11 + (A11)2 =
0. Put d := −A11. Then d ∈ C(I,R) and T 11 = −d2 = −dA11. For g = 11 we find
using (8.1) that dAf = −d2f . If for some x0 ∈ I, d(x0) �= 0, the same would
hold by continuity on a small open interval J ⊂ I with x0 ∈ J . Then for all
f ∈ Ck(I,R), x ∈ J , we have Af(x) = −d(x) f(x), Af |J = −d f |J and J ⊂ P
with λ = −d. This implies for f, g ∈ Ck(I,R) and x ∈ J , using (8.1),

T (f · g)(x) + d(x)2(f · g)(x) = (Tf(x) + d(x)2f(x)
) · g(x)

+ f(x) · (Tg(x) + d(x)2g(x)
)
.

Therefore, R := T + d2 Id satisfies the Leibniz rule on J

R(f · g)(x) = Rf(x) · g(x) + f(x) ·Rg(x), x ∈ J.
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By Theorem 3.1, applied to the open interval J , we get that there are continuous
functions a, b ∈ C(J,R) such that

Rf(x) = a(x) f(x) ln |f(x)|+ b(x) f ′(x), f ∈ Ck(I,R), x ∈ J,

with b = 0 if k = 0. Then for any f ∈ Ck(I,R), x ∈ J ,

Af(x) = −d(x) f(x),

T1f(x) := Tf(x)−Rf(x) = −d(x)2f(x) = d(x)Af(x).

Hence T1 and A have the form given in part (b) of Theorem 8.2 with S ≡ 0 on
any interval J where A11 �= 0.

(b) We may now assume that we have A11(x0) = T 11(x0) = 0 for x0 ∈ I.
Assume first that x0 /∈ P . Then by Proposition 8.1, x0 ∈ L is in the localization
set, and the proof of Proposition 8.1 showed that T and A are localized in a possibly
small open neighborhood J of x0: there are functions F,E : I × Rk+1 → R such
that for all x ∈ J , f ∈ Ck(I,R),

Tf(x) = F
(
x, f(x), . . . f (k)(x)

)
, Af(x) = E

(
x, f(x), . . . , f (k)(x)

)
.

The proof of Theorem 7.2 now applies without change and yields that T and A
have one of the forms given in part (a) of Theorem 8.2 on J , after subtracting
an appropriate homogeneous solution R, Rf = af ln |f |+ bf ′. If two of such open
intervals J intersect for different starting points x0 �= x1, the parameter functions
in the solutions can be extended by continuity to the union of both intervals,
keeping the type of solution on both intervals, i.e., they are subsets of the same
set Ii for i ∈ {1, 2, 3}. Combining the coefficient functions to single functions on
I � P , there may be only singularities at points of ∂P or ∂I3; one has ∂I1 ⊂ ∂P .

(c) Assume now that A11(x0) = T 11(x0) = 0 and x0 ∈ P . By definition of
P , there is an open interval J ⊂ I with x0 ∈ J and a function λ ∈ C(J,R) such
that Ag(x) = λ(x)g(x) for all x ∈ J , g ∈ Ck(J,R) with supp g ⊂ J . Similarly, if
two open intervals J1, J2 associated to two points x1, x2 ∈ P overlap, J1 ∩ J2 �= ∅,
the corresponding functions λ1 and λ2 must coincide on J1 ∩ J2, since for any
g ∈ Ck(I,R) supported in J1 ∩ J2 we have λ1(x)g(x) = Ag(x) = λ2(x)g(x),
x ∈ J1 ∩ J2. Therefore, a continuous function λ : P → R is defined on the full set
P , even though Ag(x) = λ(x)g(x) only holds for x ∈ P and functions with small
support around x. Define an operator S : Ck(I,R) → C(P,R) by

Sf(x) := λ(x) f(x)−Af(x), f ∈ Ck(I,R), x ∈ P. (8.2)

Hence, Sg(x) = 0, x ∈ J for all g ∈ Ck(I,R) with supp g ⊂ J . However, for
functions with larger support, in general Sf will not be zero.

For f1, f2 ∈ Ck(I,R) with f1|J = f2|J and g ∈ Ck(I,R) with supp g ⊂ J , we
have f1 · g = f2 · g, and applying (8.1) and taking differences, we get(

Tf1(x)− Tf2(x)
) · g(x) + (Af1(x)−Af2(x)

) ·Ag(x) = 0, x ∈ J,
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so that, using Ag(x) = λ(x)g(x) for x ∈ J ,[
(Tf1(x) + λ(x)Af1(x))− (Tf2(x) + λ(x)Af2(x))

] · g(x) = 0.

Choosing for x ∈ J a function g with g(x) �= 0 and supp g ⊂ J , we find that

(Tf1 + λAf1)|J = (Tf2 + λAf2)|J ,
provided that f1|J = f2|J . The same is true for smaller open subsets of J . There-
fore, Proposition 3.3 yields that T+λA = T+λ2 Id is localized on J , even though T
and A may not be localized there. For f, g ∈ Ck(I,R) with supp(f), supp(g) ⊂ J ,
we get using (8.1) and Af(x) = λ(x)f(x), Ag(x) = λ(x)g(x) for x ∈ J that

T (f · g)(x) = Tf(x) · g(x) + f(x) · Tg(x) + λ(x)2f(x) · g(x), x ∈ J.

Adding λ2(x)f(x) · g(x) shows that Rf(x) := Tf(x) + λ(x)2f(x) satisfies the
Leibniz rule, R(f · g)(x) = Rf(x) · g(x) + f(x) · Rg(x), x ∈ J , when restricted to
J . By Theorem 3.1, there are continuous functions a, b ∈ C(J,R) such that for all
f ∈ Ck(I,R), with supp f ⊂ J , x ∈ J ,

Rf(x) = a(x) f(x) ln |f(x)|+ b(x) f ′(x).

Again, joining the functions on different intersecting intervals of this type we may
define a, b continuously on P . Hence a, b ∈ C(P,R).

We now introduce an operator B : Ck(I,R) → C(P,R) on all functions, not
only those having support in J , by

Bf(x) := Tf(x) + λ(x)2f(x)−Rf(x), f ∈ Ck(I,R), x ∈ P,

with Rf(x) := a(x) f(x) ln |f(x)| + b(x) f ′(x), x ∈ P . By definition of R and B,
Bf(x) = 0 for all x ∈ J and f ∈ Ck(I,R) with supp f ⊂ J . If supp f �⊂ J , Bf(x)
will in general not be zero for x ∈ J .

We claim, however, that Bf(x) = λ(x)Sf(x) for all f ∈ Ck(I,R) and x ∈ J ,
where S was defined in (8.2). To verify this, take f, g ∈ Ck(I,R) with supp g ⊂ J ,
but not necessarily supp f ⊂ J . Then supp(f · g) ⊂ J , too. Inserting the formulas
for T and A in terms of S,B and R into (8.1), we find for x ∈ J

B(f · g)(x)− λ(x)2(f · g)(x) +R(f · g)(x) = T (f · g)(x)
= Tf(x) · g(x) + f(x) · Tg(x) +Af(x) ·Ag(x)

=
(
Bf(x)− λ(x)2f(x) +Rf(x)

) · g(x)
+ f(x) · (Bg(x)− λ(x)2g(x) +Rg(x)

)
+
(
λ(x) f(x)− Sf(x)

) · (λ(x) g(x)− Sg(x)
)
.

The terms involving R on both sides cancel, since R, as defined above, satisfies
the Leibniz rule. Further, Bg(x) = 0, B(f · g)(x) = 0 and Sg(x) = 0 for x ∈ J
since supp g ⊂ J and supp(f · g) ⊂ J . We are left with

0 =
(
Bf(x)− λ(x) · Sf(x)) · g(x), x ∈ J.
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Choosing g ∈ Ck(I,R) with g(x) �= 0 and supp g ⊂ J implies Bf(x) = λ(x)Sf(x)
for x ∈ J , even if supp f is not contained in J .

Using this and the definition of B, we have for x ∈ J ,

Tf(x) = −λ(x)2f(x)+Bf(x)+Rf(x) = −λ(x)2f(x)+λ(x)Sf(x)+Rf(x),

Af(x) = λ(x) f(x)− Sf(x).

Inserting these formulas into (8.1), calculation shows

λ(x)S(f · g)(x) = Sf(x) · Sg(x), f, g ∈ Ck(I,R), x ∈ J.

If for some x ∈ J , λ(x) = 0, then Sf(x) = 0, Af(x) = 0 and Tf(x) = Rf(x) for
all f ∈ Ck(I,R). This is the solution given in (b) of Theorem 8.2 with d(x) = 0.

If for x ∈ J , λ(x) �= 0, define Sf(x) := 1
λ(x) Sf(x). Then

S(f · g)(x) = Sf(x) · Sg(x), f, g ∈ Ck(I,R), x ∈ J.

Combining this for different intersecting intervals J1, J2 around points x1, x2 ∈ P ,
we obtain that S is multiplicative on the full set P . If λ(x) = 0, formally put
Sf(x) = 0. Then S : Ck(I,R) → C(P,R) is multiplicative for x ∈ P . With
d(x) := −λ(x), this yields

Af(x) = d(x)
(
Sf(x)− f(x)

)
,

T f(x) = d(x)2
(
Sf(x)− f(x)

)
+Rf(x), x ∈ P,

which is the solution for T and A given in (b) of Theorem 8.2.

(d) Finally, it remains to consider the case that A11(x0) = T 11(x0) = 0 and
x0 ∈ ∂P = P � P . Choose any sequence (xn) in P with x0 = limn→∞ xn. Since
Af and Tf are continuous for any f ∈ Ck(I,R),

Af(xn) = d(xn)
(
Sf(xn)− f(xn)

)→ Af(x0),

T f(xn) = d(xn)
2
(
Sf(xn)− f(xn)

)
+Rf(xn) → Tf(x0).

If Af(x0) = 0 for all f ∈ Ck(I,R), Rf(x0) = limn→∞ Rf(xn) exists for all
f ∈ Ck(I,R) and Tf(x0) = Rf(x0).

If there is f ∈ Ck(I,R) with Af(x0) �= 0, we have d(xn) �= 0 for large n, and
we may assume this for all n ∈ N. Using that S is multiplicative on xn ∈ P , we
get

Af(xn)
2 = d(xn)

2
(
Sf(xn)− f(xn)

)2
= d(xn)

2
(
S(f2)(xn) + f(xn)

2 − 2f(xn)Sf(xn)
)

= d(xn)
2
[
(S(f2)(xn)− f(xn)

2)− 2f(xn)(Sf(xn)− f(xn))
]

= d(xn)
[
A(f2)(xn)− 2f(xn)Af(xn)

]
. (8.3)
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If Af(x0) �= 0 and A(f2)(x0)− 2f(x0)Af(x0) �= 0, we find

d(xn) −→ Af(x0)
2

A(f2)(x0)− 2f(x0)Af(x0)
=: d(x0) �= 0.

In this case d can be extended by continuity to x0, and the same is true for Sf
for all f ∈ Ck(I,R),

Sf(xn) =
1

d(xn)
Af(xn) + f(xn) −→ 1

d(x0)
Af(x0) + f(x0) =: Sf(x0).

Similarly, R, T1 and T can be extended by continuity into x0. Therefore, in this
situation, the solution (T,A) of (8.1) in x0 is as in part (b) of Theorem 8.2.

If Af(x0) �= 0, but A(f2)(x0) = 2f(x0)Af(x0), (8.3) implies that lim
n→∞ |d(xn)|

= ∞, i.e., d has a singularity at x0. This is the case in the Examples 1 and
2 following Theorem 8.2. Using the multiplicativity of S, we find for all g, h ∈
Ck(I,R)

A(g · h)(xn)−Ag(xn) · h(xn)− g(xn) ·Ah(xn)

= d(xn)
[
(S(g · h)(xn)− (g · h)(xn))− (Sg(xn)− g(xn))h(xn)

− g(xn)(Sh(xn)− h(xn))
]

= d(xn)
(
Sg(xn)− g(xn)

)(
Sh(xn)− h(xn)

)
=

1

d(xn)
Ag(xn)Ah(xn) → 0 ·Ag(x0) ·Ah(x0) = 0.

Therefore, A(g · h)(x0) = Ag(x0)h(x0) + g(x0)Ah(x0) and A satisfies the Leibniz
rule at x0 for all g, h ∈ Ck(I,R). This ends the proof of Theorem 8.2. �

8.2 The extended Leibniz rule equation

Let I ⊂ R be an open interval and k ∈ N0. In Chapter 3, we studied the extended
Leibniz rule equation

T (f · g) = Tf ·Ag +Af · Tg, f, g ∈ Ck(I,R), (8.4)

for operators T,A : Ck(I,R) → C(I,R) under the assumption of non-degeneration
of (T,A), cf. Theorem 3.7. Without this assumption there are simple solutions of
(8.4) which are not localized, such as

Tf(x) = d(x)
(
f(x)− f(x+ 1)

)
, Af(x) = 1

2

(
f(x) + f(x+ 1)

)
.

Note that for functions f with small support around some point x, Tf and
Af are proportional near x. The term f(x) in the example may be replaced by
|f(x)|p(x){sgn f(x)} and the term f(x+1) by Sf(x), where S : Ck(I,R) → C(I,R)
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is an arbitrary multiplicative map, S(f · g) = Sf · Sg, still yielding a solution of
(8.4). We consider the converse question: Does this describe the general form of
solutions of (8.4), in addition to the localized solutions given in Theorem 3.7?

Equation (8.4) allows T and A to be zero on large subsets of Ck(I,R). To
avoid completely degenerate cases, we will impose a weak non-degeneration prop-
erty.

Definition. Let I ⊂ R be an open interval, k ∈ N0 and T,A : Ck(I,R) → C(I,R)
be operators. The pair (T,A) is weakly non-degenerate if and only if

(i) ∀x ∈ I ∃f ∈ Ck(I,R) : Tf(x) �= 0 and

(ii) ∀x ∈ I ∀J ⊂ I open, x ∈ J ∃g ∈ Ck(I,R), supp g ⊂ J : Ag(x) �= 0.

The second condition prevents examples like

Tf(x) = f(ϕ(x))− f(ψ(x)), Af(x) = 1
2

[
f(ϕ(x)) + f(ψ(x))

]
,

where ϕ, ψ : I → I are maps not necessarily fixing x. For fixed x0 with ϕ(x0) �=
x0 �= ψ(x0), Af(x) will necessarily be zero for all non-zero functions with very
small support J around x0. Non-localized operators of this type seem to be very
difficult to classify. Non-degeneration of (T,A) in Chapter 3 required more strongly
that T and A were not homothetic on functions with small support around some
point x. Here we only assume that A is not identically zero on such functions.

Similar to the set P , introduced before Proposition 8.1, we define a set Q
where the localization of the solution operators of (8.4) may possibly fail,

Q :=
{
x ∈ I

∣∣ ∃J ⊂ I open with x ∈ J ∃λ ∈ C(J,R) ∀g ∈ Ck(I,R),

supp g ⊂ J : Tg|J = λAg|J
}
.

By definition, Q is open and λ is automatically continuous, since Tg and Ag are
continuous on I and A is not identically zero on such functions. We use the same
localization set L as in Proposition 8.1. If T and A satisfy (8.4), but are not
localized in x, x belongs to Q:

Proposition 8.4. Suppose that k ∈ N0 and T,A : Ck(I,R) → C(I,R) satisfy (8.4).
Then Q ∪ L = I. However, Q ∩ L �= ∅ is possible.

Proof. The proof is very similar to the one of Proposition 8.1. We show that any
point x0 ∈ I �Q belongs to L, x0 ∈ L. Choose J̃ ⊂ I �Q open with x0 ∈ J̃ . Let
J ⊂ J̃ be an open subinterval of J̃ and suppose that f1|J = f2|J holds for some
f1, f2 ∈ Ck(I,R). We claim that Tf1|J = Tf2|J and Af1|J = Af2|J , which would
imply by Proposition 3.3 that T and A are localized. Let y ∈ J . Since y �∈ Q, for
any open set J1 ⊂ J with y ∈ J1 we may find g1, g2 ∈ Ck(I,R) with supports in
J1 such that (Tg1, Ag1) and (Tg2, Ag2) are not proportional on J1, i.e., there is
z1 ∈ J1 such that (Tg1(z1), Ag1(z1)), (Tg2(z1), Ag2(z1)) are linearly independent
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in R2. Choose a nested sequence of intervals J�+1 ⊂ J� ⊂ · · · ⊂ J1 with length
|J�| → 0, y ∈ J�. Find functions g�1, g

�
2 ∈ Ck(I,R) with supports in J� and z� ∈ J�

such that (Tg�1(z�), Ag�1(z�)), (Tg
�
2(z�), Ag

�
2(z�)) are linearly independent in R2.

Then f1 ·g�j = f2 ·g�j for all � ∈ N, j ∈ {1, 2}. Using equation (8.4) for the functions

(g�1, g
�
2) and taking differences, we get(

Tf1(z�)− Tf2(z�)
)
Ag�j(z�) +

(
Af1(z�)−Af2(z�)

)
Tg�j(z�) = 0,

for j = 1, 2, � ∈ N. The linear independence of (Tg�j(z�), Ag
�
j(z�)) for j = 1, 2, with

� fixed, implies that Tf1(z�) = Tf2(z�) and Af1(z�) = Af2(z�). Since y, z� ∈ J�
and |J�| → 0, we have lim�→∞ z� = y, and by continuity Tf1(y) = Tf2(y) and
Af1(y) = Af2(y). Therefore Tf1|J = Tf2|J , Af1|J = Af2|J , and T and A are
localized at x0. Hence x0 ∈ L, and actually a small open neighborhood of x0 is in
L, as well. �

We extend Theorem 3.7 to the degenerate case. To do so, we describe the
general structure of the solutions of (8.4) on the three sets I � Q, Q and ∂Q =
Q�Q.

Theorem 8.5 (Extended Leibniz rule with resonance). Let I ⊂ R be an open in-
terval, k ∈ N0 and T,A : Ck(I,R) → C(I,R) be operators satisfying the extended
Leibniz rule equation

T (f · g) = Tf ·Ag +Af · Tg, f, g ∈ Ck(I,R). (8.4)

Suppose that (T,A) are weakly non-degenerate and that T and A are pointwise
continuous in the sense of Chapter 3. Let Q be defined as before. Then there are
pairwise disjoint – possibly empty – subsets I1, I2, I3 of I, where I2, I3 are open,
with I�Q = I1∪I2∪I3, and functions c, d, p : I → R which are continuous except
possibly on the exceptional set N = ∂Q ∪ ∂I2 ∪ ∂I3 such that:

(a) On I �Q the operators T and A are localized, and for all f ∈ Ck(I,R) and
x ∈ I1,

Tf(x) =

(
c(x) ln |f(x)|+ d(x)

f ′(x)
f(x)

)
|f(x)|p(x){sgn f(x)},

Af(x) = |f(x)|p(x){sgn f(x)}, p(x) > 1 (k ≥ 1);

and for x ∈ I2,

Tf(x) = c(x) sin
(
d(x) ln |f(x)|)|f(x)|p(x){sgn f(x)},

Af(x) = cos
(
d(x) ln |f(x)|)|f(x)|p(x){sgn f(x)}, p(x) > 0;

and for x ∈ I3,

Tf(x) = 1
2c(x)

(|f(x)|p(x){sgn f(x)} − |f(x)|d(x)[sgn f(x)]),
Af(x) = 1

2

(|f(x)|p(x){sgn f(x)}+ |f(x)|d(x)[sgn f(x)]), min(p(x), d(x)) > 0.
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(b) On Q, the operators T and A are possibly not localized, but T + cA is lo-
calized and multiplicative. Moreover, there is another multiplicative operator
S : Ck(I,R) → C(Q,R),

S(f · g) = Sf · Sg, f, g ∈ Ck(I,R),

so that for all x ∈ Q

Tf(x) = 1
2c(x)

(|f(x)|p(x){sgn f(x)} − Sf(x)
)
,

Af(x) = 1
2

(|f(x)|p(x){sgn f(x)}+ Sf(x)
)
, x ∈ Q.

In points x ∈ Q where T and A are localized, we get the same solution as the
third one in part (a), i.e., x ∈ I3.

Conversely, the operators T and A described in (a) or (b) satisfy (8.4)
on I � ∂Q.

(c) For x ∈ ∂Q = Q�Q,

either the operators T,A and S can be continuously extended from Q to x
with the same formulas as in (b), or they cannot be extended, in which case
the operator A is multiplicative on x, A(f · g)(x) = Af(x) ·Ag(x).

More precisely, in this case there is p(x) ≥ 0 such that

Af(x) = |f(x)|p(x){sgn f(x)}, f, g ∈ Ck(I,R), x ∈ ∂Q.

As usual, the term {sgn f(x)} in each solution is present in T and A always or
not at all. We showed by an example after Theorem 3.7 that local solutions without
a derivative term, i.e., when d = 0 on I1, could be combined to a globally defined,
non-degenerate solution of (8.4) with image in the continuous functions on I. In
the degenerate situation of Theorem 8.5 solutions involving the first derivative
term can also be combined with other solutions to yield well-defined operators
with image in C(I,R). These solutions, derived from part (b), however, are not
non-degenerate in the sense of Chapter 3.

Example. Let I = R and define S : C1(R,R) → C(R,R) by Sf(x) := f(2x).
Choose in case (b) of Theorem 8.5 p(x) = 1 and c(x) = −2/x for x > 0. Then

Tf(x) =

{
− 1

x

(
f(x)− f(2x)

)
, x > 0,

f ′(x), x ≤ 0,

Af(x) =

{
1
2

(
f(x) + f(2x)

)
, x > 0,

f(x), x ≤ 0
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satisfies (8.4) on R. On Q = (0,∞) it is a non-localized solution of the type
explained in (b); on I1 = (−∞, 0] it is a localized solution. We have ∂Q = ∂I1 =

{0}. Since limx↘0
f(2x)−f(x)

x = f ′(0), the ranges of T and A consist of continuous
functions. These operators (T,A) are not non-degenerate in the sense of Chapter
3.

Proposition 8.6. Under the assumptions of Theorem 8.5, if A is localized, also T
is localized.

The proof of Proposition 8.6 is similar to the one of Proposition 8.3.

Example. To illustrate this, suppose that A is given by Af = |f |p {sgn f} and

that T satisfies (8.4). Then by part (a) of Theorem 8.5, Tf = (c ln |f |+ d f ′

f )Af .

In the proof of Theorem 8.5 we will use the following result on localized
multiplicative operators.

Proposition 8.7. Let k ∈ N0, I ⊂ R be an open interval and A : Ck(I,R) → C(I,R)
be a non-zero multiplicative operator, A(f · g) = Af · Ag for all f, g ∈ Ck(I,R).
Suppose there is a function B : I × Rk+1 → R such that for all f ∈ Ck(I,R),
x ∈ I,

Af(x) = B(x, f(x), . . . , f (k)(x)).

Then there is a continuous function p ∈ C(I,R) with p ≥ 0 such that

Af(x) = |f(x)|p(x) {sgn f(x)}.
The {sgn f(x)}-term either appears for all f or never. If the term is present, p > 0
holds. In particular, Af does not depend on any derivatives of f .

Proof. Since A(11) = A(11)2 ≥ 0, A(11)(x) ∈ {0, 1} for any x ∈ I. If for some x0 ∈ I,
A(11)(x0) = 0, by continuity of A(11) we would have A(11) ≡ 0 on I and A would
be zero. Hence A(11) = 11. Therefore A(−11)2 = A((−11)2) = A(11) = 11, and by
continuity of A(−11), either A(11) = 11 on I or A(11) = −11 on I. Similarly, A(0) = 0,
unless Af = 11 for all f . We have for all f ∈ Ck(I,R) that A(−f) = A(−11)A(f).
Since A is represented pointwise by B, it suffices to determine Af for functions
f ∈ Ck(I,R) which are strictly positive on I. Then Af = A(

√
f)2 ≥ 0. Therefore

we may define an operator C : Ck(I,R) → C(I,R) by Ch := lnA(exp(h)), h ∈
Ck(I). Since A is multiplicative, C is additive,

C(h1 + h2) = lnA(exp(h1) exp(h2))

= lnA(exp(h1)) + lnA(exp(h2)) = C(h1) + C(h2) ; h1, h2 ∈ Ck(I).

The derivatives of exph are expressible in terms of exph and the derivatives of h.
Hence the local representation of A by B yields a local representation of C: there
is a function D : I × Rk+1 → R such that for all h ∈ Ck(I,R) and x ∈ I

Ch(x) = D(x, h(x), . . . , h(k)(x)).



8.2. The extended Leibniz rule equation 155

For any α = (αj)
k
j=0, β = (βj)

k
j=0 in Rk+1 and x ∈ I, choose h1, h2 ∈ Ck(I,R)

such that h
(j)
1 (x) = αj and h

(j)
2 (x) = βj for all j ∈ {0, . . . , k}. Then the additivity

of C is equivalent to

D(x, α+ β) = D(x, α) +D(x, β), α, β ∈ Rk+1, x ∈ I.

Therefore D(x, ·) is additive on Rk+1 and Ch(x) = D(x, h(x), . . . , h(k)(x)) is a
continuous function of x ∈ I for any h ∈ Ck(I,R). By Theorem 2.6 there are

continuous functions c0, . . . , ck ∈ C(I,R) such that D(x, α) =
∑k

j=0 cj(x)αj and

hence Ch(x) =
∑k

j=0 cj(x)h
(j)(x). For f ∈ Ck(I,R) with f > 0 and h = ln f we

get

Af = A(exp(h)) = exp(Ch) = exp(

k∑
j=0

cj (ln f)(j)).

Since (ln f)(j) has a singularity of order ( f
′

f )j as f ↘ 0, if f ′ �= 0, and A is given in

localized form, the coefficients functions cj of (ln f)
(j) have to be zero for all j ≥ 1.

The argument for this is again the same as in the proof of Theorem 3.1. Hence
Af = exp(c0 ln f) = f c0 if f > 0. Applying this to the constant function f = 2
shows that c0 is continuous, c0 ∈ C(I,R). We also need c0 ≥ 0 to guarantee the
continuity of Af for functions f having zeros. Let p := c0. Then either Af = |f |p
for all f ∈ Ck(I) or Af = |f |p sgn f for all f , depending on whether A(−11) = 11
or A(−11) = −11. This ends the proof of Proposition 8.7. �

We can now prove Theorem 8.5.

Proof of Theorem 8.5. (i) For f = g = 11, equation (8.4) yields that T 11(x)(1 −
2A11(x)) = 0 for any x ∈ I. In the non-degenerate case, T 11 = 0 and A11 = 1
holds. In general, however, T (11) �= 0 is possible. Then A11(x) = 1/2. Conversely,
if A11(x) = 1/2, choosing g = 11 in (8.4) we find Tf(x) = 1

2Tf(x) + T 11(x)Af(x),
Tf(x) = d(x)Af(x) with d(x) = 2T 11(x) for all f ∈ Ck(I,R). By assumption,
for any x ∈ I there is f with Tf(x) �= 0. Therefore, d(x) �= 0. Let O := {x ∈
I | A11(x) = 1/2}. Then O = {x ∈ I | T 11(x) �= 0} and O is open with O ⊂ Q.
Inserting Tf(x) = d(x)Af(x) into (8.4), we get d(x)A(f · g)(x) = 2d(x)Af(x) ·
Ag(x) for any f, g ∈ Ck(I,R), x ∈ O, i.e., R := 2A is multiplicative on x ∈ O,
R(f · g)(x) = Rf(x) ·Rg(x), x ∈ O.

We claim that T,A and R are localized on O. Let J ⊂ O be open and
f1, f2 ∈ Ck(I,R) satisfy f1|J = f2|J . Let x ∈ J . By the assumption of weak
non-degeneracy, there is g ∈ Ck(I,R) with supp g ⊂ J and Ag(x) �= 0. Since
f1 · g = f2 · g, an application of (8.4) yields

(Tf1 − Tf2) ·Ag + (Af1 −Af2) · Tg = 0. (8.5)

Since Tg = dAg and Tfi = dAfi for i = 1, 2, we find at x

2d(x)
(
Af1(x)−Af2(x)

) ·Ag(x) = 0.
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Since Ag(x) �= 0 and d(x) �= 0 in view of x ∈ J ⊂ O, Af1(x) = Af2(x),
i.e., Af1|J = Af2|J . By Proposition 3.3, A is localized in O, i.e., there is B :
O × Rk+1 → R such that for any f ∈ Ck(I,R) and x ∈ O

Af(x) = B
(
x, f(x), f ′(x), . . . , f (k)(x)

)
.

Since 2A is multiplicative, Proposition 8.7 implies that there is a continuous func-
tion p ∈ C(O,R), p ≥ 0 such that

Af(x) = 1
2 |f(x)|p(x), x ∈ O or Af(x) = 1

2 |f(x)|p(x) sgn f(x), x ∈ O,

in the second case with p > 0. Hence on O ⊂ Q, A and T = d A have the form
described in (b) of Theorem 8.5 with S = 0.

(ii) From now on, we may assume that x �∈ O. Then T 11(x) = 0 and A11(x) =
1. Assume first that x �∈ Q. By Proposition 8.4, x is in the localization set L, and
the same is true for all points in a suitable open neighborhood J of x. Theorem
3.7 now applies on J and yields that T and A are of one of the forms given in (a)
of Theorem 8.5 for all y ∈ J . We note that in the proof of Theorem 3.7, A11(y) = 1
is used. If two such open sets intersect, the solutions coincide on the intersection.
They may be extended by continuity to the union and thus to I�Q, although the
coefficient functions of the three possible solutions may possibly become singular
at the exceptional set (∂I2 ∪ ∂I3) ∩ (I �Q).

(iii) Now consider x ∈ Q, and again x �∈ O, i.e., T 11(x) = 0, A11(x) = 1.
By definition of Q, there is an open interval J ⊂ I with x ∈ J and λ ∈ C(J,R)
such that for all g ∈ Ck(I,R) with supp g ⊂ J , we have Tg = λAg. If two
such intervals intersect, the corresponding λ-functions must coincide, just using
functions g supported in the intersection. Therefore, λ may be extended to Q,
yielding a continuous function λ ∈ C(Q,R).

Define two operators C± : Ck(I,R) → C(Q,R) by

C±f(x) := λ(x)Af(x)± Tf(x), f ∈ Ck(I,R), x ∈ Q.

Note that for g with supp g ⊂ J we have C−g = 0. We will show that C± are
homothetic to multiplicative operators on Q and that C+ is localized. Using (8.4),
calculation shows

C±f · C±g = (λAf ± Tf) · (λAg ± Tg)

= (Tf · Tg + λ2Af ·Ag)± λ(Tf ·Ag +Af · Tg)
= λ2Af ·Ag + Tf · Tg ± λT (f · g),

λC±(f · g) = λ2A(f · g)± λT (f · g).
Therefore, C±f(x)C±g(x) = λC±(f · g)(x) for x ∈ J is equivalent to

Tf(x) · Tg(x) = λ2
(
A(f · g)(x)−Af(x) ·Ag(x)

)
, x ∈ J, (8.6)
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for all functions f, g ∈ Ck(I,R), and not only those supported in J .
We now prove (8.6). Start with three functions f, g, h ∈ Ck(I,R). Repeated

application of (8.4) yields

T ((fg)h) = T (fg)A(h) +A(fg)T (h)

= T (f)A(g)A(h) + T (g)A(f)A(h) +A(fg)T (h),

T (f(gh)) = T (f)A(gh) +A(f)T (gh)

= T (f)A(gh) + T (g)A(f)A(h) +A(f)A(g)T (h).

Since both are equal, we find

T (f)
(
A(gh)−A(g)A(h)

)
= T (h)

(
A(fg)−A(f)A(g)

)
. (8.7)

By weak non-degeneration, for any x ∈ J there is h ∈ Ck(I,R) with supph ⊂ J
and Ah(x) �= 0. Then supp(g · h) ⊂ J , too, and by definition of Q, T (h)|J =
λA(h)|J , T (gh)|J = λA(gh)|J . Multiplying (8.7) by λ and inserting this, we get

T (f)|J
(
T (gh)|J −A(g)|J T (h)|J

)
= λ2A(h)|J

(
A(fg)|J −A(f)|J A(g)|J

)
,

and by (8.4)

T (f)|J T (g)|JA(h)|J = λ2A(h)|J
(
A(fg)|J −A(f)|J A(g)|J

)
.

Since Ah(x) �= 0,

Tf(x)Tg(x) = λ2
(
A(fg)(x)−Af(x) ·Ag(x)

)
,

which proves (8.6). Hence we have shown that

λC±(f · g)|Q = C±f |Q · C±g|Q,
where, of course, Q is the union of smaller sets J ⊂ Q, for which this was really
verified. For x ∈ J , h with supph ⊂ J , supp(fh) ⊂ J and Ah(x) �= 0, we find
using (8.4) and the definition of Q,

λ(x)A(f · h)(x) = T (f · h)(x) = Tf(x) ·Ah(x) +Af(x) · Th(x)
= Tf(x) ·Ah(x) + λ(x)Af(x) ·Ah(x),

λ(x)
(
A(f · h)(x)−Af(x) ·Ah(x)) = Tf(x)Ah(x).

If λ(x) = 0, Tf(x) = 0 would follow for all f ∈ Ck(I,R), which contradicts the
assumption of weak non-degeneration of (T,A). Therefore, λ(x) �= 0 for all x ∈ Q

and both operators C̃± := 1
λC± are multiplicative on Q,

C̃±(f · g)(x) = C̃±(f)(x) · C̃±(g)(x), f, g ∈ Ck(I,R), x ∈ Q,

C̃±f = A± 1
λT .
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(iv) We now show that C+ = T + λA is localized on Q. Let J̃ ⊂ Q be an

open interval and f1, f2 ∈ Ck(I,R) satisfy f1| ˜J = f2| ˜J . Let x ∈ J̃ . Since x ∈ Q,

there is an open interval J ⊂ J̃ , x ∈ J with Tg|J = λAg|J for all g ∈ Ck(I,R)
with supp g ⊂ J . By the assumption of weak non-degeneration, there is g with
supp g ⊂ J and Ag(x) �= 0. Then f1 · g = f2 · g and (8.5) implies

0 =
(
Tf1(x)− Tf2(x)

)
Ag(x) +

(
Af1(x)−Af2(x)

)
Tg(x)

=
(
(T + λA)f1(x)− (T + λA)f2(x)

)
Ag(x).

Since Ag(x) �= 0, (T + λA)f1(x) = (T + λA)f2(x), (T + λA)f1|J = (T + λA)f2|J .
By Proposition 3.3, C+ := T + λA is localized on Q. Since C̃+ = 1

λC+ is also
multiplicative, Proposition 8.7 implies that there is a continuous function p ∈
C(Q,R) with p ≥ 0 such that for all f ∈ Ck(I,R)

C̃+f(x) = |f(x)|p(x){sgn f(x)}, x ∈ Q.

Let S := C̃−. As we have seen, S is multiplicative and for f ∈ Ck(I,R)

Af(x) = 1
2 (C̃+ + C̃−)f(x) = 1

2

(|f(x)|p(x){sgn f(x)}+ Sf(x)
)
,

T f(x) =
λ(x)

2
(C̃+ − C̃−)f(x) =

λ(x)

2

(|f(x)|p(x){sgn f(x)} − Sf(x)
)
, x ∈ Q.

This is the form of T and A given in (b) with c = λ. Calculation shows that,
conversely, these operators satisfy the extended Leibniz rule (8.4) on Q.

(v) Finally, consider x0 ∈ ∂Q = Q � Q, and again T 11 = 0, A11 = 1. Choose
a sequence xn ∈ Q with xn → x0. Since Af and Tf are continuous for all f ∈
Ck(I,R), so are C̃+f and Sf = C̃−f . Therefore,

Af(xn) =
1
2

(
C̃+f(xn) + Sf(xn)

)→ Af(x0) =
1
2

(
C̃+f(x0) + Sf(x0)

)
,

T f(xn) =
λ(xn)

2

(
C̃+f(xn)− Sf(xn)

)→ Tf(x0).

Choose g ∈ Ck(I,R) with Tg(x0) �= 0. If C̃+g(x0) �= Sg(x0), the limit

lim
n→∞λ(xn) =

2Tg(x0)

C̃+g(x0)− Sg(x0)
�= 0

exists. Put λ(x0) := limn→∞ λ(xn). Then Tf(x0) = λ(x0)
2 (C̃+f(x0) − Sf(x0))

holds by continuity of Tf , C̃+f and Sf for all f ∈ Ck(I,R), and the formulas
from (b) for Af and Tf in Q extend to x0 ∈ ∂Q.

If C̃+g(x0) = Sg(x0), supn∈N |λ(xn)| = ∞ since Tg(x0) �= 0. In this case, the
formulas from (b) do not extend to x0 ∈ ∂Q. However, since

Tf(x0) = lim
n→∞Tf(xn) = lim

n→∞
λ(xn)

2

(
C̃+f(xn)− Sf(xn)

)
,
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and limn→∞ C̃+f(xn) = C̃f(x0), limn→∞ Sf(xn) = Sf(x0) exist for all

f ∈ Ck(I,R), it follows that C̃+f(x0) = Sf(x0) for all f ∈ Ck(I,R). Therefore,

Af(x0) = 1
2 (C̃+f(x0) + Sf(x0)) = C̃+f(x0). For the constant function f0 = 2,

C̃+f0(x) = 2p(x), x ∈ Q, and p has a continuous extension into x0 ∈ ∂Q. Then

Af(x0) = C̃+f(x0) = |f(x0)|p(x0){sgn f(x0)} for all f ∈ Ck(I,R). In particular,
A is multiplicative, i.e., A(f · g)(x0) = Af(x0) · Ag(x0). This proves the last part
(c) of Theorem 8.5. �

In the example following the formulation of Theorem 8.5, λ(x) = c(x) = − 2
x

is unbounded on x ∈ Q = (0,∞) and Af(0) = f(0) is multiplicative on ∂Q = {0}.

8.3 Notes and References

Proposition 8.1 and Theorem 8.2 were shown by König, Milman in [KM8] in the
case k = 2 and I = R.

One might compare Proposition 8.7 with the result of Milgram [M] that
bijective multiplicative maps A : C(I,R) → C(I,R) have a similar form as in
Proposition 8.7, up to some homeomorphism u : I → I,

Af(u(x)) = |f(x)|p(x) {sgn f(x)}, f ∈ C(I,R), x ∈ I.

In Proposition 8.7 we do not assume the bijectivity, but the localization of the
operator A, and then u is not needed.



Chapter 9

The Second-Order Chain Rule

Applying the chain rule twice to functions f, g ∈ C2(R) yields

D2(f ◦ g) = D2f ◦ g · (Dg)2 +Df ◦ g ·D2g.

We use this identity as a model for a more general operator equation. Replacing
D2 by T and the first derivative expressions by A1 and A2, we study in this chapter
the operator equation

T (f ◦ g) = Tf ◦ g ·A1g +A2f ◦ g · Tg, f, g ∈ Ck(R), (9.1)

for general k ∈ N. In the case of the second derivative, Tf = f ′′, we have that
A1f = f ′2 and A2f = f ′. Therefore we consider A1, A2 to be “of lower order” than
T , and we will assume that T maps Ck(R) into C(R) while A1, A2 operate from
C�(R) to C(R), � = max(k−1, 1). It turns out that under reasonable assumptions
on T,A1, A2, equation (9.1) does not admit too many types of solutions.

By Theorem 4.1, the chain rule equation R(f ◦ g) = Rf ◦ g · Rg for maps
R : Ck(R) → C(R), k ∈ N, has the solutions

Rf =
K ◦ f
K

|f ′|q{sgn f ′},

with K ∈ C(R), K > 0 and q ≥ 0, if R is not identically zero on the half-
bounded Ck-functions. On the functions f with strictly positive images Rf , i.e.,
f ′ = |f ′| > 0, we may consider Tf := lnRf which will satisfy the equation

T (f ◦ g) = Tf ◦ g + Tg,

with the solution

Tf = q ln |f ′|+ (H ◦ f −H),

© Springer Nature Switzerland AG 2018
H. König, V. Milman, Operator Relations Characterizing Derivatives,
https://doi.org/10.1007/978-3-030-00241-1_9

161

https://doi.org/10.1007/978-3-030-00241-1_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00241-1_9&domain=pdf


162 Chapter 9. The Second-Order Chain Rule

where H := lnK. This solves a special case of (9.1), namely for A1 = A2 = 1.
However, the solution does not extend to C1(R)-functions f with f ′(x) = 0 for
some x ∈ R. But we may replace this by

Tf =
(
q ln |f ′|+H ◦ f −H

) · |f ′|p, A1f = A2f = |f ′|p,

with p > 0. These three operators are well defined on C1(R) and satisfy (9.1). It is
this example which motivates setting � = 1 if k = 1, where T is defined on Ck(R)
and A on C�(R). Otherwise, for k ≥ 2, we put � = k − 1.

Besides the second derivative and the ln|f ′|-solution there is also the Schwarz-
ian derivative T = S which satisfies (9.1) with suitable operators A1, A2. The
Schwarzian derivative of a function f ∈ C3(R) with f ′ �= 0 is defined by

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=
f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

.

The kernel of S on suitable function spaces consists of the fractional linear transfor-
mations f(x) = ax+b

cx+d . Although the Schwarzian derivative is mainly used in com-
plex analysis, when studying conformal mappings, univalent functions or complex
dynamics, we will consider it here from the perspective of real analysis composition
formulas. It satisfies

S(f ◦ g) = Sf ◦ g · (g′)2 + Sg, f, g ∈ C3(R),

if f ′ �= 0 �= g′. This, too, is of the form (9.1) with A1g = g′2, A2g = 1. However,
as in the example of ln |f ′|, it is not defined if f ′ = 0. We may compensate for this
fact by multiplying Sf with f ′2, and then

Tf = f ′2Sf = f ′f ′′′ − 3
2 (f

′′)2, A1f = f ′4, A2f = f ′2

define maps T : C3(R) → C(R), A1, A2 : C2(R) → C(R) which satisfy (9.1). This
raises the question whether there are solutions T of (9.1) with associated suitable
operators A1, A2 which depend non-trivially on the fourth or higher derivatives.
Under natural assumptions, it turns out that no such operators exist, as we will
show, and we will find all solutions of (9.1).

Besides the “basic” solutions f ′′, f ′2Sf and f ′ log |f ′| there are two additional
solutions of (9.1) when k = 1, i.e., when T,A1, A2 are all defined on C1(R).

Equation (9.1) resembles the addition formula of the sin-function, though in
a multiplicative setting, and thus allows for a solution of the form Tf = sin(ln |f ′|),
A1f = A2f = cos(ln |f ′|), which again would have to be multiplied by terms |f ′|p,
p > 0, to be well defined on C1(R). The second additional solution for k = 1 is
based on a cancelation effect. This is similar to the cancelation of terms in the
(non-localized) example Tf(x) = −f(x) + f(x+ 1), Af(x) = f(x) − f(x + 1) in
the case of the second-order Leibniz rule.
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9.1 The main result

If A1 = A2 = 1
2T , (9.1) would be the ordinary chain rule T (f ◦ g) = Tf ◦ g · Tg.

To exclude this reduction to a previously studied case, we will make the following
assumption of non-degeneration, which prevents T and A1 = A to be proportional.

Definition. Let k ∈ N, � := max(k − 1, 1), T : Ck(R) → C(R) and A : C�(R) →
C(R) be operators. The pair (T,A) is Ck-non-degenerate provided that

(a) for every x ∈ R there is g ∈ Ck(R) such that Tg(x) �= 0;

(b) for any open interval J ⊂ R and any x ∈ J there exist functions g1, g2 ∈
Ck(R) with image in J and points y1, y2 ∈ R with g1(y1) = g2(y2) = x such
that the vectors (Tgi(yi), Agi(yi)) ∈ R2 for i = 1, 2, are linearly independent.

We also need the following definitions, which are similar to notions which
already appeared in Chapter 7.

Definition. For � ∈ N0, an operator A : C�(R) → C(R) is isotropic if it commutes
with shift functions Sy : R → R, Sy(x) := x + y, x, y ∈ R, i.e., if A(f ◦ Sy) =
(Af) ◦ Sy for any f ∈ C�(R), y ∈ R.

Definition. For k ∈ N, an operator A : Ck−1(R) → C(R) is Ck−1-pointwise contin-
uous if for any sequence (fn)n∈N of Ck(R)-functions and f ∈ Ck−1(R), such that

limn→∞ f
(j)
n = f (j) converges uniformly on R for all j ∈ {0, . . . , k − 1}, we have

pointwise convergence limn→∞ Afn(x) = Af(x) for every x ∈ R.

Definition. For k ∈ N, an operator T : Ck(R) → C(R) depends on the k-th

derivative, if there are x ∈ R and functions g1, g2 ∈ Ck(R) with g
(j)
1 (x) = g

(j)
2 (x)

for all j ∈ {0, . . . , k − 1} and Tg1(x) �= Tg2(x).

We may now state the main result of this chapter.

Theorem 9.1 (Second-order chain rule). Let k ∈ N, � := max(k − 1, 1). Suppose
that T : Ck(R) → C(R) and A1, A2 : C�(R) → C(R) are operators such that the
second-order chain rule

T (f ◦ g) = Tf ◦ g ·A1g +A2f ◦ g · Tg, f, g ∈ Ck(R), (9.1)

holds. Assume that the pair (T,A1) is C
k-non-degenerate and that A1 and A2 are

isotropic and, if k ≥ 2, are Ck−1-pointwise continuous. Then T,A1 and A2 are
localized and

(a) if k ≥ 4, T does not depend on the k-th derivative;

(b) if k ∈ {1, 2, 3} and T depends on the k-th derivative, there exist constants
c, d, p ∈ R � {0}, q, r ∈ R, q, r ≥ 0, p ≥ k − 1 and a continuous function
H ∈ C(R) such that either,
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(b1)

Tf =
[
d Tkf + ((f ′)k−1H ◦ f −H)(f ′)k−1

] |f ′|p−k+1 {sgn f ′},
A1f = (f ′)k−1A2f, A2f = |f ′|p {sgn f ′}, (9.2)

where T1f = ln |f ′|, T2f = f ′′ and T3f = (f ′)2Sf = f ′f ′′′ − 3
2 (f

′′)2,

or, if k = 1, additionally the following solutions are possible,

(b2)

Tf =d sin
(
c ln |f ′|) |f ′|p {sgn f ′},

A1f = A2f = cos
(
c ln |f ′|) |f ′|p {sgn f ′}, (9.3)

or

Tf =(H ◦ f) |f ′|q {sgn f ′} −H |f ′|r [sgn f ′],
A1f = |f ′|q {sgn f ′}, A2f = |f ′|r [sgn f ′]. (9.4)

The terms {sgn f ′} or [sgn f ′] should be simultaneously present in (T,A1, A2) or
not at all, yielding two possible solutions, in the last case even four solutions. If
the function H is constant in (9.4), the form of the operators (T,A1, A2) satisfying
(9.1) would be slightly more general, namely (T,A1 + γT,A2 − γT ) where γ ∈ R

is a suitable constant.
Conversely, all operators in (b) satisfy the second-order chain rule (9.1).

Corollary 9.2. Suppose that k ∈ {1, 2, 3} and that the operators (T,A1, A2) satisfy
the assumptions of Theorem 9.1.

(a) Assume also that T annihilates all affine functions on R. Then there exist
d, p ∈ R such that

either

Tf = dSf |f ′|p {sgn f ′}, A1f = (f ′)2 A2f, A2f = |f ′|p {sgn f ′}, p ≥ 2,

or

Tf = d f ′′ |f ′|p−1 {sgn f ′}, A1f = f ′ A2f, A2f = |f ′|p {sgn f ′}, p ≥ 1.

(b) If, in addition to (a), T satisfies the initial conditions

T (
x2

2
) = 1, T (

x3

6
) = x,

then Tf = f ′′, A1f = f ′2 and A2f = f ′ .
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(c) If, in addition to (a), T satisfies the initial conditions

T (
x2

2
) = −3

2
, T (

x3

6
) = −x2,

then Tf = f ′2Sf = f ′f ′′′ − 3
2f

′′2, A1f = f ′4 and A2f = f ′2.

Proof. (a) The first part of Corollary 9.2 follows directly from Theorem 9.1 since
the solutions in formulas (9.3) and (9.4) and the one in (9.2) for k = 1 do not
annihilate the affine functions. Therefore T depends non-trivially on f ′′ or f ′′′.
Moreover, the function H has to be zero so that the term involving H is zero, to
guarantee that T annihilates all affine functions.

(b) Assuming in addition, that T (x
2

2 ) = 1 and T (x
3

6 ) = x holds, the first

solution in (a) would require that 1 = T (x
2

2 ) = d(− 3
2x

p−2) and x = T (x
3

6 ) =
d(−x2xp−2) for all x > 0, yielding the contradiction 2 = p = 1. The second
solution in (a) satisfies these initial conditions with p = 1, d = 1 and the {sgn f ′}-
term being present, i.e., Tf = f ′′, A1f = f ′2 and A2f = f ′.

(c) Assuming in addition, that T (x
2

2 ) = − 3
2 and T (x

3

6 ) = −x2 holds, the

second solution in (a) would require that − 3
2 = T (x

2

2 ) = dxp−1 and −x2 =

T (x
3

6 ) = d(x(x
2

2 )p−1) for all x > 0, yielding the contradiction 1 = p = 3
2 . In this

case, the first solution satisfies these initial conditions with p = 2, d = 1 and the
{sgn f ′}-term not being present, i.e., Tf = f ′2Sf = f ′f ′′′ − 3

2f
′′2, A1f = f ′4 and

A2f = f ′2. �

Remarks. (a) The assumption that A1, A2 are isotropic is not needed in Theorem
9.1. However, it simplifies the proof considerably, which even in the isotropic case
is technical and lengthy. Under the assumptions of Theorem 9.1, but without the
isotropy condition on A1, A2, the general solution of (9.1) can be obtained as
follows:

There are strictly positive functions K1,K2 ∈ C(R) so that for any solution

(T̃ , Ã1, Ã2) of (9.1) there is an isotropic solution (T,A1, A2) of (9.1) such that

T̃ f(x) =
K2(f(x))

K1(x)
Tf(x),

Ã1f(x) =
K1(f(x))

K1(x)
A1f(x), Ã2f(x) =

K2(f(x))

K2(x)
A2f(x).

It is quickly checked that (T̃ , Ã1, Ã2) satisfy (9.1) provided that (T,A1, A2) does.
Conversely, this gives the form of all possible non-isotropic solutions of (9.1).
The assumption that (A1, A2) are isotropic is not used to prove (a) of Theorem
(9.1). The proof simplifies under the isotropy condition since then the functions
representing A1, A2 do not depend on the independent variable. Therefore, we
stick to this simpler case in our proof.
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(b) If k ≥ 2, the assumption of Ck−1-pointwise continuity of A1, A2 most
likely can be eliminated. However, it also simplifies the proof of Theorem 9.1,
since then the representing functions of the operators A1, A2 do not depend on
the k-th derivative variable.

(c) The results of Theorem 9.1 show that Ck(R) for k = 0, 1, 2, 3 constitute
the “natural” domains for T and that Ck(R) for k = 0, 1 are the “natural” domains
for A1 and A2. The case k = 0 corresponds to the degenerate case in (b1) when
formally putting there d = 0 and k = 1, i.e., when Tf = H◦f−H, A1f = A2f = 11.
This solution was already mentioned in the introduction.

The operators A1 and A2 are closely related by A1f = (f ′)k−1A2f in the
main cases of (b1); the motivating examples therefore showed the typical phe-
nomenon. The operators A1 or A2 cannot be zero, due to the assumption of Ck-
non-degeneration.

(d) The functions f3(x) = x+ x3

6 , f2(x) = x+ x2

2 may be used to determine
the constant d in the described form of T in (b1) from d = Tfk(0) for k = 3, 2.
The function H in (b1) is completely determined by the function T (2 Id), similar
as in the case of the chain rule equation, cf. Remark (b) following Theorem 4.1.

(e) The structure of equation (9.1), T (f ◦ g) = Tf ◦ g ·A1g +A2f ◦ g · Tg, is
somewhat similar to the one of the operator equation T (f ·g) = Tf ·A1g+A2f ·Tg
studied in Theorem 3.7 as an extension of the Leibniz rule, except that the product
Tf ·A1g there is replaced by the “compound” product Tf◦g·A1g. There is a certain
similarity in some of the solutions. However, the function variable α0 = f(x) in
Theorem 3.7 is replaced by the derivative variable α1 = f ′(x) here. The difference
between these equations is that (9.1) does not have any solutions depending non-
trivially on the k-th derivative f (k) for any k ≥ 4, while the extended Leibniz rule
has solutions which depend non-trivially on f (k) for all k ∈ N.

(f) Solving the second-order chain rule, no “phase transition” between two of
the solutions in Theorem 9.1 is possible, contrary to the case of the solutions for the
extended Leibniz rule (Theorem 3.7), or the second-order Leibniz rule (Theorem
7.2), cf. the examples there. This is also true if A1 and A2 are not assumed to
be isotropic. It is essentially a consequence of the fact that c, d, p ∈ R � {0} in
(9.2), (9.3) and (9.4) are constants, and not functions of x, which could have a
singularity or decay to zero at a point of phase transition, as in the examples
following Theorems 3.7 and 7.2.

(g) Concerning a related cohomological result for diffeomorphisms on the
projective line, we refer to Section 9.4.

9.2 Proof of Theorem 9.1

We first show that (T,A1, A2) are localized.
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Proposition 9.3. Let k ∈ N, k ≥ 2. Assume that T : Ck(R) → C(R) and A1, A2 :
Ck−1(R) → R satisfy (9.1), that (T,A1) is Ck-non-degenerate and that A1 and
A2 are isotropic and Ck−1-pointwise continuous. Then there are functions F :
Rk+2 → R and B1, B2 : Rk → R such that for all f ∈ Ck(R) and x ∈ R

Tf(x) =F
(
x, f(x), . . . , f (k)(x)

)
,

Aif(x) = Bi

(
f(x), . . . , f (k−1)(x)

)
, i = 1, 2.

For k = 1, without the pointwise continuity assumption, there are functions F :
R3 → R and B1, B2 : R2 → R such that for all f ∈ C1(R) and x ∈ R

Tf(x) = F
(
x, f(x), f ′(x)

)
, Aif(x) = Bi

(
f(x), f ′(x)

)
, i = 1, 2.

Proof. (a) We first show that T (Id) = 0 and A1(Id) = A2(Id) = 11. Choosing
f = Id in (9.1), we find for all g ∈ Ck(R), y ∈ R,

Tg(y) = T (Id)(g(y))A1g(y) +A2(Id)(g(y))Tg(y),

T g(y)
(
1−A2(Id)(g(y))

)
= A1g(y)T (Id)(g(y)).

Since (T,A1) is C
k-non-degenerate, for any x ∈ R we may find g1, g2 ∈ Ck(R) and

y1, y2 ∈ R with g1(y1) = g2(y2) = x such that the two vectors (Tgi(yi), A1gi(yi)) ∈
R2 are linearly independent for i = 1, 2. The resulting two linear equations

Tgi(yi)
(
1−A2(Id)(x)

)
= A1gi(yi)T (Id)(x), i = 1, 2,

therefore only admit the trivial solution T (Id)(x) = 0, 1 − A2(Id)(x) = 0. Hence
T (Id) = 0, A2(Id) = 11. Choosing g = Id in (9.1), we get for all f ∈ Ck(R) and
x ∈ R,

Tf(x) = Tf(x)A1(Id)(x) +A2f(x)T (Id)(x) = Tf(x)A1(Id)(x).

By non-degeneracy, choose f ∈ Ck(R) such that Tf(x) �= 0. This implies that also
A1(Id) = 11.

(b) Let J ⊂ R be an open interval and f1, f2 ∈ Ck(R) be such that f1|J =
f2|J . We claim that Tf1|J = Tf2|J , Aif1|J = Aif2|J , i = 1, 2.

Take any x ∈ J . By assumption, there are g1, g2 ∈ Ck(R) with images in J
and points y1, y2 ∈ R with gi(yi) = x such that (Tgi(yi), A1gi(yi)) ∈ R are linearly
independent for i = 1, 2. Since f1|J = f2|J , we have f1 ◦ gi = f2 ◦ gi for i = 1, 2.
By (9.1)

0 = T (f1 ◦ gi)(yi)− T (f2 ◦ gi)(yi)
=
(
Tf1(x)− Tf2(x)

)
A1gi(yi) +

(
A2f1(x)−A2f2(x)

)
Tgi(yi)

for i = 1, 2. This implies Tf1(x) = Tf2(x), A2f1(x) = A2f2(x) and hence Tf1|J =
Tf2|J and A2f1|J = A2f2|J .
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For x ∈ J , let y := f1(x) = f2(x). Choose h ∈ Ck(R) with Th(y) �= 0.
Since also (h ◦ f1)|J = (h ◦ f2)|J , we know that T (h ◦ f1)|J = T (h ◦ f2)|J and
Tf1|J = Tf2|J . By (9.1)

0 = T (h ◦ f1)(x)− T (h ◦ f2)(x)
= Th(y)

(
A1f1(x)−A1f2(x)

)
+A2h(y)

(
Tf1(x)− Tf2(x)

)
= Th(y)

(
A1f1(x)−A2f2(x)

)
,

hence A1f1(x) = A1f2(x), i.e., A1f1|J = A1f2|J , too.
(c) By part (b) and Proposition 3.3 there are functions F, B̃i : R

k+2 → R,
i = 1, 2, such that for all f ∈ Ck(I) and all x ∈ I

Tf(x) =F
(
x, f(x), . . . , f (k)(x)

)
,

Aif(x) = B̃i

(
x, f(x), . . . , f (k)(x)

)
, i = 1, 2.

We claim that the B̃i, i ∈ {1, 2}, do not depend on f (k)(x) for all f ∈ Ck(R),

x ∈ R. Let f ∈ Ck(I), x0 ∈ R and g(x) :=
∑k−1

j=0
f(j)(x0)

j! (x−x0)
j be the (k− 1)-st

Taylor approximation to f at x0. We will show by Ck−1-smooth approximations
that Tf(x0) = Tg(x0) holds, and obviously Tg(x0) depends only on x0, f(x0) and
all derivatives up to f (k−1)(x0), but not on f (k)(x0).
For n ∈ N, let xn := x0 +

1
n , yn := x0 − 1

n and define φn : R → R by

φn(x) :=

⎧⎪⎨⎪⎩g(x) + f (k)(x0)(x− x0)
k
(

xn−x
xn−x0

)k+1

, x ≥ x0,

g(x) + f (k)(x0)(x− x0)
k
(

x−yn

xn−yn

)k+1

, x < x0,

and functions gn, hn : R → R by

gn(x) :=

{
g(x), x ≤ yn or xn ≤ x,

φn(x), yn < x < xn,
hn(x) :=

{
f(x), x < x0,

gn(x), x ≥ x0.

Since φn is in Ck(R) with φ
(j)
n (x0) = g(j)(x0) = f (j)(x0), φ

(j)(xn) = g(j)(xn),
φn(yn) = g(j)(yn) for all j ∈ {0, . . . , k}, gn and hn are in Ck(R) as well, and gn con-

verges to g uniformly in Ck−1, i.e., g
(j)
n → g(j) uniformly for all j ∈ {0, . . . , k−1}.

The Ck−1-pointwise continuity assumption for A1 and A2 implies that Aign(x0) →
Aig(x0), i ∈ {1, 2}. Let I− := (−∞, x0), I+ := (x0,∞). Then f |I− = hn|I− and
hn|I+ = gn|I+ . By part (b), Aif |I− = Aihn|I− and Aihn|I+ = Aign|I+ , i ∈ {1, 2}.
Since the images of A1 and A2 consist of continuous functions, and {x0} = I−∩I+,
we get Aif(x0) = Aihn(x0) = Aign(x0). With Aign(x0) → Aig(x0) we have
Aif(x0) = Aig(x0) for i ∈ {1, 2}. However, the (k − 1)-st Taylor polynomial g
depends only on (x0, f(x0), . . . , f

(k−1)(x0)). Thus the Aif(x0) do not depend on
f (k)(x0) and

(Aif)(x0) = B̃i(x0, f(x0), . . . , f
(k)(x0)) =: B̄i(x0, f(x0), . . . , f

(k−1)(x0)),
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for i ∈ {1, 2} and all x0 ∈ R.

(d) The assumption that A1, A2 are isotropic means that for all x, y ∈ R

B̄i

(
x, f(y + x), . . . , f (k−1)(y + x)

)
= B̄i

(
y + x, f(y + x), . . . , f (k−1)(y + x)

)
.

This implies that B̄i is independent of the first variable x, i.e.,

Aif(x) = B̄i

(
x, f(x), . . . , f (k−1)(x)

)
=: Bi

(
f(x), . . . , f (k−1)(x)

)
. �

We now prove part (b) of Theorem 9.1, finding all solutions of the second-
order chain rule if k ∈ {1, 2, 3}. Afterwards, we will show part (a), that there are
no solutions which depend on the k-th derivative, if k ≥ 4.

Proof of (b) of Theorem 9.1. (i) We first consider the case k = 3, T : C3(R) →
C(R) and A1, A2 : C2(R) → C(R) satisfying (9.1), and such that Tf depends non-
trivially on f ′′′. The case k = 2 is rather similar. We will later indicate how the
following analysis of the representing function changes if k = 2. By Proposition 9.3
there are functions F : R5 → R and B1, B2 : R3 → R such that for all f ∈ C3(R)
and x ∈ R

Tf(x) = F
(
x, f(x), f ′(x), f ′′(x), f ′′′(x)

)
,

Aif(x) = Bi

(
f(x), f ′(x), f ′′(x)

)
, i = 1, 2. (9.5)

Then T (Id) = 0, Ai(Id) = 11 translates into

F (x, x, 1, 0, 0) = 0, Bi(x, 1, 0) = 1, i = 1, 2,

equations which we will use in the following without further mention. Given ar-
bitrary values x, y, z, α1, α2, α3, β1, β2, β3 ∈ R, choose functions f, g ∈ C3(R) with
g(x) = y, f(y) = z, g(j)(x) = βj , f

(j)(y) = αj for j = 1, 2, 3. Then the second-
order chain rule operator equation (9.1) is equivalent to the functional equation
for the three functions F,B1, B2 given by

F (x, z, α1β1, α2β
2
1 + α1β2, α3β

3
1 + 3α2β1β2 + α1β3)

= F (y, z, α1, α2, α3)B1(y, β1, β2) + F (x, y, β1, β2, β3)B2(z, α1, α2), (9.6)

since

(f ◦ g)′′ = f ′′ ◦ g · (g′)2 + f ′ ◦ g · g′′,
(f ◦ g)′′′ = f ′′′ ◦ g · (g′)3 + 3f ′′ ◦ g · g′ · g′′ + f ′ ◦ g · g′′′.

(ii) We choose particular values for the αi’s and βi’s in (9.6) to identify the
structure of F,B1 and B2. Our first aim is to show that F (x, z, α1, α2, α3) is an
affine function of α3, with coefficients depending on (x, z, α1, α2) and that B1 and
B2 are related by B1(z, α1, α2) = α2

1 B2(z, α1, α2).
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Choosing α1 = β1 = 1, α2 = β2 = 0 in (9.6), we get

F (x, z, 1, 0, α3 + β3) = F (y, z, 1, 0, α3) + F (x, y, 1, 0, β3), (9.7)

which yields for α3=β3=y=0 that F (x, z, 1, 0, 0)=F (0, z, 1, 0, 0)+F (x, 0, 1, 0, 0).
For x = z this implies 0 = F (x, x, 1, 0, 0) = F (0, x, 1, 0, 0) + F (x, 0, 1, 0, 0). Put
G(x) := F (0, x, 1, 0, 0) = T (Id+x)(0). Then G(x) = −F (x, 0, 1, 0, 0) and hence
F (x, z, 1, 0, 0) = G(z)−G(x). Put x = z in (9.7) and interchange α3 and β3. Then

F (x, x, 1, α3 + β3) = F (y, x, 1, 0, β3) + F (x, y, 1, 0, α3) = F (y, y, 1, α3 + β3),

so that F̃ (α3) := F (x, x, 1, α3) is independent of x ∈ R, with F̃ : R → R being

additive by (9.7) for x = y = z, F̃ (α3 + β3) = F̃ (α3) + F̃ (β3). Choose β3 = 0 and
y = z in (9.7). Then

F (x, z, 1, 0, α3) = F̃ (α3) +G(z)−G(x). (9.8)

Next, put α1 = 1, α2 = β3 = 0 in (9.6). Then

F (x, z, β1, β2, α
′
3β

3
1) = F (y, z, 1, 0, α′

3)B1(y, β1, β2) + F (x, y, β1, β2, 0).

For β1 �= 0, α′
3β

3
1 may attain arbitrary values, varying α′

3. Renaming the variables
(β1, β2, α

′
3β

3
1) by (α1, α2, α3), we get for α1 �= 0, using (9.8)

F (x, z, α1, α2, α3) = F

(
y, z, 1, 0,

α3

α3
1

)
B1(y, α1, α2) + F (x, y, α1, α2, 0)

= F (x, y, α1, α2, 0) +

(
F̃

(
α3

α3
1

)
+G(z)−G(y)

)
B1(y, α1, α2). (9.9)

Similarly, choosing β1 = 1, β2 = α3 = 0 in (9.6) and replacing α1β3 by α3, we get
for α1 �= 0

F (x, z, α1, α2, α3)

= F (y, z, α1, α2, 0) +

(
F̃

(
α3

α1

)
+G(y)−G(x)

)
B2(z, α1, α2). (9.10)

Take y = z in (9.9) and y = x in (9.10) and compare the results to conclude that
for any α1, α2, α3 ∈ R with α1 �= 0

F̃

(
α3

α3
1

)
B1(z, α1, α2) = F̃

(
α3

α1

)
B2(z, α1, α2).

If F̃ were identically zero, by equation (9.9) the function F would be independent
of α3 and Tf would be independent of f ′′′ at any point x ∈ R, contrary to our
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assumption. Hence, there is c �= 0 with F̃ (c) �= 0. Choose α3 = c α3
1. Then with

F (t) :=
˜F (ct)
˜F (c)

,

B1(z, α1, α2) = F (α2
1)B2(z, α1, α2).

For f(x) :=x+ 1
3x

3, A2f(x)=B2(f(x), 1+x2, 2x) and A2f(0)=B2(0, 1, 0) =
1 �= 0. Since A2f is continuous, there is ε > 0 such that A2f(x) �= 0 for all x ∈ R

with |x| ≤ ε. Then for all α ∈ [1, 1 + ε2],

A2f
(√

α− 1
)
= B2

(
f
(√

α− 1
)
, α, 2

√
α− 1

) �= 0

and
A1f

(√
α− 1

)
A2f

(√
α− 1

) =
B1

(
f
(√

α− 1
)
, α, 2

√
α− 1)

B2

(
f
(√

α− 1
)
, α, 2

√
α− 1)

= F (α2)

defines a continuous function for α ∈ [1, 1 + ε2]. Since F is additive, Proposition

2.2 yields that F is linear. Since F (1) = 1, we have F (t) = t. Put d := F̃ (1). Then

F̃ (t) = dt and for all α1, α2 with α1 �= 0,

B1(z, α1, α2) = α2
1 B2(z, α1, α2).

Actually, B1 and B2 are also independent of z: Put y = z in (9.10) to find

F (x, z, α1, α2, α3) = F (z, z, α1, α2, 0) +
(
d
α3

α1
+G(z)−G(x)

)
B2(z, α1, α2).

Taking y = x in (9.9), we get, using in addition that B1 = α2
1B2,

F (x, z, α1, α2, α3) = F (x, x, α1, α2, 0)+
(
d
α3

α3
1

+G(z)−G(x)
)
α2
1 B2(x, α1, α2).

Since the left-hand sides of the previous two equations are identical, so are the
right-hand sides. Isolating the terms involving α3 on one side, we conclude

d
α3

α1

(
B2(z, α1, α2)−B2(x, α1, α2)

)
=
[
F (x, x, α1, α2, 0)− F (z, z, α1, α2, 0)

]
+
[
G(z)−G(x)

][
α2
1 B2(x, α1, α2)−B2(z, α1, α2)

]
. (9.11)

The right-hand side is independent of α3 and hence the left-hand side, too, requir-
ing that B2(z, α1, α2) = B2(x, α1, α2). This means that B2 and B1 = α2

1 B2 are
independent of x and z. Put

B(α1, α2) := B2(x, α1, α2) = B2(z, α1, α2),

so that α2
1 B(α1, α2) = B1(x, α1, α2) = B1(z, α1, α2). Since now the left-hand side

of (9.11) is zero, so is the right-hand side. This yields for x = 0 with G(0) =
T (Id)(0) = 0,

F (z, z, α1, α2, 0) = F (0, 0, α1, α2, 0) +G(z)(α2
1 − 1)B(α1, α2).
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Let F0(α1, α2) := F (0, 0, α1, α2, 0). Then, using (9.10) with y = z,

F (x, z, α1, α2, α3) =
[
F0(α1, α2) +G(z)(α2

1 − 1)B(α1, α2)
]

+
[
d
α3

α1
+G(z)−G(x)

]
B(α1, α2)

= F0(α1, α2) +
[
d
α3

α1
+ α2

1G(z)−G(x)
]
B(α1, α2). (9.12)

(iii) By (9.12), it suffices to determine the functions F0 and B. We claim that
B is independent of α2 and multiplicative in α1.

Insert formula (9.12) for F into (9.6) with x = y = z = 0, α1 �= 0 �= β1

and isolate terms involving α3 and β3 on the left-hand side. This yields after some
calculation

d

(
α3 β

2
1

α1
+

β3

β1

)[
B(α1β1, α2β

2
1 + α1β2)−B(α1, α2)B(β1, β2)

]
= β2

1F0(α1, α2)B(β1, β2) + F0(β1, β2)B(α1, α2)− F0(α1β1, α2β
2
1 + α1β2)

− 3d
α2β2

α1
B(α1β1, α2β

2
1 + α1β2). (9.13)

Since the right-hand side is independent of α3 and β3, the same is true for the
left-hand side. Using that d �= 0, we get

B(α1β1, α2β
2
1 + α1β2) = B(α1, α2)B(β1, β2) = B(α1β1, α2β1 + α2

1β2), (9.14)

where the last equality is a consequence of the symmetry of the product in the
middle in α and β. Given any t, s ∈ R and fixed values α1, β1 with α1β1 �∈ {0, 1},
the linear equations

β2
1α2 + α1β2 = t, β1α2 + α2

1β2 = s,

may be solved for α2, β2, since det
(

β2
1 α1

β1 α2
1

)
= α1β1(α1β1 − 1) �= 0. Hence for γ1 �∈

{0, 1}, B(γ1, t) is independent of t. For f(x) = 1
2x

2, A2f(α1) = B2

(α2
1

2 , α1, 1
)
=

B(α1, 1) = B(α1, 0), if α1 �∈ {0, 1}. Since A2f is continuous, B(α1, 0) is continuous
in α1 and by (9.14) multiplicative,

B(α1β1, 0) = B(α1, 0)B(β1, 0).

By Proposition 2.3, there is p ∈ R such that

B(α1, 0) = |α1|p or B(α1, 0) = |α1|p sgnα1.

Since B( · , 0) is continuous, we need p ≥ 0 in the first case and p > 0 in the second
case. Thus we have for all α1, α2, also for α1 = 1 and α1 = 0,

B(α1, α2) = B(α1, 0) = |α1|p{sgnα1} =: B̃(α1). (9.15)
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(iv) We finally determine the form of F0. Since the left-hand side of (9.13) is
zero, so is the right-hand side, and using also (9.15), we get for α1 �= 0 �= β1

F0(α1β1, α2β
2
1 + α1β2) + 3d

α2β2

α1
B̃(α1β1)

= F0(α1, α2)β
2
1 B̃(β1) + F0(β1, β2) B̃(α1). (9.16)

Let β1 = 1, α2 = 0. After renaming α1β2 as α2, we get

F0(α1, α2) = F (α1, 0) + F0

(
1,

α2

α1

)
B̃(α1). (9.17)

Similarly, for α1 = 1, β2 = 0 we find after renaming variables

F0(α1, α2) = F0(α1, 0) + F0

(
1,

α2

α2
1

)
α2
1 B̃(α1).

Comparing the results, we conclude that F
(
1, α2

α1

)
= F (1, α2

α2
1

)
α2
1 which for α2 =

α2
1 =: α2 given F0(1, α) = F0(1, 1)α

2 =: bα2. To identify also F0(α1, 0), put
α2 = β2 = 0 in (9.16). By symmetry in α1 and β1,

F0(α1β1, 0) = F0(α1, 0)β
2
1 B̃(β1) + F0(β1, 0)B̃(α1)

= F0(β1, 0)α
2
1 B̃(α1) + F0(α1, 0)B̃(β1).

Take the difference of both right-hand sides and choose a fixed β �∈ {0, 1,−1}. Let
c := F0(β1,0)

(β2
1−1) ˜B(β1)

. Then F0(α1, 0) = c(α2
1 − 1)B̃(α1). By (9.17),

F0(α1, α2) =

[
c(α2

1 − 1) + b
α2
2

α2
1

]
B̃(α1).

Put α1 = β1 = 1 and α2 = β2 = 1
2 , to find using (9.16) and B̃(1) = 1,

b+
3

4
d = F0(1, 1) +

3

4
d = 2F0

(
1,

1

2

)
=

b

2
,

so that b = − 3
2d is necessary for (9.16) to be satisfied. Formula (9.12) finally yields,

using the formulas for F0 and B

F (x, z, α1, α2, α3) =

([
c(α2

1−1)−3

2
d
α2
2

α2
1

]
+

[
d
α3

α1
+α2

1G(z)−G(x)

])
B̃(α1)

=

[
d

(
α3

α1
− 3

2

α2
2

α2
1

)
+ α2

1H(z)−H(x)

]
B̃(α1), (9.18)

where we put H(z) := G(z) + c. Inserting formulas (9.18) and (9.15) for F and B
and those for B1 and B2 in terms of B into (9.6), calculation shows that, conversely,
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these functions satisfy (9.6). Therefore, (9.18) gives the general solution of the
functional equation (9.6).

(v) Hence by (9.5)

Tf =
[
d(f ′)2Sf + ((f ′)2H ◦ f −H)(f ′)2

]|f ′|p−2{sgn f ′},
A1f = (f ′)2A2f, A2f = |f ′|p{sgn f ′}, (9.19)

for all f ∈ C3(R), where S denotes the Schwarzian. We need p ≥ 2 to guarantee
that Tf is continuous for all f ∈ C3(R). Since Tf, f, f ′, f ′′ and f ′′′ are continuous
for all f ∈ C3(R), it follows from the formula for T that (f ′)2H ◦ f −H is contin-
uous in x0 ∈ R for all f ∈ C3(R) and x0 ∈ R with f ′(x0) �= 0. A similar argument
as in part (iii) of the proof of Theorem 4.1 then shows that H is continuous. For
a detailed proof, cf. [KM3, p. 889].

For p ≥ 2 or p > 2, formula (9.18) also holds for α1 = 0, i.e., when f ′(x) = 0.
To see this, take arbitrary x0, z, α2, α3 ∈ R with α2, α3 not both zero. Choose
f(x) = z + α2

2 (x − x0)
2 + α3

6 (x − x0)
3. Then for x close to x0, f

′(x) �= 0. We
consider the case f ′(x) > 0. Then by (9.19)

Tf(x) = d
[
α3

(
α2(x− x0) +

α3

2
(x− x0)

2
)p−1

− 3

2

(
α2 + α3(x− x0)

)2 (
α2(x− x0) +

α3

2
(x− x0)

2
)p−2]

+
(
α2(x− x0) +

α3

2
(x− x0)

2
)p+2

H(f(x))

−
(
α2(x− x0) +

α3

2
(x− x0)

2
)p

H(x).

For x → x0, the left-hand side converges to (Tf)(x0) = F (x0, z, 0, α2, α3) by the
continuity of Tf and the right-hand side converges to 0 if p > 2 and to − 3

2dα
2
2 if

p = 2 since H and f are continuous. Hence (9.18) and (9.19) also hold for α1 = 0,
assuming p ≥ 2.

(vi) We quickly mention how the analysis of F and B changes when k = 2,
i.e., when T : C2(R) → C(R) and A1, A2 : C1(R) → C(R). The representing
functions F,B1 and B2 depend on one argument less and (9.6) is replaced by

F (x, z, α1β1, α2β
2
1 + α1β2) = F (y, z, α1, α2)B1(y, β1) + F (x, y, β1, β2)B2(z, α1).

In this case F̃ (α2) := F (x, x, 1, α2) is independent of x and additive. Putting
G(x) = T (Id+x)(0) = F (0, x, 1, 0), equations (9.9) and (9.10) are replaced by

F (x, z, α1, α2) = F (x, y, α1, 0) +

[
F̃

(
α2

α2
1

)
+G(z)−G(y)

]
B1(y, α1)

= F (y, z, α1, 0) +

[
F̃

(
α2

α1

)
+G(y)−G(x)

]
B2(z, α1).
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This then yields that B1(z, α1) = α1 B2(z, α1) and (9.11) has the analogue

d
α2

α1

(
B2(z, α1)−B2(x, α1)

)
=
[
F (x, x, α1, 0)− F (z, z, α1, 0)

]
+
[
G(z)−G(x)

][
α1 B2(x, α1)−B2(z, α1)

]
,

with d := F̃ (1) �= 0, since T is assumed to depend on the second derivative. This
shows that B(α1) := B2(z, α1) is independent of z ∈ R, and (9.12) is replaced by

F (x, z, α1, α2) = F0(α1) +
[
d
α2

α1
+ α1 G(z)−G(x)

]
B(α1),

with F0(α1) := F (0, 0, α1, 0). The analogue of (9.13) is

d

(
α2β1

α1
+

β2

β1

)[
B(α1β1)−B(α1)B(β1)

]
= β1 F0(α1)B(β1) + F0(β1)B(α1)− F0(α1β1).

The right-hand side is independent of α2 and β2, implying that both sides are
zero. Hence B is multiplicative, B(α1β1) = B(α1)B(β1) and

F0(α1β1) = β1 F0(α1)B(β1) + F0(β1)B(α1),

which yields that F0(α1) = c(α1 − 1)B(α1), and finally with H(z) = G(z) + c,

F (x, z, α1, α2) =
(
d
α2

α1
+ α1H(z)−H(x)

)
B(α1),

as the analogue of equation (9.18) in the case k = 2.

(vii) We now turn to the case k = 1, when T,A1, A2 : C1(R) → C(R) satisfy
(9.1). If F : R3 → R, B1, B2 : R2 → R represent T,A1, A2 according to Proposition
9.3,

Tf(x) = F
(
x, f(x), f ′(x)

)
, Aif(x) = Bi

(
f(x), f ′(x)

)
, i = 1, 2,

for all x ∈ R, f ∈ C1(R), we have as a replacement of (9.6)

F (x, z, α1β1) = F (y, z, α1)B1(y, β1) + F (x, y, β1)B2(z, α1), (9.20)

for all x, y, z, α1, β1 ∈ R. We again put G(x) := F (0, x, 1) = T (Id+x)(0), with

G(0) = T (Id)(0) = 0. Let B̃i(α1) := Bi(0, α1) and E(α1) := F (0, 0, α1). Then,
putting y = 0 in (9.20) and using the symmetry in (α1, β1), we have

F (x, z, α1β1) = F (0, z, α1) B̃1(β1) + F (x, 0, β1)B2(z, α1)

= F (0, z, β1) B̃1(α1) + F (x, 0, α1)B2(z, β1).
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Choosing β1 = 1 in both equations, and also z = 0 in the first equation, we find,
using also Bi(z, 1) = 1,

F (x, z, α1) = G(z) B̃1(α1) + F (x, 0, α1)

= G(z) B̃1(α1) +
(
E(α1)−G(x) B̃2(α1)

)
. (9.21)

Inserting this into (9.20) with y = 0, we get after reordering terms

G(z)
[
B̃1(α1β1)− B̃1(α1)B̃1(β1)

]−G(x)
[
B̃2(α1β1)−B2(z, α1) B̃2(β1)

]
= E(α1) B̃1(β1) + E(β1)B2(z, α1)− E(α1β1). (9.22)

The functions G and E cannot both be zero, since then by (9.21), F = 0 and
T = 0.

(viii) Assume first that G ≡ 0 and E �= 0. Then the left and hence also the
right-hand side of (9.22) is zero, and hence B2(z, α1) cannot depend on z since
the other terms do not depend on z. Hence

E(α1β1) = E(α1)B(β1) + E(β1)B(α1) (9.23)

with B := 1
2 (B̃1 + B̃2). By (9.21)

Tf(x) = F
(
x, f(x), f ′(x)

)
= E(f ′(x))

is continuous for all f ∈ C1(R). Choosing f(x) = 1
2x

2 shows that E is continuous.
Also 1

2 (A1f(x) +A2f(x)) = B(f ′(x)), which implies that B is continuous too. By
Proposition 2.13, the solutions of (9.23) are given by either

E(α1) = d ln |α1| |α1|p {sgnα1}, B(α1) = |α1|p {sgnα1},

or

E(α1) = d sin
(
c ln |α1|

) |α1|p {sgnα1}, B(α1) = cos
(
c ln |α1|

) |α1|p {sgnα1},

or

E(α1) =
d
2

(|α1|q {sgnα1} − |α1|r [sgnα1]
)
,

B(α1) =
1
2

(|α1|q {sgnα1}+ |α1|r [sgnα1]
)
,

for suitable constants d, c, p, q, r. These solutions are of the form given in Theorem
9.1 (b1), k = 1 and (b2); B in the last solution may be replaced for (9.22) by
B1(α1) = |α1|q {sgnα1}, B2(α) = |α1|r [sgnα1], since only

1
2 (B1+B2) is uniquely

determined. The last solution (d) of Proposition 2.13 does not apply here since
B(1) needs to be 1.
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(ix) Now assume that G �≡ 0. Since the right-hand side of (9.22) is indepen-
dent of x, so is the left-hand side. Choose x ∈ R with G(x) �= 0. We also know
that G(0) = 0. It follows from (9.22) that

B̃2(α1β1) = B2(z, α1) B̃2(β1),

which again implies that B2(z, α1) is independent of z and that B̃2 is multiplica-

tive, i.e., B̃2(α1) = |α1|p{sgnα1} for some p ≥ 0.
Now the right-hand and hence also the left-hand side of (9.22) are indepen-

dent of z, yielding B̃1(α1β1) = B̃1(α1)B̃1(β1). Therefore, B̃1(α1) = |α1|q[sgnα1]
for some q ≥ 0. Since the left-hand side of (9.22) is zero, so is the right-hand side,
and by symmetry

E(α1β1) = E(α1) B̃1(β1) + E(β1) B̃2(α1)

= E(α1) B̃2(β1) + E(β1) B̃1(α1), (9.24)

E(α1)
(
B̃1(β1)− B̃2(β1)

)
= E(β1)

(
B̃1(α1)− B̃2(α1)

)
. (9.25)

Equation (9.24) implies for α1 = β1 = 1 that E(1) = 2E(1), E(1) = 0. By (9.21)

Tf = E(f ′) +G(f) · B̃1(f
′)−G · B̃2(f

′)

is continuous for all f ∈ C1(R). Hence, for functions f and x with f ′(x) = 1 we
have that G(f)−G is continuous at x. This implies that G is continuous, similarly

as in the proof of Theorem 4.1. Choose f(x) = x2

2 to conclude that also E is
continuous.

If E ≡ 0, F (x, z, α1) = G(z) |α1|q [sgnα1] − G(x) |α1|p {sgnα1} by (9.21),
yielding one of the solutions of (b2) of Theorem 9.1.

If E �≡ 0, choose β1 ∈ R with E(β1) �= 0. Then (9.25) implies

B̃1(α1) = B̃2(α1) + cE(α1), c :=
B̃1(β1)− B̃2(β1)

E(β1)
.

If c = 0, B̃1(α1) = B̃2(α1) = |α1|p {sgnα1} and (9.24) gives

E(α1β1)

B̃2(α1β1)
=

E(α1)

B̃2(α1)
+

E(β1)

B̃2(β1)
, α1 �= 0 �= β1.

Hence, ψ(s) := E(exp s)
˜B2(exp s)

is additive and continuous. Thus there is d �= 0 such that

ψ(s) = ds, s ∈ R. Therefore

E(α1) = d ln |α1| B̃2(α1),
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and equation (9.21) gives

F (x, z, α1) =
(
d ln |α1|+G(z)−G(x)

)
B̃2(α1),

B̃1(α1) = B̃2(α1) = |α1|p{sgnα1},
which is the solution in (b1) for k = 1.

If c �= 0, with d = 1
c , E(α1) = d(B̃1(α1)−B̃2(α1)), and withH(x) := G(x)+d,

using again (9.21)

F (x, z, α1) = H(z) B̃1(α1)−H(x) B̃2(α1)

= H(z) |α1|q [sgnα1]−H(x) |α1|p {sgnα1},
which gives the last solution in part (b1) of Theorem 9.1.

This ends the proof of part (b) of Theorem 9.1, finding all solutions of (9.1)
if k ∈ {1, 2, 3}. �
Remark. As mentioned in Remark (b) after Theorem 9.1, the assumption of point-
wise Ck−1-continuity of A1 and A2 for k ≥ 2 is of a technical nature. Without this
assumption, but keeping the isotropy condition, e.g., equation (9.7), would have
to be replaced by

F (x, z, 1, 0, α3 + β3)

= F (y, z, 1, 0, α3)B1(y, 1, 0, β3) + F (x, y, 1, 0, β3)B2(z, 1, 0, α3),

which admits solutions which do not satisfy B1(y, 1, 0, β3) = B2(z, 1, 0, α3)
= 1 for all y, z, α3, β3 ∈ R. The continuous solutions of this equation for x = y = z
are given in Corollary 2.12. They involve additional exponential terms, e.g., in
solution (a) of Corollary 2.12

F (x, x, 1, 0, α3) = c(x)α3 exp
(
p(x)α3

)
, Bi(x, 1, 0, α3) = exp

(
p(x)α3

)
.

Equations corresponding to (9.9) and (9.10) should, however, yield a contradiction
if p(x) were non-zero, due to different orders of growth of F (x, z, α1, α2, α3) in α3

in both formulas.

9.3 The case k ≥ 4

It still remains to prove part (a) of Theorem 9.1, namely, that the second-order
chain rule equation (9.1) does not admit any solutions which depend non-trivially
on the k-th derivative when k ≥ 4. We prove this without the isotropy assumption.

Proposition 9.4. Let k ∈ N, k ≥ 4. Suppose that T : Ck(R) → C(R) and A1, A2 :
Ck−1(R) → C(R) satisfy (9.1), that (T,A1) is C

k-non-degenerate and that A1 and
A2 are Ck−1-pointwise continuous. Then T does not depend on the k-th derivative.
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The basic reason that no operators T exist so that Tf would depend non-
trivially on f (k) for some k ≥ 4 is that the Faà di Bruno formula for (f ◦ g)(k)

contains too many terms, so that that functional equation for the representing
functions F,A1, and A2 would require too many equations to hold for relatively few
variables. This is true, in particular, since the operators A1, A2 would necessarily
have the simple form A1f = (f ′)k−1A2f , A2f = |f ′|p{sgn f ′} with p ≥ 0, as we
will see in the proof.

Proof. (i) By Proposition 9.3 there are functions F : Rk+2 → R and B1, B2 :
Rk+1 → R such that for all f ∈ Ck(R) and x ∈ R

Tf(x) = F
(
x, f(x), . . . , f (k)(x)

)
,

Aif(x) = Bi

(
x, f(x), . . . , f (k−1)(x)

)
, i = 1, 2.

The fact that A1 and A2 are isotropic was used only at the end of the proof of
Proposition 9.3 to avoid the dependence of the functions Bi of the independent
variable x which we may keep. We will apply the operator equation only for x =
y = z = 0 and functions f, g ∈ Ck(R) with f(0) = g(0) = 0. Then the functions F
and Bi are independent of x = 0, f(x) = 0, and we may consider them as functions
F : Rk → R and Bi : Rk−1 → R for i = 1, 2. We have T (Id) = 0, Ai(Id) = 11.
Isotropy is not needed to prove this. Therefore

F (1, 0, . . . , 0︸ ︷︷ ︸
k

) = 0, Bi(1, 0, . . . , 0︸ ︷︷ ︸
k−1

) = 1.

The operator equation (9.1) then turns into a functional equation for F,B1 and
B2,

F
(
(f ◦ g)′(0), . . . , (f ◦ g)(k)(0))

= F
(
f ′(0), . . . , f (k)(0)

) ·B1

(
g′(0), . . . , g(k−1)(0)

)
+ F

(
g′(0), . . . , g(k)(0)

) ·B2

(
f ′(0), . . . , f (k−1)(0)

)
.

For any α1, . . . , αk, β1, . . . , βk ∈ R choose f, g ∈ Ck(R) with f(0) = g(0) = 0 and
f (j)(0) = αj , g

(j)(0) = βj , j ∈ {1, . . . , k}. Then (f ◦ g)′′(0) = α2β
2
1 +α1β2. By the

Faà di Bruno formula for (f ◦ g)(j) for j ≥ 3, we have

pj(α, β) := (f ◦ g)(j)(0)

= αj β
j
1 +

(
j

2

)
αj−1 β

j−1
1 β2 + qj(α, β) + j α2 β1 βj−1 + α1 βj

=: αj β
j
1 + rj(α, β) + α1 βj (9.26)

where q3(α, β) = 0 and qj(α, β) for j ≥ 4 is the sum of monomials in the variables
(α1, . . . , αj−2, β1, . . . , βj−2), each of which contains at least one α� and one βm as a
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factor for some 2 ≤ �,m ≤ j− 2, and where rj(α, β) depends only on α1, . . . , αj−1

and β1, . . . , βj−1. This is shown by induction on j. For a simple proof of the Faà
di Bruno formula, we refer to Spindler [Sp]. Note that pj(α, β) is not symmetric
in (α, β). The operator equation (9.1) for (T,A1, A2) is then equivalent to the
functional equation for (F,B1, B2) given by

F
(
α1β1, α2β

2
1 + α1β2, p3(α, β), . . . , pk(α, β)

)
= F (α1, . . . , αk)B1(β1, . . . , βk−1) + F (β1, . . . , βk)B2(α1, . . . , αk−1). (9.27)

(ii) We show that F (α1, . . . , αk−1, αk) is an affine function of αk; more pre-
cisely,

F (α1, . . . , αk) = F (α1, . . . , αk−1, 0) + d
αk

α1
B2(α1, . . . , αk−1), (9.28)

and that B1 and B2 are related by

B1(α1, . . . , αk−1) = αk−1
1 B2(α1, . . . , αk−1). (9.29)

This is similar to part (ii) of the proof of part (b) of Theorem 9.1:

Define F̃ (αk) := F (1, 0, . . . , 0, αk). Choosing α1 = β1 = 1, α2 = · · · =

αk−1 = β1 = · · · = βk−1 = 0 in (9.27), we get using (9.26) that F̃ is additive,

F̃ (αk + βk) = F̃ (αk) + F̃ (βk). Next take α1 = 1, α2 = · · · = αk−1 = βk = 0. Then
by (9.26) and (9.27)

F (β1, . . . , βk−1, β
k
1αk) = F̃ (αk)B1(β1, . . . , βk−1) + F (β1, . . . , βk−1, 0),

using B2(1, 0, . . . , 0) = 1. Renaming variables yields for α1 �= 0

F (α1, . . . , αk−1, αk) = F̃

(
αk

αk
1

)
B1(α2, . . . , αk−1) + F (α1, . . . , αk−1, 0).

Similarly, starting with β1 = 1, β2 = · · · = βk−1 = αk = 0, we find for α1 �= 0,

F (α1, . . . , αk−1, αk) = F̃

(
αk

α1

)
B2(α1, . . . , αk−1) + F (α1, . . . , αk−1, 0). (9.30)

Comparing both equations, we conclude that

F̃

(
αk

αk
1

)
B1(α1, . . . , αk−1) = F̃

(
αk

α1

)
B2(α1, . . . , αk−1).

We now assume that Tf depends non-trivially on f (k). Then F has to depend
on αk. The previous formulas then show that F̃ cannot be identically zero. Thus

there is c �= 0 such that F̃ (c) �= 0. Let F (t) :=
˜F (ct)
˜F (c)

. Choose αk := c αk
1 . Then

B1(α1, . . . , αk−1) = F (αk−1
1 )B2(α1, . . . , αk−1). (9.31)
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For f(x) = x + 1
kx

k, A2f(x) = B2(1 + xk−1, (k − 1)xk−2, . . . , (k − 1)!x). Hence,
A2f(0) = B2(1, 0, . . . , 0) = A2(Id)(0) = 1. Since A2f is continuous, there is ε > 0
such that A2f(x) �= 0 for all |x| ≤ ε. Define ϕ : [1, 1 + εk−1] → [0, ε] by ϕ(α) =

(α− 1)
1

k−1 . Then A2f(ϕ(x)) is continuous and non-zero in [1, 1+ εk−1]. Therefore

A1f(ϕ(α))

A2f(ϕ(α))
=

B1

(
α, (k − 1)ϕ(α)k−1, . . . , (k − 1)!ϕ(α)

)
B2

(
α, (k − 1)ϕ(α)k−2, · · · , (k − 1)!ϕ(α))

= F (αk−1)

is continuous in [1, 1+ εk−1]. By Proposition 2.2, the additive function F is linear.

Using F (1) = 1, we conclude that F (t) = t and hence F̃ (t) = d t with d := F̃ (1) �=
0. Now (9.31) implies (9.29), and (9.30) yields (9.28). By (9.26)

pk(α, β)

α1β1
=

αk

α1
βk−1
1 +

βk

β1
+

rk(α, β)

α1β1
,

where rk(α,β)
α1β1

depends neither on αk nor on βk. We now insert (9.28) into (9.27),
use the last equation and isolate the terms having a factor αk or βk on the left-hand
side. Calculation shows that

d

(
αk

α1
βk−1
1 +

βk

β1

)[
B2(α1β1, α2β

2
1 + α1β2, . . . , pk−1(α, β))

−B2(α1, . . . , αk−1)B2(β1, . . . , βk−1)
]

= βk−1
1 F (α1, . . . , αk−1, 0)B2(β1, . . . , βk−1)

+ F (β1, . . . , βk−1, 0)B2(α1, . . . , αk−1)

− F
(
α1β1, . . . , pk−1(α, β), 0

)− d
rk(α, β)

α1β1
B2

(
α1β1, . . . , pk−1(α, β)

)
. (9.32)

Since the right-hand side of (9.32) neither depends on αk nor on βk, and since αk

and βk may be chosen arbitrarily, the factor of the term involving αk and βk on
the left has to be zero, and we get, using the symmetry of the product,

B2(α1β1, α2β
2
1 + α1β2, . . . , pk−1(α, β)) = B2(α1, . . . , αk−1)B2(β1, . . . , βk−1)

= B2

(
α1β1, β2α

2
1 + β1α2, . . . , pk−1(β, α)

)
. (9.33)

The same argument as in the proof of Theorem 4.1, part (i), on the chain rule equa-
tion of first order now shows that B2 is independent of the variables α2, . . . , αk−1:
For α1, β1 with α1β1 �∈ {0, 1,−1} and arbitrary values of t2, . . . , tk−1, s2, . . . , sk−1

we may successively solve the equations{
p2(α, β) = t2
p2(β, α) = s2

}
, . . . ,

{
pk−1(α, β) = tk−1

pk−1(β, α) = sk−1

}
,

since they may be reformulated in terms of the successive linear equations for
(α2, β2), . . . , (αk−1, βk−1), using (9.26),{

βj
1αj + α1βj = tj − rj(α, β)

β1αj + αj
1βj = sj − rj(α, β)

}
, j = 2, . . . , k − 1,
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where r2 = 0 and rj(α, β) only depends on the variables (α1, . . . , αj−1,
β1, . . . , βj−1) chosen before. The equations are uniquely solvable since

det
(

βj
1 α1

β1 αj
1

)
= α1β1((α1β1)

j−1 − 1) �= 0. Therefore, for all α �∈ {0, 1,−1}, by
(9.33)

B2(α, t2, . . . , tk−1) = B2(α, s2, . . . , sk−1) =: B(α),

and B2 does not depend on α2, . . . , αk−1 for α �∈ {0, 1,−1}. This also holds in
the limit for α ∈ {0, 1,−1}. Equation (9.33) then yields that B is multiplicative,

B(α1β1) = B(α1)B(β1). For f(x) = x2

2 , A2f(x) = B2(x, 0, . . . , 0) = B(x) is
continuous. By Proposition 2.3, there is p ≥ 0 such that

B2(α1, . . . , αk−1) = B(α1) = |α1|p {sgnα1}.
Since the left-hand side of (9.32) is zero, so is the right-hand side. We use this
only for α1 = β1 = 1 and conclude, using B(1) = 1, that

F
(
1, α2 + β2, . . . , pk−1(α, β), 0

)
+ d rk(α, β)

= F (1, α2, . . . , αk−1, 0) + F (1, β2, . . . , βk−1, 0). (9.34)

Taking here, for k ≥ 4, α2 = · · · = αk−2 = βk−1 = 0, and α1 = β1 = 1 as before,
we find from (9.26) and the explanation of the term qk(α, β) in

rk(α, β) =

(
k

2

)
αk−1β

k−1
1 β2 + k α2 β1 βk−1 + qk(α, β)

given there that

F (1, β2, . . . , βk−2, αk−1, 0) + d

(
k

2

)
αk−1β2

= F (1, 0, . . . , 0, αk−1, 0) + F (1, β2, . . . , βk−2, 0, 0)

Renaming variables, this means

F (1, α2, . . . , αk−2, αk−1, 0) + d

(
k

2

)
αk−1α2

= F (1, 0, . . . , 0, αk−1, 0) + F (1, α2, . . . , αk−2, 0, 0).

Next, we choose β2 = · · · = βk−2 = αk−1 = 0 in (9.34). Using (9.26), we then get

F (1, α2, . . . , αk−2, βk−1, 0) + d k α2βk−1

= F (1, α2, . . . , αk−2, 0, 0) + F (1, 0, . . . , 0, βk−1, 0).

Renaming βk−1 as αk−1, both equations are identical except for the term involving
α2 αk−1. We conclude that necessarily

0 = d

[(
k

2

)
− k

]
α2 αk−1 = d

k(k − 3)

2
α2 αk−1. (9.35)
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Since αk−1 and α2 can be chosen arbitrarily and k − 3 ≥ 1, it follows that d = 0,

hence F̃ = 0 and by (9.28)

F (α1, . . . , αk) = F (α1, . . . , αk−1, 0).

The assumption that Tf depended non-trivially on f (k) let to the conclusion that
it does not depend on f (k), a contradiction. Note that equation (9.35) does not
give a contradiction for k = 3. There we had the Schwarzian solution. This ends
the proof of Proposition 9.4. �

9.4 Notes and References

Theorem 9.1 is due to König and Milman in [KM3] (k ∈ {0, 1, 2}) and [KM6]
(k ≥ 3).

A somewhat similar answer as in Theorem 9.1 appears in the study of the first
additive function of the group of diffeomorphisms on the projective line, with co-
efficients in the λ-densities, cf. Ovsienko, Tabachnikov [OT]. This is essentially the
study of continuous operators T : Diff(RP1) → C∞(RP1) satisfying the functional
equation

T (f ◦ g) = (g′)λ Tf ◦ g + Tg,

for various values λ ∈ R, i.e., for operators of the specific form A1g = (g′)λ,
A2f = 11 on different function spaces. This equation generalizes the chain rule
in a different fashion than the one studied here. As it turns out, the cohomology
groups are non-trivial only for the values λ ∈ {0, 1, 2}, and they are represented
by cocycles constituting derivations of orders 1, 2, 3, respectively. In the last case,
the non-trivial cocycle corresponds to the Schwarzian derivative, [OT, p. 20]. This
should be compared to Theorem 9.1 with (formally) p = 0 and λ = 2 when T is
the Schwarzian and A1g = (g′)2, A2f = 1. Note here that we do neither assume
the continuity of T nor a specific form of the operators A1 and A2. For q = 0 and
λ = 1, 0, respectively, the non-trivial cocycles are represented by f ′′ and ln |f ′|,
respectively, [OT]. Clearly, for diffeomorphisms f , f ′ �= 0. We thank D. Faifman
for bringing [OT] to our attention.
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[PS] G. Pólya, G. Szegö; Aufgaben und Lehrsätze aus der Analysis I, Springer,
1970.

[RTRS] J. M. Rassias, E. Thandapani, K. Ravi, B. V. Senthil Kumar; Functional
Equations and Inequalities, World Scientific, 2017.

[S] W. Sierpinski; Sur l’équation fonctionelle f(x + y) = f(x) + f(y), Fun-
damenta Math. 1 (1920), 116–122.
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