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Abstract. Some decision aiding methods are based on constructing and
exploiting outranking relations. An alternative a outranks another b if a is at
least as good as b (aSb). One well known method in this field is ELECTRE. The
outranking relation is usually built by means of a weighted average (WA) of the
votes given by a set of criterion with respect to the fulfilment of aSb. The value
obtained represent the strength of the majority opinion. The WA operator can be
observed to have sometimes an undesired compensative effect. In this paper we
propose the use of other aggregation operators with different mathematical
properties. In particular, we substitute the WA by three operators from the
Ordered Weighted Average (OWA) family of operators because it permits to
decide the degree of andness/orness that is used during the aggregation.
The OWAWA (Ordered Weighted Average Weighted Average), WOWA
(Weighted Ordered Weighted Average) and IOWA (Induced Ordered Weighted
Average) operators are studied. They are capable to combine the importance
given to each criterion with the conjunctive/disjunctive requirement applied in
the definition of the outranking relation.

Keywords: Decision support systems � Outranking relations
Ordered Weighted Average

1 Introduction

Multiple Criteria Decision Aiding discipline studies systematic methods for complex
decision problems concerning diverse and often contradictory criteria, by analyzing a
set of possible alternatives in order to find the best one [1]. One of the most successful
approaches nowadays is known as outranking methods. It is based on social choice
models that copy the human reasoning procedure [4].

MCDA methods take a set of alternatives (i.e. potential solutions) and generate a
ranking of the alternatives according to a set of criteria. Criteria are tools constructed
for the evaluation of alternatives compared in terms of suitability based on the decision
maker’s needs. Each criterion corresponds to a point of view considered in the decision
process. Outranking methods are characterized by being based on constructing pref-
erence relations between the alternatives by means of pairwise comparisons, instead of
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aggregating directly the values given by the criteria. The aim is to build a binary
outranking relation aSb, which means “a is at least as good as b” [1]. Each criterion is
asked about its contribution to this outranking assertion and it provides a vote in favor
or against to aSb. Votes must be aggregated in order to associate a value to aSb for all
possible pairs of alternatives. There are two main methods known as PROMETHEE
and ELECTRE. In this study, we focus on ELECTRE method as it strictly applies the
concept of veto. Moreover, ELECTRE method has been widely acknowledged as an
efficient decision aiding tool with successful applications in many domains [4].

ELECTRE uses a weighted average to merge all the votes supporting aSb and then
it includes the opposite votes by using a veto procedure. Once the valued outranking
relation is constructed, different exploitation procedures exist in order to derive a
ranking from it [1]. The contribution of this paper is the use of other aggregation
operators for merging the votes in favor of the outranking relation. In particular, we
propose the use of OWA-like operators because they enable the definition of
conjunctive/disjunctive policies of aggregation that may be more appropriate in some
decision problems. The compensation problem of classic weighted average may be
solved with the possibility of establishing a more appropriate and-like aggregation (to
model simultaneity) or or-like operator (for replaceability). As we do not want to
suppress the weights representing the voting power for each criterion, we propose the
use of Weighted OWA operators like OWAWA, WOWA and IOWA.

The paper is structured as follows. Section 2 presents the different aggregation
operators based on OWA that will be used in the study. Section 3 briefly outlies the
ELECTRE method. Section 4 defines the new procedure for calculating the overall
concordance. Section 5, makes an empirical analysis and comparison. Finally, Sect. 6
discusses the main conclusions of this study.

2 Weighted OWA Operators

Aggregation operators are mathematical formulations that map a set of n values Rn to a
single value R and must satisfy certain properties (idempotency, monotonicity, etc.) [9].
The most popular aggregation operators are averaging operators. The simplest aggre-
gation operator with weights is the weighted average (WA), where the source of the
values (i.e. the evaluation criteria) are assigned weights to indicate its trade-off
importance. Given a set of arguments A ¼ a1; . . .; anð Þ and a weighting vector V with
weights vj 2 0; 1½ � associated with each argument source (i.e. criterion), such thatPn

j¼1 vj ¼ 1. The weighted average is defined as:

WA Að Þ ¼
Xn

j¼1
vjaj ð1Þ

Differently, OWA [10] uses weights to provide a parameterized family of mean
type aggregation operators. The main distinguishing feature of this operator is the
reordering of arguments according to their values before weights are assigned. Given a
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set of arguments A ¼ a1; . . .; anð Þ and a weighting vector W with weights wj 2 0; 1½ �,
such that

Pn
j¼1 wj ¼ 1. The ordered weighted average is defined as:

OWA Að Þ ¼
Xn

j¼1
wjbj; ð2Þ

where bj is the jth largest of the ai.
An interesting fact about OWA is that weights are not given to the criteria but to the

values. Thus, we can perform different aggregation policies (disjunctive or conjunctive)
according to the decision maker (DM) needs. For example, the DM could assign
weights in such a way that extreme arguments are regarded less than central arguments.
In summary, the weights of OWA shows the importance of arguments in relation to the
ordering of the arguments.

In some problems the DM is interested in carefully considering the weighting
policies due to is significant impact on the results [3]. The use of OWA weights enables
to model the andness/orness, which can be combined with usual WA weights for the
different criteria. Next subsections introduce three different ways of combining them in
OWA-like operators that exploit the advantages of both OWA and WA approaches.

2.1 OWAWA

In [6] the OWAWA operator is introduced as a generalization of the WA and the OWA
operator.

An OWAWA operator is a mapping A ¼ a1; . . .; anð Þ ! R, having an associated
weighting vector V (WA), with

Pn
i¼1 vi ¼ 1 and vi 2 0; 1½ � and a weighting vector W

(OWA), with
Pn

j¼1 wj ¼ 1 and wj 2 0; 1½ �, such that:

OWAWAb Að Þ ¼ b
Xn

j¼1
wjbj þ 1� bð Þ

Xn

i¼1
viai; ð3Þ

where bj is the jth largest of the ai and b 2 0; 1½ �:
The novel feature of the OWAWA operator is the ability to take into account the

degree of importance of WA and OWA in specific situations. This is managed with the
parameter b. As b ! 1, the importance of OWA increases while as b ! 0, the
importance of WA increases. The OWAWA operator is monotonic, idempotent,
commutative and bounded.

2.2 WOWA

The WOWA operator was introduced in [8] as a combination of the WA operator and
the OWA operator by means of constructing a different weight that integrates the
associated weighting system seen in WA, V , with the weighting according to ordering
of OWA, W .
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A WOWA operator is a mapping A ¼ a1; . . .; anð Þ ! R of dimension n where,

WOWA Að Þ ¼
Xn

j¼1
xjbj; ð4Þ

where bj is the jth largest of the ai and the weight xi is defined taking into account the
importance of the sources of the arguments and their position after the reordering step,

defined as xi ¼ w� P
j� i vr jð Þ

� �
� w� P

j\i vr jð Þ
� �

with
Pn

i¼1 xi ¼ 1.

w� is a non-decreasing function that interpolates the points 0; 0ð Þf g[
ði=n;Pj� i wjÞ

n o
8i ¼ 1; . . .; n. w� is required to be a straight line when the points can

be interpolated in this way. Moreover, w� may be a regular monotonic non-decreasing
quantifier Q xð Þ, with Q 0ð Þ ¼ 0;Q 1ð Þ ¼ 1 and if x[ y then Q xð Þ�Q yð Þ.

The WOWA operator is defined in such a way that it reduces to the OWA operator
when vi ¼ 1=n and reduces to the WA operator when wi ¼ 1=n. This shows that OWA
and WA are special cases of the generalized WOWA operator.

2.3 IOWA

The last method to combine the two different sets of weights is by means of an induced
ordered weighted averaging operator (IOWA). IOWA was introduced in [11] to
introduce an additional variable that influences the ordering stage of OWA. The IOWA
operator rather ordering arguments by their numeric values an ordered inducing vari-
able is used to order the arguments. Then, IOWA operator is defined in terms of
arguments in form of a two-tuple, called an OWA pair hui; aii, where ui is the order
inducing variable of the i th argument and ai is the argument variable of the i th
argument. In the reordering step ai is not used but ui:

Given n arguments to be aggregated denoted as A ¼ a1; . . .; anð Þ, the ordered
arguments are obtained in a way such that buj is the a value of the OWA pair having the
j th largest u value. The IOWA operator can then be defined as:

IOWA hu1; a1i; . . .; hu1; a1ið Þ ¼
Xn

j¼1
xjb

u
j ð5Þ

In IOWA a tie occurs when two OWA pairs huj; aji; huk; aki have equal order
inducing variables, i.e. uj ¼ uk. In this case, each OWA pair is replaced with an OWA
pair having the same order-inducing variable u but an argument variable that is an
average of the previous argument variables. This means that having huj; aji and
huk; aki where uj ¼ uk they are replaced by h uj ¼ uk

� �
; aj þ ak=2
� �i in the aggregation

process. The IOWA operator is idempotent, communicative, monotonic and bounded.
Using as inducing variable the vector V of importance of the criteria, we have

another way of combining V and W .
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3 Outranking Relations in the ELECTRE Methodology

The so-called outranking methods in the MCDA literature are based on conducting a
pairwise comparison of alternatives with regards to each criterion. The goal of the
comparison is to find out if it satisfies an outranking relation aSb meaning that alter-
native a is “at least as good as” alternative b.

The outranking relation S may be binary or valued. In this paper we study the case
of valued outranking relations, having then S ¼ A ! 0; 1½ �. The value assigned to S is
usually denoted as credibility (on the outranking relation). In the ELECTRE method, to
calculate the credibility of aSb, two conditions must hold:

1. Concordance condition: After pairwise comparison of a and b for each criterion, a
majority of the criteria must support aSb. It accounts for the majority opinion.

2. Non-discordance condition: Ensures that among the minority no criteria strongly
refutes aSb. It permits the right to veto (i.e. “respect to minorities”).

The outranking concept explained above is inspired in voting models used in
different theories of social election. It is similar to voting procedures applied United
Nations Security Council, where some countries have the right to veto the majority
opinion. Following this idea, in ELECTRE methodology, to calculate the credibility
value of the outranking relation q a; bð Þ 2 0; 1½ �, the following steps are applied [1]:

1. Calculation of a partial concordance index for each criterion cj a; bð Þ 2 0; 1½ �. In
each criterion, two discrimination thresholds may be used to model the uncertainty
of the decision maker: the indifference and the preference threshold.

2. Calculation of the overall concordance c a; bð Þ 2 0; 1½ �. It is calculated as a weighted
average of cj a; bð Þ using as weights the voting power of each criterion. The
resulting value represent the strength of the coalition of criteria being in favor of the
outranking relation aSb.

3. Calculation of a partial discordance index for each criterion dj a; bð Þ 2 0; 1½ �:
The DM can give to some criteria the right to veto the majority opinion if there are
essential reasons to refute it. In this case, the criteria has an associated veto
threshold, such that larger differences of this threshold in favor of b will eliminate
the possibility that option a outranks option b.

4. Calculation of the final credibility as:

q a; bð Þ ¼
c a; bð Þ if 8jdj a; bð Þ� c a; bð Þ
c a; bð Þ: Q

j2J a;bð Þ
1�dj a;bð Þ
1�c a;bð Þ otherwise

8<
: ; ð6Þ

where J a; bð Þ is the set of criteria for which the discordance is larger than the overall
concordance.

Once the credibility matrix is obtained, an exploitation procedure is applied in order
to establish a preference-based order among the alternatives. A simple ranking tech-
nique is known as Net Flow Score (NFS) procedure. NFS is based on the two evi-
dences: strength and weakness. They are measured in the graph corresponding to the
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valued credibility matrix calculated in step 4. The strength of alternative a is defined as
the sum of the credibility values of the output edges to the node a. The weakness of
alternative a is defined as the sum of the credibility values of the input edges to the
node a. In terms of outranking relations, the net flow score of an alternative a is defined
in Eq. 7. A total ranking can be derived from the NFS, being the higher the score, the
better.

NFS að Þ ¼ b 2 A : aSbj j � b 2 A : bSaj j ð7Þ

4 Using Weighted OWA in the Overall Concordance
Calculation

Some previous works have considered a modification of the way that overall concor-
dance is calculated in ELECTRE in different situations. The paper [7] looks at a
situation where the extent to which a criterion surpasses the preference threshold can be
reflected in a change in the importance of that criterion in the concordance calculation.
In [2] the concordance index is modified to take into consideration three possible
interactions between the criteria that modify each joint importance: mutual strength-
ening, mutual weakening and antagonistic. In both cases, the weights are modified but
the overall concordance index for each pair a; b is calculated as the weighted average of
the partial concordances indices.

Having C ¼ cj a; bð Þ� �
; j ¼ 1. . .n:

c a; bð Þ ¼ WA Cð Þ ð8Þ

In this paper we propose the substitution of the WA operator by a weighted OWA
operator, presented in Sect. 2. The first proposal is using OWAWA operator that
linearly combines both the result of WA and the result of OWA. In this case, the
parameter beta must be defined by the user. This parameter allows to base the result
most on the criteria importance weights or on the and/or weights.

c a; bð Þ ¼ OWAWAb Cð Þ ð9Þ

The second proposal consists in using IOWA operator with the criteria importance
V used as order-inducing variable. In this case, the values provided by the most
important criteria will the ones assigned to the first weights of the OWA vector W.

c a; bð Þ ¼ IOWA V ;Ch ið Þ ð10Þ
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The third approach uses the WOWA operator which generates a new weighting
vector from the V and W.

c a; bð Þ ¼ WOWA Cð Þ ð11Þ

5 Experiments

The OWA-based outranking construction proposed has been tested with two different
datasets. To evaluate the differences produced by the different operators, we compare
the ranking obtained using the Net Flow Score. A minimum credibility of 0.8 in the
outranking relation is used in this procedure. The correlation between different rankings
is calculated to see how new proposals are able to integrate both sets of weights.

5.1 Finding a Hotel

The first case study poses the problem of making lodging arrangements to attend a
congress in Jyväskylä (Finland). The DM wishes to make a choice from six hotel
alternatives all in proximity to the congress site. The choice will be made based on the
criteria and weights listed below. The data used in this case study is given in Tables 1
and 2. Six hotels have been evaluated using 6 criteria: C01- Distance to the congress
site, C02- Distance to the city center, C03- Sports facilities, C04- Restaurants avail-
able, C05- Category and C06- Services provided (wifi, laundry, etc.). Two first criteria
are minimized (−) and the rest are maximized (+).

Two sets of OWA weights have been considered for this study: a disjunctive policy
with wc = (0.408, 0.169, 0.130, 0.109, 0.096, 0.088) and a conjunctive policy with
weights wd = (0.028, 0.083, 0.139, 0.194, 0.25, 0.306). These weights were obtained
from the use of a regular monotonic non-decreasing quantifier, as proposed in [7].

Table 1. Hotels performance table

C01− C02− C03+ C04+ C05+ C06+

Alexandra 1600.0 300.0 2.0 3.0 4.0 5.0
Sokos 1700.0 400.0 2.0 2.0 4.0 5.0
Cumulus 1700.0 550.0 4.0 0.0 3.0 3.0
Scandic 600.0 350.0 3.0 2.0 4.0 2.0
Kampus 1550.0 610.0 4.0 0.0 3.0 2.0
Alba 110.0 1300.0 1.0 1.0 3.0 4.0

Table 2. Criteria parameters

C01 C02 C03 C04 C05 C06

Indifference 200.0 100.0 0.0 0.0 0.0 1.0
Preference 700.0 300.0 1.0 1.0 0.0 1.0
Weight 0.1 0.3 0.3 0.05 0.15 0.1
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To establish the disjunctive policy, the quantifier Q xð Þ ¼ ffiffiffi
x

p
is used, while for the

conjunctive policy Q xð Þ ¼ x2.
Next tables show the overall concordance values obtained with the three combined

operators proposed in this paper to merge the partial concordance indices (Table 3).

For OWAWA, three values of b have been tested. In orange, concordances higher
than 0.8 are highlighted, as they are the ones used in the NFS ranking procedure. We
show only some results for the disjunctive version of the operators (and WA as ref-
erence) for space limitations (Tables 4, 5, 6 and 7). For conjunctive policies, we have
observed that the values of the outranking matrix are much lower than with the rest,
finding very few values above the threshold of 0.8 and leading to rankings with
many ties.

Table 3. Outranking values with weighted average (WA)

Alexa Sokos Cumulus Scandic Kampus Alba
Alexa 1.0 1.0 0.7 0.6 0.7 0.9 
Sokos 0.95 1.0 0.7 0.6 0.7 0.9 
Cumulus 0.475 0.625 1.0 0.55 1.0 0.85 
Scandic 0.85 0.9 0.7 1.0 0.7 0.842 
Kampus 0.4 0.535 1.0 0.46 1.0 0.75 
Alba 0.2 0.2 0.4 0.2 0.4 1.0 

Table 4. Outranking values with OWA disjunctive (OWAd)

Alexa Sokos Cumulus Scandic Kampus Alba
Alexa 1.0 1.0 0.912 0.816 0.912 0.912 
Sokos 0.912 1.0 0.912 0.816 0.912 0.912 
Cumulus 0.6095 0.6745 1.0 0.642 1.0 0.816 
Scandic 0.816 0.912 0.912 1.0 0.912 0.85632 
Kampus 0.577 0.6355 1.0 0.603 1.0 0.707 
Alba 0.577 0.577 0.816 0.577 0.816 1.0 

Table 5. Outranking values with OWAWA beta = 0.5 disjunctive (OWAWA.5d)

Alexa Sokos Cumulus Scandic Kampus Alba
Alexa 1.0 1.0 0.806 0.708 0.806 0.906 
Sokos 0.936 1.0 0.806 0.708 0.806 0.906 
Cumulus 0.54225 0.64975 1.0 0.596 1.0 0.833 
Scandic 0.833 0.906 0.806 1.0 0.806 0.84916 
Kampus 0.4885 0.58525 1.0 0.5315 1.0 0.7285 
Alba 0.3885 0.3885 0.608 0.3885 0.608 1.0 
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The NFS values (Eq. 7) given to each hotel are shown in Table 8. Their ranking
positions (1…6) are given in Table 9, with the hotels in the best positions highlighted.

We can see that in most of the cases Alba is in the worst position, although with a
conjunctive policy the worst is Sokos. The best position is given to Scandic or Alexa

Table 6. Outranking values with IOWA disjunctive (IOWAd)

Alexa Sokos Cumulus Scandic Kampus Alba
Alexa 1.0 1.0 0.7115 0.609 0.7115 0.8975 
Sokos 0.912 1.0 0.7115 0.609 0.7115 0.8975 
Cumulus 0.463125 0.607375 1.0 0.53525 1.0 0.8095 
Scandic 0.8095 0.8975 0.7115 1.0 0.7115 0.83805 
Kampus 0.391 0.520825 1.0 0.4487 1.0 0.707 
Alba 0.205 0.205 0.423 0.205 0.423 1.0 

Table 7. Outranking values with WOWA disjunctive (WOWAd)

Alexa Sokos Cumulus Scandic Kampus Alba
Alexa 1.0 1.0 0.83666 0.7746 0.83666 0.94868 
Sokos 0.97467 1.0 0.83666 0.7746 0.83666 0.94868 
Cumulus 0.68351 0.78561 1.0 0.73455 1.0 0.92195 
Scandic 0.92195 0.94869 0.83666 1.0 0.83666 0.9172092 
Kampus 0.63246 0.72435 1.0 0.67329 1.0 0.86602 
Alba 0.44722 0.44722 0.63245 0.44722 0.63245 1.0 

Table 8. Net Flow Score for each hotel and each method

Alexa Sokos Cumulus Scandic Kampus Alba

WA 0 0 1 3 0 −4
OWAd 3 3 −3 3 −4 −2
OWAc 1 −1 0 0 0 0
OWAWA.3d 0 0 1 3 0 −4
OWAWA.3c 1 0 0 1 0 −2
OWAWA.5d 2 2 −2 5 −3 −4
OWAWA.5c 1 1 0 0 0 −2
OWAWA.7d 2 2 −2 5 −3 −4
OWAWA.7c 1 −1 0 0 0 0
IOWAd 0 0 1 3 0 −4
IOWAc 3 0 −4 3 −4 2
WOWAd 2 2 −2 5 −2 −5
WOWAc 1 0 0 1 0 −2
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(ndra), sometimes in a tie. Sokos is also in the best position when a disjunctive policy is
used. The case of Sokos hotel is quite interesting because its position is the least stable
of all hotels.

A look at the criteria weights show criteria C02 and C03 to have a combined 60%
of the total importance assigned to criteria, as such hotels like Scandic with good
performance values on C02 and C03 have better positions in WA. It can also be
observed that Alexandra hotel has no low score in any criterion and some high values,
thus it is the winner in case of conjunctive policies. It is worth to notice that Sokos is
the worst when using OWA disjunctive, but when including the criteria weights it
improve its position, as it is good in C02 and C03, as said before. Thus, the operators
balance both weighting vectors. Kampus is in an intermediate position with WA
because it has bad scores in non-relevant criteria, but when including the and/or
weights, it goes to worst positions because of its low score in C04 and C06.

In order to measure the similarity between the rankings, Table 10 gives the
Spearman rho correlation between the 3 results obtained using a single set of weights
(WA, OWAd and OWAc) with respect to the use of the two sets of weights together.
Table 10 also indicates the operator that gives a highest correlation (most similar
ranking, with correlation higher than 0.95) for each of the proposed methods.

We can see that the disjunctive policies with OWAWA with low beta and IOWA
give similar results to the WA. Rankings similar to OWA with disjunctive weights are
obtained with OWAWA also disjunctive and high beta (OWA-like), as expected.
Also OWAWA with high beta reproduces the ranking of OWA for the conjunctive
case. An interesting observation is that WOWA seems to give a significantly different
ranking to all the three basic ones.

Table 9. Rank position of each hotel according to its NFS

 Alexa Sokos Cumulus Scandic Kampus Alba
WA 4 4 2 1 4 6 
OWAd 2 2 5 2 6 4 
OWAc 1 6 3,5 3,5 3,5 3,5 
OWAWA.3d 4 4 2 1 4 6 
OWAWA.3c 1,5 4 4 1,5 4 6 
OWAWA.5d 2,5 2,5 4 1 5 6 
OWAWA.5c 1,5 1,5 4 4 4 6 
OWAWA.7d 2,5 2,5 4 1 5 6 
OWAWA.7c 1 6 3,5 3,5 3,5 3,5 
IOWAd 4 4 2 1 4 6 
IOWAc 1,5 4 5,5 1,5 5,5 3 
WOWAd 2,5 2,5 4,5 1 4,5 6 
WOWAc 1,5 4 4 1,5 4 6 
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5.2 Generating a Ranking of Universities

The second case study comes from paper [5], with data about British universities from
https://www.thecompleteuniversityguide.co.uk/league-tables/rankings a ranking is
built. We use the same weights and thresholds than paper [5], but we increased the
number of alternatives to 20 universities. Five criteria are taken: C01- Academic
services spend, C02- Completion, C03- Entry standards, C04- Facilities spend, C05-
Good honors. Horizontal axis shows the identifier of each method given in Table 10.
Again Q xð Þ ¼ ffiffiffi

x
p

and Q xð Þ ¼ x2 were used to establish the OWA weights (Fig. 1).
Aggregation with IOWA (10 & 11) and with WOWA (11 & 12) is able to change

the position of some universities in this dataset. Although the ones in the best and worst
positions are robust to the change of agregation operator. For example, U16 and U1 are
universities that are sensible to the aggregation policy. U16 is excellent in two criteria
(w = 0.2 and 0.1) and very bad in one (w = 0.3). Therefore, when using WA it appears
in at rank 11/20, with OWAd it goes to upper positions (6/20). We can also observe
that there are many rank reversals between universities in ranks 5 to 15 for IOWAc.
A deeper analysis of this operator reveals that using the importance weights V as order
inducing variable leads to strange results in some cases.

Correlations table (Table 11) shows that in this case study WA and OWA are
initially highly correlated, therefore their combination also leads to high correlation
values in most methods. WOWAd is the one that differentiates a bit from the rest.
IOWAc is suprisingly similar to OWAd.

Table 10. Correlation between the different rankings obtained in dataset Hotels

WA OWAd OWAc Closest (>=0.95)
1 WA 1,00 0,16 0,00 
2 OWAd 0,16 1,00 0,00 
3 OWAc 0,00 0,00 1,00 
4 OWAWA.3d 1,00 0,16 0,00 IOWAd 
5 OWAWA.3c 0,66 0,56 0,46 WOWAc 
6 OWAWA.5d 0,71 0,77 0,00 OWAWA.7d, WOWAd 
7 OWAWA.5c 0,16 0,56 0,00 - 
8 OWAWA.7d 0,71 0,77 0,00 OWAWA.5c, WOWAd 
9 OWAWA.7c 0,00 0,00 1,00 - 
10 IOWAd 1,00 0,16 0,00 OWAWA.3d 
11 IOWAc 0,06 0,81 0,44 - 
12 WOWAd 0,66 0,75 0,00 OWAWA.5d,OWAWA.7d 
13 WOWAc 0,66 0,56 0,46 OWAWA.3c 
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6 Conclusions and Future Work

This work presents a new approach to the aggregation of partial concordances in the
ELECTRE outranking method. Using weighted averaging may sometimes have an
undesired compensative effect between opposite values, as such we look to a family of
OWA operators to avoid this effect. OWAWA, WOWA and IOWA which combine
WA and OWA may substitute WA, introducing a new way of weighting values.

In the tests we observed that the results of the 3 approaches are different as they
model the combination in different ways. An undesired behaviour has been seen in the
IOWA conjunctive operator. If a low partial concordance is given by criteria with high
importance weight, they will be placed in the first positions during aggregation, so they

Fig. 1. Rank positions of the 20 universities values with weighted average (WA)

Table 11. Correlation between the different rankings obtained in dataset Universities

WA OWAd OWAc Closest (>=0.99)
WA 1,00 0,95 0,98 
OWAd 0,95 1,00 0,98 
OWAc 0,98 0,98 1,00 
OWAWA.5d 0,98 0,93 0,95 OWAWA.3d, IOWAd 
OWAWA.5c 0,97 0,98 1,00 OWAWA.7c 
IOWAd 0,99 0,92 0,95 OWAWA.3d, OWAWA.5d 
IOWAc 0,88 0,97 0,93 - 
WOWAd 0,93 0,86 0,88 - 
WOWAc 0,99 0,96 0,98 OWAWA.5c 
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will receive a low W weight and their contribution is minimized. This seems to go in
contrary to common sense. Moreover, WOWA seems to give a significantly different
ranking to all the three basic ones. It may indicate that it really combines the infor-
mation of the two sets of weights in a more suitable way.

Future work concerns the study of the best scenarios for each of these operators.
The behaviour of other OWA policies (e.g. Olympic, Balanced) [9] will be studied.
Finally, a characterisation of the properties of these operators should be investigated.
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