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Preface

This volume contains papers presented at the 15th International Conference on
Modeling Decisions for Artificial Intelligence, MDAI 2018, held on Mallorca, Spain,
October 15–18, 2018. This conference followed MDAI 2004 (Barcelona, Spain),
MDAI 2005 (Tsukuba, Japan), MDAI 2006 (Tarragona, Spain), MDAI 2007 (Kita-
kyushu, Japan), MDAI 2008 (Sabadell, Spain), MDAI 2009 (Awaji Island, Japan),
MDAI 2010 (Perpignan, France), MDAI 2011 (Changsha, China), MDAI 2012 (Gir-
ona, Spain), MDAI 2013 (Barcelona, Spain), MDAI 2014 (Tokyo, Japan), MDAI 2015
(Skövde, Sweden), MDAI 2016 (Sant Julià de Lòria, Andorra), and MDAI 2017
(Kitakyushu, Japan) with proceedings also published in the LNAI series (Vols. 3131,
3558, 3885, 4617, 5285, 5861, 6408, 6820, 7647, 8234, 8825, 9321, 9880, and 10571).

The aim of this conference was to provide a forum for researchers to discuss
different facets of decision processes in a broad sense. This includes model building
and all kinds of mathematical tools for data aggregation, information fusion, and
decision making; tools to help make decisions related to data science problems (in-
cluding e.g., statistical and machine learning algorithms as well as data visualization
tools); and algorithms for data privacy and transparency-aware methods so that data
processing procedures and the decisions made as a result of them are fair, transparent,
and avoid unnecessary disclosure of sensitive information.

The MDAI conference included tracks on the topics of (i) data science, (ii) data
privacy, (iii) aggregation functions, (iv) human decision making, and (v) graphs and
(social) networks.

The organizers received 43 papers from 15 different countries, 24 of which are
published in this volume. Each submission received at least two reviews from the
Program Committee and a few external reviewers. We would like to express our
gratitude to them for their work. This volume also includes some of the plenary talks.

The conference was supported by the research group Scopia (Soft Computing,
processament d’imatges i agregació), the University of Balearic Islands (UIB), the
European Society for Fuzzy Logic and Technology (EUSFLAT), the Catalan Asso-
ciation for Artificial Intelligence (ACIA), the Japan Society for Fuzzy Theory and
Intelligent Informatics (SOFT), and the UNESCO Chair in Data Privacy.
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Consistency of Fuzzy Preference Relations

Gaspar Mayor

Universitat Illes Balears, Palma de Mallorca, Spain
gmayor@uib.es

In decision making the use of fuzzy preference relations to establish some degree of
preference between any two alternatives is frequently adopted [3, 5, 12]. In order to
design good decision making models some efforts on the characterization of consis-
tency properties to avoid misleading solutions have been carried out [9, 14].

Transitivity has been a traditional requirement to characterize consistency in fuzzy
contexts, i.e., when expert opinions are given by fuzzy preference relations. However,
as it is pointed in [9] it is difficult to guarantee such consistency conditions in the
process of decision making. In this work we present a type of consistency based on a
t-norm and a t-conorm to guarantee consistency in the decision making process when
fuzzy preference relations have been used. The proposed condition is quite general,
which allows to include in it some of the definitions of consistency established by
different authors.

Our objective is to obtain the degrees of preference pi;j with i\j from the elemental
preferences pi;iþ 1 in such a way that the system is consistent, i.e.,

Tðpij; pjkÞ� pik � Sðpij; pjkÞ 8i\j\k ð1Þ

where T is a t-norm and S is a t-conorm. An appropriate type of multidimensional
aggregation function is introduced to calculate pi;j, i\j, from pi;iþ 1.
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Towards Distorted Statistics Based on Choquet
Calculus

Michio Sugeno

Tokyo Institute of Technology, Japan

In this study we discuss statistics with distorted probabilities by applying Choquet
calculus which we call ‘distorted statistics’. To deal with distorted statistics, we con-
sider distorted probability space on the non-negative real line. A (non-additive) dis-
torted probability is derived from an ordinary additive probability by the monotone
transformation with a generator. First, we explore some properties of Choquet integrals
of non-negative, continuous and differentiable functions with respect to distorted
probabilities. Next, we calculate elementary statistics such as the distorted mean and
variance of a random variable for exponential and Gamma distributions. In addition, in
the case of distorted exponential probability, we define its density function as the
derivative of distorted exponential distribution function with respect to distorted
Lebesgue measure.

Further, we deal with Choquet calculus of real-valued functions on the real line and
explore their basic properties. Then, we consider distorted probability pace on the real
line. We also calculate elementary distorted statistics for uniform and normal distri-
butions. Finally, we compare distorted statistics with conventional skew statistics.



Assessing the Risk of Default Propagation
in Interconnected Sectorial Financial Networks

Jordi Nin

BBVA Data & Analytics, Barcelona, Catalonia, Spain
jordi.nin@bbvadata.com

Systemic risk of financial institutions and sectorial companies relies on their
inter-dependencies. The inter-connectivity of the financial networks has proven to be
crucial to understand the propagation of default, as it plays a central role to assess the
impact of single default events in the full system. Here, we take advantage of complex
network theory to shed light on the mechanisms behind default propagation. Using real
data from the financial company BBVA, we extract the network of client-supplier
transactions between more than 140,000 companies, and their economic flows. In this
talk, we introduce a basic computational model, inspired by the probabilities of default
contagion, that allow us to obtain the main statistics of default diffusion given the
network structure at individual and system levels. Achieved results show the exposure
of different sectors to the default cascades, therefore allowing for a quantification and
ranking of sectors accordingly. As we will show, this information is relevant to propose
countermeasures to default propagation in specific scenarios.



Decision Making Tools with Semantic Data
to Improve Tourists’ Experiences

Aida Valls-Mateu

Department of Enginyeria Informàtica i Matemàtiques, Universitat Rovira i
Virgili, Av Països Catalans, 26, 43007 Tarragona, Catalonia, Spain

aida.valls@urv.cat

The offices of management of touristic destinations are interested in providing a more
user-centered experience that takes into account the personal interests of each visitor or
group of visitors. Tourism is a key element of economic wealth of many places,
therefore, improving the tourism experience may have a great impact not only on the
visitor but also in the place.

In this kind of field, the objects of analysis are usually touristic activities (such as
parks, museums, events, shopping malls, routes, sports, etc). The amount of options
available at each possible destination is usually very large. Their description includes
numerical data but also categorical one, sometimes provided as a list of keywords.
Exploiting the semantics of those words is crucial to understand the tourist’s interests
and needs.

We will present two decision aiding methods that use domain ontologies to
interpret the meaning of the keywords and help the managers and visitors to improve
the touristic experience on a certain place.

References
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Improving Spatial Reasoning in Intelligent
Systems: Challenges

Zoe Falomir

Bremen Spatial Cognition Center, University of Bremen, Germany
zfalomir@uni-bremen.de

Abstract. Here we tackle research on spatial thinking when facing two chal-
lenges: (i) describing scenes in natural language, and (ii) reasoning about per-
spectives for object recognition.
Regarding (i) addressing the following research questions is crucial: which

kind of spatial features must intelligent systems use? Is location enough? And
which kind of reference frames are suitable for communication? Deictic? Rel-
ative to the observer? Relative to the object? And what is the most salient object
to describe? Intelligent systems must have common grounding with humans so
that they can align representations and understand each other. Regarding
(ii) addressing the following is decisive: how can we improve spatial perception
in intelligent systems so that they can reason about object perspectives? Can
tests done to people for measuring their spatial skills be used to model spatial
logics?
On one side the challenge is to propose approaches to understand space and

communicate about it as humans do. For that, intelligent systems (i.e. robots,
tablets) can use computer vision and machine learning algorithms to analyse
point clouds, recognise and describe scenes. On the other side the challenge is to
propose approaches which solve spatial tests carried out to measure humans’
intelligence and to apply these approaches in intelligent systems (i.e. computer
games, robots) so that they can improve their spatial thinking, but also help
improve humans’ spatial thinking by providing them feedback.

Keywords: Qualitative spatial descriptors � Location � Spatial reasoning
Machine learning � Cognitive tests � Video games � Computer vision
Computational linguistics � Education � Spatial skills � Spatial cognition

Challenge I: Describing Scenes in Natural Language

Imagine the following scenario: It is 2056 and you have a robot at home to help you
with your daily duties. One day you tell it: Please, tidy the dining room. To clarify,
your robot asks back: Should the new table be placed in front of the sofa or to the left

The project Cognitive Qualitative Descriptions and Applications (CogQDA) funded by the University
of Bremen is acknowledged. I also thank my collaborators in the described work.
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of the armchair? And you answer: Just leave it here on the left. Or imagine another
scenario in which you move to a new house and a decorator tutor application in your
tablet helps you to arrange new furniture in a functional and fashionable way. Those
situations would both involve spatial reasoning.

In the first scenario, your robot at home would need to understand the scene in
order to talk about it, i.e. identifying the objects and their spatial locations in the living
room. It also needs to identify that not all left locations are the same, but they depend
on the reference frame used. In the second scenario, the decorator tutor would engage
in human-computer interaction. It would need to produce natural language descriptions
to provide the user with instructions, e.g. if you locate the sofa on the corner, the room
will look larger, etc.

We envision a future where we humans communicate with automatic systems using
language and these systems take decisions and interact with space accordingly. For
that, these automatic systems need to describe the space using concepts that share a
common reference frame with humans. But, how do we humans describe scenes i.e. in
our home? What do we take as a reference to say where an object is located?

Qualitative spatial descriptors are based on reference systems which align with
human perception and thus help establishing a more cognitive communication. Let us
highlight that the spatial terms such as in front of the sofa and to the left of the armchair
are qualitative and define a vague relation in space instead of a precise numerical
location (e.g., [4]). The literature has studied the usefulness of using qualitative spatial
descriptors in natural language: showing how people choose perspective and relatum to
describe object arrangements in space [9] and showing how salient features are selected
to describe objects depending on the context [5].

We outline here results of our experiments in cognitive scene description [2]: pieces
of furniture in a 3D scene are detected and described according to its location using
natural language based on qualitative spatial descriptors which are arranged according
to reference frames and saliency determined after a cognitive study carried out to
participants. Table 1 outlines some of our results.

Table 1. Scene narrative generated by QSn3D [2] where there are oriented and non-oriented
pieces of furniture.

Improving Spatial Reasoning in Intelligent Systems: Challenges XIX



A step further in this challenge is addressing human-machine interaction through
dialogue, detecting changes in scenes and explaining them in a cognitive manner.

Challenge II: Spatial Reasoning About Object Perspectives

Pattern recognition and machine learning has demonstrated to be useful and effective in
3D object detection and recognition: a scene is discretised as a set of points floating in
the air, called point clouds (see images in Table 1) and to recognize objects there, these
points are put together again by learning different views of the object using machine
learning methods [2]. Discretising space and then finding its continuity again is
computationally very expensive and a challenge in AI and computer vision nowadays,
as far as we are concerned.

So, in computer vision, pixels or cloud points do not automatically preserve space
continuity. This contrast with situations, in real space, where if a change happens to an
object side (dimension), it also affects the other dimensions automatically, preserving
continuity. For example, when a cup handle breaks, we humans do not need to check
from all perspectives to perceive the change in shape and depth, because we use
continuity in space to infer that. The literature says that edge parallelism [6] is in our
common sense from our childhood and that even young infants carry out physical
reasoning taking into account continuity and solidity of objects [8].

Spatial reasoning is not an innate ability, since it has been shown that it can be
trained [7] and showed a lasting performance [10]. Spatial reasoning skills correlate
with success in Science, Technology, Engineering and Math (STEM) disciplines [11]
and spatial ability has a unique role in the development of creativity or
creative-thinking (measured by patents and publications) [3].

In cognitive science research, perceptual ability tests are carried out to people to
measure how good are their spatial skills. And some of the problems intelligent systems
must solve, are spatial problems which require spatial thinking such as inferring cross
sections or canonical views of a 3D object, in order to recognize it. So, what can we
learn from spatial cognition research that we can apply to computer vision and com-
puter systems in general, so that the process of interacting with space is more ‘intel-
ligent or intuitive’?

Here we address that spatial thinking related to computer vision and to qualitative
modelling leaded to the definition of a model for 3D object description which takes into
account depth in the 3 canonical perspectives of the object at the same time [1] (see
Fig. 1). Thus, it propagates changes in object volume, and it can also identify incon-
sistent descriptions. This model has been implemented in a video game which is being
used at the moment in cognitive tests to see if the feedback provided is useful for
people to improve their spatial reasoning skills. As future work, we intend to combine
this cognitively-based knowledge approach with machine learning in order to improve
object detection and reasoning about perspectives.

XX Zoe Falomir
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Abstract. This paper summarizes basic properties of graded logic – a natural
soft computing generalization of classical Boolean logic. Using graded logic
aggregators we can build evaluation criteria and apply them in decision engi-
neering. This paper is an extended summary that surveys key concepts of graded
logic and graded logic aggregation.
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1 A Soft Computing Generalization of Boolean Logic

The soft computing graded logic (GL) is a generalization of classical Boolean logic
(BL) [1], that extends its domain from f0; 1gn to ½0; 1�n. GL is a form of fuzzy logic,
and a system for development of graded logic aggregation structures. The goal of
developing GL is to provide mathematical infrastructure for creating evaluation criteria
that are used in decision engineering for modeling human reasoning in a way that is
consistent with BL. Based on this goal, following are the necessary generalizations of
BL, implemented in GL.

Anthropocentrism of Graded Logic Models. Logic is a key component of human
reasoning. Therefore, GL should be based on observable properties of human reasoning,
and it should serve for quantitative modeling of human reasoning. All GL functions
must be provably present and recognizable in human reasoning. That also holds for all
other humanoid properties of GL, like semantics, selective use of annihilators, com-
pensativeness, partial truth, graded simultaneity/substitutability, and others.

Semantic Identity of All Variables. In the area of evaluation, GL functions are used
as graded logic aggregators. These aggregators are not aggregating anonymous real
numbers, but degrees of truth of precisely defined and semantically rich value state-
ments (statements that assert a given degree of satisfaction of stakeholder’s require-
ments). Consequently, all inputs, outputs, intermediate arguments, and all parameters
must have clearly defined role, interpretation and meaning for stakeholders (decision
makers). Semantic identity of all variables is a prerequisite for modeling human rea-
soning and decision processes in the area of evaluation.
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Expansion of Function Domain. Classical Boolean logic [1] is defined in vertices of
the unit hypercube f0; 1gn. Soft computing generalizations of BL are defined in the
whole unit hypercube ½0; 1�n. Since f0; 1gn � ½0; 1�n, the consequence of this obvious
and natural generalization is that in vertices f0; 1gn GL should behave same as BL. If
that is satisfied, then GL can be considered a seamless generalization of BL. In BL truth
is not graded: it is either completely present (1) or completely absent (0). In GL, truth
x is partial, and exceptionally it can be fully present/absent: x 2 ½0; 1�.
Expansion of Logic Domain. A GL logic aggregator Aðx1; . . .; xn; aÞ has (global)
andness a ¼ ½n� ðnþ 1ÞV �=ðn� 1Þ, where V ¼ R

½0;1�n Aðx1; . . .; xn; aÞdx1. . . dxn. This
definition, introduced in [2], is based on the volume V of the fraction of hypercube
under the surface of aggregator, and obviously it is applicable to all forms of con-
junctive and disjunctive aggregators. The fundamental BL functions are conjunction
(andness a ¼ 1, orness x ¼ 1� a ¼ 0), disjunction (andness a ¼ 0, orness x ¼ 1),
and negation. In all cases andness and orness are complementary: aþx ¼ 1. The
primary GL functions are models of graded simultaneity (graded conjunction,
0�x\a� 1), graded substitutability (graded disjunction, 0� a\x� 1), neutrality
(arithmetic mean, a ¼ x ¼ 1=2), and negation (usually, standard negation y ¼ 1� x).
The ranges of andness 0� a� 1 and orness 0�x� 1 indicate the expansion of logic
domain based on continuous transition from conjunction x1 ^ � � � ^ xn ¼
minðx1; . . .; xnÞ to disjunction x1 _ � � � _ xn ¼ maxðx1; . . .; xnÞ.

The volume V under the aggregator A inside the unit hypercube has the minimum
value 0, yielding the maximum andness amax ¼ n=ðn� 1Þ that corresponds to the
extreme model of simultaneity called drastic conjunction: x1 ^̂� � � ^̂xn ¼ x1. . .xnb c. The
drastic conjunction is satisfied only in a single point where all arguments are com-
pletely satisfied ðx1 ¼ � � � ¼ xn ¼ 1Þ. The maximum volume V ¼ 1 yielding the
maximum orness xmax ¼ n=ðn� 1Þ and the minimum andness amin ¼ �1=ðn� 1Þ
corresponds to the extreme model of substitutability called drastic disjunction. The
drastic disjunction is De Morgan dual of drastic conjunction: x1_̂ � � � _̂xn ¼
1� ð1� x1Þ. . .ð1� xnÞb c, and it is always completely satisfied, except in a single
point where all arguments are 0. Therefore, GL provides the ultimate expansion of the
logic domain in the range from drastic conjunction to drastic disjunction. The andness-
parameterized continuous transition from drastic conjunction to drastic disjunction is a
necessary property of all mathematical models of simultaneity and substitutability.

The Use of Semantic Domain. Traditional propositional logic ignores semantic
aspects of human reasoning. In BL all truths are equivalent and equally important.
However, in human reasoning, value statements and their degrees of truth have dif-
ferent degrees of importance. Ignoring importance of value statements is equivalent to
excluding fundamental aspects of human reasoning. Consequently, GL must provide
explicit modeling of importance. Like all other soft computing concepts, importance is
a graded concept. It is also a compound concept because the percept of overall
importance of an argument can be affected by multiple inputs (e.g. high andness, high
orness, and a high relative importance with respect to other inputs of an aggregator)

Selective Inclusion/Exclusion of Annihilators. In BL, the annihilator of conjunctive
operators is 0 and the annihilator of disjunctive operators is 1. In the case of con-
junctive criterion, if an input argument supports the annihilator 0, it is called a
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mandatory requirement, and it must be satisfied. In the case of a disjunctive criterion, if
an argument supports the annihilator 1, it is called the sufficient requirement because it
is sufficient to satisfy a criterion. In human reasoning, however, there are conjunctive
aggregators that do not support mandatory arguments, and disjunctive aggregators that
do not support sufficient arguments. Consequently, GL must provide aggregators that
selectively include annihilators. Aggregators that support annihilators are called hard
and aggregators that do not support annihilators are called soft.

Selective Compensativeness of Logic Functions. BL functions are not compensative:
both conjunction and disjunction are hard aggregators and bad conjunctive score
caused by a 0 input cannot be compensated with good scores of other inputs. Similarly,
good disjunctive score caused by an input equal to 1 is insensitive to values of other
inputs. In human reasoning, however, we most frequently use compensative criteria
where a bad score on one criterion can be compensated by a good score on another
criterion, Thus, GL must provide the possibility to adjust the degree of compen-
sativeness in the range from the full inclusion to the full exclusion.

Humanoid Properties of Logic Aggregators. In mathematical literature aggregators
are usually defined with intention to create the most general family of functions. An
extremely permissive definition of aggregator A : ½0; 1�n ! ½0; 1�, n[ 1 is based on
nondecreasing monotonicity in all arguments x ¼ ðx1; . . .; xnÞ and idempotency in
boundary points: Að0; . . .; 0Þ ¼ 0; Að1; . . .; 1Þ ¼ 1; see [6, 7]. Obviously, these are the
minimum possible restrictive conditions. Such aggregators can have discontinuities or
oscillatory behavior of the aggregation function and/or its first derivatives. In addition,
such aggregators can be false if no argument is false, and can be completely true if no
argument is completely true. Such properties are not observable in human evaluation
reasoning and are not desirable in GL models. Consequently, in GL, it is necessary to
use the concept of logic aggregator Aðx; aÞ which is more restrictive than the general
form of aggregator defined in mathematical literature. Since the basic aggregator
Aðx; aÞ is a model of graded conjunction/disjunction, it is natural that it must be
andness-directed (or orness-directed), i.e. parameterized with the global andness a(or
global orness x). The range of andness is Ra ¼ ½amin; amax�, R�

a ¼ � amin; amax½.
In GL, a definition of basic logic aggregator Aðx; aÞ is founded on the following

restrictive conditions (which also hold for weighted logic aggregators Aðx;W; aÞ):
• Continuous function, nondecreasing in all arguments: x� y ) Aðx; aÞ�Aðy; aÞ.
• Idempotency in extreme points: 8a 2 Ra, Að0; . . .; 0; aÞ ¼ 0; Að1; . . .; 1; aÞ ¼ 1.
• Sensitivity to positive truth: 8a 2 R�

a , x[ 0 ) Aðx; aÞ[ 0.
• Sensitivity to incomplete truth: 8a 2 R�

a , x\1 ) Aðx; aÞ\1.
• Parameterized, andness-directed (or orness-directed) continuous transition from the

minimum andness (orness) amin to the maximum andness (orness) amax.
• Nonincreasing andness-monotonicity, and nondecreasing orness-monotonicity:

@Aðx; aÞ=@a� 0, @Aðx; 1� xÞ=@x� 0, a;x 2 R�
a .

• Discontinuities and oscillatory properties of @A=@xi; i 2 f1; . . .; ng are undesirable
properties (exceptions are aggregators minðx1; . . .; xnÞ and maxðx1; . . .; xnÞ).

• Selective use of conjunctive annihilator 0 and disjunctive annihilator 1 (supported
[or hard] or not supported [or soft], according to desired logic properties).
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According to this definition, logic aggregators are located between the drastic
conjunction and the drastic disjunction. The drastic conjunction and the drastic dis-
junction are GL functions but they do not satisfy the sensitivity to positive and
incomplete truth and consequently do not have the status of logic aggregator. Gener-
ally, all GL functions and logic aggregators must have a proof of existence in human
evaluation reasoning. Aggregators that cannot be found in human reasoning violate the
fundamental requirement of anthropocentrism, and should not be used in decision
models.

2 Graded Logic Conjecture and Graded
Conjunction/Disjunction

The primary goal of GL is to answer the question “How do human beings aggregate
subjective categories and which mathematical models describe this procedure ade-
quately” [3]. In GL, the answer to this question is the following graded logic
conjecture:

Human beings aggregate subjective categories by combining ten necessary and
sufficient types of logic functions, which include nine aggregators derived from the
graded conjunction/disjunction and the standard negation. In the order of increasing
orness, these aggregators and negation are the following:

(1) Hyperconjunction (nonidempotent, annihilator = 0)
(2) Full conjunction (idempotent, annihilator = 0)
(3) Hard partial conjunction (idempotent, annihilator = 0)
(4) Soft partial conjunction (idempotent, no annihilator)
(5) Neutrality (idempotent, no annihilator)
(6) Soft partial disjunction (idempotent, no annihilator)
(7) Hard partial disjunction (idempotent, annihilator = 1)
(8) Full disjunction (idempotent, annihilator = 1)
(9) Hyperdisjunction (nonidempotent, annihilator = 1)

(10) Standard negation (x 7! 1� x)

The full conjunction, full disjunction, and logic neutrality have fixed andness. All
other conjunctive and disjunctive functions have adjustable andness, giving the pos-
sibility to fine-tune the intensity of simultaneity or substitutability while keeping the
same type of idempotency and annihilator support. A desired level of andness is
selected by decision maker, and consequently aggregators must be andness-directed
(parameterized), and there must be a continuous transition from extreme andness to
extreme orness.

These types of functions are necessary because each of them is provably used in
human evaluation reasoning. They are sufficient because they completely cover all
regions of the unit hypercube ½0; 1�n, including all possible combinations of
conjunction/disjunction, hard/soft (annihilator support) properties, idempotency/
nonidempotency, equal/different importance, and andness/orness intensity. Table 1
shows the range of andness for each type/category of aggregators and the subdivision
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of hyperconjunctive and hyperdisjunctive aggregators [5, 8]. Let us also note that the
continuous path from drastic conjunction to drastic disjunction is unifying idempotent
means and nonidempotent t-norms/conorms in a single general logic aggregator called
the graded conjunction/disjunction (GCD). The threshold andness is adjustable,
1=2\ah\1. Most frequently, we use ah ¼ 3=4, yielding the uniform GCD, where soft
and hard aggregators have equal presence in the most frequent andness (or orness)
range a 2 ½0; 1�.

Table 1. Fifteen characteristic special cases of graded conjunction/disjunction.

Name Andness Property

Drastic
conjunction

a ¼ n
n�1 Ultimate simultaneity: satisfied only if all

arguments are completely satisfied
High
hyperconjunction

n2n�n�1
ðn�1Þ2n \a\ n

n�1
The range of highest nonidempotent simultaneity,
stronger than product t-norm and close to drastic
conjunction

Medium
hyperconjunction

a ¼ n2n�n�1
ðn�1Þ2n Product t-norm. Nonidempotent hard simultaneity

significantly stronger than the simultaneity of full
conjunction

Low
hyperconjunction

1\a\ n2n�n�1
ðn�1Þ2n Nonidempotent hard simultaneity stronger than the

full conjunction and weaker than the product
t-norm

Full conjunction a ¼ 1 The minimum function (idempotent)
Hard partial
conjunction

ah � a\1 The range of hard idempotent conjunctive
aggregators with the minimum adjustable
(threshold) andness ah, 1=2\ah\1

Soft partial
conjunction

1=2\a\ah The range of soft idempotent conjunctive
aggregators with adjustable andness

Neutrality a ¼ 1=2 The arithmetic mean (idempotent)
Soft partial
disjunction

1� ah\a\1=2 The range of soft idempotent disjunctive
aggregators with adjustable orness

Hard partial
disjunction

0\a� 1� ah The range of hard idempotent disjunctive
aggregators with the minimum adjustable threshold
orness xh ¼ ah

Full disjunction a ¼ 0 The maximum function (idempotent)
Low
hyperdisjunction

nþ 1�2n
ðn�1Þ2n \a\0 Nonidempotent hard substitutability stronger than

the full disjunction and weaker than the product
t-conorm

Medium
hyperdisjunction

a ¼ nþ 1�2n
ðn�1Þ2n Product t-conorm. Nonidempotent hard

substitutability significantly stronger than the
substitutability of full disjunction

High
hyperdisjunction

�1
n�1\a\ nþ 1�2n

ðn�1Þ2n The range of highest nonidempotent
substitutability, stronger than product t-conorm and
close to drastic disjunction

Drastic
disjunction

a ¼ �1
n�1

Ultimate substitutability: not satisfied only if all
arguments are completely not satisfied; otherwise,
completely satisfied
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The range of hyperconjunction (and similarly, the range of hyperdisjunction) is
divided in two areas and their border is the product t-norm (or the product t-conorm in
the symmetric case of hyperdisjunction). According to Table 1, in the case of three
variables ðn ¼ 3Þ we have the following values of andness: for drastic conjunction
a ¼ 6=4, for the product t-norm a ¼ 5=4, and for the pure conjunction a ¼ 4=4. This
sequence indicates that the t-norm has central location between the full conjunction and
the drastic conjunction. For other values of n, the situation is different, but the product
t-norm is a reasonable aggregator for separating two characteristic regions of hyper-
conjunction, at least for frequently used small values of n. The same conclusion holds
for the dual product t-conorm in the area of hyperdisjunction.

3 Partitioning of Unit Hypercube

From the standpoint of idempotency, the unit hypercube 0; 1½ �n can be partitioned into
three characteristic regions:

Region of nonidempotent hyperdisjunctive aggregators:

maxðx1; . . .; xnÞ�Aðx1; . . .; xn;xÞ� 1; 1\x\
n

n� 1
:

Region of idempotent conjunctive and disjunctive aggregators:

minðx1; . . .; xnÞ�Aðx1; . . .; xn;xÞ�maxðx1; . . .; xnÞ; 0�x� 1:

Region of nonidempotent hyperconjunctive aggregators:

0�Aðx1; . . .; xn;xÞ�minðx1; . . .; xnÞ; �1
n� 1

\x\0:

According to [4], the volumes under the full conjunction and the full disjunction are

VconðnÞ ¼
Z
½0;1�n

minðx1; . . .; xnÞdx1. . . dxn ¼ 1
nþ 1

;

VdisðnÞ ¼
Z
½0;1�n

maxðx1; . . .; xnÞdx1. . . dxn ¼ n
nþ 1

:

These volumes are presented in Fig. 1, yielding the volume of hyperconjunctive
and hyperdisjunctive regions of the unit hypercube VhconðnÞ ¼ VconðnÞ ¼ 1=ðnþ 1Þ,
VhdisðnÞ ¼ 1� VdisðnÞ ¼ 1=ðnþ 1Þ ¼ VhconðnÞ. Therefore, the volume of idempotent
region is VidðnÞ ¼ VdisðnÞ � VconðnÞ ¼ 1� VhconðnÞ � VhdisðnÞ ¼ ðn� 1Þ=ðnþ 1Þ and
the total volume of nonidempotent region is Vnid ¼ 1� Vid ¼ 2Vhcon ¼ 2=ðnþ 1Þ.

If n ¼ 2 then the volumes of idempotent, hyperdisjunctive, and hyperconjunctive
regions are the same: VidðnÞ ¼ VhconðnÞ ¼ VhdisðnÞ ¼ 1=3. However, this distribution
quickly changes with increasing values of n. The volumes populated by idempotent and
nonidempotent aggregators are presented in Figs. 1 and 2. These geometric properties
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have significant consequences in logic. First, the regions of hyperconjunction and
hyperdisjunction are shrinking as the number of arguments increases, while the com-
plementary region of idempotent aggregators (means) increases. In the limit case
n � 1, the idempotent aggregators fill the whole unit hypercube.

Taking into account the high visibility of t-norms/conorms in fuzzy logic and in
mathematical literature, it is interesting to analyze the andness of all special cases of
GCD, as shown in Fig. 3. In the area of idempotent aggregators the threshold andness
and the threshold orness are adjustable [5]. In Fig. 3 we assume that ah ¼ xh ¼ 0:75,
yielding the uniform GCD (the default case where the regions of soft aggregators are

Range of nonidempotent aggregators

Range of 
idempotent 
aggregators

Range of nonidempotent aggregators

Fig. 1. The region of idempotent aggregators between the minimum and maximum functions

Fig. 2. The increasing volume of idempotent aggregators and the decreasing volume of
nonidempotent aggregators
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the same as the regions of hard aggregators, and the symmetry of conjunctive and
disjunctive aggregators supports De Morgan’s laws). Between the pure conjunction and
the pure disjunction we have four equal regions of soft and hard partial conjunction and
partial disjunction. Inside each of these regions we can adjust andness/orness in the
interval having the size of 0.25. In this way we can select the strength of aggregator
within the same aggregator type.

Figure 3 illustrates fundamental properties of hyperconjunctive and hyperdisjunc-
tive aggregators. As the number of arguments increases, the volume under the pure
conjunction VconðnÞ ¼ 1=ðnþ 1Þ quickly decreases and the pure conjunction approa-
ches t-norms and the drastic conjunction. Since the global andness is normalized so that
its value is 1 for pure conjunction (and 0 for pure disjunction), it follows that the
andness of drastic conjunction is a fast decreasing function of n and for more than 4
variables the difference between the product t-norm and the drastic conjunction
becomes insignificant. The same properties are visible in the case of hyperdisjunction.
In addition, as the number of variables increase, the product t-norm and its dual conorm
approach the pure conjunction and the pure disjunction respectively. This opens the
question of practical applicability of t-norms/conorms.

The geometric interpretations of the regions of hyperconjunction and hyperdis-
junction show that hyperconjunctive and hyperdisjunctive aggregators lose their
applicability and significance as they approach the drastic conjunction or drastic

Fig. 3. Special cases of GCD characterized by their global andness.
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disjunction. Indeed, by definition, the drastic conjunction and drastic disjunction are
not logic aggregators, because they are insensitive to positive and incomplete truth.
These drastic functions are the borders of the world of logic aggregators and are not
used in real life decision problems. Figure 3 shows that the t-norms/conorms quickly
approach these borders. All hyperconjunctive aggregators with andness higher than the
andness of product t-norm are very similar to each other and their applicability is
extremely low. The space between t-norms and the pure conjunction is greater than the
space between the space between the t-norm and the drastic conjunction.

4 Conclusions

In the area of aggregation, it is useful to differentiate two fundamentally different
categories of aggregation problems:

1. Mathematical problems of aggregation of anonymous real numbers (numbers
without semantic identity, explanation of role, and unit of measurement).

2. Decision engineering problems of aggregation of arguments that have specific
semantic identity (a clearly defined meaning, role, linguistically labeled units of
measurement, and quantifiable impact on attaining specific stakeholder’s goals).

In the case of aggregation of anonymous real numbers, the goal is to study the
widest possible class of aggregation functions [6, 7]. This is a legitimate goal in
mathematics. Generally, applicability is not a noticeable goal of such studies, because
each application area imposes restrictions and reduces the space for theoretical
developments. Thus, it is both legitimate and desirable to develop general aggregation
structures in semantic vacuum. However, from the standpoint of decision engineering,
mathematical methods of aggregation of anonymous real numbers inevitably combine a
specific degree of applicability and a specific degree of mathematical ballast that is not
useful in decision engineering practice.

Unsurprisingly, aggregation methods are both important and frequent in decision
engineering, where all arguments have clearly defined semantic identity. Typical
examples of semantic identity are degrees of truth, degrees of importance, degrees of
suitability for particular use, degrees of simultaneity, probability of specific desirable or
undesirable events and consequences, etc. In all such cases, it is necessary to create
aggregators that provide appropriate support for the semantic identity of arguments.

The point of departure in the decision engineering area is the fact that decisions are
products of human mental activity. Consequently, applicable aggregators cannot be
developed ignoring observable properties of human reasoning. Quite contrary, the
study of applicable aggregators must begin with observing the patterns of human
reasoning. Then, we must develop mathematical models that have expressive power to
properly describe the observed reasoning patterns. This is the primary goal of graded
logic: if the aggregated arguments are degrees of truth, then such reasoning patterns
belong to logic, and their models naturally have the status of logic aggregators.

In the area of evaluation, all inputs and outputs have the semantic identity of
degrees of truth of value statements (statements that assert the satisfaction of various
requirements, specified by a decision engineer in order to contribute to the attainment
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of stakeholder’s goals). Graded logic supports the area of logic aggregation, in a way
that is necessary for solving evaluation problems in decision engineering.

Using the degree of truth between the complete truth and the complete falsity, the
GL-based soft computing version of propositional logic operates inside the unit
hypercube. In this region, it is necessary to have logic aggregators that are observable
in human reasoning. Such aggregators must include the following: (1) models of
simultaneity (conjunctive aggregators) and models of substitutability (disjunctive
aggregators), (2) aggregators that support annihilators (hard aggregators) and aggre-
gators that do not support annihilators (soft aggregators), (3) idempotent aggregators
(supporting internality) modeled as means, and nonidempotent (hyperconjunctive and
hyperdisjunctive aggregators) frequently modeled as t-norms/conorms, (4) aggregators
that support adjustable importance of arguments, and aggregators that use fixed (equal)
importance of arguments, and (5) general aggregators that have adjustable andness and
special aggregators that have fixed andness. Transition between aggregators must be
continuous and andness-directed, implemented using interpolation [5]. The funda-
mental aggregator that provides all requested features is the graded conjunction/
disjunction and the corresponding generalization of Boolean logic is the graded logic.
A detailed presentation of GCD, GL, and a complete decision engineering framework,
built using GL and verified in industrial applications, can be found in [8].
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Abstract. Coherent risk measures in financial management are dis-
cussed from the view point of average value-at-risks with risk spectra. A
minimization problem of the distance between risk estimations through
decision maker’s utility and coherent risk measures with risk spectra is
introduced. The risk spectrum of the optimal coherent risk measures in
this problem is obtained and it inherits the risk averse property of utility
functions. Various properties of coherent risk measures and risk spectrum
are demonstrated. Several numerical examples are given to illustrate the
results.

1 Introduction

Risk measure is one of the most important concepts in economic theory, financial
analysis, asset management and so on. In classical mean-variance portfolio mod-
els, the variance was used as a risk measure in asset management [9]. Recently
drastic declines of asset prices are studied, and value-at-risk is used widely to
estimate the risk of asset price decline in practical financial management [7].
Value-at-risk is defined by percentiles at a specified probability, however it does
not have coherency. Coherent risk measures have been studied to improve the cri-
terion of risks with worst scenarios [3], and several improved risk measures based
on value-at-risks are proposed: For example, conditional value-at-risk, expected
shortfall, entropic value-at-risk [6,11,12]. Kusuoka [8] gave a spectral representa-
tion for coherent risk measures, and Acerbi [1] and Adam et al. [2] demonstrated
its applications to portfolio selection and so on. Cotter and Dowd [4] examined
exponential type spectral measures, and Yaari [13] studied a relation between
spectral measures and distortion risk measures. Emmer et al. [5] compared risk
measures by their properties to find best risk measures. We discuss what is the
optimal coherent risk measure, and then from Kusuoka [8] we give an optimal
risk spectrum for coherent risk measures. In this paper we focus on the down-
side ranges of utility functions related to decision maker’s risk sensitivity, and
we adopt a risk estimation through utility functions as an optimization object
for coherent risk measures. We obtain an optimal risk spectrum of coherent risk
measures minimizing the distance between risk estimations through utility func-
tions and coherent risk measures with risk spectra, and then the risk spectrum
inherits the risk averse property of utility functions.
c© Springer Nature Switzerland AG 2018
V. Torra et al. (Eds.): MDAI 2018, LNAI 11144, pp. 15–26, 2018.
https://doi.org/10.1007/978-3-030-00202-2_2
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In Sect. 2 we introduce coherent risk measures and weighted average value-
at-risks, and in Sect. 3 we deal with coherent risk measures with risk spectra and
their properties. In Sect. 4 we discuss a coherent risk measure with risk spectrum
which is nearest to risk estimations through utility functions. Then, as a weight
of weighted average value-at-risks, the risk spectrum drives the risk aversity from
decision maker’s utility functions to coherent risk measures. In Sect. 5 we give
several examples of utility functions and we observe the risk spectra and the
weighted average value-at-risks.

2 Value-at-Risks and Coherent Risk Measures

Let Ω be a sample space and let P be a non-atomic probability on Ω. Let X be a
family of integrable real-valued random variables X on Ω which have a differen-
tiable cumulative distribution function FX(·) = P (X < ·) and a density function
w(x) = d

dxFX(x). For a random variable X ∈ X there exist an open interval I

and a strictly increasing and continuous inverse function F−1
X : (0, 1) → I. Then

we have limx↓inf I FX(x) = 0 and limx↑sup I FX(x) = 1. Let R = (−∞,∞), and
we put w = 0 on R \ I for simple representation. The value-at-risk (VaR) at a
risk probability p is given by the percentile of the distribution function FX :

VaRp(X) =

⎧
⎨

⎩

inf I if p = 0
sup{x ∈ I | FX(x) ≤ p} if p ∈ (0, 1)
sup I if p = 1.

(1)

Then we have FX(VaRp(X)) = p and VaRp(X) = F−1
X (p) for p ∈ (0, 1). The

average value-at-risk (AVaR) for a probability p is also given by

AVaRp(X) =
1
p

∫ p

0

VaRq(X) dq (2)

if p ∈ (0, 1] and AVaRp(X) = inf I if p = 0. Further we denote by E(X) =
∫

XdP

and σ(X) =
√

E((X − E(X))2) the expectation and the standard deviation
respectively for random variables X ∈ X . For the family X , we assume the
following (i) and (ii):

(i) There exists a strictly increasing function κ : (0, 1) �→ R such that

VaRp(X) = E(X) + κ(p)σ(X) (3)

for random variables X ∈ X and p ∈ (0, 1).
(ii) There exists a probability density function ψ on R × [0,∞) of means E(X)

and standard deviations σ(X) of random variables X ∈ X .

The following definitions are introduced to characterize risk measures.

Definition 1 ([3,8]). Let a map ρ : X �→ R.
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(i) Two random variables X(∈ X ) and Y (∈ X ) are called comonotonic if (X(ω)−
X(ω′))(Y (ω) − Y (ω′)) ≥ 0 holds for almost all ω, ω′ ∈ Ω.

(ii) ρ is called comonotonically additive if ρ(X + Y ) = ρ(X) + ρ(Y ) holds for all
comonotonic X,Y ∈ X .

(iii) ρ is called law invariant if ρ(X) = ρ(Y ) holds for all X,Y ∈ X satisfying
P (X < · ) = P (Y < · ).

(iv) ρ is called continuous if limn→∞ ρ(Xn) = ρ(X) holds for {Xn} ⊂ X and
X ∈ X such that limn→∞ Xn = X almost surely.

Definition 2 ([3]). A map ρ : X �→ R is called a coherent risk measure if it
satisfies the following (i)–(iv):

(i) ρ(X) ≥ ρ(Y ) holds for X,Y ∈ X satisfying X ≤ Y . (monotonicity)
(ii) ρ(cX) = c ρ(X) holds for X ∈ X and c ∈ R+. (positive homogeneity)
(iii) ρ(X + c) = ρ(X) − c holds for X ∈ X and c ∈ R. (translation invariance)
(iv) ρ(X + Y ) ≤ ρ(X) + ρ(Y ) holds for X,Y ∈ X . (sub-additivity)

For coherent risk measures, we can easily obtain the following spectral repre-
sentation from [8].

Lemma 1. Let ρ : X �→ R be a law invariant, comonotonically additive, contin-
uous coherent risk measure. Then there exists a probability measure λ on [0, 1]
such that

ρ(X) = −
∫ 1

0

AVaRp(X) dλ(p) (4)

for X ∈ X .

3 Weighted Average Value-at-risks with Risk Spectra

Let N be a family of functions ν : (0, 1] �→ [0,∞) such that
∫ 1

0
ν(p) dp = 1 and

ν(1) = lim infp↑1 ν(p), and let N be a family of functions ν ∈ N such that ν is
non-increasing and right-continuous on (0, 1). In the following lemma, we have
another representation of (4).

Lemma 2. For a probability measure λ on [0, 1], we let

ν(q) =
∫ 1

q

1
p

dλ(p)

for q ∈ (0, 1) and ν(1) = lim infq↑1 ν(q). Then it holds that ν ∈ N and

∫ 1

0

AVaRp(X) dλ(p) =
∫ 1

0

VaRq(X) ν(q) dq

for X ∈ X .
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From Lemma 2, for a random variable X ∈ X and a function ν ∈ N , we also
introduce weighted average value-at-risks with weight ν by

AVaRν
1(X) =

∫ 1

0

VaRq(X) ν(q) dq. (5)

Then ν is called a risk spectrum if ν ∈ N . Further for a probability p ∈ (0, 1) we
define a weighted average value-at-risk with risk spectrum ν on (0, p) by

AVaRν
p(X) =

∫ p

0

VaRq(X) ν(q) dq

/∫ p

0

ν(q) dq. (6)

From Lemmas 1 and 2, we obtain the following theorem.

Theorem 1

(i) Let ρ : X �→ R be a law invariant, comonotonically additive, continuous
coherent risk measure. Then there exists a risk spectrum ν ∈ N such that

ρ(X) = −
∫ 1

0

VaRq(X) ν(q) dq = −AVaRν
1(X) (7)

for X ∈ X .
(ii) Let a function ν ∈ N . Then −AVaRν

p is a coherent risk measure on X for
p ∈ (0, 1].

From Theorem 1 we focus on coherent risk measures in the form −AVaRν
p

with risk spectra ν ∈ N , which is given in (6).

Proposition 1. Let a probability p ∈ (0, 1]. The following (i) and (ii) hold.

(i) Let ν1 ∈ N and ν2 ∈ N satisfy

ν1(r)ν2(q) ≤ ν1(q)ν2(r) for q, r ∈ R satisfying 0 ≤ q < r ≤ p. (8)

Then it holds that AVaRν1
p (X) ≤ AVaRν2

p (X) for X ∈ X .
(ii) It holds that

sup
ν∈N

AVaRν
p(X) = AVaRp(X) (9)

for X ∈ X . Namely the maximum of weighted average value-at-risks is the
average value-at-risk.

Remark. In Proposition 1(i), we have the following equivalence: Eq. (8) ⇐⇒
ν2/ν1 is non-decreasing on {q ∈ (0, p) | ν1(q) > 0}. If ν1 and ν2 are piecewise
differentiable, we have: Eq. (8) ⇐⇒ ν′

1/ν1 ≤ ν′
2/ν2 on {q ∈ (0, p) | ν1(q) > 0}.
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4 An Optimal Risk Spectrum Derived from Risk Averse
Utility Functions

In the rest of this paper, we deal with a decision maker’s risk averse utility
functions f : I �→ R which are C2-class and satisfy f ′ > 0 and f ′′ ≤ 0 on
I. Let a probability p ∈ (0, 1]. Under decision maker’s utility function f , the
average value-at-risks of random variables X(∈ X ) for probabilities q over (0, p)
are estimated as the following non-linear form:

f−1

(
1
p

∫ p

0

f(VaRq(X)) dq

)

= f−1(E(f(X) | X ≤ VaRp(X)). (10)

Eq. (10) implies the estimated value of random variable X through utility func-
tion f on the downside range (−∞,VaRp(X)). Now we discuss an optimiza-
tion problem to find a weighted average value-at-risk (6) which is the nearest
to the risk estimation (10). The risk estimation (10) on the downside range
(−∞,VaRp(X)) is related to the most risk sensitive parts of utility function f
and it acquires decision maker’s risky sense regarding random variable X. On the
other hand, from Theorem 1 coherent risk measures are represented by (7). When
we find coherent risk measures corresponding to (10), they should be related to
the downside parts of X, i.e. {x ∈ R | P (X ≤ x) ≤ p} = {VaRq(X) | 0 < q ≤ p}.
Therefore by Theorem 1(ii) we use coherent risk measures −AVaRν

p defined
by (6).

Optimization Problem 1. Find a risk spectrum ν ∈ N which minimizes the
distance

∑

X∈X

(

f−1

(
1
p

∫ p

0

f(VaRq(X)) dq

)

− AVaRν
p(X)

)2

(11)

for p ∈ (0, 1].

Solving Optimization Problem 1, the optimal risk spectrum ν, with which
the coherent risk measure given in (6) has a kind of semi-linear properties such
as Definition 2(ii) and (iii), can inherit decision maker’s risk averse sense of the
non-linear utility function f as a weighting function on (0, p).

Theorem 2. Let ν ∈ N be a function given by

ν(p) = e− ∫ 1
p

C(q) dqC(p) (12)

for p ∈ (0, 1] with its component function

C(p) =

∑

X∈X
σ(X)

f(VaRp(X)) − 1
p

∫ p

0
f(VaRq(X)) dq

pf ′
(
f−1

(
1
p

∫ p

0
f(VaRq(X)) dq

))

∑

X∈X
σ(X)

(
VaRp(X) − f−1

(
1
p

∫ p

0
f(VaRq(X)) dq

)) . (13)

If ν is non-increasing, then ν is an optimal risk premium for Optimization
Problem 1.
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Sketch Proof of Theorem 2. Let p ∈ (0, 1). From (3), for X ∈ X , we put
VaRp(X) = μ + κ(p) · σ with a mean μ = E(X) and a standard deviation
σ = σ(X). To discuss the minimization (11), by (6) we define

G(ν) =
∑

X∈X

(

f−1

(
1
p

∫ p

0

f(μ + κ(q)σ) dq

)

−
∫ p

0
(μ + κ(q)σ) ν(q) dq

∫ p

0
ν(q) dq

)2

for risk spectra ν. Let ν be a risk spectrum attaining the minimum (11). Then
(1 − t)ν + tε is also a risk spectrum for t ∈ (0, 1) and risk spectra ε. Hence we
have

lim
t↓0

G((1 − t)ν + tε) − G(ν)
t

= 0

for any risk spectrum ε. This follows

∑

X∈X
σ

(

f−1

(
1
p

∫ p

0

f(μ + κ(q)σ) dq

)

−
∫ p

0
(μ + κ(q)σ) ν(q) dq

∫ p

0
ν(q) dq

)

= 0.

Therefore we obtain
∑

X∈X
σ

(

f−1

(
1
p

∫ p

0

f(μ + κ(q)σ) dq

) ∫ p

0

ν(q) dq −
∫ p

0

(μ + κ(q)σ) ν(q) dq

)

= 0

for all p ∈ (0, 1). Differentiating this equation with respect to p, we get

ν(p)
∫ p

0
ν(q) dq

= C(p)

for all p ∈ (0, 1), where C is defined by (13). Thus we obtain (12) from this
equation.

��
With a probability density function ψ on R× [0,∞) of means μ and standard

deviations σ of random variables X, (13) follows

C(p)=

∫∫

R×(0,∞)

σ
f(μ + κ(p)σ) − 1

p

∫ p

0
f(μ + κ(q)σ) dq

pf ′
(
f−1

(
1
p

∫ p

0
f(μ + κ(q)σ) dq

)) ψ(μ, σ) dμdσ

∫∫

R×(0,∞)

σ

(

(μ+ κ(p)σ)− f−1

(
1
p

∫ p

0

f(μ+ κ(q)σ) dq

))

ψ(μ, σ) dμdσ

.

(14)
We can easily check the following results.

Proposition 2. The optimal risk spectrum ν and its component function C in
Theorem 2 have the following properties (i)−(v):

(i) C ′(p) < 0 for p ∈ (0, 1).
(ii) 0 < ν(p) < C(p) ≤ 1

p for p ∈ (0, 1).
(iii) 0 < ν(1) = C(1) ≤ 1.
(iv) limp→0 C(p) = ∞.
(v) If f ′′ < 0 on I, then C(p) < 1

p for p ∈ (0, 1).
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5 Examples

In this section we give several examples for the results in the previous sections.

Example 1. Let a domain I = R and let f be a risk neutral function f(x) =
ax + b (x ∈ R) with constants a(> 0) and b(∈ R). Then it is trivial that f
satisfies the conditions, and its optimal risk spectrum is given by ν(p) = 1 with
the component function C(p) = 1

p . The corresponding weighted average value-
at-risk is reduced to the average value-at-risk:

AVaRν
p = AVaRp (15)

for p ∈ (0, 1].

Example 2. Let a domain I = R and let a risk averse exponential utility
function

f(x) =
1 − e−τx

τ
(16)

for x ∈ R with a positive constant τ . Then we can easily check (16) satisfies
the conditions. Let X be a family of random variables X which have a normal
distribution function with a density function

w(x) =
1√
2πσ

e− (x−μ)2

2σ2 (17)

for x ∈ R, where the mean μ = E(X) and the standard deviation σ = σ(X) of
random variables X. Define the cumulative distribution function Φ : (−∞,∞) →
(0, 1) of the standard normal distribution by

Φ(x) =
1√
2π

∫ x

−∞
e− z2

2 dz (18)

for x ∈ R, and define an increasing function κ : (0, 1) �→ (−∞,∞) by its inverse
function

κ(p) = Φ−1(p) (19)

for probabilities p ∈ (0, 1) (Fig. 1). Then we have value-at-risk VaRp(X) =
μ+κ(p)σ for X ∈ X . Suppose X is a family of random variables X with a distri-

bution function ψ : R× (0,∞) �→ [0,∞) such that ψ(μ, σ) = φ(μ) ·
√

2
π e− σ2

2 for

(μ, σ) ∈ R× [0,∞), where φ(μ) is some probability distribution and
√

2
π e− σ2

2 is
a chi distribution. From Theorem 2, the optimal risk spectrum for Optimization
Problem 1 is given by

ν(p) = e− ∫ 1
p

C(q) dqC(p) (20)

for p ∈ (0, 1], where the component function is given by

C(p) =
1
p

·

∫∫

R×(0,∞)

σ

(

1 − 1
1
p

∫ p

0
eτσ(κ(p)−κ(q)) dq

)

ψ(μ, σ) dμdσ

∫∫

R×(0,∞)

σ log
(

1
p

∫ p

0
eτσ(κ(p)−κ(q)) dq

)
ψ(μ, σ) dμdσ

, (21)



22 Y. Yoshida

and this is also reduced to

C(p) =
1
p

·

∫ ∞

0

(

1 − 1
1
p

∫ p

0
eτσ(κ(p)−κ(q)) dq

)

σe− σ2
2 dσ

∫ ∞

0

log
(

1
p

∫ p

0
eτσ(κ(p)−κ(q)) dq

)
σe− σ2

2 dσ

. (22)

Then for τ = 1 Fig. 1 shows the concave utility function f(x) given in (16)
and the function κ(p) given in (19). Using these functions, Fig. 2 illustrates
the optimal risk spectrum ν(p) and its component function C(p) given in (20)
and (22).

Fig. 1. Utility function f(x) and function κ(p) = Φ−1(p) in Example 2 (τ = 1).

Fig. 2. The optimal risk spectrum ν(p) and its component function C(p).

Example 3. Let a domain I = (α, β), where −∞ < α < β < ∞, and let a risk
averse quadratic utility function

f(x) = −a(x − c)2 + b (23)
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for x ∈ I with constants a(> 0), b(∈ R) and c(∈ [β,∞)). Then we can easily
check (23) satisfies the conditions. Let X be a family of random variables X
which have a density function

w(x) = max
{

1√
6σ

−
∣
∣
∣
∣
x − μ

6σ2

∣
∣
∣
∣ , 0

}

(24)

for x ∈ R, where the mean μ = E(X) and the standard deviation σ = σ(X).
Then its distribution function is

F (x) =
∫ x

−∞
w(z) dz =

(x − μ)2

12σ2
− |x − μ|√

6σ
+

1
2

for x ∈ R, and then the value-at-risk VaRp(X) = μ + κ(p)σ is given by an
increasing function (Fig. 3)

κ(p) =
{

2
√

3p − √
6 if 0 ≤ p ≤ 1

2

−2
√

3(1 − p) +
√

6 if 1
2 < p ≤ 1.

(25)

Suppose X is a family of random variables X with a distribution function ψ :
R×(0,∞) �→ [0,∞) such that ψ(μ, σ) = max{1−|μ|, 0}· 1

2π e− σ2
16π . From Theorem

2 we have the optimal risk spectrum ν(p) = e− ∫ 1
p

C(q) dqC(p) for p ∈ (0, 1], where
the component function C(p) is

1
2p

·

∫∫

R×(0,∞)

σ
−(μ+κ(p)σ−c)2+ 1

p

∫ p
0 (μ+κ(q)σ−c)2 dq

√
1
p

∫ p
0 (μ+κ(q)σ−c)2 dq

ψ(μ, σ) dμdσ

∫∫

R×(0,∞)

σ
(
(μ + κ(p)σ − c) +

√
1
p

∫ p

0
(μ + κ(q)σ − c)2 dq

)
ψ(μ, σ) dμdσ

.

(26)
Let a = 1, b = 100, c = 10, α = −10 and β = 10. Then the utility function is
f(x) = x(20 − x) for x ∈ I = (−10, 10). Then Fig. 3 shows the utility function
f and a function (25), Fig. 4 illustrates the optimal risk spectrum ν and its
component function C in (26).

Example 4. Let a domain I = (α, β), where −∞ < α < β < ∞, and let a risk
averse logarithmic utility function

f(x) = a log(x + c) + b (27)

for x ∈ (−c,∞) with constants a(> 0), b(∈ R) and c =− b
a satisfying β + c ≤

eα + ec. Then we can easily check f satisfies the conditions. Let X be the same
family of random variables X in Sect. 3. From Theorem 2 we have the optimal risk
spectrum ν(p) = e− ∫ 1

p
C(q) dqC(p) for p ∈ (0, 1], where the component function is

C(p) =
1
p

·

∫∫

R×(0,∞)

σ · log(μ+κ(p)σ+c)− 1
p

∫ p
0 log(μ+κ(q)σ+c) dq

e
− 1

p

∫ p
0 log(μ+κ(q)σ+c) dq

ψ(μ, σ) dμdσ

∫∫

R×(0,∞)

σ
(
(μ + κ(p)σ + c) − e

1
p

∫ p
0 log(μ+κ(q)σ+c) dq

)
ψ(μ, σ) dμdσ

.

(28)
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Fig. 3. Utility function f(x) and function κ(p) in Example 3.

Fig. 4. The optimal risk spectrum ν and its component function C.

Let a = 1, b = − log 10e+100
e − 1 , c = 10e+100

e − 1 , α = −10 and β = 100. Then the
utility function is

f(x) = log
(

e − 1
10e + 100

x + 1
)

(29)

for x ∈ I = (−10, 100). Then Fig. 4 shows the utility function (29) and Fig. 5
illustrates the optimal risk spectrum ν and its component function C in (28).

Concluding Remarks

(i) Theorem 2 gives a method to combine the theory of coherent risk measures
with subjective risk averse decision making via weighted average value-at-
risks. In (11) we adopt risk estimations with risk averse utility as an opti-
mization target for coherent risk measures. Another optimization target may
be taken to find best coherent risk measures.

(ii) Average value-at-risks give coherent risk measures derived from risk neutral
utilities (Example 1). From Proposition 1(ii) we have infν∈N (−AVaRν

p(X)) =
−AVaRp(X), and therefore we find the average value-at-risk gives the lower
bound of coherent risk measures derived from risk averse utilities.

(iii) Using Theorem 2, we can incorporate the decision maker’s risk averse
attitude into coherent risk measures as risk spectra of weighted average
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Fig. 5. Utility function f(x) and function κ(p) in Example 4.

Fig. 6. The optimal risk spectrum ν and its component function C.

value-at-risks. This result will be applicable to subjective portfolio optimiza-
tion in financial management and so on.
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Abstract. To generalize the concept of k-maxitivity and k-additivity,
we introduce k-⊕-additive aggregation functions. We also characterize
this kind of aggregation functions under some special conditions. Several
examples are given to illustrate the new definitions.

Keywords: k-additivity · k-maxitivity
k-⊕-additive aggregation function · Pseudo-addition

1 Introduction

Let n ∈ N. Throughout the paper, the points in [0, 1]n will be denoted by bold
letters, x = (x1, . . . , xn). Given x,y ∈ [0, 1]n, we write x � y if xi � yi for each
i ∈ {1, . . . , n}.

Consider a fixed finite space X = {1, . . . , n}. Recall that a set function
m : 2X → [0, 1] is called a capacity if it is monotone and m(∅) = 0, m(X) = 1.
The additivity of a capacity m makes it a probability measure, determined by n
values of singletons, wi = m({i}), i = 1, 2, . . . , n, constrained by the condition∑n

i=1 wi = 1. The additivity of a probability measure excludes the possibility of
interactions between single subsets of X. On the other hand, a general capacity
m allows to model interaction of any group of subsets of X, but it requires the
knowledge of 2n − 2 values m(A), A �= X, ∅. Grabisch [2] introduced the notion
of k-additive capacities, k ∈ {1, . . . , n}, to reduce the complexity of a general
capacity m, but to allow to model interaction of some groups of subsets of X.
Inspired by this idea, Kolesárová et al. [5] introduced k-additive aggregation
functions. They also clarified the relation between k-additive capacities, their
Owen (multilinear) extension [8] and k-additive aggregation functions.

c© Springer Nature Switzerland AG 2018
V. Torra et al. (Eds.): MDAI 2018, LNAI 11144, pp. 27–34, 2018.
https://doi.org/10.1007/978-3-030-00202-2_3
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Another property of aggregation functions is k-maxitivity. In [7], the authors
introduced and discussed k-maxitive aggregation functions which can be seen as
monotone extensions of k-maxitive capacities.

Both considered operations of addition and maximum can be seen as partic-
ular instances of pseudo-additions acting on [0,∞], see [4,10]. Therefore, as a
generalization of concepts of k-additivity and k-maxitivity, it is natural to con-
sider the concept of k-pseudo-additivity. Note that in the framework of capaci-
ties, some first attempts in this direction were already done in [6]. On the other
hand, the idea of k-pseudo-additive aggregation functions is a new proposal
developed in this paper.

The paper is organized as follows. In the next section, some preliminaries are
given, recalling the concepts of k-maxitive and k-additive aggregation functions,
among others. Section 3 is devoted to pseudo-additions which will be considered
later. In Sect. 4, the main part of the this contribution, we introduce k-⊕-additive
aggregation functions and discuss some particular cases. Finally, some concluding
remarks are added.

2 k-maxitive and k-additive Aggregation Functions

We start by recalling the definition of an aggregation function which has a key
role in this paper.

Definition 1. [3] Let n be a fixed natural number. A mapping A : [0, 1]n →
[0, 1] is called an (n-ary) aggregation function if it is monotone and satisfies the
boundary conditions A(0) = A(0, . . . , 0) = 0 and A(1) = A(1, . . . , 1) = 1.

Definition 2. [7] Let k ∈ {1, . . . , n}. An aggregation function A : [0, 1]n → [0, 1]
is called k-maxitive if for any x1, . . . ,xk+1 ∈ [0, 1]n there is a proper subset I of
{1, . . . , k + 1} such that

A

⎛

⎝
k+1∨

j=1

xj

⎞

⎠ = A

⎛

⎝
∨

j∈I

xj

⎞

⎠ .

Observe that the k-maxitivity of an aggregation function A can be defined
equivalently by requiring the equality

∨

I⊆{1,...,k+1}
|I| is odd

A

⎛

⎝
∨

j∈I

xj

⎞

⎠ =
∨

I⊆{1,...,k+1}
|I| is even

A

⎛

⎝
∨

j∈I

xj

⎞

⎠

for any x1, . . . ,xk+1 ∈ [0, 1]n.

Remark 1. Observe that due to the fact that for n-ary vectors x1,x2, . . . ,xn+1

there is always an index set I ⊆ {1, 2, . . . , n + 1} with cardinality n such that
∨n+1

i=1 xi =
∨

i∈I xi each n-ary aggregation function is n-maxitive (obviously,
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it can be maxitive with k < n). As an example of an n-maxitive aggregation
function which is not k-maxitive for any k ∈ {1, . . . , n − 1}, one can recall the
arithmetic mean.

Symmetric k-maxitive aggregation functions have the following simple rep-
resentation, see [7].

Theorem 1. A symmetric aggregation function A : [0, 1]n → [0, 1] is k-maxitive
if and only if there is an aggregation function B : [0, 1]k → [0, 1] such that

A(x) = B(xσ(1), . . . , xσ(k)),

where σ : X → X is a permutation such that xσ(1) ≥ · · · ≥ xσ(k) ≥ · · · ≥ xσ(n).

Note that the same symmetric k-maxitive n-ary aggregation function A can
be obtained from different k-ary aggregation functions B.

For example, the standard median A = Med : [0, 1]3 → [0, 1] is a 2-
maxitive aggregation function [7], and Med(x1, x2, x3) = Min(xσ(1), xσ(2)) =
P2(xσ(1), xσ(2)) (here P2 is the second projection).

Finally, we add a few words about k-maxitive capacities and k-maxitive
aggregation functions. First, recall that a capacity m is called k-maxitive if for
any subset U ⊆ {1, . . . , n} with |U | > k there exists a proper subset V of U such
that m(V ) = m(U). For k > 1, m is called proper k-maxitive if it is k-maxitive
but not (k − 1)-maxitive.

It is clear that for any k-maxitive aggregation function A the equation
m(U) = A(1U ) defines a k-maxitive capacity, i.e., A is a monotone extension
of the k-maxitive capacity m. Also observe that several fuzzy integrals, such as
the Sugeno integral [11] or the Shilkret integral [9] result into k-maxitive aggre-
gation functions on [0, 1] once a k-maxitive capacity m is considered. For more
information we refer to [7].

In the rest of this section, we review the property of k-additivity.

Definition 3. [5] Let k, n ∈ N and let A : [0, 1]n → [0, 1] be an aggregation
function. Then A is called k-additive if for all collections x1, . . . ,xk+1 ∈ [0, 1]n

such that also
∑k+1

i=1 xi ∈ [0, 1]n we have

k+1∑

i=1

(−1)k+1−i

⎛

⎜
⎜
⎝

∑

I⊆{1,...,k+1}
|I|=i

A

⎛

⎝
∑

j∈I

xj

⎞

⎠

⎞

⎟
⎟
⎠ = 0. (1)

Equivalently, if

∑

I⊆{1,...,k+1}
|I| is odd

A

⎛

⎝
∑

j∈I

xj

⎞

⎠ =
∑

I⊆{1,...,k+1}
|I| is even

A

⎛

⎝
∑

j∈I

xj

⎞

⎠ . (2)
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Observe that 1-additivity is just the standard additivity of aggregation func-
tions. Moreover, it is not difficult to check that each k-additive aggregation
function A is also p-additive for any integer p > k. The standard product
P : [0, 1]n → [0, 1], P (x) =

∏n
i=1 xi is a proper n-additive aggregation function

[5] (i.e., it is not (n − 1)-additive). Also, in this case any k-additive aggregation
function A : [0, 1]n → [0, 1] is related to a k-additive capacity m (see [2]) given by
m(U) = A(1U ). Note that, considering k > 1 and a proper k-additive capacity
m, the related Choquet integral [1] with respect to m results into an aggregation
function which, however, is not k-additive. In [5], the next important result was
shown.

Theorem 2. Let m be a k-additive capacity on X. Then the related Owen exten-
sion [8] Om : [0, 1]n → [0, 1] given by

Om(x) =
∑

I⊆{1,...,n}
Mm(I)

∏

i∈I

xi.

is a k-additive aggregation function.

Recall that Mm is the Möbius transform of a capacity m and it is given, for
any U ⊆ X, by

Mm(U) =
∑

V ⊆U

(−1)|U\V |m(V ).

3 Pseudo-additions

We start this section with the definition of a pseudo-addition.

Definition 4. [10] A binary operation ⊕ : [0,∞]2 → [0,∞] satisfying the fol-
lowing conditions is called pseudo-addition:

1. x ⊕ 0 = 0 ⊕ x = x;
2. (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z);
3. x � x

′
and y � y

′ ⇒ x ⊕ y � x
′ ⊕ y

′
;

4. xn → x and yn → y ⇒ xn ⊕ yn → x ⊕ y.

A pseudo-addition can be represented by a family of functions as follows:

Definition 5. [10] Let {]ak, bk[: k ∈ K} be a family of disjoint open intervals in
[0,∞] indexed by a countable set K. For each k ∈ K, associate a continuous and
strictly increasing function gk : [ak, bk] → [0,∞] satisfying gk(ak) = 0. We say
that a binary operation ⊕ on [0,∞] has a representation

{〈
]ak, bk[, gk

〉
: k ∈ K}

if for all x, y ∈ [0,∞],

x ⊕ y =

{
g∗

k(gk(x) + gk(y)) if (x, y) ∈ [ak, bk]2

max{x, y} otherwise,
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where g∗
k is the pseudo-inverse of gk, defined by

g∗
k(x) = g−1

k (min{x, gk(bk)}).

Theorem 3. [10] A binary operation on [0,∞] is a pseudo-addition if and only
if it has a representation {〈]ak, bk[, gk

〉
: k ∈ K}.

Example 1. Basic types of pseudo-additions are as follows:
1. If K = ∅ then ⊕ = ∨ (max).
2. If |K| = 1, ]a1, b1[=]0,∞[, and g(∞) = ∞ then

x ⊕ y = g−1(g(x) + g(y)).

For example,
i. for g(x) = x we have x ⊕ y = x + y,
ii. for g(x) = x2 we have x ⊕ y =

√
x2 + y2.

3. If |K| = 1, ]a1, b1[=]0,∞[, and g(∞) < ∞ then

x ⊕ y = g−1(min{g(∞), g(x) + g(y)}).

For example, if g(x) =
2x

x + 1
we have

x ⊕ y =

⎧
⎨

⎩

2xy + x + y

1 − xy
if xy < 1,

∞ otherwise

(under the convention 0.∞ = 0 ).
4. If |K| ≥ 1 and there is a k ∈ K such that ]ak, bk[=]0, 1[, then ⊕|[0,1]2 = S,

where S is a continuous Archimedean t-conorm generated by an additive
generator g : [0, 1] → [0,∞].
i. S is strict if g(1) = ∞ and then

S(x, y) = g−1(g(x) + g(y)).

For example, S(x, y) = x + y − xy if g(x) = − log(1 − x).
ii. S is nilpotent if g(1) = 1 and then

S(x, y) = g−1(min{1, g(x) + g(y)}).

For example, S(x, y) = min{1, x + y} if g(x) = x.

4 K-⊕-additive Aggregation Functions

Now, we are ready to introduce k-⊕-additive aggregation functions.

Definition 6. An aggregation function A : [0, 1]n → [0, 1] is k-⊕-additive if for
all x1, . . . ,xk+1 ∈ [0, 1]n such that ⊕k+1

j=1xj ∈ [0, 1]n,

⊕

I⊆{1,...,k+1}
|I| is odd

A

⎛

⎝
⊕

j∈I

xj

⎞

⎠ =
⊕

I⊆{1,...,k+1}
|I| is even

A

⎛

⎝
⊕

j∈I

xj

⎞

⎠ . (3)

Evidently, k-+-additive aggregation functions are just k-additive aggrega-
tion functions. Similarly, k-∨-aggregation functions are k-maxitive aggregation
functions.
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4.1 Archimedean Pseudo-additions

Here, we consider an ⊕ related to an additive generator g : [0,∞] → [0,∞]
with g(1) = 1. Observe that if a pseudo-addition ⊕ is generated by an additive
generator g, then, for any positive real constant c, cg is also an additive generator
of ⊕. To ensure the uniqueness of additive generators, without loss of generality,
we can always consider g(1) = 1.

Theorem 4. An aggregation function A : [0, 1]n → [0, 1] is k-⊕-additive if and
only if B : [0, 1]n → [0, 1],

B(x) = g(A(g−1(x1), . . . , g−1(xn))),

is a k-additive aggregation function. Then

A(x) = g−1(B(g(x1), . . . , g(xn))).

Example 2. Let g(x) = x2. Then an aggregation function A : [0, 1]n → [0, 1] is
1-⊕-additive if and only if

A(x) =
√

Ww(x2
1, . . . , x

2
n) =

√
√
√
√

n∑

i=1

wix2
i ,

i.e., if A is a weighted quadratic mean.

Note that C(x) =
∑n

i=1 wix
2
i is 2-⊕-additive.

Definition 7. Let m be a capacity on X and let g be a generator of a pseudo-
addition ⊕. The g-Owen extension of m is defined as follows

Og
m(x) = g−1

⎛

⎝
∑

I⊆{1,...,n}
Mm(I)

∏

i∈I

g(xi)

⎞

⎠ .

Theorem 5. Let m be a k-additive capacity. Then, the g-Owen extension Og
m :

[0, 1]n → [0, 1] is a k-⊕-additive aggregation function.

Note that the related k-⊕-additive capacity μ to A = Og
m is given by μ(E) =

A(1E) = g−1(m(E)).

Example 3. Consider g(x) = x2 and n = k = 2. Let m({1}) = a, m({2}) = b,
a, b ∈ [0, 1]. Then

Og
m(x1, x2) =

√
ax2

1 + bx2
2 + (1 − a − b)x2

1x
2
2 .
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4.2 Archimedean t-conorm-based Pseudo-additions

Now, let ⊕|[0,1]2 = S be a continuous Archimedean t-conorm generated by an
additive generator g : [0, 1] → [0,∞]. We have the following result.

Theorem 6. Let S be a strict t-conorm and B : [0,∞]n → [0,∞] an aggregation
function on [0,∞]. Then

A = g−1 ◦ B ◦ g

is a k-⊕-additive aggregation function on [0, 1] if and only if B is k-additive on
[0,∞].

Note that B is a k-additive aggregation function on [0,∞] whenever it is a
polynomial with degree at most k which is increasing on [0,∞] and B(0) = 0.
However, there are also some non-polynomial solutions, in contrast to the k-
additive aggregation functions on [0, 1]. For example, consider a function B :
[0,∞]n → [0,∞] given by

B(x) =

{
0 if x = 0,

∞ otherwise.

Then B is additive (and thus k-additive for any k ∈ N) aggregation function on
[0,∞]. The related k-⊕-additive aggregation function A on [0, 1] is given by

A(x) =

{
0 if x = 0,

1 otherwise,

independently of the additive generator g (recall that this A is the strongest
aggregation function on [0, 1], while B is the strongest aggregation function on
[0,∞]). Observe that A is 1-⊕-additive if and only if 1 is an idempotent element
of the pseudo-addition ⊕, i.e., if 1 ⊕ 1 = 1.

Theorem 7. Let S be a nilpotent t-conorm and B a k-additive aggregation func-
tion on [0, 1]. Then

A = g−1 ◦ B ◦ g

is a k-⊕-additive aggregation function on [0, 1].

Observe that, in contrast to Theorem 6, Theorem 7 gives a sufficient condition
only. Consider, for example, g(x) = x, x ∈ [0, 1], i.e., the related nilpotent t-
conorm S is the �Lukasiewicz t-conorm given by SL(x, y) = min{1, x + y}. Let
A : [0, 1]n → [0, 1] be given by A(x) = min{1,

∑n
i=1 wixi}, where the weights

w1, . . . , wn are from the interval [1,∞] (with convention 0.∞ = 0). Then A is
1-⊕-additive (and thus k-⊕-additive for each k ∈ N) aggregation function on
[0, 1], but the related B is not k-additive for each k ∈ N.



34 F. Kouchakinejad et al.

5 Concluding Remarks

We have introduced new interesting classes of aggregation functions, namely
pseudo-additive aggregation functions of order k (k-⊕-additive aggregation func-
tions). Our approach generalizes the k-additivity and the k-maxitivity of aggre-
gation functions proposed and discussed in [5] and [7], respectively. Note that the
k-⊕-additive aggregation functions are closely related to k-⊕-additive capacities
discussed in [6], and in the case when ⊕|[0,1]2 is an Archimedean t-conorm, then
to decomposable measures proposed by S. Weber [12], see also λ-measures of
Sugeno [10]. Our approach opens several new problems for the further inves-
tigations, in particular a complete characterization of k-⊕-additive aggrega-
tion functions for some special pseudo-additions ⊕, and their link to particular
capacities.

Acknowledgment. The work on this contribution was supported by the grants
APVV-14-0013 and APVV-17-0066. Fateme Kouchakinejad kindly acknowledges the
support from Iran National Science Foundation: INSF.
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Abstract. Some decision aiding methods are based on constructing and
exploiting outranking relations. An alternative a outranks another b if a is at
least as good as b (aSb). One well known method in this field is ELECTRE. The
outranking relation is usually built by means of a weighted average (WA) of the
votes given by a set of criterion with respect to the fulfilment of aSb. The value
obtained represent the strength of the majority opinion. The WA operator can be
observed to have sometimes an undesired compensative effect. In this paper we
propose the use of other aggregation operators with different mathematical
properties. In particular, we substitute the WA by three operators from the
Ordered Weighted Average (OWA) family of operators because it permits to
decide the degree of andness/orness that is used during the aggregation.
The OWAWA (Ordered Weighted Average Weighted Average), WOWA
(Weighted Ordered Weighted Average) and IOWA (Induced Ordered Weighted
Average) operators are studied. They are capable to combine the importance
given to each criterion with the conjunctive/disjunctive requirement applied in
the definition of the outranking relation.

Keywords: Decision support systems � Outranking relations
Ordered Weighted Average

1 Introduction

Multiple Criteria Decision Aiding discipline studies systematic methods for complex
decision problems concerning diverse and often contradictory criteria, by analyzing a
set of possible alternatives in order to find the best one [1]. One of the most successful
approaches nowadays is known as outranking methods. It is based on social choice
models that copy the human reasoning procedure [4].

MCDA methods take a set of alternatives (i.e. potential solutions) and generate a
ranking of the alternatives according to a set of criteria. Criteria are tools constructed
for the evaluation of alternatives compared in terms of suitability based on the decision
maker’s needs. Each criterion corresponds to a point of view considered in the decision
process. Outranking methods are characterized by being based on constructing pref-
erence relations between the alternatives by means of pairwise comparisons, instead of
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aggregating directly the values given by the criteria. The aim is to build a binary
outranking relation aSb, which means “a is at least as good as b” [1]. Each criterion is
asked about its contribution to this outranking assertion and it provides a vote in favor
or against to aSb. Votes must be aggregated in order to associate a value to aSb for all
possible pairs of alternatives. There are two main methods known as PROMETHEE
and ELECTRE. In this study, we focus on ELECTRE method as it strictly applies the
concept of veto. Moreover, ELECTRE method has been widely acknowledged as an
efficient decision aiding tool with successful applications in many domains [4].

ELECTRE uses a weighted average to merge all the votes supporting aSb and then
it includes the opposite votes by using a veto procedure. Once the valued outranking
relation is constructed, different exploitation procedures exist in order to derive a
ranking from it [1]. The contribution of this paper is the use of other aggregation
operators for merging the votes in favor of the outranking relation. In particular, we
propose the use of OWA-like operators because they enable the definition of
conjunctive/disjunctive policies of aggregation that may be more appropriate in some
decision problems. The compensation problem of classic weighted average may be
solved with the possibility of establishing a more appropriate and-like aggregation (to
model simultaneity) or or-like operator (for replaceability). As we do not want to
suppress the weights representing the voting power for each criterion, we propose the
use of Weighted OWA operators like OWAWA, WOWA and IOWA.

The paper is structured as follows. Section 2 presents the different aggregation
operators based on OWA that will be used in the study. Section 3 briefly outlies the
ELECTRE method. Section 4 defines the new procedure for calculating the overall
concordance. Section 5, makes an empirical analysis and comparison. Finally, Sect. 6
discusses the main conclusions of this study.

2 Weighted OWA Operators

Aggregation operators are mathematical formulations that map a set of n values Rn to a
single value R and must satisfy certain properties (idempotency, monotonicity, etc.) [9].
The most popular aggregation operators are averaging operators. The simplest aggre-
gation operator with weights is the weighted average (WA), where the source of the
values (i.e. the evaluation criteria) are assigned weights to indicate its trade-off
importance. Given a set of arguments A ¼ a1; . . .; anð Þ and a weighting vector V with
weights vj 2 0; 1½ � associated with each argument source (i.e. criterion), such thatPn

j¼1 vj ¼ 1. The weighted average is defined as:

WA Að Þ ¼
Xn

j¼1
vjaj ð1Þ

Differently, OWA [10] uses weights to provide a parameterized family of mean
type aggregation operators. The main distinguishing feature of this operator is the
reordering of arguments according to their values before weights are assigned. Given a
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set of arguments A ¼ a1; . . .; anð Þ and a weighting vector W with weights wj 2 0; 1½ �,
such that

Pn
j¼1 wj ¼ 1. The ordered weighted average is defined as:

OWA Að Þ ¼
Xn

j¼1
wjbj; ð2Þ

where bj is the jth largest of the ai.
An interesting fact about OWA is that weights are not given to the criteria but to the

values. Thus, we can perform different aggregation policies (disjunctive or conjunctive)
according to the decision maker (DM) needs. For example, the DM could assign
weights in such a way that extreme arguments are regarded less than central arguments.
In summary, the weights of OWA shows the importance of arguments in relation to the
ordering of the arguments.

In some problems the DM is interested in carefully considering the weighting
policies due to is significant impact on the results [3]. The use of OWA weights enables
to model the andness/orness, which can be combined with usual WA weights for the
different criteria. Next subsections introduce three different ways of combining them in
OWA-like operators that exploit the advantages of both OWA and WA approaches.

2.1 OWAWA

In [6] the OWAWA operator is introduced as a generalization of the WA and the OWA
operator.

An OWAWA operator is a mapping A ¼ a1; . . .; anð Þ ! R, having an associated
weighting vector V (WA), with

Pn
i¼1 vi ¼ 1 and vi 2 0; 1½ � and a weighting vector W

(OWA), with
Pn

j¼1 wj ¼ 1 and wj 2 0; 1½ �, such that:

OWAWAb Að Þ ¼ b
Xn

j¼1
wjbj þ 1� bð Þ

Xn

i¼1
viai; ð3Þ

where bj is the jth largest of the ai and b 2 0; 1½ �:
The novel feature of the OWAWA operator is the ability to take into account the

degree of importance of WA and OWA in specific situations. This is managed with the
parameter b. As b ! 1, the importance of OWA increases while as b ! 0, the
importance of WA increases. The OWAWA operator is monotonic, idempotent,
commutative and bounded.

2.2 WOWA

The WOWA operator was introduced in [8] as a combination of the WA operator and
the OWA operator by means of constructing a different weight that integrates the
associated weighting system seen in WA, V , with the weighting according to ordering
of OWA, W .
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A WOWA operator is a mapping A ¼ a1; . . .; anð Þ ! R of dimension n where,

WOWA Að Þ ¼
Xn

j¼1
xjbj; ð4Þ

where bj is the jth largest of the ai and the weight xi is defined taking into account the
importance of the sources of the arguments and their position after the reordering step,

defined as xi ¼ w� P
j� i vr jð Þ

� �
� w� P

j\i vr jð Þ
� �

with
Pn

i¼1 xi ¼ 1.

w� is a non-decreasing function that interpolates the points 0; 0ð Þf g[
ði=n;Pj� i wjÞ

n o
8i ¼ 1; . . .; n. w� is required to be a straight line when the points can

be interpolated in this way. Moreover, w� may be a regular monotonic non-decreasing
quantifier Q xð Þ, with Q 0ð Þ ¼ 0;Q 1ð Þ ¼ 1 and if x[ y then Q xð Þ�Q yð Þ.

The WOWA operator is defined in such a way that it reduces to the OWA operator
when vi ¼ 1=n and reduces to the WA operator when wi ¼ 1=n. This shows that OWA
and WA are special cases of the generalized WOWA operator.

2.3 IOWA

The last method to combine the two different sets of weights is by means of an induced
ordered weighted averaging operator (IOWA). IOWA was introduced in [11] to
introduce an additional variable that influences the ordering stage of OWA. The IOWA
operator rather ordering arguments by their numeric values an ordered inducing vari-
able is used to order the arguments. Then, IOWA operator is defined in terms of
arguments in form of a two-tuple, called an OWA pair hui; aii, where ui is the order
inducing variable of the i th argument and ai is the argument variable of the i th
argument. In the reordering step ai is not used but ui:

Given n arguments to be aggregated denoted as A ¼ a1; . . .; anð Þ, the ordered
arguments are obtained in a way such that buj is the a value of the OWA pair having the
j th largest u value. The IOWA operator can then be defined as:

IOWA hu1; a1i; . . .; hu1; a1ið Þ ¼
Xn

j¼1
xjb

u
j ð5Þ

In IOWA a tie occurs when two OWA pairs huj; aji; huk; aki have equal order
inducing variables, i.e. uj ¼ uk. In this case, each OWA pair is replaced with an OWA
pair having the same order-inducing variable u but an argument variable that is an
average of the previous argument variables. This means that having huj; aji and
huk; aki where uj ¼ uk they are replaced by h uj ¼ uk

� �
; aj þ ak=2
� �i in the aggregation

process. The IOWA operator is idempotent, communicative, monotonic and bounded.
Using as inducing variable the vector V of importance of the criteria, we have

another way of combining V and W .
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3 Outranking Relations in the ELECTRE Methodology

The so-called outranking methods in the MCDA literature are based on conducting a
pairwise comparison of alternatives with regards to each criterion. The goal of the
comparison is to find out if it satisfies an outranking relation aSb meaning that alter-
native a is “at least as good as” alternative b.

The outranking relation S may be binary or valued. In this paper we study the case
of valued outranking relations, having then S ¼ A ! 0; 1½ �. The value assigned to S is
usually denoted as credibility (on the outranking relation). In the ELECTRE method, to
calculate the credibility of aSb, two conditions must hold:

1. Concordance condition: After pairwise comparison of a and b for each criterion, a
majority of the criteria must support aSb. It accounts for the majority opinion.

2. Non-discordance condition: Ensures that among the minority no criteria strongly
refutes aSb. It permits the right to veto (i.e. “respect to minorities”).

The outranking concept explained above is inspired in voting models used in
different theories of social election. It is similar to voting procedures applied United
Nations Security Council, where some countries have the right to veto the majority
opinion. Following this idea, in ELECTRE methodology, to calculate the credibility
value of the outranking relation q a; bð Þ 2 0; 1½ �, the following steps are applied [1]:

1. Calculation of a partial concordance index for each criterion cj a; bð Þ 2 0; 1½ �. In
each criterion, two discrimination thresholds may be used to model the uncertainty
of the decision maker: the indifference and the preference threshold.

2. Calculation of the overall concordance c a; bð Þ 2 0; 1½ �. It is calculated as a weighted
average of cj a; bð Þ using as weights the voting power of each criterion. The
resulting value represent the strength of the coalition of criteria being in favor of the
outranking relation aSb.

3. Calculation of a partial discordance index for each criterion dj a; bð Þ 2 0; 1½ �:
The DM can give to some criteria the right to veto the majority opinion if there are
essential reasons to refute it. In this case, the criteria has an associated veto
threshold, such that larger differences of this threshold in favor of b will eliminate
the possibility that option a outranks option b.

4. Calculation of the final credibility as:

q a; bð Þ ¼
c a; bð Þ if 8jdj a; bð Þ� c a; bð Þ
c a; bð Þ: Q

j2J a;bð Þ
1�dj a;bð Þ
1�c a;bð Þ otherwise

8<
: ; ð6Þ

where J a; bð Þ is the set of criteria for which the discordance is larger than the overall
concordance.

Once the credibility matrix is obtained, an exploitation procedure is applied in order
to establish a preference-based order among the alternatives. A simple ranking tech-
nique is known as Net Flow Score (NFS) procedure. NFS is based on the two evi-
dences: strength and weakness. They are measured in the graph corresponding to the

Constructing an Outranking Relation with Weighted OWA 39



valued credibility matrix calculated in step 4. The strength of alternative a is defined as
the sum of the credibility values of the output edges to the node a. The weakness of
alternative a is defined as the sum of the credibility values of the input edges to the
node a. In terms of outranking relations, the net flow score of an alternative a is defined
in Eq. 7. A total ranking can be derived from the NFS, being the higher the score, the
better.

NFS að Þ ¼ b 2 A : aSbj j � b 2 A : bSaj j ð7Þ

4 Using Weighted OWA in the Overall Concordance
Calculation

Some previous works have considered a modification of the way that overall concor-
dance is calculated in ELECTRE in different situations. The paper [7] looks at a
situation where the extent to which a criterion surpasses the preference threshold can be
reflected in a change in the importance of that criterion in the concordance calculation.
In [2] the concordance index is modified to take into consideration three possible
interactions between the criteria that modify each joint importance: mutual strength-
ening, mutual weakening and antagonistic. In both cases, the weights are modified but
the overall concordance index for each pair a; b is calculated as the weighted average of
the partial concordances indices.

Having C ¼ cj a; bð Þ� �
; j ¼ 1. . .n:

c a; bð Þ ¼ WA Cð Þ ð8Þ

In this paper we propose the substitution of the WA operator by a weighted OWA
operator, presented in Sect. 2. The first proposal is using OWAWA operator that
linearly combines both the result of WA and the result of OWA. In this case, the
parameter beta must be defined by the user. This parameter allows to base the result
most on the criteria importance weights or on the and/or weights.

c a; bð Þ ¼ OWAWAb Cð Þ ð9Þ

The second proposal consists in using IOWA operator with the criteria importance
V used as order-inducing variable. In this case, the values provided by the most
important criteria will the ones assigned to the first weights of the OWA vector W.

c a; bð Þ ¼ IOWA V ;Ch ið Þ ð10Þ
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The third approach uses the WOWA operator which generates a new weighting
vector from the V and W.

c a; bð Þ ¼ WOWA Cð Þ ð11Þ

5 Experiments

The OWA-based outranking construction proposed has been tested with two different
datasets. To evaluate the differences produced by the different operators, we compare
the ranking obtained using the Net Flow Score. A minimum credibility of 0.8 in the
outranking relation is used in this procedure. The correlation between different rankings
is calculated to see how new proposals are able to integrate both sets of weights.

5.1 Finding a Hotel

The first case study poses the problem of making lodging arrangements to attend a
congress in Jyväskylä (Finland). The DM wishes to make a choice from six hotel
alternatives all in proximity to the congress site. The choice will be made based on the
criteria and weights listed below. The data used in this case study is given in Tables 1
and 2. Six hotels have been evaluated using 6 criteria: C01- Distance to the congress
site, C02- Distance to the city center, C03- Sports facilities, C04- Restaurants avail-
able, C05- Category and C06- Services provided (wifi, laundry, etc.). Two first criteria
are minimized (−) and the rest are maximized (+).

Two sets of OWA weights have been considered for this study: a disjunctive policy
with wc = (0.408, 0.169, 0.130, 0.109, 0.096, 0.088) and a conjunctive policy with
weights wd = (0.028, 0.083, 0.139, 0.194, 0.25, 0.306). These weights were obtained
from the use of a regular monotonic non-decreasing quantifier, as proposed in [7].

Table 1. Hotels performance table

C01− C02− C03+ C04+ C05+ C06+

Alexandra 1600.0 300.0 2.0 3.0 4.0 5.0
Sokos 1700.0 400.0 2.0 2.0 4.0 5.0
Cumulus 1700.0 550.0 4.0 0.0 3.0 3.0
Scandic 600.0 350.0 3.0 2.0 4.0 2.0
Kampus 1550.0 610.0 4.0 0.0 3.0 2.0
Alba 110.0 1300.0 1.0 1.0 3.0 4.0

Table 2. Criteria parameters

C01 C02 C03 C04 C05 C06

Indifference 200.0 100.0 0.0 0.0 0.0 1.0
Preference 700.0 300.0 1.0 1.0 0.0 1.0
Weight 0.1 0.3 0.3 0.05 0.15 0.1
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To establish the disjunctive policy, the quantifier Q xð Þ ¼ ffiffiffi
x

p
is used, while for the

conjunctive policy Q xð Þ ¼ x2.
Next tables show the overall concordance values obtained with the three combined

operators proposed in this paper to merge the partial concordance indices (Table 3).

For OWAWA, three values of b have been tested. In orange, concordances higher
than 0.8 are highlighted, as they are the ones used in the NFS ranking procedure. We
show only some results for the disjunctive version of the operators (and WA as ref-
erence) for space limitations (Tables 4, 5, 6 and 7). For conjunctive policies, we have
observed that the values of the outranking matrix are much lower than with the rest,
finding very few values above the threshold of 0.8 and leading to rankings with
many ties.

Table 3. Outranking values with weighted average (WA)

Alexa Sokos Cumulus Scandic Kampus Alba
Alexa 1.0 1.0 0.7 0.6 0.7 0.9 
Sokos 0.95 1.0 0.7 0.6 0.7 0.9 
Cumulus 0.475 0.625 1.0 0.55 1.0 0.85 
Scandic 0.85 0.9 0.7 1.0 0.7 0.842 
Kampus 0.4 0.535 1.0 0.46 1.0 0.75 
Alba 0.2 0.2 0.4 0.2 0.4 1.0 

Table 4. Outranking values with OWA disjunctive (OWAd)

Alexa Sokos Cumulus Scandic Kampus Alba
Alexa 1.0 1.0 0.912 0.816 0.912 0.912 
Sokos 0.912 1.0 0.912 0.816 0.912 0.912 
Cumulus 0.6095 0.6745 1.0 0.642 1.0 0.816 
Scandic 0.816 0.912 0.912 1.0 0.912 0.85632 
Kampus 0.577 0.6355 1.0 0.603 1.0 0.707 
Alba 0.577 0.577 0.816 0.577 0.816 1.0 

Table 5. Outranking values with OWAWA beta = 0.5 disjunctive (OWAWA.5d)

Alexa Sokos Cumulus Scandic Kampus Alba
Alexa 1.0 1.0 0.806 0.708 0.806 0.906 
Sokos 0.936 1.0 0.806 0.708 0.806 0.906 
Cumulus 0.54225 0.64975 1.0 0.596 1.0 0.833 
Scandic 0.833 0.906 0.806 1.0 0.806 0.84916 
Kampus 0.4885 0.58525 1.0 0.5315 1.0 0.7285 
Alba 0.3885 0.3885 0.608 0.3885 0.608 1.0 
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The NFS values (Eq. 7) given to each hotel are shown in Table 8. Their ranking
positions (1…6) are given in Table 9, with the hotels in the best positions highlighted.

We can see that in most of the cases Alba is in the worst position, although with a
conjunctive policy the worst is Sokos. The best position is given to Scandic or Alexa

Table 6. Outranking values with IOWA disjunctive (IOWAd)

Alexa Sokos Cumulus Scandic Kampus Alba
Alexa 1.0 1.0 0.7115 0.609 0.7115 0.8975 
Sokos 0.912 1.0 0.7115 0.609 0.7115 0.8975 
Cumulus 0.463125 0.607375 1.0 0.53525 1.0 0.8095 
Scandic 0.8095 0.8975 0.7115 1.0 0.7115 0.83805 
Kampus 0.391 0.520825 1.0 0.4487 1.0 0.707 
Alba 0.205 0.205 0.423 0.205 0.423 1.0 

Table 7. Outranking values with WOWA disjunctive (WOWAd)

Alexa Sokos Cumulus Scandic Kampus Alba
Alexa 1.0 1.0 0.83666 0.7746 0.83666 0.94868 
Sokos 0.97467 1.0 0.83666 0.7746 0.83666 0.94868 
Cumulus 0.68351 0.78561 1.0 0.73455 1.0 0.92195 
Scandic 0.92195 0.94869 0.83666 1.0 0.83666 0.9172092 
Kampus 0.63246 0.72435 1.0 0.67329 1.0 0.86602 
Alba 0.44722 0.44722 0.63245 0.44722 0.63245 1.0 

Table 8. Net Flow Score for each hotel and each method

Alexa Sokos Cumulus Scandic Kampus Alba

WA 0 0 1 3 0 −4
OWAd 3 3 −3 3 −4 −2
OWAc 1 −1 0 0 0 0
OWAWA.3d 0 0 1 3 0 −4
OWAWA.3c 1 0 0 1 0 −2
OWAWA.5d 2 2 −2 5 −3 −4
OWAWA.5c 1 1 0 0 0 −2
OWAWA.7d 2 2 −2 5 −3 −4
OWAWA.7c 1 −1 0 0 0 0
IOWAd 0 0 1 3 0 −4
IOWAc 3 0 −4 3 −4 2
WOWAd 2 2 −2 5 −2 −5
WOWAc 1 0 0 1 0 −2
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(ndra), sometimes in a tie. Sokos is also in the best position when a disjunctive policy is
used. The case of Sokos hotel is quite interesting because its position is the least stable
of all hotels.

A look at the criteria weights show criteria C02 and C03 to have a combined 60%
of the total importance assigned to criteria, as such hotels like Scandic with good
performance values on C02 and C03 have better positions in WA. It can also be
observed that Alexandra hotel has no low score in any criterion and some high values,
thus it is the winner in case of conjunctive policies. It is worth to notice that Sokos is
the worst when using OWA disjunctive, but when including the criteria weights it
improve its position, as it is good in C02 and C03, as said before. Thus, the operators
balance both weighting vectors. Kampus is in an intermediate position with WA
because it has bad scores in non-relevant criteria, but when including the and/or
weights, it goes to worst positions because of its low score in C04 and C06.

In order to measure the similarity between the rankings, Table 10 gives the
Spearman rho correlation between the 3 results obtained using a single set of weights
(WA, OWAd and OWAc) with respect to the use of the two sets of weights together.
Table 10 also indicates the operator that gives a highest correlation (most similar
ranking, with correlation higher than 0.95) for each of the proposed methods.

We can see that the disjunctive policies with OWAWA with low beta and IOWA
give similar results to the WA. Rankings similar to OWA with disjunctive weights are
obtained with OWAWA also disjunctive and high beta (OWA-like), as expected.
Also OWAWA with high beta reproduces the ranking of OWA for the conjunctive
case. An interesting observation is that WOWA seems to give a significantly different
ranking to all the three basic ones.

Table 9. Rank position of each hotel according to its NFS

 Alexa Sokos Cumulus Scandic Kampus Alba
WA 4 4 2 1 4 6 
OWAd 2 2 5 2 6 4 
OWAc 1 6 3,5 3,5 3,5 3,5 
OWAWA.3d 4 4 2 1 4 6 
OWAWA.3c 1,5 4 4 1,5 4 6 
OWAWA.5d 2,5 2,5 4 1 5 6 
OWAWA.5c 1,5 1,5 4 4 4 6 
OWAWA.7d 2,5 2,5 4 1 5 6 
OWAWA.7c 1 6 3,5 3,5 3,5 3,5 
IOWAd 4 4 2 1 4 6 
IOWAc 1,5 4 5,5 1,5 5,5 3 
WOWAd 2,5 2,5 4,5 1 4,5 6 
WOWAc 1,5 4 4 1,5 4 6 
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5.2 Generating a Ranking of Universities

The second case study comes from paper [5], with data about British universities from
https://www.thecompleteuniversityguide.co.uk/league-tables/rankings a ranking is
built. We use the same weights and thresholds than paper [5], but we increased the
number of alternatives to 20 universities. Five criteria are taken: C01- Academic
services spend, C02- Completion, C03- Entry standards, C04- Facilities spend, C05-
Good honors. Horizontal axis shows the identifier of each method given in Table 10.
Again Q xð Þ ¼ ffiffiffi

x
p

and Q xð Þ ¼ x2 were used to establish the OWA weights (Fig. 1).
Aggregation with IOWA (10 & 11) and with WOWA (11 & 12) is able to change

the position of some universities in this dataset. Although the ones in the best and worst
positions are robust to the change of agregation operator. For example, U16 and U1 are
universities that are sensible to the aggregation policy. U16 is excellent in two criteria
(w = 0.2 and 0.1) and very bad in one (w = 0.3). Therefore, when using WA it appears
in at rank 11/20, with OWAd it goes to upper positions (6/20). We can also observe
that there are many rank reversals between universities in ranks 5 to 15 for IOWAc.
A deeper analysis of this operator reveals that using the importance weights V as order
inducing variable leads to strange results in some cases.

Correlations table (Table 11) shows that in this case study WA and OWA are
initially highly correlated, therefore their combination also leads to high correlation
values in most methods. WOWAd is the one that differentiates a bit from the rest.
IOWAc is suprisingly similar to OWAd.

Table 10. Correlation between the different rankings obtained in dataset Hotels

WA OWAd OWAc Closest (>=0.95)
1 WA 1,00 0,16 0,00 
2 OWAd 0,16 1,00 0,00 
3 OWAc 0,00 0,00 1,00 
4 OWAWA.3d 1,00 0,16 0,00 IOWAd 
5 OWAWA.3c 0,66 0,56 0,46 WOWAc 
6 OWAWA.5d 0,71 0,77 0,00 OWAWA.7d, WOWAd 
7 OWAWA.5c 0,16 0,56 0,00 - 
8 OWAWA.7d 0,71 0,77 0,00 OWAWA.5c, WOWAd 
9 OWAWA.7c 0,00 0,00 1,00 - 
10 IOWAd 1,00 0,16 0,00 OWAWA.3d 
11 IOWAc 0,06 0,81 0,44 - 
12 WOWAd 0,66 0,75 0,00 OWAWA.5d,OWAWA.7d 
13 WOWAc 0,66 0,56 0,46 OWAWA.3c 
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6 Conclusions and Future Work

This work presents a new approach to the aggregation of partial concordances in the
ELECTRE outranking method. Using weighted averaging may sometimes have an
undesired compensative effect between opposite values, as such we look to a family of
OWA operators to avoid this effect. OWAWA, WOWA and IOWA which combine
WA and OWA may substitute WA, introducing a new way of weighting values.

In the tests we observed that the results of the 3 approaches are different as they
model the combination in different ways. An undesired behaviour has been seen in the
IOWA conjunctive operator. If a low partial concordance is given by criteria with high
importance weight, they will be placed in the first positions during aggregation, so they

Fig. 1. Rank positions of the 20 universities values with weighted average (WA)

Table 11. Correlation between the different rankings obtained in dataset Universities

WA OWAd OWAc Closest (>=0.99)
WA 1,00 0,95 0,98 
OWAd 0,95 1,00 0,98 
OWAc 0,98 0,98 1,00 
OWAWA.5d 0,98 0,93 0,95 OWAWA.3d, IOWAd 
OWAWA.5c 0,97 0,98 1,00 OWAWA.7c 
IOWAd 0,99 0,92 0,95 OWAWA.3d, OWAWA.5d 
IOWAc 0,88 0,97 0,93 - 
WOWAd 0,93 0,86 0,88 - 
WOWAc 0,99 0,96 0,98 OWAWA.5c 
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will receive a low W weight and their contribution is minimized. This seems to go in
contrary to common sense. Moreover, WOWA seems to give a significantly different
ranking to all the three basic ones. It may indicate that it really combines the infor-
mation of the two sets of weights in a more suitable way.

Future work concerns the study of the best scenarios for each of these operators.
The behaviour of other OWA policies (e.g. Olympic, Balanced) [9] will be studied.
Finally, a characterisation of the properties of these operators should be investigated.
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Abstract. In decision problems involving two dimensions (like several
agents and several criteria) the properties of expected utility ensure that
the result of a multicriteria multiperson evaluation does not depend on
the order with which the aggregations of local evaluations are performed
(agents first, criteria next, or the converse). We say that the aggrega-
tions on each dimension commute. Ben Amor, Essghaier and Fargier
have shown that this property holds when using pessimistic possibilistic
integrals on each dimension, or optimistic ones, while it fails when using
a pessimistic possibilistic integral on one dimension and an optimistic
one on the other. This paper studies and completely solves this prob-
lem when Sugeno integrals are used in place of possibilistic integrals,
indicating that there are capacities other than possibility and necessity
measures that ensure commutation of Sugeno integrals.

Keywords: Capacities · Sugeno integrals · Possibility theory
Commutation

1 Introduction

In various applications where information fusion or multifactorial evaluation is
needed, an aggregation process is carried out as a two-stepped procedure whereby
several local fusion operations are performed in parallel and then the results are
merged into a global result. It may sometimes be natural to demand that the
result does not depend on the order with which we perform the aggregation steps
because there is no reason to perform either of the steps first.

For instance, in a multi-person multi-criteria decision problem, each alterna-
tive is evaluated by a matrix of ratings where the rows represent evaluations
by persons and the columns represent evaluations by criteria. One may, for
each row, merge the ratings according to each column with some aggregation
operation and form the global rating of each person, and then merge the per-
sons opinions using another aggregation operation. On the other hand, one may
decide first to merge the ratings in each column, thus forming the collective
rating according to each criterion, and then merge these evaluations across the
criteria. The same considerations apply when we consider several agents under
c© Springer Nature Switzerland AG 2018
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uncertainty sharing the same knowledge. Should we average out the uncertainty
for each agent prior to merging the individual evaluations (i.e., follow the so-
called ex-ante approach), or should we average out the common uncertainty only
after merging the individual evaluations for each possible state of affairs (i.e.,
adopt an ex-post approach)?

Even if it may sound natural that the two procedures should deliver the
same results in any sensible approach, the problem is that this natural outcome
is mathematically not obvious at all. When the two procedures yield the same
results, the aggregation operations are said to commute. In decision under risk
for instance, the ex-ante and ex-post approaches are equivalent (the aggregations
commute) if and only the preferences are considered with a utilitarian view
[10,13]: the expected utility of a sum is equal to the sum of the expected utilities.
With an egalitarian collective utility function this is no longer the case, which
leads to a timing effect: the ex-ante approach (minimum of the expected utilities)
is not equivalent to the ex-post one (the expected utility of the minimum of the
utilities). Some authors [10,13] proved representation theorems stating that, in
a probabilistic setting, commutation occurs if and only if the two aggregations
are weighted averages, i.e., the weighted average of expected utilities is the same
as the expected collective utility.

More recently, Ben Amor et al. [2–4] have reconsidered the same problem in
the setting of qualitative decision theory under uncertainty. They have proved
that commuting alternatives to weighted average operations exist, namely qual-
itative possibilistic integrals [6]. Namely, Sugeno integrals with respect to pos-
sibility or necessity measures, respectively corresponding to optimistic and pes-
simistic possibilistic integrals. Pessimistic possibilistic integrals commute, as well
as optimistic ones, but a pessimistic possibilistic integral generally does not com-
mute with an optimistic one.

The question considered in this paper is whether there exist capacities other
than possibility and necessity measures, in the qualitative setting, for which this
commutation result holds, replacing pessimistic or optimistic utility functionals
by Sugeno integrals with respect to general capacities.

The paper is organized as follows. After a refresher on Sugeno integrals on
totally ordered sets in Sect. 2, Sect. 3 provides necessary and sufficient conditions
for their commutation. Finally Sect. 4 gives the explicit format of capacities that
allow for commuting Sugeno integrals.

2 A Refresher on 1D Sugeno Integral

Consider a set X = {x1, · · · , xn} and L a totally ordered scale with top 1,
bottom 0, and the order-reversing operation denoted by 1 − (·) (it is involutive
and such that 1−1 = 0 and 1−0 = 1). A decision to be evaluated is represented
by a function u : X → L where u(xi) is, for instance, the degree of utility of the
decision in state xi.

In the definition of Sugeno integral [14,15], the relative likelihood or impor-
tance of subsets of states is represented by a capacity (or fuzzy measure), which
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is a set function μ : 2X → L that satisfies μ(∅) = 0, μ(X ) = 1 and A ⊆ B implies
μ(A) ≤ μ(B).

Definition 1. The Sugeno integral (S-integral for short) of function u with
respect to a capacity μ is defined by: Sμ(u) = maxα∈L min(α, μ(u ≥ α)), where
μ(u ≥ α) = μ({xi ∈ X |u(xi) ≥ α}).

For instance, suppose that μ is a necessity measure N [5], i.e., a capacity
such that N(A ∩ B) = min(N(A), N(B)). N is entirely defined by a function
π : X → L, called the possibility distribution associated to N , namely by:
N(A) = minxi �∈A 1−π(xi). The conjugate of a necessity measure is a possibility
measure Π [5]: Π(A) = maxxi∈A π(xi). We have Π(A∪B) = max(Π(A),Π(B))
and Π(A) = 1 − N(A) where A is the complementary of A. We thus get the
following special cases of the Sugeno integral:

SΠ(u) = max
α∈L

min(α,Π(u ≥ α)) = max
xi∈X

min(π(xi), u(xi)) (1)

SN (u) = max
α∈L

min(α,N(u ≥ α)) = min
xi∈X

max(1 − π(xi), u(xi)). (2)

These are the weighted maximum and minimum operations that are used in
qualitative decision making under uncertainty (they are called optimistic and
pessimistic qualitative utility respectively [6]). In this interpretation, π(xi) mea-
sures to what extent xi is a possible state, SN (u) (resp. SΠ(u)) evaluates to
what extent it is certain (resp. possible) that u is a good decision.

A Sugeno integral can be equivalently written under various forms
[11,14], especially as a lattice polynomial [7] of the form Sμ(u) =
maxA⊆X min(μ(A),minxi∈A u(xi)). It can be expressed in a non-redundant for-
mat by means of the qualitative Möbius transform of μ [8]:

μ#(T ) =

{
μ(T ) if μ(T ) > maxx∈T μ(T\{x})
0 otherwise

as
Sμ(u) = max

T⊆X :μ#(T )>0
min(μ#(T ), min

xi∈T
u(xi))

The function μ# contains the minimal information to reconstruct the capacity μ
as μ(A) = maxT⊆A μ#(T ). Subsets T of X for which μ#(T ) > 0 are called focal
sets of μ and the set of focal sets of μ is denoted by F(μ). As a matter of fact, it
is clear that the qualitative Möbius transform of a possibility measure coincides
with its possibility distribution: Π#(A) = π(s) if A = {s} and 0 otherwise.

Lastly, the S-integral can be expressed in terms of Boolean capacities (i.e.,
of capacities that take their values in {0, 1}) obtained from μ. Given a capacity
μ on X , for all λ > 0, λ ∈ L, let μλ : 2X → {0, 1} (called the λ-cut of μ) be

a Boolean capacity defined by μλ(A) =

{
1 if μ(A) ≥ λ

0 otherwise.
, for all A ⊆ X . It is

clear that the capacity μ can be reconstructed from the μλ’s as follows:

μ(A) = max
λ>0

min(λ, μλ(A)).
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Observe that the focal sets of a Boolean capacity μλ form an antichain of subsets
(there is no inclusion between them).

We can also express S-integrals with respect to μ by means of the cuts of μ:

Proposition 1. Sμ(u) = maxλ>0 min(λ, Sμλ
(u))

Proof:

Sμ(u) = max
A⊆X

min(max
λ>0

min(λ, μλ(A)), min
xi∈A

u(xi))

= max
λ>0

min(λ, max
A⊆X

min(μλ(A), min
xi∈A

u(xi))


�
Note that the expression Sμ(u) = maxα∈L min(α, μ(u ≥ α)) uses cuts of the
utility function. It can be combined with Proposition 1 to yield:

Sμ(u) = max
α,λ∈L

min(α, λ, μλ(u ≥ α)). (3)

This expression can be simplified as follows

Proposition 2. Sμ(u) = maxλ∈L min(λ, μλ(u ≥ λ)).

Proof: Note that μλ(u ≥ α) does not increase with α nor λ. Suppose then that
Sμ(u) = min(α∗, λ∗, μλ∗(u ≥ α∗)). If μλ∗(u ≥ α∗) = 1, and α∗ > λ∗, then
notice that μλ∗(u ≥ λ∗) = 1 as well. Likewise, if α∗ < λ∗, μα∗(u ≥ α∗)) = 1. If
μλ∗(u ≥ α∗) = 0, this is also true for μλ(u ≥ α) with α > α∗ and λ > λ∗. So we
can assume α = λ in Eq. (3). 
�

3 The Commutation of Sugeno Integrals

In this section, given two capacities on finite sets μX on X and μY on Y,
we consider double Sugeno integrals of a function u : X × Y → L, either as
SμX (SμY (u)) = SμX (f) where f(x) = SμY (u(x, ·)) or as SμY (SμX (u)) = SμY (g)
where g(y) = SμX (u(·, y)). In this section we look for necessary and sufficient
conditions for which the two double integrals coincide, namely:

SμX (SμY (u(x1, ·)), · · · , SμY (u(xn, ·))) = SμY (SμX ((u(·, y1)), . . . , SμX (u(·, yp)))

Or for short SμX (SμY (u)) = SμY (SμX (u)). We then say that the S-integrals
commute and write SμY ⊥SμX . This question can be considered from two points
of view: for which functions u do S-integrals commute for all capacities on X
and Y? For which capacities do the S-integrals commute for all functions u? The
first question is considered by Narukawa and Torra [12] for more general fuzzy
integrals, and the second one by Behrisch et al. [1], albeit in the larger setting
of distributive lattices, for general lattice polynomials. However, in our paper,
we only consider a totally ordered set L. It is of interest to adapt these results
for S-integrals valued on totally ordered sets, as they become more palatable.
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Then an explicit description of capacities ensuring commutation is obtained. In
particular the question is whether commutation holds for other pairs of capacities
than possibility measures and necessity measures, a case handled in [2].

First note that Halas et al. [9] proved that any double S-integral SμX (SμY (u))
is a 2D S-integral

SμX (SμY (u)) = max
R⊆X×Y

min(κ(R), min
(xi,yj)∈R

u(xi, yj)) (4)

with κ(R) = SμX (SμY (1R)) for each R ⊆ X × Y, 1R denoting the characteristic

function of R (1R(x, y) =

{
1 if (x, y) ∈ R,

0 otherwise
). So it becomes clear that commu-

tation holds for all functions u : X × Y → L whatever the capacities if and only
if commutation holds for all Boolean-valued functions u : X × Y → {0, 1}, that
is, relations R ⊆ X × Y. More precisely, SμY ⊥SμX if and only if

∀R ⊆ X × Y, SμX (μY(x1R), · · · , μY(xnR)) = SμY (μX (Ry1), . . . , μX (Ryp)),

where xiR = {y ∈ Y : xiRy} is the set of images of xi via R, and Ryj = {x ∈
Y : xRyj} the set of inverse images of yj via R.

Another result worth mentioning is a Fubini theorem for S-integrals [12]:

Proposition 3. If R = A × B, commutation always holds, i.e.,

SμX (SμY )(1R) = SμY (SμX (1R)) = min(μX (A), μY(B))

Proof:

SμX (SμY (1R)) = max
S⊆X

min(μX (S),min
x∈S

μY(xR))

= max
S⊆A

min(μX (S),min
x∈S

μY(B)) = min(μX (A), μY(B)).


�
Corollary 1. If u(x, y) = min(uX (x), uY(y)), commutation holds, i.e.,
SμX (SμY (u)) = SμY (SμX (u)) = min(SμX (uX ), SμY (uY)).

Proof: It follows easily noticing that λ-cuts of u, R = {(x, y) : u(x, y) ≥ λ} are
of the form, Sλ × Tλ, where SΛ = {x : uX (x) ≥ λ} and TΛ = {y : uY(y) ≥ λ}. 
�

Finally we shall prove the main theorem of this section, that is

Theorem 1. SμY ⊥SμX if and only if ∀A1, A2 ⊆ X ,∀B1, B2 ⊆ Y:

max(μX (A1 ∩ A2), μY(B1), μY(B2)) ≥ min(μX (A1), μX (A2), μY(B1 ∪ B2))
max(μY(B1 ∩ B2), μX (A1), μX (A2)) ≥ min(μY(B1), μY(B2), μX (A1 ∪ A2)).



Sugeno Integrals and the Commutation Problem 53

Proof: The proof is inspired by a paper on the commutation of polynomials on
distributive lattices [1], and requires several lemmas listed below. Our proof is
easier to read and simpler, though. First we restrict to Boolean functions (rela-
tions R) on X ×Y without loss of generality. Then we show that commutation is
equivalent to a certain identity for relations R of the form (A1 × B1)∪(A2 × B2)
(Lemma 1). We show this identity implies the two inequalities of the theorem
(Lemmas 2 then 3), which proves necessity. Then we show that these inequalities
can be extended to more than just pairs of sets (Lemma 4). Finally we show that
these extended inequalities imply the commutation condition (Lemma5).

In the following three lemmas, we omit the symbol min where necessary for
the sake of saving space (e.g., μX (A1)μY(B1) stands for min(μX (A1), μY(B1)),
etc.)

Lemma 1. SμX (SμY (1R)) = SμY (SμX (1R)) for R = (A1 × B1) ∪ (A2 × B2) if
and only if the 2-rectangle condition holds, i.e.

max(μX (A1 ∩ A2)μY(B1 ∪ B2),
μX (A1)μY(B1), μX (A2)μY(B2), μX (A1 ∪ A2)μY(B1)μY(B2))

= max(μY(B1 ∩ B2)μX (A1 ∪ A2),
μX (A1)μY(B1), μX (A2)μY(B2), μY(B1 ∪ B2)μX (A1)μX (A2))

Proof: The proof just spells out the various min-terms of the Sugeno integral
when R = (A1 × B1) ∪ (A2 × B2). 
�
Lemma 2. The 2-rectangle condition of Lemma 1 implies the two following
properties

max(μX (A1 ∩ A2)μY(B1 ∪ B2), μX (A1)μX (A2)max(μY(B1), μY(B2)))
= μX (A1)μX (A2)μY(B1 ∪ B2)

max(μY(B1 ∩ B2)μX (A1 ∪ A2), μY(B1)μY(B2)max(μX (A1), μX (A2)))
= μY(B1)μY(B2)μX (A1 ∪ A2).

Proof: To get the first equality the idea (from [1]) is to compute the conjunction
of each side of the 2-rectangle condition with μX (A1)μX (A2) (applying distribu-
tivity). The second equality is obtained likewise, by conjunction of each side of
the equality with the term μY(B1)μY(B2). 
�

The following lemma simplifies the two obtained equalities into simpler
inequalities.

Lemma 3. The two equalities in Lemma 2 are equivalent to the two respective
inequalities

max(μX (A1 ∩ A2), μY(B1), μY(B2))) ≥ min(μX (A1), μX (A2), μY(B1 ∪ B2))
(5)

max(μY(B1 ∩ B2), μX (A1), μX (A2)) ≥ min(μY(B1), μY(B2), μX (A1 ∪ A2)).
(6)
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Proof: We must apply distributivity to the right-hand side of the first equal-
ity in Lemma 2: max(μX (A1 ∩ A2)μY(B1 ∪ B2), μX (A1)μX (A2)max(μY(B1),
μY(B2))) and the first equality in Lemma2 reduces to the equality μX (A1)
μX (A2)μY(B1 ∪ B2)max(μX (A1 ∩ A2), μY(B1), μY(B2)) = μX (A1)μX (A2)μY
(B1 ∪B2), which is equivalent to the inequality (5). The inequality (6) is proved
likewise, exchanging A and B, X and Y.

The two inequalities (5) and (6) extend to more than two pairs of sets,
namely:

Lemma 4. (5) and (6) imply:

max(μX (∩k
i=1Ai),

�
max
j=1

μY(Bj)) ≥ min(
k

min
i=1

μX (Ai), μY(∪�
j=1Bj)) (7)

max(μY(∩�
j=1Bj),

k
max
i=1

μX (Ai)) ≥ min(
�

min
j=1

μY(Bj), μX (∪k
i=1Ai)). (8)

Proof: Inequality (7) holds for k = � = 2 (this is (5)). Suppose that inequality
(7) holds for i = 1, . . . k − 1 and � = 2. We can write, by assumption:

max(μX (∩k−1
i=1 Ai), μY(B1), μY(B2)) ≥ min(

k−1
min
i=1

μX (Ai), μY(B1 ∪ B2))

Moreover we can write (5) for A = ∩k−1
i=1 Ai, Ak, B1, B2. Then we can write the

inequality

max(μX (∩k
i=1Ai), μY(B1), μY(B2)) ≥ min(μX (∩k−1

i=1 Ai), μX (Ak), μY(B1 ∪ B2))

Suppose μX (∩k−1
i=1 Ai) ≥ max(μY(B1), μY(B2)). So the first inequality reduces to

μX (∩k−1
i=1 Ai) ≥ min(

k−1
min
i=1

μX (Ai), μY(B1 ∪ B2)).

Then we can replace μX (∩k−1
i=1 Ai) by min(mink−1

i=1 μX (Ai), μY(B1 ∪ B2)) in the
second inequality, and get (7).

Otherwise, μX (∩k−1
i=1 Ai) ≤ max(μY(B1), μY(B2)), and the first inequality

reads

max(μY(B1), μY(B2)) ≥ min(
k−1
min
i=1

μX (Ai), μY(B1 ∪ B2))

so we have max(μX (∩k
i=1Ai), μY(B1), μY(B2)) ≥ min(mink−1

i=1 μX (Ai)), μX (Ak),
μY(B1 ∪ B2)), which is (7) again. Proving that the inequality (7) holds for
k = 2, � > 2 is similar. So, the inequality (7) holds for any k > 2, � > 2. The
inequality (8) is proved in a similar way, exchanging A and B, X and Y . 
�
Lemma 5. If μX and μY satisfy the two inequalities (7) and (8), then SμX ⊥SμY

Proof: Let us consider (7) written as max([μX (∩k
i=1Ai)μY(∪�

j=1Bj)],
[mink

i=1 μX (Ai)max�
j=1 μY(Bj)]) = mink

i=1 μX (Ai)μY(∪�
j=1Bj), and prove that

maxS⊆X min(μX (S),minx∈S μY(xR)) ≥ maxT⊆Y min(μY(T ),miny∈T μX (Ry)).
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Consider the term min(μY(T ),miny∈T μX (Ry)) that we identify with the
right-hand side of (7). Denoting ST = ∩y∈T Ry, this equality then reads:

min(µY (T ),min
y∈T

µX (Ry)) = max(min[µX (ST ), µY (T )],min[min
y∈T

µX (Ry),max
t∈T

µY ({t})])

= max(min[µX (ST ), µY (T )],max
t∈T

[min(min
y∈T

µX (Ry), µY ({t}))]).

We have μY(T ) ≤ minx∈ST
μY(xR) because ST = ∩y∈T Ry if and only if ST ×T ⊆

R if and only if T = ∩x∈ST
xR. So, the term min(μX (ST ), μY(T )) is upper

bounded by maxS⊆X min(μX (S),minx∈S μY(xR)).
The term min(miny∈T μX (Ry), μY({t}) has the same upper bound since

– as t ∈ T , miny∈T μX (Ry) ≤ μX (Rt), choosing y = t;
– if x ∈ Rt, then μY({t}) ≤ μY(xR) since t ∈ xR as well.

So, min(miny∈T μX (Ry), μY({t})) ≤ min(μX (Rt), μY(xR)),∀x ∈ Rt.
Hence, min(miny∈T μX (Ry), μY({t})) ≤ min(μX (Rt),minx∈Rt μY(xR)) that
is also upper bounded by maxS⊆X min(μX (S),minx∈S μY(xR)). We thus get
SμX (SμY (1R)) ≥ SμY (SμX (1R))

The converse inequality can be proved likewise, by symmetry, using (8). 
�
The proof of Theorem1 is now complete. 
�

Theorem 1 gives a necessary and sufficient condition for the commutation of
two S-integrals applied to any function u : X × Y → L based on capacities μX
and μY . As these S-integrals are entirely characterized by these capacities, we
shall simply say that the two capacities commute.

4 Commuting Capacities

Consider the cases when μX and μY are possibility or necessity measures. In the
framework of possibilistic decision under uncertainty, X = {x1, · · · , xn} is a set
of states, and a possibility distribution π captures the common knowledge of the
agents: πi is the possibility degree to be in state xi. Y = {y1, · · · , yp} is the set of
agents. The weight vector w = (w1, · · · , wp) ∈ [0, 1]p is modeled as a possibility
distribution on Y where wj is the importance of agent yj . The attractiveness
of decision u for agent yj in the different states is captured by utility function
u(·, yj) : X → [0, 1]. There are two possible approaches for egalitarian (min-
based) aggregations of pessimistic decision-makers, and two possible approaches
for egalitarian aggregations of optimistic decision-makers [2].

ex-post pessimistic
U−min

post (π,w, u) = minxi∈X max(1 − πi,minyj∈Y max(u(xi, yj), 1 − wj)).
ex-ante pessimistic

U−min
ante (π,w, u) = minyj∈Y max(1 − wj ,minxi∈X max(u(xi, yj), 1 − πi)).
ex-post optimistic

U+min
post (π,w, u) = maxxi∈X min(πi,minyj∈Y max(u(xi, yj), 1 − wj)).
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ex-ante optimistic
U+min

ante (π,w, u) = minyj∈Y max(1 − wj ,maxxi∈X min(u(xi, yj), πi)).

It can be checked that the first two quantities are of the form
U−min

post (π,w, u) = SNX (SNY (u)) and U−min
ante (π,w, u) = SNY (SNX (u)), respec-

tively. Essghaier et al. [2] show that the two expressions are equal to
minxi∈X ,yj∈Y max(1−πi, u(xi, yj), 1−wj)), thus SNX (SNY (u)) = SNY (SNX (u)).

In the optimistic case, qualitative decision theory [6] prescribes the use
of a Sugeno integral based on a possibility measure on X : U+min

post (π,w, u) =
SΠX (SNY (u)) and U+min

ante (π,w, u) = SNY (SΠX (u)). Now the two integrals no
longer coincide: Essghaier et al. [2,4] have shown that we only have the inequal-
ity U+min

ante (π,w, u) ≥ U+min
post (π,w, u) with no equality in general. The following

counterexample shows that the latter inequality can be strict, when one of the
capacities is a necessity measure and the other one a possibility measure, even
in the Boolean case [3]:

Example 1. Let X = {x1, x2}, πi = 1, and wi = 1,∀i = 1, 2, Y = {y1, y2},
u(x1, y1) = u(x2, y2) = 1 and u(x2, y1) = u(x1, y2) = 0. We have U+min

post (π,w, u)
as
max(min(1,min(max(1−1, 1),max(1−1, 0)),min(1,min(max(1−1, 0),max(1−
1, 1))) = 0.

But U+min
ante (π,w, u) is computed as

min(max(1− 1,max(max(1, 1),max(0, 1)),max(1−1,max(max(0, 1),max(1, 1))))
= 1.

In this subsection, we try to characterize all pairs of commuting capacities. Let
us begin with the Boolean case. It confirms the intuitions of [2].

Proposition 4. If one of μX and μY is Boolean, S-integrals commute if and
only if they are both necessity measures or possibility measures or one of them
is a Dirac measure.

Proof: Suppose μX is Boolean and is not a necessity measure and μY is not a
possibility measure. Then ∃A1, A2 ⊆ X , μX (A1 ∩ A2) < min(μX (A1), μX (A2)),
and ∃B1, B2 ⊆ Y, μY(B1 ∪ B2) > max(μY(B1), μX (B2)). For μX , it reads
μX (A1 ∩ A2) = 0, μX (A1) = μX (A2) = 1. Then the 2-rectangle condi-
tion (5) fails since it reads max(0, μY(B1), μX (B2),min(μY(B1), μX (B2))) =
max(μX (B2), μY(B1)) < max(μY(B1 ∩ B2), μY(B1), μX (B2), μY(B1 ∪ B2)) =
μY(B1 ∪ B2).

The second inequality (6) is violated by choosing A1, A2 ⊆ X , B1, B2 ⊆ Y,
such that μY(B1 ∩ B2) = 0, μY(B1) = μY(B2) = 1, μX (A1 ∪ A2) = 1, μX (A1) =
μX (A2) = 0, assuming μY is not a necessity measure and μX is not a possi-
bility measure. Obeying the two inequalities (5) and (6) enforces the following
constraints in the Boolean case

μY possibility measure or μX necessity measure
and

μY necessity measure or μX possibility measure
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It leads to possibility measures on both sets X and Y, or necessity measures
(known cases where commuting occurs). Alternatively, if we enforce μY to be
a possibility measure and a necessity measure, it is a Dirac function on Y, and
any capacity on the other space. 
�
Corollary 2. S-integrals w.r.t. Boolean capacities μX and μY commute if and
only if they are both necessity measures or possibility measures or one of them
is a Dirac measure.

Note that, to violate the necessary condition for commutation (5), it is enough
that neither μX nor μY are possibility and necessity measures, and moreover for
A1, A2, B1, B2 where, say μX violates the axiom of necessities and μY violates
the axiom of possibilities, we have that μX (A1) and μX (A2) are both greater
than each of μY(B1), μY(B2) and moreover μY(B1 ∪ B2) > μY(A1 ∩ A2). Then
the integrals will not commute.

In the following we solve the commutation problem for non-Boolean capac-
ities. We can give examples of commuting capacities that are neither only pos-
sibility measures, nor only necessity measures nor a Dirac function contrary to
the Boolean case of Corollary 2.

Example 2. Let X = {x1, x2};Y = {y1, y2}. Then let μX (x1) = α, μX (x2) = α,
μY(y1) = 1, μY(y2) = α, so a constant capacity and a possibility measure.

We have max(μX (A1 ∩ A2), μY(B1), μY(B2)) ≥ min(μX (A1), μX (A2),
μY(B1 ∪ B2)) because the possible values are α or 1. The right-hand side is
equal to 1 if and only if A1 = A2 = X ; in this case μX (A1 ∩ A2) = 1.

We have max(μY(B1 ∩ B2), μX (A1), μX (A2)) ≥ min(μY(B1), μY(B2),
μX (A1 ∪ A2)) because the possible values are α or 1. The right-hand side is
equal to 1 if and only if y1 ∈ B1 and y2 ∈ B2 = X ; in this case μY(B1 ∩B2) = 1.

So SμX ⊥SμY .

In the following, we lay bare the pairs of capacities that commute by applying
the result of Corollary 2 to cuts of the capacities. We first prove that for Boolean
functions on X ×Y, the double S-integrals are completely defined by the cuts of
the involved capacities, thus generalizing Proposition 1 to double S-integrals.

Proposition 5. SμX (SμY (u)) = maxλ>0 min(λ, SμXλ
(SμYλ

(u))) when u = 1R.

Proof: For simplicity we denote μX by μ and μY by ν

Sμ(Sν(u)) = max
A⊆X

min(μ(A),min
x∈A

Sν(u(x, ·)))
= max

A⊆X
min(max

λ>0
min(λ, μλ(A)),min

x∈A
max
α>0

min(α, Sνα
(u(x, ·))))

Note that minx∈A maxα>0 min(α, Sνα
(u(x, ·))) ≥ maxα>0 minx∈A min(α,

Sνα
(u(x, ·))). Let us prove the converse inequality when u = 1R.

Let α∗, x̂ be optima for min(α, να(xR)) on the right hand side,
that is, maxα>0 minx∈A min(α, να(xR)) = min(α∗, να∗(x̂R)). Note that
min(α∗, να∗(x̂R)) takes the values 0 or α∗.
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– If min(α∗, να∗(x̂R)) = 0 then forall α there exists x such that να(xR) = 0; so
the left side is also equal to 0.

– If min(α∗, να∗(x̂R)) = α∗ then for all α, there exists x such that
min(α, να(xR)) ≤ α∗. Hence if α > α∗ then there exists x such that
να(xR) = 0 and min(α, να(xR)) = 0. If α ≤ α∗ then min(α, να(xR)) ≤ α∗.

So the left side is less than the right side. We get the equality as follows:

Sμ(Sν(1R)) = max
A⊆X

min(max
λ>0

min(λ, μλ(A)),max
α>0

min
x∈A

min(α, να(xR)))

= max
λ>0

max
A⊆X

min(min(λ, μλ(A)),max
α>0

min
x∈A

min(α, να(xR)))

= max
λ>0

min(λ, max
A⊆X

min(μλ(A)),max
α>0

min(α,min
x∈A

να(xR)))

= max
λ>0,α>0

min(λ, α, max
A⊆X

min(μλ(A),min
x∈A

να(xR)))

= max
λ>0,α>0

min(λ, α, Sμλ
(Sνα

(1R))

Due to the monotonicity of the Sugeno integral and due to the use of minimum,
the maximum is attained for α = λ. 
�

We know that commutation between integrals holds for functions u(x, y) if
it holds for relations. The above result shows that commutation between capac-
ities will hold if and only if it will hold for their cuts, to which we can apply
Corollary 2.

Corollary 3. Capacities μX and μY commute if and only if their cuts μXλ and
μYλ commute for all λ ∈ L.

Proof: Suppose μX and μY commute. It means that SμX (SμY (1R)) and
SμY (SμX (1R)) are the same 2D capacity κ on X × Y, namely SμX (SμY (1R)) =
SμY (SμX (1R)) = κ(R). It is then clear that using Proposition 2:

κλ(R) = SμX (SμY (1R))λ = SμY (SμX (1R))λ

= SμXλ
(1[μY (R(x1,·))≥λ], · · ·,1[μY (R(xn,·))≥λ])

= SμYλ
(1[μX (R(·,y1))≥λ], · · ·,1[μX (R(·,yn))≥λ])

= SμXλ
(SμYλ

(R(x1, ·)), . . . , SμYλ
(R(xn, ·)))

= SμYλ
(SμXλ

(R(·, y1)), . . . , SμYλ
(R(·, yn)))

= SμX λ(SμYλ
(1R)) = SμYλ(SμXλ

(1R))

Conversely, using Proposition 5 if SμXλ
(SμYλ

(1R)) = SμYλ
(SμXλ

(1R)) for all λ ∈
L and R ⊆ X × Y it implies SμX (SμY (1R)) = SμY (SμX (1R)) for all R ⊆ X × Y,
which is equivalent to commutation of S-integrals w.r.t. μX and μY for all 2-place
functions u. 
�

In the above Example 2, the commutation becomes obvious because the λ-
cut of μX is a necessity (with focal set X ) and μY is a Dirac function on y1 for
λ > 1. And the λ-cut of μX is the vacuous possibility, as well as the λ-cut of μY
for λ ≤ α. More generally we can claim:
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Corollary 4. Capacities μX and μY commute if and only if for each λ ∈ L,
their cuts μXλ and μYλ are two possibility measures, two necessity measures, or
one of them is a Dirac measure.

To check commutation using Corollary 4, one must compute the focal sets of
the cuts of a capacity.

Lemma 6. The focal sets of μλ form the family F(μλ) = min⊆{E ⊆ X :
μ#(E) ≥ λ}, containing the smallest sets for inclusion in the family F(μ) of
focal sets of μ with weights at least λ.

Indeed the focal sets of a Boolean capacity form an antichain, that is, they are
not nested, and if μ#(E) > μ#(F ) ≥ λ, while F ⊂ E, then E is not focal for
μλ. The above results lead us to conclude as follows:

Proposition 6. For any capacity μ on X ,

1. μλ is a necessity measure if and only if there is a single focal set E with
μ#(E) ≥ λ such that for all focal sets F in F(μ) with weights μ#(F ) ≥ λ,
we have E ⊂ F .

2. μλ is a possibility measure if and only if there is a set S of singletons {xi} with
μ#({xi}) ≥ λ such that for all focal sets F in F(μ) with weights μ#(F ) ≥ λ,
we have S ∩ F �= ∅.

3. μλ is a Dirac measure if and only if there is a focal singleton {x} with
μ#({x}) ≥ λ such that for all focal sets F in F(μ) with weights μ#(F ) ≥ λ,
we have x ∈ F .

Proof: We apply Lemma 6.

1. The condition does ensure that E is the only focal set of μλ hence it is a
necessity measure. If the condition does not hold it is clear that μλ has more
than one focal set, hence is a not a necessity measure.

2. The condition does ensure that the focal sets of μλ are the singletons in S,
hence it is a possibility measure. If the condition does not hold it is clear that
μλ has a focal set that is not a singleton, hence is not a possibility measure.

3. The condition implies that μλ is both a possibility and a necessity measure,
hence a Dirac measure. If it is not satisfied, either μλ has more than one focal
set or its focal set is not a singleton. 
�

Note that if μλ is a possibility measure with focal sets that are the singletons
of S and α < λ then μα cannot be a necessity measure, since if a set E is focal
for μα, it must be disjoint from S so that F(μλ) contains all singletons of S and
E at least. So we have the following claim: if ∀λ,∈ L, μλ is either a possibility
measure or a necessity measure, there is a threshold value θ such that ∀λ ≤ θ μλ

is a possibility measure (possibly a Dirac measure), and ∀λ > θ, μλ is a necessity
measure. We are then in a position to state the main result of this section, as
pictured on Fig. 1.

Theorem 2. Two capacities μX and μY commute if and only if there exist at
most two thresholds θN ≤ θΠ ∈ L such that
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λ μλ
X μλ

Y

1 necessity necessity
θN

any capacity Dirac
or

Dirac any capacity
θΠ

possibility possibility
0

Fig. 1. Commuting capacities

– For 1 ≥ λ > θN , the λ-cuts of μX and μY are necessity measures.
– For θN ≥ λ > θΠ , the λ-cut of one of μX , μY is a Dirac measure, the other

one being any Boolean capacity.
– For θΠ ≥ λ, the λ-cuts of μX and μY are possibility measures.

Proof: We just apply Corollary 4, noticing that if the λ-cut of μX is a possibility
measure, its λ′-cuts for λ′ < λ cannot be necessity measures. 
�
Example 3. We can apply Theorem2 to find the condition for commutation
on {x1, x2} × {y1, y2} where in general μX (x1) = α1, μX (x2) = α2, μY(y1) =
β1, μY(y2) = β2. Note that cuts of capacity on two-element sets can only be
Boolean possibility or necessity measures. So the capacities will commute except
if there is λ ∈ L such that the cut of μX is a possibility measure and the cut of
μY is a necessity measure. So commutation will hold in any one of the following
situations and only for them:

– μX is a possibility measure with α1 > α2 and μY is a necessity measure with
mass β1 > β2 = 0 with β1 > α2.

– μX is a capacity (1 > α1 ≥ α2) and μY a possibility measure with β1 = 1 > β2,
where α1 > β2.

– μX is a capacity (1 > α1 ≥ α2) then μY is a necessity measure with mass
β1 > β2 = 0 with β1 ≥ α2.

– μX and μY are genuine capacities (1 > α1 ≥ α2; 1 > β1 ≥ β2), then
max(α1, α2) ≥ min(β1, β2) and max(β1, β2) ≥ min(α1, α2).

The latter condition max(α1, α2) ≥ min(β1, β2) and max(β1, β2) ≥ min(α1, α2)
covers all 4 cases. To check that this is correct, note that the only cases when the
cuts are a possibility vs. a necessity measure are when max(α1, α2) < min(β1, β2)
or max(β1, β2) < min(α1, α2) (take λ in the interval). Note that this is the case
in Example 1 since then α1 = α2 = 1 and β1 = β2 = 0. However the commutation
condition is clearly satisfied in Example 2.

Finally we shall express commuting capacities in closed form. Without loss of
generality, and up to a permutation between X and Y, if μX and μY commute,
the set of focal sets F(μX ) is partitioned in FN (μX ) ∪ FΠ(μX ), where

– FN (μX ) = {E ∈ F(μX ) : μX#(E) > θN} is nested, say Ep ⊂ · · · ⊂ E1.
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– FΠ(μX ) = {E ∈ F(μX ) : μX#(E) ≤ θΠ} contains only singletons.
– ∃x ∈ Ep, μX#({x}) = θN (no set in FN (μX ) is focal for the λ-cut of μX when

λ ≤ θN ).

while the set of focal sets F(μY) is partitioned in FN (μY) ∪ FD(μY) ∪ FΠ(μY),
where

– FN (μY) = {F ∈ F(μY) : μY#(F ) > θN} is nested.
– FΠ(μY) = {F ∈ F(μY) : μY#(F ) ≤ θΠ} contains only singletons.
– ∀F ∈ F(μ) \ FΠ(μY),∃y ∈ Y such that μY#({y}) = θΠ and y ∈ F (so that

no focal set of μ outside of FΠ(μY) is focal for the λ-cut of μY when λ ≤ θΠ).
– the focal sets in FD(μY) = {F ∈ F(μY) : θΠ < μY#(F ) ≤ θN} are not

constrained otherwise.

We can exchange μX and μY above. Moreover, FD(μX ) = FD(μY) = ∅ if θΠ =
θN .

Let Nμ
X be the necessity measure such that Nμ

X#(E) = μX#(E), E ∈ FN (μX )
(likewise for Nμ

Y), Πμ
X be the possibility measure such that

πμ
X (x) =

{
1 if μX#({x}) = θN ,

μX#({x}) if μX#({x}) < θN .

We have that θN = max{μY#(F ) : F ∈ FD(μX )}. Let κμ
Y be the capacity

with qualitative Möbius transform defined by

κμ
#(F ) =

⎧⎪⎨
⎪⎩

1 if μY#(F ) = θN , F ∈ FD(μY),
μY#(F ) if μY#(F ) < θD, F ∈ FD(μY),
0 otherwise.

Finally let ΠY be the

possibility measure such that πμ
Y(y) =

{
1 if μY#({y}) = θΠ ,

μY#({y}) if μY#({y}) < θΠ

. Con-

cluding:

Corollary 5. Up to exchanging X and Y, μX and μY commute if and if
they are of the form μX (A) = max(Nμ

X (A),min(θN ,Πμ
X (A))); μY(B) =

max(Nμ
Y(B),min(θN , κμ

Y(B)),min(θΠ ,Πμ
Y(B))).

These expressions provide a convenient tool for explicitly constructing commut-
ing capacities.

5 Conclusion

In this paper we have provided a characterization of capacities such that the
Sugeno integrals induced for them commute, based on the Boolean capacities
obtained as their cuts. We can see that the cut-worthy property of min and max
is instrumental for obtaining this result. Hence it cannot be simply extended
to more general integrals [12], involving operations other than min and max.
Contrary to the numerical case where only regular expectations commute (in
the setting of decision under risk), the commutation of Sugeno integrals is not
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ensured only by possibility measures, nor by necessity measures: other, rather
special, capacities (their cuts must be Boolean possibility measures, necessity
measures or Dirac functions) ensure commutation. In the future, we should find
a decision-theoretic setting with axioms implying that uncertainty and agent
importance can be represented by commuting capacities, which would highlight
the practical significance of our results. Finally, at the theoretical level, one
should study conditions for which a standard Sugeno integral on the 2D space
X × Y is equal to one of, or both, double integrals with respect to the projections
of the 2D capacity.
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Abstract. In the present paper we characterize the class of all n-ary
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1 Introduction

The problem of finding an appropriate model of aggregation is crucial for mul-
ticriteria decision making. It is desirable to handle aggregated data properly,
but with a model which is as simple as possible. One of the simplest models
of aggregation on the unit hypercube [0, 1]n is an additive aggregation function
where the values of aggregation at n + 1 points fully determine the aggregation
function on the whole domain. Unfortunately, additive aggregation functions are
insufficient to model even quite simple preferences, although some of these situa-
tions can be treated with the Choquet integrals [3, Example 7]. For the Choquet
integral defined on the unit hypercube [0, 1]n full information is contained in
the set of values at points {0, 1}n corresponding to its related capacity. On the
other hand, k-additive aggregation functions recently introduced by Kolesárová
et al. [5] yield more complex models (still fully determined by a relatively small
set of values of the aggregation function) which can handle many situations
where both the additive aggregation functions and the Choquet integrals fail.
The authors have constructed the class of k-additive aggregation functions as a
natural extension of the class of k-additive capacities [2,6].

The Choquet integrals can be regarded as a generalization of additive aggre-
gation functions replacing the requirement of additivity by that of comonotone
additivity. Kolesárová et al. [5] have defined (but not studied) the k-Choquet
integrals as an analogous generalization of the k-additive aggregation functions.

The aim of the present paper is to characterize the class of all n-ary k-
Choquet integrals and to find a minimal subset of points in the unit hypercube,
the values at which fully determine the k-Choquet integral.

The paper is organized as follows. In Sect. 2, we recall basic notions needed
throughout the paper. In Sect. 3, we start with definition of the n-ary k-Choquet
c© Springer Nature Switzerland AG 2018
V. Torra et al. (Eds.): MDAI 2018, LNAI 11144, pp. 64–76, 2018.
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integrals denoting class of all n-ary k-Choquet integrals by Chk,n. Then we char-
acterize classes Chk,1, Ch2,2, Ch2,n and we finish with Chk,n. We also compare the
minimal sets of points in the unit hypercube fully determining n-ary k-additive
aggregation functions and k-Choquet integrals. Finally, some concluding remarks
are provided.

2 Preliminaries

In this section we recall some definitions and results which will be used in the
sequel. We also fix the notation, mostly according to [4], wherein more informa-
tion concerning the theory of aggregation functions can be found.

Let n ∈ N. A finite set {1, . . . , n} will be denoted by [n]. We will denote
vectors (x1, . . . , xn) ∈ [0, 1]n by bold symbols x, in particular, vectors (0, . . . , 0)
and (1, . . . , 1) by 0 and 1 respectively. For any K ⊆ [n] and any x,y ∈ [0, 1]n,
we will denote by xKy the vector whose ith coordinate is xi, if i ∈ K and yi

otherwise. For any k ∈ N and x ∈ [0, 1], we set (k � x) : = (x, . . . , x) (k times).

Definition 1. An n-ary aggregation function is a function F : [0, 1]n → [0, 1]
satisfying

(i) F (0) = 0, F (1) = 1,
(ii) F is monotone in each variable.

Definition 2 ([5]). An n-ary aggregation function F : [0, 1]n → [0, 1] is defined
to be k-additive if and only if it holds

k+1∑

i=1

(−1)k+1−i

⎛

⎜⎜⎝
∑

I⊆{1,...,k+1}
|I|=i

F

⎛

⎝
∑

j∈I

xj

⎞

⎠

⎞

⎟⎟⎠ = 0 (1)

for all (k + 1)-tuples of vectors x1, . . . ,xk+1 ∈ [0, 1]n with
k+1∑
i=1

xi ∈ [0, 1]n.

The class of all n-ary k-additive aggregation functions is denoted by Ak,n.
The following characterization of the class Ak,n was given in [5].

Theorem 1 ([5]). A function F : [0, 1]n → [0, 1] is a k-additive aggregation
function, i.e., F ∈ Ak,n, if and only if there are appropriate constants (ensuring
the boundary condition F (1) = 1 and the monotonicity of F ) such that for all
(x1, . . . , xn) ∈ [0, 1]n,

F (x1, . . . , xn) =
k∑

i=1

⎛

⎝
∑

1≤j1,i≤...≤ji,i≤n

aj1,i,...,ji,i

(
i∏

p=1

xjp,i

)⎞

⎠ ,

i.e., F is a polynomial with degree not exceeding k.

Denote S[n] the set of all permutations of the set [n].
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Definition 3. Vectors x1 = (x1,1, . . . , x1,n), . . . ,xk = (xk,1, . . . , xk,n) ∈ [0, 1]n

are comonotone if and only if there exists a permutation σ ∈ S[n] such that
xi,σ(1) ≤ . . . ≤ xi,σ(n) for all i ∈ [k].

Let n ≥ 2 and let σ ∈ S[n] be a fixed permutation. We set

Sσ = {x ∈ [0, 1]n | xσ(1) ≤ . . . ≤ xσ(n)}.

A subset Sσ of the unit hypercube [0, 1]n will be called a simplex. Clearly,
all vectors in a simplex Sσ are pairwise comonotone and

⋃
σ∈S[n]

Sσ = [0, 1]n.

3 Characterization of k-Choquet Integrals

In this section we describe the notion of k-Choquet integrals and characterize
the classes of n-ary k-Choquet integrals starting with particular values of n
and k and finishing with general n-ary k-Choquet integrals. Note that the k-
Choquet integrals must not be confused with the Choquet integrals based on
the k-additive capacities.

3.1 k-Choquet Integrals

Definition 4. An n-ary aggregation function F : [0, 1]n → [0, 1] is defined to
be a k-Choquet integral if and only if it is comonotone k-additive, i.e., Eq. (1)
holds for all (k + 1)-tuples of comonotone vectors x1, . . . ,xk+1 ∈ [0, 1]n with
k+1∑
i=1

xi ∈ [0, 1]n.

The class of all n-ary k-Choquet integrals will be denoted by Chk,n.
It can be checked that if an n-ary aggregation function is a k-Choquet integral

then it is also p-Choquet integral for any integer p > k, i.e., it holds

Ch1,n ⊆ . . . ⊆ Chk,n ⊆ Chk+1,n ⊆ . . . .

Clearly, the standard n-ary Choquet integrals form a class Ch1,n.
In what follows, we are going to characterize k-Choquet integrals and to

study a minimal set of points from [0, 1]n needed for determining a k-Choquet
integral. Since the general characterization is based on an induction, we proceed
stepwise, that is, we begin with the class Chk,1, then Ch2,2, Ch2,n and finally
Chk,n.

3.2 The Class Chk,1

Since for n = 1 the comonotone k-additivity coincides with the k-additivity,
the class of all unary k-Choquet integrals Chk,1 coincides with the class of all
unary k-additive functions Ak,1. Using the characterization of the class given by
Theorem 1 we obtain the following assertion.
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Proposition 1. Let k be a positive integer. A function F : [0, 1] → [0, 1] is a
k-Choquet integral, i.e., F ∈ Chk,1 if and only if F is a non-decreasing function
on [0, 1] given by:

F (x) = a1x + a2x
2 + · · · + akxk,

where
k∑

i=1

ai = 1. Moreover, for k ≥ 2 each coefficient ai can be expressed by

means of the values of F at the points of the set { 1
k , 2

k , . . . , k−1
k }.

Proof. We only need to prove that all coefficients ai can be expressed by means
of the values of F at the points 1

k , 2
k , . . . , k−1

k . That can be obtained by solving

the system of linear equations F ( i
k ) =

k∑
j=1

aj

(
i
k

)j
, i = 1, . . . , k −1 together with

k∑
i=1

ai = 1.

Remark 1. It is clear, that the set of points fully determining an operator F in
the previous Proposition is not unique. A different choice of the set (preserving
number of points) can be done according to a problem to be solved.

Example 1. (i) Let us consider F ∈ Ch2,1, i.e., F (x) = ax2 + (1 − a)x. Then
the coefficient a can be expressed by the value F (1/2), in particular, F (1/2) =
1/2− 1/4a, thus a = 2− 4F (1/2). Since the monotonicity of F is satisfied if and
only if F ′(0) ≥ 0 and F ′(1) ≥ 0, we have a ∈ [−1, 1] and consequently F (1/2) ∈
[1/4, 3/4]. Conclusion: each unary 2-Choquet integral F is fully determined by
a single value F (1/2):

F (x) = (2 − 4F (1/2))x2 + (4F (1/2) − 1)x where F (1/2) ∈ [1/4, 3/4].

(ii) For Ch3,1 we have F (x) = ax3 + bx2 + (1 − a − b)x and a, b can be expressed
by the values F (1/3) and F (2/3). Since

F (1/3) =
1
27

a +
1
9
b +

1
3
(1 − a − b), F (2/3) =

8
27

a +
4
9
b +

2
3
(1 − a − b),

we have

a =
27
2

F (1/3) − 27
2

F (2/3) +
9
2
, b = −45

2
F (1/3) + 18F (2/3) − 9

2
.

Moreover, F is non-decreasing on [0, 1] if and only if one of the following
three conditions is satisfied:

1. a ≤ 0 and F ′(0) ≥ 0 and F ′(1) ≥ 0;
2. a > 0 and F ′ has at most one real root (i.e. 4b2 − 12a(1 − a − b) ≤ 0);
3. a > 0 and F ′ has two different real roots (i.e. 4b2 − 12a(1 − a − b) > 0) and

F ′(0) ≥ 0 and F ′(1) ≥ 0 and F ′′(0) · F ′′(1) ≥ 0.
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From the three items we obtain the following restrictions for F (1/3) and F (2/3):

1. F (2/3) ≥ F (1/3)+1/3, F (2/3) ≤ 2F (1/3)+2/9 and F (2/3) ≤ (1/2)F (1/3)+
11/18 (see the blue area in Fig. 1);

2. e1 ≤ F (2/3) ≤ e2 (see the green area, ellipse, in Fig. 1), where

e1,2 = (1/42)
(
9 + 39F (1/3) ∓

√
3
√

66F (1/3) − 81F 2(1/3) − 1
)

form a “lower and upper boundary line” of the ellipse;
3. F (2/3) < F (1/3) + 1/3 and F (2/3) ≥ e2 and F (2/3) ≤ 2F (1/3) + 2/9 and

F (2/3) ≤ (1/2)F (1/3)+11/18 and −81(2+4F (1/3)−5F (2/3))(1+5F (1/3)−
4F (2/3)) ≥ 0 (see the red area in Fig. 1).

Conclusion: each unary 3-Choquet integral F is fully determined by the pair of
values F (1/3), F (2/3):

F (x) =
(

27
2

F

(
1
3

)
− 27

2
F

(
2
3

)
+

9
2

)
x3 +

(
−45

2
F

(
1
3

)
+ 18F

(
2
3

)
− 9

2

)
x2

+
(

18
2

F

(
1
3

)
+

9
2
F

(
2
3

)
+ 1

)
x

where F (1/3), F (2/3) satisfy

⎧
⎪⎨

⎪⎩

F (2/3) ∈ [e1, e2], if F (1/3) ∈
[
11−4

√
7

27 , 1
27

]
∪

[
19
27 , 11+4

√
7

27

]
,

F (2/3) ∈ [e2, 2F (1/3) + 2/9], if F (1/3) ∈ [
1
27 , 7

27

]
,

F (2/3) ∈ [e2, 1/2F (1/3) + 11/18], if F (1/3) ∈ [
7
27 , 19

27

]
.

F ( 2
3
)

F ( 1
3
)0

1

1

Fig. 1. The points of colored areas correspond to all admissible pairs (F (1/3), F (2/3))
determining an unary 3-Choquet integral, see Example 1 (ii). (Color figure online)
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3.3 The Class Ch2,2

Theorem 2. A function F : [0, 1]2 → [0, 1] is a 2-Choquet integral, i.e., F ∈
Ch2,2, if and only if F is given by:

F (x, y) =
{

F21(x, y), if (x, y) ∈ S21;
F12(x, y), if (x, y) ∈ S12;

(2)

where S21 = {(x, y) |x ≥ y}, S12 = {(x, y) |x ≤ y} and

• F21(x, y) = a1x + b1y + c1x
2 + d1y

2 + e1xy
where
a1 + b1 + c1 + d1 + e1 = 1, a1 ≥ 0, b1 ≥ 0, a1 + 2c1 ≥ 0,
b1 + e1 ≥ 0, a1 + 2c1 + e1 ≥ 0, b1 + 2d1 + e1 ≥ 0;

• F12(x, y) = a2x + b2y + c2x
2 + d2y

2 + e2xy
where
a2 + b2 + c2 + d2 + e2 = 1, a2 ≥ 0, b2 ≥ 0, a2 + e2 ≥ 0,
b2 + 2d2 ≥ 0, a2 + 2c2 + e2 ≥ 0, b2 + 2d2 + e2 ≥ 0;

• F21(x, x) = F12(x, x) for all x ∈ [0, 1].

Proof. (⇐) It is easy to check that each function F given by (2) is a 2-Choquet
integral.

(⇒) We will only deal with F21, the case of F12 is similar. Let us define a
function U : S21 → [0, 1] as U(x, y) = F21(x, y) − F21(x − y, 0) − F21(y, y).

Let x = y =
(

x
2 − y

2 , 0
)
, z = (y, y). From 2-additivity of F21 we have

F21(x, y) − 2F21

(x

2
+

y

2
, y

)
− F21(x − y, 0) + 2F21

(x

2
− y

2
, 0

)
+ F21(y, y) = 0,

hence

U(x, y) = −2F21(y, y) + 2F21

(x

2
+

y

2
, y

)
− 2F21

(x

2
− y

2
, 0

)
= 2U

(x

2
+

y

2
, y

)

and consequently

U

(
x + y

2
, y

)
=

1
2
U(x, y), for all (x, y) ∈ S21. (3)

Now, let q ∈ [0, 1] be fixed and let h(x) = U(x + q, q) for all x ∈ [0, 1 − q].
Then, by (3), we have

h

(
x − q

2

)
= U

(
x + q

2
, q

)
=

1
2
U(x, q) =

1
2
h(x − q),

for all x ∈ [q, 1], which means that h is linear. Moreover, h(1 − q) = U(1, q) and
h(0) = 0, thus h(x) = U(1,q)

1−q x for all x ∈ [0, 1 − q] and U(x, q) = U(1,q)
1−q (x − q),

for all x ∈ [q, 1]. Hence

U(x2, q) =
x2 − q

x1 − q
U(x1, q), for all x1, x2 ∈ [q, 1]. (4)
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Similarly, for x = y =
(

y
2 , y

2

)
, z = (x − y, 0) we obtain

U
(
x − y

2
,
y

2

)
=

1
2
U(x, y), for all (x, y) ∈ S21. (5)

Let g(y) = U(y + 1 − p, y), for some fixed p ∈ [0, 1] and every y ∈ [0, p].
Then, by (5), g

(
y
2

)
= 1

2g(y) for all y ∈ [0, p] and therefore g is linear. Moreover,
g(0) = 0 and g(p) = U(1, p), thus g(y) = U(1, p)y for all y ∈ [0, p] which implies
g(y2) = y2

y1
g(y1) and finally

U(y2 + 1 − p, y2) =
y2
y1

U(y1 + 1 − p, y1), for all y1, y2 ∈ [0, p]. (6)

Let x, y ∈ S21 be such that y ≥ x − 1
2 and p = y − x + 1. Then

U(x, y) = U(y − p + 1, y) = 2yU

(
1
2

+ 1 − p,
1
2

)

= 2yU

(
x − y +

1
2
,
1
2

)
= 4y(x − y)U

(
1,

1
2

)
, (7)

where the second equality follows from (6) for y2 = y, y1 = 1
2 and the last

from (4) for x1 = 1, x2 = x − y + 1
2 and q = 1

2 .
Let x, y ∈ S21 be such that y ≤ x − 1

2 and q = y. Then

U(x, y) = 2(x − y)U
(

1
2

+ y, y

)
= 4y(x − y)U

(
1,

1
2

)
, (8)

where the first equality follows from (4) for x2 = x, x1 = 1
2 + q and the second

from (6) for y2 = y, y1 = p = 1
2 and x1 = 1.

So, by (7) and (8), the following holds for all x, y ∈ S21:

U(x, y) = 4y(x − y)U
(

1,
1
2

)
. (9)

Since unary functions F21 (x, 0) and F21 (x, x) are 2-additive, using Example 1
we can show that F21 is a polynomial of degree not exceeding 2:

F21(x, y) = F21(x − y, 0) + F21(y, y) + U(x, y)
= F21(1, 0)

(
(1 − α)(x − y) + α(x − y)2

)
+ (1 − β)y + βy2

+ 4y(x − y)
(

F21

(
1,

1
2

)
− F21

(
1
2
, 0

)
− F21

(
1
2
,
1
2

))

= a1x + b1y + c1x
2 + d1y

2 + e1xy. (10)

The conditions imposed on a1, . . . , e1 follow from the boundary condition
F21(1, 1) = 1 and monotonicity of F21, that is the partial derivatives ∂F21

∂x (0, 0),
∂F21
∂x (1, 0), ∂F21

∂x (1, 1), ∂F21
∂y (0, 0), ∂F21

∂y (1, 0) and ∂F21
∂y (1, 1) are non-negative.
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Remark 2. According to the proof of Theorem 2, a binary 2-Choquet integral
F : [0, 1]2 → [0, 1] is in S21 fully characterized by 4 values F (1/2, 0), F (1, 0),
F (1/2, 1/2), F (1, 1/2) and in S12 by 4 values F (0, 1/2), F (0, 1), F (1/2, 1/2),
F (1/2, 1), i.e., F is fully characterized by values at points (x, y) ∈ {0, 1/2, 1}2,
see Fig. 2 (recall that F (0, 0) = 0 and F (1, 1) = 1). From (10) it follows:

a1 = (1 − α)F21(1, 0),
b1 = −(1 − α)F21(1, 0) + (1 − β),
c1 = αF21(1, 0),

d1 = αF21(1, 0) + β − 4
(

F21

(
1,

1
2

)
− F21

(
1
2
, 0

)
− F21

(
1
2
,
1
2

))
,

e1 = −2αF21(1, 0) + 4
(

F21

(
1,

1
2

)
− F21

(
1
2
, 0

)
− F21

(
1
2
,
1
2

))
,

where α depends on F21

(
1
2 , 0

)
and β on F21

(
1
2 , 1

2

)
, see Example 1 and recall

that unary functions F21 (x, 0) and F21 (x, x) are 2-additive.

(0, 0) (1, 0)

(1, 1)(0, 1)

Ch2,2

(0, 0) (1, 0)

(1, 1)(0, 1)

A2,2

Fig. 2. On the left: Binary 2-Choquet integral F is fully determined by the values at
the seven blue points apart from the points 0, 1, see Remark 2. Compare with the
situation for A2,2 on the right where we only need values at four red points, see [5,
Proof of Proposition 2]. (Color figure online)

3.4 The Class Ch2,n

Theorem 3. Let n be a positive integer. A function F : [0, 1]n → [0, 1] is a 2-
Choquet integral, i.e., F ∈ Ch2,n, if and only if there exist n! functions Fσl

,
l = 1, . . . , n! corresponding to all permutations σl ∈ S[n] such that the following
conditions are satisfied

(i) F (x) = Fσl
(x), for all x ∈ Sσl

,
(ii) Fσi

(x) = Fσj
(x) for all x ∈ Sσi

∩ Sσj
and i, j ∈ {1, . . . , n!};
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(iii) Fσl
(x1, . . . , xn) =

∑
1≤i≤j≤n

aσl
ij xixj +

n∑
i=1

bσl
i xi, where coefficients aσl

ij , bσl
i

satisfy for each l ∈ {1, . . . , n!} the following conditions:

• ∑
1≤i≤j≤n

aσl
ij +

n∑
i=1

bσl
i = 1

• bσl
r +

s∑
i=1

cσl

σl(i),r
≥ 0, where

cσl
ir =

⎧
⎨

⎩

aσl
ir , if i < r,

2aσl
rr, if i = r,

aσl
ri , if i > r,

for all r, s ∈ [n],
• bσl

r ≥ 0 for all r ∈ [n].

Proof. (⇐) It is the matter of simple computation to check that each function
F fullfiling (i)-(iii) is a 2-Choquet integral.

(⇒) The proof is done by induction on n. We have proved the cases n = 1 and
n = 2 in Proposition 1 and Theorem 2, respectively. Now, suppose that n > 2 and
the assertion holds for all k < n. Let σl ∈ S[n], and let a = (a1, . . . , an) ∈ Sσl

,
i.e., aσl(1) ≤ . . . ≤ aσl(n). For simplicity, we will suppose that σl is the identity,
the same can be done for any permutation. Let

x = (n � a1),
y = (0, (n − 1) � (a2 − a1)) ,

z = (0, 0, a3 − a2, . . . , an − a2).

Then x + y + z = a, and

x + y = (a1, (n − 1) � a2),
x + z = (2 � a1, a3 − a2 + a1, . . . an − a2 + a1) ,

y + z = (0, a2 − a1, a3 − a1, . . . , an − a1).

Since x,y, z ∈ Sσl
, also x + y + z,x + y,x + z,y + z ∈ Sσl

, hence, from
comonotone 2-additivity of F it follows:

Fσl
(a) = Fσl

(x + y) + Fσl
(x + z) + Fσl

(y + z) − Fσl
(x) − Fσl

(y) − Fσl
(z).

Now the fact that Fσl
is a polynomial not exceeding degree 2 follows from the

observations:

• Fσl
(x + y) is a binary 2-additive aggregation function,

• Fσl
(x + z) and Fσl

(y + z) are (n − 1)-ary 2-additive aggregation functions,
• Fσl

(z) is (n − 2)-ary 2-additive aggregation function,
• Fσl

(x) and Fσl
(y) are unary 2-additive aggregation functions,
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The partial derivatives of Fσl
are following:

∂Fσl

∂xr
= bσl

r +
n∑

i=1

cσl
ir xi, where cσl

ir =

⎧
⎨

⎩

aσl
ir , if i < r,

2aσl
rr, if i = r,

aσl
ri , if i > r.

The conditions imposed on coefficients aσl
ij , bσl

i , for each σl, follow from the
boundary condition Fσl

(1) = 1 and the monotonicity of Fσl
, that is, all par-

tial derivatives in the all vertices of the considered simplex Sσl
are non-negative.

Remark 3. (i) A ternary 2-Choquet integral F : [0, 1]3 → [0, 1] is in arbitrary sim-
plex Sσ fully determined by the values F (x1, x2, x3) where x1, x2, x3 ∈ {0, 1/2, 1}
and xσ(1) ≤ xσ(2) ≤ xσ(3). Hence, F on the whole domain is fully characterized
by the values at the points (x1, x2, x3) ∈ {0, 1/2, 1}3, see Fig. 3.

(ii) In general, an n-ary 2-Choquet integral F : [0, 1]n → [0, 1] is fully char-
acterized by 3n values at the points of the set {0, 1/2, 1}n.

(0, 0, 0) (1, 0, 0)

(1, 1, 0)

(1, 1, 1)

Ch2,3

(0, 0, 0) (1, 0, 0)

(1, 0, 1)(0, 0, 1)

(0, 1, 0) (1, 1, 0)

(1, 1, 1)(0, 1, 1)

A2,3

Fig. 3. On the left: Ternary 2-Choquet integral F is in the simplex S321 fully deter-
mined by values in the seven blue points apart from the points 0, 1, see Remark 3.
Compare with the situation for A2,n on the right where we only need values at the
three blue points from the simplex, see [5, Proof of Theorem 2]. (Color figure online)

3.5 The Class Chk,n

Theorem 4. Let k, n be positive integers. A function F : [0, 1]n → [0, 1] is a
k-Choquet integral, i.e., F ∈ Chk,n,

if and only if there exist n! functions Fσl
, l = 1, . . . , n! corresponding to all

permutations σl ∈ S[n] such that the following conditions are satisfied

(i) F (x) = Fσl
(x), for all x ∈ Sσl

,
(ii) Fσi

(x) = Fσj
(x), for all x ∈ Sσi

∩ Sσj
and i, j ∈ {1, . . . , n!}
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(iii) Fσl
(x1, . . . , xn) =

k∑
i=1

(
∑

1≤j1,i≤...≤ji,i≤n

aσl
j1,i,...,ji,i

(
i∏

p=1
xjp,i

))
,

where the coefficients aσl
ji,1,...,ji,i

satisfy conditions ensuring the monotonic-
ity and
k∑

i=1

(
∑

1≤j1,i≤...≤ji,i≤n

aσl
j1,i,...,ji,i

)
= 1, for all l ∈ [n!].

Proof. (⇐) It is the matter of computation to check that each function F given
by (i)-(iii) is a k-Choquet integral.

(⇒) The proof for k < n is similar to that of Theorem 3. For simplicity,
let σl be the identity and let a = (a1, . . . , an) ∈ Sσl

. The same can be done
for any permutation σl ∈ S[n]. We define k + 1 vectors x1, . . . ,xk+1, such that
x1 + . . . + xk+1 = a, as follows:

x1 = (n � a1),
x2 = (0, (n − 1) � (a2 − a1)) ,
x3 = (0, 0, (n − 2) � (a3 − a2)),

...
xk = ((k − 1) � 0, (n − k + 1) � (ak − ak−1)),

xk+1 = (k � 0, ak+1 − ak, . . . , an − ak).

Then F (
∑

j∈K

xj) for all K � [k + 1] can be regarded as operators belonging to

Chk,l for some l < n. So, using the assumption that the claim holds for any l < n
we obtain the assertion.

The proof for k ≥ n is similar to that of Theorem 2.

Remark 4. An n-ary k-Choquet integral F : [0, 1]n → [0, 1] is fully characterized
by (k +1)n values F (x1, . . . , xn) at the points (x1, . . . , xn) ∈ {0, 1

k , . . . , k−1
k , 1}n,

see Table 1. In other words, each coefficient aσl
ji,1,...,ji,i

can be expressed by means
of the values of F in these points. Note that values at the points 0, 1 are given
by the boundary conditions.

Table 1. The sets of points and the numbers of points needed to determine functions
from Ak,n and Chk,n. In the last row, the points and their number for each simplex are
given.

Points Number of points

Ak,n {0, 1}n ∪ {((j/k)i0) | i ∈ [n], j ∈ [k − 1]} 2n + n(k − 1)

Chk,n {0, 1/k, . . . , (k − 1)/k, 1}n (k + 1)n

Sσ {0, 1/k, . . . , (k − 1)/k, 1}n ∩ Sσ

(
n+k

k

)
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Remark 5. Recall that the k-OWA operators defined in [5] are symmetrized k-
additive aggregation functions, i.e., G : [0, 1]n → [0, 1] is a k-OWA operator if and
only if there exists a k-additive aggregation function F : [0, 1]n → [0, 1] such that
G(x1, . . . , xn) = F (xσ(1), . . . , xσ(n)), where σ is a permutation of [n] such that
xσ(1) ≤ . . . ≤ xσ(n). It means that the k-OWA operator G is fully determined by
its values on the simplex S12...n and can be regarded as a symmetric k-Choquet
integral. Therefore, the number of points fully determining k-OWA operator is
the same as for a unique simplex in the last row of Table 1.

Example 2. (i) Consider four competitors C1, C2, C3, C4 and their respective
score vectors (1, 0), (0.75, 0.75), (0.75, 0), (0.5, 0.5). We want to find such aggre-
gation function that C1 ≺ C2 and C4 ≺ C3. Obviously, in this case neither
additive nor comonotone additive aggregation function can be used. But we can
use an symmetric 2-additive aggregation function, e.g., J(x, y) = 1

2 (x2 + y2).
(ii) Consider four competitors C5, C6, C7, C8 and their respective score

vectors (0, 1), (0.25, 0.75), (0.25, 1), (0.5, 0.75). We want to find such aggregation
function that C6 ≺ C5 and C7 ≺ C8. Again, in this case neither additive nor
comonotone additive aggregation function can be used. But we can use an 2-
additive aggregation function, e.g., K(x, y) = 1

3 (2x2 + y).
(iii) Consider competitors C1-C8 from (i) and (ii) and preferences from

therein. One can use the following 2-Choquet integral as suitable aggregation
function

M(x, y) =
{

1
2 (x2 + y2), if x ≥ y,
1
3 (2x2 + y), if x < y.

4 Conclusion

We have proved that the class of n-ary k-Choquet integrals consists of all aggre-
gation functions the restriction of which on each simplex is a polynomial with
degree not exceeding k and the polynomials agree on the common surfaces of
simplices. The k-Choquet integrals can be useful in handling multicriteria deci-
sion problems where the standard Choquet integrals or k-additive aggregation
functions fail.
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VEGA 1/0614/18.
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Abstract. Non-additive measures, capacities or generally set functions
are widely used in decision models, data processing and game theory. In
these applications we can find many structures identified as linear trans-
formations or linear operators. The most remarkable of them are Cho-
quet integral, Möbius transform, interaction transform, Shapley value.
The main goal of the presented paper is to study some of them recently
called event-based linear transformations. We describe them considering
the set of all possible linear operators as a linear space w.r.t. their lin-
ear combinations and compute the dimensions of its some subspaces. We
also study the consensus requirement, i.e. we analyze the condition when
the linear operator maps one family of non-additive measures to other
family.

Keywords: Set functions · Event-based transformations
Linear operators · Consensus requirement

1 Introduction

The theory of non-additive measures has many applications in decision theory
[1], cooperative game theory [2] and in various models of uncertainty [3]. In
terms of classical algebra useful structures, based on non-additive measures, like
Choquet integral1 [4], Möbius transform [5,6], interaction transform [6], and
Shapley value [6] are linear transformations or linear operators. The aim of
this paper to investigate various ways for defining linear transformations, and
investigate their properties, which can be useful in applications. We study the
conditions, under which the generated set function preserves properties of the
1 To see Choquet integral as a linear transformation of measures, one need to fix the

integrand.
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original set function; in other words, when a chosen family of set functions has
the image within the same family. This property is usually called the consensus
requirement. In addition, we study the properties of linear operators recently
called event-based transformations of capacities [7–9]. We consider linear spaces
of linear combinations of such operators, and compute the dimensions of them.

The paper has the following structure. At first we introduce some definitions,
which will be used later, and families of non-additive set functions. After that
we investigate the connection between linear operators and set functions with
two arguments, and prove some results concerning the consensus requirement.
The rest of the paper is devoted to class of event-based transformations of set
functions and connected to them linear spaces of transformations.

2 Preliminaries

Let H be the set of all set functions defined on the powerset 2X of a finite set
X = {x1, ..., xN}. The set H is as a linear space w.r.t. usual sum of set functions
and product of a set function and a real number. According to the definition,
ϕ : H → H is a linear operator if ϕ (aμ1 + bμ2) = aϕ (μ1)+ bϕ (μ2) for arbitrary
a, b ∈ R and μ1, μ2 ∈ H. For brevity, we denote ϕ(μ) by μϕ. In the paper we
consider the following families of set functions:

– H0 =
{
μ ∈ H|∀A ∈ 2X : μ(A) ≥ 0

}
is the set of all non-negative set functions

on 2X ;
– H1 is the set of all non-negative monotone set functions on 2X , i.e. μ ∈ H1 if

μ ∈ H0 and A ⊆ B, A,B ∈ 2X implies that μ(A) ≤ μ(B);
– Hk, k = 2, 3, ..., is the set of all k-monotone set functions on 2X . Let us

remind that μ ∈ Hk if μ ∈ H1 and for any system of sets C1, ..., Cm ∈ 2X ,
m ≤ k,

μ
(⋃m

i=1
Ci

)
+

∑

B⊆{1,...,m}
(−1)|B|

μ
(⋂

i∈B
Ci

)
≥ 0;

– H∞ is the set of all totally monotone set functions on 2X , i.e. μ ∈ H∞ if
μ ∈ Hk for any k = 1, 2, ....

The analysis of linear transformations is greatly simplified by choosing some
suitable basis of H. We consider two bases of H. One of them consists of the set
functions of the type:

χB(A) =
{

1, A = B,
0, A �= B,

and another one

η〈B〉(A) =
{

1, B ⊆ A,
0, otherwise.

It is clear that any set function has the unique representation by

μ =
∑

B∈2X

μ(B)χB;
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and there is the representation of the type

μ =
∑

B∈2X

μm(B)η〈B〉.

The set function μm is called the Möbius transform of μ computed by

μm(B) =
∑

A⊆B

(−1)|B\A|
μ(A).

It is clear that the Möbius transform m is a linear transformation uniquely
defined by ηm

〈B〉 = χB . The inverse of it is computed by

μ(B) =
∑

B⊆A

μm(A).

One can show that introduced families of set functions Hk, k = 0, 1, ..., are
convex cones with finite sets of generating elements. If a given family, say M,
is a cone with the finite system {μ1, ..., μn} of generating elements μi ∈ M,
i = 1, ..., n, then any μ ∈ M is represented by μ =

∑n
i=1 aiμi, where ai ∈ R+,

i = 1, ..., n (R+ is the set of all non-negative real numbers). As a rule it is a hard
problem to get a description of generating elements for a given convex cone M.
In some cases it is simply solved. For example, {χB}B∈2X is a set of generating
elements for H0;

{
η〈B〉

}
B∈2X is the set of generating elements for H∞.

We can also describe the system of generating elements for monotone set
functions. It consists of so-called {0, 1}-valued monotone set functions. Such
monotone set functions can be described by semi-filters (upper sets) of the alge-
bra 2X . In this case we consider the algebra 2X as a partially ordered set w.r.t.
⊆. A subset f ⊆ 2X is called a semi-filter (an upper set) if A ∈ f and A ⊆ B
implies B ∈ f . Any {0, 1}-valued monotone set function μ is a characteristic
function of some semi-filter f , i.e.

μ(A) =
{

1, A ∈ f ,
0, A /∈ f .

Each semi-filter contains a finite set of minimal elements {A1, A2, ..., Ak},
i.e. mutually incomparable elements w.r.t. ⊆ such that f =

{
A ∈ 2X |∃Ai ⊆ A

}
.

Clearly minimal elements generate any semi-filter f . This fact is denoted by
f = 〈A1, A2, ..., Ak〉. The semi-filter f is principal if it is generated by one minimal
element, i.e. f = 〈A〉. Further we will use notation ηf if {0, 1}-valued monotone
set function is associated with the semi-filter f .

3 Linear Operators and Consensus Requirement

We begin this section, giving the following straightforward proposition.

Proposition 1. Let Mfirst,Msecond be cones in H, and let {μ1, ..., μn} be a
finite set of generating elements for Mfirst, then ϕ : Mfirst → Msecond for a
linear operator ϕ iff μϕ

k ∈ Msecond for k = 1, ..., n.
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Proof. Let Mfirst,Msecond be cones in H as in the proposition. Necessity is
obvious. For proving sufficiency, consider an arbitrary μ =

∑n
i=1 aiμi, ai ≥ 0,

i = 1, ..., n, in Mfirst. Then μϕ =
∑n

i=1 aiμ
ϕ
i , i.e. μϕ =

∑n
i=1 aiμ

ϕ
i , i.e. μϕ ∈

Msecond.

Proposition 1 gives the solution of the stated problem, when we suppose that
Mfirst is equal to H0 or H∞. If Mfirst = H0, then any linear operator ϕ
with χϕ

B ∈ Msecond, B ∈ 2X , provides the mapping ϕ : H0 → Msecond. Since
{χB}B∈2X is a basis of H, set functions χϕ

B can be chosen arbitrarily in Msecond.
We can come to the same conclusions assuming that Mfirst = H∞ and taking
the basis

{
η〈B〉

}
B∈2X of H.

If Mfirst = H1, then the solution of the stated problem is based on the
following proposition.

Proposition 2. Any {0, 1}-valued monotone set function η〈B1,...,Bk〉 has the fol-
lowing representation through the basis

{
η〈B〉

}
B∈2X

η〈B1,...,Bk〉 = −
∑

C⊆{1,...,k}
(−1)|B|

η〈⋃
i∈C Ci〉.

Proof. The proof of the proposition is based on the equalities ηf =
⋃k

i=1 〈Bi〉,
〈A ∪ B〉 = 〈A〉 ∩ 〈B〉 for any A,B ∈ 2X , and on the inclusion-exclusion formula.

We immediately have the following consequence from Proposition 2.

Proposition 3. The linear operator ϕ induces the mapping ϕ : H1 → Msecond,
where Msecond is some cone in H, iff for any system of sets {B1, B2, ..., Bk} the
set function

ηϕ
f = −

∑

C⊆{1,...,k}
(−1)|B|

ηϕ

〈⋃
i∈C Bi〉

is in Msecond.

Now we will try to interpret obtained results with the help of set functions
with two arguments. Let ϕ : H → H be a linear operator. We introduce into
consideration the set function ϕ(B,A) = χϕ

B(A), A,B ∈ 2X . The set function
ϕ can be considered as a matrix representation of the linear operator ϕ in the
basis {χB}B∈2X . The image of μ is expressed by

μϕ(A) =
∑

B∈2X

μ(B)ϕ(B,A).

We can also consider representations of set functions through the basis{
η〈B〉

}
B∈2X . Then we use the set function ϕm(B,A) = ηϕ

〈B〉(A). One can show
that

ϕm(B,A) =
∑

C∈2X |C⊇B

ϕ(C,A).
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and we can compute the inverse transform by

ϕ(B,A) =
∑

C∈2X |C⊇B

(−1)|C\B|
ϕm(C,A).

The image of μ is expressed by

μϕ(A) =
∑

B∈2X

μm(B)ϕm(B,A).

Now we can express statements of Propositions 1 and 3 through set functions
ϕ and ϕm. According to Proposition 1 ϕ : H0 → Msecond iff for any fixed
B ∈ 2X the set function ϕ(B,A) as a function of A is in Msecond, and according
to Proposition 3 for any finite system of sets {B1, B2, ..., Bk} the set function

ν(A) = −
∑

C⊆{1,...,k}
(−1)|B|

ϕm
(⋃

i∈C
Bi, A

)

is in Msecond.

4 Linear Operators and Event-Based Transformations

Further we will consider the set of all linear operators on H as a linear space
denoted by LH. We write ϕ = aϕ1 + bϕ2, a, b ∈ R, if ϕ(μ), μ ∈ H, is expressed
by ϕ(μ) = aϕ1(μ) + bϕ2(μ), where ϕ1, ϕ2 ∈ LH. As we will see the next linear
operators give a rich structure for representing event-based transformations of
set functions. Let μ ∈ H and introduce the following linear operators:

1. μ(A)
ϕ∩B−→ μ(A ∩ B) for A ∈ 2X and a fixed B ∈ 2X .

2. μ(A)
ϕ∪B−→ μ(A ∪ B) for A ∈ 2X and a fixed B ∈ 2X .

3. μ(A)
ϕ¬−→ μ(¬A), where ¬A is the complement of A ∈ 2X .

4. μ(A)
ϕB−→ μ(B) for A ∈ 2X and a fixed B ∈ 2X .

5. μ(A)
ϕ≡−→ μ(A) for A ∈ 2X .

As the following examples show, the introduced linear operators enable to
express event-based linear transformations of set functions (capacities) [7–9]:

1. Let ϕ1 = ϕX − ϕ¬, then μ(A)
ϕ1−→ μ(X) − μ(¬A), A ∈ 2X .

2. Let ϕ2 = 0.5(ϕX + ϕ≡ − ϕ¬), then μ(A)
ϕ2−→ 0.5 (μ(X) + μ(A) − μ(¬A)),

A ∈ 2X .
3. Let ϕ3 = ϕ∪B − ϕB , then μ(A)

ϕ3−→ μ(A ∪ B) − μ(B), A ∈ 2X .
4. Let ϕ4 = ϕ∪B + ϕ∩B − ϕB , then μ(A)

ϕ4−→ μ(A ∪ B) + μ(A ∩ B) − μ(B),
A ∈ 2X .

5. Let ϕ5 = ϕ∪B − ϕ∩B ◦ ϕ¬, then μ(A)
ϕ5−→ μ(A ∪ B) − μ(¬A ∩ B), A ∈ 2X .

6. Let ϕ6 = ϕX −ϕ∪B ◦ϕ¬ −ϕ∩B, then μ(A)
ϕ5−→ μ(X)−μ(¬A∪B)−μ(A∩B),

A ∈ 2X .
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7. Let ϕ7 = ϕX − ϕ∪B ◦ ϕ¬ + ϕB − ϕ∩B ◦ ϕ¬, then μ(A)
ϕ6−→ μ(X) − μ(¬A ∪

B) + μ(B) − μ(¬A ∩ B), A ∈ 2X .

Proposition 4. Let ϕ ∈ LH, then ϕ ◦ ϕ∩C = ϕ∩C ◦ ϕ for all C ∈ 2X iff there
is a g ∈ H such that ϕm(B,A) = g(B)η〈B〉(A).

Proof. It is clear that ϕ ◦ ϕ∩C = ϕ∩C ◦ ϕ for all C ∈ 2X iff ηϕ◦ϕ∩C

〈B〉 = ηϕ∩C◦ϕ
〈B〉 for

all B,C ∈ 2X . Next we find ηϕ◦ϕ∩C

〈B〉 (A) = ϕm (B,A ∩ C) and

ηϕ∩C◦ϕ
〈B〉 (A) = ηϕ

〈B〉(A ∩ C) =
{

ϕm(B,A), B ⊆ C,
0, B �⊆ C

= ϕm(B,A)η〈B〉(C),

since

η〈B〉(A ∩ C) =
{

1, B ⊆ A ∩ C,
0, B �⊆ A ∩ C

=
{

η〈B〉(A), B ⊆ C,
0, B �⊆ C.

We derive from the equality ϕm (B,A ∩ C) = ϕm(B,A)η〈B〉(C) that
ϕm (B,A) = ϕm(B,A)η〈B〉(A) and ϕm (B,B) = ϕm(B,A) if B ⊆ A. So we
get the required representation denoting g(B) = ϕm (B,B).

Let us check that our representation satisfies all necessary conditions. We see
that

ηϕ◦ϕ∩C

〈B〉 (A) = g(B)η〈B〉(A ∩ C) = g(B)η〈B〉(A)η〈B〉(C)

and

ηϕ∩C◦ϕ
〈B〉 (A) = ηϕ

〈B〉(A ∩ C) = ηϕ
〈B〉(A)η〈B〉(C) = g(B)η〈B〉(A)η〈B〉(C).

The proposition is proved.

We denote by LH∩ the set of all linear operators, which are commutative
w.r.t. ϕ∩C , C ∈ 2X , i.e. LH∩ =

{
ϕ ∈ LH|ϕ ◦ ϕ∩C = ϕ∩C ◦ ϕ for all C ∈ 2X

}
.

Proposition 5. The set LH∩ is a linear subspace of LH and {ϕ∩C}C∈2X is a
basis of LH∩.

Proof. Let us check that LH∩ is a linear subspace of LH. Let ϕ1, ϕ2 ∈ LH∩ and
ϕ = aϕ1+bϕ2, then ϕ◦ϕ∩C = (aϕ1 + bϕ2)◦ϕ∩C = aϕ1◦ϕ∩C+bϕ2◦ϕ∩C =aϕ∩C◦
ϕ1+bϕ∩C◦ϕ2 = ϕ∩C◦(aϕ1 + bϕ2) = ϕ∩C◦ϕ, i.e. LH∩ is a linear subspace of LH.
Then we find that ϕm

∩C(B,A) = ηϕ∩C

〈B〉 (A) = η〈B〉 (A ∩ C) = η〈B〉 (C) η〈B〉 (A).

Therefore, ϕm
∩C(B,A) = g(B)η〈B〉 (A), where g(B) = η〈B〉 (C) =

{
1, B ⊆ C,
0, B �⊆ C.

i.e. ϕ∩C ∈ LH∩. It is clear that set functions η〈B〉 (C) of B ∈ 2X for a fixed
C ∈ 2X , are linear independent and form a basis of H. This finishes the proof
of the proposition.

Proposition 6. Let ϕ ∈ LH∩, then ϕ : H1 → H1 iff ϕ =
∑

C∈2X

m(C)ϕ∩C ,

where m ∈ H0.
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Proof. Sufficiency is obvious, because any ϕ∩C induces the mapping ϕ∩C : H1 →
H1.

Necessity. Assume to the contrary that m /∈ H0, i.e. there is a B ∈ 2X such
that m(B) < 0 and ϕ induces the mapping H1 → H1. Consider the semi-filter
f =

{
A ∈ 2X |A ⊃ B\{x}}, where x ∈ B. We see that

ηϕ
f (X) − ηϕ

f (X\{x}) =
∑

C∈2X

m(C) [ηf (C) − ηf (C\{x})]

=
∑

C∈2X |x∈C

m(C) [ηf (C) − ηf (C\{x})]

=
∑

C∈2X |x∈C

m(C)ηf (C) −
∑

C∈2X |x∈C

m(C)ηf (C\{x})

=
∑

C∈2X |B⊆C

m(C) −
∑

C∈2X |B⊂C

m(C) = m(B) < 0.

Therefore, ηϕ
f is not monotone, but this contradicts to our assumption.

Corollary 1. Let ϕ ∈ LH∩, i.e. ϕm(B,A) = g(B)η〈B〉(A). Then ϕ : H1 → H1

iff the set function g(¬B) of B ∈ 2X is totally monotone.

Proof. Let us show first necessity. Let ϕ ∈ LH∩ and ϕ : H1 → H1, then by
Proposition 6

ϕ =
∑

C∈2X

m(C)ϕ∩C , where m ∈ H0.

We find next that

ϕm
∩C(B,A) = ηϕ∩C

〈B〉 (A) = η〈B〉 (A ∩ C)

= η〈B〉 (C) η〈B〉 (A) = η〈¬C〉 (¬B) η〈B〉 (A) ,

and
ϕm(B,A) = η〈B〉 (A)

∑

C∈2X

m(C)η〈¬C〉 (¬B),

i.e. g(B) =
∑

C∈2X

m(C)η〈¬C〉 (¬B) or g(¬B) =
∑

C∈2X

m(C)η〈¬C〉 (B). It is clear

that g(¬B) of B ∈ 2X is totally monotone.
Sufficiency is proved by using the fact that any totally monotone set function

g(¬B) of B ∈ 2X can be represented in the form g(¬B) =
∑

C∈2X

m(C)η〈¬C〉 (B),

m ∈ H0.

Proposition 7. Let ϕ ∈ LH∩ and ϕ : H1 → H1, then ϕ : Hk → Hk, k =
2, 3, ...,∞.
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Proof. We use the following necessary and sufficient feature of k-
monotonicity [10]: μ ∈ H0 is k-monotone if the set function ν(A) = μ(A) −
μ(A ∩ ¬{x}) is (k − 1)-monotone for any x ∈ X. Assume at first that μ ∈ H2,
then we see that μϕ∩¬{x} ∈ H1 for any x ∈ X. According to our supposition
ϕ : H1 → H1, therefore μϕ∩¬{x}◦ϕ ∈ H1. Since ϕ∩¬{x} ◦ ϕ = ϕ ◦ ϕ∩¬{x}, we have
μϕ◦ϕ∩¬{x} ∈ H1 for any x ∈ X, i.e. μϕ ∈ H2.

The general case is proved by induction. We assume that ϕ : Hi → Hi,
i = 1, 2, ..., k−1, and show that ϕ : Hk → Hk. Following this scheme, let μ ∈ Hk,
then we see that μϕ∩¬{x} ∈ Hk−1 for any x ∈ X. According to our supposition
ϕ : Hk−1 → Hk−1, therefore μϕ∩¬{x}◦ϕ ∈ Hk−1. Since ϕ∩¬{x} ◦ ϕ = ϕ ◦ ϕ∩¬{x},
we have μϕ◦ϕ∩¬{x} ∈ Hk−1 for any x ∈ X, i.e. μϕ ∈ Hk.

Example 1. Consider the Choquet integral g(A) = (Ch)
∫

A

fdμ w.r.t. a set func-

tion μ and an non-negative valued function f . Obviously, for a fixed f the Cho-
quet integral defines the linear transformation ϕ , in which the set function μ
is mapped to the set function g. Let us show that ϕ ∈ LH∩. Every function

f can be represented as a linear combination f =
m∑

i=1

bi1Bi
of simple functions

1Bi
(x) =

{
1, x ∈ Bi,
0, x /∈ Bi,

such that B1 ⊂ B2 ⊂ ... ⊂ Bm, Bi ∈ 2X , bi ≥ 0,

i = 1, ...,m. Because such functions are comonotone, we have

g(A) = (Ch)
∫

A

(
m∑

i=1

bi1Bi

)

dμ =
m∑

i=1

bi(Ch)
∫

A

1Bi
dμ =

m∑

i=1

biμ(A ∩ Bi).

Proposition 8. Let ϕ ∈ LH, then ϕ ◦ ϕ∪C = ϕ∪C ◦ ϕ for all C ∈ 2X iff there
is a g ∈ H such that ϕm(B,A) = g(¬B ∪ A).

Proof. It is clear that ϕ ◦ ϕ∪C = ϕ∪C ◦ ϕ for all C ∈ 2X iff ηϕ◦ϕ∪C

〈B〉 = ηϕ∪C◦ϕ
〈B〉 for

all B,C ∈ 2X . Next we find

ηϕ◦ϕ∪C

〈B〉 (A) = ϕm (B,A ∪ C)

and
ηϕ∪C◦ϕ

〈B〉 (A) = ηϕ
〈B\C〉(A) = ϕm(B\C,A),

since

η〈B〉(A ∪ C) =
{

1, B ⊆ A ∪ C,
0, B �⊆ A ∪ C

=
{

1, B\C ⊆ A,
0, B\C �⊆ A

= η〈B\C〉(A).

We derive from the equality

ϕm (B,A ∪ C) ηϕ∪C◦ϕ
〈B〉 (A) = ϕm(B\C,A)

that ϕm (B1, A1) = ϕm(B2, A2) if ¬B1 ∪A1 = ¬B2 ∪A2, i.e. we get the required
representation, defining g(¬B ∪ A) = ϕm(B,A). Let us check that our represen-
tation satisfies all necessary conditions. We see that

ηϕ◦ϕ∪C

〈B〉 (A) = g(¬B ∪ A ∪ C)
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and
ηϕ∪C◦ϕ

〈B〉 (A) = ηϕ
〈B\C〉(A) = g (¬(B\C) ∪ A) = g(¬B ∪ A ∪ C),

i.e. the proposition is proved.

We denote by LH∪ the set of all linear operators, which are commutative
w.r.t. ϕ∪C , C ∈ 2X , i.e. LH∪ =

{
ϕ ∈ LH|ϕ ◦ ϕ∪C = ϕ∪C ◦ ϕ for all C ∈ 2X

}
.

Proposition 9. The set LH∪ is a linear subspace of LH and {ϕ∪C}C∈2X is a
basis of LH∪.

Proof. Let us check that LH∪ is a linear subspace of LH. Let ϕ1, ϕ2 ∈ LH∩
and ϕ = aϕ1 + bϕ2, then ϕ ◦ ϕ∪C = (aϕ1 + bϕ2) ◦ ϕ∪C = aϕ1 ◦ ϕ∪C + bϕ2 ◦
ϕ∪C =aϕ∪C ◦ϕ1 +bϕ∪C ◦ϕ2 = ϕ∪C ◦ (aϕ1 + bϕ2) = ϕ∪C ◦ϕ, i.e. LH∪ is a linear
subspace of LH. Then we find that

ϕm
∪C(B,A) = ηϕ∪C

〈B〉 (A) = η〈B〉 (A ∪ C) =
{

1, B ⊆ A ∪ C,
0, B ⊆ A ∪ C

=
{

1, ¬B ∪ A ∪ C = X,
0, ¬B ∪ A ∪ C �= X

=
{

1, ¬C ⊆ ¬B ∪ A,
0, ¬C �⊆ ¬B ∪ A

= η〈¬C〉(¬B ∪ A).

Therefore, ϕm(B,A) = g(¬B∪A), where g = η〈¬C〉. It is clear that set functions
η〈¬C〉, C ∈ 2X , are linear independent and form a basis of H. This finishes the
proof of the proposition.

Proposition 10. Let ϕ ∈ LH∪, then ϕ : H1 → H1 iff ϕ =
∑

C∈2X

m(C)ϕ∪C ,

where m ∈ H0.

Proof. Sufficiency is obvious, because any ϕ∪C induces the mapping ϕ∪C : H1 →
H1.

Necessity. Assume to the contrary that m /∈ H0, i.e. there is a B ∈ 2X such
that m(B) < 0, however, ϕ induces the mapping H1 → H1. Let x /∈ B, and
consider the semi-filter f =

{
A ∈ 2X |A ⊃ B

}
. We see that

ηϕ
f (∅) =

∑

C∈2X

m(C)ηf (C) =
∑

C⊃B

m(C)

and
ηϕ
f ({x}) =

∑

C∈2X

m(C)ηf ({x} ∪ C) =
∑

C⊇B

m(C).

Therefore, ηϕ
f ({x}) − ηϕ

f (∅) = m(B) < 0, i.e. ηϕ
f is not monotone, but this

contradicts to our assumption.

Corollary 2. Let ϕ ∈ LH∪, i.e. ϕm(B,A) = g(¬B ∪ A). Then ϕ : H1 → H1 iff
the set function g is totally monotone.
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Proof. Necessity. Let ϕ ∈ LH∪ and ϕ : H1 → H1, then by Proposition 10

ϕ =
∑

C∈2X

m(C)ϕ∪C , where m ∈ H0.

We find that ϕm
∪C(B,A) = η〈¬C〉(¬B ∪ A), ϕm(B,A) =

∑

C∈2X

m(C)η〈¬C〉

(¬B ∪ A), i.e. g =
∑

C∈2X

m(C)η〈¬C〉, i.e. g is totally monotone.

Sufficiency is proved by using the fact that every totally monotone set func-
tion g can be represented as g =

∑

C∈2X

m(C)η〈¬C〉, where m ∈ H0.

Proposition 11. Let ϕ ∈ LH∪ and ϕ : H1 → H1, then ϕ : Hk → Hk, k =
2, 3, ...,∞.

Proof. We use the following necessary and sufficient feature of k-
monotonicity [10]: μ ∈ H0 is k-monotone if the set function ν(A) = μ(A ∪
{x}) − μ(A) is (k − 1)-monotone for any x ∈ X. Assume at first that μ ∈ H2,
then we see that μϕ∪{x} ∈ H1 for any x ∈ X. According to our assumption
ϕ : H1 → H1, therefore μϕ∪{x}◦ϕ ∈ H1. Since ϕ∪{x} ◦ ϕ = ϕ ◦ ϕ∪{x}, we have
μϕ◦ϕ∪{x} ∈ H1 for any x ∈ X, i.e. μϕ ∈ H2.

The general case is proved by induction. Assume that ϕ : Hi → Hi, i =
1, 2, ..., k − 1, and show that ϕ : Hk → Hk. Following this scheme, let μ ∈ Hk,
then we see that μϕ∪{x} ∈ Hk−1 for any x ∈ X. According to our assumption
ϕ : Hk−1 → Hk−1, therefore μϕ∪{x}◦ϕ ∈ Hk−1. Since ϕ∪{x} ◦ ϕ = ϕ ◦ ϕ∪{x}, we
have μϕ◦ϕ∪{x} ∈ Hk−1 for any x ∈ X, i.e. μϕ ∈ Hk.

Proposition 12. Let LH∪∩ be the minimal linear space, closed under composi-
tion of linear operators and containing LH∪ and LH∩. Then {ϕ∪C ◦ ϕ∩D}C⊆D

is the basis of LH∪∩ and the dimension of LH∪∩ is 3|X|.

Proof. Consider the composition of operators

μϕ∪C◦ϕ∩D (A) = μ ((A ∪ C) ∩ D) = μ ((A ∪ C1) ∩ D) ,

where C1 = C ∩ D, i.e. ϕ∪C ◦ ϕ∩D = ϕ∪C1 ◦ ϕ∩D and C1 ⊆ D. Analogously,

μϕ∩D◦ϕ∪C (A) = μ ((A ∩ D) ∪ C) = μ ((A ∪ C) ∩ D1) ,

where D1 = C ∪ D, i.e. ϕ∩D ◦ ϕ∪C = ϕ∪C ◦ ϕ∩D1 and C ⊆ D1. We see that

ϕ∪B ◦ ϕ∪C ◦ ϕ∩D = ϕ∪(B∪C) ◦ ϕ∩D,

ϕ∩B ◦ ϕ∪C ◦ ϕ∩D = ϕ∪C ◦ ϕ∩((B∪C)∩D),

ϕ∪C ◦ ϕ∩D ◦ ϕ∩B = ϕ∪C ◦ ϕ∩(B∩D),

ϕ∪C ◦ ϕ∩D ◦ ϕ∪B = ϕ∪((C∩D)∪B) ◦ ϕ∩(B∪D).

Thus, every operator from LH∪∩ can be represented as a linear combination of
operators from {ϕ∪C ◦ ϕ∩D}C⊆D.
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Let us show that {ϕ∪C ◦ ϕ∩D}C⊆D is the basis of LH∪∩. At first we will
simplify the expression

ηϕ∪C◦ϕ∩D

〈B〉 (A) = η〈B〉 ((A ∪ C) ∩ D) = η〈X〉 ((A ∪ C) ∩ D ∪ ¬B)

= η〈X〉 ((A ∩ D) ∪ C ∪ ¬B) = η〈B\C〉(A ∩ D)

= η〈B\C〉(A)η〈B\C〉(D) = η〈B\C〉(A)η〈B〉(D).

Consider next an arbitrary linear operator L in LH∪∩ given by

L =
∑

(C,D)|C⊆D

α(C,D)ϕ∪C ◦ ϕ∩D, (1)

where numbers α(C,D) are defined for pairs (C,D), in which C ⊆ D. Then

L
(
η〈B〉

)
=

∑

(C,D)|C⊆B⊆D

α(C,D)η〈B\C〉.

Now we will prove that the system of linear operators {ϕ∪C ◦ ϕ∩D}C⊆D are
linear independent. Let us assume the inverse. Then there is a representation
(1) of the linear operator L, that is identical to zero, in which there is a coef-
ficient α(C,D) �= 0 for some C ⊆ D ⊆ X. Because this linear operator is
identical to zero, L

(
η〈B〉

)
= 0 for all B ∈ 2X . Thus, there is C ∈ 2X such

that {D|α(C,D) �= 0} �= ∅. Let us take an arbitrary maximal element D of
{D|α(C,D) �= 0}. Then

L
(
η〈D〉

)
=

∑

B∈2X

m(B)η〈B〉,

and m(D\C) = α(C,D) �= 0. Therefore, we see that L
(
η〈D〉

) �= 0, i.e. our
assumption is wrong, and {ϕ∪C ◦ ϕ∩D}C⊆D is the basis of LH∪∩.

Let compute the cardinality of {ϕ∪C ◦ ϕ∩D}C⊆D. Assume that |X| = N . For
every C with cardinality k there are 2N−k sets D with C ⊆ D. Therefore, the
total number of pairs (C,D) with C ⊆ D is

N∑

k=0

(
N
k

)
2N−k = 3N .

Thus, the dimension of LH∪∩ is 3N . The proposition is proved.

5 Conclusion

We can define many linear operators on set functions and in this paper we have
studied the linear space of operators connected with event-based transformations
of capacities. The next problems are connected with studying
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(a) the consensus requirement in LH∪∩;
(b) the linear space containing all possible event-based transformations of set
functions;
(c) the matrix description of event-based transformations;
(d) other linear transformations, for example, ϕγ : H → H, defined through
one-to-one mappings γ : X → X by μϕγ

(A) = μ(γ(A)), A ∈ 2X .

Acknowledgment. This work has been supported by the grant 18-01-00877 of RFBR
(Russian Foundation for Basic Research).
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Abstract. The aim of this paper is to generalize the concept of associ-
ation rules for interval-valued fuzzy sets. Interval-valued fuzzy sets allow
for intervals of membership degrees to be assigned to each element of
the universe. These intervals may be interpreted as partial information
where the exact membership degree is not known. The paper provides
a generalized definition of support and confidence, which are the most
commonly known measures of quality of a rule.

Keywords: Association rules · Missing values
Interval-valued fuzzy sets · Support · Confidence

1 Introduction

Searching for association rules is a tool for explanatory analysis of large data sets.
Association rule is a formula of the form A ⇀ C, where A is called an antecedent
and C is a consequent, and which denotes some interesting relationship between
A and C. There exist many different types of association rules. In this paper, we
focus on implicative rules.

Association rules were firstly introduced by Hájek et al. in the late 1960s [1]
by formulating the GUHA (General Unary Hypotheses Automaton) method [2].
Independently on them, a similar framework was developed by Agrawal [3] in
1993. Many different authors extended the association rules framework for fuzzy
data, see [4] for a recent survey. A framework for a construction of linguistic
summaries is also very closely related to fuzzy association rules. It was proposed
by Yager in [5] and later further developed by Kacprzyk [6]. Another approach
[7] introduces intermediate quantifiers to interpret association rules in natural
language.

In real-world applications, data being analyzed are sometimes missing. Non-
availability comes very often from the fact that some values are unknown or
concealed. Handling of missing values is very common in data processing. There
were developed many techniques for missing values imputation, and many exist-
ing methods were extended to directly work with unknown values. Hájek et al.
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Table 1. Sobociński’s ∧S , Bochvar’s internal ∧B and Kleene’s (strong) ∧K variants
for handling of the third truth value ∗ in conjunction

∧S 0 ∗ 1
0 0 0 0
∗ 0 ∗ 1
1 0 1 1

∧B 0 ∗ 1
0 0 ∗ 0
∗ ∗ ∗ ∗
1 0 ∗ 1

∧K 0 ∗ 1
0 0 0 0
∗ 0 ∗ ∗
1 0 ∗ 1

proposed within their GUHA method [2] an extension capable of searching for
association rules on data with missing values. However, their approach is appli-
cable on binary (or categorical) data only.

In practical data analytical tasks, missing data are preferably imputed, if
the missingness is not dependent on unobserved or the missing value itself
[8]. Imputation is done by substituting missing values with average or a value
obtained from regression or from application of some of the machine learning
techniques [9].

The objective of handling missing or undefined values is not new also in math-
ematical logic. The fundamental grounds were established by Kleene, Bochvar,
Sobociński and others, who studied the properties of three-valued logics 0/1/∗,
which was also studied by �Lukasiewicz in 1920 in [10]. These authors showed
that the third value ∗ may represent an unknown, undefined or indeterminate
truth value. An overview of main contributions can be found e.g. in [11].

The logic called Bochvar’s internal [12] (also known as Kleene’s weak) defines
the third truth value ∗ as an annihilator. Sobociński’s variant handles ∗ as an
ignorable non-sense, so that ∗ is treated like 1 (resp. 0) in conjunction (resp.
disjunction). Kleene’s (strong) logic’s indeterminate value ∗ preserve absorbing
elements 0 (in conjunction) and 1 (in disjunction), while annihilating in other
cases. See Table 1.

In [13], authors present three-valued logics where the third-value means bor-
derline or unknown. Deeper interpretations of the third-truth value (possible,
undefined, half-true, inconsistent) can be found in [14]. A generalization of
Kleene’s, Bochvar’s, Sobociński’s approach to predicate fuzzy logic was intro-
duced in in [15,16]. In [17], the author proposed a study of fuzzy type theory
(FTT) with partial functions which are used for a characterization of the unde-
fined values. In [18], several truth values representing different kinds of unavail-
ability together with a single type of fuzzy logical connectives were introduced.
A previous work of the authors comprises association rules on undefined values
(i.e. on fuzzy sets with non-existent membership degrees) [19].

The aim of this paper is to generalize the concept of association rules for
interval-valued fuzzy sets. Interval-valued fuzzy sets allow for intervals of mem-
bership degrees to be assigned to each element of the universe. These intervals
may be interpreted as partial information where the exact membership degree
is not known. Interval-valued fuzzy sets were studied in [20,21].

For instance, a measurement tool has often some limits of quantification,
which means that some values below or above a threshold are undistinguishable.
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E.g., a tool for measuring the concentration of alcohol in blood is unable to
distinguish values below 0.2�. Such concentrations may be represented by the
interval [0, 0.2] as the exact value is unknown. Moreover, each measurement tool
has defined a measure error e so that each measured value m may differ from
exact value by error e, and so the exact value is only known to be in an interval
[m − e,m + e].

In this paper, we discuss handling of missing values in crisp data (with respect
to association rules) and we show that transition to interval-valued fuzzy data
brings some difficulties, which we analyze and solve at the end of the paper.

The rest of the paper is organized as follows. Section 2 recalls basic definitions
from interval-valued fuzzy set theory. Section 3 introduces the reader into associ-
ation rules and Sect. 4 generalizes association rules for interval-valued fuzzy sets.
Section 5 concludes the paper and by drawing some directions for future work.

2 Operations on Interval-Valued Fuzzy Sets

The main goal of this section is to introduce a mathematical background which
will be used for fuzzy association rules.

2.1 Basic Logical Operations

A fuzzy set [22] is defined as a mapping from universe of discourse U to a real
interval [0, 1], i.e. F : U → [0, 1]. Unlike crisp sets, where an object fully belongs
or does not belong to a set, fuzzy sets enable an object u ∈ U to belong partially
to a set F in a degree F (u). A fuzzy set X is a subset of a fuzzy set Y , X ⊆ Y ,
if X(u) ≤ Y (u), for all u ∈ U . A size of a fuzzy set X is |X| =

∑
u∈U X(u).

Triangular norms, t-norms, are binary operations ⊗ : [0, 1]2 → [0, 1], which
fulfils commutativity, associativity, monotonicity and boundary condition and
which have been mainly studied by Klement, Mesiar and Pap in [23] and later
elaborated by many others. A concept associated with t-norm is the triangu-
lar conorm (t-conorm) ⊕ : [0, 1]2 → [0, 1]. A generalized implication is a binary
operation � : [0, 1]2 → [0, 1] that is monotone decreasing in the first argument
and monotone increasing in the second argument and that satisfies the boundary
conditions. The precise definition can be found in [24]. Finally, the negation is a
non-increasing operation ¬ : [0, 1] → [0, 1] such that ¬(0) = 1 and ¬(1) = 0. We
say that it is involutive if ¬(¬(a)) = a holds for every a ∈ [0, 1].

Convention. In the sequel we will work with intervals [x1, x2] ⊆ [0, 1] and will be
for simplicity denoted by capital letter X. By I we will denote the corresponding
support which consists of all intervals on [0, 1]. We will put I = {X | [x1, x2] ⊆
[0, 1]}.

First of all, we start with a definition of the ordering ≤I on I.

Definition 1. Let X,Y ∈ I, X = [x1, x2] and Y = [y1, y2] then

X ≤I Y iff X ∨I Y = Y (equivalently X ∧I Y = X),
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where

X ∨I Y = [max(x1, y1),max(x2, y2)],
X ∧I Y = [min(x1, y1),min(x2, y2)].

We continue with definitions of basic operations on I. We generalize this
approach to interval fuzzy logic in definitions below which were introduced in
[20,21].

Definition 2 (T-norm on I). A t-norm on I is a binary operation ⊗I : I×I →
I such that the following axioms are satisfied for all X,Y,Z ∈ I:

(a) commutativity: X ⊗I Y = Y ⊗I X,
(b) associativity: X ⊗I (Y ⊗I Z) = (X ⊗I Y ) ⊗I Z,
(c) monotonicity: X ≤I Y implies (X ⊗I Z) ≤I (Y ⊗I Z),
(d) boundary condition: 1I ⊗I X = X.

Definition 3 (T-conorm on I). A t-conorm on I is a binary operation ⊕I : I×
I → I such that the following axioms are satisfied for all X,Y,Z ∈ I:

(a) commutativity: X ⊕I Y = Y ⊕I X,
(b) associativity: X ⊕I (Y ⊕I Z) = (X ⊕I Y ) ⊕I Z,
(c) monotonicity: X ≤I Y implies (X ⊕I Z) ≤I (Y ⊕I Z),
(d) boundary condition: 0I ⊕I X = X.

Theorem 1 (t-representability). Let ⊗ be a t-norm on [0, 1] and let ⊕ be a
t-conorm. For X,Y ∈ I, X = [x1, x2], Y = [y1, y2], we put

(a) X ⊗I Y = [x1 ⊗ y1, x2 ⊗ y2],
(b) X ⊕I Y = [x1 ⊕ y1, x2 ⊕ y2].

Then ⊗I is a t-norm on I and ⊕I is a t-conorm on I.

Proof. The proof can be found in [25].

Definition 4. A binary operation �I : I × I → I is said to be a generalized
implication function on I (similarly as in [24]) if for each X,Y ∈ I the following
holds:

(a) X �I [1, 1] = [1, 1],
(b) [0, 0] �I Y = [1, 1],
(c) [1, 1] �I Y = Y .

Moreover, we require �I to be decreasing in its first, and increasing in its second
argument.

Theorem 2. Let � : [0, 1] × [0, 1] → [0, 1] be a function that it is monotone
decreasing in the first and monotone increasing in the second argument. Let
X = [x1, x2] and Y = [y1, y2]. We put

X �I Y = [x2 � y1, x1 � y2]. (1)

Then �I is an implication function on I.
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Proof. The proof can be found in [25].

Definition 5 (Negation on I). The negation on I is a non-increasing oper-
ation ¬I : I → I such that ¬I([0, 0]) = [1, 1] and ¬I([1, 1]) = [0, 0]. The negation
is involutive if ¬I(¬I(X)) = X holds for every X ∈ I.

Theorem 3. Let ¬ be a negation function on [0, 1] and X = [x1, x2] ∈ I. We
put

¬I([x1, x2]) = [¬x2,¬x1] (2)

Then ¬I is a negation function on I.

Convention. Whenever we will need to perform an operation between an ele-
ment a ∈ [0, 1] and an interval X ∈ I (for example a �I X) then we can
promote the element a to the interval [a, a] so we can use the operation defined
for intervals.

Definition 6. Interval-valued fuzzy set is a mapping F : U → I assigning an
interval from I to any element from the universe U . Cardinality |F | of an
interval-valued fuzzy set F is defined as

|F | =
∑

u∈U

F (u),

where A + B = [a1 + b1, a2 + b2] for any A,B ∈ I, A = [a1, a2] and B = [b1, b2].

3 Introduction to Association Rules

Let O = {o1, o2, . . . , oN}, N > 0, be a finite set of abstract elements called
objects and A = {a1, a2, . . . , aM}, M > 0, be a finite set of attributes. Within
the association rules framework, a dataset D is a mapping that assigns to each
object o ∈ O and attribute a ∈ A a truth degree D(a, o) ∈ [0, 1], which represents
the intensity of assignment of attribute a to object o.

For fixed D, we can treat the attribute a as a predicate, which assigns a truth
value a(o) ∈ [0, 1] to each object o ∈ O. Similarly, for each subset X ⊆ A of
attributes, we define a predicate X(o) for a selected t-norm ⊗ as follows:

X(o) =
⊗

a∈X

a(o). (3)

Association rule is a formula A ⇀ C, where A ⊆ A is the antecedent and
C ⊆ A is the consequent. It is natural to assume A ∩ C = ∅ and also |C| = 1.

As each combination of predicates in antecedent and consequent form a well-
formed association rules, an important problem is to identify such rules that are
relevant to the given dataset D. So far, there exist a large number of measures
of such relevance. An overview can be found in [26].

Perhaps the most commonly known indicators of a rule quality are the support
and confidence. Dubois et al. [24] define them on the basis of a partition of O:
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Table 2. Admissible operators induced by (4) and (5) accordingly to [24]: for Gödel,
Goguen, �Lukasiewicz t-norms the following implications are induced: �Lukasiewicz,
Reichenbach, Kleene-Dienes

⊗ �
min(a, b) min(1, 1 − a + b)

a · b 1 − a(1 − b)

max(a + b − 1, 0) max(1 − a, b)

they argue that a rule A ⇀ C is a three valued entity, which partitions the
objects from O into three (fuzzy) subsets, namely, into a set of positive examples
S+ that verify the rule, negative examples S− that falsify the rule, and irrelevant
examples S± that do not contribute in either direction. For any o ∈ O, Dubois
et al. [24] provide the following formal definitions for a fixed t-norm ⊗ and a
generalized implication �:

S+(o) = A(o) ⊗ C(o);

S−(o) = ¬(
A(o) � C(o)

)
; (4)

S±(o) = ¬A(o).

They argue that for 〈S+, S−, S±〉 to be a proper fuzzy partition, all o should
satisfy Ruspini condition:

S+(o) + S−(o) + S±(o) = 1. (5)

As noted in [24], Eqs. (4) and (5) lead to the admissible operator problem.
[24] identifies three pairs of ⊗ and �, which together satisfy both (4) and (5),
see Table 2. Dubois et al. [24] assumes that ¬(a) = 1 − a, which together with
conditions (4) and (5) results in

a � c = ¬a ⊕ (a ⊗ b). (6)

Based on (4), the support and confidence of a fuzzy association rule A ⇀ C
may be defined as follows [24].

Definition 7. Let R = A ⇀ C be a rule and S = 〈S+, S−, S±〉 be a partition of
O with respect to R. Then

supp(A ⇀ C) = |S+|, (7)

conf(A ⇀ C) =
|S+|

|S+| + |S−| . (8)

4 Association Rules on Interval-Valued Fuzzy Sets

In order to extend the association rules framework for data containing interval-
valued membership degrees, one has to switch the range of membership degrees
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from [0, 1] to I. In other words, dataset D becomes a mapping such that D(a, o) ∈
I for each a ∈ A and each o ∈ O. Similarly to (3), an attribute a may be treated
as a predicate with truth value a(o) ∈ I and each subset X ⊆ A may be used to
define a predicate X(o) ∈ I by applying an extended t-norm ⊗I in (3):

X(o) = x1(o) ⊗I x2(o) ⊗I . . . ⊗I xk(o), (9)

where x1, . . . , xk ∈ X.
Dubois [24] definitions of S+, S−, S± may be extended for interval-valued

degrees as follows:

S+(o) = A(o) ⊗I C(o);

S−(o) = ¬I

(
A(o) �I C(o)

)
; (10)

S±(o) = ¬IA(o).

Note that the degrees of S+, S− and S± become interval-valued too so that the
sum S+(o) + S−(o) + S±(o) no longer results in [1, 1]. It is because intervals
only capture a limited knowledge; if all values were known exactly, the Ruspini
condition (5) should hold again. Based on that, it is better to compute the
confidence as

conf(A ⇀ C) =
|S+|

1 − |S±| =
∑

o∈O(A(o) ⊗I C(o))
∑

o∈O A(o)
. (11)

4.1 Motivational Example

There are many attempts for searching for association rules on crisp data con-
taining unknown values. In order to obtain intervals of support and confidence,
it lasts to consider their most optimistic and pessimistic variants for each o ∈ O.
For instance, for a rule A ⇀ C and o ∈ O such that A(o) = unknown and
C(o) = 0, a pessimistic (resp. optimistic) variant is to take A(o) = 1 (resp.
A(o) = 0).

The computation of support and confidence on (interval-valued) fuzzy sets
depends on the selection of a t-norm as ⊗I and an implication function as �I .
In this paper, we fix

X ⊗I Y = [min(x1, y1),min(x2, y2)],
X �I Y = [min(1, 1 − x2 + y1),min(1, 1 − x1 + y2)].

Obtaining support based on interval-valued fuzzy sets is as easy as determi-
nation of |S+|. Unfortunately, the computation of confidence is not so straight-
forward. Before providing a detailed theorem about confidence on interval-valued
fuzzy sets, let us focus on a toy example that demonstrates some difficul-
ties with that computation. Let us denote suppD(A ⇀ C) = [lsD, usD] and
confD(A ⇀ C) = [lcD, ucD], which are support and confidence of a rule A ⇀ C
in dataset D.
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Table 3. Example datasets

D1:
A C

o1 1 0.3
o2 [0.2, 0.8] [0.4, 0.5]

D2:
A C

o1 1 0.1
o2 [0.2, 0.8] [0.4, 0.5]

D3:

A C

o1 1 0.3
o2 [0.2, 0.8] [0.4, 0.5]
o3 [0.9, 1] [0, 0.1]

Example 1. Consider datasets D1, D2 and D3 from Table 3.

– Supports can be obtained quite easily. lsD1 = min(1, 0.3)+min(0.2, 0.4) = 0.5
and usD1 = min(1, 0.3)+min(0.8, 0.5) = 0.8. Analogously for D2 and D3, we
obtain lsD2 = 0.3, usD2 = 0.6, lsD3 = 0.5, and usD3 = 0.9.

– For both D1 and D2, the upper bound of the confidence is evidently reached if
A(o2) = C(o2) = 0.5: ucD1 = 0.3+0.5

1+0.5

.= 0.53, ucD2 = 0.1+0.5
1+0.5 = 0.4. For other

variants of A(o2) and C(o2), we obtain lower values of confidences. The similar
holds for D3, where the upper bound is reached for A(o2) = C(o2) = 0.5,
A(o3) = 0.9 and C(o3) = 0.1.

– Unfortunately, the choice of such A(o2) and C(o2) that the confidence reaches
its lower bound, does not depend only on the intervals of A and C for o2,
but also on the other values on other rows of the dataset. For D1, the lower
bound of confidence is reached if A(o2) = 0.8 and C(o2) = 0.4: lcD1 =
0.3+0.4
1+0.8

.= 0.39. On the other hand, a lower bound of confidence for D2 is
obtained for A(o2) = 0.2 and any C(o2) ∈ [0.4, 0.5]: lcD2 = 0.1+0.2

1+0.2 = 0.25.
Similarly, a lower bound of confidence for D3 is obtained for A(o2) = 0.2, any
C(o2) ∈ [0.4, 0.5], A(o3) = 1, and C(o3) = 0: lcD3 = 0.3+0.2+0

1+0.2+1

.= 0.23.

Note that although o2 is identical in all datasets D1, D2 and D3, the minimal
confidence is obtained from different values of A(o2) and C(o2). That is, the
choice of the most pessimistic case (with respect to confDi

(A ⇀ C)) of A(o2) and
C(o2) within the intervals depends not only on the intervals of A(o2) and C(o2),
but also on all other values in the dataset Di. This fundamental observation
indicates that computing confidence threshold from interval-valued fuzzy sets
must be more complex than in the case of crisp sets.

4.2 Computing Support and Confidence on Interval-Valued Data

Let D be a dataset that assigns an interval of truth values to each pair 〈a, o〉 of
attribute a ∈ A and object o ∈ O, i.e. D(a, o) ∈ I. Let us have a rule A ⇀ C
such that A,C ⊆ A and A∩C = ∅ and in the sense of (9) we have A(o), C(o) ∈ I
for all o ∈ O.

Consider a mapping w : O → [0, 1] × [0, 1] such that w(o) = 〈wA(o), wC(o)〉
where wA(o) ∈ A(o) and wC(o) ∈ C(o) for any o ∈ O. A class of all such
mappings will be denoted with W . Then

suppw(A ⇀ C) =
∑

o∈O min(wA(o), wC(o)) ∈ [0, |O|], (12)

confw(A ⇀ C) =
∑

o∈O min(wA(o), wC(o))
∑

o∈O wA(o)
∈ [0, 1]. (13)
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The problem of finding suppD(A ⇀ C) = [lsD, usD] and confD(A ⇀ C) =
[lcD, ucD] is in finding such maximal lsD, lcD and minimal usD, ucD that

∀w ∈ W : lsD ≤ suppw(A ⇀ C) ≤ usD,

∀w ∈ W : lcD ≤ confw(A ⇀ C) ≤ ucD.

Theorem 4. Let A(o) = [a1(o), a2(o)], C(o) = [c1(o), c2(o)] and let lw, uw ∈ W
such that

lwA(o) = a1(o), lwC(o) = c1(o),
uwA(o) = a2(o), uwC(o) = c2(o).

Then supplw(A ⇀ C) = lsD and suppuw(A ⇀ C) = usD.

Proof. Evident.

Theorem 5. Let A(o) = [a1(o), a2(o)], C(o) = [c1(o), c2(o)] and let lw, uw ∈ W
such that

lwA(o) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a2(o), for c1(o) < a1(o),

a1(o), for a1(o) ≤ c1(o) ≤ a2(o) and
c1(o) − a1(o)
a2(o) − a1(o)

> lcD,

a2(o), for a1(o) ≤ c1(o) ≤ a2(o) and
c1(o) − a1(o)
a2(o) − a1(o)

≤ lcD,

a1(o), for a2(o) < c1(o),

lwC(o) = c1(o),

uwA(o) =

⎧
⎨

⎩

a1(o), for c2(o) < a1(o),
a2(o), for a2(o) < c2(o),
c2(o), otherwise,

uwC(o) = c2(o).

Then conf lw(A ⇀ C) = lcD and confuw(A ⇀ C) = ucD.

Sketch of the proof. For w ∈ W , let

Mw =
∑

o′∈(O\{o})
min(wA(o′), wC(o′)),

Nw =
∑

o′∈(O\{o})
wA(o′),

then

confw(A ⇀ C) =
Mw + min(wA(o), wC(o))

Nw + wA(o)
. (14)

Let us examine the influence of a single fixed object o ∈ O on the resulting
confidence, if Mw and Nw are fixed.
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In order to maximize (resp. minimize) confidence (14), one has to select the
greatest (resp. the lowest) wC(o). Hence evidently, lwC(o) = c1(o) and uwC(o) =
c2(o) and we can assume wC(o) to be fixed from now on.

If varying only wA(o), the confidence (14) is non-decreasing for wA(o) ≤
wC(o) and non-increasing for wA(o) ≥ wC(o). Hence (14) is maximized for
wC(o) = c2(o) and such wA(o) ∈ [a1(o), a2(o)] that is closest to wC(o). A maxi-
mum of confidence (14) is evidently obtained for:

– wA(o) = a1(o) if c2(o) < a1(o),
– wA(o) = a2(o) if a2(o) < c2(o), and
– wA(o) = c2(o) otherwise.

A minimum of confidence (14) is obtained for wC(o) = c1(o) and for either
wA(o) = a1(o) or wA(o) = a2(o). If c1(o) < a1(o) then evidently the minimum
appears for wA(o) = a2(o). On the other hand, if a2(o) < c1(o), we obtain
minimum of (14) for wA(o) = a1(o).

The most complicated situation appears if a1(o) ≤ c1(o) ≤ a2(o). We can
rewrite (14) (while searching for the minimum confidence) as follows:

confw(A ⇀ C) = lcD =
Mw + a1(o) + k(o) · (c1(o) − a1(o))
Nw + a1(o) + k(o) · (a2(o) − a1(o))

, (15)

where k(o) = 0 corresponds to wA(o) = a1 and k(o) = 1 corresponds to wA(o) =
a2. To continue with the proof, the following lemma would be helpful:

Lemma 1. Let p, P ≥ 0, q,Q > 0 and p
q ≤ P

Q then

p

q
≤ p + P

q + Q
≤ P

Q
.

Proof of the lemma is evident.
If

lcD <
c1(o) − a1(o)
a2(o) − a1(o)

then
Mw + a1(o) + k(o) · (c1(o) − a1(o))
Nw + a1(o) + k(o) · (a2(o) − a1(o))

<
c1(o) − a1(o)
a2(o) − a1(o)

and accordingly to Lemma 1 we obtain

Mw + a1(o)
Nw + a1(o)

≤ Mw + a1(o) + k(o) · (c1(o) − a1(o))
Nw + a1(o) + k(o) · (a2(o) − a1(o))

<
c1(o) − a1(o)
a2(o) − a1(o)

.

Since lcD is a minimal possible confidence, we immediately see that Mw+a1(o)
Nw+a1(o)

=
lcD and therefore k(o) = 0, which corresponds to wA(o) = a1.

The opposite case,

lcD ≥ c1(o) − a1(o)
a2(o) − a1(o)

,
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leads using similar construction to k(o) = 1, which corresponds to wA(o) = a2,
and the proof is finished.

Although the theorem is mathematically correct, it does not provide an exact
recipe for finding such lw ∈ W that conf lw(A ⇀ C) is minimal among all w ∈ W ,
because for finding lw, we need to know the lower bound of the confidence, in
advance. However, the theorem would help to formulate the efficient algorithm,
which can be based on iterative traversal through O, computing the estimates
of lcD and updating k(o). Details of the algorithm are left for the future.

5 Conclusion and Future Work

In this paper, an association analysis framework was developed that allows to
process data with missing values, i.e. values that are unknown or known only
partially. The approach of Dubois et al. [24] for association rules was extended
to handle interval-valued fuzzy sets. Based on that, an extended definition of
association rule’s support and confidence was proposed. It was shown that gen-
eralization of the computation of confidence interval is not straightforward. Some
observations were discussed that would allow to develop an efficient computa-
tional algorithm in the future.
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Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.)
IWIFSGN/EUSFLAT-2017. AISC, vol. 642, pp. 592–603. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-66824-6 52

8. Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/hierarchical
Models. Analytical methods for social research. Cambridge University Press, New
York (2007)

https://doi.org/10.1007/978-3-642-66943-9
https://doi.org/10.1007/978-3-642-66943-9
https://doi.org/10.1007/978-3-319-66824-6_52


100 P. Murinová et al.
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Abstract. The Hit-or-Miss transform (HMT) is a morphological oper-
ator which has been successfully used to identify shapes and patterns
satisfying certain geometric restrictions in an image. Recently, a novel
HMT operator, called the fuzzy morphological HMT, was introduced
within the framework of the fuzzy mathematical morphology based on
fuzzy conjunctions and fuzzy implication functions. Taking into account
that the particular case of considering a t-norm as fuzzy conjunction
and its residual implication as fuzzy implication functions has proved
its potential in several applications, in this paper, the case when resid-
ual implications derived from uninorms and a general fuzzy conjunction,
possibly a t-norm or the same uninorm, is deeply analysed. In particular,
some theoretical results related to properties desirable for the applica-
tions are proved. Finally, some experimental results are presented show-
ing the potential of this choice of operator to detect shapes and patterns
in images.

Keywords: Fuzzy hit-or-miss transform
Fuzzy mathematical morphology · Uninorm
Fuzzy implication function

1 Introduction

The hit-or-miss transform (HMT) [16,30] is an operator within the framework
of mathematical morphology which is capable of identifying groups of connected
pixels satisfying certain geometric restrictions or forming a certain configura-
tion. Already introduced in the mathematical morphology developed for binary
images by Matheron [20] (see also [30]) in the early sixties, its translation to
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the mathematical morphology for grey-level images (see [16,30,32]) has been a
complex task. HMT consists in searching and locating a predefined shape, called
structuring element (SE), in an image. In fact, this SE is composed of two SEs
which match the geometry of the objects of interest both in the foreground and
background of the image. This is the reason why the translation to grey-level
images is so difficult. The concept of complement of an image must be used in
the definition of the HMT but there is no clear consensus about how to define
it for a grey-level image.

In spite of the aforementioned complexity, many authors have proposed
extensions of HMT to grey-level images (see [10,17,22,24–26,29,31,32] and the
review in [13]). Even some extensions of HMT to multivariate images have been
presented in [1,33,34]. Besides all these approaches, a particularly important
extension in the context of the fuzzy mathematical morphology has been intro-
duced recently [13]. The so-called Fuzzy Mathematical HMT (FMHMT for short)
uses the concepts and techniques from the fuzzy sets theory [5,21] in order to
allow a better treatment and a representation with greater flexibility of the
uncertainty and ambiguity present in any level of an image. Indeed, FMHMT
uses the concept of fuzzy negation to model the complement of the image solv-
ing straightforwardly the problems that affect to other approaches. Moreover, it
does not only detect the parts of the image which are equal to the structuring
element, but also it can be interpreted as a similarity degree obtained as the
aggregation of how similar are, on the one hand, the foreground SE to the image
and on the other hand, the background SE to the complement image.

The FMHMT operator uses in its definition, in addition to the already men-
tioned fuzzy negation, the fuzzy mathematical erosion generated from a fuzzy
implication function [21] and a fuzzy conjunction. In [13], several desirable theo-
retical properties of the FMHMT operator were studied for general fuzzy impli-
cation functions and fuzzy conjunctions. However, the main efforts were devoted
to study the FMHMT operator when a t-norm and its residual implication
were considered. Some experimental results showed there the potential of the
FMHMT which, in addition to having a solid theoretical background, performed
notably well from the applicational point of view in comparison with other exist-
ing approaches.

Following this line of research, the main goal of this paper is to study the
fulfilment of the desirable theoretical properties and to analyse the performance
of the FMHMT operator when residual implications derived from uninorms and
a general conjunction, possibly a t-norm or the same uninorm, are considered.
The fuzzy mathematical morphology based on uninorms was introduced in [9]
and fully developed in [11]. This theory has been applied to image processing,
providing remarkable results, especially in edge detection and noise removal [12,
14,15]. The most important asset of this theory is that it generally improves the
results obtained by the fuzzy mathematical morphology generated by t-norms
and consequently, this paper seeks to establish the theoretical background of the
FMHMT using uninorms and to show some preliminary experimental results.
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This paper is organized as follows. In Sect. 2, we recall the definitions of
the fuzzy mathematical operators and the underlying fuzzy logical connectives
which will be used in subsequent sections to make the paper self-contained. In
Sect. 3, we briefly recall the binary HMT and the FMHMT, which generalizes the
binary HMT in the context of the fuzzy mathematical morphology. Then, Sect. 4
is devoted to the study of the theoretical desirable properties of the FMHMT
when residual implications derived from uninorms and a general conjunction are
considered. In Sect. 5, we show how this operator can be used to perform object
detection and we illustrate its abilities by applying it to different situations. The
paper ends with some conclusions and future work we want to develop.

2 Preliminaries

In this section we will introduce some preliminaries about fuzzy logic and fuzzy
mathematical morphology operators that will be used throughout the paper.

Fuzzy mathematical morphology operators are defined from fuzzy conjunc-
tions, fuzzy negations and and fuzzy implication functions. More details on these
logical connectives can be found in [2,4]. First, we introduce fuzzy conjunctions.

Definition 1. A non-decreasing binary operator C : [0, 1]2 → [0, 1] is called a
fuzzy conjunction if it satisfies C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1.

A deeply studied kind of fuzzy conjunctions is the class of t-norms [18].

Definition 2. A fuzzy conjunction T on [0, 1] is called a t-norm when it is
commutative, associative and it satisfies T (1, x) = x for all x ∈ [0, 1].

Well-known t-norms are the minimum t-norm TM(x, y) = min(x, y), the product
t-norm TP(x, y) = x · y, the �Lukasiewicz t-norm TLK(x, y) = max(x + y − 1, 0),
and the nilpotent minimum t-norm

TnM(x, y) =

{
0, if x + y ≤ 1,
min(x, y), otherwise.

Another kind of operators are uninorms, introduced by Yager and Rybalov
in [35].

Definition 3. A non-decreasing binary operator U : [0, 1]2 → [0, 1] is called a
uninorm if it is associative, commutative and there exists e ∈ [0, 1] (called neutral
element) such that U(x, e) = U(e, x) = x for all x ∈ [0, 1].

All uninorms satisfy U(0, 1) ∈ {0, 1}, being a fuzzy conjunction when U(0, 1) =
0. Different classes of uninorms have been studied and characterized (see [19]).
In this paper we will use two of them: idempotent and representable ones.
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Definition 4. A uninorm U is idempotent if U(x, x) = x for all x ∈ [0, 1].

Idempotent uninorms have been characterized in [28] by means of a decreas-
ing function g satisfying certain properties. Any idempotent uninorm U with
neutral element e and associated function g will be denoted by U ≡ 〈g, e〉ide.
Definition 5. A conjunctive uninorm U with neutral element e ∈]0, 1[ is repre-
sentable if there exists a continuous and strictly increasing function h : [0, 1] →
[−∞,+∞] (called additive generator of U), with h(0) = −∞, h(e) = 0 and
h(1) = +∞ such that U is given by

Uh(x, y) = h−1(h(x) + h(y))

for all (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)} and U(0, 1) = U(1, 0) = 0.

Any representable uninorm U with neutral element e and additive generator
h will be denoted by U ≡ 〈h, e〉rep.

Now we introduce fuzzy negations and fuzzy implication functions.

Definition 6. A non-increasing function N : [0, 1] → [0, 1] is called a strong
fuzzy negation if it is an involution, i.e., if N(N(x)) = x for all x ∈ [0, 1].

Definition 7. A binary operator I : [0, 1]2 → [0, 1] is a fuzzy implication func-
tion if it is non-increasing in the first variable, non-decreasing in the second one
and it satisfies I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

A well-known way to obtain fuzzy implication functions from fuzzy con-
junctions is the residuation method. Given a fuzzy conjunction C such that
C(1, x) > 0 for all x > 0, the binary operator

IC(x, y) = sup{z ∈ [0, 1] | C(x, z) ≤ y}

is a fuzzy implication function called the residual implication or R-implication
of C (see [23]). When the considered conjunction is an idempotent uninorm
U ≡ 〈g, e〉ide with g(0) = 1, then its residual implication has the following
expression [27]:

IU (x, y) =

{
min(g(x), y), if x < y,

max(g(x), y), if x ≥ y.

On the other hand, if the considered conjunction is a representable uninorm
U ≡ 〈h, e〉rep, its residual implication is given by [7]:

IU (x, y) =

{
h−1(h(y) − h(x)) if (x, y) ∈ [0, 1]2 \ {(0, 0), (1, 1)},
1 otherwise.

Using the previous operators, the basic fuzzy morphological operators such
as dilation and erosion can be defined. We use the framework introduced by De
Baets in [6] that is based on the duality under negation. We will use the following
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notation: C denotes a fuzzy conjunction; I, a fuzzy implication function; A, a
grey-level image; and B, a grey-level structuring element (see [8] for formal
definitions). In addition, dA denotes the set of points where A is defined and
Tv(A) is the translation of a fuzzy set A by v ∈ R

n defined by Tv(A)(x) =
A(x − v).

Definition 8 ([21]). The fuzzy dilation DC(A,B) and the fuzzy erosion
EI(A,B) of A by B are the grey-level images defined by

DC(A,B)(y) = sup
x∈dA∩Ty(dB)

C(B(x − y), A(x)),

EI(A,B)(y) = inf
x∈dA∩Ty(dB)

I(B(x − y), A(x)).

Some of the algebraic properties satisfied by the fuzzy erosion and the fuzzy
dilation are studied in [6,8].

3 From Binary to Fuzzy Hit-or-Miss Transform

In this section, we will recall for the sake of completeness the binary hit-or-miss
transform and how this operator is generalized to the fuzzy hit-or-miss transform.
First, the hit-or-miss transform of a binary image is a classical morphological
operator [30,32], that uses two structuring elements BFG (or foreground struc-
turing element) and BBG (or background structuring element). The basic idea
is to extract all those pixels of a binary image that are surrounded by areas on
the image where both foreground and background structuring elements match
predefined patterns. By definition, BFG and BBG share the same origin and
BFG ∩ BBG = ∅. We use B = (BFG, BBG) to denote the composite structuring
element (SE).

Formally, the HMT of a binary image A by the composite SE B is the set of
points x such that when the origin of B coincides with x, BFG fits A while BBG

fits Ac (the complement of A):

A � B = {x : (BFG)x ⊆ A, (BBG)x ⊆ Ac} = (A  BFG) ∩ (Ac  BBG),

where (·)x denotes the translation by x and  is the binary erosion operator
A  B = {x : Bx ⊆ A}.

While this operator for binary images is well-defined and easily interpretable
from a geometric point of view, its extension to grey-level images is tough because
it is not an increasing operator and there is no universally accepted notion of
complement for grey-level images. Thus, in most extensions to this type of images
[3,17,22,24,26,29,31,32], the use of Ac is systematically avoided and it is only
implemented using a fuzzy negation in some of the fuzzy approaches [10,25].
For an exhaustive review on the state of the art of the hit-or-miss transform, the
different approaches presented in the literature and an experimental comparison,
we refer the reader to [13].

Focusing already on the fuzzy hit-or-miss transform introduced in [13], or
FMHMT for short, this approach is able to directly generalize the binary HMT
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to the fuzzy mathematical morphology paradigm by modeling the complement
operation by a fuzzy negation and the intersection of sets by a fuzzy conjunction.
Moreover, since BFG and BBG can be considered now as fuzzy sets, there is no
need for a condition such as BFG ∩ BBG = ∅, which was mandatory in the
binary case, since in the fuzzy case, when this condition does not hold, the fuzzy
hit-or-miss transform still may be a non-empty set.

In the following, for any operator C : [0, 1]2 → [0, 1], the expression
C(A,B) represents the function that at any point x is such that C(A,B)(x) =
C(A(x), B(x)) and for any strong fuzzy negation N , the N -dual of a fuzzy set A,
denoted by N(A), is defined by N(A)(x) = N(A(x)). Thus, the formal definition
of the FMHMT is given as follows.

Definition 9 ([13, Definition 4.1]). Let C be a fuzzy conjunction, I be a fuzzy
implication function and N be a strong fuzzy negation. The fuzzy morphological
hit-or-miss transform (FMHMT) of the grey-level image A with respect to the
grey-level structuring element B = (B1, B2) is defined, for any y ∈ dA, by

FMHMTC,I,N (A,B)(y) = C (EI(A,B1)(y), EI(N(A), B2)(y)) , (1)

where N(A)(x) = N(A(x)) for all x ∈ dA.

In [13] several general properties of the FMHMT are presented and studied.
As we have already commented, the first requirement of any extension is accom-
plished. Indeed, we retrieve the binary hit-or-miss transform when we apply the
FMHMT to a binary image A and a binary structuring element B. Moreover,
it is proved that the FMHMT is invariant under translations and whenever C
is a fuzzy conjunction with right neutral element 1 (that is, C(x, 1) = x for all
x ∈ [0, 1]) the erosion and the dilation are particular cases of the FMHMT.

4 Fuzzy Hit or Miss Transform Using Uninorms:
Definition and Results

In this section, we perform an in-depth study of the theoretical desirable proper-
ties of the FMHMT when residual implications derived from uninorms are con-
sidered. Thus, in the next results we consider the particular case of the FMHMT
given in general by Eq. (1), when I = IU where U is a uninorm, that is,

FMHMTC,IU ,N (A,B) = C(EIU (A,B1), EIU (N(A), B2)).

Note that we consider a general fuzzy conjunction C. However, in some of
the results, the same uninorm U which has already been used to construct the
residual implication IU is considered as the fuzzy conjunction or even a t-norm T .

First of all, we have to check that the FMHMT detects the structuring ele-
ment at a point y when it is a part of the image at that point and the considered
uninorm is used as a fuzzy conjunction.
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Definition 10. Let B1 be a grey-level image (a structuring element) and let
A be a grey-level image. We say that B1 is a part of A if there exists a point
y ∈ dA such that if we translate B1 to y, we have B1(x − y) = A(x) for all
x ∈ dTy(B1) ∩ dA. In this case we say that B1 is a part of A at the point y.

In fact, as the following result proves, the value of the FMHMT of the image
at that point is the neutral element of the uninorm.

Theorem 1. Let N be a strong negation, B = (B1, B2) be a grey-scale struc-
turing element where B2 = N(B1) and B1 is a part of A at the point y. Let U
be a conjunctive uninorm with neutral element e ∈ [0, 1]. If one of the following
two cases hold:

• U is a representable uninorm, or
• U is a left-continuous idempotent uninorm U ≡ 〈N, e〉ide and there is a point

t such that B(t) = e;

then FMHMTU,IU ,N (A,B)(y) = e.

Proof. As B1 is a part of A at the point y, B1(x − y) = A(x) for all x, and we
have

EIU (A,B1)(y) = inf
x

IU (B1(x − y), A(x)) = inf
x

IU (A(x), A(x)),

and, on the other hand, EIU (N(A), B2)(y) = infxIU (N(B1)(x−y), N(A(x))) =
infx IU (N(A(x)), N(A(x))).

Now, if U is a representable uninorm, we have that IU satisfies IU (x, x) = e,
and then

EIU (A,B1)(y) = inf
x

IU (A(x), A(x)) = inf
x

e = e.

Similarly, EIU (N(A), B2)(y) = e, and the value of the Fuzzy Hit-or-Miss trans-
form at the point y is:

FMHMTU,IU ,N (A, B)(y) = U(EIU (A, B1)(y), EIU (N(A), B2)(y)) = U(e, e) = e.

Now, if U is a left-continuous idempotent uninorm associated to the strong
negation N , its residual implicator IU satisfies IU (x, x) = max(x,N(x)), and
then

EIU (A, B1)(y) = infx IU (A(x), A(x)) = infx max(N(A(x)), A(x)) = e,
EIU (N(A), B2)(y) = infx IU (N(A(x)), N(A(x))) = infx max(N(A(x)), A(x)) = e.

Thus, FMHMTU,IU ,N (A,B)(y) = U(EIU (A,B1)(y), EIU (N(A), B2)(y)) =
U(e, e) = e. ��

Next, we study the general case. What happens when the structuring element
is not a part of the image? To obtain a behaviour desirable for the application
point of view, we have to consider a t-norm as the fuzzy conjunction. More
concretely, in the following theorems, we see that if the structuring element is
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not a part of the image, the neutral element of the uninorm acts as an upper
bound of the FMHMT.

We will distinguish the case when the uninorm is representable or idempotent
because in the latter, the proof is more technical and we need an additional
proposition.

Theorem 2. Let T be a t-norm, N a strong negation and U be a conjunctive
representable uninorm. If A is a grey level image and B1 is a structuring element
that is not a part of A. Then for all point y ∈ dA we have that

FMHMTT,IU ,N (A,B)(y) = T (EIU (A,B1)(y), EIU (N(A), N(B1))(y)) ≤ e.

Proof. Suppose by contradiction that there exists a point y such that

FMHMTT,IU ,N (A,B)(y) = T (EIU (A,B1)(y), EIU (N(A), N(B1))(y)) > e.

As T is a t-norm and T (a, b) ≤ min(a, b) for all a, b ∈ [0, 1], we have that

EIU (A,B1)(y) > e ⇒ inf
x

IU (B1(x − y), A(x)) > e, and

EIU (N(A), N(B1))(y) > e ⇒ inf
x

IU (N(B1(x − y)), N(A(x))) > e.

Then IU (B1(x − y), A(x)) > e and IU (N(B1(x − y)), N(A(x))) > e for allx. As
U is a representable uninorm and IU its residual implicator, it satisfies that
IU (a, a) = e for all a ∈ [0, 1], then we have for all x,

IU (B1(x − y), A(x)) > e = IU (A(x), A(x)) ⇒ A(x) ≤ B1(x − y), and

IU (N(B1(x − y)), N(A(x))) > e ⇒ N(A(x)) ≤ N(B1(x − y)).

So, we have that B1(x − y) = A(x) for all x. In other words, B1 is a part of A
at the point y, which contradicts the hypothesis of the theorem. ��
Proposition 1. Let N be a strong negation and U be a conjunctive left-
continuous idempotent uninorm with neutral element e. Suppose that there are
x, y ∈ [0, 1] such that IU (x, y) > e and IU (N(x), N(y)) > e, then x = y.

Proof. If x > y, as U is a idempotent uninorm and IU its residual implicator we
have

IU (x, y) = min(N(x), y) > e, then N(x) > e, y > e so x < e,N(y) < e. (2)

But, also we have that IU (N(x), N(y)) > e then max(x,N(y)) > e but this is
impossible by (2). So, the case x > y can not be given.

If x < y, we have IU (x, y) = min(x,N(y)) > e, then x > e, N(y) > e so
y < e,N(x) < e ⇒ max(y,N(x)) < e.

But using that IU (x, y) > e we obtain max(y,N(x)) > e, a contradiction. ��
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Theorem 3. Let T be a t-norm, N a strong negation and U be a conjunctive
left-continuous idempotent uninorm. If A is a grey level image, B1 is a struc-
turing element and y a point where

FMHMTT,IU ,N (A,B)(y) = T (EIU (A,B1)(y), EIU (N(A), N(B1))(y)) > e

then B1 is a part of A in the point y.

Proof. If FMHMTT,IU ,N (A,B)(y) > e, we have that IU (B1(x − y), A(x)) ≥ e
for all x. In the same way, IU (N(B1(x−y)), N(A(x))) ≥ e for all x. Then, using
Proposition 1 we obtain that B1(x− y) = A(x) for all x. So B1 is a part of A at
the point y. ��

To have an idea of the behaviour of the FMHMT in the case of representable
uninorms, we can compute the value of the FMHMT when the structuring ele-
ment and the image are constants in all their domains. While Proposition 2 gives
the general expression for a general fuzzy conjunction, Corollary 1 particularizes
the result when the corresponding representable uninorm or a t-norm of the ones
collected in Sect. 2 is considered.

Proposition 2. Let C be a fuzzy conjunction, U = 〈h, e〉rep a conjunctive rep-
resentable uninorm, IU its R-implication, N a strong negation, A a grey-level
image, B = (B1, N(B1)) a grey-level structuring element such that B1(x) = m
for all x ∈ dTy(B1), and y ∈ dA. Suppose that A(x) = k for all x ∈ dTy(B1). Then
we have that

FMHMTC,IU ,N (A,B)(y) = C(h−1(h(k) − h(m)), h−1(h(N(k)) − h(N(m))).

Proof. Simply apply the definition of FMHMT and take into account that
B1(x) = m for all x ∈ dTy(B1) and y ∈ dA and A(x) = k for all x ∈ dTy(B1).

Corollary 1. Let T be a t-norm, U = 〈ln x
1−x , e〉rep, IU its R-implication,

N(x) = 1 − x, A a grey-level image, B = (B1, N(B1)) a grey-level structur-
ing element such that B1(x) = m for all x ∈ dTy(B1), and y ∈ dA. Suppose that
A(x) = k for all x ∈ dTy(B1) with m < k. Then we have that

FMHMTT,IU ,N (A,B)(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
(

k−km
k+m−2km , m−km

k+m−2km

)
, if T = TM,

(1−k)(1−m)km
(k+m−2km)2 , if T = TP,

0, if T = TLK,

0, if T = TnM.

and FMHMTU,IU ,N (A,B)(y) = h−1(h(k) − h(m) + h(N(k)) − h(N(m))).
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5 Experimental Results

In this section, we check the functionality of the Hit-or-Miss transform using
two synthetic images with geometric shapes. In these experiments, we consider as
fuzzy conjunction the minimum t-norm and the residual implication derived from
the representable uninorm given by U = 〈ln

(
x

1−x

)
, 0.5〉rep and N(x) = 1 − x.

The geometric shapes of the first image (Fig. 1(a)) consist of some squares,
a rhombus and an ellipse. The squares given in Fig. 1(b) are considered as the
structuring element. The aim of this experiment is to detect all the squares with
a size greater or equal that the size of the structuring element. Figure 1(c) and
(d) show the results of the FMHMT operator. As it can be shown, all the squares
with the previous characteristics are detected. The grey level is 0.5 (maximum) in
the pixels pertaining to the square that exactly matches the structuring element
(in shape and grey level), as predicted by Theorem1.

The geometric shapes of the second image (Fig. 2(a)) are blobs and the struc-
turing element is a blob (Fig. 2(b)). The aim of this second experiment is to
detect all the blobs with the same size than the structuring element. Figure 2(c)
and (d) show the results where we can see that all the blobs we wanted have
been detected.

B1 (foreground) B2 (background)

(b) Structuring element(a) Original image

(c) Fuzzy Hit-or-Miss transform (d) Thresholded Fuzzy Hit-or-Miss transform

Fig. 1. FMHMT, displayed in (c) and a thresholded version in (d), of the original

image given in (a) using C = TM , U = 〈ln
(

x
1−x

)
, 0.5〉rep and N(x) = 1 − x by the

structuring element B = (B1, B2) shown in (b). We can see that the squares with a
size greater than the size of the structuring element have been detected.
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B1 (foreground) B2 (background)

(b) Structuring element(a) Original image

(c) Fuzzy Hit-or-Miss transform
(d) Thresholded Fuzzy Hit-or-Miss trans-
form

Fig. 2. FMHMT, displayed in (c) and a thresholded version in (d), of the original

image given in (a) using C = TM , U = 〈ln
(

x
1−x

)
, 0.5〉rep and N(x) = 1 − x by the

structuring element B = (B1, B2) shown in (b). We can see that the blobs with the
same size than the structuring element have been detected.

6 Conclusions and Future Work

In this paper, the Fuzzy Morphological Hit-or-Miss transform, useful to identify
shapes and patterns in images, has been analysed when a residual implication
derived from uninorms is considered. We have studied the properties of this
operator for a general fuzzy conjunction and for the particular cases of a uninorm
or a t-norm. In the first case, we proved that it detects the corresponding shape
when the structuring element is a part of the image and in the second case, we
have seen that the neutral element of the uninorm acts as an upper bound of
the value of the operator.

In the experimental section, we have considered some synthetic images with
geometric figures to show how the FMHMT detects some figures that have a
similar shape than the structuring element. The FMHMT detects those desired
geometric figures whose size is greater or equal than the structuring element.
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As a future work, we plan to study the behaviour of the operator depending
on the choice of the representative or idempotent uninorm and therefore, to
determine which uninorms are better to identify shapes and patterns in images.

References
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2. Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft
Computing, vol. 231. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-69082-5

3. Barat, C., Ducottet, C., Jourlin, M.: Pattern matching using morphological prob-
ing. In: Proceedings of the International Conference on Image Processing, ICIP
2003, vol. 1, pp. 369–372 (2003)

4. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practi-
tioners. Studies in Fuzziness and Soft Computing, vol. 221. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73721-6
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Abstract. Fuzzy measures are used to express background knowledge
of the information sources. In fuzzy rule-based models, the rule confi-
dence gives an important information about the final classes and their
relevance. This work proposes to use fuzzy measures and integrals to
combine rules confidences when making a decision. A Sugeno λ-measure
and a distorted probability have been used in this process. A clinical deci-
sion support system (CDSS) has been built by applying this approach to
a medical dataset. Then we use our system to estimate the risk of devel-
oping diabetic retinopathy. We show performance results comparing our
system with others in the literature.
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1 Introduction

Aggregation operators are mathematical functions to merge a set of numerical
arguments into a single one that summarizes them. They are widely used in
many knowledge fields, such as sensor data fusion and decision making [16].

Among the vast number of aggregation operators found in the literature,
fuzzy integrals are one of the most general onces. Due to their parametrisation,
fuzzy integrals as Choquet and Sugeno show a great flexibility in aggregating
the inputs. Choquet integral generalizes both the weighted mean and the OWA
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operator [2] and Sugeno integral generalizes weighted maximum, weighted min-
imum and the median operators [4,16].

Fuzzy integrals rely on a fuzzy measure (or capacity), which is a set function
that indicates the importance of the information sources (i.e., of each of possible
groups of input sources). Defining a proper fuzzy measure for each problem is a
crucial point in order to make a suitable aggregation of the inputs and obtain
the correct corresponding outputs.

In this paper we will focus on solving a classification problem in the medical
field. We have been working on the definition and construction of a clinical deci-
sion support system for improving the diagnosis of diabetic retinopathy (DR).
This disease is one of the major complications of diabetes and one of the most
important causes of loss vision in young diabetic people all over the world. The
effects of this disease can be controlled if it is detected at an early stage. With
the collaboration of experts from difference medical centers in Catalonia we have
collected a dataset of information of 3,000 diabetic patients. This data has been
used to train and test a binary DR classification model using Fuzzy Random
Forests (FRF) [12].

One of the characteristics of FRF is that a large number of classification
rules are generated using different samples of the data. In our case, we have 100
trees with about 100 rules each one. When a new patient has to be classified,
his data is introduced into the system and all rules are fired at different levels
of satisfaction. Merging the outcome of all these rules is usually done with the
Winner strategy, which consists on taking as answer the output of the rule with
maximum activation [11]. However, the information provided by the rest of rules
is lost.

In this paper we propose to use other aggregation methods in order to merge
the contribution of the different rules that are activated by a certain patient’s
data. In particular, we study the use of fuzzy integrals and a new way of con-
structing the fuzzy measure is proposed, based on the confidence score of each
of the contributing rules.

The rest of the paper is organized as follows. Section 2 presents the main
concepts used in this work. In Sect. 3, we introduce the induction algorithms of
fuzzy decision trees (FDT) and fuzzy random forest (FRF) models, the proposed
fuzzy measures and aggregation process. In Sect. 4, we describe the dataset and
discuss the experimental results. Finally, Sect. 5 shows the conclusion and future
work.

2 Preliminaries

In this section, we define the basic concepts that are used in this work. We follow
[16] for the definitions.

Definition 1. A function agg : [0, 1]η → [0, 1] is an aggregation function if and
only if it fulfills the following properties:

– agg(x, ..., x) = x (Identity)
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– agg(0, ..., 0) = 0 and agg(1, ..., 1) = 1 (Boundary conditions)
– If (x1, ..., xη) ≤ (y1, ..., yη) then agg(x1, ..., xη) ≤ agg(y1, ..., yη) (Non decreas-

ing).

Note that some authors use identity only in 0 and 1 as eg. [1,6].

Definition 2. A function T : [0, 1]2 → [0, 1] is a t-norm function if and only if
it fulfills the following properties:

– T (x, y) = T (y, x) (Commutativity)
– T (x, y) ≤ T (u, v) if (x ≤ u) and (y ≤ v) (Increasing monotonicity)
– T (x, T (y, z)) = T (T (x, y), z) (Associativity)
– T (x, 1) = x (Neutral element).

Examples of T-norms include minimum and product.

Definition 3. A fuzzy measure (also known as non-additive measure) m on a
set X with cardinality η is a set function m : 2X → [0, 1] fulfilling the following
properties:

– m(∅) = 0,m(X) = 1, (Boundary condition)
– A ⊆ B implies m(A) � m(B), for all A,B ⊂ X (Monotonicity).

Fuzzy measures are a way to represent background knowledge about the
importance of the sources of some values. In that way, they are used to weight the
arguments in some aggregation operators like the Choquet and Sugeno integrals.
The fuzzy measure can be defined manually or it can be obtained from some
domain data.

In [6], it is proposed a fuzzy measure obtained as the power mean of the
cardinality of the set of values aggregated. This fuzzy measure mPM : 2X → [0, 1]
is defined as follows:

mPM (A) =
( |A|

η

)q

with q > 0 (1)

For classification problems, the value of q can be optimized for each of the
classes considered [1].

In this work, we use Choquet and Sugeno integrals in order to aggregate the
input data. The discrete Choquet integral is defined as:

Definition 4. Let X be a reference set with cardinality η and let m be a fuzzy
measure on X; then, the Choquet integral of a function f : X → R

+ with respect
to the fuzzy measure m is defined by

Choquet(f) =
η∑

i=1

[f(xs(i)) − f(xs(i−1))] · m(As(i)), (2)

where f(xs(i)) indicates that the indices have been permuted so that 0 ≤
f(xs(1)) ≤ · · · ≤ f(xs(η)) ≤ 1, and where f(xs(0)) = 0 and As(i) =
{xs(i), . . . , xs(η)}.
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For the sake of simplicity, we will use Choquet(x1, . . . , xη).
In [6] the Choquet-like Copula-based fuzzy integral (CC-integral) is defined.

It uses a copula as main operator • instead of the product · as usual in the
Choquet integral. I. e., when • = · the CC-integral is Choquet integral The
properties of this extended fuzzy integral have been studied in [5,7].

Definition 5. Let X be a reference set with cardinality η and let m be a fuzzy
measure on X; then, the CC-integral of a function f : X → R

+ with respect to
the fuzzy measure m is defined by

CC-integral(f) =
η∑

i=1

[f(xs(i)) • m(As(i)) − f(xs(i−1)) • m(As(i))], (3)

where f(xs(i)) indicates that the indices have been permuted so that 0 ≤
f(xs(1)) ≤ · · · ≤ f(xs(η)) ≤ 1, and where f(xs(0)) = 0 and As(i) =
{xs(i), . . . , xs(η)}.

For the sake of simplicity, we will use CC-integral(x1, . . . , xη).

Definition 6. Let m be a fuzzy measure on X with cardinality η; then, the
Sugeno integral of a function f : X → [0, 1] with respect to m is defined by

Sugeno(f) = max
i=1,η

min(f(xs(i)),m(As(i))), (4)

where f(xs(i)) indicates that the indices have been permuted so that 0 ≤
f(xs(1)) ≤ ... ≤ f(xs(η)) ≤ 1 and As(i) = {xs(i), ..., xs(η)}.

For the sake of simplicity, we will use Sugeno(x1, . . . , xη).

3 Methodology

In this section, we explain how to build a fuzzy decision tree (FDT) and fuzzy
random forest (FRF) and then we propose how to use fuzzy integrals to merge
the conclusions of the rules when the FDT or FRF is used to classify a new
instance.

3.1 Fuzzy Rule-Based Models Construction

There are many techniques to build fuzzy rule-based models. In this section,
we describe the main steps of constructing them based on Yuan and Shaw [17].
That is, an induction method is used to build a fuzzy decision tree (FDT), and
a bag of FDTs is used to build a fuzzy random forest (FRF). The following is
the notation which is used in the induction procedure.

Let us consider a set of labeled examples U = {u1, u2, ..., um}. Each ui is an
example described by attributes A = {a1, ..., an}.
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Each attribute a ∈ A takes values on a linguistic fuzzy partition [3] Ta =
{t1, ..., ts} with membership functions μti . The membership values on the uni-
verse can be understood as a possibility distribution.

The U-uncertainty (or non-specificity measure) of a possibility distribution
π on any set with cardinality d is defined in [17] as:

g(π) =
d∑

i=1

(π∗
i − π∗

i+1) ln i (5)

where π∗ = {π∗
1 , π

∗
2 , ..., π

∗
d} is a permutation of π = {π(1), π(2), ..., π(d)} such

that π∗
i ≥ π∗

i+1, for i = 1, ..., d, and π∗
d+1 = 0.

Fuzzy Decision Tree Induction. The induction algorithm proposed in [17]
is an extension of the classic ID3 method for crisp data. It incorporates two
parameters to manage the uncertainty:

– The significance level (α) is used to ignore insignificant evidences. If the fuzzy
evidence membership value is lower than α then turns it to 0.

– The truth level threshold (β) controls the growth of the tree. Very high β may
lead to overfitting and very low β may lead to low classification accuracy.

The main steps of the fuzzy decision tree induction process are the following
ones:

1. Choose the attribute with the smallest ambiguity (see the expression
below) for the root node.

2. For each value of the attribute, create a branch if it has examples with support
higher than α.

3. For each branch, calculate the truth level of classification to each class.
4. If the truth level of classification (see the expression below) is higher

than β then end the branch with the class label which has the highest truth
level of classification.

5. If no then check if an additional attribute will reduce the classification ambi-
guity.

6. If so, choose the attribute with smallest classification ambiguity with
the accumulated evidence (see the expression below) for the new node,
and repeat from step 2 to 6 until no more tree growth is possible.

7. If no, end the branch with the label of the class that has the highest truth
level of classification.

The ambiguity of an attribute is calculated as an average of the uncertainty
of this attribute for an example using the following equation:

Ambiguity(a) =
1
m

m∑
j=1

g(πj),

where

πj = {μ
′
t1(uj), ..., μ

′
ts(uj)}

(6)
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and μ
′
ti(uj) is the normalized possibility distribution of μti(uj) :

μ
′
ti(uj) = μti(uj)/max1≤k≤s{μtk(uj)} (7)

The truth level of classification defines the possibility of classifying an object
ui into a class Ck ∈ C where C = {C1, ..., Cp} given the fuzzy evidence E.

Truth(Ck|E) = S(E,Ck)/max1≤j≤p{S(E,Cj)} (8)

where S is the subsethood of the fuzzy set X on the fuzzy set Y

S(X,Y ) =
M(X ∩ Y )

M(X)
=

∑m
i=1 min(μX(ui), μY (ui))∑m

i=1 μX(ui)
(9)

and M(X) is the cardinality or sigma count of the fuzzy set X. The truth level
of classification can be understood as the possibility distribution on the set U .
π(C|E) is the normalisation of the truth level. It has been defined above to be
used in the calculation of Classification ambiguity.

Classification ambiguity: Suppose we have a fuzzy partition P = {E1, ..., Ek}
on a fuzzy evidence F , the following equation is used to calculate the classifica-
tion ambiguity of a fuzzy partition on a fuzzy evidence denoted by G(P |F ).

G(P |F ) =
k∑

i=1

W (Ei|F )g(π(C|Ei ∩ F )) (10)

where W (Ei|F ) is the weight. The weight is calculated using the following equa-
tion: W (Ei|F ) = M(Ei ∩ F )/

∑k
i=1 M(Ei ∩ F )).

Fuzzy Random Forests Construction: The main steps to build a fuzzy
random forest are as follows:

1. Randomly, select a subset of the training examples (bootstrap) for training.
It has to have a balanced distribution of each class. It is recommended that
the size of each dataset (bootstrap) has to be 2/3 of the total training dataset
size. The repetition of examples is acceptable. Use each bootstrap to construct
a fuzzy decision tree (see Sect. 3.1).

2. While constructing the FDT, a random subset of the remaining attributes
with size γ will be used when deciding for next tree node.

3. Repeat steps 1 and 2 until the number of the FDTs n is reached.

3.2 Fuzzy Measure Based on the Rule Confidence

Fuzzy measures are used to give background knowledge in relation to the ele-
ments which are going be aggregated. In our context, we aggregate data from
a set of rules and we have a degree of support for each rule (rule confidence).
These degrees define a possibility distribution of the data. These values give an
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important information about the system. Taking them into account while we are
giving the decision of the model is valuable. In this paper we propose the use of
two fuzzy measures that will be built from these rule confidence values. The first
measure is a distorted probability. The second measure is a Sugeno λ-measure.

Let us define the notation used in the following equations: R= the total set
of all rules, RCi= Rule Confidence of the ith rule and n = the total number of
rules.

Distorted Probability Based Fuzzy Measures: The proposed distorted
probability is defined using the following equation:

mDP (A) =

(∑
RCj∈A

RCj∑
RCi∈R

RCi

)q

, with q > 0 (11)

where the value q needs to be optimised. Different methods can be used to
optimize q like evolutionary algorithms [1,6]. We use here a gradient descent
and wide search. Note that this fuzzy measure is a distorted probability because
m = f 
 P with

Pj =
RCj∑

RCi∈R
RCi

, and f(x) = xq (12)

Sugeno λ-measures Based Fuzzy measures: Another way of using domain
knowledge to construct a fuzzy measure is by means of the defintion of a Sugeno
λ-measure as proposed in [16].

Definition 7. Let v : X → [0, 1] and λ > −1 be such that

– (1/λ)(
∏

xi∈X [1 + λv(xi)] − 1) = 1 if λ �= 0

–
∑

xi∈X v(xi) = 1 if λ = 0

then, the fuzzy measure defined by

mSL(A) =

⎧⎨
⎩

v(xi) if A = {xi}
(1/λ)(

∏
xi∈A[1 + λv(xi)] − 1) if |A| �= 1 and λ �= 0∑

xi∈A v(xi) if |A| �= 1 and λ = 0
(13)

is a Sugeno λ-measure. In our proposal, the weights v(xi) = RCi are the rule
confidence values. Therefore, first the rule confidence values are used to build
the Sugeno λ-measures finding an appropriate λ and then this fuzzy measure is
used in the aggregation process.
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3.3 Classification Using the Fuzzy Rules

A binary classification is done using the Mamdani inference procedure. Class
0 represents that patients do not suffer from DR and class 1 that they suffer.
All rules are applied and the rule membership degree to the conclusion class
(RMCC) values of the same class are aggregated to obtain the final decision.
The proposed procedure is the following:

1. Use a t-norm function to calculate the satisfaction degree of each rule μR(u).
2. Use the product between the satisfaction degree of each rule μR(u) and the

degree of support of the rule (rule confidence) to obtain the membership
degree to the conclusion class (RMCC).

3. Calculate a fuzzy measure (distorted probability mDP (A) or Sugeno λ-
measure mSL(A) ) using the degree of support of the rule (rule confidence).

4. Aggregate the final value of each class using a fuzzy integral (CC-integral
(Eq. 3) or Sugeno integral (Eq. 4)). In the aggregation process, the obtained
RMCCs from the same class are weighted using fuzzy measures as explained
above.

5. Compare the aggregation values, the final decision is the class label which
has the maximum aggregation value.

4 Experimental Results

In this section, we describe the data used to train and validate the proposed
models. The results achieved by these models are discussed in Sect. 4.2.

4.1 The Diabetic Retinopathy Problem and Dataset

An early diagnosis of DR is crucial to improve the quality of life of these patients.
At the moment, the detection of DR is done by screening of the eye fundus
with a non-midriatic camera. This technique requires a lot of resources from the
medical centers both in terms of cost, specialized personnel and time [9]. Due to
the large amount of diabetic people it is not possible to perform this test early
as recommended by the medical guidelines. Therefore, tests are done every two
or three years. For some patients, the detection arrives too late.

The clinical decision support system that we are developing may significantly
decrease these costs because it will be used by the family physicians during the
regular visits that diabetic people have. The incidence of DR is scarce, which
means that most of the people do not need an eye fundus screening. Therefore,
the resources could be used to the patients that really need it, facilitating the
detection of DR in its first signs.

Sant Joan de Reus University Hospital (SJRUH) in Catalonia (Spain) has
been systematically collecting the data of the diabetic patients of many years.
These data include demographic, metabolic and analytical information which is
stored in the Electronic Health Records (EHR) of the people who has diabetes.
The dataset used in the work has the information of 3346 diabetic patients and it
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is labeled regarding to diabetic retinopathy presence. This dataset has been split
into a training dataset with 2243 diabetic patients (1605 not suffering from RD
and 638 who suffer from DR) and a testing dataset with 1103 examples (863 not
suffering from RD and 240 who suffer from DR). The datasets are imbalanced
because the patients with DR are less than healthy people. This imbalance distri-
bution hampers the performance of some machine learning techniques. To solve
this problem with FDT model, random over sampling technique has been done
to the minor class until both classes have the same number of examples. FRF
model internally does random under sampling technique which is a technique to
deal with imbalanced datasets.

A statistical analysis on the data was done by the ophthalmologists in SJRUH
[8]. Out of that study, nine attributes were identified as the important ones to
detect the risk of RD development. Most of the attributes are numerical but
there are some categorical ones too. With the collaboration of the experts, the
numerical attributes have been fuzzified into linguistic variables according to the
medical knowledge.

4.2 Tests, Results and Discussion

In this section, we study the results achieved by using the proposed aggregators
with FRF and FDT models on the testing dataset. A comparison between the
different aggregation proposals and the traditional methods is done as well. The
aim is to improve the performance of the models and achieve a good performance
that is acceptable in the medical treatments.

To evaluate the performance of the models on such kind of problems, we use
specificity and sensitivity (recall). They are usually used in the medical field.
To make it easier to the reader to follow the performance results, the harmonic
mean (HM) of specificity and sensitivity is calculated as well (Eq. 14).

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP
,

HM = 2 ∗ Sensitivity ∗ Specificity

Sensitivity + Specificity

(14)

The parameters of FDT and FRF were studied in previous works [11,14] and
the best values have been used in this paper.

In FRF two ways of aggregating the outcome of the trees have been tested.
On the one hand, the direct aggregation of all the rules of all the trees into a
unique result (one-step). On the other hand, the aggregation first of the rules of
each tree and in a second step the aggregation of the outcome of each tree (two-
steps). To avoid effect of randomness, all one-step and two-steps FRF models
are experimented with the same parameters 10 times then we take as result the
ones of the model with the median HM performance. The median is more robust
to outliers than the arithmetic mean.

The different methods tested are shown in Table 1. The basic winner rule
(WR) for making decisions is well-known in rule-based models, it uses max
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Table 1. Notation of the aggregation methods used in this work

Short name Aggregation method name Aggregator
T-norm

Rules
T-norm

WR Max - Min

CCPM CC-integral with power mean Min Min

ICMM RC based CC-integral, distorted probability Min Min

ICMMS RC based CC-integral, Sugeno λ-measures Min Min

ICPM RC based CC-integral, distorted probability Product Min

ICPMS RC based CC-integral, Sugeno λ-measures Product Min

ISM RC based Sugeno, distorted probability Min Min

ISMS RC based Sugeno, Sugeno λ-measures Min Min

Table 2. Classification results of fuzzy decision tree with β = 0.70 and α = 0.30

q HM Sensit. Specif. Accuracy TP FN FP TN Method

2 76.51 76.67 76.36 76.34 184 56 204 659 WR

1 77.15 76.67 77.64 77.43 184 56 193 670 CCPM

2 76.85 75.42 78.33 77.70 181 59 187 676 ICMM

2 76.89 76.67 76.31 76.38 187 53 208 655 ICMMS

3 77.65 80.00 75.43 76.43 192 48 212 651 ICPM

2 71.63 86.67 63.41 68.48 210 48 311 552 ICPMS

2 77.98 78.33 77.64 77.79 188 52 193 670 ISM

2 76.37 76.67 76.07 76.20 185 55 210 653 ISMS

t-conorm to aggregate the outputs of the rules. To verify the quality of the
aggregation methods proposed in this work in comparison with the state of art,
first the aggregation method based on Choquet-like Copula-based integral is
used with the power mean as fuzzy measure (Eq. 1) as proposed in [6]. The rest
of methods correspond to the different versions of Choquet and Sugeno integrals
using the Rule Confidence (RC) for the fuzzy measure construction. Table 1
indicates the t-norm operator used in the fuzzy integral and the t-norm used
in to calculate the degree of activation of each rule.

With each fuzzy measure, several q values were tested to find the optimal
value. Notice that if q = 1, then the aggregation (Choquet or Sugeno integral)
corresponds to the weighted mean. When q value increases, the performance of
the models decreases. Low q values always showed better results, being the best
ones q = 2, q = 3 for most of FRF and FDT models. The models with the best
performance are highlighted in Tables 2, 3 and 4.

Observing the basic method WR (winning rule), in FRFs this aggregation
method shows high specificity (around 81%) but it shows low sensitivity as
well (between 71% and 73%) and HM value is around 76%. The FDT model
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Table 3. Classification results of two-steps fuzzy random forest with α = 0.40, β = 0.80

q HM Sensit. Specif. Accuracy TP FN FP TN Method

2 76.05 71.67 81.00 78.97 172 68 164 699 WR

2 78.31 78.75 77.87 78.06 189 51 191 672 CCPM

3 79.77 80.42 79.14 79.42 193 47 180 683 ICMM

2 76.89 77.92 75.90 76.34 187 53 208 655 ICMMS

3 78.61 76.67 80.65 79.78 184 56 167 696 ICPM

2 71.63 81.40 63.96 67.98 210 48 311 552 ICPMS

2 79.74 78.75 80.76 80.33 189 51 166 697 ISM

2 76.37 77.08 75.67 75.97 185 55 210 653 ISMS

Table 4. Classification results of one-step fuzzy random forest with α = 0.40, β = 0.80

q HM Sensit. Specif. Accuracy TP FN FP TN Method

2 77.11 72.92 81.81 79.87 175 65 157 706 WR

2 76.96 75.00 79.03 78.15 180 60 181 682 CCPM

2 79.31 78.33 80.30 79.87 188 52 170 693 ICMM

2 76.59 76.25 76.94 76.79 183 57 199 664 ICMMS

2 78.10 77.08 79.14 78.69 185 55 180 683 ICPM

3 73.27 83.75 65.12 69.17 201 39 301 562 ICPMS

3 79.73 79.17 80.30 80.05 190 50 170 693 ISM

2 78.00 79.58 76.48 77.15 191 49 203 660 ISMS

with WR achieved specificity=76.36%, sensitivity=76.67% and HM=76.51%. By
checking the models’ performance in Tables 2, 3 and 4, the first conclusion is
that the models based on Choquet and Sugeno integrals offer better results than
WR. Method ICPMS is an exception (low HM) because it achieves a very good
sensitivity but then specificity is too low to be acceptable for medical diagnosis.

Two different methods of calculating fuzzy measures have been proposed in
this work. The first one is distorted probability and the second one is a Sugeno
λ-measure. The results of FDTs models are presented in Table 2. ISM has the
best performance with a very good HM, near 78%, and has the highest sensitivity
value (78.33%). We can see that models based on distorted probability improve
the ones based on λ-Sugeno measures.

In Table 3 when using FRF with two-steps aggregation, CCPM method
obtained HM = 77.38%, sensitivity = 76.67% and specificity = 78.10%. Whereas,
all the distorted probability measures based on the rule confidence values
(ICMM, ICPM and ISM) obtain HM greater than 79%. ICMM achieved the
highest performance (HM around 80%). In Table 4, the results of one-step FRF
are presented. ICMM, ICPM achieved HM higher than 78% while and ISM has
HM around 80%. Methods based on the λ-Sugeno fuzzy measure obtain quite
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good performance in sensitivity (see ICPMS) but the specificity decrases too
much. These results clearly show that the aggregator that uses a fuzzy measure
with distorted probability based on the rule confidence values outperforms the
one using the number of the rules in the fuzzy measure (CCPM). We see a dif-
ference in the best method when using one or two steps in the aggregation of
the rules of the set of trees. However, both ICMM and ISM achive quite similar
HM with values of sensitivity and specificity close to 80%.

By looking to the results presented in Tables 2, 3 and 4, FRF models usu-
ally offer better performance than FDTs with every aggregation method. In
FDT model with (ICPM) aggregation method, the model obtains specificity =
80%, which is higher than FRFs models results. The same model shows sensi-
tivity = 75.43% which is lower than the sensitivity obtained by FRF models. In
general, FRF models show more balance in sensitivity and specificity values.

5 Conclusion and Future Work

The use of fuzzy measures in aggregation operators shows good performance.
Rule confidence values showed that it can play an important role in the aggre-
gation process.

In this work, a Sugeno λ-measure and a distorted probability are used with
Choquet and Sugeno integrals. These new aggregation approaches are used
within fuzzy random forests (FRF) and Fuzzy decision trees (FDT). The models
with these new aggregation approaches outperforms the same models with max
t-conorm aggregation operator.

In comparison with the models that use the same Choquet and Sugeno inte-
grals with fuzzy measures based only on the number of rules, the new approach
obtains better performance results as well. Experiments also showed that one-
step and two-steps FRFs have better performance results than FDTs. Moreover,
two-steps FRF is recommended because it offers better results than one-step
FRF, with 80% of sensitivity and 79% of specificity on the testing dataset. With
these results, we conclude that the new aggregation operators based on the pro-
posed fuzzy measures improve the performance of our previous works [10,12–14].

This work is oriented to build a clinical decision support system (CDSS).
The CDSS will be used in the medical centers by family physicians who are not
expert ophthalmologist. The goal is to help the physicians to estimate the risk
of developing DR with the new patients. The proposed methods can be easily
integrated into the CDSS in order to merge the rule’s predictions made with the
data of each patient.

Future work includes studying how to improve the performance of current
fuzzy measures. Sugeno λ-measures and distorted probabilities do not permit
to structure the information sources. As the data to be aggregated is highly
dimensional, other families of measures as the hierarchically decomposable ones
can be useful [15]. We plan to work in this line. The current approach is going to
be validated using other datasets in order to see if the same conclusions about
the performance different proposals depend on the problem data or not.
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Abstract. The management of a dairy farm involves taking decisions
such as culling a subset of cows to improve the dairy production. Culling
is the departure of cows from the herd due to sale, slaughter or death.
Commonly the culling process is based on the farmer experience but
there is not a general procedure to carry it out. In the present paper
we use both, a method based on indistinguishability relations and the
anti-unification concept, to extract patterns that characterise the cows
according to their average milk production of the first lactation. Our goal
is to identify as soon as possible poorly productive cows during her first
lactation, which may be candidates to be culled.

Keywords: Veterinary · Dairy farms · Milk production
Voluntary culling · Artificial intelligence · Machine learning
Indistinguishability relations · Anti-unification concept

1 Introduction

The management of a dairy farm involves taking difficult technical and economic
decisions such as the replacement of some cows to either maintain or increase
the productivity of the dairy. The process of culling is defined as the departure
of cows from the herd due to sale, slaughter or death. Culling reasons have been
classified as voluntary (or also economic [6]), or involuntary (or also biological
[6]). Biological culls are those cows for which no possible productive future exists
due to disease, injury or infertility. Thus, this class of culls are mainly involuntary
as most of the times are “forced” decisions. Economic culls mean that a cow is
removed because a replacement is expected to produce greater profit. In this
case, farmer has freedom of choice over which cows are removed from the herd,
although they are healthy [2,6]. Hence, the farmer can do a voluntary selection
of cows to cull based in the herd size and herd production level. We propose to
analyse first lactation production data to identify those animals in a herd which
are candidates to be culled following milk yield improvement criteria.
c© Springer Nature Switzerland AG 2018
V. Torra et al. (Eds.): MDAI 2018, LNAI 11144, pp. 131–142, 2018.
https://doi.org/10.1007/978-3-030-00202-2_11
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We are interested in constructing a model able to characterise cows according
to their milk production level. For this purpose we already have used artificial
intelligence techniques such as Decision Trees (DT) [9] to obtain a model that can
classify a cow as Good or Bad milk producer, supporting in this way the culling
process. Most of the work focused on modelling the culling task or aspects related
to it, try to construct statistical models based on the analysis of past cases of a
dairy [4]. The use of artificial intelligence techniques is still not widely used for
managing the culling although they have been used for other purposes. Among
other works, Cavero et al. [5] developed a fuzzy logic model for mastitis detection;
Kamphuis et al. [8] used decision trees and [12,14] used neural networks for the
detection of clinical mastitis; Shainfar et al. [11] used fuzzy neural networks
to predict breeding values for dairy cattle; Grzesiak et al. [7] also used neural
networks to predict milk production.

In the present paper we propose to use the method called JADE [3] to assess
the relevance of the attributes describing a cow and then the anti-unification
concept [1] to, based on these relevances, construct descriptions of the classes
of cows according to their milk production. We experimented with a data base
with information about the first lactation of around 98000 cows.

Section 2 explains the JADE method used and Sect. 3 explains the Anti-
Unification concept. Section 4 describes the data base we used in the experiments
we performed to evaluate the feasibility of the approach. Section 5 describes how
we have modelled the culling task, and the data base we used in our experi-
ments. Section 6 explains the experiments we carried out to construct a model
supporting the culling task and also analyses the results focusing on the class of
lowest milk producer cows. Finally, Sect. 7 is devoted to conclusions.

2 The JADE Method

In this section we introduce JADE [3], a method useful for feature selection and
classification. Conceptually, the idea is to minimise the distance between two
indistinguishability relations [13]: the one that gives the correct classification
of the known examples and the other one that is a linear combination of the
indistinguishable operators generated by the attributes describing the examples.
Such distance is calculated using the Euclidean distance, so the function to be
minimised is a quadratic one. Thus, the problem of assessing the weights of the
attributes has been reformulated as an optimisation problem like the methods
in [10,15].

Let X be a set of labeled domain objects described by a set of attributes
A = {a1, a2, . . . , an}, where the attributes ai are considered fuzzy subsets of
X; and Eai

the �L-indistinguishability operator generated by ai. Each xi ∈ X
belongs to one solution class {C1, C2, . . . , Ck}, i.e., there are k classes where an
unseen domain object could be classified. On the set X we can induce two kinds
of partitions:

– The correct partition that is the one that separates the objects in X according
to the solution classes C = {C1 . . . Ck}. This partition can be represented by
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a m×m matrix (m being the number of objects in X) R where each element
rhl is equal to 1 if the objects xh and xl belong to the same solution class
and 0 otherwise.

– The partitions induced by each attribute in A. Given an attribute aj ∈ A,
the objects in X can be separated according to the value that they hold in
the attribute aj . Each one of these partitions can be represented by a m×m
matrix Eaj

where each element ehl is the similarity that the objects xh and
xl with respect to the attribute aj .

The global similarity between objects will be assessed by the relation

E = p1 · Ea1 + p2 · Ea2 + ... + pn · Ean
(1)

Based on this, JADE considers the objective function as a distance function
that measures how different (or similar) are the relations R and E. The goal of
JADE is to assess the weights pi to minimise the Euclidean distance d between
both relations. In other words, our goal is

minimise d(E,R) =
√∑

i,j=1..k
(E(xi, xj) − R(xi, xj))2

subject to p1, p2, ..., pn ≥ 0∑n

i=1
pi = 1.

The attributes generating similarity relations with higher weights help more
to the resemblance of E to R. The weights of the attributes give an idea of
which of them are the more relevant to describe a class (notice that the weight
of some attributes could be zero). This is similar to the statistical regression that
indicates how each attribute contributes to the explanation of the free variable.
See a complete description of JADE and their mathematical foundations in [3].

The result of JADE is a set of weights indicating the relevance of each
attribute. Differently than in regression, the weights of JADE allow the clas-
sification of unseen objects (see in [3] how to classify) however, they do not give
a model characterising the classes. It is important to obtain patterns supporting
the decision of why a cow should be culled. For this reason, we propose the use
of the Anti-Unification (AU) concept to obtain useful patterns.

3 The Anti-unification Concept

The Anti-Unification (AU) of a set of objects x1, ..., xk described by a set of pairs
attribute-value (where value is categorical) is the most specific generalisation of
all the generalisations satisfied by the objects, i.e. the least general generalisation.
The AU(x1, ..., xn) is a description that includes all the attribute-value pairs
shared by all the objects x1, ..., xn, i.e., it describes all aspects in which two or
more objects are similar. Formally, for each attribute ai ∈ {a1, a2, . . . , an}

if ∀xj ∈ X, xj .ai = v then include (ai, v) in AU(x1, ..., xk),
otherwise reject ai
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Notice that according to the definition above, the AU is formed by the set of
attribute-value pairs such as each attribute has the same value in all the objects
x1, ..., xk and attributes holding different values are not considered.

We use the same concept to construct patterns from the weights provided by
JADE however, we perform some modifications in the original definition of the
AU. Let us suppose that an attribute ah holds the value v1 in all the objects
except in one of them that has value v2. In such situation, ah will not be included
in AU, but it could be interesting for us to know this especial case. Even, we
could be interested in constructing a pattern including ah. For this reason, we
modify the definition of the AU and propose to construct the description taking
into account all the attributes describing the objects and each attribute having
as value the set of all the values taken in all the objects. Attributes that take all
the possible values will not be included in the AU.

4 The Data Base

We used a data base containing 97987 objects. These objects are descriptions of
Holstein-Frisian cows which lived from 2006 to 2016, belonging to dairy farms
within the CONAFE register system1. Because our goal is to detect poorly pro-
ductive cows as soon as possible, we decided to use only information relative to
the first lactation. The attributes we considered for every cow were the following
ones:

– BirthMonth. Month (season) in which the cow was born.
– Month1Calving: Month (season) of the first calving of a cow.
– Kl: Milk production genetic index.
– ICO: Official cattle breeding index in Spain.
– Morpho: Morphologic qualification of a cow.
– KgMilkPeak: Average test-day milk yield (kg/day) of the second and third

control of the first lactation (lactation peak).
– Fat: Fat average percentage from the second and third controls of the first

lactation.
– Protein: Protein average percentage from the second and third control of the

first lactation.
– SCC: Somatic cell count in the milk. It is an indicator of the quality of milk

as it expresses the likeliness to contain harmful bacteria.
– OpenDays: Days from calving to conception.
– Calving1stAI: Interval of days between the first calving and the first insemi-

nation after it.
– AI: Number of artificial insemination attempts to conceive after the first

calving.

1 The Confederación Nacional de la Raza Frisona (CONAFE) is a Spanish entity
whose goal is to develop programs oriented to the improvement and selection of the
Holstein-Frisian herd.
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Table 1. Intervals corresponding to each quartile of the attributes KgMilkPeak and
Production/DIM.

Attribute VL L H VH

KgMilkPeak (5, 28] (28, 32] (32, 36] (36, 65]

Production/DIM (6, 25] (25, 29] (29, 32] (32, 60]

– Production/DIM: Average daily milk production of the first lactation (kg/day)
calculated dividing total amount of milk produced by a cow during the whole
lactation by the total days in milk (DIM).

All the attributes above have numerical values and we have discretised them.
For the attributes BirthMonth and Month1Calving we divided the months accord-
ing to seasons. For the remaining attributes, we calculated the quartiles and
divided the whole interval of values in four parts according to these quartiles.
We associated to each of the 4 quartile interval the labels: VeryLow (VL), Low
(L), High (H), and VeryHigh (VH). Table 1 shows the quartiles of the attributes
KgMilkPeak and Production/DIM.

We considered Production/DIM as the solution class, i.e., we want to model
and predict the first lactation milk production performance of a cow (kg/day).

5 Modelling the Culling Task

In this paper we propose to construct a model composed of patterns extracted
by combining the weights calculated by JADE with the AU. Particularly, we
consider four classes of cows according to the values of Production/DIM (very
low, low, high, and very high) and use JADE on the objects of each one of the
classes. The main goal in using the model is to clearly identify the worst milk
producers, i.e., the cows belonging to the class very low avoiding as much as
possible false negatives, that in this case means that a cow with Production/DIM
= VL is not classified as high or very high. The procedure we propose is the
following one:

1. Given the data base, we divide it in subsets Si according to the values of the
solution class (Production/DIM).

2. For each Si,
(a) Use JADE to compute the weights of each attribute. Let pi1, . . . , pin the

weights associated to the attributes with respect to the objects of the
subset Si.

(b) Reject the attributes having a weight under a given threshold ta (see
below).

(c) Form the AU of all the objects in Sj taking into account only the remain-
ing attributes.
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Table 2. Weights of the attributes with respect to the class Production/DIM = VL.

Attribute Weight

KgMilkPeak 0.597

ICO 0.240

Kl 0.163

AI 4.979 e–06

BirthMonth 4.914 e–06

OpenDays 4.676 e–06

Calving1stAI 4.218 e–06

Month1Calving 0.0

Morpho 0.0

Fat 0.0

Protein 0.0

SCC 0.0

To use JADE is not necessary to separate the objects by classes as we proved
in [3]. Nevertheless, when it is used on a set of objects belonging to several classes,
the weights are only useful for classification and do not say anything about the
relevance of the attributes with respect to the classes. When JADE is used on a
set of objects belonging all them to the same class Cj , the weights represent the
relevance of each attribute with respect to the class Cj . Therefore, in this case
we have a ranking of attributes similarly to the one that can be obtained using
statistical regression. By analysing the weights, we see that many attributes have
a relevance near to zero, i.e., they are not relevant. For this reason we propose
to fix a threshold ta under which an attribute can be rejected. The idea is that
each class can have different relevant attributes and the rejection of the ones
with weight almost zero will produce more general and useful patterns.

Table 2 shows (in descendent order) the weights of the attributes of the subset
of cows with Production/DIM = VL. Notice that, in fact, only the three first
attributes (KgMilkPeak, ICO and Kl) have some relevant weight whereas the
others are irrelevant in practice since the weight is 0 or near to 0. Therefore,
only the mentioned three attributes will be considered for AU.

The next step is to determine the values of these attributes. As we already
explained, we modified the AU by assessing as value for each attribute aj the
union of the values that aj takes in the objects to be anti-unified. For instance, for
the class Production/DIM = VL, all the objects have KgMilkPeak = VL, whereas
the attributes ICO and Kl can take two values: VL or L. Therefore, the pattern
obtained from the AU of the objects belonging to the class Production/DIM =
VL is

[KgMilkPeak = VL, ICO = {VL, L},Kl = {VL, L}] → Production/DIM = VL
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This pattern can be interpreted as follows: a cow with very low production
in the lactation peak, and having low or very low ICO coefficient and low or
very low milk production genetic index, will have a very low average daily milk
production in the first lactation.

We performed preliminar experiments using this procedure. The analysis of
the patterns show us that most of times they are too specific and this produces a
high number of unclassified objects. For instance, let us suppose that a cow with
Production/DIM = VL that has [KgMilkPeak = VL, ICO = {VL, L}, Kl = H ].
Such a cow does not satisfy the pattern above since its value in the attribute Kl
(H ) is not one of the values included in the pattern for this attribute (either VL or
L) therefore it will not be classified as a bad producer. Nevertheless, the attribute
Kl has a low weight compared with the one of the attribute KgMilkPeak that by
its own could classify the cow correctly as VL. For this reason, we introduced a
pattern threshold (tp) that controls the attributes that will form the final pattern.
Thus, on one hand, only the attributes with a weight higher than a threshold
ta will be taken into account; but on another hand, we take only the necessary
attributes to form a pattern with a global weight higher than tp. For instance,
if we take tp = 0.5, the pattern will be composed only of KgMilkPeak = VL
(the weight of KgMilkPeak is 0.597), whereas if tp = 0.6 the pattern will be
[KgMilkPeak = VL, ICO = {VL, L}] (the sum of the weights of KgMilkPeak and
ICO is 0.597 + 0.240 = 0.837). This assures that the pattern is both general
enough avoiding unclassified objects and accurate enough to correctly identify
objects of the class.

6 Experiments

The goal of the experiments is twofold. On the one hand we want to get a
model for the classification of cows according to their milk production level
(Production/DIM). On the other hand, we are especially interested in identifying
cows with Production/DIM = V L and to avoid to classify them as good producers.

6.1 The Model

We followed the procedure explained in Sect. 5 on the whole database and exper-
imented with several values of both ta and tp. In particular, when tp = 0 means
that all the attributes with a weight above ta will be included in the pattern.
For instance, Table 3 shows the weights of all the attributes for the classes L and
H. If ta = 0.1 the patterns are formed by the following attributes:

• Production/DIM = L : KgMilkPeak, ICO, AI, and Calving1stAI, with global
weight 0.856.

• Production/DIM = H : KgMilkPeak, AI, Calving1stAI, and KL, with global
weight 0.663.
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Table 3. Weights of the attributes with respect to the classes Production/DIM = H
and Production/DIM = L.

Attribute Production/DIM = L Production/DIM = H

KgMilkPeak 0.369 0.337

ICO 0.191 0.039

AI 0.171 0.172

Calving1stAI 0.125 0.154

Kl 0.045 0.051

Protein 0.030 2.99 e–08

Month1Calving 0.028 2.78 e–09

BirthMonth 0.018 0.087

Fat 0.013 0.049

SCC 0.006 0.063

Morpho 0.004 0.041

OpenDays 0.000 0.006

If ta = 0.2 the patterns of both classes only will include the attribute KgMilk-
Peak. The global weight for the pattern of the class Production/DIM = L is 0.369,
and for the class Production/DIM = H is 0.337.

Therefore, for low values of ta, being tp = 0, the result is a model com-
posed of patterns that are too specific (i.e., they have many attributes) and as
a consequence, many times the model cannot classify unseen objects.

The global weight will be used when a object satisfies more than one pattern
of different classes. In this situation the object will be classified in the class of
the pattern having the highest weight. For instance, if we take ta = 0.20 then
the patterns for L and H are the following:

• [KgMilkPeak = L] → Production/DIM = L, with weight 0.369.
• [KgMilkPeak = {H, L}] → Production/DIM = H, with weight 0.337.

Therefore, if an object satisfies both patterns it will be classified as belonging
to the class L because its associated weight is higher than the one associated to
the pattern of the class H.

When ta = 0, that means that all the attributes eventually could be included
in the pattern. In that case, the pattern is composed of the minimum number
of attributes necessary to reach tp. For instance, following with the weights of
Table 3, if tp = 0.7 the patterns are formed by the following attributes:

• Production/DIM = L : KgMilkPeak, ICO, and AI, with global weight 0.731.
• Production/DIM = H : KgMilkPeak, AI, Calving1stAI, and KL, with global

weight 0.714.
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If tp = 0.5 the patterns are formed by the following attributes:

• Production/DIM = L : KgMilkPeak and ICO, with global weight 0.560.
• Production/DIM = H : KgMilkPeak and AI, with global weight 0.509.

In this case, the patterns are more general than the ones obtained when tp = 0
but we also detected some inconveniences since sometimes the classification of
an unseen object could depend on the value of an attribute with a very low
weight. For instance, let us take tp = 0.6 and ta = 0, and suppose the following
situation:

– For the class Production/DIM = L the following pattern is constructed:
[KgMilk Peak = L, AI = H,Protein = L], where each individual attribute
has weight w(Kg MilkPeak) = 0.296, w(AI) = 0.197, w(Protein) = 0.117, and
the total weight of the pattern is 0.610.

– For the class Production/DIM = H the following patten is constructed: [KgMilk
Peak = {H, L}, AI = {H, L}, Protein = {H, L}], where each individual
attribute has weight w(KgMilkPeak) = 0.396, w(AI) = 0.198, w(Protein) =
0.029, and the total weight of the pattern is 0.623.

A cow satisfying both patterns will be classified as belonging to the class
Production/DIM = H because the associated weight of the pattern of this class
is the highest. However, the difference of weights is due to the inclusion of the
attribute Protein with a very low weight 0.029]. For this reason, we think that
is important to establish a threshold ta under which an attribute should not be
included in the pattern.

Taking into account all the considerations above, the procedure followed in
the experiments has been the following:

1. Given the data base, we divide it in subsets Si according to the values of the
solution class (Production/DIM).

2. For each Si,
(a) Use JADE to compute the weights of each attribute. Let pi1, . . . , pin be

the weights associated to the attributes with respect to the objects of the
subset Si.

(b) Reject the attributes having a weight under a given threshold ta.
(c) Form the AU of all the objects in Sj taking into account only the remain-

ing attributes.
(d) Form the pattern P with the attribute in AU having the highest weight.
(e) While the global weight of the attributes in P is lower than tp, add to P

the next attribute.
(f) Repeat the previous step until the weight of P is higher than tp or until

all the attributes in AU have been added to P .

In the previous example, if ta = 0.1, the attribute Protein will not be included
in the pattern for the class Production/DIM = H. Notice than without that
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attribute, the global weight of the pattern will be 0.594 that is under tp. Never-
theless, we prefer to have patterns with lower confidence than having patterns
with high weight but composed of many attributes with low weight.

We carried out experiments with different values of both tp and ta. Figure 1
shows the model we obtained taking tp = 0.60 and ta = 0.30. Notice that, in fact,
only the pattern corresponding to the class Production/DIM = VL has a weight
higher than the threshold tp due to the attributes have weight lower than ta.

The patterns for Production/DIM = VL and Production/DIM = VH coin-
cide with the ones we obtained using both decision trees and also an statistical
model (see [9]). In both models, the attribute KgMilkPeak is the most relevant to
determine the classification of a cow with respect to the class Production/DIM.
However, using decision trees we have the advantage over the statistic model that
the patterns explicit in which way the values of KgMilkPeak = VH are related
with those of Production/DIM VH. Thus, in [9] we seen that KgMilkPeak = VH
correspond to Production/DIM VH ; the reverse is also true: KgMilkPeak = VL
corresponds to Production/DIM VL. Using the weights of JADE we obtained the
same result. Nevertheless, differently than with decision trees, now we have also
patterns for Production/DIM = L and Production/DIM = H.

Fig. 1. Model formed by four patterns to predict the classification of a cow according
to its milk production level (Production/DIM).

6.2 The Class Production/DIM = VL

The class Production/DIM = VL corresponds to cows having a very low milk
production level. This means that the cows in this class are the main candidates
to be culled. For this reason, it is very important to assure the maximum accuracy
in predicting the membership to this class. In other words, our goal is to avoid
that a cow with very low production level (Production/DIM = VL) is classified
as a good producer (i.e., as belonging to the classes Production/DIM = VH or
Production/DIM = H ). To measure this error, we defined false negatives and
false positives as follows:

– Positives. Cows belonging to the class Production/DIM = VL.
– False Negatives (FN). Cows belonging to the class Production/DIM = VL that

the model has classified as Production/DIM = VH or Production/DIM = H.
– False Positives (FP). Cows belonging to the class Production/DIM = VH that

the model has classified as Production/DIM = VL or Production/DIM = L.
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Notice that in the definitions above, we do not consider a false negative a cow
with Production/DIM = VL classified as Production/DIM = L since, eventually,
cows with Production/DIM = L could also be culled if necessary. After one trial
of 10-fold cross-validation there is an accuracy of 74.69% in classifying positive
cows. The percentage of FN is 2.34% and the percentage of FP is 1.60%.

Also, we have detected a percentage of 6.04% of cows with Production/DIM =
VL that have not been classified because they do not satisfy any of the patterns
of the model. We have to analyze why these cows do not satisfy the patterns
since the pattern for the class Production/DIM = VL has a high weight and we
consider it as having a high confidence. We also think that no classifications
could be due to some errors in the data base and the patterns could be useful
to clean it.

7 Conclusions

In the present work we used a method based on indistinguishable relations called
JADE to obtain a model supporting the culling decision process of a dairy farm.
JADE assesses weights to the attributes describing the domain objects, and by
fixing two minimum thresholds (one for the attributes and another for the pat-
terns) it is possible to construct patterns to form a model for the classifications
of cows according to their milk production level ( Production/DIM). Although
having a global model is very interesting, it is also important to focus the model
on the identification of very low milk producers. In this sense, we obtained a pat-
tern that characterises cows of the class Production/DIM = VL with an accuracy
of around 75% with a 2.34% of false negatives and 1.60% of false positives.

Around a 6% of cows belonging to the class Production/DIM = VL are not
classified because they do not satisfy the pattern of that class. A future works,
we want to accurately analyse these kind of cows kind of cows in order to reduce
this percentage.
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4. Calsamiglia, S., Castillejos, L., Astiz, S., Lopez-DeToro, C., Baucells, J.: A dairy
farm simulation model as a tool to explore the technical and economical conse-
quences of management decisions. In: Proceedings of the World Buiatrics Congress
2016 World Association for Buiatrics, p. 406 (2016)
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Abstract. We provide an axiomatisation of the Banzhaf value (or power
index) and the Banzhaf interaction index for multichoice games, which
are a generalisation of cooperative games with several levels of partic-
ipation. Multichoice games can model any aggregation model in multi-
criteria decision making, provided the attributes take a finite number of
values. Our axiomatisation uses standard axioms of the Banzhaf value
for classical games (linearity, null axiom, symmetry), an invariance axiom
specific to the multichoice context, and a generalisation of the 2-efficiency
axiom, characteristic of the Banzhaf value.

Keywords: Banzhaf value · Multicriteria decision aid
Multichoice games · Interaction

1 Introduction

In cooperative game theory, a central problem is to define a value, that is, a payoff
to be given to each player, taking into account his contribution into the game.
Among the many values proposed in the literature, two of them have deserved a
lot of attention, namely the Shapley value [24] and the Banzhaf value [1]. Both of
them satisfy basic properties as linearity, symmetry, which means that the payoff
given does not depend on the way the players are numbered, and the null player
property, saying that a player who does not bring any contribution in coalitions
he joins should receive a zero payoff. A value satisfying these three properties has
necessarily the form of a weighted average of the marginal contribution of a given
player into coalitions. The Shapley and Banzhaf values differ on the weights used
when computing the average. In the Shapley value, the marginal contributions
are weighted according to the size of the coalition, in order to satisfy efficiency,
that is, the total payoff given to the players is equal to the total worth of the
game. In other words, the “cake” is divided among the players with no waste.
For the Banzhaf value, the weights are simply equal, and so do not depend on
the size of the coalition. As a consequence, the Banzhaf value is not efficient in
general.
c© Springer Nature Switzerland AG 2018
V. Torra et al. (Eds.): MDAI 2018, LNAI 11144, pp. 143–155, 2018.
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Lack of efficiency could be perceived, in the context of cooperative game
theory, as an undesirable feature. This explains why in this domain, the Shapley
value is much more popular. However, there are contexts where efficiency is not
a relevant issue or even does not make sense. This is the case for voting games
and in multicriteria decision aid (MCDA). A voting game is a cooperative game
which is 0-1-valued, the value 1 indicating that the coalition wins the election. In
this context, the relevant notion is the power index, and the Banzhaf value is used
as such. A power index indicates how central a player is for making a coalition
winning (this is called a swing). Banzhaf [1,5] has shown that for counting swings,
no weight should be applied, and this directly leads to the Banzhaf value (called
in this context Banzhaf power index or Banzhaf index). In MCDA, criteria can
be interpreted as voters in a voting game, and here a power index becomes an
importance index, quantifying how important in the final decision a criterion is.
In both domains, efficiency simply does not make sense, so that the Banzhaf
value/index should be considered perhaps more relevant than the Shapley value.

There are other reasons to consider the Banzhaf value as a natural concept.
In order to establish this, we need to generalize the notion of value or power
index to the notion of interaction index, especially meaningful in a MCDA con-
text [7,12,13,20]. The interaction index for a set S of criteria quantifies the way
the criteria in S interact, that is, how the scores on criteria in S contribute
to the overall score. It can be considered that the interaction index when S
is a singleton amounts to the importance index, which leads to two types of
interaction indices, one based on the Shapley value and the other based on the
Banzhaf index. This being said, aggregation models in MCDA which are based
on capacities (monotone cooperative games) can be of the Choquet integral type,
multilinear type, or other integrals like Pan-integral, concave integral, decompo-
sition integral, etc. (beside other types such as the Sugeno integral, suitable in an
ordinal context). It has been proved by Grabisch et al. [11] that if the Choquet
integral is used, the relevant interaction index is the Shapley interaction index,
while in the case of the multilinear model, the Banzhaf index should be used. In
addition, in computer sciences, the notion of Fourier Transform is defined and
widely used, e.g., in cryptography (see, e.g., [4]). It turns out that the Banzhaf
interaction index and the Fourier transform differ only by some coefficient (see
details in [8, Ch. 2.16.2]. Other connections exist, e.g., with the Sobol indices in
statistics (see [10]).

The aim of the paper is to establish the Banzhaf index and Banzhaf inter-
action index for multichoice games, which are a generalisation of cooperative
games. Multichoice games allow each player to choose a certain level of partici-
pation, among k possible levels. Their counterpart in MCDA are very interesting
since they encode any aggregation model with discrete attributes [21,22]. To our
knowledge, there is no definition of an interaction index for multichoice games.
Nevertheless, Lange and Grabisch [17] have provided a general form of interac-
tion index for games on lattices. This does not fit our analysis, that focuses on
interaction index defined for groups of criteria. Our approach is to build these
indices in an axiomatic way, using an approach similar to Weber [26].
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2 Preliminary Definitions

We consider throughout a finite set of elements N = {1, . . . , n}, which could be
players, agents in cooperative game theory, criteria, attributes in multi-criteria
decision analysis, voters or political parties in voting theory. We often denote
cardinality of sets S, T, . . . by corresponding small letters s, t, . . ., otherwise by
the standard notation |S|, |T |, . . . . Moreover, we will often omit braces for sin-
gletons, e.g., writing N \ i instead of N \ {i}.

Let Li := {0, 1, . . . , ki}, (ki ∈ N, ki ≥ 1) and define L = ×i∈NLi. The set
L is endowed with the usual partial order ≤: for any x, y ∈ L, x ≤ y if and
only if xi ≤ yi for every i ∈ N . For each x ∈ L, we define the support of x
by Σ(x) = {i ∈ N |xi > 0} and the kernel of x by K(x) = {i ∈ N |xi = ki}.
Their cardinalities are respectively denoted by σ(x) and κ(x). For any x ∈ L
and S ⊆ N , xS denotes the restriction of x to the set S, while x−S denotes the
restriction of x to the set N \ S. For all alternatives x, y ∈ L and S ⊆ N , the
notation (xS , y−S) denotes the compound alternative z such that zi = xi if i ∈ S
and yi otherwise. The same meaning is intended for LS and L−S .

In cooperative game theory, the set Li is interpreted as the set of activity
levels of player i ∈ N , and any x ∈ L is called an activity profile. In an MCDA
context, Li is the set of all possible values taken by (discrete) attribute i ∈ N ,
while x ∈ L is called an alternative. Throughout the paper, we adopt without
limitation the terminology of game theory.

For convenience, we assume that all players have the same number of levels,
i.e., ki = k for every i ∈ N , (k ∈ N).

A (cooperative) game on N is a set function v : 2N → R vanishing on the
empty set. A game v is said to be a capacity [2] or fuzzy measure [25] if it satisfies
the monotonicity condition: v(A) ≤ v(B) for every A ⊆ B ⊆ N .

Cooperative games can be seen as pseudo-Boolean functions vanishing at
0N . A pseudo-Boolean function [3,14] is any function f : {0, 1}N → R. Not-
ing that any subset S of N can be encoded by its characteristic function 1S ,
where 1S = (x1, . . . , xn), with xi = 1 if i ∈ S and xi = 0 otherwise, there is a
one-to-one correspondence between set functions and pseudo-Boolean functions:
f(1S) = v(S) for every S ⊆ N . Therefore, a natural generalisation of games is
multichoice games. A multichoice game [15] on N is a function v : L → R such
that v(0, . . . , 0) = 0. A multichoice game v is monotone if v(x) ≤ v(y) whenever
x ≤ y,∀x, y ∈ L. A monotonic multichoice game is called a k-ary capacity [9].
In a MCDA context, v(x) is the overall score of alternative x. For any x ∈ L,
x �= 0N , the Dirac game δx is defined by δx(y) = 1 iff y = x, and 0 otherwise.
We denote by G(L) the set of all multichoice games defined on L.

The derivative of v ∈ G(L) w.r.t. T ⊆ N at x ∈ L such that for any i ∈
T, xi < ki is given by: ΔT v(x) =

∑
S⊆T (−1)t−sv(x + 1S).

3 Banzhaf Value and Interaction Indices

In this section we recall the concepts of value and interaction indices introduced
in cooperative game theory. The notion of power index or value is one of the most
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important concepts in cooperative game theory. A value [24] on N is a function
φ : G(2N ) → R

N which assigns to each player i ∈ N in a game v ∈ G(2N ) a
payoff φi(v), which is most often a share of v(N), the total worth of the game. In
the context where N is the set of voters, φi(v) can be interpreted as the voting
power of player i ∈ N in game v ∈ G(2N ), i.e., to what extent the fact that
i votes ‘yes‘ makes the final decision to be ‘yes’. In such a case, φ is called a
power index. Obviously, power indices in voting theory are close to importance
indices in MCDA. In cooperative game theory, diverse kinds of values/power
indices have been proposed, among which a large part have the following form:
φi(v) =

∑
S⊆N\i pi

S

(
v(S ∪ i) − v(S)

)
, pi

S ∈ R. If the family of real constants
{pi

S , S ⊆ N \ i} forms a probability distribution, the value φi is said to be a
probabilistic value [26].

The exact form of a value/power index depends on the axioms that are
imposed on it. The two best known are due to Shapley [24] and Banzhaf [1]. The
Banzhaf value [5] of a player i ∈ N in a game v ∈ G(2N ) is defined by

φB
i (v) =

∑

S⊆N\i

1
2n−1

(
v(S ∪ i) − v(S)

)
.

It is uniquely axiomatized by a set of four axioms [5,18]: linearity axiom, dummy
axiom, symmetry axiom and 2-efficiency axiom. They will be recalled below.

Another interesting concept is that of interaction among criteria. An interac-
tion index on N of the game v ∈ G(2N ) is a function Iv : 2N → R that represents
the amount of interaction (it can be positive or negative) among any subset of
players. Grabisch and Roubens [12] proposed an axiomatic characterisation of
the Shapley and the Banzhaf interaction indices. For this, they introduce the
following definitions:

Let v be a game on N , and T a nonempty subset of N . The restriction of
v to T is a game of G(2T ) defined by vT (S) = v(S),∀S ⊆ T. The restriction
of v to T in the presence of a set A ⊆ N \ T is a game G(2T ) defined by
vT

∪A(S) = v(S ∪ A) − v(A) for every S ⊆ T. The reduced game with respect to
T is a game denoted v[T ] defined on the set (N \ T ) ∪ [T ] where [T ] indicates a
single hypothetical player, which is the union (or representative) of the players
in T . It is defined as follows for any S ⊆ N \ T :

v[T ](S) = v(S),
v[T ](S ∪ [T ]) = v(S ∪ T ).

The following axioms have been considered by Grabisch and Roubens [12]:

– Linearity axiom (L): Iv(S) is linear on G(2N ) for every S ⊆ N .

i ∈ N is said to be dummy for v ∈ G(2N ) if ∀S ⊆ N \ i, v(S ∪ i) = v(S)+v(i).
– Dummy player axiom (D): If i ∈ N is a dummy player for v ∈ G(2N ), then

1. Iv(i) = v(i),
2. for every S ⊆ N \ i, S �= ∅, Iv(S ∪ i) = 0.
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– Symmetry axiom (S): for all v ∈ G(2N ), for all permutation π on N ,

Iv(S) = Iπv(πS).

– 2-efficiency axiom (2-E): For any v ∈ G(2N ),

Iv(i) + Iv(j) = Iv[ij]([ij]),∀i, j ∈ N.

– Recursive axiom (R): For any v ∈ G(2N ),

Iv(S) = IvN\j

∪j (S \ j) − IvN\j

(S \ j),∀S ⊆ N, s ≥ 2,∀j ∈ S.

Theorem 1 (Grabisch and Roubens [12]). Under (L), (D), (S), (2-E) and (R),

∀ ∈ G(2N ), Iv(S) =
∑

T⊆N\S

1
2n−t

∑

L⊆S

(−1)s−lv(T ∪ L),∀S ⊆ N,S �= ∅.

In particular, for a pair S = {i, j}, we obtain Iv({i, j}) =
∑

T⊆N\{i,j}
1

2n−t δi,jv(S), where δi,jv(S) := v(S ∪ {i, j}) − v(S ∪ {i}) − v(S ∪ {j}) + v(S).
Moulin interprets the quantity v({i, j}) − v({i}) − v({j}) as the cost/surplus of
mutual externalities of players i and j [19]. More generally, δi,jv(S) can be seen
as the cost/surplus of mutual externalities of players i and j, in the presence of
coalition S. The interaction index Iv({i, j}) is thus the expected cost/surplus of
mutual externalities of players i and j.

In MCDA, recall that v(S) is the overall score of an option that is perfectly
satisfactory (with score 1) on criteria S and completely unacceptable (with score
0) on the remaining criteria. The interaction index Iv({i, j}) can also be inter-
preted as the variation of the mean weight of criterion i when criterion j switches
from the least satisfied criterion to the most satisfied criterion [16]. Positive inter-
action depicts situations where there is complementarity among criteria i and
j: criteria i and j deserve to be well-satisfied together (the more criterion i is
satisfied, the more it is important to satisfy as well criterion j). On the opposite
side, negative interaction occurs when there is substitutability among criteria i
and j: it is not rewarding to improve both criteria i and j together.

Now we present an axiomatization of Fujimoto et al. [6] based on the concept
of partnership coalition. For this, they introduce the following axiom:

Reduced-partnership-consistency axiom (RPC): If P is a partnership in a
game v then Iv(P ) = Iv[P ]([P ]).

A coalition P ⊆ N,P �= ∅, is said to be a partnership in a game v ∈ G(2N )
if, for all S ⊆ P, v(S ∪ T ) = v(T ), for all T ⊆ N \ P.

Theorem 2 (Fujimoto et al. [6]). Under the linear axiom, the dummy axiom,
the symmetry axiom, the 2-efficiency axiom and the reduced-partnership-
consistency axiom,

∀v ∈ G(2N ), Iv(S) =
∑

T⊆N\S

1
2n−t

∑

L⊆S

(−1)s−lv(T ∪ L),∀S ⊆ N,S �= ∅.
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4 Axiomatisation of the Banzhaf Value for Multichoice
Games

In this section, we give a characterisation of Banzhaf value for multichoice games,
in the spirit of what was done by Weber [26] for cooperative games. Ridaoui et al.
[22] have already generalized and axiomatized the Shapley value for multichoice
games. The axiomatisation given in [22] is based on five axioms, linearity, nullity,
symmetry, invariance and efficiency. We present the first four axioms used in [22],
as some of them will be used in our characterisation. It is worth mentioning that
the use of such axioms is common in axiomatisation of values. Let φ be a value
defined for any v ∈ G(L).

Linearity axiom (L): φ is linear on G(L), i.e., ∀v, w ∈ G(L),∀α ∈ R,

φi(v + αw) = φi(v) + αφi(w),∀i ∈ N.

A player i ∈ N is said to be null for v ∈ G(L) if v(x+1i) = v(x),∀x ∈ L, xi < k.

Null axiom (N): If a player i is null for v ∈ G(L), then φi(v) = 0.

Let π be a permutation on N . For all x ∈ L, we denote π(x)π(i) = xi. For all
v ∈ G(L), the game π ◦ v is defined by π ◦ v(π(x)) = v(x).

Symmetry axiom (S): For any permutation π of N ,

φπ(i)(π ◦ v) = φi(v),∀i ∈ N.

Invariance axiom (I): Let us consider two games v, w ∈ G(L) such that,
for some i ∈ N ,

v(x + 1i) − v(x) = w(x) − w(x − 1i),∀x ∈ L, xi /∈ {0, k}
v(x−i, 1i) − v(x−i, 0i) = w(x−i, ki) − w(x−i, ki − 1),∀x−i ∈ L−i,

then φi(v) = φi(w).

The linearity axiom means that if several multichoice games are combined
linearly, the value of the resulting multichoice game is a linear combination of
the values of each individual multichoice game. Axiom (N) states that a player
having no influence on a multichoice game is not important. Axiom (S) says that
the numbering of the players plays no role in the computation of value. Axiom
(I) indicates that the computation of the value does not depend on the position
on the grid. More precisely, if the game w is simply a shift of v of one unit on
the grid, then v and w shall have the same value (importance).

Ridaoui et al. [22] have shown the following result.

Theorem 3. Let φ be a value defined for any v ∈ G(L). If φ fulfils (L), (N),
(I) and (S) then there exists a family of real constants {bn(x−i), x−i ∈ L−i} such
that

φi(v) =
∑

x−i∈L−i

bn(x−i)

(
v(x−i, ki) − v(x−i, 0i)

)
,∀i ∈ N, (1)

where n(x−i) = (n0, . . . , nk) with nj the number of components of x−i being
equal to j ∈ {0, 1, . . . , k}.
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We introduce two additional axioms, and first some notation. For i, j ∈ N ,
and v ∈ G(L), denote by v[ij] the multichoice game defined on the set (N [ij] =
N \ {i, j} ∪ [ij]), where [ij] indicates a single player, which is the merge of the
distinct players i and j. The multichoice game v[ij] is defined as follows,

∀y ∈ {0, 1, . . . , k}N [ij]
, v[ij](y) = v(y−ij , 
ij) if y[ij] = 
, 
 ∈ {0, 1, . . . , k}.

2-Restricted efficiency (2-RE): For all x ∈ L \ 0N ,

φi(δx) + φj(δx) = φ[ij](δ[ij]x ),

where, ∀y ∈ {0, 1, . . . , k}N [ij]
, with y[ij] = 
, 
 ∈ {0, 1, . . . , k},

δ[ij]x (y) =

⎧
⎨

⎩

δx(y−ij , lij) if xi, xj ∈ {1, 2, . . . , k − 1}, or {xi, xj} = {0, k},
δ(x−ij ,ki,kj)(y−ij , lij) else if xi ∨ xj = k,
δ(x−ij ,0i,0j)(y−ij , lij) otherwise (i.e., if xi ∧ xj = 0).

The original 2-Efficiency [18] says that the worth alloted to a coalition of two
players when they form a partnership shall be divided into the worth alloted to
its members. Here this axiom is considered only for the Dirac multichoice games.
In the definition of δ

[ij]
x , we need to change x by adding some symmetry between

i and j in the last two cases. The 2-Restricted efficiency axiom means that for
the Dirac multichoice game, the sum of the values of two players equals to the
value of the merge of these players in the corresponding reduced game. The first
situation of δ

[ij]
x (y) is standard and generalizes the classical case. The last two

cases are limit cases. If only one of the elements xi, xj belong to {0, k} but not
the other one, then one shall take, for symmetry reasons, the same value for i
and j. We need to take, for consistency reasons, the extreme value 0 or k that
is reached by xi or xj .

For the classical Banzhaf value, the dummy player axiom (stronger than the
null axiom) is used as a calibration property. When there is only one player left,
the player shall get its worth v({i}). We generalize this idea by the following
calibration axiom restricted to Dirac games.

Calibration axiom (C): Let i ∈ N , with n = 1. φi(δkN
) = 1.

Theorem 4. Under axioms (L), (N), (I), (S), (2-RE) and (C), for all v ∈
G(L)

φi(v) =
1

2n−1

∑

x−i∈L−i

2σ(x−i)−κ(x−i)
(
v(x−i, ki) − v(x−i, 0i)

)
,∀i ∈ N (2)

Proof: It is easy to check that the formula (2) satisfies the axioms.
Conversely, we consider φ satisfying the axioms (L), (N), (I), (S), (2-RE)

and (C). Let x ∈ L, we write x = (0N\S∪T , xS , kT ), with xS ∈ LS \ {0, k}S , S =
Σ(x) \ K(x), and T = K(x). From axioms (L), (N), (I) and (S) and Theorem 3,
we have

φi(δx) = bn(x−i)

(
δx(x−i, ki) − δx(x−i, 0i)

)
,
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then we obtain,
φi(δ(x−i,ki)) = bn(x−i) = −φi(δ(x−i,0i)), (3)

and
φi(δ(x−i,xi)) = 0, for xi ∈ Li \ {0, k}. (4)

From (3) and (4), we have, for any i ∈ T

φi(δx) + φj(δx) = b(n−s−t,n(xS),t−1),∀j ∈ S, (5)

φi(δx) + φj(δx) = 2b(n−s−t,n(xS),t−1),∀j ∈ T, (6)

and,

φi(δx) + φj(δx) = b(n−s−t,n(xS),t−1) − b(n−s−t−1,n(xS),t),∀j ∈ N \ S ∪ T. (7)

By axiom (2-RE) we have,

– from (7), ∀s ∈ {0, . . . , n − 1}, ∀t ∈ {1, . . . , n}, with s + t ≤ n − 1,

b(n−s−t−1,n(xS),t) = b(n−s−t,n(xS),t−1), (8)

– from (6), ∀s ∈ {0, . . . , n − 1}, ∀t ∈ {2, . . . , n}, with s + t ≤ n,

b(n−s−t,n(xS),t−2) = 2b(n−s−t,n(xS),t−1), (9)

– from (5), ∀s ∈ {1, . . . , n − 1},∀t ∈ {1, . . . , n − 1},with s + t ≤ n,

b(n−s−t,n(xS),t−1) = b(n−s−t,n(xS\j),t−1), j ∈ S, (10)

and from (C) and (9), we have

b0,...,n−1 =
1

2n−1
,∀i ∈ N. (11)

We distinguish the two following cases:

1. If S = ∅,
– from (11) and (8), we have

bn−1,0,...,0 = bn−2,0,...,0,1 = . . . = b1,0,...,0,n−2 = b0,...,0,n−1 =
1

2n−1
, (12)

then, for every 
 ∈ {1, . . . , n},

bn−�,0,...,0,�−1 =
1

2n−1
, (13)

– by (9) and (12), we have: bn−2,0,...,0 = . . . = b0,...,0,n−2 =
1

2n−2
,

then, for every 
 ∈ {2, . . . , n}, bn−�,0,...,0,�−2 =
1

2n−1
,
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2. If S �= ∅, by (10) and (9), we have

b(n−s−t,n(xS),t−1) = 2b(n−1−s1−t,n(xS1 ),t)
, S1 = S \ j, j ∈ S

b(n−1−s1−t,n(xS1 ),t)
= 2b(n−2−s2−t,n(xS2 ),t+1), S2 = S1 \ j, j ∈ S1

...
b(n−s−t,n(xj),t−s) = 2b(n−s−t,0,...,0,t+s−1),

hence, by (13) we have, ∀s ∈ {1, . . . , n−1},∀t ∈ {1, . . . , n−1}, with s+t ≤ n,

b(n−s−t,n(xS),t−1) =
2s

2n−1
.

The result is proved. �

We finally show that our value φi(v) can be written as the sum of Banzhaf
values over games derived from the multichoice game. This is related to some
additivity property. More precisely, the power index φi(v) takes the form of the
sum over x ∈ {0, . . . , k − 1}N of a classical Banzhaf value over the restriction of
function v on ×i∈N{xi, xi + 1}.

Proposition 1. For every v ∈ G(L), φi(v) =
∑

x∈{0,...,k−1}N

φB
i (μv

x),∀i ∈ N, with,

μv
x(S) = v(x + 1S) − v(x),∀S ⊆ N,∀x ∈ L, such that xi < k,∀i ∈ N .

Proof: Let v ∈ G(L) and for any x ∈ L, such that xi < k,∀i ∈ N , we define the
game μv

x for every S ⊆ N by μv
x(S) = v(x + 1S) − v(x). We have

φi(v) =
1

2n−1

∑

x−i∈L−i

2σ(x−i)−κ(x−i)
(
v(x−i, ki) − v(x−i, 0i)

)

=
∑

y−i∈L−i

∀j∈N\i,yj<k

1
2n−1

∑

y−i≤x−i≤(y+1)−i

(
v(x−i, ki) − v(x−i, 0i)

)

=
∑

y∈L
∀j∈N,yj<k

1
2n−1

∑

x−i∈{0,1}N\i

(
v(x−i + y−i, yi + 1) − v(x−i + y−i, yi)

)

=
∑

y∈L
∀j∈N,yj<k

1
2n−1

∑

A⊆N\i

(
μv

y(A ∪ i) − μv
y(A)

)
.

�

5 Axiomatisation of the Banzhaf Interaction Index

An interaction index of a multichoice game v is a function Iv : 2N → R. The
interaction of a single player i is the value related to player i. In this section, we
present an axiomatisation of the interaction index based on the Banzhaf value.
To this aim, we use the following generalised axioms introduced in [23]:
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Linearity axiom (L): Iv is linear on G(L), i.e., ∀v, w ∈ G(L),∀α ∈ R,

Iv+αw = Iv + αIw.

Null axiom (N): If a player i is null for v ∈ G(L), then for all T ⊆ N
such that T  i, Iv(T ) = 0.

Invariance axiom (I): Let us consider two functions v, w ∈ G(L) such
that, for all i ∈ N ,

v(x + 1i) − v(x) = w(x) − w(x − 1i),∀x ∈ L, xi /∈ {0, k}
v(x−i, 1i) − v(x−i, 0i) = w(x−i, ki) − w(x−i, ki − 1),∀x−i ∈ L−i,

then Iv(T ∪ i) = Iw(T ∪ i),∀T ⊆ N \ i.

Symmetry axiom (S): For all v ∈ G(L), for all permutation π on N ,

Iπ◦v(π(T )) = Iv(T ),∀T ⊆ N,T �= ∅.

Let v be a multichoice game in G(L) and S ⊆ N . The restriction of v to
N \ S, denoted by v−S , is defined by v−S(x−S) = v(x−S , 0S),∀x−S ∈ L−S . The
restriction of v on N \ i in the presence of i denoted by v−i

i is the multichoice
game on L−i defined by v−i

i (x−i) = v(x−i, ki) − v(0−i, ki),∀x−i ∈ L−i.

Recursivity axiom (R): For any v ∈ G(L),

Iv(T ) = Iv−i
i (T \ i) − Iv−i

(T \ i),∀T ⊆ N,T �= ∅,∀i ∈ T.

The Recursivity axiom is the exact counterpart of the one for classical games
in [12].

Ridaoui et al. [23] proved the following Lemma.

Lemma 1. Under axioms (L), (N), (I), (S) and (R), for any v ∈ G(L),
∀T ⊆ N,T �= ∅,

Iv(T ) =
∑

A⊆T
A 	=∅

(−1)t−aI
v
(−T )∪[A]
[A] ([A]), (14)

where v
(−T )∪[A]
[A] is the restriction of v to T with respect to A ⊆ T defined on the

set {0, . . . , k}(N\T )∪[A] as follows: v
(−T )∪[A]
[A] (x−T , 
[A]) = v(x−T , 
A, 0T\A).

Our main result shows that there is a unique index fulfilling the previous
axioms.

Theorem 5. Under axioms (L), (N), (I), (S), (C), (2-E) and (R), for all
v ∈ G(L)

Iv(T ) =
∑

x−T ∈L−T

2σ(x−T )−κ(x−T )

2n−t

∑

A⊆T

(−1)t−av(0T\A, kA, x−T ),∀T ⊆ N,T �= ∅.
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Proof: Let v ∈ G(L), and T ⊆ N,T �= ∅. By axioms (L), (N), (I), (S), (C)

and (2-E), we have I
v
(−T )∪[A]
[A] ([A]) =

∑

x−T ∈L−T

bn(x−T )

(
v
(−T )∪[A]
[A] (x−T , k[A]) −

v
(−T )∪[A]
[A] (x−T , 0[A])

)
, with bn(x−T ) =

2σ(x−T )−κ(x−T )

2n−t
.

By Lemma (1), we have

Iv(T ) =
∑

A⊆T
A 	=∅

(−1)t−aI
v
(−T )∪[A]
[A] ([A])

=
∑

A⊆T
A 	=∅

(−1)t−a
∑

x−T ∈L−T

bn(x−T )

(
v(x−T , kA, 0T\A) − v(x−T , 0T )

)

=
∑

x−T ∈L−T

bn(x−T )

∑

A⊆T
A 	=∅

(−1)t−a
(
v(x−T , kA, 0T\A) − v(x−T , 0T )

)

=
∑

xT ∈L−T

bn(x−T )

∑

A⊆T

(−1)t−av(kA, 0T\A, x−T ).

�

As for the power index φi, the interaction index Iv(T ) can be written as
the sum of Banzhaf interaction indices over games derived from the multichoice
game.

Proposition 2. Let v ∈ G(L). Iv(T ) =
∑

x∈{0,...,k−1}N

I
μv
x

B (T ),∀T ⊆ N,T �= ∅,

with, μv
x(S) = v(x + 1S) − v(x),∀S ⊆ N,∀x ∈ L, such that xi < ki,∀i ∈ N .

Proof:

I
μv
x

B (T ) =
1

2n−1

∑

x∈{0,...,k−1}N

∑

S⊆N\T

ΔT μv
x(S)

=
1

2n−1

∑

x∈{0,...,k−1}N

∑

S⊆N\T

ΔT v(x + 1S)

=
1

2n−1

∑

S⊆T

(−1)t−s
∑

x−T <k−T

(
v(0T\A, kA, x−T )+ v(0T\A, kA, x−T + 1−T )

)

=
1

2n−1

∑

S⊆T

(−1)t−s
∑

x−T ≤k−T

2σ(x−T )−κ(x−T )v(0T\A, kA, x−T ).

�
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Abstract. Can non-classical logic contribute to the analysis of com-
plexity in computer science? In this paper, we give a step towards the
solution of this open problem, taking a logical model-theoretic approach
to the analysis of complexity in fuzzy constraint satisfaction. We study
fuzzy positive-primitive sentences, and we present an algebraic charac-
terization of classes axiomatized by this kind of sentences in terms of
homomorphisms and finite direct products. The ultimate goal is to study
the expressiveness and reasoning mechanisms of non-classical languages,
with respect to constraint satisfaction problems and, in general, in mod-
elling decision scenarios.

Keywords: Fuzzy constraint satisfaction · Preference modeling
Fuzzy logics · Model theory

1 Introduction

Can non-classical logic contribute to the analysis of complexity in computer
science? The motivation to answer this question comes, in the first place, from
the reading of [22], where some open problems were proposed by the authors
about the relationship between fuzzy logic and valued constraint satisfaction.
In our opinion, a research oriented to find a non-classical logical approach to
complexity, should address, at least, the following three issues:

1. Show that there is a good trade-off between algebra and logic in the relevant
fragments.

2. Identify which problems in complexity theory are naturally expressed as ques-
tions about the expressive power of the non-classical logic.

3. Prove that these complexity problems are not better addressed in other known
logical formalisms.

Of course, all these issues are interrelated. To evaluate the trade-off between
algebra and logic, it is important to identify which are the relevant fragments of
the non-classical logic where the complexity problems have to be expressed; and
to prove the relevancy of the fragments, a comparative study of different logical
formalisms with respect to their expressive power has to be performed.
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Revisiting the role of non-classical logics in computer science, has to be done
both, in general terms, trying to find a uniform approach, but also focusing on
particular classes of problems naturally addressed for some non-classical logics,
as it is the case of this paper, where we contribute to the model-theoretic analysis
of fuzzy constraint satisfaction using predicate fuzzy logics.

Constraint-based modeling has become a central research area in computa-
tional social choice, and in particular in preference modeling, where preferences
can be seen as soft constraints [18]. Different soft constraint formalisms can be
found in the literature, some prominent examples are fuzzy constraint satisfac-
tion [10,25], possibilistic [19], probabilistic [12], and weighted [26]. More recently,
the semiring-based and the valued constraint general framework have been intro-
duced ([3] and [26], respectively), and previous formalisms can conveniently be
regarded as instances of semiring-based or valued soft constraints. For a general
reference to the different soft-constraint formalisms in preference modeling see
[21] and [18].

The classical constraint satisfaction problem (CSP) has been proved to have
strong connections with various problems in database theory and classical finite-
model theory [15], where CSP can be rephrased as a homomorphism problem, a
conjunctive-query evaluation problem, or a join-evaluation problem. Some prob-
lems in complexity theory are naturally expressed as questions about the expres-
sive power of certain classical logics. With the plurality of valued structures
involved in soft contraint problems, it is a natural question to ask, for the rela-
tionship between valued CSP and non-classical logical formalisms. In particular,
as pointed out in [22], with mathematical fuzzy logic (MFL). Only in recent
times, model theory of predicate fuzzy logics has been developed as a subarea of
MFL (see for instance [5] or [9]), leaving the important area of fuzzy finite-model
theory yet unexplored.

Considering a general semantics for MFL, a plethora of left continuous t-
norms can be defined, going far beyond of the minimum t-norm in the interval
[0, 1] of the reals, most commonly used in fuzzy CSP (FCSP). Nevertheless, as
pointed already in some earlier works (see for instance [25] or [27]) the mini-
mum is the only total order semiring operator that is idempotent (see also [26]),
and its drowning effect limits the application of FCSP to specific contexts (for
a recent example of the application of fuzzy constraints in compact preference
representation see [20]). t-norms in general are not good as aggregation opera-
tors, but our research do not want to focus only in aggregation, we would like
rather to explore the logical properties of fuzzy languages, their expressiveness,
and reasoning mechanisms with respect to constraint satisfaction problems and,
in general, in modeling decision scenarios [2].

Positive-primitive formulas are one of the key elements in the logical study
of classical CSP (see for instance [15]). The original contribution of the article
is the mathematical proof of an axiomatization theorem for primitive-positive
theories. The proof uses specific techniques of model theory and algebra in the
fuzzy context, and it is included in Sect. 4. Some preliminaries on FCSP, and
predicate fuzzy logics needed for the theorem are introduced in Sects. 2 and 3. A
discussion section at the end of the paper presents some ideas for future work.
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2 Preliminaries

Fuzzy CSP. The valued structure most commonly used in the literature of
fuzzy constraint satisfaction is the standard Gödel algebra, that has as domain
the [0, 1] interval of the real numbers, and as t-norm the minimum. In this paper,
we will work with MTL-algebras, which constitute the set of truth-values where
sentences of predicate fuzzy logic are evaluated. We focus on finite MTL-algebras,
but the results can be extended to the case where the valued structure is, for
instance, the infinite standard Gödel or �Lukasiewicz algebra. The domains of the
finite MTL-algebras we consider are not necessarily totally ordered, allowing to
represent some types of non-linear preferences.

MTL-algebras are defined as bounded integral commutative residuated lat-
tices (A,�,�, ∗,⇒, 0, 1), where � and � are respectively the lattice meet and
join operations, ∗ is a left-continuous t-norm, and (⇒, ∗) is a residuated pair
(for an exhaustive exposition of MTL-algebras we refer to [11]).

Definition 1. Let A be a MTL-algebra, D a set, and k a natural number. It is
said that R is a k-ary fuzzy relation on D, if R : Dk → A is a function evaluated
in A.

Definition 2. An instance I of fuzzy constraint satisfaction is a triple
(V,D,C), where

– V is a set of variables;
– D is a set of values, referred to as the domain;
– C is a collection of constraints C1, . . . , Cq, where each constraint Ci is a pair

(x,RI), where RI is a k-ary fuzzy relation on D, for some natural number
k ≥ 1, and x is a k-tuple over V , referred to as the scope of the constraint.

Given an instance I of fuzzy constraint satisfaction with set of constraints
C = {(x1, R

I
1 ), . . . , (xn, RI

n)}, and a k-tuple d ∈ D, we say that RI
i (d) is the

degree of satisfaction of d ∈ D of constraint (xi, R
I
i ), and that RI

1 (d)∗· · ·∗RI
n(d)

is the degree of joint satisfaction of the constraints, where ∗ is the t-norm of the
algebra A. For the sake of clarity, we have restricted the definition to the case
where the degree of joint satisfaction is calculated only by means of the t-norm
∗ in the standard way, but other functions could have been introduced using as
base both ∗ and the min.

The Fuzzy Constraint Satisfaction Problem is to find an optimal solution,
in the sense of maximazing the degree of joint satisfaction of the constraints.
Related to this central problem there is a variety of other problems that it is
possible to formulate using the graded nature of fuzzy constraints, for instance,
we can ask if there is a k-tuple d ∈ D such that the degree of joint satisfaction
is greater or lower than a given threshold.

Predicate Fuzzy Logics. Given an instance I of fuzzy constraint satisfaction
with set of constraints C = {(x1, R

I
1 ), . . . , (xn, RI

n)}, we can associate to I a
fuzzy relational A-structure I = (D,RI

1 , . . . , RI
n), and study its properties using
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model theory of predicate fuzzy logics. Now we present the syntax and semantics
of the minimal predicate fuzzy logic MTL∀m, the predicate extension of the
left-continuous t-norm based logic MTL introduced in [11], and we refer to [6,
Chap. 1] for a complete and extensive presentation of MTL∀m.

Definition 3 (Syntax of Predicate Languages). A predicate language P
is a triple 〈PredP , FuncP , ArP〉, where PredP is a nonempty set of predicate
symbols, FuncP is a set of function symbols (disjoint from PredP), and ArP
represents the arity function, which assigns a natural number to each predicate
symbol or function symbol. We call this natural number the arity of the sym-
bol. The predicate symbols with arity zero are called truth constants, while the
function symbols whose arity is zero are named individual constants.

The set of P-terms, P-formulas and the notions of free occurrence of a vari-
able, open formula, substitutability and sentence are defined as in classical pred-
icate logic. We asume that the equality symbol ≈ of the language is interpreted
in every structure as the crisp identity. Notice that, in the language we have
introduced there are also function symbols. The results we present in this paper
hold also for arbritrary languages, and for this reason we have presented a gen-
eral proof, that could be used in further applications of pp-definability in non-
relational structures, not necessarily related to FCSP.

Definition 4. We introduce an axiomatic system for the predicate logic
MTL∀m:

(P) Instances of the axioms of the propositional logic MTL.
(∀1) (∀x)ϕ(x) → ϕ(t), where the term t is substitutable for x in ϕ.
(∃1) ϕ(t) → (∃x)ϕ(x), where the term t is substitutable for x in ϕ.
(∀2) (∀x)(ξ → ϕ) → (ξ → (∀x)ϕ(x)), where x is not free in ξ.
(∃2) (∀x)(ϕ → ξ) → ((∃x)ϕ → ξ), where x is not free in ξ.

The deduction rules of MTL∀m are those of MTL and the rule of generaliza-
tion: from ϕ infer (∀x)ϕ. The definitions of proof and provability are analogous
to the classical ones. A set of formulas Φ is consistent, if Φ �� 0.

From now on we fix a finite MTL-algebra A and consider only structures
over this algebra.

Definition 5 (Semantics of Predicate Fuzzy Logics). Consider a predicate
language P = 〈PredP , FuncP , ArP〉. We define an M-structure M for P as a
triple 〈M, (PM)P∈Pred, (FM)F∈Func〉, where M is a nonempty domain, PM is an
n-ary fuzzy relation for each n-ary predicate symbol, identified with an element
of A, if n = 0; and FM is a function from Mn to M , identified with an element
of M , if n = 0.

As usual, if M is an A-structure for P, an M-evaluation of the object vari-
ables is a mapping v assigning to each object variable an element of M . The
set of all object variables is denoted by V ar. If v is an M-evaluation, x ∈ V ar
and a ∈ M , we denote by v[x �→ a] the M-evaluation so that v[x �→ a](x) = a
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and v[x �→ a](y) = v(y) for y an object variable such that y �= x. If M is an
M-structure and v is an M-evaluation, we define the values of terms, and the
truth values of formulas in M for an evaluation v recursively as follows:

||x||M,v = v(x);
||F (t1, . . . , tn)||M,v = FM(||t1||M,v, . . . , ||tn||M,v), for F ∈ Func;
||P (t1, . . . , tn)||M,v = PM(||t1||M,v, . . . , ||tn||M,v), for P ∈ Pred;
||λ(ϕ1, . . . , ϕn)||M,v = λA(||ϕ1||M,v, . . . , ||ϕn||M,v), for every connective λ;
||(∀x)ϕ||M,v = inf{||ϕ||M,v[x→a] | a ∈ M};
||(∃x)ϕ||M,v = sup{||ϕ||M,v[x→a] | a ∈ M}.

We assume that the language has an equality symbol ≈, interpreted as a crisp
identity. We denote by ||ϕ||M = 1 the fact that ||ϕ||M,v = 1 for all M-evaluation
v; and given a set of sentences Φ, we say that M is a model of Φ, if for every
ϕ ∈ Φ, ||ϕ||M = 1. We denote by Mod(Φ) the set of models of Φ, and by Th(M),
the theory of M, that is, the set of sentences evaluated 1 in M. We say that two
models are elementary equivalent, if they have the same theory.

Structures over a Fixed Finite MTL-Algebra. Since we work with struc-
tures over a fixed finite MTL-algebra, the infimum and the supremum in Defini-
tion 5 always exist, and they coincide with the minimum and maximum. There
are two important properties that all the structures over a finite MTL-algebra
have, and that we will use throughout this article. The first one is that they are
existentially witnessed: given a A-structure M, we say that M is ∃-witnessed if
it satisfies the following property: for every formula of the form (∃x)ψ(x), there
are d ∈ M such that ||(∃x)ψ(x)||M = ||ψ(d)||M.

The second property is compactness, both for satisfiabilty and consequence
(the proof can be found in [8, Theorem 4.4]). Remark that, in fuzzy logic it is not
always the case, for instance the product predicate logic is neither satisfiability
nor consequence compact with respect to its standard algebra. Given a set of
sentences Σ, and a sentence φ, we denote by Σ |=A φ the fact that every A-
model of Σ is also an A-model of φ.

Theorem 1 (A-compactness). For every set of sentences Σ and sentence φ,
the following holds:

1. [Satisfiability] If for every finite subset Σ0 ⊆ Σ, Σ0 has an A-model, then Σ
has also an A-model.

2. [Consequence] If Σ |=A φ, then there is a finite subset Σ0 ⊆ Σ such that
Σ0 |=A φ.

From now on we will refer to A-structures simply as structures, because all
the structures we consider will be over the same algebra.
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3 Fuzzy Positive-Primitive Formulas

Let I be an instance of fuzzy constraint satisfaction and I = (D,RI
1 , . . . , RI

n)
its associated fuzzy relational structure. In logical terms, the FCSP can be for-
mulated as the problem of finding a tuple d such that

||R1(d)& · · · &Rn(d)||I = ||(∃x)(R1(x)& · · · &Rn(x))||I
where & is the strong conjunction interpreted in I as the t-norm. The formulas
that allow us to give a logical expression of the FSCP are called fuzzy positive-
primitive and are the object of study of this section. In particular, we show that
homomorphisms and direct products preserve fuzzy positive-primitive formulas.
For a general reference of the classical positive-primitive fragment see [14].

Definition 6 (Fuzzy Positive-Primitive Formula). Given a predicate lan-
guage P, and a P-formula φ, it is said that φ is fuzzy positive-primitive, if
φ is of the form (∃x)ψ, where ψ is a quantifier-free formula built from atomic
formulas by using only the connectives ∧ and &.

For the sake of simplicity, from now on we will refer to fuzzy positive-primitive
formulas, simply as pp-formulas. Remark that both conjunctions, strong and
weak, can appear in pp-formulas, allowing different combinations of these con-
nectives for expressing the degree of joint satisfaction of a set of constraints. Let
us recall now the definition of homomorphism introduced in [9] as a generaliza-
tion of the notion of classical homomorphism.

Definition 7 (Homomorphism). Let P be a predicate language, M and N be
two P-structures and g a mapping from M to N . We say that g is a homomor-
phism from M into N if and only if

1. For every n-ary function symbol F ∈ P, and d1, . . . , dn ∈ M ,

g(FM(d1, . . . , dn)) = FN(g(d1), . . . , g(dn)).

2. For every n-ary predicate symbol P ∈ P, and d1, . . . , dn ∈ M ,

if ||P (d1, . . . , dn)||M = 1, then ||P (g(d1), . . . , g(dn))||N = 1.

Moreover, we say that g is an embedding, if g is one-to-one, and that g is an
isomorphism, if g is a surjective embedding.

In the following lemma we prove that pp-formulas are preserved by homo-
morphisms.

Lemma 1. Let P be a predicate language, M and N be two P-structures, g a
homomorphism from M into N, and φ a positive-primitive P-formula. Then,
for every d1, . . . , dn ∈ M ,

if ||φ(d1, . . . , dn)||M = 1, then ||φ(g(d1), . . . , g(dn))||N = 1.
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Proof. By induction on the complexity of φ.

Atomic Step. Let φ be an atomic formula of the form P (t1 . . . , tk), where
P ∈ P is a predicate symbol, and t1 . . . , tk are P-terms. Since g is a homo-
morphism, we have that, in general, for every P-term t, and d1, . . . , dn ∈ M ,
g(tM(d1, . . . , dn)) = tN(g(d1), . . . , g(dn)) and thus

||P (t1 . . . , tk)(d1, . . . , dn)||M = 1 ⇒
||P (t1M(d1, . . . , dn), . . . , tkM(d1, . . . , dn))||M = 1 ⇒
||P (g(t1M(d1, . . . , dn)), . . . , g(tkM(d1, . . . , dn)))||N = 1 ⇒
||P (t1N(g(d1), . . . , g(dn)), . . . , tkN(g(d1), . . . , g(dn))||N = 1 ⇒
||P (t1 . . . , tk)(g(d1), . . . , g(dn))||N = 1.

Quantifier-free. Assume inductively that the property holds for ψ and for χ,
then we have:

1 = ||ψ&χ(d1, . . . , dn)||M = ||ψ(d1, . . . , dn)||M ∗ ||χ(d1, . . . , dn)||M ⇒
||ψ(d1, . . . , dn)||M = 1 and ||χ(d1, . . . , dn)||M = 1 ⇒
||ψ(g(d1), . . . , g(dn))||N = 1 and ||χ(g(d1), . . . , g(dn))||N = 1 ⇒
||ψ(g(d1), . . . , g(dn))||N ∗ ||χ(g(d1), . . . , g(dn))||N = 1 ⇒
||ψ&χ(g(d1), . . . , g(dn))||N = 1.

Observe that the same argument holds for the weak conjunction ∧.

Existential Step. Assume inductively that the property holds for ψ(x). Since
M is an ∃-witnessed structure, we have that for some e ∈ M ,

||(∃x)ψ(x, d1, . . . , dn)||M = ||ψ(e, d1, . . . , dn)||M
Thus, if ||(∃x)ψ(x, d1, . . . , dn)||M = 1, then ||ψ(e, d1, . . . , dn)||M = 1 and, by
inductive hypothesis,

1 = ||ψ(g(e), g(d1), . . . , g(dn))||N ≤ ||(∃x)ψ(x, g(d1), . . . , g(dn))||N.

Now let us introduce the notion of direct product. Unlike other definitions
introduced in the literature, for instance in [22], we work in products over the
same algebra A. Notice that the product is well-defined because the algebra is
finite.

Definition 8 (A-direct product). Let P be a predicate language, I a
nonempty set, and for every i ∈ I, Mi a P-structure. The direct product of the
family {Mi : i ∈ I}, denoted by

∏
i∈I Mi, is the structure that has as domain the

usual classical direct product, and the usual classical interpretation for constants
and function symbols, and for every n-adic predicate symbol P ∈ P, and tuples
of elements d1, . . . , dn of

∏
i∈I Mi,

P∏
i∈I Mi

(d1, . . . , dn) = min{PMi
(d1(i), . . . , dn(i)) : i ∈ I}
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Notice that, so defined, the i-projection of the direct product onto Mi is a
homomorphism, and thus, by Lemma 1, preserves pp-formulas. We will use this
fact later in the proof of the axiomatization theorem. In the following lemma we
prove that pp-formulas are preserved by direct products.

Lemma 2. Let P be a predicate language, I a nonempty set, and for every
i ∈ I, Mi a P-structure. Assume that φ is a positive-primitive P-formula, and
d1, . . . , dn are tuples of elements of

∏
i∈I Mi. Then the following holds: if for

every i ∈ I, ||φ(d1(i), . . . , dn(i))||Mi
= 1, then ||φ(d1, . . . , dn)||∏

i∈I Mi
= 1.

Proof. By induction on the complexity of φ. The proof of the atomic and
quantifier-free step is analogous to the corresponding proof in Lemma 1, by
using the fact that for every P-term t,

t∏
i∈I Mi

(d1, . . . , dn) = (tMi
(d1(i), . . . , dn(i)) : i ∈ I)

For the existential step, assume inductively that the property holds for ψ(x).
If for every i ∈ I, ||(∃x)ψ(x, d1(i), . . . , dn(i))||Mi

= 1, since the structures are
∃-witnessed, then for every i ∈ I, there is e(i) ∈ Mi such that

||ψ(e(i), d1(i), . . . , dn(i))||Mi
= 1

Then, by using the inductive hypothesis,

1 = ||ψ(e, d1, . . . , dn)||∏
i∈I Mi

≤ ||(∃x)ψ(x, d1(i), . . . , dn(i))||∏
i∈I Mi

.

4 Fuzzy Positive-Primitive Sets of Axioms

Axiomatization theorems provide a correspondence between syntactic and
semantic notions in logic. Diagrams are the building blocks that, glued with
compactness, allow us to build extensions of structures, and prove these axiom-
atization theorems. Let us thus to introduce the method of diagrams in this
fuzzy setting in order to characterize homomorphisms, and prove an equivalent
condition to the preservation of pp-formulas between structures.

Definition 9. Let P be a predicate language, and M a P-structure. The expan-
sion of the language P by adding an individual constant symbol cm for every
m ∈ M , is denoted by PM ; and the expansion of the structure M to PM is
denoted by M�, where for every m ∈ M , (cm)M� = m.

Definition 10. Let P be a predicate language. For every P-structure M we
define Diag(M) as the set of atomic PM -sentences σ such that ||σ||M� = 1.

Following the same lines of the proof of [7, Proposition 32], we can obtain this
characterization of homomorphisms in terms of diagrams.
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Corollary 1. Let P be a predicate language and M and N be two P-structures.
The following are equivalent:

1. There is an expansion of N that is a model of Diag(M).
2. There is a homomorphism g : M → N from M into N.

Notice that, since the Diag(M) contains equalities but not inequalities, the
obtained homomorphism does not need to be an embedding. Now we present
a characterization in terms of extensions, of when two structures preserve pp-
formulas.

Proposition 1. Let P be a predicate language, and M and N be two P-
structures. Then, every pp-sentence which is evaluated 1 in M, is also evaluated
1 in N if and only if there is a P-structure L, elementary equivalent to N, and
a homomorphism g from M into L.

Proof. First we show that Diag(M)∪Th(N) has a model. We prove that for
every finite subset {σ1 . . . , σn} of Diag(M), {σ1 . . . , σn}∪Th(N) has a model.
Let cm1 , . . . , cmk

be the object constants of the expanded language that occur
in {σ1 . . . , σn}. For every 1 ≤ i ≤ n, let σ′

i be the formula obtained from σi by
substituting the constants cm1 , . . . , cmk

by new variables y = ym1 , . . . , ymk
.

Then we have that ||(∃y)(σ′
1∧· · ·∧σn(y))||M = 1 and thus, by the assumption

of this lemma, since (∃y)(σ′
1 ∧ · · · ∧ σ′

n(y)) is a pp-sentence, ||(∃y)(σ′
1 ∧ · · · ∧

σn(y))||N = 1. Since N is an ∃-witnessed structure, we have a sequence of
elements of N, e = em1 , . . . , emk

, such that ||((σ′
1 ∧ · · · ∧ σn(e)||N = 1. Thus

we can conclude that an expansion of N satisfies {σ1 . . . , σn}∪Th(N). By A-
compactness for satisfiability, there is a P-structure L that has an expansion
which is a model of Diag(M)∪Th(N).

By Lemma 1, there is a homomorphism g from M into L. Moreover, since L
is a model of Th(N), L is elementary equivalent to N.

Now we prove an axiomatization theorem for theories closed under homo-
morphisms and direct products. Recall that a theory T is closed under a class
O, if the class of its models, Mod(T ), is closed under O. And it is say that a
theory T is axiomatized by a set of sentences Σ, if Mod(T )=Mod(Σ).

Theorem 2. Let P be a predicate language and T be a consistent theory. Then,
T is closed under homomorphisms and direct products if and only if T is axiom-
atized by a set of positive primitive sentences.

Proof. Let T∨ be the set of finite disjunctions of pp-sentences evaluated positively
in every model of T (that is, evaluated with an element of the algebra a ∈ A
such that a > 0), and Tpp be the set of pp-sentences of T∨. In the proof we
distinguish two parts: 1) we show that T∨ axiomatizes T , and 2) we show that
Tpp axiomatizes T∨.

1) T∨ axiomatizes T . First notice that T∨ is a nonempty set, for instance
(∃x)(x ≈ x) ∈ T∨, and T∨ is satisfiable because T is a consistent theory. Let N
be a model of T∨, we will show that N is also a model of T . Let Γ be the set
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of all sentences of the form ¬δ, where δ is a pp-sentence and ||δ||N < 1. Now we
prove that Γ ∪ T has a model.

If Γ = ∅ is clear, because T is consistent. If Γ �= ∅, we have that, for every
nonempty subset {¬δ1 . . . ,¬δn} of Γ , {¬δ1 . . . ,¬δn}∪T has a model. Otherwise,
in every model of T the sentence δ1 ∨ · · · ∨ δn will be evaluated positively and
thus, δ1 ∨ · · · ∨ δn ∈ T∨, contradicting the fact that N is a model of T∨. By A-
compactness for satisfiability, there is a model M of Γ ∪ T . Then we have that
every pp-sentence which is evaluated 1 in M, is also evaluated 1 in N, because
M is a model of Γ . Then, by Proposition 1, there is a structure L, elementarily
equivalent to N, and a homomorphism g from M into L. Since T is closed under
homomorphisms, we can conclude that N is also a model of T . Consequently,
T∨ is a set of axioms for T .

1) Tpp axiomatizes T∨. We show that, for every δ1 ∨ · · · ∨ δn ∈ T∨, there is
1 ≤ i ≤ n with δi ∈ Tpp. Assume, searching for a contradiction, that for every
1 ≤ i ≤ n, there is Mi which is a model of T∨ but not of δi. Consider the direct
product

∏
1≤i≤n Mi. Since T∨ is closed under direct products,

∏
1≤i≤n Mi is

also a model of T∨ and, in particular, of the sentence δ1 ∨ · · · ∨ δn. Then, for
some 1 ≤ i0 ≤ n,

∏
1≤i≤n Mi is a model of δi0 . Take the i0-projection function

i0 :
∏

1≤i≤n Mi → Mi0 . Since i0 is a homomorphism, i0 preserves pp-formulas,
and thus, Mi0 is also a model of δi0 , contradicting our original assumption. We
can conclude that there is some 1 ≤ i ≤ n with δi ∈ Tpp. Consequently, Tpp is a
set of axioms for T∨.

Notice that, in the proof of Theorem 2, we have only used finite direct prod-
ucts. Using A-compactness for consequence we can obtain the following corollary
of Theorem 2.

Corollary 2. Let P be a predicate language and φ be a satisfiable sentence.
Then, φ is equivalent to a pp-sentence if and only if φ is preserved under homo-
morphisms and direct products.

5 Discussion and Future Work

Can non-classical logic contribute to the analysis of complexity in computer
science? We started the paper with the statement of this general question, and in
this final section, we would like to comment on how the axiomatization theorem
can be regarded as a contribution to provide an answer to this question.

In one of the books of reference in the field [4], model theory is described
as algebra+logic. Working in this same framework, and in the line of recent
works taking an algebraic approach to valued CSP (see for instance [16] and
[17]), we have presented an algebraic characterization of the preservation of pp-
formulas in terms of direct products and homomorphisms. Theorem 2 tells us
that there is a good trade-off between algebra and logic in the fuzzy positive-
primitive fragment. This result allows us also to characterize pp-definability in
terms of polymorphisms, that can be defined using homomorphisms and finite
direct products.
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However, the notion of fuzzy homomorphism traditionally used in the fuzzy
literature, do not encompass other notions of polymorphism such as weighted
or fractional polymorphisms (see for instance [16] or [17]). Further research is
needed to study stronger definitions of homomorphism (for example [22], [7] or
[9]) and see which are more adequate for the purpose of rephrasing FCSP using
homomorphism problems. One of the main characteristics we have to impose
to homomorphisms, is that they preserve positive values. Theorem 2 also sheds
light to the fact that, if we introduce stronger notions of homomorphisms, we
will need to redefine pp-formulas, possibly using a language expanded with con-
stant symbols for the elements of the valued structure, in order to maintain the
correspondence between algebra and logic.

The relational structures we have studied are over finite algebras, but we have
proven the results both, for finite and for infinite domains, in order to cope with
applications on infinite templates. Work in progress includes the generalization
of Geiger’s Theorem [13] to the fuzzy context, where some important preliminary
results were obtained in [22], for locally finite valuation structures. In the classical
case, the pp-preservation problem restricted to finite structures was solved by B.
Rossman in [23], with some previous results, for instance in [1], in the context
of CSP dualities. It would be interesting to prove the corresponding version
in the fuzzy context, especially taking into account the improvements recently
introduced in [24], with respect to the bounds on the quantifier-rank of the
sentences.
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Abstract. We present an initial study linking in cognitive psychology
well known phenomenon of basic level concepts and a general Boolean
matrix factorization method. The result of this fusion is a new algorithm
producing factors that explain a large portion of the input data and
that are easy to interpret. Moreover, the link with the cognitive psychol-
ogy allowed us to design a new clustering algorithm that groups objects
into clusters that are close to human perception. In addition we present
experiments that provide insight to the relationship between basic level
concepts and Boolean factors.

1 Introduction

Boolean matrix factorization (BMF)—also known as the Boolean matrix decom-
position—has become one of the standard methods in data mining with appli-
cations to many fields. The general aim of the BMF method is to find new more
fundamental variables hidden in the data, called factors, that can be used to
explain the input data in a concise and presumably comprehensible way.

Seminal work [6] shows that this problem can be efficiently approached
with the formal concept analysis (FCA) [9]. It has been shown [6] that fac-
tors can be understood as maximal rectangles full of 1’s in the input matrix and
these rectangles correspond to formal concepts as studied in FCA. In fact, many
existing BMF algorithms are based on FCA and this correspondence (see e.g. [5]).

Quality of a discovered factor is usually evaluated as a number of 1’s it cov-
ers in the input matrix, i.e. how large portion of the input data is explained
via the given factor (for more details see [2]). This measure along with some
greedy strategy is used by almost all BMF algorithms (an overview can found
e.g. in [5]). However, algorithms considering the number of covered 1’s as the only
criterion for the factor selection neglect an interpretability of the results. Factors
are selected merely mechanically, hence there is no guarantee that the discov-
ered factors are interesting, meaningful, or comprehensible from the viewpoint
of a human expert. Note that factor interpreting is given little or no attention
at all in contemporary literature that involves the BMF.
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We present an initial study linking basic level concepts—concepts that
explain data from the human point of view—and factorization based on the
coverage of input data. The result of this fusion is a new algorithm producing
factors that achieve high coverage of input data and that are easy to interpret
(according to the cognitive psychology). Further, we propose a new clustering
algorithm that groups objects into clusters that are close to human perception.

The rest of the paper is organized as follows. In the following Sect. 2 we
provide basic notions and notations. Then, in Sect. 3 we describe and evaluate
a classical BMF algorithm and several its modifications we propose. In Sect. 4
we discuss a new clustering algorithm based on ideas and observations made in
Sect. 3. The paper concludes with notes on related works and future research.

2 Basic Notions

In the following section we provide a basic notions and notations used through
the paper. We use formal concept analysis (FCA) [9] as a basic framework which
allows us to establish link between BMF and basic level concepts.

2.1 Formal Concept Analysis

The input of the FCA is a two dimensional table where rows correspond to
objects (e.g. dog, cat, parrot, ant), columns correspond to attributes (e.g. four
legs, wings, fur), and each cell of the table indicates if a given object has a given
attribute. This table can be represented as a Boolean matrix I ∈ {0, 1}n×m. To
every Boolean matrix one may associate the pair 〈↑, ↓〉 of operators assigning to
sets C ⊆ X = {1, . . . , n} and D ⊆ Y = {1, . . . , m} the sets C↑ ⊆ Y and D↓ ⊆ X
defined by

C↑ = {j ∈ Y | for each i ∈ C : Iij = 1},

D↓ = {i ∈ X | for each j ∈ D : Iij = 1}.

That is, C↑ is the set of all attributes (columns) common to all objects (rows)
in C and D↓ is the set of all objects having all the attributes from D, respectively.

A formal concept of I, a maximal rectangle or pattern in I, is any pair 〈C,D〉
satisfying C↑ = D and D↓ = C. Usually the C and D are called the extent and
the intent (respectively) of a formal concept 〈C,D〉. The set

B(I) = {〈C,D〉 | C ⊆ X,D ⊆ Y,C↑ = D,D↓ = C}

of all formal concepts with the partial order ≤, defined by 〈C1,D1〉 ≤
〈C2,D2〉 iff C1 ⊆ C2 (iff D1 ⊇ D2) forms a complete lattice. Note that the
ordering ≤ models the natural hierarchy of concepts according to which more
general concepts have more inclusive extents and less inclusive intents, e.g.
mammal ≤ animal.
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2.2 Basic Level of Concepts

The basic level phenomenon is, in a sense, encountered in everyday life. When
we see a particular dog, we say “This is a dog,” rather than “This is a German
Shepherd” or “This is a mammal.” That is, we prefer to name the object we see
by “dog” to naming it by “German Shepherd” or “mammal”. Put briefly, basic
level concepts are the concepts we prefer in naming objects.

Basic level concepts can be seen as concepts that lies “somewhere in the mid-
dle” of the formal concept hierarchy (formed by the ≤ ordering) and that carve
up the world well. More precisely, the basic level concepts can be seen as a com-
promise between the accuracy of classification at a maximally general level and
the predictive power of a maximally specific level.

The notion of the basic level was formalized (via FCA) in the pioneering
works [3,4]. In our work we use the Similarity approach to the definition of
the basic level, i.e. a formal concept 〈C,D〉 belongs to the basic level if it satisfies
the following properties:

– 〈C,D〉 has a high cohesion;
– 〈C,D〉 has a significantly larger cohesion than its upper neighbors;
– 〈C,D〉 has a slightly smaller cohesion than its lower neighbors.

Various formalization of the above mentioned conditions were proposed in [3].
Let us note that the cohesion of a formal concept 〈C,D〉 represents a measure
of the mutual similarity of rows which can be accessed via formula:

coh(C,D) =

∑
{i,j}⊆C,i<j sim(Ii , Ij )

|C| · (|C| − 1)/2
,

where the similarity of two rows is defined as the well know Jaccard index:

sim(Ii , Ij ) =
|Ii ∩ Ij |
|Ii ∪ Ij | .

For every formal concepts 〈C,D〉 we can compute the degree BL(A,B) =
α1 ⊗ α2 ⊗ α3, to which 〈C,D〉 is a concept from the basic level. α1, α2 and
α3 represent the degrees of validity of the above mentioned conditions and ⊗
represents a truth function of many-valued conjunction [10]. Note that we are
using real unit interval [0, 1] as a scale of truth degrees and the product (Goguen)
t-norm as a conjunction, i.e. a ⊗ b = a · b, in our experiments. For more details
see [3].

2.3 Boolean Matrix Decomposition

A general aim in BMF is to find for a given Boolean matrix I ∈ {0, 1}n×m (and
possibly other given parameters) matrices A ∈ {0, 1}n×k and B ∈ {0, 1}k×m for
which

I (approximately) equals A ◦ B, (1)
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where ◦ is the Boolean matrix product, i.e. (A ◦ B)ij = maxk
l=1 min(Ail, Blj). In

essence, matrices A and B can be seen as a concise representation of the original
matrix I. An example of such decomposition can be the following.

I =

⎛

⎜
⎜
⎝

1 0 1 1 1
0 1 1 0 1
0 1 0 0 1
1 0 1 1 0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 1 0
0 1 1
0 0 1
1 0 0

⎞

⎟
⎟
⎠ ◦

⎛

⎝
1 0 1 1 0
0 0 1 0 1
0 1 0 0 1

⎞

⎠ = A ◦ B

Factor (gray rectangular area) in matrix I is represented via Boolean matrix
product of the third column of matrix A and the third row of matrix B.
A decomposition of I into A ◦ B may be interpreted as a discovery of k fac-
tors that exactly or approximately explain the data: interpreting I, A, and B
as the object-attribute, object-factor, and factor-attribute matrices, the model
behind (1) reads: the object i has the attribute j if and only if there exists factor
l such that l applies to i and j is one of the particular manifestations of l.

Formal concepts can be utilized for the BMF problem as follows. For a given
set F = {〈C1,D1〉, . . . , 〈Ck,Dk〉} ⊆ B(I) (with a fixed indexing of the formal
concepts 〈Cl,Dl〉), define the n×k and k ×m Boolean matrices AF and BF by

(AF )il =
{

1 if i ∈ Cl,
0 if i �∈ Cl,

and (BF )lj =
{

1 if j ∈ Dl,
0 if j �∈ Dl,

for l = 1, . . . , k. That is, the lth column and lth row of A and B are the charac-
teristic vectors of Cl and Dl, respectively. The set F is also called set of factor
concepts. An entry of a matrix I is covered by the factor if it is included in some
factor (concept) 〈C,D〉, i.e. factor 〈C,D〉 covers all entries of the matrix I that
lies in the Cartesian product C × D.

3 Boolean Matrix Decomposition: Algorithms

The link between formal concepts and BMF discovered in [6] allowed to design
several efficient algorithms for the BMF problem (see an overview in [5]).
In essence, all these algorithms use a greedy approach to identify k first formal
concepts covering all 1’s in a given Boolean matrix. We illustrate this approach
with the GreCon1 algorithm, depicted in Algorithm1, proposed in [6].

At first, the algorithm initializes a set of factors F to an empty set and
creates a copy I ′ of the input matrix I. Subsequently, it finds a set C of all
formal concepts. This can be done efficiently with several algorithms [1,11,16].
In order to find a subset of C corresponding to a set of factors, the algorithm
proceeds as follows.

The algorithm assigns to each formal concept 〈C,D〉 in C a score which is
given by a function Coverage:

Coverage(I ′, 〈C,D〉) =

∑n
i=0

∑m
j=0 I ′

ij · (C ◦ D)ij
||I ′||

1 In [6] this algorithm is named Algorithm1.
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Algorithm 1. GreCon
Input: Boolean n × m matrix I
Output: Set of factor concepts F

1 F ← ∅
2 I′ ← I
3 C ← FindAllFormalConcepts(I)

4 while ||I′|| > 0 do
5 bestScore ← −∞
6 〈A,B〉 ← 〈∅, ∅〉
7 foreach concept 〈C,D〉 in C do
8 score ← Coverage(I′, 〈C,D〉)
9 if score > bestScore then

10 〈A,B〉 ← 〈C,D〉
11 bestScore ← score

12 F ← F ∪ {〈A,B〉}
13 C ← C − {〈A,B〉}
14 I′ ← I′  (A ◦ B)

15 return F

In other words, the score assigned to a formal concept 〈C,D〉 is a ratio of a sum
of all 1’s covered by this formal concept in the matrix I ′ to a sum of all 1’s
in the matrix I ′. Note that each score can be seen as a measure of how much
the formal concept explains data in the matrix. Formal concept 〈A,B〉 with the
highest score is selected and is considered as a factor concept. This factor concept
is inserted into the set F (line 12) and removed from the set C (line 13). Further,
all 1’s covered by the concept 〈A,B〉 are removed from the matrix I ′ (line 14).
Note that (P  Q) is given as (P  Q)ij = max(0, Pij − Qij). This step (lines
4–14) repeats until there are no more 1’s in the matrix I ′. It can be easily seen
that the algorithm always terminates after finitely many steps and the set F
corresponds to the solution of the BMF problem. For more details see [6].

From the BMF viewpoint this approach is reasonable and gives valid results.
The potential shortcoming of the algorithm is the way it evaluates concepts—
the only criterion is the number of 1’s covered in the matrix. This means, factors
are discovered merely mechanically with no further information or insight into
data. Hence, an interesting question arises: Are such factors good factors? Or,
alternatively: Do such factors explain data well (from the human point of view)?

We decided to approach these questions from the perspective of the basic level
concepts. The basic level concepts are natural way humans treat and understand
large collections of objects, thus it is reasonable to ask if there is a relationship
between basic level concepts and algorithmically discovered factors.

3.1 Design of New Algorithms and Experimental Evaluation

We designed several algorithms and experiments that provide an initial insight
into the relationship between Boolean factors and basic level concepts. We intro-
duce these algorithms throughout this section and demonstrate their character-
istics by experiments. In our experiments we focus on two aspects. (1) Basic level
degree, i.e., whether factor is close to human intuition. (2) Coverage quality—if
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Table 1. Real datasets and their characteristics

Datasets Rows Columns Density (%) Concepts Max 1st Decile Med

Animals 20 14 41.4 52 0.307 0.139 0.048

DBLP 6,980 18 13.2 2,067 0.266 0.094 0.046

Drinks 68 23 33.5 320 0.374 0.113 0.051

Sports 20 10 38.0 39 0.450 0.191 0.045

Things 508 22 25.6 1,863 0.310 0.111 0.052

Zoo 101 21 35.8 357 0.420 0.119 0.051

the result of BMF explains data correctly. Let us note that coverage quality
function of A ∈ {0, 1}n×l and B ∈ {0, 1}l×m is a measure of the quality of the
first l computed factors: c(l) = 1 − E(I,A(l) ◦ B(l))/||I||, where A(l) and B(l)
denote the n × l and l × m matrices that correspond to the first l factors and
E is an error function defined for two matrices I, J ∈ {0, 1}m×n in the following
way: E(I, J) =

∑m,n
i,j=1 |Iij − Jij |.

In all presented experiments we use real datasets from various fields. Namely:
Animals [4], DBLP [15], Drinks [4], Sports [4], Things [8], and Zoo [7]. Table 1 dis-
plays the basic characteristics of our datasets: The numbers of rows and columns,
density (percentage of 1’s in the entries of the dataset), the number of formal
concepts in the dataset and maximum, first decile and median value of the basic
level degree over all concepts of the dataset.

3.2 Algorithms Utilizing Coverage or Basic Level only

In our first set of experiments we focus on factors discovered with the GreCon
algorithm (coverage only, see Algorithm 1) and their degrees to which they are
from basic level. Because being a basic level concept is not a yes/no property,
it is challenging to say what is a good basic level concept. Nonetheless, basic
level concepts are those with the highest degrees, hence we assume that good
basic level concepts belong at least among the top ten percent. Figure 1 shows
that in the majority of cases factors do not belong among such concepts, see the
column 1st decile in Table 1. This observation is further confirmed in Table 2—
average basic level of factors delivered by GreCon is significantly below the
mark determined by the top ten percent of basic level concepts.

These results provide strong indication that the majority of discovered fac-
tors do not coincide with the basic level concepts. This observation has two
possible implications: (1) The algorithm may discover factors that would not be
intuitively considered by a human expert, hence can reveal useful information
hidden in the data. (2) On the downside such factors may be counterintuitive,
difficult to grasp, or uninteresting. In fact, it is a very common phenomenon that
Algorithm 1 often returns uninteresting factors covering only a single attribute.

To investigate the other side of the relationship, i.e., whether basic level
concepts are good factors, we have to adjust the Algorithm1 first. If we want
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Fig. 1. Basic level degree and coverage quality of the first 15 factors on real data.

to list factors w.r.t. their basic level degree (i.e. the most basic level concepts
first), we have to change the score function (line 8). In this case it is fully sufficient
to replace the Coverage(I ′, 〈C,D〉) function with a function BL(C,D). This
means basic level degree of a concept can serve as a score assigned to the given
concept in the Algorithm 1.

Figure 2 shows that the coverage quality of factors selected via the basic level
metric (line Bl) is significantly worse than the coverage quality of factors deliv-
ered by the original GreCon algorithm. Table 2 (column Bl) shows that in some
cases average basic level degree of factors improves and in some case unexpect-
edly gets worse. In these cases the algorithm returns large amounts of factors
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(even with low basic level degrees) because it has difficulties to find concepts
explaining all the data. Further, more detailed analysis revealed that the algo-
rithm tends to return superfluous factors describing some parts of the matrix
multiple times. This experiment clearly shows that the basic level degree of
a formal concept is not a good criterion for selecting factors.

(a) Animals (b) DBLP

(c) Drinks (d) Sports

(e) Things (f) Zoo

Fig. 2. Coverage quality of the first l factors on real data.

3.3 Combining Coverage and Basic Level

Both discussed experiments point out to the particular issues of the Coverage
and BL functions as measures used to select factor concept. In the first case
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Table 2. Average basic level degree of discovored factors

Dataset GreCon Bl BlCov
√
BlCov Bl

√
Cov BlESC

Animals 0.059 0.094 0.117 0.094 0.126 0.113

DBLP 0.012 0.058 0.088 0.088 0.090 0.089

Drinks 0.101 0.065 0.167 0.156 0.165 0.180

Sports 0.090 0.138 0.155 0.155 0.159 0.205

Things 0.098 0.067 0.125 0.127 0.128 0.075

Zoo 0.068 0.072 0.135 0.127 0.143 0.151

algorithm tends to return factors not coinciding with the human intuition,
in the latter case it tends to return factors which can be considered redun-
dant. On the other hand both functions have their strong sides as well. The
Coverage function prefers factors which explain data well, the BL function
prefers factors that are close to the human intuition. It opens up two interesting
questions. Is it possible to combine these two measures? Can such combination
accent the strong sides of the measures and suppress their downsides?

The score assigned with the Coverage function has two possible interpre-
tations. It provides an information on how many 1’s are covered with a given
formal concept in a given matrix, i.e., the higher number the more 1’s is covered.
Furthermore, the score can be interpreted as a degree to which the given for-
mal concept explains the data in the matrix, i.e., the 1.0 degree means that the
formal concept explains the data entirely, the 0.0 degree means that the formal
concept explains the data not at all. Due to this interpretation it is possible
to combine Coverage and basic level degrees with the truth function ⊗, i.e.,

BlCov(I ′, 〈C,D〉) = BL(C,D) ⊗ Coverage(I ′, 〈C,D〉).

The score assigned with the BlCov function can be seen as a degree to which
the given formal concept is a basic level concept and also is describing the data,
i.e., formal concepts with the higher degrees are basic level concept and are
also well-describing the data. One may observe in Fig. 2 that the combination
provides results that are “compromise” between the coverage and basic level
approach.

Since the truth degrees assigned with the BL and Coverage functions can
be disproportional, we considered two more variants of the BlCov function:

√
BlCov(I ′, 〈C,D〉) =

√
BL(C,D) ⊗ Coverage(I ′, 〈C,D〉) (2)

Bl
√
Cov(I ′, 〈C,D〉) = BL(C,D) ⊗

√
Coverage(I ′, 〈C,D〉) (3)

Technically, the square root in (2) and (3) is used to increase numerical values
of the truth degrees. However, (2) also has a natural interpretation—formal
concepts with high degrees are more or less basic level concepts and are well-
describing the data. Needless to say analogous interpretation exists for (3). One
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may observe (see Fig. 2) that the
√
BlCov function outperforms other functions

combining coverage and basic level. Note that coverage quality of the delivered
factors is almost identical with the original GreCon and these factors are from
the basic level in higher degree than factors computed via GreCon, see Table 2.

4 Clustering Algorithm

Our experiments revealed appealing qualities of the
√
BlCov function—it

assigns higher values to groups of object and attributes that are well-explaining
the data and that are also close to human intuition (are basic level concepts).
Therefore we decided to build a clustering algorithm around this function. We
call it the BlESC (Basic level Elimination Strategy Clustering) algorithm.

The algorithm takes a formal context I as its input and returns a set of clus-
ters. Each cluster is a set of objects presumably representing a basic level concept.
The algorithm (see Algorithm 2 for the pseudo-code) is based on similar ideas
as Algorithm 1, therefore we describe only its key parts. Basically, it finds all
formal concepts and iteratively assigns them score with the

√
BlCov function.

In each iteration formal concept with the highest score is picked and its extent
is returned as a new cluster (line 13). Afterwards, all 1’s in rows correspond-
ing to the objects from the cluster are replaced with zeros (lines 14 and 15).
The algorithm stops if there are no 1’s in the auxiliary matrix I ′.

The strategy that eliminates 1’s from the matrix I ′ (lines 14 and 15) ensures
that each newly discovered cluster contains at least one object not covered by the
previous clusters. Furthermore, this strategy along with the

√
BlCov function

forces the algorithm to focus especially on formal concepts with objects that were
not considered yet and, by extension, to prefer clusters that are non-overlapping.

Algorithm 2. BlESC
Input: Boolean n × m matrix I
Output: Set of clusters G

1 G ← ∅
2 I′ ← I
3 C ← FindAllFormalConcepts(I)

4 while ||I′|| > 0 do
5 bestScore ← −∞
6 〈A,B〉 ← 〈∅, ∅〉
7 foreach concept 〈C,D〉 in C do

8 score ← Coverage(I′, 〈C,D〉) · √
BL(C,D)

9 if score > bestScore then
10 〈A,B〉 ← 〈C,D〉
11 bestScore ← score

12 C ← C − {〈A,B〉}
13 G ← G ∪ {A}
14 foreach object a in A do

15 I′ ← I′  ({a} ◦ {a}↑)

16 return G
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4.1 Algorithm Evaluation

Evaluation of the BlESC algorithm is challenging for several reasons. To the best
of our knowledge there are no standard datasets or measures one could use
to validate such algorithms. Furthermore, whether a concept is perceived as
a basic level depends on a given context and often on a knowledge or expertise
of the observer. For instance, what would be considered by a car mechanic as
a Ford Focus, would be considered by a general population simply as a car (this
phenomenon is already discussed in [4]). Therefore, in order to show validity
of the algorithm, we decided to describe contents of the datasets we use and
comment on results returned by BlESC.

The Zoo [7] dataset contains list of 101 animals which belong to 7 classes,
e.g. mammals, birds, etc. The BlESC algorithm successfully identified 4 of them
(mammals, birds, insects, amphibians), i.e. successfully classified 73 objects. Fur-
ther, it identified cluster of fishes (13 objects), however 4 objects from other
classes were incorrectly considered as fishes too. Remaining objects were classi-
fied into categories that can be described as crustaceans, or sea predators.

To confirm these results we used dataset Animals [4] with a similar content
but with a different set of objects and attributes and without predefined classes
of objects. In this dataset algorithm discovered 6 clusters that correspond to
mammals, fishes, terrestrial predators, flying creatures, water living egg laying
animals, terrestrial egg laying animals.

The Drinks [4] dataset contains description of 68 beverages and their prop-
erties. The authors of this dataset identified 11 classes of beverages, e.g. beers,
wines, mineral waters. The algorithm discovered 12 cluster and successfully iden-
tified clusters of beers, wines, milks, liquors, and distilled spirits. Interestingly,
the algorithm merged mineral waters, fruit juices, and some sodas into a single
cluster that can be described as light non-alcoholic beverages. Further, high-
calorie soft drinks (Coca Cola, energy drinks, etc.) were clustered together and
Coca Cola light-like drinks were put in their own cluster. Even though these
clusters do not correspond to classes defined in the dataset, we consider them
as perfectly correct. That is algorithm successfully clustered 58 of 68 objects.
Remaining objects were placed into not so clear clusters that can be called,
for instance, low-calorie drinks, however, it can be seen that these cluster were
created only to deal with noise.

In the Sports [4] dataset, i.e., in a dataset describing 20 sports, our algorithm
found 6 clusters: land-based collective sports with an opponent (football, tenis,
etc.), individual timed sports (e.g. running, triathlon), invidual water sports,
collective sports, land-based sports with a score, and water sports.

For the DBLP [15] dataset our algorithm returned 103 clusters that can be
described as authors publishing in top data management conferences, AI confer-
ences, machine learning conferences, etc.
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5 Conclusion, Related Works, and Future Research

Basic level concepts have their origin in the cognitive psychology and only little
attention to their role in computer science or artificial intelligence research was
given so far. One of few publications devoted to this area is [12] where basic level
concepts are used to cluster rows in ranked data tables. Similar approach, based
on the Minimum description length (MDL) principle is utilized in [13] or [14].
In this works, the interpretability of factors is improved via MDL. Let us note,
this approach usually produces extremely small coverage of the input data.

Our experiments show that the algorithms based on basic level concepts, i.e.
the GreCon algorithm with the

√
BlCov function and the BlESC algorithm,

can deliver valid and interpretable results which are very close to human intuition
from the cognitive psychology point of view. Therefore, we are to investigate
other possible applications of this promising metric in other areas, for instance,
in document classification.
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Abstract. We introduce two types of aggregation operators for lattice-
valued fuzzy sets, called fuzzy type powerset operators and fuzzy type
F-transforms, which are derived from classical powerset operators and
F-transforms, respectively. We prove that, in contrast with classical pow-
erset operators, fuzzy type powerset operators form a subclass of fuzzy
type F-transforms. Some examples of fuzzy type powerset operators are
presented.

1 Introduction

Aggregation of a large set of input values into a smaller set of values is an
indispensable tool not only in mathematics, but of many other sciences and
engineering technics. The comprehensive state-of-art overviews on aggregation
can be found in [2] (dated to 1985) and in [1] (dated to 2002) and lately, in [3].
Traditionally, by the aggregation is understood the process of combining sev-
eral numerical values into a single representative, called aggregation value. The
numerical function performing this process is called aggregation function, satisfy-
ing natural conditions as monotonicity and boundary conditions. Because of the
simplicity of this definition of aggregation, there are practically endless numbers
of specific examples of aggregation functions in both mathematics and other
sciences. There is large field of applications of aggregation, including applied
mathematics, computer sciences and many applied fields.

Aggregation of information is critical in any inference system, and so the
study of aggregation operators is essential also for the fuzzy sets. Very soon,
standard numerical aggregations were extended to aggregation of fuzzy sets.
Classically, aggregation operations on fuzzy sets are operations by which several
fuzzy sets are combined in a desirable way to produce a single fuzzy set and
where the aggregation functions are derived from ordinary aggregation oper-
ators on the unit interval (see, e.g., [19]). Another approach how to expand
aggregation operators to fuzzy sets is to reduce the size of the universe of fuzzy
sets. Such aggregation operators represents mappings [0, 1]X → [0, 1]Y , where
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card(X) > card(Y ). Also these aggregation operators have to satisfy the bound-
ary and monotonicity conditions. There are two important examples of such
aggregation operators in fuzzy sets, both with many theoretical and practical
applications. These operators are F-transform and powerset operators.

The powerset theory is widely used in algebra, logic, topology and also in
computer science. Recall that given a set X, there exists the set P (X) = {S :
S ⊆ X}, called the powerset of X and such that every map f : X → Y can
be extended to the powerset operators f→ : P (X) → P (Y ) and f← : P (Y ) →
P (X), such that

f→(S) = f(S), f←(T ) = f−1(T ).

Because the classical set theory can be considered to be a special part of the fuzzy
set theory, introduced by [20], it is natural that powerset objects associated with
fuzzy sets soon were investigated as generalizations of classical powerset objects.
The first approach was done again by Zadeh [20], who defined Z(X) = [0, 1]X to
be a new powerset object called Zadeh’s powerset functor instead of P(X) and
introduced new powerset operators f→

Z : [0, 1]X → [0, 1]Y and f←
Z : [0, 1]Y →

[0, 1]X , such that for s ∈ [0, 1]X , t ∈ [0, 1]Y , y ∈ Y ,

f→
Z (s)(y) =

∨

x,f(x)=y

s(x), f←
Z (t) = t ◦ f.

If, instead of a general map, we consider a surjective map f : X � Y , the
powerset operators f→

P : P (X) → P (Y ), and f→
Z : Z(X) → Z(Y ) are, in fact,

aggregation operators, reducing the size of underlying set X.
Zadeh’s extension was for the first time intensively studied by [16], especially

the relation between classical powerset extension f→ and f→
Z . The works of

Rodabaugh gave very serious basis for further research of powerset objects and
operators. On the other hand, very soon the powerset theory began to develop
towards greater interdependence with the theory of categories, especially with
the monad theory. A special example of monads in clone form was introduced
by Rodabaugh [17] as a special structure describing powerset objects generated
by monads. It was observed soon, that powerset objects used in the fuzzy sets
theory are generated by monads. In the papers [5,7] we presented some examples
of powerset theories based on fuzzy sets which are generated by monads and
which are frequently used in the fuzzy set theory.

Another example of the aggregation operator in fuzzy sets theory is the F-
transform operator, which was in lattice-valued form introduced by Perfilieva
[14] and elaborated in many other papers (see, e.g., [11–13,15]). Aggregation F-
transform is a special aggregation map that transforms general L-valued fuzzy
sets defined in the set X to L-valued fuzzy sets defined in another (smaller)
set Y , and the inverse transformations back to the original spaces then produce
either the original functions or their approximations.

The aggregation powerset operators and F-transform operators have many
common formal properties. Both operators enable to extend epimorphisms f :
X � Y in suitable categories to the morphisms f→ : F (X) → F (Y ) between
new

∨
-semilattices structures associated with fuzzy sets and both operators have
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also similar properties with respect to the semilattice operations defined on these∨
-semilattice structures.

In the paper we show that in many concrete examples used in fuzzy sets the-
ory, aggregation powerset theory is a special case of the aggregation F-transform
theory. We introduce the notion of the L-fuzzy type powerset theory and we show
that many of well known and frequently used powerset theories in fuzzy set the-
ory are of that type. As the main result we show that the powerset operators of
the L-fuzzy type powerset theory are identical to the F-transforms with respect
to special fuzzy partitions. This enables us to extend tools and methods used in
all these theories.

2 Preliminary Notions

In this section we present some preliminary notions and definitions which could
be helpful for better understanding of results concerning sets with similarity
relations and categorical tools. A principal structure used in the paper is a
complete residuated lattice (see e.g. [10]), i.e. a structure L = (L,∧,∨,⊗,→, 0, 1)
such that (L,∧,∨) is a complete lattice, (L,⊗, 1) is a commutative monoid with
operation ⊗ isotone in both arguments and → is a binary operation which is
residuated with respect to ⊗, i.e.

α ⊗ β ≤ γ iff α ≤ β → γ.

By L-fuzzy set in a set X we understand a map X → L. Recall that a set
with similarity relation (or L-set) is a couple (X, δ), where δ : X × X → L is a
map such that

(a) (∀x ∈ X) δ(x, x) = 1,
(b) (∀x, y ∈ X) δ(x, y) = δ(y, x),
(c) (∀x, y, z ∈ X) δ(x, y) ⊗ δ(y, z) ≤ δ(x, z) (generalized transitivity).

In the paper we use the category Set(L) of L-sets as objects and with maps
f : X → Y such that γ(f(x), f(y)) = δ(x, y) for all x, y ∈ X as morphisms
f : (X, δ) → (Y, γ). A L-fuzzy set f : X → L is called an extensional map
with respect to δ, if f(x) ⊗ δ(x, y) ≤ f(y), for arbitrary x, y ∈ X. The set of all
extensional L-fuzzy sets with respect to (X, δ) is denoted by F (X, δ).

Recall that a cut in a set X is a system (Cα)α∈L of subsets of X such that
Cα ⊆ Cβ if α ≥ β and the set {α ∈ L : a ∈ Cα} has the greatest element for any
a ∈ X. By D(X) we denote the set of all cuts in X.

Analogously as in classical sets, in L-sets we can define the so called f-cuts.

Definition 2.1 ([6]). Let (X, δ) be an L-set. Then a system C = (Cα)α of
subsets in A is called an f-cut in (X, δ) in the category Set(L) if

1. ∀a, b ∈ X, a ∈ Cα ⇒ b ∈ Cα⊗δ(a,b),
2. ∀a ∈ X,∀α ∈ L,

∨
{β:a∈Cβ} β ≥ α ⇒ a ∈ Cα.



Fuzzy Type Powerset Operators and F-Transforms 185

The set of all f-cuts in (X, δ) is denoted by C(X, δ).
Any system of subsets (Cα)α in a set X can be extended to the f-cut (Cα)α,

defined by
Cα = {a ∈ X :

∨

{(x,β):x∈Cβ}
β ⊗ δ(a, x) ≥ α}.

The set C(X, δ) of all f-cuts in a L-set (X, δ) can be ordered by (Cα)α ≤ (Dα)α

iff Cα ⊆ Dα, for each α ∈ L. Then C(X, δ) is a complete ∨-semilattice, such
that

∨
i∈I(C

i
α)α = (

⋃
i∈I Ci

α)α.
We recall some basic facts about F-transform method. The core of a L-fuzzy

set f : X → L is defined by core(f) = {x ∈ X : f(x) = 1}. A normal L-fuzzy
set f in a set X is such that core(f) = ∅.

An F -transform in a form introduced by Perfilieva [15] is based on the so
called fuzzy partitions on the crisp set.

Definition 2.2 ([15]). Let X be a set. A system A = {Aλ : λ ∈ Λ} of normal
L-fuzzy sets in X is a fuzzy partition of X, if {core(Aλ) : λ ∈ Λ} is a partition
of X. A pair (X,A) is called a space with a fuzzy partition. The index set of A
will be denoted by |A|.

In the paper [9] we introduced the category SpaceFP of spaces with fuzzy
partitions.

Definition 2.3. The category SpaceFP is defined by

1. Fuzzy partitions (X,A), as objects,
2. Morphisms (g, σ) : (X, {Aλ : λ ∈ Λ}) → (Y, {Bω : ω ∈ Ω}), such that

(a) g : X → Y and is σ : Λ → Ω are mappings,
(b) ∀λ ∈ Λ, Aλ(x) ≤ Bσ(λ)(g(x)), for each x ∈ X.

3. The composition of morphisms in SpaceFP is defined by (h, τ) ◦ (g, σ) =
(h ◦ g, τ ◦ σ).

Objects of the category SpaceFP represent ground structures for a fuzzy
transform, firstly proposed by Perfilieva [14] and, in the case where it is applied
to L-valued functions with L-valued partitions, in [15].

Definition 2.4 ([15]). Let (X,A) be a space with a fuzzy partition A = {Aλ :
λ ∈ |A|}. An upper F-transform with respect to the space (X,A) is a function
F ↑

X,A : LX → L|A|, defined by

f ∈ LX , λ ∈ |A|, F ↑
X,A(f)(λ) =

∨

x∈X

(f(x) ⊗ Aλ(x)).

In the residuated lattice L we can define a fuzzy partition L = {Lα : α ∈ L},
such that Lα(β) = α ↔ β, β ∈ L.

The following notion of an extensional fuzzy set in the category SpaceFP
extends the notion of an extensional mapping in the category Set(L).
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Definition 2.5. A mapping f : X → L is called an extensional L-fuzzy set in
a space with a fuzzy partition (X,A) in the category SpaceFP, if there exists a
map σ : |A| → L, such that (f, σ) is a morphism (X,A) → (L,L) in the category
SpaceFP. By F (X,A) we denote the set of all extensional fuzzy sets in (X,A).

In [8] we proved that for any space with a fuzzy partition (X,A) it is possible
to construct a L-set (X, δX,A) with the similarity relation called characteristic
similarity relations of (X,A). The similarity relation δX,A is the minimal similar-
ity relation defined in X, such that for arbitrary map f : X → L, f is extensional
in (X,A) iff f is extensional with respect to δX,A. Hence, we have

F (X,A) = E(X, δX,A).

3 L-Fuzzy Type Powerset Theories

We repeat the basic definition of the powerset theory and we introduce a special
type of a powerset theory, called L-fuzzy type powerset theory.

In what follows, by CSLAT (∨) we denote the category of complete ∨-
semilattices as objects and with ∨-preserving maps as morphisms. By Set we
denote the classical category of sets with mappings.

Definition 3.1 (Rodabaugh [17]). Let K be a ground category. Then T =
(T,→, V, η) is called CSLAT (∨)-powerset theory in K, if

1. T : |K| → |CSLAT (∨)| is an object-mapping,
2. for each f : A → B in K, there exists f→

T : T (A) → T (B) in CSLAT (∨),
3. There exists a concrete functor V : K → Set (i.e., injective on morphisms)

such that η determines in Set for each A ∈ K a mapping ηA : V (A) → T (A),
4. For each f : A → B in K, f→

T ◦ ηA = ηB ◦ V (f).

For a powerset theory T in a category K, for arbitrary morphism f : X → Y
there exists also the inverse powerset operator f←

T : T (Y ) → T (X), defined by

y ∈ Y, f←
T (y) =

∨

x∈T (X),f→
T (x)≤y

x. (1)

In the paper we will deal with several examples of CSLAT (∨)-powerset theories.
Some of these examples were derived by previous authors, e.g., Rodabaugh [17],
Höhle [4], Solovyov [18], other examples were presented in Mockor [5,7]. It should
be observed that in all these examples the object function T : |K| → |CSLAT (∨)|
is, in fact, the object function of a functor T : K → CSLAT (∨), with T (f) = f→

T ,
for any morphism f in K. These examples will be investigated in Sect. 4.

As we can see in the Sect. 4, all the examples of powerset theories have, in
addition to axioms related to this theory, some other common features. These
properties can be characterized as additional properties of the object function T
of a powerset theory (T,→, V, η), defining the internal structure of objects T (X).
In many of concrete examples of powerset operators associated with fuzzy set
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theory, the supports of objects T (X) are connected with the structure LV (X),
i.e., with the classical fuzzy sets in the support V (X) of these objects. It is clear
that this property is not a general property of powerset theories, on the other
hand, this property is typical for powerset theories with object functions which
are in relationships with some variants of L-fuzzy sets and their generalization.
Therefore, it is natural such object functions T to be called L-fuzzy type func-
tions. In the following definition we introduce the notion of a functor of L-fuzzy
type.

Definition 3.2. Let K be a concrete category with a concrete functor V : K →
Set. We say that a functor T : K → CSLAT (∨) is of a L-fuzzy type, if

1. There exists a natural transformation i

T
i
> Z.V, T op i

> Z.V op,

with
∨

-preserving components iX ,X ∈ K, where Z is the Zadeh’s powerset
functor,

2. For each X ∈ K, α ∈ L, f ∈ T (X), there exists α � f ∈ T (X), such that

iX(α � f) = α ⊗ iX(f).

For an object X ∈ K, a semilattice T (X) ∈ CSLAT is called an L-fuzzy type
object.

As we have already stated in the Introduction, F-transform is a special aggre-
gation map that reduces general L-valued fuzzy sets defined in the set X to
L-valued fuzzy sets defined in a smaller set Y . In many practical examples, how-
ever, the aggregation F-transform need not to be defined for L-valued fuzzy sets,
but it can be also defined for general objects associated with fuzzy sets. In that
way, instead of the aggregation F-transform F : LX → LY we can consider the
general F-transform T (X) → T (Y ), where u : X � Y is an epimorphism in
a category and T is a L-fuzzy type functor. The definition of the L-fuzzy type
F-transform is the following.

Definition 3.3. Let K be a category with a concrete functor V : K → Set and
let T : K → CSLAT (∨) be an L-fuzzy type functor. Then T is called the L-
fuzzy type F-transform, if for each epimorphism u : X � Y in the category
K there exists a subset A = {gy : y ∈ V (Y )} ⊆ T (X), such that the following
hold:

1. {iX(Ay) : y ∈ V (Y )} is a fuzzy partition of V (X), such that for each x ∈
V (X), iX(Ay)(x) = 1L iff u(x) = y,

2. The following diagram commutes:

T (X)
T (u)

> T (Y )

LV (X)

iX∨ F ↑
V (X),iX(A)

> LV (Y ).

iY∨
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The subset A ⊆ T (X) is called L-fuzzy type partition of T (X).
As we have introduced a special type of the F-transform, we introduce the

special type of the powerset operator.

Definition 3.4. Let K be a category and let T = (T,→, V, η) be a CSLAT (∨)-
powerset theory in K. Then T is called to be a L-fuzzy type CSLAT (∨)-
powerset theory in K, if the following hold.

1. The functor T : K → CSLAT (∨) is of the L-fuzzy type,
2. For each X ∈ |K|, ηX : V (X) → T (X) generates T (X), i.e.,

(a) For each f ∈ T (X), f =
∨

x∈V (X) iX(f)(x)X � ηX(x),
(b) For each x, z ∈ V (X), iX(ηX(x))(z) = iX(ηX(z))(x),
(c) For each X ∈ |K|, x ∈ V (X), iX(ηX(x))(x) = 1L.

The following theorem is the principal result of the paper.

Theorem 3.1. Let K be a category and let T = (T,→, V, η) be a L-fuzzy
type CSLAT (∨)-powerset theory in K. Then, the functor T is the L-fuzzy type
F-transform.

Proof. Let u : X � Y be an epimorphism in K. From the natural transforma-
tions η : V → T , i : T op → ZopV and i : T → Z.V , it follows that the diagrams
commute:

V (X)
ηX
> T (X)

iX
> LV (X), T (X)

iX
> LV (X)

V (Y )

V (u)∨ ηY
> T (Y )

u→
T∨ iY

> LV (Y )

V (u)→
Z∨

T (Y )

u←
T

∧
iY

> LV (Y ).

V (u)←
Z

∧

Because V is a concrete functor, V (u) : V (X) → V (Y ) is a surjective map. Let
y ∈ V (Y ) and let a ∈ V (X) be such that V (u)(a) = y. Then we set

Ay = u←
T u→

T (ηX(a)) ∈ T (X).

The definition of Ay does not depend on the choice of the element a. In fact, let
b ∈ V (X) be such that V (u)(b) = V (u)(a) = y. Then we have

u→
T (ηX(a)) = ηY (V (u)(a)) = ηY (V (u)(b)) = u→

T (ηX(b)).

We prove that A = {Ay : y ∈ V (Y )} is the L-fuzzy type partition of T (X).
Hence, we need to prove that for any x ∈ V (X), y = V (u)(x), iX(Ay)(x) = 1L

holds. According to Definition 3.4, (2c), we have

iX(Ay)(x) = iX .u←
T .u→

T (ηX(x))(x) = V (u)←
Z .iY .u→

T (ηX(x))(x)
= V (u)←

Z .V (u)→
Z .iX(ηX(x))(x) = V (u)→

Z .iX(ηX(x))(V (u)(x))

=
∨

z∈V (X),V (u)(z)=V (u)(x)

iX(ηX(x))(z) ≥ iX(ηX(x))(x) = 1L.
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We prove that the diagram from the theorem commutes. Let f ∈ T (X), y ∈
V (Y ). Then, according to Definition 3.4, parts (a), (b) Definition 3.2 and the
relation (2), we obtain

iY .u→
T (f)(y) = V (u)→

Z .iX(f)(y) = V (u)→
Z .iX(

∨

x∈X

iX(f)(x)X � ηX(x))(y)

= V (u)→
Z (

∨

x∈X

iX(f)(x)
V (X)

⊗ iX(ηX(x)))(y)

=
∨

x∈X

V (u)→
Z (iX(f)(x) ⊗ iX(ηX(x))) (y)

=
∨

x∈X

iX(f)(x) ⊗ V (u)→
Z .iX(ηX(x))(y)

=
∨

x∈X

iX(f)(x) ⊗ iY .ηY (V (u)(x))(V (u)(a))

=
∨

x∈X

iX(f)(x) ⊗ iY .ηY (V (u)(a))(V (u)(x))

=
∨

x∈X

iX(f)(x) ⊗ iY .u→
T (ηX(a))(V (u)(x))

=
∨

x∈X

iX(f)(x) ⊗ V (u)←
Z .iY .u→

T (ηX(a))(x)

=
∨

x∈X

iX(f)(x) ⊗ iXu←
T u→

T (ηX(a))(x) =
∨

x∈X

iX(f)(x) ⊗ iX(Ay)(x)

= F ↑
V (X),iX(A)(iX(f))(y).

Hence, the diagram commutes. �

4 Examples

In this section we show several examples of powerset theories which are used in
fuzzy sets and which were introduced by Rodabaugh [17], Höhle [4], Solovyov
[18] and Močkoř [5,7]. We show that all these powerset theories are, in fact, fuzzy
type F-transforms.

Example 4.1. CSLAT (∨)-Powerset theory P = (P,→, id, η) in the category
Set, where

1. P : |Set| → |CSLAT (∨)| is defined by P (X) = (2X ,⊆), and any element S
of P (X) is identified with the characteristic function χX

S of a subset S ⊆ X
in X.

2. for each f : X → Y in Set, f→
P : P (X) → P (Y ) is defined by f→

P (χX
S ) =

χY
f(S),

3. for each X ∈ Set, ηX : X → P (X) is the characteristic function χX
{x} of a

subset {x} defined in X.
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Example 4.2. CSLAT (∨)-Powerset theory Z = (Z,→, id, χ) in the category
Set, where

1. Z : |Set| → |CSLAT (∨)| is defined by Z(X) = LX ,
2. for each f : X → Y in Set, f→

Z : LX → LY is defined by f→
Z (s)(y) =∨

x∈X,f(x)=y s(x),
3. for each X ∈ Set, χX : X → LX is defined by χX(a) = χX

{a}, for a ∈ X.

Example 4.3. CSLAT (∨)-Powerset theory D = (D,→, id, ρ) in the category
Set, where

1. D : |Set| → |CSLAT (∨)| is defined by D(X) = the set of all cuts (Cα)α∈L

in a set X, naturally ordered by inclusion,
2. for each f : X → Y in Set, f→

D : D(X) → D(Y ) is defined by f→
D ((Cα)α) =

(f(Cα))α ∈ D(Y ), where the closure (Sα)α in a set Y is defined by Sα = {a ∈
Y :

∨
β:a∈Cβ

β ≥ α},
3. for each X ∈ Set, ρX : X → D(X) and ρX(x) is defined as the constant cut

({x})α.

Example 4.4. CSLAT (∨)-Powerset theory E = (E,→, V, χ̂) in the category
Set(L), where

1. E : |Set(L)| → |CSLAT (∨)|, where E(X, δ) is the set of all functions f ∈ LX

extensional with respect to the similarity relation δ, ordered point-wise,
2. for each morphism f : (X, δ) → (Y, γ) in Set(L), f→

E : E(X, δ) → E(Y, γ) is
defined by f→

E (s)(y) =
∨

x∈X s(x) ⊗ γ(f(x), y),
3. V : Set(L) → Set is the concretel functor,
4. for each (X, δ) ∈ Set(L), χ̂(X,δ) : X → E(X, δ) is defined by χ̂(X,δ)(a)(x) =

δ(a, x), for a, x ∈ X.

Example 4.5. CSLAT (∨)-Powerset theory C = (C,→, V, χ) in the category
Set(L), where

1. C : |Set(L)| → |CSLAT (∨)| is defined by C(X, δ) = set of all f-cuts in (A, δ)
in the category Set(L), naturally ordered by inclusion,

2. for each morphism f : (X, δ) → (Y, γ) in Set(L), f→
C : C(X, δ) → C(Y, γ) is

defined by

f→
C ((Eα)α) = (f(Eα))α, f(Eα) = {b ∈ Y :

∨

(y,β):y∈f(Eβ)

β ⊗ γ(b, y) ≥ α},

3. V : Set(L) → Set is the concretel functor,
4. for each (X, δ) ∈ Set(L), χ(X,δ) : X → C(X, δ) is defined by χ(X,δ)(a) =

({a})α, where {a}α = {b ∈ X : δ(a, b) ≥ α}.
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Example 4.6. CSLAT (∨)-powerset theory F = (F,→,W, ϑ) in the category
SpaceFP is defined by

(1) F : |SpaceFP| → |CSLAT (∨)|, defined by

F (X,A) = {f |f : X → L is extensional in (X,A)},

ordered pointwise.
(2) For each (f, u) : (X,A) → (Y,B) in SpaceFP, (f, u)→

F : F (X,A) → F (Y,B)
is defined by

g ∈ F (X,A), y ∈ Y, (f, u)→
F (g)(y) =

∨

x∈X

g(x) ⊗ δY,B(f(x), y),

where δY,B is the characteristic similarity relation in Y in a space with a
fuzzy partition (Y,B).

(3) V : SpaceFP → Set is the concretel functor, V (X,A) = X,
(4) For each (X,A) in SpaceFP, ϑ(X,A) : V (X,A) → F (X,A), ϑ(X,A)(a)(x) =

δX,A(a, x), for each a, x ∈ X.

Proposition 4.1. Let us consider the powerset theories from the Examples
4.1–4.6.

1. Functors from Examples 4.1–4.6 are of the L-fuzzy type.
2. CSLAT (∨)-powerset theories from Examples 4.1–4.6 are L-fuzzy type pow-

erset theories.
3. Functors from Examples 4.1–4.6 are L-fuzzy type F-transforms.

Instead of the proof, for illustration we show only how the natural transforma-
tions i and operations � from the Definition 3.2 are defined for functors E and
C. The rest of technical proof will be published elsewhere.

(1) Example 4.4: For (X, δ) ∈ Set(L), i(X,δ) : E(X, δ) ⊆ LX is the embed-
ding, and for α ∈ L, f ∈ E(X, δ), α � f := α ⊗ f .

(2) Example 4.5: For (X, δ) ∈ Set(L), i(X,δ) : C(X, δ) � LX , and the
operation � are defined by

x ∈ X, i(X,δ)((Cα)α)(x) =
∨

{β:x∈Cβ}
β,

λ ∈ L, (Cα)α ∈ C(X, δ), λ � (Cα)α := (Gα)α, Gα = {x ∈ X : λ ⊗
∨

β,x∈Cβ

β ≥ α}.

5 Conclusions

We introduce two types of aggregation operators for lattice-valued fuzzy sets,
called fuzzy type powerset operators and fuzzy type F-transforms, which are
derived from classical powerset operators and F-transforms, respectively, and we
proved that any L-fuzzy type powerset theory is also L-fuzzy type F-transform.
This result makes it possible to use some theoretical tools from powerset theory
(e.g., theory of monads) also in F-transform theory.
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9. Močkoř, J.: Spaces with fuzzy partitions and fuzzy transform. Soft Comput. 21,
3479–3492 (2017)
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Abstract. This paper investigates properties of implicative weights and the use
of implicative weights in evaluation criteria. We analyze and compare twelve
different forms of implication and compare them with multiplicative weights and
exponential weights that are also used in evaluation criteria. Since weighted
conjunction is based on implicative weights, we also investigate the usability of
weighted conjunction in evaluation criteria.

Keywords: Graded logic � Importance � Implicative weights � GCD
Evaluation � Logic aggregation

1 Introduction

All logic aggregators used in evaluation criteria aggregate degrees of truth (or degrees
of fuzzy membership). The degrees of truth quantify the truth of value statements. Each
value statement specifies the degree of contribution of specific attribute to the overall
suitability of evaluated object. Consequently, the degrees of truth are not anonymous
real numbers, because they have precisely defined role and meaning. In other words,
the degrees of truth (and degrees of fuzzy membership) have semantic identity.

The individual attribute contributions to attainment of stakeholder’s goals are
generally different, yielding different degrees of attribute importance. Obviously, more
important are those attributes that more contribute to the overall suitability of evaluated
object. The degrees of importance are human percepts that are quantified using weights.
Consequently, the weights are interpreted as semantic components of evaluation cri-
teria. Logic aggregators combine semantic and formal logic aspects of aggregation.
Undeniably, the purpose of logic aggregation is insight, not numbers.

A natural way to quantify weights is to use real numbers from a fixed interval, and to
verbalizethoseusingratingscales.Inthecontextofevaluation,weassumethatweightsindirect
proportion express the degree of importance, which is always positive. Indeed, in the area of
evaluation,weightscannotbezero.Azeroweightobviouslydenotes the total insignificanceof
an input (elementary or compound attribute), and such inputs are justifiably excluded from
consideration. Rational thinkers ignore insignificant inputs and focus on reasoning based on
the “first things first” concept. So, in graded evaluation logic, weights are always positive.

Similarly to zero-sum games, increasing the relative importance (impact) of an
input in a group of inputs automatically means decreasing the relative importance
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(impact) of all other inputs in the group. Therefore, the weights must be normalized.
Following are three fundamental normalization methods:

1. Sum-normalized weights (constant sum of weights equal 1):

W ¼ ðW1; . . .;WnÞ; W1 þ � � � þWn ¼ 1; 0\Wi\1; i ¼ 1; . . .; n ; n� 2 :

2. Max-normalized weights (maximum weight equal 1):

v ¼ ðv1; . . .; vnÞ; maxðv1; . . .; vnÞ ¼ 1; 0\vi � 1; i ¼ 1; . . .; n:

3. Count-normalized weights (sum of weights equals the number of inputs n):

p ¼ ðp1; . . .; pnÞ; p1 þ � � � þ pn ¼ n; 0\pi\n; i ¼ 1; . . .; n:

These weights are used in different contexts. Assuming that they express the same
importance degrees, it is easy to transform one of them into another by keeping them
proportional as follows:

Wi ¼ vi=ðv1 þ � � � þ vnÞ ¼ pi=n;

vi ¼ Wi=maxðW1; . . .;WnÞ ¼ pi=maxðp1; . . .; pnÞ;
pi ¼ nWi ¼ nvi=ðv1 þ � � � þ vnÞ; i ¼ 1; . . .; n:

In the special case of equal importance and equal weights, the values of weights
become Wi ¼ 1=n, vi ¼ 1, pi ¼ 1, i ¼ 1; . . .; n.

All forms of weights support the same “implication concept:” it is not acceptable
that an important input (requirement) is insufficiently satisfied. If x denotes an input
argument and W ; v; p are its weights (degrees of importance), then the implication
concept emerges in three characteristic forms:

• Multiplicative: W � x
• Implicative: v ! x ¼ �v _ x ¼ v ^ �x ¼ 1� ½v ^ ð1� xÞ�
• Exponential: xp

All these forms support the same idea: if the weight is large, then x should also be
large in order to provide a high contribution to the overall score. Implicative weights
are particularly interesting because only implicative weights belong to [0, 1] without
additive restrictions. Thus, only implicative weights have the status of independent
logic variables and can be interpreted as degrees of truth. Multiplicative weights and
exponential weights do not have the interesting property that semantic aspects of
evaluation (degrees of importance) can be interpreted in the same way as the degrees of
satisfaction. In the case of implicative weights evaluation models can be developed
strictly inside the domain of formal logic. This is the motivation for the analysis
presented in this paper. The context of our analysis is evaluation: we investigate the
suitability of implicative weights as importance quantifiers in evaluation criteria.

Evaluation criteria use logic aggregators to compute an overall suitability indicator
using n arguments that represent suitability indicators of selected input attributes. Such
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forms of logic aggregators were proposed in the context of approximate reasoning and
information retrieval [1, 2], and general aggregation models [3, 4]. Our goal is to
evaluate the applicability of such models in the area of evaluation.

2 Implicative Weights in Conjunctive Aggregators

The motivation for using implicative weights v ! x ¼ v ^ �x comes directly from the
verbal interpretation of this relationship between the degree of importance (weight)
v and the degree of satisfaction/truth x: “it is not acceptable if input x is important and it
is not (sufficiently) satisfied” or “important input must be highly satisfied.” If x is very
important (v is close to 1) and x is very much satisfied (x is close to 1) then
v ! x � 1 ! 1 ¼ 1. This is a correct conclusion: we are completely satisfied with the
ideal combination of importance and satisfaction. The next step in that direction is the
case of multiple inputs x1; . . .; xn and the criterion “all important inputs should be
simultaneously satisfied” which directly yields conjunctive aggregators based on
multiplicative, implicative and exponential forms:

y ¼ ðW1x
r
1 þ � � � þWnx

r
nÞ1=r; r\1;

y ¼ ðv1 ! x1Þ ^ � � � ^ ðvn ! xnÞ ¼ ð�v1 _ x1Þ ^ � � � ^ ð�vn _ xnÞ ;
y ¼ xp11 � � � � � xpnn ; n� 2:

Multiplicative weights are used in additive aggregation forms and exponential
weights are used in multiplicative aggregation forms. So, there is a natural interest to
compare aggregators with implicative weights and other aggregators. Initial steps in
that direction can be found in [4, 5].

If implication is modeled as v ! x ¼ maxð1� v; xÞ then it is easy to see that, from
the standpoint of logic aggregators used in evaluation criteria, this function has
acceptable, questionable and unacceptable properties shown in Table 1. To find more
convenient properties, we must investigate other forms of implication function.

3 Implicative Weight Functions

In the case of implicative weights, there are various ways to implement the necessary
negation and conjunction, yielding a variety of implication functions. Presentations and
analyses of various forms of implication can be found in [6–10]. The most popular
forms of implication include the following:

Dienes: v ! x ¼maxð1� v; xÞ
Reichenbach: v ! x ¼1� vð1� xÞ
Gödel: v ! x ¼ 1 if v� x

x otherwise

�
Yager: v ! x ¼xv

Lukasiewicz: v ! x ¼min 1� vþ x; 1ð Þ
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Drastic: v ! x ¼
1� v if x ¼ 0

x if v ¼ 1

1 otherwise

8><
>:

Einstein: v ! x ¼1� vð1�xÞ
1þð1�vÞx

Hamacher: v ! x ¼1� vð1�xÞ
1�ð1�vÞx

Goguen: v ! x ¼ 1 if v� x

x=v otherwise

(

Rescher: v ! x ¼ 1 if v� x

0 if v[ x

(

Zadeh: v ! x ¼max 1� v;minðv; xÞð Þ
Fodor: v ! x ¼ 1 if v� x

maxð1� v; xÞ if v[ x

�
Multiplicative weights and additive aggregation forms provide both soft and hard

models of simultaneity and substitutability [11]. As opposed to that, multiplicative
models with exponential weights are always hard. In the case of Dienes type of
implicative weights and weighted conjunction, if 1 ¼ v1 [ v2 � � � � � vn [ 0, then the
weighted conjunction y ¼ x1 ^ ð�v2 _ x2Þ ^ � � � ^ ð�vn _ xnÞ is only hard with respect to
x1(and all other inputs that might have the maximum importance 1), but soft with
respect to all other inputs. This is a typical property of partial absorption [12] but not
the property of partial conjunction. This inconvenient property also indicates that it is
necessary to investigate other forms of implication from the standpoint of their suit-
ability for combining weights and degrees of truth in logic aggregators.

Table 1. Interpretation of properties of implication �v _ x; v 2 ½0; 1�; x 2 ½0; 1�
v x �v _ x Interpretation Evaluation

0 0 1 Insignificant input can be unsatisfied without
consequences

Acceptable

0 1 1 Degree of satisfaction of insignificant input makes no
visible impact

Acceptable

1 0 0 It is unacceptable to not satisfy an extremely important
requirement

Acceptable

1 1 1 We are fully satisfied if a very important input is
completely satisfied

Acceptable

0 1 1 The impact of the fully satisfied input is the same
regardless of its degree of importance

Questionable
1 1 1
¾ 0 ¼ Penalty for unsatisfied inputs equals their degree of

importance. Thus, unsatisfied inputs have the power of
annihilation only if they have the maximum degree of
importance

Unacceptable
½ 0 ½

¼ 0 ¾

¼ 0 ¾ Insensitivity to the degree of satisfaction of x as long as
x � 1 − v

Unacceptable
¼ ¾ ¾
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4 GCD and Monotonicity with Respect to Andness
and Orness

In graded logic, we are primarily interested in models of simultaneity, substitutability,
and negation. Assuming the use of standard negation NðxÞ ¼ 1� x, the fundamental
logic function is the Graded Conjunction/Disjunction (GCD) [5, 11]. Let x denote an
array of n degrees of truth and letW denote the corresponding array of n weights. GCD
aggregators provide continuous transition from the drastic conjunction y ¼ x1 � � � xnb c
to the drastic disjunction y ¼ 1� ð1� x1Þ � � � ð1� xnÞb c controlled by the global
andness a, or the global orness x ¼ 1� a. Consequently, GCD is an andness-directed
aggregator defined in the full range �1=ðn� 1Þ� a� n=ðn� 1Þ [13]. A general
interpolative GCD aggregator [11] that uses weighted power mean with exponent
rwpmðaÞ, the adjustable threshold andness ah, and t-norm/conorm, can be written as
follows [13]:

z ¼ Aðx;W; aÞ

¼
Fðx;W; aÞ ¼

Qn
i¼1 xi

� �
; a ¼ amax ¼ n=ðn� 1Þ:

Qn
i¼1

xi

� � ðnþ 1Þ=½n�ðn�1Þa�f g1=n�1

; at\a\amax:

Qn
i¼1

xi ; a ¼ at ¼ n2n�n�1
ðn�1Þ2n :

at�a
at�1 minðxÞþ a�1

at�1

Qn
i¼1

xi; 1 \a\at:

minðx1; . . .; xnÞ; a ¼ 1:

Pn
i¼1

Wix
rwpmðaÞ
i

� �1=rwpmðaÞ
; ah � a\1:

ah�a
ah�1=2

Pn
i¼1

Wixi

� �
þ a�1=2

ah�1=2

Pn
i¼1

WixRi

� �1=R

; 1=2 \a\ah:

Pn
i¼1

Wixi; a ¼ x ¼ 1=2:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1� Fð1� x;W; 1� aÞ; amin ¼ �1=ðn� 1Þ� a\0:5 :

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

n[ 1; x ¼ x1; . . .; xnð Þ; 1� x ¼ 1� x1; . . .; 1� xnð Þ;

W ¼ W1; . . .;Wnð Þ; 0\Wi\1; i ¼ 1; . . .; n;
Xn
i¼1

Wi ¼ 1:

R ¼ rwpmðahÞ; 23 � n
n� 1

� nþ 1
n� 1

n
n� 1

� �n
� ah\1; (frequently ah ¼ 3=4) .

The properties of the GCD aggregator are selected by selecting the desired andness
and desired weights. The presented version of GCD uses multiplicative weights only in
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the region from pure conjunction to pure disjunction ð0� a� 1Þ; the reasons for this
decision are presented in the next section.

The GCD aggregator is andness-monotonic: a1\a2 ) Aðx;W; a1Þ�Aðx;W; a2Þ,
x1\x2 ) Aðx;W; 1� x1Þ�Aðx;W; 1� x2Þ (the monotonicity is strict if arguments
are different from annihilators and non-identical). This property is consistent with
observations of human reasoning: as the andness increases, decision maker requires
more simultaneity. The percept of the importance of inputs automatically increases, and
for hard GCD all inputs must be satisfied regardless to differences in their relative
importance. Ultimately, the aggregated degree of truth approaches the minimum input
(i.e., the weakest link in the chain of degrees of truth), yielding the weight-independent
pure conjunction Aðx;W; 1Þ ¼ x1 ^ � � � ^ xn. Therefore, if arguments are not identical,
or annihilators, GCD must be strictly decreasing in a and strictly increasing in x. This
is the fundamental property of conjunctive and disjunctive logic aggregators.

5 Andness-Domination Versus Weight-Domination

The percept of overall importance of each GCD input depends on two components: the
relative importance (weight) and andness/orness. Any increase of the weight of an
input causes an increase of the percept of the input’s overall importance. The same
effect is caused by high values of andness (or orness): the percept of importance is an
increasing function of maxða;xÞ. Indeed, in the case of conjunctive aggregators, more
simultaneity we need, more important becomes each input, because its nonsatisfaction
cannot be tolerated. Similarly, for disjunctive aggregators, increasing substitutability
and orness gives more power to any input to fully satisfy the disjunctive criterion; that
automatically increases the overall percept of its importance.

The modeling of process how humans combine the impacts of weights and the
impact of andness/orness to produce the percept of overall importance is certainly a
delicate question. An answer to this question, in the form of methods for decomposing
the percept of the overall importance of inputs into the most appropriate weight and the
most appropriate andness can be found in [11].

Observations of human reasoning indicate that, except for identical inputs, and
inputs that are annihilators, GCD aggregators must satisfy @Aðx;W; aÞ=@a\0 and also
@Aðx;W; 1� xÞ=@x[ 0 in the whole range of andness, from drastic conjunction to
drastic disjunction. For conjunctive aggregators, the impact of weights is a decreasing
function of andness. Similarly, for disjunctive aggregators, the impact of weights is a
decreasing function of orness. To prove this claim, suppose that we want simultaneous
satisfaction of multiple inputs that have different degrees of relative importance. The
degree of simultaneity is defined as the global andness a. For low values of a, (e.g.
a � 1=2) the impact of important inputs (those with higher weights) is visibly higher
than the impact of inputs that have lower weights. As we increase the degree of
simultaneity the percept of importance of inputs increases because it becomes less and
less acceptable that any input is insufficiently satisfied. For values a� ah, GCD
becomes hard, and all inputs become important because each of them models a
mandatory requirement and must be satisfied. In such a situation, for conjunctive
aggregators, the highest impact comes from the smallest inputs and not from the most
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important inputs. For high values of a, (e.g. a � 1) all inputs becomes equally
important because no input can be unsatisfied regardless the level of its initial relative
importance. Consequently, for high andness all inputs become equally important. We
call this property andness-domination, because the impact of different weights is first
diminished and then annihilated at high degrees of andness. The impact of andness
dominates the impact of weights and in the case of full conjunction y ¼ x1 ^ � � � ^ xn
the impact of different weights completely disappears, as in Boolean logic. Based on
this reasoning, our model of GCD has no weights in the area of hyperconjunction (the
range from the full conjunction to the drastic conjunction). For disjunctive aggregators,
due to De Morgan duality, the situation is completely symmetric to the conjunctive
case.

Let us now investigate the following weighted conjunction, which is based on
Dienes type of implicative weights:

yðx1; . . .; xnÞ ¼ ðv1 ! x1Þ ^ � � � ^ ðvn ! xnÞ ¼ ð�v1 _ x1Þ ^ � � � ^ ð�vn _ xnÞ:

In this model, each argument is shielded by negated weight, in the sense that if
�vi � xi then �vi _ xi ¼ �vi. In the case of sorted weights, if 1 ¼ v1 [ v2 � � � � � vn [ 0,
then this model of weighted simultaneity has the following properties:

yð0; 1; . . .; 1Þ ¼ 0; yð1; 0; . . .; 0Þ ¼ �v2 ¼ 1�maxðv2; . . .; vnÞ[ 0;

yð1; 0; 0; . . .; 0Þ ¼ yð�v2; 0; 0; . . .; 0Þ ¼ �v2;

yð�v2; 0; 0; . . .; 0Þ ¼ yð�v2;�v2; . . .�v2Þ ¼ yð1; 0; 1; . . .; 1Þ ¼ yð1;�v2; 1; . . .; 1Þ ¼ �v2

It is easy to see that these properties are generally very questionable and unac-
ceptable in the area of evaluation criteria. The first formula shows that this model
provides soft aggregation for all inputs except the most important input (which is hard);
this is not the property of either hard or soft partial conjunction, where all inputs must
behave in a homogeneous way. The second formula shows that this form of implicative
weights is insensitive to variation of the most important input in the range �v2 � x1 � 1,
regardless the fact that only x1 is satisfied, and for all 0� xi ��v2, i ¼ 2; . . .; n; there is no
logic justification for this property. The third formula shows the unjustifiable insensi-
tivity to large variations of inputs as long as the second input is not greater than �v2.

In all presented examples the result of aggregation is the weight �v2. The weights are
an expression of stakeholder’s goals and requirements and not an expression of
properties of an evaluated object. We call this property of highly conjunctive aggre-
gators the weight domination, to contrast it to the previous more justifiable andness
domination. Of course, the presented example of output equal to weight occurs only for
specific set of distributions of input suitability degrees. Consequently, it indirectly
depends on inputs, but nevertheless represents a feature that cannot be tolerated in
evaluation models and disqualifies the use of the most natural Dienes implication in
evaluation criteria. On the other hand, this opens the question whether other forms of
implication yield more desirable logic aggregation models.
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6 Experimental Comparison of Implicative Weight Models

The goal of experimental comparison of various forms of implication in weighted
simultaneity models is to select the form of implication that is the most suitable for
solving practical evaluation problems. We are going to analyze classic implications
presented in Sect. 3. Of course, there are more implication functions [9, 10] and they
should be analyzed in a similar way as a part of future work.

Suppose that a homebuyer reduced the decision about the overall home suitability
(H) to two fundamental final components: the suitability of home location (L) and the
quality of home (Q, evaluated without taking into account its cost and location).
Therefore, H ¼ f ðL;QÞ and there is no doubt that the function f is conjunctive because
everybody simultaneously wants a good home and a nice location. In the decision
process, the cost will later be compared to H.

Let the location be two times more important than the home quality (the owner can
improve the quality of home, while the quality of location usually remains unchanged).
If we use the basic Dienes implication to make the weighted conjunction, then we have
the following:

HwcðL;QÞ ¼ ð�vL _ LÞ ^ ð�vQ _ QÞ
vL ¼ 1; vQ ¼ 0:5 ) HwcðL;QÞ ¼ L ^ ð0:5 _ QÞ

This criterion yields the following completely meaningless results:
Hwcð0:5; 0Þ ¼ 0:5: An unacceptable home in an average location makes the

homebuyer 50% satisfied.
8Q 2 ½0; 1� ) Hwcð0:5;QÞ ¼ 0:5: In an average location homebuyer’s satisfaction

is always 50% and it does not depend on home quality.
Hwcð0:5; 0:5Þ ¼ Hwcð1; 0:5Þ ¼ 0:5: An average home in an average location and an

average home in an ideal location are equally desirable.
The problem we face with this form of weighted conjunction is the weight-

domination problem that is clearly visible in the general case of weights
vL ¼ 1; 0\vQ\1, as follows:

8L��vQ; 8Q��vQ ) HwcðL;QÞ ¼ L ^ ð�vQ _ QÞ ¼ �vQ ¼ const:

Thus, this criterion absurdly claims that in the large range of values of input
arguments L and Q the resulting suitability does not depend on arguments at all, but it
is equal to the weight complement �vQ. However, �vQ is a parameter that reflects the
interests of homebuyer and has nothing in common with the properties of the evaluated
object, while the properties of evaluated object (L and Q) are made irrelevant and
completely neglected in a wide range of their values.
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In graded logic aggregation the proper solution of the homebuyer criterion problem
is any idempotent hard partial conjunction. For example, let us take a simple weighted
harmonic mean:

HharðL;QÞ ¼ 1
WL=LþWQ=Q

¼ LQ
QWL þ LWQ

WL ¼ 2=3; WQ ¼ 1=3 ) HharðL;QÞ ¼ LQ
2Q=3þ L=3

¼ 3LQ
Lþ 2Q

Let us again suppose that the quality of home location is two times more important
than the quality of home. Following are four characteristic examples of results gen-
erated by this aggregator:

Hharð0:5; 0Þ ¼ 0 (an unacceptable home is rejected in any location)

Hharð0:5; 0:5Þ ¼ 0:5 (an average home in an average location gives average satisfaction)

Hharð0:5; 1Þ ¼ 0:6 (in an average location an ideal home satisfies 60% of requirements)

Hharð1; 0:5Þ ¼ 0:75 (in an ideal location an average home satisfies 75% of requirements)

These results are intuitively acceptable and we can ask the obvious question: is it
possible to achieve such results using weighted conjunction based on an appropriate
implication function? Since there are many forms of implication and many models of
simultaneity, some combinations can be more suitable and some combinations are less
suitable. A positive answer to this question can be found in [13].

Let us compute HharðL;QÞ and H½imp�
wc ðL;QÞ for various implications [imp] and for

nine combinations of arguments L and Q belonging to set f0; 0:5; 1g. For comparison
of implicative weighted conjunction and the harmonic mean we use the weighted

absolute error E½imp� ¼ 100 R9
i¼1 Wi H

½imp�
wc ðL;QÞ � HharðL;QÞ

			 			.R9
i¼1Wi ½%� defined

using weights Wi that reflect the idea that some errors can be easier tolerated than other
errors. We use the following weights: 4 (for idempotency errors), 3 (for Boolean
implication compatibility errors), 2 (for annihilation errors) and 1 (for all other errors).
For WL ¼ 2=3; WQ ¼ 1=3; vL ¼ 1; vQ ¼ 0:5. Following is the ranking of implica-
tions according to decreasing error:

E½Yag� ¼ 0:595%; E½God� ¼ 1:46%; E½Gog� ¼ 1:46%; E½Rei� ¼ 10:8%;

E½Ein� ¼ 11%; E½Ham� ¼ 11:2%; E½Die� ¼ 11:9%; E½Luk� ¼ 11:9%;

E½Dra� ¼ 11:9%; E½Res� ¼ 11:9%; E½Fod� ¼ 11:9%; E½Zad� ¼ 20:2%:

The most convenient form of implication for implicative evaluation criteria is
Yager’s implication, followed by implications proposed by Gödel and Goguen. Using
Yager’s implication the weighted conjunction aggregator with implicative weights
becomes ðvL ! LÞ ^ ðvQ ! QÞ ¼ LvL ^ QvQ ¼ L ^ QvQ . The differences between var-
ious weighted conjunction formulas depend on vL and vQ. In the case vL ¼ vQ all errors
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(except for Rescher) become small and equal: 1.39%. Therefore, some forms of
implication can be used to provide implicative weights in evaluation criteria.

Weighted conjunctions can be organized with various models of conjunction. In
addition, weighted conjunction and weighted disjunction can be natural limit cases of
aggregators that perform continuous andness-directed transition from the weighted
conjunction to the weighted disjunction. Such an aggregator was proposed by Henrik
Legind Larsen [3–5]. Larsen developed a graded conjunction/disjunction aggregator
based on Reichenbach implication, called AIWA [3]. AIWA can be interpreted as a
form of GCD where the weighted conjunction y^ and the weighted disjunction y_
(based on Reichenbach implication) are special cases of AIWA for andness 1 and 0
respectively. The AIWA aggregator uses the maximum-normalized weights
v ¼ ðv1; . . .; vnÞ; maxðv1; . . .; vnÞ ¼ 1. The logic properties of AIWA are adjusted
using the AIWA andness a 2 ½0; 1�, as follows:

hðx; v; aÞ ¼

maxðv1x1; . . .; vnxnÞ; a ¼ 0Pn

i¼1
vixið ÞrPn

i¼1
vri

� �1=r

; 0\a� 1=2

1�
Pn

i¼1
við1�xiÞð Þ1=rPn

i¼1
v1=ri

� �r

; 1=2� a\1

min½1� v1ð1� x1Þ; . . .; 1� vnð1� xnÞ�; a ¼ 1

8>>>>>>>><
>>>>>>>>:

r ¼ 1
a
� 1 ¼ 1� a

a
¼ �a

a
; maxðv1; . . .; vnÞ ¼ 1

min½1� v1ð1� x1Þ; . . .; 1� vnð1� xnÞ� ¼ 1�max½v1ð1� x1Þ; . . .; vnð1� xnÞ�

At andness 1 and 0, AIWA becomes the implicative weighted conjunction and
weighted disjunction respectively, based on Reichenbach implication. At andness ½,
the AIWA aggregator becomes the weighted arithmetic mean. In the case of equal
weights v1 ¼ � � � ¼ vn ¼ 1 the AIWA aggregator becomes the power mean. AIWA
satisfies De Morgan duality and can be written as follows:

hðx; v; aÞ ¼ lim
r!ð1�aÞ=a

Pn

i¼1
vixið ÞrPn

i¼1
vri

� �1=r

; 0� a� 1
2

1� hð1� x; v; 1� aÞ ; 1
2� a� 1

8><
>:

Since r ¼ a�1 � 1� 1, numeric computations are always performed for partial
disjunction and r� 1. Similarly to the exponential mean, and OWA, the AIWA partial
disjunction is a soft aggregator, and because of De Morgan duality the corresponding
partial conjunction is also soft. Therefore, AIWA cannot be used in cases where we
need hard aggregators. In addition, the implicative weighted conjunction and weighted
disjunction based on Reichenbach implication are also soft. More precisely, they are
hard in the case of the most important input and soft in the case of all less important
inputs. In that sense they seem to be more related to partial absorption than to con-
junction or disjunction. It is not an observable human property that at the highest level
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of simultaneity or substitutability the slightest inequality of weights deprives an input
of the right to be mandatory or sufficient. This AIWA property is inconsistent with the
fact that the hard partial conjunction/disjunction can be observed in human reasoning
already at the level of andness/orness below 75% [11].

In the case of logic aggregators, the output of GCD must be a monotonically
decreasing function of andness. Indeed, any increase of andness increases the penalty
for insufficient simultaneity and the output suitability should monotonically decrease
towards the minimum input value. However, as shown in [13], for some combinations
of inputs and weights AIWA output monotonically decreases when we increase and-
ness, but for other combinations that is not the case. Consequently, in a general case,
AIWA does not have the formal status of logic aggregator.

7 Conclusions

Implicative weights have attractive property that weights can be interpreted as inde-
pendent logic variables. Consequently, both semantic and formal logic components of
evaluation criteria can be expressed using soft computing logic functions. Implicative
weights clearly support the requirement that it is not acceptable if an input argument is
important and insufficiently satisfied.

The presented analysis of implicative weights and weighted conjunction shows that
implicative weights and weighted conjunction/disjunction currently provide a limited
applicability in graded evaluation logic. The main problems we found with implicative
weights and related aggregators in applications based on graded logic criteria are the
following:

(1) The weight-dominated aggregation where, at the extreme levels of andness,
instead of fading out, the weights can become a dominant contributor to the result
of aggregation. This property prevents compatibility with classic Boolean logic
and interpolative connection with hyperconjunction/hyperdisjunction.

(2) There are significant differences of properties of aggregators in the case of equal
weights, and the same aggregators in the case of different weights.

(3) Significant regions of insensitivity to variations of input values reduce both the
compensativeness of aggregators and the desirable (strict) monotonicity.

(4) The absence of homogeneous annihilators: regardless of andness, the power of
annihilation is reserved only for the most important input.

(5) Insufficient monotonicity of aggregation results with respect to andness/orness.
(6) Predominantly soft aggregation, insufficient for modeling all observable proper-

ties of human evaluation reasoning.

Implicative weights and related aggregators seem to currently have a modest
potential for applicability in modeling evaluation criteria. Taking into account the
variety of existing implication functions, and the variety of simultaneity models, it is
always necessary to match these two components to find the most convenient com-
bination for each particular application area. We presented an example of good match,
but generally, that can be a significant effort.
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The impact of weights as indicators of relative importance is the highest in the
vicinity of the medium andness a ¼ 1=2, which corresponds to the arithmetic mean. If
the andness increases and approaches 1, the impact of weights decreases. Sooner or
later, it must disappear. If a high andness ða� 1Þ eliminates the impact of weights, it is
reasonable to claim that such aggregators are andness-dominated. This is the property
of human reasoning and the property of multiplicative weights. In the case of
implicative weights the situation is different: the models of simultaneity are weight-
dominated.

The results of this paper indicate the direction of future work. First, we need a
systematic analysis of various families of implication functions as providers of
implicative weights in models of simultaneity and substitutability used in evaluation
criteria. Second, we need additional study of relationships between andness-dominance
and weight-dominance. Third, the goal of logic is to provide justifiable models of
human reasoning, and the validity of such models is not a mathematical problem, but a
problem that can only be solved using experiments with human subjects. At this time,
that area of research seems to be fully neglected.
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Abstract. Assembly lines are of great importance in most actual pro-
duction systems and thus continue attracting strong research interest.
We address a real industry scenario where the aim of the line is to target
a production output that meets, as much as possible, a given demand
forecast. To the best of our knowledge, the existing literature has not
tackled this problem, and we named it the demand-driven assembly line
(re)balancing problem. A mixed integer programming model is developed,
solved using genetic algorithm, and tested in the straight assembly line,
providing useful insights about the dynamics of worker reallocations.

1 Introduction

The extensive literature on assembly line balancing (ALB) has focused on max-
imizing line efficiency, overlooking strategic use or neglecting the organization’s
overall operations effectiveness [21]. Wilson [19,20] argues that Ford’s assembly
lines were optimized both ‘locally’ as individual production systems; and also
‘globally’ as constituent sub-systems of Ford’s larger, vertically integrated supply
chain system. Wilson [21] also reveals with data that, in fact, Ford’s operations
were adaptable to strongly increasing and highly variable demand.

Needless to say, the importance of matching supply with demand is univer-
sally recognized. However, to our surprise, demand fluctuations still have not
been explicitly considered to perform task assignment and/or worker allocation
(to stations) in the assembly line balancing problem (ALBP).

This paper introduces the demand-driven assembly line (re)balancing problem
(DDALBP). The proposed model aims to balance and rebalance an assembly
system over a planning period, adjusting the production output of the line as
much as possible to the forecast market demand, by means of worker allocation
and reallocation. The model also aims to achieve smooth production flow and
considers learning and forgetting effects.

In 2007, Miralles et al. [8] introduced the assembly line worker assignment
and balancing problem (ALWABP). The ALWABP appears in real assembly lines
when not all workers can execute all tasks, and the operation time of each task
is different depending upon who executes the task. Traditionally, the aim in the
ALBP has been the assignment of tasks to stations. In the ALWABP there is a
c© Springer Nature Switzerland AG 2018
V. Torra et al. (Eds.): MDAI 2018, LNAI 11144, pp. 206–217, 2018.
https://doi.org/10.1007/978-3-030-00202-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00202-2_17&domain=pdf


The Demand-Driven Assembly Line (Re)balancing Problem 207

double assignment: (1) tasks to stations and (2) workers to stations. The authors
presented the mathematical model for the ALWABP and a case study based on
a Spanish sheltered workcenter for disabled workers.

Different methods have been proposed for solving the ALWABP; for instance:
hybrid method Clustering Search [4,5], branch-and-bound [3,9,18], beam search
[2], a constructive heuristic framework with priority rules [10], an iterative
genetic algorithm [13], a multi-objective evolutionary algorithm [22].

In 2015, Moreira et al. [11] introduced the assembly line worker integration
and balancing problem (ALWIBP). The scenario seen in the ALWIBP is similar
to the ordinary company, where only few disabled workers have to be integrated.
The authors presented mathematical models and heuristic methodologies to solve
the problem. Moreira et al. [12] proposed the use of Miltenburg’s regularity
criterion to evenly distribute workers with special characteristics along the line,
as well as two fast heuristics for the assignment of tasks and workers to stations.

More recently, Stall-Sikora et al. [16] introduced the traveling worker assembly
line (re)balancing problem (TWALBP). This new problem variation arises if
workers can be assigned to more than one station. Hence, workers are able to
move between stations, allowing them to perform tasks from different regions of
the precedence diagram. Each worker limits the cycle time by the sum of the
processing times of the tasks assigned to him/her and his/her movement times
between stations. The authors presented a mixed integer programming (MIP)
model with a traveling salesman problem (TSP) formulation integrated in the
balancing model to solve the problem.

All of these works deal interestingly and cleverly with the allocation of work-
ers and tasks to stations. They aim mainly at minimizing the cycle time (i.e.,
maximizing throughput), regardless of the production output that is actually
required. Also, task times are deterministic and differ depending on who exe-
cutes the task. In our modest effort, we intend to offer a balancing model that
differs in two fundamental ways: (1) The allocation of workers is driven by a
forecast market demand. (2) Task times are dynamic since our model considers
learning and forgetting effects.

The rest of this paper is organized as follows: Sect. 2 describes our prob-
lem and formulates it mathematically; numerical experiments are presented and
discussed in Sect. 3; and Sect. 4 contains some brief conclusions.

2 Mathematical Formulation

2.1 Input Description

We consider an assembly line (AL) composed of a specific number of stations j =
1, 2, 3, . . . , J , organized in straight layout. Each station is equipped with specific
tooling and equipment in order to provide the station the required functionality
to execute the particular subset of tasks assigned to it. Progressively, on each
station, the bill-of-material parts and components are attached to the jobs or
workpieces, which become finished products at the end of the line.
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In the factory, there is a fixed number of workers, K, which may (or may
not) have an initial skill inventory, Sinitial

jk , the number of units that worker k
would be able to process (in one working period) in his/her first assignment to
station j. This capacity improves as long as the worker continues performing on
the same station; otherwise, the skill level deteriorates.

The jobs processed at one station are put on a buffer, and these jobs become
input for the next station. Each station must guarantee a minimum work-in-
process inventory, WIPmin, for its downstream station at the end of each working
period in order to ensure smooth production flow at the beginning of the next
working period (i.e., avoid the waiting time of feeding the line).

By assigning workers to stations, the AL should be balanced in the best
possible way on each planning period � = 0, 1, 2, . . . , L − 1 to satisfy D(� + 1),
the forecast market demand of the next period, � + 1.

2.2 Incorporating Learning and Forgetting Effects

We incorporate the formulations for skill improvement and skill deterioration
proposed by Azizi et al. [1]. On the one hand, when a worker is assigned to
a station, his/her skill improves as he/she performs in the same station. Skill
improvement can be modeled with:

Sjk� = Smax
j − (

Smax
j − Srem

jka

)
eβk(�−a) (1)

where Sjk� is the skill level of worker k in station j on period �, Smax
j is the

theoretical maximum level of skill at station j, Srem
jka is the skill level that worker

k had in station j when he/she was assigned to that station (on period a). At
time zero, however, Srem

jk0 corresponds to the worker’s initial skill level, Srem
jk0 =

Sinitial
jk . If a worker is assigned to a station by the first time, then Srem

jka in (1)
must be substituted by Sinitial

jk . βk is the learning slope of worker k given by
βk = (log rk)/(log 2), where rk is the learning coefficient of worker k.

On the other hand, as the worker continues to learn the new skill, his/her
previously gained skill decays as a result of the forgetting phenomenon. The
corresponding skill deterioration formula is:

Srem
jk� = Smin

j +
(
Sjkd − Smin

j

)
eγk(�−d) (2)

where Srem
jk� is the remnant skill of worker k in station j on period �; Smin

j is the
theoretical minimum level of skill at station j; Sjkd is the skill level that worker k
had in station j when he/she departed last time (on period d) from that station;
and γk is the forgetting slope of worker k given by γk = (log fk)/(log 2), where
fk is the forgetting coefficient of worker k.

According to (1) and (2), at infinite time, the skill level reaches, respectively,
the maximum and the minimum levels: Sjk∞ = Smax

j and Srem
jk∞ = Smin

j . How-
ever, achieving the maximum or the minimum level of skill in infinite time is unre-
alistic. Therefore, the concepts skill upper bound and skill lower bound are intro-
duced: SUB

j and SLB
j . Their relationship with Smax

j and Smin
j is SUB

j = Smax
j −δj

and SLB
j = Smin

j + εj , respectively, where δj and εj are the skill upper bound
threshold value and the skill lower bound threshold value for station j.
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2.3 Objective Functions

The number of units that a worker can process is given by Sjk�, as descried in
the previous section. The theoretical number of units that station j can process
on period �, P (j, �), depends on the worker who will be assigned to that station;
i.e., P (j, �) = xjk� · Sjk�, where xjk� is a binary decision variable that equals 1 if
worker k is assigned to station j on period �; otherwise it equals 0. Q(j, �) is the
actual number of units processed by station j on period � based (not only on
the worker assigned there, but also) on the number of units that the upstream
station is feeding, and the station’s available WIP inventory.

The essential goal in the DDALBP is to match the production output of
the AL to the forecast market demand. Therefore, in the ideal case, the actual
number of units produced by the last station on any given period should match
the forecast demand of the next period, Q(J, �) = D(� + 1). Therefore, our first
objective function (OF) can be expressed as:

Min Z1 =
L−1∑

�=0

|D(� + 1) − Q(J, �)| (3)

If we distinguish between loosing sales, D(� + 1) > Q(J, �), and building inven-
tory, Q(J, �) > D(� + 1), this objective function can be reformulated as:

Min Z1 = g

L−1∑

�=0

Max {0,D(� + 1) − Q(J, �)} + h

L−1∑

�=0

Max {0, Q(J, �) − D(� + 1)}
(4)

where g is the unit cost of lost sales and h is the unit cost of holding inventory.
In addition to meet demand, the solution to the DDALBP also aims to

achieve the smoothest possible production flow. The following two proposed
OFs are modified from Song et al. [15]. If Q represents the average number of
units processed among all stations, then, our second OF can be written as:

Min Z2 =
L−1∑

�=0

√√
√
√ 1

J

J∑

j=1

[
Q(j, �) − Q(�)

]2
(5)

The number of units produced by the bottleneck station is Q(bn) =
min {Q(1), . . . , Q(J)}. The production waste of station j on period � is defined
as Qw(j, �) = P (j, �)−Q(bn, �). The total production waste (of the whole AL) on
period � is Qw(�) =

∑J
j=1 [P (j, �) − Q(bn, �)], and our third OF can be written

as:

Min Z3 =
L−1∑

�=0

J∑

j=1

[P (j, �) − Q(bn, �)] (6)

2.4 Restrictions

The following restrictions are related to the number of workers: Constraint (7)
indicates that on each period, every worker is assigned to one station. Constraint
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(8) indicates that on each period, each station receives exactly one worker. Con-
straint (9) indicates that on each period, the sum of workers assigned along the
different stations cannot exceed the number of workers available in the factory.

J∑

j=1

xjk� = 1 ∀ k ∈ K, � = 0, 1, . . . , L − 1 (7)

K∑

k=1

xjk� = 1 ∀ j ∈ J, � = 0, 1, . . . , L − 1 (8)

J∑

j=1

K∑

k=1

xjk� ≤ K � = 0, 1, . . . , L − 1 (9)

Constraint (10) links the worker allocation decision to the theoretical number of
units produced.

P (j, �) =
K∑

k=1

(xjk� · Sjk�) ∀ j ∈ J, � = 0, 1, . . . , L − 1 (10)

The following restrictions regulate the actual number of units processed by the
stations: Constraint (11) indicates that the actual number of units processed by
station 1 equals its own theoretical number of units processed. Constraints (12)
and (13) compute the number of units processed by all other stations on period
0 (when there is no WIP inventory), and on subsequent periods (when there
may exist WIP inventory), respectively. Constraint (14) stipulates that, on any
given period, the actual number of units processed by the last station (J) must
satisfy the forecast market demand of the next period.

Q(j, �) = P (j, �) j = 1, � = 0, . . . , L − 1 (11)

Q(j, �) = min {P (j, �), Q(j − 1, �)} j = 2, . . . , J, � = 0 (12)

Q(j, �) = min {P (j, �), Q(j − 1, �) + WIP (j, � − 1)} j = 2, . . . , J, � = 1, . . . , L − 1

(13)

Q(J, �) ≥ D(� + 1) � = 0, . . . , L − 1 (14)

The following restrictions control the amount of WIP inventory: Constraints (15)
and (16) compute the WIP inventory that remains at each station at the end
of period 0, and at the end of subsequent periods, respectively. Constraint (17)
requires the WIP inventory at the stations to be at least the minimum necessary
to ensure immediate work at the beginning of each working period. Period 0 is
excluded from this WIP constraint because on period 0 the AL is empty; there is
no WIP inventory at all. Station 1 is excluded from these three WIP constraints
because it is not fed by WIP inventory from a previous station; instead, it is
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fed by raw materials. Finally, (18) shows the binary restriction of the decision
variables.

WIP (j, �) = Q(j − 1, �) − Q(j, �) j = 2, . . . , J, � = 0 (15)

WIP (j, �) = WIP (j, � − 1) + Q(j − 1, �) − Q(j, �) j = 2, . . . , J, � = 1, . . . , L − 1

(16)

WIP (j, �) ≥ WIPmin j = 2, . . . , J, � = 1, . . . , L − 1 (17)

xjk� ∈ {0, 1} (18)

3 Numerical Experiments

We now demonstrate the use of the developed MIP formulation, solved with
genetic algorithm, in the Jackson problem. The data of this problem comes from
a benchmark data set, a collection of simple assembly line balancing problems
(SALBP) that appears in Scholl [14].

3.1 Experimental Design

The Jackson problem consists of 11 tasks. For the purpose of assuming an
installed AL, we considered a hypothetical scenario in which 30 units need to be
produced each day in 480 min of available productive time per day. Hence, we
designed 3 stations arranged in straight layout: The cycle time is CT = 480 min
÷ 30 units = 16 min/unit. The minimum number of stations is computed by
dividing the total task time (46 min) by CT , �46 ÷ 16� = 3 stations.

The distribution of the 11 tasks into the 3 stations is shown in the first
two columns of Table 1. The third column is the station load (SL), the sum
of the times of the tasks assigned to each station. The fourth column is the
station utilization, SU = SL ÷ CT . The fifth column computes the theoretical
maximum number of units that can be processed at each station within the
available productive time. For instance, for a station load of 16 min, 30 units
can be processed within the available time (480 min). These figures in the fifth
column correspond to the definition of Smax

j discussed in Sect. 2.2. The last
column shows the Smin

j values, which were set at 0 for the 3 stations.
A total of 32 experiments were designed to test our MIP formulation in the

straight AL layout designed for the Jackson problem. Four cases were obtained
by combining low and high values of the learning and forgetting coefficients.
These four cases were run under two scenarios: (a) workers have some initial
skill inventory (Sinitial values were obtained randomly in unif (4, 9)), and (b)
workers have no initial skill inventory (Sinitial = 0 for all workers). These two
scenarios already generate 8 cases, which were solved with two different targets:
(i) Match demand on individual periods: this is the case when g and h have
equal values (Eq. 3). The model run was (3), (5)–(18). (ii) Match demand over
the whole planning horizon: g and h are differentiated (Eq. 4). We assumed that
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Table 1. Pre-processing of the Jackson problem

Station Tasks SL (min) SU (%) Smax
j Smin

j

j = 1 1, 2, 4, 5 16 100 30.00 0

j = 2 3, 6, 7, 8 16 100 30.00 0

j = 3 9, 10, 11 14 88 34.29 0

Table 2. Deployment of cases run

Group 1: Increasing demand pattern

Case Target Skill inventory r f

1 Match demand
on individual
periods.

Workers have
some initial
skill inventory.

low high

2 low low

3 high high

4 high low

5 Sinitial = 0 for
all workers.

low high

6 low low

7 high high

8 high low

9 Match demand
over the whole
planning horizon.

Workers have
some initial
skill inventory.

low high

10 low low

11 high high

12 high low

13 Sinitial = 0 for
all workers.

low high

14 low low

15 high high

16 high low

the opportunity cost is more costly than holding inventory. The model run was
(4)–(18). With these two targets under consideration, 16 cases are generated so
far. This deployment description of the cases run is illustrated in Table 2 for the
first main group of cases, increasing demand pattern. The same deployment was
used for the second main group of cases, erratic demand pattern.

3.2 Results

The matching results of the AL production output to the forecast market
demand, for the first main group (cases 1 to 16), are shown in Fig. 1. The orange
trendline shows the increasing demand forecast on period � + 1 (same forecast
for all 16 cases), and the lightblue vertical bar, the production output achieved
on period �. So, in these graphs, the production output Q(J, �) is plotted against
the forecast demand of the next period, D(� + 1).
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From the figure we can see that demand is well matched in cases 1 and 2,
where workers have fast learning (low r values). However, in cases 3 and 4, it
was not possible to fully match the demand forecast of periods 8, 9, and 10 (in
spite of keeping the same worker allocation since periods 4 and 3, respectively)
due to slow learning (high r values). We may think of the possibility of having
the same worker allocation since earlier periods (e.g., since period 2), in order
to take advantage of the learning effect, and being able to better match the
demand of periods 8, 9, and 10. However, this action would have led to building
inventory in earlier periods, which is penalized by Z1; and the sum of its both
components (penalties for building inventory in earlier periods plus penalties for
loosing sales in later periods) yield a worse value for Z1.

Contrasting cases 3 and 4 vs. cases 11 and 12 lead to an interesting obser-
vation. Cases 11 and 12 are identical to cases 3 and 4, expect for the fact that
loosing sales is more highly penalized than building inventory. Hence, cases 11
and 12 do keep the same worker allocation since earlier periods and build inven-
tory (with small penalty) in order to better match the increasing demand of
later periods (because not achieving the production target has higher penalty).

Demand is better matched in cases 9 and 10 (fast learning) than in cases 11
and 12 (slow learning).

Cases 5 to 8 are identical to cases 1 to 4, except for the fact that workers
have no initial skill inventory. Due to the increasing demand, and consequently,
the need to speed up production, less worker reallocation takes place. Worker
reallocation is measured as the number of times that a worker changes station
along a planning horizon. For instance, in Table 3, which shows the worker allo-

Fig. 1. Increasing demand pattern (orange) vs. production output achieved (lightblue).
(Color figure online)
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Table 3. Worker allocation and reallocation over the planning period, case 1

Period, � Number of

Worker 0 1 2 3 4 5 6 7 8 9 reallocations

k = 1 3 1 1 2 2 2 3 1 2 2 5

k = 2 1 3 2 1 1 3 2 2 1 1 6

k = 3 2 2 3 3 3 1 1 3 3 3 3

cation solution for case 1, we can see that worker 3 changed station 3 times (on
period 2 he/she changed to station 3; then, on period 5, to station 1; and on
period 7, to station 3; totaling 3 reassignments).

Cases 13 to 16 are the last set of cases in this first main group. Similar to
cases 5 to 8, Sinitial = 0. Also, g is higher than h, like in cases 9 to 12. Because
there is no initial skill inventory, workers tend to remain in the same station.
Taking advantage of the learning effect is the preferable course of action since
building inventory is less penalized than loosing sales. In cases 15 and 16, it is
not possible to match the increasing demand of the last three periods due to
slower learning (compared to cases 13 and 14).

Figure 2 presents the matching results for the second main group (cases 17
to 32). Some cases are discussed: Cases 17 and 18 are interestingly well matched
from period 3. Such matching was not possible in cases 19 and 20 due to slower
learning and faster forgetting. These four cases (workers have some initial skill
inventory) present a higher number of reallocations than the next four cases (no
initial skill inventory). In fact, in cases 23 and 24 workers remain in the same
station along the whole planning period.

Case 26 shows an interesting phenomenon. On period 4, a different worker
allocation could have been devised so as to produce less units (like in case 25),
and then, on period 5, return to the previous allocation (same assignment of
period 3). This action was not taken because it would have been very costly
on period 5. Because in case 26 forgetting occur faster (than in case 25), on
period 5 it would had not been possible to match demand. So, it was preferred
to accumulate inventory (on period 4) because it cost less than loosing sales (on
period 5).

One final point of discussion is the following: Which workers are reallocated
more frequently? In our small experiment, with three workers, which we can
label as the “best” worker (i.e., fast learning and slow forgetting), the “average”
worker, and the worst worker (i.e., slow learning and fast forgetting), swap of
workers occurred more frequently between the “best” and the “average” work-
ers. The “worst” worker tended to have less number of reallocations (under
both increasing and erratic demand patterns), in order to take advantage of the
learning effect.
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Fig. 2. Erratic demand pattern (orange) vs. production output achieved (lightblue).
(Color figure online)

3.3 Further Discussion

Contrary to the well-known principle “divide and conquer”, conquering new
research frontiers in ALB is exactly about doing the opposite: it is about simul-
taneously considering branches that are connected to the problem, and about
considering more reality. This paper already considered the demand forecast in
the ALBP. This is only one connecting branch. Recently, Sternatz [17] introduced
the joint line balancing and material supply problem. Materials supply to the AL
is another connecting branch. So, it looks like a new trend in this research field
is to connect inbound and outbound logistics issues to the ALBP. In the past,
materials requirement planning, ALBP, and other problems had been addressed
separately. Probably, the reason that explains the new trend to formulate a big-
ger problem is the fact that addressing the problem as a whole yields a better
solution, closer to optimum, than dividing the problem into sub-problems and
solving them separately and independently. In this regard, future research efforts
should be addressed to holistically optimize the work system.

Another way to extend the research frontier in this field is by considering
additional reality to improve the accuracy of the models. For instance, the pro-
cessing rate at which workers process units is affected not only by learning-
forgetting effects. Fatigue-recovery and motivation-boredom are realities that
certainly affect the processing times. Givi et al. [7] considered fatigue-recovery
and learning-forgetting parameters to develop a mathematical model that esti-
mates the human error rate when performing an assembly job. In addition to
the error rate, it would be desirable to estimate the processing time. Azizi
et al. [1] developed motivation-boredom and skill improvement-deterioration
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formulations to model job rotation in a manufacturing system. Corominas
et al. [6] addressed an important element of reality: if task A and task B are
similar, then, when a worker performs task A, he/she also gains experience on
task B –even though he/she had not performed task B before. Moreover, linked
to our model and the final point of discussion in the previous section, it would
be interesting to study if the higher frequency of reallocations of the “best” and
“average” workers could lead to the development of more stress, fatigue, and a
possible sick leave. Simultaneously considering these realities would lead to more
accurate values of the processing times of tasks, crucial data for the ALBP.

4 Conclusions

Different from other methods, which focus on maximizing the efficiency of the
lines without regard to their role within the extended supply chain, this paper
aimed at balancing the AL in such a way that the production output meets a
given demand forecast. In particular, this paper introduced the DDALBP, and
proposed a formulation to balance the line, in accordance to some forecast mar-
ket demand, by means of worker allocation and reallocation. Our formulation
was tested in the Jackson problem, arranged in straight layout, obtaining useful
insights in regard to the behavior of worker reallocations under different sce-
narios (low/high learning coefficients, low/high forgetting coefficients, workers
with/without initial skill inventory, increasing/erratic demand patterns).

Regardless of the physical layout of the line, the presence of some parallel
stations, or the presence of feeder lines, a production system is comprised of J
stations, which, independently of their physical location within the factory, the
system should be balanced in such a way so as to achieve smooth production
flow, and match as much as possible the forecast market demand. Therefore, the
review and extension of this model, so as to be capable of being applicable to
different line layouts and configurations, is already in our next research plan.
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Abstract. This paper proposes two clustering algorithms of twofold
memberships for each cluster. One uses a membership similar to that
in K-means, while another membership is defined for a core of a cluster,
which is compared to the lower approximation of a cluster in rough K-
means. Two ideas for the lower approximation are proposed in this paper:
one uses a neighborhood of a cluster boundary and another uses a simple
circle from a cluster center. By using the two memberships, two alter-
nate optimization algorithms are proposed. Numerical examples show
the effectiveness of the proposed algorithms.

Keywords: Neighborhood · Clustering · K-means · Rough K-means
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1 Introduction

With the progress of data mining techniques, various methods of data clustering
have been studied, among which the K-means [7] are best-known and its fuzzy
version of fuzzy c-means [1] is also popular. Still another method of rough K-
means [6] has been proposed. Rough K-means has two memberships of upper
and lower approximations of clusters, and its usefulness has been empirically
discussed using examples. A drawback of rough K-means is that it is not based
on optimization of an objective function, unlike K-means and fuzzy c-means.
Kinoshita et al. [4] showed difficulty and possibility to handle rough K-means
within the framework of optimization. In contrast, a major part of methodolog-
ical considerations of clustering algorithms is based on the formulation of opti-
mization problems. Hence to study an optimization algorithm similar to rough
K-means is methodologically important.

This paper proposes two algorithms of twofold memberships: two member-
ships are defined to each cluster. One is a membership like that in K-means.
Another membership is defined for a core of a cluster, which is similar to lower
approximations of clusters. Two ideas for the lower approximation are considered
in this paper: one uses neighborhoods and another uses a circle from a cluster
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center. An upper approximation is not used, since the usefulness of an upper
approximation in clustering is not clear. Two alternate optimization algorithms
for the two methods are proposed.

The rest of this paper is organized as follows. Section 2 introduces notations
and the formulation of rough K-means. Section 3 then proposes new algorithms
for the two memberships. Section 4 shows artificial and real examples, and finally
Sect. 5 concludes the paper.

2 K-Means and Rough K-Means

Clustering using the concept of rough sets [9] has been studied by several
researchers [4,6,11]. A drawback in these studies is that the region of clusters do
not have a simple geometric shape, while K-means have Voronoi regions [5,8],
and fuzzy c-means have simple classification functions [8].

We begin with notations and a brief description of the rough K-means algo-
rithm [6], while K-means algorithm [1,7] is omitted to save space.

Let us assume that X = {x1, . . . , xN} is a set of objects for clustering, and
xk (k = 1, . . . , N) is a point in Rp. Clusters are denoted by Gi (i = 1, . . . , c)
which are subsets of X. Gi has the upper and lower approximations denoted by
U(Gi) and L(Gi), respectively, which are subsets of X. L(Gi) is disjoint:

L(Gi) ∩ L(Gj) = ∅, (i �= j),

but U(Gi) is not necessarily disjoint. Each object xk belongs to some U(Gi) but
not necessarily to an L(Gi):

c⋃

i=1

U(Gi) = X;
c⋃

i=1

L(Gi) ⊆ X.

Given cluster centers (v1, . . . , vc), a Voronoi region V (vi) is given by

V (vi) = {x ∈ Ri : ‖x − vi‖ ≤ ‖x − vj‖,∀vj �= vi}.

Note that V (vi) is a subset of Rp, while U(Gi) and L(Gi) are subsets of X.
Rough K-means by Lingras [6] use two different weights w1 and w2 with

w1 + w2 = 1 and w1 > w2 > 0 and calculate cluster center vi as follows:

vi =
w1

|L(Gi)|
∑

xk∈L(Gi)

xk +
w2

|B(Gi)|
∑

xl∈B(Gi)

xl, (1)

where |L(Gi)| and |B(Gi)| = |U(Gi) − L(Gi)| are respectively a lower approx-
imation and a rough boundary of cluster Gi; |L(Gi)| is the number of objects
in L(Gi). Although the definitions of L(Gi) and U(Gi) [6] are omitted here, the
upper and lower approximations are not clearly related to a rough approxima-
tion and seems ad hoc. Second, the method is not formulated as an alternative
optimization, unlike the K-means and fuzzy c-means.
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3 Algorithms with Twofold Memberships

The above consideration of a clustering algorithm leads us to an algorithm in
which the calculation of cluster center is given by, or similar to the one in rough
K-means, while we use the above approximation using the neighborhood

Nd(x) = {y ∈ Rp : ‖y − x‖ ≤ d}, (2)

assuming the Euclidean norm ‖ · ‖. Given a region A ⊂ Rp, the lower approxi-
mation L(A) using the neighborhood is

L(A) = A −
⋃

y∈∂(A)

Nd(y), (3)

where ∂(A) is the boundary of A.
Note that the boundary of K-means clusters is that of a Voronoi region which

consists of a hyperplane: ‖x − vi‖2 − ‖x − vj‖2 = 0, which is reduced to

L(x; vi, vj) = 2〈x, vi + vj〉 + ‖vj‖2 − ‖vi‖2 = 0. (4)

The distance between a point y and hyperplane L(x; vi, vj) by (4) is given by

Dist(y, L(x; vi, vj)) =
|L(y; vi, vj)|
2‖vi + vj‖ =

|2〈y, vi + vj〉 + ‖vj‖2 − ‖vi‖2|
2‖vi + vj‖ . (5)

Another point in our algorithm is that we do not use an upper approximation
of a cluster, but we use a cluster Gi itself and its lower approximation L(Gi).
The reason is as follows.

1. It is not difficult to find a cluster Gi and L(Gi) by a K-means type algorithm,
while to find an upper approximation of a cluster is more difficult.

2. An upper approximation does not seem to be useful in clustering, while a
lower approximation can be used to distinguish of a point in a cluster is near
to a boundary or not. The latter is also useful to make an algorithm to be
more robust by changing the weight of contribution of a point.

Note that an upper approximation herein means an overlapping part of clusters,
while clustering basically means to divide a set of points into disjoint subsets.
Hence it is doubtful if overlapping clusters have real merits.

Therefore we consider a cluster Gi and its lower approximation L(Gi), and
not U(Gi). In the following algorithm we find a cluster Gi:

Gi = Vi(vi) ∩ X (6)

when a cluster center vi is given. The lower approximation is given by (3):

L(Vi(vi)) = {x ∈ Vi(vi) : Dist(x,L(y; vi, vj)) ≥ d}, L(Gi) = L(Vi(vi)) ∩ X.
(7)



224 S. Miyamoto et al.

and the next cluster center is calculated by:

vi =
w1

|L(Gi)|
∑

xk∈L(Gi)

xk +
w2

|Gi − L(Gi)|
∑

xl∈Gi−L(Gi)

xl. (8)

A proposed algorithm is hence as follows.

AKM Algorithm (Another rough K-Means)
Step 1: Set initial values of vi (i = 1, . . . , c)
Step 2: Find Gi by (6) and L(Gi) by (7).
Step 3: Calculate new vi (i = 1, . . . , c) by (8).
Step 4: If cluster centers are convergent, stop; else go to Step 2.
End of AKM.

More specifically, the calculation of Gi is as follows:

xk ∈ Gi ⇐⇒ ‖xk − vi‖ ≤ ‖xk − vj‖, ∀j �= i. (9)
x ∈ L(Gi) ⇐⇒ xk ∈ Gi and Dist(x,L(y; vi, vj)) ≥ d (10)

Note also that calculation of U(Gi) is not so simple as L(Gi) by (10).
This algorithm actually is equivalent to an alternative optimization. Let us

consider the following objective function:

J(G,G′, V ) = w2J1(G, V ) + (w1 − w2)J2(G′, V ), (11)

J1(G, V ) =
∑

xk∈Gi

‖xk − vi‖2, (12)

J2(G′, V ) =
∑

xk∈G′
i,Nd(xk)⊆V (vi)

‖xk − vi‖2, (13)

where G = {G1, . . . , Gc}, G′ = {G′
1, . . . , G

′
c} are partitions of X.

Consider the alternative optimization of J(G,G′, V ): then it is easy to see
that we can take G = G′ and vi is given by (8), since objects in V (vi) should be
allocated to the same Gi even when J2 is concerned.

AKM is also called Method 1 below especially when compared with
Method 2 in the next section.

Note 1. The optimal set G′ is not unique but there is no problem to take G = G′,
since the fundamental method is the allocation to the nearest center even when
the lower approximation is concerned. Note

L(G′) = G′ ∩ {x ∈ X : Nd(xk) ⊆ V (vi)}.

3.1 Second Method with Core Regions of Circles

Another method is related to the above AKM algorithm by changing the idea
of lower approximation. In contrast to AKM algorithm in which the boundary



Optimal Clustering with Twofold Memberships 225

of the lower approximation L(Gi) is piecewise linear, another idea is to define a
lower approximation by a sphere with its center vi:

L(Gi) = {x ∈ G : ‖x − vi‖ ≤ δ}, (14)

where δ is a positive constant.
This lower approximation of a sphere cannot be justified from the standard

theory of rough sets, but another method using (14) can be derived. Note that
the upper approximation is not used again.

Consider the next objective function in which two matrix variables U = (uki)
(1 ≤ k ≤ N , 1 ≤ i ≤ c) and U ′ = (u′

ki) (1 ≤ k ≤ N , 0 ≤ i ≤ c) are used:

J(U,U ′, V ) =
N∑

k=1

c∑

i=1

(wuki + u′
ki)‖xk − vi‖2 +

N∑

k=1

u′
k0δ

2. (15)

where V = (v1, . . . , vc) and w is a positive weight constant. Note that the size
of the two matrices U and U ′ are different. They have constraints:

c∑

i=1

uki = 1, 1 ≤ k ≤ N, uki ≥ 0, 1 ≤ k ≤ N, 1 ≤ i ≤ c, (16)

c∑

i=0

u′
ki = 1, 1 ≤ k ≤ N, u′

ki ≥ 0, 1 ≤ k ≤ N, 0 ≤ i ≤ c. (17)

We hence consider the next alternative optimization:

Step 0. Determine the initial values for U and U ′.
Step 1. Minimize J(U,U ′, V ) with respect to V while U and U ′ are fixed to the

last optimal solutions.
Step 2. Minimize J(U,U ′, V ) with respect to U and U ′ while V is fixed to the

last optimal solutions.
Step 3. If the optimal solution (U,U ′, V ) is convergent, stop; else go to Step 2.

Note moreover that we can assume that optimal solutions for J(U,U ′, V )
satisfy uki = 0 or uki = 1 for all i, k and u′

ki = 0 or u′
ki = 1 for all i, k. This is

due to the fundamental theorem of linear programming and the linearity of the
objective function with respect to uki and u′

ki.
We thus have the optimal solutions:

vi =

c∑

k=1

{wuki + u′
ki}xk

c∑

k=1

{wuki + u′
ki}

, (18)

uki = 1 ⇐⇒ ‖xk − vi‖ ≤ ‖xk − vj‖, ∀j �= i, (19)
u′

k0 = 1 ⇐⇒ ‖xk − vj‖ > δ, ∀1 ≤ j ≤ c, (20)
u′

ki = 1 ⇐⇒ ‖xk − vi‖ ≤ ‖xk − vj‖, ∀j �= i, ‖xk − vi‖ ≤ δ. (21)
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Let us introduce Gi and G′
i by

Gi = {xk ∈ X : uki = 1}, G′
i = {xk ∈ X : u′

ki = 1}. (22)

Since it is easy to see that if u′
ki = 1 then uki = 1, we have G′

i ⊆ Gi. Thus we can
define G′

i as a lower approximation: L(Gi) = G′
i. Moreover it is straightforward

to observe that Gi’s form partition of X. This method also has a weighted
calculation for cluster centers (18), or in other form:

vi =

w
∑

xk∈Gi

xk +
∑

xl∈G′
i

xl

w|Gi| + |G′
i|

. (23)

Moreover the following property holds:

Gi = V (vi) ∩ X, L(Gi) = G′
i = V (vi) ∩ Bδ(vi) ∩ X, (24)

where Bδ(vi) = {x ∈ Rp : ‖x − vi‖ ≤ δ}.
We thus have a second method, called Method 2. The ideas of Method 1

and 2 are compared in Fig. 1.
The last method can be generalized to a fuzzy method using a fuzzifying

parameter m > 1. The objective function is generalized as follows:

J(U,U ′, V ) =
N∑

k=1

c∑

i=1

{w(uki)m + (u′
ki)

m}‖xk − vi‖2 +
N∑

k=1

(u′
k0)

mδ2. (25)

The function (25) is a linear combination of Bezdek’s fuzzy c-means and Dave’s
noise clustering [2]. Details of fuzzy clustering using (25) is omitted here.

Fig. 1. Method 1 (left) and Method 2 (right): core regions are shown by dotted
lines/circles; Voronoi boundaries are denoted by solid lines.

3.2 Categorical Data

There are studies of clustering handling categorical data, in which a set of
attributes is denoted by A = (A1, . . . , Ap). The attribute Al has its domain
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Dl = {γq
l } (q = 1, . . . , lr) of symbols. A simplest way to handle such a case is to

define a distance dl(γ, γ′) for Al:

dl(γ, γ′) =

{
1 (γ �= γ′),
0 (γ = γ′).

(26)

The overall distance D(x, y) is thus given by

D(x, y) =
p∑

l=1

dl(xl, yl), (27)

where xl and yl are symbols of lth component of x and y.
The objective function (15) is modified to

J(U,U ′, V ) =
N∑

k=1

c∑

i=1

(wuki + u′
ki)D(x, vi) +

N∑

k=1

u′
k0δ

2. (28)

Thus the formulation in the case of categorical data is straightforward, but we
have to search for optimal vi in (28), which is not so easy as the case of the
Euclidean distance; a simple idea is to use the medoids, the details of which will
be discussed in our study in near future.

4 Examples

Two illustrative examples and five real datasets were used to observe the effec-
tiveness of the proposed methods.

4.1 Illustrative Examples

Two artificial datasets on the plane are used. Dataset 1 in Fig. 2 shows large and
small circular points. Second data shown in Fig. 3 is called ‘synthetic cassini’1.

Figures 4 and 5 respectively show the results by Method 1 and Method 2
for the first example, where squares show points in L(Gi), while × and + show
points in Gi − L(Gi). Table 1 shows the values of Rand Index [10] and Adaptive
Rand Index [3] for the three examples by the proposed methods and K-means.
The two indices were calculated using the Voronoi regions, Gi and not L(Gi), in
order to compare the results with those by K-means. The results are almost the
same for the three methods in the first example, but the second example shows
notable improvement by the proposed method over the K-means.

1 https://clusteval.sdu.dk/1/datasets.

https://clusteval.sdu.dk/1/datasets
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Fig. 2. Dataset 1: Two circles (N = 250) Fig. 3. Dataset 2: cassini (N = 250)

Fig. 4. Dataset1: Method 1; K = 2, d = 0.7, w1 = 0.6

Fig. 5. Dataset1: Method 2; K = 2, d = 1.5, w = 0.1
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4.2 Real Data

Five datasets of iris, appendicitis, balance, wine, hayes-roth2 were used to
compare results by the proposed two methods and K-means. The results are

Table 1. Values of Rand Index (RI) and Adaptive Rand Index (ARI) by K-means
and Methods 1 and 2 for the two data sets

Data Method RI ARI

Dataset1 K-means 0.9303 0.8606

Method 1 0.9303 0.8606

Method 2 0.9606 0.9213

Dataset2 K-means 0.7880 0.5402

Method 1 0.9365 0.8603

Method 2 0.8988 0.7771

Table 2. RI and ARI by K-means, Methods 1 and 2 for iris

Method w1, w Parameters RI ARI

Method 1 0.5 d = 0.6 0.8797 0.7302

0.6 d = 1.0 0.8797 0.7312

0.7 d = 0.8 0.8797 0.7302

0.8 d = 0.8 0.8859 0.7455

Method 2 0.1 δ = 0.6 0.9124 0.8015

0.2 δ = 0.6 0.8988 0.7711

0.3 δ = 0.6 0.8859 0.7437

0.4 δ = 0.8 0.8859 0.7437

K-means 0.8797 0.7302

Table 3. RI and ARI by K-means, Methods 1 and 2 for appendicitis

Method w1, w Parameters RI ARI

Method 1 0.5 d = 0.5 0.7973 0.5256

0.6 d = 0.6 0.7973 0.5256

0.7 d = 1.0 0.7686 0.4337

0.8 d = 0.5 0.7973 0.5256

Method 2 0.1 δ = 0.4 0.7973 0.5256

0.2 δ = 0.3 0.7827 0.4966

0.3 δ = 0.4 0.7686 0.4688

0.7 δ = 0.3 0.7547 0.4519

K-means 0.6792 0.3141

2 http://sci2s.ugr.es/keel/category.php?cat=clas.

http://sci2s.ugr.es/keel/category.php?cat=clas
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summarized into Tables 2, 3, 4, 5 and 6, where the best values of RI and ARI
are shown by bold letters. Thus the proposed methods show better performances
over the K-means.

A problem is that good parameters wi, d, and δ are different on the five
different examples. Thus further research is needed to find good or acceptable
sets of the parameters.

Table 4. RI and ARI by K-means, Methods 1 and 2 for balance

Method w1, w Parameters RI ARI

Method 1 0.5 d = 13 0.6216 0.2070

0.6 d = 12 0.6520 0.2787

0.7 d = 14 0.6363 0.2428

Method 2 0.2 δ = 9 0.5991 0.1605

0.3 δ = 1.6 0.5999 0.1614

0.4 δ = 2.5 0.6098 0.1812

0.5 δ = 8 0.5991 0.1605

K-means 0.5870 0.1351

Table 5. RI and ARI by K-means, Methods 1 and 2 for wine

Method w1, w Parameters RI ARI

Method 1 0.5 d = 1.1 0.7204 0.3749

0.6 d = 1.1 0.7204 0.3841

0.7 d = 1.4 0.7204 0.3981

0.8 d = 2.9 0.7229 0.3868

Method 2 0.1 δ = 2.5 0.7187 0.3711

0.2 δ = 2.5 0.7187 0.3711

K-means 0.7187 0.3711

Table 6. RI and ARI by K-means, Methods 1 and 2 for hayes-roth

Method w1, w Parameters RI ARI

Method 1 0.5 d = 1.1 0.5904 0.1343

0.6 d = 1.0 0.5888 0.1207

0.7 d = 0.6 0.6099 0.1734

0.8 d = 1.0 0.5964 0.1318

Method 2 0.1 δ = 0.2 0.5868 0.1187

0.2 ∃δ 0.5849 0.1104

K-means 0.5849 0.1104
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5 Conclusion

Two methods of variations of K-means clustering using a lower approximation
are proposed. One uses neighborhood which is related to rough sets, of which the
details were omitted due to page limitation. Another uses membership matrices,
whereby a fuzzy version can be developed. The use of upper approximation is not
judged to be useful in our theoretical view. To justify an upper approximation
in terms of optimization of an objective function is still difficult.

The examples shown here demonstrated that the proposed methods are supe-
rior to the basic K-means but further study should be needed to find good val-
ues of the parameters. Moreover the effectiveness and efficiency of the proposed
methods should be tested using larger-scale examples.

Acknowledgment. This paper is based upon work supported in part by the Air
Force Office of Scientific Research/Asian Office of Aerospace Research and Develop-
ment (AFOSR/AOARD) under award number FA2386-17-1-4046.
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Abstract. Co-cluster structure analysis with three-mode cooccurrence
information is a potential approach in summarizing multi-source rela-
tional data in such tasks as user-product purchase history analysis. This
paper proposes a privacy preserving framework for jointly performing
three-mode fuzzy co-clustering under collaboration among two organiza-
tions, which independently store object-item cooccurrence information
and item-ingredient cooccurrence information, respectively. Even when
they cannot mutually share elements of the cooccurrence matrices, the
intrinsic co-cluster structures are revealed without publishing each ele-
ments of relational data but sharing only the structural information.

Keywords: Fuzzy-clustering · Co-clustering
Three-mode cooccurrence information
Privacy preserving data analysis

1 Introduction

Cluster analysis is a method for finding cluster structures from data, such that
mutually similar objects are assigned to a same cluster while dissimilar objects
are assigned to different clusters. In recent years, co-cluster analysis based on
cooccurrence information among objects and items has become increasingly
important in various web data analyses. Co-clustering is a method of extracting
a co-cluster structure by simultaneously estimating the degree of membership of
both objects and items to each cluster. Fuzzy clustering for categorical multivari-
ate data (FCCM) [1] is an co-clustering extension of fuzzy c-means (FCM) [2],
where the fuzzy partition concept [3] was introduced into both object and item
partitions. FCCM replaced the FCM criterion with the aggregation degree of
objects and items in co-clusters by adopting entropy-based fuzzification [4,5].

In co-clustering of two-mode cooccurrence information among objects and
items, it is possible that their co-cluster structure may be distorted by the influ-
ence of other implicit factors. For example, in food preference analysis, we may
fail to reveal users’ preferences considering only user-food (object-item) cooc-
currences but can find intrinsic preferences considering implicit relation among
c© Springer Nature Switzerland AG 2018
V. Torra et al. (Eds.): MDAI 2018, LNAI 11144, pp. 232–242, 2018.
https://doi.org/10.1007/978-3-030-00202-2_19
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users and cooking ingredients (object-ingredient), which compose the foods. By
adding the supplemental information on potential elements constituting items,
it is expected to improve the reliability of the co-cluster knowledge. Three-mode
fuzzy clustering for categorical multivariate data (3-mode FCCM) [6,7] is an
extension of FCCM for analyzing three-mode cooccurrence information, where
not only object-item cooccurrence information but also item-ingredient cooc-
currence information are available and the goal is to extract co-clusters such
that mutually familiar pairs of objects and items are assigned to a co-cluster
in conjunction with their typical ingredients. Three types of fuzzy memberships
for objects, items and ingredients are simultaneously estimated such that the
aggregation among them is maximized in three-mode co-clusters.

Besides the development of various clustering algorithms, the awareness of
information protection has been increasing in recent years. Privacy preserv-
ing data mining (PPDM) [8] is a fundamental approach for utilizing multiple
databases including personal or sensitive information without fear of informa-
tion leaks. Privacy preserving frameworks are necessary in performing clustering
of real-world large-scale data, which include personal information. Several mod-
els introducing cryptographic mechanisms [9,10] have been proposed for apply-
ing the k-Means algorithm [11], in which personal privacy is strictly preserved
among multiple organizations. Secure cluster information sharing is realized by
conducting analysis such that only the cluster structure and encryption informa-
tion are shared without disclosing the observation value of each object to other
organizations. A similar mechanisms were also applied to the FCCM framework
for two-mode cooccurrence information [12,13], where cooccurrence information
among common objects and individual items are stored in multiple organizations
and cannot be disclosed among them.

In this paper, we newly propose a collaborative fuzzy co-clustering frame-
work of three-mode cooccurrence information data as an extension of three-
mode FCCM. It is assumed that two types of cooccurrence information data
of objects× items and items× ingredients are independently collected and accu-
mulated in different organizations and the elements of cooccurrence information
data cannot be disclosed each other from the viewpoint of information protection.
The goal is to estimate co-cluster structures under collaboration of organizations
such that we can extract the same co-cluster structures with the conventional
3-mode FCCM keeping privacy preservation. For example, in food preference
analysis, a sales outlet can store the relation among users and food menus while
a caterer may know secret information on cooking ingredients of each food. Even
if the two organizations cannot mutually disclose their own data elements, we
can expect that the intrinsic co-cluster structure among users and ingredients
are useful for both the outlet and caterer in improving the quality of food rec-
ommendation and menu creation.

The remainder of this paper is organized as follows: Sect. 2 gives a brief
review on the conventional FCM-type fuzzy co-clustering models and Sect. 3
proposes a method for applying 3-mode FCCM keeping privacy preservation. The
experimental result is shown in Sect. 4 and a summary conclusion is presented
in Sect. 5.
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2 FCM Clustering and FCM-Type Fuzzy Co-clustering

2.1 Fuzzy c-Means (FCM)

When we have multi-dimensional observation of n objects, FCM divides their
multi-dimensional vectors x i into C fuzzy clusters, whose prototypes are proto-
typical centroids bc (mean vector in cluster c) [2]. Its objective function to be
minimized is as follows:

Lfcm =
C∑

c=1

n∑

i=1

uθ
ci||x i − bc||2, (1)

where uci is the membership of object i to cluster c, and is normalized under the
probabilistic constraint of

∑C
c=1 uci = 1. θ is a parameter for tuning the degree

of fuzziness. The larger the weight θ is, the fuzzier the cluster partition is. uci

and bc are iteratively updated under the iterative optimization principle.

2.2 Fuzzy Clustering for Categorical Multivariate Data (FCCM)

Assume that we have n × m cooccurrence information R = {rij} among n
objects and m items. The goal of co-clustering is to simultaneously estimate fuzzy
memberships of objects uci and items wcj such that mutually familiar objects
and items tend to have large memberships in the same cluster considering the
aggregation degree of each co-cluster. The objective function for Fuzzy Clustering
for Categorical Multivariate data (FCCM) [1] was proposed as:

Lfccm =
C∑

c=1

n∑

i=1

m∑

j=1

uciwcjrij − λu

C∑

c=1

n∑

i=1

uci log uci

− λw

C∑

c=1

m∑

j=1

wcj log wcj . (2)

The first term is the aggregation degree to be maximized, which is a modified
FCM-type criterion for extracting dense co-cluster. The second and third terms
are entropy-like penalty for realizing fuzzy partition under the entropy regu-
larization concept [4]. λu and λw are fuzzification weights for object and item
memberships, respectively. Larger λu and λw bring fuzzier partitions of objects
and items.

Here, object memberships uci have a similar role to those of FCM under the
same condition, such that

∑C
c=1 uci = 1. On the other hand, if item memberships

wcj also obey a similar condition of
∑C

c=1 wcj = 1, the aggregation criterion has
a trivial maximum of uci = wcj = 1, ∀i, j in a particular cluster c. Then, in
order to avoid trivial solutions, wcj are forced to be exclusive in each cluster,
such that

∑m
j=1 wcj = 1, and so, wcj represent the relative typicalities of items

in each cluster.
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2.3 Three-Mode Fuzzy Clustering for Categorical Multivariate
Data (3-Mode FCCM)

Assume that we have n × m cooccurrence information R = {rij} among n
objects and m items, and the items are characterized with other ingredients,
where cooccurrence information among m items and p other ingredients are
summarized in m × p matrix S = {sjk} with sjk representing the cooccurrence
degree of item j and ingredient k. For example, in food preference analysis, R can
be an evaluation matrix by n users on m foods and S may be appearance/absence
of p cooking ingredients in m foods. The goal of three-mode co-cluster analysis
is to extract mutually familiar groups of objects, items and ingredients such that
the group object i, item j and ingredient k have large cooccurrence rij and sjk.

In order to extend the FCCM algorithm to three-mode co-cluster analy-
sis, additional memberships zck are introduced for representing the membership
degree of ingredients k to co-cluster c. Then, the objective function for three-
mode FCCM (3FCCM) [6,7] was constructed by modifying the FCCM objective
function of (2) as:

L3fccm =
C∑

c=1

n∑

i=1

m∑

j=1

p∑

k=1

uciwcjzckrijsjk − λu

C∑

c=1

n∑

i=1

uci log uci

−λw

C∑

c=1

m∑

j=1

wcj log wcj − λz

C∑

c=1

p∑

k=1

zck log zck. (3)

The degree of aggregation in Eq. (2) has been extended to three mode version
and a penalty term on zck was also added. λz is the additional penalty weight
for fuzzification of ingredient memberships zck. The larger the value of λz is,
the fuzzier the ingredient memberships are. As in the same manner to item
memberships wcj , ingredient memberships zck are estimated under the within-
cluster constraint of

∑k
p=1 zck = 1,∀c from the view point of typical ingredient

selection for characterizing co-cluster features.
The clustering algorithm is an iterative process of updating uci, wcj , and

zck under the alternative optimization principle. Considering the necessary
conditions for the optimality ∂L3fccm/∂uci = 0, ∂L3fccm/∂wcj = 0 and
∂L3fccm/∂zck = 0 under the sum-to-one constraints, the updating rules for
three memberships are given as

uci =
exp

(
λ−1

u

∑m
j=1

∑p
k=1 wcjzckrijsjk

)

∑C
l=1 exp

(
λ−1

u
∑m

j=1

∑p
k=1 wljzlkrijsjk

) , (4)

wcj =
exp

(
λ−1

w

∑n
i=1

∑p
k=1 ucizckrijsjk

)

∑m
l=1 exp

(
λ−1

w
∑n

i=1

∑p
k=1 ucizckrilslk

) , (5)
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zck =
exp

(
λ−1

z

∑n
i=1

∑m
j=1 uciwcjrijsjk

)

∑p
l=1 exp

(
λ−1

z
∑n

i=1

∑m
j=1 uciwcjrijsjl

) . (6)

Following the above derivation, a sample algorithm is represented as follows:

Algorithm: 3-mode Fuzzy Clustering for Categorical Multivariate data
(3-mode FCCM)

Step 1. Given n × m cooccurrence matrix R and m × p cooccurrence matrix
S, let C be the number of clusters. Choose the fuzzification weights λu, λw

and λz.
Step 2. Randomly initialize uci, wcj and zck such that

∑C
c=1 uci = 1,∑m

j=1 wcj = 1 and
∑p

k=1 zck = 1.
Step 3. Update uci with Eq. (4).
Step 4. Update wcj with Eq. (5).
Step 5. Update zck with Eq. (6).
Step 6. If the convergence determination

max
c,i

|uNEW
ci − uOLD

ci | < ε

is satisfied, the process is terminated, and otherwise, the process returns to
Step 3.

3 Extension of 3-Mode FCCM for Collaborative 3-Mode
FCCM

In this paper, a novel framework for privacy preservation in 3-mode FCCM is
proposed, where co-cluster estimation is jointly performed by two organizations.
Assume that organization A have n × m cooccurrence information R = {rij}
among n objects and m items, and organization B have m×p cooccurrence infor-
mation S = {sjk} among m items and p ingredients, respectively. It is expected
that we can estimate more informative co-cluster structures by adopting 3-mode
FCCM rather than the independent 2-mode FCCM analysis in each organiza-
tion. However, it may not be possible to disclose each element of cooccurrence
matrices from the viewpoint of information protection.

For example, in food preference analysis, a sales outlet would store the pref-
erence relation among users and food menus while a caterer may have secret
information on cooking ingredients of each food. Now, we can expect that pref-
erence tendencies among users and ingredients are useful for both the outlet and
caterer in improving the quality of food recommendation and menu creation.
However, it may be difficult for the two organizations to share their cooccurrence
information matrices due to privacy or business issues. Collaborative framework
for achieving three-mode co-clustering without data sharing is expected to bring
a new bussiness chance for both organizations under privacy preservation.
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In the following, Collaborative 3-mode FCCM is considered, where the two
organization have the common goal of extracting co-cluster structures without
disclosing each elements of cooccurrence matrices.

Here, the shared and concealed informations in Eqs. (4)–(6) are defined as
follows: User memberships uci and ingredient memberships zck should be con-
cealed only in organizations A and B, respectively, while item memberships wcj

can be shared by them. Then, in uci calculation, sjk and zck are not directly
available for organization A, and Eq. (4) is rewritten as:

uci =
exp

(
λ−1

u

∑m
j=1 wcjrij

(∑p
k=1 zcksjk

))

∑C
l=1 exp

(
λ−1

u
∑m

j=1 wljrij

(∑p
k=1 zlksjk

))

=
exp

(
λ−1

u

∑m
j=1 wcjrijβcj

)

∑C
l=1 exp

(
λ−1

u
∑m

j=1 wljrijβlj

) . (7)

Next, in zck calculation, rij and uci are not directly available for organization
B, and Eq. (6) is rewritten as:

zck =
exp

(
λ−1

z

∑m
j=1 wcjsjk

(∑n
i=1 ucirij

))

∑p
l=1 exp

(
λ−1

z
∑m

j=1 wcjsjl

(∑n
i=1 ucirij

))

=
exp

(
λ−1

z

∑m
j=1 wcjsjkαcj

)

∑p
l=1 exp

(
λ−1

z
∑m

j=1 wcjsjlαcj

) , (8)

where αcj and βcj are the following values calculated in organization A and
organization B, respectively, which are referred to as shared information matrices
A and B.

A =

⎛

⎜⎝
α11 . . . α1m

...
. . .

...
αC1 . . . αCm

⎞

⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

n∑

i=1

u1iri1 . . .

n∑

i=1

u1irim

...
. . .

...
n∑

i=1

uCiri1 . . .

n∑

i=1

uCirim

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(9)

B =

⎛

⎜⎝
β11 . . . β1m

...
. . .

...
βC1 . . . βCm

⎞

⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

p∑

k=1

z1ks1k . . .

p∑

k=1

z1ksmk

...
. . .

...
p∑

k=1

zCks1k . . .

p∑

k=1

zCksmk

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(10)
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Finally, in wcj calculation, Eq. (5) is rewritten as:

wcj =
exp

(
λ−1

w

(∑n
i=1 ucirij

)(∑p
k=1 zcksjk

))

∑m
l=1 exp

(
λ−1

w

(∑n
i=1 uciril

)(∑p
k=1 zckslk

))

=
exp

(
λ−1

w αcjβcj

)

∑m
l=1 exp

(
λ−1

w αclβcl

) , (11)

The above modification implies that it is possible to calculate fuzzy mem-
berships in each organization by merely sharing the shared information matrices
A and B without disclosing components of cooccurrence information matrices.
The components of the shared information matrices A and B are regarded as
the cluster structure information of items in each of organizations A and B. αcj

represents the typicality of item j in cluster c taking user similarity into consid-
eration while βcj represents the typicality of item j in cluster c taking ingredi-
ent similarity into consideration. In these shared information, each of user and
ingredient characteristics is kept secret because user similarity and ingredient
similarity are shared after summing up in each organization. Actually, even if
information matrix A is disclosed, organization B cannot know such knowledge
as the number of objects n in organization A, and conversely, even if informa-
tion matrix B is disclosed, organization A cannot know such knowledge as the
number of elements p in organization B.

Following the above consideration, the sample algorithm is represented as
follows:

Algorithm: Collaborative Fuzzy Clustering for 3-mode Categorical
Multivariate data (Collaborative 3-mode FCCM)

Step 1. [Initialization] Randomly initialize wcj and components of shared infor-
mation matrix B.

Step 2. In organization A, update uci with Eq. (7) and calculate information
matrix A.

Step 3. In organization A, update wcj with Eq. (11).
Step 4. From organization A to organization B,send wcj and information

matrix A.
Step 5. In organization B, update zck with Eq. (8) and calculate information

matrix B.
Step 6. From organization B to organization A,send zck and information

matrix B.
Step 7. In organization A, convergence judgment is performed. If uci is con-

verged, the clustering process ends. If it has not converged, return to
Step 2.



Privacy Preserving Collaborative Fuzzy Co-clustering 239

4 Experimental Result

In order to confirm the characteristics of the proposed algorithm, a numerical
experiment was performed with the artificial data, which was used in [6,7]. It is
an artificially generated three-mode data set, in which 40 objects (n = 40) have
relational connection with 50 items (m = 50) and the items are related to 30
ingredients (p = 30). For example, in food preference analysis, 40 users can select
50 foods, which are made of 30 ingredients. The artificial three-mode cooccur-
rence matrices R and S were generated under the assumption that objects and
ingredients have intrinsic (unknown) connections of 40 × 30 matrix X = {xik}
as shown in Fig. 1, where black and white cells represent xik = 1 and xik = 0,
respectively.

In this experiment, we assume that organization A has cooccurrence infor-
mation matrix R on 40 objects × 50 items as shown in Fig. 2, and organization
B has cooccurrence information matrix S on 50 items × 30 elements as shown in
Fig. 3. The goal is to estimate the intrinsic (unknown) cooccurrence information

Fig. 1. Intrinsic cooccurrence information matrix X

Fig. 2. Cooccurrence informa-
tion matrix R

Fig. 3. Cooccurrence
information matrix S
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X without disclosing the components of cooccurrence information matrices R
and S among organizations.

Collaborative 3FCCM algorithm was applied to R and S with C = 3, λu =
0.1, λw = 0.2 and λz = 0.3. Figure 4 shows object memberships obtained in
organization A, Fig. 5 shows ingredient memberships obtained in organization
B, and Fig. 6 shows item memberships shared by both organizations. In each
figure, membership values are depicted in grayscale such that (white, black) →
(0, maximum value). These results successfully imply the intrinsic co-cluster
structures of X and are completely equivalent to those given in [6,7].

Here, the shared information of matrices A and B is investigated. Figures 7
and 8 show the final elements of matrices A and B, which reflect item cluster
structures induced in each organization. In comparison with the common item
memberships wcj shown in Fig. 6, both organization-wise clusters are slightly
different from the final item clusters, which are seen to be constructed through

Fig. 4. Object membership uci

Fig. 5. Ingredient membership zck

Fig. 6. Item membership wcj

Fig. 7. Shared matrix A = {αcj}

Fig. 8. Shared matrix B = {βcj}
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max operation among matrices A and B. So, it was confirmed that sharing of
secure co-cluster structures could be realized by the fusion of organization-wise
item cluster structures.

From the viewpoint of privacy preservation, matrices A and B are lower
dimensional linear transforms of matrices R and S, and then, their informa-
tions are degraded from R and S such that all elements of R and S cannot be
reconstructed from A and B.

5 Conclusion

In this paper, we proposed a novel method for extracting co-cluster structure
from three-mode cooccurrence information stored in two different organization,
which is available even when they cannot disclose their cooccurrence information
each other. The proposed extension of 3-mode FCCM shares the organization-
wise item cluster structures instead of each element of cooccurrence matrices.
Numerical experiments confirmed that the proposed method obtains the same
results with the conventional method, which does not consider privacy preserva-
tion.

A potential future work is to validate the confidentiality of the proposed
framework such that it successfully avoids revealing information on objects and
ingredients even if other organization intentionally adjusts the shared informa-
tion matrices A or B. Another direction of future work is to investigate the
effects of the quality of the shared information when cooccurrence information
includes noise or inconsistent cluster structures.
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Abstract. This study shows that a generalized fuzzy c-means (gFCM)
clustering algorithm, which covers standard fuzzy c-means clustering,
can be constructed if a given fuzzified function, its derivative, and its
inverse derivative can be calculated. Furthermore, our results show that
the fuzzy classification function for gFCM exhibits similar behavior to
that of standard fuzzy c-means clustering.

Keywords: Fuzzy c-means clustering · Fuzzy classification function

1 Introduction

The hard c-means (HCM) clustering algorithm [1] splits objects into well-
separated sets of objects, known as clusters, by minimizing the mean squared
distance from each object to its nearest cluster center. Fuzzy clustering extends
this concept so that object membership is shared among all of the clusters, rather
than being constrained to a single cluster.

In fuzzy clustering, the membership degree in the HCM objective function
is a nonlinear expression. Specifically, Bezdek’s algorithm replaces the linear
membership weights with the power of membership and creates cluster centers
based on weighted means [2], thereby producing what is commonly known as the
fuzzy c-means (FCM) algorithm. To distinguish this from the many variants that
have since been proposed, this algorithm is referred to as standard FCM (sFCM)
in this paper.

It is important to clarify the features of fuzzy clustering methods.
Miyamoto [3] clarified that, theoretically at least, the fuzzy classification func-
tion (FCF) of sFCM produces an allocation rule that classifies a brand new
object into a Voronoi cell, with the Voronoi seeds being the cluster centers, and
that the FCF of sFCM at the infinity point approaches the reciprocal of the
given cluster number.

Noting that sFCM fuzzifies clustering result by replacing the membership
in the HCM objective function with nonlinear expressions, it may be possible

c© Springer Nature Switzerland AG 2018
V. Torra et al. (Eds.): MDAI 2018, LNAI 11144, pp. 243–254, 2018.
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to obtain novel fuzzy clustering algorithms by adopting various nonlinear func-
tions. However, it would be burdensome to investigate the features of each such
algorithm.

The present study addresses this issue. First, we consider an optimization
problem for generalized fuzzy c-means clustering (gFCM) in which the mem-
bership degree in the HCM objective function is replaced by a general nonlin-
ear function. Next, we construct a gFCM algorithm and its associated FCF by
solving this optimization problem. We then theoretically show that the FCF of
gFCM at the infinity point approaches the reciprocal of the given cluster number.
Several numerical examples substantiate our theoretical results.

The remainder of this paper is organized as follows. Section 2 introduces the
notation used in this paper and describes the conventional methods. In Sect. 3,
we derive the concept of gFCM and discuss its theoretical behavior. Section 4
presents several illustrative examples. Finally, Sect. 5 contains some concluding
remarks.

2 Preliminaries

Let X = {xk ∈ R
p | k ∈ {1, · · · , N}} be a dataset of p-dimensional points.

Consider the problem of classifying the objects in X into C disjoint subsets
{Gi}C

i=1 which are termed clusters. The membership degree of xk with respect
to the i-th cluster is denoted by ui,k (i ∈ {1, · · · , C}, k ∈ {1, · · · , N}) and the set
of ui,k is denoted by u, which is known as the partition matrix. The set of cluster
centers is denoted by v = {vi | vi ∈ R

p, i ∈ {1, · · · , C}}. The squared Euclidean
distance between the k-th datum and the i-th cluster center is given by

di,k = ‖xk − vi‖22. (1)

The HCM algorithm iterates the following two steps: (i) calculate the member-
ships ui,k and (ii) calculated the cluster centers vi [1]. These update equations
of the memberships and cluster centers are obtained by solving the following
optimization problem:

minimize
u,v

C∑

i=1

N∑

k=1

ui,kdi,k, (2)

subject to
C∑

i=1

ui,k = 1. (3)

The sFCM [2] representation is obtained by solving the following optimization
problem:

minimize
u,v

C∑

i=1

N∑

k=1

(ui,k)mdi,k, (4)

subject to Eq. (3), where m > 1 is an additional weighting exponent. We refer
to the nonlinear function (ui,k)m as fuzzifier, because this play the role of fuzzi-
ficating the clustering results.
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A fuzzy classification function [3] (FCF) describes the degree to which any
point in the object space is quintessentially attached to a cluster by broadening
the membership ui,k to the entire space. The FCF {ui(x)}C

i=1 with respect to
a new object x ∈ R

p is defined as the solution to the following optimization
problem for sFCM:

minimize
u

C∑

i=1

(ui(x))mdi(x), (5)

subject to
C∑

i=1

ui(x) = 1, (6)

where
di(x) = ‖x − vi‖22, (7)

and {vi}C
i=1 are the cluster centers obtained by the corresponding fuzzy clustering

algorithms. We define a crisp allocation rule [4] for classifying R
p using the

FCF as
x ∈ Gi

def≡ ui(x) > uj(x) for j �= i. (8)

Theoretically, it has been shown [4] that the FCF of sFCM has the feature that
the subsets {Gi}C

i=1 produced from sFCM result in Voronoi sets, because

ui(x) > uj(x) for j �= i ⇔ ‖x − vi‖2 < ‖x − vj‖2 for j �= i, (9)

and that ui(x) approaches 1/C as ‖x‖2 → +∞.
Noting that sFCM fuzzifies the clustering results by adopting a fuzzifier,

we believe that novel fuzzy clustering algorithms could be obtained using other
fuzzifiers. However, it would be burdensome to investigate the features of each
such algorithm.

vi

Gi
Voronoi border

Centers

Fig. 1. Example of a Voronoi diagram generated from four cluster centers: the case
with p = 2, C = 4
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3 Generalized FCM

3.1 Optimization Problem

The present study considers a gFCM algorithm. For a strictly convex, increasing,
non-negative, and smooth function g defined in [0, 1) with g′(0) = 0, the gFCM
optimization problem is described as follows:

minimize
u,v

C∑

i=1

N∑

k=1

g(ui,k)di,k (10)

subject to Eq. (3). As g is strictly convex, non-negative, and smooth, g′ is
defined in [0, 1) and is monotonically increasing; hence, g′−1 is also monoton-
ically increasing. If limμ↗1 g′(μ) < +∞, let us define g′(1) def= limμ↗1 g′(μ).
Then, we consider g′ to be defined in [0, 1]. Note that gFCM is not an individual
method, but a framework of methods. For example, gFCM with g(ui,k) = ui,k

reduces to HCM, and gFCM with g(ui,k) = (ui,k)m reduces to sFCM. Thus,
gFCM is a generalization of HCM and sFCM. The following subsections discuss
the algorithm, FCF, and associated theoretical property.

3.2 Algorithm, FCF, and Its Property

The gFCM algorithm is obtained by solving the optimization problem in
Eqs. (10) and (3). We derive the optimal cluster center in the same manner
as for HCM and sFCM, i.e.,

vi =
N∑

k=1

αkxk, (11)

αk =
g(ui,k)

∑N
�=1 g(ui,�)

(12)

if g is bounded. In the case where g(ui,k) → +∞ as ui,k ↗ 1, vi is obtained as
follows. Equation (12) can be written in an equivalent form as

αk =

[
N∑

�=1

g(ui,�)
g(ui,k)

]−1

=

⎡

⎢⎣1 +
N∑

�=1
� �=k

g(ui,�)
g(ui,k)

⎤

⎥⎦

−1

. (13)

Thus, we have

αk =

{
|{� | limui,�↗1 g(ui,�) → +∞}|−1 (limui,k↗1 g(ui,k) → +∞)
0 (limui,�↗1 g(ui,�) → +∞ for � �= k).

(14)
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To determine the optimal membership, we describe the Lagrangian L(u) as

L(u) =
C∑

i=1

N∑

k=1

g(ui,k)di,k +
N∑

k=1

γk

(
1 −

C∑

i=1

ui,k

)
(15)

with the Lagrange multipliers (γ1, . . . , γN ). The necessary condition for optimal
membership is described as

∂L(u)
∂ui,k

= 0, (16)

∂L(u)
∂γk

= 0. (17)

We consider two cases: (i) di,k > 0 for all i ∈ {1, . . . , C} and (ii) there exists one
i ∈ {1, . . . , C} such that di,k = 0.

(i) If di,k > 0 for all i ∈ {1, . . . , C}, the optimal membership is described by
Eq. (16) as

ui,k = g′−1
(

γk

di,k

)
. (18)

As g′−1 is monotonically increasing for γk and satisfies

lim
γk→+∞

C∑

i=1

ui,k(γk) > 1,
C∑

i=1

ui,k(0) = 0, (19)

we have the unique γk satisfying condition given in Eq. (17) ⇔ Eq. (3), which
suggests that there is a unique optimal solution ui,k for the optimization prob-
lem (10), where ui,k(γk) represents the value ui,k depending on γk.

However, it is difficult to obtain the optimal value of γk directly. Thus, the
bisection method is utilized. First, we establish γk = g′(1/C)min1≤i≤C{di,k}
as a lower bound of the γk satisfying condition given in Eq. (3), because
γk = g′(1/C)min1≤i≤C{di,k} ⇔ γk/min1≤i≤C{di,k} = g′(1/C) ⇔
g′(γk/min1≤i≤C{di,k}) = 1/C ⇒ ui,k(γk) ≤ 1/C for all i ∈ {1, · · · , C}, which
implies

∑C
i=1 ui,k(γk) ≤ 1. Next, we establish γk = g′(1/C)max1≤i≤C{di,k}

as an upper bound of the γk satisfying condition given in Eq. (3),
because γk = g′(1/C)max1≤i≤C{di,k} ⇔ γk/max1≤i≤C{di,k} = g′(1/C) ⇔
g′(γk/max1≤i≤C{di,k}) = 1/C ⇒ ui,k(γk) ≥ 1/C for all i ∈ {1, · · · , C}, which
involves

∑C
i=1 ui,k(γk) ≥ 1. Using these bounds, the value of γk satisfying con-

dition given in Eq. (3) can be obtained using the following algorithm:

Algorithm 1

Step 1. Let γ−
k and γ+

k be g′(1/C)min1≤i≤C{di,k} and
g′(1/C)max1≤i≤C{di,k}, respectively.
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Step 2. Let γ̃k be (γ−
k +γ+

k )/2. If |γ−
k −γ+

k | is sufficiently small, terminate the
algorithm and let the optimal γk be γ̃k.

Step 3. Calculate ui,k(γ̃k) using Eq. (18). If
∑C

i=1 ui,k(γ̃k) > 1, let γ+
k = γ̃k.

Otherwise, let γ−
k = γ̃k. Go to Step 2. �

With the resulting value of γk, optimal membership is described by Eq. (18).
(ii) If there exists one i ∈ {1, . . . , C} such that di,k = 0, we heuristically find

ui,k =

{
1 (di,k = 0)
0 (otherwise).

(20)

This is confirmed as follows. Using order statistic notation, {di,k}C
i=1 is rewritten

as {d[i],k}C
i=1 where

0 = d[1],k < d[2],k ≤ · · · ≤ d[C],k. (21)

Denote the membership value corresponding to d[i],k as u[i],k. The objective
function value with respect to xk is then described as

C∑

i=2

g(u[i],k)d[i],k. (22)

Following Eq. (20), this value is

C∑

i=2

g(0)d[i],k. (23)

If at least one i ∈ {2, . . . , C} such that u[i],k > 0, the value of Eq. (22) is greater
than that of Eq. (23) because g is strictly increasing. Therefore, Eq. (20) is the
optimal membership when there is one i ∈ {1, . . . , C} such that di,k = 0.

According to the above discussion, we propose the following gFCM algorithm:

Algorithm 2 (gFCM)

Step 1. Specify the number of clusters C and the set of initial cluster
centers v.

Step 2. If there exists i ∈ {1, . . . , C} such that di,k = 0, set u according to
Eq. (20). Otherwise, calculate γk using Algorithm 1, and set u according
Eq. (18).

Step 3. Calculate v using Eqs. (11), (12), and (14).
Step 4. Check the stopping criterion for (γ, u, v). If the criterion is not satisfied,

go to Step 2. �
The FCF of this gFCM is obtained by solving the optimization problem

minimize
u

C∑

i=1

g(ui(x))di(x), (24)

with
∑C

i=1 ui(x) = 1, where di(x) = ‖x − vi‖22. This can be accomplished using
the following algorithm:
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Algorithm 3 (FCF of gFCM)

Step 1. Inherit v from Algorithm 2, and set x ∈ R
p.

Step 2. If there exists i ∈ {1, . . . , C} such that di(x) = 0, set u according
to Eq. (20), where ui,k is replaced by ui(x). Otherwise, calculate γ(x) using
Algorithm 1, where γk, γ+

k , γ−
k , and di,k are replaced by γ(x), γ(x)+, γ(x)−,

and di(x), and set {ui(x)}C
i=1 using

ui(x) = g′−1
(

γ(x)
di(x)

)
. (25)

�
Next, we determine a property of gFCM from its FCF. First, the crisp allocation
rule for the FCF of our gFCM, which classifies Rp according to Eq. (8), produces
Voronoi sets, as in Eq. (9). This is the same as in both HCM and FCM. This is
obvious if there exists one i ∈ {1, . . . , C} such that di(x) = 0, because we have

1 = ui(x) > uj(x) = 0 ⇔ 0 = di(x) < dj(x) ⇔ ‖x − vi‖2 < ‖x − vj‖2, (26)

for j �= i. If di(x) > 0 for all i ∈ {1, . . . , C}, then we have

ui(x) > uj(x) ⇔ g′−1
(

γ(x)
di(x)

)
> g′−1

(
γ(x)
dj(x)

)
⇔ di(x) < dj(x)

⇔ ‖x − vi‖2 < ‖x − vj‖2, (27)

for j �= i.
Next, we determine the FCF value as ‖x‖2 approaches infinity. We know that

dj(x)
di(x)

=
‖x − vj‖22
‖x − vi‖22

→ 1 (28)

as ‖x‖2 → +∞. Denoting

εi,j(x) def=
‖x − vj‖22
‖x − vi‖22

− 1 (29)

for i, j ∈ {1, . . . , C}, this value is bounded as

εi,j(x) =
‖x − vi + vi − vj‖22

‖x − vi‖22
− 1

=
‖x − vi‖22 + 2(x − vi)T(vi − vj) + ‖vi − vj‖22

‖x − vi‖22
− 1

=
2(x − vi)T(vi − vj) + ‖vi − vj‖22

‖x − vi‖22
=

1
‖x − vi‖2

(
2(x − vi)T(vi − vj) + ‖vi − vj‖22

‖x − vi‖2

)

≤ 1
‖x − vi‖2

(
2‖x − vi‖2‖vi − vj‖2 + ‖vi − vj‖22

‖x − vi‖2

)

=
1

‖x − vi‖2

(
2‖vi − vj‖2 +

‖vi − vj‖22
‖x − vi‖2

)
. (30)
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Since we have

‖x − vi‖2 > ‖vi − vj‖2 (31)

for sufficiently large ‖x‖2, the value εi,j(x) is further bounded as

εi,j(x) ≤ 1
‖x − vi‖2

(
2‖vi − vj‖2 +

‖vi − vj‖22
‖x − vi‖2

)

<
1

‖x − vi‖2

(
2‖vi − vj‖2 +

‖x − vi‖2‖vi − vj‖2
‖x − vi‖2

)

=
1

‖x − vi‖2 (2‖vi − vj‖2 + ‖vi − vj‖2) =
3‖vi − vj‖2
‖x − vi‖2 (32)

for sufficiently large ‖x‖2. Since there exists arbitrary large M such as ‖x−vi‖2 >
3M‖vi − vj‖2, we have

εi,j(x) <
3‖vi − vj‖2
‖x − vi‖2 <

3‖vi − vj‖2
3M‖vi − vj‖2 =

1
M

, (33)

which implies that εi,j(x) is uniformly bounded for sufficiently small 1/M with-
out depending on i, j ∈ {1, . . . , C}.

Since we have

g′−1
(

γ(x)
dj(x)

)
≤ 1 (34)

from Eq. (3), there exists a finite number M ′ such that
∣∣∣∣
γ(x)
dj(x)

∣∣∣∣ < M ′. (35)

Then, Eqs. (29), (33) and (35) imply that
∣∣∣∣
γ(x)
dj(x)

− γ(x)
di(x)

∣∣∣∣ =
∣∣∣∣
γ(x)
di(x)

(1 + εj,i(x)) − γ(x)
di(x)

∣∣∣∣ =
∣∣∣∣
γ(x)
di(x)

εj,i(x)
∣∣∣∣

≤
∣∣∣∣
γ(x)
di(x)

∣∣∣∣ |εj,i(x)| <
M ′

M
(36)

for sufficiently large ‖x‖2, thus, there exists sufficiently small ε′
j,i such that

g′−1
(

γ(x)
dj(x)

)
= g′−1

(
γ(x)
di(x)

(1 + εj,i(x))
)

≤ g′−1
(

γ(x)
di(x)

)
+ ε′

j,i (37)

because g′−1 is continuous. Here, we define ε′ def= max1≤i,j≤C{ε′
j,i}, i.e., we have

g′−1
(

γ(x)
dj(x)

)
≤ g′−1

(
γ(x)
di(x)

)
+ ε′. (38)
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Then, Eqs. (3) and (38) imply that

1 =
C∑

j=1

uj(x) =
C∑

j=1

g′−1
(

γ(x)
dj(x)

)
≤

C∑

j=1

(
g′−1

(
γ(x)
di(x)

)
+ ε′

)

= Cg′−1
(

γ(x)
di(x)

)
+ Cε′, (39)

thus, we have

g′−1
(

γ(x)
di(x)

)
≥ 1

C
− ε′ (40)

for all i ∈ {1, . . . , C}, where we note that |ε′| is sufficiently small for sufficiently
large ‖x‖2, from which we have

ui(x) = g′−1
(

γ(x)
di(x)

)
→ 1

C
(‖x‖2 → +∞) (41)

for all i ∈ {1, . . . , C}. This result substantiates the property of FCM.

4 Numerical Examples

This section presents some numerical examples to substantiate the properties
of the gFCM (Algorithm 2 discussed in the previous section. We consider three
actual fuzzifiers g and one artificial dataset (Fig. 5).

The three fuzzifiers are defined as

g1(ui,k) = (ui,k)2, (42)
g2(ui,k) = 2ui,k − 1 − ln(2)ui,k, (43)

g3(ui,k) =
1

(1 − ui,k)10−15 − 1
1015

ui,k (44)

for all i ∈ {1, . . . , C}, k ∈ {1, . . . , N}, where g1 leads to sFCM with m = 2. From
the above, we have

g′
1(ui,k) = 2ui,k, (45)

g′
2(ui,k) = ln(2)(2ui,k − 1), (46)

g′
3(ui,k) =

1
1015

(
1

(1 − ui,k)1+10−15 − 1
)

, (47)

and

g′−1
1 (y) = 0.5y, (48)

g′−1
2 (y) =

1
ln(2)

ln
(

y + ln(2)
ln(2)

)
, (49)

g′−1
3 (y) = 1 − 1

(1 + 1015y)1/(1+10−15)
. (50)
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These functions, as well as their derivatives and inverse derivative functions, are
shown in Figs. 2, 3 and 4. Obviously, all the functions are defined in ui,k ∈ [0, 1)
and are strictly convex, increasing, non-negative, and smooth; all derivatives and
their inverse functions are monotonically increasing.

The substantiated property is that Eq. (41) is satisfied using the four-cluster
dataset, where each cluster comprises 66 points in a two-dimensional space, as
shown in Fig. 5. Partitioning this dataset into four clusters via gFCM with all
five fuzzifiers {gq}3q=1 elicits the features of the classification rules, where the
top cluster and its cluster center are denoted by G1 and v1, the bottom left
cluster and its cluster center are denoted by G2 and v2, the bottom right cluster
and its cluster center are denoted by G3 and v3, and the mid cluster and its
cluster center are denoted by G4 and v4. The derived FCFs for G1 are shown in
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Fig. 6. FCFs of gFCM for an edge cluster

Fig. 6, with the gray-scale indicates the degree of membership to G1. The circles
represent cluster centers. These figures confirm that Eq. (41) holds.

5 Conclusion

The study described in this paper has shown that generalized fuzzy clustering
exhibits the same features as sFCM, namely that the FCF at the infinity point
approaches the reciprocal of the cluster number. Several numerical examples
have been presented to substantiate the above theoretical results.

In future research, we aim to investigate

– a case with g′(0) > 0,
– a case with other types of object-cluster dissimilarity than in Eq. (1)
– a case with variable controlling cluster size [5,6], and
– cases of clustering for spherical data [7–12] and for categorical multivariate

data [13–18].



254 Y. Kanzawa and S. Miyamoto

References

1. MacQueen, J.B.: Some methods of classification and analysis of multivariate obser-
vations. In: Proceedings the 5th Berkeley Symposium on Mathematical Statistics
and Probability, pp. 281–297 (1967)

2. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York (1981)

3. Miyamoto, S., Umayahara, K.: Methods in hard and fuzzy clustering. In: Liu, Z.-
Q., Miyamoto, S. (eds.) Soft Computing and Human-Centered Machines. Springer,
Tokyo (2000). https://doi.org/10.1007/978-4-431-67907-3 5

4. Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78737-2

5. Miyamoto, S., Kurosawa, N.: Controlling cluster volume sizes in fuzzy c-means
Clustering. In: Proceedings of SCIS & ISIS 2004, pp. 1–4 (2004)

6. Ichihashi, H., Honda, K., Tani, N.: Gaussian mixture PDF approximation and
fuzzy c-means clustering with entropy regularization. In: Proceedings of the 4th
Asian Fuzzy System Symposium, pp. 217–221 (2000)

7. Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using
clustering. Mach. Learn. 42, 143–175 (2001)

8. Miyamoto, S., Mizutani, K.: Fuzzy multiset model and methods of nonlinear docu-
ment clustering for information retrieval. In: Torra, V., Narukawa, Y. (eds.) MDAI
2004. LNCS (LNAI), vol. 3131, pp. 273–283. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-27774-3 26

9. Mizutani, K., Inokuchi, R., Miyamoto, S.: Algorithms of nonlinear document clus-
tering based on fuzzy set model. Int. J. Intell. Syst. 23(2), 176–198 (2008)

10. Kanzawa, Y.: On kernelization for a maximizing model of Bezdek-like spherical
fuzzy c-means clustering. In: Torra, V., Narukawa, Y., Endo, Y. (eds.) MDAI
2014. LNCS (LNAI), vol. 8825, pp. 108–121. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-12054-6 10

11. Kanzawa, Y.: A maximizing model of bezdek-like spherical fuzzy c-means. J. Adv.
Comput. Intell. Intell. Inform. 19(5), 662–669 (2015)

12. Kanzawa, Y.: A maximizing model of spherical Bezdek-type fuzzy multi-medoids
clustering. J. Adv. Comput. Intell. Intell. Inform. 19(6), 738–746 (2015)

13. Oh, C., Honda, K., Ichihashi, H.: Fuzzy clustering for categorical multivariate data.
In: Proceedings IFSA World Congress and 20th NAFIPS International Conference,
pp. 2154–2159 (2001)

14. Honda, K., Oshio, S., Notsu, A.: FCM-type fuzzy co-clustering by K-L information
regularization. In: Proceedings of 2014 IEEE International Conference on Fuzzy
Systems, pp. 2505–2510 (2014)

15. Honda, K., Oshio, S., Notsu, A.: Item membership fuzzification in fuzzy co-
clustering based on multinomial mixture concept. In: Proceedings of 2014 IEEE
International Conference on Granular Computing, pp. 94–99 (2014)

16. Kanzawa, Y.: Fuzzy co-clustering algorithms based on fuzzy relational cluster-
ing and TIBA imputation. J. Adv. Comput. Intell. Intell. Inform. 18(2), 182–189
(2014)

17. Kanzawa, Y.: On possibilistic clustering methods based on Shannon/Tsallis-
entropy for spherical data and categorical multivariate data. In: Torra, V.,
Narukawa, Y. (eds.) MDAI 2015. LNCS (LNAI), vol. 9321, pp. 115–128. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23240-9 10

18. Kanzawa, Y.: Bezdek-type fuzzified co-clustering algorithm. J. Adv. Comput.
Intell. Intell. Inform. 19(6), 852–860 (2015)

https://doi.org/10.1007/978-4-431-67907-3_5
https://doi.org/10.1007/978-3-540-78737-2
https://doi.org/10.1007/978-3-540-27774-3_26
https://doi.org/10.1007/978-3-540-27774-3_26
https://doi.org/10.1007/978-3-319-12054-6_10
https://doi.org/10.1007/978-3-319-12054-6_10
https://doi.org/10.1007/978-3-319-23240-9_10


A Self-tuning Possibilistic c-Means
Clustering Algorithm
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Abstract. Most c-means clustering models have serious difficulties
when facing clusters of different sizes and severely outlier data. The pos-
sibilistic c-means (PCM) algorithm can handle both problems to some
extent. However, its recommended initialization using a terminal parti-
tion produced by the probabilistic fuzzy c-means does not work when
severe outliers are present. This paper proposes a possibilistic c-means
clustering model that uses only three parameters independently of the
number of clusters, which is able to more robustly handle the above men-
tioned obstacles. Numerical evaluation involving synthetic and standard
test data sets prove the advantages of the proposed clustering model.

Keywords: Fuzzy c-means clustering
Possibilistic c-means clustering · Cluster size sensitivity · Outlier data

1 Introduction

The family of c-means clustering models includes several algorithms that involve
fuzzy partitions. The probabilistic fuzzy c-means (FCM) algorithm introduced
by Bezdek [3] is very popular in various researches, as it can reliably produce fine
– or at least acceptable – fuzzy partitioning of most sets of object vectors with
numeric values. However, there are two well-known cases when FCM can crash:
(1) at a sufficiently high value of the fuzzy exponent m, cluster prototypes can
merge together at the grand mean of the input data; (2) outlier data strongly
attract cluster prototypes, and in extreme cases, each outlier may steal a cluster
prototype, causing invalid partitioning. Clusters created by FCM are of equal
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256 L. Szilágyi et al.

diameter, which represents a serious limitation [5]. Modified probabilistic fuzzy c-
means algorithms were introduced to handle clusters of different sizes: Miyamoto
and Kurosawa [9] compensated the diameter of the clusters, while the solution of
Yang [13] deals with clusters of different weight or cardinality. Another solution
based on the conditional FCM algorithm of Pedrycz [10] was recently introduced
by Leski [8].

Various versions of c-means clustering algorithms were also proposed to deal
with the problem of outliers. These algorithms relaxed the probabilistic con-
straint of the fuzzy partition. Dave [4] proposed the usage of an extra cluster that
attracts noisy data, but this algorithm still creates clusters of equal diameter.
The possibilistic c-means (PCM) clustering algorithm [6] addresses the uneven
sized clusters as well, via defining a dedicated penalty term for each cluster that
would compensate for the variance of the data within the cluster, but frequently
creates coincident clusters [2], due to the strong independence of the clusters.
Further on, PCM is initialized with a final FCM partition [7], which is only
viable if the FCM performed successfully. For example, if an outlier damages
the probabilistic partition created by FCM and consequently we set the wrong
penalty terms to clusters at the initialization of PCM, we can hardly achieve an
accurate partitioning.

In a previous paper [11] we proposed a clustering model that combined the
(c + 1)-means approach of Dave [4] containing a noise cluster, with the diam-
eter compensation mechanism described by Miyamoto and Kurosawa [9]. That
algorithm showed moderately capable to create valid clusters of different sizes.
In this paper we propose a modified possibilistic fuzzy c-means clustering app-
roach that incorporates the above mentioned diameter compensation mechanism
with the aim of self-tuning the penalty terms of each cluster. While the origi-
nal PCM algorithm handled the penalty terms as previously set constants, the
proposed self-tuning possibilistic c-means algorithm updates the penalty term of
each cluster during the iterations of the alternative optimization of the objective
function.

2 Background

The Fuzzy c-Means Algorithm. The conventional fuzzy c-means (FCM)
algorithm partitions a set of object data X = {x1,x2, . . . ,xn} into a number
of c clusters Ω1, Ω2, . . . , Ωc based on the minimization of a quadratic objective
function, defined as:

JFCM =
c∑

i=1

n∑

k=1

um
ik||xk − vi||2A =

c∑

i=1

n∑

k=1

um
ikd2ik, (1)

where vi represents the prototype or centroid of cluster i (i = 1 . . . c), uik ∈ [0, 1]
is the fuzzy membership function showing the degree to which vector xk belongs
to cluster i, m > 1 is the fuzzyfication parameter, and dik represents the distance
(any inner product norm defined by a symmetrical positive definite matrix A)
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between xk and vi. FCM uses a probabilistic partition, meaning that the fuzzy
memberships assigned to any input vector xk with respect to clusters satisfy the
probability constraint

∑c
i=1 uik = 1. The minimization of the objective function

JFCM is achieved by alternately applying the optimization of JFCM over {uik}
with vi fixed, i = 1 . . . c, and the optimization of JFCM over {vi} with uik fixed,
i = 1 . . . c, k = 1 . . . n [3]. Obtaining the optimization formulas involves zero
gradient conditions of JFCM and Langrange multipliers. Iterative optimization
is applied until cluster prototypes vi (i = 1 . . . c) converge.

Relaxing the Probabilistic Constraint. The relaxation of the probabilistic
constraint was a necessity provoked by the outlier sensitivity of the FCM algo-
rithm. The most popular of the existing solutions is the possibilistic c-means
(PCM) algorithm introduced by Krishnapuram and Keller [6], which optimizes

JPCM =
c∑

i=1

n∑

k=1

[
tpikd2ik + (1 − tik)pηi

]
, (2)

constrained by 0 ≤ tik ≤ 1 ∀i = 1 . . . c, ∀k = 1 . . . n, and 0 <
∑c

i=1 tik < c
∀k = 1 . . . n, where p > 1 represents the possibilistic exponent, and parameters
ηi are the penalty terms that control the diameter of the clusters. The itera-
tive optimization algorithm of PCM objective function is derived from the zero
gradient conditions of JPCM. In the probabilistic fuzzy partition, the degrees of
membership assigned to an input vector xk with respect to cluster i depends on
the distances of the given vector to all cluster prototypes: d1k, d2k, . . . , dck. On
the other hand, in the possibilistic partition, the typicality value uik assigned to
input vector xk with respect to any cluster i depends on only one distance: dik.
PCM efficiently suppresses the effects of outlier data, at the price of frequently
producing coincident cluster prototypes. The latter is the result of the highly
independent cluster prototypes [2].

Fuzzy c-Means with Various Cluster Diameters. Komazaki et al. [5] pre-
sented a collection of solutions how the FCM algorithm can adapt to different
cluster sizes and diameters. From the point of view of this paper, it is relevant to
mention the FCMA algorithm by Miyamoto and Kurosawa [9], which minimizes

JFCMA =
c∑

i=1

n∑

k=1

α1−m
i um

ikd2ik, (3)

subject to the probabilistic constraint of the fuzzy memberships uik (i = 1 . . . c,
k = 1 . . . n), and of the extra terms αi (i = 1 . . . c):

∑c
i=1 αi = 1. The opti-

mization algorithm of JFCMA can be derived from zero gradient conditions using
Lagrange multipliers. Each iteration updates the probabilistic memberships uik

(i = 1 . . . c, k = 1 . . . n), the cluster prototypes vi (i = 1 . . . c), and the clus-
ter diameter terms αi (i = 1 . . . c) as well. The algorithm stops when cluster
prototypes stabilize.
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3 Methods

In the following, we propose a modified possibilistic c-means clustering algo-
rithm, which incorporates the cluster diameter compensation mechanism intro-
duced by Miyamoto and Kurosawa [9] for the probabilistic FCM algorithm.
Further on, instead of using a dedicated penalty terms to handle the variance
of each cluster, here we propose using a single penalty term η. The proposed
objective function is:

Jst−PCM =
c∑

i=1

n∑

k=1

[α1−q
i tpikd2ik + (1 − tik)pη], (4)

where dik = ||xk − vi|| (∀i = 1 . . . c, ∀k = 1 . . . n), and p > 1 is the possi-
bilistic exponent first introduced by Krishnapuram and Keller [6]. Variables αi

(i = 1 . . . c) are intended to tune the algorithm according to clusters diameters,
and they satisfy the probabilistic constraint

∑c
i=1αi = 1, while the exponent

q > 1 should be treated independently from the possibilistic exponent p. The
minimization formulas of the objective function given in Eq. (4) are obtained
using zero gradient conditions and Lagrange multipliers. Let us consider the
functional

Lst−PCM = Jst−PCM + λα

(
1 −

c∑

i=1

αi

)
, (5)

where λα represents the Lagrange multiplier. The zero gradient conditions with
respect to variables αi (∀i = 1 . . . c) imply

∂Lst−PCM

∂αi
= 0 ⇒

n∑

k=1

(1 − q)α−q
i tpikd2ik = λα, (6)

and so

αi =
(

1 − q

λα

)1/q
(

n∑

k=1

tpikd2ik

)1/q

. (7)

According to the probabilistic constraint
∑c

i=1αi = 1, we have:

c∑

j=1

αj = 1 ⇒ 1 =
(

1 − q

λα

)1/q c∑

j=1

⎡

⎣
(

n∑

k=1

tpjkd2jk

)1/q
⎤

⎦ . (8)

Equations (7) and (8) allow us to eliminate the Lagrange multiplier λα from
the formula of αi:

αi =
αi

1
=

αi
c∑

j=1

αj

=

(
n∑

k=1

tpikd2ik

)1/q

c∑
j=1

[(
n∑

k=1

tpjkd2jk

)1/q
] . (9)
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Algorithm 1. The proposed algorithm
Data: Input data X = {x1,x2, . . . ,xn}
Data: Number of clusters c, possibilistic exponent p, cluster diameter

regulation exponent q, penalty term η, threshold ε
Result: Possibilistic partition tik (∀i = 1 . . . c, ∀k = 1 . . . n)

Initialize v
(new)
i (i = 1 . . . c) as random input vectors that have several input

vectors in their close neighborhood, to avoid outliers
αi ← 1/c, ∀i = 1 . . . c
repeat

v
(old)
i ← v

(new)
i , ∀i = 1 . . . c

Update partition tik, (i = 1 . . . c, k = 1 . . . n), according to Eq. (10)
Update αi values for any i = 1 . . . c, according to Eq. (9)
Obtain new cluster prototypes v(new), (i = 1 . . . c), according to Eq. (11)

until
c∑

i=1

||v(new)
i − v

(old)
i || < ε;

The optimization formula of the possibilistic partition is obtained from the
zero gradient condition:

∂Lst−PCM
∂tik

= 0 ⇒ α1−q
i ptp−1

ik d2ik − p(1 − tik)p−1η = 0

⇒
(

1−tik
tik

)p−1

= α1−q
i d2

ik

η

⇒ 1
tik

− 1 =
(

α1−q
i d2

ik

η

)1/(p−1)

= p−1
√

α1−q
i d2

ik

η

⇒ tik =
[
1 +

(
d2
ik

ηαq−1
i

)1/(p−1)
]−1

=
(

1 + p−1

√
d2
ik

ηαq−1
i

)−1

.

(10)

Compared to the original PCM algorithm, where the penalty term for cluster
Ωi was ηi (i = 1 . . . c), here we have the penalty term ηαq−1

i (i = 1 . . . c).
The update formula of cluster prototypes vi (i = 1 . . . c) is obtained as:

∂Lst−PCM
∂vi

= 0 ⇒ −2α1−q
i

n∑
k=1

tpik(xk − vi) = 0

⇒
n∑

k=1

tpikxk = vi

n∑
k=1

tpik

⇒ vi =

n∑

k=1
tpikxk

n∑

k=1
tpik

.

(11)

So the cluster prototypes are updated exactly the same way, as in case of the
PCM algorithms. If a defuzzyfied partition is desired, any input vector xk can be
assigned to cluster Ωj where j = arg max

i
{tik, i = 1 . . . c}. Any vector xk having

∑c
i=1tik < θ can be declared outliers. The value of θ should be chosen around

0.1, but the appropriate value might be application dependent. The proposed
algorithm is summarized in Algorithm 1.
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4 Results and Discussion

The proposed method was evaluated on two different data sets, and its behavior
was compared to FCM [3] and PCM [6]. In all test scenarios, the PCM cluster
prototypes were initialized according to the final outcome by FCM on the same
input data, and the penalty terms fixed according to the FCM partition, as
indicated by Krishnapuram and Keller [7]:

ηi = κ

(
n∑

k=1

um
ikd2ik

) (
n∑

k=1

um
ik

)−1

∀i = 1 . . . c, (12)

where the value of κ varied between 1 and 2. In case of FCM and st-PCM, the
cluster prototypes were initialized with randomly selected input vectors that
had several other input vectors in their proximity, to avoid initialization with
outliers. Test data and results will be presented in the following subsections.

4.1 Evaluation Criteria

The evaluation of the algorithms was performed using three cluster validity
indexes (CVIs) and the accuracy of the final partitions. Since dedicated CVIs
for possibilistic partitions are scarce in the literature, we derived our CVIs from
probabilistic ones. The CVIs involved in this study are the following:

CVI1 = 1
n

n∑
k=1

√
τk

c∑
i=1

(
tik
τk

)2

CVI2 = −1
n

c∑
i=1

n∑
k=1

(
tik
τk

)
log

(
tik
τk

)

CVI3 = 1
nmin

i�=j
{||vi−vj ||}

c∑
i=1

n∑
k=1

(
tik
τk

)2

||vi − xk||2,
(13)

where τk =
∑c

i=1 tik. These CVIs are formulated for the possibilistic partition.
In case of the FCM algorithm we have τk = 1 for any k = 1 . . . n, and we use uik

instead of tik
τk

. CVI1 is the indicator of separation, with values between 0 and
1, high accuracy indicated by high values. CVI2 is a modified entropy criterion,
while CVI3 is derived from the Xie-Beni index [12]. Low values of CVI2 and
CVI3 indicate high accuracy.

4.2 Tests with Two Clusters in Various Scenarios

The first data set consisted of two groups of randomly generated two-dimensional
input vectors, situated inside the circle with center at (−1.75, 0) and radius 2,
and the circle with center at (1.75, 0) and radius 1, respectively. The first group
contained 400, while the second 100 vectors. One such set of input vectors is
exhibited in Fig. 1(left). One thousand instances of such data sets were generated
and used for all test, so that each algorithm would be repeated within the very
same 1000 different settings. These random data sets were involved in numerical



A Self-tuning Possibilistic c-Means Clustering Algorithm 261

-4 -3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Two clusters with no noise

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Two clusters with added noise

Fig. 1. The input data set with two clusters: (left) two groups of different diameter
with no noise or outliers; (right) the same two groups with added noise.
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Fig. 2. Results of the evaluation of the FCM algorithm.

Fig. 3. Results of the evaluation of the PCM algorithm.

evaluation in three different scenarios: (1) no added outlier or noise; (2) one
added outlier vector situated at a randomly generated position at distance δ ∈
[10, 1000] from the origin; (3) several additional noise vectors situated at random
positions within a bounding box [−10, 10] × [−10, 10], as shown in Fig. 1(right).
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Fig. 4. Robustness and accuracy of the proposed st-PCM algorithm

Fig. 5. The three CVIs in case of two clusters with no outlier or noise, for various
values of the possibilistic exponent, plotted against penalty term η

Fig. 6. The effect of the cluster diameter regulating exponent q upon the st-PCM
algorithm. Values of q slightly below 2 seem the most promising.

First we tested the FCM algorithm with various values of the fuzzy exponent
m. As it was expected, it performed best at low values of m. Details can be
found in Fig. 2. In case of a single outlier, the probabilistic partition starts to
drastically change around δ = 100, and at a certain limit value around δ = 350,
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the outlier captures one of the cluster prototypes and all 500 vectors of the two
groups will belong to a single cluster. PCM has no chance to perform well, when
it is initialized with such final FCM cluster prototypes. On the contrary, our
noisy data does not seem an obstacle for FCM, as it creates more valid clusters
as the number of added noisy vectors grows. When PCM is initialized with final
FCM cluster prototypes, and penalty terms fixed according to Eq. (12), PCM
performs well only to very limited extent, see details in Fig. 3. PCM performs
best at κ = 1 and p = 1.2, but a single outlier at distance δ = 10 or the presence
of a few outlier vectors can significantly damage the possibilistic partition.

The proposed st-PCM algorithm works fine in a wide range of η values.
However, the best range of η varies with the value of exponent q. Figures 4,
5 and 6 exhibit the test results with no outlier or additional noisy data. As
Fig. 4 indicates, p = 1.2 gives best performance at η ∈ [5, 8], while p = 1.5
requires η ∈ [3, 5]. Figure 5 shows us which parameter settings lead to the most
valid clusters. Figure 6 shows us how exponent q influences the robustness and
accuracy of st-PCM. There is a relation between best exponents p and q, for
larger values of p we need to use larger values of q, but setting them equal to
eliminate a parameter would mean a strong limitation. Figures 7 and 8 show the
behavior of st-PCM, when a single outlier is present in the input data set. The
position of the outlier (regulated by δ) virtually has no effect on the accuracy of
the algorithm or the CVI values. Depending on the value of exponent q, η has
a wide range where the algorithm is stable and accurate. Figure 9 relates to the
case of additional noise vectors in the input data, where the proposed st-PCM
algorithm is also stable and reliable within a wide interval of its parameters.
While PCM tends to crash in the presence of a dozen noisy data, st-PCM has
no problem with its accuracy and stability, even if a hundred noisy data vectors
are present.

4.3 Tests with the IRIS Data Set

The second data set employed by the numerical evaluation of the algorithms
was the IRIS data set [1], which consist of 150 labeled feature vectors of four
dimensions, organized in three groups that contain fifty vectors each. IRIS data
vectors were linearly normalized in each dimension into the interval [−0.5, 0.5].
The algorithms were evaluated using the IRIS data vectors only, and with addi-
tional noise as well. Just as in the previous subsection, 1000 different random
noise data sets were generated and applied to all algorithms, all noise vectors
having coordinates situated in the interval [−γ/2, γ/2] in all dimensions, where
γ is treated as a parameter that regulates the amplitude of added noise. Another
parameter is the number of noisy vectors added to the IRIS data. The PCM and
st-PCM algorithms were evaluated with values of the possibilistic exponent p
ranging between 1.2 and 1.5, and γ ranging from 1 to 10, while the initial cluster
prototypes were set according to the final prototypes given by the fuzzy c-means
algorithm running at m = 2. For all tests of st-PCM, exponent q was set to
1.5. The stability of each algorithm was characterized by the rate of cases when
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Fig. 7. Results of st-PCM at q = 1.5, in the presence of one outlier situated at any
distance δ ∈ [10, 1000] from the origin. There is no visible difference within this interval.

Fig. 8. Results of st-PCM at q = 2, in the presence of one outlier situated at any
distance δ ∈ [10, 1000] from the origin. There is no visible difference within this interval.

Fig. 9. Results of st-PCM at q = 2, in the presence of 100 additional noisy data.

valid clusters were obtained (the algorithm did not crash and no coincident clus-
ters were obtained). Accuracy was defined as the percentage of correct decisions
regarding the 150 IRIS data vectors only. The accuracy and CVIs were averaged
over those runs out of 1000, where the algorithm proved stable.
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Fig. 10. Reliability (top row) and accuracy (bottom row) of the PCM (a) and st-PCM
algorithms (b)–(c), when applied to noisy IRIS data, at γ = 1.

Fig. 11. CVI values of PCM and st-PCM, when applied to noisy IRIS data: (a)–(c)
noise amplitude parameter γ = 1; (d)–(f) st-PCM outcomes when γ ∈ {3, 10}.

Figure 10 shows the reliability and accuracy the PCM and st-PCM algorithms
can be, when applied to noisy IRIS data. In case of γ = 1, PCM can be stable
in the presence of up to 100 noisy data vectors, while st-PCM can work fine at
p = 1.2 in a wide range of the joint penalty term η. We also need to remark
that the fine setting for the κ parameter that influences the initialization of
PCM was found far outside the recommended range. Figure 11 relates on the
validity indexes of clusters produced by st-PCM, in the presence of low and
high amplitude noise. As the noise amplitude grows, the number of tolerated
noise vectors reduces. However, fifty additional noisy vectors at γ = 3 or γ = 10
amplitude, or 200 noisy vectors within the normalized bounding box of the IRIS
data (γ = 1), are well tolerated by the proposed st-PCM algorithm.
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5 Conclusions

This paper proposed a self-tuning possibilistic c-means clustering model with a
possibly reduced number of parameters (3 instead of c + 1) that can robustly
handle distant outlier or noisy data. The behavior of the proposed algorithm was
numerically validated using synthetic and standard test data sets. The proposed
st-PCM algorithm proved more stable and more accurate, and in most cases
provides more valid clusters than the conventional PCM. Based on the tests
executed so far, we can suggest setting the cluster diameter regulation parameter
q = 2. Further detailed numerical test could enable us to propose parameter
selection strategies that would grant even finer accuracy and robustness.
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Abstract. This paper focuses on solving the problem of clustering for
categorical data with missing values. Specifically, we design a new frame-
work that can impute missing values and assign objects into appropriate
clusters. For the imputation step, we use a decision tree-based method to
fill in missing values. For the clustering step, we use a kernel density esti-
mation approach to define cluster centers and an information theoretic-
based dissimilarity measure to quantify the differences between objects.
Then, we propose a center-based algorithm for clustering categorical data
with missing values, namely k-CCM. An experimental evaluation was
performed on real-life datasets with missing values to compare the per-
formance of the proposed algorithm with other popular clustering algo-
rithms in terms of clustering quality. Generally, the experimental result
shows that the proposed algorithm has a comparative performance when
compared to other algorithms for all datasets.

Keywords: Data mining · Partitional clustering · Categorical data
Missing values · Incomplete dataset · Decision tree-based imputation

1 Introduction

Data clustering or clustering is one of the most important topics in data mining.
The goal of clustering is to assign data points with similar properties to the same
groups and dissimilar data points to different groups [6]. From a machine learn-
ing perspective, clusters correspond to hidden patterns, the search for clusters
is unsupervised learning, and the resulting system represents a data concept.
Therefore, clustering is unsupervised learning of a hidden data concept [2].

In general, clustering algorithms can be classified into two categories: hier-
archical clustering and partitional clustering. A hierarchical clustering is a set
of nested clusters where lower-level clusters are sub-clusters of higher-level clus-
ters [15]. Unlike hierarchical algorithms, partitional algorithms create a one-level
non-overlapping partitioning of the data points. For large datasets, hierarchical
methods become impractical because the complexity of hierarchical algorithms
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V. Torra et al. (Eds.): MDAI 2018, LNAI 11144, pp. 267–279, 2018.
https://doi.org/10.1007/978-3-030-00202-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00202-2_22&domain=pdf
http://orcid.org/0000-0001-7597-4262


268 D.-T. Dinh and V.-N. Huynh

are O(N3) for CPU time and O(N2) for memory space, while non-hierarchical
methods generally have a time and space complexity of order N , where N is
the number of data points in the dataset [16]. Moreover, partitional clustering
algorithms have shown their efficiency because their computational complexities
are linearly proportional to the size of the datasets, they often terminate at a
local optimum. Clustering algorithms are very highly associated with data types.
Categorical data, which is also referred to as nominal data, appears popularly
in many real-life applications. Categorical attributes are simply used as name,
gender, age group, and educational level, etc. Designing partitional clustering
algorithms for categorical data has attracted the attention of many researchers
over the last two decades.

It can be easily seen that many categorical data from the UCI Machine
Learning Repository1 and the CMU datasets archive2 contain missing values.
Moreover, some existing frameworks for clustering categorical data such as the
k-modes implementation3 strongly suggest that users should consider filling in
the missing data themselves in a way that makes sense for the problem at hand.
This is especially important in case of many missing values. This observation
motivates us to design an algorithm for clustering categorical data with missing
values. Generally, there are two ways to facilitate a clustering algorithm run
over categorical datasets with missing values. The first way is to preprocess
datasets so that they only consist of complete values and then run the clustering
algorithm. The second way is to develop a clustering algorithm that can deal
with incomplete datasets. In this research, we focused on the latter way. More
specifically, we developed a center-based algorithm that can run over incomplete
categorical datasets without a preprocessing procedure. The key contributions
of this paper are as follows:

– Based on the imputation method proposed in [4], we design a new measure to
quantify the similarity between an object with missing values and an object
with no missing values, namely MCS. By using our proposed measure and
the IS measure [14], we can find the most similar object with no missing
values for an object with missing values. From that, the appropriate values
can be chosen for imputation.

– We design an integrated framework that combines the imputation step and
clustering step into a common process.

– We propose a new categorical clustering algorithm named k-CCM that takes
into account the advantages of missing values imputation to improve the
performance of the clustering algorithm.

– We carry out an extensive experimental evaluation on benchmark datasets
from the UCI Machine Learning Repository and the CMU datasets archive to
evaluate the performance of the proposed algorithm in terms of the clustering
quality.

1 https://archive.ics.uci.edu/ml/datasets.html.
2 http://lib.stat.cmu.edu/datasets.
3 https://github.com/nicodv/kmodes.

https://archive.ics.uci.edu/ml/datasets.html
http://lib.stat.cmu.edu/datasets
https://github.com/nicodv/kmodes
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The rest of this paper is organized as follows. In the second section, related
work is reviewed. In the third section, preliminaries and problem statement are
introduced. In the fourth section, a new clustering algorithm for categorical data
with missing values is proposed. Next, the fifth section describes an experimental
evaluation. Finally, the last section draws a conclusion.

2 Related Work

2.1 Partitional Clustering for Categorical Data

The k-means algorithm (MacQueen, 1976) is one of the most used clustering
algorithms. It was designed to cluster numerical data in which each cluster has a
center called the mean. Working only on numerical data restricts some applica-
tions of the k-means algorithm. More specifically, it cannot be applied directly to
categorical data, which is very popular in many real-life applications nowadays.

To address this limitation, several studies have been made in order to remove
the numerical-only limitation of the k-means algorithm and make it applicable
to clustering for categorical data. In 1997, Huang proposed k-modes and k-
prototypes algorithms [7]. The k-modes algorithm is very popular for clustering
categorical data. It has some important properties [6]: it is efficient for clustering
large datasets, it also produces locally optimal solutions that are dependent on
initial modes and the order of objects in the data set, it works only on cate-
gorical data. The k-prototypes [7] integrates k-means and k-modes algorithms
to allow for clustering objects with mixed numeric and categorical attributes.
In the k-prototypes algorithm, the prototype is the center of a cluster, just as
the mean and mode are the centers of a cluster in the k-means and k-modes
algorithms, respectively. The k-prototypes algorithm is practically more useful
because frequently encountered objects in real world databases are mixed type
objects.

In 2004, San et al. proposed a k-means-like algorithm named k-
representatives [13]. The k-representatives uses the Cartesian product and union
operations for the formation of cluster centers based on the notion of means in
the numerical setting. It uses the dissimilarity measure based on the relative fre-
quencies of categorical values within the cluster and the simple matching mea-
sure between categorical values. The algorithmic structure of k-representatives
is formed in the same way as the k-modes [7]. In 2005, Kim et al. proposed k-
populations [8] that uses the notion of the population to represent the centroid
of each cluster. The population is a set of pairs that contain category values and
their confidence degrees for each attribute.

Recently, Chen et al. proposed a kernel-density-based clustering algorithm
named k-centers [3]. The k-centers uses the kernel density estimation method
to define the center of a categorical cluster, called the probabilistic center. It
incorporates a built-in feature weighting in which each attribute is automatically
assigned with a weight to measure its individual contribution for the clusters.
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More recently, Nguyen et al. proposed three extensions of k-representatives
[11]. The first extension, namely Modified 1, uses the information theoretic-
based dissimilarity measure instead of the simple matching dissimilarity measure
to quantify the distance between objects. The Modified 2 combines the new
dissimilarity measure with the concept of cluster centers proposed by Chen et
al. [3] to form clusters. The Modified 3 uses the new information theoretic-based
dissimilarity measure and a modified representation of cluster centers using the
kernel density based estimate. In this research, the proposed clustering method
is based on the scheme of Modified 1.

2.2 Imputation Methods for Categorical Data with Missing Values

Imputation of missing values is an important task for improving the quality of
the data mining result. Some of these methods are expectation maximization
imputation (EMI), decision tree based methods, similarity based imputation,
k-decision tree based imputation, k-nearest neighbor based imputation, genetic
algorithm and correlation based imputation [4]. For imputation categorical data
with missing values, Fujikawa et al. proposed two algorithms named Natural
Cluster Based Mean-and-Mode (NCBMM) and attribute Rank Cluster Based
Mean-and-Mode (RCBMM) [5]. The NCBMM can be applied to supervised
data where missing value attributes can be either categorical or numeric. The
RCBMM can be applied to both supervised and unsupervised data by filling up
missing values for categorical attributes independently with the class attribute.

In 2013, Rahman proposed DMI and SiMI algorithms [12]. The DMI uses
the decision tree and majority class voting method in the decision tree leaves to
impute for categorical missing values. The SiMI uses the decision forest algorithm
and the most frequent values method to impute for categorical missing values.

In 2016, Deb et al. proposed an imputation method named DSMI that
exploits the within-record and between-record correlations to impute missing
data of numerical or categorical values. The DSMI algorithm first utilizes the
decision tree to find the set of correlated records. Then, it uses the IS measure
and the weighted similarity measure to exploit the correlation between missing
and non-missing attributes within a record. The missing values are imputed by
random sampling from a list of potential imputed values based on their degree
of affinity. By modifying upon this imputation method, we integrate the impu-
tation step into clustering step to make it applicable to clustering categorical
data with missing values. The next section introduces preliminary definitions
and problem statement.

3 Preliminaries and Problem Statement

The problem of clustering for categorical data has been the subject of several
prior studies [3,7,11,13,17]. Let D = {D1,D2, . . . , Dm} be a set of m distinct
categorical attributes where the dth attribute (1 ≤ d ≤ m) takes a unique finite
set Od that contains |Od| (> 1) discrete values as its domain. A categorical
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object (record) is a tuple of the form 〈id,X〉 where id is its unique identifier
and X is represented by a tuple t ∈ O1 × O2 × · · · × Om. For the simplicity, a
categorical object X having id = k is denoted as Xk. A categorical dataset S =
{X1,X2, . . . , Xn} is a set of n categorical objects where Xk = {x1k, x2k, . . . , xmk}
is a set of m categorical values at the kth element of S. On the other hand, S is a
m×n matrix (n � m), where m and n are the number of attributes and objects
in dataset S, respectively. The element at position (i, j) (0 ≤ i < n, 0 ≤ j < m)
of the matrix stores the value of the object ith at the attribute jth, such that
xij ∈ O =

⋃m
d=1 Od. Note that if a categorical value in S is a missing value,

then it is represented as “?” or“ ” (empty). For the sake of brevity, we denote
a categorical object/dataset without missing values as complete object/dataset,
while a categorical object/dataset with missing values is denoted as incomplete
object/dataset.

Definition 1 (Clusters). Let C = {C1, C2, . . . , Ck} be the set of k disjoint
subset. Cα (1 ≤ α ≤ k) is called a cluster of S iff for every Ci ∈ C (1 ≤ i ≤
k ∧ i �= α), Cα ∩ Ci = ∅ and S =

⋃k
α=1 Cα. The number of data objects in the

cluster Cα is denoted by nα.

Definition 2 (Relative frequency in a cluster). Given a cluster Cα and a
categorical value appearing in Cα at dth attribute od

l (1 ≤ l ≤ nα), the relative
frequency of od

l in Cα is denoted and defined as:

fα(od
l ) =

#α(od
l )

nα
(1)

where #α(od
l ) is the number of od

l appearing in the cluster Cα.

In order to define the centers of clusters, Chen et al. [3] and Nguyen et al.
[11] used the kernel density estimation (KDE) method. Specifically, they used a
variation on Aitchison & Aitken’s kernel function [1] to estimate the probability
density function of each attribute in the center. In this research, we also use the
KDE to define centers.

Definition 3 (Kernel density estimation for categorical data [1,3,11]).
Given a cluster Cα. Let Xd be a random variable associated with observations
xd

i (1 ≤ i ≤ nα) appearing in cluster Cα at dth attribute, and it’s probability
of density is denoted as p(Xd). Let Od

α be the set of categorical values in Cα

such that Od
α =

⋃|Cα|
i=1 xd

i and λα ∈ [0, 1] be the unique smoothing bandwidth for
cluster Cα. For each value od

l in Od
α (1 ≤ l ≤ nα), the variation on Aitchison &

Aitken’s kernel function is denoted and defined as:

K(Xd, od
l , λα) =

{
1 − |Od

α|−1
|Od

α| λα if Xd = od
l

1
|Od

α|λα otherwise
(2)

Note that the kernel function of a categorical value at dth attribute is defined in
terms of the cardinality of the domain Od

α of the cluster Cα as [11] instead of
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the cardinality of the whole domain Od as [3]. The kernel density estimation of
the p(Xd) is denoted and defined as:

p̂(Xd, λα, Cα) =
∑

od
l ∈Od

α

fα(od
l )K(Xd, od

l , λα) (3)

Definition 4 (Smoothing bandwidth parameter [3,11]). The parameter λ
is a unique smoothing bandwidth that uses the least square cross validation to
minimize the total error of the resulting estimation over all the data objects. The
optimal smoothing parameter for cluster Cα is defined as:

λα =
1

nα − 1

∑|D|
d=1(1 − ∑

od
l ∈Od

α
[fα(od

l )]
2)

∑|D|
d=1(

∑
od

l ∈Od
α
[fα(od

l )]2 − 1
|Od

α| )
(4)

Definition 5 (Center of cluster). Let there be a cluster Cα = {X1, X2, . . . ,
Xp} where Xi = (x1i, x2i, . . . , xmi), m = |D|. Then, the center of Cα is defined
as:

Vα = {v1
α, v2

α, . . . , vm
α } (5)

where the dth element vd
α (1 ≤ d ≤ m) is a probability distribution on Od

α esti-
mated by a kernel density estimation method using Eq. (3), which is defined
as:

vd
α = [P d

α(od
1), P

d
α(od

2), . . . , P
d
α(od

|Od
α|)] (6)

where the probabilistic value of a categorical value od
l (1 ≤ l ≤ |Od

α|) can be
estimated based on Eqs. (1), (2) and (3) as:

P d
α(od

l ) =

{
λα

1
|Od

α| + (1 − λα)fα(od
l ) if od

l ∈ Od
α

0 if od
l �∈ Od

α

(7)

There are many methods to measure the dissimilarity between a categorical data
object and its center such as the simple matching dissimilarity measure [7,13],
the Euclidean norm [3] and the information theoretic-based dissimilarity measure
[11]. In 1998, Lin proposed an information theoretic definition of similarity [9]
that is applicable as long as the domain has a probabilistic model. In this work,
we also use the information theoretic based dissimilarity measure to compute
the distance between categorical objects and cluster centers.

Definition 6 (Information theoretic based dissimilarity measure [11]).
Given two categorical values od

l and od
l′ at the dth attribute. The similarity

between them is defined as:

simd(od
l , o

d
l′) =

2 log fα(od
l , o

d
l′)

log fα(od
l ) + log fα(od

l′)
(8)

where fα(od
l , o

d
l′) is the relative frequency of categorical objects in dataset S that

receives the value belonging to {od
l , o

d
l′} at the dth attribute.
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Then, the dissimilarity measure between two categorical values od
l and od

l′ at
the dth attribute can be defined as:

dsimd(od
l , o

d
l′) = 1 − simd(od

l , o
d
l′) = 1 − 2 log fα(od

l , o
d
l′)

log fα(od
l ) + log fα(od

l′)
(9)

Definition 7 (Dissimilarity between a data object and a cluster). Let
there be a cluster Cα with its center is Vα = {v1

α, v2
α, . . . , v

|D|
α } and a categorical

data object Xi = (x1i, x2i, . . . , x|D|i). The dissimilarity between Xi and Vα at
dth attribute can be defined as:

disd(Xi, Vα) =
∑

od
l ∈Od

α

P d
α(od

l )dsimd(xdi, o
d
l ) (10)

That is, the dissimilarity between Xi and Vα is measured by accumulating the
probability distribution on Od

α and the dissimilarity between dth component xdi

of the object Xi and the dth component vd
α of the center Vα.

Then the dissimilarity between data object Xi and cluster center Vα can be
defined as follows:

dis(Xi, Vα) =
|D|∑

d=1

disd(Xi, Vα) (11)

Definition 8 (IS measure [4]). Given a categorical dataset S = {X1, X2, . . . ,
Xn}. Let SC = {C1, C2, . . . , Cp} be a set of attributes with non-missing values
(complete attributes) and SM = {M1, M2, . . . , Mq} be a set of attributes with
missing values (incomplete attributes). The IS measure measures the degree of
associations between two sets SC and SM as follows:

IS(SC , SM ) =
Support(SC , SM )

√
Support(SC) ∗ Support(SM )

(12)

where Support(SC , SM ) = |SC , SM |/|S|, |SC , SM | is the number of categorical
objects that contain both attributes in SC and SM , |S| is the size of the dataset.

Definition 9 (MCS measure). Given a set T that contains both complete and
incomplete objects. Let there be two categorical values od

l and od
l′ appearing in T

at the dth attribute. The similarity between them is defined as:

simd
mis(o

d
l , o

d
l′) =

{
2 log fT (od

l ,od
l′ )

log fT (od
l )+log fT (od

l′ )
ifod

l �=? and od
l′ �=?

0 otherwise
(13)

where fT (od
l ) = #T (od

l )
nT

, #T (od
l ) and nT are respectively the number of od

l appear-
ing in T and the number of objects in T.

Let Xc = (x1c, x2c, . . . , x|D|c) and Xm = (x1m, x2m, . . . , x|D|m) be the complete
object and incomplete object, respectively. Then, the MCS between Xc and Xm
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is defined as follows :

MCS(Xc,Xm) =
|D|∑

d=1

simd
mis(xdc, xdm) (14)

Based on these definitions, the clustering algorithm for categorical datasets with
missing values now aims to minimize the following objective function:

J(U, V ) =
k∑

α=1

n∑

i=1

ui,α × dis(Xi, Vα) (15)

subject to {∑k
α=1 ui,α = 1 1 ≤ i ≤ n

ui,α ∈ {0, 1} 1 ≤ α ≤ k, 1 ≤ i ≤ n
(16)

where U = [ui,α]n×k is the partition matrix (ui,α take value 1 if object Xi is in
cluster Cα and 0 otherwise).

4 The Proposed k-CCM Algorithm

The proposed k-CCM algorithm is based on the general framework depicted
in Fig. 1. According to this model, the k-CCM initially scans the categorical
database S once to divide it into two sub-datasets, namely S1 and S2, which are
the complete and incomplete datasets, respectively. First, the k-CCM randomly
initiates k cluster centers from S1. Each cluster center is formed by the Eq.
(5). Two sets, namely SetDT and U , are respectively used to store decision
trees and clusters, while t is used as a counter for the number of the iterations
of the clustering process. In the next step, the k-CCM scans all objects in S2

to impute missing values and assign objects to clusters. For each object Xi in
S2, the algorithm finds attributes containing missing values (called as missing
attributes) and puts them into the set Setattr. For each missing attribute A in
Setattr, the k-CCM checks if there exists any decision tree (DT) that uses A
as a class attribute. If there is no such DT, then a DT that uses the missing
attribute A as the class attribute is constructed from the complete dataset S1.
This process is repeated until all missing attributes in A have their corresponding

Start 

Fill values for Xi, put it 
into S1, remove it from S2

Divide S into two 
subsets: 
S1: objects with 
no missing values 
S2: objects with 
missing values 

Build decision 
trees for Xi

Pick up Xi

from S2S: a categorical data 
with missing values 
k: a predefined 
number 

S2 is 
empty

All clusters are 
convergent

Initiate k
centers from S1

Return k
clusters 

End 

Yes 

No 

Assign objects from 
S1 into appropriate 

clusters 

Yes 

Update k centers

No 

Fig. 1. The flowchart of k-CCM algorithm
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DTs. After the tree construction step, object Xi is assigned to the leaf of the
tree with the same class attribute as the missing attribute. Once Xi is assigned
to the appropriate leaves, each leaf consists of objects from S1 and Xi that are
correlated. Each leaf node in DT is represented as a list of objects. In the k-
CCM, we use the same manner as the DSMI algorithm [4]. That is, if an object
has more than one missing values fallen into multiple leaves, the algorithm will
merge these leaves and group objects into the same collection. To impute the
missing values in Xi, the algorithm searches for objects in the node which have
the maximum number of non-missing attributes in common to the complete
object. Then, the attribute values in these objects corresponding to the missing
attributes in the missing object are taken to be the possible imputed values. For
each such object, the k-CCM finds possible imputed values and calculate the
IS and MCS measures for these values. The affinity degree of possible imputed
values is given by the average of the IS and MCS measures computed for each
possible imputed values. Once affinity degrees of possible imputed values are
obtained, the k-CCM assigned actual imputed values by random sampling from
the list of possible imputed values based on their affinity degrees. Based on
the results from [4], random sampling according to affinity degree ensures that
uncertainty and randomness in attribute values are accounted for and helps to
reduce systematic bias in the imputed dataset. After missing values are imputed,
the k-CCM puts Xi into S1 and removes Xi from S2. In the next step, the k-CCM
assigns objects in S1 into appropriate clusters and updates center of clusters. A
similar process is performed for all incomplete objects in the S2. Then, the k-
CCM performs clustering step until all clusters are convergent. Finally, it returns
k clusters as the desired output.

5 Comparative Experiment

Experiments were performed to evaluate the performance of k-CCM on an HPC
cluster4. Each node is equipped with an Intel Xeon E5-2680v2@2.80 GHz×20,
64 GB of RAM, running Red Hat Enterprise Linux 6.4. The proposed algorithm
was implemented in Python using PyCharm. The performance of the proposed
k-CCM algorithm is compared with five partitional clustering algorithms: k-
modes [7], k-representatives [13], Modified 1, Modified 2 and Modified 3 [11].
Standard benchmark datasets were used for the experiment. The characteristics
of these datasets are shown in Table 1. They have varied characteristics. By using
these datasets, the performance of the proposed algorithm and the compared
algorithms are evaluated for the main types of data encountered in real-life
world. For each algorithm, we ran 300 times per dataset. In this research, we
use three metrics: Purity, Normalized Mutual Information (NMI) and Adjusted
Rand Index (ARI) to evaluate the performance of the proposed algorithm. These
metrics use class information in original datasets and clustering results generated
by the algorithm to evaluate how well the clustering matches the original classes.

4 https://www.jaist.ac.jp/iscenter/en/mpc/.

https://www.jaist.ac.jp/iscenter/en/mpc/


276 D.-T. Dinh and V.-N. Huynh

Table 1. Characteristics of the experimental datasets

Dataset #instances #attributes #miss values #classes source

Breast cancer 286 9 9 2 UCI

Gsssex survey 159 9 6 5 CMU

Mushroom 8,124 22 2,480 2 UCI

Negotiation 92 6 26 6 CMU

Runshoes 60 10 14 7 CMU

Soybean 307 35 712 19 UCI

Sponge 76 45 22 12 UCI

Voting records 435 16 392 2 UCI

Given a categorical dataset S with N objects. Let there be a set of clus-
ters C = {C1, ..., CK} generated by a clustering algorithm from S, and P =
{P1, ..., PJ} is the set of partitions which are inferred by the original class infor-
mation in S. Purity is a simple and transparent evaluation measure. To compute
purity value of a clustering result, each cluster is assigned to the class which is
most frequent in the cluster. Then, the accuracy of this assignment is measured
by counting the number of correctly assigned objects and dividing by the number
of objects in the dataset. Bad clusterings have purity values close to 0, a perfect
clustering has a purity of 1.

Purity(C,P ) =
1
N

∑

k

max
j

|Ck ∩ Pj | (17)

In Tables 2, 3 and 4, bolded numbers indicate the best performers in each cate-
gorical dataset. The purity results of the k-CCM and compared algorithms are
shown in Table 2.

Table 2. Purity results of clustering algorithms

Dataset k-modes k-representatives Modified 1 Modified 2 Modified 3 k-CCM

Breast Cancer 0.7028 0.7028 0.7030 0.7028 0.7028 0.7098

Gsssex survey 0.7799 0.7814 0.7802 0.7803 0.7803 0.7816

Mushroom 0.8818 0.8876 0.8858 0.7235 0.7312 0.8861

Negotiation 0.4692 0.4829 0.4469 0.4517 0.4645 0.5002

Runshoes 0.4613 0.4591 0.4725 0.4725 0.4798 0.4851

Soybean 0.6107 0.7139 0.6955 0.6924 0.7181 0.6957

Sponge 0.9211 0.9211 0.9211 0.7159 0.9211 0.9214

Voting records 0.8581 0.8764 0.8713 0.8760 0.8775 0.8805
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Table 3. NMI results of clustering algorithms

Dataset k-modes k-representatives Modified 1 Modified 2 Modified 3 k-CCM

Breast Cancer 0.0040 0.0018 0.0047 0.0042 0.0040 0.0057

Gsssex survey 0.0536 0.0606 0.0430 0.0428 0.0630 0.0634

Mushroom 0.5446 0.5383 0.5310 0.1937 0.2077 0.5492

Negotiation 0.0939 0.1342 0.1193 0.1039 0.1193 0.1353

Runshoes 0.2158 0.2192 0.2224 0.2246 0.2267 0.2289

Soybean 0.6085 0.7552 0.7314 0.7243 0.7509 0.7555

Sponge 0.0668 0.0638 0.0765 0.0748 0.0887 0.0770

Voting records 0.4359 0.4990 0.4961 0.4950 0.4947 0.5002

High purity is easy to achieve when the number of clusters is large. Thus, we
cannot use purity to trade off the quality of the clustering against the number
of clusters [10]. A measure that allows us to make this trade-off is Normalized
Mutual Information (NMI). NMI is computed as the average mutual information
between any pairs of clusters and classes. Because NMI is normalized, we can
use it to compare clustering with different numbers of clusters. NMI is always
a number between 0 and 1. This measure takes its maximum value when the
clustering partition matches completely the original partition.

NMI(C,P ) =

∑K
k=1

∑J
j=1 |Ck ∩ Pj | log N |Ck∩Pj |

|Ck||Pj |
√∑K

k=1 |Ck| log |Ck|
N

∑J
j=1 |Pj | log |Pj |

N

(18)

The NMI results of the proposed k-CCM and other five algorithms are shown in
Table 3.

In 1985, Hubert and Arabie proposed the adjusted Rand index (ARI) that
ranges between −1 and 1 and is 0 if there is only chance agreement between
clusters and classes. Let n be the number of object pairs belonging to the same
cluster in C and to the same class in P . This metric captures the deviation of
n from its expected value corresponding to the hypothetical value of n obtained
when C and P are two random, independent partitions. The expected value of
n is defined and denoted as:

E[n] =
π(C)π(P )

N(N − 1)/2
(19)

where π(C) and π(P ) denote respectively the number of object pairs from the
same clusters in C and from the same classes in P . The maximum value for n is
defined as:

max(n) =
1
2
(π(C) + π(P )) (20)

The agreement between C and P can be estimated by the ARI as follows:

ARI(C,P ) =
n − E[n]

max(n) − E[n]
(21)
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when ARI(C,P ) = 1, we have identical partitions. The ARI results are shown
in Table 4.

Table 4. Adjusted Rand Index results of clustering algorithms

Dataset k-modes k-representatives Modified 1 Modified 2 Modified 3 k-CCM

Breast Cancer 0.0019 −0.0030 0.1351 0.0021 0.0055 0.1351

Gsssex
survey

0.0066 0.0135 0.0168 0.0140 0.0171 0.0171

Mushroom 0.5924 0.5952 0.5963 0.2357 0.2527 0.6009

Negotiation 0.0143 0.0267 0.0105 0.0111 0.0193 0.0155

Runshoes 0.0381 0.0320 0.0385 0.0335 0.0385 0.0392

Soybean 0.3759 0.4767 0.4163 0.4167 0.4686 0.4167

Sponge −0.0173 −0.0176 −0.0024 −0.0030 0.0190 −0.0007

Voting
records

0.5119 0.5658 0.5504 0.5540 0.5644 0.5779

6 Summary and Future Work

In this paper, we have proposed an algorithm named k-CCM for clustering cat-
egorical datasets with missing values. The proposed algorithm integrates the
imputation step and clustering step into a common process. By this way, all
incomplete objects are first imputed and then assigned into appropriate clus-
ters. In particular, we have extended a decision tree-based imputation method
[4] to fill in missing values. For clustering, we use a kernel density estimation app-
roach to define cluster centers and an information theoretic-based dissimilarity
measure to quantify the differences between objects. An extensive experimental
evaluation is conducted on benchmark categorical datasets to evaluate the per-
formance of the proposed algorithm. According to the experimental results, the
designed algorithm has a comparative result in terms of clustering quality when
compared to the other five algorithms. Thus, the imputation step has improved
the quality of the clustering.

In future work, we will consider clustering mixed data with missing values. In
addition, we will study clustering for large-scale and high-dimensional datasets
with missing values.
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Abstract. A Network Intrusion Detection System (NIDS) helps system
administrators to detect security breaches in their organization. Current
research focus on machine learning based network intrusion detection
method. However, as numerous complicated attack types have growingly
appeared and evolved in recent years, obtaining high detection rates is
increasingly difficult. Also, the performance of a NIDS is highly depen-
dent on feature design, while a feature set that can accurately character-
ize network traffic is still manually designed and usually costs lots of time.
In this paper, we propose an improved NIDS using word embedding-
based deep learning (WEDL-NIDS), which has the ability of dimension
reduction and learning features from data with sophisticated structure.
The experimental results show that the proposed method outperforms
previous methods in terms of accuracy and false alarm rate, which suc-
cessfully demonstrates its effectiveness in both dimension reduction and
practical detection ability.

Keywords: Network intrusion detection · Deep neural networks
Word embedding · Long short-term memory networks

1 Introduction

Network Intrusion Detection System (NIDS) is an important part of protect-
ing computers and networks against inner or outer intruders. In recent years,
machine learning methods have been widely explored to solve the intrusion detec-
tion tasks.

However, there are two issues that make an efficient and flexible NIDS a
big challenge when detecting unknown attacks. Firstly, an important part of
machine learning methods is “feature engineering”, which costs lots of time and
needs professional knowledge. As attack scenarios are continuously changing
and evolving, the features selected for one type of attack may not work well for
another type. Secondly, it is very difficult to train a model with low overheads
when high dimensional features are fed into the training procedure.
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To address the first challenge, deep learning has been demonstrated to be
good at replacing handcrafted features with efficient algorithms [1,2]. There are
many researchers studying this problem by deep learning methods, which can
avoid feature engineering. Moreover, a deep learning based NIDS can be designed
as an end-to-end system (input: raw traffic, output: detection result). To address
the second challenge, it is worth noticing that word embedding [3] can effectively
reduce the dimension of features while keeping the similarity relationships in
semantics and syntax.

Therefore, we propose an improved NIDS using word embedding-based deep
learning (WEDL-NIDS). Specifically, WEDL-NIDS first reduces the dimension
of a packet’s payload via word embedding and learns the local contentful features
of network traffic using deep convolutional neural networks (CNNs) [4]. Then it
adds the head features and learns global temporal features using long short-term
memory (LSTM) networks [5]. Comparative experiments demonstrate that the
proposed method can achieve significant performance improvement compared
with previous methods in terms of accuracy and detection rate. Moreover, the
proposed method can obtain quite impressive performance when being applied
to detect malicious traffics.

The remainder of this paper is organized as follows. Section 2 describes related
work and introduces motivation of this work. Section 3 describes the design and
implementation of the proposed method. Section 4 shows and analyzes experi-
mental results. Finally, Sect. 5 presents conclusions and future work.

2 Related Work

In recent years, deep learning has become increasingly popular and studies have
shown that deep learning completely surpasses traditional methods in the fields
of computer vision and natural language processing. Therefore, deep learning
has been widely applied for intrusion detection. The current deep learning based
intrusion detection methods can be divided into 3 types:

• Deep learning as classifiers. In this type, researchers first extracted prede-
fined features from raw data, then used deep learning methods to train their
models as classifiers. Tang et al. [6] utilized a deep learning approach based on
a deep neural network for flow-based anomaly detection, and the experimen-
tal results showed that deep learning can be applied for anomaly detection
in software defined networks. Salama et al. [7] proposed a deep learning app-
roach with Deep Belief Network (DBN) as a feature selector and SVM as
a classifier for intrusion detection. This approach resulted in an accuracy of
92.84% when applied on training data. Fiore et al. [8] used a similar, however,
semi-supervised learning approach. They used real-world trace for training,
and evaluated their approach on real-world and KDD Cup 99 traces. These
work show the effect of deep learning for intrusion detection. But they ignore
that the strongest ability of deep learning is to learn from the raw data.
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• Deep learning as feature extractor. In this type, researchers first used
deep learning methods to extract features automatically from raw data, then
used simple classification algorithms based on these features. Most of these
work used auto-encoder (AE) as their preprocess method. Wang et al. [9]
proposed a sparse auto-encoder (SAE) based deep learning approach for net-
work traffic identification. However, they performed TCP based unknown
protocols identification in their work instead of network intrusion detection.
Javaid et al. [10] proposed a deep learning based approach using self-taught
learning (STL) on the benchmark NSL-KDD dataset in a network intrusion
detection system. When comparing its performance with those observed in
previous studies, the method was shown to be more effective. Yu et al. [11,12]
obtained quite impressive performance through applying stacked denois-
ing autoencoders (SDA) based deep learning architecture to detect botnet
traffics.

• Deep learning as an end-to-end model. In this type, researchers used
deep learning methods directly on the raw data and trained their models for
classification tasks. Most of these work used CNNs or RNNs to learn spatial
and temporal features. Wang et al. [1] used a CNN to learn the spatial fea-
tures of network traffic and achieved malware traffic classification using the
image classification method. Yin et al. [13] used the RNN model to perform
classification directly and researched both the binary and multi-class clas-
sification. Wang et al. [2] combined the CNN and LSTM networks to learn
hierarchical spatial-temporal features. The result they got was quite well but
the limitations of their work are that they always transform the traffic data
into pictures before their study, which we think is out of nature of the traffic
data. Also, they ignore the highly normalized head features of the traffic data
and mix the entire data as the input before transforming into pictures.

The main differences among these methods are: the first type used deep learning
methods as classifiers only on the predefined features; the second type used deep
learning methods as feature extractor only on the raw traffic data; the third type
used deep learning methods as an end-to-end model. The WEDL-NIDS model
belongs to the third type but with some improvements.

As a result of the uselessness of transforming traffic data into pictures, we
put forward a point of view that the network traffic data could be regarded as
text. And we noticed that Mikolov et al. [3,14] proposed the method of word
embedding to reduce the dimension of the text feature while keeping the simi-
larity in semantics and syntax at the same time. Following this line of thinking,
we reduced the dimension via word embedding and then input the result into
the deep learning model to get a high-performance NIDS.

3 Methodology

Real traffic data can be regarded as a collection of binary numbers 0 and 1. As
a result, we tried to introduce the knowledge in the field of natural language
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processing (NLP). Suppose that a flow is a paragraph of text, each packet in
flow is the sentence in the text. The original task of classifying a flow as normal
or attack can be converted into classifying whether the text is malicious or kind.

The goals of the WEDL-NIDS is to reduce the dimensions of features by
word embedding and automatically learn the features of raw network traffic
data using deep neural networks, and finally to improve the effectiveness of
the NIDS. Generally, this model is composed of 3 modules: data preprocessing
module, dimension reduction module and deep learning architecture module.
Specifically, data preprocessing module transformed raw network traffic into 2
parts: head features and payload text. Then the payload text were input into
dimension reduction module, which transformed payload text into word vectors.
Finally, the head features and word vectors were emerged together and input
into the deep learning architecture. The whole process is shown in Fig. 1, and
the various stages of the WEDL-NIDS are described below.

Fig. 1. The whole process of WEDL-NIDS.

3.1 Data Preprocessing

In this stage, the input raw network traffic data are transformed into the text
sequences and the head features are extracted. There are 2 steps to transform
raw network traffics into trainable samples: packet head features election, packet
payload extraction.

Packet Head Features Selection. We choose 11 features from the head of
packets: protocol, source port, destination port, icmp type, icmp code, length,
flags, ack num, urgptr, window size, option num. All the features are described
in Table 1. All the integer numbers then are normalized to float numbers from
−1 to 1.
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Table 1. Descriptions of the head features in our experiments

Feature name Description Example

Protocol TCP, UDP, ICMP 110

Port Source port and destination port for TCP or UDP
packets

51032

icmp type Value of type field of ICMP packet 3

icmp code Value of code field of ICMP packet 3

Length Total length of the packet 141

Flags 6 TCP flags of packets; 0 for UDP and ICMP packets 010000

ack val Value of ACK for TCP packets; 0 for UDP and
ICMP packets

3745556791

urgptr val Value of urgptr for TCP packets; 0 for UDP and
ICMP packets

0

window size Value of window size for TCP packets; 0 for UDP
and ICMP packets

256

option num Number of options for TCP packets; 0 for UDP and
ICMP packets

5

Packet Payload Extraction. Each packet payload is split in 8 bits part. Then
each 8 bits were token as a “word” in text. The length of one text sequence is
100, which means that we choose the first 100 words from each packet’s payload.
If the length of a payload is less than 100, zeroes are padded. Correspondingly,
the extra part is truncated. At the end of this step, we use one-hot encoding to
transform each word in text sequences into a 256 dimension vector.

3.2 Dimension Reduction

The dimension reduction of WEDL-NIDS is based on word embedding, which
can keep the similarity in semantics and syntax at the same time. The two
popular methods of learning word embedding from text include: Word2Vec [15]
and GloVe [16]. We choose Word2Vec as our tool because of its convenience,
high efficiency and performance. The theory of Word2Vec is CBoW model and
Skip-gram model. The model we used in the experiment is based on Skip-gram
model. The difference of CBoW and Skip-gram is that, given context, the CBoW
predicts input word; while Skip-gram predicts the context when given input word
(Fig. 2).

The Skip-gram model is actually divided into two parts. The first part is to
establish the model, and the second part is to obtain the embedded word vector
through the model. The modeling process of Skip-gram is very similar to auto-
encoder, which reconstruct the data based on a neural network when training the
model. But we do not use the trained model to deal with the new task, what we
really need is the parameters of the model learned from the training data (e.g. the
weight matrix of hidden layer). In Skip-gram, these weights are actually called
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Fig. 2. The architecture of Skip-gram model.

the “word vectors”. The forward calculation process of the Skip-gram model can
be written as a mathematical form:

p(ω0 | ωi) =
eU0·Vi

∑
j eUj ·Vi

. (1)

in which Vi is the column vector in the embedding layer matrix (also called input
vector of ωi), Uj is the row vector in the softmax layer matrix (also called input
vector of ωj). The embedding layer matrix is actually the hidden layer weight
matrix in Algorithm 1. The softmax layer matrix is a p × n matrix, in which p
is the number of labels, n is the dimension of data.

Algorithm 1 shows the process of word embedding and the construction of
training samples is described as follows.

Training Samples Construction. Let S be the set of all the words from the
training data, wi ∈ S denotes the i-th word in text. Suppose a packet’s payload is
w1:n = w1, wi, ..., wn. We first choose a word in text as the input word (e.g. wi).
Then we define a parameter named “skip window”, which denotes the number
of words we choose from the side of the current input word (left or right). For
skip window = k, the window is [wi−k, ..., wi, ..., wi+k]. Another parameter is
called “num skips”, which denotes how many different words we choose from
the whole window as our output word. For num skips = p, we will get p groups
of training word pairs: (wi, wi−1), (wi, wi+1), ..., (wi, wi− p

2
), (wi, wi+ p

2
).

3.3 Deep Learning Architecture

The architecture of the deep learning model we used is that we first learns
the local contentful features of network traffic using deep convolutional neural
networks (CNNs) and then adds the head features and learns global temporal
features using long short-term memory (LSTM) networks. Finally, the softmax
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Algorithm 1. Dimension reduction based on word embedding
Input: Network traffic text sequences
Output: Network traffic word vector sequences
Step 1: Create word embedding model
1: Create word pairs from the network traffic text sequences of length l with

skip window k1 and num skips p1.
2: One-hot encoding every word in the training data.
3: Add a hidden layer with w neurons, the weight matrix of which is a l×w matrix.
4: Add a dense layer, the activation of which is softmax, which predicts words at the

nearby position of the input word.
Step 2: Train and validate model
5: while early termination condition is not met do
6: while training dataset is not empty do
7: Prepare the mini-batch dataset as the model input.
8: Compute the categorical cross-entropy loss function H (p, q) =

−∑
x p (x) log (q (x)), p=true dist and q=predict dist.

9: Update the weights and biases using the RMSprop gradient descent optimiza-
tion algorithm.

10: end while
11: end while
Step 3: Get the word vector
12: Output the hidden layer weight matrix, the shape of which is l × w. Match each

word with its word vector, the dimension of which is w.
13: return The network traffic word vector sequences

classifiers will classify the traffic as normal or attack. Details of the deep learning
architecture are presented below.

Payload Feature Learning. CNNs are used to learn the local features of the
word vector sequences which have already been calculated by word embedding.
Inspired by the architectures of CNNs in the field of computer vision [17], we
used two convolution filters with different sizes and concatenated two outputs
together as the final vector. This method can obtain better results from different
granularity levels. Then we merge the head features with the output of CNN as
packet vectors P . Figure 3 shows the generation of packet vectors.

Global Feature Learning. LSTMs are used in this part to learn the global
features of the packets. The input is the packet vector sequences [P1, P2, ..., Pn]
and the output is a single vector F which combines the local features in a single
packet and the global features in a flow. We use bidirectional LSTMs in which
each direction includes two sequence-to-sequence Recurrent Neural Layers [18].
Recurrent Neural Layers help us trace the history from previous network packets.
In specific, LSTM aims to overcome vanishing gradient problem of RNN and uses
a memory cell to present the previous timestamp [5]. The softmax classifier is
used to determine whether the input traffic is normal or malware based on the
flow vector. Softmax is a commonly used multi-class classification method in the
field of machine learning. Figure 4 shows the details of this step.
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Fig. 3. The payload feature learning and generation of packet vectors.

Fig. 4. The global feature learning and classifier.

4 Experiment Results and Discussion

This section evaluates the performance of the proposed WEDL-NIDS by per-
forming various experiments on ISCX2012, a commonly used public standard
intrusion detection datasets. Specifically, these experiments can be divided into
2 parts:

• Multi-class classification using WEDL-NIDS
• Comparison WEDL-NIDS with other methods
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4.1 Experimental Methodology

1. Experiment setup
The Keras (using tensorflow as backend) is used as experiment software frame-
work which runs on CentOS 7.2 64bit OS, with 2 Xeon e5 CPUs with 10 cores
and 64 GB memory. An Nvidia Tesla K80 GPU is used as accelerator. The
mini-batch size is 64 and the initial learning rate is 0.0001, training time is
about 50 epochs.

2. Evaluation metrics
Four metrics are used to evaluate the performance of the WEDL-NIDS: accu-
racy (ACC), detection rate (DR), false alarm rate (FAR) and F1 score.
They can be obtained by a confusion matrix. By definition, entry i, j
in a confusion matrix is the number of observations actually in group
i, but predicted to be in group j. The definitions of these metrics are
presented below: Accuracy (ACC) = (TP + TN)/(TP + FP + FN +
TN); DetectionRate (DR) = TP/(TP + FN); FalseAlarmRate (FAR) =
FP/(FP + TN); F1 score (F1) = 2 · (PR · DR)/(PR + DR)

where TP is the number of instances correctly classified as X, TN is the number
of instances correctly classified as Not-X, FP is the number of instances incor-
rectly classified as X, and FN is the number of instances incorrectly classified
as Not-X.

4.2 Dataset

Most public intrusion detection datasets, such as NSL-KDD [19] and Kyoto2009
[20], do not contain raw traffic data. What’s more, DARPA1998 [21] are not
appropriate to simulate actual network systems according to [22]. As a result,
we choose ISCX2012 [23] as our experiment datasets.

ISCX2012 recorded 7 days’ network traffic (legitimate and malicious). During
those 7 days, 4 types of attacks happened on 4 days respectively. Considered
about the training time and the computer memory, we collect all attack packets
and choose one day’s normal ones (16/6/2010) to match the number of attack
packets. We divide the whole dataset into training and test datasets using a ratio
of 60% to 40%, respectively. Table 2 presents the distribution of traffic records
in the final dataset.

4.3 Multi-classification Using WEDL-NIDS

The results of multi-classification using WEDL-NIDS are presented in Table 3.
Specifically, the approach achieved 99.97% overall accuracy rate, which strongly
proved its performance. The detection rate was 96.39% on the whole dataset, but
it dropped to 90.00% when considered about the Infiltrating attack. It’s probably
because the training samples of HttpDoS is the least in the whole training set.
The FAR was pretty good, some class (BFSSH, DDoS) even achieved 0. The
overall F1 score was 0.94, which meant the model had a quite good comprehensive
performance.
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Table 2. Distribution of traffic records in our dataset

Dataset Training Test Total

Normal 241,951 161,301 403,252

BFSSH 2,974 1,982 4,956

Infiltrating 6,057 4,038 10,095

HttpDoS 2,110 1,406 3,516

DDoS 13,577 9,050 22,627

Total 266,669 177,777 444,446

(Normal: normal traffic; BFSSH: brute
force SSH attacks; Infiltrating: infiltrat-
ing attacks; HttpDoS: HttpDoS attacks;
DDoS: DDoS attacks)

Table 3. Multi-classification results of WEDL-NIDS for ISCX2012

Dataset ACC DR FAR F1

Normal 99.97% 99.97% 0.05% 0.99

BFSSH 99.99% 99.79% 0.00% 0.99

Infiltrating 99.97% 92.38% 0.02% 0.83

HttpDoS 99.96% 90.00% 0.02% 0.88

DDoS 99.96% 99.79% 0.00% 0.99

Overall 99.97% 96.39% 0.02% 0.94

4.4 Comparison with Other Methods

As mentioned above, researchers have proposed many intrusion detection meth-
ods. Thus, we compare the experimental results of the WEDL-NIDS with those
of other published methods.

Table 4 shows a comparison of the experimental results for the ISCX2012
dataset. The first four methods listed in Table 4 all use traditional machine
learning methods. The DeepDefense used deep learning method but they do

Table 4. Comparison with other published methods for ISCX2012

Method ACC Attack-DR FAR

MHCVF [24] 99.50% 68.20% 0.03%

ALL-AGL [25] 95.40% 93.20% 0.30%

KMC+NBC [26] 99.00% 99.70% 2.20%

AMGA2-NB [27] 94.50% 92.70% 7.00%

DeepDefense [28] 97.61% 97.83% 2.39%

WEDL-NIDS 99.97% 95.49% 0.02%
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experiments only on the detection of DoS attack, and they only used DDoS
attacks data and normal data as their training set. Except the DeepDefense,
all the methods in Table 4 used the same set of data and same set of attacks.
The overall accuracy, the DR of attack traffic and overall FAR are used as the
evaluation metrics.

Table 4 shows that the WEDL-NIDS method achieves the best performances
regarding the overall accuracy and overall FAR. Noticed that the DR of attack is
lower than the state-of-art by 4.21%, but their method gets a higher FAR than us
(2.20% compared to 0.02%). Similarly, the DR of attack for DeepDefense is also
higher than the WEDL-NIDS. However, we should consider about their results
are performed only on the detection of DoS attack, and their FAR is higher
than us.

5 Conclusions and Future Work

As a result of the difficulty of hand-designing accurate traffic features in the field
of intrusion detection, we propose a word embedding-based network intrusion
detection model (WEDL-NIDS). The experimental results show that the WEDL-
NIDS effectively improves the accuracy and DR compared to other published
methods.

Our contributions are that we effectively reduce the dimensions of features by
word embedding and automatically extract the suitable features by deep learn-
ing. Two problems require further study in future work. The first involves the
interpretability of the word vectors we get after embedding. The second problem
involves the ability of finding unknown attacks. As a result of the fact that our
method belongs to supervised learning, we can’t promise the performance of our
model when unknown attacks occur.
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Abstract. The anonymization of structured data has been widely stud-
ied in recent years. However, anonymizing unstructured data (typically
text documents) remains a highly manual task and needs more attention
from researchers. The main difficulty when dealing with unstructured
data is that no database schema is available that can be used to measure
privacy risks. In fact, confidential data and quasi-identifier values may
be spread throughout the documents to be anonymized. In this work
we propose to use a named-entity recognition tagger based on machine
learning. The ultimate aim is to build a system capable of detecting
all attributes that have privacy implications (identifiers, quasi-identifiers
and sensitive attributes). In particular, we present a proof of concept
focused on the detection of confidential attributes. We consider a case
study in which confidential values to be detected are disease names in
medical diagnoses. Once these confidential attribute values are located,
one can use standard statistical disclosure control techniques for struc-
tured data to control disclosure risk.

Keywords: Anonymization · Unstructured data
Named-entity recognition · Conditional random fields

1 Introduction

Nowadays, large amounts of data are being collected from very diverse sources,
quite often without the affected individuals being aware of it. Such a systematic
data collection, coupled with new data analysis techniques, has given rise to big
data. Although sometimes qualified as a buzzword, big data entail a significant
change in the way data are managed. In this work, we are concerned with the
privacy implications of big data, in particular unstructured big data.

In the traditional setting, data were mainly collected through surveys or from
other administrative data sources. As a result, they usually had a structured
nature (a table). The wide variety of data sources in the current big data context
(e.g. emails sent and received, participation in social networks, etc.) forces us
to consider other types of data, such as semi-structured or unstructured data
c© Springer Nature Switzerland AG 2018
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(free text). Already in 2005, it was claimed in [9] that as many as 80% of the
business and medical data were stored in unstructured form. In the health-care
context, a proper use of such data is critical for research and policy-making
purposes, and useful for related industries such as health insurance.

The new European General Data Protection Regulation (GDPR, [8]) states
that explicit consent from the affected individuals is needed to use personally
identifiable information (PII) for secondary purposes (different from the primary
purpose that motivated the collection, such as healthcare or service billing).
Ideally, the data collector should strive to gather such consent. However, in
practice this may not be feasible. It may be difficult to contact individuals to
obtain their consent. Additionally, individuals with rare conditions are more
likely be concerned about their privacy, which makes them less prone to grant
consent for their data to be used. Due to these shortcomings, the resulting data
sets will probably be biased.

To avoid the need for consent, data used for secondary purposes should no
longer be personally identifiable. Anonymization, also known as statistical dis-
closure control (SDC), provides a way to turn PII into information that cannot
be linked to a specific identified individual any more and hence is not subject to
privacy regulations.

There is a substantial amount of literature on SDC for the case of structured
data [4,5,10]. Structured data are those that can be described as a set of records
each of which corresponds to an individual and contains the values of a fixed set
of attributes for that individual. A common approach to anonymize structured
data is to remove attributes that are identifiers and then mask quasi-identifier
attributes. The latter are attributes that are not identifiers but together might
allow linking the record with some external data source containing identifiers,
and therefore might allow re-identifying the individual to whom a record corre-
sponds. Alternatively, instead or in addition to masking quasi-identifiers, one can
mask the confidential attributes, to introduce uncertainty about the confidential
attribute values.

Once a decision has been made on which attributes are quasi-identifiers and
which are confidential ones, anonymization of structured data can be fully auto-
mated. (Admittedly, in some cases the above decision may be unclear, as it
depends on the background information that is assumed to be available to an
intruder.) However, automation of unstructured data anonymization is much
more difficult, because there is no database schema that can be followed to clas-
sify the data into identifiers, quasi-identifiers and confidential attributes. As a
result, anonymizing unstructured data remains today a largely manual task.

In fact, it can be argued that unstructured textual data are the ones for
which anonymization is hardest. Other types of data that might seem more
difficult at first sight can be either reduced to unstructured text by using tools
for automated semantics extraction (as it occurs with video and audio) or are
not amenable to anonymization because their semantics is not yet sufficiently
understood (as is the case for genetic data).
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Contribution and Plan of This Paper

The purpose of this work is to automate the extraction of quasi-identifier and/or
confidential attributes from unstructured textual data. That is, we want to be
able to automatically identify attributes such as passport number, name, loca-
tion, age, birth date, etc. For the sake of concreteness, in this work, the focus
will be on medical diagnosis reports. Once this automatic identification of the
relevant attributes is completed, we can apply some of the methods designed for
anonymizing structured data. To identify attributes, we will take advantage of
a named-entity recognition (NER) tagger [7].

In Sect. 2, we briefly introduce some concepts that are important to under-
stand this work. In Sect. 3, previous work on document anonymization is recalled.
In Sect. 4, we describe our proposal. Experiments are presented in Sect. 5 and
conclusions and future work ideas are gathered in Sect. 6.

2 Background

2.1 Named-Entity Recognition

Named entity recognition (NER) is the task of locating and categorizing impor-
tant terms in a text [17]. Named-entity recognition is a source of information
for different natural language processing applications. NER has been used to
improve the performance of many applications, such as answering questions [12],
automatic text translation [1], information retrieval [23], and sentiment analysis
of tweets [11].

NER is also useful in the anonymization of unstructured data (e.g. free text
documents). In particular, it can detect those terms that might be used to re-
identify an individual and those terms that contain sensitive information. Once
these terms have been located, they constitute structured information that can
be anonymized as usual using SDC methods (e.g. generalization, supression, etc.)
to keep the disclosure risk under control.

There are many tagging schemes for NER. In this work we use the IOB2
tagging scheme [21]. In IOB2, each word in the text is labeled using one of three
possible tags: I, O, or B, which indicate if the word is inside, outside, or at the
beginning of a named entity. Usually, in the IOB2 tagging scheme, the B and
I letters come as prefix and are followed by the category name of the named
entity to distinguish between the B and I tags of different entities, e.g. in our
case B-DIS refers to beginning of named entity Disease and I-DIS means within
entity Disease.

2.2 Conditional Random Fields

In natural language processing, there are two common models used to solve
NER tasks: hidden Markov models (HMMs), used in works such as [16,27], and
conditional random fields (CRFs), used in works such as [3,6,11]. NER using
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CRFs is widely used and applied, and usually gives the best results in many
domains, so in this work we design our model using CRFs.

CRFs [15] are conditionally trained undirected graph models often applied in
pattern recognition. These models are used to calculate the conditional probabil-
ity of values on designated output nodes given values assigned to other designated
input nodes.

3 Related Work

Several techniques to anonymize unstructured textual data have been proposed.
Most of them can be classified into one the following two categories: dictionary-
based techniques and machine learning techniques [19].

In the past, document anonymization was carried out by manual search and
replacement of the named entities. Sweeney [24] proposed the Scrub method that
relies on the definition of some templates for the named entities, like location,
name and country. Once these entities are found, the related value is masked.

Neamatullah et al. [18] proposed a software for document anonymization that
uses lexical look-up tables, regular expressions and simple heuristics that perform
context checks to locate named entities. After that, they replace these entities
by non-indexed category values (e.g. replace “New York” by “[**Location**]”).

Vico and Calegari [26] proposed a software architecture for document
anonymization. The key idea is to recognize the named entities with an archi-
tecture of multiple natural language processing tools. After that, they replace
the sensitive entities by a generic indexed category value (e.g. replace “Fever”
by “generic term 1”).

In 2016, the United Kingdom Data Archive (UKDA) released a text
anonymization helper tool [22]. This tool identifies numbers and words start-
ing with a capital letter, and replaces them with “XXX”.

Kleinberg et al. [13] designed Netanos, a tool to allow researchers to
anonymize large texts. They use machine learning to recognize named entities
(e.g. persons, locations, times and dates). Then, they replace them by a privacy-
preserving indexed category value (e.g. “Location 1”, “Person 1”).

4 Methodology

The aim of this work is to locate terms in an unstructured text that can have
privacy implications, either because they can be used to re-identify an individual
or because they contain confidential information.

4.1 General Approach

Formally, given a collection of text documents D1, . . . , Dn, we want to locate
supersets of all the privacy-relevant attributes they contain. Specifically, we want
to come up with a superset of identifier attributes ID = {ID1, . . . , IDp}, a
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superset of quasi-identifier attributes QID = {QID1, . . . , QIDq}, and a super-
set of confidential attributes C = {C1, . . . , Cr}. The set ID should contain the
identifier attributes that appear in at least one of the documents; for exam-
ple, ID will contain “Passport no.” if at least one of the documents contains
a passport number (even if the other documents contain no passport number).
Similarly, the set QID should contain the quasi-identifier attributes that appear
in at least one document, and the set C the confidential attributes that appear
in at least one document.

Once the above supersets have been determined, the collection of documents
can be viewed as a structured data set with records D1, . . . Dn and attributes
that are the elements of ID ∪ QID ∪ C. Obviously, this structured data set is
likely to be a sparse one, as not all attributes take values in all documents. To
anonymize this data set, we proceed as usual in the case of structured data sets.
The values of attributes in ID should be suppressed from all records/documents
and masking should be applied to attributes in QID and/or C. Depending on
the type of masking used, it may be necessary to deal first with the missing
attribute values in some documents; imputing them by partial synthesis is a
possibility [5,10].

Thus, the problem of anonymizing unstructured data reduces to locating the
appearances of the various privacy-relevant attributes in the collection of doc-
uments and then anonymizing the resulting structured data set. We can tackle
the task of locating attribute appearances by building several machine learning
models, each of them recognizing a different type of named entity. For exam-
ple, a first model to recognize identifier attributes (e.g. passport number, social
security number, etc.), a second model to recognize quasi-identifier attributes
(e.g. location, birth date, age, postal code, etc.), and a third model to recognize
confidential attributes (e.g. disease names, etc.).

4.2 Proof of Concept

As a proof of concept, we focus on locating confidential data within medical
diagnoses. We propose a model based on conditional random fields to extract
the disease names from a given medical record. For a given text, this model
predicts a sequence of corresponding IOB2 tags.

Once we have the predicted sequence of IOB2 tags for every token in the
medical record, we can interpret this sequence of labels and extract the Disease
entity entity. For instance, if we have the sentence “Retinopathy was assessed
by ophthalmoscopy” and the corresponding IOB2 tags sequence {B-DIS, O, O,
O}, we move through the IOB2 sequence tags and every word corresponding
to a B-DIS label is considered as the beginning of a disease entity and every
word corresponding to an I-DIS label is considered as being within a disease
entity. Thus, a B-DIS word with all directly following I-DIS words forms one
disease entity. In fact, B-DIS and I-DIS labels do the same job but B-DIS has
the particular job of distinguishing between two consecutive disease entities.

Figure 1 shows the structure of the proposed model for disease name recog-
nition. It consists of three steps:
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– The first step is the tokenizer, which splits a sentence into tokens.
– The second step is the feature extractor; in this step, we use a window of

three words (the current word, the previous word and the next word), and
we extract the features of these words. Table 1 explains all the features we
considered.

– The third step uses a CRF model, which takes the features from the second
step and produces a sequence of tags for the whole sentence.

Fig. 1. Architecture of the named-entity recognition tagger

Table 1. Feature extraction

Feature Explanation

Word stem E.g. the stem of “illness” is “ill”. We extract stems using
SnowballStemmer from the nltk library [2].

Word length The length of the word

Word shape The shape of the word, which can be ‘lowercase’, ‘uppercase’,
‘capitalized’, ‘mixed’

Word POS Part of speech for the word. We use the Stanford POS tagger to
extract this feature [25]

5 Experimental Results

In this section we describe the experimental results of the above-mentioned proof
of concept. We programmed the experiments in Python, and we used sklearn-
crfsuite for CRF [14] and SnowballStemmer for word stemming [2].
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5.1 Data Set

In our experiments, we took advantage of medical texts that were labeled to
study the relation between diseases and treatments. These files were obtained
from MEDLINE 2001 using the first 100 titles and the first 40 abstracts from
the 59 files medline01n*.xml, that are available in [20].

These data contain 3,654 labeled sentences. The labels are: “DISONLY”,
“TREATONLY”, “TREAT PREV”, “DIS PREV”, “TREAT SIDE EFF”, “DIS
SIDE EFF”, “DIS VAG”, “TREAT VAG”, “TREAT NO” and “DIS NO”. As
we were only interested in diseases, we only kept the 629 sentences with the
“DISONLY” labels.

5.2 Evaluation Metrics

We used three metrics to evaluate the performance of the proposed model for
the recognition of diseases:

– Precision. Number of diseases correctly identified by the classifier divided by
the total number of identified diseases:

Precision =
|S ∩ T |

|S| ,

where S is the set of all diseases identified by the classifier and T is the set
of correct diseases according to the original dataset.

– Recall. Number of diseases correctly identified by the classifier divided by the
number of correct diseases in the original dataset:

Recall =
|S ∩ T |

|T | .

– F1. Harmonic mean of precision and recall:

F1 = 2 · Precision · Recall
Precision + Recall

.

5.3 Results and Discussion

We did the experimental evaluation in two phases: model training and model
testing. Out of the 629 samples of labeled sentences, 503 were devoted to model
training (80% of the samples), and 126 to model testing (20% of the samples).

The training phase was performed via 10-fold cross-validation, as follows. We
partitioned the training data set into 10 equal-size subsamples. Out of the 10
subsamples, a single subsample was retained as validation data for testing the
model while in the training phase, and the remaining 9 subsamples were used in
training.

While most words in the data set were labeled as O (outside disease), we were
interested in words labeled as B-DIS (beginning of disease) and I-DIS (in dis-
ease). Thus, we computed the precision, the recall and the F1 score only for
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Table 2. Evaluation of the model on the test dataset at word level

Precision Recall F1-score

B-DIS 0.766 0.677 0.719

I-DIS 0.789 0.709 0.747

Avg/total 0.778 0.693 0.733

B-DIS and I-DIS. For example, if we have the sentence “Diagnostic evaluation
of the patient with high blood pressure”, its word tokens are {“Diagnostic”,
“evaluation”, “of”, “the”, “patient”, “with”, “high”, “blood”, “pressure”} and
the corresponding labels are {O, O, O, O, O, O, B-DIS, I-DIS, I-DIS}. The
named entity here contains three words “high blood pressure”. Table 2 shows the
evaluation of the predicted tags against the correct tags at the word level (sepa-
rately for each word). In contrast, Table 3 reports the same evaluation metrics for
whole entities. That is, in the previous example, Table 2 would separately refer
to the three words “high”, “blood” and “pressure”, while Table 3 would refer
to the entity “high blood pressure”; in the latter case, unless all three words
of the entity were correctly labeled, the whole entity would be considered as
misclassified.

Table 3. Evaluation the model on the test dataset at entity level

Precision Recall F1-score

Disease entity 0.742 0.660 0.698

According to Table 3, our model performed significantly better regarding
the precision than regarding the recall. It is very likely that the recall can be
increased by using more training samples. Nonetheless, we consider the above
results to be promising, as a recall similar to manual labeling is achieved. Indeed,
the authors of [18] asked 14 clinicians to detect and anonymize named entities
in approximately 130 patient notes: the result of this manual procedure varied
from clinician to clinician, with recall ranging between 0.63 and 0.94 on the data
they used.

6 Conclusions and Future Work

In this work, we have dealt with the anonymization of unstructured textual data.
As a proof of concept, we have focused on locating disease names (i.e. sensitive
attributes) in medical records. Once located, these sensitive attributes can be
protected using common SDC techniques for structured data.

The main contribution of this work relates to the architecture of the rec-
ognizer for named entities. The proposed model is based on machine learning
and outperforms dictionary-based NER approaches. Specifically, it avoids the
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out-of-dictionary problem that arises when the entities to be located are not in
the dictionary being used.

As future work, we plan to extend the presented proof of concept to the
detection of identifiers and quasi-identifiers. This will require investing substan-
tial effort to generate annotated datasets for attributes such as name, location,
age, etc. These annotated data sets will subsequently be used to train the iden-
tifier and the quasi-identifier detection models.
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Abstract. Banks and financial services have to constantly innovate
their online payment services to avoid large digital companies take the
control of online card transactions, relegating traditional banks to sim-
ple payments carriers. Apart from creating new payment methods (e.g.
contact-less cards, mobile wallets, etc.), banks offers new services based
on historical payments data to endow traditional payments methods with
new services and functionalities. In this latter case, it is where privacy
preserving techniques play a fundamental role ensuring personal data is
managed full-filling all the applicable laws and regulations. In this paper,
we introduce some ideas about how SDC stream anonymization methods
could be used to mask payments data streams. Besides, we also provide
some experimental results over a real card payments database.

Keywords: Statistical Disclosure Control
General Data Protection Regulation (GDPR)
Payment Service Directive (PSD2) · Stream mining

1 Introduction

There has been a lot of discussion and debate in various forums regarding
how the European Union (EU) General Data Protection Regulation (GDPR),
2016/679/EU law [12] comed into force on May 2018. The GDPR will widen
the definition of ‘personal data’ to include data that relates to an ‘identifiable’
natural person, as opposed to just an ‘identified’ person. This means data may
be ‘personal’ even if the organisation holding the data cannot itself identify a
natural person. It also brings in provisions for the ‘right to data portability’,
allowing an end user to request all data held about them; and a ‘right to be
forgotten’.

Besides, banks and financial institutions need to implement the Second Pay-
ment Services Directive (PSD2) which makes it clear that customers have a
right to use what are termed Payment Initiation Service Providers (PISPs) and
Account Information Service Providers (AISPs) where the payment account is
accessible online and where they have given their explicit consent.
c© Springer Nature Switzerland AG 2018
V. Torra et al. (Eds.): MDAI 2018, LNAI 11144, pp. 306–318, 2018.
https://doi.org/10.1007/978-3-030-00202-2_25
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Apart from these two legal and regulatory issues, banks are into a competi-
tion with big digital companies to offer new online tools to add extra value to
traditional banking business, such as credit card payments. For instance, BBVA
launched C3601 in 2016 or Banc Sabadell created the Kelvin Retail system2 last
year. To have a clearer idea about the wide spectrum of online services offered
by banks check [11]. Due to these reasons, privacy preserving techniques are in
the eye of the storm of all online banking services. In this paper we describe
the application of the streaming statistical disclosure control (SDC) methods
presented in [9] to a real card payments database. Specifically, we will compare
online versions of noise addition, microaggregation, rank swapping and differen-
tial private microaggregation. Our results illustrates the viability of these tech-
niques in different scenarios where banks could be interested in sharing data
with third parties in an anonymous way. The rest of this paper is organized as
follows. In Sect. 2, we introduce some basic concepts about the SDC streaming
scenario. Then, Sect. 3 describes the SDC methods used in the experiments and
its metrics. Later, Sect. 4 describes the experiments carried out in this paper.
Finally, we conclude the work in Sect. 5, where we also propose some possible
future research lines.

2 Preliminaries

The main problem when dealing with streams is the high throughput of data
being analyzed, under computational resources constraints. Usually, stream min-
ing technologies require to modify traditional data mining methods to enable
their use on data streams. Such modifications include approximation algorithms,
sliding window methods and algorithm output granularity. In the present work we
rely on sliding window methods, where a window of specified length l moves over
the data, sample by sample, and each SDC method is computed over the data
in the window. We also introduce SDC and differential privacy concepts here.

2.1 Statistical Disclosure Control

The purpose of Statistical Disclosure Control (SDC ) is to prevent that confiden-
tial information can be linked to specific individuals. There are two categories
of SDC algorithms to achieve a certain privacy level [5], such as Perturbative
and Non-perturbative methods. The former methods add some noise to samples
in order to make re-identification more difficult, and the latter do not transform
records, they suppress samples partially or reduces its details.

1 BBVA C360 – https://www.bbva.es/autonomos/banca-online/commerce360/index.
jsp.

2 Banc Sabadell Kelvin Retail – https://www.bancsabadell.com/cs/Satellite/SabAtl/
Kelvin-Retail/6000019696135/es/.

https://www.bbva.es/autonomos/banca-online/commerce360/index.jsp
https://www.bbva.es/autonomos/banca-online/commerce360/index.jsp
https://www.bancsabadell.com/cs/Satellite/SabAtl/Kelvin-Retail/6000019696135/es/
https://www.bancsabadell.com/cs/Satellite/SabAtl/Kelvin-Retail/6000019696135/es/
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When assessing Disclosure Risk (DR) of a released data stream, one must
consider that a sample is composed by different kind of variables [16], namely:

– Identifiers. They are variables which unambiguously identify the individual,
for example, the passport number.

– Quasi-identifiers. They are variables which can identify the individual when
some of those attributes are combined. For example, the combination (age =
16, city = NY, job = photographer in the ‘Daily Bugle’) unequivocally iden-
tifies Peter Parker, Spider-man.

– Confidential. They are variables which contain sensitive information about
the individual. For example, salary.

Therefore, a data set X is defined as X = Xid||Xnc||Xc, where Xid are the
identifiers, Xnc are the non-confidential quasi-identifier values, and Xc are the
confidential values. Normally, before releasing a data set X containing confiden-
tial data, a protection method ρ is applied, leading to a protected data set X ′.
Indeed, we will assume the following typical scenario: (i) identifiers in X are
either removed or encrypted, therefore we will write X = Xnc||Xc; (ii) confiden-
tial values Xc are not modified, and so we have X ′

c = Xc; (iii) the protection
method itself is applied to non-confidential quasi-identifier values, in order to
preserve the privacy of the individuals whose confidential data is being released.
Therefore, we have X ′

nc = ρ(Xnc). This scenario allows third parties to have pre-
cise information on confidential data without revealing to whom the confidential
data belongs to.

Besides, when DR is assessed, data practitioners must consider several pri-
vacy breaches such as identity disclosure or attribute disclosure. A common way
to measure individual Disclosure Risk (DR) is using Record Linkage (RL) meth-
ods [2]. Thus, once a SDC method has been used to anonymize a sample, the RL
procedure is applied to the original and masked samples. This linkage attempts
to identify, for each sample in the masked stream, the corresponding sample in
the original stream.

Another critical measurement concerning data protection is Information Loss
(IL) or Data Utility, which could be defined as the amount of useful statistical
information that is lost along the data masking process [1,10]. On one hand, a
good anonymization method should minimize IL, in order to provide optimally
useful data to the legitimate users of such data. On the other hand, it is also
interesting to keep a low disclosure risk.

2.2 Differential Privacy

The main technique in differential privacy [4] is to add noise which is calibrated
to the global sensitivity of a query, being the maximal amount by which the
query result may change if one adds to the database a single record, this idea is
defined as neighbour datasets.

The Laplace mechanism is a relatively extended differential privacy method.
However, it can only be applied to functions that provide a numerical answer.
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We define the global sensitivity of a numerical function f : D → R
w, with

w ∈ N
+, over the universe of datasets D, as:

Δ(f) = max
D1,D2 ∈ D

|D1ΔD2| = 1

‖f(D1) − f(D2)‖1 (1)

Where the norm is defined by: ‖x‖p = p
√

xp
1 + xp

2 + · · · + xp
n

Therefore, given a database D ∈ D and a function f : D → R
w, with w ∈ N

+

and global sensitivity Δ, a ε-differential privacy mechanism M for releasing f
is to publish

M(D) = f(D) + L (2)

where L is a vector of random variables each drawn from a Laplace distribution
Lap(0, Δ(f)

ε ). This mechanism ensures that ε-differential privacy is achieved for
the release function f [7,15].

3 Adapting SDC Methods to the Streaming Setting

Once we have introduced some basics about SDC, now we focus on how to adapt
traditional SDC methods to the stream environment using sliding windows.

3.1 Noise Addition

Noise Addition [5] adds uncorrelated noise to the values of the attributes of a
sample x. We use a Gaussian variable to estimate the properties of a Gaussian
distributed set of samples. We denote by xi the value of the i-th attribute of the
sample x and by x′

i its masked counterpart. The masked values are calculated as
x′

i = xi+β·σ·ε where β ∈ [0, 1] is an input parameters, σ is the standard deviation
estimate, obtained from the attribute’s Gaussian Estimator and, finally, ε is
drawn from a Gaussian random variable ε ∼ N(0, 1).

3.2 Microaggregation

Microaggregation [3] methods are one of the best performing methods regarding
both speed and disclosure risk versus information loss trade-off. Three main
issues are involved when microaggregation on a data stream: the need for a
sliding window, a partition, and an aggregation steps:

– Sliding window. It is evident that no partition can be made by just processing
a single instance at a time. We need a historical knowledge of the previous or
future records that the algorithm will process in order to cluster them into
groups. Therefore, the last b instances of the stream are stored in a window,
being b ∈ N

+ an input parameter.
– Partition. Microaggregation, even for fixed-sized methods, has a time com-

plexity equal to O(n2). To reduce this cost, we use a k-Nearest Neighbours



310 M. Nuñez-del-Prado and J. Nin

(KNN) algorithm to continuously partition the sliding window to provide
anonymized instances much faster, by changing just one cluster each time a
new instance is requested to be released. The records in this single cluster are
then aggregated, and the target instance is returned.

– Aggregation. After a cluster has been obtained, its instances are aggregated,
and the values of their attributes are replaced by the values of the centroid
of the cluster. For each attribute, the arithmetic mean (in the case that the
attribute is numeric) or the mode (if the attribute is nominal) are calculated
over the instances of the cluster.

3.3 Rank Swapping

The streaming version of rank swapping [13,14] uses the same approach than
microaggregation. As depicted in Fig. 1, it works as follows: The first row is the
raw data (a). Next, the not already swapped values of the attribute are filtered
from the samples in the buffer W (b) and are ranked, i.e., sorted (c). A maximum
swap range is calculated using the p parameter (d) and a value within this range
is selected to perform the swap (e). Finally, the vector of values is returned in
the original order they were in the buffer (f).

Fig. 1. Rank swap of a single attribute for a target instance τ .

3.4 Differential Privacy

The main drawback of differential privacy is that it was defined for interactive
query-response environments, which is not the scenario we encounter in stream
data mining. However, we can find in the literature many efforts to bring dif-
ferential privacy to non-interactive settings [7,8]. Here, we are interested in a
function that returns the attribute values corresponding to the r-th instance of
a stream X, i.e. a “identity” function but enforcing differential privacy.

As it was proven in [15], insensitive microaggregation enforces differential
privacy by using a function M , where the global sensitivity of its composition
with Ir is Δ(Ir ◦ M) ≤ Δ(Ir)/k, being k the minimum size of the clusters
returned by M and Ir the identity function of sample r. The condition that such
an insensitive algorithm must fulfill is:
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Definition 1. Let X be the set of samples of a window W , M a microaggrega-
tion algorithm, and let {C1, ..., Cn} be the set of clusters that result from running
M on X. Let X∗ be a neighbour dataset of X, differing in a single sample, and
{C∗

1 , ..., C∗
n} the clusters that result from running M on X∗. We say that M is

insensitive to the input samples if there is a bijection between the set of clusters
{C1, ..., Cn} and the set of clusters {C∗

1 , ..., C∗
n} such that each corresponding

pair of clusters differs at most in a single sample.

However, microaggregation algorithms are very sensitive to the input data. A
minimum change in a single sample can cause the generation of entirely different
clusters. To overcome this issue, it is possible to use an order relation consistent
metric in the partition step.

One way to achieve such a consistent distance function is to define a total
order relation among the window samples X. Given a reference point R ∈ X, for
a pair of elements x, y ∈ X, we say that x ≤ y if d(R, x) ≤ d(R, y), where d is a
function d : Dom(X) × Dom(X) → R (the Euclidean distance between samples
of X, for example). Furthermore, in order to increase the within-cluster homo-
geneity, this reference point R should be located at the boundaries of Dom(X).

The adaptation of the insensitive microaggregation algorithm to a stream
processing follows the same scheme presented for the microaggregation, the only
difference being the use of a reference point in order to achieve a total ordering
relation between the instances of the stream and accomplishing the insensitivity
condition. The reference “point” R is incrementally built as new instances are
processed by the filter independently updated of the clustering step, when a new
sample is added to the buffer.

The Laplace-distributed noise addition final step of the mechanism is per-
formed by a noise adder that works in a very similar fashion to the Noise Addition
algorithm, with the addition of the scale parameter estimation. Finally, the gen-
eration of a random variable Λ following a Laplace distribution is shown in the
following equation: Λ ∼ Lap(μ, b) ⇐⇒ Λ = μ − b sgn(U) ln(1 − 2|U |) where
U is another random variable drawn from a uniform distribution constrained to
the (−0.5, 0.5] interval.

4 Experiments

In this section, we evaluate the SDC streaming methods, presented in Sect. 3,
performance with a real credit card payments dataset. Therefore, we present the
dataset in Subsect. 4.1. Then, we specify how to compute information loss and
disclosure risk in Subsect. 4.2. Finally, Subsect. 4.3, describes our findings.

4.1 Data Description

The database used contains information concerning credit and debit card trans-
actions done by BBVA continental clients using debit and credit cards from
01/06/2016 to 31/10/2017. Transactions are associated with purchases carried
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out throughout Peru. Nevertheless, for this study, we analyze only transactions
performed in the capital of Peru (Lima). The filtered dataset contains about 17
millions of transactions.

Concerning privacy risks, from credit card owners perspective, releasing such
data without a proper anonymization could enable an adversary to re-identify
some individuals. Thus, the adversary could estimate the users’ spending pat-
terns and associate them a socio-economical category [6]. From the point of
selling (POS) perspective, if an adversary is able to re-identify a POS, he could
estimate its earnings and share such information with their competence.

In the experiments, we assumed that credit card id (PAN number) and
‘client id’ are identifiers, so they were removed. Purchase imports are considered
as confidential values, so following the scenario described in Sect. 2.1, no modifi-
cation is applied to purchase imports. Finally, ‘shop id’ and their corresponding
geographic locations (ubigeo) are considered as non-confidential, therefore, we
ran our anonymization methods over these values.

4.2 Metrics for IL and DR

To compare the performance of the different SDC methods, we have modified
the standard distance-based record linkage and the Sum of Square Errors (SSE )
estimators.

Buffered Record Linkage. It uses a record linkage approach to estimate the risk
of records re-identification. The estimator holds a buffer W of the last b original
samples. Each time that a 〈x, x′〉 pair is passed into the estimator, it adds the
original sample x to the buffer, deletes the oldest one, and performs a record
linkage trying to re-identify x′ with any sample in the buffer. Once a sample
at distance d < δ is found, all samples from G are removed and δ is updated.
Finally, the algorithm checks if the target instance is in G. The linkage probability
for an anonymized instance x′ is calculated as

P (x′) =

{
0 if x /∈ G
1

|G| if x ∈ G
(3)

Finally, being X the set of all the instances already processed and |X| = n,
the Disclosure Risk is estimated in a [0, 1] range as

DR =
∑

x∈X P (x′)
n

(4)

Sum of Square Errors Estimator. The aim of this measure is to provide a way to
compare the information loss produced by different SDC methods. The estima-
tion is based on SSE value between the original x and anonymized x′ samples.

SSE =
∑

x∈X

∑

x′∈X′
(dist(x, x′))2 (5)



On the Application of SDC Stream Methods to Card Payments Analytics 313

The main drawback in using this approach, besides it being harder to make
comparisons due to not being a bounded measure, is that categorical attributes
are over-weighted, thus distorting the validity of the estimation.

Table 1. SDC stream anonymization methods parameters used in the experiments,
where sw size stands for sliding window size.

Method Parameters Method Parameters

Noise addition β = {0.1, 0.2, 0.3, 0.4, 0.5} Rank

swapping

p = {10, 25}
sw size = {101, 102, 103, 104, 105}

Microaggregation k = {3, 10, 100, 1000}
sw size = {101, 102, 103, 104, 105}

Differential

privacy

k = {3, 10, 100, 1000}
ε = {0.1, 0.01, 0.001}
sw size = {101, 102, 103, 104, 105}

Table 2. Noise addition time, IL and DR estimations for all considered β parameteri-
zations.

β TotalTime [s] DR IL

0.1 645.203 0.037 19

0.2 977.368 0.033 20

0.3 1,318.560 0.031 20

0.4 1,686.119 0.030 20

0.5 2,030.960 0.029 21

4.3 Results

In the current section, we describe the experiments performed using the SDC
methods introduced in Sect. 3. For each method, we used different parameters
setups as shown in Table 1. Where, Noise Addition receives as parameter β scal-
ing factor of the noise added to attributes and class variables. Microaggregation
takes the cluster size k and the sliding windows size sw size. Rank Swapping
accepts as input the maximum swap range, as a percentage of the sliding win-
dows size p and the sliding windows size sw size. Finally, Differential Privacy
admits the cluster size k, the sliding windows size sw size and ε differential
privacy.

Noise Addition. Table 2 illustrates the increment of the processing time, while
β becomes larger. Regarding Fig. 2, the DR decreases really fast as the number
of processed instances grow up. Later on, when arriving to the 12 millions of pro-
cessed instances, DR slightly increases from 2% to 4%. Concerning IL, it behaves
on the contrary way of DR, it shows an exponential growth when the number of
instances increases, this effect is because we do not apply any correction effect
on the scaling factor, so it always grows, adding a larger noise any time a new
instance is processed.
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Fig. 2. Disclosure risk and information loss evolution with regard to the number of
processed instances for noise addition. a stands for the β parameter.

Table 3. Microaggregation time, IL and DR estimations for all considered parameter-
izations

k sw size Time[s] DR IL
3 105 57,568.05 0.101 16
33 103 748.20 0.101 16
3 10 247.38 0.101 16
10 105 23,53.768 0.067 16
10 103 387.63 0.067 16
10 10 226.93 0.067 16

k sw size Time[s] DR IL
100 105 4,523.93 0.028 17
100 103 378.15 0.028 17
100 10 315.33 0.067 16
1000 105 2,312.65 0.012 18
1000 103 353.21 0.012 18
1000 10 311.34 0.07 16

Microaggregation. Figure 3 shows how the sliding window parameter affects
to the execution time of microaggregation. This fact makes this method quite
unpractical for real time applications, specially when the considered window
is big.

From Table 3, we observe DR becoming really small when k and w size
increase, making microaggregation a really secure method. Regarding the IL
metric, as expected, it increases when the number of processed instances grows.

Fig. 3. Disclosure risk and information loss evolution with regard to the number of
processed instances for microaggregation.
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Table 4. Rank swapping time, IL and DR estimations for all considered parameteri-
zations.

p sw size Time[s] DR IL
10 105 698.491 0.793 21
10 103 6,889.998 0.406 19
10 10 360.476 0.08 17

p sw size Time[s] DR IL
25 105 665,313.875 0.757 21
25 103 5,628.211 0.236 19
25 10 282.637 0.08 17

Rank Swapping. Regarding Table 4, execution time increases when w size
increases. Therefore, sw size is the main parameter to consider when execution
time is crucial.

Besides, comparing the influence of sw size and p parameters from Fig. 4,
sw size has greater impact over DR. Therefore, it is possible to combine a small
sliding window size with a high maximum swapping range to find a good trade
off between execution time and DR vs. IL ratio.

Differential Privacy. As shown in Fig. 5, sw size, k and e parameters do
not increase the DR significantly. Besides, IL metric is really large compare

Fig. 4. Disclosure risk and information loss evolution with regard to the number of
processed instances for rank swapping.

Fig. 5. Disclosure risk and information loss evolution with regard to the number of
processed instances for differential privacy.



316 M. Nuñez-del-Prado and J. Nin

Table 5. Differential Privacy time, IL and DR estimations for all considered parame-
terizations

k e sw size Time[s] DR IL
3 0.001 105 52,727.56 0.022 29
3 0.001 103 918.74 0.022 29
3 0.001 10 319.58 0.022 29
3 0.01 105 60,900.72 0.022 27
3 0.01 103 979.30 0.022 27
3 0.01 10 341.08 0.022 27
3 0.1 105 62,726.36 0.023 25
3 0.1 103 884.88 0.023 25
3 0.1 10 328.44 0.023 25
10 0.001 105 18,196.16 0.022 29
10 0.001 103 399.68 0.022 29
10 0.001 10 237.90 0.022 29
10 0.01 105 18,180.21 0.022 27
10 0.01 103 397.42 0.022 27
10 0.01 10 239.22 0.022 27
10 0.1 105 19,275.56 0.023 25
10 0.1 103 421.99 0.023 25
10 0.1 10 258.63 0.023 25

k e sw size Time[s] DR IL
100 0.001 105 3,548.229 0.022 29
100 0.001 103 267.706 0.022 29
100 0.001 10 237.036 0.022 29
100 0.01 105 3,534.526 0.022 27
100 0.01 103 273.523 0.022 27
100 0.01 10 238.374 0.022 27
100 0.1 105 3,781.847 0.023 25
100 0.1 103 290.408 0.023 25
100 0.1 10 252.479 0.023 25
1000 0.001 105 1,705.869 0.023 29
1000 0.001 103 254.825 0.023 29
1000 0.001 10 238.885 0.022 29
1000 0.01 105 1,737.341 0.023 27
1000 0.01 103 258.627 0.023 27
1000 0.01 10 239.62 0.022 27
1000 0.1 105 1,833.291 0.023 25
1000 0.1 103 267.674 0.023 25
1000 0.1 10 257.638 0.023 25

to the other methods. Regarding the processing time, window size determines
the required execution time for processing the dataset independently of the other
parameters (c.f., Table 5).

4.4 Discussion

In this work, we executed several stream anonymization methods to sanitize
credit card payments. From the results presented in Sect. 4.3, we observe the
rank swapping method is the less performing method regarding DR value show-
ing values up to 0.9. In terms of IL, it is also the one, together with the differential
privacy technique, that generates the largest IL values. Regarding noise addi-
tion technique, it improves the DR and IL values with regards to rank swap-
ping. Thus, The highest values of DR and IL are 0.14 and 1.2, respectively.
Concerning microaggregation, it decreases noise addition DR values but at the
cost of increasing IL in the worst scenario. Therefore, in an optimistic scenario
microaggregation reduces both IL and DR values of noise addition making it a
good candidate to be applied in real scenarios. Finally, differential privacy out-
performs the aforementioned methods in terms of DR, which reaches a really
low value (0.022) in the worst scenario. Nonetheless, the cost of IL is the largest
one in most of the cases.
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5 Conclusion

In this paper, we sum up how to implement four SDC methods (noise addition,
rank swapping, microaggregation and differential privacy) in a data streaming
fashion. We studied their performance using a real data stream consisting of all
card payments done in Lima (Peru) between 01/06/2016 and 31/10/2017. As
future work, we plan to further develop these techniques to ensure that multiple
streams can be anonymized at the same time. Besides, we would like to study
new information loss and disclosure risk metrics for the streaming scenario to
improve the evaluation performed in this work.
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