
A Relational Model for Probabilistic
Connectors Based on Timed Data

Distribution Streams

Meng Sun(B) and Xiyue Zhang

Department of Informatics and LMAM, School of Mathematical Sciences,
Peking University, Beijing, China
{sunm,zhangxiyue}@pku.edu.cn

Abstract. Connectors have shown their great potential for coordina-
tion of concurrent activities encapsulated as components and services in
large-scale distributed applications. In this paper, we develop a formal
model for a probabilistic extension of the channel-based coordination lan-
guage Reo. The model formalizes connectors with probabilistic behavior
as relations on Timed Data Distribution Streams (TDDSs), which speci-
fies properties of primitive channels and complex connectors with proba-
bilistic behavior properly. Furthermore, the implementation of this prob-
abilistic model has been developed in Coq, which serves to demonstrate
how the model can be used to prove probabilistic connectors’ properties.

Keywords: Coordination · Probabilistic connector
Timed data distribution streams · Coq

1 Introduction

Coordination models that formalize the interaction among different components
play a key role in the development of large-scale distributed applications, which
are typically heterogeneous and geographically distributed over the internet.
Such coordination models usually provide a notion of connectors that intercon-
nect the components and organize the mutual interactions and communications
among them in a distributed environment, where complex connectors can be
compositionally constructed out of simpler ones. As an example, Reo [2,8] offers
a powerful gluing mechanism for the implementation of such coordinating con-
nectors. Primitive connectors called channels in Reo, such as synchronous chan-
nels, FIFO channels and timer channels, can be composed to build circuit-like
connectors which serve as the glue code to exogenously coordinate the behavior
of components in distributed applications.

Investigating probabilistic behavior of connectors precisely is a necessary task
for developing trustworthy applications. In this paper we focus on the probabilis-
tic aspects of Reo connectors, and provide a formal model for connectors built out
of channels that might behave nondeterministically and probabilistically, such
c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 125–141, 2018.
https://doi.org/10.1007/978-3-030-00151-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_8&domain=pdf

126 M. Sun and X. Zhang

as unreliable FIFO channels that may loose certain data items written to the
buffer, or synchronous channels that may corrupt written data with some small
probability. In this model, the behavior of channels (and connectors) are speci-
fied as relations of observations on the channel ends (and sink/source nodes of
connectors) given by timed data distribution streams. And we also show how the
model of probabilistic channels can be used in the construction of more complex
connectors with probabilistic behavior. Furthermore, the model for probabilis-
tic channels/connectors has been encoded in Coq [18] which forms an extension
to our previous work on modeling and verifying connectors in Coq [13,20], and
properties of such probabilistic connectors can be formally proved using Coq.

This is in fact not the first investigation on probabilistic connectors. An
operational semantics for probabilistic Reo in terms of probabilistic constraint
automata (PCA) has been developed by Baier in [7]. Later the Quantitative
Intentional Automata (QIA) model was proposed in [5] to capture the opera-
tional semantics of connectors with stochastic behavior. The QIA model correctly
captures context dependency, but it is not compositional and suffers from state
explosion heavily even for simple connectors. Another model called Stochastic
Timed Automata for Reo (STAr) was developed in [15] to support both stochas-
tic and real-time behavior of connectors in Reo. In [16], Interactive Markov
Chains are adopted as a compositional semantic model for stochastic Reo con-
nectors. The Priced Probabilistic Timed Constraint Automata model [12] enables
users to reason about both probabilistic and timed behavior, as well as resource
consumption. Although some of such state-based models scale up quite well,
state explosion is an inherent problem in these formalisms and not avoidable
by the probabilistic extension. Furthermore, modeling unbounded primitives or
even bounded primitives with unbounded data domains is impossible with finite
automata models, and infinite or finite but large data domains usually also cause
an explosion of state space in such state-based models which becomes seriously
problematic for verification.

As shown in [13,20], specifying connectors as relations on its sink and source
nodes makes it possible to verify connector properties by using theorem proving
techniques and we do not have to face the state space explosion problem. Prop-
erties of a complex connector can be decomposed into some subgoals which can
be proved separately in theorem provers like Coq, where relations on the nodes
are specified by predicates [20]. Furthermore, comparing with other works on
(both deterministic and probabilistic) Reo semantics [14], our framework defines
two ternary channels replicator and merger, which makes different types of con-
nector composition operators reduced to one single flow-through composition,
and thus the composition of connectors can be interpreted more explicitly than
other approaches, such as TDS in the coalgebraic semantics [6]. And by sepa-
rating input and output explicitly in this model, the behavior of a connector
becomes easier to be described and further composed.

The paper is structured as follows. After this general introduction, we briefly
summarize the coordination language Reo in Sect. 2. Section 3 presents the model
of observations on the nodes of connectors with probabilistic behavior as timed

A Relational Model for Probabilistic Connectors 127

data distribution streams. Section 4 specifies the model for basic (untimed and
timed) Reo channels, as well as channels with probabilistic behavior, and sum-
marizes the composing operations to build connectors from channels. In Sect. 5,
we discuss the implementation of the model in Coq, and show how to prove
properties of connectors. Finally, Sect. 6 concludes with some further research
directions.

2 A Reo Primer

In this section, we briefly review some basic concepts in the coordination lan-
guage Reo. Reo [2] is a channel-based exogenous coordination language wherein
complex coordinators, called connectors, are compositionally constructed from
simpler ones. We summarize only the main concepts in Reo here. Further details
can be found in [2,8].

Fig. 1. Some basic channels in Reo

A Reo connector usually consists of a network of primitive connectors, called
channels. A connector provides the protocol that controls and organizes the
communication and cooperation among different components. Each channel has
two channel ends. There are two types of channel ends: source and sink. A source
channel end accepts data into its channel, and a sink channel end dispenses data
out of its channel. It is possible for the ends of a channel to be both sinks or
both sources. Figure 1 shows the graphical representation of some basic channel
types in Reo whose composition allows for expressing a rich set of coordination
patterns [2,3].

A synchronous channel has a source and a sink end. It accepts a data item
through its source end iff it can simultaneously dispense the data item through
its sink end. A lossy synchronous channel is similar to a synchronous channel
except that it always accepts all data items through its source end. The data item
is transferred if it is possible to be dispensed through the sink end immediately,
otherwise the data item is lost. A FIFO1 channel represents an asynchronous
channel with one buffer cell which is empty initially (this is the case in Fig. 1). If
a data element d is written through the source end, it is kept in the buffer of the
FIFO1 channel until being taken out through the sink end. Synchronous drain
has two source ends and no sink end. A synchronous drain can accept a data item
through one of its ends iff a data item is also available for it to simultaneously
accept through the other end as well, and both data items accepted by the
channel are lost. A t-timer channel accepts any data item at its source end
and produces a timeout signal after a delay of t time units on its sink end.

128 M. Sun and X. Zhang

More exotic channels permitted in Reo are omitted here and can be found in
[2,3,17]. Moreover, the set of channel types is not fixed in Reo, and new ones
can be defined freely by users according to their own interaction policies, like
the probabilistic and stochastic extensions defined in [7,9,15].

Complex connectors are constructed by composing simpler ones via the join
and hiding operations. Channels are joined together in nodes. A node consists
of a set of channel ends. The set of channel ends coincident on a node A is
disjointly partitioned into the sets of source and sink channel ends. Nodes are
categorized into source, sink and mixed nodes as shown in Fig. 2, depending on
whether all channel ends that coincide on a node are source ends, sink ends
or a combination of the two. The hiding operation is used to hide the internal
topology of a connector. The hidden nodes can no longer be accessed or observed
from outside. The behavior of a complex connector is formalized by means of
the data-flow at its sink and source nodes.

Fig. 2. Three types of nodes

A component can write data items to a source node that it is connected
to. The write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently
written to every source end coincident on the node. A source node, thus, acts as
a replicator. A component can obtain data items, by an input operation, from a
sink node that it is connected to. A take operation succeeds only if at least one
of the (sink) channel ends coincident on the node offers a suitable data item.
A sink node, thus, acts as a merger. A mixed node takes a suitable data item
offered by one of its coincident sink channel ends and replicates it into all of its
coincident source channel ends.

3 Observations as Timed Data Distribution Streams

Let D be an arbitrary finite set, the elements of which are called data elements.
It will be concrete when a specific application domain is provided. We use the
symbol ⊥ ∈ D to denote a corrupted data item. A data distribution is a total
function that maps D to the closed interval of reals [0, 1]. We define

PROB =df D → [0, 1]

where for any member p of PROB the total sum of probabilities must not exceed
1:

∑
d∈D p(d) ≤ 1. For any X ⊆ D, p(X) =

∑
d∈X p(d). We use 0 to denote the

zero distribution λd • 0 and define

p1 ≤ p2 =df ∀d ∈ D • (p1(d) ≤ p2(d))

A Relational Model for Probabilistic Connectors 129

For any p ∈ PROB, we have 0 ≤ p. And for any d ∈ D, we have a corresponding
point distribution:

ηd =df λx : D • (1 � x = d � 0)

where the conditional expression P �b�Q equals to P if the condition b is satisfied
and Q otherwise.

The set DDS of data distribution streams is defined as DDS = PROBω,
i.e., the set of all sequences α = (α(0), α(1), α(2), · · ·) over PROB where each
α(i) is a data distribution.

Let R+ be the set of non-negative real numbers, which in the present context
can be used to represent time moments. Let R

ω
+ be the set of infinite sequences

a = (a(0), a(1), a(2), · · ·) over R+, and for all a, b in R
ω
+,

a < b iff ∀n ≥ 0, a(n) < b(n)
a ≤ b iff ∀n ≥ 0, a(n) ≤ b(n)

For a sequence a = (a(0), a(1), a(2), · · ·) ∈ R
ω
+, and t ∈ R+, a[+t] is a sequence

defined as follows:

a[+t] = (a(0) + t, a(1) + t, a(2) + t, · · ·)
Furthermore, the element a(n) in a sequence a = (a(0), a(1), a(2), · · ·) can also
be expressed in terms of derivatives a(n) = a(n)(0), where a(n) is defined by

a(0) = a, a(1) = (a(1), a(2), · · ·), a(k+1) = (a(k))(1)

and sometimes we use a′ instead of a(1) for simplicity.
The set TS of time streams is defined as

TS = {a ∈ R
ω
+ | (∀n ≥ 0.a(n) < a(n + 1)) ∧ (∀t ∈ R+.∃k ∈ N.a(k) > t)}

Thus, a time stream a ∈ TS consists of increasing and diverging time moments:
a(0) < a(1) < a(2) < · · · and limn→+∞ a(n) = +∞.

To specify inputs and outputs on connectors explicitly, for a connector R,
we use the mappings

inR : Nin → TDDS
outR : Nout → TDDS

to denote the observations on its source nodes and sink nodes, respectively. Here
Nin and Nout are the sets of source and sink node names of R, respectively.
For every node N in a connector R, the corresponding observation on N is
specified by a timed data distribution stream, and TDDS is the set of timed data
distribution streams defined as TDDS ⊆ DDS × TS , which is the set of pairs
〈α, a〉 consisting of a data distribution stream α and a time stream a. Similar
to the timed data sequence model used in [17], timed data distribution streams
can be alternatively and equivalently defined as (a subset of) (PROB × R+)ω

because of the existence of the isomorphism

〈α, a〉 �→ (〈α(0), a(0)〉, 〈α(1), a(1)〉, 〈α(2), a(2)〉, · · ·)

130 M. Sun and X. Zhang

The occurrence of a data transfer at some node N of a connector is modeled by
an element in the timed data distribution stream for that node, i.e., a pair of a
data distribution α(i) and a time moment a(i) when the data item is observed.

4 Relations on Timed Data Distribution Streams for
Connectors

In this section we provide an overview on how channels and connectors can be
formally modeled by relations of timed data distribution streams observed on
the channel ends and sink/source nodes. We first see how primitive channels in
Reo are specified by such relations, and then study the model of probabilistic
channels. Finally we show how composite connectors can be constructed from
simpler ones structurally.

We use WD as a predicate for well-defined TDDS types. In other words,
we define the behavior only for valid streams expressed via the predicate WD.
Then, every connector R can be represented as follows:

con : R(in : inR; out : outR)
in : P (inR)

out : Q(inR, outR)

where R is the name of the connector, P (inR) is the condition that should
be satisfied by inputs inR on the source nodes of R, and Q(inR, outR) is the
condition that should be satisfied by outputs outR on the sink nodes of R.

Furthermore, to capture the probabilistic behavior of connectors, we use
P τ ⊕ Q to indicate that the probability for P τ ⊕ Q to be equal to P is
τ , and the probability for P τ ⊕ Q to be equal to Q is 1 − τ . And we use
P1 @τ1 |P2 @τ2 | · · · |Pn @τn or

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P1 @τ1

P2 @τ2

· · ·
Pn @τn

to represent the probabilistic choice over multiple alternatives, in which the
probabilities are enumerated and sum to no more than 1:

∑
1≤i≤n τi ≤ 1.

4.1 Primitive Reo Channels

We now start by presenting a few examples of basic channels in Reo and their
corresponding models in the probabilistic setting.

The simplest form of an asynchronous channel is a FIFO channel with one
buffer cell, which is denoted as FIFO1. A FIFO1 channel with source end A

A Relational Model for Probabilistic Connectors 131

and sink end B is graphically represented by A−��→ B. The corresponding
model is given as follows:

con : FIFO1(in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ β = α ∧ a < b < a′

For a FIFO1 channel, when the buffer is not filled, the input is accepted without
immediately outputting it. The accepted data item is kept in the internal FIFO
buffer of the channel. The next input can happen only after an output occurs.
Note that the probabilistic distribution of every output data value over D is
exactly the same as the distribution on the corresponding input, i.e., β = α.
Furthermore, we use a < b < a′ to represent the relation between the time
moments for outputs and their corresponding (and next) inputs.

For the FIFO1 channel A−�e�→ B where the buffer contains a data element
e initially, the communication can be initiated only if the data element e can be
taken through the sink end. So the first data distribution that happens on the
sink end is exactly ηe, and the following ones are the same as those observed on
the source end. In this case, we denote the channel by FIFO1[e] as follows1:

con : FIFO1[e](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ β = (ηe)�α ∧ b < a < b′

A synchronous channel transfers the data without any delay in time. So it
behaves just like the identity function. The pair of I/O operations on its two
ends can succeed only simultaneously. A synchronous channel with source end
A and sink end B is graphically represented as A −−−→ B and formally specified
as follows:

con : Sync(in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ β = α ∧ b = a

A lossy synchronous channel (graphically depicted as A− → B) is similar
to a normal synchronous channel, except that it always accepts all data items
through its source end. If it is possible for it to simultaneously dispense the data
item through its sink end, the channel transfers the data item; otherwise the
data item is lost.

con : LossySync(in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ L(〈α, a〉, 〈β, b〉)
1 Here � is the concatenation operator on sequences. The concatenation of two
sequences produces a new sequence that starts with the first sequence followed by
the second sequence.

132 M. Sun and X. Zhang

where

L(〈α, a〉, 〈β, b〉)
≡ (β = () ∧ b = ()) ∨ (a(0) ≤ b(0)∧

(L(〈α′, a′〉, 〈β′, b′〉) ∧ α(0) = β(0)) � a(0) = b(0) � L(〈α′, a′〉, 〈β, b〉))

The synchronous drain A →−−← B is an exotic Reo channel that has two
source ends A and B. Because a drain has no sink end, no data value can ever
be obtained from this channel. Thus, all data accepted by this channel are lost.
A synchronous drain can only accept two data items through both of its ends
simultaneously.

con : SyncDrain(in : (A �→ 〈α, a〉, B �→ 〈β, b〉); out : ())
in : WD〈α, a〉 ∧ WD〈β, b〉 ∧ a = b

out : true

A filter channel A −{p}→ B specifies a filter pattern p which is a set of data
values. It transfers only those data items that are matched with the pattern p
and loses the rest. A write operation on the source end succeeds only if either the
data item to be written does not match the pattern p or the data item matches
the pattern p and it can be taken synchronously via the sink end of the channel.

con : Filter[p](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ F (〈α, a〉, 〈β, b〉)

where

F (〈α, a〉, 〈β, b〉)

≡

⎧
⎪⎨

⎪⎩

β = () ∧ b = () if α = () ∧ a = ()
β(0) = α(0) ∧ b(0) = a(0) ∧ F (〈α′, a′〉, 〈β′, b′〉) if α(0) ∈ p

F (〈α′, a′〉, 〈β, b〉) if α(0) /∈ p

The source end of a t-timer A
t−−◦−→B channel accepts any input value d and

returns on its sink end B a timeout signal after a delay of t time units, where t
is provided as a parameter of the channel.

con : Timer[t](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉 ∧ a[+t] ≤ a′

out : WD〈β, b〉 ∧ β ∈ {ηtimeout}ω ∧ b = a[+t]

4.2 Probabilistic Channels

A family of channels with probabilistic behavior are specified in the following.

A Relational Model for Probabilistic Connectors 133

A faulty FIFO1 channel A
τ· · ·��→B might loose messages while inserting

them into the buffer. Any write operation on the source end A might fail with
probability τ in which case the buffer remains empty, or might be successful with
probability 1 − τ .

con : FtyFIFO1[τ](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ FF (〈α, a〉, 〈β, b〉)
where

FF (〈α, a〉, 〈β, b〉) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(0) < b(0) < a(1) ∧ β(0) = α(0)∧
FF (〈α′, a′〉, 〈β′, b′〉) @1 − τ

a(1) < b(0) < a(2) ∧ β(0) = α(1)∧
FF (〈α(2), a(2)〉, 〈β′, b′〉) @τ(1 − τ)

· · ·
a(k − 1) < b(0) < a(k) ∧ β(0) = α(k − 1)∧
FF (〈α(k), a(k)〉, 〈β′, b′〉) @τk−1(1 − τ)

· · ·
β = () ∧ b = () @ limn→∞ τn

In other words, there are infinite alternatives when we consider infinite streams
on the input and the probability for β = () ∧ b = () is limn→∞ τn = 0.

Another kind of faulty FIFO1 channel A−−��
τ���B might loose messages from

its buffer, but works perfectly for the write operation on the source end A. The
difference between this channel and FtyFIFO1 is the possibilities for the data
items to be successfully stored in the buffer and to be successfully taken from
the buffer to the sink end, but the models which specify the relations between
observations on input and output channel ends for these two channels are exactly
the same.

A message-corrupting synchronous channel A−τ →B is a synchronous chan-
nel with source node A and sink node B where the delivered message is corrupted
with probability τ . The value τ serves as a parameter for this channel type. If
A accepts a data item, then with probability 1 − τ the correct data value is
obtained at B, but with probability τ , B takes a corrupted message ⊥.

con : CptSync[τ](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ b = a ∧ C(α, β)

where
C(α, β) ≡ ((β(0) = η⊥)τ ⊕ (β(0) = α(0))) ∧ C(α′, β′)

A randomized synchronous channel A
rand(0,1)
−−−−→ B generates a random number

b ∈ {0, 1} when it is activated through an arbitrary writing action at its source

134 M. Sun and X. Zhang

end A, and the random number is synchronously taken through the sink end B.

con : RdmSync[rand(0, 1)](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ b = a ∧ R(α, β)

where
R(α, β) ≡ ((β(0) = η0) 1

2
⊕ (β(0) = η1)) ∧ R(α′, β′)

A probabilistic lossy synchronous channel A
τ−−→B requires both channel

ends A and B to be available to synchronize. However, the transmission of the
message fails with a certain probability τ , while the correct message passing
occurs with probability 1 − τ .

con : ProbLossy[τ](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ PL(〈α, a〉, 〈β, b〉)

where

PL(〈α, a〉, 〈β, b〉)
≡ PL(〈α′, a′〉, 〈β, b〉)τ ⊕ ((b(0) = a(0)) ∧ (β(0) = α(0)) ∧ PL(〈α′, a′〉, 〈β′, b′〉))

This channel type has to be not confused with the non-probabilistic lossy syn-
chronous channel (depicted by a dashed line without any parameter).

4.3 Composition Operators

Different channels can be composed by linking their channel ends together into
nodes to build more complex connectors. The formalization of nodes sometimes
becomes rather complicated, especially when an arbitrary number of incoming
and outgoing edges are involved. Therefore, we introduce two ternary channels
Replicator and Merger, as shown in Fig. 3, and use their combinations to capture
the behavior of arbitrary source, sink or mixed nodes.

Fig. 3. Replicator and merger

Replicator is a synchronous broadcasting channel with one source end A
and two sink ends B,C. The channel accepts input data values from A, and
broadcasts them to B,C iff both B and C are ready to accept the data.

A Relational Model for Probabilistic Connectors 135

con : Replicator(in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉, C �→ 〈γ, c〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ WD〈γ, c〉 ∧ β = γ = α ∧ b = c = a

Merger is a channel that has two source ends A,B and one sink end C, which
collects inputs from either A or B and sends them to C simultaneously if C is
ready to accept the data.

con : Merger(in : (A �→ 〈α, a〉, B �→ 〈β, b〉); out : (C �→ 〈γ, c〉))
in : WD〈α, a〉 ∧ WD〈β, b〉 ∧ DF(a, b)

out : WD〈γ, c〉 ∧ M(〈α, a〉, 〈β, b〉, 〈γ, c〉)

where

DF(a, b) =df a(0) �= b(0) ∧
{

DF(a′, b) if a(0) < b(0)
DF(a, b′) if a(0) > b(0)

and the ternary relation M is defined as

M(〈α, a〉, 〈β, b〉, 〈γ, c〉)

=

{
γ(0) = α(0) ∧ c(0) = a(0) ∧ M(〈α′, a′〉, 〈β, b〉, 〈γ′, c′〉) if a(0) < b(0)
γ(0) = β(0) ∧ c(0) = b(0) ∧ M(〈α, a〉, 〈β′, b′〉, 〈γ′, c′〉) if a(0) > b(0)

Once we have the replicator and merger defined as channels as well, the only
composition operator for connectors is flow-through. For two connectors R1 and
R2, suppose one sink node of R1 and one source node of R2 are joined together
into a new node. In this case, the new node becomes a mixed node which behaves
as a self-contained pumping station. When we compose connectors, the events on
the mixed nodes happen silently and automatically whenever they can, without
the participation or even the knowledge of the environment. Such mixed nodes
are hidden (encapsulated) by using the existential quantifier.

For i = 1, 2, let

con : Ri(in : inRi
; out : outRi

)
in : Pi(inRi

)
out : Qi(inRi

, outRi
)

denote the two connectors being composed by the flow-through composition.
Suppose one sink node B1 of R1 and one source node B2 of R2 are joined together
into a mixed node B. Let B1 �→ 〈β1, b1〉 ∈ outR1 and B2 �→ 〈β2, b2〉 ∈ inR2 be
the output on the node B1 in R1 and input on the node B2 in R2, respectively.
Then the new connector is denoted by R = R1;(B1,B2) 	→BR2, and defined as
follows:

136 M. Sun and X. Zhang

con : R(in : (
⋃

i=1,2

inRi) \ {B2 �→ 〈β2, b2〉}; out : (
⋃

i=1,2

outRi) \ {B1 �→ 〈β1, b1〉})

in : P1(inR1) ∧ ¬(∃〈β, b〉.(Q1(inR1 , outR1)[〈β, b〉/〈β1, b1〉]∧
¬P2(inR2)[〈β, b〉/〈β2, b2〉]))

out : ∃〈β, b〉.Q1(inR1 , outR1)[〈β, b〉/〈β1, b1〉] ∧ Q2(inR2 , outR2)[〈β, b〉/〈β2, b2〉]

where for a predicate P , if v is a variable in P , P [u/v] is the predicate obtained
by replacing all occurrences of v in P by u.

Example 1. We consider the randomized router given in Fig. 4 as a simple exam-
ple. This connector has one source node A and two sink nodes B and C, which
randomly chooses B or C (both with probability 1

2) to obtain the data written at
A. It is constructed by composing two synchronous channels, two filter channels,
two synchronous drains, two lossy synchronous channels and one randomized
synchronous channel. This connector can be easily obtained from the composi-
tion of the basic channels (with replicators at A,D,E,G) after some equivalent
transformations and quantifier eliminations:

con : RandRouter(in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉, C �→ 〈γ, c〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ WD〈γ, c〉 ∧ RR(〈α, a〉, 〈β, b〉, 〈γ, c〉)
where

RR(〈α, a〉, 〈β, b〉, 〈γ, c〉)
≡(β(0) = α(0) ∧ b(0) = a(0) ∧ RR(〈−→α ,−→a 〉, 〈−→β ,

−→
b 〉, 〈γ, c〉)) 1

2
⊕

(γ(0) = α(0) ∧ c(0) = a(0) ∧ RR(〈−→α ,−→a 〉, 〈β, b〉, 〈−→γ ,−→c 〉))

Fig. 4. Random router

5 Implementation

The implementation of this relational model for probabilistic connectors has
been developed in Coq. Coq is a widely-used formal proof management system
which provides a formal language called Gallina to write definitions, mathe-
matical propositions and theorems, together with an environment for interactive

A Relational Model for Probabilistic Connectors 137

construction of formal proofs. One of the main advantages of using Coq is that it
is equipped with a set of well-developed standard libraries. For example, Stream
provides a co-inductive definition of infinite sequences, Reals defines various
operations and axioms on real numbers, and Utheory axiomatizes the properties
required on the abstract type U representing the real interval [0, 1]. In general,
quite a few axioms and theorems are predefined in such libraries. This makes it
easy to support continuous time behavior and describe probabilistic channels.
Moreover, any valid Coq expression can be used to depict properties, which is
more powerful than just using formulas in one logic, like LTL or CTL.

The source code of the formalization in Coq is available at [19]. Compared
with the initial formalization for (non-probabilistic) Reo connectors, the proba-
bilistic behavior is captured properly in this extension. As described in Sect. 3,
the observed sequences on nodes are adjusted to timed data distribution streams
instead of timed data streams. But this new formalization can still be consistent
with the initial one through assigning the value 1 to the companied probability
of the data (i.e., the point distribution ηd instead of data item d). Based on
this foundation and the specific library Utheory, the behavior of probabilistic
channels can be characterized by the input and output timed data distribu-
tion streams properly. The probability accompanied the data will be updated
accordingly when the timed data distribution pair flows through different proba-
bilistic channels. With the definitions of channels serving as the basis, connector
properties, as well as equivalence and refinement relations between different con-
nectors can be naturally formalized as theorems in Coq and proved using tactics
predefined in Coq2.

Fig. 5. Equivalence between connectors

Example 2. An interesting example of the equivalence relation between connec-
tors is shown in Fig. 5. The two connectors are composed with the same set of
basic channels but with different topologies of combination. Connector R1 is
constructed by a randomized synchronous channel followed by a subconnector
tFIFO1 (which will be introduced in the following), while R2 is constructed
by the subconnector tFIFO1 and a following randomized synchronous channel.
The subconnector tFIFO1 contains a FIFO1 channel, a SyncDrain channel, a
timer channel with parameter t and a Sync channel. It has been studied in [13]

2 For two connectors R1 and R2, we say that R2 is a refinement of R1 (denoted by
R1 � R2) if (P1 ⇒ P2) ∧ (P1 ∧ Q2 ⇒ Q1), and they are equivalent if R1 � R2 and
R2 � R1.

138 M. Sun and X. Zhang

and properties related to its behavior have been proved in Coq. For the basic
FIFO1 channel, the input and output timed data distribution streams will have
the same data distribution but with an arbitrary time delay. Compared with the
basic FIFO1 channel, the time delay is fixed by the parameter t in tFIFO1,
apart from the same data distribution between the input and output streams.

The goal (formalized as a theorem) in this example is the equivalence relation
between connectors R1 and R2 in Fig. 5. Before proving the equivalence relation,
the configurations of the two connectors are first reduced to the constitution of
a RdmSync channel and a tFIFO1 connector with different topological orders
for proof simplicity. This reduction leads to two more lemmas that need to be
proved, which are the equivalence relations between the construction from basic
channels and the reduced method of construction from a RdmSync channel
and a tFIFO1 connector. The two equivalence relations are formalized in Coq
as follows:

1 Lemma RSync_tFIFO_eq: forall (A B: Stream TDD) (t:Time),

2 exists E: Stream TDD,

3 (RdmSync A E) /\ (t_FIFO1 E B t)

4 <->

5 (RdmSync A E) /\

6 (exists (D C:Stream TDD), (FIFO1 E D) /\ (SyncDrain D C)

7 /\ (Timert E C t) /\ (Sync D B)).

8
9 Lemma tFIFO_RSync_eq: forall (A B: Stream TDD) (t:Time),

10 exists E: Stream TDD,

11 (t_FIFO1 A E t) /\ (RdmSync E B)

12 <->

13 (exists (D C:Stream TDD), (FIFO1 A D) /\ (SyncDrain D C)

14 /\ (Timert A C t) /\ (Sync D E)) /\ (RdmSync E B).

Once these two equivalence relations are proved, we can establish the goal of
equivalence between R1 and R2 as the following theorem:

1 Theorem equivalence: forall (A B:Stream TDD) (t:Time),

2 (exists E, (RdmSync A E) /\ (t_FIFO1 E B t))

3 <->

4 (exists R, (t_FIFO1 A R t) /\ (RdmSync R B)).

The core of the proof for this theorem is that we need to find the correspond-
ing intermediate timed data distribution streams to complete the construction,
with the construction method of the other connector provided. The equivalence
proof of this example is different from the one in [20]. Unlike the proof of equiv-
alence in [20], we cannot find one single timed data distribution stream directly
serving as a match. Thus, two timed data distribution streams are constructed
first and then proved as precise matches for the refinement relations in two
directions, respectively. The complete proof of the theorem is available at [19].

It is straightforward to find out the reason why the commutative property
is satisfied in the construction of R1 and R2 in Fig. 5. The RdmSync channel
only modifies the data distribution streams while the tFIFO1 connector only

A Relational Model for Probabilistic Connectors 139

transforms the time stream. As a result, the change of topological positions of
these two connectors does not affect the final relation between the timed data
distribution streams on the source node A and sink node B.

Actually, as this model focuses on the relations between input and output
timed data distribution streams, different orders of data distribution and time
stream transformations lead to the same resultant relations. Therefore, for any
two connectors (or channels), as long as these two connectors transform time
streams and data distribution streams exclusively, the composition order will
satisfy the commutative property.

Although this example is a bit trivial, it is presented as a demonstration
of the possibility to express all well-defined properties or equivalence relations
between connectors and develop machine checked proof in Coq. The original
formalization of classic Reo can model a certain range of scenarios, but it is not
good at dealing with the uncertainty of the real world. With this probabilistic
Reo extension provided, formal modeling and reasoning about uncertainty is
supported. As a result, more scenarios in real world can be modeled, and the
crucial issues or properties need to be considered can be further verified in Coq.

6 Conclusion and Future Work

This paper extends our previous work on the design model for (unprobabilistic)
Reo connectors and introduces the relational model for probabilistic Reo con-
nectors based on observations as timed data distribution streams. This approach
provides a unified semantic model for different kinds of channels and connectors,
covers different communication mechanisms encoded in Reo, and allows the com-
bination of both deterministic and probabilistic channels in Reo. In this work,
we model (both deterministic and probabilistic) channels in Reo as relations of
timed data distribution streams, where the observation on each node of a con-
nector is specified as a stream of timed data distribution. The composition of
connectors is captured by flow-through composition with the help of two ternary
channels merger and replicator. Our semantic model offers potential benefits in
developing tool support for Reo. For example, the syntax and semantics for
probabilistic Reo connectors are implemented in Coq, which makes it possible
to prove connector properties, as well as equivalence and refinement relations
between different connectors.

Incorporating more complex probabilistic and stochastic constraints on con-
nectors [9,15] into our model is an interesting topic that we are now investigating.
In future work, we also plan to incorporate the hybrid connectors [10], and other
QoS aspects on connectors [4,5] into this model. The development of refinement
and testing theories for probabilistic connectors like refinement and testing for
deterministic connectors in [1,17] and integration of such theories into Coq or
other existing tools for Reo [11] are of special interest and in our scope as well. On
the other hand, we will investigate the inherent dynamic topology and mobility
in “full” Reo based on the design model, especially context-sensitive connector
behavior and reconfiguration of connectors.

140 M. Sun and X. Zhang

Acknowledgement. The work was partially supported by the National Natural Sci-
ence Foundation of China under grant no. 61772038, 61532019, 61202069 and 61272160.

References

1. Aichernig, B.K., Arbab, F., Astefanoaei, L., de Boer, F.S., Sun, M., Rutten, J.:
Fault-based test case generation for component connectors. In: Proceedings of
TASE 2009, pp. 147–154. IEEE Computer Society (2009)

2. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

3. Arbab, F., Baier, C., de Boer, C., Rutten, J.: Models and temporal logics for timed
component connectors. In: Cuellar, J.R., Liu, Z. (eds.) Proceedings of SEFM 2004,
pp. 198–207. IEEE Computer Society (2004)

4. Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component connectors with QoS
guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS,
vol. 4467, pp. 286–304. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72794-1 16

5. Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y.J., Verhoef, C.:
From coordination to stochastic models of QoS. In: Field, J., Vasconcelos, V.T.
(eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-02053-7 14

6. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40020-
2 2

7. Baier, C.: Probabilistic models for Reo connector circuits. J. Univers. Comput. Sci.
11(10), 1718–1748 (2005)

8. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61, 75–113 (2006)

9. Baier, C., Wolf, V.: Stochastic reasoning about channel-based component connec-
tors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol.
4038, pp. 1–15. Springer, Heidelberg (2006). https://doi.org/10.1007/11767954 1

10. Chen, X., Sun, J., Sun, M.: A hybrid model of connectors in cyber-physical systems.
In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 59–74. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11737-9 5

11. Eclipse Coordination Tools. http://reo.project.cwi.nl/
12. He, K., Hermanns, H., Chen, Y.: Models of connected things: on priced probabilis-

tic timed Reo. In: 2017 IEEE 41st Annual Computer Software and Applications
Conference (COMPSAC), vol. 1, pp. 234–243 (2017)

13. Hong, W., Nawaz, M.S., Zhang, X., Li, Y., Sun, M.: Using Coq for formal modeling
and verification of timed connectors. In: Cerone, A., Roveri, M. (eds.) SEFM 2017.
LNCS, vol. 10729, pp. 558–573. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74781-1 37

14. Jongmans, S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci.
Ann. Comput. Sci. 22(1), 201–251 (2012)

15. Li, Y., Zhang, X., Ji, Y., Sun, M.: Capturing stochastic and real-time behavior
in Reo connectors. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017. LNCS, vol.
10623, pp. 287–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70848-5 18

https://doi.org/10.1007/978-3-540-72794-1_16
https://doi.org/10.1007/978-3-540-72794-1_16
https://doi.org/10.1007/978-3-642-02053-7_14
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/11767954_1
https://doi.org/10.1007/978-3-319-11737-9_5
http://reo.project.cwi.nl/
https://doi.org/10.1007/978-3-319-74781-1_37
https://doi.org/10.1007/978-3-319-74781-1_37
https://doi.org/10.1007/978-3-319-70848-5_18
https://doi.org/10.1007/978-3-319-70848-5_18

A Relational Model for Probabilistic Connectors 141

16. Oliveira, N., Silva, A., Barbosa, L.S.: IMCReo: interactive Markov chains for
Stochastic Reo. J. Internet Serv. Inf. Secur. 5(1), 3–28 (2015)

17. Sun, M., Arbab, F., Aichernig, B.K., Astefanoaei, L., de Boer, F.S., Rutten, J.:
Connectors as designs: modeling, refinement and test case generation. Sci. Comput.
Program. 77(7–8), 799–822 (2012)

18. The Coq Proof Assistant. https://coq.inria.fr/
19. The source code of Probabilistic Reo. https://github.com/Xiyue-Selina/Prob-Reo
20. Zhang, X., Hong, W., Li, Y., Sun, M.: Reasoning about connectors in Coq. In:

Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 172–
190. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4 11

https://coq.inria.fr/
https://github.com/Xiyue-Selina/Prob-Reo
https://doi.org/10.1007/978-3-319-57666-4_11

	A Relational Model for Probabilistic Connectors Based on Timed Data Distribution Streams
	1 Introduction
	2 A Reo Primer
	3 Observations as Timed Data Distribution Streams
	4 Relations on Timed Data Distribution Streams for Connectors
	4.1 Primitive Reo Channels
	4.2 Probabilistic Channels
	4.3 Composition Operators

	5 Implementation
	6 Conclusion and Future Work
	References

