
David N. Jansen
Pavithra Prabhakar (Eds.)

 123

LN
CS

 1
10

22

16th International Conference, FORMATS 2018 
Beijing, China, September 4–6, 2018 
Proceedings

Formal Modeling 
and Analysis 
of Timed Systems



Lecture Notes in Computer Science 11022

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


David N. Jansen • Pavithra Prabhakar (Eds.)

Formal Modeling
and Analysis
of Timed Systems
16th International Conference, FORMATS 2018
Beijing, China, September 4–6, 2018
Proceedings

123



Editors
David N. Jansen
Institute of Software,
Chinese Academy of Sciences

Beijing
China

Pavithra Prabhakar
Kansas State University
Manhattan, KS
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-00150-6 ISBN 978-3-030-00151-3 (eBook)
https://doi.org/10.1007/978-3-030-00151-3

Library of Congress Control Number: 2018953027

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-6636-3301
http://orcid.org/0000-0002-5368-3234


Preface

The 16th International Conference on Formal Modeling and Analysis of Timed Sys-
tems (FORMATS 2018) was held during September 4–6, 2018, in Beijing, China.
FORMATS 2018 is part of CONFESTA and was colocated with CONCUR 2018,
QEST 2018, and SETTA 2018.

Control and analysis of the timing of computations is crucial to many domains of
system engineering, be it, e.g., for ensuring timely response to stimuli originating in an
uncooperative environment, or for synchronising components in VLSI. Reflecting this
broad scope, timing aspects of systems from a variety of domains have been treated
independently by different communities in computer science and control. Researchers
interested in semantics, verification and performance analysis study models such as
timed automata and timed Petri nets, the digital design community focuses on prop-
agation and switching delays, while designers of embedded controllers have to take
account of the time taken by controllers to compute their responses after sampling the
environment, as well as of the dynamics of the controlled process during this span.

Timing-related questions in these separate disciplines do have their particularities.
However, there is a growing awareness that there are basic problems (of both scientific
and engineering level) that are common to all of them. In particular, all these
sub-disciplines treat systems whose behaviour depends upon combinations of logical
and temporal constraints; namely, constraints on the temporal distances between
occurrences of successive events. Often, these constraints cannot be separated, as the
intrinsic dynamics of processes couples them, necessitating models, methods, and tools
facilitating their combined analysis. Reflecting this, FORMATS 2018 also accepted
submissions on hybrid discrete-continuous systems and held a session on continuous
dynamical systems.

FORMATS 2018 is a three-day event, featuring two invited talks, and single-track
regular podium sessions.

23 Program Committee (PC) members helped to provide at least 3 reviews for most
of the 29 submitted contributions, 14 of which were accepted and presented during the
single-track sessions and appear as full papers in these proceedings.

A highlight of FORMATS 2018 has been the presence of two invited
speakers, namely, Prof. Edward A. Lee (University of California, Berkeley) and
Prof. Jyotirmoy V. Deshmukh (University of Southern California, Los Angeles). We
also included their articles, which form the basis of the invited talks.

Further details on FORMATS 2018 are featured on the website:
http://lcs.ios.ac.cn/formats2018/.
Finally, a few words of acknowledgment are due. We enjoyed great institutional and

financial support from the Institute of Software, Chinese Academy of Sciences, without
which an international conference like FORMATS and the co-located events could not
have been successfully organized. We also thank the Chinese Academy of Sciences for
its financial support. Thanks to Springer for hosting the FORMATS proceedings in its

http://lcs.ios.ac.cn/formats2018/


Lecture Notes in Computer Science, and to EasyChair for providing a convenient
platform for coordinating the paper submission and evaluation. Thanks to the Steering
Committee for support and direction, to all the PC members and additional reviewers
for their work (76 reviews in total) in ensuring the quality of the contributions to
FORMATS 2018, and to all the participants for contributing to this event.

June 2018 David N. Jansen
Pavithra Prabhakar

VI Preface



Organization

Program Committee

Sergiy Bogomolov Australian National University, Australia
Borzoo Bonakdarpour Iowa State University, USA
Patricia Bouyer LSV, CNRS & ENS Cachan, Université Paris Saclay,

France
Thao Dang CNRS/VERIMAG, France
Martin Fränzle Carl von Ossietzky Universität Oldenburg, Germany
Ichiro Hasuo National Institute of Informatics, Japan
Boudewijn Haverkort University of Twente, The Netherlands
Holger Hermanns Saarland University, Germany
David N. Jansen Institute of Software, Chinese Academy of Sciences,

Beijing, China
Jan Křetínský Technical University of Munich, Germany
Shankara Narayanan

Krishna
IIT Bombay, India

Martin Leucker University of Lübeck, Germany
Miroslav Pajic Duke University, USA
David Parker University of Birmingham, UK
Pavithra Prabhakar Kansas State University, USA
César Sánchez IMDEA Software Institute, Spain
Ocan Sankur University of Rennes, Inria, CNRS, IRISA, France
Zhikun She Beihang University, Beijing, China
Jiří Srba Aalborg University, Denmark
B. Srivathsan Chennai Mathematical Institute, India
Meng Sun Peking University, China
Cong Tian Xidian University, China
Ashutosh Trivedi University of Colorado, Boulder, USA
Frits Vaandrager Radboud University, The Netherlands
Mahesh Viswanathan University of Illinois at Urbana-Champaign, USA

Additional Reviewers

Aldini, Alessandro
Busatto-Gaston, Damien
Bønneland, Frederik M.
Colange, Maximilien
Dave, Vrunda

Gupta, Ashutosh
Herbreteau, Frédéric
Kong, Hui
Krämer, Julia
Kumar, Rajesh



Li, Yi
Madnani, Khushraj
Nickovic, Dejan
Soudjani, Sadegh

Swaminathan, Mani
Taankvist, Jakob Haahr
Trtik, Marek
Zhang, Xiyue

VIII Organization



Contents

Invited Papers

Stochastic Temporal Logic Abstractions: Challenges and Opportunities . . . . . 3
Jyotirmoy V. Deshmukh, Panagiotis Kyriakis, and Paul Bogdan

Models of Timed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Edward A. Lee

Temporal Logics

TCTL Model Checking Lower/Upper-Bound Parametric Timed
Automata Without Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Étienne André, Didier Lime, and Mathias Ramparison

Monitoring Temporal Logic with Clock Variables . . . . . . . . . . . . . . . . . . . . 53
Adrián Elgyütt, Thomas Ferrère, and Thomas A. Henzinger

Reactive Synthesis for Robotic Swarms . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Salar Moarref and Hadas Kress-Gazit

Distributed Timed Systems

Perfect Timed Communication Is Hard . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Parosh Aziz Abdulla, Mohamed Faouzi Atig,
and Shankara Narayanan Krishna

On Persistency in Time Petri Nets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Kamel Barkaoui and Hanifa Boucheneb

A Relational Model for Probabilistic Connectors Based
on Timed Data Distribution Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Meng Sun and Xiyue Zhang

Behavioral Equivalences

Weighted Branching Systems: Behavioural Equivalence, Behavioural
Distance, and Their Logical Characterisations . . . . . . . . . . . . . . . . . . . . . . . 145

Mathias Claus Jensen, Kim Guldstrand Larsen, and Radu Mardare

Trace Relations and Logical Preservation for Markov Automata . . . . . . . . . . 162
Arpit Sharma



Non-bisimulation Based Behavioral Relations for Markov Automata . . . . . . . 179
Arpit Sharma

Timed Words

Distance on Timed Words and Applications . . . . . . . . . . . . . . . . . . . . . . . . 199
Eugene Asarin, Nicolas Basset, and Aldric Degorre

Online Timed Pattern Matching Using Automata . . . . . . . . . . . . . . . . . . . . 215
Alexey Bakhirkin, Thomas Ferrère, Dejan Nickovic, Oded Maler,
and Eugene Asarin

Continuous Dynamical Systems

Duality-Based Nested Controller Synthesis from STL Specifications
for Stochastic Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Susmit Jha, Sunny Raj, Sumit Kumar Jha, and Natarajan Shankar

Safe Over- and Under-Approximation of Reachable Sets for Autonomous
Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Meilun Li, Peter N. Mosaad, Martin Fränzle, Zhikun She, and Bai Xue

Tropical Abstractions of Max-Plus Linear Systems . . . . . . . . . . . . . . . . . . . 271
Muhammad Syifa’ul Mufid, Dieky Adzkiya, and Alessandro Abate

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

X Contents



Invited Papers



Stochastic Temporal Logic Abstractions:
Challenges and Opportunities

Jyotirmoy V. Deshmukh(B), Panagiotis Kyriakis, and Paul Bogdan

University of Southern California, Los Angeles, USA
{jyotirmoy.deshmukh,kyriakip,pbogdan}@usc.edu

Abstract. Reasoning about uncertainty is one of the fundamental chal-
lenges in the real-world deployment of many cyber-physical system appli-
cations. Several models for capturing environment uncertainty have been
suggested in the past, and these typically are parametric models with
either Markovian assumptions on the time-evolution of the system, or
Gaussian assumptions on uncertainty. In this paper, we propose a frame-
work for creating data-driven abstractions of the environment based on
Stochastic Temporal Logics. Such logics allow combining the power of
temporal logic-based absractions with powerful stochastic modeling tech-
niques. Our framework allows constructing stochastic models using gen-
eralized master equations, which can be viewed as a nonparametric model
capturing the dynamic evolution of the probabilities of system variables
with time. Furthermore, we show how we can automatically infer tem-
poral logic based abstractions from such a model. We give examples of
applications for such a framework, and highlight some of the open prob-
lems and challenges in this approach.

1 Introduction

Reasoning about uncertainty is one of the fundamental challenges in real-world
deployment of cyber-physical systems (CPS). Model-based development (MBD)
has become the de facto paradigm for designing embedded software for CPS
applications, and typical models focus on accurate representations of the time-
varying dynamics of the physical processes to be controlled and models of the
control software. Typically, MBD paradigms focus on worst-case behavior under
environmental assumptions, but rarely analyze the system performance as it
relates to stochastic uncertainty in the underlying system. There is a case to be
made for probabilistic characterizations of system behavior. For example, con-
sider a self-driving car that uses a RADAR-based sensor to estimate the positions
and velocities of objects in its environment. If the software design process uses
worst-case assumptions on the sensor behavior, it may lead to an overly conser-
vative controller, or may incorrectly conclude infeasibility of a control strategy.
If a tool for testing the control software uses such assumptions, it may report
potential safety violations that are unrealistic. A possible solution is to express
probabilistic assumptions on the environment inputs, when creating environment
models for abstraction and testing of control software.
c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 3–16, 2018.
https://doi.org/10.1007/978-3-030-00151-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_1&domain=pdf


4 J. V. Deshmukh et al.

In this paper, we make a case for expressing such probabilistic assumptions as
formulas in Stochastic Temporal Logics. A (nondeterministic) temporal logic is a
formalism to express temporal relations between logical properties of time-series
data (such as signals); and a traditional temporal logic formula, such as Signal
Temporal Logic (STL) is interpreted over signals. Stochastic Temporal Logics,
in contrast, are interpreted over stochastic processes, i.e. a (finite or infinite)
collection of time-indexed random variables. Recently, there have been a few
proposals for temporal logics equipped with probabilistic reasoning capabilities
[14,23,28]. These logics can basically be viewed as extensions of STL that allow
probabilistic predicates or chance constraints. In Sect. 2, we propose a unifying
logic that uses the best features of these logics, but is equipped with quantitative
semantics, similar to those for STL [9,10].

We also propose some initial techniques for creating such logical abstrac-
tions from data. Previous approaches on stochastic modeling of systems typi-
cally assume a white-box approach, i.e. the model for the system dynamics is
assumed to be (at least partially) known, and the uncertainty in the environ-
ment is typically assumed to be of a parametric form, with typically well-known
statistical characterizations. The key assumption in our approach is that we are
provided with a black-box system description, i.e., we either do not have access
to the symbolic equations that characterize the dynamic system behaviors, or
that due to dearth of precise analytic methods to analyze the available symbolic
equations, we choose to ignore them. In other words, we have the ability to stim-
ulate a system with input signals and observe the output signals. Furthermore,
we assume that the system is stochastic, i.e., one or more parts of the system
have randomness associated with it. In the simplest case, this stochasticity can
be in the way input signals are provided to the system, and in more complex
cases, the stochasticity could be a result of random noise in sensing or actuation.

There are numerous challenges to create such stochastic logical abstractions
from data: (1) Cyber-physical processes exhibit complex multi-scale, non-linear,
non-Gaussian, and non-stationary behavior [31]; (2) intricate inter-dependence
between physical phenomena can lead to complex non-Markovian and long-range
memory dynamics that cannot be captured by state-of-the-art system identi-
fication and machine learning techniques [31]; (3) operating in unstructured,
uncertain, dynamic and complex environments raises the issue of dealing with
missing information (e.g., empirical data undersamples in space and time, some
measurements for specific cyber and physical processes are missing or corrupted)
[14,23,28]; (4) state-of-the-art techniques in artificial intelligence and machine
learning do not provide quantitative measures of assurance when dealing with
high-dimensional non-Markovian spatio-temporal fractal processes. To overcome
these challenges, in Sect. 3, we propose a unique approach that draws inspiration
from techniques in statistical physics, and constructs novel generalized master
equations from data.

Finally, in Sect. 4 we show a technique that learns certain kinds of stochas-
tic, temporal and logical abstractions from a stochastic data-driven model, such
as the one identified in Sect. 3. In Sect. 6, we outline some of the key technical



Stochastic Temporal Logic Abstractions: Challenges and Opportunities 5

challenges to be overcome and in Sect. 5 some applications of using such a frame-
work.

1.1 Related Work

There has been a recent upsurge in using real-time temporal logics such as Signal
Temporal Logic [24] for expressing properties and abstractions of closed-loop
cyber-physical system models [13,16,19,27]. There is also growing interesting
in using temporal logic specifications for controller synthesis of systems with
uncertainty. Under the assumption of a known stochastic dynamical model, there
have been proposed approaches to find optimal control policies that maximize
the probability of satisfying a given temporal logic specification by planning over
stochastic abstractions [1,11,17,18]. When the underlying model is unknown,
reinforcement learning based methods have been used for specifications given as
LTL [26] and STL [2] formulas.

Recently, STL was extended to three probabilistic variants, Probabilistic STL
(PrSTL) [28], Chance Constrained Temporal Logic (C2TL) [15], and Stochastic
STL (StSTL) [23]. The atomic predicates in the logic C2TL are affine constraints
on variables (or arbitrary Boolean combinations of such constraints), where the
coefficients in the constraints are assumed to random variables with a Gaussian
distribution. The signal variables themselves are assumed to evolve determinis-
tically. For this logic, the authors show how the synthesis problem with a C2TL
objective can be conservatively encoded as a mixed integer linear program. In
[28], the authors define PrSTL that uses probabilistic atomic predicates param-
eterized with a time-varying random variable drawn from a given distribution.
The authors then synthesize a receding horizon controller that satisfies PrSTL
specifications using as a mixed integer semi-definite encoding of the synthesis
problem. The work on StSTL focuses on using StSTL specification as contracts
for verification using a similar MIP formulation The work on StSTL focuses
on using StSTL specification as contracts for verification using a similar MIP
formulation.

Also of note are approaches that use Probabilistic Computation Tree Logic
(PCTL), that was introduced to expresses properties over the realizations of
Markov chains and Markov Decision Processes [12] A significant amount of
research has focussed on using PCTL for verification and optimal control of
Markov Decision Processes [4,7,22,32].

2 Stochastic Temporal Logic

We begin by reviewing some preliminary definitions and notations.

Definition 1 (Stochastic Process). A probability space is a triple (Ω,F ,P),
where Ω is the set of all possible outcomes, F is the σ-algebra of all events and
P is a probability measure. Given a measurable state-space E, a random variable
x is measurable function x : Ω → E. A stochastic process x(t) is a continuous
collection of random variables indexed by time t that all take values in E.



6 J. V. Deshmukh et al.

Definition 2 (Components and Dimension). The state-space of a random
variable in a stochastic process as defined in Definition 1 may be the product of
single-dimension state-spaces, i.e. E = E1 × . . . × Ek. We then define k as the
dimension of the stochastic process, and use xj to define a natural projection of
the process onto its jth dimension.

In this paper, we are mostly concerned with real-valued stochastic processes
which are either discrete-time or continuous-time, i.e., the index sets of the
stochastic process can be finite or infinite sets.

Definition 3 (Timed Trace). Given a stochastic process x, a realization over
the time interval T = [t0, tn] is a signal x(t) obtained by sampling each time-
indexed random variable in the stochastic process. A timed trace is the sequence
of pairs (t0,x0), . . . , (tn,xn) obtained by sampling the realization at discrete time
instances t0 < t1 < ... < tn.

We briefly review the syntax and semantics of a stochastic temporal logic.
The basic building block of such a logic is a chance constraint or probabilistic
constraint of the form P (ϕB ≥ ε), where ϕB is an arbitrary Boolean combination
of stochastic predicates. For convenience, we call ϕB a signal predicate.

ϕB := f(x) ∼ 0 | ¬ϕB | ϕB ∧ ϕB | ϕB ∨ ϕB (1)

Here, f is a measurable function from the state-space of the stochastic process
to R. The operator ∼ is an element of {≤, <,>,≥}, and ε is a real number in
[0, 1]. In general, f may not depend on all components of x. We use support(f)
to denote the components of x that are used to define f . The rest of the syntax
for a stochastic temporal logic is similar to that of STL:

ϕ := ϕB | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | FI | GI | ϕUIϕ (2)

Note that the formulas FIϕ and GIϕ are introduced as convenience, and are
respectively equivalent to the formulas trueUIϕ, and ¬FI¬ϕ. Similarly, ϕ1 ∨ϕ2

can be expressed using ¬ and ∧ using DeMorgan’s laws.
The Boolean satisfaction semantics of a formula of the above logic is defined

recursively over the formula structure. We first define the satisfaction semantics
of a chance constraint. The following equation defines the satisfaction of an
atomic signal predicate by a given stochastic process x at time t:

(x, t) |= P [f(x) ∼ 0] ≥ ε ≡ P [f(x(t)) ∼ 0] ≥ ε (3)

For Boolean combinations of atomic signal predicates, we can define satis-
faction using the usual laws of probability. Let ϕB(t) denote the predicate ϕB

evaluated over its subformulas at time t. Then, P [¬ϕB(t)] can be computed as
1−P [ϕB(t)], while P [ϕ1

B(t)∧ϕ2
B(t)] requires knowledge of either the joint prob-

abilities of ϕ1
B(t) and ϕ2

B(t) or requires the knowledge of the conditional proba-
bility of one given the other. We now define the recursive satisfaction semantics:



Stochastic Temporal Logic Abstractions: Challenges and Opportunities 7

(x, t) |= P [ϕB ] ≥ ε ≡ P [ϕB(t)] ≥ ε
(x, t) |= ¬ϕ ≡ ¬((x, t) |= ϕ)
(x, t) |= ϕ1 ∧ ϕ2 ≡ (x, t) |= ϕ1 ∧ (x, t) |= ϕ2

(x, t) |= ϕUIψ ≡ ∃t′ ∈ t ⊕ I : ((x, t′) |= ψ∧
∀t′′ ∈ [t, t′) : (x, t′′) |= ϕ).

Example 1. Consider the stochastic process given by the following stochastic dif-
ferential equation: dxt = μdt+σdWt, for some positive values of the parameters
μ, σ. This is essentially a Brownian motion and the PDF of the random variable

x at time t is p(x, t) = 1√
2πσ2t

e− (x−μt)2

2σ2t . Consider the following StSTL formula

φ = G[0,1]((P [x ≤ μ] ≥ 0.5) ∧ (P [x ≥ −μ] ≥ 0.5)). (4)

We can easily verify that the formula is true: In the time interval [0, 1] the mean
of the process reaches its maximum value at t = 1. At that time the mean is equal
to μ and the probability P [x ≤ μ] becomes 0.5. For t < 1 the mean is less than
μ therefore by the symmetry of the normal distribution the above probability
is greater than 0.5. Similar arguments can be made for the second term of the
formula.

3 Constructing Stochastic Models from Data

We now consider the stochastic modeling of data through an approach based on
generalized master equations (GMEs)1 [31]. Let us assume that the stochastic
system is at state w ∈ R

n at time t. Subsequently, it waits dt time units and then
makes a transition to state w+dw. The inter-event times dt and the magnitude
increment dw are random variables drawn from the joint probability density
function λ(w, t). Using these definitions, we enumerate all possible transitions
that could have led to the system being at state w at time t and using simple
probabilistic arguments we obtain the following Generalized Master Equation
(GME)

p(w, t) = Ψ(t)δ(w) +
∫ t

0

dτ

∫
Rn

p(y, τ)λ(w − y, t − τ)dy (5)

where δ(w) is the multivariate Dirac delta function and Ψ(t) is the probability of
making no transitions up until time t. The first term of this equation represents
the trivial transition, that is, when no transition occurred up to time t and at
time t the system made a transition to state w. The second term is essentially
an “enumeration” of all other possible intermediate transitions and application
of the total probability theorem. This equation is a rather abstract generaliza-
tion of the Brownian motion; in fact, for the simplified case of exponentially
distributed inter-event times, Eq. 5 reduces to a stochastic process similar to

1 Master equations are commonly used tools in statistical physics to describe time-
evolution of a system [5,6,20].



8 J. V. Deshmukh et al.

Brownian motion with the critical difference being that w(t) need not be Gaus-
sian; it may be any distribution (potentially time-dependent). The introduction
of arbitrarily distributed inter-event times aims in capturing long-term and non-
Markovian behavior. In practice λ(w, t) is approximated by differentiating the
given realization(s) (after removing deterministic and predictable components,
as previously discussed) and estimating the probability density of the resulting
time series.

We remark that the above GME formulation can also be used to represent
the joint probability distribution for a number of stochastic processes. We omit
the exact expression for brevity, but it can be obtained by applying the usual
rules of probability to Eq. 5. Finally, constructing a model from data may can
be done in a parametric or nonparametric fashion. In the former, we assume
a specific form for the kernel density function λ, and attempt to estimate its
parameters fro mdata. In the latter, we assume that the kernel density function
is expressed as the inner product of an (infinite-dimensional) coefficient vector
with an infinite set of basis functions. For example, it is possible to use wavelet
functions or Fourier transforms for this purpose. In practice, we would restrict
the number of basis functions used to a finite, manageable number.

4 Learning Logical Abstractions from Stochastic Models

In this section, we introduce a preliminary technique for inferring stochastic
logical relations from a stochastic model. We formally define a stochastic time-
varying model (STM) as follows:

Definition 4 (Stochastic Time-varying Model (STM)). Let x = (x1, . . . ,
xk) be a k-dimensional stochastic process. A stochastic time-varying model
M(S1, . . . , Sm) is a set {p(S1; t), p(S2; t), . . . , p(Sm; t)}, where Sj ⊆ {1, . . . , k},
and each p(Sj ; t) represents the time-varying joint PDF of the components of x
indexed by elements in Sj.

Note that M can be constructed empirically as the numeric solution of the
generalized master equation (defined in Sect. 3). However, note that the defini-
tion of an STM M is quite general; for example, M could be specified in terms
of analytic equations of time-varying PDFs of well-known stochastic processes
(such as Brownian motion shown in Example 1). A simple technique that may
be often useful is one based on ensemble statistics; i.e. at each time-point, repre-
senting the distribution using a number of moments of the PDF estimated from
observed data. In this section, the actual method used to compute the STM is
not of importance, we assume that we are given an STM that is adequate to
create a logical abstraction w.r.t. a user-provided template. We formally explain
these two ideas in the sequel.

Parametric Stochastic Temporal Logic (PStTL). We introduce PStTL as an
extension of StSTL to define template formulas containing unknown parameters.
A PStTL formula is then defined by modifying the previously defined grammar



Stochastic Temporal Logic Abstractions: Challenges and Opportunities 9

and allowing any constants appearing in the formula to be replaced by parame-
ters. The set of parameters P is a set consisting of two disjoint sets of variables
PE and PT of which at least one is nonempty. The parameter variables in PE

can take values from the state-space for the stochastic process, while the vari-
ables in PT are time-parameters that take values from the time domain T . A
valuation function ν maps a parameter to a value in its domain. We denote a
vector of parameter variables by p, and extend the definition of the valuation
function to map parameter vectors p into tuples of respective values over V or
T . We define the parameter space DP as a subset of E |PE | × T |PT |.

Definition 5 (Adequate Model). Given a PStTL formula ϕ, we call the set of
components appearing in the formula as its support variables denoted support(ϕ);
this can be computed recursively computing the union of the support function for
each subformula, and using the previously defined support(f) set for the signal
predicates. We say that an STM M(S1, . . . , Sm) is adequate iff there exists an
Sj ∈ {S1, . . . , Sm} such that support(ϕ) ⊆ Sj.

In simple words, as long as it is possible to obtain the joint PDF of the
stochastic process components appearing in the PStTL formula from one of the
existing joint PDFs (by marginalizing unnecessary variables), then the model is
adequate. We observe that a model that contains the joint PDF of all compo-
nents of the stochastic process is an adequate model. However, computing the
joint PDF for a large number of a high-dimensional process can be computation-
ally intensive. Thus, given a PStTL formula, we wish to construct a minimally
adequate STM for that formula. As the support variables of a formula are syntac-
tically known, identifying the subset of processes to use to construct a minimally
adequate STM is trivial.

4.1 Logical Abstractions Through Parameter Inference

In this subsection, we present a technique to infer parameter valuations for a
given PStTL formula such that the resulting stochastic temporal logic formula
is satisfied by the given STM. Given a PStTL formula ϕ(p), a crude approach
to finding a valuation ν mapping p to some value in DP is to discretize DP , (say
N discrete values per parameter dimension), and then test the validity of the
resulting formula ϕ(ν(p)) over each of the N |P| at each one of them. However,
this approach does not scale as the computational complexity is O(N |P|) and
the accuracy of the result depends on the number of discretizations in each
parameter’s range (i.e. on N).

For this reason we propose an alternative method for synthesizing parameters
for a large class of stochastic STL formulae that satisfy the following require-
ments: (a) they are monotonic with respect to each parameter, (b) for every
parametrized temporal operator the sub-formula in the scope of that operator is
not parametrized and (c) each parameter appears only once in the formula. The
monotonicity requirement is necessitated by the fact that non-monotonic formu-
lae can have an arbitrary high number of points at which the validity changes,



10 J. V. Deshmukh et al.

therefore, we cannot expect to perform better than the grid method. The last
requirement is imposed because repeated appearances of the same parameter in
the formula may compromise the monotonicity. The second requirement is also
necessary because nested parametric formulae may have conflicting monotonic-
ity, meaning that the sub-formula of a parametrized temporal operator may be
monotonically increasing while the operator itself monotonically decreasing (or
the converse). Dealing with such nuances is left for future work.

Let us assume without loss of generality that the given formula is mono-
tonically increasing with respect to each parameter. The method is based on
the observation that, given the monotonicity assumption, it suffices to find the
parameter value boundary at which the validity of the formula changes. As a
preprocessing step, we verify that the boolean logic of the formula has no incon-
sistencies. For instance, a formula in the form P [x > c1] > 0.9 ∧ P [x > 5] > 1.1
cannot be valid for any choice of c1. Then, we decompose φ into a parse tree
T = T (φ). Each node of T is a temporal operator, a boolean operator or (at
a leaf level) an atomic stochastic temporal logic predicate. Subsequently, for a
given time horizon T , we perform a time iteration and for each discretized time
instance we traverse T in a breadth-wise fashion, starting from the leaves and
moving upwards. Whenever we encounter a node n containing a parametrized
atomic predicate or parametrized temporal operator we calculate the value of
the parameter such that the formula represented by the sub-tree rooted at n
is the least permissive (i.e., the value at which its validity changes). Given the
assumption of increasing monotonicity, this coincides with the minimum value
of the parameter for which the formula is valid.

Definition 6 (Monotonic PStTL). A PStTL formula ϕ is said to be mono-
tonically increasing in parameter pi if condition (6) holds for the stochastic
process x and is said to be monotonically decreasing in parameter ci if condition
(7) holds for x.

ν(pi) ≤ ν′(pi) ∧ [x |= ϕ(ν(pi)) =⇒ [x |= ϕ(ν(pi))] (6)
ν(pi) ≥ ν′(pi) ∧ [x |= ϕ(ν(pi))] =⇒ x |= φ(ν(pi))] (7)

A multi-parameter formula ϕ(p) is said to be monotonic if and only if it is
monotonic in every individual parameter pi ∈ p.

Let us assume without loss of generality that the given formula is mono-
tonically increasing with respect to each parameter. The method is based on
the observation that, given the monotonicity assumption, it suffices to find the
parameter value boundary at which the validity of the formula changes. As a
preprocessing step we verify that the boolean logic of the formula has no incon-
sistencies. For instance a formula in the form P [x > c1] > 0.9 ∧ P [x > 5] > 1.1
cannot be valid for any choice of c1. Then, we decompose φ into a parse tree
T = T (ϕ). Each node of T is a temporal operator, a boolean operator or (at
a leaf level) an atomic predicate. Subsequently, for a given time horizon T , we
perform a time iteration and for each discretized time instance we traverse T in a
breadth-wise fashion, starting from the leaves and moving upwards. Whenever we



Stochastic Temporal Logic Abstractions: Challenges and Opportunities 11

encounter a node n containing a parametrized atomic predicate or parametrized
temporal operator we calculate the value of the parameter such that the formula
represented by the sub-tree rooted at n is the least permissive (i.e. the value at
which its validity changes). Given the assumption of increasing monotonicity,
this coincides with the minimum value of the parameter for which the formula
is valid.

Algorithm 1. Time-Iteration Parameter Synthesis for StSTL
Inputs :

p(x, t), φ(p), T
Procedure :

Construct parse tree T = T (φ)
(c∗

L, ε∗
L, τ∗

L) ← ([], [], []) for all L = 1 to depth(T )
for t = 1 to T do

for L = depth(T ) to 1 do
for all nodes n at level L do

if n := P [f(x, cL) ∼ 0] ≥ εL then
(c∗

L, ε∗
L) ← argmin{(cL, εL) : (x, t) |= n}

else if n := φLU[0,τL]ψL then
τ∗

L ← argmin{τL : (x, t) |= n}
else if n := φL(cL1, εL1)U[0,TL]ψL(cL2, εL2) then

(c∗
L1, ε

∗
L1, c

∗
L2, ε

∗
L2) ←

argmin{(cL1, εL1, cL2, εL2) : (x, t) |= n}
end if

end for
end for

end for
Outputs : (c∗

L, ε∗
L, T ∗

L) for all L = 1 to depth(T )

The above procedure is shown on Algorithm 1. We should note that the set of
parameters P is decomposed for each level L of the tree to three subsets: parame-
ters appearing as coefficients on the random variables (cL), parameters appearing
as bounds on the probabilities (εL) and time parameters τL. Additionally, the
notation := denotes “matches” (i.e., the condition n := P [f(x, cL) ∼ 0] ≥ εL

is true if and only if node n is a atomic predicate). Note that the first else-if
matches a temporal operator parametrized by τL while the second one a non-
parametrized temporal operator whose sub-formulae are parametrized. In the
later case TL is assumed to be constant and the parameters of the sub-formulae
have been broken down to two sets. Finally, the temporal operators F and G
have implicitly been included via U.

The above algorithm essentially requires only the knowledge of the joint
PDFs (or CDFs) of the process components appearing in the PStTL formula,
and certain assumptions on the formula structure, but is able to automatically
infer a logical abstraction from the given STM.



12 J. V. Deshmukh et al.

5 Applications

In this section, we describe some of the applications that we can tackle by con-
structing stochastic logical abstractions.

5.1 Controller Quality Through Environment Models

Autonomous Cyber-Physical systems (such as self-driving cars) require exten-
sive testing and validation before they are ready for deployment in the real-
world. However, currently, there is either an over-reliance on real-world physical
testing (through actual driving), or testing may use overly pessimistic environ-
ment models. We wish to give the algorithms for introducing autonomy realistic
environment models, and hence obtain probabilistic formal guarantees on their
performance. Consider, for example, data that includes noisy RADAR measure-
ments of the lead gap and relative velocity of a lead car, and also ground truth
labels indicating the actual distance between the lead and the host and actual rel-
ative velocity. From data gathered from physical experiments, we can construct
a Stochastic Temporal Logic abstraction of the error in the readings. Let ev and
ep denote the error in the relative velocity and the position error, respectively.
Then the correctness of an adaptive cruise control algorithm can be expressed
using the following probabilistic correctness formula:

G[0,T ] (P [ev > 5] < 10−5 ∧ P [ep > 2] < 10−5) =⇒ G[0,τlead ]P [gap > dsafe ] > 1−10−5

(8)
In the above equation, τlead denotes the time window for which the car follows

the lead car at a distance of greater than dsafe as long as the error in measure-
ments of the relative velocity and position being greater than an acceptable
threshold is small.

5.2 Causality Models for Large Inter-connected Systems

Many real-world systems consist of complex networks of interconnected cyber-
physical systems. Often, when such connections are effected, these systems expe-
rience emergent behavior that was not anticipated by the designers. In such cases,
designers wish to identify why certain physical quantities in a given component
may behave in a certain way. Such an analysis requires identifying causality
relations between signals. Similar problems arise in the domain of biological and
bio-medical systems. For example, consider the problem of predicting epileptic
seizures from electroencephalography (EEG) measurements [21]. In the study in
[21], the researchers used 76 electrode contacts for the patient. Examination of
the EEG data by a medical professional revealed two key periods relating to the
seizure i.e., a pre-ictal period, just before the clinical onset, and an ictal one,
corresponding to the seizure spread and to the clinical symptoms. Further statis-
tical post-processing and analysis indicates that during the onset of an epileptic



Stochastic Temporal Logic Abstractions: Challenges and Opportunities 13

seizure, the contacts implanted in the patient’s brain exhibit extremely high val-
ues of potential compared to the pre-ictal period. This suggests that this sudden
decrease in potential values may indicate the onset of a seizure.

In a typical EEG setup, it is common to use several electrode contacts to
measure the potential values. Let the signal measured at the ith electrode contact
during the pre-ictal phase be denoted xi

pre and that measured at the jth electrode
during the ictal phase be xj

ict. A näıve PStTL formula that indicates the onset
of a seizure in the next τ seconds can be written as follows:

φnaive :=
∨
i,j

G
(
P [xi

pre ≤ ci
1] ≥ εi

1 =⇒ F[0,τ ]P [xj
ict ≥ cj

2] ≥ εj
2

)
(9)

We note that even for fixed probability values, we would have to infer two
parameters per pair of electrodes in the above formula. Furthermore, the gen-
eralized master equation formulation for this case would need to compute an
STM with joint PDFs of signals corresponding to all the electrodes in the dif-
ferent phases. Thus, while creating a stochastic logical abstraction is of value,
performing parameter inference efficiently requires further work. One possibility
is to use information-theoretic measures such as transfer entropy that quantifies
the amount of information flow between signals, to precisely identify the signals
to use to construct the required abstraction.

6 Challenges, Open Problems, and Future Applications

In this section, we briefly enumerate some challenges to scalability, open prob-
lems, and some application domains in which we can use stochastic logical
abstractions.

Anomaly Detection and Prediction. An advantage of creating a stochastic logical
abstraction is that it gives us a probabilistic prior to represent the expected
behaviors of a system. In the domain of cyber-physical security, simple priors
are used to identify statistically outlying behaviors as anomalies at run-time
[8,25,29,30]. There has not been any work on techniques to identify a run-
time behavior as a statistical outlier w.r.t. a given stochastic temporal logic
formula, and constitutes an open problem. Similarly, predictive monitoring with
a stochastic model of the system is also feasible within our framework, but the
algorithms to perform such monitoring have not yet been developed.

Causal Abstractions for High-Dimensional Data. Identifying precise temporal
relations in high-dimensional data is challenging due to scalability concerns.
Approaches such as using vector auto-regression (VAR) have been successfully
shown to scale for systems where there is known linear dependence between
signals [3]. However, extending such techniques to general systems with non-
linear dependence between signals is open. One approach is to compute the
pairwise transfer-entropy, but this can be computationally challenging if the
number of dimensions is very high.



14 J. V. Deshmukh et al.

Incremental Learning and Robustness. In this paper, we have largely focussed on
building stochastic logical abstractions when we have a large existing data-set.
However, in real-world settings, we often gather data incrementally, and re-
computing the abstraction every time new data is available is computationally
wasteful. Techniques to incrementally update the abstraction w.r.t. new data
would need to be developed. Such techniques would also raise the question of
robustness of the abstraction: Does new data cause a significant perturbation in
the model? This issue can be of importance if the abstractions are deployed in
a CPS which is expected to perform life-long learning. By flagging and rejecting
data that can cause significant perturbations in the model, the abstraction could
protect against adversarial attacks on the learning component.

Synthesis from Logical Abstractions. Finally, much of the existing work on
stochastic temporal logics has focussed on synthesizing safe controllers from
the given uncertainty specification on the environment. Here, many problems
remain open once we do not assume any specific probability distribution on the
environment uncertainty.

Acknowledgement. This work was in part supported by The Defense Advanced
Research Projects Agency and DARPA Young Faculty Award under grant numbers
W911NF-17-1-0076 and N66001-17-1-4044, and the US National Science Foundation
(NSF) under CAREER Award CPS-1453860. The views, opinions, and/or findings
contained in this article are those of the authors and should not be interpreted as
representing the official views or policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the Department of Defense.

References

1. Abate, A., D’Innocenzo, A., Benedetto, M.D.D.: Approximate abstractions of
stochastic hybrid systems. IEEE Trans. Autom. Control 56(11), 2688–2694 (2011)

2. Aksaray, D., Jones, A., Kong, Z., Schwager, M., Belta, C.: Q-learning for robust
satisfaction of signal temporal logic specifications. In: 2016 IEEE 55th Conference
on Decision and Control (CDC), pp. 6565–6570, December 2016

3. Arnold, A., Liu, Y., Abe., N.: Temporal causal modeling with graphical Granger
methods. In: Proceedings of International Conference on Knowledge Discovery and
Data Mining (SIGKDD-07) (2007)

4. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis
for probabilistic systems (extended abstract). In: Levy, J.-J., Mayr, E.W., Mitchell,
J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 493–506. Springer, Boston, MA (2004).
https://doi.org/10.1007/1-4020-8141-3 38

5. Balescu, R.: Statistical Dynamics: Matter Out of Equilibrium. World Scientific,
Singapore (1997)

6. Balescu, R.: Aspects of Anomalous Transport in Plasmas. CRC Press, Boca Raton
(2005)

7. Brázdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

https://doi.org/10.1007/1-4020-8141-3_38
https://doi.org/10.1007/978-3-319-11936-6_8


Stochastic Temporal Logic Abstractions: Challenges and Opportunities 15

8. Cardenas, A., et al.: Challenges for securing cyber physical systems. In: Workshop
on Future Directions in Cyber-Physical Systems Security, vol. 5 (2009)

9. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

10. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comp. Sci. 410(42), 4262–4291 (2009)

11. Fu, J., Topcu, U.: Computational methods for stochastic control with metric inter-
val temporal logic specifications. In: 2015 IEEE 54th Annual Conference on Deci-
sion and Control (CDC), pp. 7440–7447. IEEE (2015)

12. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

13. Hoxha, B., Abbas, H., Fainekos, G.: Benchmarks for temporal logic requirements
for automotive systems. In: Frehse, G., Althoff, M. (eds.) ARCH14-15. 1st and
2nd International Workshop on Applied Verification for Continuous and Hybrid
Systems. EPiC Series in Computing, vol. 34, pp. 25–30. EasyChair (2015)

14. Jha, S., Raman, V.: Automated synthesis of safe autonomous vehicle control under
perception uncertainty. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS,
vol. 9690, pp. 117–132. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40648-0 10

15. Jha, S., Raman, V., Sadigh, D., Seshia, S.A.: Safe autonomy under perception
uncertainty using chance-constrained temporal logic. J. Autom. Reason. 60(1),
43–62 (2018)

16. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control, pp. 253–262. ACM (2014)

17. Julius, A.A., Pappas, G.J.: Approximations of stochastic hybrid systems. IEEE
Trans. Autom. Control 54(6), 1193–1203 (2009)

18. Kamgarpour, M., Ding, J., Summers, S., Abate, A., Lygeros, J., Tomlin, C.: Dis-
crete time stochastic hybrid dynamical games: verification amp; controller synthe-
sis. In: 2011 50th IEEE Conference on Decision and Control and European Control
Conference, pp. 6122–6127, December 2011

19. Kapinski, J., et al.: ST-Lib: a library for specifying and classifying model behaviors.
In: SAE Technical Paper. SAE (2016)

20. Klages, R., Radons, G., Radons, G., Sokolov, I.: Anomalous Transport: Founda-
tions and Applications. Wiley, Hoboken (2008)

21. Kramer, M.A., Kolaczyk, E.D., Kirsch, H.E.: Emergent network topology at seizure
onset in humans. Epilepsy Res. 79(2), 173–186 (2008)

22. Lahijanian, M., Andersson, S.B., Belta, C.: Control of Markov decision processes
from PCTL specifications. In: Proceedings of the 2011 American Control Confer-
ence, pp. 311–316, June 2011

23. Li, J., Nuzzo, P., Sangiovanni-Vincentelli, A., Xi, Y., Li, D.: Stochastic contracts
for cyber-physical system design under probabilistic requirements. In: ACM/IEEE
International Conference on Formal Methods and Models for System Design (2017)

24. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

25. Pajic, M., Mangharam, R., Pappas, G.J., Sundaram, S.: Topological conditions for
in-network stabilization of dynamical systems. IEEE J. Sel. Areas Commun. 31(4),
794–807 (2013). https://doi.org/10.1109/JSAC.2013.130415

https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-319-40648-0_10
https://doi.org/10.1007/978-3-319-40648-0_10
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1109/JSAC.2013.130415


16 J. V. Deshmukh et al.

26. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfac-
tion of temporal logic formulae with applications to systems biology. In: Heiner,
M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNAI), vol. 5307, pp. 251–268.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88562-7 19

27. Roehm, H., Gmehlich, R., Heinz, T., Oehlerking, J., Woehrle, M.: Industrial exam-
ples of formal specifications for test case generation. In: Workshop on Applied Ver-
ification for Continuous and Hybrid Systems, ARCH@CPSWeek 2015, pp. 80–88
(2015)

28. Sadigh, D., Kapoor, A.: Safe control under uncertainty with probabilistic signal
temporal logic. In: Robotics Science and Systems (2016)

29. Sundaram, S., Pajic, M., Hadjicostis, C., Mangharam, R., Pappas, G.: The wireless
control network: monitoring for malicious behavior. In: 49th IEEE Conference on
Decision and Control (CDC), pp. 5979–5984, December 2010. https://doi.org/10.
1109/CDC.2010.5717166

30. Sundaram, S., Revzen, S., Pappas, G.: A control-theoretic approach to dissem-
inating values and overcoming malicious links in wireless networks. Automatica
48(11), 2894–2901 (2012)

31. Xue, Y., Bogdan, P.: Constructing compact causal mathematical models for com-
plex dynamics. In: Proceedings of the 8th International Conference on Cyber-
Physical Systems, pp. 97–107. ICCPS 2017 (2017)

32. Zhang, X., Wu, B., Lin, H.: Learning based supervisor synthesis of POMDP for
PCTL specifications. In: 2015 IEEE 54th Annual Conference on Decision and Con-
trol (CDC), pp. 7470–7475. IEEE (2015)

https://doi.org/10.1007/978-3-540-88562-7_19
https://doi.org/10.1109/CDC.2010.5717166
https://doi.org/10.1109/CDC.2010.5717166


Models of Timed Systems

Edward A. Lee(B)

UC Berkeley, Berkeley, CA, USA
eal@eecs.berkeley.edu

http://eecs.berkeley.edu/~eal

Abstract. This paper analyzes the use of models for timed systems, par-
ticularly cyber-physical systems, which mix timed behavior of physical
subsystems with largely untimed behavior of software. It examines how
models are used in engineering and science, showing that two comple-
mentary styles for using models lead to differing conclusions about how
to approach the problem of modeling timed systems. The paper argues
for an increased use of an engineering style of modeling, where models
are more like specifications of desired behavior and less like descriptions
of some preexisting system. Finally, it argues that in the engineering
style of modeling, determinism is an extremely valuable property.

Keywords: Modeling · Real-time systems · Determinism

1 Models in Science and Engineering

The most interesting cyber-physical system (CPS) applications today, such
as medical devices, factory automation, and autonomous vehicles, necessarily
include timing-sensitive safety-critical physical sensing and actuation1. The soft-
ware in such systems is called real-time software because the designer has to pay
attention to the timing of actions taken by the software. But what do we mean
by “paying attention” to timing? Fundamentally, time only matters in comput-
ing when software interacts with the world outside the software. Without such
interaction, time is irrelevant. Of course, all useful software interacts with the
world outside itself, or we wouldn’t bother to have the software. Hence, time
matters to some degree for all software. But for many CPS applications, timing
is critically important. A slow program may be annoyance, but a missed deadline
in a control system could be deadly.

I have forty years of experience with cyber-physical systems. In the late 1970s,
I was writing assembly code for Intel 8080s to control industrial robots. In the

This work was supported in part by the iCyPhy Research Center (Industrial Cyber-
Physical Systems, supported by Denso, Ford, National Instruments, Siemens, and
Toyota), and by the National Science Foundation, NSF award #1446619 (Mathe-
matical Theory of CPS).

1 This paper is an expanded version of [16] and borrows themes from [18].

c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 17–33, 2018.
https://doi.org/10.1007/978-3-030-00151-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_2&domain=pdf
http://orcid.org/0000-0002-5663-0584


18 E. A. Lee

early 1980s, I was writing assembly code for DSP chips to encode bit sequences in
voice-like waveforms that could traverse the public telephone network. I designed
the first fully software-defined modem at a time when modems were custom
circuits.

In both cases, timing of actions was important, and the way that I would
control the timing of software was to count assembly-language instructions and
insert no-ops as needed. Even then, this was not easy. The computer architectures
had significant complexity and I had to understand them. But I could write
programs where the timing was well defined, repeatable, and precise. Today this
is much more difficult.

The assembly code that I wrote can be viewed as a model. The code that I
wrote provided a model of the physical actions that I wanted to occur, including
when I wanted them to occur. My modeling language was assembly, which was
itself built upon another model, an instruction set architecture (ISA). In the case
of the programmable DSP chips I was using in the early 1980s, the timing of each
instruction was an explicit part of the ISA model, one that could not be ignored.
The realization of the ISA was another model, a synchronous digital logic circuit,
which ultimately abstracted the physical behavior of electrons sloshing in silicon.
This layering of models enabled me to work within a relatively simple paradigm,
a sequence of actions with well-defined time elapsing between actions.

Today’s clock frequencies are more than three orders of magnitude higher
(more than 2 GHz vs. 2 MHz), but timing precision and predictably has not
improved and may have actually declined. To understand the timing behavior
of a program we write today, we have to model many details of the hardware
and software, including the memory architecture, pipeline design, I/O subsystem,
programming languages, concurrency management, and operating system design.

Today, a C program, for example, for a real-time system, is also a model, but
this model does not specify timing. To control timing, we have to step outside
the abstraction of the C language and make operating system calls that set
priorities on threads and write to memory-mapped registers to cause hardware to
trigger timer interrupts. Examining the C program alone reveals very little about
timing. To understand timing, we require detailed knowledge of the operating
system, the other tasks that are sharing it, the hardware associated with timer
interrupts, and all other details of the microprocessor hardware, including its
memory architecture and pipeline design. Knowing the ISA is insufficient.

One consequence is a subtle but important transformation in the way we use
models. Forty years ago, my models specified the timing behavior, and it was
incumbent on the physical system to correctly emulate my model. Today, the
timing behavior emerges from the physical realization of the system. My job as
an engineer has switched from designing a behavior to understanding a behavior
over which I have little control.

Given behaviors that we want to understand, but did not design, a scientific
approach requires building models and refining them based on observations. A
whole industry has developed around models of microprocessors that can be
used to estimate the worst-case execution time (WCET) of a piece of C code,



Models of Timed Systems 19

for example [12,23]. These models cannot depend only on the ISA definition.
They have to include every detail of the particular implementation of the ISA,
often even undocumented features [22]. And even when you get an effective
model, the WCET is not the actual execution time. Most programs will execute
faster, but modeling that variability is extremely difficult. As a consequence,
program behavior is not repeatable. Variability in execution times can reverse the
order in which actions are taken in the physical world, possibly with disastrous
consequences.

The essential issue is that role that models have played in the design process
has reversed. Forty years ago, my model was a specification, and it was incumbent
on the physical system to behave like the model. Today, my model emulates the
behavior of a physical system, and it is incumbent on my model to match that
system. These two uses of models are mirror images of one another.

In a recent book, I point out that the first style of modeling is more common
in engineering, and the second is more common in science. Quoting myself,

To a scientist, the value of a model lies in how well its properties match
those of a target, typically an object found in nature. ... But to an engineer
... the value of an object ... lies in how well its properties match a model.
... A scientist asks, “Can I make a model for this thing?” An engineer asks,
“Can I make a thing for this model?” [18, p. 45]

If a microprocessor drops into salt water and fails to correctly execute a program,
then the problem lies with the physical system, not with the model. Conversely,
if a program executes faster than expected on a modern microprocessor and
the order of events gets reversed, the problem lies with the model, not with the
physical system. The distinction between scientific and engineering use of models
is reflected in the distinction between a specification and a user manual: while
they essentially contain the same information, if there is a difference between
the information and the described object, then the specification is always right
and the user manual is always wrong.

The engineering style of modeling has been astonishingly successful for VLSI
chip design. Most chips are designed as a synchronous digital logic model. A
physical piece of silicon that fails to match this logic model is not useful and will
be discarded.

In science, models are used the other way around. If Newton’s laws were
not to describe accurately the motion of the planets, we would not hold the
planets responsible and discard them. We would hold the model responsible. In
science, the abstraction is required to match the physical world, the reverse of
engineering.

VLSI chip design has also made very effective use of layered models. Above
a synchronous digital logic model lies a Verilog or VHDL program. Above that
may lie an ISA. We can keep going up in levels of abstraction, but my essential
point is that at each level, the lower level is required to match the upper one.
In scientific models, the responsibility is reversed. The more abstract model is
required to match the less abstract one.



20 E. A. Lee

The consequences are profound. Consider that a scientist tries to shrink the
number of relevant models, those needed to explain a physical phenomenon.
In contrast, an engineer strives to grow the number of relevant models, those
for which we can construct a faithful physical realization. These two styles of
modeling are complementary. Most scientists and engineers use both, but rarely
do they think about which they are using.

For real-time systems, I believe that the problem today is that we are doing
too much science and not enough engineering. As a community, people who work
in real-time systems resign themselves to the microprocessors given to us by Intel
and Arm and the language given to us by Bell Labs (namely, C) as if those were
artifacts found in nature. Those are magnificent engineering triumphs, but the
models that they realize have little to do with timing. If we take those as given,
then we are forced to use the scientific style of modeling. A price we may be
paying is that real-time systems will never achieve the level of complexity and
reliability of VLSI design.

There are alternatives. We could design microprocessors that give us precise
and controllable timing, processors that we call PRET machines [7,25]. Then we
could specify real-time behaviors, and the hardware will be required to match
our specification. We have shown that such microprocessors can be designed,
and that at a modest cost in hardware overhead, there is no need to sacrifice
performance [17]. Given microprocessors that can deliver repeatable and control-
lable timing, we could design programming languages that enable us to express
timing behavior. Every correct execution of those programs will deliver the same
timing behavior, though we need to be careful here about what we mean by “tim-
ing behavior.” Vague, intuitive notions of time will not suffice for constructing
trustworthy models.

2 What Is Real Time?

In practice, when engineers talk about “real time,” they may mean:

1. fast computation,
2. prioritized scheduling,
3. computation on streaming data,
4. bounded execution time,
5. temporal semantics in programs, or
6. temporal semantics in networks.

In 1988, Stankovic cataloged quite a few more possible (mis)interpretations of
the term “real time” and laid out a research agenda that is dishearteningly valid
today [20]. These are different views, and which view dominates has a strong
effect on the choice of technical approaches to the problem.

The first, fast computation, is useful in all computation, and therefore does
not deserve our attention here. Nothing about fast computation can distinguish
real-time problems from non-real-time problems. In fact, many real-time systems



Models of Timed Systems 21

execute on decidedly slow computers, such as microcontrollers, and timing pre-
cision, predictability, and repeatability may be far more important than speed.

The second meaning, prioritized scheduling, is the centerpiece of much work
in the real-time systems community. In this approach, the requirements of the
physical world are reduced to deadlines and periods, and the temporal properties
of software are reduced to execution times for tasks. For cyber-physical systems,
we are more interested in the closed-loop interactions of the physical and cyber
parts of the system. These reductions are oversimplifications and a more holistic
approach has great promise for advancing the field.

The third meaning, computation on streaming data, has become a hot area in
recent years. The emerging Internet of Things (IoT) promises a flood of sensor
data. Many organizations already are collecting but not effectively using vast
amounts of data. Consulting and market research company Gartner calls “dark
data” the “information assets that organizations collect, process and store in
the course of their regular business activity, but generally fail to use for other
purposes.” The subtext is that those same businesses are missing an opportunity.
They should be mining the data. The data has value. The research and consulting
firm Forrester defines “perishable insights” as “urgent business situations (risks
and opportunities) that firms can only detect and act on at a moment’s notice.”
Fraud detection for credit cards is one example of such perishable insights. This
has a real-time constraint in the sense that once a fraudulent transaction is
allowed, the damage is done. In CPS, a perishable insight may be, for example,
a determination of whether to apply the brakes on a car, where a wrong or late
decision can be quite destructive.

Computing on streaming data means that you don’t have all the data, but you
have to deliver results. It differs from standard computation in that the data sets
are unbounded, not just big. You can’t do random access on input data, which
constrains the types of algorithms you can use [1]. Because data keeps coming,
programs that halt are defective, in contrast to the standard Turing-Church view
of computation, where programs that fail to halt are defective.

Computing on streaming data demands different software architectures, using
for example actors as software components rather than objects. Many subtle
semantic questions arise. For example, when streams converge, what is the mean-
ing of the interleaving of their elements? Are their elements simply nondeter-
ministically interleaved, or is there more meaning to the relationship between an
element of one stream and that of another? Can algorithms process potentially
infinite data streams with bounded state? How is feedback handled, where pro-
cesses send each other streams? What about streams that are partially ordered
rather than totally ordered? And perhaps most interesting for this paper, is
there any temporal semantics in the streams? That is, is there any notion of
time associated with the elements of the stream, and what is the semantics of
that notion of time?

The fourth meaning, bounded execution time, assumes that some dead-
line exists for a software execution, and that ensuring that the execution
never oversteps that deadline is sufficient. This meaning is central to the



22 E. A. Lee

sense-process-actuate programming models and is usually a basic assumption
of the second meaning, prioritized scheduling. However, bounding the execution
time of software is particularly problematic. The bound can only be determined
for a particular implementation, where every detail of not only the software,
but also the hardware on which it runs and the execution context are known.
Moreover, by itself, bounding the execution time of software does not ensure
predictable behavior, since it does little to ensure that the order of actions taken
by the software is invariant.

The fifth meaning, temporal semantics in programs, has a long history with
little practical impact. Although many experimental programming languages
with some notion of time have been created, none has survived. This may be in
part because temporal semantics is absent in programs from the lowest level of
abstraction, in the instruction-set architecture (ISA). Reintroducing it at higher
levels has proved persistently problematic. For real progress to be made, tempo-
ral semantics needs to appear throughout the abstraction stack.

The final meaning, temporal semantics in networks, is present only in special-
ized networks, such as those in safety critical systems including factory automa-
tion, avionics, and automotive electronics. Recent work shows, however, that
temporal semantics is not entirely incompatible with commodity networks. I
will say more about this below.

3 Correctness vs. Quality

All of the above interpretations of real-time computing require some measure of
control over the timing of software. However, controlling timing of software is
difficult. More important, achieving repeatable timing is difficult, and systems
do not necessarily behave in the field in a manner similar to the test bench.

At the microarchitecture level, ISAs define the behavior of a microprocessor
implementation in a way that makes timing irrelevant to correctness. Timing is
merely a performance metric, not a correctness criterion. In contrast, arithmetic
and logic are correctness criteria. A microprocessor that fails to take a branch
when the condition evaluates to true is simply an incorrect implementation.
But a microprocessor that takes a long time to take the branch is just slow.
Computer architects have long exploited this property, that timing is irrelevant
to correctness. They have developed clever ways to deal with deep pipelines,
such as speculative execution and instruction re-ordering. They also have clever
techniques to take advantage of memory heterogeneity, such as multi-level caches.
These techniques, however, introduce highly variable and unpredictable timing.
The goal is to speed up a typical execution, not to make executions repeatable.

The design of modern programming languages reflects the microarchitectural
choice, so timing is again irrelevant to correctness. Hence, programmers have
to step outside the programming abstraction to control timing, for example
by writing to memory-mapped registers to set up a timer interrupt, or more
indirectly, by making operating system calls to trigger context switches. The
result is timing granularity that is much more coarse than what is achievable



Models of Timed Systems 23

in the hardware. More important, since interrupts occur unpredictably relative
to whatever is currently executing, these techniques inevitably make behavior
nonrepeatable. I contend that ISAs for CPS need to be rethought to provide
repeatable and precise timing.

Another reason that timing is difficult to control is operating system schedul-
ing. Multitasking in modern operating systems is driven by timer interrupts,
which disrupt the timing of programs in unpredictable ways (e.g. by affecting
the cache or the pipeline state). The most widely used I/O mechanisms also rely
on interrupts, again disrupting timing.

Today, most CPS applications stand to benefit enormously from being net-
worked, an observation that underlies the current enthusiasm around IoT. But
the networking technology that underlies the Internet also ignores timing. When
mainstream networking pays attention to timing, the problem is put under the
header “quality of service,” which emphasizes that timing is viewed as a quality
metric, not a correctness criterion. In contrast, reliable eventual delivery, realized
by the widely used TCP protocol, is a correctness criterion.

4 Achieving Real-Time Behavior

Despite these challenges, engineers have managed to make reliable real-time
systems. How? Some of the techniques used are:

1. overengineering,
2. using old technology,
3. response-time analysis,
4. real-time operating systems (RTOSs),
5. specialized networks, and
6. extensive testing and validation.

Overengineering is common because Moore’s law has given us impressively
fast processors. If the execution of software is essentially instantaneous with
respect to the physical processes with which it is interacting, then the time it
takes to execute a piece of code becomes irrelevant. However, overengineering is
becoming increasingly difficult as the complexity of CPS applications increases
and as technology no longer tracks Moore’s law. Moreover, many CPS applica-
tions are extremely cost sensitive or energy constrained, making overengineering
a poor choice.

Using old technology is also common. Safety-critical avionics software, for
example, rarely uses modern programming languages, operating systems, or even
interrupts. Software is written at a very low level, I/O is done through polling
rather than interrupts, and multitasking is avoided. Programmable logic con-
trollers (PLCs), widely used in industrial automation, are often programmed
using ladder logic, a notation that dates back to the days when the logic of
digital controllers was entirely controlled with mechanical relays. And the soft-
ware executes without the help of a modern operating system, sacrificing useful
capabilities such as network stacks. Many embedded systems designers avoid



24 E. A. Lee

multicore chips, a strategy that is becoming increasingly difficult as single-core
chips become more rare. And programmers often disable or lock caches, thereby
getting little advantage from the memory hierarchy.

The third approach, response-time analysis, includes execution-time anal-
ysis, which puts bounds on the time it takes for sections of code to execute
[23], and analysis of factors such as operating system scheduling and mutual
exclusion locks. Even just the subproblem of execution-time analysis is funda-
mentally hard because for all modern programming languages, whether a section
of code even terminates is undecidable. However, even when the execution paths
through the code can be analyzed, sometimes with the help of manual annota-
tions such as bounds on loops, the microarchitectural features mentioned above
can make analysis extremely difficult. The analysis tools need a detailed model
of the particular implementation of the processor that will run the code, includ-
ing every minute (and often undocumented) detail. As a result, a program that
has been validated using execution-time analysis is only validated for the partic-
ular piece of silicon that has been modeled. With any change in the hardware,
all bets are off; even though the new hardware will correctly execute the code,
there is no longer any assurance that the system behavior is correct. Manu-
facturers of safety-critical embedded systems, therefore, are forced to stockpile
the hardware that they expect to need for the entire production run of a prod-
uct. This runs counter to most basic principles in modern supply chain man-
agement for manufacturing, and it makes it impossible to take advantage of
technology improvements for cost reduction, improved safety, or reduced energy
consumption.

Moreover, execution-time analysis tools often need to make unrealistic
assumptions, such as that interrupts are disabled, in order to get reasonable
bounds. But while interrupts are disabled, the software does not react to stimuli
from the outside world, so the variability in reaction time may be significantly
increased, undermining the value of execution-time analysis.

In practice, designers either avoid interrupts altogether (as commonly done
in avionics) or attempt to keep program segments short so that the time during
which interrupts are disabled is small. Both strategies are increasingly difficult as
we demand more functionality from these programs. As execution time increases,
either the polling frequency decreases or the variability of the timing of other
tasks that get locked out by disabled interrupts increases.

The fourth technique, RTOSs, provides real-time scheduling policies in a
multitasking operating system. At the core, RTOSs use timer interrupts and
priorities associated with tasks. There is a long history of strategies that can
be proven optimal under (often unrealistic) assumptions, such as bounds on
execution time and well-known deadlines [4]. In simple scenarios, these strategies
can yield repeatable behaviors, but in more complex scenarios, they can even
become chaotic [21], which makes behavior impossible to predict. Moreover,
because of the reliance on interrupts, RTOSs violate the typical assumptions
made for execution-time analysis, and thereby invalidate their own optimality
proofs, which assume known execution times. A consequence is that when RTOSs



Models of Timed Systems 25

deliver predictable timing, the precision of the resulting timing is several orders
of magnitude coarser than what is in principle achievable with the underlying
digital hardware.

The specialized networks that constitute the fifth approach use methods
such as synchronized clocks and time-division multiple access (TDMA) to pro-
vide latency and bandwidth guarantees. Examples include CAN busses, ARINC
busses, FlexRay, and TTEthernet. With the possible exception of TTEthernet,
these networks are hard to integrate with the open Internet, so these systems
cannot benefit from Internet connectivity nor from the economies of scale of
Internet hardware and software.

The final approach, extensive testing and validation, is a laborious, brute-
force engineering method. One automotive engineer described to me what he
called “the mother of all test drives,” where you literally drive the car a mil-
lion miles in as many conditions as you can muster and hope that you have
comprehensively covered all the behaviors that the cyber-physical system may
exhibit in the field. But as the complexity of these systems (and their environ-
ments) increases, the likelihood that testing will be comprehensive becomes more
remote.

Taken together, these techniques do make it possible to design safety-critical
real-time embedded software, but their weaknesses suggest that it may be time
to step back and reexamine the problem of real-time computing with fresh eyes.
After all, microprocessors are realized in a technology, synchronous digital logic,
that is capable of realizing sub-nanosecond timing precision with astonishing
reliability and repeatability. It is the layers of abstraction overlaid on this tech-
nology, ISAs, programming languages, RTOSs, and networks, that discard tim-
ing. I contend that it is time for a paradigm shift where we make a commitment
to deterministic models that include timing properties.

5 What Is Time?

Time, as a physical phenomenon, is poorly understood [19]. CPS engineers
mostly adopt a Newtonian view, where time is a continuum that advances uni-
formly and identically to all observers, even though we know from relativity
that the flow of time depends on the observer, and some physicists suspect from
quantum field theories that time may be discrete rather than a continuum. The
Newtonian view is pragmatic and has proved effective for a wide range of phys-
ical system design problems. However, it does not translate easily to the cyber
world, where everything is discrete and the dynamics of programs is a sequence
of steps rather than a continuous flow.

Under the Newtonian model, an instant in time can be represented as a real
number. In software, real numbers are almost always approximated by floating-
point numbers. This works well when modeling continuous systems because for
continuous systems, by definition, small perturbations have bounded effects,
so the small errors introduced in floating-point arithmetic can often be safely
neglected. However, when dealing with discrete systems or with mixed discrete



26 E. A. Lee

and continuous systems, these same errors can have bigger effects. With discrete
behaviors, and hence with software, the order in which events occur, no matter
how small the time difference between them, can drastically affect an outcome.

Broman et al. show that floating-point representations of time are incompat-
ible with basic requirements for modeling hybrid systems, which mix discrete
and continuous behaviors [3]. They offer an alternative, a superdense model of
time with quantized resolution that exhibits a clean semantic notion of simul-
taneity. The key is to adopt a model of time, not one that attempts to solve
the physics problem of what is time in the physical world, but rather one that
expresses properties of real-time systems that we care about and that can be
physically realized with high confidence at a reasonable cost. In other words, we
need a useful temporal semantics for engineering models, rather than a model
of physical time, whatever that is, given to us by nature.

What do we mean by “temporal semantics”? Consider a program that takes
two distinct orchestrated actions A and B at 100µs intervals. We can argue that
it is physically impossible for these actions to be simultaneous to all observers,
but that would be missing the point. Even the meaning of “100µs intervals”
is questionable in physics. Instead, we should admit that what we want is to
have these actions be logically simultaneous and reasonably precise. What does
this mean? It could mean that any observer of these actions within our system
will at all times have counted the same number of actions A and B that have
occurred. That is, if the observer has seen n A actions, then it has also seen n B
actions. Note that this requirement is independent of timing precision and is most
certainly physically realizable. It gives a clean semantic notion to simultaneity.
This is not a scientific notion of simultaneity, but rather an engineering notion.
It gives a specification that our implementation must meet.

Another example of a useful temporal semantics property is reaction time.
Suppose that we have a system that reacts to sporadic discrete events, and that
we wish it to react to each event with a latency no greater than 100µs. Here,
“sporadic” has a technical meaning without which we could never provide such
an assurance. A sporadic stream of events is one where the time between events
has a lower bound. Consider a scenario where we have two sporadic streams
into a software system running on single CPU, where in each stream, the lower
bound between events is 100µs. Events arrive no more frequently than once per
100µs, but possibly less frequently. The interleaving of events from these two
streams is arbitrary, and events could even arrive simultaneously. Nevertheless,
we wish to react to each event within 100µs.

Today, we can solve this problem with interrupts, but since interrupts disrupt
timing analysis, each event handler will have to disable interrupts while it handles
its event. Because the timing of events in each stream is arbitrary, this interrupt-
driven strategy will introduce considerable timing jitter. Suppose for example
that the hander for events from stream A requires 95µs to complete, whereas
the handler for stream B requires only 5µs. In this case, reactions to events from
stream B may occur in 5µs or in 100µs or anything in between, depending on



Models of Timed Systems 27

whether an event from stream A is being handled. This is a huge jitter compared
to the reaction time.

A promising solution is the PRET machines that I already mentioned. PRET
machines can give a deterministic temporal semantics to interrupt-driven reac-
tions without any loss of performance. I will discuss next this idea of a deter-
ministic temporal semantics and explain how it can overcome the limitations
in today’s real-time computing technologies.

6 A Commitment to Models

All of engineering is built on models. For the purposes of this paper, I will
define a “model” of a system to be any description of the system that is not
Kant’s thing-in-itself (das Ding an sich). Mechanical engineers use Newton’s
laws as models for how a system will react to forces. Civil engineers use models
of materials to understand how structures react to stresses. Electrical engineers
model transistors as switches, logic gates as networks of switches, and digital
circuits as networks of logic gates. Computer engineers model digital circuits
as instruction set architectures (ISAs), programs as executions in an ISA, and
applications as networks of program fragments.

Every one of these models rests on a modeling paradigm. The Java program-
ming language, for example, is just such a modeling paradigm. What constitutes
a well-formed Java program is well defined, as is the meaning of the execu-
tion of such a program. The program is a model of what a machine does when
it executes the program. Synchronous digital circuits constitute another such
modeling paradigm. They model what an electronic circuit does. Under the syn-
chrony hypothesis, the latencies of logic gates are ignored, and the behavior of a
network of logic gates and latches is given by Boolean algebra. Models abstract
away details, and layers of models may be built one on top of another [18].

Properties of the modeling paradigm are fundamental when an engineer
attempts to build confidence in a design. A synchronous digital circuit, as a
model, realizes a deterministic function of its input, despite the fact that we
have no useful deterministic model of the underlying physics comprising indi-
vidual electrons sloshing in silicon and metal. A single-threaded Java program
is also a deterministic function of its inputs. The determinism of these modeling
paradigms is assumed without question by the engineer building these mod-
els. Without such determinism, we would not have billion-transistor chips and
million-line programs handling our banking.

Does this mean that the execution of a Java program on a particular micro-
processor chip is deterministic? This question, by itself, makes no sense. Deter-
minism is a property of models, not of physical systems [18]. If a chip overheats
or get submersed in salt water, a program will very likely not behave as expected.
The physical realization has properties that the model does not have.

More to the point for this paper, the timing exhibited by the Java program
is not specified in the model (the Java program itself). Whether an execution
of the program is correct does not depend on the timing, so within this model,



28 E. A. Lee

an infinite number of timing behaviors are permitted. Nevertheless, we assert
that the model (the single-threaded Java program) is deterministic because the
model does not include timing in its notion of the behavior of the program.

The notion of determinism is not a simple one. We can’t confront uncertainty
without first confronting determinism. Determinism is a deceptively simple idea
that has vexed thinkers for a long time. Broadly, determinism in the physical
world is the principle that everything that happens is inevitable, preordained
by some earlier state of the universe or by some deity. For centuries, philoso-
phers have debated the implications of this principle, particularly insofar as it
undermines the notion of free will. If the world is deterministic, then presum-
ably we cannot be held individually accountable for our actions because they
are preordained. Determinism is quite a subtle concept, as is the notion of free
will.

Earman, in his Primer on Determinism, admits defeat in getting a “real
understanding” of the concept [6, p. 21]. Earman insists that “determinism is a
doctrine about the nature of the world,” but I believe that a more useful view
is that determinism is a property of models and not a property of the physical
world. This thesis does not diminish the deep questions that Earman addresses,
but it certainly does make it easier to apply the concept of determinism to
engineered systems. As a property of models, determinism is relatively easy to
define:

A model is deterministic if given an initial state of the model, and given
all the inputs that are provided to the model, the model defines exactly
one possible behavior.

In other words, a model is deterministic if it is not possible for it to react in
two or more ways to the same conditions. Only one reaction is possible. In this
definition, the italicized words must be defined within the modeling paradigm
to complete the definition, specifically, “state,” “input,” and “behavior.” Precise
definitions of these words necessarily circumscribe the assumptions made by
the designer. For example, if the timing of the execution of a Java program is
included in the notion of “behavior,” then no Java program is deterministic.

For an example of a deterministic model, if the state of a particle is its
position x(t) in a Euclidean space at a Newtonian time t, where both time and
space are continuums, and if the input F (t) is a force applied to the particle
at each instant t, and the behavior is the motion of the particle through space,
then Newton’s second law provides a deterministic model.

One reason that this simple concept has been so problematic is that all too
often, when speaking of determinism, the speaker is confusing the map for the
territory (the model for the thing-in-itself). To even speak of determinism, we
must define “input,” “state,” and “behavior.” How can we define these things
for an actual physical system? Any way we define them requires constructing
a model. Hence, an assertion about determinism will actually be an assertion
about the model not about the thing being modeled. Only a model can be
unambiguously deterministic, which underscores Earman’s struggle to pin down
the concept.



Models of Timed Systems 29

Consider that any given physical system has more than one valid model.
For example, a particle to which we are applying a force exhibits deterministic
motion under Newton’s second law but not under quantum mechanics, where the
position of the particle will be given probabilistically. However, under quantum
mechanics, the evolution of the particle’s wave function is deterministic, following
the Schrödinger equation. If the “state” and “behavior” of our model are the
wave function, then the model is deterministic. If instead the state and behavior
are the particle’s position, then the model is nondeterministic. It makes no sense
to assign determinism as a property to the particle. It is a property of the model.

If we have a deterministic model that is faithful to some physical system, then
this model may have a particularly valuable property: the model may predict
how the system will evolve in time in reaction to some input stimulus. This
predictive power of a deterministic model is a key reason to seek deterministic
models.

But a model can only predict aspects of behavior that lie within its modeling
paradigm. My essential claim in this paper is that we should make a commit-
ment to using models that include aspects of behavior that we care about. If we
care about timing, we should use models that do include timing in their notion
of behavior. Today, with real-time systems, we do not do that. Instead, today,
timing properties emerge from a physical implementation. When we map a par-
ticular program onto a particular microprocessor, a real physical chip embedded
in a real board, with real memory chips and peripherals sharing the bus, only
then do we get timing properties. Timing is a property of the thing-in-itself not
of the model. We have conflated the map and the territory [11].

Determinism is a key property of many of the most successful modeling
paradigms in engineering. Logic gates, synchronous digital circuits, ISAs, single-
threaded programs, and Newtonian mechanics are all deterministic modeling
paradigms. Should we insist on deterministic modeling paradigms for CPS?

If there is anything we can be sure about, it is that we can never be sure
about cyber-physical systems. We cannot know everything about them, and
particularly their possible behaviors in all environments. Does this mean that
we can never build confidence in a CPS realization? No, because we can build
confidence in models of the system. While this seems to run counter to the
holy grail of formal verification, it does not because formal verification proves
properties of models of systems, not of the systems themselves. If the system
itself, das Ding an sich, matches the model with high fidelity, then our confidence
in the model translates into confidence in the system. We rely on such matching
when we assume that a chip will correctly realize an ISA and correctly execute
a program.

In the engineering use of models vs. the scientific one, determinism plays
different roles. For an engineer, the determinism of a model is useful because it
facilitates building confidence in the model. Logic gates, for example, are deter-
ministic models of electrons sloshing around in silicon. The determinism of the
logic gate model is valuable: it enables circuit designers to use Boolean algebra
to build confidence in circuit designs that have billions of transistors. The model



30 E. A. Lee

predicts behaviors perfectly, in that an engineer can determine how a logic gate
model will react to any particular input, given any initial state.

Of course, the usefulness of the logic gate model also depends on our ability to
build silicon structures that are extremely faithful to the model. We have learned
to control the sloshing of electrons in silicon so that, with high confidence, a
circuit will emulate the logic gate model billions of times per second and operate
without error for years.

Some of the most valuable engineering models are deterministic. In addi-
tion to logic gates, we also have synchronous digital logic, instruction set archi-
tectures (ISAs), and programming languages, most of which are deterministic
models. An ISA, for example, defines precisely what state changes should result
from a sequence of instructions, and any execution that respects these, regard-
less of parallelism, instruction order, or timing, is a correct execution. Turing
machines are also deterministic. The determinism of all these models has proved
extremely valuable historically. The information technology revolution is built
on the determinism of these models.

For a scientist, fundamentally, when considering the use of deterministic mod-
els, it matters quite a lot whether the physical system being modeled is also
deterministic. The value of a deterministic logic gate model, however, does not
depend at all on whether the sloshing of electrons in silicon is deterministic. It
depends only on whether we can build silicon structures that emulate the model
with high confidence. We do not need and cannot achieve perfection. As Box
and Draper say, all models are wrong, but some models are useful [2], and logic
gates have proved extremely useful.

I claim that for real progress to occur, we must make a commitment to
deterministic models of timing and concurrency in cyber-physical systems. My
essential claim is that we can build systems that match the behavior of such
models with high confidence. This is not the same as a claim that we can con-
struct useful deterministic models of today’s cyber-physical systems. I am not
making the latter claim.

What about adaptability, resilience, and fault tolerance? Any cyber-physical
system will face the reality of unexpected behaviors and failures of components.
Using deterministic models does not prevent us from making fault-tolerant and
adaptive systems. On the contrary, it enables it. A deterministic model defines
unambiguously what a correct behavior is. This enables detection of incorrect
behaviors, an essential prerequisite to fault-tolerant adaptive systems.

The reader may protest that a deterministic model of time may be foiled by
the fact that timing of programs is difficult to control. As I have pointed out,
ISAs have no temporal semantics at all, and computer architects have devel-
oped a plethora of clever techniques that make timing difficult to control. But
PRET machines are capable of interrupt-driven I/O that does not disrupt the
timing of timing-critical tasks. I believe that PRET machines will eventually
become widely available because their benefits to safety-critical systems are enor-
mous and their performance is competitive with conventional architectures. They
deliver repeatable behavior, where the behavior in the field is assured of matching



Models of Timed Systems 31

their behavior on the test bench with extremely high precision and probability
(at the same level of confidence as we currently get from synchronous digital
logic circuits). In my expectation, it is just a matter of time before the world
accepts the paradigm shift that they entail.

For distributed systems, we know from industrial practice that networks with
controllable timing are realizable. Time-triggered architectures [13], TTEther-
net, FlexRay, ARINC busses, and CAN bus networks all deliver some measure of
controllable timing. These have been successful in specialized industrial settings,
but they (mostly) don’t adapt well to the open Internet. A promising develop-
ment, however, is time-sensitive networking (TSN), a task group of the IEEE
802.1 working group that is developing standards that extend Internet proto-
cols to support high-precision clock synchronization and other technologies that
can enable networks with deterministic latencies and reliability delivery that are
compatible with the Internet [9,10].

To take advantage of such networks, we can leverage a deterministic program-
ming model for distributed real-time systems called PTIDES [8,24]. PTIDES
assumes a bound on clock synchronization error and a bound on network latency,
both of which can be reliably delivered with TSN. Every deterministic model
makes assumptions about the underlying implementation, and violations of
those assumptions must be treated as faults, not as performance degradations.
PTIDES enables detection of these faults, some of which are fundamentally unde-
tectable without a coordinated notion of time [14]. PTIDES was apparently inde-
pendently reinvented at Google and deployed in a distributed database system
called Spanner [5].

Despite the value of deterministic models, the real world is full of uncertainty.
And even deterministic models have limitations. Chaos, complexity, and unde-
cidability mean that deterministic models may not lead to predictable or ana-
lyzable behaviors, and incompleteness means that no set of deterministic models
can cover all possible circumstances [15]. Moreover, nondeterminstic models are
the only reasonable option when unknown or unknowable properties are central
to the model. Hence, probabilistic and nondeterministic models will be needed.
But this does not in any way undermine the value of determinism. When deter-
ministic models work, they work spectacularly. Consider the fact that we know
how to design silicon chips with billions of transistors that work as predicted the
first time they are made. This simply would not be possible without the power
of deterministic models.

7 Conclusion

So what is real-time computing? Today, it is an ad-hoc emergent property
of physical realizations of cyber-physical systems. Tomorrow, if and when we
embrace temporal semantics, real-time computing will be a model used by engi-
neers to build high-confidence, safety-critical systems.

Acknowledgments. The author thanks David N. Jansen for very helpful suggestions.



32 E. A. Lee

References

1. Alur, R., Fisman, D., Raghothaman, M.: Regular programming for quantitative
properties of data streams. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632,
pp. 15–40. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-
1 2

2. Box, G.E.P., Draper, N.R.: Empirical Model-Building and Response Surfaces.
Wiley Series in Probability and Statistics. Wiley, Hoboken (1987)

3. Broman, D., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., Wetter, M.: Require-
ments for hybrid cosimulation standards. In: Hybrid Systems: Computation and
Control (HSCC) (2015). https://doi.org/10.1145/2728606.2728629

4. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, 2nd edn. Springer, Heidelberg (2005)

5. Corbett, J.C., et al.: Spanner: Google’s globally-distributed database. In: OSDI
(2012). https://doi.org/10.1145/2491245

6. Earman, J.: A Primer on Determinism, The University of Ontario Series in Phi-
losophy of Science, vol. 32. D. Reidel Publishing Company, Dordrecht (1986)

7. Edwards, S.A., Lee, E.A.: The case for the precision timed (PRET) machine. In:
Design Automation Conference (DAC) (2007)

8. Eidson, J., Lee, E.A., Matic, S., Seshia, S.A., Zou, J.: Distributed real-time software
for cyber-physical systems. Proc. IEEE (Spec. Issue on CPS) 100(1), 45–59 (2012).
https://doi.org/10.1109/JPROC.2011.2161237

9. Eidson, J.C.: Measurement, Control, and Communication Using IEEE 1588.
Springer, London (2006). https://doi.org/10.1007/1-84628-251-9

10. Eidson, J.C., Stanton, K.B.: Timing in cyber-physical systems: the last inch prob-
lem. In: IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control, and Communication (ISPCS), pp. 19–24. IEEE (2015).
https://doi.org/10.1109/ISPCS.2015.7324674

11. Golomb, S.W.: Mathematical models: uses and limitations. IEEE Trans. Reliab.
R–20(3), 130–131 (1971). https://doi.org/10.1109/TR.1971.5216113

12. Kirner, R., Puschner, P.: Obstacles in worst-case execution time analysis. In: Sym-
posium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 333–
339. IEEE (2008)

13. Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. IEEE 91(1), 112–126
(2003)

14. Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems.
ACM Trans. Program. Lang. Syst. 6(2), 254–280 (1984)

15. Lee, E.A.: Fundamental limits of cyber-physical systems modeling. ACM Trans.
Cyber-Phys. Syst. 1(1), 26 (2016). https://doi.org/10.1145/2912149

16. Lee, E.A.: What is real-time computing? A personal view. IEEE Des. Test 35(2),
64–72 (2018). https://doi.org/10.1109/MDAT.2017.2766560

17. Lee, E.A., Reineke, J., Zimmer, M.: Abstract PRET machines. In: IEEE Real-Time
Systems Symposium (RTSS) (2017). Invited TCRTS award paper

18. Lee, E.A.: Plato and the Nerd – The Creative Partnership of Humans and Tech-
nology. MIT Press, Cambridge (2017)

19. Muller, R.A.: Now – The Physics of Time. W. W. Norton and Company, New York
(2016)

20. Stankovic, J.A.: Misconceptions about real-time computing: a serious problem for
next-generation systems. Computer 21(10), 10–19 (1988)

https://doi.org/10.1007/978-3-662-49498-1_2
https://doi.org/10.1007/978-3-662-49498-1_2
https://doi.org/10.1145/2728606.2728629
https://doi.org/10.1145/2491245
https://doi.org/10.1109/JPROC.2011.2161237
https://doi.org/10.1007/1-84628-251-9
https://doi.org/10.1109/ISPCS.2015.7324674
https://doi.org/10.1109/TR.1971.5216113
https://doi.org/10.1145/2912149
https://doi.org/10.1109/MDAT.2017.2766560


Models of Timed Systems 33

21. Thiele, L., Kumar, P.: Can real-time systems be chaotic? In: EMSOFT, pp. 21–30.
ACM (2015)

22. Wägemann, P., Distler, T., Eichler, C., Schröder-Preikschat, W.: Benchmark gen-
eration for timing analysis. In: Real-Time Embedded Technology and Applications
Symposium (RTAS). IEEE (2017)

23. Wilhelm, R., et al.: The worst-case execution-time problem - overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst. (TECS) 7(3), 1–53 (2008)

24. Zhao, Y., Lee, E.A., Liu, J.: A programming model for time-synchronized dis-
tributed real-time systems. In: Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), pp. 259–268. IEEE (2007). https://doi.org/10.1109/
RTAS.2007.5

25. Zimmer, M., Broman, D., Shaver, C., Lee, E.A.: FlexPRET: a processor platform
for mixed-criticality systems. In: Real-Time and Embedded Technology and Appli-
cation Symposium (RTAS) (2014). http://chess.eecs.berkeley.edu/pubs/1048.html

https://doi.org/10.1109/RTAS.2007.5
https://doi.org/10.1109/RTAS.2007.5
http://chess.eecs.berkeley.edu/pubs/1048.html


Temporal Logics



TCTL Model Checking
Lower/Upper-Bound Parametric Timed

Automata Without Invariants

Étienne André1, Didier Lime2, and Mathias Ramparison1(B)

1 Université Paris 13, LIPN, CNRS, UMR 7030, 93430 Villetaneuse, France
ramparison@lipn13.fr

2 École Centrale de Nantes, LS2N, CNRS, UMR 6597, 44000 Nantes, France

Abstract. We study timed systems in which some timing features are
unknown parameters. First we consider Upper-bound Parametric Timed
Automata (U-PTAs), one of the simplest extensions of timed automata
with parameters, in which parameters are only used as clock upper
bounds. Up to now, there have been several decidability results for the
existence of parameter values in U-PTAs such that flat TCTL formulas
are satisfied. We prove here that this does not extend to the full logic and
that only one level of nesting leads to undecidability. This provides, to the
best of our knowledge, the first problem decidable for Timed Automata
with an undecidable parametric emptiness version for U-PTAs. Second
we study Lower/Upper-bound Parametric Timed Automata (L/U-PTAs)
in which parameters are used either as clock lower bound, or as clock
upper bound, but not both. We prove that without invariants, flat TCTL
is decidable for L/U-PTAs by resolving the last non investigated liveness
properties.

1 Introduction

Timed automata (TAs) [AD94] are a powerful formalism for modeling concurrent
real-time systems; TAs extend finite-state automata with clocks, i. e., variables
evolving at the same rate, that can be compared to integers in transition guards,
and possibly reset to 0.

Despite notable successes in timed model checking, TAs become less suitable
to model and verify systems when some timing constants are known with some
imprecision—or completely unknown. Extending TAs with timing parameters
(unknown constants) adds one more level of abstraction, and copes with uncer-
tainty. When allowing parameters in place of integers in guards, TAs become
parametric TAs (PTAs) [AHV93]. The model checking problem becomes a para-
metric model checking problem: given a PTA A and a formula ϕ (expressed
in e. g., TCTL [ACD93]), what are the parameter valuations v such that the

This work is partially supported by the ANR national research program PACS
(ANR-14-CE28-0002).

c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 37–52, 2018.
https://doi.org/10.1007/978-3-030-00151-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_3&domain=pdf


38 É. André et al.

instance of A in which parameters are replaced using the values given by v
(denoted v(A)) satisfies ϕ? In the PTA literature, the main problem studied
is EF-emptiness (“is the set of valuations for which given location is reachable
empty?”): it is “robustly” undecidable in the sense that, even when varying the
setting, undecidability is preserved. For example, EF-emptiness is undecidable
even for a single bounded parameter [Mil00], even for a single rational-valued
or integer-valued parameter [BBLS15], even with only one clock compared to
parameters [Mil00], or with strict constraints only [Doy07] (see [And17] for a
survey). In contrast, decidability is ensured in some restrictive settings such as
over discrete time with a single parametric clock (i. e., compared to parameters
in at least one guard) [AHV93], or over discrete or dense time with one paramet-
ric clock and arbitrarily many non-parametric clocks [BO14,BBLS15], or over
discrete time with two parametric clocks and a single parameter [BO14]. But
the practical power of these restrictive settings remains unclear.

In order to overcome these disappointing results, lower-bound/upper-bound
parametric timed automata (L/U-PTAs) are introduced as a subclass of PTAs
where each parameter either always appears as an upper bound when compared
to a clock, or always as a lower bound [HRSV02]. L/U-PTAs enjoy mixed decid-
ability results: while the EF-emptiness problem and the EF-universality problem
(“Can we reach a given location, regardless of what valuations we give to the
parameters?”) are decidable, AF-emptiness (“is the set of valuations for which
all runs eventually reach a given location empty?”) is undecidable [JLR15]; as
for EG-emptiness (“is the set of valuations for which one infinite or finite maxi-
mal run always remains in a given set of locations empty?”), it is decidable only
when the parameter domain is bounded with closed bounds [AL17].

U-PTAs are L/U-PTAs with only upper-bound parameters [BL09], and are
TAs’ simplest parametric extension; since their introduction, no problem was
ever shown undecidable for U-PTAs, and all their known decidability results
only came from the decidability for the larger class of L/U-PTAs. In [ALR16b],
we showed that, in terms of union of untimed words, U-PTAs are not more
expressive than TAs. A natural question is to investigate whether their expres-
siveness is anyhow beyond that of TAs, or whether the parametric emptiness
version of all problems decidable for TAs remains decidable for U-PTAs.

Contribution. Our first contribution is to show that the TCTL-emptiness prob-
lem (“given a TCTL formula, is the set of valuations v for which v(A) |= ϕ
empty?”) is undecidable for U-PTAs. This result comes in contrast with the fact
that investigated flat TCTL formulas (namely EF, AG)—formulas that cannot be
obtained by restraining another TCTL formula—are known to be decidable for
U-PTAs, while others (EG and AF) are open. Our proof relies on the reduction
of the halting problem of a 2-counter machine to the emptiness of the EGAF=0

formula.
Our second contribution is that EG-emptiness is PSPACE-complete for

(unbounded) integer-valued L/U-PTAs without invariants. Let us stress that
EG-emptiness is undecidable for classical unbounded integer-valued L/U-PTAs
with invariants [AL17], which draws a more accurate border between decidabil-



TCTL Model Checking L/U-PTAs Without Invariants 39

Table 1. Decidability of the emptiness problems for PTAs and subclasses

ity and undecidability results regarding L/U-PTAs. Moreover, we show that EG-
universality (also known as AF-emptiness) is PSPACE-complete for (unbounded)
integer-valued L/U-PTAs without invariants, despite being undecidable for clas-
sical (rational- or integer-valued) L/U-PTAs with invariants [JLR15]. These
results highlight the power invariants confer upon the expressiveness of L/U-
PTAs. We deduce from all this that flat TCTL emptiness and universality is also
decidable for integer-valued L/U-PTAs without invariants, which also makes the
decidability frontier more precise with respect to nesting of TCTL formulas.

We give a summary of the known decidability results in Table 1, with our
contributions in bold. We give from left to right the (un)decidability for U-PTAs,
L/U-PTAs with integer-valued parameters without invariants, L/U-PTAs (the
undecidability results also hold for integer-valued parameters), and PTAs. We
review the emptiness of TCTL subformulas (EF, AF, EG, AG), flat TCTL and
full TCTL. Decidability is given in white, whereas undecidability is given in
italic grey. As U-PTAs can be seen as the simplest parametric extension of TAs,
our undecidability result moves the undecidability frontier closer to TAs, and
confirms that timed automata (while enjoying many decidability results) are a
formalism very close to the undecidability frontier.

Outline. Section 2 recalls the necessary preliminaries. Sections 3 and 4 show that
TCTL-emptiness is undecidable for U-PTAs and bounded U-PTAs, respectively.
Section 5 consists of the decidability results for integer-valued L/U-PTAs without
invariants. Section 6 concludes the paper and proposes some perspectives.

2 Preliminaries

We assume a set X = {x1, . . . , xH} of clocks, i. e., real-valued variables that
evolve at the same rate. A clock valuation is w : X → R+. We write 0 for the
clock valuation assigning 0 to all clocks. Given d ∈ R+, w+d is s.t. (w+d)(x) =
w(x)+d, for all x ∈ X. Given R ⊆ X, we define the reset of a valuation w, denoted
by [w]R, as follows: [w]R(x) = 0 if x ∈ R, and [w]R(x) = w(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters. An upper-bound (resp.
lower-bound) parameter p is such that, whenever it appears in a constraint



40 É. André et al.

x �� p + d with d ∈ N then necessarily �� ∈ {≤, <} (resp. �� ∈ {≥, >}). A
parameter valuation v is v : P → Q+. An integer parameter valuation v is
v : P → N. We assume �� ∈ {<,≤,=,≥, >}, � ∈ {<,≤}. A u-guard g (resp. an
l -guard g) is a conjunction of inequalities of the form x �� d, or x � p + d with p
an upper-bound parameter (resp. p + d � x with p a lower-bound parameter)
and d ∈ N.

Given g, we write w |= v(g) if the expression obtained by replacing each x
with w(x) and each p with v(p) in g evaluates to true.

Let AP be a set of atomic propositions. Let us recall L/U-PTAs:

Definition 1 (L/U-PTA). An L/U-PTA A is a tuple A = (Σ,L,L, l0,X,
P, E), where:

1. Σ is a finite set of actions,
2. L is a finite set of locations,
3. L is a label function L : L → 2AP ,
4. l0 ∈ L is the initial location,
5. X is a finite set of clocks,
6. P is a finite set of parameters partitioned into lower-bound parameters and

upper-bound parameters
7. E is a finite set of edges e = (l, g, a,R, l′) where l, l′ ∈ L are the source and

target locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is a
conjunction of a u-guard and an l-guard.

Unlike the classical definition of [HRSV02], we consider L/U-PTAs without
invariants. We define a U-PTA [BL09] as an L/U-PTA where in each edge, g is
a u-guard.

Given v, we denote by v(A) the non-parametric structure where all occur-
rences of a parameter pi have been replaced by v(pi). We denote as a timed
automaton any structure v(A), by assuming a rescaling of the constants: by mul-
tiplying all constants in v(A) by their least common denominator, we obtain an
equivalent (integer-valued) TA. A bounded U-PTA is a U-PTA with a bounded
parameter domain that assigns to each parameter a minimum integer bound
and a maximum integer bound. That is, each parameter pi ranges in an interval
[ai, bi], with ai, bi ∈ N. Hence, a bounded parameter domain is a hyperrectangle
of dimension M .

Let us first recall the concrete semantics of TA.

Definition 2 (Semantics of a TA). Given a L/U-PTA A = (Σ,L,L, l0,X,
P, E), and a parameter valuation v, the semantics of v(A) is given by the timed
transition system (TTS) (S, s0,→), with S = {(l, w) ∈ L × R

H
+}, s0 = (l0,0)

and → consists of the discrete and (continuous) delay transition relations: (i)
discrete transitions: (l, w) e�→ (l′, w′), if (l, w), (l′, w′) ∈ S, and there exists e =
(l, g, a,R, l′) ∈ E, such that w′ = [w]R, and w |= v(g). (ii) delay transitions:
(l, w) d�→ (l, w + d), with d ∈ R+.



TCTL Model Checking L/U-PTAs Without Invariants 41

Moreover we write (l, w) e−→ (l′, w′) if ∃d,w′′ : (l, w) d�→ (l, w′′) e�→ (l′, w′).
Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states

of S as the concrete states of v(A). A run of v(A) is a possibly infinite alternating
sequence of states of v(A) and edges starting from the initial state s0 of the form
s0

e0−→ s1
e1−→ · · · em−1−→ sm

em−→ · · · , such that for all i = 0, 1, . . . , ei ∈ E, and
(si, ei, si+1) ∈ →. Given a run ρ, time(ρ) gives the total sum of the delays d
along ρ. Given s = (l, w), we say that s is reachable if s appears in a run of
v(A). By extension, we say that a label lb is reachable in v(A) if there exists a
state (l, w) that is reachable such that lb ∈ L(l). Given a set of locations T ⊆ L,
we say that a run stays in T if all of its states (l, w) are such that l ∈ T .

A maximal run is a run that either contains an infinite number of discrete
transitions, or that cannot be extended by a discrete transition. A maximal run is
deadlocked if it is finite, i. e., contains a finite number of discrete transitions. By
extension, we say that a TA is deadlocked if it contains at least one deadlocked
run.

Given ap ∈ AP and c ∈ N, a TCTL formula is given by the following:

ϕ ::= 	 | ap | ¬ϕ | ϕ ∧ ϕ | EϕU��cϕ | AϕU��cϕ

A reads “always”, E reads “exists”, and U reads “until”.
Standard abbreviations include Boolean operators as well as EF��cϕ for

E	U��cϕ, AF��cϕ for A	U��cϕ and EG��cϕ for ¬AF��c¬ϕ. (F reads “eventually”
while G reads “globally”.)

Definition 3 (Semantics of TCTL). Given a TA v(A), the following clauses
define when a state si of its TTS (S, s0,→) satisfies a TCTL formula ϕ, denoted
by si |= ϕ, by induction over the structure of ϕ (semantics of Boolean operators
is omitted): (i) si |= EϕU��cΨ if there is a maximal run ρ in v(A) with σ =
si

ei−→ · · · ej−1−→ sj (i < j) a prefix of ρ s.t. sj |= Ψ , time(σ) �� c, and if i ≤
k < j, sk |= ϕ, and (ii) si |= AϕU��cΨ if for each maximal run ρ in v(A) there
exists σ = si

ei−→ · · · ej−1−→ sj (i < j) a prefix of ρ s.t. sj |= Ψ , time(σ) �� c, and
if i ≤ k < j, sk |= ϕ.

In EϕU��cΨ the classical until is extended by requiring that ϕ be satis-
fied within a duration (from the current state) verifying the constraint “�� c”.
Given v, an L/U-PTA A and a TCTL formula ϕ, we write v(A) |= ϕ
when s0 |= ϕ.

We define flat TCTL as the subset of TCTL where, in EϕU��cϕ and AϕU��cϕ,
ϕ must be a formula of propositional logic (a boolean combination of atomic
propositions).

In this article, we address the following problems:
TCTL-emptiness problem:
Input: an L/U-PTA A and a TCTL formula ϕ
Problem: is the set of valuations v such that v(A) |= ϕ empty?



42 É. André et al.

TCTL-universality problem:
Input: an L/U-PTA A and a TCTL formula ϕ
Problem: are all valuations v such that v(A) |= ϕ?

More specifically, we will address in Sect. 5 the EG-emptiness (resp. EG-
universality problem) i. e., whether, given an L/U-PTA A and a subset of its
locations T , the set of parameter valuations for which there is a run in v(A)
that stays in T is empty (resp. universal).

3 Undecidability of TCTL Emptiness for U-PTAs

We exhibit here a formula that shows that TCTL emptiness is undecidable for
U-PTAs.

Theorem 1. The EGAF=0-emptiness problem is undecidable for U-PTAs.

l l′′
x1 = a

x := 0

(a) Gadget fragment of
[BBLS15]

l l′ l′′ lerror
x1 ≤ a, t ≤ b

y := 0

y = 0, t ≤ b

x1 := 0

x1 ≤ a, y > 0

(b) Modified gadget of [BBLS15] enforcing EGAF=0♥

Fig. 1. A gadget fragment and its modification into a U-PTA

li li1

li2 li3 li4

lerror

li5

li6

li7

lj

li8 li9 li10 li11

z = 1, t ≤ b

z := 0

x1 ≤ a, t ≤ b

y := 0

y = 0, t ≤ b

x1 := 0

x1 ≤
a, y > 0

x2 ≤ a, t ≤ b

y := 0

x
2

≤
a
,
y
>

0

y = 0, t ≤ b

x2 := 0

x2 = 1, t ≤ b
x2 := 0

z ≤ a, t ≤ b
y := 0

z ≤ a, y > 0

y = 0, t ≤ b
z := 0

x2 ≤ a, t ≤ b

y := 0

y = 0, t ≤ b

x2 := 0

x2
≤ a, y

>
0

x2 = 1, t ≤ b

x2 := 0

x1 ≤ a, t ≤ b

y := 0

x
1 ≤

a, y
>
0

y = 0, t ≤ b
x1 := 0

Fig. 2. Increment gadget



TCTL Model Checking L/U-PTAs Without Invariants 43

Proof. We reduce from the halting problem for two-counter machines, which is
undecidable. Recall that a two-counter machine is a finite state machine with
two integer-valued counters c1, c2. Two different instructions (presented for c1
and identical for c2) are considered: (i) when in state qi, increment c1 and go
to qj ; (ii) when in state qi, if c1 = 0 go to qk, otherwise decrement c1 and go to
qj . We assume w.l.o.g. that the machine halts iff it reaches a special state qhalt.

We define a U-PTA that, under some conditions, will encode the machine,
and for which EGAF=0♥-emptiness holds iff the machine does not halt (for some
♥ ∈ AP). Our U-PTA A uses two (possibly integer-valued) parameters a, b, and
five clocks y, x1, x2, z, t. Each state qi of the two-counter machine is encoded
by a location li of A. Each increment (resp. decrement) instruction of the two-
counter machine is encoded into a U-PTA fragment depicted in Figs. 2 and 3,
respectively.

Our encoding is inspired by [BBLS15] and is such that when in li with
w(z) = 0 then w(x1) (resp. w(x2)) represents the value of the counter c1
(resp. c2). However, as U-PTAs disallow constraints of the form x = a, we
need to considerably modify the encoding. Each of our locations has exactly
one label: ♥ for the locations already present in [BBLS15] (depicted in yellow
in our figures), and ♠ for the newly introduced locations (depicted in white).
In [BBLS15], the gadgets encoding the two-counter machine instructions use
edges of the form of Fig. 1a. To define a proper U-PTA, we replace each of these
edges by a special construction given in Fig. 1b using only inequalities of the
form x ≤ a. Our goal is to show that a run will exactly encode the two-counter
machine if all guards x ≤ a are in fact taken when the clock valuation is exactly
equal to a. Those runs are further denoted by ρ♥. Consider the transformed
version given in Fig. 1b: due to the ≤, runs exist that take the guard “too early”
(i. e., before x1 = a). Those are denoted by ρ♠. But, in that case, observe that in
l′, one can either take the transition to l′′ in 0-time, or spend some time in l′ and
then (with guard y > 0) go to lerror. Therefore on this gadget, EGAF=0♥ is true
at l′ iff the guard x1 ≤ a from l to l′ is taken at the very last moment. Note that
EGAF=0♥ is trivially true in l and l′′ as both locations are labeled with ♥. (Also
note that there are plenty of runs from l to lerror that do not encode properly
the machine; they will be discarded in our reasoning later.)

We also assume a condition t ≤ b on all guarded transitions, where t is a
clock never reset. As presented in Fig. 1b, there are transitions without guard
(dashed) from l, l′′ (labeled with ♥) to lerror. This is done to enforce the violation
of EGAF=0♥ whenever t = b: indeed, while t < b a run can either go to lerror
from a location labeled with ♥, or not, but as t = b every run is forced to go
to lerror, making EGAF=0♥ false.

Increment. We give the increment gadget for c1 in Fig. 2 (the gadget for c2 is
symmetric). Let v be a valuation, and assume we are in configuration (li, w),
where w(z) = 0. First note that if w(x1) ≥ v(a), there is no execution ending
in lj due to the guard x1 ≤ a tested in both the upper and the lower branch in
the automaton. The same reasoning is relevant for w(x2).



44 É. André et al.

Assume w(x1), w(x2) < v(a). Two cases show up: w(x1) ≤ w(x2)
and w(x1) > w(x2), which explains why we need two paths in Fig. 2.
First, if w(x1) ≤ w(x2), we can perform several executions with different
time delays, but those are bounded. In the following, we write w as the
tuple (w(x1), w(x2), w(z), w(y)), omitting t.

From li, we prove that there is a unique run that reaches lj without violating
our property. It is the one that takes each transition with a u-guard x ≤ a at
the exact moment w(x) = v(a) which we describe in the following.

From ( li , w), the unique delay to pass the transition is 1, hence we arrive

in the configuration ( li1 , (w(x1) + 1, w(x2) + 1, w(y) + 1, 0)). Here, the largest
delay to pass the transition is v(a) − w(x1) − 1 so a configuration we possibly
obtain is (li2, (d1, d2, d3, 0)) with (d1, d2, d3) ≤ (v(a), w(x2)−w(x1)+v(a), v(a)−
w(x1)−1). If (d1, d2, d3) < (v(a), w(x2)−w(x1)+v(a), v(a)−w(x1)−1) then the
guard y > 0 in the transition to lerror is verified, hence our property EGAF=0♥ is
violated. We remove all these runs and keep the only run that ends in the exact
configuration (li2, (v(a), w(x2)−w(x1)+v(a), v(a)−w(x1)−1, 0)). As y = 0 holds
the next configuration is ( li3 , (0, w(x2) − w(x1) + v(a), v(a) − w(x1) − 1, 0)).
The largest delay to pass the next transition is w(x1) − w(x2), so a config-
uration we possibly obtain is (li4, (d1, d2, d3, 0)) with (d1, d2, d3) ≤ (w(x1) −
w(x2), v(a), v(a)−w(x2)−1). If (d1, d2, d3) < (w(x1)−w(x2), v(a), v(a)−w(x2)−
1) then the guard y > 0 in the transition to lerror is verified, hence our property
EGAF=0♥ is violated. We remove all these runs and keep the only run that ends
in the exact configuration (li4, (w(x1)−w(x2), v(a), v(a)−w(x2)−1, 0). As y = 0
holds the next configuration is ( li5 , (w(x1) − w(x2), 0, v(a) − w(x2) − 1, 0). Now
the unique delay to pass the transition is 1, hence as we reset x2 we arrive
in the configuration ( li6 , (w(x1) − w(x2) + 1, 0, v(a) − w(x2), 1). The largest
delay to pass the next transition is w(x2), so a configuration we possibly obtain
is (li7, (d1, d2, d3, 0)) with (d1, d2, d3) ≤ (w(x1) + 1, w(x2), v(a)). If (d1, d2, d3) <
(w(x1)+1, w(x2), v(a)) then the guard y > 0 in the transition to lerror is verified,
hence our property EGAF=0♥ is violated. We remove all these runs and keep the
only run that ends in the exact configuration (li7, (w(x1) + 1, w(x2), v(a), 0)).
As y = 0 holds the next configuration is ( lj , (w(x1) + 1, w(x2), 0, 0)), and as
w(z) = 0, w(x1) represents the exact value of the counter c1 increased by 1.

In its shorter form, this run is: ( li , w) 1−→ ( li1 , (w(x1)+1, w(x2)+1, w(y)+

1, 0))
v(a)−w(x1)−1−→ (li2, (v(a), w(x2) − w(x1) + v(a), v(a) − w(x1) − 1, 0)) 0−→

( li3 , (0, w(x2) − w(x1) + v(a), v(a) − w(x1) − 1, 0))
w(x1)−w(x2)−→ (li4, (w(x1) −

w(x2), v(a), v(a) − w(x2) − 1, 0)) 0−→ ( li5 , (w(x1) − w(x2), 0, v(a) − w(x2) −
1, 0)) 1−→ ( li6 , (w(x1) − w(x2) + 1, 0, v(a) − w(x2), 1))

w(x2)−→ (li7, (w(x1) +

1, w(x2), v(a), 0)) 0−→ ( lj , (w(x1) + 1, w(x2), 0, 0))
Second, if w(x1) > w(x2) we take the lower branch and apply the same

reasoning.



TCTL Model Checking L/U-PTAs Without Invariants 45

Decrement and 0-test. The decrement and 0-test gadget is similar: we reuse the
reasoning of [BBLS15], and apply the same modifications as in Fig. 1b. Note
that the 0-test gadget has been completely rewritten from [BBLS15] to ensure a
time elapsing of at least a + 1 time units when the guards are taken at the last
moment.

li li1

li2 li3 li4

lerror

li5

li6

li7

lj

li8 li9 li10 li11

li12 li13 li14 li15 lk

z = 0,
x1 > 0, t ≤ b

x1 ≤ a, t ≤ b

y := 0

y = 0, t ≤ b

x1 := 0

x1 ≤
a, y > 0

x1 = 1, t ≤ b

x1 := 0

x2 ≤ a, t ≤ b

y := 0
y = 0, t ≤ b
x2 := 0

x2
≤ a,

y
>
0

z ≤ a, t ≤ b
y := 0

z ≤ a, y > 0

y = 0, t ≤ b
z := 0

x2 ≤ a, t ≤ b

y := 0

y = 0, t ≤ b

x2 := 0

x2
≤ a, y

> 0

x1 ≤ a, t ≤ b

y := 0

x1 ≤ a, y > 0, t ≤ b

y = 0, t ≤ b

x1 := 0

x1 = 1, t ≤ b
x1 := 0

x1 = 0, z = 0, t ≤ b
x2 ≤ a + 1,

t ≤ b

y := 0

x
2

≤
a
+

1,
y
>

0

y = 0, t ≤ b

x2 := 0

x1 ≤ a + 1,
t ≤ b

y := 0

x
1 ≤

a
+

1
, y

>
0

y = 0, t ≤ b

x1, z := 0

Fig. 3. Decrement gadget

We give the decrement gadget in Fig. 3. Assume we are in (li, w)
where w(z) = 0 and suppose w(x1) > 0. We can enter the configura-
tion (l1, (w(x1), w(x2), 0, w(y))) as the guard z = 0 ensures no time has elapsed.

Two cases show up: w(x1) ≤ w(x2) and w(x1) > w(x2).
First, if w(x1) ≤ w(x2), we can perform several executions with dif-

ferent time delays, but those are bounded. From li, there is a unique run
that reaches lj without violating our property. It is the one that takes
each transition with a u-guard x ≤ a at the exact moment w(x) =

v(a): ( li , (w(x1), w(x2), 0, w(y)) 0−→ ( li1 , (w(x1), w(x2), 0, w(y))
v(a)−w(x1)−→

(li2, (v(a), w(x2) + v(a) − w(x1), v(a) − w(x1), 0)) 0−→ ( li3 , (0, w(x2) +

v(a) − w(x1), v(a) − w(x1), 0)) 1−→ ( li4 , (0, w(x2) + v(a) − w(x1) +

1, v(a) − w(x1) + 1, 1))
w(x1)−w(x2)−1−→ (li5, (w(x1) − w(x2) − 1, v(a), v(a) −

w(x2), 0)) 0−→ ( li6 , (w(x1) − w(x2) − 1, 0, v(a) − w(x2), 0))
w(x2)−→ (li7, (w(x1) −

1, w(x2), v(a), 0)) 0−→ ( lj , (w(x1) − 1, w(x2), 0, 0)).

Simulating the 2-counter Machine. Now, consider the runs ρ♠ that take a u-
guard x ≤ a “too early”. At this moment, since after a small amount of time we



46 É. André et al.

have x ≤ a and y > 0 are true, there is a run that eventually reaches lerror and
can never leave it; hence EGAF=0♥ does not hold for these runs. The same way,
the runs ρ♠ that take an unguarded transition to lerror (whether or not t ≤ b
is true) are stuck in a location labeled by ♠; hence EGAF=0♥ does not hold for
these runs. In the following, we do not consider these runs anymore.

Now, let us consider the runs ρ♥ that take each u-guard at the very last
moment, which is exactly when a clock w(x) = v(a).

– If the two-counter machine halts then, there exist parameter valuations v
(typically v(a) larger than the maximum value of the counters during the com-
putation and v(b) larger than the duration of the corresponding run in A), for
which there is a (unique) run in the constructed U-PTA simulating correctly
the machine, reaching lhalt and staying there forever, so EGAF=0♥ holds for
these valuations: hence EGAF=0♥-emptiness is false.

– Conversely, if the two-counter machine does not halt, then for any valuation,
all runs either end in lerror (either because they took an unguarded transition
to lerror or because they blocked due to the guard t ≤ b—each gadget takes
at least one time unit, so we can combine at most v(b) gadgets—and again
reached lerror); hence there is no parameter valuation for which EGAF=0♥
holds. Then EGAF=0♥-emptiness is true.

Therefore EGAF=0♥-emptiness is true iff the two-counter machine does not halt.

Remark 1 (CTL). We may wonder if the timed aspect of TCTL is responsible for
the undecidability. In fact, it is not, and we could modify the proof to show that
CTL itself leads to undecidability. The idea is that we remove the unguarded
transitions in both the increment and the decrement and 0-test gadgets, label
each location of L \ {lerror} with ♥, and add an unguarded self-loop on lhalt.
We claim that EGAX-emptiness is undecidable: we show that EGAX♥ holds for
a unique run of a U-PTA that simulates a two-counter machine, with a similar
reasoning.

4 Undecidability for Bounded U-PTAs

We now show that undecidability remains even when the parameter domain is
bounded. Note that, if we were addressing the full class of PTAs, showing an
undecidability result for bounded PTAs automatically extends to the full class
of PTAs, as we can simulate any bounded PTA by an unbounded PTA (see,
e. g., [ALR16b, Fig. 3]). This is not the case for U-PTAs: indeed, in [ALR16b],
we showed that bounded (L/)U-PTAs are incomparable with (L/)U-PTAs; that
is, it is impossible to simulate a bounded U-PTA using a U-PTA (e. g., by using
a gadget that enforces parameters to be bounded), due to the nature of guards,
preventing us to artificially bound a parameter both from above and from below
(in fact, for U-PTAs, bounding from below is possible, but not from above).
Therefore, we must study both problems. Finally note that the EG-emptiness is
decidable for bounded L/U-PTAs but undecidable for L/U-PTAs [AL17], which
motivates further the need to investigate both versions.



TCTL Model Checking L/U-PTAs Without Invariants 47

Theorem 2. The EGAF=0-emptiness is undecidable for bounded U-PTAs.

li li1

li2 li3

lerror li4 lj

li5 li6

z = 0

x2
=
1

x2
:=

0

x1 ≤ a + 1

y := 0

x
1

≤
a
+

1,
y
>

0

y
=
0

x
1 :=

0

z = 1
z := 0

x
1 ≤

a
+
1

y
:=

0

y = 0

x1 := 0

x1
≤ a

+
1,
y
>
0

x2
=
1

x2
:=

0

Fig. 4. Increment gadget

We reduce this time from the boundedness problem for two-counter machines
(i. e., whether the value of the counters remains bounded along the execution),
which is undecidable.

We define a U-PTA that, under some conditions, will encode the machine,
and for which EGAF=0♥-emptiness holds iff the counters in the machine remain
bounded. The idea is as follows: we reuse a different encoding (originally
from [ALR16a]), and apply the same modifications as we did in the proof of
Theorem 1.

Our U-PTA A uses one parameter a, and four clocks y, x1, x2, z. Each state qi

of the two-counter machine is encoded by a location li of A. Each increment
instruction of the two-counter machine is encoded into a U-PTA fragment. The
decrement instruction is a modification of the one in [ALR16a] using the same
modifications as the increment gadget (Fig. 4).

Given v, our encoding is such that when in li with w(z) = 0 then w(x1) (resp.
w(x2)) represents the value of the counter c1 (resp. c2) encoded by 1 − v(a)c1
(resp. 1−v(a)c2). Each of our locations has exactly one label: ♥ for the locations
already present in [ALR16a] (depicted in yellow in our figures), and ♠ for the
newly introduced locations (depicted in white).

We assume a ∈ [0, 1]. The initial encoding when w(z) = 0 is w(x1) = 1 −
v(a)c1, w(x2) = 1−v(a)c2, w(y) = 0. Suppose w(x2) ≤ w(x1). From li, we prove
that there is a unique run, going through the upper branch of the gadget, that
reaches lj without violating our property. It is the one that takes each transition
with a u-guard x ≤ a + 1 at the exact moment w(x) = v(a) + 1:

( li , w) 0−→ ( li1 , (1 − v(a)c1, 1 − v(a)c2, 0, 0))
v(a)c2−→ ( li2 , (1 − v(a)c1 +

v(a)c2, 0, v(a)c2, v(a)c2))
v(a)−v(a)c2+v(a)c1−→ (li3, (v(a) + 1, v(a) − v(a)c2 + v(a)c1,

v(a)+v(a)c1, 0) 0−→ ( li4 , (0, v(a)−v(a)c2+v(a)c1, v(a)+v(a)c1, 0)
1−v(a)−v(a)c1−→

( lj , (1 − v(a)(c1 + 1), 1 − v(a)c2, 0, 1 − v(a)(c1 + 1))



48 É. André et al.

The case were w(x2) ≤ w(x1) is similar, taking the lower branch of the
gadget.

Now, let us consider the runs ρ♥ that take each u-guard at the very last
moment, which is exactly when a clock w(x) = v(a) + 1. (For the same reason
as in the proof of Theorem 1, other runs violate the property anyway.)

– If the counters of the two-counter machine remain bounded then,
• either the two-counter machine halts (by reaching qhalt) and there exist

parameter valuations v (typically v(a) small enough to encode the
required value of the counters during the computation), for which there
is a (unique) run in the constructed U-PTA simulating correctly the
machine, reaching lhalt and staying there forever, so EGAF=0♥ holds for
these valuations: hence EGAF=0♥-emptiness is false;

• or the two-counter machine loops forever (and never reaches qhalt) with
bounded values of the counters, and again there exist parameter valua-
tions v (again small enough to encode the maximal value of the counters)
for which there is an infinite (unique) run in the U-PTA simulating cor-
rectly the machine. As this run is infinite, we infinitely often visit the
decrement and/or the increment gadget(s), so EGAF=0♥ holds for these
valuations: hence EGAF=0♥-emptiness is again false.

– Conversely, if the counters of the two-counter machine are unbounded, then
for any valuation, all runs either end in lerror, either because they took an
unguarded transition to lerror or because they blocked due to the guard x ≤
a+1 —indeed when in li6, we have w(z) = v(a)(c1 +1) so if c1 is unbounded,
after a sufficient number of steps we cannot pass the guard z = 1— and again
reached lerror. Hence there is no parameter valuation for which EGAF=0♥
holds. Then EGAF=0♥-emptiness is true.

Using the same reasoning as in the proof of Theorem1 and [ALR16a], we
conclude that EGAF=0♥-emptiness is true iff the values of the counters of the
two-counter machine are unbounded.

5 Decidability of Flat-TCTL for L/U-PTAs Without
Invariants

In this section, we prove that the EG-emptiness and universality problems are
decidable for L/U-PTAs without invariants and with integer-valued parame-
ters. Recall that for L/U-PTAs in their classical form with invariants (even over
integer-valued parameters), these same problems are undecidable [AL17]. L/U-
PTAs enjoy a well-known monotonicity property recalled in the following lemma
(that corresponds to a reformulation of [HRSV02, Proposition 4.2]), stating that
increasing upper-bound parameters or decreasing lower-bound parameters can
only add behaviors. As our definition of L/U-PTAs does not involve invariants,
our model is a subclass of L/U-PTAs as defined in [HRSV02,BL09]. Therefore,
it holds for our definition of L/U-PTAs.



TCTL Model Checking L/U-PTAs Without Invariants 49

Lemma 1 (monotonicity). Let A be an L/U-PTA without invariant and v
be a parameter valuation. Let v′ be a valuation such that for each upper-bound
parameter p+, v′(p+) ≥ v(p+) and for each lower-bound parameter p−, v′(p−) ≤
v(p−). Then any run of v(A) is a run of v′(A).

We will see that EG-emptiness can be reduced to the following two problems.
The first one is cycle-existence [AL17]: given a TA v(A), is there at least one run
of v(A) with an infinite number of discrete transitions? Before introducing the
second problem, we need to have a closer look at deadlocks: recall that a state
is deadlocked when no discrete transition can be taken, even after elapsing some
time. As we do not have invariants, it will be either a state with no outgoing
edge, or a state in which each outgoing transition contains at least one constraint
on any clock x of the form x � k, where k is a constant, or x � p+, where p+ is a
parameter. Indeed, for any parameter valuation, it suffices to wait enough time
until all such guards are disabled—and the state becomes deadlocked. Note that
with invariants, like in the L/U-PTAs of [HRSV02], this would not be sufficient:
a state containing an invariant x�k and a transition containing a constraint x�k
is not a deadlocked state, as the transition is forced to be taken. Formally, given
an L/U-PTA1 A = (Σ,L,L, l0,X,P, E), we define LD(A) := {l ∈ L | for all
edges (l, g, a,R, l′) ∈ E, g contains at least one constraint on a clock x of the
form x � k, where k ∈ N, or x � p+, where p+ ∈ P}.2

Now, the second problem we need to distinguish is deadlock-existence: given
a TA v(A), is there at least one run of v(A) that is deadlocked, i. e., has no
discrete successor (possibly after some delay)? As mentioned above, unlike the
L/U-PTAs of [HRSV02], given an L/U-PTA A, detecting deadlocks is equiva-
lent in our L/U-PTAs without invariants to the reachability problem of a given
location of LD(A). Let v0/∞ be the parameter valuation s.t. for each lower-
bound parameter p−, v0/∞(p−) = 0 and for each upper-bound parameter p+,
v0/∞(p+) = ∞.

Recall that EG T holds if either there is an infinite run staying in T , or there
is a finite deadlocked run staying in T .

Lemma 2. Let A be an L/U-PTA without invariant. There is a deadlock
in v(A) for some parameter valuation v iff there is l ∈ LD(A) reachable
in v0/∞(A).

Proof. ⇒ Suppose v(A) is deadlocked. There is a run in v(A) ending in a
state (l, w) with no possible outgoing transition. That means for all edges
(l, g, a,R, l′) ∈ E, guard v(g) is not satisfied by w +d, for all d ≥ 0. In partic-
ular, let M be the maximal constant appearing in the guards of v0/∞(A) plus
one, then g is not satisfied for w + M . Yet, for that clock valuation, for sure,
all simple constraints of the form k�x are satisfied, so this means that g must
contain at least one constraint on a clock x of the form x�k, where k ∈ N and
k < w(x) + M , or x � p+, where p+ ∈ P and v(p+) < w(x) + M . Therefore,
l ∈ LD(A).

1 Throughout this section, we do not use the labeling function L.
2 Observe that this definition also includes the locations with no outgoing edge at all.



50 É. André et al.

Moreover as constraints in v(A) are stronger than those in v0/∞(A) (i. e., for
each lower-bound parameter p−, v0/∞(p−) ≤ v(p−) and for each upper-bound
parameter p+, v(p+) ≤ v0/∞(p+)), from Lemma 1 l is reachable along a run
of v0/∞(A).

⇐ Conversely, let l ∈ LD(A) and suppose there is a run of v0/∞(A) reach-
ing (l, w), for some clock valuation w. Let v be the parameter valuation,
defined as in the proof of [HRSV02, Proposition 4.4], such that (l, w) is
also reachable in v(A). That valuation assigns a finite value to upper bound
parameters that we denote by μ.
Let e = (l, g, a,R, l′) ∈ E. For each constraint of the form x � k with k ∈ N

in g, define d1 = max(0,maxx(k − w(x))) + 1. Then, for all clocks x and
for all d ≥ d1, w(x) + d � k is false. Similarly, for each constraint of
the form x � p+ with p+ an upper-bound parameter in g, define d2 =
max(0,maxx(μ − w(x))) + 1. Then, for all clocks x and for all d ≥ d2,
w(x)+d�v(p+) is false. Let d0 = max(d1, d2) then, by construction (l, w+d0)
is a deadlocked state in v(A). ��
Consider now a TA without invariants A, and a subset T of its locations.

We build a TA T+(A) as follows: first remove all locations not in T and remove
all transitions to and from those removed locations. Second, add self-loops to all
locations in LD(A), with a guard that is true, and no reset.

Lemma 3. EG(T ) holds if and only if there exists an infinite run in T+(A).

Proof. ⇒ Suppose EG(T ) holds. Then there is a maximal path in A that stays
in T . If that path is infinite then, by construction it is still possible in T+(A).
Otherwise, it is finite and therefore it is a deadlock. From Lemma 2, this means
that some location in T ∩ LD(A) is reachable in A, by always staying in T .
Consequently that location is still reachable in T+(A) and since it belongs
to LD(A), it has a self-loop in T+(A), which implies that there is an infinite
run there.

⇐ In the other direction, suppose that there is an infinite run in T+(A). Either
the corresponding infinite path never uses any of the added self-loops and
therefore it is possible as is in A, which implies EG(T ), or it goes through
LD(A) at least once. The latter means that some location in LD(A) is reach-
able in A by staying in T , and by Lemma 2, this implies that there exists a
finite maximal path in A, and finally that we have EG(T ) in A. ��

Corollary 1. The EG-emptiness and EG-universality problems are PSPACE-
complete for integer-valued L/U-PTAs without invariants.

Proof. PSPACE-hardness comes from the fact that an L/U-PTA that does not
use parameters in guards is a TA and EG is PSPACE-hard for TAs [AD94].

Let A be an L/U-PTA and T a subset of its locations. Remark that the
construction of Lemma 3 is independant of the constants in the guards, and hence
can be done in the same way for a PTA, giving another PTA T+(A) such that, for
all parameter valuations v, T+(v(A)) = v(T+(A)). By Lemma 3, EG-emptiness



TCTL Model Checking L/U-PTAs Without Invariants 51

(resp. EG-universality) then reduces to the emptiness (resp. universality) of the
set of parameter valuations v such that v(T+(A)) has an infinite accepting path.
We conclude by recalling that the latter problem can be solved in PSPACE for
both emptiness and universality [BL09]. ��

This result is important as it is the first non-trivial subclass of PTAs for
which EG-universality (equivalent by negation to AF-emptiness) is decidable.

We already had the same complexity for EF-emptiness and EF-universality
[HRSV02], and by negation we can get the other flat formulas of TCTL, both
for universality and emptiness (e. g., AF-emptiness is “not EG-universality”). It
is also easy to see that all those results would hold for flat formulas using the
“until” operator. Therefore we have:

Theorem 3. Flat-TCTL-emptiness and flat-TCTL-universality are PSPACE-
complete for integer-valued L/U-PTAs without invariant.

Remark 2. These results come without Flat-TCTL-synthesis. Indeed, suppose
we can compute the set of parameters s.t. a Flat-TCTL formula is satisfied by an
integer-valued L/U-PTAs without invariant, say EF, and check for the emptiness
of its intersection with a set of equality constraints. Consider an integer-valued
PTA A without invariants. For each parameter p of A that is used both as
an upper-bound and as a lower-bound, syntactically replace its occurrences as
an upper-bound (resp. lower-bound) by a new parameter p+ (resp. p−). We
obtain an integer-valued L/U-PTAs without invariant A′. By hypothesis, let S
be the solution set of parameters valuations to the EF-synthesis problem for A′.
Let S′ be the set of equality constraints p+ = p−. Therefore we can decide
whether S∩S′ = ∅ and the EF-emptiness problem is decidable for integer-valued
PTAs without invariants, in contradiction with the results of [BBLS15].

6 Conclusion and Perspectives

In this paper, we solved the open problem of the nested TCTL-emptiness for
U-PTAs, that implies the undecidability of the whole TCTL-emptiness problem
for this subclass of L/U-PTAs. Note that our proof holds even for integer-valued
parameters, and even without invariants. This is a reminder that the border
between undecidability and decidability problems for L/U-PTAs and its sub-
classes is quite thin. Unlike PTAs and bounded PTAs, U-PTAs and bounded
U-PTAs are incomparable, hence we had to verify whether the same reasoning
was applicable when the parameter domain is bounded. For this purpose, we
used another construction to reduce to a bounded U-PTA from a two-counter
machine to prove that the same TCTL-emptiness problem is also undecidable.

Moreover, we proved that EG-emptiness and universality are PSPACE-
complete for (unbounded) integer-valued L/U-PTAs without invariants. This
result is particularly interesting as it was undecidable with invariants [AL17].
Using existing results, we have that flat TCTL-emptiness and universality are
decidable for this class, and therefore for integer-valued U-PTAs without invari-
ants, which contrasts with our undecidability result and shows that we are there
again at the frontier of decidability.



52 É. André et al.

Future Work. This work opens new perspectives: where exactly the undecid-
ability starts (in particular whether EG and AF are decidable for U-PTAs with
invariants or real-valued parameters, which remains open, see Table 1), whether
our proofs in Sects. 3 and 4 can be extended over bounded time, and whether
the same results hold for L-PTAs (lower-bound PTAs).

Also, extending our decidability result in Theorem3 while keeping decidabil-
ity will be an interesting challenge.

References

[ACD93] Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf.
Comput. 104(1), 2–34 (1993)

[AD94] Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci.
126(2), 183–235 (1994)

[AHV93] Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:
Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) STOC, pp. 592–601.
ACM, New York (1993)

[AL17] André, É., Lime, D.: Liveness in L/U-parametric timed automata. In:
ACSD, pp. 9–18. IEEE (2017)

[ALR16a] André, É., Lime, D., Roux, O.H.: Decision problems for parametric timed
automata. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS,
vol. 10009, pp. 400–416. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47846-3 25

[ALR16b] André, É., Lime, D., Roux, O.H.: On the expressiveness of parametric timed
automata. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol.
9884, pp. 19–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-44878-7 2

[And17] André, É.: What’s decidable about parametric timed automata? Int. J.
Softw. Tools Technol. Transf. (2017, to appear)

[BBLS15] Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of
continuous-time parametric timed automata. In: Halldórsson, M.M., Iwama,
K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135,
pp. 69–81. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
47666-6 6

[BL09] Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound para-
metric timed automata. Formal Methods Syst. Des. 35(2), 121–151 (2009)

[BO14] Bundala, D., Ouaknine, J.: Advances in parametric real-time reasoning. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol.
8634, pp. 123–134. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44522-8 11

[Doy07] Doyen, L.: Robust parametric reachability for timed automata. Inf. Process.
Lett. 102(5), 208–213 (2007)

[HRSV02] Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric
model checking of timed automata. J. Logic Algebraic Program. 52–53,
183–220 (2002)

[JLR15] Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)

[Mil00] Miller, J.S.: Decidability and complexity results for timed automata and
semi-linear hybrid automata. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000.
LNCS, vol. 1790, pp. 296–310. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-46430-1 26

https://doi.org/10.1007/978-3-319-47846-3_25
https://doi.org/10.1007/978-3-319-47846-3_25
https://doi.org/10.1007/978-3-319-44878-7_2
https://doi.org/10.1007/978-3-319-44878-7_2
https://doi.org/10.1007/978-3-662-47666-6_6
https://doi.org/10.1007/978-3-662-47666-6_6
https://doi.org/10.1007/978-3-662-44522-8_11
https://doi.org/10.1007/978-3-662-44522-8_11
https://doi.org/10.1007/3-540-46430-1_26
https://doi.org/10.1007/3-540-46430-1_26


Monitoring Temporal Logic with Clock
Variables

Adrián Elgyütt, Thomas Ferrère(B), and Thomas A. Henzinger

IST Austria, Klosterneuburg, Austria
thomas.ferrere@ist.ac.at

Abstract. We solve the offline monitoring problem for timed proposi-
tional temporal logic (TPTL), interpreted over dense-time Boolean sig-
nals. The variant of TPTL we consider extends linear temporal logic
(LTL) with clock variables and reset quantifiers, providing a mechanism
to specify real-time constraints. We first describe a general monitoring
algorithm based on an exhaustive computation of the set of satisfying
clock assignments as a finite union of zones. We then propose a special-
ized monitoring algorithm for the one-variable case using a partition of
the time domain based on the notion of region equivalence, whose com-
plexity is linear in the length of the signal, thereby generalizing a known
result regarding the monitoring of metric temporal logic (MTL). The
region and zone representations of time constraints are known from timed
automata verification and can also be used in the discrete-time case. Our
prototype implementation appears to outperform previous discrete-time
implementations of TPTL monitoring.

1 Introduction

Temporal logic monitoring [20] is a well-studied topic with multiple applications
[17,19,23,32]. A monitor is a program that verifies the conformance of a single
run of the system against the specification; generally speaking monitoring is one
of the methods for ensuring that a system meets its specification.1 There are two
types of monitoring – online and offline. The online monitor runs simultaneously
with the system, and is suitable for use on a production system to enforce a
safety property of that system. The offline monitor verifies a trace of a finite
length after the system execution/simulation, and is thus suitable for use in a
testing scenario.

In discrete systems such as programs, behaviors can be formalized in linear
temporal logic (LTL) [30]. Temporal logic abstracts time into so-called temporal
modalities, such as always, denoted �, and its dual eventually, denoted ♦. As an
example, the typical property that every request p is followed by a grant q can be

1 While temporal logic monitoring provides less guarantees than other formal methods
such as model checking, the range of applicability of monitoring techniques is wider
as it does not suffer from the infamous state-explosion: for monitoring purposes, all
that is needed from the system model is its ability to generate execution traces.

c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 53–70, 2018.
https://doi.org/10.1007/978-3-030-00151-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_4&domain=pdf


54 A. Elgyütt et al.

written �(p → ♦q). In real-time systems, or in the setting of asynchronous com-
munication, the specification not only talks of the temporal ordering of events,
but also of their temporal distance. One way to specify such a distance is to inte-
grate timing constraints into temporal modalities, as done in metric temporal
logic (MTL) [25]. For instance, in MTL one can write ♦[1,2]q to specify a trace
where proposition q holds eventually within 1 to 2 time units. Another way to
specify the temporal distance between events is to use dedicated variables. This
approach is advocated by [3] with the introduction of timed propositional tempo-
ral logic (TPTL). In TPTL, timing and sequential aspects are made orthogonal
by the use of dedicated clock variables ranging over time, enabling the clean spec-
ification of temporal objectives. A clock x is a real-valued variable that measures
the time elapsed from the temporal context of a formula to the temporal context
of its subformulas. For this one can use reset quantifiers x.ϕ over a formula ϕ,
and constraints of the form x ≤ c (or x ≥ c) that compare the time elapsed from
the binding quantifier with some integer constant2.

Over an integer (discrete) time domain, timing constraints can be emulated
in LTL by nesting next-time operators, but such an encoding is cumbersome
and exponential in nature as durations are represented in unary. Over a real
(continuous) time domain, the next-time changes its meaning and one must use
dedicated logics such as MTL or TPTL in order to specify timing constraints.
In this setting, the one-clock fragment of TPTL is more expressive than MTL
[9,21]. To translate MTL operators into TPTL, we only need one clock variable,
with for instance ♦[0,1]p translating as x.♦(p ∧ x ≤ 1). TPTL timing constraints
may not translate to MTL when more than one temporal operator separates
quantifiers and bound constraints, as in formula x.♦(p ∧ ♦(q ∧ x ≤ 1)).

The efficient handling of time variables in monitoring tasks is an important
open problem, regardless of the underlying time domain. A practice similar to
TPTL is indeed recommended in the standard specification language SVA [34],
through the use of local variables of type time. SVA (or its simple subset [4]) can
be used for model-checking, but is predominantly used in testing: simulation
traces are systematically monitored against SVA specifications. The state-of-
the-art online procedures for monitoring SVA incur an additional cost in the
presence of time variables, which they often treat by spawning a new instance
of the monitor at every possible variable assignment. To our knowledge, the
complexity of the offline monitoring problem for SVA has not been studied.

In this paper, we solve the offline TPTL monitoring problem over continuous-
time Boolean signals. The satisfaction of TPTL formulas can be characterized
in terms of difference constraints on their free variables [28]. In this setting, our
contribution is twofold. We first propose to compute such constraints in the
form of a union of zones. The zone data structure underlies recent advances
in continuous-time monitoring and pattern matching [6,33]. Our näıve zone-

2 The original presentation of TPTL instead talks of freeze quantifiers that store the
absolute time in variables x, y later compared using difference constraints y − x ≤ c.
We found it more convenient to work with clocks and associated reset quantifiers as
in [31], although both presentations are equivalent.



Monitoring Temporal Logic with Clock Variables 55

based implementation of TPTL monitoring appears competitive relative to the
existing discrete-time implementations for TPTL monitoring of [15], based on
instantiating LTL monitors for every possible value of clock variables. We then
propose to represent difference constraints using a partition of the time domain
according to the region equivalence. A region is a cell in this partition, and two
equivalent regions agree on the value of all subformulas. As for timed automata
verification [1], this equivalence relation provides a canonical representation of
the state space. The suitable inductive computation of this relation yields an
algorithm with linear-time complexity relative to the trace length for monitoring
the important fragment of TPTL formulas with one clock3.

The practical performance of our zone-based and region-based algorithms is
evaluated in a prototype implementation, which we compare with tool AMT [29]
as baseline. Our experiments support the theoretical complexity of the region-
based algorithm, which also compares to the zone-based algorithm.

Related Work. Temporal logic monitoring over continuous time is introduced
by [26], who consider the logic MTL and its extension to real-valued signals
called STL. Subsequently, [33] proposes an algorithm for the monitoring and
matching of timed regular expressions (TRE) [5], that are regular expressions
with duration constraints 〈.〉I requiring that the segment matching the enclosed
expression also has a duration within some interval I. The work of [6] considers
the monitoring of MTL with an additional time parameter standing for the hori-
zon of the property, after which the signal is considered to end. The constructions
in [6,33] use a representation of the time domain as a union of zones, which we
also consider in our näıve implementation of TPTL monitoring. A recent related
work [8] considers the monitoring of metric dynamic logic (MDL) formulas. This
logic introduces modalities 〈r〉Iϕ requiring that ϕ should occur within timing
interval I after a sequence of discrete events matching some regular expression
r. The authors consider a weakly-monotonic, discrete model of time and obtain
an algorithm with quasi-linear time complexity [8].

The decidability of TPTL offline monitoring over continuous-time domains
was proved in [28] with a tight (relative to combined trace and formula size)
reduction to difference constraints satisfiability. However, in the absence of fast
difference constraints solvers, this does not necessarily provide a practical algo-
rithm for large traces. In contrast our region-based algorithm comes with a
linear-time guaranteed complexity relative to trace length. To the best of our
knowledge, previous implementations of TPTL monitoring are as follows. The
approach of [15] uses a monitor of LTL formulas as sub-routine, called on every
possible valuation of time variables. This enables efficient monitoring of the
sequential part of the property by reusing off-the-shelf LTL monitors, but the
LTL monitor is called for every instantiation of clock variables. The number of
LTL monitor instances may grow linearly with the trace length, and as a result
this algorithm has a worst-case time complexity quadratic in the trace length
3 This does not follow straightforwardly from [1], since TPTL does not translate to

timed automata: its satisfiability over dense time is undecidable [3].



56 A. Elgyütt et al.

[15]. The approach of [12] proceeds by incremental rewriting of TPTL semantics,
based on formalization in Maude [13]. The resulting procedure seems to suffer
from similar complexity in terms of its number of rewrites.

2 Background

An essential idea in offline monitoring is that the standard (future time) oper-
ators of LTL can be realized as backward-deterministic transducers. Therefore,
the whole trace can be parsed once in reverse time-order using finite memory.
Let us consider a discrete time domain T = {0, 1, . . . , n}. Assuming a set of
atomic propositions AP, a trace w is a function w : T → 2AP that we denote
w = w0w1 . . . wn with wi ⊆ AP for all i ∈ T . The satisfaction relation of LTL
can be characterized by a recursion on the time dimension (backwards) and on
the formula structure (top-down). For the until operator we have:

base case: (w, n) |= ϕ1Uϕ2 iff (w, n) |= ϕ2;
inductive case: (w, i − 1) |= ϕ1Uϕ2 iff (w, i − 1) |= ϕ2, or (w, i − 1) |= ϕ1

and (w, i) |= ϕ1Uϕ2.

Notice that the satisfaction |= of ϕ1Uϕ2 at position i only depends on the satis-
faction of ϕ1 and ϕ2 at position i, and on the satisfaction of ϕ1Uϕ2 at i + 1.

The LTL monitoring algorithm described in [19] first evaluates the subfor-
mulas ϕ1, ϕ2, . . . , ϕm of the main formula ϕ at the end of the input trace w
(position n). Then for all i = n− 1, . . . , 0 the algorithm evaluates ϕ1, ϕ2, . . . , ϕm

at time i in a bottom up fashion based on values computed at position i and
i + 1. The overall process is illustrated in Fig. 1.

Fig. 1. Monitoring formula (©p ∨ q)U¬q with subformulas ϕ1 ≡ ©p, ϕ2 ≡ ©p ∨ q,
ϕ3 ≡ ¬q, and ϕ4 ≡ (©p ∨ q)U¬q by backward induction. Positions 5, 4, 3 have been
marked with satisfied subformulas, and the marking at position 2 is computed based
on input values of p and q, and the values of subformulas at positions 2 and 3.

Metric temporal logic (MTL) [25] extends LTL with timed temporal modal-
ities such as the timed eventually, denoted ♦I for timing interval I. Formula
♦[a,b]ϕ holds at time t if and only if ϕ holds at some time t′ ∈ [t + a, t + b]. Here
we consider T = [0, d] ⊆ R to be a dense time domain. Similar to LTL, the truth



Monitoring Temporal Logic with Clock Variables 57

value of a given formula ϕ is uniquely determined at time t by the truth value
of its main subformulas at times t′ ≥ t.

The evolution of the truth value of a formula ϕ over time forms a Boolean sig-
nal, that we call satisfaction signal, denoted wϕ[t] for input trace w. Monitoring
MTL offline can be done by computing the entire satisfaction signal of every
subformula of ϕ inductively, as proposed in [27]. For ♦I , the inductive step is as
follows. Assume that wϕ has value 1 over a finite set of intervals T0, . . . , Tn ⊆ T,
and value 0 everywhere else. Then w♦Iϕ will have value 1 over intervals Ti 
I for
all i = 0, . . . , n, and value 0 everywhere else.4 For all inductive cases, satisfaction
signals can be computed in linear time [27]. We illustrate the resulting algorithm
in Fig. 2.

Fig. 2. Monitoring formula ϕ = �[0,2]p → ♦[4,5]q by inductively constructing the sat-
isfaction signals if its subformulas. The segment of the satisfaction signal of ♦[4,5]q
between times 5.5 and 7 is obtained from the segment of q between times 10.5 and 11.

3 Timed Propositional Temporal Logic

We call time domain a subset T ⊆ R of the real line of the form [0, d] with
duration d > 0. Assume a set AP of propositional variables. A trace w : T → 2AP

can be seen as a valuation of variables p ∈ AP into Boolean signals over T, which
we write wp : T → {0, 1}. The Boolean value of p at time t in trace w is denoted
wp[t]. The length of trace w is the minimal size of any partition of T into intervals
over which the truth status of predicates wp is constant relative to time for all
p ∈ AP. We assume that every trace has a finite length denoted |w|.

Let X be a set of clock variables. An environment r is a valuation of clocks
x ∈ X as elements of the time domain, written rx ∈ T.

Definition 1 (TPTL Syntax). Formulas of TPTL are given by the following
grammar:

ϕ ::= p | x ≤ c | x ≥ c | ¬ϕ | ϕ ∨ ϕ | ϕU ϕ | x.ϕ

for p ∈ AP, clock variables x ∈ X, and integer constants c ∈ N.
4 The Minkowski difference Ti � I is by definition {t − s ∈ T : t ∈ Ti and s ∈ I}.



58 A. Elgyütt et al.

We also use shorthands such as x < c for ¬(x ≥ c). The form ‘x.’ in the formula
x.ϕ is called a reset quantifier and a formula is closed when all its variables are
bound by a reset quantifier.

Definition 2 (TPTL Semantics). The satisfaction of a TPTL formula ϕ rel-
ative to a trace w at time t under an environment r is according to the relation
|= between the tuple (w, t, r) and ϕ, inductively defined as follows:

(w, t, r) |= p iff wp[t] = 1
(w, t, r) |= x ≤ c iff t − rx ≤ c

(w, t, r) |= ¬ϕ iff (w, t, r) �|= ϕ

(w, t, r) |= ϕ ∨ ψ iff (w, t, r) |= ϕ or (w, t, r) |= ψ

(w, t, r) |= ϕU ψ iff (w, t′, r) |= ψ for some t′ > t such that
(w, t′′, r) |= ϕ for all t′′ with t < t′′ < t′

(w, t, r) |= x.ϕ iff (w, t, r[x ← t]) |= ϕ

where r[x ← t] is the environment that assigns t to x and agrees with r for every
other clock. For any closed formula ϕ it holds (w, t, r) |= ϕ iff (w, t, r′) |= ϕ
for all environments r, r′ and thus we simply write (w, t) |= ϕ in that case. We
say that w satisfies ϕ, written w |= ϕ, when (w, 0) |= ϕ.

A clock variable x intuitively stands for the time elapsed from the temporal
context of its binding reset quantifier. Observe that reset quantifiers commute
with Boolean operators, that is, x.(ϕ ∨ ψ) ⇔ x.ϕ ∨ x.ψ and x.¬ϕ ⇔ ¬x.ϕ. We
refer the reader to [3] for a more extensive discussion of the merits of reset (or
freeze) quantification over existential and universal quantification in the tempo-
ral logic context.

The offline monitoring problem for TPTL, which we solve in this paper, can
be stated as follows: given a formula ϕ and a trace w, decide whether w |= ϕ.

4 Zone-Based Algorithm

Assume a finite set X = {x1, . . . , xk} of clocks with size k, and let T = [0, d]
be a time domain with duration d. With any TPTL formula ϕ and trace w we
associate a satisfaction set, consisting of all pairs (t, r) under which w satisfies ϕ.
For convenience we hereafter identify such time-environments pairs (t, r) with
vectors in Tk+1 whose first component is the value of the reference time, followed
by the values of the clocks in X.

Definition 3 (Satisfaction Set). Let ϕ be a formula and w a trace. The sat-
isfaction set of ϕ relative to w, denoted �ϕ�w, is defined by letting

�ϕ�w = {(t, r) ∈ Tk+1 : (w, t, r) |= ϕ}.



Monitoring Temporal Logic with Clock Variables 59

Difference constraints are formulas of the form t �� a and t − s �� a for
comparison operator �� ∈ {<,≤, >,≥}, constant a, and real variables s, t. Satis-
faction sets �ϕ�w are definable in the first order theory of difference constraints.
This theory is decidable, in particular it admits quantifier elimination [24].

Since the translation of TPTL into difference constraints can easily be made
effective, a monitoring procedure for TPTL can be obtained by constructing a
difference constraints formula that holds iff w |= ϕ, combined with a decision
procedure for the first order theory of difference constraints [28]. Such an algo-
rithm is likely to exhibit an exponential time complexity, since the problem of
deciding a difference constraints formula is complete for polynomial space com-
putations [24]. We have no hope on improving the worst-case complexity relative
to the combined input size of formula and trace, given that TPTL monitoring
requires polynomial space [28], already over discrete models [16]. However, we
hope to reduce the complexity relative to the size of the trace alone. For this we
use a polyhedral representation of the satisfaction set.

Definition 4 (Zone). A zone is a subset of Td+1 definable as a conjunction of
difference constraints.

Zones were introduced in the context of real-time systems verification, in partic-
ular in the formal analysis of timed automata [14]. The following theorem, an
immediate consequence of the discussion above, underpins our first algorithm:

Theorem 1. For any trace w and formula ϕ, the set �ϕ�w can be effectively
represented as a finite union of zones.

Given a formula ϕ and trace w the set �ϕ�w can in particular be obtained by
induction as follows.

– Propositional variables: The satisfaction set is a union of zones orthogonal to
the time axis, of the form �p�w =

⋃n
i=1 Ji × Tk.

– Timing constraints: The satisfaction set consists is the zone �x �� c�w =
{(t, r) ∈ Tk+1 : t − rx �� c}.

– Boolean operators: Disjunction and negation translate into the corresponding
set operations �¬ϕ�w = Tk+1 \ �ϕ�w and �ϕ ∨ ψ�w = �ϕ�w ∪ �ψ�w.

– Until: Assume �ϕ�w and �ψ�w are given as sets of zones Zϕ and Zψ, respec-
tively. We compute zones of �ϕU ψ�w by constructing the sequence Y0, . . . ,Yn

up to a fixed point n as follows:

Y0 = {clL(Z) ∩ ←−−−−−−−
clR(Z) ∩ Y : Y ∈ Zψ, Z ∈ Zϕ}

Yi = {clL(Z) ∩ ←−−−−
Z ∩ Y : Y ∈ Yi−1, Z ∈ Zϕ} for i > 0

where clL (respectively clR) take the topological closure of a zone to the left
(respectively to the right) on the time component, and

←−
Z removes all lower

bounds on the time component.5 We then have �ϕU ψ�w =
⋃n

i=0 Yi.

5 The fixed point ∪Yn+1 ⊆ ⋃n
i=0 Yi exists because only finitely many difference con-

straints over T can be built from Zϕ and Zψ.



60 A. Elgyütt et al.

– Reset: We let �x.ϕ�w = {(t, r) ∈ Tk+1 : ∃s, (t, r[rx ← s]) ∈ Z} for
Z = �ϕ�w ∩ {(t, r) ∈ Tk+1 : t − rx = 0}). All operations involved in
this computation commute with ∪ and are standard operations over zones.

Example 1. We consider the formula ϕ ≡ x.♦(p∧♦(q∧x ≤ 1)). It has subformu-
las p, q, x ≤ 1, γ1 ≡ q ∧ x ≤ 1, γ2 ≡ ♦γ1, γ3 ≡ p ∧ γ2, γ4 ≡ ♦γ3, with ϕ ≡ x.γ4.
In Fig. 3 we show the satisfaction sets of each of its subformulas. Observe that
the satisfaction of ϕ is independent of r.

Fig. 3. Computation of the satisfaction set of formula ϕ on a given trace by struc-
tural induction: (left) satisfaction sets of subformulas q, x ≤ 1, γ1, and γ2; (right)
satisfaction sets of subformulas p, γ3, γ4, and ϕ.

For a fixed formula, the worst-case run time of this algorithm is polynomial
relative to the trace length. Yet it can be more than linear. The expensive opera-
tion of complementation can be avoided by introducing a negation normal form
through additional operators of conjunction and always (the dual of until can be
rewritten using always and until itself). However intersecting two sets of zones
can still create a quadratic number of zones. Such a phenomenon can arise when
monitoring TPTL with the algorithm in this section.

Example 2. Consider the formula ψ ≡ p∧♦(p∧x = 1), and the family of periodic
Boolean signals wn, n > 0 with fixed duration d = 2 and period 1

n , such that
wn[t] = 1 if and only if

⌊
t
2n

⌋
is even. The satisfaction set �ψ�w has Ω(n2) zones

while signal wn has O(n) time points (discontinuities).



Monitoring Temporal Logic with Clock Variables 61

5 Region-Based Algorithm

In this section we improve on our zone-based algorithm by moving to a represen-
tation of satisfaction sets using a notion of region equivalence. For simplicity we
focus on the fragment of TPTL with only one clock variable x, which we denote
1-TPTL in the rest of this paper.

5.1 TPTL Formulas with One Variable

Under the present definitions, 1-TPTL is already more expressive than MTL [9].
Given a time variable x and an integer-bounded interval I, let us write x ∈ I for
the conjunction of constraints enforcing that the value of x lies in I. We can define
the timed until operator UI as the abbreviation ϕUI ψ ≡ x.(ϕU (x ∈ I ∧ ψ)).
Metric Temporal Logic (MTL) can be seen as the syntactic fragment of TPTL
with the grammar ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUI ϕ for p ranging over AP and I
ranging over integer-bounded intervals.

The 1-TPTL formula ϕ1 ≡ �(p → x.♦(q ∧ ♦(r ∧ x ≤ 5))) was conjectured
in [2] not to be expressible in MTL. The property specified by ϕ1 is that every
request, signified by p holding true, should be followed by two successive grants
occurring within 5 time units, respectively signified by q and r holding true. It
turns out that ϕ1 can be expressed in MTL [9], but not when replacing the
constraint x ≤ 5 by x ≤ 1 and assuming integer constants [21]. When allowing
rational constants and past operators, MTL, 1-TPTL, and TPTL all become
equivalent in expressive power [22].

Observe that formulas of 1-TPTL can contain multiple occurrences of clock
variable x, as in ϕ2 ≡ ♦x.(pU (x > 1 ∧ x.(q U (r U x ≥ 2 ∧ x ≤ 3)))). Formula
ϕ2 expresses that eventually p holds for more than 1 time unit, after which q
holds and then r holds over a period lasting between 2 and 3 time units. It could
also be written as ♦x.(pU (x > 1 ∧ y.(q U (r U y ≥ 2 ∧ y ≤ 3)))) for readability’s
sake6.

5.2 Region Equivalence

To improve the worst-case complexity relative to the trace length, we introduce
two essential changes in the algorithm of Sect. 4. We avoid overlapping polytopes,
leading to combinatorial explosion, by using a grid over the 2-dimensional time
domain. The number of cells (called regions) in the grid can still be more than
linear in the trace length, as in Example 2. Instead of representing the whole set
of zones explicitly, it suffices to construct this set implicitly and according to
some equivalence relation. The state is maintained over a single uniform interval
on the t-axis, where the input trace stays constant. Over such an interval, the

6 Similar formulas with independent variables were considered in [15] in the context
of monitoring. We remark that the fragment of TPTL defined there corresponds to
1-TPTL when clocks are renamed.



62 A. Elgyütt et al.

truth value of a formula only depends on the environment and for convenience
we will represent it as a signal on the r-axis.

Let w be a trace with time sequence 0 = t0, . . . , tn = d and ϕ a formula with
time constants c1, . . . , cl and letting c0 = 0 and cl+1 = +∞. We write r0, . . . , rm

for the ordered sequence of times in T each of the form ti − cj obtained by
considering all pairs of ti and cj for i = 0, . . . , n and j = 0, . . . , l.

Definition 5 (Region). A region relative to w and ϕ is a subset of T2 of the
form {(t, r) ∈ T × R : t − r ∈ I} where T is of the form {ti} or (ti, ti+1), R is
of the form {rj} or (rj , rj+1), and I is of the form {ck} or (ck, ck+1). We call
T the projection of that region on the t-axis, and if T �= {d} we call successor
the region {(t, r) ∈ T ′ × R : t − r ∈ I} where T ′ is adjacent to T on the right.

Definition 6 (Equivalence). We say that two regions A and A′ are equivalent
relative to w and ϕ, denoted A ∼ϕ,w A′, when the following conditions apply:

– A and A′ have the same t-axis projection;
– the satisfaction status of subformulas of ϕ relative w are the same on both A

and A′;
– if A and A′ have successors B and B′ then the satisfaction status of subfor-

mulas of ϕ relative to w are the same on both B and B′.

Let ϕ be a quantifier-free7 formula, and let w be a trace. The following
proposition is straightforward by structural induction:

Proposition 1. For all regions A and A′ such that A ∼ϕ,w A′ and time-
environment pairs (t, r) ∈ A and (t′, r′) ∈ A′ we have (t, r) |= ϕ iff (t′, r′) |= ϕ.

In order to compute the satisfaction set of a quantifier-free formula ϕ, time-
environment pairs that lie in regions equivalent to ∼ϕ,w can be grouped together.
Parsing the trace in reverse time-order, the number of operations per uniform
time interval needed to update equivalence classes of ∼ϕ,w remain bounded.

For quantified subformulas we use the following notion:

Definition 7 (Satisfaction Signal). The satisfaction signal wϕ of a closed
formula ϕ on a trace w is a Boolean signal such that wϕ[t] = 1 if (w, t) |= ϕ,
wϕ[t] = 0 otherwise.

The satisfaction signal of some formula x.ϕ can be obtained by intersecting the
satisfaction set of ϕ with the diagonal t = r. Observe that in general, the sat-
isfaction signal of a closed subformula is sufficient information to construct the
satisfaction set of its superformulas. Applying the region equivalence to formu-
las with quantifiers will be made possible by incrementally replacing quantified
subformulas with their satisfaction signal.
7 A more general definition of region equivalence could be used. Our restriction of this

notion to quantifier-free formulas is motivated by efficiency concerns. For instance, we
aim to avoid partitioning the satisfaction set of formula x.♦(x ≤ 1∧p∧x.♦(x ≤ 2∧q))
according to timing constant 1+2 for all subformulas. While the constant is relevant
in subformula ♦(x ≤ 1 ∧ p ∧ x.♦(x ≤ 2 ∧ q)), it plays no role in ♦(x ≤ 2 ∧ q).



Monitoring Temporal Logic with Clock Variables 63

5.3 Monitoring Algorithm

For a given formula ϕ and a trace w, the region-based algorithm computes the
satisfaction signal of every subformula of the form x.γ, starting with inner-most
ones (such that γ is quantifier-free). The computation of the satisfaction signal
of such a subformula x.γ is done by parsing the trace backwards and computing
the satisfiability of its subformulas in each region, in a procedure similar to LTL
monitoring. The satisfaction signal wx.γ is found on the diagonal and obtained
by letting wϕ[t] = 1 if (t, t) ∈ �ϕ�w. Indeed we only need to compute the part of
the satisfaction set with r ≤ t. Once computed, the subformula x.γ is replaced by
a fresh proposition px.γ and its satisfaction signals is added to the trace w. The
satisfaction signal associated to that proposition will be used when computing
superformulas, similar to MTL monitoring. Once the main formula ϕ has been
replaced by an atomic proposition pϕ, we can conclude whether w satisfies ϕ
by simply looking at the value of wpϕ

at time 0. We assume without loss of
generality that the closed formula ϕ we monitor is of the form x.ψ, if this was
not the case we could rewrite it as x.ϕ, which is equivalent since ϕ is closed.

Algorithm 1. Monitor
Precondition: A formula ϕ ≡ x.ψ, a finite trace w
1: function Monitor(ϕ, w)
2: if ψ contains x.γ such that γ is quantifier-free then
3: v ← Satisfy(x.γ, w)
4: replace x.γ by px.γ in ϕ
5: w ← w ∪ (px.γ 
→ v)
6: return Monitor(ϕ, w)
7: else
8: return Satisfy(ϕ, w)
9: end if

10: end function

As described, Algorithm 1 recursively searches for a subformula that does not
contain any reset quantifier (lines 2, 6) until no further reset quantifiers can be
found (line 8). In that case, the algorithm proceeds by computing the satisfaction
signal of the found subformula by calling Algorithm 2 (line 3) and replacing it
with a fresh atomic proposition px.γ (line 4) and in addition, supplementing the
trace with a Boolean satisfaction signal v for this proposition px.γ (line 5). For
a formula x.ϕ where ϕ is quantifier-free and a trace T → 2AP we compute wx.ϕ

by calling Algorithm 2.
Algorithm 2 implicitly computes the satisfaction set of all quantifier-free sub-

formulas of ϕ. For simplicity, it is written and described to operate over regions
rather than region equivalence classes, but operating over a single representa-
tive of each region equivalence class can easily be implemented (e.g. by keeping
track of regions entering and leaving every diagonal area of the t, r plane). The
algorithm starts by initializing the output trace u. Signals in the output trace



64 A. Elgyütt et al.

Algorithm 2. Satisfy
Precondition: A formula x.γ such that γ is quantifier-free, a trace w on [0, tn]
1: function Satisfy(x.γ, w)
2: u, r ← InitializeSatTrace(w, tn, C) � r stores all time points of u
3: for ti ∈ tn−1, . . . , t0 do
4: r′ ← (r′

1, . . . , r
′
|C|) where r′

l := ti − cl for all 1 ≤ l ≤ |C|
5: r ← merge(r, r′) � merge two lists
6: k ← largest element of r smaller than ti+1

7: for rj ∈ rk, . . . , r0 do
8: A, A′ ← UpdateRegions(ti, ti+1, rj , rj+1, C) � open interval
9: for B ∈ A′, . . . , A do

10: u ← UpdateSatTrace(w, u, rj , rj+1, B)
11: end for
12: A, A′ ← UpdateRegions(ti, ti+1, rj , C) � closed interval
13: for B ∈ A, . . . , A′ do
14: u ← UpdateSatTrace(w, u, rj , B)
15: end for
16: end for
17: end for
18: return ux.γ � satisfaction signal of x.γ
19: end function

represent the satisfiability of subformulas at different environment values. The
function InitializeSatTrace creates m signals in the output trace u, one per
subformula of γ, with time points 0, tn, and tn −c for every c ∈ C. The values of
those satisfaction signals are computed based on the signal values of w at time tn.
As we iterate over the trace (line 3), we first refine u (lines 4, 5) and we update
the output trace backwards (line 7). We proceed by computing the regions rela-
tive to w contained within T = [ti, ti+1) and R = (rj , rj+1) (line 8). The function
UpdateRegions then only needs to compute the time constants relevant to the
intervals T and R, i.e. time constants c such that ti ≤ c + rj ≤ ti+1. Iterating
backwards through the computed regions (for B = A′, . . . , A), we compute the
satisfiability in each region inductively on the structure of the formula (function
UpdateSatTrace, line 10) and update u once we have processed the region
A. The function UpdateSatTrace updates the respective signals of u at time
(rj , rj+1) based on subformulas γl of x.γ. For instance in the case of γl ≡ γhUγk

over a region whose t-projection is open, we update the signal uγl
with the value

of uγh
∧ (uγk

∨u′
γk

∨u′
γl

), where u′ is the value of u in the adjacent region to the
right. Over a region whose t-projection is closed, the value of until is the same
as in its successor region. Other operators not pose any difficulty. After we have
processed the region A, we update u. We repeat the same inductive rules for
the regions bounded by T = [ti, ti+1) and R = {rj}. After each iteration ti, the
interval [ti, ti+1) of the output trace u is finalized and will remain unchanged
until the end of computation, at which point we return the Boolean component
of u representing the satisfaction signal of the whole formula x.γ.



Monitoring Temporal Logic with Clock Variables 65

Fig. 4. Computation of the satisfaction signal of ϕ on a given trace. The state of the
algorithm consists of the truth value of regions highlighted on the left; it is shown
on the right as signals with a dotted part being updated and a plain part, final. The
current time interval is ti = 1.8, ti+1 = 2.2 and current region is {(r, t) : ti < t, r <
ti+1 − 1, t − r < 1}.

Example 3. We take again the formula ϕ ≡ x.♦(p∧♦(q∧x ≤ 1)) with subformu-
las p, q, x ≤ 1, γ1 ≡ q ∧ x ≤ 1, γ2 ≡ ♦γ1, γ3 ≡ p ∧ γ2, and γ4 ≡ ♦γ3 of Example 1
and illustrate the computation of its satisfaction signal in Fig. 4.

When instead computing only one representative of each equivalence class of
∼γ,w, we limit the number of operations to O(2k) per uniform time interval for
a subformula of size k, since there are at most 2k equivalence classes of ∼γ,w

over such an interval. The number of time points at most doubles with each
time constant, so that the satisfaction signal of wx.γ has length at most n2k for
a signal w of length n. Therefore we have:

Theorem 2. The offline monitoring of a 1-TPTL formula ϕ of size m against
a continuous-time Boolean trace w of length n can be computed in time n2O(m).

6 Experimental Evaluation

We implemented both algorithms in C++. The implementation of the zone-based
algorithm uses a library of the toolset IF [10] for zones computations. We then
measured the execution time of monitoring several formula/trace combinations.
Figures were obtained on Intel Core i5-4210u CPU with 8 GB of RAM. The input
traces we considered consist of periodic Boolean signals, in which propositions
p, q, r, . . . hold for 2 time units in turn. The length of a trace is determined by
the number of sample points (associated to a Boolean signal changing its value).
We generated traces of length 1000, 2000, 5000, 10000 and 20000 samples.



66 A. Elgyütt et al.

In a first experiment, we evaluate our region-based implementation on for-
mulas

ϕ1 ≡ �x.(p → ♦(q ∧ ♦(x ≤ 5 ∧ r)))
ϕ2 ≡ ♦x.(pU (x > 1 ∧ x.(q U (r U x ≥ 2 ∧ x ≤ 3))))
ϕ3 ≡ �x.(p → ♦(x ≤ 1 ∧ q ∧ x.�(x ≤ 1 → ¬r)))
ϕ4 ≡ �x.(p → (♦(q U r) ∧ ♦(x ≥ 3 ∧ x ≤ 5 ∧ s)))
ϕ5 ≡ (x.♦(x ≤ 10 ∧ p))U �¬q.

Formula ϕ1 and ϕ2 are two examples given in Sect. 5. Formula ϕ3 specifies that
whenever p holds, q should hold within 1 time unit and r should not hold for
another 1 time unit from there on. Formula ϕ4 requires that every occurrence of
p is followed by q holding until an occurrence of r, and an occurrence of s within
3 to 5 time units. Formula ϕ5 roughly says that p holds at least once every 10
time units until q stops holding.

Then, we evaluate our zone-based implementation against the same formulas
and formula ϕ6 ≡ �x.(p → ♦(q ∧ y.♦(x ≤ 5 ∧ y ≥ 2 ∧ r))). The property
expressed by ϕ6 is that every request p is followed by two grants q and r within
5 time units, with q occurring at least 2 time units before r. Such a property
cannot be monitored by the region-based implementation since it requires two
clock variables.

We use the tool AMT [29] for MTL monitoring over continuous-time Boolean
signals as our baseline. Formulas ϕ3 and ϕ5 are part of the MTL syntactic
fragment of TPTL, and can be rewritten in MTL as �(p → ♦[0,1](q ∧ �[0,1]¬r))
and (♦[0,10]p)U �¬q, respectively8.

Table 1. Execution times (s) of monitoring formulas against periodic traces for three
algorithms: our region-based (reg) and zone-based (zon) implementations, and the
interval-based (int) implementation of MTL monitoring in the tool AMT.

|w| 1 000 2 000 5 000 10 000 20 000

alg int reg zon int reg zon int reg zon int reg zon int reg zon

ϕ1 – 0.045 0.085 – 0.084 0.168 – 0.217 0.431 – 0.439 0.960 – 0.898 2.105

ϕ2 – 0.110 0.059 – 0.160 0.132 – 0.407 0.370 – 0.814 0.739 – 1.660 1.498

ϕ3 0.034 0.104 0.032 0.047 0.169 0.077 0.079 0.431 0.173 0.143 0.894 0.344 0.275 1.822 0.644

ϕ4 – 0.132 0.087 – 0.259 0.268 – 0.662 0.632 – 1.348 1.416 – 2.756 3.015

ϕ5 0.025 0.080 0.040 0.035 0.159 0.151 0.055 0.398 0.366 0.092 0.802 0.783 0.173 1.636 2.235

ϕ6 – – 0.242 – – 0.390 – – 1.001 – – 2.111 – – 5.009

The results are shown in Table 1. We observe that the zone-based algorithm
matches closely the linear-time guaranteed performance of the region-based algo-
rithm, and is sometimes faster. This is achieved by internally keeping zones

8 Formula ϕ4 could also be put in MTL form using some additional rewriting, but is
not part of the MTL syntactic fragment of TPTL we defined.



Monitoring Temporal Logic with Clock Variables 67

Fig. 5. Execution time for: (left) traces of increasing length; (top-right) formulas of
increasing size; (bottom-right) formulas with increasing number of time constants.

ordered on the time axis to avoid otherwise quadratic implementation of binary
operations such as intersection, see [33]. For large signal sizes the performance
degrades, subject to an implementation limitation of IF (the use of a hash table
for zones). The interval-based monitoring algorithm of AMT displays a speed
advantage of up to 10× when monitoring formulas ϕ3 and ϕ5.

In a second experiment, we consider the scalability of our region-based algo-
rithm relative to trace and formula dimensions. To demonstrate the impact of the
number of operators in the formulas, we consider the family σ1 ≡ ♦x.(p1∧x ≤ 2),
σ2 ≡ ♦x.(p1U(p2 ∧ x ≤ 4)), up to σ5 ≡ ♦x.(p1U(p2U . . . U (p5 ∧ x ≤ 10) . . .)). To
demonstrate the impact of the number of constants in the formula, we consider
the family ρi ≡ �x.(p0 → ♦(p1∧x ≤ ci

1∧♦(p2∧x ≤ ci
2∧ . . .∧♦(p5∧x ≤ ci

5) . . .)))
for i = 1, . . . , 5 with constants c11 = c12 = . . . = c15 = 10; c21 = 8, c22 = . . . = c25 =
10; up to c51 = 2, c52 = 4, . . . , c55 = 10. Formulas σi contain an increasing num-
ber of until operators, while formulas ρi contain an increasing number of time
constants.

The results are shown in Fig. 5. In the left-hand side we confirm that the
execution time is linear relative to the length of the trace for a fixed formula.
In the right-hand side we see that as the size of the formula, or its number of
constants increases, the execution time appears to grow only slightly faster than
linearly. This is expected over traces with bounded variability. More realistic
benchmarks would be needed in order to fully assess the practical behavior of
our algorithm relative to formula dimensions. Its asymptotic behavior in that
respect is only of relative interest, given that beyond a handful of temporal
operators or time constants, formulas quickly become less intelligible.



68 A. Elgyütt et al.

7 Conclusion

We demonstrated how the offline monitoring of temporal logic with real-valued
clock variables can be made to scale with the trace length. In the future, we
would like to investigate the monitoring problem for logics with other forms
of quantification such as first-order [7,18], or freeze quantification over signal
values [11]. Efficient monitoring of such logics would be of practical interest.

Acknowledgements. This research was supported in part by the Austrian Science
Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein
Award).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol.
600, pp. 74–106. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031988

3. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM (JACM) 41(1), 181–203
(1994)

4. Armoni, R., Fisman, D., Jin, N.: SVA and PSL local variables - a practical app-
roach. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 197–212.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 13

5. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)

6. Asarin, E., Maler, O., Nickovic, D., Ulus, D.: Combining the temporal and epis-
temic dimensions for MTL monitoring. In: Abate, A., Geeraerts, G. (eds.) FOR-
MATS 2017. LNCS, vol. 10419, pp. 207–223. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-65765-3 12

7. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order
temporal properties. J. ACM (JACM) 62(2), 15 (2015)

8. Basin, D., Krstić, S., Traytel, D.: Almost event-rate independent monitoring of
metric dynamic logic. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548,
pp. 85–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 6

9. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In:
Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer,
Heidelberg (2005). https://doi.org/10.1007/11590156 35

10. Bozga, M., Fernandez, J.-C., Ghirvu, L., Graf, S., Krimm, J.-P., Mounier, L.: IF: a
validation environment for timed asynchronous systems. In: Emerson, E.A., Sistla,
A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 543–547. Springer, Heidelberg (2000).
https://doi.org/10.1007/10722167 41

11. Brim, L., Dluhoš, P., Šafránek, D., Vejpustek, T.: STL*: extending signal temporal
logic with signal-value freezing operator. Inf. Comput. 236, 52–67 (2014)

12. Chai, M., Schlingloff, H.: A rewriting based monitoring algorithm for TPTL. In:
International Workshop on Concurrency, Specification and Programming (CS&P),
pp. 61–72 (2013)

13. Clavel, M.: Maude: specification and programming in rewriting logic. Theor. Com-
put. Sci. 285(2), 187–243 (2002)

https://doi.org/10.1007/BFb0031988
https://doi.org/10.1007/978-3-642-39799-8_13
https://doi.org/10.1007/978-3-319-65765-3_12
https://doi.org/10.1007/978-3-319-65765-3_12
https://doi.org/10.1007/978-3-319-67531-2_6
https://doi.org/10.1007/11590156_35
https://doi.org/10.1007/10722167_41


Monitoring Temporal Logic with Clock Variables 69

14. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8 17

15. Dokhanchi, A., Hoxha, B., Tuncali, C.E., Fainekos, G.: An efficient algorithm for
monitoring practical TPTL specifications. In: International Conference on Formal
Methods and Models for System Design (MEMOCODE), pp. 184–193. IEEE (2016)

16. Feng, S., Lohrey, M., Quaas, K.: Path checking for MTL and TPTL over data
words. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 326–339. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21500-6 26

17. Foster, H.: Assertion-based verification: industry myths to realities (invited tuto-
rial). In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 5–10. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 3

18. Havelund, K., Peled, D., Ulus, D.: First order temporal logic monitoring with BDDs.
In: Formal Methods in Computer-Aided Design FMCAD 2017, p. 116 (2017)

19. Havelund, K., Roşu, G.: Monitoring Java programs with Java pathexplorer. Elec-
tron. Notes Theor. Comput. Sci. 55(2), 200–217 (2001)

20. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

21. Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous
time. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967,
pp. 211–220. Springer, Heidelberg (2006). https://doi.org/10.1007/11753728 23

22. Hunter, P., Ouaknine, J., Worrell, J.: Expressive completeness for metric temporal
logic. In: Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic
in Computer Science, pp. 349–357. IEEE Computer Society (2013)

23. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-time
assurance approach for Java programs. Form. Methods Syst. Des. 24(2), 129–155
(2004)

24. Koubarakis, M.: Complexity results for first-order theories of temporal constraints.
In: International Conference on Principles of Knowledge Representation and Rea-
soning (KR), pp. 379–390 (1994)

25. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

26. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

27. Maler, O., Nickovic, D.: Monitoring properties of analog and mixed-signal circuits.
STTT 15(3), 247–268 (2013)

28. Markey, N., Raskin, J.-F.: Model checking restricted sets of timed paths. Theor.
Comput. Sci. 358(2–3), 273–292 (2006)

29. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualitative
and quantitative trace analysis with extended signal temporal logic. In: Beyer, D.,
Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 303–319. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89963-3 18

30. Pnueli, A.: The temporal logic of programs. In: Annual Symposium on Foundations
of Computer Science, SFCS 1977, pp. 46–57. IEEE Computer Society, Washington,
D.C. (1977)

31. Raskin, J.-F.: Logics, automata and classical theories for deciding real time. Ph.D.
thesis, Université de Namur (1999)

https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-319-21500-6_26
https://doi.org/10.1007/978-3-540-70545-1_3
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/11753728_23
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-89963-3_18


70 A. Elgyütt et al.

32. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electron. Notes Theor.
Comput. Sci. 144(4), 109–124 (2006)

33. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay, A.,
Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10512-3 16

34. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Asser-
tions. Springer, Boston (2005). https://doi.org/10.1007/b137011

https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/b137011


Reactive Synthesis for Robotic Swarms

Salar Moarref(B) and Hadas Kress-Gazit

Cornell University, Ithaca, USA
{sm945,hadaskg}@cornell.edu

Abstract. We consider the problem of reactive synthesis for systems
with non-instantaneous actions, i.e., it may take an arbitrary amount
of time for the actions of the system to complete, and meanwhile the
input from the environment may also change, possibly requiring a differ-
ent response from the system. The problem can be modeled as a typical
reactive synthesis problem by introducing auxiliary propositions and fair-
ness assumptions, at the expense of additional computational complexity.
We develop new realizability and synthesis algorithms that address the
problem without adding auxiliary propositions or assumptions. We dis-
cuss the complexity of both approaches. We then apply our algorithms
to synthesize controllers for a swarm robotic system. We implement both
approaches and compare them using a specific swarm task.

1 Introduction

Given a high-level specification in a formal language such as Linear Temporal
Logic (LTL), reactive synthesis is the process of computing a strategy for the
system that satisfies the specification regardless of how its environment behaves.
Reactive synthesis can be viewed as a game between two players: the system and
its environment. The system player tries to satisfy the specification, while the
environment player attempts to falsify it. The synthesized strategy is typically
a finite state machine that devises an action for the system for each sequence
of received inputs from the environment such that the resulting computation
satisfies the specification. In this paper, we consider the problem of reactive
synthesis where the actions of the system player may take an arbitrary amount
of time to complete, i.e., the actions may not take effect instantaneously.

Example 1. Consider a robot that can move between three regions {A,B,C} as
shown in Fig. 1. Figure 2 shows the corresponding region graph where each node
represents a region and edges indicate possible transitions between them. Assume
that the robot decides to move from region A to B. Moving from one region to the
next one is implemented by executing a (set of) underlying continuous controllers
and it may take some time for the robot to exit A and enter B, i.e., the action of
moving between regions does not happen instantaneously. Now assume the robot
receives the value of a variable i ∈ {0, 1, 2, 3} as input, and it needs to react to
different values of i in order to satisfy a given specification, e.g., the robot should
repeatedly visit region A if i ∈ {0, 1}, and visit region C if i ∈ {2, 3}. Due to the
c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 71–87, 2018.
https://doi.org/10.1007/978-3-030-00151-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_5&domain=pdf


72 S. Moarref and H. Kress-Gazit

Fig. 1. Workspace for Example 1.

A B C

Fig. 2. A region graph.

i = 0 i = 1 i = 2 i = 3

Fig. 3. Possible changes in input i.

arbitrary completion times of actions, while a robot is moving toward a region,
the value of the input received from the environment may change, requiring the
robot to change its action, e.g., to stop moving toward region A and start moving
toward C if the input changes from i ∈ {0, 1} to i ∈ {2, 3} as shown in Fig. 1.

Above example can be modeled as a typical reactive synthesis problem and
solved using an off-the-shelf synthesis tool. Raman et al. [1] propose an approach
that addresses actions with arbitrary (but finite) completion times. Roughly
speaking, in [1], where the robot is perceived to be and other uncontrolled vari-
ables are considered as input propositions, and a set of action propositions are
defined that are controlled by the system, e.g., the physical interpretation of an
action proposition πAB is that the robot should move from region A to region B.
To reflect that the actions may take arbitrary amount of time to complete, the
effects of actions are assumed to be non-deterministic, i.e., if the system applies
action πAB , then at the next step, the robot may either be in A or B. To ensure
that the actions eventually complete, a set of fairness assumptions is added indi-
cating that if the system persists on an action then eventually its execution is
completed, e.g., if the robot persists on moving from A to B, then eventually
it exits A and enters B. Thus, this approach requires the addition of auxiliary
propositions and fairness assumptions, increasing the computational complexity
of the synthesis. In this paper, we propose an alternative synthesis algorithm
that does not require addition of auxiliary propositions and assumptions. We
discuss the computational complexity of both approaches in Sect. 3.

The main motivation for this paper stems from the observation of swarm
robotic systems. Swarm robotics is concerned with design and analysis of robotic
systems that consist of large numbers of robots whose interaction with each other
and their environment lead to collectively intelligent behaviors. The potential
applications of swarm robotic systems are many, including exploration, search
and rescue, and construction. Thus, it is not surprising that this research area has
been very active in recent years (see [2] for a survey of the literature). However,
most of the existing approaches for design and analysis of swarm robotic systems
are bottom-up, where a set of local rules are designed, typically by hand, and
the emergence of the collective behavior is validated through testing and simu-
lations [3–7]. In recent work [8], we took a top-down approach and developed an



Reactive Synthesis for Robotic Swarms 73

abstraction and a synthesis algorithm for swarms performing non-reactive tasks.
In this paper, we address the problem of synthesis for reactive task specifications,
where the behavior of the swarm depends on environmental events.

Our approach addresses the control synthesis problem for swarms using the
same philosophy of recent work regarding reactive controller synthesis from LTL
specifications for single or multi-robot systems [9–17]. A common theme in these
approaches is that they create a discrete abstraction of the system, compute
a discrete controller that satisfies the specification over the abstraction, and
then continuously implement the discrete controller, creating a hybrid controller
that fulfills the high-level specification. One of the main challenges in modeling
swarms is that the robots do not move instantaneously between the regions
and they may execute their assigned tasks at different speeds. In this paper, we
synthesize a strategy for a swarm using an abstraction that is independent of the
number of robots. The synthesis algorithm takes into account that the robots
may move with different speeds, and meanwhile the input values may change,
requiring different responses from the robots.

Contributions. We propose realizability and synthesis algorithms for the reac-
tive synthesis problem where the actions of the system are non-instantaneous.
We compare our approach with the alternative method where a set of additional
propositions and assumptions are introduced to model the problem. We then
show how a robot swarm navigation problem can be modeled and solved using
the two approaches. We implement our algorithms and apply them to an example
to demonstrate the potential of our proposed approach.

Related work. The synthesis problem was first recognized by Church [18]. The
problem of synthesizing reactive systems from a specification given in LTL was
considered by Pnueli et al. [19], and shown to be doubly exponential in the size of
the LTL formula [20]. Bloem et al. [21] present polynomial time algorithms for the
realizability and synthesis problems for fragment of LTL known as Generalized
Reactivity (1) (GR(1)). We also consider GR(1) specifications in this paper.

Extending the timing semantics of discrete-time temporal logic formulas to
continuous or hybrid dynamics needs either careful definition of new semantics
(see e.g. [22]) or a finite abstraction of the infinite time and state space, e.g.,
bisimulation relation defined for timed automata and various models of hybrid
systems [23]. These bisimulations are time-abstract, i.e., they do not explicitly
encode time as a continuous variable. In this paper we use a discrete abstraction
that is also time-abstract where the transitions may take an arbitrary amount of
time to complete. The use of verification techniques for analyzing the emergent
behaviors of robotic swarms is studied in [24,25]. In this paper, we consider
synthesizing reactive controllers for swarms of robots. Hierarchical control and
planning for systems with large number of identical components from high-level
temporal logic specifications is also considered in [14–16], however, there is no
notion of dynamically changing environment and controllers are non-reactive.



74 S. Moarref and H. Kress-Gazit

2 Preliminaries

Let Z be the set of integers. For a, b ∈ Z, let [a..b] = {x ∈ Z | a ≤ x ≤ b}.

Linear Temporal Logic (LTL). LTL is a specification language with two
kinds of operators: logical connectives (negation (¬), disjunction (∨), conjunction
(∧) and implication (→)) and temporal modal operators (next (©), always (�),
eventually (�) and until (U)). The formulas of LTL are defined over a set of
atomic propositions (Boolean variables) V. The syntax is given by the grammar:
Φ := v | Φ ∨ Φ | ¬Φ | © Φ | Φ U Φ for v ∈ V. We define True = v ∨ ¬v,
False = v∧¬v, �Φ = True U Φ, and �Φ = ¬�¬Φ. A formula with no temporal
operator is a Boolean formula or a predicate. Given a predicate φ over variables
V, we say s ∈ 2V satisfies φ, denoted by s |= φ, if the formula obtained from φ
by replacing all variables in s by True and all other variables by False is valid.

We call the set of all possible assignments to variables V states and denote
them by ΣV , i.e., ΣV = 2V . Given a subset of variables X ⊆ V and a state s ∈ ΣV ,
we denote by s|X the projection of s to X , i.e., s|X = {x ∈ X | x ∈ s}. Given
non-overlapping sets of Boolean variables V1,V2, · · · ,Vn, we use the notation
φ(V1,V2, · · · ,Vn) to indicate that φ is a predicate over V1∪V2∪· · ·∪Vn. We often
use predicates over V∪V ′ where V ′ is the set of primed versions of the variables in
V, i.e., V ′ = {v′ | v ∈ V}. Given a predicate φ(V1,V2, · · · ,Vn,V ′

1,V ′
2, · · · ,V ′

n) and
assignments si, ti ∈ ΣVi

, we use (s1, s2, · · · , sn, t′1, t
′
2, · · · , t′n) |= φ to indicate

s1 ∪ s2 ∪ · · · ∪ sn ∪ t′1 ∪ t′2 ∪ · · · ∪ t′n |= φ where t′i = {v′ ∈ V ′
i | v ∈ ti}. For a set

Z ⊆ V, let Same(Z) be a predicate specifying that the values of the variables
in Z stay unchanged during a transition. Formally, Same(Z) =

∧
z∈Z z ↔ z′.

An LTL formula over variables V is interpreted over infinite words w ∈ (ΣV)ω.
The language of an LTL formula Φ, denoted by L(Φ), is the set of infinite words
that satisfy Φ, i.e., L(Φ) = {w ∈ (ΣV)ω | w |= Φ}. We refer the reader to [26]
for a more formal introduction.

Assume V is partitioned into a set of input I and output O variables, i.e.,
V = I � O. In this paper, we consider specifications of the form Φ = Φe → Φs

(known as GR(1) specifications [21]) where Φe characterizes assumptions on
the environment and Φs specifies the correct behavior of the system. A correct
implementation of the specification guarantees to satisfy Φs, provided that the
environment satisfies Φe. In turn, Φe and Φs have the structure Φe = φi

e ∧φt
e ∧φg

e

and Φs = φi
s ∧ φt

s ∧ φg
s , where (i) φi

e and φi
s are predicates over I and I ∪ O,

respectively, characterizing the initial states, (ii) φt
α for α ∈ {e, s} is an LTL

formula of the form
∧

i �ψi. Each subformula �ψi is either characterizing an
invariant, in which case ψi is a Boolean formula over I∪O, or it is characterizing
a transition relation, in which case ψi is a Boolean formula over expressions v
and ©u where v ∈ I ∪O and, u ∈ I if α = e and u ∈ I ∪O if α = s. (iii) φg

e and
φg

s are formulas of the form
∧

i ��γi characterizing fairness/liveness, where each
γi is a predicate over I ∪ O, and indicates an event that should occur infinitely
often during system execution.



Reactive Synthesis for Robotic Swarms 75

Game Structures. We consider two-player games played between a system
and its environment. Similar to [21], a game structure G is defined as G =
(V, I,O, θe, θs, τe, τs, Φ) where V is a finite set of Boolean variables partitioned
into input variables I controlled by the environment and output variables O
controlled by the system, θe is a predicate over I representing the initial states
of the environment, θs is a predicate over V representing the initial states of the
system, τe(V, I ′) is a predicate relating a state s ∈ ΣV to a possible next input
value sI′ ∈ ΣI′ , and characterizes the transition relation of the environment,
τs(V, I ′,O′) is a predicate relating a state s ∈ ΣV and an input value sI ∈ ΣI
to an output value sO ∈ ΣO, and characterizes the transition relation of the
system, and Φ is the winning condition, given as an LTL formula.

A state s is initial if s |= θe ∧ θs. Given two states s and s′ of G, s′ is
a successor of s if (s, s′) |= τe ∧ τs. A play σ of G is a maximal sequence of
states σ = s0, s1, · · · where s0 is initial and for each j ≥ 0, sj+1 is a successor
of sj . A play σ = s0, s1, · · · is winning for the system if either (1) σ ends in a
state sn where there is no assignment sI ∈ ΣI such that (sn, s′

I) |= τe, i.e.,
there is no possible valid input for the environment, or (2) σ is infinite and
it satisfies Φ. Otherwise, σ is winning for the environment. A strategy for the
system is a partial function f : M × ΣV × ΣI → M × ΣO, where M is some
memory domain with a designated initial value m0 ∈ M , such that for every
s ∈ ΣV , sI ∈ ΣI , and m ∈ M if (s, s′

I) |= τe then (s, s′
I , s′

O) |= τs, where
f(m, s, sI) = (m′, sO). A play σ = s0, s1, · · · is said to be compliant with f if
for all i ≥ 0, f(mi, si, si+1|I) = (mi+1, si+1|O). Strategy f is winning for the
system from a state s if all the plays starting from s that are compliant with f
are winning for the system. We denote by W the set of states from which there
is a winning strategy for the system. For the environment player, strategies and
winning strategies are defined dually. G is said to be winning for the system, if
for all sI ∈ ΣI , if sI |= θe, then there exists sO ∈ ΣO such that (sI , sO) |= θs

and (sI , sO) |= W, i.e., (sI , sO) is a winning state for the system. We say f is a
finite memory strategy if M is finite. If M is a singleton, we say f is memoryless.
Given a game structure G, the realizability problem is to decide if the game is
winning for the system. The synthesis problem is to compute a winning strategy
for the system. For a GR(1) specification Φ = φi

e ∧ φt
e ∧ φg

e → φi
s ∧ φt

s ∧ φg
s , there

is a corresponding game structure G = (V, I,O, θe, θs, τe, τs, φ
g
e → φg

s) such that
any play compliant with a winning strategy for system satisfies Φ [21].

Symbolic Algorithms. Symbolic algorithms operate on sets of states,
described by their characteristic functions and usually represented by binary
decision diagrams (BDDs) [26]. A symbolic algorithm can manipulate sets using
set-theoretic operations such as union, intersection, complementation, image and
pre-image. For example, given a transition relation τ defined over V and a set
X ⊆ ΣV of states, the image operator computes the set of states that can be
reached from X in a single step, and is defined as img(X) = {v ∈ ΣV | ∃u ∈
X : (u, v′) |= τ}. The gist of symbolic algorithms for realizability and synthesis
for temporal logic specifications is the controllable predecessor operator CPre.



76 S. Moarref and H. Kress-Gazit

Given a set of states X, CPre(X) is the set of states from which the system
can force the game into X regardless of how the environment behaves. Formally,
CPre(X) = {s ∈ ΣV | ∀x ∈ ΣI . (s, x′) |= τe → ∃y ∈ ΣO. (s, x′, y′) |=
τs ∧ (x, y) ∈ X}.

Solving GR(1) Games. Let G be a game where the winning condition is of
the form Φ =

∧m
i=1 ��ai → ∧n

j=1 ��gj . Here ai and gj are predicates encoding
assumptions and guarantees, respectively. We refer to such games as GR(1)
games [21]. Let j ⊕ 1 = (j mod n) + 1. It is shown [21] that the set of winning
states W for GR(1) games can be computed using following μ-calculus formula:

W = ν

⎡

⎢
⎢
⎢
⎣

Z1

Z2

...
Zn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

μY (
∨m

i=1 νX(g1 ∧ CPre(Z2) ∨ Y ∨ ¬ai ∧ CPre(X)))
μY (

∨m
i=1 νX(g2 ∧ CPre(Z3) ∨ Y ∨ ¬ai ∧ CPre(X)))

...
μY (

∨m
i=1 νX(gn ∧ CPre(Z1) ∨ Y ∨ ¬ai ∧ CPre(X)))

⎤

⎥
⎥
⎥
⎦

(1)

We refer the reader to [21] for thorough explanation of the above formula.
Following [27], we refer to the computation of the image and pre-image of a non-
empty set as a step. In [27], the complexity of a symbolic algorithm is measured
by the number of steps that it takes. The choice is motivated by the larger
cost normally incurred by image and pre-image computations when compared
to other operations performed on sets of states like union and intersection. For
GR(1) specifications, Piterman et al. [28] show that the set of winning states
can be computed with O(mnΣ2

V) symbolic steps in the worst case where m and
n are the number of assumptions and guarantees, respectively.

Graphs and SCCs. A directed graph is a pair G = (V,E) where V is a finite
set of nodes and E ⊆ V × V is a set of edges. We say (v0, v1, · · · , vk) ∈ V ∗ is
a path of length k if for all i (vi, vi+1) ∈ E. A path is nontrivial if its length is
nonzero, and it is simple if all its nodes are distinct. A cycle is a nontrivial path
for which v0 = vk. The graph H = (W,F ) is a subgraph of G if W ⊆ V and
F = E ∩ (W × W ). For a transition relation τ defined over a set of variables V,
a corresponding directed graph G = (V,E) can be defined as follows. Each state
s ∈ ΣV corresponds to a unique node v ∈ V , and each transition (s, r′) |= τ
corresponds to a unique edge (v, u) ∈ E where u corresponds to r ∈ ΣV .

A strongly connected component (SCC) of G is a maximal set C ⊆ V such
that for all v, w ∈ C there is a path from v to w. For v ∈ V , we define SCC(v)
to be the SCC that contains v. The SCC-quotient graph of (V,E) is a graph
(V s, Es) with V s = {SCC(v) | v ∈ V } and Es = {(C,C ′) | C �= C ′ and ∃v ∈
C, v′ ∈ C ′ : (v, v′) ∈ E}. Since the SCC graph is acyclic, it induces a partial
order, and we refer to this order when we mention minimal or maximal SCC.
Specifically, a maximal SCC has no outgoing edges. In [27], Bloem et al. present a
symbolic algorithm for strongly connected component decomposition of a graph
that performs θ(|V |log|V |) image and pre-image computations in the worst case.



Reactive Synthesis for Robotic Swarms 77

3 Reactive Synthesis with Non-instantaneous Actions

Let V be a set of variables partitioned into input I and output O variables.
The system can change the valuations over output variables by applying actions
that intuitively abstract the underlying physical controllers, e.g., the action of
moving a robot between two regions is an abstraction of the physical continuous
controller that implements the behavior. Let A be a set of actions. For each
action a ∈ A, a partial function Ha : ΣO → ΣO is defined that maps a valuation
o ∈ ΣO to the action’s effect Ha(o) ∈ ΣO, i.e., if Ha(o) is defined, then it is
the valuation over variables O once the execution of a is completed. Intuitively,
I are those variables whose values are directly controlled by the environment,
e.g., variable i in Example 1, and O are variables whose values are only affected
by system’s actions, e.g., the region where the robot is located which can change
by robot’s moving actions. We assume there is a special stutter action a⊥ ∈ A
with Ha⊥

(o) = o, i.e., a⊥ keeps the value of propositions O the same.
Application of an action a ∈ A at a state s ∈ ΣV is followed by a suc-

cessor state s′ ∈ ΣV and is denoted by s
a−→ s′. In this paper, we consider

non-instantaneous actions that may take arbitrary number of steps to complete,
and only if the system player persists on them by consecutive applications. For-
mally, for a consecutive application of an action a starting from a state s0 ∈ ΣV ,
there exists k ≥ 1 such that for the sequence s0

a−→ s1
a−→ s2 · · · a−→ sk · · · , we

have si|O = s0|O for i < k, and sk|O = Ha(s0|O), i.e., the valuations over the
propositions in O stay unchanged up until step k, where their valuation changes
due to the effect of action a. We say an action is instantaneous if k = 1, i.e., the
action takes effect in a single step. We consider the following problem:

Problem 1. Given a GR(1) specification Φ defined over input I and output O
variables, and a set of non-instantaneous actions A, synthesize a strategy for the
system that realizes Φ considering that the actions may take arbitrary number of
steps to complete, and meanwhile the values of the input variables may change.

Assumptions. We make the following assumptions in this paper. We assume
that the stutter action a⊥ is instantaneous, e.g., the robot can apply the stutter
action and stop immediately. Moreover, we assume that ∀s ∈ ΣV ,∀a1,a2 ∈
A. if Ha1(s|O) and Ha2(s|O) are defined, then Ha1(s|O) �= Ha2(s|O), i.e., the
effects of any two actions a1 and a2 that are applicable at s are distinguishable.
This assumption allows us to infer the actions from the computed strategies in
the absence of action propositions, i.e., to know which action to apply during
execution by analyzing the current and next valuations over the output variables.

3.1 Synthesis with Auxiliary Propositions [29]

One approach to solve Problem1 is to define a set of action propositions ΠA

where each πa ∈ ΠA corresponds to an action a ∈ A [29]. Then, from the descrip-
tion of the actions, a set of safety assumptions over O∪ΠA ∪O′ is obtained that
describes how actions can change the valuations over propositions O. Moreover,



78 S. Moarref and H. Kress-Gazit

a set of fairness assumptions ΦA =
∧

a∈A ��φa are defined to indicate that
if the system persists on an action, then it eventually completes. The action
propositions πA, and additional safety and fairness assumptions are added to
the original specification Φ. A synthesized strategy for the new specification, if
one exists, is a solution for Problem1. Note that the variables O are treated as
input propositions in the new specifications to model that their values are not
controlled by the system and that the system player can only change their values
by applying actions. We provide an example in the next section in the context
of swarm robotics, and refer the readers to [29] for further details.

The role of the action propositions and fairness assumptions in the above
approach is to capture that the values of the variables O may not change instan-
taneously. Let mA be the number of additional fairness assumptions over actions.
The complexity of the above approach is bounded by O(n(m + mA)(2|A|ΣV)2)
symbolic steps, i.e., the complexity grows linearly with the number of added
assumptions, and exponentially with the number of added actions propositions
in the worst case. Thus, the next natural question is how we can avoid introduc-
ing those auxiliary action propositions and fairness assumptions altogether.

3.2 Non-instantaneous-GR(1)

To model the problem without the use of the auxiliary propositions, an action
transition relation τA is obtained from descriptions of actions that intuitively
describes how the system player can change the values of the output variables
by applying actions. The GR(1) specification Φ and the transition relation τA

are then used to form a game G. Informally, τA is defined as if the actions of the
system player in the resulting game G are instantaneous, and the realizability
and synthesis algorithms are modified to capture that the actions are not, in
fact, instantaneous.

Forming the Game. Action transition relation τA is obtained from descrip-
tions of actions and is defined such that it restricts the system player to take
only one action at a time. Note that if there exists a winning strategy for the
system player that applies multiple actions at a state, given that the actions
may take arbitrary amount of time to complete and any of the applied actions
may complete first, any possible successor state must be winning. Thus, the sys-
tem player can deliberately apply one action and wait for it to complete before
applying the next action. Moreover, τA is defined such that actions are instanta-
neous, i.e., actions are assumed to complete in a single step. Formally, we define
τA =

∨
a∈A

∨
o∈ΣO o∧Ha(o)′ where Ha(o)′ is Ha(o) with propositions replaced

by their primed versions 1.
Let GΦ = (V, I,O, θe, θs, τe, τs, φ

g
e → φg

s) be the GR(1) game correspond-
ing to Φ. To solve Problem 1, we synthesize a strategy for the game G =
(V, I,O, θe, θs, τe, τs ∧ τA, φg

e → φg
s). Intuitively, τA models how the system

1 If Ha(o) is undefined for any o ∈ ΣO, let Ha(o) = False in the definition of τA.



Reactive Synthesis for Robotic Swarms 79

Fig. 4. Possible transitions between the states of the game.

can change the state of the game by applying actions. However, τA assumes
more “power” for the system as it allows actions to happen instantaneously. We
extend the controllable predecessor operator to take into account that an action
may take an arbitrary number of steps, but if the system persists, it eventually
completes. This way the auxiliary fairness assumptions are implicitly encoded
into the new controllable predecessor operator.

CPre∗ Operator. Next, we define an extended controllable predecessor oper-
ator CPre∗ : 2ΣV → 2ΣV that maps a set X ⊆ ΣV of states to a set
CPre∗(X) ⊆ ΣV . The operator CPre∗ is a generalization of CPre. Specifically,
CPre∗(X) ⊆ CPre(X). Intuitively, at any state s ∈ CPre∗(X), upon receiving
any input x ∈ ΣI such that (s, x′) |= τe, there is a transition (s, x′, y′) |= τs

for the system that if happens instantaneously (the values of the correspond-
ing output variables change in a single step), then a state in X is reached in
a single step. However, unlike CPre, the state of the game may stay within
CPre∗(X)\X for a finite number of steps since the transitions are not instan-
taneous and the values of the input variables can change meanwhile.

Consider the graph shown in Fig. 4. Each node is labeled with Ui where
U ∈ {A,B,C} is a region occupied by the robot and i is the value of the
input variable changing according to a transition relation visualized in Fig. 3.
Intuitively, each node of the graph represents a state of the game. The solid
edges show the transitions where the robot stays in the same region while the
value of the input variable changes asynchronously. The rectangular boxes in
Fig. 4 show the SCCs for subgraphs where the robot’s current region does not
change. To keep the figure simple, not all the possible transitions between the
states of the game are shown; the dashed edges represent that there exists at
least one transition between states in the corresponding SCCs.

Intuitively, there are two cases to consider when it comes to the environment
player’s moves: either it keeps the value of the input variable i within a SCC
indefinitely, or at some point, the environment player “switches” to a different
SCC. For example, starting from the node A0 and with the robot staying put,
the environment player can keep the state of the game within the SCC {A0, A1},
or at some point switch to {A2, A3}. Note that since SCC {A2, A3} is maximal,
the state of the game stays within {A2, A3} once it is entered, unless the system
takes an action to move to a different region.

Roughly speaking, CPre∗(X) are composed of those states where either the
system can push the game into X by stuttering, or by persisting on some action



80 S. Moarref and H. Kress-Gazit

depending on the SCC that the current state of the game belongs to. Note that
the stutter action is a special case as it is instantaneous by definition, i.e., it
takes effect immediately. Furthermore, if at a state s ∈ ΣV , the system player
can force the game into X by stuttering, then no further analysis is required as
X can be reached in exactly one step. Formally, we define τs

⊥ = τs ∧ same(O)
as the transitions where the output variables stay unchanged. We denote by
CPre⊥(X) the set of states where the system player can force the game into
X by stuttering, i.e., CPre⊥(X) = {s ∈ ΣV | ∀x ∈ ΣI . (s, x′) |= τe → ∃y ∈
ΣO(s, x′, y′) |= τs

⊥ ∧ (x, y) ∈ X)}. For example, CPre⊥({B1}) = {B0}, i.e., the
system player can force the game into {B1} from B0 simply by staying put as
the only “legal” environment move is to assign i = 1 at the next step.

In contrast, for a state that requires changing the values of the output vari-
ables to force the game into X, we further need to consider states that can be
reached due to arbitrary completion times of the actions and possible changes in
the environment. First note that the environment player may keep the state of
the game within an SCC forever, unless the system player persists on an action
to eventually change the values of the output propositions. For example, let
X = {C2, C3}. Observe that at state B2 (B3) and upon receiving i = 3 (i = 2,
respectively) as the next input, the system player can move toward region C. At
the next step, either the action completes by reaching C (and hence X), or the
state of the game stays within {B2, B3}. In this example, there is a “common”
action (moving toward C) for states in {B2, B3} such that if the system persists
on this action, it will reach X under any allowable change in the input values. On
the other hand, if we add a safety constraint that moving toward C is not allowed
at B3, the system player can no longer persist on the action of moving toward C,
and thus cannot force the game into X from {B2, B3}. Formally, for a valuation
y ∈ ΣO over output variables, we denote by {y} = {s ∈ ΣV | s|O = y} the set
of states whose valuations over O are the same as y. Let τy

e = {y} ∧ {y}′ ∧ τe

be a transition relation where the input variables may change according to the
environment transition relation τe while the system propositions have the valu-
ation y and stay unchanged during the transitions. Let Gy = (V y, Ey) be the
acyclic directed graph obtained from the SCC decomposition of τy

e [27]. For a
state s ∈ ΣV with s|O = y, we denote by SCC(s) ∈ V y, the SCC that s belongs
to. The following definition characterizes when the system player can push the
game into X from the states belonging to an SCC:

Definition 1. Given a set of states X ⊆ ΣV , we say the system player can
force the game into X from SCC(s), denoted by SCC(s) � X, if (1) SCC(s) ⊆
CPre(X) ∪ X, and (2) ∃y ∈ ΣO ∀v ∈ SCC(s) ∩ CPre(X) ∀x ∈ ΣI . (v, x′) |=
τe ∧ (x, v|O) ∈ SCC(s)\X → (v, x′, y′) |= τs ∧ (x, y) ∈ X.

Intuitively, the first condition says that all the states in the SCC(s) are either
part of X or the system player can force the game into X from them (assuming
instantaneous effects). Otherwise there is a state in the SCC for which there is no
transition for the system player that even if completes instantaneously, a state
in X is reached in a single step. The second condition ensures that there exists a
common action with effect y ∈ ΣO that the system can persist on to eventually



Reactive Synthesis for Robotic Swarms 81

reach X as long as the environment stays within the SCC and does not switch to
a different SCC. To this end, in condition 2, only those environment transitions
are considered that satisfy (v, x′) |= τe ∧ (x, v|O) ∈ SCC(s)\X, i.e., the next
state (x, v|O) in case the action does not take effect stays within SCC(s). Note
that for input values x such that (v, x′) |= τe ∧ (x, v|O) ∈ X, the system has
a trivial action (stuttering) to push the state of the game into X in a single
step. Thus, only the states SCC(s)\X need to be considered to determine if the
system player has a common action for the states within an SCC. Intuitively, If
condition 2 does not hold, then there is no common action for states within the
SCC(s), and the environment can circle in the SCC(s) reaching states where
the system player has to change its mind, not being able to persist on any action.

If the environment keeps the state within an SCC, then eventually the action
that the system player persist on takes effect and a state in X is reached. Other-
wise, the environment switches the SCC, in which case the system has to persist
on an action for that SCC. Since the SCC-quotient graph is acyclic, either some
system action completes in one of the SCCs, or eventually a maximal SCC is
reached for which an action is guaranteed to take effect eventually. Given Defi-
nition 1, we define the CPre∗ operator:

Definition 2. The set of states Z = CPre∗(X) from which the system player
can push the game into X is defined recursively as (1) If s ∈ CPre⊥(X) then s ∈
Z, and (2) If s ∈ CPre(X) and SCC(s) � X and img(SCC(s), τy)\SCC(s) ⊆
Z where y = s|O and τy = {y} ∧ {y}′ ∧ τe, then s ∈ Z.

Intuitively, img(SCC(s), τy)\SCC(s) are those states that can be reached
due to the environment player switching the SCC while the values of the output
variables stay unchanged, and they all must be in Z. Note that the SCC graph
corresponding to each y ∈ ΣO is acyclic, hence Z can be computed recursively
starting from maximal SCCs. Specifically, for states s ∈ CPre(X) that SCC(s)
is maximal, if SCC(s) � X, then s ∈ Z (since img(SCC(s), τy)\SCC(s) = ∅).

Algorithm 1 shows the steps for computing Z = CPre∗(X). The set Z is
initialized with CPre⊥(X). The set of states S = CPre(X) where the system
can force the game into X in a single step assuming instantaneous effects is
computed next. In line 3, the set of valuations Y over output variables that
appear in S is computed. Intuitively, only the SCCs corresponding to valuations
y ∈ Y are relevant and need to be considered since CPre∗(X) ⊆ CPre(X).
Next, the SCC-quotient graph corresponding to each y is analyzed as follows.
At each iteration of the inner loop in Algorithm1, an SCC scc ∈ V y is picked
for analysis such that all the SCCs that scc depends on, i.e., there is a path
from scc to them in Gy, have been analyzed. In line 9, it is first checked that
all the transitions that leave scc (i.e., the environment switches to a different
SCC), end up in states that are in Z. Otherwise, no state from scc is added to
Z since the environment can switch to an SCC where the system can no longer
guarantee reaching X. The conditions of Definition 1 is checked in lines 10–13
symbolically. If ϕ = True, it means there exists a common valuation over output
variables satisfying the conditions of Definition 1, in which case the states in
scc ∩ S are added to Z, and finally, scc is marked as analyzed.



82 S. Moarref and H. Kress-Gazit

Algorithm 1. CPre∗

Data: A set of states X
Result: A set of states Z s.t. the system can force the game into X

1 Z := CPre⊥(X);
2 S := CPre(X);
3 Y := S|O;
4 for each y ∈ Y do
5 Let Gy = (V y, Ey) be SCC-quotient of τy = {y} ∧ {y}′ ∧ τe;
6 while there are SCCs in Gy to be analyzed do
7 Pick scc ∈ V y s.t. ∀C ∈ V y : (scc,C) ∈ Ey → C is marked as analyzed;
8 ϕ := False;
9 if (img(scc, τy) ∧ ¬scc) ⊆ Z then

10 if scc ⊆ (S ∪ X) then
11 θ = ∃O′. scc ∧ S ∧ τe ∧ (scc ∧ ¬X)′;
12 ϕ = ∃O′ ∀V ∀I′. θ → τs ∧ X ′;
13 end

14 end
15 if ϕ = True then
16 Z := Z ∨ (scc ∧ S);
17 end
18 Mark SCC scc as analyzed;

19 end

20 end
21 Return Z;

Computing the Set of Winning States. The set of winning states for the
system can be computed using the original algorithm for GR(1) proposed in
[21] where the CPre operator is replaced by CPre∗. We refer to the resulting
algorithm as the Non-Instantaneous-GR(1) algorithm. The following theorem
establishes its correctness and complexity.

Theorem 1. The Non-Instantaneous-GR(1) algorithm is sound and complete.
It performs O(mnΣ2

V) number of CPre∗ computations in the worst case.

Since in the Non-Instantaneous-GR(1) algorithm, CPre is replaced by
CPre∗, i.e., the symbolic steps in the original algorithm correspond to CPre∗ in
the new algorithm, it follows that Non-Instantaneous-GR(1) performs O(mnΣ2

V)
number of CPre∗ computations in the worst case. Although the complexity of
the proposed symbolic algorithms are measured in symbolic steps, we should
note that the time needed to compute an image, pre-image or controllable pre-
decessor is not constant, and depends on both the argument and the transition
relation [27]. Moreover, the cost of symbolic computation strongly depends on
the number of variables used, because the symbolic steps are often implemented
using BDDs and the size of BDDs can grow exponentially with the number of
variables appearing in the Boolean formula they represent [26]. Adding action
propositions and fairness assumptions in the first approach not only increases



Reactive Synthesis for Robotic Swarms 83

the number of symbolic steps that must be performed in the worst case, but it
also makes the symbolic steps more complex as the BDDs may become larger. In
contrast, in the second approach, the CPre∗ manipulates BDDs that can poten-
tially depend on a smaller number of variables. Thus, the proposed algorithm
can outperform the alternative one in settings where many action propositions
and fairness assumptions need to be defined. We also note that CPre∗ involves
SCC-analysis that for y ∈ ΣO can be done in O(|ΣI |log|ΣI |) [27]. Since various
calls to CPre∗ during the Non-Instantaneous-GR(1) algorithm may require the
same SCC-decompositions (states with the same valuations over output variables
may appear in CPre∗ of different arguments during the fixpoint computations),
the SCC-quotient graphs can be computed, stored and shared between the calls
to CPre∗. Thus, in the worst case, SCC-decompositions can be computed with
effort O(|ΣO|(|ΣI |log|ΣI |)). In our implementation, SCC-decomposition is only
done for those y ∈ ΣO that are encountered during the CPre∗ computations.

Synthesis. The GR(1) synthesis algorithm [21] can be adapted to synthesize
strategies for systems with non-instantaneous actions. Intuitively, during the
fixpoint computation of winning states, the intermediate values of X and Y
in the μ-calculus formula 1 are collected. These sets are then used to define n
memoryless strategies f1, · · · , fn for the system. The strategy fj either forces
the play to visit guarantee gj and then proceed to Zj⊕1 (i.e., next goal), or
eventually falsifies some assumption ai forever. The synthesis algorithm with
non-instantaneous actions follows the same idea, with the main difference being
that the next valuation over output variables in the strategy must be defined in
a way that satisfies the constraints of Definition 2.

4 Reactive Synthesis for Swarm Robotic Systems

In this section, we show how a swarm robotic navigation problem can be modeled
and solved using the approaches outlined in the previous section. Crucial for
the physical realizability of the synthesized control is the ability to model non-
instantaneous actions which stem from the fact that motion takes time and
robots may be moving at different speeds.

For the swarm tasks, the user provides a region graph GR = (R,E) that
shows the connectivity of the work space, and a GR(1) specification Φ that
describes the desired swarm behavior. For each region r ∈ R, let πr be a propo-
sition representing that a part of the swarm is in region r. Let O = {πr | r ∈ R}
be the set of region propositions. Note that unlike the case of a single robot, the
truth values of the region propositions are not mutually exclusive as different
parts of the swarm may occupy different regions at the same time.

Example 2. Consider the workspace shown in Fig. 5 partitioned into regions
R = {A,B, .., N}. It may take an arbitrary amount of time for the robots to move
from one region to an adjacent region. Assume a swarm of robots, initially posi-
tioned in region D, must react to input i ∈ [0..3] received from the environment



84 S. Moarref and H. Kress-Gazit

Fig. 5. Workspace

in the following manner: Always eventually, (1) if i = 0, then swarm must only
occupy regions A, B and C, i.e., ��(i = 0 → πA ∧πB ∧πC ∧∧

r∈R\{A,B,C} ¬πr),
(2) if i = 1, then the swarm must only occupy the corridors (regions E, F ,
J and K), i.e., ��(i = 1 → πE ∧ πF ∧ πJ ∧ πK ∧ ∧

r∈R\{E,F,J,K} ¬πr), (3)
if i = 2, then swarm must only occupy regions G, and I, i.e., ��(i = 2 →
πG ∧ πI ∧ ∧

r∈R\{G,I} ¬πr), and (4) if i = 3, then swarm must only occupy
regions M and N , i.e., ��(i = 3 → πM ∧ πN ∧ ∧

r∈R\{M,N} ¬πr). We assume
that the environment can assign any value from [0..3] to i at each time step.

4.1 Synthesis with Auxiliary Action Propositions

We first sketch how the problem can be modeled using the auxiliary action
propositions. To this end, the action propositions are automatically obtained
from description of GR. For each edge (u,v) ∈ E, we define a corresponding
action proposition πuv that indicates (a part of) the swarm moves from region
u to v. We assume that ∀r ∈ R. (r, r) ∈ E, and a corresponding action πrr is
defined encoding that (a part of) the swarm remains in r. This action is required
in case a part of the swarm occupying a region must be partitioned such that a
part remains in the same region, while the rest moves out of it. Let ΠA be the
set of all action propositions. Note that |ΠA| = |R| + |E|.

A set of safety assumptions for each action πa ∈ ΠA are added to the spec-
ification indicating how application of each action may change the values of
region propositions. Intuitively, these safety assumptions indicate that if a part
of swarm is moving from region r to v, then at the next step, either regions may
be occupied. Finally, a set of fairness assumptions, one for each action proposi-
tion πrv ∈ ΠA is added saying that if a part of swarm is in r and the system
initiates moving the swarm toward v, then eventually part of swarm moves to
v or the system changes its mind and does not persist on the action anymore.
Furthermore, an additional set of fairness assumptions are required to model
that if the system persist on actions that moves the swarm out of r and does
not take actions that move the swarm into r, then eventually the swarm moves
out of r. Thus, we added |R| + |E| fairness assumptions, leading to complexity
O(n(m + |R| + |E|)(2|R|+|E|ΣV)2) in the worst case.



Reactive Synthesis for Robotic Swarms 85

4.2 Non-instantaneous-GR(1)

Next, we explain how the swarm navigation problem can be modeled without the
use of action propositions. To this end, the first step is to obtain the transition
relation τA for the set of actions of the swarm. τA is obtained automatically
from the description of the region graph GR and is defined in a way that allows
the system player to only move a part of the swarm from one region to the next
region. Formally, let (r,v) ∈ E be a possible transition in the region graph. We
define τA = same(O) ∨ ∨

(r,v)∈E(ϕr
v ∨ ϕ¬r

v ) where ϕr
v = πr ∧ ¬πv ∧ π′

r ∧ π′
v ∧

same(O\{πr, πv}), and ϕ¬r
v = πr∧πv∧¬π′

r∧π′
v∧same(O\{πr, πv}). Intuitively,

ϕr
v says that if a part of the swarm is in region r and region v is empty, then

at the next step the system can move part of the swarm to region v such that
both r and v are occupied. Similarly, ϕ¬r

v indicates that if both regions r and v
are occupied, then the system can evacuate region r by moving the subswarm to
v. All the other region propositions stay unchanged. Moreover, the system may
choose to keep the region propositions the same, i.e., not to move any part of
the swarm (stutter action). Note that τA is written such that the system player
can change the value of a region proposition in a single step, i.e., the actions
are instantaneous. The non-instantaneous-GR(1) synthesis algorithm takes into
account that the transitions between regions do not happen instantaneously.

4.3 Comparison

We implemented our algorithms in Java using the BDD package JDD [30]. The
algorithms were run on a desktop machine with an Intel Core i7 CPU@3.40GHz
and 16GB RAM. To model the problem using the approach proposed in [1],
66 action propositions and 66 fairness assumptions must be added to the spec-
ification in Example 2. We used Slugs [31] to synthesize a strategy using this
approach. Although Slugs is the state-of-the-art tool for reactive synthesis, it
took 54.27 min to compute a strategy. In contrast, our proposed method took
7 s to compute a strategy.

5 Conclusions and Future Work

We proposed new realizability and synthesis algorithms for reactive synthesis
with non-instantaneous actions, and compared our method with the alternative
approach where non-instantaneous actions are modeled through introduction of
auxiliary propositions and assumptions. We applied the algorithms to synthesize
controllers for swarm robotic systems, and showed that our proposed method
outperforms the alternative one over an example. Nevertheless, the proposed
approach has its limitations which also opens up avenues for future work. We
restrict the system transition relation such that the system player can only take
one action at a time (note that the alternative method allows application of
multiple actions at each step). This restriction may lead to strategies that are
unnecessarily large and “slow”. In practice, we would like to apply more actions



86 S. Moarref and H. Kress-Gazit

at each step to achieve the current goal quicker. Improving the quality of the
synthesized strategies, and exploring applications of compositional synthesis [32,
33] for achieving better scalability are among the possible future directions.

Acknowledgements. This research was supported by DARPA N66001-17-2-4058.

References

1. Raman, V., Piterman, N., Finucane, C., Kress-Gazit, H.: Timing semantics for
abstraction and execution of synthesized high-level robot control. IEEE Trans.
Robot. 31(3), 591–604 (2015)

2. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

3. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm. Swarm
Intell. 2(1), 1–23 (2008)

4. Soysal, O., Sahin, E.: Probabilistic aggregation strategies in swarm robotic systems.
In: Proceedings 2005 IEEE Swarm Intelligence Symposium, SIS 2005, pp. 325–332.
IEEE (2005)

5. Labella, T.H., Dorigo, M., Deneubourg, J.L.: Division of labor in a group of robots
inspired by ants’ foraging behavior. ACM Trans. Auton. Adapt. Syst. (TAAS) 1(1),
4–25 (2006)

6. Bachrach, J., Beal, J., McLurkin, J.: Composable continuous-space programs for
robotic swarms. Neural Comput. Appl. 19(6), 825–847 (2010)

7. Balch, T., Hybinette, M.: Social potentials for scalable multi-robot formations. In:
IEEE International Conference on Robotics and Automation 2000. Proceedings of
ICRA 2000, vol. 1, pp. 73–80. IEEE (2000)

8. Moarref, S., Kress-Gazit, H.: Decentralized control of robotic swarms from high-
level temporal logic specifications. In: International Symposium on Multi-Robot
and Multi-Agent Systems. IEEE (2017, to appear)

9. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009)

10. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic
planning. IEEE Trans. Autom. Control 57(11), 2817–2830 (2012)

11. Kress-gazit, H., Wongpiromsarn, T., Topcu, U.: Correct, reactive robot control
from abstraction and temporal logic specifications. IEEE Robot. Autom. Mag. 18,
65–74 (2011)

12. Wongpiromsarn, T., Ulusoy, A., Belta, C., Frazzoli, E., Rus, D.: Incremental syn-
thesis of control policies for heterogeneous multi-agent systems with linear tem-
poral logic specifications. In: IEEE International Conference on Robotics and
Automation, pp. 5011–5018. IEEE (2013)

13. Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from
temporal logic motion specifications. IEEE Trans. Robot. 26(1), 48–61 (2010)

14. Nilsson, P., Ozay, N.: Control synthesis for large collections of systems with mode-
counting constraints. In: Proceedings of the 19th International Conference on
Hybrid Systems: Computation and Control, pp. 205–214. ACM (2016)

15. Kloetzer, M., Belta, C.: Hierarchical abstractions for robotic swarms. In: Proceed-
ings 2006 IEEE International Conference on Robotics and Automation 2006. ICRA
2006, pp. 952–957. IEEE (2006)



Reactive Synthesis for Robotic Swarms 87

16. Kloetzer, M., Ding, X.C., Belta, C.: Multi-robot deployment from LTL specifica-
tions with reduced communication. In: 2011 50th IEEE Conference on Decision
and Control and European Control Conference (CDC-ECC), pp. 4867–4872. IEEE
(2011)

17. Kress-Gazit, H., Lahijanian, M., Raman, V.: Synthesis for robots: guarantees and
feedback for robot behavior. Ann. Rev. Control Robot. Auton. Syst. 1, 211–236
(2018)

18. Church, A.: Logic, arithmetic and automata. In: Proceedings of the International
Congress of Mathematicians, pp. 23–35 (1962)

19. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of
the 16th ACM Symposium on Principles of Programming Languages, pp. 179–190.
ACM (1989)

20. Rosner, R.: Modular synthesis of reactive systems. Ph.D. thesis, Weizmann Insti-
tute of Science (1992)

21. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive
(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

22. Davoren, J.M., Coulthard, V., Markey, N., Moor, T.: Non-deterministic temporal
logics for general flow systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS,
vol. 2993, pp. 280–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24743-2 19

23. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of
hybrid systems. Proc. IEEE 88(7), 971–984 (2000)

24. Dixon, C., Winfield, A.F., Fisher, M., Zeng, C.: Towards temporal verification of
swarm robotic systems. Robot. Auton. Syst. 60(11), 1429–1441 (2012)

25. Gjondrekaj, E., et al.: Towards a formal verification methodology for collective
robotic systems. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635,
pp. 54–70. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34281-
3 7

26. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge
(1999)

27. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected com-
ponent analysis in n log n symbolic steps. Form. Methods Syst. Des. 28(1), 37–56
(2006)

28. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive (1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773 24

29. Raman, V., Kress-Gazit, H.: Synthesis for multi-robot controllers with interleaved
motion. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4316–4321. IEEE (2014)

30. Vahidi, A.: JDD (2018). http://javaddlib.sourceforge.net/jdd/index.html.
Accessed 16 June 2018

31. Ehlers, R., Raman, V.: Slugs: extensible GR(1) synthesis. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 333–339. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6 18

32. Alur, R., Moarref, S., Topcu, U.: Compositional synthesis of reactive controllers
for multi-agent systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 251–269. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 14

33. Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for LTL
synthesis. Form. Methods Syst. Des. 39(3), 261–296 (2011)

https://doi.org/10.1007/978-3-540-24743-2_19
https://doi.org/10.1007/978-3-540-24743-2_19
https://doi.org/10.1007/978-3-642-34281-3_7
https://doi.org/10.1007/978-3-642-34281-3_7
https://doi.org/10.1007/11609773_24
http://javaddlib.sourceforge.net/jdd/index.html
https://doi.org/10.1007/978-3-319-41540-6_18
https://doi.org/10.1007/978-3-319-41540-6_14
https://doi.org/10.1007/978-3-319-41540-6_14


Distributed Timed Systems



Perfect Timed Communication Is Hard

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1(B),
and Shankara Narayanan Krishna2

1 Uppsala University, Uppsala, Sweden
{parosh,mohamed faouzi.atig}@it.uu.se

2 IIT Bombay, Mumbai, India
krishnas@cse.iitb.ac.in

Abstract. We introduce the model of communicating timed automata
(CTA) that extends the classical models of finite-state processes com-
municating through FIFO perfect channels and timed automata, in the
sense that the finite-state processes are replaced by timed automata, and
messages inside the perfect channels are equipped with clocks represent-
ing their ages. In addition to the standard operations (resetting clocks,
checking guards of clocks) each automaton can either (1) append a mes-
sage to the tail of a channel with an initial age or (2) receive the message
at the head of a channel if its age satisfies a set of given constraints. In
this paper, we show that the reachability problem is undecidable even in
the case of two timed automata connected by one unidirectional timed
channel if one allows global clocks (that the two automata can check and
manipulate). We prove that this undecidability still holds even for CTA
consisting of three timed automata and two unidirectional timed chan-
nels (and without any global clock). However, the reachability problem
becomes decidable (in EXPTIME) in the case of two automata linked
with one unidirectional timed channel and with no global clock. Finally,
we consider the bounded-context case, where in each context, only one
timed automaton is allowed to receive messages from one channel while
being able to send messages to all the other timed channels. In this case
we show that the reachability problem is decidable.

1 Introduction

In the last few years, several papers have been devoted to extend classical infinite-
state systems such as pushdown systems, (lossy) channel systems and Petri nets
with timed behaviors in order to obtain more accurate and precise formal mod-
els (e.g., [1,2,4,7,8,10–13,15,19–25,28]). In particular, perfect channel systems
have been extensively studied as a formal model for communicating protocols
[16,27]. Unfortunately, perfect channel systems are in general Turing power-
ful, and hence all basic decision problems (e.g., the reachability problem) are
undecidable for them [16]. To circumvent this undecidability obstacle, several
approximate techniques have been proposed in the literature including making
the channels lossy [5,18], restricting the communication topology to polyforest
architectures [26,27], or using half-duplex communication [17]. The decidabil-
ity of the reachability problem can be also obtained by restricting the analysis
c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 91–107, 2018.
https://doi.org/10.1007/978-3-030-00151-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_6&domain=pdf


92 P. A. Abdulla et al.

to only executions performing at most some fixed number of context switches
(where in each context only one process is allowed to receive messages from one
channel while being able to send messages to all the other channels) [26]. Another
well-known technique used in the verification of perfect channel systems is that
of loop acceleration where the effect of iterating a loop is computed [14].

In this paper, we introduce the model of Communicating Timed Automata
which extends the classical models of finite-state processes communicating
through FIFO perfect channels and timed automata, in the sense that the finite-
state processes are replaced by timed automata, and messages inside the perfect
channels are equipped with clocks representing their ages. In addition to the
standard operations of timed automaton, each automaton can either (1) append
a message to the tail of a channel with an initial age or (2) receive the message
at the head of a channel if its age satisfies a set of given constraints. In a timed
transition, the clock values and the ages of all the messages inside the perfect
channels are increased uniformly. Our model subsumes both timed automata
and perfect channel systems. More precisely, we obtain the latter if we do not
allow the use of timed information (i.e., all the timing constraints trivially hold);
and we obtain the former if we do not use the perfect channels (no message is
sent or received from the channels). Observe that this model is infinite in mul-
tiple dimensions, namely we have a number of channels that may contain an
unbounded number of messages each of which is equipped with a real number.

We show that the reachability problem is undecidable even in the case of two
discrete timed automata connected by one unidirectional timed channel if one
allows global clocks. We prove that this undecidability still holds even for the case
when we have three timed automata and two unidirectional timed channels (and
without any global clock). However, the reachability problem becomes decidable
(in EXPTIME) in the case of two discrete timed automata linked with one uni-
directional discrete timed channel and with no global clock. Finally, we consider
the bounded-context case, where in each context only one timed automaton is
allowed to receive messages from one channel while being able to send mes-
sages to all the other timed channels. In this case we show that the reachability
is decidable even when the timed automata and the timed channels involved
deal with dense time. This is quite surprising since the reachability problem for
unidirectional polyforest architectures can be easily reduced to its correspond-
ing problem in the bounded-context case in the untimed settings; however in
the presence of time, polyforest architectures already give undecidability, while
bounded-context stay decidable.

Related Work. Several extensions of infinite-state systems with time behaviours
have been proposed in the literature (e.g., [1,2,4,6–8,10–13,15,19–25,28]). The
two closest to ours are those presented in [19,25]. Both works extend perfect
channel systems with time behaviours but do not associate a clock to each mes-
sage (i.e., the content of each channel is still a word over a finite alphabet) as in
our case. The work presented [19] shows that the reachability problem is decid-
able if and only if the communication topology is a polyforest while for our model
the reachability problem is undecidable for polyforest architectures in general.



Perfect Timed Communication Is Hard 93

Furthermore, there is no simple reduction of our results to the results presented
in [19]. The work presented in [25] considers dense clocks with urgent seman-
tics. In [25], the authors show (as in our model) that the reachability problem
is undecidable for three timed automata and two unidirectional timed channels;
while it becomes decidable when considering two automata linked with one uni-
directional timed channel. However, the used techniques for these results are
quite different since we do not allow the urgent semantics.

2 Preliminaries

In this section, we introduce some notations and preliminaries which will be used
throughout the paper. We use standard notation N for the set of naturals, along
with ∞. Let X be a finite set of variables called clocks, taking on values from
N. A valuation on X is a function ν : X → N. We assume an arbitrary but fixed
ordering on the clocks and write xi for the clock with order i. This allows us to
treat a valuation ν as a point (ν(x1), ν(x2), . . . , ν(xn)) ∈ N

|X |. For a subset of
clocks X ∈ 2X and valuation ν ∈ R≥0

|X |, we write ν[X:=0] for the valuation
where ν[X:=0](x) = 0 if x ∈ X, and ν[X:=0](x) = ν(x) otherwise. For t ∈ N,
write ν + t for the valuation defined by ν(x) + t for all x ∈ X. The valuation
0 ∈ R≥0

|X | is a special valuation such that 0(x) = 0 for all x ∈ X . A clock
constraint over X is defined by a (finite) conjunction of constraints of the form
x �� k, where k ∈ N, x ∈ X , and �� ∈ {<,≤,=, >,≥}. We write ϕ(X ) for the
set of clock constraints. For a constraint g ∈ ϕ(X ), and a valuation ν ∈ N

|X |,
we write ν |= g to represent the fact that valuation ν satisfies constraint g. For
example, (1, 0, 10) |= (x1 < 2) ∧ (x2 = 0) ∧ (x3 > 1).

Timed Automata. Let Act denote a finite set called actions. A timed automaton
(TA) is a tuple A = (L,L0, Act,X , E, F ) such that (i) L is a finite set of locations,
(ii) X is a finite set of clocks, (iii) Act is a finite alphabet called an action set,
(iv) E ⊆ L×ϕ(X )×Act×2X ×L is a finite set of transitions, and (v) L0, F ⊆ L
are respectively the sets of initial and final locations and Act is a finite set of
actions. A state s of a timed automaton is a pair s = (�, ν) ∈ L × N

|X |. A
transition (t, e) from a state s = (�, ν) to a state s′ = (�′, ν′) is written as s

t,e→ s′

if e = (�, g, a, Y, �′) ∈ E, such that a ∈ Act, ν + t |= g, and ν′ = (ν + t)[Y :=0]. A
run is a finite sequence ρ = s0

t1,e1→ s1
t2,e2→ s2 · · · tn,en→ sn of states and transitions.

A is non-empty iff there is a run from an initial state (l0,0) to some state (f, ν)
where f ∈ F . Note that we have defined discrete timed automata, a subclass of
Alur-Dill automata [9], where clocks assume only integral values.

Region Automata. If A is a timed automaton, the region automaton corre-
sponding to A denoted by Reg(A) is an untimed automaton defined as fol-
lows. Let K be the maximal constant used in the constraints of A and let
[K] = {0, 1, . . . ,K,∞}. The locations of Reg(A) are of the form L × [K]|X |.
The set of initial locations of Reg(A) is L0 ×0. The transitions in Reg(A) are of

the following kinds: (i) (l, ν) → (l, ν + 1) denotes a time elapse of 1. If ν(x) + 1



94 P. A. Abdulla et al.

exceeds K for any clock x, then it is replaced with ∞. (ii) For each transition
e = (�, g, a, Y, �′), we have the transition (l, ν) a→ (l′, ν′) if ν |= g, ν′ = ν[Y :=0].
It is known [9] that Reg(A) is empty iff A is.

3 Communicating Timed Automata (CTA)

A communicating timed automata (CTA) N = (A1, . . . ,An, C,Σ, T ) consists of
timed automata Ai, a finite set C of FIFO channels, a finite set Σ called the
channel alphabet, and a network topology T . The network topology is a directed
graph ({A1, . . . ,An}, C) comprising of the finite set of timed automata Ai as
nodes, and the channels C as edges. C is given as a tuple (ci,j); the channel from
Ai to Aj is denoted by ci,j , with the intended meaning that Ai writes a message
from Σ to channel ci,j and Aj reads from channel ci,j . We assume that there is
atmost one channel ci,j from Ai to Aj , for any pair (Ai,Aj) of timed automata.
Figure 1 illustrates the definition.

Each timed automaton Ai = (Li, L
0
i , Act,Xi, Ei, Fi) in the CTA is as

explained before, with the only difference being in the transitions Ei. We assume
that Xi ∩ Xj = ∅ for i �= j. A transition in Ei has the form (li, g, op, Y, l′i) where
g, Y have the same definition as in that of a timed automaton, while op ∈ Act
is one of the following operation on the channels ci,j :

1. nop is an empty operation that does not check or update the channel contents.
Transitions having the empty operation nop are called internal transitions.
Internal transitions of Ai do not change any channel contents.

2. ci,j !a is a write operation on channel ci,j . The operation ci,j !a appends the
message a ∈ Σ to the tail of the channel ci,j , and sets the age of a to be
0. The timed automaton Ai moves from location li to l′i, checking guard g,
resetting clocks Y and writes message a on channel ci,j .

3. cj,i?(a∈I) is a read operation on channel cj,i. The operation cj,i?(a∈I)
removes the message a from the head of the channel cj,i if its age lies in the
interval I. The interval I has the form <�, u> with u ∈ N and � ∈ N\{∞},
“<” stands for left-open or left-closed and “>” for right-open or right-closed.
In this case, the timed automaton Ai moves from location li to l′i, checking
guard g, resetting clocks Y and reads off the oldest message a from channel
cj,i if its age is in interval I.

Global Clocks. A clock x is said to be global in a CTA if it can be checked any
of the timed automata in the CTA, and can also be reset by any of them on a
transition. Note that if a clock x is not global, then it can be checked and reset
only by the automata which “owns” it. The automaton Ai owns x iff x ∈ Xi

(recall that Xi ∩ Xj = ∅). The convention Xi ∩ Xj = ∅ applies to non-global
(or local) clocks. Thus, if a CTA consisting of automata A1, . . . , An has global
clocks, then its set of clocks can be thought of as

⊎
Xi � G where G is a set

of global clocks, which are accessed by all of A1, . . . , An, while clocks of Xi are
accessible only to Ai.



Perfect Timed Communication Is Hard 95

Configurations. The semantics of N is given by a labeled transition system LN .
A configuration γ of N is a tuple ((li, νi)1≤i≤n, c) where li is the current control
location of Ai, and νi gives the valuations of clocks Xi, 1 ≤ i ≤ n, where
νi ∈ N

|Xi|. c = (ci,j), and each channel ci,j is represented as a monotonic timed
word (a1, t1)(a2, t2) . . . (an, tn) where a ∈ Σ and ti ≤ ti+1, and ti ∈ N. Given a
word ci,j and a time t ∈ N, ci,j + t is obtained by adding t to the ages of all
messages in channel ci,j . For c = (ci,j), c + t denotes the tuple (ci,j + t). The
states of LN are the configurations.
Transition Relation of LN Let γ1 = ((l1, ν1), . . . , (ln, νn), c) and γ2 = ((l′1, ν

′
1),

. . . , (l′n, ν′
n), c′) be two configurations. The transitions → in LN are of two kinds:

1. Timed transitions t−→ : These transitions denote the passage of time t ∈ N.
γ1

t−→ γ2 iff li = l′i, and ν′
i = νi + t, for all i and c′ = c + t.

2. Discrete transitions D−→. These are of the following kinds:
(1) γ1

g,nop,Y−→ γ2 : there is a transition li
g,nop,Y−→ l′i in Ei, νi |= g, ν′

i = νi[Y :=
0], for some i. Also, lk = l′k, νk = ν′

k for all k �= i, and cd,h = c′
d,h for all

d, h. None of the channel contents are changed.

(2) γ1
g,ci,j !a,Y−→ γ2 : Then, lk = l′k, νk = ν′

k for all k �= i, and cd,h = c′
d,h for all

(d, h) �= (i, j). The transition li
g,ci,j !a,Y−→ l′i is in Ei, νi |= g, ν′

i = νi[Y := 0],
ci,j = w ∈ (Σ × N)∗ and c′

i,j = (a, 0).w.

(3) γ1
g,cj,i?(a∈I),Y−→ γ2 : Then, lk = l′k, νk = ν′

k for all k �= i, and cd,h = c′
d,h

for all (d, h) �= (j, i). The transition li
g,cj,i?(a∈I),Y−→ l′i is in Ei, νi |= g,

ν′
i = νi[Y := 0], cj,i = w.(a, t) ∈ (Σ ×N)+, t ∈ I and c′

j,i = w ∈ (Σ ×N)∗.

The Reachability Problem. The initial location of LN is given by the tuple γ0 =
((l01, ν

0
1), . . . , (l0n, ν0

n), c0) where l0i is the initial location of Ai, ν0
i = 0 for all i,

and c0 is the tuple of empty channels (ε, . . . , ε). A control location li ∈ Li is
reachable if γ0

∗−→ ((si, νi)1≤i≤n, c) such that si = li (It does not matter what
(ν1, . . . , νn) and c are). An instance of the reachability problem asks whether
given a CTA N with initial configuration γ0, we can reach a configuration γ.

4 Acyclic CTA

In this section, we look at the reachability problem in CTA whose underlying
network topology T is somewhat restrictive. An acyclic CTA is a CTA N =
(A1, . . . , An, C,Σ, T ) which has no cycles in the underlying undirected graph of
T 1. Such topologies are called polyforest topologies in [26] (left of Fig. 1). In this
section, we answer the reachability question in acyclic CTA with and without
global clocks by finding the thin boundary line which separates decidable and
undecidable acyclic CTAs.
1 Recall that the network topology ({A1, . . . , An}, C) is a directed graph; the under-

lying undirected graph is obtained by considering all edges as undirected in this
graph.



96 P. A. Abdulla et al.

Fig. 1. The left half of the figure contains one cyclic and one acyclic topology. The
right half of the figure illustrates an acyclic CTA which is not bounded context.

Theorem 1. In the presence of global clocks, reachability is undecidable for
CTA consisting of two timed automata A1, A2 connected by a single channel.

A single global clock suffices; the proof can be found in [3].
Undecidable Reachability with no Global Clocks

Theorem 2. Reachability is undecidable for acyclic CTA consisting of three
one-clock timed automata without global clocks.

Proof. We prove the undecidability by reducing the halting problem for deter-
ministic two counter machines (see [3] for a formal definition). We consider the
case of a discCTA consisting of timed automata A1, A2, A3 with channels c1,2
from A1 to A2 and c2,3 from A2 to A3. The undecidability for the other possible
topologies are discussed in [3].

The Encoding. Given a two counter machine C, we build a discCTA N con-
sisting of timed automata A1, A2, A3 with channels c1,2 from A1 to A2 and c2,3
from A2 to A3. Corresponding to each increment, decrement and zero check
instruction, we have a widget in each Ai. A widget is a “small” timed automa-
ton, consisting of some locations and transitions between them. Corresponding
to each increment/decrement instruction �i : inc or dec c, goto �j , or a zero
check instruction �i : if c = 0, goto �j else goto �k, we have a widget WAm

i in
each Am,m ∈ {1, 2, 3}. The widgets WAm

i begin in a location labelled �i, and
terminate in a location �j for increments/decrements, while for zero check, they
begin in a location labelled �i, and terminate in a location �j or �k. Each Am is
hence obtained by superimposing (one of) the terminal location �j of a widget
WAm

i to the initial location �j of widget WAm
j .

We refer to initial as well as terminal locations (labelled pinit, pterm) in each
WAm

i using the notation (WAm
i , p), p ∈ {pinit, pterm}. Note that an instruction

�i can appear as initial location in a widget and a terminal location in another;
thus, it is useful to remember the location along with the widget we are talking
about. x1, y1, z1 respectively denote the clocks used in A1, A2, A3. To argue the
proof of correctness, we use clocks gA1 , gA2 , gA3 respectively in A1, A2, A3 which
are never used in any transitions (gAi

represent the total time elapse at any
point in Ai).

Counter Values. The value of counter c1 after i steps, denoted ci1 is stored as
the difference between the value of clock gA2 after i steps and the value of clock



Perfect Timed Communication Is Hard 97

gA1 after i steps. Denoting li to be the instruction reached after i steps, and
thanks to the fact that we have locations li in each of A1, A2, A3 corresponding
to the instruction li, the value ci1 = (value of clock gA2 at location li of A2)
- (value of clock gA1 at location li of A1). Note that A1, A2 are not always
in sync while simulating the two counter machine: A1 can simulate the jth
instruction lj while A2 is simulating the ith instruction li for j ≥ i, thanks
to the invariant maintaining the value of c1. When they are in sync, the value
of c1 is 0. Thus, A1 is always ahead of A2 or at the same step as A2 in the
simulation. The value of counter c2 is maintained in a similar manner by A2

and A3. To maintain the values of c1, c2 correctly, the speeds of A1, A2, A3 are
adjusted while doing increments/decrements. For instance, to increment c1, A2

takes 2 units of time to go from �i to �j while A1 takes just one unit; then the
value of gA2 at �j is two more than what it was at �i; likewise, the value of gA1

at �j is one more than what it was at �i. The channel alphabet is {(�i, c+, �j) |
�i : inc c goto �j} ∪{(�i, c−, �j) | �i : dec c goto �j} ∪{(�i, c=0, �j), (�i, c>0, �k) |
�i : if c = 0, then goto �j , else goto �k} ∪{zero1, zero2}.

1. Consider an increment instruction �i:inc c goto �j . The widgets WAm
i for

m = 1, 2, 3 are described in Fig. 2. The one on the left is while incrementing
c1, while the one on the right is obtained while incrementing c2.

2. The case of a decrement instruction is similar, and is obtained by swapping
the speeds of the two automata (A1, A2 and A2, A3 respectively) in reaching
�j from �i. Note that we preserve the invariant that A1 is ahead of (or same
as) A2 which is ahead of (or same as) A3 in the simulation of the two counter
machine.

3. We finally consider a zero check instruction of the form �i:if
c1 = 0, then goto �j , else goto �k. The widgets WAm

i for m = 1, 2, 3 are
described in Fig. 3. The one on the left is a zero check of c1, while the one on
the right is a zero check of c2.

Fig. 2. Widgets corresponding to an increment c1, c2 instruction in A1, A2, A3

Let (�0, 0, 0), (�1, c11, c
1
2), . . . , (�h, ch1 , ch2 ) . . . be the run of the two counter

machine. �i denotes the instruction seen at the ith step and ci1, c
i
2 respec-

tively are the values of counters c1, c2 after i steps. Denote a block
of transitions in Am leading from the ith to the (i+1)st instruction as



98 P. A. Abdulla et al.

Fig. 3. Widgets corresponding to checking c1, c2 is 0. Let
α = (�i, c1 = 0, �j), β = (�i, c1 > 0, �k), γ = (�i, c2 = 0, �j), ζ = (�i, c2 > 0, �k).

Bi,i+1 = [((WAm
i , �i), νAm

i ), . . . , ((WAm
i , �i+1), νAm

i+1)]. A run in each Am is
B0,1,B1,2, . . . ,Bh,h+1, . . . , where each block Bh,h+1 of transitions in the wid-
get WAm

h simulate the instruction �h, and shifts control to �h+1. For each m,
((WAm

i , �j), νAm
j ) represents Am is at location �j of widget WAm

i with clock
valuation νAm

j .

Lemma 1. Let C be a two counter machine. Let ch1 , ch2 be the values of counters
c1, c2 at the end of the hth instruction �h. Then there is a run of N which passes
through widgets WAm

0 ,WAm
1 , . . . ,WAm

h in Am,m ∈ {1, 2, 3} such that

1. ch1 is the difference between the value of clock gA2 on reaching location
(WA2

h , �h) and the value of clock gA1 on reaching location (WA1
h , �h). ch2 is

the difference between the value of clock gA3 on reaching location (WA3
h , �h)

and the value of clock gA2 on reaching location (WA2
h , �h).

2. If WA1
h is a zero check widget for c1 (c2) then ch1 (ch2) is 0 iff one reaches

a terminal location of WA2
h reading α (γ) and zero1 (zero2) with age 0.

Likewise, ch1(c
h
2) is > 0 iff one reaches a terminal location of WA2

h reading β
(ζ) and zero1 (zero2) with age > 0.

Machine C halts iff the halt widget WAm

halt is reached in N , m = 1, 2, 3. [3] has the
full proof.

Decidable Reachability

Theorem 3. The reachability problem is decidable (in EXPTIME) for acyclic
CTA consisting of two timed automata without global clocks.



Perfect Timed Communication Is Hard 99

The proof proceeds by a reachability preserving reduction of the discCTA
to a pushdown automaton. We give the proof idea here, correctness argu-
ments and an example can be found in [3]. Given discCTA N consisting of
A = (LA, L0

A,XA, Σ,EA, FA) and B = (LB , L0
B ,XB , Σ,EB , FB), with a channel

cA,B from A to B, we simulate N using a pushdown automaton O as follows.

Intermediate Notations. We start with Reg(A) and Reg(B), the correspond-
ing region automata, and run them in an interleaved fashion. Let K be the max-
imal constant used in the guards of A,B. Let [K] = {0, 1, . . . ,K,∞}. The loca-
tions QA (QB) of Reg(A) (Reg(B)) are of the form LA× [K]|XA| (LB × [K]|XB |).
The transitions in Reg(A), Reg(B) are as follows:

(i) A transition (l, ν) → (l, ν + 1) denotes a time elapse of 1 in both
Reg(A), Reg(B). If ν(x) + 1 exceeds K for any clock x, then it is replaced
with ∞. (ii) For each transition e = (�, g, cA,B !a, Y, �′) in A we have the
transition (l, ν) a→ (l′, ν′) in Reg(A) if ν |= g, and ν′ = ν[Y :=0]. (iii) For
each transition e = (�, g, cA,B?(a ∈ I), Y, �′) in B we have the transition

(l, ν) a∈I→ (l′, ν′) in Reg(B) if ν |= g, and ν′ = ν[Y :=0]. (iv) For each inter-
nal transition e = (�, g, nop, Y, �′) in A,B we have the transition (l, ν)

nop→ (l′, ν′)
in Reg(A), Reg(B) if ν |= g, and ν′ = ν[Y :=0]. Note that the above is an
intermediate notation which will be used in the construction of the pushdown
automaton O. There is no channel between Reg(A), Reg(B), and we have sym-
bolically encoded all transitions of A,B in Reg(A), Reg(B) as above.

Construction of O: In the reduction from discCTA N to the pushdown
automaton O, the global time difference between A and B is stored in a counter
which is part of the finite control, such that B is always ahead of A, or at the
same time as A. Thus, a value i ≥ 0 stored in the counter of finite control means
that B is i units of time ahead of A. The state space of O is constructed using
the locations of Reg(A), Reg(B), and the transitions of O will make use of the
transitions described above of Reg(A), Reg(B). Internal transitions of A,B are
simulated by updating the respective control locations in Reg(A), Reg(B). Each
unit time elapse in B results in incrementing the counter by 1, while each unit
time elapse in A results in decrementing the counter. Consider a transition in
A where a message m is written on the channel. The counter value when m is
written tells us the time difference between B,A, and hence also the age of the
message as seen from B. Assume the counter value is i ≥ 0. If indeed m must be
read in B when its age is exactly i, then B can move towards a transition where
m is read, without any further time elapse. In case m must be read when its
age is j > i, then B can execute internal transitions as well a time elapse j − i
so that the transition to read m is enabled. However, if m must have been read
when its age is some k < i, then B will be unable to read m. By our interleaved
execution, each time A writes a message, we make B read it before A writes fur-
ther messages and proceeds. Note that this does not disallow A writing multiple
messages with the same time stamp.

To ensure that the state space of O is finite, only counter values ≤ K are kept
as part of the finite control of O. When the value exceeds K, we start using the



100 P. A. Abdulla et al.

stack (with stack alphabet {1}) to keep track of the exact value > K. Note that
we have to keep track of the exact time difference between B,A since otherwise
we will not be able to check age requirements of messages correctly.
State Space of O: Let Q̂x = {q⊥, q1, q

′
⊥, q′

1 | q ∈ Qx, x ∈ {A,B}}2. Let
Ox = Qx ∪ Q̂x for x ∈ {A,B}. The state space of O is OA × (OB × (Σ ∪{ε}))×
([K]\{∞}), where the Σ ∪ {ε} in (OB × (Σ ∪ {ε})) is to remember the message
(if any) written by A, which has to be read by B, and the last entry in the triple
denotes the counter value. The stack alphabet is {⊥, 1}. The initial location of
O is {((l0A, 0|XA|), (l0B , 0|XB |, ε), 0) | l0A ∈ L0

A, l0B ∈ L0
B} and the stack has the

bottom of stack symbol ⊥ in the initial configuration.
Transitions in O: The transitions in O are as follows : For states l, l′ of O,
internal transitions Δint consist of transitions of the form (l, l′); push transitions
Δpush consist of transitions of the form (l, a, l′) for a ∈ {1,⊥}. Finally, we also
have pop transitions Δpop of the form (l, a, l′) for a ∈ {1,⊥}. We now describe
the transitions.

1. Pop transitions Δpop : Pop transitions simulate time elapse in Reg(A) as well
as checking the age of a symbol being K or > K while it is read from the
channel.
(a) If (p, ν1) → (p, ν1 + 1) in Reg(A), and if the counter value as stored in

the finite control is K, and if the stack is non-empty, then we pop the
top of the stack to decrement the counter. For l = ((p, ν1), (q, ν2, α),K),
l′ = ((p, ν1 + 1), (q, ν2, α),K), (l, 1, l′) ∈ Δpop.

(b) If (p, ν1) → (p, ν1+1) in Reg(A), and if the counter value as stored in the
finite control is K, and if the stack is empty, we pop ⊥, reduce K in the
finite control to K − 1, and push back ⊥ to the stack. We remember that
⊥ has been popped in the finite control, so that we push it back imme-
diately. For l = ((p, ν1), (q, ν2, α),K), l′ = ((p⊥, ν1 + 1), (q, ν2, α),K − 1),
(l,⊥, l′) ∈ Δpop. The location p⊥ tells us that ⊥ has to be pushed back
immediately.

(c) To check that a message has age K when read, we need i = K, along
with the fact that the stack is empty (top of stack = ⊥). In this case,
we pop ⊥ and remember it in the finite control, and push it back. For
l = ((p, ν1), (q, ν2, α),K), l′ = ((p, ν1), (q⊥, ν2, α),K), (l,⊥, l′) ∈ Δpop.

(d) To check that a message has age > K when read, we need i = K, along
with the fact that the stack is non-empty (top of stack = 1). In this case,
we pop 1 and remember it in the finite control, and push it back. For
l = ((p, ν1), (q, ν2, α),K), l′ = ((p, ν1), (q1, ν2, α),K), (l, 1, l′) ∈ Δpop.

2. Push transitions Δpush : Push transitions simulate time elapse in Reg(B),
and also aid in simulating checking the age of a symbol being K or > K
while being read from the channel.
(a) Push ⊥ to the stack while reducing counter value from K to K −1 (1(b)).

For l = ((p⊥, ν1), (q, ν2, α),K−1) and l′ = ((p, ν1), (q, ν2, α),K−1),
(l,⊥, l′)∈ Δpush.

2 The q⊥, q1 are used to remember the topmost symbol of the stack while in location
q.



Perfect Timed Communication Is Hard 101

(b) Push ⊥ to the stack before checking the age of a message is K
(1(c)). For l = ((p, ν1), (q⊥, ν2, α),K) and l′ = ((p, ν1), (q′

⊥, ν2, α),K)),
(l,⊥, l′)∈ Δpush.

(c) Push 1 to the stack before checking the age of a message is > K
(1(d)). For l = ((p, ν1), (q1, ν2, α),K) and l′ = ((p, ν1), (q′

1, ν2, α),K),
(l, 1, l′)∈ Δpush.

(d) If (q, ν2) → (q, ν2+1) in Reg(B), and if the counter value as stored in the
finite control is K, then we push a 1 on the stack to represent the counter
value is > K. That is, (l, 1, l′) ∈ Δpush for l = ((p, ν1), (q, ν2, α),K) and
l′ = ((p, ν1), (q, ν2 + 1, α),K).

3. Internal transitions Δint: Transitions of Δint simulate internal transitions of
Reg(A), Reg(B) as well as - transitions as follows:
(a) Let l = ((p, ν1), (q, ν2, α), i), l′ = ((p′, ν′

1), (q, ν2, α), i) be states of O.
(l, l′) ∈ Δint if (p, ν1)

nop→ (p′, ν′
1) is an internal transition in Reg(A). The

same can be said of internal transitions in Reg(B) updating q, ν2, leaving
α, i and (p, ν1) unchanged.

(b) For l = ((p, ν1), (q, ν2, α), i) with 0≤ i < K, and l′ = ((p, ν1), (q, ν2 +

1, α), i + 1), (l, l′) ∈ Δint if (q, ν2) → (q, ν2 + 1) is a -transition in
Reg(B). Note that i + 1 ≤ K.

(c) For l = ((p, ν1), (q, ν2, α), i) with 0< i≤ K, and l′ = ((p, ν1 +

1), (q, ν2, α), i − 1), (l, l′) ∈ Δint if (p, ν1) → (p, ν1 + 1) is a -transition
in Reg(A).

(d) For l = ((p, ν1), (q, ν2, ε), i), l′ = ((p′, ν′
1), (q, ν2, a), i), (l, l′) ∈ Δint if

(p, ν1)
a→ (p′, ν′

1) is a transition in Reg(A) corresponding to a transition
from p to p′ which writes a onto the channel cA,B .

(e) For i < K, and i ∈ I, l = ((p, ν1), (q, ν2, a), i), l′ = ((p, ν1), (q′, ν′
2, ε), i),

(l, l′) ∈ Δint if (q, ν2)
a∈I→ (q′, ν′

2) is a transition in Reg(B) corresponding
to a transition from q to q′ which reads a from the channel cA,B and
checks its age to be in interval I.

(f) To check that a message has age K when read, we need the counter
value i to be K, along with the top of stack =⊥. See 1(c), 2(b), and
then we use transition (l, l′) ∈ Δint for l = ((p, ν1), (q′

⊥, ν2,m),K), l′ =
((p, ν1), (r, ν′

2, ε),K), if

(q, ν2)
m∈[K,K]→ (r, ν′

2) is a read transition in Reg(B).
(g) To check that a message has age > K when read, we need i = K,

along with the fact that the stack is non-empty (top of stack = 1). See
1(d), 2(c), and then (l, l′) ∈ Δint for l = ((p, ν1), (q′

1, ν2,m),K), l′ =

((p, ν1), (r, ν′
2, ε),K), if (q, ν2)

m∈(K,∞)→ (r, ν′
2) is a read transition in

Reg(B). (age requirements ≥ K are checked using this or the above).

The correctness of the construction is proved in [3] using Lemmas 2 and 3.

Lemma 2. If ((lA, νA), (lB , νB , a), i) is a configuration in O, along with a stack
consisting of 1j⊥, then message a has age i + j, A is at lA, B is at lB, and B
is i + j time units ahead of A.



102 P. A. Abdulla et al.

Lemma 3. Let N be a discCTA with timed automata A,B connected
by a channel cA,B from A to B. Assume that starting from an ini-
tial configuration ((l0A, 0|XA|), (l0B , 0|XB |), ε) of N , we reach configuration
((lA, ν1), (lB , ν2), w.(m, i)) such that w ∈ (Σ × {0, 1, . . . , i})∗, and (m, i) ∈
Σ × [K] is read off by B from (lB , ν2). Then, from the initial configuration
((l0A, 0|XA|), (l0B , 0|XB |, ε), 0) with stack contents ⊥ of O, we reach one of the fol-
lowing configurations

(i) ((pA, ν′
A), (lB , ν2,m), i) with stack contents ⊥ if i ≤ K,

(ii) ((pA, ν′
A), (lB , ν2,m), h) with stack contents 1j⊥, j > 0 if i > K and h+ j =

i.

Moreover, it is possible to reach (lA, ν1) from (pA, ν′
A) in A after elapse of i units

of time. The converse is also true.

Complexity: Upper and Lower bounds The EXPTIME upper bound is easy to see,
thanks to the exponential blow up incurred in the construction of O using the
regions of A and B, and the fact that reachability in a pushdown automaton is
linear. The best possible lower bound we can achieve as of now is NP-hardness,
as described in [3].

4.1 Bounded Context discCTA

Before winding up with discCTA, we consider bounded context discCTA and
show that the reachability problem is decidable even when having global clocks.
Given a discCTA, a context is a sequence of transitions in the discCTA where
only one automaton is active viz., reading from at most one fixed channel, but
possibly writing to many channels that it can write to (this cannot be the one
it reads from). Thus, (a) a context is simply a sequence of transitions where
a single automaton Ai performs channel operations, and (b) in a context, Ai

can read from at most one channel. A context switch happens when either a
different automaton Aj , j �= i performs channel operations, or when Ai reads
from a different channel.

Definition 1. A discCTA N is bounded context (discCTA-bc) if the number of
context switches in any run of N is bounded above by some B ∈ N.

See the right part of Fig. 1 for an example of a discCTA consisting of two pro-
cesses A1, A2, where A1 writes on c1,2 to A2. This acyclic discCTA is not bounded
context. There is a run where A1 writes an a after every one time unit, and A2

reads an a once in two time units. There is also a run where A1 writes b onto
the channel whenever it pleases and A2 reads it one time unit after it is written.

Theorem 4. Reachability is decidable for discCTA-bc, even in the presence of
global clocks.

The Idea: Let K be the maximal constant used in the discCTA with bounded
context ≤ B, and let [K] = {0, 1, . . . ,K,∞}. For 1 ≤ i ≤ n, let Ai =



Perfect Timed Communication Is Hard 103

(Li, L
0
i , Act,Xi, Ei, Fi) be the n automata in the discCTA. Let ci,j denote the

channel to which Ai writes to and Aj reads from. We translate the discCTA into
a bounded phase, multistack pushdown system (BMPS) M preserving reachabil-
ity. A multistack pushdown system (MPS) is a timed automaton with multiple
untimed stacks. A phase in an MPS is one where a fixed stack is popped, while
pushes can happen to any number of stacks. A change of phase occurs when
there is a change in the stack which is popped. See [3] for a formal definition.
We use Lemma 4 (proof in [3]) to obtain decidability after our reduction.

Lemma 4. The reachability problem is decidable for BMPS.

Encoding into BMPS. The BMPS M uses two stacks Wi,j and Ri,j to simulate
channel ci,j . The control locations of M keeps track of the locations and clock
valuations of all the Ai, as n pairs (p1, ν1), . . . , (pn, νn) with νi ∈ [K] for all i;3 in
addition, we also keep an ordered pair (Aw, b) consisting of a number b ≤ B to
count the context switch in the discCTA and also remember the active automaton
Aw, w ∈ {1, 2, . . . , n}. To simulate the transitions of each Ai, we use the pairs
(pi, νi), keeping all pairs (pj , νj) unchanged for j �= i. An initial location of M
has the form ((l01, ν1), . . . , (l

0
n, νn), (Ai, 0)) where l0i ∈ L0

i , νi = 0|Xi|; the pair
(Ai, 0) denotes context 0, and Ai is some automaton which is active in context
0 (Ai writes to some channels).
Transitions of M. The internal transitions Δin of M correspond to any inter-
nal transition in any of the Ais and change some (p, ν) to (q, ν′) where ν′ is
obtained by resetting some clocks from ν. These take place irrespective of con-
text switch.

The push and pop transitions (Δpush and Δpop) of M are more interesting.
Consider the kth context where Aj is active in the discCTA. In M, this informa-
tion is stored as (Aj , k). In the kth context, Aj can read from atmost one fixed
channel cl,j ; it can also write to several channels cj,i1 , . . . , cj,ik �= cl,j , apart from
time elapse/internal transitions. All automata other than Aj participate only in
time elapse and internal transitions. When Aj writes a message m to channel
cj,ih in the discCTA, it is simulated by pushing message m to stack Wj,ih . All
time elapses t ∈ [K] are captured by pushing t to all stacks. Δpush has transi-
tions pushing a message m on a stack Wi,jk , or pushing time elapse t ∈ [K] on
all stacks.

When Aj is ready to read from channel cl,j (say), the contents of stack Wl,j

are shifted to stack Rl,j if the stack Rl,j is empty. Assuming Rl,j is empty, we
transfer contents of Wl,j to Rl,j . The stack to be popped is remembered in the
finite control of M : the pair (p, ν), p ∈ Lj is replaced with (pWl,j , ν). As long as
we keep reading symbols t ∈ [K] from Wl,j , we remember it in the finite control
of M by adding a tag t to locations (pWl,j , ν) (p ∈ Lj) making it ((pWl,j )t, ν).
When a message m is seen on top of Wl,j , with ((pWl,j )t, ν) in the finite control
of M, we push (m, t) to stack Rl,j , since t is indeed the time that elapsed after
m was written to channel cl,j . When we obtain t′ ∈ [K] as the top of stack Wl,j ,

3 The global clock valuations are maintained as a separate tuple; for simplicity, we
omit this detail here. Our proof works in the presence of global clocks easily.



104 P. A. Abdulla et al.

with ((pWl,j )t, ν) in the finite control, we add t′ to the finite control obtaining
((pWl,j )t+t′ , ν). The next message m′ has age t + t′ and so on, and stack Rl,j is
populated. When Wl,j becomes empty, the finite control is updated to (pRl,j , ν)
and Aj starts reading from Rl,j . If Rl,j is already non-empty when Aj starts
reading, it is read off first, and when it becomes empty, we transfer Wl,j to
Rl,j . A time elapse t′′ between reads and/or reads/writes of Aj is simulated by
pushing t′′ on all stacks, to reflect the increase in age of all messages stored in
all stacks.
Phases of M are bounded. Each context switch in the discCTA results in M
simulating a different automaton, or simulating the read from a different channel.
Assume that every context switch of the discCTA results in some automaton
reading off from some channel. Correspondingly in M, we pop the corresponding
R-stack, and if it goes empty, pop the corresponding W -stack filling up the R-
stack. Once the R-stack is filled up, we continue popping it. This results in
atmost two phase changes (some Ri,j to Wi,j and Wi,j to Ri,j) for each context
in the discCTA. An additional phase change is incurred on each context switch
(a different stack Rk,l is popped in the next context). Note that M does not pop
a stack unless a read takes place in some automaton, and the maximum number
of stacks popped is 2 per context. M is hence a 3B bounded phase MPS. A
detailed proof of correctness and an example can be seen in [3].

Table 1. Summary of results for discCTA. k-discCTA represents discCTA with k dis-
crete timed automata, k ∈ N. ∗ − discCTA has finitely many discrete timed automata
involved.

Acyclic discCTA Global clocks Channels Reachability Where

2-discCTA Yes (1 global clock) 1 Undecidable [3]

3-discCTA time No 2 Undecidable Theorem 2

2-discCTA No 1 Decidable Theorem 3

∗ − discCTA bounded context Yes any Decidable Theorem 4

4.2 discCTA Summary

Table 1 summarizes our exhaustive characterisation for discCTA. The tightness
of the lower bound (NP−hardness) of our decidability result (Theorem 3) is open.
We mention the possible extensions to the model of discCTA as studied in this
paper which we conjecture will preserve the decidability result in Theorem 3.

1. If we allow diagonal constraints of the form x − y ∼ c where x, y are clocks
and c ∈ N, Theorem 3 continues to hold. In the proof, given a discCTA N
consisting of timed automata A,B connected by the channel cA,B from A to
B, we construct a one counter automaton O using Reg(A) and Reg(B). We
can easily track the difference between two clocks x, y in Reg(A) or Reg(B),
thereby handling diagonal constraints.



Perfect Timed Communication Is Hard 105

2. The initial age of a newly written message in a channel is set to 0. This can
be generalized in two ways : (i) allowing the initial age of a message to be
some j ∈ N, or (ii) assigning the value of some clock x as the initial age.
The construction of O is such that each time A writes a message m ∈ Σ to
the channel, m is remembered in the finite control of O (transition 3(d) in
the proof of Theorem 3). While simulating the read by B of the message m
(transitions 3(e), (f), (g) in the proof of Theorem 3), the value i in the finite
control of O along with the top of the stack determines whether the age of
m is < K,= K or > K, where K is the maximal constant used in A,B. This
is used to see if the age constraint of m is met; the age of m when it is read
is same as the time difference between B,A. We can adapt this for an initial
age j > 0, by remembering (m, j) in the finite control of O. If the counter
value is i < K, then the age of the message is j + i, while if it is K and the
top of stack is ⊥, then the age of m is j + K, and it is > j + K if the top of
stack is not ⊥. Checking the age constraint of m correctly now boils down to
using j + i and verifying if the constraint is satisfied.

References

1. Abdulla, P.A., Nylén, A.: Timed Petri nets and BQOs. In: Colom, J.-M., Koutny,
M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45740-2 5

2. Abdulla, P.A., Atig, M.F., Cederberg, J.: Timed lossy channel systems. In:
FSTTCS 2012, LIPIcs, 15–17 December 2012, Hyderabad, India, vol. 18, pp. 374–
386. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

3. Abdulla, P.A., Atig, M.F., Krishna, S.N.: What is decidable about perfect timed
channels? CoRR, abs/1708.05063 (2017)

4. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: Pro-
ceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS
2012, Dubrovnik, Croatia, 25–28 June 2012, pp. 35–44. IEEE Computer Society
(2012)

5. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: LICS.
IEEE Computer Society (1993)

6. Abdulla, P., Mahata, P., Mayr, R.: Dense-timed Petri nets: checking zenoness,
token liveness and boundedness. Log. Methods Comput. Sci. 3(1) (2007). https://
doi.org/10.2168/LMCS-3(1:1)2007

7. Akshay, S., Gastin, P., Krishna, S.N.: Analyzing timed systems using tree
automata. In: 27th International Conference on Concurrency Theory, CONCUR
2016, 23–26 August 2016, LIPIcs, Québec City, Canada, vol. 59, pp. 27:1–27:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

8. Akshay, S., Genest, B., Hélouët, L.: Decidable classes of unbounded Petri nets
with time and urgency. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS,
vol. 9698, pp. 301–322. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39086-4 18

9. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

https://doi.org/10.1007/3-540-45740-2_5
https://doi.org/10.2168/LMCS-3(1:1)2007
https://doi.org/10.2168/LMCS-3(1:1)2007
https://doi.org/10.1007/978-3-319-39086-4_18
https://doi.org/10.1007/978-3-319-39086-4_18


106 P. A. Abdulla et al.

10. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of different
semantics for time Petri nets. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005.
LNCS, vol. 3707, pp. 293–307. Springer, Heidelberg (2005). https://doi.org/10.
1007/11562948 23

11. Bhave, D., Dave, V., Krishna, S.N., Phawade, R., Trivedi, A.: A perfect class of
context-sensitive timed languages. In: Brlek, S., Reutenauer, C. (eds.) DLT 2016.
LNCS, vol. 9840, pp. 38–50. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53132-7 4

12. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: Aceto, L.,
de Frutos Escrig, D. (eds.) 26th International Conference on Concurrency The-
ory (CONCUR 2015), Leibniz International Proceedings in Informatics (LIPIcs),
Dagstuhl, Germany, vol. 42, pp. 283–296. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2015)

13. Bouajjani, A., Echahed, R., Robbana, R.: On the automatic verification of systems
with continuous variables and unbounded discrete data structures. In: Antsaklis,
P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 64–85.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60472-3 4

14. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel sys-
tems with nonregular sets of configurations. Theor. Comput. Sci. 221(1–2), 211–
250 (1999)

15. Bouchy, F., Finkel, A., Sangnier, A.: Reachability in timed counter systems. Elec-
tron. Notes Theor. Comput. Sci. 239, 167–178 (2009)

16. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

17. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf.
Comput. 202(2), 166–190 (2005)

18. Chambart, P., Schnoebelen, P.: Mixing lossy and perfect FIFO channels. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 28

19. Clemente, L., Herbreteau, F., Stainer, A., Sutre, G.: Reachability of communicating
timed processes. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 81–96.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5 6

20. Clemente, L., Lasota, S.: Timed pushdown automata revisited. In: 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
6–10 July 2015, pp. 738–749. IEEE Computer Society (2015)

21. Clemente, L., Lasota, S., Lazic, R., Mazowiecki, F.: Timed pushdown automata
and branching vector addition systems. In: 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, 20–23 June 2017,
pp. 1–12. IEEE Computer Society (2017)

22. Dang, Z.: Pushdown timed automata: a binary reachability characterization and
safety verification. Theor. Comput. Sci. 302(1–3), 93–121 (2003)

23. Emmi, M., Majumdar, R.: Decision problems for the verification of real-time soft-
ware. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp.
200–211. Springer, Heidelberg (2006). https://doi.org/10.1007/11730637 17

24. Ganty, P., Majumdar, R.: Analyzing real-time event-driven programs. In: Ouak-
nine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 164–178.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04368-0 14

25. Krcal, P., Yi, W.: Communicating timed automata: the more synchronous, the
more difficult to verify. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 249–262. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 24

https://doi.org/10.1007/11562948_23
https://doi.org/10.1007/11562948_23
https://doi.org/10.1007/978-3-662-53132-7_4
https://doi.org/10.1007/978-3-662-53132-7_4
https://doi.org/10.1007/3-540-60472-3_4
https://doi.org/10.1007/978-3-540-85361-9_28
https://doi.org/10.1007/978-3-642-37075-5_6
https://doi.org/10.1007/11730637_17
https://doi.org/10.1007/978-3-642-04368-0_14
https://doi.org/10.1007/11817963_24


Perfect Timed Communication Is Hard 107

26. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 299–314. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78800-3 21

27. Pachl, J.K.: Reachability problems for communicating finite state machines. Ph.D.
thesis, Faculty of Mathematics, University of Waterloo, Ontario (1982)

28. Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin, W.-
N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15643-4 23

https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-642-15643-4_23


On Persistency in Time Petri Nets

Kamel Barkaoui1 and Hanifa Boucheneb1,2(B)

1 Laboratoire CEDRIC, Conservatoire National des Arts et Métiers,
192 rue Saint Martin, Paris Cedex 03, France

kamel.barkaoui@cnam.fr
2 Laboratoire VeriForm, Department of Computer Engineering and Software

Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-ville,
Montréal, Québec H3C 3A7, Canada

hanifa.boucheneb@polymtl.ca

Abstract. A transition of a (time) Petri net is persistent if once it
is enabled, it can never become disabled through occurrences of other
transitions until it is fired [5,15]. It is said to be effect-persistent if it
is persistent and its effect (The effect of an enabled transition t in a
marking M is defined by the set of transitions newly enabled by firing
t.) is not affected by firing other transitions. This paper investigates some
sufficient conditions for persistency and effect-persistency of transitions,
in the context of time Petri nets (TPNs for short) that depend on the
marking and the static/dynamic time information of the model. Then, it
shows how to use these sufficient conditions to improve the partial order
reduction technique of the TPN model.

1 Introduction

Time Petri net model (TPN for short) is among the well studied time extensions
of Petri nets as it offers a good compromise between the modelling power and
the verification complexity. A TPN is a Petri net where a time interval is associ-
ated with each transition. The bounds of this interval specify its minimum and
maximum firing delays, relatively to its enabling date. The firing of a transition
is supposed to take no time but results in a new marking. The verification of
TPNs is, in general, based on the state space abstraction and the interleaving
semantics. The basic idea of the state space abstraction is to regroup together
all states reachable by the same firing sequence and to consider the resulting
groups modulo some relation of equivalence (i.e., abstract states). Each abstract
state consists of a marking and a dense convex clock/firing delay domain of its
enabled transitions. Several state space abstractions are proposed in the liter-
ature for the TPNs such as the State Class Graph (SCG) [4], the Contracted
State Class Graph (CSCG) [13], the Geometric Region Graph (GRG) [19,20],
the Strong State Class Graph (SSCG) [4], the Zone Based Graph (ZBG) [10]
and the Atomic State Class Graphs (ASCGs) [4,11,19]. All these state space
abstractions preserve markings and firing sequences of the TPNs and are finite
for bounded TPNs. However, they suffers from the state explosion problem.
c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 108–124, 2018.
https://doi.org/10.1007/978-3-030-00151-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_7&domain=pdf


On Persistency in Time Petri Nets 109

One of the key notions that allows to attenuate the state explosion problem is
the notion of persistency of transitions. A transition of a (time) Petri net is per-
sistent if once it is enabled, it can never become disabled through occurrences of
other transitions until it is fired [5,15]. A (time) Petri net is said to be persistent
if each of its transitions is persistent.

Since for a persistent Petri net, the firing of any transition will not disable
the others and different interleavings of the same set of transitions lead to the
same marking, a partial reduction technique should consist to select only one
transition to be fired from each marking. The resulting reduced graph preserves
the non-equivalent maximal firing sequences of the model (i.e., for each maximal
firing sequence of the model, there is an equivalent maximal firing sequence in
the reduced graph and vice-versa). Furthermore, it consists of a single finite or
infinite path.

In the context of persistent time Petri nets, firing in different orders two
persistent transitions from the same abstract state may lead to different abstract
states whose union is not necessarily convex [7]. However, as they share the same
marking, they have the same set of enabled transitions and all these transitions
are persistent. Thus, for a persistent TPN, firing only one transition from each
abstract state yields a reduced graph that preserves its non-equivalent maximal
firing sequences. By the fact that every firing sequence of a TPN is also a firing
sequence of its underlying non timed Petri net, it follows that the persistent
transitions of the underlying non timed Petri net are also persistent in the TPN.
The reverse is however not true. Therefore, a TPN is persistent, if its underlying
non timed Petri net is persistent. The subclass of persistent TPNs includes the
subclass of persistent Petri nets.

For non persistent TPNs, the notion of persistency is exploited, in the par-
tial order reduction techniques, to select the subset of transitions to be fired
from each abstract state. Nevertheless, in the context of TPNs, persistency is
not sufficient to obtain reduced graphs preserving non-equivalent maximal firing
sequences. Indeed, if all the enabled transitions in the current abstract state are
persistent, firing only one transition is not sufficient to preserve, in the reduced
graph, the non-equivalent maximal firing sequences. For instance, consider the
model TPN1 and its CSCG at Fig. 1. There are two persistent and enabled tran-
sitions t1 and t2 in its initial marking. Firing t1 and t2 in both orders leads to
two state classes with different behaviours. The transition t4 is not firable from
the state class reached by t1t2 but firable from the successor of the initial state
class by t2t1. Thus, considering only the firing order t1t2 from the initial state
will not cover all the non-equivalent maximal firing sequences of the model. The
firing sequence t2t1t4 will not be covered. To deal with this issue, the Partially
Ordered Sets (POSETs) method is proposed in [1,17,18,20].

The aim of POSETs is to compute, by exploring one sequence of transitions
and fixing partially the firing order of some of its transitions, the convex hull
of the abstract states reachable by some of its equivalent sequences. However,
replacing abstract states by their convex hull does preserve neither boundedness
nor reachability properties of the model [8]. To ensure that the computed convex



110 K. Barkaoui and H. Boucheneb

hull is exactly equal to the union of abstract states reachable by firing all the
sequences embedded in the partially ordered sequence, it suffices for the relaxed
transitions to be persistent and their effects are independent of their firing order
[7]. Such transitions are said to be effect-persistent. For example, for the model
TPN1 and its initial state class, the two enabled transitions t1 and t2 are firable
and effect-persistent. Firing t1 (or t2) from the initial state class without fixing
any firing order constraint with the other, followed by t2 (or t1) will result in
the union of state classes reached by firing in both orders t1 and t2.

In [7–9], the authors have revisited the POSETs and the stubborn sets meth-
ods in the context of time Petri nets and proposed some reduced graphs that
preserve the non-equivalent firing sequences of time Petri nets. The selection
procedures of the three approches stem from the fact that the persistency and
the effect of an enabled transition t is preserved, if no transition can be enabled
or fired before firing t and, at the same time, is in conflict with t or affects the
effect of t. Their basic idea is to select a firable transition and recursively select
all the enabled transitions that may alter directly/indirectly the persistency or
the effect of the selected ones, until reaching a fixed point. However, in case
a non firable transition t′ is selected, this fixed point is not always sufficient
to preserve the non-equivalent firing sequences of time Petri nets. Indeed, any
sequence starting with one or more non selected transitions followed by t′ may
be not covered by the equivalent sequences explored by considering only the
selected firable transitions. To deal with such a case it suffices to ensure that
there is at least a selected transition that must be fired before t′.

The main difference between approaches in [7–9] reside in the sufficient con-
ditions used to ensure persistency and effect-persistency of transitions. In [7],
these sufficient conditions are based on the current marking and the structure of
the underlying Petri nets. They do not take into account the time parameters of
the model. For instance, if a transition t is selected then each enabled transition
t′ that may enable directly/indirectly a transition t′′ in conflict with t is selected
too, even if its enabledness cannot occur before firing t. In [8,9], in addition
to the marking and the structure of the underlying Petri nets, both the static
and the dynamic firing intervals of transitions are used to relax the sufficient
conditions that ensure persistency or effect-persistency for transitions. Indeed,
these time parameters allow to compute, on the one hand, a lower bound of the
time needed for t′′ to become enabled or firable, and, on the other hand, the
maximal firing delay of t. If this lower bound is greater to the maximal firing
delay of t, then t′′ cannot be enabled as long as t is enabled. The approach in [8]
improves the approach in [9] by better taking into account time parameters and
relaxing the sufficient conditions that ensure persistency and effect persistency.
For example, if a transition t is selected then [9] selects also all the enabled
transitions in conflict with t in the current marking, while [8] selects only the
enabled transitions in conflict with t that are firable before t. Another improve-
ment is for the case where a non firable transition is selected. In [9], as soon as
a non firable transition t is selected, all firable transitions are selected too. The



On Persistency in Time Petri Nets 111

approach in [8] does not select any additional transition, if there is at least a
selected transition that must be fired before t′.

However in [8,9], the used lower bounds of the time needed for the transitions
to become enabled or firable are based on the structure of the TPN and its
static time intervals and do not take into account the current marking. This
paper shows how to tighten up these lower bounds by taking into account the
current marking and more accurately the structure and the static time intervals
of the TPN. Then, it establishes some sufficient conditions for persistency and
effect-persistency that are less restrictive than those used in [7–9]. Afterwards,
it reportes some results obtained by relaxing the selection criteria used in [8].

The rest of the paper is structured as follows. Section 2 presents the TPN
model, its semantics and the CSCG [13]. Section 3 is devoted to the notions of
persistency and effect-persistency in time Petri nets. It provides some sufficient
conditions that ensure persistency and effect-persistency for a transition. Finally,
the conclusions are presented in Sect. 4.

a) T PN1 b) CSCG of TP N1

c) T PN2

p1 p2

p5

p3 p4

t1[2, 2] t2[1, 3]

t3[2, 2] t4[3, 3]

•

••

t1

t2

t2 t1

t3 t4
t3

α0

α1 α2

α3 α4

α5 α6

p1 p2

p3 p4

p5 p6

p7

t1[2, 2]

t3[2, 2]

t5[1, 3]

t2[1, 3]

t4[3, 3]

t6[2, 4]

•

•

•

Fig. 1. TPN1, its CSCG and TPN2

2 Time Petri Nets

2.1 Definition and Semantics

Let P be a nonempty set. A multiset over P is a function M : P −→ N, N being
the set of natural numbers, defined also by the linear combination:

∑

p∈P

M(p)×p.

We denote by PMS and 0 the set of all multisets over P and the empty multiset,
respectively. Let M1 ∈ PMS , M2 ∈ PMS and ≺∈ {≤,=, <,>,≥}. Operations on
multisets are defined as usual.

Let Q+ and R
+ be the sets of non-negative rational and real numbers, respec-

tively, and INTX = {[a, b]|(a, b) ∈ X × (X ∪ {∞})}, for X ∈ {Q+,R+}, the set
of intervals whose lower and upper bounds are in X and X ∪ {∞}, respectively.
Let [a, b] ∈ INTX and [c, d] ∈ INTX be two intervals, the sum of these intervals
[a, b] + [c, d] is the interval : [a + c, b + d].



112 K. Barkaoui and H. Boucheneb

A TPN is a tuple N = (P, T, pre, post,M0, Is) where: (1) P and T are finite
and nonempty sets of places and transitions s.t. P ∩ T = ∅, (2) pre and post are
the backward and forward incidence functions, respectively (pre, post : T −→
PMS), (3) M0 ∈ PMS is the initial marking, and (4) Is is the static firing function
(Is : T → INTQ+). ↓ Is(t) and ↑ Is(t) denote the lower and upper bounds of
the static firing interval of transition t.

For t ∈ T , •t = {p ∈ P |pre(t)(p) > 0} and t• = {p ∈ P |post(t)(p) > 0}
denote the sets of input and output places of t, respectively. Similarly, for p ∈ P ,
•p = {t ∈ T |post(t)(p) > 0} and p• = {t ∈ T |pre(t)(p) > 0} denote the sets of
input and output transitions of p, respectively. We denote by CFS(t) the set of
transitions in structural conflict with t, i.e., CFS(t) = {t′ ∈ T | •t ∩ •t′ 
= ∅}.
The set of output transitions of t is denoted by NwS(t) = {t′ ∈ T | t• ∩ •t′ 
= ∅}.

Several semantics are proposed in the literature for the TPN model [3,12,14].
An overview and a classification of the TPN semantics can be found in [12].

We consider here the classical and widely used semantics (i.e., the threshold,
intermediate and single-server semantics).

Each marking of N is a multi-set over P . Let M be a marking of N and t ∈ T
a transition. The transition t is enabled at marking M iff all tokens required for
firing t are present in M , i.e., M ≥ pre(t). In case t is enabled at M , its firing
leads to the marking M ′ = M −pre(t)+post(t). We denote by En(M) the set of
transitions enabled at M , i.e., En(M) = {t ∈ T | M ≥ pre(t)}. For t ∈ En(M),
we denote by CF (M, t) the set of transitions enabled at M but in conflict with
t, i.e., CF (M, t) = {t′ ∈ En(M) | t′ = t ∨ M 
≥ pre(t) + pre(t′)}.

Let M ′ be the successor marking of M by t. We denote by Nw(M, t) the
set of transitions newly enabled at the marking M ′ reached from M by firing
t. Formally, Nw(M, t) contains t, if t is enabled at M ′, and also all transitions
enabled at the marking M ′ but not enabled at the intermediate marking M −
pre(t), i.e., Nw(M, t) = {t′ ∈ En(M ′) | t′ = t ∨ M − pre(t) 
≥ pre(t′)}.

Starting from the initial marking M0, the marking of N evolves by firing
transitions at irregular intervals of time. When a transition t is newly enabled,
its firing interval is set to its static firing interval. Bounds of its interval decrease
synchronously with time until it is fired or disabled by a conflicting firing. Tran-
sition t is firable, if the lower bound of its firing interval reaches 0. It must fire
immediately, without any additional delay, when the upper bound of its firing
interval reaches 0, unless it is disabled by another firing. The firing of a transition
takes no time but leads to a new marking.

Syntactically, in the context of N , a state is defined as a pair s = (M, I),
where M is a marking and I is a firing interval function (I: En(M) → INTR+).
The initial state of N is s0 = (M0, I0), where I0(t) = Is(t), for all t ∈ En(M0).

Let S = {(M, I) | M ∈ PMS ∧ I : En(M) → INTR+} be the set of all
syntactically correct states, s = (M, I) and s′ = (M ′, I ′) two states of S, dh ∈ R

+

a nonnegative real number, t ∈ T a transition and → the transition relation
defined by:

• s
dh→ s′ (s′ is also denoted s + dh) iff the state s′ is reachable from state s by

dh time units, i.e., ∀t ∈ En(M), dh ≤ ↑ I(t),M ′ = M and



On Persistency in Time Petri Nets 113

∀t′ ∈ En(M ′), I ′(t′) = [Max(0, ↓ I(t′) − dh), ↑ I(t′) − dh].

• s
t→ s′ iff t is immediately firable from s and its firing leads to s′, i.e.,

t ∈ En(M), ↓ I(t) = 0, M ′ = M − pre(t) + post(t), and

∀t′ ∈ En(M ′), I ′(t′) =

{
Is(t′) if t′ ∈ Nw(M, t)
I(t′) otherwise.

The semantics of N is defined by the transition system (S,→, s0), where
S ⊆ S is the set of all states reachable from s0 by ∗→ (the reflexive and transitive
closure of →).

A run in (S,→, s0), starting from a state s1 of S, is a maximal sequence
η = s1

dh1→ s1 + dh1
t1→ s2

dh2→ s2 + dh2
t2→ s3.... By convention, for any state

si, the relation si
0→ si holds. Sequences ρ = TTr(η) = dh1t1dh2t2... and ω =

Tr(η) = t1t2... are called the timed trace and firing sequence (untimed trace) of
η, respectively. The total elapsed time of the timed trace ρ, denoted by time(ρ),
is

∑

i=1,|ρ|
dhi, where |ρ| is the length of the firing sequence of ρ. An infinite timed

trace ρ is diverging if time(ρ) = ∞, otherwise it is said to be zeno. We denote
by Π(s), for s ∈ S, the set of runs of the state s. Runs of N are all runs of the
initial state s0.

A TPN model is said to be non-zeno if all its runs are non-zeno. Non-
zeno TPNs ensure that each enabled transition will eventually become firable
in the future, unless it is disabled by a conflicting transition. However, its firing
can postponed indefinitely in case the upper bound of its firing interval is not
bounded.

The timed language of N is the set of its timed traces. Let M be a marking.
The marking M is reachable in N iff ∃s ∈ S s.t. the marking of s is M . A
marking M ′ is reachable in N from M iff ∃s, s′ ∈ S s.t. s

∗→ s′ and the markings
of s and s′ are M and M ′, respectively. We denote by

−→
MN the set of markings

reachable in N from M .

2.2 Contracted State Class Graph

The Contracted State Class Graph (CSCG) [13] is the quotient graph of the State
Class Graph (SCG) [4] w.r.t. some relation of equivalence over state classes [13].
Intuitively, this relation groups together all state classes, which have the same
marking and triangular constraints1, but not necessarily the same simple atomic
constraints2.

Syntactically, a CSCG state class is defined as a pair α = (M,F ), where M
is a marking and F is a consistent conjunction of triangular atomic constraints

1 Constraint of the form x − y ≤ c, where x, y are real-valued variables and c is a
rational constant.

2 A simple atomic constraint is an atomic constraint of the form x ≤ c or −x ≤ c,
where x is a real-valued variable and c is a rational constant.



114 K. Barkaoui and H. Boucheneb

over the firing delays of the transitions enabled in M . The firing delay of a tran-
sition t is denoted by the non-negative real-valued variable t. The formula F
characterises the union of firing time domains of all states within α. By conven-
tion, F = true if the number of enabled transitions in M is less than 2 (i.e.,
there is no triangular atomic constraint in F ). A state s′ = (M ′, I ′) belongs to
α iff M = M ′ and its firing time domain (i.e.,

∧

t∈En(M′)
↓ I ′(t) ≤ t ≤ ↑ I ′(t) ) is

included in the firing time domain of α (i.e., F ).
From a practical point of view, every conjunction F of triangular atomic

constraints over a set of real-valued variables X is represented by means of a
Difference Bound Matrix (DBM) [2]. The DBM of F is a square matrix D,
indexed by variables of X. Each entry dij is an upper bound of xi −xj in F (i.e.,
dij = Max(c|xi − xj ≤ c ∈ F ))3. If there is no upper bound, in F , on xi − xj

with i 
= j, dij is ∞. Entry dii is 0. Although the same nonempty domain may
be encoded by different DBM’s, they have a canonical form. The canonical form
of a DBM is the representation with tightest bounds on all differences between
variables, computed by propagating the effect of each entry through the DBM.
The DBM D of F is in canonical form iff ∀xi, xj , xk ∈ X, dij ≤ dik + dkj .
Two conjunctions of atomic constraints are equivalent (i.e., represent the same
domain) iff their DBMs have the same canonical form. Canonical forms make
operations over formulas much simpler [2].

The CSCG initial state class is α0 = (M0, F0), where
F0 =

∧

ti,tj∈En(M0) s.t. ti �=tj

ti − tj ≤ ↑ Is(ti) − ↓ Is(tj), ti and tj are real-valued

variables representing firing delays of transitions ti and tj , respectively. It keeps
only the triangular atomic constraints of the SCG initial state class.

Let CS be the set of all syntactically correct CSCG state classes and succ a
successor function from CS × T to CS ∪ {∅} defined by: ∀α ∈ CS ,∀tf ∈ T,

– succ(α, tf ) 
= ∅ (i.e., tf is firable from α) iff tf ∈ En(M) and the following
formula is consistent (its domain is not empty): F ∧ (

∧

t∈En(M)

tf − t ≤ 0).

Intuitively, this formula, called the firing condition of tf from α, means that
tf is firable from α before all other transitions enabled at M . In other words,
there is at least one valuation of firing delays in F s.t. tf has the smallest
firing delay.

– If succ(α, tf ) 
= ∅ then succ(α, tf ) = (M ′, F ′), where:
M ′ = M − pre(tf ) + post(tf ) and F ′ is computed in three steps:
(1) Set F ′ to F ∧ ∧

t∈En(M)

tf − t ≤ 0 ∧ ∧

t∈Nw(M,tf )

↓ Is(t) ≤ t′ − tf ≤↑ Is(t)

(Variables t′ for t ∈ Nw(M, tf ) are new variables introduced for repre-
senting the firing delays of the newly enabled transitions. They allow to
deal with the situation where a transition t is enabled before firing tf and
newly enabled by tf (i.e. t ∈ CF (M, tf ) ∩ Nw(M, tf )). The delay of the
new instance of t is temporally represented by t′, in this step);

3 Here, F is viewed as a set of triangular atomic constraints.



On Persistency in Time Petri Nets 115

(2) Put F ′ in canonical form4 and eliminate all transitions of CF (M, tf );
(3) Rename each t′ into t.

We denote by Fr(α) = {t ∈ T | succ(α, t) 
= ∅} the set of transitions firable
from α. The function succ is extended to sequences of transitions as follows: ∀ω ∈
T ∗, succ(α, ω) = succ(succ(α, ω1), ω2), where ω = ω1ω2 and, by convention,
succ(α, ε) = α, ε being the empty sequence. We denote by ||ω|| ⊆ T the set of
transitions appearing in ω.

The CSCG of N is the structure C = (C, succ, α0), where α0 is the initial
CSCG state class of N and C is the set of state classes accessible from α0 by
applying repeatedly the successor function succ, i.e., C = {α ∈ CS |∃ω ∈ T ∗, α =
succ(α0, ω) 
= ∅}. A sequence ω ∈ T+ is a firing sequence of C iff succ(α0, ω) 
= ∅.

From a practical point of view, this firing rule can be implemented, using
DBMs in canonical form, as follows [13]: Let α = (M,F ) be a state class, D the
DBM in canonical form of F and tf a transition.

– succ(α, tf ) 
= ∅ iff tf ∈ En(M) ∧ ∀ti ∈ En(M), dif ≥ 0.
– If succ(α, tf ) 
= ∅, then succ(α, tf ) = (M ′, F ′), where M ′ and the canonical

form of the DBM of F ′ are computed as follows:
M ′ = M − pre(tf ) + post(tf ) and ∀(ti, tj) ∈ (En(M ′))2,

d′
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = j
↑ Is(ti) − ↓ Is(tj) if ti, tj ∈ Nw(M, tf ),
dif − ↓ Is(tj) if ti /∈ Nw(M, tf ) ∧ tj ∈ Nw(M, tf ),
↑ Is(ti) + Min

tu∈En(M)
duj if ti ∈ Nw(M, tf ) ∧ tj /∈ Nw(M, tf ),

Min(dij , dif + Min
tu∈En(M)

duj) otherwise.

Moreover, just after firing tf , the minimal remaining delay of any transition
tj ∈ En(M ′) − Nw(M, tf ) is − Min

tu∈En(M)
duj [13].

This delay is the minimal value of tj − tf in the domain of the firing condition
of tf from α, i.e., F ∧ ∧

t∈En(M)

tf − t ≤ 0.

Let α = (M,F ) and α′ = (M,F ′) be two state classes with the same marking
M , D and D′ the DBMs in canonical form of F and F ′, respectively. The union of
state classes α and α′ is not necessarily a state class [6]. The smallest enclosing
state class of the union of α and α′, called the convex hull of α and α′ and
denoted by α′′ = α � α′, is the state class α′′ = (M,F ′′), where the DBM D′′

of F ′′ is computed as follows: ∀ti, tj ∈ En(M), d′′
ij = Max(dij , d

′
ij). The union

α ∪ α′ is a state class iff α � α′ = α ∪ α′, i.e., the union of the state classes
is identical to their convex hull. It is proven in [13] that the CSCG preserves
markings and firing sequences of the SCG (which, in turn, preserves markings
and firing sequences of N ). The CSCG of N is finite iff N is bounded. The
CSCG is smaller than the SCG and has another nice feature over the SCG

4 The canonical form of F ′ is the formula corresponding to the canonical form of its
DBM.



116 K. Barkaoui and H. Boucheneb

relatively to the different interleavings of the same set of transitions. Indeed,
for the TPN in Fig. 1c, from the initial state, the union of the CSCG state
classes reached by sequences t1t2 and t2t1 is identical to their convex hull as
the CSCG state classes reached by these sequences are (p3 + p4 + p7,−2 ≤
t3 − t4 ≤ −1) and (p3 + p4 + p7,−1 ≤ t3 − t4 ≤ 0), respectively. Their convex
hull (p3 +p4 +p7,−2 ≤ t3 − t4 ≤ 0). Their convex hull is identical to their union.
However, the union of the SCG state classes reached by sequences t1t2 and t2t1
is not identical to their convex hull. Indeed, the SCG state classes reached by
these sequences are (p3 + p4 + p7, 1 ≤ t3 ≤ 2 ∧ t4 = 3 ∧ −2 ≤ t3 − t4 ≤ −1) and
(p3 + p4 + p7, t3 = 2 ∧ 2 ≤ t4 ≤ 3 ∧ −1 ≤ t3 − t4 ≤ 0), respectively. Their convex
hull (p3 + p4 + p7, 1 ≤ t3 ≤ 2 ∧ 2 ≤ t4 ≤ 3 ∧ −2 ≤ t3 − t4 ≤ 0) is not identical to
their union, since for t3 = 1 and t4 = 2, the corresponding state belongs to their
convex hull but does not belong to their union.

For the rest of the paper, we fix a TPN N = (P, T, pre, post,M0, Is).

3 Persistent and Effect-Persistent Transitions

3.1 Definitions

For Petri nets, the notion of persistency, proposed by [16], means that no tran-
sition can disable another one. As this notion relies on the behaviour of the
model, it means that there is no conflict in each reachable marking of the model.
Formally, N is persistent iff ∀M ∈ −→

M0
N ,∀t, t′ ∈ En(M), t = t′ ∨ t /∈ CF (M, t′).

In the context of TPNs, this notion of persistency of transition can be defined
relatively to a state or a state class. It can also be defined w.r.t. some subset of
transitions. Let s = (M, I) ∈ S be a reachable state, α = (M,F ) a reachable
state class, t ∈ En(M) a transition enabled in M and μ ⊆ T such that t ∈ μ.

The transition t is persistent from s w.r.t. μ iff
∀s′ = (M ′, I ′) ∈ S, ∀t′ ∈ T, ∀ρ ∈ (R+ × T )∗ × R

+,

(Tr(ρ) ∈ (T − μ)∗ ∧ s
ρ−→ s′ t′

−→) ⇒ (t′ ∈ μ ∨ t /∈ CF (M ′, t′)).

In words, from the state s, the transition t is maintained enabled as long as
no transition from μ is fired. The transition t is persistent from α w.r.t. μ iff t
is persistent from each state of α w.r.t μ. Note that for μ = {t}, the definitions
above correspond to the classical definition of persistency of transitions relatively
to a state or a state class. Similarly, we define the notion of effect-persistent of
t from s and α w.r.t μ as follows.

The transition t is effect-persistent from s w.r.t. μ iff it is persistent from s
w.r.t. μ and its effect is not affected by firing transitions of T − μ, i.e.,

∀s′ = (M ′, I ′), s′′ = (M ′′, I ′′) ∈ S,∀ρ ∈ (R+ × T )∗ × R
+,∀t′ ∈ T,

(Tr(ρ) ∈ (T − μ)∗ ∧ s
ρ−→ s′ t′

−→ s′′) ⇒
t′ ∈ μ ∨ (t /∈ CF (M ′, t′) ∧ Nw(M ′, t) = Nw(M ′′, t)).



On Persistency in Time Petri Nets 117

In words, from state s, the enabledness and the effects of the transition t are not
affected as long as no transition of μ is fired. The transition t is effect-persistent
from α w.r.t. μ iff t is effect-persistent from each state of α w.r.t μ.

We first establish, in the following, some sufficient conditions for persistency
and effect-persistency of t from α w.r.t. μ. These sufficient conditions are based
on the lower and upper bounds of the firing delays of transitions from α, including
the non enabled ones. If a transition is enabled in α, then a lower bound and an
upper bound of its firing delay, relatively to α or any other enabled transition,
are provided by the time information within the state class. Otherwise, the firing
delay of a non enabled transition from α is the time needed for the transition
to become firable directly/indirectly from α. We show, in the following, how
to compute a lower bound of this delay, even when we want to avoid some
transitions. With these firing delay bounds, a sufficient condition for persistency
of t from α is guaranteed, if an upper bound of its firing delay from α is strictly
smaller than a lower bound of the firing delay of each transition in structural
conflict with t.

3.2 Potential Firing Delays of Transitions from a State Class

Let t, t′ ∈ T be two transitions. A transition-path of N connecting t to t′ is a
sequence of transitions t1...tn, with t = t1, t

′ = tn, n ≥ 1, such that n = 1 or
for i ∈ {1, ..., n − 1},∃pi ∈ post(ti) ∩ pre(ti+1) (i.e., ti+1 ∈ NwS(ti)). We extend
the static firing interval function to any sequence of transitions ω = t1...tn as
follows: Is(ω) = Is(t1) + ... + Is(tn). Intuitively, Is(ω) gives the firing interval
of the sequence ω from a marking M where t1 is newly enabled in M and each
other transition is enabled by its immediate predecessor. Let π(t, t′) be the set
of transition-paths connecting t to t′. The fastest transition-paths of π(t, t′) have
the smallest firing delay (i.e., Min

ω∈π(t,t′)
↓ Is(ω)). This timing information can be

derived from the structure of the TPN using, for instance, the delay lower bound
matrix L defined in [9] as a square matrix over the set of transitions T :∀ti, tj ∈ T,

lij =

⎧
⎪⎨

⎪⎩

0 if ti = tj

↓ Is(ti) if ti 
= tj ∧ ti ∈ NwS(tj)
∞ otherwise.

The canonical form of L, obtained by applying the Floyd-Warshall’s shortest
path algorithm, is denoted by L̄. Intuitively, if ti is not enabled when tj is fired,
then l̄ij is a lower bound of the firing delay of ti, relatively to the firing date of
tj . Note that l̄ij = ∞ means that there is no path connecting tj to ti and then
ti cannot be enabled directly or indirectly by tj .

This lower bound is used in the partial order techniques proposed in [8,9] to
establish some sufficient conditions that ensure persistency or effect-persistency
for transitions. It considers neither the current marking nor the dynamic time
information. Tightening up this bound might improve the approach developed in
[8,9]. The idea comes from the fact that if ti is not enabled in the current marking



118 K. Barkaoui and H. Boucheneb

M , before its enabledness, we need to fire at least one input transition for each
input place p of ti not sufficiently marked in M for ti (i.e., M(p) < pre(ti)(p)).
The same process is recursively repeated for the non enabled input transitions.
If ti is enabled in M , the timing information in the state class gives the bounds
of the firing delay between each enabled transition and ti. In this way, we can
retrieve a lower bound of the firing delay of ti. Intuitively, this computing process
consists in exploring in the reverse order the elementary paths connecting an
enabled transition in M to the input places of ti that are non sufficiently marked
for firing ti.

Formally, let α = (M,F ) be a state class, D its DBM in canonical form,
ti ∈ T and μ ⊆ T s.t. ti ∈ μ a subset of transitions we want to avoid during
the exploration of the firing sequences that might lead to the enabledness of ti.
Also, this set allows to explore only elementary transition-paths that lead to ti.
We define recursively a lower bound of the potential firing delay of ti from α, in
case no transition of μ is fired beforehand, by:

Dmin(ti, M, F, μ) =
⎧
⎨

⎩

− Min
tu∈En(M)

dui if ti ∈ En(M),

Max
p∈•ti∧M(p)<pre(ti)(p)

( Min
tj∈•p−µ

Dmin(tj , M, F, μ ∪ {tj}) + ↓ Is(ti)) otherwise.

By convention, the minimum and maximum over the empty set are ∞ and 0,
respectively.

Intuitively, if ti is enabled in M then its minimal firing delay relatively to the
date of the first firing from α is − Min

tu∈En(M)
dui [13]. This delay equals 0 in case ti

is firable from α [13]. Notice that this delay is independent of the transition fired
first from α. Indeed, if tf is the first transition fired from α, this delay equals
the minimal value of tj − tf in the domain of the firing condition of tf from α,
i.e., F ∧ ∧

t∈En(M)

tf − t ≤ 0.

If ti is directly enabled by some transition tj of α, then the minimal fir-
ing delay of ti relatively to the first firing from α is Dmin(tj ,M, F, μ ∪ {tj}) +
↓ Is(ti) = ↓ Is(ti), since tj is firable from α.
Finally, if ti is enabled indirectly from α, before its enabledness, we need to
fire, for each input place p of ti not sufficiently marked, at least one of its input
transitions not in μ. Note that, thanks to μ, this recursive computation proce-
dure of Dmin(ti,M, F, μ) always terminates as the transition-paths explored are
elementary and the number of elementary transition-paths is finite.

Example 1. Consider the model TPN2 in Fig. 1c and the reachable state class
α8 = (M8, F8), where M8 = p2 + p3 + p7 and F8 = (−1 ≤ t2 − t3 ≤ 1). Let us
compute Dmin(t4,M8, F8, {t4}). By definition, Dmin(t4,M8, F8, {t4}) =

( Max
p∈•t4∧M8(p)<pre(t4)(p)

Min
tj∈•p−{t4}

Dmin(tj ,M8, F8, {t4, tj})) + ↓ Is(t4)

= Dmin(t2,M8, F8, {t2, t4}) + ↓ Is(t4) = 3.



On Persistency in Time Petri Nets 119

The transition t4 is not enabled in the marking M8, as its input place p4 is not
marked. This place cannot be marked before firing its input transition t2. Since
t2 is firable from α8, it follows that Dmin(t2,M8, F8, {t2, t4}) = 0 and then
Dmin(t4,M8, F8, {t4}) = ↓ Is(t4) = 3. Note that Dmin(t4,M8, F8, {t1, t4}) =
Dmin(t4,M8, F8, {t4}). It means that 3 is a still a lower bound of the firing delay
of t4 from M8, even if we avoid t1. However, Dmin(t4,M8, F8, {t2, t4}) = ∞. It
means that from α8, t4 cannot be enabled before firing t2. The transition t4
enabled by t2 is in conflict with t3 but it cannot occur before t3, as the maximal
firing delay of t3 relatively to the firing date of t2 (i.e., d32 = 1) is smaller than
the lower bound 3 of the firing delay of t4 (i.e., Dmin(t4,M8, F8, {t1, t4}) =
Dmin(t4,M8, F8, {t4}) = 3). Therefore, both transitions t2 and t3 are persistent
from α8, as no transition in conflict with t2 or t3 can be fired before them.

Lemma 1 establishes some relationships between Dmin(t,M, F, μ) and the
potential enabledness of t from M , without help from transitions of μ.

Lemma 1. Let α = (M,F ) be a state class, D the DBM of F in canonical form,
ti ∈ T , μ ⊆ T s.t. ti ∈ μ. Then:

(1) Dmin(ti,M, F, μ) < ∞ ⇒ ∀s ∈ (M,F ),∀ρ ∈ (R+×T )∗× R
+ s.t. (Tr(ρ) ∈

(T − μ)∗ ∧ s
ρti−→), time(ρti) ≥ Dmin(ti,M, F, μ).

Intuitively, it means that if ti is enabled in the current marking or in the
future then Dmin(ti,M, F, μ) is a lower bound of its firing delay, relatively
to s in case no transition of μ is fired beforehand.

(2) Dmin(ti,M, F, μ) = ∞ ⇒ ∀ω ∈ (T − μ)∗, succ(α, ωti) = ∅.
In words, if Dmin(ti,M, F, μ) = ∞ then ti cannot be enabled, from α, as
long as no transition of μ is fired.

(3) ∀μ′ s.t. μ′ ⊆ μ ∧ ti ∈ μ′,Dmin(ti,M, F, μ′) ≤ Dmin(ti,M, F, μ).
It means that a larger set of forbidden transitions μ yields larger lower bound
for the firing delay of ti.

(4) ∀s ∈ (M,F ),∀ρ ∈ (R+ × T )∗ × R
+,∀s′ = (M ′, I ′) ∈ S,

(s
ρ−→ s′ ∧ ti ∈ En(M ′)) =⇒ time(ρ) ≥ Dmin(ti,M, F, μ) − ↓ Is(ti).

It means that if ti is enabled in the current marking or in the future then it
cannot be enabled before Dmin(ti,M, F, μ) − ↓ Is(ti) time units.

Proof.(1) We consider 3 cases:
(a) ti ∈ Fr(α), (b) ti ∈ En(M) − Fr(α) and (c) ti ∈ T − En(M).

(1.a) If ti ∈ Fr(α) then, by definition, ∀tu ∈ En(M), dui ≥ 0 and dii = 0.
It follows that Dmin(ti,M, F, μ) = − Min

tu∈En(M)
dui = 0 and then

Dmin(ti,M, F, μ) ≤ time(ρti).
(1.b) If ti ∈ En(M) − Fr(α) then, by definition, ∃tu ∈ En(M), dui < 0. It

follows that Dmin(ti,M, F, μ) = − Min
tu∈En(M)

dui > 0. The trace ρ con-

tains at least a transition and its first transition tj is firable from α. A
lower bound of the firing delay of ti relatively to tj is Dmin(ti,M, F, μ).
Therefore, Dmin(ti,M, F, μ) ≤ time(ρti).



120 K. Barkaoui and H. Boucheneb

(1.c) If ti ∈ T − En(M) then the timed trace ρti contains at least, an input
transition of ti outside μ, for each not sufficiently marked input place
of ti. The minimal time needed to fire successively the transitions of ρ
cannot be smaller than the minimal time needed for the enabledness of
ti by transitions outside μ, i.e., Dmin(ti,M, F, μ) ≤ time(ρti).

(2) If Dmin(ti,M, F, μ) = ∞ then ∃p ∈ •ti,M(p) < pre(ti)(p) ∧ (•p − μ =
∅ ∨ (∀tj ∈ •p − μ,Dmin(tj ,M, F, μ ∪ {tj}) = ∞)).

(2.a) If M(p) < pre(ti)(p) ∧ •p − μ = ∅, then ti is not potentially firable
from α, without help from μ.
(2.b) If M(p) < pre(ti)(p) ∧ ∀tj ∈ •p − μ,Dmin(tj ,M, F, μ ∪ {tj}) =
∞ then we repeat recursively the same development process for
Dmin(tj ,M, F, μ ∪ {tj}) = ∞, until reaching case 2.a). Consequently,
ti is not potentially firable from α.

(3) The proof is by induction on the length of the transition-paths lead-
ing to ti and is immediate from the definitions of Dmin(ti,M, F, μ) and
Dmin(ti,M, F, μ′).
Indeed, if ti ∈ En(M) then Dmin(ti,M, F, μ) = Dmin(ti,M, F, μ′).
Otherwise, the proof is straightforward as, by induction, it holds that
for each tj ∈ T, s.t. ∃p ∈ •ti,M(p) < pre(ti)(p) ∧ tj ∈ •p − μ′,
Dmin(tj ,M, F, μ′∪{tj}) ≤ Dmin(tj ,M, F, μ∪{tj}). Since μ′ ⊆ μ, it follows
that •p − μ ⊆ •p − μ′ and then

Max
p∈•ti∧M(p)<pre(ti)(p)

( Min
tj∈•p−μ′

Dmin(tj ,M, F, μ′ ∪ {tj}) + ↓ Is(ti)) ≤
Max

p∈•ti∧M(p)<pre(ti)(p)
( Min

tj∈•p−μ
Dmin(tj ,M, F, μ ∪ {tj}) + ↓ Is(ti)).

Therefore, Dmin(ti,M, F, μ′) ≤ Dmin(ti,M, F, μ).
(4) The proof is immediate from (1) and the fact that a transition must be

maintained enabled at least ↓ Is(ti) time units before it becomes firable.
��

We provide in Lemmas 2 and 3 some sufficient conditions for persistency and
effect-persistency for a transition from a marking or a state class w.r.t. a set of
transitions.

Lemma 2. Sufficient conditions for persistency and effect-persistency
Let M be a marking and ti ∈ En(M).
1- The transition ti is persistent from M if ∀tj ∈ En(M) − {ti},

(i) ∀tk ∈ CFS(ti) − {ti}, tk /∈ En(M) ∧ l̄kj = ∞.

Intuitively, (i) implies that all transitions in structural conflict with ti are neither
enabled in M nor enabled directly/indirectly by tj.
2- The transition ti is effect-persistent from M if ∀tj ∈ En(M) − {ti}, the both
following conditions (i) and (ii) are satisfied:

(i) ∀tk ∈ CFS(ti) − {ti}, tk /∈ En(M) ∧ l̄kj = ∞
(ii) ∀tk ∈ T−{ti}, (NwS(ti)∩(CFS(tk)∪NwS(tk)) 
= ∅) ⇒ (tk /∈ En(M)∧l̄kj = ∞).

Intuitively, (ii) means that the effect of ti can not be affected by firing any other
transition tk enabled in M or enabled directly/indirectly by tj.



On Persistency in Time Petri Nets 121

The proof is immediate from the fact l̄kj = ∞ means that tj has no role in the
enabledness of tk.

Lemma 3. Sufficient conditions for persistency and effect-persistency
Let α = (M,F ) be a state class, ti ∈ En(M) and μ ⊆ T s.t. ti ∈ μ.
1- The transition ti is persistent from α w.r.t. μ if ∀tj ∈ Fr(α) − μ,

(i) ∀tk ∈ CFS(ti)−μ, (l̄kj < ∞∨tk ∈ En(M)) ⇒ dij < Dmin(tk,M, F, μ∪{tk})

Intuitively, (i) implies that each transition tk ∈ CFS(ti) − μ enabled in M or
enabled directly/indirectly by tj is not firable before all the transitions of μ.
2- The transition ti is effect-persistent from α w.r.t. μ if ∀tj ∈ Fr(α) − μ, the
both following conditions (i) and (ii) are satisfied:

(i) ∀tk ∈ CFS(ti)−μ, (l̄kj < ∞∨tk ∈ En(M)) ⇒ dij < Dmin(tk,M, F, μ∪{tk}).

(ii) ∀tk ∈ T − μ, (l̄kj < ∞ ∨ tk ∈ En(M)) ⇒

dij < Dmin(tk,M, F, μ ∪ {tk}) ∨ (NwS(ti) ∩ (CFS(tk) ∪ NwS(tk)) = ∅).

Intuitively, (ii) means that each transition tk ∈ T − μ, enabled in M or enabled
directly/indirectly by tj, is either not firable before all transitions of μ or its
firing does not affect the effect of ti.

Proof. It suffices to show that dij < Dmin(tk,M, F, μ∪{tk}) implies that tk
cannot be fired before ti from α and all its direct/indirect successors by tj ,
as long as no transition of μ is fired. First of all, according to the firing rule
given in Sect. 2.2, it holds that for tj ∈ Fr(α), dij ≥ 0. Suppose that dij <
Dmin(tk,M, F, μ ∪ {tk}).

(1) If Dmin(tk,M, F, μ ∪ {tk}) = ∞ then according to Lemma 1, transition tk is
not firable directly/indirectly from α before the transitions of μ.

(2) If Dmin(tk,M, F, μ ∪ {tk}) < ∞ then according to Lemma 1:
∀s ∈ α,∀ρ ∈ (R+ × T × R

+)+ ∪ R
+ s.t. Tr(ρ) ∈ (T − μ ∪ {tk})∗ ∧ s

ρtk−→
), time(ρtk) ≥ Dmin(tk,M, F, μ ∪ {tk}).

(2.a) If Tr(ρ) = ε then tk ∈ Fr(α). It follows that
Dmin(tk,M, F, μ ∪ {tk}) = − Min

tu∈En(M)
duk = 0 ≤ time(ρtk) and then

Dmin(tk,M, F, μ ∪ {tk}) ≤ dij , for tj ∈ Fr(α), which is in contradiction
with the assumption.

(2.b) If Tr(ρ) 
= ε then the first transition of ρ is firable from α. Let tj be this
transition. Then, the maximal delay between the firing dates of ti and tj is
dij as, in F , it holds that ti−tj ≤ dij . Therefore, dij < Dmin(tk,M, F, μ∪
{tk}) implies that tk cannot be fired as long as no transition of μ is fired
(see Fig. 2).

The rest of the proof is immediate. ��



122 K. Barkaoui and H. Boucheneb

Fig. 2. Condition: dij < Dmin(tk, M, F, μ ∪ {tk})

Table 1. Some experimental results

TPN RSCG’ RSCG CSCG SCG TPN RSCG’ RSCG CSCG SCG

KB(2) NSC 2975 7005 8542 9612 KB(3) NSC 18418 41200 45249 52597

NCSC 3853 9621 24247 27162 NCSC 26386 62471 145594 167451

CPU (s) 0 0 0 0 CPU (s) 0 0 0 0

HC(2) NSC 272 1377 3801 4325 HC(3) NSC 5222 6362 146851 168181

NCSC 345 514 10440 11819 NCSC 7824 10263 562486 643440

CPU (s) 0 0 0 0 CPU (s) 0 0 2.8 3.2

FMS(2) NSC 2819 7509 82665 91447 FMS(3) NSC 247459 392191 ? > 2000000 ? > 2000000

NCSC 3617 10416 233208 257080 NCSC 330988 565015

CPU (s) 0 0 2.3 3.6 CPU (s) 4.3 7.3

ForkJoin(2) NSC 2486 3465 11080 14360 ForkJoin(3) NSC 43816 68660 94645 119255

NCSC 3930 6607 32861 42385 NCSC 109286 185127 357449 456023

CPU (s) 0 0 1.2 1.7 CPU (s) 2.1 3.2 3.4 4.7

As discussed in Sect. 1, for a non persistent TPN, a reduced graph preserv-
ing the non-equivalent firing sequences of the TPN can be computed on-the-fly
using the POSETs method and sufficient conditions of persistency and effect-
persistency. These sufficient conditions of persistency and effect-persistency are
used to select the subset of transitions to be fired from each state class. The ones
used in [8,9] are based on the lower bounds l̄. We report, in columns RSCG and
RSCG’ of Table 1, the results provided by the approach in [8] and those obtained
by replacing in the sufficient conditions used in [8] the lower bounds l̄ by Dmin.
The models HouseConstruction (HC ), FMS and Kanban (KB) are taken from
the MCC (Model Checking Contest) held within Petri Nets conferences5 and
extended with firing intervals (see Table 2). The model ForkJoin is shown in
Fig. 3. For each model and each graph (RSCG’, RSCG, CSCG, SCG), the rows
NSC, NCSC and CPU stand for the number of state classes, the number of com-
puted state classes and the CPU time in seconds, respectively. For all the tested
models, the RSCG’ shows a reduction in size and time relatively to the others.
However, further tests and investigation are needed to integrate more appro-
priately Dmin and the sufficient conditions for persistency/effect-persistency
established here, in a partial order reduction technique.

5 http://mcc.lip6.fr.

http://mcc.lip6.fr


On Persistency in Time Petri Nets 123

Table 2. Static firing intervals of HC, FMS and KB

Is of HC Is of FMS Is of KB

t1[2, 4], t2[2, 3], t3[3, 3] tp1[1, 2], tp2[1, 2], tp3[1, 2] tsynch4 − 23[1, 3], tsynch1 − 23[3, 5]

t4[1, 1], t5[1, 2], t6[1, 2] tm1[1, 1], tm2[3, 4], tp3m2[4, 4] tredo1[2, 2], tok1[3, 4], tback1[1, 3]

t7[3, 3], t8[2, 2], t9[1, 1] tp3s[3, 3], tp1m1[1, 2], tp2m2[1, 1] tout1[3, 5], tredo2[2, 2], tok2[3, 4]

t10[1, 1], t11[1, 2] , t12[1, 3] tp1e[5, 5],tp1j[3, 4], tp2j[1, 1] tback2[1, 3], tredo3[3, 5],tok3[2, 2]

t13[2, 5], t14[2, 2], t15[1, 1] tp2e[1, 1], tp1s[3, 3], tp12[1, 2] tback3[3, 4]

t16[1, 2], t17[1, 1], t18[1, 4] tp2s[4, 4], tm3[1, 1], tp12m3[2, 2] tin4[1, 3], tredo4[3, 5]

tp12s[5, 5], tx[2, 2] tback4[2, 2], tok4[3, 4]

p0

p1 p4 p7 p10

p2 p5 p8 p11

p3 p6 p9 p12

t0[3, 4]

t1[3, 3]

t2[1, 3] t4[1, 3] t6[2, 3] t8[1, 3]

t3[1, 1] t5[2, 2] t5[1, 2] t9[2, 2]

n

Fig. 3. Model ForkJoin(n)

4 Conclusion

In this paper, we have considered the TPN model and investigated the notion
persistency and effect-persistency of transitions. According to its semantics, a
TPN is persistent if its underlying non timed Petri net is persistent. Thus, all
the sufficient conditions ensuring persistency for Petri nets are also valid for
TPNs. However, the reverse is not true. A TPN can be persistent while its
underlying non timed Petri net is not persistent. We have established some
sufficient conditions for persistency and effect-persistency of different levels of
permissiveness. The more permissive one takes into account more accurately the
marking, the static and the dynamic time information of the TPN.

A nice feature of persistent TPNs is that the reachability analysis can be
achieved by firing only one transition from each state class. The resulting reduced
graph preserves the non-equivalent maximal firing sequences of the TPN.

For non persistent TPNs, the sufficient conditions for persistency and effect-
persistency, proposed here, are less restrictive than the ones used in [7–9]. There-
fore, they are useful to improve the partial order reduction techniques proposed
in [7–9] for TPNs.

As future work, we will investigate more permissive sufficient conditions for
persistency of TPNs.



124 K. Barkaoui and H. Boucheneb

References

1. Belluomini, W., Myers, C.J.: Timed state space exploration using POSETs. IEEE
Tran. Comput.-Aided Des. Integr. Circuits 19(5), 501–520 (2000)

2. Bengtsson, J.: Clocks, DBMs and states in timed systems. Ph.D. thesis, Depart-
ment of Information Technology, Uppsala University (2002)

3. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: The expressive power
of time Petri nets. Theor. Comput. Sci. 474, 1–20 (2013)

4. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of
time Petri nets. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 442–457. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-
X 33

5. Best, E., Devillers, R.: Synthesis of persistent systems. In: Ciardo, G., Kindler, E.
(eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 111–129. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07734-5 7

6. Boucheneb, H., Barkaoui, K.: Covering steps graphs of time Petri nets. Electron.
Notes Theor. Comput. Sci. 239, 155–165 (2009)

7. Boucheneb, H., Barkaoui, K.: Stubborn sets for time Petri nets. ACM Trans.
Embed. Comput. Syst. (TECS) 14(1), 11:1–11:25 (2015)

8. Boucheneb, H., Barkaoui, K.: Delay-dependent partial order reduction technique
for real time systems. Real-Time Syst. 54(2), 278–306 (2018)

9. Boucheneb, H., Barkaoui, K., Weslati, K.: Delay-dependent partial order reduction
technique for time Petri nets. In: Legay, A., Bozga, M. (eds.) FORMATS 2014.
LNCS, vol. 8711, pp. 53–68. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-10512-3 5

10. Boucheneb, H., Gardey, G., Roux, O.H.: TCTL model checking of time Petri nets.
Log. Comput. 19(6), 1509–1540 (2009)

11. Boucheneb, H., Hadjidj, R.: CTL* model checking for time Petri nets. Theor.
Comput. Sci. TCS 353(1–3), 208–227 (2006)

12. Boucheneb, H., Lime, D., Roux, O.H.: On multi-enabledness in time Petri nets. In:
Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 130–149.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8 8

13. Boucheneb, H., Rakkay, H.: A more efficient time Petri net state space abstraction
useful to model checking timed linear properties. Fundam. Inform. 88(4), 469–495
(2008)

14. Boyer, M., Diaz, M.: Multiple-enabledness of transitions in time Petri nets. In: 9th
IEEE International Workshop on Petri Nets and Performance Models, pp. 219–228
(2001)

15. Best, E., Darondeau, P.: Decomposition theorems for bounded persistent Petri
nets. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp.
33–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68746-7 7

16. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

17. Lilius, J.: Efficient state space search for time Petri nets. In: MFCS Workshop on
Concurrency Algorithms and Tools, ENTCS, vol. 8, pp. 113–133 (1998)

18. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the
clock explosion problem of timed automata. Theor. Comput. Sci. TCS 345(1),
2759 (2005)

19. Yoneda, T., Ryuba, H.: CTL model checking of time Petri nets using geometric
regions. EICE Trans. Inf. Syst. E99–D(3), 297–306 (1998)

20. Yoneda, T., Schlingloff, B.H.: Efficient verification of parallel real-time systems.
Form. Methods Syst. Des. 11(2), 187–215 (1997)

https://doi.org/10.1007/3-540-36577-X_33
https://doi.org/10.1007/3-540-36577-X_33
https://doi.org/10.1007/978-3-319-07734-5_7
https://doi.org/10.1007/978-3-319-10512-3_5
https://doi.org/10.1007/978-3-319-10512-3_5
https://doi.org/10.1007/978-3-642-38697-8_8
https://doi.org/10.1007/978-3-540-68746-7_7


A Relational Model for Probabilistic
Connectors Based on Timed Data

Distribution Streams

Meng Sun(B) and Xiyue Zhang

Department of Informatics and LMAM, School of Mathematical Sciences,
Peking University, Beijing, China
{sunm,zhangxiyue}@pku.edu.cn

Abstract. Connectors have shown their great potential for coordina-
tion of concurrent activities encapsulated as components and services in
large-scale distributed applications. In this paper, we develop a formal
model for a probabilistic extension of the channel-based coordination lan-
guage Reo. The model formalizes connectors with probabilistic behavior
as relations on Timed Data Distribution Streams (TDDSs), which speci-
fies properties of primitive channels and complex connectors with proba-
bilistic behavior properly. Furthermore, the implementation of this prob-
abilistic model has been developed in Coq, which serves to demonstrate
how the model can be used to prove probabilistic connectors’ properties.

Keywords: Coordination · Probabilistic connector
Timed data distribution streams · Coq

1 Introduction

Coordination models that formalize the interaction among different components
play a key role in the development of large-scale distributed applications, which
are typically heterogeneous and geographically distributed over the internet.
Such coordination models usually provide a notion of connectors that intercon-
nect the components and organize the mutual interactions and communications
among them in a distributed environment, where complex connectors can be
compositionally constructed out of simpler ones. As an example, Reo [2,8] offers
a powerful gluing mechanism for the implementation of such coordinating con-
nectors. Primitive connectors called channels in Reo, such as synchronous chan-
nels, FIFO channels and timer channels, can be composed to build circuit-like
connectors which serve as the glue code to exogenously coordinate the behavior
of components in distributed applications.

Investigating probabilistic behavior of connectors precisely is a necessary task
for developing trustworthy applications. In this paper we focus on the probabilis-
tic aspects of Reo connectors, and provide a formal model for connectors built out
of channels that might behave nondeterministically and probabilistically, such
c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 125–141, 2018.
https://doi.org/10.1007/978-3-030-00151-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_8&domain=pdf


126 M. Sun and X. Zhang

as unreliable FIFO channels that may loose certain data items written to the
buffer, or synchronous channels that may corrupt written data with some small
probability. In this model, the behavior of channels (and connectors) are speci-
fied as relations of observations on the channel ends (and sink/source nodes of
connectors) given by timed data distribution streams. And we also show how the
model of probabilistic channels can be used in the construction of more complex
connectors with probabilistic behavior. Furthermore, the model for probabilis-
tic channels/connectors has been encoded in Coq [18] which forms an extension
to our previous work on modeling and verifying connectors in Coq [13,20], and
properties of such probabilistic connectors can be formally proved using Coq.

This is in fact not the first investigation on probabilistic connectors. An
operational semantics for probabilistic Reo in terms of probabilistic constraint
automata (PCA) has been developed by Baier in [7]. Later the Quantitative
Intentional Automata (QIA) model was proposed in [5] to capture the opera-
tional semantics of connectors with stochastic behavior. The QIA model correctly
captures context dependency, but it is not compositional and suffers from state
explosion heavily even for simple connectors. Another model called Stochastic
Timed Automata for Reo (STAr) was developed in [15] to support both stochas-
tic and real-time behavior of connectors in Reo. In [16], Interactive Markov
Chains are adopted as a compositional semantic model for stochastic Reo con-
nectors. The Priced Probabilistic Timed Constraint Automata model [12] enables
users to reason about both probabilistic and timed behavior, as well as resource
consumption. Although some of such state-based models scale up quite well,
state explosion is an inherent problem in these formalisms and not avoidable
by the probabilistic extension. Furthermore, modeling unbounded primitives or
even bounded primitives with unbounded data domains is impossible with finite
automata models, and infinite or finite but large data domains usually also cause
an explosion of state space in such state-based models which becomes seriously
problematic for verification.

As shown in [13,20], specifying connectors as relations on its sink and source
nodes makes it possible to verify connector properties by using theorem proving
techniques and we do not have to face the state space explosion problem. Prop-
erties of a complex connector can be decomposed into some subgoals which can
be proved separately in theorem provers like Coq, where relations on the nodes
are specified by predicates [20]. Furthermore, comparing with other works on
(both deterministic and probabilistic) Reo semantics [14], our framework defines
two ternary channels replicator and merger, which makes different types of con-
nector composition operators reduced to one single flow-through composition,
and thus the composition of connectors can be interpreted more explicitly than
other approaches, such as TDS in the coalgebraic semantics [6]. And by sepa-
rating input and output explicitly in this model, the behavior of a connector
becomes easier to be described and further composed.

The paper is structured as follows. After this general introduction, we briefly
summarize the coordination language Reo in Sect. 2. Section 3 presents the model
of observations on the nodes of connectors with probabilistic behavior as timed



A Relational Model for Probabilistic Connectors 127

data distribution streams. Section 4 specifies the model for basic (untimed and
timed) Reo channels, as well as channels with probabilistic behavior, and sum-
marizes the composing operations to build connectors from channels. In Sect. 5,
we discuss the implementation of the model in Coq, and show how to prove
properties of connectors. Finally, Sect. 6 concludes with some further research
directions.

2 A Reo Primer

In this section, we briefly review some basic concepts in the coordination lan-
guage Reo. Reo [2] is a channel-based exogenous coordination language wherein
complex coordinators, called connectors, are compositionally constructed from
simpler ones. We summarize only the main concepts in Reo here. Further details
can be found in [2,8].

Fig. 1. Some basic channels in Reo

A Reo connector usually consists of a network of primitive connectors, called
channels. A connector provides the protocol that controls and organizes the
communication and cooperation among different components. Each channel has
two channel ends. There are two types of channel ends: source and sink. A source
channel end accepts data into its channel, and a sink channel end dispenses data
out of its channel. It is possible for the ends of a channel to be both sinks or
both sources. Figure 1 shows the graphical representation of some basic channel
types in Reo whose composition allows for expressing a rich set of coordination
patterns [2,3].

A synchronous channel has a source and a sink end. It accepts a data item
through its source end iff it can simultaneously dispense the data item through
its sink end. A lossy synchronous channel is similar to a synchronous channel
except that it always accepts all data items through its source end. The data item
is transferred if it is possible to be dispensed through the sink end immediately,
otherwise the data item is lost. A FIFO1 channel represents an asynchronous
channel with one buffer cell which is empty initially (this is the case in Fig. 1). If
a data element d is written through the source end, it is kept in the buffer of the
FIFO1 channel until being taken out through the sink end. Synchronous drain
has two source ends and no sink end. A synchronous drain can accept a data item
through one of its ends iff a data item is also available for it to simultaneously
accept through the other end as well, and both data items accepted by the
channel are lost. A t-timer channel accepts any data item at its source end
and produces a timeout signal after a delay of t time units on its sink end.



128 M. Sun and X. Zhang

More exotic channels permitted in Reo are omitted here and can be found in
[2,3,17]. Moreover, the set of channel types is not fixed in Reo, and new ones
can be defined freely by users according to their own interaction policies, like
the probabilistic and stochastic extensions defined in [7,9,15].

Complex connectors are constructed by composing simpler ones via the join
and hiding operations. Channels are joined together in nodes. A node consists
of a set of channel ends. The set of channel ends coincident on a node A is
disjointly partitioned into the sets of source and sink channel ends. Nodes are
categorized into source, sink and mixed nodes as shown in Fig. 2, depending on
whether all channel ends that coincide on a node are source ends, sink ends
or a combination of the two. The hiding operation is used to hide the internal
topology of a connector. The hidden nodes can no longer be accessed or observed
from outside. The behavior of a complex connector is formalized by means of
the data-flow at its sink and source nodes.

Fig. 2. Three types of nodes

A component can write data items to a source node that it is connected
to. The write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently
written to every source end coincident on the node. A source node, thus, acts as
a replicator. A component can obtain data items, by an input operation, from a
sink node that it is connected to. A take operation succeeds only if at least one
of the (sink) channel ends coincident on the node offers a suitable data item.
A sink node, thus, acts as a merger. A mixed node takes a suitable data item
offered by one of its coincident sink channel ends and replicates it into all of its
coincident source channel ends.

3 Observations as Timed Data Distribution Streams

Let D be an arbitrary finite set, the elements of which are called data elements.
It will be concrete when a specific application domain is provided. We use the
symbol ⊥ ∈ D to denote a corrupted data item. A data distribution is a total
function that maps D to the closed interval of reals [0, 1]. We define

PROB =df D → [0, 1]

where for any member p of PROB the total sum of probabilities must not exceed
1:

∑
d∈D p(d) ≤ 1. For any X ⊆ D, p(X) =

∑
d∈X p(d). We use 0 to denote the

zero distribution λd • 0 and define

p1 ≤ p2 =df ∀d ∈ D • (p1(d) ≤ p2(d))



A Relational Model for Probabilistic Connectors 129

For any p ∈ PROB, we have 0 ≤ p. And for any d ∈ D, we have a corresponding
point distribution:

ηd =df λx : D • (1 � x = d � 0)

where the conditional expression P �b�Q equals to P if the condition b is satisfied
and Q otherwise.

The set DDS of data distribution streams is defined as DDS = PROBω,
i.e., the set of all sequences α = (α(0), α(1), α(2), · · · ) over PROB where each
α(i) is a data distribution.

Let R+ be the set of non-negative real numbers, which in the present context
can be used to represent time moments. Let R

ω
+ be the set of infinite sequences

a = (a(0), a(1), a(2), · · · ) over R+, and for all a, b in R
ω
+,

a < b iff ∀n ≥ 0, a(n) < b(n)
a ≤ b iff ∀n ≥ 0, a(n) ≤ b(n)

For a sequence a = (a(0), a(1), a(2), · · · ) ∈ R
ω
+, and t ∈ R+, a[+t] is a sequence

defined as follows:

a[+t] = (a(0) + t, a(1) + t, a(2) + t, · · · )
Furthermore, the element a(n) in a sequence a = (a(0), a(1), a(2), · · · ) can also
be expressed in terms of derivatives a(n) = a(n)(0), where a(n) is defined by

a(0) = a, a(1) = (a(1), a(2), · · · ), a(k+1) = (a(k))(1)

and sometimes we use a′ instead of a(1) for simplicity.
The set TS of time streams is defined as

TS = {a ∈ R
ω
+ | (∀n ≥ 0.a(n) < a(n + 1)) ∧ (∀t ∈ R+.∃k ∈ N.a(k) > t)}

Thus, a time stream a ∈ TS consists of increasing and diverging time moments:
a(0) < a(1) < a(2) < · · · and limn→+∞ a(n) = +∞.

To specify inputs and outputs on connectors explicitly, for a connector R,
we use the mappings

inR : Nin → TDDS
outR : Nout → TDDS

to denote the observations on its source nodes and sink nodes, respectively. Here
Nin and Nout are the sets of source and sink node names of R, respectively.
For every node N in a connector R, the corresponding observation on N is
specified by a timed data distribution stream, and TDDS is the set of timed data
distribution streams defined as TDDS ⊆ DDS × TS , which is the set of pairs
〈α, a〉 consisting of a data distribution stream α and a time stream a. Similar
to the timed data sequence model used in [17], timed data distribution streams
can be alternatively and equivalently defined as (a subset of) (PROB × R+)ω

because of the existence of the isomorphism

〈α, a〉 �→ (〈α(0), a(0)〉, 〈α(1), a(1)〉, 〈α(2), a(2)〉, · · · )



130 M. Sun and X. Zhang

The occurrence of a data transfer at some node N of a connector is modeled by
an element in the timed data distribution stream for that node, i.e., a pair of a
data distribution α(i) and a time moment a(i) when the data item is observed.

4 Relations on Timed Data Distribution Streams for
Connectors

In this section we provide an overview on how channels and connectors can be
formally modeled by relations of timed data distribution streams observed on
the channel ends and sink/source nodes. We first see how primitive channels in
Reo are specified by such relations, and then study the model of probabilistic
channels. Finally we show how composite connectors can be constructed from
simpler ones structurally.

We use WD as a predicate for well-defined TDDS types. In other words,
we define the behavior only for valid streams expressed via the predicate WD.
Then, every connector R can be represented as follows:

con : R(in : inR; out : outR)
in : P (inR)

out : Q(inR, outR)

where R is the name of the connector, P (inR) is the condition that should
be satisfied by inputs inR on the source nodes of R, and Q(inR, outR) is the
condition that should be satisfied by outputs outR on the sink nodes of R.

Furthermore, to capture the probabilistic behavior of connectors, we use
P τ ⊕ Q to indicate that the probability for P τ ⊕ Q to be equal to P is
τ , and the probability for P τ ⊕ Q to be equal to Q is 1 − τ . And we use
P1 @τ1 |P2 @τ2 | · · · |Pn @τn or

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P1 @τ1

P2 @τ2

· · ·
Pn @τn

to represent the probabilistic choice over multiple alternatives, in which the
probabilities are enumerated and sum to no more than 1:

∑
1≤i≤n τi ≤ 1.

4.1 Primitive Reo Channels

We now start by presenting a few examples of basic channels in Reo and their
corresponding models in the probabilistic setting.

The simplest form of an asynchronous channel is a FIFO channel with one
buffer cell, which is denoted as FIFO1. A FIFO1 channel with source end A



A Relational Model for Probabilistic Connectors 131

and sink end B is graphically represented by A−��→ B. The corresponding
model is given as follows:

con : FIFO1(in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ β = α ∧ a < b < a′

For a FIFO1 channel, when the buffer is not filled, the input is accepted without
immediately outputting it. The accepted data item is kept in the internal FIFO
buffer of the channel. The next input can happen only after an output occurs.
Note that the probabilistic distribution of every output data value over D is
exactly the same as the distribution on the corresponding input, i.e., β = α.
Furthermore, we use a < b < a′ to represent the relation between the time
moments for outputs and their corresponding (and next) inputs.

For the FIFO1 channel A−�e�→ B where the buffer contains a data element
e initially, the communication can be initiated only if the data element e can be
taken through the sink end. So the first data distribution that happens on the
sink end is exactly ηe, and the following ones are the same as those observed on
the source end. In this case, we denote the channel by FIFO1[e] as follows1:

con : FIFO1[e](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ β = (ηe)�α ∧ b < a < b′

A synchronous channel transfers the data without any delay in time. So it
behaves just like the identity function. The pair of I/O operations on its two
ends can succeed only simultaneously. A synchronous channel with source end
A and sink end B is graphically represented as A −−−→ B and formally specified
as follows:

con : Sync(in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ β = α ∧ b = a

A lossy synchronous channel (graphically depicted as A− → B) is similar
to a normal synchronous channel, except that it always accepts all data items
through its source end. If it is possible for it to simultaneously dispense the data
item through its sink end, the channel transfers the data item; otherwise the
data item is lost.

con : LossySync(in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ L(〈α, a〉, 〈β, b〉)
1 Here � is the concatenation operator on sequences. The concatenation of two
sequences produces a new sequence that starts with the first sequence followed by
the second sequence.



132 M. Sun and X. Zhang

where

L(〈α, a〉, 〈β, b〉)
≡ (β = ( ) ∧ b = ( )) ∨ (a(0) ≤ b(0)∧

(L(〈α′, a′〉, 〈β′, b′〉) ∧ α(0) = β(0)) � a(0) = b(0) � L(〈α′, a′〉, 〈β, b〉))

The synchronous drain A →−−← B is an exotic Reo channel that has two
source ends A and B. Because a drain has no sink end, no data value can ever
be obtained from this channel. Thus, all data accepted by this channel are lost.
A synchronous drain can only accept two data items through both of its ends
simultaneously.

con : SyncDrain(in : (A �→ 〈α, a〉, B �→ 〈β, b〉); out : ( ))
in : WD〈α, a〉 ∧ WD〈β, b〉 ∧ a = b

out : true

A filter channel A −{p}→ B specifies a filter pattern p which is a set of data
values. It transfers only those data items that are matched with the pattern p
and loses the rest. A write operation on the source end succeeds only if either the
data item to be written does not match the pattern p or the data item matches
the pattern p and it can be taken synchronously via the sink end of the channel.

con : Filter[p](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ F (〈α, a〉, 〈β, b〉)

where

F (〈α, a〉, 〈β, b〉)

≡

⎧
⎪⎨

⎪⎩

β = ( ) ∧ b = ( ) if α = ( ) ∧ a = ( )
β(0) = α(0) ∧ b(0) = a(0) ∧ F (〈α′, a′〉, 〈β′, b′〉) if α(0) ∈ p

F (〈α′, a′〉, 〈β, b〉) if α(0) /∈ p

The source end of a t-timer A
t−−◦−→B channel accepts any input value d and

returns on its sink end B a timeout signal after a delay of t time units, where t
is provided as a parameter of the channel.

con : Timer[t](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉 ∧ a[+t] ≤ a′

out : WD〈β, b〉 ∧ β ∈ {ηtimeout}ω ∧ b = a[+t]

4.2 Probabilistic Channels

A family of channels with probabilistic behavior are specified in the following.



A Relational Model for Probabilistic Connectors 133

A faulty FIFO1 channel A
τ· · ·��→B might loose messages while inserting

them into the buffer. Any write operation on the source end A might fail with
probability τ in which case the buffer remains empty, or might be successful with
probability 1 − τ .

con : FtyFIFO1[τ ](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ FF (〈α, a〉, 〈β, b〉)
where

FF (〈α, a〉, 〈β, b〉) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(0) < b(0) < a(1) ∧ β(0) = α(0)∧
FF (〈α′, a′〉, 〈β′, b′〉) @1 − τ

a(1) < b(0) < a(2) ∧ β(0) = α(1)∧
FF (〈α(2), a(2)〉, 〈β′, b′〉) @τ(1 − τ)

· · ·
a(k − 1) < b(0) < a(k) ∧ β(0) = α(k − 1)∧
FF (〈α(k), a(k)〉, 〈β′, b′〉) @τk−1(1 − τ)

· · ·
β = () ∧ b = () @ limn→∞ τn

In other words, there are infinite alternatives when we consider infinite streams
on the input and the probability for β = () ∧ b = () is limn→∞ τn = 0.

Another kind of faulty FIFO1 channel A−−��
τ���B might loose messages from

its buffer, but works perfectly for the write operation on the source end A. The
difference between this channel and FtyFIFO1 is the possibilities for the data
items to be successfully stored in the buffer and to be successfully taken from
the buffer to the sink end, but the models which specify the relations between
observations on input and output channel ends for these two channels are exactly
the same.

A message-corrupting synchronous channel A−τ →B is a synchronous chan-
nel with source node A and sink node B where the delivered message is corrupted
with probability τ . The value τ serves as a parameter for this channel type. If
A accepts a data item, then with probability 1 − τ the correct data value is
obtained at B, but with probability τ , B takes a corrupted message ⊥.

con : CptSync[τ ](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ b = a ∧ C(α, β)

where
C(α, β) ≡ ((β(0) = η⊥)τ ⊕ (β(0) = α(0))) ∧ C(α′, β′)

A randomized synchronous channel A
rand(0,1)
−−−−→ B generates a random number

b ∈ {0, 1} when it is activated through an arbitrary writing action at its source



134 M. Sun and X. Zhang

end A, and the random number is synchronously taken through the sink end B.

con : RdmSync[rand(0, 1)](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ b = a ∧ R(α, β)

where
R(α, β) ≡ ((β(0) = η0) 1

2
⊕ (β(0) = η1)) ∧ R(α′, β′)

A probabilistic lossy synchronous channel A
τ−−→B requires both channel

ends A and B to be available to synchronize. However, the transmission of the
message fails with a certain probability τ , while the correct message passing
occurs with probability 1 − τ .

con : ProbLossy[τ ](in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ PL(〈α, a〉, 〈β, b〉)

where

PL(〈α, a〉, 〈β, b〉)
≡ PL(〈α′, a′〉, 〈β, b〉)τ ⊕ ((b(0) = a(0)) ∧ (β(0) = α(0)) ∧ PL(〈α′, a′〉, 〈β′, b′〉))

This channel type has to be not confused with the non-probabilistic lossy syn-
chronous channel (depicted by a dashed line without any parameter).

4.3 Composition Operators

Different channels can be composed by linking their channel ends together into
nodes to build more complex connectors. The formalization of nodes sometimes
becomes rather complicated, especially when an arbitrary number of incoming
and outgoing edges are involved. Therefore, we introduce two ternary channels
Replicator and Merger, as shown in Fig. 3, and use their combinations to capture
the behavior of arbitrary source, sink or mixed nodes.

Fig. 3. Replicator and merger

Replicator is a synchronous broadcasting channel with one source end A
and two sink ends B,C. The channel accepts input data values from A, and
broadcasts them to B,C iff both B and C are ready to accept the data.



A Relational Model for Probabilistic Connectors 135

con : Replicator(in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉, C �→ 〈γ, c〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ WD〈γ, c〉 ∧ β = γ = α ∧ b = c = a

Merger is a channel that has two source ends A,B and one sink end C, which
collects inputs from either A or B and sends them to C simultaneously if C is
ready to accept the data.

con : Merger(in : (A �→ 〈α, a〉, B �→ 〈β, b〉); out : (C �→ 〈γ, c〉))
in : WD〈α, a〉 ∧ WD〈β, b〉 ∧ DF(a, b)

out : WD〈γ, c〉 ∧ M(〈α, a〉, 〈β, b〉, 〈γ, c〉)

where

DF(a, b) =df a(0) �= b(0) ∧
{

DF(a′, b) if a(0) < b(0)
DF(a, b′) if a(0) > b(0)

and the ternary relation M is defined as

M(〈α, a〉, 〈β, b〉, 〈γ, c〉)

=

{
γ(0) = α(0) ∧ c(0) = a(0) ∧ M(〈α′, a′〉, 〈β, b〉, 〈γ′, c′〉) if a(0) < b(0)
γ(0) = β(0) ∧ c(0) = b(0) ∧ M(〈α, a〉, 〈β′, b′〉, 〈γ′, c′〉) if a(0) > b(0)

Once we have the replicator and merger defined as channels as well, the only
composition operator for connectors is flow-through. For two connectors R1 and
R2, suppose one sink node of R1 and one source node of R2 are joined together
into a new node. In this case, the new node becomes a mixed node which behaves
as a self-contained pumping station. When we compose connectors, the events on
the mixed nodes happen silently and automatically whenever they can, without
the participation or even the knowledge of the environment. Such mixed nodes
are hidden (encapsulated) by using the existential quantifier.

For i = 1, 2, let

con : Ri(in : inRi
; out : outRi

)
in : Pi(inRi

)
out : Qi(inRi

, outRi
)

denote the two connectors being composed by the flow-through composition.
Suppose one sink node B1 of R1 and one source node B2 of R2 are joined together
into a mixed node B. Let B1 �→ 〈β1, b1〉 ∈ outR1 and B2 �→ 〈β2, b2〉 ∈ inR2 be
the output on the node B1 in R1 and input on the node B2 in R2, respectively.
Then the new connector is denoted by R = R1;(B1,B2) 	→BR2, and defined as
follows:



136 M. Sun and X. Zhang

con : R(in : (
⋃

i=1,2

inRi) \ {B2 �→ 〈β2, b2〉}; out : (
⋃

i=1,2

outRi) \ {B1 �→ 〈β1, b1〉})

in : P1(inR1) ∧ ¬(∃〈β, b〉.(Q1(inR1 , outR1)[〈β, b〉/〈β1, b1〉]∧
¬P2(inR2)[〈β, b〉/〈β2, b2〉]))

out : ∃〈β, b〉.Q1(inR1 , outR1)[〈β, b〉/〈β1, b1〉] ∧ Q2(inR2 , outR2)[〈β, b〉/〈β2, b2〉]

where for a predicate P , if v is a variable in P , P [u/v] is the predicate obtained
by replacing all occurrences of v in P by u.

Example 1. We consider the randomized router given in Fig. 4 as a simple exam-
ple. This connector has one source node A and two sink nodes B and C, which
randomly chooses B or C (both with probability 1

2 ) to obtain the data written at
A. It is constructed by composing two synchronous channels, two filter channels,
two synchronous drains, two lossy synchronous channels and one randomized
synchronous channel. This connector can be easily obtained from the composi-
tion of the basic channels (with replicators at A,D,E,G) after some equivalent
transformations and quantifier eliminations:

con : RandRouter(in : (A �→ 〈α, a〉); out : (B �→ 〈β, b〉, C �→ 〈γ, c〉))
in : WD〈α, a〉

out : WD〈β, b〉 ∧ WD〈γ, c〉 ∧ RR(〈α, a〉, 〈β, b〉, 〈γ, c〉)
where

RR(〈α, a〉, 〈β, b〉, 〈γ, c〉)
≡(β(0) = α(0) ∧ b(0) = a(0) ∧ RR(〈−→α ,−→a 〉, 〈−→β ,

−→
b 〉, 〈γ, c〉)) 1

2
⊕

(γ(0) = α(0) ∧ c(0) = a(0) ∧ RR(〈−→α ,−→a 〉, 〈β, b〉, 〈−→γ ,−→c 〉))

Fig. 4. Random router

5 Implementation

The implementation of this relational model for probabilistic connectors has
been developed in Coq. Coq is a widely-used formal proof management system
which provides a formal language called Gallina to write definitions, mathe-
matical propositions and theorems, together with an environment for interactive



A Relational Model for Probabilistic Connectors 137

construction of formal proofs. One of the main advantages of using Coq is that it
is equipped with a set of well-developed standard libraries. For example, Stream
provides a co-inductive definition of infinite sequences, Reals defines various
operations and axioms on real numbers, and Utheory axiomatizes the properties
required on the abstract type U representing the real interval [0, 1]. In general,
quite a few axioms and theorems are predefined in such libraries. This makes it
easy to support continuous time behavior and describe probabilistic channels.
Moreover, any valid Coq expression can be used to depict properties, which is
more powerful than just using formulas in one logic, like LTL or CTL.

The source code of the formalization in Coq is available at [19]. Compared
with the initial formalization for (non-probabilistic) Reo connectors, the proba-
bilistic behavior is captured properly in this extension. As described in Sect. 3,
the observed sequences on nodes are adjusted to timed data distribution streams
instead of timed data streams. But this new formalization can still be consistent
with the initial one through assigning the value 1 to the companied probability
of the data (i.e., the point distribution ηd instead of data item d). Based on
this foundation and the specific library Utheory, the behavior of probabilistic
channels can be characterized by the input and output timed data distribu-
tion streams properly. The probability accompanied the data will be updated
accordingly when the timed data distribution pair flows through different proba-
bilistic channels. With the definitions of channels serving as the basis, connector
properties, as well as equivalence and refinement relations between different con-
nectors can be naturally formalized as theorems in Coq and proved using tactics
predefined in Coq2.

Fig. 5. Equivalence between connectors

Example 2. An interesting example of the equivalence relation between connec-
tors is shown in Fig. 5. The two connectors are composed with the same set of
basic channels but with different topologies of combination. Connector R1 is
constructed by a randomized synchronous channel followed by a subconnector
tFIFO1 (which will be introduced in the following), while R2 is constructed
by the subconnector tFIFO1 and a following randomized synchronous channel.
The subconnector tFIFO1 contains a FIFO1 channel, a SyncDrain channel, a
timer channel with parameter t and a Sync channel. It has been studied in [13]

2 For two connectors R1 and R2, we say that R2 is a refinement of R1 (denoted by
R1 � R2) if (P1 ⇒ P2) ∧ (P1 ∧ Q2 ⇒ Q1), and they are equivalent if R1 � R2 and
R2 � R1.



138 M. Sun and X. Zhang

and properties related to its behavior have been proved in Coq. For the basic
FIFO1 channel, the input and output timed data distribution streams will have
the same data distribution but with an arbitrary time delay. Compared with the
basic FIFO1 channel, the time delay is fixed by the parameter t in tFIFO1,
apart from the same data distribution between the input and output streams.

The goal (formalized as a theorem) in this example is the equivalence relation
between connectors R1 and R2 in Fig. 5. Before proving the equivalence relation,
the configurations of the two connectors are first reduced to the constitution of
a RdmSync channel and a tFIFO1 connector with different topological orders
for proof simplicity. This reduction leads to two more lemmas that need to be
proved, which are the equivalence relations between the construction from basic
channels and the reduced method of construction from a RdmSync channel
and a tFIFO1 connector. The two equivalence relations are formalized in Coq
as follows:

1 Lemma RSync_tFIFO_eq: forall (A B: Stream TDD) (t:Time),

2 exists E: Stream TDD,

3 (RdmSync A E) /\ (t_FIFO1 E B t)

4 <->

5 (RdmSync A E) /\

6 (exists (D C:Stream TDD), (FIFO1 E D) /\ (SyncDrain D C)

7 /\ (Timert E C t) /\ (Sync D B)).

8
9 Lemma tFIFO_RSync_eq: forall (A B: Stream TDD) (t:Time),

10 exists E: Stream TDD,

11 (t_FIFO1 A E t) /\ (RdmSync E B)

12 <->

13 (exists (D C:Stream TDD), (FIFO1 A D) /\ (SyncDrain D C)

14 /\ (Timert A C t) /\ (Sync D E)) /\ (RdmSync E B).

Once these two equivalence relations are proved, we can establish the goal of
equivalence between R1 and R2 as the following theorem:

1 Theorem equivalence: forall (A B:Stream TDD) (t:Time),

2 (exists E, (RdmSync A E) /\ (t_FIFO1 E B t))

3 <->

4 (exists R, (t_FIFO1 A R t) /\ (RdmSync R B)).

The core of the proof for this theorem is that we need to find the correspond-
ing intermediate timed data distribution streams to complete the construction,
with the construction method of the other connector provided. The equivalence
proof of this example is different from the one in [20]. Unlike the proof of equiv-
alence in [20], we cannot find one single timed data distribution stream directly
serving as a match. Thus, two timed data distribution streams are constructed
first and then proved as precise matches for the refinement relations in two
directions, respectively. The complete proof of the theorem is available at [19].

It is straightforward to find out the reason why the commutative property
is satisfied in the construction of R1 and R2 in Fig. 5. The RdmSync channel
only modifies the data distribution streams while the tFIFO1 connector only



A Relational Model for Probabilistic Connectors 139

transforms the time stream. As a result, the change of topological positions of
these two connectors does not affect the final relation between the timed data
distribution streams on the source node A and sink node B.

Actually, as this model focuses on the relations between input and output
timed data distribution streams, different orders of data distribution and time
stream transformations lead to the same resultant relations. Therefore, for any
two connectors (or channels), as long as these two connectors transform time
streams and data distribution streams exclusively, the composition order will
satisfy the commutative property.

Although this example is a bit trivial, it is presented as a demonstration
of the possibility to express all well-defined properties or equivalence relations
between connectors and develop machine checked proof in Coq. The original
formalization of classic Reo can model a certain range of scenarios, but it is not
good at dealing with the uncertainty of the real world. With this probabilistic
Reo extension provided, formal modeling and reasoning about uncertainty is
supported. As a result, more scenarios in real world can be modeled, and the
crucial issues or properties need to be considered can be further verified in Coq.

6 Conclusion and Future Work

This paper extends our previous work on the design model for (unprobabilistic)
Reo connectors and introduces the relational model for probabilistic Reo con-
nectors based on observations as timed data distribution streams. This approach
provides a unified semantic model for different kinds of channels and connectors,
covers different communication mechanisms encoded in Reo, and allows the com-
bination of both deterministic and probabilistic channels in Reo. In this work,
we model (both deterministic and probabilistic) channels in Reo as relations of
timed data distribution streams, where the observation on each node of a con-
nector is specified as a stream of timed data distribution. The composition of
connectors is captured by flow-through composition with the help of two ternary
channels merger and replicator. Our semantic model offers potential benefits in
developing tool support for Reo. For example, the syntax and semantics for
probabilistic Reo connectors are implemented in Coq, which makes it possible
to prove connector properties, as well as equivalence and refinement relations
between different connectors.

Incorporating more complex probabilistic and stochastic constraints on con-
nectors [9,15] into our model is an interesting topic that we are now investigating.
In future work, we also plan to incorporate the hybrid connectors [10], and other
QoS aspects on connectors [4,5] into this model. The development of refinement
and testing theories for probabilistic connectors like refinement and testing for
deterministic connectors in [1,17] and integration of such theories into Coq or
other existing tools for Reo [11] are of special interest and in our scope as well. On
the other hand, we will investigate the inherent dynamic topology and mobility
in “full” Reo based on the design model, especially context-sensitive connector
behavior and reconfiguration of connectors.



140 M. Sun and X. Zhang

Acknowledgement. The work was partially supported by the National Natural Sci-
ence Foundation of China under grant no. 61772038, 61532019, 61202069 and 61272160.

References

1. Aichernig, B.K., Arbab, F., Astefanoaei, L., de Boer, F.S., Sun, M., Rutten, J.:
Fault-based test case generation for component connectors. In: Proceedings of
TASE 2009, pp. 147–154. IEEE Computer Society (2009)

2. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

3. Arbab, F., Baier, C., de Boer, C., Rutten, J.: Models and temporal logics for timed
component connectors. In: Cuellar, J.R., Liu, Z. (eds.) Proceedings of SEFM 2004,
pp. 198–207. IEEE Computer Society (2004)

4. Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component connectors with QoS
guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS,
vol. 4467, pp. 286–304. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72794-1 16

5. Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y.J., Verhoef, C.:
From coordination to stochastic models of QoS. In: Field, J., Vasconcelos, V.T.
(eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-02053-7 14

6. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40020-
2 2

7. Baier, C.: Probabilistic models for Reo connector circuits. J. Univers. Comput. Sci.
11(10), 1718–1748 (2005)

8. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61, 75–113 (2006)

9. Baier, C., Wolf, V.: Stochastic reasoning about channel-based component connec-
tors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol.
4038, pp. 1–15. Springer, Heidelberg (2006). https://doi.org/10.1007/11767954 1

10. Chen, X., Sun, J., Sun, M.: A hybrid model of connectors in cyber-physical systems.
In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 59–74. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11737-9 5

11. Eclipse Coordination Tools. http://reo.project.cwi.nl/
12. He, K., Hermanns, H., Chen, Y.: Models of connected things: on priced probabilis-

tic timed Reo. In: 2017 IEEE 41st Annual Computer Software and Applications
Conference (COMPSAC), vol. 1, pp. 234–243 (2017)

13. Hong, W., Nawaz, M.S., Zhang, X., Li, Y., Sun, M.: Using Coq for formal modeling
and verification of timed connectors. In: Cerone, A., Roveri, M. (eds.) SEFM 2017.
LNCS, vol. 10729, pp. 558–573. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74781-1 37

14. Jongmans, S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci.
Ann. Comput. Sci. 22(1), 201–251 (2012)

15. Li, Y., Zhang, X., Ji, Y., Sun, M.: Capturing stochastic and real-time behavior
in Reo connectors. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017. LNCS, vol.
10623, pp. 287–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70848-5 18

https://doi.org/10.1007/978-3-540-72794-1_16
https://doi.org/10.1007/978-3-540-72794-1_16
https://doi.org/10.1007/978-3-642-02053-7_14
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/11767954_1
https://doi.org/10.1007/978-3-319-11737-9_5
http://reo.project.cwi.nl/
https://doi.org/10.1007/978-3-319-74781-1_37
https://doi.org/10.1007/978-3-319-74781-1_37
https://doi.org/10.1007/978-3-319-70848-5_18
https://doi.org/10.1007/978-3-319-70848-5_18


A Relational Model for Probabilistic Connectors 141

16. Oliveira, N., Silva, A., Barbosa, L.S.: IMCReo: interactive Markov chains for
Stochastic Reo. J. Internet Serv. Inf. Secur. 5(1), 3–28 (2015)

17. Sun, M., Arbab, F., Aichernig, B.K., Astefanoaei, L., de Boer, F.S., Rutten, J.:
Connectors as designs: modeling, refinement and test case generation. Sci. Comput.
Program. 77(7–8), 799–822 (2012)

18. The Coq Proof Assistant. https://coq.inria.fr/
19. The source code of Probabilistic Reo. https://github.com/Xiyue-Selina/Prob-Reo
20. Zhang, X., Hong, W., Li, Y., Sun, M.: Reasoning about connectors in Coq. In:

Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 172–
190. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4 11

https://coq.inria.fr/
https://github.com/Xiyue-Selina/Prob-Reo
https://doi.org/10.1007/978-3-319-57666-4_11


Behavioral Equivalences



Weighted Branching Systems:
Behavioural Equivalence, Behavioural

Distance, and Their Logical
Characterisations

Mathias Claus Jensen(B), Kim Guldstrand Larsen, and Radu Mardare

Department of Computer Science, Aalborg University, Aalborg, Denmark
mathias.claus.jensen@gmail.com, {kgl,mardare}@cs.aau.dk

Abstract. In this work, we extend the notion of branching bisimula-
tion to weighted systems. We abstract away from singular transitions
and allow for bisimilar systems to match each other using finite paths
of similar behaviour and weight. We show that this weighted branching
bisimulation is characterised by a weighted temporal logic. Due to the
restrictive nature of quantitative behavioural equivalences, we develop a
notion of relative distance between weighted processes by relaxing our
bisimulation by some factor. Intuitively, we allow for transitions s

w−→ s′

to be matched by finite paths that accumulate a weight within the inter-
val [w

ε
, wε], where ε is the factor of relaxation. We extend this relaxation

to our logic and show that for a class of formulae, our relaxed logic char-
acterises our relaxed bisimulation. From this notion of relaxed bisimu-
lation, we derive a relative pseudometric and prove robustness results.
Lastly, we prove certain topological properties for classes of formulae on
the open-ball topology induced by our pseudometric.

1 Introduction

For concurrent and interactive systems the notion of semantic equality has always
held particular importance and in general forms the groundwork for most further
reasoning about such systems. To capture this equality between systems, many
behavioural preorders and equivalences have been considered, including the now
classical notion of bisimulation introduced by Hennesy and Milner [HM85] and
Park [Par81]. Alongside the development of behavioural equivalences, there has
been an effort in describing systems with the use of various modal and temporal
logics. In general, when one has a behavioural equivalence, we would like to

This paper is based upon unpublished ideas by Foshammer et al. [FLMX17] and
the 9th semester project report [Jen18] in Computer Science by the first author at
Aalborg University.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-00151-3 9) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 145–161, 2018.
https://doi.org/10.1007/978-3-030-00151-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-00151-3_9
https://doi.org/10.1007/978-3-030-00151-3_9


146 M. C. Jensen et al.

produce a logic that corresponds with this equivalence, in the sense that two
states are behaviourally equivalent if and only if they satisfy the same logical
formulae, e.g. Hennesy Milner Logic and bisimulation [HM85].

In conjunction with this, there has also been an emphasis on discover-
ing behavioural equivalences that allow us to abstract away from the internal
behaviour of systems and only require equivalence at an external level. The
original notion of observational equivalence by Milner [Mil80] serves this pur-
pose, as does the later notion of branching bisimulation introduced by Weijland
and Glabbeck in [vGW89]. Branching bisimulation has the additional property
of being completely characterised by several temporal logics [DV95], including
Computation Tree Logic (CTL) without the next-operator.

Today, the most common way to model concurrent systems has been by the
use of process algebras such as the Calculus of Communicating Systems (CCS)
introduced by Milner [Mil80] or by coalgebraic structures such as labelled tran-
sition systems (LTS). While models with only labels are sufficient for reasoning
about the reactive and functional behaviour of systems, they cannot encode
quantitative aspects that may be of importance to actual systems, such as time,
cost, etc. This has motivated the introduction and study of weighted transition
systems, for which transitions are labelled with quantities – e.g. real numbers
– allowing for the modelling of consumption or production of resources, such
as time and cost. Analogously to LTS, weighted transition systems also have
a well-developed notion of semantic equivalence [BvBW06], namely weighted
bisimulation.

In this paper, we revisit weighted transition systems with the intent of identi-
fying behavioural equivalences similar to that of branching bisimulation; meaning
we remain sensitive to quantitative behaviour, yet abstract away from internal
activity. We develop a notion of weighted branching bisimulation, in which we
require the transitions of behaviourally equivalent states to be matched by finite
paths of equal accumulated weight.

Example 1. Consider the small weighted transition system shown below. Con-
ceptually, we would like for t to be similar to s, as there exists a path from t

that accumulates a weight of 5, thereby matching the transition s
5−→ s′.

s
5−→ s′ t

3−→ t′ 2−→ t′′

As with [vGW89], we aim to characterise our weighted branching bisimula-
tion; as such we consider a weighted extension of CTL without the next operator,
for which the until operator has been equipped with closed intervals bounded by
rational numbers. To this end, we develop an analogue notion image-finiteness,
namely branching-finiteness, which requires that the possible ways of accumu-
lating a weight within a particular interval from a state be finite. We show that
our weighted logic characterises our notion of weighted branching bisimulation
on branching-finite weighted Kripke structures (WKS).

Due to the restrictive nature of exact quantitative behavioural relations – i.e.
the fact that small deviations in weights will cause otherwise equivalent systems



Weighted Branching Systems 147

to be non-equivalent – we develop a notion of expanding our weighted branching
bisimulation by some real-valued factor. This approach is based upon similar
work done for probabilistic systems by Giacalone et al. [GJS90] and Desharnais
et al. [DGJP99]. The idea being, that if we expand our weighted branching
bisimulation by ε ∈ IR≥1, then any transition of weight w from bisimilar states
have to be matched by finite paths of accumulated weight within the interval
[w

ε , wε]. Parallel to this, we develop a corresponding notion of expanding our
logic and show that states that are expanded-weighted branching bisimilar are
characterised by the expansion of our logic.

From this notion of expanding our bisimulation, we derive a distance between
states: the greatest lower bound of factors, such that the states in question
are expanded-weighted branching bisimilar. We show that this distance behaves
much akin to a pseudometric (and that the logarithm of the distance is a pseu-
dometric). We show that states that are within a certain distance of each other
are guaranteed to satisfy similar formulae.

Lastly, we show that a particular class of formulae, the formulae using only
negation on atomic propositions, are closed in the open-ball topology induced by
our distance, i.e. if a sequence of states that all satisfy such a formula converge to
some state, then their limit also satisfy said formula. We then define a distance
between these closed formulae, namely the greatest lower bound of factors such
that the satisfaction of the expanded formula implies the satisfaction of the
non-expanded other and vice versa.

Related Work. Model checking of a weighted extension of CTL on weighted
systems is presented by Buchholz and Kemper in [BK10].

Foshammer et al. first introduces the notion of weighted branching simula-
tion by extending the classical notion of branching simulation with weights in
[FLM16]. They also relax their systems allowing for small deviations in match-
ing weights, thereby inducing a distance. We extend upon their work by proving
similar results for a weighted branching bisimulation and for a more general class
of models. Lastly, they extend their results to include parametric weights.

Efficient algorithms are given for model-checking upper-bounded WCTL for-
mulae and completely bounded formulae are shown to be NP-hard by Jensen et
al. in [JLSO16], which in turn are based upon algorithms for parametric verifi-
cation presented by Christoffersen et al. in [CHM+15]. The weighted branching
logic of this report is based upon the version of weighted CTL presented in these
papers.

The concept of relaxing quantitative behavioural equivalences is first pre-
sented by Giacalone et al. in [GJS90]. Desharnais et al. later expands upon this
work and develops the notion of a bisimulation metric, i.e. bisimilar states should
be at distance 0 from each other and states relatively close together should be
relatively bisimilar. A deeper analysis of metrics for weighted systems is done
by Fahrenberg, Thrane and Larsen in [TFL10,LFT11,FTL11].

Larsen et al. show in [LMP12] that for discrete and continuous Markov pro-
cesses, certain classes of formulae can be considered closed, open, Gδ, or Fσ

under an appropriate bisimulation metric, something they call a dynamically



148 M. C. Jensen et al.

continuous bisimulation metric. We show that our distance has properties very
much akin to such a metric and present similar results for our weighted formulae.

2 Preliminaries

Let S be an arbitrary set. We denote the powerset of S as 2S . Given a binary
relation R ⊆ S × S and two elements s, t ∈ S, we use the following short hands:
sRt for (s, t) ∈ R and sRct for (s, t) /∈ R. Furthermore, let 〈si〉i∈I ⊆ S denote
an indexed sequence of elements of S where I ⊆ IN. We will sometimes use the
short hand 〈si〉 when the index set and support set are clear from context.

Given a set S, we define an extended relative-pseudometric on S to be a
function d : S ×S → IR≥1∪{∞} such that log d is an extended pseudometric, for
an arbitrary logarithmic function log. Throughout this paper, we will refer to
extended relative-pseudometrics and extended pseudometrics as simply relative-
pseudometrics and pseudometrics respectively.

Given a relative-pseudometric d on S and an element of s ∈ S, the open-ball
of radius ε ∈ IR≥1 around s is defined as Bε(s) = {s′ ∈ S | d(s, s′) < ε}. We
can induce a topology on S using d by taking the closure of the open-balls for
arbitrary radius ε ∈ IR≥1 and s ∈ S under (possible infinite) union and finite
intersection. Note that this topology would be the exact same as the one induced
by the pseudometric log d, as {s′ ∈ S | d(s, s′) < ε} = {s′ ∈ S | log d(s, s′) <
log ε} for all ε ∈ IR≥1 and s ∈ S, where log ∞ = ∞.

3 Weighted Kripke Structures

In this section we introduce the weighted systems that are the subject of this
research, namely weighted Kripke structures (WKS). A traditional Kripke struc-
ture is directed graph in which the directed edges represent possible transitions
between states and where each state is assigned a set of atomic propositions,
that are said to hold in that state. A WKS is the straightforward extension
of requiring that the transitions between states be weighted. Kripke structures
are known for being well suited for reasoning about temporal properties of sys-
tems [BCG88], which corresponds with our wish to abstract away from singular
transitions and focus on branching-time.

We also clarify the notion of runs and prefixes of runs—here referring to
infinite and finite paths respectively—as they will serve as the units about which
we will reason regarding branching behavioural properties of weighted systems.

Lastly, we introduce a notion of non-redundant runs and define an analogue
of image-finiteness for weighted branching systems, namely branching-finiteness.

Definition 1 (Weighted Kripke Structures). Given a set of atomic propo-
sitions, AP , a weighted Kripke structure is a tuple K = (S,→, L) where

– S is a set of states,
– →⊆ S × IR≥0 × S is the weighted transition relation, and



Weighted Branching Systems 149

– L : S → 2AP is the labelling function assigning sets of atomic propositions to
each state.

Whenever (s, w, s′) ∈→ we use the shorthand s
w−→ s′. For a given WKS

K = (S,→, L) we say that it is non-blocking if for all s ∈ S there exists a
w ∈ IR≥0 and s′ ∈ S such that s

w−→ s′. In this text we only consider non-blocking
WKS, and as such for all future defined WKS it will be implicitly implied that
they are non-blocking. This is done for purely notational reasons and all results
could easily be extended to blocking WKS. Furthermore any blocking WKS can
easily be made into a non-blocking version of itself, by adding zero-loops to any
blocking state.

Definition 2 (Runs). Given a WKS K = (S,→, L), a run starting in s0 ∈ S
is a countable infinite sequence of transitions,

σ = (s0, w1, s1), (s1, w2, s2), ..., (sn, wn+1, sn+1), ...

where for all n ∈ IN, sn ∈ S and sn
wn+1−−−→ sn+1.

For n ∈ IN the n-th transition of a run σ is denoted σ〈n〉 and the n-th state
of σ is defined as σ[n] = sn where σ〈n〉 = (sn, wn+1sn+1). Furthermore, the
accumulated weight of σ at position n ∈ IN is defined as

W(σ)(n) =

⎧
⎨

⎩

0 if n = 0
n∑

i=1

wi, where σ〈i〉 = (si−1, wi, si) if n > 0

Lastly, let Runs be the set of all runs in K and for s ∈ S let Runs(s) be the set
of all runs starting in s.

Building upon the already well explored concepts of branching bisimulation
and weighted bisimulation, we now introduce weighted branching bisimulation
(WBB). For two states to be weighted branching bisimilar, we require that
whenever one of the states can perform a weighted move, the bisimilar state can
match this move by performing a sequence of moves that preserve behaviour a
long the way, preserves the end behaviour, and accumulates the exact weight of
the original move.

Definition 3 (Weighted Branching Bisimulation). Given a WKS K =
(S,→, L), a weighted branching bisimulation is a relation R ⊆ S × S such
that whenever sRt then

1. L(s) = L(t),
2. for all s

w−→ s′ there exists a σ ∈ Runs(t) and k ∈ IN such that ∀i < k : sRσ[i],
s′Rσ[k], and W(σ)(k) = w.

3. for all t
w−→ t′ there exists a σ ∈ Runs(s) and k ∈ IN such that ∀i < k : tRσ[i],

t′Rσ[k], and W(σ)(k) = w.

We use ≈ to denote the largest weighted branching bisimulation.



150 M. C. Jensen et al.

s0{a}

s1{b} s2 {b}

t0

{a}

t1{b} t2

{a}

p0 {a}

p1 {b}

3

2 5

0 0

2 3

3
2

0

3

2

0

Fig. 1. A WKS where s0 ≈ t0, t0 ≈ p0 and p0 ≈ s0.

Henceforth in this text, we will just refer to weighted branching bisimulation
as our bisimulation. See Fig. 1 for an illustrated example of a WKS and bisimilar
states.

While runs serve as the base for which we reason about behaviour in our
WKS, a lot of the time we are only interested in computation trees of a finite
height. As such, we define a concept of prefixes of runs, which are just finite
sequences of transitions.

Example 2. Suppose that K = (S,→, L) is a WKS where the weight of all tran-
sitions are lowerbounded by some b ∈ IR≥0 where b > 0. If we wished to reason
about all the ways a state s ∈ S can accumulate a weight within the interval
[0, 12] we would only have to look at finite paths starting in s of with a length
below h = 12

b .

Definition 4 (Prefix). Let K = (S,→, L) be a WKS, σ ∈ Runs and k ∈ IN, we
denote the prefix of σ of length k by

σ ↑ k = σ〈0〉, σ〈1〉, ..., σ〈k − 1〉

Note the multiple otherwise different runs, may have the same prefix. In fact,
for an arbitrary WKS K = (S,→, L), all unique prefixes of length k can be seen
as a partition of the set of runs, where we group runs together with identical
prefixes.

As mentioned, prefixes will later be used to define an analogue to image-
finiteness for branching systems. To this extent, we now define a function which
gives us the smallest sets of prefixes that we will need to examine when wishing
to reason about possible ways for a state to accumulate a weight within some
interval. As with before, we are only interested in prefixes that accumulate a
valid weight, but now we also prune all prefixes that has zero-cycles before
accumulating said weight. The reason for pruning prefixes including zero-cycles
is that their behaviour is dependent upon the prefixes without zero-cycles—
i.e. if a run without zero-cycles cannot achieve something, then the addition of
zero-cycles will not change this.



Weighted Branching Systems 151

Definition 5 (Non-Redundant Prefixes). Let K = (S,→, L) be a WKS,
s ∈ S and [l, u] ⊂ IR≥0. We denote the set of prefixes that accumulate a weight
within [l, u] without zero-cycles as

P(s)([l, u]) =

{
σ ↑ k | σ ∈ Runs(s), k ∈ IN, W(σ)(k) ∈ [l, u],

σ has no zero − cycles
before k

}
.

Using this definition, we now introduce an analogue notion of finiteness for
WKS to that of being image-finite, namely branching-finite. A WKS is branching-
finite if and only if all the ways it can accumulate a weight within an interval,
ignoring prefixes with zero-cycles of course, is finite.

Definition 6 (Finiteness in WKS). Given a WKS K = (S,→, L), we say
that K is

– finite if S and → are finite,
– image-finite if for all s ∈ S and w ∈ IR≥0, the set {s′ ∈ S | s

w−→ s′} is finite,
– branching-finite if for all s ∈ S and [l, u] ⊂ IR≥0, the set P(s)([l, u]) is finite.

From this definition it is clear to see that branching-finiteness is a stronger
property than image-finiteness, in the sense that if a WKS is branching-finite,
then it is also image-finite. The converse is however not the case.

t1

t1

t2

t2

tn

tn

......

1

0

1
2

1
2

0

1
4

1
2n−1

1
2n−1

0

1
2n

(K) Illustration of a WKS K that is image-finite but not branching-
finite

s

s0 s1 sn. . . . . .

0 1 n

0 0 0

(G) Illustration of a WKS G that is both image-finite
and branching-finite

Fig. 2. Two WKS that illustrate the difference between image-finite and branching-
finite



152 M. C. Jensen et al.

Example 3. Consider the two WKS shown in Fig. 2. We have that the WKS K
is image-finite, as for any state there are a total of two direct successors, K is
however not branching-finite, as from the state t there are an infinite amount of
non-redundant paths that accumulate a weight within the interval [1, 1].

On the other hand, the WKS G is both image-finite and branching-finite. As
for any given closed interval [l, u] ⊆ IR≥0 there are a finite number of successors
and a finite number of non-redundant paths that accumulate a weight within
that interval.

We now produce our first lemma that states that for branching-finite WKS
we can characterise our characterising prefixes using rational numbers as lower
and upper bounds.

Lemma 1. Let K = (S,→, L) be a WKS and s ∈ S. For all [l, u] ⊂ IR≥0 there
exists a pair m,n ∈ Q≥0 such that [l, u] ⊆ [m,n] and P(s)([l, u]) = P(s)([m,n]).

This result is a consequence of the fact that the rationals are dense in the
reals, and that the sets P(s)([l, u]) are finite for branching-finite WKS. The
lemma will prove important when we later want to characterise our behavioural
relation on an otherwise real valued system with a countable logic.

Complete proofs for all lemmas and theorems can be found in either the
attached appendix or in [Jen18].

4 Weighted Branching Logic

In this section we introduce the temporal logic that we will use to reason about
WKS, namely weighted branching logic (WBL). WBL can be seen as a weighted
extension of computation tree logic without the next-operator. The weighted
extension is the addition of closed intervals on the until-operator, requiring the
accumulated weight of the run satisfying the until also be within the given inter-
val. Furthermore, we show that for branching-finite WKS, WBL characterises
our bisimulation.

Definition 7 (Syntax). Let AP be a set of atomic propositions. The state-
formulae of weighted branching logic, L, are induced by the following grammar.

L : φ : := a | ¬φ | φ ∧ φ | Eψ | Aψ,

and the path-formulae by
ψ : := φ U[l,u] φ,

where a ∈ AP and l, u ∈ Q≥0.

Definition 8 (Semantics). Let AP be a set of atomic propositions. The satis-
fiability relation, |=, is defined inductively for an arbitrary WKS K = (S,→, L),
s ∈ S, and σ ∈ Runs as follows.



Weighted Branching Systems 153

s |= a iff a ∈ L(s)
s |= ¬φ iff not s |= φ

s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= Eψ iff ∃σ ∈ Runs(s) : σ |= ψ

s |= Aψ iff ∀σ ∈ Runs(s) : σ |= ψ

σ |= φ1U[l,u]φ2 iff ∃k ∈ IN :

⎡

⎣
∀i < k : σ[i] |= φ1,
σ[k] |= φ2, and
W(σ)(k) ∈ [l, u]

⎤

⎦

where a ∈ AP and l, u ∈ Q≥0.

Example 4. Let AP = {Safe,Terminal} be a set of atomic propositions. Imagine
a WKS K = (S,→, L) that modelled some timed system where the weights on
the transitions represent time. If we wished to reason about whether or not we
are capable of moving from s to some terminal state through only safe states
within 20 time units, we could query E SafeU[0,20]Terminal.

The problem of model checking WBL formulae on finite WKS is NP-hard,
as shown by Jonas Finnemann Jensen et al. in [JLSO16]. If we where to restrict
ourselves to only considering upper bounded until formulae, then the problem
of model checking would be in P , as is also shown in [JLSO16].

We conclude this section with a theorem stating, for branching-finite WKS,
that WBL characterises our bisimulation. This result is similar to that presented
by De Nicola and Vaandrager in [DV95], where they characterise the classic
branching bisimulation with 3 logics, one of which is regular CTL excluding the
next-operator.

Theorem 1 (Characterisation). Let AP be a set of atomic propositions and
K = (S,→, L) be a branching-finite WKS. For arbitrary s, t ∈ S

s ≈ t iff ∀φ ∈ L : s |= φ ⇔ t |= φ

Proof. We show that s ≈ t implies ∀φ ∈ L : s |= φ ⇔ t |= φ. Induction on the
structure of φ ∈ L. The atomic and boolean cases are trivial.

Case φ = E φ1 U[l,u] φ2: By definition s |= E φ1 U[l,u] φ2 iff there
exists a σ ∈ Runs(s) and k ∈ IN such that ∀i < k : σ[i] |= φ1, σ[k] |=
φ2, and W(σ)(k) ∈ [l, u]. Since s ≈ t there must exists a matching run
π ∈ Runs(t) and hk ∈ IN whereby induction we have that ∀j < hk : π(j) |= φ1

and π(hk) |= φ2. Furthermore we have that W(π)(hk) = W(σ)(k) ∈ [l, u].
Hence, by definition t |= E φ1 U[l,u] φ2. The universal case is handled conversely
as that of the existential.

We show that s ≈ t is implied by ∀φ ∈ L : s |= φ ⇔ t |= φ. We show that
the relation R = {(s, t) ∈ S × S | ∀φ ∈ L : s |= φ ⇔ t |= φ} is a weighted
branching bisimulation. Suppose that sRt for some s, t ∈ S. Clearly L(s) =
L(t). For condition 2 (and 3 by symmetry), assume towards a contradiction
that there exists a s

w−→ s′ such that ∀π ∈ Runs(t) : ∀k ∈ IN : ∃i < k :



154 M. C. Jensen et al.

sRcπ[i], s′Rcπ[k], or W(π)(k) �= w. For every π ↑ k ∈ P(t)([w,w]) such that
sRcσ[i] there exists a φ1 ∈ L such that s |= φ and σ[i] �|= φ1, let Φ1 be the
collection of these. Similarly let Φ2 be the collection of distinguishing formulae
for the cases where s′Rcσ[k]. Clearly Φ1 and Φ2 are finite as P(t)([w,w]) is finite
due to K being branching-finite. By Lemma 1 we have that there exists a pair
l, u ∈ Q≥0 such that [w,w] ⊆ [l, u] and P(t)([w,w]) = P(t)([l, u]). We can now
create a formula

ψ = E
( ∧

φ1∈Φ1

φ1

)
U[l,u]

( ∧

φ2∈Φ2

φ2

)

for which ∀σ ↑ k ∈ P(t)([l, u]) : σ �|= ψ. Since no run contained in a prefix in
P(t)([l, u]) satisfies ψ, we get, without a loss of generality, that no runs satisfies
ψ. This is equivalent to t �|= Eψ. We now have that s |= Eψ and t �|= Eψ
contradicting that sRt. ��

As a consequence of this theorem, we have that if two systems are not bisim-
ilar, then we can produce a distinguishing formula that, in a sense, tells us how
they differ.

5 Behavioural Relative Pseudometric

Requiring that paths be matched with exact weights can often be too restric-
tive, as small differences in weights on transitions will render otherwise similar
systems non-bisimilar. Often, we will base our models on empirical data that
is measured with some degree of uncertainty. As such, in this section we intro-
duce a way of relaxing our bisimulation similar to that done for probabilistic
systems by Giacalone et al. in [GJS90] and by Desharnais et al. in [DGJP99].
This is done by expanding the interval by which paths can match each other by
some relative factor, e.g. the transition s

w−→ s′ could be matched by a path of
similar behaviour but with an accumulated weight within the interval [w

ε , wε],
where ε is the relative factor of expansion. We extend this notion of expansion
to our logic—by expanding the intervals on until formulae—and show that we
can characterise our expanded bisimulations using this notion of expanding our
formulae.

From the expansion of our bisimulation we derive a distance, namely the
greatest lower bound of relative factors required for two states to be expanded
bisimilar. We show this distance is a behavioural relative pseudometric and that
two states within a certain distance of each other are guaranteed to have similar
behaviour.

Definition 9 (Expanded WBB). Given a WKS K = (S,→, L) and ε ∈ IR≥1,
an ε-expanded weighted branching bisimulation is a relation R ⊆ S × S such
that whenever sRt then

1. L(s) = L(t)
2. for all s

w−→ s′ there exists a σ ∈ Runs(t) and k ∈ IN such that ∀i < k : sRσ[i],
s′Rσ[k], and W(σ)(k) ∈ [w

ε , wε].



Weighted Branching Systems 155

3. for all t
w−→ t′ there exists a σ ∈ Runs(s) and k ∈ IN such that ∀i < k : tRσ[i],

t′Rσ[k], and W(σ)(k) ∈ [w
ε , wε].

We use
ε≈ to denote the largest ε-expanded weighted branching bisimulation.

Note that this expanded bisimulation relation does not form an equivalence
relation, as it does not satisfy the transitive property. It is however still reflexive
and symmetric. Instead of the transitive property we now have a sort of multi-
plicative triangular inequality, i.e. s

ε≈ t and t
γ
≈ u implies s

εγ
≈ u, for arbitrary

s, t, u ∈ S and ε, γ ∈ IR≥1. We also have that expanding our bisimulation by 1

does nothing, as it is the multiplicative identity. Lastly, we have that
ε≈ ⊆ ε+δ≈ ,

for any ε ∈ IR≥1 and δ ≥ 0.
We now introduce a way of expanding the formulae of WBL in a way corre-

sponding to that of expanding our bisimulation. As mentioned, this is done by
expanding the intervals on all until expression that occur in any given formulae.

Definition 10 (Expansion of Formulae). Let AP be a set of atomic propo-
sitions and ε ∈ IR≥1. The ε-expansion of WBL formulae are defined for an
arbitrary φ ∈ L as

φε =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a if φ = a

¬(φε
1) if φ = ¬φ1

φε
1 ∧ φε

2 if φ = φ1 ∧ φ2

E φε
1 U[ l

ε ,uε] φ
ε
2 if φ = E φ1 U[l,u] φ2

A φε
1 U[ l

ε ,uε] φ
ε
2 if φ = A φ1 U[l,u] φ2

where a ∈ AP .

We canonically extend the satisfiability of until formulae to ones with real
bounded intervals.

Notice here that the sets [[E φ1 U[l,u] φ2]] and [[A φ1 U[l,u] φ2]] increase as
we expand the formulae in question. Similarly, we get that the sets of states
[[¬E φ1 U[l,u] φ2]] and [[¬A φ1 U[l,u] φ2]] decrease as we expand the respective
formulae. This is due to the given intervals increasing and their complement
decreasing as we expand until formulae. For this reason we isolate the following
positive only and negation thereof sub-logics of WBL.

L+ : φ : := a | ¬a | φ ∧ φ | φ ∨ φ | E φ U[l,u]φ | AφU[l,u]φ

L− = {¬φ | φ ∈ L+}

Equipped with these sub-logics we now present the following two characterisa-
tions of arbitrarily expanded weighted branching bisimulations on branching-
finite WKS. We show that two states are expanded bisimilar if and only if one
satisfy a positive only formula implies the other satisfies the same but expanded
formula.



156 M. C. Jensen et al.

Theorem 2 (Characterisation of Expanded WBB). Let K = (S,→, L) be
a branching-finite WKS, s, t ∈ S and ε ∈ IR≥1.

s
ε≈ t iff ∀φ ∈ L+ :

[
s |= φ =⇒ t |= φε

t |= φ =⇒ s |= φε

]

The proof for Theorem2 is almost identical to that of Theorem1, except we
now allow for the expansion of our bisimulation and positive formulae. By con-
trapositive, we get the following characterisation saying two states are expanded
bisimilar if and only if one does not satisfy an expanded formulae implies the
other does not satisfy the non-expanded formulae.

Corollary 1. Let K = (S,→, L) be a branching-finite WKS, s, t ∈ S and ε ∈
IR≥1.

s
ε≈ t iff ∀φ ∈ L− :

[
s |= φε =⇒ t |= φ
t |= φε =⇒ s |= φ

]

The following theorem presents another interesting result regarding
branching-finite WKS and the expansion of formulae. Namely, that if a state
satisfies an expansion sequence of a positive formula, and that this expansion
sequence converges to some limit, then the state also satisfies the positive formula
expanded to the limit.

Theorem 3. Let K = (S,→, L) be a branching-finite WKS, s ∈ S, φ ∈ L+,
and ε ∈ IR≥1. Furthermore, let 〈εn〉n∈IN ⊆ IR≥1 be a converging sequence where
lim

n→∞ εn = ε.

If ∀n ∈ IN : s |= φεn then s |= φε

Proof. Since 〈εn〉n∈IN is converging we can construct either an increasing or
decreasing subsequence that converges to the same limit as 〈εn〉n∈IN. For the
case where we can construct an increasing subsequence is trivial, as s |= φε

n

implies s |= φε for any εn ≤ ε. For the case where we can construct a decreasing
sequence, let 〈εn〉−

n∈IN denote this sequence. Induction on the structure of φ ∈ L+.
The atomic and boolean cases are trivial. Case φ = E φ1 U[l,u] φ2: We know that
∀n ∈ IN : s |= E φεn

1 U[ l
εn

,uεn] φ
εn
2 if and only if ∀n ∈ IN : ∃σ ∈ Runs(s) and ∃k ∈

IN such that ∀i < k : σ[i] |= φεn
1 , σ[k] |= φεn

2 , and W(σ)(k) ∈ [ l
εn

, uεn]. Since
K is branching-finite we have that for all n ∈ IN, P(s)([ l

εn
, uεn]) is finite. Addi-

tionally, as 〈εn〉−
n∈IN is a decreasing sequence we have that 〈P(s)([ l

εn
, uεn])〉n∈IN

is a decreasing sequence of finite sets, i.e. P(t)([ l
ε0

, uε0]) ⊇ P(t)([ l
ε1

, uε1]) ⊇ ...

where ∃M ∈ IN : ∀m > M : P(s)([ l
εM

, uεM ]) = P(s)([ l
εm

, uεm]) �= ∅.
This implies that there must exists a σ ↑ k ∈ P(s)(IεM ) whereby ∀n ∈ IN :

[∀i < k : σ[i] |= φεn
1 , σ[k] |= φεn

2 , and W(σ)(k) ∈ [ l
εn

, uεn]]. By structural
induction we have that ∀i < k : σ[i] |= φε

1 and σ[k] |= φε
2. Furthermore,

we have that
⋂

n∈IN

[ l
εn

, uεn] = Iε and since ∀n ∈ IN : W(σ)(k) ∈ [ l
εn

, uεn] we

have that W(σ)(k) ∈ Iε. Therefore, by definition s |= E φε
1 U[ l

ε ,uε] φ
ε
2. Case

φ = A φ1 U[l,u] φ2: The universal case is handled similarly. ��



Weighted Branching Systems 157

We now induce a relative distance from our definition of expanding our bisim-
ulation. Precisely we define the distance between two states to be the greatest
lower bounds of factors such that the two states are expanded bisimilar.

Definition 11 (Relative Distance). Given a WKS K = (S,→, L), the rela-
tive distance between two states, s, t ∈ S, is given by the function d : S × S →
IR≥1 ∪ {∞} such that

d(s, t) = inf{ε ∈ IR≥1 | s
ε≈ t}

where inf ∅ = ∞.

This distance behaves nicely, i.e. it behaves as a relative-pseudometric.

Proposition 1. Let K = (S,→, L) be a WKS. The distance function d is a
relative-pseudometric, i.e. for s, t, u ∈ S we have that

1. d(s, s) = 1 (Multiplicative Identity)
2. d(s, t) = d(t, s) (Symmetry)
3. d(s, u) ≤ d(s, t) · d(t, u) (Relative Triangular Inequality)

Furthermore, we get that composing our relative-pseudometric with a loga-
rithm result in an actual pseudometric.

Corollary 2. Let K = (S,→, L) be a WKS, log d is a pseudometric.

More importantly, we have that this distance confers to certain behavioural
properties. We have that states at distance 1 (multiplicativ identity) are bisimi-
lar. An even stronger result is that for all states that are within a given distance
of each other, say ε ∈ IR≥1, we have that they are ε-expanded bisimilar with one
another.

Theorem 4 (Behavioural Distance). Let K = (S,→, L) be a branching-
finite WKS, s, t ∈ S, ε ∈ IR≥1.

d(s, t) = ε =⇒ s
ε≈ t

This result follows from Theorems 2 and 3 and the fact that the distance is
the infimum of expansions such that two states are expanded bisimilar.

We now introduce one of the main results of this paper. Namely a robustness
result regarding the distance between states and the satisfiability of positive
formulae. Intuitively, the theorem states that close together states exhibit similar
properties, i.e. similar formulae.

Theorem 5 (Robustness). Let K = (S,→, L) be a branching-finite WKS,
s, t ∈ S, and ε ∈ IR≥1.

If d(s, t) ≤ ε then ∀φ ∈ L+ : s |= φ =⇒ t |= φε

So, even if we base our models upon uncertain empirical data, we can still
be certain they satisfy some given properties.



158 M. C. Jensen et al.

6 Topological Properties

In this section we induce a topological space from our relative distance. This is
done with the purpose of reasoning about the behaviour of converging states as
they approach their limit. More precisely we show that if a sequence of states all
satisfying a positive formula φ ∈ L+ converges, then the limit of this sequence
also satisfies φ. Similar results have been shown for Markov processes and Markov
logic by Larsen et al. in [LMP12].

s0 s1 s2 sn s. . . . . .

2 1.5 1.25 1 + 1
2n

1

Fig. 3. A WKS where the sequence of states 〈sn〉n∈IN converges to s.

Example 5. Consider the WKS shown in Fig. 3 where a sequence of states
〈sn〉n∈IN—all with a single weighted self loop—converges to a state s. Clearly, we
have that for all n ∈ IN, that sn |= E �U[1,2]�. Furthermore, we have that at
the limit s |= E �U[1,2]�. This property does however not hold for all formulae.
Consider the negative formula ¬E �U[1,1]�, again we have that for all n ∈ IN,
that sn |= ¬E �U[1,1]�. However, at the limit we have that s �|= ¬E �U[1,1]�.

The next theorem states that positive formulae have this property, and are
therefore considered closed in the open-ball topology induced by our behavioural
relative pseudometric. I.e. if a converging sequence of states satisfy a positive
formula, then so does the limit.

Theorem 6. Let K = (S,→, L) be a branching-finite WKS and Td the open-ball
topology induced by d.

If φ ∈ L+ then [[φ]] is closed ∈ Td

As direct consequence of this theorem, we get that our negative formulae are
considered open in the open-ball topology induced by our behavioural relative
pseudometric.

Corollary 3. Let K = (S,→, L) be a branching-finite WKS and Td the open-ball
topology induced by d.

If φ ∈ L− then [[φ]] is open in Td

Furthermore, as we consider both atomic propositions and their negation to
be both positive and negative formulae, we get that they are considered clopen.



Weighted Branching Systems 159

Corollary 4. Let K = (S,→, L) be a branching-finite WKS and Td the open-ball
topology induced by d.

∀a ∈ AP : [[a]] and [[¬a]] are clopen in Td

Lastly, we conclude this section by proposing a distance for positive formulae.
Inspired by the Hausdorff distance, we define the distance between two positive
formulae to be the greatest lower bound of factors, such that satisfaction of the
first formula implies satisfaction of the expanded second formula and vice versa.

Definition 12 (Formula Distance). Given a WKS K = (S,→, L), the dis-
tance between two formulae, φ, ψ ∈ L+, is given by the function d : L+ × L+ →
IR≥1 ∪ {∞} such that

δ(φ, ψ) = inf{ε ∈ IR≥1 | [[φ]] ⊆ [[ψε]] and [[ψ]] ⊆ [[φε]]}
We conclude this section by showing a robustness result similar to that of

Theorem 5, but for formulae. Intuitively it states that satisfaction of a positive
formula implies the satisfaction of nearby (similar) expanded formulae.

Theorem 7. Let K = (S,→, L) be a branching-finite WKS, s ∈ S, φ, ψ ∈ L+,
and ε ∈ IR≥1.

If s |= φ and δ(φ, ψ) ≤ ε then s |= ψε

This result is a direct consequence of Theorem 3.

7 Conclusion and Future Work

In this paper, we extended the classical notion of branching bisimulation to that
of weighted systems. We developed a notion of observable behavioural equiv-
alence, namely our Weighted Branching Bisimulation. This allows us to class
together otherwise non-bisimilar systems in the classical sense that are observ-
ably the same.

We develop a new concept of branching-finite, which is an analogue to image-
finite but on weighted branching systems. We show that for branching-finite
WKS, a weighted extension of CTL without the next-operator characterises our
bisimulation.

We relax our bisimulation by expanding the interval by some factor wherein
individual transitions can be matched by runs, thus giving us a more robust
concept of bisimulation. We also introduce a way of expanding our formulae and
show that for a positive subset our expansion of our bisimulation is characterised
by the expansion of our formulae.

From the notion of expanding our bisimulation, we derive a distance between
states: the greatest lower bound of factors such that two states are expanded
bisimilar. We show that the logarithm of this distance behaves like a behavioural
pseudometric on branching-finite WKS, and we show that states close to each
other satisfy similar formulae.

Lastly, we showed that for branching-finite WKS, our positive formulae are
closed in the open-ball topology induced by our distance.



160 M. C. Jensen et al.

Future Work. The computability and complexity for many of our results have
been left out as our models are possibly infinite in size. For finite systems the
complexity of deciding whether two systems are weighted branching bisimilar
is likely to be NP-complete due to the requirement of matching transitions
with runs of some exact weight and finding paths of an exact weight being
NP-complete [NU02]. The computability and complexity of all our other results
are still open questions however.

There is also the question of whether our bisimilation forms a congruence
relation under a suitable composition of weighted processes. In fact, what a
suitable composition of weighted processes is, is also an open question.

References

[BCG88] Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke
structures in propositional temporal logic. Theor. Comput. Sci. 59, 115–131
(1988)

[BK10] Buchholz, P., Kemper, P.: Model checking for a class of weighted automata.
Discret. Event Dyn. Syst. 20(1), 103–137 (2010)

[BvBW06] Blackburn, P., van Benthem, J.F.A.K., Wolter, F.: Handbook of Modal
Logic, vol. 3. Elsevier, Amsterdam (2006)

[CHM+15] Christoffersen, P., Hansen, M., Mariegaard, A., Ringsmose, J.T., Larsen,
K.G., Mardare, R.: Parametric verification of weighted systems. In: André,
É., Frehse, G. (eds.) 2nd International Workshop on Synthesis of Complex
Parameters, SynCoP 2015, 11 April 2015, London, United Kingdom. OA-
SICS, vol. 44, pp. 77–90. SchlossDagstuhl - Leibniz-Zentrum fuer Informatik
(2015)

[DGJP99] Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for
labeled Markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR
1999. LNCS, vol. 1664, pp. 258–273. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48320-9 19

[DV95] De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation.
J. ACM 42(2), 458–487 (1995)

[FLM16] Foshammer, L., Larsen, K.G., Mariegaard, A.: Weighted branching sim-
ulation distance for parametric weighted Kripke structures. EPTCS 220,
63–75 (2016)

[FLMX17] Foshammer, L., Larsen, K.G., Mardare, R., Xue, B.: Logical characteriza-
tion and complexity of weighted branching preorders and distances. Unpub-
lished Draft (2017)

[FTL11] Fahrenberg, U., Thrane, C.R., Larsen, K.G.: Distances for weighted tran-
sition systems: games and properties. EPTCS 57, 134–147 (2011)

[GJS90] Giacalone, A., Jou, C.-C., Smolka, S.A.: Algebraic reasoning for probabilis-
tic concurrent systems. In: Proceedings of the IFIP TC2 Working Confer-
ence on Programming Concepts and Methods. Citeseer (1990)

[HM85] Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concur-
rency. J. ACM 32(1), 137–161 (1985)

[Jen18] Jensen, M.C.: Weighted branching systems: behavioural equivalence, met-
ric structure, and their characterisations. Technical report, 9th Semester
Report at Aalborg University (2018)

https://doi.org/10.1007/3-540-48320-9_19
https://doi.org/10.1007/3-540-48320-9_19


Weighted Branching Systems 161

[JLSO16] Jensen, J.F., Larsen, K.G., Srba, J., Oestergaard, L.K.: Efficient model-
checking of weighted CTL with upper-bound constraints. Int. J. Softw.
Tools Technol. Transfer 18, 409–426 (2016)

[LFT11] Larsen, K.G., Fahrenberg, U., Thrane, C.R.: Metrics for weighted transi-
tion systems: axiomatization and complexity. Theor. Comput. Sci. 412(28),
3358–3369 (2011)

[LMP12] Larsen, K.G., Mardare, R., Panangaden, P.: Taking it to the limit: approx-
imate reasoning for Markov processes. In: Rovan, B., Sassone, V., Wid-
mayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 681–692. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32589-2 59

[Mil80] Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

[NU02] Nykänen, M., Ukkonen, E.: The exact path length problem. J. Algorithms
42(1), 41–53 (2002)

[Par81] Park, D.: Concurrency and automata on infinite sequences. In: Deussen,
P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg
(1981). https://doi.org/10.1007/BFb0017309

[TFL10] Thrane, C., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted
transition systems. J. Log. Algebr. Program. 79(7), 689–703 (2010)

[vGW89] van Glabbeek, R.J., Weijland, W.P.,: Branching time and abstraction in
bisimulation semantics (extended abstract). In: IFIP Congress, pp. 613–
618 (1989)

https://doi.org/10.1007/978-3-642-32589-2_59
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/BFb0017309


Trace Relations and Logical Preservation
for Markov Automata

Arpit Sharma(B)

Department of Electrical Engineering and Computer Science,
Indian Institute of Science Education and Research Bhopal, Bhopal, India

arpit@iiserb.ac.in

Abstract. Markov automata (MAs) have been introduced in [16] as a
continuous-time version of Segala’s probabilistic automata (PAs) [29].
This paper defines several variants of trace equivalence for closed MA
models. These trace equivalences are obtained as a result of button push-
ing experiments with a black box model of MA. For every class of MA
scheduler, a corresponding variant of trace equivalence has been defined.
We investigate the relationship among these trace equivalences and also
compare them with bisimulation for MAs. Finally, we prove that the
properties specified using deterministic timed automaton (DTA) specifi-
cations and metric temporal logic (MTL) formulas are preserved under
some of these trace equivalences.

Keywords: Markov · Equivalence · Trace · Bisimulation
Temporal logic

1 Introduction

Markov automata (MAs) [16] extend probabilistic automata (PAs) [29] with
stochastic aspects [22]. MAs thus support non-deterministic probabilistic branch-
ing and exponentially distributed delays in continuous time. MAs are composi-
tional, i.e., a parallel composition operator allows one to construct a complex
MA from several component MAs running in parallel.

They provide a natural semantics for a variety of specifications for concur-
rent systems, as for example, dynamic fault trees [8,9], architectural description
languages such as AADL [7,11], generalized stochastic Petri nets (GSPNs) [23],
STATEMATE [6] and stochastic activity networks (SANs) [25]. They can also be
used for modeling and analysis of GALS (Globally Asynchronous Locally Syn-
chronous) hardware design [13] and shared memory mutual exclusion protocols
[24]. Recently, a data rich specification language for MAs has been introduced
[36]. Analyzing MAs involves applying model checking algorithms [18–20] on
closed1 MA models to compute the probability of linear or branching real-time
objectives, e.g., long-run average, expected time, timed (interval) reachability

1 A MA is said to be closed if it is not subject to any further synchronization.

c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 162–178, 2018.
https://doi.org/10.1007/978-3-030-00151-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_10&domain=pdf


Trace Relations and Logical Preservation for Markov Automata 163

[18] and Continuous Stochastic Logic (CSL) [21]. Equivalence relations are widely
used for comparing and relating the behavior of stochastic models. For exam-
ple, equivalences have been used to efficiently check if the implementation is
an approximation of specification of the expected behavior. Additionally, equiv-
alences are also used for reducing the size of stochastic models by combining
equivalent states into a single state. For MAs, research has mainly concentrated
on branching-time equivalences, e.g., strong bisimulation [16] and several vari-
ants of weak bisimulation [1,15,16,35].

This paper focuses on linear-time equivalences for closed MAs and investi-
gates which kind of logical properties do they preserve. We use button pushing
experiments on a black box model of MA (i.e., trace machine) to define several
variants of trace equivalence. Our machine is equipped with an action display,
a state label display, a timer and a reset button. Action and state label dis-
plays enable the external observer to observe the trace of the current run of
machine M and timer provides the absolute time. The sequence of actions, state
labels and time checks form an outcome (or timed trace), i.e., (σ, θ), of the
trace machine. Since schedulers are used to resolve non-deterministic choices
in MAs, we always fix a scheduler class C and allow the machine to execute
infinitely many runs for all possible schedulers of this class. This process is
repeated for every scheduler class C of the trace machine M. Roughly speaking,
two MAs M1,M2 are trace equivalent (w.r.t. scheduler class C), denoted ≡C , if
for every scheduler D ∈ C of M1 there exists a scheduler D′ ∈ C of M2 such
that for all outcomes/timed traces (σ, θ) we have P trace

M1,D(σ, θ) = P trace
M2,D′(σ, θ)

and vice versa. Here, P trace
M1,D(σ, θ) denote the probability of all timed paths that

are compatible with the outcome/timed trace (σ, θ) in M1 under scheduler D.
More specifically, we define six variants of trace equivalence on the basis of
increasing power of schedulers, namely stationary deterministic (SD), stationary
randomized (SR), history-dependent deterministic (HD), history-dependent ran-
domized (HR), timed history-dependent deterministic (THD) and timed history-
dependent randomized (THR) trace equivalence. We compare these trace equiv-
alences with strong bisimulation for MAs [16]. We also study the connections
among these trace equivalences.

Our main focus and motivation, however, is to investigate the preservation of
linear real-time objectives under above mentioned trace equivalences. We prove
that if two MAs are trace equivalent under (THD) class of schedulers then they
have the same probability of satisfying a DTA specification. In addition, we
study MTL [10,28], a real-time variant of LTL that is typically used for timed
automata (and not for MAs). We define the semantics of MTL formulas over
MA paths and prove that under (THR) trace equivalence probability of satis-
fying MTL formulas is preserved. Note that DTA and MTL have incomparable
expressiveness [5,10,34]. Put in a nutshell, the major contributions of this paper
are as follows:

– We define six variants of trace equivalence by experimenting with the trace
machines, investigate the relationship between them and compare these equiv-
alences with bisimulation for MAs.



164 A. Sharma

– We prove that THD and THR trace equivalences preserve DTA and MTL
specifications, respectively.

1.1 Related Work

Several linear-time equivalences for continuous-time Markov chains (CTMCs)
have been investigated in [37]. Testing scenarios based on push-button experi-
ments have been used for defining these equivalences. Trace semantics for inter-
active Markov chains (IMCs) have been defined in [38]. In this paper, testing
scenarios using button pushing experiments have been used to define several vari-
ants of trace equivalences that arise by varying the type of schedulers. Similarly,
trace semantics for continuous-time Markov decision processes have been defined
in [32]. For MAs, strong and weak bisimulation relations have been defined in
[16]. In [16], weak bisimulation has been defined over state probability distribu-
tions rather than over individual ones. In [14,15], it has been shown that weak
bisimulation provides a sound and complete proof methodology for a touchstone
equivalence called reduction barbed congruence. Notions of early and late seman-
tics for MAs have been proposed in [35]. Using these semantics, early and late
weak bisimulations have been defined and it has been proved that late weak
bisimulation is weaker than all of the other variants defined in [14–16]. In [1],
an expected-delay-summing weak bisimulation has been defined for MAs. Our
definition of trace equivalence for MAs here builds on that investigated in [38]
for IMCs. We take a similar approach and use the button pushing experiments
with stochastic trace machines to define trace equivalences.

Organisation of the Paper. Section 2 briefly recalls the main concepts of MAs.
Section 3 defines trace equivalence relations. Sections 4 and 5 discuss the preser-
vation of DTA properties and MTL-formulas, respectively. Finally, Sect. 6 con-
cludes the paper and provides pointers for future research.

2 Preliminaries

This section presents the necessary definitions and basic concepts related to
Markov automata (MA) that are needed for the understanding of the rest of this
paper. Let Distr(S) denote the set of distribution functions over the countable
set S.

Definition 1. A Markov automaton (MA) is a tuple M = (S, s0, Act, AP,→,
⇒, L) where:

– S is a nonempty finite set of states,
– s0 is the initial state,
– Act is a finite set of actions,
– AP is a finite set of atomic propositions,
– →⊆ S × Act × Distr(S) is the probabilistic transition relation,
– ⇒⊆ S × R≥0 × S is the Markovian transition relation, and



Trace Relations and Logical Preservation for Markov Automata 165

– L : S → 2AP is a labeling function.

We abbreviate (s, α, μ) ∈→ as s α−−→ μ and similarly, (s, λ, s′) ∈⇒ by s
λ=⇒ s′.

Let PT (s) and MT (s) denote the set of probabilistic and Markovian transitions
that leave state s. A state s is Markovian iff MT (s) �= ∅ and PT (s) = ∅; it
is probabilistic iff MT (s) = ∅ and PT (s) �= ∅. Further, s is a hybrid state iff
MT (s) �= ∅ and PT (s) �= ∅; finally s is a deadlock state iff MT (s) = ∅ and
PT (s) = ∅. In this paper we only consider those MAs that do not have any
deadlock states. Let MS ⊆ S and PS ⊆ S denote the set of Markovian and
probabilistic states in MA M. For any Markovian state s ∈ MS let R(s, s′) =
∑{λ|s λ=⇒ s′} be the rate to move from state s to state s′. The exit rate for state
s is defined by: E(s) =

∑
s′∈S R(s, s′).

It is easy to see that a MA where MT (s) = ∅ for any state s is a probabilistic
automaton (PA) [29]. A MA where PT (s) = ∅ for any state s is a continuous-
time Markov chain (CTMC) [4]. The semantics of MAs can thus be given in
terms of the semantics of CTMCs (for Markovian transitions) and PAs (for
probabilistic transitions).

The meaning of a Markovian transition s
λ=⇒ s′ is that the MA moves from

state s to s′ within t time units with probability 1 − e−λ·t. If s has multiple
outgoing Markovian transitions to different successors, then we speak of a race
between these transitions, known as the race condition. In this case, the proba-
bility to move from s to s′ within t time units is R(s,s′)

E(s) · (1 − e−E(s)·t).

Example 1. Consider the MA M shown in Fig. 1, where S = {s0, s1, s2, s3, s4},
AP = {a, b, c}, Act = {α, β} and s0 is the initial state. The set of probabilistic
states is PS = {s0, s3}; MS contains all the other states. Note that there is no
hybrid state in MA M. Non-determinism between action transitions appears in
state s3. Similarly, race condition due to multiple Markovian transitions appears
in s1. Here we have L(s0) = L(s4) = {a}, L(s1) = {b}, L(s2) = {a, c} and
L(s3) = {c}.

s0 {a}

s1 {b}
s2 {a, c}

s3 {c}
s4

{a}

α, 1
4

α, 3
4

4
32

α, 1

β, 1
5

Fig. 1. An example MA M

Note that in closed MAs all outgoing probabilistic transitions from every
state s ∈ S are labeled with τ ∈ Act (internal action).



166 A. Sharma

Definition 2. (Maximal progress [16]) In any closed MA, probabilistic transi-
tions take precedence over Markovian transitions.

Intuitively, the maximal progress assumption states that in closed MA, τ labeled
transitions are not subject to interaction and thus can happen immediately2,
whereas the probability of a Markovian transition to happen immediately is
zero. Accordingly, we assume that each state s has either only outgoing τ tran-
sitions or outgoing Markovian transitions. In other words, a closed MA only has
probabilistic and Markovian states. We use a distinguished action ⊥ /∈ Act to
indicate Markovian transitions.

Definition 3 (Timed paths). Let M = (S, s0, Act, AP,→,⇒, L) be a MA. An

infinite path π in M is a sequence s0
σ0,t0−−−→ s1

σ1,t1−−−→ s2 . . . sn−1
σn−1,tn−1−−−−−−−→ sn . . .

where si ∈ S, σi ∈ Act or σi = ⊥, and for each i, there exists a measure μi such
that (si, σi, μi) ∈→ with μi(si+1) > 0. For σi ∈ Act, si

σi,ti−−−→ si+1 denotes that
after residing ti time units in si, the MA M has moved via action σi to si+1 with

probability μi(si+1). Instead, si
⊥,ti−−−→ si+1 denote that after residing ti time units

in si, a Markovian transition led to si+1 with probability μi(si+1) = P (si, si+1)
where P (si, si+1) = R(si,si+1)

E(si)
. A finite path π is a finite prefix of an infinite

path. The length of an infinite path π, denoted |π| is ∞; the length of a finite
path π with n + 1 states is n.

Let PathsM = PathsM
fin ∪ PathsM

ω denote the set of all paths in M that
start in s0, where PathsM

fin =
⋃

n∈N
PathsM

n is the set of all finite paths in
M and PathsM

n denote the set of all finite paths of length n that start in s0.
Let PathsM

ω is the set of all infinite paths in M that start in s0. For infinite
path π = s0

σ0,t0−−−→ s1
σ1,t1−−−→ s2 . . . and any i ∈ N, let π[i] = si, the (i + 1)th

state of π. For any t ∈ R≥0, let π@t denote the sequence of states that π
occupies at time t. Note that π@t is in general not a single state, but rather
a sequence of several states, as a MA may exhibit immediate transitions and
thus may occupy various states at the same time instant. Let Act(s) denote
the set of enabled actions from state s. Note that in case s is a Markovian
state then Act(s) = {⊥}. Let Act⊥ = Act ∪ {⊥}. Trace of an infinite path

π = s0
σ0,t0−−−→ s1

σ1,t1−−−→ s2 . . . sn−1
σn−1,tn−1−−−−−−−→ sn . . . denoted Trace(π) is given as

L(s0)σ0L(s1)σ1 . . . L(sn−1)σn−1L(sn) . . .. Trace of a finite path π can be defined
in an analogous manner.

Example 2. Consider an example timed path π = s0
α,0−−→ s1

γ,0−−→ s3
⊥,3−−→ s2

γ,0−−→
s5. Here we have π[2] = s3 and π@(3 − ε) = 〈s3〉, where 0 < ε < 3. Similarly,
π@3 = 〈s2s5〉.
σ-algebra. In order to construct a measurable space over PathsM

ω , we define the
following sets: Ω = Act⊥ × R≥0 × S and the σ-field J = (2Act⊥ × JR × 2S),

2 We restrict to models without zenoness. In simple words, this means that τ cycles
are not allowed.



Trace Relations and Logical Preservation for Markov Automata 167

where JR is the Borel σ-field over R≥0 [3,4]. The σ-field over PathsM
n is defined

as JPathsM
n

= σ({S0 × M0 × . . . × Mn−1|S0 ∈ 2S ,Mi ∈ J , 0 ≤ i ≤ n − 1}).
A set B ∈ JPathsM

n
is a base of a cylinder set C if C = Cyl(B) = {π ∈

PathsM
ω |π[0 . . . n] ∈ B}, where π[0 . . . n] is the prefix of length n of the path π.

The σ-field JPathsM
ω

of measurable subsets of PathsM
ω is defined as JPathsM

ω
=

σ(∪∞
n=0{Cyl(B)|B ∈ JPathsM

n
}).

2.1 Schedulers

Non-determinism in a MA is resolved by a scheduler. Schedulers are also known
as adversaries or policies. More formally, schedulers are defined as follows:

Definition 4 (Scheduler). A scheduler for MA M = (S, s0, Act, AP,→,⇒, L)
is a measurable function D : PathsM

fin → Distr(Act), such that for n ∈ N,

D(s0
σ0,t0−−−→ s1

σ1,t1−−−→ . . .
σn−1,tn−1−−−−−−−→ sn)(α) > 0 implies α ∈ Act(sn)

where Distr(Act) denotes the set of all distributions on Act.

Schedulers can be classified3 according to the way they resolve non-determinism
and the information on the basis of which a decision is taken. For example, the
next action can be selected with probability one (deterministic schedulers) or at
random according to a specific probability distribution (randomized schedulers).
Similarly, non-determinism can be resolved by only considering the current
state (stationary schedulers) or complete (time-abstract/timed) history. More
formally, schedulers can be classified as follows:

Definition 5 (Classes of schedulers). A scheduler D for MA M is

– stationary deterministic (SD) if D : S → Act such that D(s) ∈ Act(s)
– stationary randomized (SR) if D : S → Distr(Act) such that D(s)(α) > 0

implies α ∈ Act(s)
– history-dependent deterministic (HD) if D : (S × Act)∗ × S → Act such that

we have D (s0
σ0−→ s1

σ1−→ . . .
σn−1−−−→

︸ ︷︷ ︸
time-abstract history

sn) ∈ Act(sn)

– history-dependent randomized (HR) if D : (S ×Act)∗ ×S → Distr(Act) such
that D (s0

σ0−→ s1
σ1−→ . . .

σn−1−−−→
︸ ︷︷ ︸

time-abstract history

sn)(α) > 0 implies α ∈ Act(sn)

– timed history-dependent deterministic (THD) if D : (S × Act × R>0)∗ × S →
Act such that D (s0

σ0,t0−−−→ s1
σ1,t1−−−→ . . .

σn−1,tn−1−−−−−−−→
︸ ︷︷ ︸

timed history

sn) ∈ Act(sn)

– timed history-dependent randomized (THR) scheduler has been already defined
in Definition 4.

3 We only consider schedulers that make a decision as soon as a state is entered. Such
schedulers are called early schedulers.



168 A. Sharma

Let Adv(M) denote the set of all schedulers of M. Let AdvC(M) denote the
set of all schedulers of class C, e.g., AdvTHD(M)denote the set of all THD
schedulers of MA M. Let PathsM

D denote the set of all infinite paths of M
under D ∈ Adv(M) that start in s0. Once the non-deterministic choices of a
MA M have been resolved by a scheduler, say D, the induced model obtained
is purely stochastic. To that end the unique probability measure for probability
space (PathsM

ω ,JPathsM
ω

) can be defined [26].

Example 3. Consider the MA M shown in Fig. 1. Let us assume that all the
α and β labeled transitions can happen immediately. Let D be a SR scheduler
for M such that D(s3)(α) = 3

4 and D(s3)(β) = 1
4 . Then we can compute the

probability of set of paths B = Cyl(s0, α, [0, 0], s1,⊥, [0, 4], s3, α, [0, 0], s0) of M
under D as follows:

PrD(B) =
1
4

· 4
6

· (1 − e−(6·4)) · 3
4

· 1 ≈ .124999

3 Trace Equivalence Relations

This section proposes several variants of trace equivalence for closed MAs. These
equivalences are obtained by performing push-button experiments with a trace
machine M. Consider the stochastic trace machine M shown in Fig. 2. The
machine is equipped with an action display, a state label display, a timer and
a reset button. Action display shows the last action that has been executed by
the trace machine. For Markovian states, action display shows the distinguished
action ⊥. Note that this display is empty at the beginning of the experiment.
The state label display shows the set of atomic propositions that are true in
the current state of the machine M. The timer display shows the absolute time.
The reset button is used to restart the machine for another run starting from the
initial state. Consider a run of the machine (under scheduler D of class C) which
always starts from the initial state. The state label shows the label of the current
state and action display shows the last action that has been executed. Note that
the action display remains unchanged until the next action is executed by the
machine. The observer records the sequence of state labels, actions and time
checks where each time check is recorded at an arbitrary time instant between

action dislay label display timer

reset button

Fig. 2. Trace machine M



Trace Relations and Logical Preservation for Markov Automata 169

the occurrence of two successive actions. The observer can press the reset button
to stop the current run. Once the reset button is pressed, the action display will
be empty and the state label display shows the set of atomic propositions that
are true in the initial state. The machine then starts for another run and the
observer again records the sequence of actions, state labels and time checks. Note
that the machine needs to be executed for infinitely many runs to complete the
whole experiment. It is assumed that the observer can distinguish between two
successive actions that are equal. For a sequence of τ actions, state labels can
be different but the recorded time checks are going to stay the same. This is
because τ actions are executed immediately. An outcome of this machine is
(σ, θ) = (< L(s0)σ0L(s1)σ1 . . . L(sn−1)σn−1L(sn) >,< t′0, t

′
1, . . . , t

′
n >), where

σ0, . . . , σn−1 ∈ ({τ} ∪ {⊥}). This outcome can be interpreted as follows: for
0 ≤ m < n, action σm of machine is performed in the time interval (ym, ym+1]
where ym = Σm

i=0t
′
i.

Definition 6. Let (σ, θ) = (<L(s0)σ0L(s1)σ1 . . . L(sn−1)σn−1L(sn)>, <t′0, t
′
1,

. . . , t′n>) be an outcome of M under D ∈ Adv(M), then a path π = s0
σ0,t0−−−→

s1
σ1,t1−−−→ s2 . . . sn−1

σn−1,tn−1−−−−−−−→ sn . . . ∈ PathsM
D is said to be compatible with

(σ, θ), denoted π � (σ, θ), if the following holds:

Trace(π[0 . . . n]) = σandΣi
j=0tj ∈ (yi, yi+1] for 0 ≤ i < n

where yi = Σi
j=0t

′
j.

Example 4. Consider the MA M shown in Fig. 3 (left). An example outcome
for M is (σ, θ) = (< {a}τ{b}⊥{a}⊥{a} >,< 0, 0, 4, 3 >). An example path

compatible with this outcome is π = s0
τ,0−−→ s1

⊥,2−−→ s3
⊥,4−−→ s3. . . .

The probability of all the paths compatible with an outcome is defined as
follows:

Definition 7. Let (σ, θ) be an outcome of trace machine M under D ∈
Adv(M). Then the probability of all the paths compatible with (σ, θ) is defined
as follows:

P trace
M,D (σ, θ) = PrD({π ∈ PathsM

D |π � (σ, θ)})

Informally, P trace
M,D is a function that gives the probability to observe (σ, θ) in

machine M under scheduler D.

Definition 8 (Set of observations). Let P trace
M,D be an observation of machine

M under D ∈ Adv(M). Then the set of observations for scheduler class C,
denoted OC(M), is defined as follows:

OC(M) = {P trace
M,D |D ∈ AdvC(M)}

Informally, OC(M) denote a set of functions where each function assigns a prob-
ability value to every possible outcome of the trace machine, i.e., (σ, θ).



170 A. Sharma

Definition 9 (Trace equivalence). Two MAs M1, M2 are trace equivalent
w.r.t. scheduler class C denoted M1 ≡C M2 iff OC(M1) = OC(M2).

This definition says that for every D ∈ AdvC(M1) there exists a scheduler D′ ∈
AdvC(M2) such that for all outcomes (σ, θ) we have P trace

M1,D(σ, θ) = P trace
M2,D′(σ, θ)

and vice versa.

s0 {a}

s1 {b} s2 {b}

{a}s3 s4 {c} s5 {a} s6 {c}

τ
τ

4 6
1 3 3 3

s0 {a}

s1 {b}

s2 {a} s3 {c}

τ

4
6

2 1 2 1 2 1

Fig. 3. MAs M (left) and M′ (right)

Example 5. Consider the MAs M and M′ shown in Fig. 3. These two systems
are ≡SD, ≡SR, ≡HD, ≡HR, ≡THD and ≡THR.

s0 {a}

s1 {b} s2 {b}

s3 {a} s4 {c} s5 {a} s6 {c}

τ, 1
2

τ, 1
2

τ, 1
τ, 1

τ, 1
τ, 1

4 2 4 2

s0 {a}

s1 {b}

s2 {a} s3 {c}

τ, 1

τ, 1
τ, 1

4 2

Fig. 4. MAs M (left) and M′ (right)

Example 6. Consider the MAs M and M′ shown in Fig. 4. These two systems
are ≡SR, ≡HR and ≡THR. Note that they are �≡ SD. This is because there exists a
SD-scheduler, say D, for M such that the traces {a}τ{b}τ{a} and {a}τ{b}τ{c}
have probability greater than 0, but this is not possible in M′ for any SD-
scheduler D′. Similarly, M, M′ are �≡ HD and �≡ THD.



Trace Relations and Logical Preservation for Markov Automata 171

3.1 Relationship Between Trace Equivalence and Bisimulation

This section investigates the relationship of bisimulation to several variants of
trace equivalence defined in this paper. Informally, two states are bisimilar if they
are able to mimic each other’s behavior step-wise. We first recall the definition
of bisimulation.

Definition 10 (Strong bisimulation [16]). Let M = (S, s0, Act, AP,→,⇒
, L) be a closed MA. An equivalence relation R ⊆ S × S is a strong bisimulation
on M if for any (s1, s2) ∈ R and equivalence class C ∈ S/R the following holds:

– L(s1) = L(s2),
– R(s1, C) = R(s2, C),
– (s1 τ−−→ μ ⇐⇒ s2

τ−−→ μ′) ∧ μ(C) = μ′(C).

States s1 and s2 are strongly bisimilar, denoted s1 ∼ s2, if (s1, s2) ∈ R for some
strong bisimulation4 R.

This definition of bisimulation can be easily extended to compare the behavior
of two MAs M1 (with state space S1) and M2 (with state space S2). This can
be achieved by taking the disjoint union of two state spaces (S = S1 � S2) and
asserting that initial states of two systems must be bisimilar with respect to S.

Example 7. Consider the MAs M and M′ shown in Fig. 4. It is easy to check
that these two systems are bisimilar.

Theorem 1. The following holds:

– ∼ �=⇒ ≡SD and ≡SD �=⇒ ∼
– ∼ =⇒ ≡SR and ≡SR �=⇒ ∼
– ∼ �=⇒ ≡HD and ≡HD �=⇒ ∼

– ∼ =⇒ ≡HR and ≡HR �=⇒ ∼
– ∼ �=⇒ ≡THD and ≡THD �=⇒ ∼
– ∼ =⇒ ≡THR and ≡THR �=⇒ ∼

Example 8. As previously mentioned, bisimilar MAs M and M′ shown in Fig. 4
are not ≡SD, ≡HD and ≡THD.

3.2 Relationship Between Trace Equivalences

Next, we study the relationship between several variants of trace equivalence
defined in Sect. 3. Connections among these equivalences can be understood
from Fig. 5. Here a directed edge from node labeled with ≡C1 to node labeled
with ≡C2 denote implication, i.e., ≡C1 =⇒ ≡C2 . Similarly, an edge that connects
two nodes in both the directions denote bi-implication, i.e., coincidence.

Theorem 2. The following holds:

– ≡SD =⇒ ≡SR, ≡SD =⇒ ≡HD, ≡SD =⇒ ≡HR, ≡SD =⇒ ≡THD, ≡SD =⇒
≡THR

4 Note that the definition of strong bisimulation has been slightly modified to take
into account the state labels.



172 A. Sharma

≡SD ≡SR

≡HR

≡THR

≡HD

≡THD

Fig. 5. Connections among six trace equivalences

– ≡SR �=⇒ ≡SD, ≡SR �=⇒ ≡HD, ≡SR =⇒ ≡HR, ≡SR �=⇒ ≡THD, ≡SR =⇒
≡THR

– ≡HD =⇒ ≡SD, ≡HD =⇒ ≡SR, ≡HD =⇒ ≡THD, ≡HD =⇒ ≡HR, ≡HD =⇒
≡THR

– ≡HR �=⇒ ≡SD, ≡HR =⇒ ≡SR, ≡HR �=⇒ ≡HD, ≡HR �=⇒ ≡THD, ≡HR =⇒
≡THR

– ≡THD =⇒ ≡SD, ≡THD =⇒ ≡SR, ≡THD =⇒ ≡HD, ≡THD =⇒ ≡HR, ≡THD

=⇒ ≡THR

– ≡THR �=⇒ ≡SD, ≡THR =⇒ ≡SR, ≡THR �=⇒ ≡HD, ≡THR =⇒ ≡HR, ≡THR

�=⇒ ≡THD

4 Deterministic Timed Automaton

In order to investigate the kind of real-time properties for closed MAs that are
preserved by THD trace equivalence, we study in this section linear real-time
objectives that are given by Deterministic Timed Automata (DTAs) [2]. We first
recall the definition of DTA.

Definition 11 (DTA). A deterministic timed automaton (DTA) is a tuple A =
(Σ,X , Q, q0, F,→) where:

– Σ is a finite alphabet,
– X is a finite set of clocks,
– Q is a nonempty finite set of locations with the initial location q0 ∈ Q,
– F ⊆ Q is a set of accepting (or final) locations,
– → ⊆ Q × Σ × CC(X ) × 2X × Q is the edge relation satisfying:

(
q

a,g,X−−−−→ q′ and q
a,g′,X′
−−−−→ q′′ with g �= g′) =⇒ g ∩ g′ = ∅.

Intuitively, the edge q
a,g,X−−−−→ q′ asserts that the DTA A can move from location

q to q′ when the input symbol is a and the guard g holds, while the clocks in
X should be reset when entering q′ (all other clocks keep their value). DTAs
are deterministic as they have a single initial location, and outgoing edges of a



Trace Relations and Logical Preservation for Markov Automata 173

location labeled with the same input symbol are required to have disjoint guards.
In this way, the next location is uniquely determined for a given location and a
given set of clock values. In case no guard is satisfied in a location for a given clock
valuation, time can progress. If the advance of time will never reach a situation
in which a guard holds, the DTA will stay in that location ad infinitum. Note
that DTAs do not have location invariants. The semantics of a DTA is given
by an infinite-state transition system [2]. Next, we define the notion of paths,
i.e., runs or executions of a DTA. This is done using some auxiliary notions. A
clock valuation η for a set X of clocks is a function η : X → R≥0, assigning to
each clock x ∈ X its current value η(x). The clock valuation η over X satisfies
the clock constraint g, denoted η |= g, iff the values of the clocks under η fulfill
g. For instance, η |= x − y > c iff η(x) − η(y) > c. Other cases are defined
analogously. For d ∈ R≥0, η+d denotes the clock valuation where all clocks of
η are increased by d. That is, (η+d)(x) = η(x)+d for all clocks x ∈ X . Clock
reset for a subset X ⊆ X , denoted by η[X := 0], is the valuation η′ defined
by: ∀x ∈ X.η′(x) := 0 and ∀x /∈ X.η′(x) := η(x). The valuation that assigns
0 to all the clocks is denoted by 0. An (infinite) path of DTA A has the form
ρ = q

a0,t0−−−→ q1
a1,t1−−−→ . . . such that η0 = 0, and for all j ≥ 0, it holds tj > 0,

ηj+tj |= gj , ηj+1 = (ηj+tj)[Xj := 0], where ηj is the clock evaluation on
entering qj . Here, gj is the guard of the j-th edge taken in the DTA and Xj the
set of clock to be reset on that edge. A path ρ is accepted by A if qi ∈ F for
some i ≥ 0. Since the DTA is deterministic, the successor location is uniquely
determined; for convenience we write q′ = succ(q, a, g).

q0 qf
{b}, x > 1, ∅

{a}, x < 1, ∅

{a}, 1 < x < 2, {x}

Fig. 6. An example DTA A

Example 9. Consider the DTA A shown in Fig. 6, where Σ = {a, b}, Q =
{q0, qf}, X = {x}, F = {qf} and q0 is the initial location. An example timed

path is q0
a,1.4−−−→ q0

b,2.1−−−→ qf .

A path in a MA M can be “matched” by a path through DTA A by regarding
sets of atomic propositions in M as input symbols of A. Such a path is accepted,
if at some point an accepting location in the DTA is reached:



174 A. Sharma

Definition 12 (Path acceptance). Let MA M = (S, s0, Act, AP,→,⇒, L)
and DTA A = (2AP ,X , Q, q0, F,→). The MA path π = s0

σ0,t0−−−→ s1
σ1,t1−−−→ s2 . . .

is accepted by A if there exists a corresponding DTA path

q0
L(s0),t0−−−−−→ succ

(
q0, L(s0), g0

)

︸ ︷︷ ︸
=q1

L(s1),t1−−−−−→ succ
(
q1, L(s1), g1

)

︸ ︷︷ ︸
=q2

. . .

such that qj ∈ F for some j ≥ 0. Here, η0 = 0, gi is the (unique) guard in qi

(if it exists) such that ηi+ti |= gi and ηi+1 = (ηi+ti)[Xi := 0], and ηi is the
clock evaluation on entering qi, for i ≥ 0. Let PathsM(A) = {π ∈ PathsM |
π is accepted by DTA A}5.
Definition 13 (Probability of accepted paths). For MA M, D ∈ Adv(M)
and DTA A, let PrD(M |= A) = PrD(PathsM(A)).

PrD(M |= A) denote the probability of all paths of M under scheduler D that
are accepted by DTA A.

Definition 14 (Max probability). For MA M and DTA A, let Prmax(M |=
A) = sup

D∈Adv(M)

PrD(M |= A).

In simple words, Prmax(M |= A) is the maximum probability of MA M sat-
isfying a DTA A computed over all possible schedulers of M, i.e., Adv(M).
Prmin(M |= A) can be defined in an analogous manner. For MAs, THD sched-
ulers suffice for computing Prmax(M |= A) and Prmin(M |= A) [12,27].

Theorem 3 (Preservation of DTA). Let M1, M2 be two MAs such that
M1 ≡THD M2. Then for any DTA A we have:

Prmax(M1 |= A) = Prmax(M2 |= A)

Prmin(M1 |= A) = Prmin(M2 |= A)

In simple words this theorem states that if two MAs are THD trace equivalent,
then their maximum (resp. minimum) probability to satisfy any DTA specifica-
tion coincides.

Corollary 1. THD trace equivalence preserves maximum and minimum tran-
sient state probabilities.

5 Metric Temporal Logic

In this section we show that THR trace equivalence for closed MAs preserves
the probability of satisfying MTL specifications. Note that the expressive power
of MTL is different from that of DTA. For example, property specified using
5 For any MA M and DTA A, the set PathsM(A) is measurable [17].



Trace Relations and Logical Preservation for Markov Automata 175

an MTL formula ♦[0,100]�[0,5]a cannot be expressed using DTA. On the other
hand, the following DTA property cannot be expressed using MTL: what is the
probability to reach a given target state within the deadline, while avoiding
forbidden states and not staying too long in any of the dangerous states on the
way [34]. We now recall the syntax and semantics of Metric Temporal Logic
[10,28].

Definition 15 (Syntax of MTL). Let AP be a set of atomic propositions,
then the formulas of MTL are built from AP using Boolean connectives, and
time-constrained versions of the until operator U as follows:

ϕ : := tt
∣
∣ a

∣
∣ ¬ϕ

∣
∣ ϕ ∧ ϕ

∣
∣ ϕ UI ϕ

where I ⊆ R≥0 is a non-empty interval with rational bounds, and a ∈ AP .

Next, we define the semantics of MTL formulas over MA paths.

Definition 16 (Semantics of MTL formulas). The meaning of MTL for-
mulas is defined by means of a satisfaction relation, denoted by |=, between
a MA M, one of its paths π, MTL formula ϕ, and time t ∈ R≥0. Let

π = s0
σ0,t0−−−→ s1 . . . sn−1

σn−1,tn−1−−−−−−−→ sn . . . be a finite or infinite path of M,
then (π, t) |= ϕ is defined inductively by:

(π, t) |= tt
(π, t) |= a iff a ∈ L(π@t)
(π, t) |= ¬ϕ iff not(π, t) |= ϕ
(π, t) |= ϕ1 ∧ ϕ2 iff (π, t) |= ϕ1 and (π, t) |= ϕ2

(π, t) |= ϕ1 UI ϕ2 iff ∃t′ ∈ t+I. ((π, t′) |= ϕ2 ∧ ∀t ≤ t′′ < t′. (π, t′′) |= ϕ1) .

Timed variant of standard temporal operator ♦ (“eventually”) is derived in
the following way: ♦Iϕ = tt UI ϕ. Similarly, timed variant of � (“globally”) is
derived as follows: �Iϕ = ¬(♦I¬ϕ). Let PathsM(ϕ) = {π ∈ PathsM | π |=
ϕ}6.
Definition 17. For MA M, D ∈ Adv(M) and MTL formula ϕ, let PrD(M |=
ϕ) = PrD(PathsM(ϕ)).

PrD(M |= ϕ) denote the probability of all paths of M under scheduler D that
satisfy an MTL formula ϕ.

Definition 18 (Maximum probability of MTL). For MA M and MTL
formula ϕ, Prmax(M |= ϕ) = sup

D∈Adv(M)

PrD(M |= ϕ).

Prmin(M |= ϕ) can be defined in an analogous manner.

6 Note that paths satisfying an MTL formula ϕ can be written as a set of cylinder
sets [34].



176 A. Sharma

Theorem 4 (Preservation of MTL). Let M1, M2 be two MAs such that
M1 ≡THR M2. Then for any MTL formula ϕ we have:

Prmax(M1 |= ϕ) = Prmax(M2 |= ϕ)

Prmin(M1 |= ϕ) = Prmin(M2 |= ϕ)

This theorem asserts that THR-trace equivalent MAs have the same maximum
(resp. minimum) probability of satisfying any MTL formula ϕ.

Corollary 2. THR trace equivalence preserves maximum and minimum tran-
sient state probabilities.

6 Conclusions and Future Work

This paper presented several variants of trace equivalence for closed MAs. We
investigated the relationship among these trace relations and also compared them
with bisimulation for MAs. Finally, we proved that trace equivalent MAs have
the same probability of satisfying DTA and MTL properties. This research work
can be extended in several directions which are as follows:

– Investigate the relationship between trace equivalences and several variants
of weak bisimulation [15,16,35].

– Investigate the relationship between trace equivalences and weighted Marko-
vian equivalence [30,31,33].

– Study ready trace and failure trace semantics.
– Use button pushing experiments to define (approximate) trace equivalences

for open MAs.

References

1. Aldini, A., Bernardo, M.: Expected-delay-summing weak bisimilarity for Markov
automata. In: QAPL. EPTCS, vol. 194, pp. 1–15 (2015)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Ash, R.B., Doleans-Dade, C.A.: Probability and Measure Theory. Academic Press,
New York (2000)

4. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541
(2003)

5. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Böde, E., et al.: Compositional dependability evaluation for STATEMATE. IEEE
Trans. Softw. Eng. 35(2), 274–292 (2009)

7. Boudali, H., Crouzen, P., Haverkort, B.R., Kuntz, M., Stoelinga, M.: Architectural
dependability evaluation with arcade. In: DSN, pp. 512–521. IEEE Computer Soci-
ety (2008)



Trace Relations and Logical Preservation for Markov Automata 177

8. Boudali, H., Crouzen, P., Stoelinga, M.: A compositional semantics for dynamic
fault trees in terms of interactive Markov chains. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 441–456.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75596-8 31

9. Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using
input/output interactive Markov chains. In: DSN, pp. 708–717. IEEE Computer
Society (2007)

10. Bouyer, P.: From qualitative to quantitative analysis of timed systems. Mémoire
d’habilitation, Université Paris 7, Paris, France, January 2009

11. Bozzano, M., Cimatti, A., Katoen, J., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. Comput. J.
54(5), 754–775 (2011)

12. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Observing continuous-time MDPs
by 1-clock timed automata. In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS,
vol. 6945, pp. 2–25. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24288-5 2

13. Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance predic-
tion of compositional models in industrial GALS designs. In: Bouajjani, A., Maler,
O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02658-4 18

14. Deng, Y., Hennessy, M.: On the semantics of Markov automata. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 307–318. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8 24

15. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222,
139–168 (2013)

16. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351 (2010)

17. Fu, H.: Approximating acceptance probabilities of CTMC-paths on multi-clock
deterministic timed automata. In: HSCC, pp. 323–332. ACM (2013)

18. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduc-
tion and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40196-1 5

19. Guck, D., Hatefi, H., Hermanns, H., Katoen, J., Timmer, M.: Analysis of timed
and long-run objectives for Markov automata. LMCS 10(3) (2014)

20. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and anal-
ysis of Markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 168–184. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11936-6 13

21. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. ECE-
ASST 53 (2012)

22. Hermanns, H.: Interactive Markov Chains: And the Quest for Quantified Quality.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45804-2

23. Hermanns, H., Katoen, J., Neuhäußer, M.R., Zhang, L.: GSPN model checking
despite confusion. Technical report, RWTH Aachen University (2010)

24. Mateescu, R., Serwe, W.: A study of shared-memory mutual exclusion protocols
using CADP. In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol.
6371, pp. 180–197. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15898-8 12

25. Meyer, J.F., Movaghar, A., Sanders, W.H.: Stochastic activity networks: structure,
behavior, and application. In: PNPM, pp. 106–115. IEEE Computer Society (1985)

https://doi.org/10.1007/978-3-540-75596-8_31
https://doi.org/10.1007/978-3-642-24288-5_2
https://doi.org/10.1007/978-3-642-24288-5_2
https://doi.org/10.1007/978-3-642-02658-4_18
https://doi.org/10.1007/978-3-642-22012-8_24
https://doi.org/10.1007/978-3-642-40196-1_5
https://doi.org/10.1007/978-3-319-11936-6_13
https://doi.org/10.1007/978-3-319-11936-6_13
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/978-3-642-15898-8_12
https://doi.org/10.1007/978-3-642-15898-8_12


178 A. Sharma

26. Neuhäußer, M.R.: Model checking non-deterministic and randomly timed systems.
Ph.D. thesis, RWTH Aachen University. Ph.D. dissertation, RWTH Aachen Uni-
versity (2015)

27. Neuhäußer, M.R., Stoelinga, M., Katoen, J.-P.: Delayed nondeterminism in
continuous-time Markov decision processes. In: de Alfaro, L. (ed.) FoSSaCS 2009.
LNCS, vol. 5504, pp. 364–379. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00596-1 26

28. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez,
F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-85778-5 1

29. Segala, R.: Modelling and verification of randomized distributed real time systems.
Ph.D. thesis, MIT (1995)

30. Sharma, A.: Reduction techniques for non-deterministic and probabilistic systems.
Ph.D. dissertation, RWTH Aachen (2015)

31. Sharma, A.: Interactive Markovian equivalence. In: Reinecke, P., Di Marco, A.
(eds.) EPEW 2017. LNCS, vol. 10497, pp. 33–49. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66583-2 3

32. Sharma, A.: Trace relations and logical preservation for continuous-time Markov
decision processes. In: Hung, D., Kapur, D. (eds.) ICTAC 2017. LNCS, vol. 10580,
pp. 192–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67729-
3 12

33. Sharma, A.: Non-bisimulation based behavioral relations for Markov automata.
In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022, pp.
179–196. Springer, Cham (2018)

34. Sharma, A., Katoen, J.-P.: Weighted lumpability on Markov chains. In: Clarke,
E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 322–339.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29709-0 28

35. Song, L., Zhang, L., Godskesen, J.C.: Late weak bisimulation for Markov automata.
CoRR, abs/1202.4116 (2012)

36. Timmer, M., Katoen, J.-P., van de Pol, J., Stoelinga, M.I.A.: Efficient modelling
and generation of Markov automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 364–379. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32940-1 26

37. Wolf, V., Baier, C., Majster-Cederbaum, M.E.: Trace machines for observing
continuous-time Markov chains. ENTCS 153(2), 259–277 (2006)

38. Wolf, V., Baier, C., Majster-Cederbaum, M.E.: Trace semantics for stochastic sys-
tems with nondeterminism. Electr. Notes Theor. Comput. Sci. 164(3), 187–204
(2006)

https://doi.org/10.1007/978-3-642-00596-1_26
https://doi.org/10.1007/978-3-642-00596-1_26
https://doi.org/10.1007/978-3-540-85778-5_1
https://doi.org/10.1007/978-3-319-66583-2_3
https://doi.org/10.1007/978-3-319-66583-2_3
https://doi.org/10.1007/978-3-319-67729-3_12
https://doi.org/10.1007/978-3-319-67729-3_12
https://doi.org/10.1007/978-3-642-29709-0_28
https://doi.org/10.1007/978-3-642-32940-1_26
https://doi.org/10.1007/978-3-642-32940-1_26


Non-bisimulation Based Behavioral
Relations for Markov Automata

Arpit Sharma(B)

Department of Electrical Engineering and Computer Science,
Indian Institute of Science Education and Research Bhopal, Bhopal, India

arpit@iiserb.ac.in

Abstract. Markov automata (MAs) [16] extend probabilistic automata
(PAs) [29] with stochastic aspects [22]. This paper defines two equivalence
relations, namely, weighted Markovian equivalence (WME) and weak
weighted Markovian equivalence (WWME) for the subclass of closed
MAs. We define the quotient system under these relations and inves-
tigate their relationship with strong bisimulation and weak bisimulation,
respectively. Next, we show that both WME and WWME can be used
for repeated minimization of closed MAs. Finally, we prove that proper-
ties specified using deterministic timed automaton (DTA) specifications
and metric temporal logic (MTL) formulas are preserved under WME
and WWME quotienting.

Keywords: Markov · Equivalence · Bisimulation · Linear-time
Temporal logic

1 Introduction

Markov automata (MAs) have been introduced in [16] as a continuous-time
version of Segala’s probabilistic automata (PAs) [29]. MAs thus support non-
deterministic probabilistic branching and exponentially distributed delays in
continuous time. MAs are compositional, i.e., a parallel composition operator
allows one to construct a complex MA from several component MAs running in
parallel.

They provide a natural semantics for a variety of specifications for concur-
rent systems, as for example, dynamic fault trees [7,8], architectural description
languages such as AADL [6,10], generalized stochastic Petri nets (GSPNs) [24],
STATEMATE [5] and stochastic activity networks (SANs) [26]. They can also
be used for modeling and analysis of GALS (Globally Asynchronous Locally Syn-
chronous) hardware design [12] and shared memory mutual exclusion protocols
[25]. Recently, a data rich specification language for MAs has been introduced
[35]. Analyzing MAs involves applying model checking algorithms [18–20] on
closed1 MA models to compute the probability of linear or branching real-time

1 A MA is said to be closed if it is not subject to any further synchronization.

c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 179–196, 2018.
https://doi.org/10.1007/978-3-030-00151-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_11&domain=pdf


180 A. Sharma

objectives, e.g., long-run average, expected time, timed (interval) reachability
[18] and Continuous Stochastic Logic (CSL) [21].

Equivalence relations are used to compare the behavior of MAs [14,16,34].
Abstraction techniques based on equivalence relations reduce the state space
of MAs, by aggregating equivalent states into a single state. The reduced state
space obtained under an equivalence relation, called a quotient, can then be used
for analysis provided it preserves a rich class of properties of interest. Strong and
weak bisimulation [13,14,16] are two well known equivalence relations for MAs.
Strong bisimulation for MAs preserves time-bounded reachability probabilities
[23]. Note that bisimulation is too restrictive as it requires equivalent states to
simulate their mutual stepwise behavior. Due to this reason, for certain classes
of stochastic systems, e.g., incremental service systems [4], bisimulation fails to
provide any state space reduction. Additionally, if the properties to be verified
belong to the class of linear real-time properties, e.g., timed reachability, MTL
and DTA specifications, it is often desirable to use an alternate equivalence
relation for reducing the size of system. This is especially true if the bisimulation
has already failed to provide significant state space reduction.

This paper proposes a novel theoretical framework for the state space reduc-
tion of the subclass of closed MAs, i.e., that do not allow non-determinism
between action transitions. We define weighted Markovian equivalence (WME)
and weak weighted Markovian equivalence (WWME) for closed MAs. Unlike
bisimulation which compares states on the basis of their direct successors, WME
considers a two-step perspective. Before explaining the idea of WME, let us
recall that every state of a closed MA can either have Markovian transitions
or τ -labeled probabilistic transitions. Accordingly, every state can either be a
Markovian state or a probabilistic state, respectively. Every Markovian transi-
tion is labeled with a positive real number λ. This parameter indicates the rate
of the exponential distribution, i.e., the probability of a λ-labeled transition to
be enabled within t time units equals 1 − e−λ·t. Similarly, every probabilistic
transition relates a state and a τ action to a probability distribution over the set
of states.

Two probabilistic states s and s′ are WME equivalent if for each pair of their
direct predecessors weighted probability to directly move to any equivalence class
via the equivalence class [s] = [s′] coincides. In the same way, two Markovian
states s and s′ are WME equivalent if for each pair of their direct predecessors
weighted rate to directly move to any equivalence class via the equivalence class
[s] = [s′] coincides. In the weak setting, two probabilistic states s and s′ are
weak WME equivalent if for each pair of their direct predecessors (that are not
in [s]) weak weighted probability to move to any equivalence class (other than
[s]) in two or more steps via the equivalence class [s] coincides. Note that all the
extra steps are taken within [s].

Contributions. The main contributions of this paper are as follows:

– We provide a structural definition of WME on closed MAs, define quotient
under WME and investigate its relationship with strong bisimulation [16].



Non-bisimulation Based Behavioral Relations for Markov Automata 181

– We provide a structural definition of weak WME on closed MAs, define quo-
tient under WWME and investigate its relationship with weak bisimulation
[16].

– Finally, we prove that properties specified using DTA specifications and MTL
formulas are preserved under WME and WWME quotienting.

1.1 Related Work

In [3], Bernardo considered Markovian testing equivalence over sequential Marko-
vian process calculus (SMPC), and coined the term T-lumpability [4] for the
induced state-level aggregation where T stands for testing. His testing equiva-
lence is a congruence w.r.t. parallel composition, and preserves transient as well
as steady-state probabilities. Bernardo’s T-lumpability has been reconsidered
in [30,33] where weighted lumpability (WL) is defined as a structural notion
on CTMCs. Note that DTA and MTL specifications are preserved under WL
[30]. In [36], several linear-time equivalences (Markovian trace equivalence, fail-
ure and ready trace equivalence) for CTMCs have been investigated. Testing
scenarios based on push-button experiments have been used for defining these
equivalences.

For interactive Markov chains (IMCs), strong and weak bisimulation relations
have been defined in [23]. This paper proves that strong and weak bisimulation
preserve time-bounded reachability properties. In [31] strong and weak variants
of interactive Markovian equivalence (IME) have been defined over states of
a IMC. IME preserves the probability of timed-bounded reachability properties.
For MAs, strong and weak bisimulation relations have been defined in [16]. In [16],
weak bisimulation has been defined over state probability distributions rather
than over individual ones. In [14], it has been shown that weak bisimulation
provides a sound and complete proof methodology for a touchstone equivalence
called reduction barbed congruence. Notions of early and late semantics for MAs
have been proposed in [15,34]. Using these semantics, early and late weak bisim-
ulations have been defined and it has been proved that late weak bisimulation is
weaker than all of the other variants defined in [13,14,16]. Recently, an expected-
delay-summing weak bisimulation has been defined for MAs [1]. Our definition
of (weak) WME here builds on that investigated in [30,33] for CTMCs.

Organisation of the paper. Section 2 briefly recalls the main concepts of MA.
Section 3 defines WME and investigates its relationship with strong bisimulation.
Section 4 defines the weaker variant of WME and investigates its relationship
with weak bisimulation. Section 5 proves the preservation of DTA properties.
Section 6 proves the preservation of MTL properties. Finally, Sect. 7 concludes
the paper and provides pointers for future research.

2 Preliminaries

This section presents the necessary definitions and basic concepts related to
Markov automata (MA) that are needed for the understanding of the rest of this



182 A. Sharma

paper. Let Distr(S) denote the set of distribution functions over the countable
set S.

Definition 1. A Markov automaton (MA) is a tuple M = (S, s0, Act, AP,→,
⇒, L) where:

– S is a nonempty finite set of states,
– s0 is the initial state,
– Act is a finite set of actions,
– AP is a finite set of atomic propositions,
– →⊆ S × Act × Distr(S) is the probabilistic transition relation,
– ⇒⊆ S × R≥0 × S is the Markovian transition relation, and
– L : S → 2AP is a labeling function.

We abbreviate (s, α, μ) ∈→ as s α−−→μ and similarly, (s, λ, s′) ∈⇒ by s
λ=⇒ s′.

Let PT (s) and MT (s) denote the set of probabilistic and Markovian transitions
that leave state s. A state s is Markovian iff MT (s) �= ∅ and PT (s) = ∅; it
is probabilistic iff MT (s) = ∅ and PT (s) �= ∅. Further, s is a hybrid state iff
MT (s) �= ∅ and PT (s) �= ∅; finally s is a deadlock state iff MT (s) = ∅ and
PT (s) = ∅. In this paper we only consider those MAs that do not have any
deadlock states. Let MS ⊆ S and PS ⊆ S denote the set of Markovian and
probabilistic states in MA M. For any Markovian state s ∈ MS let R(s, s′) =
∑{λ|s λ=⇒ s′} be the rate to move from state s to state s′. The exit rate for state
s is defined by: E(s) =

∑
s′∈S R(s, s′).

The meaning of a Markovian transition s
λ=⇒ s′ is that the MA moves from

state s to s′ within t time units with probability 1 − e−λ·t. If s has multiple
outgoing Markovian transitions to different successors, then we speak of a race
between these transitions, known as the race condition. In this case, the proba-
bility to move from s to s′ within t time units is R(s,s′)

E(s) · (1− e−E(s)·t). Note that
in closed MAs all outgoing probabilistic transitions from every state s ∈ S are
labeled with τ ∈ Act (internal action).

Definition 2 (Maximal progress [23]). In any closed MA, probabilistic transi-
tions take precedence over Markovian transitions.

Intuitively, the maximal progress assumption states that in closed MA, τ labeled
transitions are not subject to interaction and thus can happen immediately2,
whereas the probability of a Markovian transition to happen immediately is
zero. Accordingly, we assume that each state s has either only outgoing τ tran-
sitions or outgoing Markovian transitions. In other words, a closed MA only has
probabilistic and Markovian states. We use a distinguished action ⊥ /∈ Act to
indicate Markovian transitions.

2 We restrict to models without zenoness. In simple words, this means that τ cycles
are not allowed.



Non-bisimulation Based Behavioral Relations for Markov Automata 183

Definition 3 (Timed paths). Let M = (S, s0, Act, AP,→,⇒, L) be a MA. An

infinite path π in M is a sequence s0
σ0,t0−−−→ s1

σ1,t1−−−→ s2 . . . sn−1
σn−1,tn−1−−−−−−−→ sn . . .

where si ∈ S, σi ∈ Act or σi = ⊥, and for each i, there exists a measure μi such
that (si, σi, μi) ∈→ with μi(si+1) > 0. For σi ∈ Act, si

σi,ti−−−→ si+1 denotes that
after residing ti time units in si, the MA M has moved via action σi to si+1 with

probability μi(si+1). Instead, si
⊥,ti−−−→ si+1 denote that after residing ti time units

in si, a Markovian transition led to si+1 with probability μi(si+1) = P (si, si+1)
where P (si, si+1) = R(si,si+1)

E(si)
. A finite path π is a finite prefix of an infinite path.

The length of an infinite path π, denoted |π| is ∞; the length of a finite path π
with n + 1 states is n.

Let PathsM = PathsM
fin ∪ PathsM

ω denote the set of all paths in M that
start in s0, where PathsM

fin =
⋃

n∈N
PathsM

n is the set of all finite paths in
M and PathsM

n denote the set of all finite paths of length n that start in s0.
Let PathsM

ω is the set of all infinite paths in M that start in s0. For infinite
path π = s0

σ0,t0−−−→ s1
σ1,t1−−−→ s2 . . . and any i ∈ N, let π[i] = si, the (i + 1)th state

of π. For any t ∈ R≥0, let π@t denote the sequence of states that π occupies at
time t. Note that π@t is in general not a single state, but rather a sequence of
several states, as a MA may exhibit immediate transitions and thus may occupy
various states at the same time instant. Let Act(s) denote the set of enabled
actions from state s. Note that in case s is a Markovian state then Act(s) = {⊥}.
Let Act⊥ = Act ∪ {⊥}. The usual cylinder set construction yields a σ-algebra of
measurable subsets of paths [27,32].

Assumptions. Throughout this paper we make the following assumptions:

1. Every state of a MA M has at least one predecessor. This is not a restric-
tion, as any MA M = (S, s0, Act, AP,→,⇒, L) can be transformed into an
equivalent MA (S′, s′

0, Act, AP ′,→′,⇒, L′) which fulfills this condition. This
is done by adding a new state ŝ to S equipped with a self-loop and which has
a transition to each state in S without predecessors. Let all the outgoing tran-
sitions from ŝ be labeled with τ . To distinguish this state from the others we
set L′(ŝ) = # with # �∈ AP (All other labels, states and transitions remain
unaffected). Let s′

0 = s0. It follows that all states in S′ = S∪{ŝ} have at least
one predecessor. Moreover, the reachable state space of both MA coincides.

2. We assume that the initial state s0 of a MA is distinguished from all other
states by a unique label, say $. This assumption implies that for any equiv-
alence that groups equally labeled states, {s0} constitutes a separate equiva-
lence class.

3. We also assume that for every state s of a MA M, non-determinism between
action transitions is not allowed3.

For convenience, we neither show the state ŝ nor the label $ in figures.
3 Since our closed MA models do not allow multiple action transitions, schedulers are

not required for resolving non-deterministic choices.



184 A. Sharma

3 Weighted Markovian Equivalence

Before defining weighted Markovian equivalence, we first define some auxiliary
concepts. All the definitions presented in this section are relative to a closed
MA M = (S, s0, Act, AP,→,⇒, L), where Act = {τ}. For any state s ∈ S and
Act = {τ}, the set of τ -predecessors of s is defined by: Pred(s, τ) = {s′ ∈
S|∃μ : s′ τ−−→μ ∧ μ(s) > 0} and Pred(s) = {s′ ∈ S|R(s′, s) > 0} ∪ Pred(s, τ).
Let for C ⊆ S, Pred(C) =

⋃
s∈C Pred(s). Similarly, the set of τ -successors of

any state s is defined by: Post(s, τ) = {s′ ∈ S|∃μ : s τ−−→ μ ∧ μ(s′) > 0} and
Post(s) = {s′ ∈ S|R(s, s′) > 0} ∪ Post(s, τ). Let Post(C) =

⋃
s∈C Post(s).

Definition 4 (Probabilistic closed). Let C ⊆ S, then C is said to be proba-
bilistic closed iff C ⊆ PS ∧ Pred(C) ⊆ PS.

Definition 5 (Markovian closed). Let C ⊆ S, then C is said to be Markovian
closed iff C ⊆ MS ∧ Pred(C) ⊆ MS.

Let P (S) denote the set of all possible subsets of S that are probabilistic closed.
Let M(S) denote the set of all possible subsets of S that are Markovian closed.

Example 1. Consider the MA shown in Fig. 1 (left). Let C = {s1, s2} and D =
{s5, s6, s7}. Here C is probabilistic closed since C ⊆ PS and Pred(C) = {s0} ⊆
PS. Similarly, D is Markovian closed.

Definition 6. For s, s′ ∈ S and C ⊆ S, the function pbr : S × S × 2S → R≥0 is
defined by:

pbr(s, s′, C) =

{
μ(s′)
μ(C) if s′ ∈ C and μ(C) > 0
0 otherwise.

where (s, τ, μ) ∈→ and μ(C) =
∑

s′∈C

μ(s′).

Example 2. Consider the MA shown in Fig. 1 (left). Let C = {s1, s2}. Then
pbr(s0, s1, C) = 1

3 , pbr(s0, s2, C) = 2
3 .

Definition 7 (Weighted probability). For s ∈ S, and C,D ⊆ S, the function
wp : S × 2S × 2S → R≥0 is defined by:

wp(s, C,D) =
∑

s′∈C

pbr(s, s′, C) · μ′(D)

where (s′, τ, μ′) ∈→.

Example 3. Consider the MA shown in Fig. 1 (left). Let C = {s1, s2} and D =
{s3}. Then wp(s0, C,D) = 1

3 ·1+ 2
3 ·0 = 1

3 . Similarly, for D = {s4}, wp(s0, C,D) =
1
3 · 0 + 2

3 · 1 = 2
3 .



Non-bisimulation Based Behavioral Relations for Markov Automata 185

Definition 8. For s, s′ ∈ S and C ⊆ S, the function P : S × S × 2S → R≥0 is
defined by:

P (s, s′, C) =

{
P (s,s′)
P (s,C) if s′ ∈ C and P (s, C) > 0
0 otherwise.

where P (s, s′) = R(s,s′)
E(s) and P (s, C) =

∑

s′∈C

P (s, s′).

Intuitively, P (s, s′, C) is the probability to move from state s to s′ under the
condition that s moves to some state in C.

Example 4. Consider the MA shown in Fig. 1 (left). Let C = {s5, s6, s7}. Then
P (s3, s5, C) = 1

3 , P (s3, s6, C) = 2
3 , P (s4, s6, C) = 2

3 and P (s4, s7, C) = 1
3 .

Definition 9 (Weighted rate). For s ∈ S, and C,D ⊆ S, the function wr :
S × 2S × 2S → R≥0 is defined by:

wr(s, C,D) =
∑

s′∈C

P (s, s′, C) · R(s′,D)

where R(s′,D) =
∑

s′′∈D R(s′, s′′).

Intuitively, wr(s, C,D) is the (weighted) rate to move from s to some states in
D in two steps via states of C.

Example 5. Consider the example in Fig. 1 (left). Let C = {s5, s6, s7} and D =
{s8}. Then wr(s3, C,D) = P (s3, s5, C) · R(s5,D) + P (s3, s6, C) · R(s6,D) =
1
3 · 0 + 2

3 · 2 = 4
3 . Similarly, for D = {s9}, wr(s3, C,D) = P (s3, s5, C) · R(s5,D) +

P (s3, s6, C) · R(s6,D) = 1
3 · 2 + 2

3 · 0 = 2
3 .

Definition 10 (WME). Equivalence R on S is a weighted Markovian equiva-
lence (WME) if we have:

1. ∀(s1, s2) ∈ R it holds: L(s1) = L(s2) and E(s1) = E(s2),
2. ∀C ∈ S/R s.t. C ∈ P (S), ∀D ∈ S/R and ∀s′, s′′ ∈ Pred(C) : wp(s′, C,D) =

wp(s′′, C,D),
3. ∀C ∈ S/R s.t. C ∈ M(S), ∀D ∈ S/R and ∀s′, s′′ ∈ Pred(C) : wr(s′, C,D) =

wr(s′′, C,D),
4. ∀C ∈ S/R s.t. C /∈ P (S) ∧ C /∈ M(S) : |C| = 1.

States s1, s2 are WM related, denoted by s1 ≡ s2, if (s1, s2) ∈ R for some WME
R.

Example 6. For the closed MA in Fig. 1 (left), the equivalence relation induced
by the partitioning {{s0}, {s1, s2}, {s3}, {s4}, {s5, s6, s7}, {s8}, {s9}, {s10}} is a
WME relation.



186 A. Sharma

s0 {a}

{b}s1 s2 {b}

s3 {a} s4 {c}

{b}s5 {b}s6 {b}s7

{c}s9

{a}s8

s10 {} τ, 1
4

1

τ, 1
4

τ, 1

τ, 1
2

τ, 1

4 8
4 2

2

2
2

3

{a}s0

{b}s1

{a}s2 {c}s3

{b}s4

{a}s6{c}s5

s7
τ, 3

4

τ, 1
3

τ, 2
3

12
6

2
3

4
3

1 3

1

τ, 1
4

1

{}

Fig. 1. MA M (left) and its quotient under a WME R (right)

3.1 Quotient MA

Definition 11. For a WME relation R on M, the quotient MA M/R is defined
by M/R = (S/R, s′

0, Act, AP,→′,⇒′, L′) where:

– S/R is the set of all equivalence classes under R,
– s′

0 = C where s0 ∈ C = [s0]R,
– →′⊆ S/R × Act × Distr(S/R) is defined by C∈P (S)∧p=wp(s′,C,D), s′∈Pred(C)

C
τ−−→μ′∧μ′(D)=p

and C /∈P (S)∧∃s∈C:s
τ−−→μ∧p=μ(D)

C
τ−−→μ′∧μ′(D)=p

,

– ⇒′⊆ S/R × R≥0 × S/R is defined by C∈M(S)∧λ=wr(s′,C,D), s′∈Pred(C)

C
λ−−→D

and
C /∈M(S)∧λ=R(s,D), s∈C

C
λ−−→D

,
– L′(C) = L(s), where s ∈ C.

Example 7 (Quotient). The quotient MA for the Fig. 1 (left) under the WME
relation with partition {{s0}, {s1, s2}, {s3}, {s4}, {s5, s6, s7}, {s8}, {s9}, {s10}} is
shown in Fig. 1 (right).

Next, we show that any closed MA M and its quotient under WME relation are
≡-related.

Definition 12. Any MA M and its quotient M/R under WME R are ≡-
related, denoted by M ≡ M/R, if and only if there exists a WME relation
R∗ defined on the disjoint union of state space S � S/R such that

∀C ∈ S/R,∀s ∈ C =⇒ (s, C) ∈ R∗.

Theorem 1. Let M be a closed MA and R be a WME on M. Then M ≡ M/R.



Non-bisimulation Based Behavioral Relations for Markov Automata 187

Proposition 1. Union of WMEs is not necessarily a WME.

In simple words, it is possible that R1,R2 are two WMEs on S s.t. R1 ∪ R2 is
not a WME. Intuitively, it means that the original closed MA M can be reduced
in different ways.

3.2 Repeated Minimization

Next, we show that WME can be used for repeated minimization of a closed MA.
Intuitively, this means that if a quotient system M′ has been obtained from a
closed MA M under WME R, then it might still be possible to further reduce
M′ to M′′ under some WME R′.

Example 8. Consider the example in Fig. 2 (left). MA in Fig. 2 (middle) is the
quotient for the WME induced by the partition

{{s0}, {s1, s2}, {s3, s4}, {s5},

{s6}, {s7}, {s8}
}
. MA shown in Fig. 2 (right) is the quotient of MA

shown in Fig. 2 (middle) for WME induced by the partition
{{s′

0}, {s′
1},

{s′
2, s

′
3}, {s′

4}, {s′
5}, {s′

6}
}
. It is easy to check that s3, s4, s5 in the original sys-

tem cannot be merged in one shot, since s1 can reach states labeled with atomic
propositions a and b in two steps via s3 and s4 respectively, but s2 cannot reach
these states. This is no longer a problem once s1 and s2 are merged as shown in
Fig. 2 (middle) as s′

2, s
′
3 now have a single predecessor, i.e., s′

1.

s0 {a}

s1 {b} s2 {b}

s3 {} s4 {} s5 {}

s6 {a} s7 {b} s8 {c}

6

2 2

4

4

111

1 1 1

s0 {a}

s1 {b}

s2 {} s3 {}

s4 {a} s5 {b} s6 {c}

1 1 1

10

12
5

8
5

1
2

1
2 1

s0 {a}

s1 {b}

s2 {}

s3 {a} s4 {b} s5 {c}

10

4

3
10

3
10

2
5

1 1 1

Fig. 2. Repeated minimization

3.3 Strong Bisimulation vs WME

Next, we investigate the relationship between WME and strong bisimulation for
MAs [16].

Definition 13 (Strong bisimulation [16]). Let M = (S, s0, Act, AP,→,
⇒, L) be a closed MA. An equivalence relation R ⊆ S × S is a strong bisimula-
tion on M if for any (s1, s2) ∈ R and equivalence class C ∈ S/R the following
holds:



188 A. Sharma

– L(s1) = L(s2),
– R(s1, C) = R(s2, C),
– (s1 τ−−→ μ ⇐⇒ s2

τ−−→μ′) ∧ μ(C) = μ′(C).

States s1 and s2 are strongly bisimilar, denoted s1 ∼ s2, if (s1, s2) ∈ R for some
strong bisimulation4 R.

Strong bisimulation is rigid as it requires that each individual step should be
mimicked.

Example 9. Consider the closed MA shown in Fig. 1 (left). Here s5 and s7 are
bisimilar, i.e., s5 ∼ s7.

Proposition 2. ∼ �=⇒ ≡ and ≡ �=⇒ ∼.

This proposition says that bisimulation and WME are incomparable.

4 Weak Weighted Markovian Equivalence

In this section we define weak weighted Markovian equivalence (WWME). It is
a variant of WME that abstracts from stutter steps, also referred to as internal
or non-observable steps. We first define some auxiliary concepts followed by the
definition of WWME.

Definition 14 (+ Reachability set). Let s, s′ ∈ S. Then s τ+−−−→ s′ denote the
set of all finite τ -labeled paths, i.e., π = s τ,0−−−→ s1

τ,0−−−→ s2 . . . sn︸ ︷︷ ︸
n

τ,0−−−→ s′, where

n ≥ 0 and L(s) = L(si), i = 1, . . . , n.

Remark 1. If n = 0 then the only member of the set s τ+−−−→ s′ is s τ,0−−−→ s′, i.e.,
one step reachability in MA. Note that the labeling of s and s′ need not be
the same but s and all the intermediate states in every path should be equally
labeled.

Example 10. Consider the closed MA shown in Fig. 3 (left). Here s7
τ+−−−→ s11 is

the set of two finite paths π1 = s7
τ,0−−−→ s8

τ,0−−−→ s11 and π2 = s7
τ,0−−−→ s9

τ,0−−−→ s11.

Definition 15. Pr(s τ+−−−→ s′) =
∑

π∈s
τ+−−−→ s′

Pr(π), where Pr(π) = μ0(s1) ·

μ1(s2) . . . μn−1(sn) · μ′(s′).

Example 11. Consider the MA shown in Fig. 3 (left). Here Pr(s7 τ+−−−→ s11) =
Pr(π1) + Pr(π2) = 2

3 · 1 + 1
3 · 1

4 = 3
4 .

4 Note that the definition of strong bisimulation has been slightly modified to take
into account the state labels.



Non-bisimulation Based Behavioral Relations for Markov Automata 189

Definition 16. Let s ∈ S and D ⊆ S. Let s τ+−−−→D denote the set
⋃

s′∈D

s τ+−−−→ s′.

In simple words, s τ+−−−→ D denote the set of all finite τ -labeled paths that start
from s and end in some s′ ∈ D.

Definition 17 (Probability of s τ+−−−→D). Let s ∈ S and D ⊆ S. Then
Pr(s τ+−−−→ D) = Σs′∈DPr(s τ+−−−→ s′).

Definition 18 (Weak weighted probability). For s ∈ S, and C,D ⊆ S, the
function wwp : S × 2S × 2S → R≥0 is defined by:

wwp(s, C,D) =
∑

s′∈C

pbr(s, s′, C) · Pr(s′ τ+−−−→ D)

Example 12. Consider the MA shown in Fig. 3 (left). Let C = {s5, s6, s7, s8, s9}
and D = {s11}. Then wwp(s4, C,D) = pbr(s4, s7, C) · Pr(s7 τ+−−−→D) = 1 ·
(23 · 1 + 1

3 · 1
4 ) = 3

4 . Similarly, for D = {s10}, wwp(s4, C,D) = pbr(s4, s7, C) ·
Pr(s7 τ+−−−→D) = 1 · 1

3 · 3
4 = 1

4 .

Definition 19 (WWME). Equivalence R on S is a weak interactive Marko-
vian equivalence (WIME) if we have:

1. ∀(s1, s2) ∈ R it holds: L(s1) = L(s2) and E(s1) = E(s2),
2. ∀C ∈ S/R s.t. C ∈ P (S), ∀D ∈ S/R \ {C} and ∀s′, s′′ ∈ Pred(C) \ C :

wwp(s′, C,D) = wwp(s′′, C,D),
3. ∀C ∈ S/R s.t. C ∈ M(S), ∀D ∈ S/R and ∀s′, s′′ ∈ Pred(C) : wr(s′, C,D) =

wr(s′′, C,D),
4. ∀C ∈ S/R s.t. C /∈ P (S) ∧ C /∈ M(S), we have |C| = 1.

States s1, s2 are WWM related, denoted by s1 ∼= s2, if (s1, s2) ∈ R for some
WMME R.

Example 13. For MA shown in Fig. 3 (left), the relation induced by the par-
titioning {{s0}, {s1, s2}, {s3}, {s4}, {s5, s6, s7, s8, s9}, {s10}, {s11}} is a WWME
relation.

4.1 Quotient MA

Definition 20. For WMME relation R on M, the quotient MA M/R is defined
by M/R = (S/R, s′

0, Act, AP,→′,⇒′, L′) where:

– S/R is the set of all equivalence classes under R,
– s′

0 = C where s0 ∈ C = [s0]R,
– →′⊆ S/R × Act × Distr(S/R): C∈P (S)∧p=wwp(s′,C,D), s′∈Pred(C)\C,C 
=D

C
τ−−→μ′∧μ′(D)=p

and
C /∈P (S)∧∃s∈C:s

τ−−→μ∧p=μ(D),C 
=D

C
τ−−→μ′∧μ′(D)=p

,



190 A. Sharma

– ⇒′⊆ S/R × R≥0 × S/R is defined by C∈M(S)∧λ=wr(s′,C,D), s′∈Pred(C)

C
λ−−→D

and
C /∈M(S)∧λ=R(s,D), s∈C

C
λ−−→D

,
– L′(C) = L(s), where s ∈ C.

Example 14. The quotient MA for the Fig. 3 (left) under the WWME relation
with partition {{s0}, {s1, s2}, {s3}, {s4}, {s5, s6, s7, s8, s9}, {s10}, {s11}} is shown
in Fig. 3 (right).

s0 {a}

s1 {b} {b}s2

{a}s3 {c}s4

{a}s5

{a}s6 {a}s7

{a}s8
{a}s9

{b}s11

{c}s10

4
2

1 1

τ, 3
4

τ, 1
4 τ, 1

τ, 2
3

τ, 1
3

τ, 1

τ, 1 τ, 3
4

τ, 1
4

τ, 1

5

{a}s0

{b}s1

{a}s2 {c}s3

{a}s4

{b}s5 {c}s6

6

2
3

1
3

τ, 1

τ, 1

τ, 3
4

τ, 1
4

5 1

Fig. 3. MA M (left) and its quotient under a WWME R (right)

Definition 21. Any MA M and its quotient M/R under WWME R are ∼=-
related, denoted by M ∼= M/R, if and only if there exists a WMME relation R∗

defined on the disjoint union of state space S � S/R such that

∀C ∈ S/R,∀s ∈ C =⇒ (s, C) ∈ R∗.

Theorem 2. Let M be a closed MA and R be a WWME on M. Then M ∼=
M/R.

Proposition 3. Union of WWME is not necessarily a WWME.

Remark 2. WWMEs can be used for repeated minimization of a closed MA.

4.2 Weak Bisimulation Vs WWME

Next, we investigate the relationship between WWME and weak bisimulation
for MAs [16]. Due to space limit we do not provide the definition of weak bisim-
ulation (denoted ≈), but refer the interested reader to appendix and [16].



Non-bisimulation Based Behavioral Relations for Markov Automata 191

Proposition 4. ≈ �=⇒ ∼= and ∼= �=⇒ ≈.

This proposition says that weak bisimulation and WWME are incomparable.

Theorem 3. ≡ is strictly finer than ∼=.

This theorem asserts that WWME can achieve a larger state space reduction as
compared to WME.

5 Deterministic Timed Automaton

In order to investigate the kind of real-time properties for MAs that are preserved
by WME and WWME, we study in this section linear real-time objectives that
are given by Deterministic Timed Automata (DTAs) [2].

Definition 22 (DTA). A deterministic timed automaton (DTA) is a tuple A =
(Σ,X , Q, q0, F,→) where:

– Σ is a finite alphabet,
– X is a finite set of clocks,
– Q is a nonempty finite set of locations with the initial location q0 ∈ Q,
– F ⊆ Q is a set of accepting (or final) locations,
– → ⊆ Q × Σ × CC(X ) × 2X × Q is the edge relation satisfying:

(
q

a,g,X−−−−→ q′ ∧ q
a,g′,X′
−−−−→ q′′, g �= g′) =⇒ g ∩ g′ = ∅.

Intuitively, the edge q
a,g,X−−−−→ q′ asserts that the DTA A can move from location

q to q′ when the input symbol is a and the guard g holds, while the clocks in
X should be reset when entering q′ (all other clocks keep their value). DTAs
are deterministic as they have a single initial location, and outgoing edges of a
location labeled with the same input symbol are required to have disjoint guards.
In this way, the next location is uniquely determined for a given location and a
given set of clock values. In case no guard is satisfied in a location for a given clock
valuation, time can progress. If the advance of time will never reach a situation
in which a guard holds, the DTA will stay in that location ad infinitum. Note
that DTAs do not have location invariants. The semantics of a DTA is given
by an infinite-state transition system [2]. Next, we define the notion of paths,
i.e., runs or executions of a DTA. This is done using some auxiliary notions. A
clock valuation η for a set X of clocks is a function η : X → R≥0, assigning to
each clock x ∈ X its current value η(x). The clock valuation η over X satisfies
the clock constraint g, denoted η |= g, iff the values of the clocks under η fulfill
g. For instance, η |= x − y > c iff η(x) − η(y) > c. Other cases are defined
analogously. For d ∈ R≥0, η+d denotes the clock valuation where all clocks of
η are increased by d. That is, (η+d)(x) = η(x)+d for all clocks x ∈ X . Clock
reset for a subset X ⊆ X , denoted by η[X := 0], is the valuation η′ defined
by: ∀x ∈ X.η′(x) := 0 and ∀x /∈ X.η′(x) := η(x). The valuation that assigns



192 A. Sharma

0 to all the clocks is denoted by 0. An (infinite) path of DTA A has the form
ρ = q

a0,t0−−−→ q1
a1,t1−−−→ . . . such that η0 = 0, and for all j ≥ 0, it holds tj > 0,

ηj+tj |= gj , ηj+1 = (ηj+tj)[Xj := 0], where ηj is the clock evaluation on entering
qj . Here, gj is the guard of the j-th edge taken in the DTA and Xj the set of
clock to be reset on that edge. A path ρ is accepted by A if qi ∈ F for some i ≥ 0.
Since the DTA is deterministic, the successor location is uniquely determined; for
convenience we write q′ = succ(q, a, g). A path in a MA M can be “matched” by
a path through DTA A by regarding sets of atomic propositions in M as input
symbols of A. Such a path is accepted, if at some point an accepting location in
the DTA is reached:

Definition 23 (Path acceptance). Let MA M = (S, s0, Act, AP,→,⇒, L)
and DTA A = (2AP ,X , Q, q0, F,→). The MA path π = s0

σ0,t0−−−→ s1
σ1,t1−−−→ s2 . . .

is accepted by A if there exists a corresponding DTA path

q0
L(s0),t0−−−−−→ succ

(
q0, L(s0), g0

)

︸ ︷︷ ︸
=q1

L(s1),t1−−−−−→ succ
(
q1, L(s1), g1

)

︸ ︷︷ ︸
=q2

. . .

such that qj ∈ F for some j ≥ 0. Here, η0 = 0, gi is the (unique) guard in qi

(if it exists) such that ηi+ti |= gi and ηi+1 = (ηi+ti)[Xi := 0], and ηi is the
clock evaluation on entering qi, for i ≥ 0. Let PathsM(A) = {π ∈ PathsM |
π is accepted by DTA A}5.
Definition 24 (Probability of accepted paths). For MA M and DTA A,
let Pr(M |= A) = Pr(PathsM(A))

Theorem 4 (Preservation of DTA under WME). For any MA M, a WME
R on M and DTA A :

Pr(M |= A) = Pr(M/R |= A)

Theorem 5 (Preservation of DTA under WWME). For any MA M, a
WWME R on M and DTA A :

Pr(M |= A) = Pr(M/R |= A)

6 Metric Temporal Logic

In this section we show that the quotient MAs obtained under WMEs and
WMMEs can be used for verifying Metric Temporal Logic (MTL) formulae. Note
that expressive power of MTL is different from that of DTA. We now recall the
syntax and semantics of Metric Temporal Logic [9,28].

5 For any MA M and DTA A, the set PathsM(A) is measurable [11,17,33].



Non-bisimulation Based Behavioral Relations for Markov Automata 193

Definition 25 (Syntax of MTL). Let AP be a set of atomic propositions,
then the formulas of MTL are built from AP using Boolean connectives, and
time-constrained versions of the until operator U as follows:

ϕ : := tt
∣
∣ a

∣
∣ ¬ϕ

∣
∣ ϕ ∧ ϕ

∣
∣ ϕ UI ϕ

where I ⊆ R≥0 is a non-empty interval with rational bounds, and a ∈ AP .

Next, we define the semantics of MTL formulas over MA paths.

Definition 26 (Semantics of MTL formulas). The meaning of MTL for-
mulas is defined by means of a satisfaction relation, denoted by |=, between
a MA M, one of its paths π, MTL formula ϕ, and time t ∈ R≥0. Let

π = s0
σ0,t0−−−→ s1 . . . sn−1

σn−1,tn−1−−−−−−−→ sn . . . be a finite or infinite path of M,
then (π, t) |= ϕ is defined inductively by:

(π, t) |= tt
(π, t) |= a iff a ∈ L(π@t)
(π, t) |= ¬ϕ iff not(π, t) |= ϕ
(π, t) |= ϕ1 ∧ ϕ2 iff (π, t) |= ϕ1 and (π, t) |= ϕ2

(π, t) |= ϕ1 UI ϕ2 iff ∃t′ ∈ t+I. ((π, t′) |= ϕ2 ∧ ∀t ≤ t′′ < t′. (π, t′′) |= ϕ1) .

Let PathsM(ϕ) = {π ∈ PathsM | π |= ϕ}6.
Definition 27 (Probability of MTL paths). For MA M and MTL formula
ϕ, let Pr(M |= ϕ) = Pr(PathsM(ϕ)).

Pr(M |= ϕ) denote the probability of all paths of M that satisfy an MTL
formula ϕ.

Theorem 6 (Preservation of MTL under WME) Let M be a MA and R
be a WME on M. Then for any MTL formula ϕ:

Pr(M |= ϕ) = Pr(M/R |= ϕ)

Theorem 7 (Preservation of MTL under WWME). Let M be a MA and
R be a WWME on M. Then for any MTL formula ϕ:

Pr(M |= ϕ) = Pr(M/R |= ϕ)

7 Conclusions and Future Work

This paper presented two equivalence relations for closed MA models. We defined
the quotient system under these relations and investigated their relationship with
(weak) bisimulation. Finally, we have proved that smaller models obtained under

6 Note that paths satisfying an MTL formula ϕ can be written as a set of cylinder
sets [33].



194 A. Sharma

these equivalences can be used for verification as they preserve the probability of
linear real-time objectives. Our work can be extended in several directions. We
plan to investigate the relationship between WWME and late weak bisimulation
for MAs [34]. We also plan to investigate the relationship between WME and
trace semantics for MAs [32]. It would be interesting to study if our definition
of WME can be extended to open MA models with multiple action transitions.
Another interesting direction of research is to develop and implement an efficient
quotienting algorithm and validate it on some academic case studies.

References

1. Aldini, A., Bernardo, M.: Expected-delay-summing weak bisimilarity for Markov
automata. In: QAPL, EPTCS, vol. 194, pp. 1–15 (2015)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Bernardo, M.: Non-bisimulation-based Markovian behavioral equivalences. J. Log.
Algebr. Program. 72(1), 3–49 (2007)

4. Bernardo, M.: Towards state space reduction based on t-lumpability-consistent
relations. In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261, pp. 64–78.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87412-6 6

5. Böde, E., et al.: Compositional dependability evaluation for STATEMATE. IEEE
Trans. Softw. Eng. 35(2), 274–292 (2009)

6. Boudali, H., Crouzen, P., Haverkort, B.R., Kuntz, M., Stoelinga, M.: Architectural
dependability evaluation with arcade. In: DSN, pp. 512–521. IEEE Computer Soci-
ety (2008)

7. Boudali, H., Crouzen, P., Stoelinga, M.: A compositional semantics for dynamic
fault trees in terms of interactive Markov chains. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 441–456.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75596-8 31

8. Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using
input/output interactive Markov chains. In: DSN, pp. 708–717. IEEE Computer
Society (2007)

9. Bouyer, P.: From Qualitative to Quantitative Analysis of Timed Systems. Mémoire
d’habilitation, Université Paris 7, Paris, France, January 2009

10. Bozzano, M., Cimatti, A., Katoen, J., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. Comput. J.
54(5), 754–775 (2011)

11. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of
continuous-time Markov chains against timed automata specifications. In: LICS,
pp. 309–318 (2009)

12. Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance predic-
tion of compositional models in industrial GALS designs. In: Bouajjani, A., Maler,
O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02658-4 18

13. Deng, Y., Hennessy, M.: On the semantics of Markov automata. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 307–318. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8 24

14. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222,
139–168 (2013)

https://doi.org/10.1007/978-3-540-87412-6_6
https://doi.org/10.1007/978-3-540-75596-8_31
https://doi.org/10.1007/978-3-642-02658-4_18
https://doi.org/10.1007/978-3-642-22012-8_24


Non-bisimulation Based Behavioral Relations for Markov Automata 195

15. Eisentraut, C., Godskesen, J.C., Hermanns, H., Song, L., Zhang, L.: Probabilistic
bisimulation for realistic schedulers. In: Bjørner, N., de Boer, F. (eds.) FM 2015.
LNCS, vol. 9109, pp. 248–264. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-19249-9 16

16. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351 (2010)

17. Fu, H.: Approximating acceptance probabilities of CTMC-paths on multi-clock
deterministic timed automata. In: HSCC, pp. 323–332. ACM (2013)

18. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduc-
tion and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40196-1 5

19. Guck, D., Hatefi, H., Hermanns, H., Katoen, J., Timmer, M.: Analysis of timed
and long-run objectives for Markov automata. LMCS 10(3), 1–29 (2014)

20. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and anal-
ysis of Markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 168–184. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11936-6 13

21. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. In:
ECEASST, vol. 53 (2012)

22. Hermanns, H.: Interactive Markov Chains: And the Quest for Quantified Quality.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45804-2

23. Hermanns, H., Katoen, J.-P.: The how and why of interactive Markov chains. In:
de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 311–337. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17071-3 16

24. Hermanns, H., Katoen, J., Neuhäußer, M.R., Zhang, L.: GSPN model checking
despite confusion. Technical report, RWTH Aachen University (2010)

25. Mateescu, R., Serwe, W.: A study of shared-memory mutual exclusion proto-
cols using CADP. In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS,
vol. 6371, pp. 180–197. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15898-8 12

26. Meyer, J.F., Movaghar, A., Sanders, W.H.: Stochastic activity networks: structure,
behavior, and application. In: PNPM, pp. 106–115. IEEE Computer Society (1985)

27. Neuhäußer, M.R.: Model checking non-deterministic and randomly timed systems.
Ph.D. dissertation, RWTH Aachen University (2010)

28. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez,
F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-85778-5 1

29. Segala, R.: Modelling and Verification of Randomized Distributed Real Time Sys-
tems. Ph.D. thesis, MIT (1995)

30. Sharma, A.: Reduction Techniques for Non-deterministic and Probabilistic Sys-
tems. Ph.D. dissertation, RWTH Aachen (2015)

31. Sharma, A.: Interactive Markovian equivalence. In: Reinecke, P., Di Marco, A.
(eds.) EPEW 2017. LNCS, vol. 10497, pp. 33–49. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66583-2 3

32. Sharma, A.: Trace relations and logical preservation for Markov automata. In:
Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018, LNCS 11022, pp. 162–178.
Springer, Cham (2018)

https://doi.org/10.1007/978-3-319-19249-9_16
https://doi.org/10.1007/978-3-319-19249-9_16
https://doi.org/10.1007/978-3-642-40196-1_5
https://doi.org/10.1007/978-3-319-11936-6_13
https://doi.org/10.1007/978-3-319-11936-6_13
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/978-3-642-17071-3_16
https://doi.org/10.1007/978-3-642-17071-3_16
https://doi.org/10.1007/978-3-642-15898-8_12
https://doi.org/10.1007/978-3-642-15898-8_12
https://doi.org/10.1007/978-3-540-85778-5_1
https://doi.org/10.1007/978-3-319-66583-2_3
https://doi.org/10.1007/978-3-319-66583-2_3


196 A. Sharma

33. Sharma, A., Katoen, J.-P.: Weighted lumpability on Markov chains. In: Clarke,
E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 322–339.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29709-0 28

34. Song, L., Zhang, L., Godskesen, J.C.: Late weak bisimulation for Markov automata.
CoRR, abs/1202.4116 (2012)

35. Timmer, M., Katoen, J.-P., van de Pol, J., Stoelinga, M.I.A.: Efficient modelling
and generation of Markov automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 364–379. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32940-1 26

36. Wolf, V., Baier, C., Majster-Cederbaum, M.E.: Trace machines for observing
continuous-time Markov chains. ENTCS 153(2), 259–277 (2006)

https://doi.org/10.1007/978-3-642-29709-0_28
https://doi.org/10.1007/978-3-642-32940-1_26
https://doi.org/10.1007/978-3-642-32940-1_26


Timed Words



Distance on Timed Words
and Applications

Eugene Asarin1, Nicolas Basset2, and Aldric Degorre1(B)

1 IRIF, University Paris Diderot and CNRS, Paris, France
aldric.degorre@irif.fr

2 VERIMAG, University Grenoble Alpes and CNRS, Grenoble, France

Abstract. We introduce and study a new (pseudo) metric on timed
words having several advantages:

– it is global: it applies to words having different number of events;
– it is realistic and takes into account imprecise observation of timed

events; thus it reflects the fact that the order of events cannot be
observed whenever they are very close to each other;

– it is suitable for quantitative verification of timed systems: we for-
mulate and solve quantitative model-checking and quantitative mon-
itoring in terms of the new distance, with reasonable complexity;

– it is suitable for information-theoretical analysis of timed systems:
due to its pre-compactness the quantity of information in bits per
time unit can be correctly defined and computed.

1 Introduction

Timed words are sequences of events (from a finite alphabet Σ) with their dates
(from IR+). Such words, sets thereof (timed languages) and automata working
on them (timed automata) constitute a relevant abstraction level for modelling
and verification of real-time systems and an attractive research area since the
founding work [1].

It is commonly accepted that timed words can be produced or observed with
a certain precision, and several works considered approximate verification of
timed systems, fixing a distance and a precision on timed words. In most cases
the uniform distance on dates (or delays) for words with n events is considered,
see e.g. tube languages [11], or robustness [14]. In [4,7] we have studied symbolic
dynamics of timed systems w.r.t. a similar distance, and in [3] we have applied
it to the following question: “what is the amount of information in timed words
of language L, of length n, with precision ε”.

However, on the information theory side, all the distances considered up to
now are well adapted to analysis of quantity of information for a fixed number
of events n, or its asymptotic behaviour w.r.t. n. But those distances are not
suitable for the analysis on information for a given time T (or asymptotically
w.r.t. T → ∞). To perform such an analysis, we need a unique distance on
timed words with different numbers of events. Furthermore, this metric should
c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 199–214, 2018.
https://doi.org/10.1007/978-3-030-00151-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_12&domain=pdf


200 E. Asarin et al.

be compact (for a given duration T ), if we want the amount of information
transmitted in T seconds with precision ε to be finite.

On the practical side, if we observed timed words with some finite precision
(say 0.01s), then it would be difficult to distinguish the order of close events,
e.g. detect the difference between

w1 = (a, 1), (b, 2), (c, 2.001) and w2 = (a, 1.001), (c, 1.999), (b, 2.001).

Moreover, it is even difficult to count the number of events that happen in a
short lapse of time, e.g. the words w1, w2 look very similar to

w3 = (a, 1), (c, 1.999), (c, 2), (b, 2.001), (c, 2.0002).

A slow observer, when receiving timed words w1, w2, w3 will just sense an a at
the date ≈ 1 and b and c at the date ≈ 2.

As the main contribution of this paper, we introduce a metric on timed words
(with non-fixed number of events) for which w1, w2, w3 are very close to each
other. We believe that this metric is natural and sets a ground for approximate
model-checking and information theory of timed languages w.r.t. time (and not
only number of events).

We present the first technical results concerning this distance:

– its simple geometrical properties;
– techniques of quantitative model-checking and monitoring, and complexity

estimates thereof (the complexity of standard problems is quite moderate:
PSPACE or sometimes NP);

– proof of compactness of this distance, and analysis of information contents of
some important languages.

The paper is structured as follows: after some preliminaries in Sect. 2 we
introduce our main new notion of distance between timed words in Sect. 3. We
analyse problems of quantitative model-checking (with respect to this distance)
in Sect. 4 and those of information content in Sect. 5. We conclude with some
perspectives in Sect. 6.

2 Preliminaries

We suppose that the reader is acquainted with timed automata (and region
equivalence), [1]. Nonetheless, here we fix notation and provide main definitions.
We also provide basic facts and notions on pre-compact spaces and two infor-
mation measures thereof.

2.1 Timed Words and Timed Languages

A timed word of length n over an alphabet Σ is a sequence w = t1a1 . . . tnan,
with ai ∈ Σ, ti ∈ IR and 0 ≤ t1 ≤ . . . ≤ tn. Here ti represents the dates at
which the event ai occurs (this definition rules out timed words ending by a
time delay). We also adopt the convention that t0 = 0. A timed language L is a
set of timed words.



Distance on Timed Words and Applications 201

Timed word projection. The projection pΣ(u) of a timed word u erasing alpha-
bet Σ consists in the word u where the events with labels in Σ are hidden.
Recursively:

pΣ(ε) = ε ; pΣ(ta) =
{

ta if a �∈ Σ
ε if a ∈ Σ

;

pΣ(tau) = pΣ(ta)pΣ(u) =
{

ta · pΣ(u) if a �∈ Σ
pΣ(u) if a ∈ Σ

This definition is lifted to timed languages the natural way: the projection of a
language L is the set of the projections of all words u ∈ L.

2.2 Timed Graphs and Timed Automata

A clock is a variable ranging over IR≥0 (non-negative reals). A clock constraint
g ∈ GC over a set of clocks C is a conjunction of finitely many inequalities of the
form x ∼ c or x ∼ y, where x and y are clocks, ∼∈ {<,≤,=,≥, >} and c ∈ Q≥0.
A clock reset r ∈ RC is determined by a subset of clocks B ⊂ C, it resets to 0
all the clocks in B and does not modify the values of the others.

A timed graph (TG) is a triple Γ = (V,C,E). Its elements are respectively
the finite set of locations, the finite set of clocks (let its cardinality be d) and
the transition relation (timed edges). A state of Γ is a pair (v,x) of a control
location v ∈ V and a vector of clock values x ∈ IRd. Elements of E are transitions,
i.e. tuples (v, g, r, v′) ∈ V × GC × RC × V denoting the possibility, at location v
when the clock vector satisfies the guard g, to apply the clock reset r and then
go to location v′.

A timed automaton (TA) is a tuple A = (Q,Σ,C,Δ, q0, F ) such that Σ, Q,
C are finite sets, q0 ∈ Q, F ⊂ Q × GC and Δ ⊂ Q × (Σ ∪ {ε}) × GC × RC × Q.
Hence, if we define E = {(q, g, r, q′)|∃a ∈ Σ ∪ {ε} s.t. (q, a, g, r, q′) ∈ Δ}, then
(Q,C,E) is a TG called the underlying timed graph of A.

Q is the set of locations of the TA, Σ, the alphabet of its symbols, Δ, its
transition relation, q0, its initial location and F , its final condition.

Intuitively, a TA reads a timed word, which will make a pebble move from
state to state, starting from (q0,0), and accepts or rejects the word depending
on whether the last visited state satisfies F or not.

More formally, a run of A along a path π = δ1 . . . δn ∈ Δn has the form

(qi0 ,x0)
t1a1−−−→ (qi1 ,x1)

t2a2−−−→ · · · tnan−−−→ (qin ,xn),

where, for all j ∈ 1..n, δj = (qij−1 , aj , g, r, qij ) ∈ Δ,

– xj−1 + (tj − tj−1)1l |= g with 1l denoting the vector (1, . . . , 1),
– and xj = r (xj−1 + (tj − tj−1)1l).

When qi0 = q0 is the initial state, x0 is 0 and F contains a couple (q, g) with
qin = q and xn satisfying g, then the timed word pε(t1a1 . . . tnan) is said to be
accepted by A. The set of all such words is the language L(A) accepted by A.

Finally, the granularity of a timed graph G is the largest rational number
g(G) such that any constant k appearing in the guards of G satisfies k

g(G) ∈ IN.



202 E. Asarin et al.

2.3 Synchronized Product of TA

The synchronized product of the TA A = (QA, ΣA ∪ ΣS , CA,ΔA, q0A, FA) and
B = (QB, ΣB ∪ ΣS , CB,ΔB, q0B, FB), with ΣA, ΣB and ΣS disjoint alphabets
and CA and CB disjoint clock sets1, is the TA

A ⊗ΣS
B =

(
QA × QB, ΣA ∪ ΣB ∪ ΣS , CA ∪ CB, Δ̇A ∪ ΔS ∪ Δ̇B, (q0A, q0B) , F

)
,

where ΔS = { ((qA, qB), s, gA ∧ gB, rA ∪ rB, (q′
A, q′

B))
| ∃s ∈ ΣS ∧ (qA, s, gA, rA, q′

A) ∈ ΔA ∧ (qB, s, gB, rB, q′
B) ∈ ΔB};

Δ̇A = { ((qA, qB), a, gA, rA, (q′
A, qB))

| a ∈ ΣA ∧ (qA, a, gA, rA, q′
A) ∈ ΔA ∧ qB ∈ QB};

Δ̇B = { ((qA, qB), b, gB, rB, (qA, q′
B))

| b ∈ ΣB ∧ qA ∈ QB ∧ (qB, b, gB, rB, q′
B) ∈ ΔB};

and F = {((qA, qB), gA ∧ gB) | (qA, gA) ∈ FA ∧ (qB, gB) ∈ FB}
We remark that A1 ⊗Σ (A2 ⊗Σ A3) and (A1 ⊗Σ A2) ⊗Σ A3 are isomorphic

(up to relabelling of the locations), hence, with only a slight abuse of notation,
operation ⊗Σ is associative. The same reasoning also holds for commutativity.
Thus, for iterating ⊗Σ (with Σ fixed), on A = {A1,A2, . . . ,An}, a finite set of
TA, we define the notation

⊗Σ
A∈A A = A1 ⊗Σ A2 ⊗Σ · · · ⊗Σ An.

2.4 Pre-compact Spaces, and Their ε-entropy and ε-capacity

We recall some concepts (mostly from [12]). Given a metric space (S, d), i.e. a
set S with a distance d, a subset K ⊂ S is called ε-net if for any x ∈ S, there
exists some y ∈ K with d(x, y) ≤ ε (i.e. any point can be ε-approximated by an
element of K). The ε-entropy of S is defined as the logarithm2 of the size of the
smallest ε-net:

Hε(S) = log min{#K|K an ε-net in S}.

A subset M of S is called ε-separated, if all the distances between points in M
are > ε. The ε-capacity of S is defined as the logarithm of the size of the largest
ε-separated set:

Cε(S) = log max{#M |M an ε-separated set in S}.

The metric space (S, d) is pre-compact if its ε-entropy (or equivalently its
ε-capacity) is finite for any ε > 0.

Both H and C characterise the quantity of information needed to describe
an arbitrary point in S with precision ε, they give respectively upper and lower
bound, as shows the following informal reasoning. Indeed, every point x ∈ S can
1 Generally, shared clocks could be considered, but they are not needed in this paper.
2 As usual in information theory, all logarithms are base 2.



Distance on Timed Words and Applications 203

be described with precision ε using Hε bits information: it suffices to pick an
ε-approximation y in some standard minimal-size ε-net K, and write the number
of y in a standard enumeration of K. On the other hand, ε-precise descriptions of
points of a (maximal) 2ε-separated set M should be all distinct, which requires
at least log #M = C2ε(S) bits.

The two information characteristics (H and C) are tightly related [12]:

C2ε ≤ Hε ≤ Cε. (1)

3 Distance

Given two timed words u = (a1, t1) . . . (an, tn) and v = (b1, s1) . . . (bm, sm), we
define −→

d (u, v) =
←−
d (v, u) = max

i
min

j
{|ti − sj | : bj = ai} ;

d(u, v) = max(
−→
d (u, v),

←−
d (u, v)).

In words,
−→
d (u, v) is small whenever for each event in u, there exists the same

event in v, happening at a close date.
As explained in the introduction, this distance formalizes the idea of a slow

observer who cannot distinguish events which are too close to each other.
Function d is strongly related to the classical Hausdorff distance (between

sets in metric spaces). Indeed, in the case of a one-letter alphabet,
d ((a, t1) . . . (a, tn), (a, s1) . . . (a, sm)) coincides with Hausdorff distance between
two sets of dates {t1, . . . , tn} and {s1, . . . , sm}.

Let us state basic geometric properties of d,
−→
d and

←−
d . We need a notation:

for a timed word v and a date t we denote by v(t) ⊆ Σ the set of all letters a
such that v contains an event (a, t); also let α(u) ⊆ Σ denote the set of all the
letters appearing in u.

Proposition 1. – d is symmetrical,
−→
d ,

←−
d are not.

– d,
−→
d ,

←−
d satisfy the triangular inequality.

–
−→
d (u, v) = 0 whenever for all t it holds that u(t) ⊆ v(t). The criterion for

←−
d

is symmetrical. Finally, d(u, v) = 0 whenever u(t) = v(t) holds for all t.
–

−→
d (u, v) = ∞ whenever α(u) �⊆ α(v). The criterion for

←−
d is symmetrical.

Finally, d(u, v) = ∞ whenever α(u) �= α(v).

Thus, in fact, d is a pseudo-distance on timed words. Later on, in Sect. 5 we will
prove its pre-compactness on timed words of a duration ≤ T .

We also extend
←−
d ,

−→
d and d to distances between an element and a set, and

between two sets the usual way. For δ ∈ {←−d ,
−→
d , d}, L,L′ two timed languages,

u a timed word, we define:

– δ(u,L) = min {δ(u, v)|v ∈ L};
– δ(L, u) = min {δ(v, u)|v ∈ L};
– δ(L,L′) = min {δ(u, v)|u ∈ L, v ∈ L′}.



204 E. Asarin et al.

4 Quantitative Verification

In this section, we treat the following verification problems:

Quantitative model-checking. Given two timed automata A and B we want
to compute one of three distances

−→
d (LA, LB);

←−
d (LA, LB); d(LA, LB). A

practical interpretation is as follows: A represents a timed system; B recog-
nises the set of bad (erroneous) behaviours. In this case the distances represent
the “security margin” between the system and errors. It is similar to robust-
ness from [14] or [10]. The choice of the most appropriate distance for each
practical setting is still to be explored.

Quantitative monitoring. Given a timed word w and a timed automaton B
we want to compute one of three distances

−→
d (w,LB);

←−
d (w,LB); d(w,LB).

One practical interpretation is that w is an execution trace (log file, airplane
black box record etc.) of a system, (measured with some finite precision κ),
and LB is the set of good (admissible) behaviours. Whenever d(w,LB) > κ

we can be sure that the system behaviour was erroneous. Symmetrically, if
LB is the set of bad behaviours, and d(w,LB) > κ we can be sure that the
system behaviour was correct.

4.1 Reachability Problems

In our complexity analysis we will use a couple of results about reachability on
timed graphs: one is well-known, the other less so.

We say that (G, I, F ) ∈ TREACH whenever G is a timed graph, I, F are subsets
of its vertices (for technical reasons we suppose them disjoint), and there exists
a path in G which starts in I (with all clocks equal to 0) and terminates by a
transition to F .

Theorem 1 ([1,9]). The problem TREACH is PSPACE-complete.

A variant of TREACH with bounded length of path is easier. We say that
(G, I, F, b) ∈ TREACHB whenever G is a timed graph, I, F , disjoint subsets of
its vertices and b a natural number in unary representation; and there exists a
feasible path of length ≤ b in G which starts in I (with all clocks equal to 0)
and terminates by a transition to F .

Proposition 2. TREACHB is in NP.

Proof. The non-deterministic algorithm will first guess a path (of some length
� ≤ b) in the timed graph G from I to F . Feasibility of the path corresponds to
existence of a sequence of dates t1, . . . , t�, satisfying a polynomially sized system
of difference constraints, which can be checked polynomially. ��

Last, the following result concerns reachability in small time.

Proposition 3. In a timed graph G, if a state (q′,x′) is reachable from a state
(q,x), within time t < g(G), by some path π, then it is also reachable within
exactly the same time via a path π′ of polynomial size. Moreover, such a π′ can
be chosen such that it contains the same set of transitions as π.



Distance on Timed Words and Applications 205

Proof. Without loss of generality, we assume g(G) = 1. Let k be the number
of clocks, � the number of locations (vertices) and tr the number of transitions
(edges). Consider a path π in G from (q,x) to (q′,x′) of duration t. We define
the subset of important transitions in π which includes, for each clock c (with
initial value x)

– the first transition such that c > x (just before taking the transition);
– the same for c = �x� and for c > �x�;
– the transition when c is reset for the first or last time.

For each clock there are at most five important transitions (some of them can
be absent or coincide), thus altogether there are at most 5k of those.

Without changing the important transitions in π, we simplify the periods
between those as follows.

During the period between two important transitions the clock vector stays
in the same region. Thus if in such a period some location p of G is entered twice,
the segment of π of duration τ from p to p can be removed, and replaced by
staying in p during the same time τ . After removing all such useless fragments we
get a new path π′ without repeated locations between two important transitions.
Its maximal size is 5k + (5k + 1)�. The duration of π′ is t, by construction.

To prove that π′ leads again from (q,x) to (q′,x′), it suffices to notice that
all resets removed from π are not important because they happen between the
first and the last reset of the same clock.

If we want π′ and π to contain the same set of edges, the simplification should
be a bit less aggressive: instead of removing the whole path fragment from p to
p we preserve enough loops (at most tr) to visit the same set of transitions. ��

4.2 Timed Automata for Neighbourhoods

We present now the key construction for quantitative verification with respect
to our distances: for each distance δ ∈ {←−d ,

−→
d , d}, for any TA B and any rational

number κ > 0, we want to construct an automaton (resp.
←−B κ,

−→B κ and Bκ)
that recognizes the κ-neighbourhood of LB, i.e. the language

Nδ(LB, κ) = {w|∃v (v ∈ LB ∧ δ(w, v) < κ)} .

We build these three automata as products of several components:

– Av guesses the word v, check that v ∈ LB and communicates with other
components about timed events in v. No wonder, it is very similar to B: it has
the same states and clocks. To each transition in B corresponds a transition
in Av as presented on Fig. 1.

– For each letter a ∈ Σ, automaton Aa← checks that every occurrence of a in
the guessed v is κ-close to its occurrence in the input w, see Fig. 2, left.

– Similarly, for each a ∈ Σ, automaton Aa→ checks that every occurrence of a
in the input w is κ-close to its occurrence in the guessed v, see Fig. 2, right.



206 E. Asarin et al.

p q
a, g, r

p q
τa, g, r

Fig. 1. A transition in B (left) and its variant in Av (right)

xa := 0

a, xa < κ/xa := 0

xa < κ

τa

τa

ya := 0

τa, ya < κ/ya := 0

ya < κ

a

a

Fig. 2. Timed automata Aa← (left) and Aa→ (right)

Formally, let A← =
⊗∅

a∈Σ Aa← and A→ =
⊗∅

a∈Σ Aa→. Then Bκ ,
−→B κ and←−B κ are defined respectively as the products

(A← ⊗{τa|a∈Σ} Av ⊗{τa|a∈Σ} A→
)
,(Av ⊗{τa|a∈Σ} A→

)
and

(A← ⊗{τa|a∈Σ} Av

)
where we replace all τa by ε.

Proposition 4. Timed automata
−→B κ ;

←−B κ; Bκ recognise respectively κ-neigh-
bourhoods of LB with respect to distances

←−
d ,

−→
d , d.

4.3 Quantitative Timed Model-Checking

Proposition 5. Given timed automata A and B and a precision κ > 0 (rep-
resented as ratio of two integers), deciding whether d(LA, LB) < κ is PSPACE-
complete. The same is true for

−→
d and

←−
d .

Proof. PSPACE-easyness. Consider first the case of distance d. The inequality
d(LA, LB) < κ holds iff LA and LBκ

have a nonempty intersection. We can
build a timed automaton C for this intersection using the standard product
construction. The size of C is polynomial, it uses ε-transitions and constants
proportional to 1 and to κ. To get rid of non-integers, we can multiply every-
thing by the denominator of κ, and the problem is just reduced to reachability
between (initial and final states) in a polynomial-sized timed graph, which is
in PSPACE.
The cases of

−→
d and

←−
d are similar, they just use

−→B κ and
←−B κ instead of Bκ .

PSPACE-hardness. We reduce the TREACH question for a timed graph G to the
question of the form d(LA, LB) < κ. We choose the trivial event alphabet
Σ = {a}, take A the same as G with all transitions labeled by a; and B an
automaton for the universal timed language over Σ and choose the constant
κ > 0 arbitrarily. In this case d(LA, LB) = 0 < κ whenever the final state is
reachable in G, otherwise d(LA, LB) = ∞ > κ. This concludes the reduction
and the PSPACE-hardness for d; the cases of

−→
d and

←−
d are similar. ��



Distance on Timed Words and Applications 207

4.4 Quantitative Timed Monitoring

Proposition 6. Given a timed word w (with timings represented as rationals),
a timed automaton B and a precision κ > 0, deciding whether d(w,LB) < κ is
PSPACE-complete. The same is true for

−→
d and

←−
d .

Proof. PSPACE-easyness. Build a timed automaton A (with rational constants)
recognizing only w, thus d(w,LB) < κ iff d(LA, LB) < κ, the latter condition
is PSPACE-easy as stated in the previous proposition.

PSPACE-hardness. Again we reduce TREACH. We chose the trivial event alphabet
Σ = {a}, take B the same as G with all transitions labeled by a; and w =
(a, 0). The constant κ is chosen very large, an upper bound for the diameter
of the region graph of B (κ can still be written in a polynomial number of
bits). Whenever the final state is reachable in G, the language LB contains
some word v (containing only letters a) of duration smaller than κ. In this
case d(w,LB) ≤ d(w, v) < κ. If the final state is unreachable in G, then
LB = ∅ and hence d(w,LB) = ∞ > κ. This concludes the reduction and the
PSPACE-hardness for d; the cases of

−→
d and

←−
d are similar. ��

The case when κ is small is easier. Let us define the granularity g(w) of a
timed word w = (a1, t1) . . . (an, tn) as min{ts+1 − ts|ts < ts+1} (with t0 = 0),
i.e. the minimal non-0 interval between events.

Proposition 7. Given a timed word w (with timings represented as rationals),
a timed automaton B and a positive precision κ < min(g(B), g(w))/2, deciding
whether d(w,LB) < κ is NP-complete. The same is true for

←−
d . For

−→
d , the

problem is PSPACE-complete even for small κ.

Proof. NP-easyness for
←−
d . We first show (with κ as small as required) that

(*) the inequality
←−
d (w,LB) < κ is equivalent to existence of some

v ∈ LB of polynomially bounded length, such that
←−
d (w, v) < κ.

Let t1 < · · · < tN be distinct dates of events in w. We denote t−i = ti −κ and
t+i = ti+κ. Due to the bound on κ, the intervals (t−i , t+i ) are of length < 1 and
disjoint. The inequality

←−
d (w,LB) < κ is equivalent to existence of u ∈ LB

with
←−
d (w, u) < κ. In other words, u should satisfy three requirements:

− u is accepted by B;
− for each i, within the interval (t−i , t+i ), the word u only contains letters

from w(ti);
− no events happen in u outside of intervals (t−i , t+i ).

The fragment accepting run of B on u within the interval (t−i , t+i ) can be
considered as a path in timed graph consisting of transitions in B labeled
by letters from w(ti). This path (and the corresponding fragment of u) can
thus be simplified (using Proposition 3) to a polynomially bounded length.
Proceeding with such a simplification for every i will transform the totality
of u to the required polynomially bounded v. The property (*) is proved.
As in previous easiness proofs, we build a timed automaton A for {w}, then
another one for LA ∩ L←−B κ

, and check existence of a polynomially bounded
accepted word v with complexity NP as stated by Proposition 2.



208 E. Asarin et al.

z = 1

z = 1/x1 := 0
z = 1/x2 := 0

z = 1/x3 := 0

z = 2, x1 = 2

z = 2, x2 = 1

z = 2, x3 = 2

z = 3, x1 = 2

z = 3, x2 = 3

z = 4, x1 = 3

z = 4, x2 = 3

Fig. 3. Timed automaton encoding the 3CNF (p1 ∨ p̄2 ∨ p3) ∧ (p̄1 ∨ p2) ∧ (p̄1 ∨ p̄3)

NP-easyness for d is proved similarly, but the variant of Proposition 2 where
the simplified path has the same set of transitions should be used.

NP-hardness for d and
←−
d . We proceed by reduction of 3SAT. Given a 3CNF∧k

i=1 Ci with n boolean variables p1, . . . , pn, we take w = (a, 1)(a, 2) . . . (a, k+
1). The timed automaton B over alphabet {a} has clocks x1, . . . , xn (which
will encode boolean variables) and a special clock z which is never reset and
ensures that all transitions of B happen every time unit. A gadget works
during the first time unit and gives to each clock xi a value 0 or 1 (this corre-
sponds to possible boolean values of pi). Afterwards, there are no more resets,
hence xi = z − 1 encodes pi = 0 while xi = z encodes pi = 1. At transition
i + 1 the clause Ci is checked (one of boolean literals should have a required
value), see example on Fig. 3.
Whenever the formula is satisfiable, the language of B contains w, and
d(w,LB) = 0 < κ, otherwise LB = ∅ and hence d(w,LB) = ∞ > κ. This
concludes the reduction. The case of

←−
d is similar.

PSPACE-hardness for
−→
d . The hardness argument is quite similar to that of

Proposition 6, and also proceeds by reduction of TREACH in a timed graph G

to the question of the form
−→
d (w,LB) < κ (for any positive κ). We chose the

trivial event alphabet Σ = {a}, the word w = (a, 1). The timed automaton
B has its first transition (labeled by a and resetting all clocks) at time 1,
afterwards it follows the graph G with all transitions labeled by a. Whenever
the final state is reachable in G, the language LB contains some word v

starting with (a, 1). In this case
−→
d (w,LB) = 0 < κ. If the final state is

unreachable in G, then LB = ∅ and hence
−→
d (w,LB) = ∞ > κ. This concludes

the reduction. ��

5 Information in Timed Words

In [3–5,7] we have answered the following question:

Given a timed regular language L, what is the maximal amount of infor-
mation in w ∈ L, observed with precision ε (as function of ε and the
number of events n in w)?

We have explored potential applications including information transmission,
data compression, and random generation. However, in the timed setting it is



Distance on Timed Words and Applications 209

more natural and important to consider the quantity of information (or band-
width) w.r.t. time elapsed, i.e. the duration T of w. Unfortunately, it was not
possible in previous settings, because considering together timed words of the
same duration but different number of events is tricky. We proposed a first solu-
tion in [6] based on formal summation of volumes in various dimensions but this
turns out to be a bit artificial.

In this section, we show that our new distances on timed words provide a
natural framework for a thorough study of quantity of information in timed
words and languages w.r.t. time elapsed. This quantity can be characterised
as ε-capacity (or ε-entropy), as described in Sect. 2.4, of sets of words in L of
duration ≤ T . Two features of our distances are crucial: (1) they can be applied
to words with different numbers of events; (2) the relevant sets endowed with
these distances are compact.

We cannot yet compute the ε-capacity (or ε-entropy) of an arbitrary timed
regular language. Instead, we address two important examples:

– the most important one is the universal timed language UΣ
T consisting of all

timed words on event alphabet Σ (with s elements) of duration ≤ T . We show
that it is indeed compact (and hence all other closed languages of bounded
duration are); and compute its ε-entropy. Naturally, since all timed words are
considered, the entropy is quite large.

– In many practical situations, the words to consider have some special prop-
erties and thus are constrained to belong to some sublanguage, and their
bandwidth is lower. The most natural constraint concerns the minimal inter-
val separating the events (or the maximal frequency thereof). For that reason,
we consider the timed language FΣ

b of all the words over an alphabet Σ with
the minimal interval b between events (in particular, simultaneous events are
forbidden). We come up with tight bounds on its ε-entropy, without surprise
it grows much more slowly than for the universal language.

Information in the Universal Timed Language. We consider the universal
timed language UΣ

T and start with a simple construction of a finite subset
MΣ

T,N ⊂ UΣ
T , explore its net/separated properties and deduce tight bounds on

ε-capacity and ε-entropy of UΣ
T .

The set of timed words MΣ
T,N is built as follows. We distribute uniformly N

active instants tk on the interval [0, T ], taking tk = (2k−1)T
2N for k = 1..N . Then

a timed word w belongs to MΣ
T,N whenever

– all events in w happen at active instants tk only;
– within any fixed active instant tk, the events in Σ happen in alphabetic order,

and each letter in Σ happens at most once (in this instant).

It is easy to see that the cardinality of MΣ
T,N is 2sN , indeed for each of N

active instants there are 2s possible choices (corresponding to subsets of Σ).

Proposition 8. The set MΣ
T,N described above is an ε-separated in UΣ

T when-
ever ε < T/N . It is an ε-net whenever ε ≥ T/2N .



210 E. Asarin et al.

Given T and ε, we can choose N = �T/2ε�, which yields N − 1 < T/2ε ≤ N
which implies two bounds:

– ε ≥ T/2N , hence ε ≥ T/2N and MΣ
T,N is an ε-net, and thus Hε(UΣ

T ) ≤
log #MΣ

T,N = sN .
– On the other hand, 2ε < T/(N − 1), so MΣ

T,N−1 is 2ε-separated, hence
C2ε(UΣ

T ) ≥ log #MΣ
T,N−1 = s(N − 1).

Together with (1) this gives s(N − 1) ≤ C2ε(UΣ
T ) ≤ Hε(UΣ

T ) ≤ sN .
This implies the following result

Theorem 2. ε-capacity and ε-entropy of UΣ
T satisfy:

s(�T/2ε� − 1) ≤ Hε(UΣ
T ) ≤ s�T/2ε�;

s(�T/ε� − 1) ≤ Cε(UΣ
T ) ≤ s�T/ε�.

Consequently, for ε → 0 this gives the asymptotical estimates:

Hε(UΣ
T ) ≈ sT/2ε; Cε(UΣ

T ) ≈ sT/ε.

Thus, the maximal bandwidth in timed words on Σ, observed with precision ε,
equals |Σ|/ε bits per time unit.

Information in bounded frequency language F Σ
b . We recall that the timed

language FΣ
b contains all the words over an alphabet Σ with the minimal interval

b between events (in particular, simultaneous events are forbidden). To simplify
a bit the reasoning, we also suppose that the first event occurs after b seconds.
We let FΣ

b,T,ε be the restriction of FΣ
b,T to timed words with events happening

at dates multiple of ε. This set constitutes both an ε/2-net and an ε′-separated
subset of FΣ

b,T for every 0 < ε′ < ε:

Lemma 1. For every 0 < ε′ < ε, the set FΣ
b,T,ε is an ε/2-net and is ε′-separated.

Hence, by evaluating the cardinality of FΣ
b,T,ε, we will learn about ε/2-entropy

and ε-entropy of FΣ
b,T .

Lemma 2. For every ε > 0, it holds that |FΣ
b,T,ε| =

∑	T/b

n=0 sn

(	(T−nb)/ε
+n
n

)
.

Proof. We decompose the set FΣ
b,T,ε w.r.t. the number n of events per timed

word. This number n goes from 0 to �T/b� and for each n, there are sn choices
for the events that should be multiplied by the number of possible choices of a
sequence of dates belonging to the set {b ≤ t1 ≤ · · · ≤ tn ≤ T | ti+1 − ti ≥
b ∧ ti ∈ εIN for i ≤ n}. The latter set can be mapped to the set {0 < k1 <
· · · < kn ≤ (T − nb)/ε + n | ki ∈ IN for i ≤ n} by the bijection (t1, t2, . . . , tn) �→
((t1 − b)/ε + 1, (t2 − 2b)/ε + 2, . . . , (tn − nb)/ε + n). This set has

(	(T−nb)/ε
+n
n

)
elements. Summing up over all n from 0 to �T/b� we get the desired result.



Distance on Timed Words and Applications 211

As a consequence of the two previous lemmas we obtain:

Theorem 3. For every 0 < ε′ < ε, the set FΣ
b,T,ε is an ε/2-net and is ε′-

separated. The information measurements for FΣ
b,T are tightly linked as follows:

for every 0 < ε′ < ε,

Cε(FΣ
b,T ) ≤ Hε/2(FΣ

b,T ) ≤ log |FΣ
b,T,ε| ≤ Cε′(FΣ

b,T ).

The following asymptotic equality holds when ε → 0:

log |FΣ
b,T,ε| = n log(1/ε) + log

(
(se ((T/n) − b))n√

2πn

)
+ o(1) with n = �T/b� − 1.

Proof. The sequence of inequalities is a consequence of Lemma 1, the definitions
of entropy and capacity and the classical inequalities (1). To find the asymptotic
expansion of log |FΣ

b,T,ε| up to o(1) we start from Lemma 2.
For n ≤ �T/b� − 1 < T/b we have

(�(T − nb)/ε� + n

n

)
∼ (�(T − nb)/ε� + n)n

/n! ∼ (T − nb)n
/(n!εn).

When n = T/b, the term is equal to sn = O(1) which is negligible compared to
the other terms.

Thus

|FΣ
b,T,ε| ∼

�T/b�−1∑
n=0

sn

(
T − nb

ε

)n

/n!,

and this polynomial in 1/ε is equivalent to its last term when ε → 0:

|FΣ
b,T,ε| ∼ sn

(
T − nb

ε

)n

/n! with n = �T/b� − 1.

Using Stirling formula n! ∼ (n/e)n
√

2πn we obtain:

|FΣ
b,T,ε| ∼ (se ((T/n) − b))n√

2πn

(
1
ε

)n

with n = �T/b� − 1.

Taking logarithms gives the desired asymptotic expansion. ��
Note that the second term of the asymptotic estimate is not bounded when

T is allowed to vary and to approach a multiple of b from below. For this rea-
son, below we also provide hard bounds for log |FΣ

b,T,ε| that are not as tight
w.r.t. variations of parameter ε but behave better w.r.t. parameter T .

Proposition 9. For every ε < 1/2b and3 T ≥ b, the following inequalities hold:
(⌊

T

b

⌋
− 1

)
log

⌊
1
ε

⌋
−

⌊
T

b

⌋
log

⌊
T

b

⌋
≤ log |FΣ

b,T,ε| ≤
⌊

T

b

⌋
log

1
ε

+
⌊

T

b

⌋
log 6bes.

3 when T < b, the set of interest F Σ
b,T is empty.



212 E. Asarin et al.

Proof. First, let us state an equality about binomial coefficients: it holds that

N∑
n=0

(
A + n

n

)
=

(
A + N + 1

N

)
, (2)

where A,N and n < N are given natural numbers. The above is true because

N∑
n=0

(
A + n

n

)
=

N∑
n=0

(
A + n

A

)
=

A+N∑
n=A

(
n

A

)
=

(
A + N + 1

A + 1

)
=

(
A + N + 1

N

)
,

where the third equality is known as the Hockey-Stick identity.
Now we prove the upper-bound using Lemma 2. We first treat the case where

�T/b� = 1, that is b ≤ T < 2b. In this case, Lemma 2 gives

|FΣ
b,T,ε| = s

(�(T − b)/ε� + 1
1

)
= s(�(T − b)/ε� + 1) ≤ s(b/ε + 1) ≤ 2sb/ε.

So log |FΣ
b,T,ε| ≤ log(1/ε) + log 2sb ≤ �T/b� log(1/ε) + �T/b� log 6bes.

Now we treat the case where T ≥ 2b (still proving the upper bound).

	T/b
∑
n=0

sn

(�(T − nb)/ε� + n

n

)

≤ s	T/b

	T/b
∑
n=0

(�T/ε� + n

n

)
= s	T/b


(�T/ε� + �T/b� + 1
�T/b�

)
,

where the last equality is given by (2). By using the inequality
(
N
m

) ≤ Nm/m!,
we obtain the following upper bound:(

�T/ε� + �T/b� + 1

�T/b�

)
≤ (�T/ε� + �T/b� + 1)�T/b� /�T/b�! ≤ �3T/ε��T/b�/�T/b�!,

where the latter inequality holds because by assumption ε ≤ 1/2b ≤ 1, and so
�3T/ε� ≥ 1 ≥ �T/b�.

We now use a formula due to Robbins [13]: N ! ≥ NNe−N
√

2πNe1/(12N+1)

for every N > 0. We instantiate this formula for N = �T/b� and take its log. We
obtain the following upper bound: − log(�T/b�!) ≤ −�T/b� log�T/b�+�T/b� log e
and deduce log |FΣ

b,T,ε| ≤ �T/b� log (�3T/ε�/�T/b�) + �T/b� log e + �T/b� log s.
Note that 1/�T/b� ≤ 1/(T/b − 1) = (1/T )/(1/b − 1/T ) ≤ (1/T )/(1/b −

1/2b) = (1/T )/(1/2b), where the second inequality holds due to the assumption
T ≥ 2b which is equivalent to 1/b − 1/T ≥ 1/2b. Hence log (�3T/ε�/�T/b�) ≤
log(1/ε) + log 6b. Summing up we get the desired inequality:

log |FΣ
b,T,ε| ≤ �T/b� log(1/ε) + �T/b� log 6bes.

Now we prove the left-most inequality:

|FΣ
b,T,ε| =

	T/b
∑
n=0

sn

(�(T − nb)/ε� + n

n

)
≥

	T/b
−1∑
n=0

(�1/ε� + n

n

)
.



Distance on Timed Words and Applications 213

We use again (2) and now the fact that
(
N
m

) ≥ (N − m)m/m!

|FΣ
b,T,ε| =

	T/b
−1∑
n=0

(�1/ε� + n

n

)
=

(�1/ε� + �T/b�
�T/b� − 1

)
≥ �1/ε�	T/b
−1/(�T/b� − 1)!

Taking the log we obtain the sought inequality. ��

6 Conclusion and Further Work

The three contributions of this paper constitute only the beginning of explo-
ration of a new kind of distance on timed words. Below we draw some research
perspectives.

Distance definition. We believe that depending on practical setting, variants
of our distance could be appropriate. First, a sort of cost matrix allowing
replacement of an a by a b at some cost can be allowed (to compare with
edit distance from [8]). Second, a dependence structure over events can be
introduced, so that the observer cannot notice swapping independent a and
b (when they are close in time), but does observe a swap of a and c.
This work can be seen as a step towards resolution of Open question 5 in
the research program of [2], we refer the reader to that work for a general
discussion.

Quantitative verification. To make practical quantitative model-checking
and monitoring sketched in Sect. 4, methodology, practical algorithms and
tools should be developed.

Information in timed languages. The approach introduced opens the way
to a thorough study of quantity of information in timed words and languages
w.r.t. time elapsed; extending the analysis of Sect. 5 to all timed regular lan-
guages is the first challenge. The practical applications to timed data trans-
mission should also be explored.

Acknowledgements. The authors thank James Worrell and François Laroussinie for
their valuable advice on complexity analysis.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–
235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Asarin, E.: Challenges in timed languages: from applied theory to basic theory (col-
umn: concurrency). Bull. EATCS 83, 106–120 (2004). https://eatcs.org/images/
images/bulletin/beatcs83.pdf

3. Asarin, E., Basset, N., Béal, M.P., Degorre, A., Perrin, D.: Toward a timed theory
of channel coding. In: Jurdziński, M., Niĉković, D. (eds.) FORMATS 2012. LNCS,
vol. 7595, pp. 27–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33365-1 4

https://doi.org/10.1016/0304-3975(94)90010-8
https://eatcs.org/images/bulletin/beatcs83.pdf
https://eatcs.org/images/bulletin/beatcs83.pdf
https://doi.org/10.1007/978-3-642-33365-1_4
https://doi.org/10.1007/978-3-642-33365-1_4


214 E. Asarin et al.

4. Asarin, E., Basset, N., Degorre, A.: Entropy of regular timed languages. Inf. Com-
put. 241, 142–176 (2015). https://doi.org/10.1016/j.ic.2015.03.003

5. Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: discretiza-
tion approach. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol.
5710, pp. 69–83. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
04081-8 6

6. Asarin, E., Degorre, A.: Two size measures for timed languages. In: Lodaya, K.,
Mahajan, M. (eds.) Proceedings of FSTTCS. LIPIcs, vol. 8, pp. 376–387 (2010).
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.376

7. Basset, N.: Timed symbolic dynamics. In: Sankaranarayanan, S., Vicario, E. (eds.)
FORMATS 2015. LNCS, vol. 9268, pp. 44–59. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-22975-1 4

8. Chatterjee, K., Ibsen-Jensen, R., Majumdar, R.: Edit distance for timed automata.
In: Fränzle, M., Lygeros, J. (eds.) Proceedings of HSCC, pp. 303–312. ACM (2014).
https://doi.org/10.1145/2562059.2562141

9. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-
time systems. Form. Method. Syst. Des. 1(4), 385–415 (1992). https://doi.org/10.
1007/BF00709157

10. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

11. Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler,
O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0014736

12. Kolmogorov, A., Tikhomirov, V.: ε-entropy and ε-capacity of sets in function
spaces. Uspekhi Mat. Nauk 14(2), 3–86 (1959). Russian, English translation in
[15]

13. Robbins, H.: A remark on Stirling’s formula. Am. Math. Mon. 62(1), 26–29 (1955).
https://doi.org/10.2307/2308012

14. Sankur, O., Bouyer, P., Markey, N., Reynier, P.-A.: Robust controller synthesis in
timed automata. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS,
vol. 8052, pp. 546–560. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40184-8 38

15. Shiryayev, A. (ed.): Selected works of A.N. Kolmogorov, vol. 3. Springer, Dordrecht
(1993). https://doi.org/10.1007/978-94-017-2973-4

https://doi.org/10.1016/j.ic.2015.03.003
https://doi.org/10.1007/978-3-642-04081-8_6
https://doi.org/10.1007/978-3-642-04081-8_6
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.376
https://doi.org/10.1007/978-3-319-22975-1_4
https://doi.org/10.1007/978-3-319-22975-1_4
https://doi.org/10.1145/2562059.2562141
https://doi.org/10.1007/BF00709157
https://doi.org/10.1007/BF00709157
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/BFb0014736
https://doi.org/10.2307/2308012
https://doi.org/10.1007/978-3-642-40184-8_38
https://doi.org/10.1007/978-3-642-40184-8_38
https://doi.org/10.1007/978-94-017-2973-4


Online Timed Pattern Matching
Using Automata

Alexey Bakhirkin1(B), Thomas Ferrère2, Dejan Nickovic3, Oded Maler1,
and Eugene Asarin4

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France
{alexey.bakhirkin,Oded.Maler}@univ-grenoble-alpes.fr

2 IST Austria, Klosterneuburg, Austria
thomas.ferrere@ist.ac.at

3 AIT Austrian Institute of Technology, Vienna, Austria
Dejan.Nickovic@ait.ac.at

4 IRIF, Université Paris Diderot, Paris, France
asarin@irif.fr

Abstract. We provide a procedure for detecting the sub-segments of
an incrementally observed Boolean signal w that match a given tempo-
ral pattern ϕ. As a pattern specification language, we use timed regular
expressions, a formalism well-suited for expressing properties of concur-
rent asynchronous behaviors embedded in metric time. We construct a
timed automaton accepting the timed language denoted by ϕ and modify
it slightly for the purpose of matching. We then apply zone-based reach-
ability computation to this automaton while it reads w, and retrieve all
the matching segments from the results. Since the procedure is automa-
ton based, it can be applied to patterns specified by other formalisms
such as timed temporal logics reducible to timed automata or directly
encoded as timed automata. The procedure has been implemented and
its performance on synthetic examples is demonstrated.

1 Introduction and Motivation

Complex cyber-physical systems and reactive systems in general exhibit tempo-
ral behaviors that can be viewed as dense-time signals or discrete-time sequences
and time-series. The correctness and performance of such systems is based on
properties satisfied by these behaviors. In formal verification, a system model
is used to generate all possible behaviors and check for their inclusion in the
language defined by the specifications. In runtime verification, interpreted as
lightweight simulation-based verification, property satisfaction by individual sys-
tem behaviors is checked. In many situations, we would like to monitor the ongo-
ing behavior of a real system, already deployed and running, rather than traces of

This research was supported in part by the Austrian Science Fund (FWF) under
grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award), and by
the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013)/ERC Grant Agreement nr. 306595 “STATOR”.

c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 215–232, 2018.
https://doi.org/10.1007/978-3-030-00151-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_13&domain=pdf
http://erc.europa.eu/
http://stator.imag.fr


216 A. Bakhirkin et al.

a simulation model during design time. In this context we want to detect property
violation and other patterns of interest such as suspicious activities, degradation
of performance and other alarming signs known to precede unpleasant or even
catastrophic situations. The detection of such patterns and the reaction to them
can be the basis of another level of supervisory control that reacts to situations
as they occur without achieving the challenging and often impossible task of ver-
ifying offline against all possible scenarios. In fact, in the software engineering
literature for safety-critical systems there is an actuator-monitor decomposition
(safety bag) where one module computes the reaction while the other checks
the results. Such an architecture has been proposed recently as a way to handle
autonomous systems such as driver-free cars [15].

Properties traditionally used in verification often correspond to complete
behaviors or their prefixes that start from time zero. In pattern matching one is
interested in segments that may start and end in any time point. To be useful,
the detection of patterns should be done online, as soon as they occur. In this
paper we provide an automaton-based online pattern matching procedure where
patterns are specified using timed regular expressions, a formalism suitable for
describing patterns in concurrent and asynchronous behaviors. Before moving
to our contribution, let us make a brief survey of some well-known classical
results on string pattern matching. A regular expression ϕ defines a regular
language L(ϕ) consisting of sequences that match it. It can be transformed into
a non-deterministic automaton Aϕ that recognizes L(ϕ) in the sense that L(ϕ)
is exactly the set of words w that admit a run from an initial to a final state. [19]
The existence for such an accepting run in Aϕ can be checked by exploring the
finitely many such runs associated with w. As a byproduct of classifying w, the
automaton can classify any prefix w[0..j] of w for j < k, just by observing the
states reachable by the runs at time j. It is worth noting that the determinization
procedure (subset construction) due to Rabin and Scott [21] corresponds to a
breadth-first exploration of these runs for all words, combined with the fact that
runs that reach the same state can be merged (see Fig. 3). A simple modification
of Aϕ, to our knowledge first described in [23], allows also to find all sub-segments
w[i..j] of w that match ϕ. First, a counter t′ is used which increments each time
a symbol is read – such a counter exists anyway in any implementation of a
membership tester as a pointer to the current symbol in the sequence. Then a
new initial state s is added to Aϕ, and in this state the automaton can self-loop
indefinitely and postpone the selection of the point in time when it starts reading
w. When it moves to the original initial state of Aϕ, it records the start time in
an auxiliary variable t (see Figs. 1 and 2 for an example). Then whenever there
is a run reaching an accepting state with t = r and t′ = r′, one can conclude
that w[r..r′] matches ϕ. This modification, also pointed to in [1], enabled the
later implementation of fast and reliable string matching tools [2,20] which are
now standard. The application of regular expressions since extends beyond text
processing but also occurs, e.g. in DNA analysis and programming languages.

To reason about the dynamic behaviors of complex systems, cyber-physical or
not, one needs a language richer than traditional expressions [26]. To start with,



Online Timed Pattern Matching Using Automata 217

1

a, b

2
b, c

b, c

Fig. 1. A non-deterministic automaton for
(a ∪ b)∗ · (b ∪ c)+.

0

a, b, c;
t = t + 1

1

a, b

2
b, c

b, c

Fig. 2. A non-deterministic matching
automaton for (a ∪ b)∗ · (b ∪ c)+. Note the
new initial state and the counter t.

1

1

a

2

b

2

b

1

b

2

b

1

b

1

a

2

b

2

c

1

b

2

c

1

1

a

1, 2
b

1, 2

b

1

a

1, 2
b

2

c

Fig. 3. Runs of the automaton in Fig. 1.
Left – all runs for the word abbabc.
Right – breadth-first on-the-fly subset
construction.

the behaviors of such systems, unlike sequential text, are multi-dimensional by
nature, involving several state variables and components working in parallel. In
principle, it is possible to express patterns in the behavior of such systems using
a global product alphabet, but such a flattening of the structure is impractical
for both readability and complexity reasons. Instead we use a more symbolic
variant of regular expressions (first used in the timed setting in [27], see also the
proposal [13] to add timing to the regular expressions of the industrial specifica-
tion language PSL which admits variables) where one can refer to state variables
and write expressions like p · q rather than (pq ∪ pq̄) · (pq ∪ p̄q). Needless to
say, the whole practice of verification, starting with temporal logic specifica-
tions, via compositional system descriptions to their symbolic model-checking
[9] is based on such an approach, which seems to be less developed in formal
language theory. To reason about what happens in various parts of the system,
we also employ intersection in our syntax. In the one-dimensional untimed case
it does not increase the expressive power, but affects the complexity of online
membership testing since the minimal DFA translating such expressions can be
exponentially larger [12]. The second observation is that system components
need not be synchronized and they may operate on different time scales. Conse-
quently, reasoning in discrete time with a pre-selected time step is wasteful and
we use instead the timed regular expressions of [4,5], a formalism tailored for
specifying properties of timed behaviors such as Boolean signals [4] or time-event
sequences [5], where value changes and events can occur anywhere along the time



218 A. Bakhirkin et al.

axis. Thus the expression p∩(true·q·true) is matched by any segment of a Boolean
signal where p holds continuously and a burst of q occurs anywhere inside this
segment. Using duration constraints we can refine the patterns, for example the
expression p∩ (true · 〈q〉[a,∞] · true) considers only q-bursts that last for at least a
time. The problem of timed pattern matching has been introduced and solved in
[27]: find all the sub-segments of a multi-dimensional Boolean signal of a bounded
variability that match a timed regular expression. This work was automaton-free
and worked inductively on the structure of the formula in an offline manner. An
online version of that procedure has been developed in [28] based on a novel
extension of Brzozowski derivatives [8] to timed regular expressions and dense
time signals. Both works, which have been implemented in the tool Montre [25]
did not use the full syntax of timed regular expressions and hence did not match
the expressive power of timed automata (see [14]). In this paper we explore an
alternative automaton-based procedure whose scope of application is wider than
the expressions used in [27,28] as it works with any timed language definable
by a timed automaton and is agnostic about the upstream pattern specification
language. Let us mention another recent automaton-based approach is the one
of [29], a real-time extension of the Boyer-Moore pattern matching method. In
contrast to our work, the procedure in [29] works on TA defined over time-event
sequences and it requires pre-computing the region graph from the TA specifi-
cation. The same authors improve this result in [30], by using a more efficient
variant of the Boyer-Moore algorithm and by replacing the region automaton by
the more efficient zone-simulation graph.

The essence of our contribution is the following. Starting with an expression
ϕ, we build a non deterministic timed automaton Aϕ which accepts L(ϕ). Then
by a small modification, similar to the discrete case, we convert it to a matching
automaton A′

ϕ with two additional clocks x0 and xs that record, respectively
the time since the beginning of the signal (absolute time) and the time since we
started reading it. Then, given a bounded variability Boolean signal we compute
the reachability tree of the automaton whose nodes are pairs of the form (q, Z)
where Z is a zone in the extended clock space of A′

ϕ. This tree captures all
(possibly uncountably many) runs induced by w. By projecting zones associated
with accepting states of the automaton on x0 and x0 − xs, we retrieve the
matches. We combine this procedure with incremental observation of the input
signal to obtain an online matching procedure. We implemented this procedure
using the zone library of IF [7].

2 Preliminaries

Signals. Let B = {0, 1} and let P = {p1, . . . , pn} be a set of propositions. A state
over P is an element of 2P or equivalently a Boolean vector u ∈ B

n assigning
the truth value for any p ∈ P . The time domain T is taken to be the set of
non-negative reals. A Boolean signal w of duration |w| = d is a right-continuous
function w : [0, d) → B

n whose value at time t is denoted by w[t]. We use w[t..t′]
to denote the part of signal w between absolute times t and t′. The concatenation



Online Timed Pattern Matching Using Automata 219

of two signals w and w′ of respective durations d and d′ is the signal ww′ of
duration d + d′ defined as ww′[t] = w[t] for all t < d, ww′[t] = w′[t − d] for all
t ∈ [d, d + d′). We consider signals of finite variability, which can be written as
a finite concatenation of constant signals. The empty signal of duration zero is
denoted ε. We use w‖w′ to denote the parallel composition of two signals of the
same duration defined over disjoint sets of propositions.

Timed Regular Expressions. To specify sets of signals we use the timed reg-
ular expressions (TRE) of [4], augmented with the use of a structured alphabet
represented by a set P of atomic propositions [27]. The set of state constraints,
denoted by Σ(P ) is simply the set of Boolean formulas over P . The syntax of
TRE is given by the grammar

ϕ ::= ε | σ | ϕ ∪ ϕ | ϕ ∩ ϕ | ϕ · ϕ | ϕ+ | 〈ϕ〉I | ∃p.ϕ

where σ ∈ Σ(P ) and I ⊆ T is an integer-bounded interval. As customary, iter-
ations of ϕ are denoted in exponent with ϕ0 ≡ ε and ϕk ≡ ϕk−1 · ϕ for k ≥ 1.
The Kleene star is defined as ϕ∗ ≡ ε ∪ ϕ+.

Any TRE ϕ is associated with a set of signals, the timed language L(ϕ), via
the following inductive definitions:

L(ε) = {ε} L(ϕ1 · ϕ2) = {w1 · w2 | wi ∈ L(ϕi), i = 1, 2}
L(σ) = {w | ∀t ∈ [0, |w|) w[t] |= σ} L(ϕ+) =

⋃∞
k=1 L(ϕk)

L(ϕ1 ∪ ϕ2) = L(ϕ1) ∪ L(ϕ2) L(〈ϕ〉I) = {w | w ∈ L(ϕ) ∧ |w| ∈ I}
L(ϕ1 ∩ ϕ2) = L(ϕ1) ∩ L(ϕ2) L(∃p.ϕ) = {w | ∃w′ over {p}, w‖w′ ∈ L(ϕ)}
Note that signals in L(σ) need not be a constant, for example L(pi) consists of
all signals in which pi is constantly true but pj , for j �= i may go up and down.
Note also that the semantics of σ does not specify any duration, and in this
sense it resembles σ∗ in classical regular expressions. The duration restriction
is expressed using the 〈ϕ〉I operation. The ∃p.ϕ operation corresponds to the
renaming operation in [4] which has been proven in [14] to be necessary in order
to match the expressive power of timed automata.

Timed Automata. We use a variant of timed automata, finite-state automata
extended with real-valued clock variables, as acceptors of timed languages over
signals. Unlike the automata introduced originally in [3] and used in [5], which are
event-based with alphabet symbols associated with transitions, we use a state-
based approach [4] where signal values are associated with time passage inside
states. Let X = {x1, . . . , xm} be a set of clock variables. A clock constraint is a
Boolean combination of inequalities of the form x �� c where c ∈ N is a constant,
x ∈ X is a clock variable, and �� ∈ {<,≤,=,≥, >} is a comparison sign. The set
of clock constraints over X is written Φ(X). A valuation v ∈ T

m associates any
x ∈ X with a delay denoted v(x) ∈ T.

Definition 1 (Timed Automaton). A timed automaton over signals is a
tuple A = (P,X,L, S, i, o,Δ) with locations L, initial locations S ⊆ L, input



220 A. Bakhirkin et al.

labeling i : L → Σ(P ), output labeling o : L → Φ(X), and set of edges
Δ ⊆ L × Φ(X) × 2X × L.

A state (configuration) of the automaton is a pair (�, v) where � is a location
and v is a clock valuation. The behavior of the automaton while reading a signal
consists of an alternation of two types of steps:

– A time step (�, v) w� (�, v + r) where the automaton consumes a signal w
of duration r while advancing all clocks in the same pace provided that the
signal satisfies continuously the state invariant specified by the input label:
∀t ∈ [0, r) w[t] |= i(�);

– A discrete step (�, v) δ−→ (�′, v′) for some transition δ = (�, ϕ,R, �′) ∈ Δ such
that v |= ϕ (clocks satisfy transition guard) and v′ = v[R ← 0] (clocks in R
are reset while taking the transition).

A run of automaton A over a signal w is a sequence

(�0, 0) w0� (�0, v0)
δ1−→ (�1, v′

1)
w1� (�1, v1)

δ2−→ . . .
δn−→ (�n, v′

n) wn� (�n, vn)

of discrete and time steps such that w = w1w2 . . . wn, starting with an initial
configuration, that is, �0 ∈ S and v0(x) = 0 for all x ∈ X. A run is accepting if
it ends in an accepting configuration: vn |= o(�n). The language L(A) is the set
of signals admitting an accepting run.

The object that we are going to compute is the match set of a signal w with
respect to a timed language L defined either by an automaton A or a timed
regular expression: M(w,L) = {(t, t′) : w[t..t′] ∈ L}. In [27] it has been proved
that for an expression ϕ, M(w,L(ϕ)) is a finite union of two-dimensional zones.
Our results extend it to languages accepted by timed automata where (t, t′)
belong to the match set if w[t..t′] admits an accepting run in A.

Translating TRE into Automata. We now demonstrate, following [4], how a
timed regular expression translates into a timed automaton accepting the same
language. The construction is rather straightforward and the reader is referred
to [4] for a more lengthy intuitive presentation. The construction of an automa-
ton Aϕ = (P,Xϕ, Lϕ, Sϕ, iϕ, oϕ,Δϕ) accepting L(ϕ), is obtained by structural
induction. In the description that follows we assume that automata given by
induction hypothesis have disjoint sets of locations, but may share the same
clocks except for the case of intersection.

– Empty word: Aε is defined by letting Xε = {x}, Lε = Sε = {�}, iε(�) ≡ true,
oε(�) ≡ (x = 0), and Δε = ∅.

– State expressions: Aσ is defined by Xσ = ∅, Lσ = Sσ = {�}, iσ(�) ≡ σ,
oσ(�) ≡ �, and Δσ = ∅.

– Union: Aϕ∪ψ is defined as the component-wise union of Aϕ and Aψ.
– Intersection: Aϕ∩ψ is given by Xϕ∩ψ = Xϕ � Xψ, Lϕ∩ψ = Lϕ × Lψ,

Sϕ∩ψ = Sϕ × Sψ, with input labels iϕ∩ψ(�,m) = iϕ(�) ∧ iψ(m) for every
� ∈ Lϕ,m ∈ Lψ, similarly for output labels. For a pair of edges (�, β,Q, �′) ∈
Δϕ, (m, γ,R,m′) ∈ Δψ, Aϕ∩ψ has the edges ((�,m), β,Q, (�′,m)),
((�,m), γ, R, (�,m′)), and ((�,m), β ∧ γ,Q ∪ R, (�′,m′)).



Online Timed Pattern Matching Using Automata 221

– Concatenation: we let Xϕ·ψ = Xϕ ∪ Xψ, Lϕ·ψ = Lϕ ∪ Lψ and Sϕ·ψ = Sϕ.
Labels are given by iϕ·ψ(�) ≡ iϕ(�) if � ∈ Lϕ, iϕ·ψ(�) ≡ iψ(�) otherwise;
oϕ·ψ(�) ≡ false if � ∈ Lϕ, oϕ·ψ(�) ≡ oψ(�) otherwise. Edges are given by
Δϕ·ψ = Δϕ ∪ Δψ ∪ {(f, oϕ(f),Xψ, s) | f ∈ Lϕ, s ∈ Sψ}.

– Iteration: Aϕ+ is obtained from Aϕ by adding edges (f, oϕ(f),Xϕ, s) for every
pair f ∈ Lϕ and s ∈ Sϕ.

– Duration constraint: A〈ϕ〉I is obtained by using a fresh clock x /∈ Xϕ and
replacing output labels φ with ϕ ∧ (x ∈ I) in every location.

– Existential quantification: A∃p.ϕ is obtained by replacing input labels σ with
σ[p ← true] ∨ σ[p ← false] in every location.

The above procedure yields the following:

Theorem 1 (TRE ⇒ TA). For any TRE of containing m atomic expressions
and n duration constraints, one can construct an equivalent timed automaton
with n clocks and 2m locations.

The exponential blow-up in the number of locations is solely due to the intersec-
tion operator, with repeated application of the product construction, and would
otherwise vanish. For a proof of the other direction, TA ⇒ TRE, see [4,5].

3 Membership and Matching Using Timed Automata

In this section we present a zone-based algorithm for testing membership of a
signal in the language accepted by a timed automaton; then show how it can be
extended to find and extract the match set of the signal in that language.

3.1 Checking Acceptance by Non-deterministic Timed Automata

The automata constructed from expressions, as well as other typical timed
automata, are non-deterministic. Part of this non-determinism is dense, coming
from modeling duration uncertainty using intervals, and also from different fac-
torizations of a signal segment into two concatenated expressions. Unlike classical
automata, it can be shown that some timed automata cannot be determinized
[3] and even determinizability of a given automaton is an undecidable problem
[11]. However, these results are concerned with converting the non-deterministic
TA into a deterministic one, equivalent with respect to all possible inputs which
include signals of arbitrary variability and hence the number of clocks cannot be
bounded. In contrast, exploring all the (uncountably many) possible runs of a
non-deterministic timed automaton while reading a given signal of finite dura-
tion and variability is feasible, as has already been demonstrated [16,18,24] in
the context of testing, using what has been termed on-the-fly subset construc-
tion. The procedure described in the sequel shows how despite their dense non-
determinism, timed automata can be effectively used as membership testers for
bounded-variability signals and eventually as online pattern matching devices.
To this end we use a variant of the standard zone-based reachability algorithm



222 A. Bakhirkin et al.

for simulating uncountably many runs in parallel. This algorithm underlies all
timed automata verification tools [6,7,10], see [17,31]. The procedure computes
the simulation/reachability graph whose nodes are symbolic states of the form
(�, Z) where � is a location and Z is a zone in the space of clock valuations.

Definition 2 (Zone). Let X be a set of clock variables. A difference constraint
is an inequality of the form x − y ≺ c for x, y ∈ X, c ∈ T, and ≺ ∈ {<,≤}. A
zone is a polytope definable as a conjunction of clock and difference constraints.

Zones are known to be closed under intersection, projection, resets and forward
time projection defined as Z↗ = {v + t | v ∈ Z ∧ t ≥ 0}. These operations
are implemented as simple operations on the difference bound matrix (DBM)
representing the zone.

Let A = (P,X,L, S, i, o,Δ) be a timed automaton and let A′ be the automa-
ton obtained from A by adding an auxiliary clock x0 which is never reset since the
beginning and hence it keeps track of the absolute time. We will consider zones
in the extended clock space, and denote extended clock valuations as (v0, v). It
is not hard to see that a configuration (�, (v0, v)) is reachable in A′ iff the input
prefix w[0..v0] admits a run to (�, v) in A.

Definition 3 (Discrete Successor). Let Z be a zone and let δ = (�, ϕ,R, �′) ∈
Δ be a transition. The δ-successor of Z is the zone

SuccδZ = {v′ : ∃v ∈ Z v |= ϕ ∧ v′ = v[R ← 0]}

While doing zone-based time passage in a zone, we need to restrict ourselves to
segments of the signal that satisfy the input constraints of the location and this
is made possible through the use of absolute time.

Definition 4 (Temporal Scope). The temporal scope of a signal w in location
� is the set of time points where w satisfies the input constraint of �:

J (�, w) = {t : w[t] |= i(�)}.

For a bounded variability signal, J (�, w) is a sequence J1, . . . , Jk of disjoint
intervals of the form Ji = [αi, βi).

When a symbolic state (�, Z) is reached via a discrete transition, we need to split
Z into zones on which time can progress, using the following operation.

E(�, Z) = {Z ∧ α ≤ x0 ≤ β | [α, β) ∈ J (�, w)}.

The procedure Succ (Algorithm 1) computes the successors of a symbolic state by
one discrete transition and one time passage. The whole reachability algorithm
(Algorithm 2) applies this procedure successively to all reachable symbolic states.
It accepts as arguments the automaton A, the signal w, and the set I of states
from which to start the exploration. When calling Reach for the first time, we
set I to be {(�, 0) | � ∈ S}. When Reach terminates, it outputs the set Qreach



Online Timed Pattern Matching Using Automata 223

Algorithm 1. Succ(�, Z)
Require: A timed automaton A and symbolic state (�, Z);
Require: An input signal w for which J (�, w) has been computed for every location.
Ensure: The set Q of successors of (�, Z) by one transition and one time step.

Q := ∅
Q1 := {Succδ(�, Z) | δ ∈ Δ} {Discrete successors}
for all non-empty (�′, Z′) ∈ Q1 do

Q2 := {�′}×E(�′, Z′) {Compute the sub-zones of Z′ in which time can progress}
for all non-empty (�′′, Z′′) ∈ Q2 do

Q := Q ∪ {(�′′, Z′′↗ ∧ x0 ≤ βi)} {Apply time passage until the corresponding
upper bound}

end for
end for
return Q

Algorithm 2. Reach(A, w, I)
Require: A timed automaton A, signal w, set of initial states I;
Ensure: The set Qreach of all symbolic states reachable while reading w

Qreach := P := I {Initialization of visited and pending symbolic states}
while P �= ∅ do

pick and remove (�, Z) ∈ P
Q1 := Succ(�, Z)
for all (�′, Z′) ∈ Q1 do

if (�′, Z′) �∈ Qreach then
Qreach := Qreach ∪ {(�′, Z′)} {Add to visited}
P := P ∪ {(�′, Z′)} {Add to pending}

end if
end for

end while
return Qreach

of reachable symbolic states. From Qreach, we can extract the set of accepting
states by intersecting its elements with the output labels of locations: Qacc =
{(�, Za) | Za = Z ∧ o(�) ∧ Za �= ∅ ∧ (�, Z) ∈ Q}. If a configuration (�, (v, v0))
is reachable and accepting (belongs to some element of Qacc), then the prefix
w[0..v(x0)] is accepted by the automaton.

Theorem 2 (Termination). Given a finite-variability signal, Algorithm2 ter-
minates.

Termination follows from the fact that the set of symbolic states is finite in our
case. We can scale the signal so that all the switching points come at integer
times, then, we can use zones with integer coefficients in Algorithm 2. The largest
possible value of a clock and thus the largest constant that can appear in a
reachable symbolic state is the duration of the signal, hence the number of
possible symbolic states is finite.



224 A. Bakhirkin et al.

Algorithm 3. ReachOnline(A, wi, Q
i−1
r )

Require: A timed automaton A, signal segment wi defined on [ti, ti+1), previous set
of reachable states Qi−1

r ;
Ensure: The set Qi

r contains the states reachable while reading wi

I = {(�, Z′) | Z′ = Z ∧ x0 = ti ∧ Z′ �= ∅ ∧ (�, Z) ∈ Qi−1
r } {States that are reachable

when wi starts}
return Reach(A, wi, I)

Theorem 3 (Completeness). There exists a run of the automaton A:

(�0, 0) w0� (�0, v0)
δ1−→ (�1, v′

1)
w1� (�1, v1)

δ2−→ . . .
δn−→ (�n, v′

n) wn� (�n, vn)

if and only if the configuration (�n, vn) belongs to Qreach.

By induction on the number of discrete transitions, every reachable configuration
is eventually visited by the algorithm as part of some symbolic state.

3.2 Checking Acceptance Online

Algorithm 2 can be used to perform reachability computation in an online way.
We can arbitrarily split the input signal w into segments w1, w2, · · · , wn and
present them one by one to the procedure ReachOnline (Algorithm 3). After pro-
cessing segment wi, the procedure returns the set of states reachable after reading
w1 · · · wi. From the previous set of reachable states, ReachOnline extracts the
states which are reachable at the start of the new segment (those where the
absolute time clock satisfies x0 = |w1 · · · wi|) and passes them on as initial states
for Reach. More formally, we build the sequence

Q1
r = ReachOnline(A,w1, {(�, 0) | � ∈ S}),

Q2
r = ReachOnline(A,w2, Q

1
r),

· · ·
Qn

r = ReachOnline(A,wn, Qn−1
r )

and take the set of reachable states Qreach to be
⋃n

i=1 Qi
r.

One useful property of ReachOnline in terms of memory use is that when
processing a segment of the signal, it does not need to store previously processed
segments and, after the new initial states are extracted, it does not need to store
previously computed reachable states. Another property of ReachOnline is that
it does not care about how we split w into segments. Segments may have different
duration, different number of switching points, etc. The way we split the signal
affects the performance though. As the segment size gets smaller, the number of
times Algorithm 2 is called increases, but the cost to process a segment decreases.
The influence of this parameter on performance is discussed in Sect. 4.



Online Timed Pattern Matching Using Automata 225

3.3 From Acceptance to Matching

To compute the segments of w which are accepted by an automaton A, we first
construct a matching automaton A′ similar to the one used in the discrete case.
It can stay indefinitely in an added initial state before it moves to an initial
state of A, resets a clock xs and starts reading the remaining part of w. The
automaton also uses the absolute time clock x0 used for acceptance, see Fig. 4.

Definition 5 (Matching Timed Automaton). Let A = (P,X,L, S, i, o,Δ)
be a timed automaton. Then the corresponding matching automaton is A′ =
(P,X ′, L′, S′, i′, o′,Δ′), where X ′ = X ∪ {x0, xs}; L′ = L ∪ {�s}; S′ = {�s}, i′ =
i ∪ {�s �→ true}, o′ = o ∪ {�s �→ false}; Δ′ = Δ ∪ {(�s, true,X

′ − {x0}, �) | � ∈ S}.
The start time of reading the segment is constantly maintained by the difference
x0 − xs. As a generalization of the case of acceptance, w admits a run that
ends in an extended configuration (�, (v, v0, vs)) in A′ iff the signal segment
w[v0 − vs..v0] admits a run in A that leads to (�, v). Thus Algorithms 2 and 3
applied to A′ compute the reachable symbolic states in the extended clock space.
Projecting zones associated with accepting locations on x0 and xs we can can
extract the matches. From Theorems 2 and 3 it follows that the for a given TRE
and expression, the match set can be described by a finite set of zones. This
extends the result obtained in [27] to arbitrary TA.

· · ·

A

true

xs, X := 0

x0 := 0

Fig. 4. Matching automaton A′ for a property automaton A.

3.4 Example

Let us illustrate the matching algorithm with a simple example. As the pattern
specification, we use the expression ϕ = p·q, and we translate it to the automaton
shown in Fig. 5. As input, we use the signal w from Fig. 6. The signal is split into
two segments: w1 defined in the interval [0, 4), and w2 defined in the interval
[4, 8). We run the matching algorithm presenting it one segment at a time.

When the segment w1 arrives, we start the exploration with the symbolic
state (��, x0 = 0) and immediately apply the time transition to it. We can stay
in the location �� until the end of the segment, thus we add to the reachability
tree the state s1 = (��, x0 ∈ [0, 4]). Next, from s1, we execute the discrete
transition that leads to �p. Changing the location, resetting the clock xs and
constraining the zone to the interval where p holds, produces the state (�p, x0 ∈
[1, 3] ∧ xs = 0 ∧ x0 − xs ∈ [1, 3]). Then, applying time elapse until the end of p
produces the state s2 = (�p, x0 ∈ [1, 3] ∧ xs = [0, 2] ∧ x0 − xs ∈ [1, 3]) that we



226 A. Bakhirkin et al.

true p

p

xs := 0 q
out: true

q

Fig. 5. Matching automaton for the expres-
sion p · q.

p

q

0 1 2 3 4 5 6 7 8

Fig. 6. Example of a signal.

s1, ��
x0 ∈ [0, 4]

s2, �p
x0 ∈ [1, 3]
xs ∈ [0, 2]

x0−xs ∈ [1, 3]

s3, �q
x0 ∈ [2, 4]
xs ∈ [0, 3]

x0−xs ∈ [1, 3]

Fig. 7. Reachable symbolic states after reading the first fragment of the signal.

s4, ��
x0 ∈ [4, 8]

s5, �p
x0 ∈ [5, 7]
xs ∈ [0, 2]

x0−xs ∈ [5, 7]

s6, �q
x0 ∈ [5, 6]
xs ∈ [0, 1]

x0−xs ∈ [5, 6]

s7, �q
x0 ∈ [4, 6]
xs ∈ [1, 5]

x0−xs ∈ [1, 3]

Fig. 8. Reachable symbolic states after reading the second fragment of the signal.
States corresponding to the previous fragment were discarded.

add to the reachability tree. Finally, we execute from s2 the discrete transition
to �q. After changing the location and restricting to the interval where q holds,
we get the state (�q, x0 ∈ [2, 3] ∧ xs ∈ [0, 2] ∧ x0 − xs ∈ [1, 3]). After applying
time elapse until the end of q (the end of the fragment in this case), we get the
state s3 = (�q, x0 ∈ [2, 4] ∧ xs ∈ [0, 3] ∧ x0 − xs ∈ [1, 3]) that we add to the tree.
We would like to point out again that time transitions from different states are
not synchronized. When s2 was created, we allowed x0 to advance until time 3.
When executing the transition to �q, we discover that it could happen “in the
past”, between time 2 and 3; but also that after taking the transition, we can
stay in �q until time 4. At this point, there are no more states to explore, and we
report the matches in the observed signal prefix. In this example, the matches are
described by the state s3 intersected with its output label true. Possible values
of x0−xs in s3 are the possible start times of the match, and possible values
of x0 are the end times. For us, the match should start between time 1 and 3,
while p holds, and end between time 2 and 4, while q holds (Figs. 7 and 8).

We now proceed to read w2. We extract from the reachability tree all states
that correspond to reading the first segment until the end, that is, states with
valuations that lie on the hyperplane x0 = 4. From state s0, we extract (��, x0 =
4). Applying time transition to it results in the state s4 = (��, x0 ∈ [4, 8]) that we



Online Timed Pattern Matching Using Automata 227

add to the tree. From state s3, we extract (�q, x0 = 4∧xs ∈ [1, 3]∧x0−xs ∈ [1, 3]).
Applying time transition to it results in the state s7 = (�q, x0 ∈ [4, 6] ∧ xs ∈
[1, 5] ∧ x0 − xs ∈ [1, 3]) that we add to the tree. At this point, we can discard
the previous segment of the signal and the reachability tree corresponding to
it; they will no longer be used. Then, we restart the exploration from s4 and
s7, which discovers two more states: s5 and s6. Both s6 and s7 correspond to
�q and describe newly discovered matches. State s6 corresponds to the matches
that start and end between time 5 and 6, when q still holds and p holds again.
State s7 corresponds to matches that start between time 11 and 3, that is, in
the previous segment) and end before time 6 in the current segment.

4 Implementation and Experiments

We implemented a prototype of the algorithm in C++, using the zone library of
the tool IF [7]. We evaluate the performance of the prototype using a number of
patterns and periodic signals of different length. We summarize the experimental
results in Table 1. The columns “Expression” and “Signal” give the expression
and the shape of the signal. Different expressions and signal shapes are discussed
in more detail below. To present time-related parameters in a uniform way,
we measure them in integer time units. The column “Seg” gives the length of
the signal segment (in time units) that is presented at once to the reachability
algorithm. We run every experiment with 2–3 segment lengths: presenting the
whole signal at once (“offline”) and presenting a fixed number of time units,
based on the period of the signal. The last three columns show the results for
different length of the signal: 10K, 100K, and 1 million time units. A cell of the
table shows the run time of the matching algorithm in seconds and the number
of explored symbolic states. The three parameters: signal length, signal shape,
and segment length influence the performance of the algorithm in a connected
way. The longer are the stable periods of the signal, the fewer switching points
it has within a given length; but at the same time, if the segment length is
small, longer stable periods become split into more segments. Time figures were
obtained on a PC with a Core i7-3630QM and 8 GB RAM.

Signals. We use three different periodic signal shapes. The signal wave2 has
two components, p0 and p1, which are square waves with the period of 2 time
units, p1 being the negation of p0. The signal wave200 has four components, p0
to p3, which are square waves with the period of 200 time units, shifted in time
by different amount. The signal wave30/32 has two components, p0 and p1. The
component p0 has the period of 30 time units, in every period it has hi value for
5 time units. The component p1 has the period of 32 time units, in every period
it has hi value for 4 time units.

Simple Expressions. Expressions ϕ1 to ϕ4 are examples of basic regular oper-
ators: concatenation, disjunction, and duration constraint.



228 A. Bakhirkin et al.

Intersection Example. Intersection allows to assert that multiple properties
should hold during the same interval. To evaluate it, we use the expression

ϕ5 = (〈p〉[4,5] · ¬p) ∩ (¬q · 〈q〉[4,5]) ∩ (true · 〈p ∧ q〉[1,2] · true)

It denotes a pattern where p holds at the beginning and between 4 to 5 time
units, q holds at the end between 4 to 5 time units, and in between p and q
hold together for at least 1 to 2 time units. This could be an example of one
resource (such as power source) replacing another in a redundant architecture.
We cannot express this property without intersection; it would require duration
constraints with unbalanced parentheses [4].

Quantification Example. Existential quantification allows to express synchro-
nization with a signal which is not part of the input, but is itself described by a
regular expression. To evaluate quantification, we use the expression

ϕ6 = ∃r.
(
(〈¬r〉[98,98] · 〈r〉[1,3])+

∩ (¬p · (¬p ∧ ¬r) · (p ∧ r) · p · (p ∧ ¬r) · (¬p ∧ r))+
)

It denotes a signal p that changes its value on the rising edge of a virtual clock,
denoted by r, that occurs every 100 ± 1 time units (note how we use (¬p ∧ ¬r) ·
(p ∧ r) to synchronize the rising edges of p and r). In the experiments, we use
this property for prefix matching. We fix the start of the match to the start of
the signal and use our algorithm to find matching prefixes.

Discussion. The run time of the matching algorithm is determined by the
number of symbolic states that it explores, which depends on the structure of
the expression, the input signal, and the way the signal is split into segments
when presented to the matching algorithm. In our experiments, we focused on
the case when the length of a segment given to the algorithm is greater than or
equal to the length of a stable state of the signal. For example, for the signal
wave200, we normally observe two cases: when the algorithm receives the whole
signal immediately, and when the signal is split into segments 100 time units
in length, which is the half-period of the signal. In this setup, for a variety of
regular expressions we observe two properties of the algorithm: (1) the number
of explored configurations (and thus the runtime) is linear in the length of the
signal; and (2) going from offline to online matching (with the length of a segment
greater or equal to the length of a stable state) increases the number of explored
configurations only by a small constant factor. That said, one can always come
up with adversarial examples, where the match set (and thus the number of
explored configurations) requires at least quadratic number of zones in the length
of the signal. One way to construct adversarial examples is to synchronize the
start and end of a match with some event, e.g., a raising or a falling edge. In
our experiments, this happens in the property ϕ6. For the signal wave200, every
sequence of one or more full signal periods is a match, and the set of all matches



Online Timed Pattern Matching Using Automata 229

Table 1. Evaluation results.

Expression Signal Seg Signal length

10K 100K 1M

ϕ1 = p0 · p1 wave2 offline 0.1s, 10K 0.96s, 100K 16s, 1M

1 0.14s, 30K 1.4s, 300K 21s, 3M

wave200 signal <0.01s, 100 0.02s, 1K 0.1s, 10K

100 <0.01s, 350 0.03s, 3.5K 0.18, 35K

25 0.02s, 2.4K 0.1s, 24K 0.84s, 240K

ϕ2 = 〈p0〉[0,20] · 〈p1〉[0,20]

· 〈p2〉[0,20]

wave200 offline <0.01s, 150 0.03s, 1.5K 0.22s, 15K

100 <0.01s, 450 0.06s, 4.5K 0.4s, 45K

ϕ3 = (p0 ∪ p1) · (p2 ∪ p3) wave200 offline <0.01s, 300 0.03s, 3K 0.24s, 30K

100 0.01s, 900 0.05s, 9K 0.4s, 90K

ϕ4 = 〈p1 · (p0 · p2)+〉[0,1000] wave200 offline <0.01s, 250 0.03s, 2.5K 0.26s, 25K

100 <0.01s, 500 0.04s, 5K 0.3s, 50K

ϕ5 (see text) wave30/32 offline 0.02s, 800 0.1s, 8K 1s, 80K

30 0.03s, 1.4K 0.14s, 14K 1.4s, 140K

ϕ6 (prefix match, see text) wave200 offline 0.01s, 400 0.04, 4K 0.24s, 40K

100 0.03s, 6.3K 2.7s, 500K TO

is described by a quadratic number of zones. For this reason, we only do prefix
matching in that experiment. Another way to construct adversarial examples is
to perform “oversampling” and split every stable state of the input signal into a
large number of segments. As a result, every zone in the match set may be split
in a quadratic number of smaller zones, since the matches that start and/or end
in different segments cannot be part of the same zone in the current algorithm.
We can observe this effect for the property ϕ1 and the signal wave200. Reducing
the segment length from 100 to 25 time units causes oversampling and increases
the number of explored configurations by a factor of 8 = 42/2. In future work,
we wish to address this issue, as it is reminiscent of the issue of interleaving in
reachability of timed automata, which was addressed in [22].

Removing Inactive Clocks. The cost of zone operations is in the worst case
cubic in the number of clocks (normalization is cubic, but is not required for
some operations), thus it is important to remove clocks as soon as they are no
longer needed. For automata produced from TREs, this is not difficult to do,
since every clock is tied to a duration constraint and thus has a clearly defined
set of locations where it is active (x0 and xs are always active). When taking
a transition, we erase (existentially quantify) clocks that are not active in the
target location.

Introducing Clock Invariants. The simple encoding of duration constraints
that we describe may lead, during state exploration, to the creation of doomed



230 A. Bakhirkin et al.

symbolic states that may never lead to an accepting state. When time transition
is applied to a state, we may increase a clock past a bound that will be much later
checked by a guard of some transition. In the meantime, we may start exploring
the successors of the doomed state, which are also doomed, then their successors,
etc. To reduce the amount of such redundant work, in our implementation, we
let locations have clock invariants. They are produced from the upper bounds of
duration constraints and we use them to constrain the result of time transitions.

5 Conclusion

We presented a novel algorithm for timed pattern matching of Boolean signals.
We are particularly interested in patterns described by timed regular expressions,
but our result applies to arbitrary timed automata. The algorithm can be applied
online, without restriction on how the input signal is split into incrementally
presented segments. The prototype implementation shows promising results, but
also points out some pessimistic scenarios. In future work, we plan to improve
the performance of matching with the major goal being to improve the handling
of small signal segments by adapting partial order reduction techniques; we also
expect that some constant factor can be gained by improving the quality of the
code. In another direction, we wish to perform a more in-depth case study to be
able to adapt the algorithm to the specifics of real applications.

References

1. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms.
Pearson Education India, Noida (1974)

2. Aho, A.V., Kernighan, B.W., Weinberger, P.J.: The AWK Programming Language.
Addison-Wesley Longman Publishing Co., Inc., Boston (1987)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

4. Asarin, E., Caspi, P., Maler, O.: A Kleene theorem for timed automata. In: Logic
in Computer Science, pp. 160–171. IEEE (1997)

5. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)

6. Behrmann, G., et al.: Uppaal 4.0. In: Third International Conference on Quanti-
tative Evaluation of Systems, QEST 2006, pp. 125–126. IEEE (2006)

7. Bozga, M., Fernandez, J.-C., Ghirvu, L., Graf, S., Krimm, J.-P., Mounier, L.: If:
an intermediate representation and validation environment for timed asynchronous
systems. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708,
pp. 307–327. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48119-
2 19

8. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM (JACM) 11(4), 481–
494 (1964)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking (1999)
10. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool Kronos. In: Alur, R., Hen-

zinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0020947

https://doi.org/10.1007/3-540-48119-2_19
https://doi.org/10.1007/3-540-48119-2_19
https://doi.org/10.1007/BFb0020947


Online Timed Pattern Matching Using Automata 231

11. Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer,
P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer, Heidelberg
(2006). https://doi.org/10.1007/11867340 14

12. Gelade, W.: Succinctness of regular expressions with interleaving, intersection
and counting. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol.
5162, pp. 363–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85238-4 29

13. Havlicek, J., Little, S.: Realtime regular expressions for analog and mixed-signal
assertions. In: Proceedings of the International Conference on Formal Methods in
Computer-Aided Design, pp. 155–162. FMCAD Inc. (2011)

14. Herrmann, P.: Renaming is necessary in timed regular expressions. In: Rangan,
C.P., Raman, V., Ramanujam, R. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp. 47–
59. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46691-6 4

15. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and valida-
tion. SAE Int. J. Transp. Saf. 4(1), 15–24 (2016)

16. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Form.
Method. Syst. Des. 34(3), 238–304 (2009)

17. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. (STTT) 1(1), 134–152 (1997)

18. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-4 6

19. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRE Trans. Electron. Comput. 1, 39–47 (1960)

20. Pike, R.: The text editor Sam. Softw.: Pract. Exp. 17(11), 813–845 (1987)
21. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.

Dev. 3(2), 114–125 (1959)
22. Ben Salah, R., Bozga, M., Maler, O.: On interleaving in timed automata. In: Baier,

C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 465–476. Springer,
Heidelberg (2006). https://doi.org/10.1007/11817949 31

23. Thompson, K.: Programming techniques: regular expression search algorithm.
Commun. ACM 11(6), 419–422 (1968)

24. Tripakis, S.: Fault diagnosis for timed automata. In: Damm, W., Olderog, E.-R.
(eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 205–221. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45739-9 14

25. Ulus, D.: Montre: a tool for monitoring timed regular expressions. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 329–335. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 16

26. Ulus, D.: Pattern Matching with Time: Theory and Applications. Ph.D. thesis,
University of Grenobles-Alpes (UGA) (2018)

27. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay,
A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10512-3 16

28. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
736–751. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 47

29. Waga, M., Akazaki, T., Hasuo, I.: A Boyer-Moore type algorithm for timed pattern
matching. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp.
121–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7 8

https://doi.org/10.1007/11867340_14
https://doi.org/10.1007/978-3-540-85238-4_29
https://doi.org/10.1007/978-3-540-85238-4_29
https://doi.org/10.1007/3-540-46691-6_4
https://doi.org/10.1007/978-3-540-31848-4_6
https://doi.org/10.1007/11817949_31
https://doi.org/10.1007/3-540-45739-9_14
https://doi.org/10.1007/978-3-319-63387-9_16
https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/978-3-319-44878-7_8


232 A. Bakhirkin et al.

30. Waga, M., Hasuo, I., Suenaga, K.: Efficient online timed pattern matching by
automata-based skipping. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017.
LNCS, vol. 10419, pp. 224–243. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-65765-3 13

31. Yovine, S.: Model checking timed automata. In: Rozenberg, G., Vaandrager, F.W.
(eds.) EEF School 1996. LNCS, vol. 1494, pp. 114–152. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65193-4 20

https://doi.org/10.1007/978-3-319-65765-3_13
https://doi.org/10.1007/978-3-319-65765-3_13
https://doi.org/10.1007/3-540-65193-4_20


Continuous Dynamical Systems



Duality-Based Nested Controller
Synthesis from STL Specifications

for Stochastic Linear Systems

Susmit Jha1, Sunny Raj2(B), Sumit Kumar Jha2, and Natarajan Shankar1

1 Computer Science Laboratory, SRI International, Menlo Park, USA
{susmit.jha,shankar}@sri.com

2 Computer Science Department, University of Central Florida, Orlando, USA
{sraj,jha}@eecs.ucf.edu

Abstract. We propose an automatic synthesis technique to generate
provably correct controllers of stochastic linear dynamical systems for
Signal Temporal Logic (STL) specifications. While formal synthesis prob-
lems can be directly formulated as exists-forall constraints, the quantifier
alternation restricts the scalability of such an approach. We use the dual-
ity between a system and its proof of correctness to partially alleviate
this challenge. We decompose the controller synthesis into two subprob-
lems, each addressing orthogonal concerns - stabilization with respect to
the noise, and meeting the STL specification. The overall controller is a
nested controller comprising of the feedback controller for noise cancel-
lation and an open loop controller for STL satisfaction. The correct-by-
construction compositional synthesis of this nested controller relies on
using the guarantees of the feedback controller instead of the controller
itself. We use a linear feedback controller as the stabilizing controller
for linear systems with bounded additive noise and over-approximate
its ellipsoid stability guarantee with a polytope. We then use this
over-approximation to formulate a mixed-integer linear programming
(MILP) problem to synthesize an open-loop controller that satisfies STL
specifications.

1 Introduction

Cyber-physical systems can be conceptually decomposed into a physical plant
and a controller. The complex interaction between the plant and the controller
often necessitates an hierarchical control. While high-level decisions are typi-
cally made by a supervisory controller, traditional control laws such as PID
control are typically used at low levels. These controllers at different levels are
often designed in isolation, and then plugged into a hierarchical framework to
build an ad hoc implementation that can be evaluated through simulations and
in-the-field experiments. For safety-critical systems, design of such hierarchi-
cal controller often relies on the worst-case characterization of independently
designed controllers in each layer, which leads to overly conservative design with

c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 235–251, 2018.
https://doi.org/10.1007/978-3-030-00151-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_14&domain=pdf


236 S. Jha et al.

low performance. This problem is becoming even more acute with the growing
complexity of cyber-physical systems. Hence, there is a pressing need for auto-
matic synthesis techniques that can co-design controllers at different layers in
a synergistic way for an optimal yet safe hierarchical control of cyber-physical
systems.

Safety-critical applications of cyber-physical systems necessitate providing
assurance and safety certification of the controllers. Approaches based on barrier
certificates [5,33] and Lyapunov functions [15] are applicable to proving stability,
asymptotic convergence, and safety of continuous control laws but their exten-
sions to hierarchical controls and stochastic dynamics is difficult. Automatic
synthesis of controllers from high-level specifications [10,13,27,30] either in the
open-loop setting or model-predictive and reactive setting have also been stud-
ied [12,35]. These methods ensure that the synthesized controllers are correct by
construction. While these techniques based on mixed integer linear programming
(MILP) have been shown to scale well, they are limited to linear deterministic
dynamics. More recently, extensions to uncertainty in dynamics and observations
have also been proposed [19] using a chance-constraint programming formula-
tion. But these methods are restricted to Gaussian noise and use a less scalable
semi-definite programming formulation. Further, these offline synthesis meth-
ods try to be robust to worst-case noise which makes them very conservative.
Thus, safe controller design for high-level temporal properties in presence of
noisy dynamics remains a challenge.

In this paper, we study the problem of synthesizing safe control for linear,
discrete-time plant with bounded disturbance against high-level temporal logic
specifications expressed in signal temporal logic (STL). A natural paradigm for
designing controllers for reach-avoid properties in presence of noise comprises of
designing an open-loop controller ignoring noise, followed by a tracking controller
to drive the trajectory towards the reference trajectory in presence of noise. We
formulate a bottom-up approach to controller synthesis which does not ignore the
interdependencies between the two controllers. We first synthesize a stabilizing
controller to reject noisy disturbances and then use its stability certificate to
formulate a less conservative robust open-loop controller synthesis problem for
STL specifications using MILP. The novel contributions in this paper are as
follows:

– We extend the MILP based controller synthesis approach for signal temporal
logic (STL) specifications to dynamics with bounded noise.

– We present a new approach for nesting controllers that allows composing cor-
rectness guarantee of the low-level noise-canceling controller during synthesis,
enabling a compositional proof of correctness of the overall nested controller.

– We experimentally validated the effectiveness of the controller synthesis app-
roach on a set of case-studies.

We discuss related work and background in Sects. 2 and 3. We formulate
the controller synthesis problem in Sect. 4. We present the proposed synthesis
approach in Sect. 5 and experimental evaluation in Sect. 6.



Duality-Based Nested Controller Synthesis 237

2 Related Work

We briefly discuss related work on formal synthesis of controllers from high-level
specifications, and compare and contrast with our proposed approach.

Synthesis of safe control using reachability analysis has been extensively
studied in literature where the specification is restricted to reach-avoid prop-
erties requiring that a particular target state be reached while avoiding unsafe
states [28,29,39]. More recently, safe control optimization techniques have been
developed which allow exploration of control parameter space and online learn-
ing of optimal controller while remaining safe [2,4]. These techniques rely on
learning probabilistic model of uncertainty either offline or online at runtime
and computation of reachable sets. Our approach is orthogonal to techniques
for estimating or modeling uncertainty, and we focus on the synthesis of safe
control for an additive noise model. The control of stochastic systems has also
been extensively investigated beginning with the work of Pontryagin [31] and
Bellman [3], and extending to more recent literature [8,18,23,33,34]. The goal
of these techniques is to determine a control policy that maximizes the proba-
bility of remaining within a safe set during a finite time horizon [1]. In contrast,
we consider a bounded noise model and require deterministic safety with respect
to high-level temporal specifications.

Temporal logic such as linear temporal logic have been used for high-level
specification of goals. Controller design with respect to high-level specifications
for linear dynamics model has been studied in [12,21,40,41], and extended
to polynomial systems [9] and other nonlinear systems using piecewise linear
approximation [6,16,42]. The synthesis techniques can be broadly classified into
automata theoretic and constraint-based approaches. Automata theoretic tech-
niques for controller synthesis from temporal specifications such as LTL are
based on discrete, finite-state and symbolic abstraction of the system. Then,
the solution of a two player game on the abstracted game graph is obtained by
composing the discrete abstraction with a discrete controller. While these tech-
niques can be used with nonlinear dynamics in principle, the discrete abstrac-
tion severely limits their scalability for high dimensional models. Our approach
is closer to constraint-solving based methods. While extension of satisfiability
solving to deal with continuous dynamics has been studied in literature [11,22],
we adopt the use of mixed-integer linear programming for solving the open loop
synthesis problem which is sufficient for modeling linear dynamics. We use sig-
nal temporal logic (STL) for specifying the requirements of the controller. STL
has been proposed as an extension of linear temporal logic for specifying behav-
ior of continuous and hybrid systems [10]. It combines dense time modalities
with numerical predicates over continuous state variables. Automatic synthesis
of controllers from STL properties using mixed integer linear programming has
proved to be an efficient and scalable approach [35], and more recently, it has
been recently extended to chance-constraints [17,19,36]. While these previous
extensions require computationally expensive second order cone programming,
we present an MILP formulation of STL controller synthesis for linear dynami-
cal system with additive but bounded noise. Further, we demonstrate the nested



238 S. Jha et al.

controller synthesis approach that uses an online noise canceling controller in
conjunction with an offline open loop controller. This nested approach leads to
less conservative formulation than a direct offline robust formulation that con-
siders worst-case noise.

Invariant based methods that rely on generating barrier certificates or Lya-
punov invariants [5,15] have been also well-studied in literature. Invariant based
control can be combined with other high-performance controllers to provide guar-
antees in a Simplex architecture [38]. More recently, it has been extended to
synthesize switching control [24,32] for a family of dynamical systems by formu-
lating a finite game graph that consists of the switching surfaces as the existential
nodes and the choices of the dynamics as the universal nodes. Instead of switch-
ing between different modes or two different controllers, we use the invariant
guarantee provided by the noise-canceling lower-level controller to formulate a
nested safe but less conservative open-loop synthesis problem. Our work is closest
to nested controller synthesis methods [14,37]. Our approach considers general
STL properties and is not limited to reach avoid properties. Further, we use the
guarantee provided by the low-level controller as a dual to synthesize the nested
open loop STL controller without explicitly composing the two controllers.

3 Preliminarie

We consider a discrete-time linear system Σ of the form

xt+1 = Axt + But + ωt (1)

where A ∈ R
n×n is the dynamics matrix, xt ∈ X ⊆ R

n is the system state,
B ∈ R

n×m is the control input matrix, ut ∈ U ⊆ R
m is the controller input,

and ωt ∈ D ⊆ R
n is the bounded additive noise disturbance. R denotes the set

of reals, X,U are closed polytopes that represents the set of all possible states
and feasible control inputs. D represents bounded noise, that is,

∀ω ∈ D ωT MT Mω ≤ Ω2 (2)

If M is identity, the above is the familiar 2-norm bound. We choose a generic
M -norm since noise in different dimensions may have asymmetric significance.
The set of initial states of the system is denoted by X0. We denote a sequence
of control inputs u0,u1, . . . ,uN−1 of length N by uN , and a sequence of noise
disturbances ω0, ω1, . . . , ωN−1 of length N by ωN . We say ωN ∈ DN if ωi ∈ D
for i ∈ [0, N − 1], and uN ∈ UN if ui ∈ U for i ∈ [0, N − 1]. Starting from an
initial state x0 ∈ X0 and applying the control inputs uN and noise disturbances
ωN , the horizon-N trajectory of the system x0u0,x1u1, . . . ,xNuN is denoted by
τ(x0,uN , ωN ).

For specifying the requirements on the controlled dynamical system, we use
signal temporal logic (STL). Let B denotes the set of Boolean values �,⊥ denot-
ing true and false respectively. An STL formula can be constructed recursively
using the following grammar:

φ := πμ | ¬φ | φ1 ∧ φ2 | G[a,b]φ | F[a,b]φ | φ1U[a,b]φ2



Duality-Based Nested Controller Synthesis 239

where πμ is an atomic predicate X × U → B whose truth value is determined
by the sign of a signal μ : X × U → R. τ(x0,uN , ωN ) |= φ denotes that the
trajectory τ(x0,uN , ωN ) satisfies an STL formula φ. When the arguments are
obvious from context, we also denote it by τ |= φ and τ [i] denotes the i-th
element xi ui in the sequence. Informally, τ |= G[a,b]φ if φ holds at every time
step between a and b. τ |= F[a,b]φ if φ holds at some time step between a and b.
τ |= φ1U[a,b]φ2 holds if φ1 holds at every time step before φ2 holds and φ2 holds
at some time step between a and b. Formally, the validity of a formula φ with
respect to the run τ is defined inductively as follows:

τ |= φ ⇐⇒ τ [0] |= φ

τ [tk] |= πμ ⇐⇒ μ(xk,uk) > 0
τ [tk] |= ¬φ ⇐⇒ τ [tk] �|= φ

τ [tk] |= φ1 ∧ φ2 ⇐⇒ τ [tk] |= φ1 ∧ τ [tk] |= φ2

τ [tk] |= G[a,b]φ ⇐⇒ ∀t ∈ [tk + a, tk + b] τ [t] |= φ

τ [tk] |= F[a,b]φ ⇐⇒ ∃t ∈ [tk + a, tk + b] τ [t] |= φ

τ [tk] |= φ1U[a,b]φ2 ⇐⇒ ∃t1 ∈ [tk + a, tk + b] (τ [t1] |= φ2

∧∀t2 ∈ [tk + a, t1]τ [t2] |= φ1)

Bounded-time STL contains no unbounded temporal operators and the bound
of φ is the maximum over the sum of all nested upper bounds on the trajectory
operators. The bound of φ is a conservative bound on the trajectory length
required to decide its satisfiability.

Typical properties such as reach-avoid can be easily encoded as an STL for-
mula. For example, if we require a vehicle to reach a particular destination region
while avoiding obstacles. The STL specification for a vehicle starting in state x0

and reaching Rdest within T time-steps while avoiding obstacles Robs1 , . . . ,Robsk

is F[0,T ]Rdest(x) ∧ G[0,T ](¬Robs1(x) ∧ . . . ¬ ∧ Robsk(x)). Any region of interest
R (destination or an obstacle) can be approximated using a union of polytopes,
represented by a disjunction of conjunction of linear constraints. For soundness,
the choice of under or over approximation depends on the region being approxi-
mated. For example, one would under-approximate the destination region while
over-approximating the obstacles to ensure that a feasible trajectory with respect
to this approximation can safely reach within the destination region while avoid-
ing the obstacles. So, we restrict the atomic predicates in the signal temporal
logic formulas to be linear inequalities, that is, the signals μ are restricted to be
linear combinations of state variables and control inputs.

We use mixed integer linear programming (MILP) encoding of an STL for-
mula [35]. A variable zφ

t is introduced for an STL formula φ with horizon N ,
and MILP constraints are formulated on this variable such that zφ

t = 1 if and
only if φ holds at time t. Let M be sufficiently large and ε be sufficiently small,
the MILP constraints corresponding to zφ

t can be generated as follows:



240 S. Jha et al.

not(z, z′) ≡ z = 1 − z′

and(z, [z1, . . . , zn]) ≡
n∧

i=1

(z ≤ zi) ∧ z ≥
n∑

i=1

zi − n + 1

or(z, [z1, . . . , zn]) ≡
n∧

i=1

(z ≥ zi) ∧ z ≤
n∑

i=1

zi

encode(μ(x,u) > 0, t) ≡ μ(xt,ut) ≤ Mzμ
t − ε ∧ −μ(xt,ut) ≤ M(1 − zμ

t ) − ε

encode(¬φ, t) ≡ not(z¬φ
t , zφ

t ) ∧ encode(φ, t)

encode(φ1 ∧ φ2, t) ≡ and(zφ1∧φ2
t , [zφ1

t , zφ2
t ]) ∧ encode(φ1, t) ∧ encode(φ2, t)

encode(φ1 ∨ φ2, t) ≡ or(zφ1∨φ2
t , [zφ1

t , zφ2
t ]) ∧ encode(φ1, t) ∧ encode(φ2, t)

encode(G[a,b]φ, t) ≡ and(z
G[a,b]φ

t , [zφ
t+a . . . zφ

t+b]) ∧
b∧

t′=a

encode(φ, t + t′)

encode(F[a,b]φ, t) ≡ or(z
F[a,b]φ

t , [zφ
t+a . . . zφ

t+b]) ∧
b∧

t′=a

encode(φ, t + t′)

encode(φ1U[a,b]φ2, t) ≡ encode( G[0,a]φ1 ∧ F[a,b]φ2 ∧ F[a,a](φ1Uφ2), t )

encode(φ1Uφ2, t) ≡ or(zφ2
t , and(zφ1

t , zφ1Uφ2
t+1 )) ∧ encode(φ1, t) ∧ encode(φ2, t)

∧ if(t < N) then encode(φ1Uφ2, t + 1) else zφ1Uφ2
N = zφ2

N

We also briefly review the linear state feedback control used for stabilizing a
system. Given a system xt+1 = Axt + But, let the feedback controller be given
by ut = −Kxt. The dynamics of the controlled system is given by

xt+1 = (A − BK)xt

This system is stable if and only if the spectral radius of (A − BK) is less than
1, that is, (A − BK) is contracting. The linear stabilizing feedback controller
synthesis problem is to solve the following problem:

∃K ∃P � 0 (A − BK)T P (A − BK) ≺ P

Unfortunately, this is not a semi-definite program (SDP) since the matrix
inequality is not linear in the decision variables P and K.

4 Problem Definition

In this section, we formulate the problem of synthesizing safe control for a
stochastic linear dynamical system so that the system satisfies the given STL
specification.

Controller Synthesis Problem: Given a system Σ of the form: xt+1 =
Axt + But + ωt with initial state x0, a high-level signal temporal logic (STL)
specification φ with horizon N , the controller synthesis problem is as follows:

∃u0∀ω0∀x1∃u1∀ω1∀x2 . . . ∃uN−1∀ωN−1∀xN τ(x0,uN , ωN ) |= φ



Duality-Based Nested Controller Synthesis 241

where xt ∈ X,ut ∈ U, ωt ∈ D = {ω | ωT MT Mω ≤ Ω2}. The control inputs
are generated by a controller cntlr(x0, φ,xt,X, U,D) which maps the initial
state, STL specification, and current state to the control input assuming that
the disturbance ωt ∈ D and ensuring that the states xt ∈ X and control inputs
ut ∈ U . We use this controller function for Skolemization and elimination of the
existential quantifiers on the control inputs. The controller synthesis problem
can then be written as an exists-forall problem:

∃cntlr ∀ω0∀x1∀ω1∀x2 . . . ∀ωN−1∀xN τ(x0,uN , ωN ) |= φ where xt ∈ X,ut ∈ U,

ut = cntlr(x0, φ,xt,X, U,D), xt+1 = Axt + But + ωt, ωT
t MT Mωt ≤ Ω2 (3)

Instead of requiring the controller to have to store the entire history of states
and the noise, we have restricted the controller cntlr to generate a control
input using only the current state, the initial state and the STL specification,
in addition to the sets X,U and D. The goal is to synthesize such a controller
which can satisfy the STL specification even in presence of noise (Fig. 1).

xt
ut

Controller

Plant

xt+1 = Axt + But + ωt

X, U, D x0 φ

Fig. 1. Controller has access to the STL specification φ to be satisfied, an initial state
x0 of the system, the bounding sets X, U and D. It continuously receives the current
state xt of the system. It produces control inputs ut which can be computed offline
(for example, in open-loop control), online (for example, in feedback control) or a com-
bination of offline and online (for example, in nested control presented in Sect. 5). The
presence of noise ωt makes completely offline safe control synthesis very conservative
as the synthesis algorithm has to consider worst-case accumulative effect of noise.

5 Controller Synthesis

We first describe over-approximation of elliptical bounds on the noise that will
be used in controller synthesis. Given DΩ

M = ωT MT Mω ≤ Ω2 which restricts the
noise in an ellipse, we can over approximate this ellipse using hyperboxes that
are axis-parallel or parallel to orthogonal1 eigenvectors (sketched for two dimen-
sions in Fig. 2). We construct an over-approximation of possible disturbances
OA(M,Ω) ⊇ DΩ

M by taking the intersection of the two over-approximations.
Before presenting the nested controller synthesis approach, we discuss two

straightforward solutions to the synthesis problem by direct application of stan-
dard control theoretic techniques.
1 Eigenvectors are orthogonal since MT M is symmetric.



242 S. Jha et al.

Axis Parralel 

A
B

CD

P

R

S

Q

Eigenvectors: Major and
minor axes

Fig. 2. Given an elliptical DΩ
M in two dimensions defined by ωT MT Mω ≤ Ω2, ABCD

is the axis parallel hyperbox PΩ
M over-approximating the ellipse. The eigenvectors of the

ellipse correspond to the major and minor axes of the ellipse. PQRS is the hyperbox EΩ
M

over-approximating the ellipse by bounding the eigenvectors. OA(M, Ω) = PΩ
M ∩ EΩ

M

is the polytope corresponding to the intersection of these two hyperboxes represented
by the conjunction of linear constraints of both hyberboxes.

Open Loop Robust Controller. The synthesis problem can be solved using a
robust controller that considers the worst-case noise and synthesizes control with
respect to it for the given horizon N . This method aims at jointly addressing the
satisfiability of the mission specification in STL and robustness with respect to
bounded noise without decomposing the problem. The following mixed-integer
linear constraints formulate the finite horizon open loop robust controller syn-
thesis problem:

∀t ∈ [0, N ] xt+1 = Axt + But + ωt

encode(φ, 0), ω ∈ OA(M,Ω),x ∈ X,u ∈ U

where encode is MILP encoding of the specification φ, OA(M,Ω) is the poly-
tope overapproximation of the disturbance set D, and X,U are conjunction
of linear constraints restricting the states and control inputs to allowed poly-
topes. Consequently, the state at time t in the above formulation is given by
xt = Atx0 + (At−1Bu0 +At−2Bu1 + . . . +But) + (At−1ω0 +At−2ω1 + . . . +ωt).
This considers the worst-case noise irrespective of the actual noise experienced
at runtime and consequently leads to very conservative controller design.

Tracking Controller. The second alternative is to decompose the synthesis prob-
lem by first ignoring the noise and synthesizing an open-loop controller to satisfy
the STL specification. At runtime, a tracking controller can be used to ensure
that the system tracks the noise-free state trajectory corresponding to the open-
loop controller synthesis problem. The open loop controller is synthesized by
solving the following mixed integer linear program:

∀t ∈ [0, N ] xt+1 = Axt + But

encode(φ, 0),x ∈ X,u ∈ U



Duality-Based Nested Controller Synthesis 243

The satisfiable solution to these linear constraints yield xt and ut for t ∈ [0, N ].
Once we have these reference signals, we use the standard pole placement method
to design a feedback controller that tracks this reference. In practice, solving
the feasibility problem corresponding to the linear program yields borderline
solutions which just barely satisfy the constraints. This is the consequence of
search methods used to solve these problems. This makes it even more difficult
to design tracking controller which prevents the trajectory from failing the STL
specification in presence of noise.

Nested Controller. While a closed loop solution is needed to be not overly con-
servative, we also require it to have correctness guarantees similar to the open
loop robust controller. We accomplish this by first designing a noise stabilizing
controller and then using its robustness guarantees to synthesize the open loop
control inputs that robustly satisfies the STL. In rest of this section, we describe
this two step design of nested controller in detail:

Feedback Controller: Given the linear dynamical system xt+1 = Axt+Bufb
t +

ωt and a linear feedback stabilization controller ufb
t = −Kxt, the deviation from

the reference trajectory is given by

xt+1 − xref
t+1 = (A − BK)(xt − xref

t ) + ωt

We need to find K such that A−BK is stable. While this problem of stabilizing
linear systems can be solved using a variety of control theoretic methods, this
choice is orthogonal to the nested control approach proposed in this paper. We
use pole placement approach [20] similar to the tracking controller and ensure
that the poles lie in the left half plane. This guarantees that A − BK is stable
and the spectral radius ρ(A − BK) < 1.

Lemma 1. Given a feedback control matrix K that stabilizes A−BK, the trans-
form A − BK is a contracting transform and ∀d dT (A − BK)T MT M(A −
BK)d ≤ dT MT Md.

While this contraction could be provided as a stability guarantee to be used
by the open loop controller synthesis in the second step, we can further refine this
guarantee by considering a new shape of the ellipsoid invariant that ensures max-
imum contraction due to the feedback controller K. This refinement of guarantee
is important for obtaining less conservative yet correct open loop controller. The
following semidefinite programming problem yields the optimal shape M ′ and
the corresponding contraction rate κ.

min
M ′,κ

κ subject to (A − BK)T M ′T M ′(A − BK) � κ2 M ′T M ′

Lemma 2. Given a feedback control matrix K that stabilizes A − BK and the
solution of the above optimization problem M ′, κ, ∀d dT (A−BK)T M ′T M ′(A−
BK)d ≤ κ2 dT M ′T M ′d.



244 S. Jha et al.

Stabilizing Controller Synthesis

Open loop Controller Synthesis

Stabilization

xt

ut =

ut

Plant
xt+1 = Axt + But + ωt

φ

K

uopen
t − K(xt − xref

t )
xref
t

uopen
t

Certificate M , Ω , κ

x0X, U

A, B

D
(M, Ω)

Fig. 3. Nested Controller for STL satisfaction in presence of noise. The stabilizing
controller uses the noise bound D to find the required feedback controller K and obtain
corresponding stability guarantee. The open loop controller synthesis only relies on the
stability guarantee provided by the stabilizing feedback controller.

Noise Reshaping: We solve the following optimization problem to reshape the
bounds on the noise to conform to optimum shape discovered above.

min
Ω′

Ω′ subject to ∀d dT MT Md ≤ Ω2 ⇒ dT M ′T M ′d ≤ Ω′2

The implication between quadratic constraints allow the use of S-lemma [7] to
formulate a semidefinite programming formulation. After we have obtained the
bound Ω′2, we can extend the guarantee provided by the feedback controller for
t timesteps as given in Theorem 1. The proof of theorem follows from Lemma 2
and the repeated use of triangular inequality.

Theorem 1. Given a feedback control matrix K that stabilizes A − BK, the
optimal shape and bound of stabilization guarantee M ′, κ and corresponding noise
bound Ω′, the state xt at time step t satisfies (xt − xref

t )T M ′T M ′(xt − xref
t ) ≤

S(κ, t)Ω′ where κ < 1 since K stabilizes A−BK and S(κ, t) = (1+κ2+. . .+κt).

In solving for the feedback controller K, we did not have to fix the refer-
ence trajectory and as long as we use this feedback controller at runtime with
ufb = −K(xt − xref

t ), Theorem 1 guarantees the upper bound on possible devi-
ation from any chosen reference trajectory xref . We will use this guarantee in
synthesizing the open loop STL controller uopen and selecting the correspond-
ing xref . The stabilization certificate provided by the feedback control synthesis
step to the open loop control synthesis step is a triplet (M ′, Ω′, κ).

STL Controller: Figure 3 summarizes the overall synthesis approach and illus-
trates how the runtime control ut is obtained by adding the open loop control
input and the feedback control input. We recall the Eq. 3 that summarizes the
exists-forall formulation of the controller synthesis problem, and decompose the
controller into two controllers. The first controller is an open loop controller that
lays a reference trajectory while the second controller is the feedback controller
described earlier to stabilize against noise.



Duality-Based Nested Controller Synthesis 245

∃cntlrfb ∃cntlropen ∀ω0∀x1∀ω1∀x2 . . . ∀ωN−1∀xN τ(x0,uN , ωN ) |= φ

ufb
t = cntlrfb(xt,x

ref
t ,D),uref

t = cntlropen(x0, φ,X,U, cntlrfb)

where xt ∈ X,ut = uref
t + ufb

t ∈ U, ωt ∈ DΩ
M , xt+1 = Axt + But + ωt

Instead of generating the open loop controller taking into account the feedback
controller, we use duality to only require the stabilization guarantee (M ′, Ω′, κ)
to be available to the feedback controller. This guarantee can be used to elim-
inate the forall quantification over noise in the above formulation, and using
Theorem 1, we obtain the following:

∃cntlropen ∀x1∀x2 . . . ∀xN τ(x0,uN , ωN ) |= φ

uref
t = cntlropen(x0, φ,X,U,M ′, Ω′, κ), (xt − xref

t ) ∈ D′S(κ,t)Ω′

M

where xt ∈ X,ut = uref
t + ufb

t ∈ U, xt+1 = Axt + But + ωt

Finally, we use the polytope approximation OA(M ′, S(κ, t)Ω′) of the ellipti-
cal constraint D′S(κ,t)Ω′

M as described earlier to obtain the following MILP pro-
gram that solves the open loop controller synthesis problem using the stability
guarantee of the feedback controller:

∀t ∈ [0, N ] xref
t+1 = Axt + Buref

t , (xt − xref
t ) ∈ OA(M ′, S(κ, t)Ω′)

encode(φ, 0),xt ∈ X,ut = uref
t − K(xt − xref

t ) ∈ U

The following theorem summarizes the soundness of the proposed approach to
synthesize nested controller.

Theorem 2. Given a dynamical system xt+1 = Axt + But + ωt with bounds
on state, control and noise (X,U,D), if the MILP formulation of the synthesis
problem is feasible and finds a controller ut = uref

t +ufb
t , then the system starting

at x0 satisfies the STL specification φ even in the presence of bounded noise.

6 Case Studies

In this section, we present three case-studies to demonstrate the effectiveness and
efficiency of the proposed approach to synthesize nested controller. All experi-
ments were conducted on 8-core 2.8 GHz Intel R© Xeon R© CPU with 16 GB RAM
using Matlab R©. The first case-study involves controlling a vehicle moving in a
map with obstacles. The second case-study is on smart grid control adapted from
[26], and the third is indoor climate control case-study [25,35].

6.1 Case Study 1: Simple Vehicle Model

In this case study, we consider a robot that is expected to navigate in a 2-
dimensional grid. The dynamics in each dimension, x and y, is given by a simple
double integrator model. It starts at the bottom left corner and is required to



246 S. Jha et al.

0 5 10 15 20 25
0

5

10

15

20

25

(a) Reference trajectory of STL controller

0 5 10 15 20 25
0

5

10

15

20

25

(b) Tracking controller is not safe

Fig. 4. The open loop STL controller synthesis results into barely satisfying trajectory
and the tracking controller is unable to prevent the vehicle from colliding with the
obstacles. The obstacles are shown in red and the final destination region in green.
(Color figure online)

reach the top right corner within 10 time units. The robot must avoid the two
obstacles shown as red rectangles in Fig. 4. This requirement can be captured by
the corresponding signal temporal logic property F[0,10](24 ≤ xt ≤ 25∧24 ≤ yt ≤
25)∧G[0,10](¬(0 ≤ xt ≤ 19∧21 ≤ yt ≤ 25)∧¬(16 ≤ xt ≤ 25∧10 ≤ yt ≤ 15)). The
control input to the model is the acceleration. The bounded noise ω is given by
an uniform distribution between 0.2 and −0.2 added to the x and y dimensions
of the position.

Figure 4(a) shows the trajectory of the robot obtained by an open loop STL
controller in a noise-free environment. The resulting trajectory of the robot cor-
rectly satisfies the specification; however, there is little tolerance for error in the
trajectory as it almost grazes past one of the obstacles. This is a consequence
of how constraint solvers work in general. MILP solvers are good at finding a
satisfying instance for given set of constraints but they are likely to find barely
satisfying instances than robustly satisfying trajectories. In fact, the introduc-
tion of noise ω into the robot dynamics causes the robot to crash into one of the
obstacles, as shown in Fig. 4(b). A traditional tracking controller fails to safely
follow the reference trajectory in presence of noise.

The offline robust controller synthesis does not find a feasible safe controller.
So, we relax the specification to F[0,5](13 ≤ xt ≤ 15∧13 ≤ yt ≤ 15)∧G[0,5](¬(0 ≤
xt ≤ 19∧21 ≤ yt ≤ 25)∧¬(16 ≤ xt ≤ 25∧10 ≤ yt ≤ 15)) requiring the vehicle to
reach the unit square region around 15, 15 instead of 25, 25. We also reduced the
noise to 0.1. We plot the resultant trajectory and the bounds on the uncertainty
region around the trajectory in Fig. 5. This illustrates how the robust controller
conservatively models noise during offline synthesis and fails to find a safe con-
troller for the original specification. The proposed nested controller synthesis
approach can find a safe controller in 8 min 39 s for the original specification and
the noise model, and a significant fraction of this runtime (3 min 46 s) is spent
in formulating the MILP problem.



Duality-Based Nested Controller Synthesis 247

0 5 10 15 20 25
0

5

10

15

20

25

(a) Robust controller

0 5 10 15 20 25
0

5

10

15

20

25

(b) Proposed nested controller

Fig. 5. Robust controller with reduced noise is able to synthesize a safe controller for
relaxed specification – the uncertainty region illustrates the conservativeness of the
robust controller synthesis method. It fails to solve the original problem. The nested
controller is able to generate a safe controller even in the presence of noise.

6.2 Case Study 2: Smart Grid Control

Our second case study is the smart grid model described in [26]. Each grid area
contains a turbine, a generator and a governor. An automatic generation control
(AGC) regulates the grid frequency using a proportional integral control. The
AGC also ensures that the net interchange power between neighboring areas
is maintained at predefined values. The Area Control Error (ACE) measures
the difference between the predefined and actual electrical generation within
an area while compensating for frequency differences. The system is described
using a 13 × 13 dimensional A matrix and a 12 × 4 dimensional B matrix with
two sources of noise and two control inputs. Our controller synthesizes both the
control inputs while responding to changes in both sources of noise. Our model
also requires that the magnitude of the control input to the system stay bounded
by 0.6 and should evolve slowly with no more than a difference of 0.2 between
two control inputs. A specification of interest is to ensure that the absolute
value of the ACE falls below 0.1 within 60 time units. A tracking controller
is unable to satisfy the specification, as shown in Fig. 6(a). We synthesize a
nested STL-feedback controller for holding the absolute value of ACE below 0.1
against perturbations in the area-wise power demand. The synthesis of nested
controller took 11 min 28 s. Figure 6(b) shows that the nested controller satisfies
the specification despite the noise.

6.3 Case Study 3: Indoor Climate Control

Indoor climate control is a well-studied benchmark [25,35] against which con-
trollers have been designed using STL specifications. In this benchmark, a build-
ing with 4 rooms is modeled using a resistor-capacitor network. The rate of
change of temperature of the ith room depends on the difference between the
temperature of this room and its neighboring rooms, the air flow into the room,



248 S. Jha et al.

(a) Tracking controller (b) Nested controller

Fig. 6. Tracking controller is unable to maintain safety while the proposed nested
controller keeps the system safe even in the presence of noise.

the heat dissipation from windows, and the heat noise within the room from bio-
logical and electro-mechanical entities. While the original system is nonlinear,
Euler’s discretization method can be used to obtain a linear discrete-time system.
We use such a linearization presented in [25] and also use their additive uncer-
tainty model. The specification for controller synthesis is to “maintain a com-
fortable room temperature whenever the room is occupied”. Formally, the spec-
ification can be written as a persistence STL property F[0,Tsettle]G[0,Tmax](Tt >
72+δ∧Tt < 72−δ) where Tsettle = 250, Tmax = 500, δ = 0.1 in our experiments.
Figure 7 shows the results obtained using the tracking controller synthesis and
the nested controller synthesis method proposed in the paper. The synthesis of
nested controller took 14 min 24 s. While the tracking controller is unable to
satisfy the specification, the synthesized nested controller performs well in pres-
ence of runtime noise. Figure 7(b) shows a sample run of the system with the
synthesized nested controller.

(a) Tracking Controller (b) Nested controller

Fig. 7. Indoor Climate Controller with the persistence specification to reach a target
temperature zone and stay within it. Nested controller is able to satisfy the specification
while tracking controller cannot do so. The robust control synthesis could not generate
a controller to keep the temperature within the tight bounds in the specification.



Duality-Based Nested Controller Synthesis 249

7 Conclusion

We proposed a novel approach to generate provably correct controllers of stochas-
tic linear dynamical systems for STL specifications. Our approach decomposes
the synthesis problem into orthogonal subproblems of meeting the STL spec-
ification, and noise-cancellation. It uses the duality between a system and its
proof of correctness to compose their solutions and construct a safe nested con-
troller. We first synthesize a stabilizing controller to reject noise at runtime, and
then use its stability guarantee to formulate a less conservative robust open-
loop controller synthesis problem for STL specifications using mixed integer
linear programming. We experimentally validated the effectiveness of the pro-
posed controller synthesis approach on a set of case-studies, and compared it
with robust and tracking control methods. The proposed nested controller is
less conservative than robust controllers, and is guaranteed to maintain safety in
contrast to tracking controllers. In future work, we are investigating extensions to
parametric systems where the guarantee from identical individual controllers for
sub-systems can be used to synthesize a higher-level supervisory safe controller.

Acknowledgements. The authors acknowledge support from the National Science
Foundation (NSF) Cyber-Physical Systems #1740079 project, NSF Software & Hard-
ware Foundation #1750009 and #1438989 projects, US ARL Cooperative Agreement
W911NF-17-2-0196, and DARPA under contract FA8750-16-C-0043.

References

1. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica 44(11),
2724–2734 (2008)

2. Akametalu, A.K., Fisac, J.F., Gillula, J.H., Kaynama, S., Zeilinger, M.N., Tom-
lin, C.J.: Reachability-based safe learning with Gaussian processes. In: 53rd IEEE
Conference on Decision and Control, pp. 1424–1431. IEEE (2014)

3. Bellman, R., Bellman, R.E., Bellman, R.E.: Introduction to the Mathematical The-
ory of Control Processes, vol. 2. IMA (1971)

4. Berkenkamp, F., Schoellig, A.P.: Safe and robust learning control with Gaussian
processes. In: 2015 European Control Conference (ECC), pp. 2496–2501. IEEE
(2015)

5. Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)
6. Bogomolov, S., Schilling, C., Bartocci, E., Batt, G., Kong, H., Grosu, R.:

Abstraction-based parameter synthesis for multiaffine systems. In: Piterman, N.
(ed.) HVC 2015. LNCS, vol. 9434, pp. 19–35. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26287-1 2

7. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in
System and Control Theory, vol. 15. SIAM, Philadelphia (1994)

8. Cassandras, C.G., Lygeros, J.: Stochastic Hybrid Systems, vol. 24. CRC Press,
Boca Raton (2006)

9. Dang, T., Dreossi, T., Piazza, C.: Parameter synthesis through temporal logic
specifications. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp.
213–230. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19249-9 14

https://doi.org/10.1007/978-3-319-26287-1_2
https://doi.org/10.1007/978-3-319-26287-1_2
https://doi.org/10.1007/978-3-319-19249-9_14


250 S. Jha et al.

10. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

11. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: a direct SAT approach to
hybrid systems. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.)
ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88387-6 14

12. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion
planning for dynamic robots. Automatica 45(2), 343–352 (2009). https://doi.org/
10.1016/j.automatica.2008.08.008

13. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

14. Fan, C., Mathur, U., Mitra, S., Viswanathan, M.: Controller synthesis made real:
reach-avoid specifications and linear dynamics. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10981. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96145-3 19

15. Haddad, W.M., Chellaboina, V.: Nonlinear Dynamical Systems and Control: A
Lyapunov-Based Approach. Princeton University Press, Princeton (2011)

16. Huang, Z., Wang, Y., Mitra, S., Dullerud, G.E., Chaudhuri, S.: Controller synthe-
sis with inductive proofs for piecewise linear systems: an SMT-based algorithm.
In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 7434–7439,
December 2015

17. Jha, S., Raman, V.: Automated synthesis of safe autonomous vehicle control under
perception uncertainty. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS,
vol. 9690, pp. 117–132. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40648-0 10

18. Jha, S., Raman, V.: On optimal control of stochastic linear hybrid systems. In:
Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 69–84.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7 5

19. Jha, S., Raman, V., Sadigh, D., Seshia, S.A.: Safe autonomy under perception
uncertainty using chance-constrained temporal logic. J. Autom. Reason. 60(1),
43–62 (2018). https://doi.org/10.1007/s10817-017-9413-9

20. Kautsky, J., Nichols, N.K., Van Dooren, P.: Robust pole assignment in linear state
feedback. Int. J. Control 41(5), 1129–1155 (1985)

21. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems
from temporal logic specifications. IEEE Trans. Autom. Control 53(1), 287–297
(2008). https://doi.org/10.1109/TAC.2007.914952

22. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

23. Koutsoukos, X., Riley, D.: Computational methods for reachability analysis of
stochastic hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006.
LNCS, vol. 3927, pp. 377–391. Springer, Heidelberg (2006). https://doi.org/10.
1007/11730637 29

24. Liu, J., Prabhakar, P.: Switching control of dynamical systems from metric tem-
poral logic specifications. In: IEEE International Conference on Robotics and
Automation (2014)

25. Maasoumy, M., Razmara, M., Shahbakhti, M., Vincentelli, A.S.: Handling
model uncertainty in model predictive control for energy efficient buildings.
Energy Build. 77, 377–392 (2014). https://doi.org/10.1016/j.enbuild.2014.03.057.
http://www.sciencedirect.com/science/article/pii/S0378778814002771

https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1016/j.automatica.2008.08.008
https://doi.org/10.1016/j.automatica.2008.08.008
https://doi.org/10.1007/978-3-319-96145-3_19
https://doi.org/10.1007/978-3-319-96145-3_19
https://doi.org/10.1007/978-3-319-40648-0_10
https://doi.org/10.1007/978-3-319-40648-0_10
https://doi.org/10.1007/978-3-319-44878-7_5
https://doi.org/10.1007/s10817-017-9413-9
https://doi.org/10.1109/TAC.2007.914952
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/11730637_29
https://doi.org/10.1007/11730637_29
https://doi.org/10.1016/j.enbuild.2014.03.057
http://www.sciencedirect.com/science/article/pii/S0378778814002771


Duality-Based Nested Controller Synthesis 251

26. Maasoumy, M., Sanandaji, B.M., Sangiovanni-Vincentelli, A., Poolla, K.: Model
predictive control of regulation services from commercial buildings to the smart
grid. In: 2014 American Control Conference (ACC), pp. 2226–2233. IEEE (2014)

27. Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: past, present, future.
In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16.
Springer, Heidelberg (2005). https://doi.org/10.1007/11603009 2

28. Mitchell, I., Tomlin, C.J.: Level set methods for computation in hybrid systems. In:
Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310–323. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-46430-1 27

29. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent hamilton-jacobi for-
mulation of reachable sets for continuous dynamic games. IEEE Trans. Autom.
Control 50(7), 947–957 (2005)

30. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez,
F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-85778-5 1

31. Pontryagin, L.: Optimal control processes. Usp. Mat. Nauk 14(3), 3–20 (1959)
32. Prabhakar, P., Garćıa Soto, M.: Formal synthesis of stabilizing controllers for

switched systems. In: Proceedings of the 20th International Conference on Hybrid
Systems: Computation and Control, HSCC 2017, pp. 111–120. ACM, New York
(2017). http://doi.acm.org/10.1145/3049797.3049822

33. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8),
1415–1428 (2007)

34. Prandini, M., Hu, J.: Stochastic reachability: theory and numerical approximation.
Stochast. Hybrid Syst. Autom. Control Eng. Ser. 24, 107–138 (2006)

35. Raman, V., Donz, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A.,
Seshia, S.A.: Model predictive control with signal temporal logic specifications.
In: 53rd IEEE Conference on Decision and Control, pp. 81–87, December 2014.
https://doi.org/10.1109/CDC.2014.7039363

36. Sadigh, D., Kapoor, A.: Safe control under uncertainty with probabilistic sig-
nal temporal logic. In: Robotics: Science and Systems XII (2016). http://www.
roboticsproceedings.org/rss12/p17.html

37. Schrmann, B., Althoff, M.: Optimal control of sets of solutions to formally guaran-
tee constraints of disturbed linear systems. In: 2017 American Control Conference
(ACC), pp. 2522–2529, May 2017

38. Seto, D., Krogh, B.H., Sha, L., Chutinan, A.: Dynamic control system upgrade
using the simplex architecture. IEEE Control Syst. 18(4), 72–80 (1998)

39. Summers, S., Kamgarpour, M., Lygeros, J., Tomlin, C.: A stochastic reach-avoid
problem with random obstacles. In: Proceedings of the 14th International Confer-
ence on Hybrid Systems: Computation and Control, pp. 251–260. ACM (2011)

40. Tabuada, P., Pappas, G.J.: Linear time logic control of discrete-time linear systems.
IEEE Trans. Autom. Control 51(12), 1862–1877 (2006)

41. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic
planning. IEEE Trans. Autom. Control 57(11), 2817–2830 (2012). https://doi.
org/10.1109/TAC.2012.2195811

42. Yordanov, B., Tumova, J., Cerna, I., Barnat, J., Belta, C.: Temporal logic control of
discrete-time piecewise affine systems. IEEE Trans. Autom. Control 57(6), 1491–
1504 (2012)

https://doi.org/10.1007/11603009_2
https://doi.org/10.1007/3-540-46430-1_27
https://doi.org/10.1007/978-3-540-85778-5_1
http://doi.acm.org/10.1145/3049797.3049822
https://doi.org/10.1109/CDC.2014.7039363
http://www.roboticsproceedings.org/rss12/p17.html
http://www.roboticsproceedings.org/rss12/p17.html
https://doi.org/10.1109/TAC.2012.2195811
https://doi.org/10.1109/TAC.2012.2195811


Safe Over- and Under-Approximation
of Reachable Sets for Autonomous

Dynamical Systems

Meilun Li1, Peter N. Mosaad2, Martin Fränzle2, Zhikun She1(B), and Bai Xue3

1 School of Mathematics and Systems Science, Beihang University, Beijing, China
{meilun.li,zhikun.she}@buaa.edu.cn

2 Department of Computing Science, Carl von Ossietzky Universität Oldenburg,
Oldenburg, Germany

{peter.nazier.mosaad,fraenzle}@informatik.uni-oldenburg.de
3 State Key Laboratory of Computer Science, Institute of Software, CAS,

Beijing, China
xuebai@ios.ac.cn

Abstract. We present a method based on the Hamilton-Jacobi frame-
work that is able to compute over- and under-approximations of reach-
able sets for autonomous dynamical systems beyond polynomial dynam-
ics. The method does not resort to user-supplied candidate polyno-
mials, but rather relies on an expansion of the evolution function
whose convergence in compact state space is guaranteed. Over- and
under-approximations of the reachable state space up to any desig-
nated precision can consequently be obtained based on truncations of
that expansion. As the truncations used in computing over- and under-
approximations as well as their associated error bounds agree, double-
sided enclosures of the true reach-set can be computed in a single sweep.
We demonstrate the precision of the enclosures thus obtained by com-
parison of benchmark results to related simulations.

1 Introduction

Reachable set computation for dynamical systems is a fundamental task within
methods for the automatic discharge of various proof obligations such as safety
verification or rigorous system falsification [29]. Such methods can in turn be
applied to a wide range of system design problems, for example, aircraft collision
avoidance [11] and robot control [27].

For cases involving simple dynamics, the reachable sets at any time point can
be computed explicitly [3,28]. In most real cases, however, exact reachable sets
are not straightforward to obtain either due to the computational complexity

This work was partially supported by the National Natural Science Foundation of
China under Grants 11371047, 11422111.
M. Li—The author was supported by the China Scholarship Council for 1 year study
at Carl von Ossietzky University of Oldenburg.

c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 252–270, 2018.
https://doi.org/10.1007/978-3-030-00151-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_15&domain=pdf


Safe Over- and Under-Approximation of Reachable Sets for ADS 253

of exact computation or due to inherent lack of closed-form computational rep-
resentations. Consequently, many researchers are interested in computational
approximation of reachable sets, with an obvious trade-off between tightness
of the approximation and computational effort. A further consideration is that
such approximations ought to support reliable logical verdicts concerning safety
of the system under consideration, which leads to the notion of (guaranteed)
over- or under-approximation. Over-approximation of the reachable set can reli-
ably be employed in the verification of safety, as empty intersection of an over-
approximate reach-set with the set of unsafe states implies unreachability of the
unsafe states under exact dynamics. Various methods for computing such guar-
anteed over-approximation are discussed in the literature such as abstraction
methods [2,6,30,32–34], simulation-based methods adding appropriate bloating
to simulations [7,9,14,18,28], methods based on support-functions [10,12,16,31],
and methods based on Taylor expansions [1,4]. Under-approximation computa-
tion is usually applied to rigorously falsify a safety property by validating reach-
ability of some undesirable (i.e., unsafe) target state. A number of results are
about linear systems [13,17,22,23,25], and methods for nonlinear systems have
only emerged in recent years [5,15,21,24,37].

In this paper we present a novel methodology to compute over- and under-
approximations of reachable sets for autonomous dynamical systems (ADS). We
first introduce the concept of an evolution function for describing the time-
evolution of the reach set corresponding to the dynamics of the ADS and show
that its sub-level sets can be used to describe reachable sets. Then we employ
the Hamilton-Jacobi formulation of the evolution function and we prove that the
evolution function of analytic ADS has a special form of expansion permitting
truncation. We prove convergence of these truncations over compact state-space,
and are consequently able to provide over- and under-approximations of arbi-
trary desired precision by manipulating truncations of certain degree of t, which
we name a t-expansion. Based on this convergence result, we design a compu-
tational framework for guaranteed over- and under-approximations of reachable
sets, whose correctness is also proved in this paper. For a given system and
desired precision, the framework utilizes a global optimization method seeking
an extremum to check whether the reach sets derived from the truncated evolu-
tion function satisfy the precision limit.

Ample prior research about reachable-set approximation is related to the
Hamilton-Jacobi framework. [19] directly describes reachable sets as the zero
sub-level sets of the viscosity solutions of time-dependent Hamilton-Jacobi-Isaacs
partial differential equations and then uses methods from the level-set litera-
ture [26] to numerically approximate these. [35] uses the advection operator At

to describe reachable sets and then converts it to a semi-definite program encod-
ing the first-order Taylor approximation Bt of At. [36] uses a semi-definite pro-
gramming method to compute solutions of relaxed Hamilton-Jacobi inequalities
to obtain over- and under-approximations of reachable sets. Our work is differ-
ent from the above in the following ways. First, the expansion of the evolution
function exhibits the very same form introduced in this paper for all analytic



254 M. Li et al.

ADS, not only for polynomial ADS. Consequently, our framework facilitates the
analysis of a wider class of systems than just polynomial ADS. Second, different
from the optimization based methods in [36] which use a candidate polynomial,
we directly build our approximations from the expansion of a general evolution
function whose convergence in compact state space is guaranteed. This implies
that theoretically we can directly, without manual intervention and guess-work,
compute an approximation with any designated precision bound. In particular
we overcome the shortcoming induced by candidate polynomials that the perfor-
mance of such template-based methods heavily depends on appropriate choice of
the candidate polynomial. Third, as illustrated later in the paper, we can create
both over- and under-approximations within a single computation because they
satisfy the same criterion and share the same precision bound.

2 Preliminaries

The class of systems we consider in this paper is the set of autonomous dynamical
systems.

Definition 1. An autonomous dynamical system (ADS) is of the form

ẋ = f(x), (1)

where x ∈ R
n is an n-dimensional vector and f(x) : Rn → R

n is a function. A
solution of system (1) starting from x0 ∈ R

n is defined as φ(x0, t) satisfying
⎧
⎨

⎩

φ(x0, 0) = x0

∂φ(x0, t)
∂t

= f(φ(x0, t))
.

In this paper we assume that f(x) in Eq. (1) satisfies a local Lipschitz con-
dition such that the existence and uniqueness of φ(x0, t) is guaranteed. We use
(T−

x0
, T+

x0
) to denote the maximal well-defined time interval of φ(x0, t). Notice

that T−
x0

and T+
x0

can be −∞ and +∞ respectively. To simplify discussion, we
define

R+ ≡ {(x, t)|x ∈ R
n ∧ t ∈ (T−

x , T+
x )},

R− ≡ {(x, t)|x ∈ R
n ∧ t ∈ (−T+

x ,−T−
x )}

as the maximal definable set of φ(x0, t) and φ(x0,−t) respectively. The next
proposition holds for local Lipschitz ADS, and is crucial in our later discussion.

Proposition 1. If an ADS is local Lipschitz, then φ(φ(x0, t),−t) =
x0,∀(x0, t) ∈ R+ and φ(φ(x0,−t), t) = x0,∀(x0, t) ∈ R−.

Now we define the evolution function, similar to the concept of advection
operator in [35] and reachable set in [5], as follows.



Safe Over- and Under-Approximation of Reachable Sets for ADS 255

Definition 2. Given a function g(x) : Rn → R, the evolution function of the
ADS (1) with g(x) is defined as

Evof ,g(x, t) = g(φ(x,−t)),∀(x, t) ∈ R−.

Remark 1. The evolution function Evof ,g(x, t) satisfies the following property:

Evof ,g(φ(x0, t), t) ≡ g(φ(φ(x0, t),−t)) = g(x0),∀x0 ∈ R+. (2)

A widely used method for set representation is zero-sublevel set method. It
maps a function over R

n to a set of states in R
n.

Definition 3. The zero-sublevel set μ(v(·)) of v(x) : Rn → R, briefly μ(v), is

μ(v(·)) = {x ∈ R
n | v(x) ≤ 0}

3 Equivalent Definition of the Evolution Function

In this section we show that we can define evolution function with Hamilton-
Jacobi framework. The next theorem shows the equivalence of the two ways.

Theorem 1. Given a function g(x) : Rn → R and an ADS (1), the following
two expressions are equivalent:

1. U (x, t) is the evolution function of ADS (1).
2. U (x, t) satisfies

⎧
⎨

⎩

U (x, 0) = g(x),∀x ∈ R
n,

∂U (x, t)
∂x

· f(x) +
∂U (x, t)

∂t
= 0,∀(x, t) ∈ R−,

(3)

where · is the inner product operator of two vectors with the same dimension.

Proof. 1 → 2. From (2), U (φ(x0, t), t) ≡ g(x0),∀(x0, t) ∈ R+. Since x0 and t
are independent, for any given x0 ∈ R, the value of U (φ(x0, t), t) doesn’t change
with t. Therefore,

0 ≡ dU (φ(x0, t), t)
dt

=
∂U (x, t)

∂x
|φ(x0,t) · f(φ(x0, t)) +

∂U (φ(x0, t), t)
∂t

.

Because the range of φ(x0, t) is R
n, for each (x, t) ∈ R−, we have

∂U (x, t)
∂x

· f(x) +
∂U (x, t)

∂t
≡ 0,

which is the second equation in (3).
Besides, from definition of evolution function, we have U (x, 0) ≡ g(φ(x, 0)) ≡

g(x),∀x ∈ R
n, which is the first equation in (3). Thus we complete the proof of

1 → 2.



256 M. Li et al.

2 → 1. For any given x0 ∈ R
n, consider the derivative of U (φ(x0, t), t), t ∈

(T−
x0

, T+
x0

). By Eq. (3) we have

dU (φ(x0, t), t)
dt

=
∂U (x, t)

∂x
|φ(x0,t) · f(φ(x0, t)) +

∂U (φ(x0, t), t)
∂t

= 0, (4)

which means the value of U (φ(x0, t), t) doesn’t change with t. Thus

U (φ(x0, t), t) = U (φ(x0, 0), 0) = U (x0, 0) = g(x0),∀(x0, t) ∈ R+.

For arbitrary (x, t) ∈ R−, since ADS (1) is Lipschitz, we can find a unique
y = φ(x,−t), and x = φ(y, t) ∈ R+. Then U (x, t) = U (φ(y, t), t) = g(y) =
g(φ(x,−t)), which means that U (x, t) is the evolution function of ADS (1) with
g(x). 	


4 t-expansion of Evolution Function

In this section, we develop the relationship between reachability of ADS and
evolution function, and show that the evolution function has a special form,
named t-expansion, which is the basis of our approximation framework.

Definition 4. For given initial state set X0 and time t such that (x, t) ∈
R+,∀x ∈ X0, the reachable set of ADS (1) from X0 for t, denoted as Reacht

f ,X0
,

is defined as
Reacht

f ,X0
= {φ(x0, t) ∈ R

n|x0 ∈ X0}.

Reacht
f ,X0

is a forward reachable set if t ≥ 0, and Reacht
f ,X0

is a backward
reachable set if t ≤ 0.

Remark 2. If X0 is the zero-sublevel set of a function g(x), we use Reacht
f ,g as

the abbreviation of Reacht
f ,μ(g).

From the definition of Reacht
f ,g and evolution function, the following propo-

sition is easy to obtain.

Proposition 2. For ADS (1) and g(x) : Rn → R, Reacht
f ,g = μ(Evof ,g(·, t)).

Proposition 2 shows that computation of reachable set of ADS can be con-
verted to computation of evolution function. However the analytic solution to
(1) or (3) are hard to get. In the following theorem, we show that if f and g are
analytic, the evolution function Evof ,g(x, t) has a special form, i.e. t-expansion
as we named.

Theorem 2. For ADS (1) and g(x) : Rn → R, if both f(x) and g(x) are ana-
lytic, the evolution function Evof ,g(x, t) is of the form

Evof ,g(x, t) =
+∞∑

i=0

Mf ,g
i (x)
i!

(−t)i, (5)



Safe Over- and Under-Approximation of Reachable Sets for ADS 257

where Mf ,g
n (x) is defined inductively as

⎧
⎪⎨

⎪⎩

Mf ,g
0 (x) = g(x),∀x ∈ R

n,

Mf ,g
i+1 (x) =

∂Mf ,g
i (x)
∂x

· f(x),∀x ∈ R
n.

(6)

Proof. Denote U (x, t) ≡ ∑+∞
i=0

Mf,g
i (x)

i! (−t)i. According to Theorem 1, we only
need to prove that U (x, t) satisfies condition (3).

First, since U (x, t) = g(x) +
∑+∞

i=1
Mf,g

i (x)

i! (−t)i, we immediately have that
U (x, 0) = g(x),∀x ∈ R

n, which is the first equation in condition (3).
Second, from definition of U (x, t), for arbitrary (x, t) ∈ R− we have

∂U (x, t)
∂x

· f(x) = [
∂

∂x

+∞∑

i=0

Mf ,g
i (x)
i!

(−t)i] · f(x) =
+∞∑

i=0

(−t)i

i!
∂Mf ,g

i (x)
∂x

· f(x)

=
+∞∑

i=0

(−t)i

i!
Mf ,g

i+1 (x)

and

∂U (x, t)
∂t

=
∂

∂t

+∞∑

j=0

Mf ,g
j (x)
j!

(−t)j =
∂g(x)

∂t
+

∂

∂t

+∞∑

j=1

Mf ,g
j (x)
j!

(−t)j

= 0 +
+∞∑

j=1

Mf ,g
j (x)

d

dt

(−t)j

j!

= −
+∞∑

j=1

Mf ,g
j (x)

(−t)j−1

(j − 1)!
.

Letting i = j − 1 in ∂U (x,t)
∂t , we have

∂U (x, t)
∂t

= −
+∞∑

i=0

Mf ,g
i+1 (x)

(−t)i

i!
= −∂U (x, t)

∂x
· f(x).

Therefore ∂U (x,t)
∂x · f(x)+ ∂U (x,t)

∂t = 0,∀(x, t) ∈ R−, which is the second equation
in condition (3). 	


We denote EvoN
f ,g(x, t) as finite truncation of Evof ,g(x, t) till degree

N , i.e. EvoN
f ,g(x, t) ≡ ∑N

i=0
(−1)iMf,g

i (x)

i! ti, and define Evo+∞
f ,g (x, t) ≡

∑+∞
i=0

(−1)iMf,g
i (x)

i! ti.
Since we assume ADS (1) is local Lipschitz, the uniqueness of evolution func-

tion is guaranteed, which also ensures the uniqueness of solution to (3) via The-
orem 1. Thus Evo+∞

f ,g (x, t) is the unique solution to (3).



258 M. Li et al.

For fixed x ∈ R
n, Evo+∞

f ,g (x, t) is the Taylor expansion of Evof ,g(x, t) over t,
and (−1)iMf ,g

i (x)’s are the Taylor coefficients. Notice that Taylor expansion of
a function may not globally convergent to the function. Defining

C− = {(x, t)|x ∈ R
n ∧ Evo+∞

f ,g (x, t) = Evof ,g(x, t)},

C+ = {(x, t)|(x,−t) ∈ C−}.

we have the following proposition.

Proposition 3. Given ADS (1), for any (x, t) ∈ C−, we have

lim
N→+∞

EvoN
f ,g(x, t) = Evof ,g(x, t).

5 Over- and Under-Approximations of Reachable Sets

From Propositions 2 and 3, we can see that EvoN
f ,g(x, t) can be used to simu-

late Reacht
f ,g in 2-dimensional analytic ADS (1) with analytic solution. In this

section, we employ EvoN
f ,g(x, t) to obtain over- and under-approximations of

Reacht
f ,g.

5.1 EFOU Framework

We define over- and under-approximation of set and function.

Definition 5. For two sets S1 and S2, we say S1 is an over- (under-, resp.)
approximation of S2 iff S1 ⊇ (⊆)S2. For two n-dimensional functions f1 (x)
and f2 (x), we say f1 (x) is an over- (under-, resp.) approximation of f2 (x) if
μ(f1 ) ⊇ (⊆)μ(f2 ).

Consider a compact set S ⊆ C−, From Proposition 3, given an arbitrary ε > 0,
for each (x, t) ∈ S there exists 0 ≤ M(x,t) ∈ N such that for all N(x,t) ≥ M(x,t)

we have | EvoN(x,t)

f ,g (x, t) − Evof ,g(x, t) |≤ ε. Since S is compact, we can then
find M = sup(x,t)∈S M(x,t) such that | EvoN

f ,g(x, t) − Evof ,g(x, t) |≤ ε,∀N ≥ M .
Therefore the inequalities

EvoN
f ,g(x, t) − ε ≤ Evof ,g(x, t) ≤ EvoN

f ,g(x, t) + ε (7)

hold over S, yielding the existence of over- and under-approximations of the evo-
lution function bounded by arbitrary precision. But we still need a constructive
criterion to decide on the expansion degree N necessary to reach the precision
ε.

Theorem 3. For ADS (1) and g(x) : Rn → R, if both f(x) and g(x) are ana-
lytic, for any (x, t) ∈ C− and N ∈ N, we have

Evof ,g(x, t) = EvoN
f ,g(x, t) −

∫ t

0

(r − t)N

N !
Mf ,g

N+1 (φ(x,−r))dr. (8)



Safe Over- and Under-Approximation of Reachable Sets for ADS 259

Proof. Similar to Theorem 2, for any N ≥ 1, we have

∂EvoN
f ,g(x, t)
∂x

· f(x) =
N∑

i=0

(−t)i

i!
Mf ,g

i+1 (x)

and
∂EvoN

f ,g(x, t)
∂t

= −
N−1∑

i=0

Mf ,g
i+1 (x)

(−t)i

i!
.

Therefore

∂EvoN
f ,g(x, t)
∂x

· f(x) +
∂EvoN

f ,g(x, t)
∂t

=
(−t)N

N !
Mf ,g

N+1 (x), N ≥ 1. (9)

And it is easy to check that Eq. (9) also holds when N = 0.
Now, for arbitrary N ∈ N and any given x0 ∈ R

n, consider the derivative of
EvoN

f ,g(φ(x0, t), t), we have

dEvoN
f ,g(φ(x0, t), t)

dt
=

∂EvoN
f ,g(y, t)
∂y

|φ(x0,t) · f(φ(x0, t)) +
∂EvoN

f ,g(φ(x0, t), t)
∂t

=
(−t)N

N !
Mf ,g

N+1 (φ(x0, t)).

Thus for any (x0, t) ∈ C+,

EvoN
f ,g(φ(x0, t), t) =EvoN

f ,g(φ(x0, 0), 0) +
∫ t

0

(−s)N

N !
Mf ,g

N+1 (φ(x0, s))ds

=EvoN
f ,g(x0, 0) +

∫ t

0

(r − t)N

N !
Mf ,g

N+1 (φ(x0, t − r))dr

=g(x0) +
∫ t

0

(r − t)N

N !
Mf ,g

N+1 (φ(φ(x0, t),−r))dr

=Evof ,g(φ(x0, t), t) +
∫ t

0

(r − t)N

N !
Mf ,g

N+1 (φ(φ(x0, t),−r))dr.

Therefore we can immediately have that

Evof ,g(x, t) = EvoN
f ,g(x, t) −

∫ t

0

(r − t)N

N !
Mf ,g

N+1 (φ(x,−r))dr,∀(x, t) ∈ C−.

	

We can estimate the value of

∫ t

0
(r−t)N

N ! Mf ,g
N+1 (φ(x,−r))dr in different ways.

The idea is that if we can determine the range of Mf ,g
N+1 (φ(x,−r)) then we can

estimate the integration, as shown in Propositions 4 and 5.

Proposition 4. Given ADS (1), g(x) : R
n → R, degree N and time bound

T , if for a set of states S ⊇ ⋃
t∈[0,T ] Reacht

f ,g and for some M ≥ 0 we have

| Mf ,g
N+1 (x) |≤ N !

TN+1
M
2 ,∀x ∈ S, then EvoN

f ,g(x, t)− Mt
2T (EvoN

f ,g(x, t)+ Mt
2T ) is an

over- (under-, resp.) approximation of Evof ,g(x, t), and the precisions for both
approximations are bounded by Mt

T .



260 M. Li et al.

Proof. From Proposition 2, for all x ∈ μ(Evof ,g(·, t)), an x0 exists such that
x = φ(x0, t). Thus for all r ∈ [0, t], φ(x,−r) = φ(x0, t − r) ∈ Reacht−r

f ,g ⊆
⋃

t∈[0,T ] Reacht
f ,g ⊆ S. Therefore | Mf ,g

N+1 (φ(x,−r)) |≤ M ·N !
2·TN+1 .

Then from Eq. 8,

| Evof ,g(x, t) − EvoN
f ,g(x, t) |=|

∫ t

0

(r − t)N

N !
Mf ,g

N+1 (φ(x,−r))dr |

≤
∫ t

0

| (r − t)N

N !
Mf ,g

N+1 (φ(x,−r)) | dr ≤
∫ t

0

TN

N !
N !

TN+1

M

2
dr =

Mt

2T
.

From the above inequality we can immediately have that EvoN
f ,g(x, t) − Mt

2T

(EvoN
f ,g(x, t)+ Mt

2T ) is an over- (under-, resp.) approximation of Evof ,g(x, t), and

⎧
⎪⎨

⎪⎩

Evof ,g(x, t) − Mt

T
≤ EvoN

f ,g(x, t) − Mt

2T
≤ Evof ,g(x, t)

Evof ,g(x, t) ≤ EvoN
f ,g(x, t) +

Mt

2T
≤ Evof ,g(x, t) +

Mt

T

for all x ∈ μ(Evof ,g(·, t)), which means the precisions of both over and under
approximations are bounded by Mt

T . 	

Proposition 5. Given ADS (1), g(x) : Rn → R, degree N and time bound T ,
if for a set of states S ⊇ ⋃

t∈[0,T ] Reacht
f ,g we have A ≤ Mf ,g

N+1 (x) ≤ B,∀x ∈ S,
then for all t ∈ [0, T ],

1. if N is even, EvoN
f ,g(x, t) + A tN+1

(N+1)! is an over-approximation of Evof ,g(x, t),

and EvoN
f ,g(x, t) + B tN+1

(N+1)! is an under-approximation of Evof ,g(x, t);

2. if N is odd, EvoN
f ,g(x, t) − B tN+1

(N+1)! is an over-approximation of Evof ,g(x, t),

and EvoN
f ,g(x, t) − A tN+1

(N+1)! is an under-approximation of Evof ,g(x, t);

3. the precisions for both over- and under-approximations in 1 and 2 are bounded
by (B − A) tN+1

(N+1)! .

Proof. First we prove 1 and 1 → 3.
For any fixed t, following a similar manner in proof of Proposition 4, we have

that for all r ∈ [0, t] and all x ∈ μ(Evof ,g(·, t)), A ≤ Mf ,g
N+1 (φ(x,−r)) ≤ B.

Now, if N is even, (r − t)N ≤ 0. Thus for all x ∈ μ(Evof ,g(·, t))

B
(r − t)N

N !
≤ (r − t)N

N !
Mf ,g

N+1 (φ(x,−r)) ≤ A
(r − t)N

N !
,

which implies that

−B
tN+1

N + 1
≤

∫ t

0

(r − t)N

N !
Mf ,g

N+1 (φ(x,−r))dr ≤ −A
tN+1

N + 1
.



Safe Over- and Under-Approximation of Reachable Sets for ADS 261

Together with Eq. 8, we have

EvoN
f ,g(x, t) + A

tN+1

(N + 1)!
≤ Evof ,g(x, t) ≤ EvoN

f ,g(x, t) + B
tN+1

(N + 1)!
(10)

for all x ∈ μ(Evof ,g(·, t)), which is the result of 1.
Further, from Eq. 10, we can immediately have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Evof ,g(x, t) − (B − A)
tN+1

(N + 1)!
≤ EvoN

f ,g(x, t) + A
tN+1

(N + 1)!
≤ Evof ,g(x, t)

Evof ,g(x, t) ≤ EvoN
f ,g(x, t) + B

tN+1

(N + 1)!
≤ Evof ,g(x, t) + (B − A)

tN+1

(N + 1)!

for all x ∈ μ(Evof ,g(·, t)), which means that 1 → 3.
In a similar way we can prove 2 and 2 → 3. 	

Propositions 4 and 5 can both be used to generate over- (under-, resp.)

approximations of evolution functions, and consequently also under- (over-,
resp.) approximations of reachable sets. The difference is that Proposition 4
builds first-order approximations over t, while Proposition 5 generates (N+1)’st-
order ones. In fact, if we can estimate the lower and upper bounds of Mf ,g

N (x),
we can build over- and under-approximations with any order over t between 1
and N .

Algorithm 1 provides a framework to simultaneously compute over- and
under-approximations of evolution functions via their t-expansions for given pre-
cision ε. It calls EFOUCore to process the main computation steps. SFinder
is an algorithm to find S in both Propositions 4 and 5. BoundFinder calculates
the minimum(L) and supremum(U) of Mf ,g

N (x) in S. Details of implementation
are given in Sect. 6.

The implementation differences induced by Propositions 4 and 5 can be found
in TermCri and OUBuilder. OUBuilder is to build the term representing
over- and under-approximations except for EvoN

f ,g(x, t). Outputs of OUBuilder
are the terms in over- and under-approximations except the truncation part, and
are generated according to the results of Propositions 4 and 5. For example, To(t)
and Tu(t) are of the form −Mt

2T and Mt
2T via Proposition 4. For Proposition 5 the

construction of To(t) and Tu(t) are similar but more complex since the results
rely on N .

TermCri is to decide whether the current EvoN
f ,g(x, t) can be modified to

approximations satisfying the required precision. For Proposition 4, TermCri
returns True when max(| L |, | U |) ≤ ε·N !

2·TN+1 and False otherwise. For Propo-
sition 5, TermCri returns True when (U − L) ≤ ε·(N+1)!

TN+1 and False otherwise.
Since (U −L) ≤ 2·max(| L |, | U |), we can infer that TermCri instantiated with
Proposition 5 employs a more relaxed criterion than the one with Proposition 4.
Therefore it may generate EvoN

f ,g(x, t) with smaller N and find approximations
of required precision faster.



262 M. Li et al.

5.2 Improvements of EFOU Framework

EFOU framework can be improved in different ways to increase its efficiency.
The improved framework EFOU+ is shown in Algorithm 3, and its improve-
ments are explained in detail as follows.

First, in EFOU+, the termination of the algorithm is guaranteed. EFOU
faces the problem that if T is too large to maintain EvoN

f ,g(x, t) converge. In
a single iteration, since we limit the maximal expansion time Nmax and the
threshold of time interval Tmin, the expansion will terminate if the degree of t
is greater than Nmax. If expansion of degree Nmax is not enough, EFOU+ uses
heuristic strategy to shrink ΔT and try to find solution within corresponding
new time interval. Thus all computation is guaranteed to be limited in C−.

Different from EFOU, EFOU+ divides the time interval [0, T ] into K
segments and computes piecewise over- and under-approximations of the evo-
lution function. Such division empirically helps EFOU+ to find approxima-
tions of the desired approximation accuracy upon relatively smaller expansion
degrees. The outputs of EFOU+ are built according to the results of all time
intervals, i.e. for t ≤ T

′
and 0 ≤ i ≤ K, Po(x, t) = P i

o(x, t − T−(i)), and
Pu(x, t) = P i

o(x, t − T−(i)), for t ∈ [T−(i),T+(i)], where T−(i) and T+(i) are
the bound of time interval in the i-th iteration of expansion.

Furthermore, the function Simp is called to reduce the scale of expansions.
The idea is to separate the command of precision into two parts. One part of
precision is designated to limit the error of EvoN

f ,Init(x, t), and the remaining
should be satisfied when reducing the size of EvoN

f ,Init(x, t). The parameter r ∈
(0, 1] is used to control the bound of precision pertaining to the first part.

Another property of the piecewise truncation is used in Algorithm 3, that
is, since Tailo + Tail

′
o(t) and Tailu + Tail

′
u(t) are independent on x, only the

terms in Tr(x, t) (= EvoN
f ,Init(x, t) in each iteration i) affect the performance of

TermCri in the next iteration. Therefore the over- and under-approximations
can be generated in a single sweep. For the same reason, Simp for both over- and
under-approximations actually returns the same result and can be called only
once for simplification for both P i

o(x, t) and P i
u(x, t). Besides, since EFOU+

separates the time interval, Simp can reduce a moderate amount of terms in
Evoi

f ,Init(x, t) to simplify the computation if K is large.

6 Examples and Discussions

6.1 Examples

In the sequel we present selected examples of polynomial systems to demonstrate
the performance of EFOU+. Please note that the EFOU+ framework solves
not only polynomial systems, but actually any ADS with analytic f(x) and g(x).

In the examples we show the Simp method we use, however, it is tailored
towards polynomial systems only. For each term in Func(x, t), i.e., the first
input of Simp, we rank the monomials with degrees in descending order, find
an enclosure for each monomial with an interval in S with interval algorithm,



Safe Over- and Under-Approximation of Reachable Sets for ADS 263

Algorithm 1. EFOU Framework
Input: f(x), g(x), T, ε, K, r;
Output: Po(x, t),Pu(x, t).
1: S := SFinder(f , g, T );
2: [Trunc(x, t),Tailo(t),Tailu(t)] := EFOUCore(f(x), g(x), S, T, ε);
3: return Trunc(x, t) + Tailo(t),Trunc(x, t) + Tailu(t).

Algorithm 2. EFOUCore
Input: f(x), g(x), S, T, ε;
Output: EvoN

f ,g(x, t),Tailo(t),Tailu(t).

1: APPR(x, t) := g(x);
2: N := 0;
3: M (x) := ∂g(x)

∂x
· f(x);

4: [L, U ] := BoundFinder(M (x), S);
5: while not TermCri(L, U, T, N, ε) do

6: APPR(x, t) := APPR(x, t) + (−t)N+1

(N+1)!
M (x);

7: N := N + 1;
8: M (x) := ∂M (x)

∂x
· f(x);

9: [L, U ] := BoundFinder(M (x), R);
10: [To(t),Tu(t)] := OUBuilder(L, U, N);
11: return APPR(x, t),To(t),Tu(t).

Algorithm 3. EFOU+ Framework
Input: f(x), g(x), T, Tmin, Nmax, ε, K, r;

Output: Po(x, t),Pu(x, t), T
′
.

1: Initialize ΔT := T/K, Δε := ε/K, Init(x) := g(x), Tailo := 0, Tailu := 0;
2: i := 1;
3: while i ≤ K do
4: S := SFinder(f(x), Init(x), ΔT );

5: [Tr(x, t),Tail
′
o(t),Tail

′
u(t)] := EFOUCore+(f(x), Init(x), S, ΔT, Nmax, rΔε);

6: while Tr(x, t) = 0 and ΔT
2

≥ Tmin do
7: Set ΔT := ΔT

2
, compute corresponding K and Δε;

8: [Tr(x, t),Tail
′
o(t),Tail

′
u(t)] := EFOUCore+(f(x), Init(x), S, ΔT, Nmax, rΔε);

9: if Tr(x, t) = 0 and ΔT
2

≤ Tmin then
10: Construct Po(x, t) and Pu(x, t) from all P j

o(x, t) and P j
u(x, t), 1 ≤ j ≤ i;

11: Compute the corresponding time T
′
;

12: return Po(x, t),Pu(x, t), T
′
.

13: Tr(x, t) := Simp(Tr(x, t), S, ΔT, (1−r)Δε
2

);

14: P i
o(x, t) := Tr(x, t) + Tailo − (1−r)Δε

2
+ Tail

′
o(t);

15: P i
u(x, t) := Tr(x, t) + Tailu + (1−r)Δε

2
+ Tail

′
u(t);

16: Tailo := Tailo + Tail
′
o(ΔT );

17: Tailu := Tailu + Tail
′
u(ΔT );

18: Init(x) := Tr(x, ΔT ) and i := i + 1;
19: Construct Po(x, t) and Pu(x, t) from all P i

o(x, t) and P i
u(x, t);

20: return Po(x, t),Pu(x, t), T.



264 M. Li et al.

Algorithm 4. Simp
Input: Func(x, t), S, T, ε;
Output: SimpFunc(x, t).

1: Gather some monomials in Func(x, t) whose sum will not exceed ε over S × [0, T ]
and restore the sum in R(x, t);

2: SimpFunc(x, t) := Func(x, t) − R(x, t);
3: return SimpFunc(x, t).

Algorithm 5. EFOUCore+

Input: f(x), g(x), S, T, Nmax, ε;
Output: EvoN

f ,g(x, t),Tailo(t),Tailu(t).

1: Initialize APPR(x, t) := g(x), N := 0 and M (x) := ∂g(x)
∂x

· f(x);
2: [L, U ] := BoundFinder(M (x), S);
3: while not TermCri(L, U, T, N, ε) and N ≤ Nmax do

4: APPR(x, t) := APPR(x, t) + (−t)N+1

(N+1)!
M (x);

5: N := N + 1;
6: M (x) := ∂M (x)

∂x
· f(x);

7: [L, U ] := BoundFinder(M (x), S);
8: [To(t),Tu(t)] := OUBuilder(L, U, N);
9: if not TermCri(L, U, T, N − 1, ε) then

10: return 0,To(t),Tu(t);
11: return APPR(x, t),To(t),Tu(t).

and compute the length for each interval. Then, with the same order, we gather
the terms until the sum of lengths of the collected terms exceeds the bound.

In SFinder, we here use the same strategy as VNODE-LP [8] to compute
S. In TermCri, we use a Matlab tool DIRECT [20] to compute L and U .
DIRECT is a global extremum optimizer developed by Donald R. Jones. It can be
utilized to solve optimization problem with constraints and rectangular bounds
on variables for systems with Lipschitz constraints. Here we use its function to
compute global minima and maxima of functions within rectangular bounds,
and output the results as L and U respectively.

Example 1. Consider the Van der Pol system

f(x, y) =

⎧
⎨

⎩

ẋ = y

ẏ =
1
2
(1 − x2)y − x

and initial states μ(g(x, y)) where g(x, y) = (x+1)2+(y−3)2−0.12. We compute
an over- and an under-approximation of reachable sets Reacht

f ,g with t ∈ [0, 1].
The initial length of the time interval is 0.05 and the initial precision for each
computation is 5 × 10−4. We use Nmax = 10 and Tmin = 0.01. The results
are shown in Fig. 1. The blue/red/black lines represent over-/under-/simulated
approximations, resp., and the simulation results are generated by RK4 . The



Safe Over- and Under-Approximation of Reachable Sets for ADS 265

Fig. 1. Results for Example 1. (Color figure online)

left sub-figure in Fig. 1 shows the results for t = 0.1k, k = 1, ..., 10, and the right
one shows a zoom-in view for t = 1.

Example 2. We consider the ADS

f(x, y) =

⎧
⎪⎨

⎪⎩

ẋ =
1
2
xy − 3y

ẏ = −2
5
x2 + 2y

and initial states μ(g(x, y)) where g(x, y) = (x−1)2+(y−1)2−0.22. We compute
an over- and an under-approximation of reachable sets Reacht

f ,g with t ∈ [0, 0.9].
The initial length of the time interval is 5 × 10−4 and the initial precision for
each computation is 2 × 10−5. We use Nmax = 10 and Tmin = 10−4. The results
are shown in Fig. 2. The blue/red/black lines represent over-/under-/simulated
approximations, resp., and the simulation results are generated by RK4 . The
left sub-figure in Fig. 2 shows the results for t = 0.1k, k = 1, ..., 9, and the right
one shows a zoom-in view for t = 0.9.

Example 3. We consider the ADS in [36]

f(x, y) =

⎧
⎨

⎩

ẋ = y

ẏ =
x

5
+ y − x2y

5

and initial states μ(g(x, y)) where g(x, y) = x2 + y2 − 0.22. We compute an
over- and an under-approximation of reachable sets Reacht

f ,g with t ∈ [0, 2]. The
Initial length of the time interval is 5 × 10−3 and the initial precision for each
computation is 5 × 10−3. We use Nmax = 10 and Tmin = 10−3. The results
are shown in Fig. 3. The blue/red/black lines represent over-/under-/simulated
approximations, resp., and the simulation results are generated by RK4 . The
left sub-figure in Fig. 3 shows the results for t = 1 and t = 2, and the right one
shows a zoom-in view of top-right part of the left sub-figure for t = 2.



266 M. Li et al.

Fig. 2. Results for Example 2. (Color figure online)

Fig. 3. Results for Example 3. (Color figure online)

6.2 Discussions

In the examples, we can see that the final results are close to the real reachable
sets indicated by simulation sample. In all examples we have set the precisions
rather strict, nevertheless EFOU+ automatically computed matching results.

However, EFOU+ does not scale well for nonlinear polynomial systems fea-
turing high polynomial degrees. When the t-expansion continues, the number of
terms in Mf ,g

i (x) increases accordingly. DIRECT therefore needs correspond-
ingly more time and computational resource to find solutions of the desired
accuracy.

7 Conclusion

In this paper, we have exposed a novel method based on the well-known
Hamilton-Jacobi framework. Our method is to compute over- and under-
approximations of reachable sets for autonomous dynamical systems. By not



Safe Over- and Under-Approximation of Reachable Sets for ADS 267

relying on any manually chosen templates and instead fitting a generally con-
vergent scheme, the method constitutes considerable progress with regard to
automatic construction of over- and under-approximations of the reachable state-
space up to any designated precision. Such general convergence is obtained based
on adequate truncations of the expansion of the evolution function. We have
confirmed the efficacy of our method as well as the precision of the enclosures
obtained by comparing our benchmark results to simulations.

For future work, we will extend our current implementation of the EFOU+

framework by generalizing it to non-polynomial ADS and integrating other effi-
cient global extremum optimizers. Also, we will explore other applications of
t-expansions of the evolution function in the fields of system falsification, con-
trol synthesis, and oscillation exclusion of ADS.

References

1. Althoff, M.: Reachability analysis of nonlinear systems using conservative polyno-
mialization and non-convex sets. In: Belta, C., Ivancic, F. (eds.) Proceedings of
the 16th International Conference on Hybrid Systems: Computation and Control,
HSCC 2013, Philadelphia, PA, USA, 8–11 April 2013, pp. 173–182. ACM (2013)

2. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems
with uncertain parameters using conservative linearization. In: Proceedings of the
47th IEEE Conference on Decision and Control, CDC 2008, Cancún, México, 9–11
December 2008, pp. 4042–4048. IEEE (2008)

3. Anai, H., Weispfenning, V.: Reach set computations using real quantifier elim-
ination. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001.
LNCS, vol. 2034, pp. 63–76. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45351-2 9

4. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: Proceedings of the 33rd IEEE Real-Time Systems
Symposium, RTSS 2012, San Juan, PR, USA, 4–7 December 2012, pp. 183–192.
IEEE Computer Society (2012)

5. Chen, X., Sankaranarayanan, S., Ábrahám, E.: Under-approximate flowpipes for
non-linear continuous systems. In: Formal Methods in Computer-Aided Design,
FMCAD 2014, Lausanne, Switzerland, 21–24 October 2014, pp. 59–66. IEEE
(2014)

6. Dreossi, T., Dang, T., Piazza, C.: Parallelotope bundles for polynomial reacha-
bility. In: Abate, A., Fainekos, G.E. (eds.) Proceedings of the 19th International
Conference on Hybrid Systems: Computation and Control, HSCC 2016, Vienna,
Austria, 12–14 April 2016, pp. 297–306. ACM (2016)

7. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from
executions. In: Proceedings of the International Conference on Embedded Software,
EMSOFT 2013, Montreal, QC, Canada, 29 September–4 October 2013, pp. 26:1–
26:10. IEEE (2013)

8. Eggers, A., Ramdani, N., Nedialkov, N., Fränzle, M.: Improving SAT modulo ODE
for hybrid systems analysis by combining different enclosure methods. In: Barthe,
G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 172–187.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24690-6 13

https://doi.org/10.1007/3-540-45351-2_9
https://doi.org/10.1007/3-540-45351-2_9
https://doi.org/10.1007/978-3-642-24690-6_13


268 M. Li et al.

9. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachabil-
ity analysis for nonlinear hybrid models with C2E2. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9779, pp. 531–538. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 29

10. Frehse, G., Bogomolov, S., Greitschus, M., Strump, T., Podelski, A.: Eliminating
spurious transitions in reachability with support functions. In: Girard, A., Sankara-
narayanan, S. (eds.) Proceedings of the 18th International Conference on Hybrid
Systems: Computation and Control, HSCC 2015, Seattle, WA, USA, 14–16 April
2015, pp. 149–158. ACM (2015)

11. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

12. Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering
in space-time. In: Proceedings of the 16th International Conference on Hybrid
Systems: Computation and Control, HSCC 2013, pp. 203–212. ACM, New York
(2013)

13. Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets of
linear time-invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.)
HSCC 2006. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006). https://
doi.org/10.1007/11730637 21

14. Girard, A., Pappas, G.J.: Verification using simulation. In: Hespanha, J.P., Tiwari,
A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 272–286. Springer, Heidelberg (2006).
https://doi.org/10.1007/11730637 22

15. Goubault, E., Mullier, O., Putot, S., Kieffer, M.: Inner approximated reachabil-
ity analysis. In: Fränzle, M., Lygeros, J. (eds.) 17th International Conference on
Hybrid Systems: Computation and Control (part of CPS Week), HSCC 2014,
Berlin, Germany, 15–17 April 2014, pp. 163–172. ACM (2014)

16. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
540–554. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 40

17. Hamadeh, A.O., Goncalves, J.M.: Reachability analysis of continuous-time piece-
wise affine systems. Automatica 44(12), 3189–3194 (2008)

18. Huang, Z., Mitra, S.: Computing bounded reach sets from sampled simulation
traces. In: Dang, T., Mitchell, I.M. (eds.) Hybrid Systems: Computation and Con-
trol (part of CPS Week 2012), HSCC 2012, Beijing, China, 17–19 April 2012, pp.
291–294. ACM (2012)

19. Isidori, A., Byrnes, C.I.: Output regulation of nonlinear systems. IEEE Trans.
Autom. Control 35(2), 131–140 (1990)

20. Jones, D.R.: Direct global optimization algorithm. In: Floudas, C.A., Pardalos,
P.M. (eds.) Encyclopedia of Optimization, 2nd edn, pp. 725–735. Springer, Boston
(2009). https://doi.org/10.1007/978-0-387-74759-0

21. Korda, M., Henrion, D., Jones, C.N.: Inner approximations of the region of attrac-
tion for polynomial dynamical systems. In: Tarbouriech, S., Krstic, M. (eds.) 9th
IFAC Symposium on Nonlinear Control Systems, NOLCOS 2013, Toulouse, France,
4–6 September 2013, pp. 534–539. International Federation of Automatic Control
(2013)

22. Kurzhanski, A.B., Varaiya, P.: On ellipsoidal techniques for reachability analysis.
Part II: internal approximations box-valued constraints. Optim. Methods Softw.
17(2), 207–237 (2002)

https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/11730637_21
https://doi.org/10.1007/11730637_21
https://doi.org/10.1007/11730637_22
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-0-387-74759-0


Safe Over- and Under-Approximation of Reachable Sets for ADS 269

23. Lal, R., Prabhakar, P.: Bounded error flowpipe computation of parameterized lin-
ear systems. In: Girault, A., Guan, N. (eds.) 2015 International Conference on
Embedded Software, EMSOFT 2015, Amsterdam, Netherlands, 4–9 October 2015,
pp. 237–246. IEEE (2015)

24. Lhommeau, M., Jaulin, L., Hardouin, L.: Inner and outer approximation of cap-
ture basin using interval analysis. In: Zaytoon, J., Ferrier, J., Andrade-Cetto, J.,
Filipe, J. (eds.) Proceedings of the Fourth International Conference on Informatics
in Control, Automation and Robotics, Signal Processing, Systems Modeling and
Control, ICINCO 2007, Angers, France, 9–12 May 2007, pp. 5–9. INSTICC Press
(2007)

25. Maidens, J.N., Kaynama, S., Mitchell, I.M., Oishi, M.M.K., Dumont, G.A.:
Lagrangian methods for approximating the viability kernel in high-dimensional
systems. Automatica 49(7), 2017–2029 (2013)

26. Mitchell, I.M.: The flexible, extensible and efficient toolbox of level set methods.
J. Sci. Comput. 35(2), 300–329 (2008)

27. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of obsta-
cle avoidance and navigation of ground robots. CoRR, abs/1605.00604 (2016)

28. Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas,
G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: Johansson, K.H., Yi, W. (eds.) Proceedings of the 13th ACM
International Conference on Hybrid Systems: Computation and Control, HSCC
2010, Stockholm, Sweden, 12–15 April 2010, pp. 211–220. ACM (2010)

29. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: from verification to fal-
sification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
463–476. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-
3 48

30. Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-
based CEGAR for rectangular hybrid systems. Formal Methods Syst. Des. 46(2),
105–134 (2015)

31. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 32

32. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. ACM Trans. Embedded Comput. Syst.
6(1), 1–23 (2007). Article No. 8

33. Sankaranarayanan, S.: Automatic abstraction of non-linear systems using change of
bases transformations. In: Caccamo, M., Frazzoli, E., Grosu, R. (eds.) Proceedings
of the 14th ACM International Conference on Hybrid Systems: Computation and
Control, HSCC 2011, Chicago, IL, USA, 12–14 April 2011, pp. 143–152. ACM
(2011)

34. Tiwari, A., Khanna, G.: Nonlinear systems: approximating reach sets. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600–614. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24743-2 40

35. Wang, T.C., Lall, S., West, M.: Polynomial level-set method for polynomial system
reachable set estimation. IEEE Trans. Autom. Control 58(10), 2508–2521 (2013)

https://doi.org/10.1007/978-3-540-73368-3_48
https://doi.org/10.1007/978-3-540-73368-3_48
https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1007/978-3-540-24743-2_40


270 M. Li et al.

36. Xue, B., Fränzle, M., Zhan, N.: Under-approximating reach sets for polynomial
continuous systems. In: Proceedings of the 21st International Conference on Hybrid
Systems: Computation and Control (Part of CPS Week), HSCC 2018, pp. 51–60.
ACM, New York (2018)

37. Xue, B., She, Z., Easwaran, A.: Under-approximating backward reachable sets by
polytopes. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
457–476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 25

https://doi.org/10.1007/978-3-319-41528-4_25


Tropical Abstractions of Max-Plus Linear
Systems

Muhammad Syifa’ul Mufid1(B), Dieky Adzkiya2, and Alessandro Abate1

1 Department of Computer Science, University of Oxford, Oxford, UK
{muhammad.syifaul.mufid,alessandro.abate}@cs.ox.ac.uk

2 Department of Mathematics, Institut Teknologi Sepuluh Nopember,
Surabaya, Indonesia

dieky@matematika.its.ac.id

Abstract. This paper describes the development of finite abstractions
of Max-Plus-Linear (MPL) systems using tropical operations. The idea
of tropical abstraction is inspired by the fact that an MPL system is a
discrete-event model updating its state with operations in the tropical
algebra. The abstract model is a finite-state transition system: we show
that the abstract states can be generated by operations on the tropical
algebra, and that the generation of transitions can be established by
tropical multiplications of matrices. The complexity of the algorithms
based on tropical algebra is discussed and their performance is tested
on a numerical benchmark against an existing alternative abstraction
approach.

Keywords: MPL system · Tropical algebra · Definite form
Difference-bound matrix · Abstraction · Reachability

1 Introduction

Tropical mathematics has been a rapidly growing subject since it was firstly
introduced [15]. It has branches in mathematical fields such as tropical geometry
[11] and tropical algebra [15]. The latter denotes an algebraic structure that
uses max or min for addition and + for multiplication, respectively - hence, it
is well known as max-plus or min-plus algebra. In this paper, we use the former
operation to define the tropical algebra.

A class of discrete-event system (DES) based on tropical algebra is the Max-
Plus-Linear (MPL) one [5]. Models of MPL systems involve tropical operations,
namely max and +. The state space of these models represents the timing of
events that are synchronised over the max-plus algebra. This means that the
next event will occur right after the last of the previous events has finished.

The connections between max-plus algebra and timed systems have been
explored in the recent past. First, the dynamics of timed event graphs (a special
case of timed Petri nets where all places have exactly one upstream and one

c© Springer Nature Switzerland AG 2018
D. N. Jansen and P. Prabhakar (Eds.): FORMATS 2018, LNCS 11022, pp. 271–287, 2018.
https://doi.org/10.1007/978-3-030-00151-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00151-3_16&domain=pdf


272 M. S. Mufid et al.

downstream transition) can be expressed via MPL systems [5,10]. Second, max-
plus polyhedra can be used as data structures in reachability analysis of timed
automata [12]: such data structures display a similarity with Difference-Bound
Matrices (DBMs) [7].

Finite abstractions of MPL system have been firstly introduced in [3]. These
abstraction procedures start by transforming a given MPL system into a Piece-
Wise Affine (PWA) model [9]. The PWA model is characterised by several
domains (PWA regions) and the corresponding affine dynamics. The resulting
abstract states are the partitions corresponding to the PWA regions. Finally, the
transition relation between pairs of abstract states depends on the trajectory of
the original MPL system. This abstraction technique enables one to perform
model checking over an MPL system; one of the applications is safety analysis
[3]. Interested readers are referred to [1,3,4] and the VeriSiMPL toolbox [2].

This paper introduces the idea of Tropical Abstractions of MPL systems.
The approach is inspired by the fact that an MPL system is a DES that is
natively updated via tropical operations. We will show that the abstraction of
MPL systems can be established by tropical operations and with algorithms
exclusively based on tropical algebra. We argue by experiments that this has
clear computational benefits on existing abstraction techniques.

The paper is outlined as follows. Section 2 is divided into three parts. The
first part explains the basic of MPL systems including the properties of its state
matrix. We introduce the notion of region matrix and of its conjugate, which
play a significant role in the abstraction procedures. The notion of definite form
and its generalisation are explained in the second part. Finally, we introduce a
new definition of DBM as a tropical matrix.

Equipped with these notions, all algorithms of the tropical abstraction pro-
cedure are explained in Sect. 3, which contains the novel contributions of this
paper. The comparison of the algorithms performance against the state of the
art is presented in Sect. 4. The paper is concluded with Sect. 5. The proofs of
the propositions are contained in an extended version of this paper [13].

2 Models and Preliminaries

2.1 Max-Plus-Linear Systems

In tropical algebra, Rmax is defined as R∪ {−∞}. This set is equipped with two
binary operations, ⊕ and ⊗, where

a ⊕ b := max{a, b} and a ⊗ b := a + b,

for all a, b ∈ Rmax. The algebraic structure (Rmax,⊕,⊗) is a semiring with
ε := −∞ and e := 0 as the null and unit element, respectively [5].

The notation R
m×n
max represents the set of m × n tropical matrices whose

elements are in Rmax. Tropical operations can be extended to matrices as follows.
If A,B ∈ R

m×n
max , C ∈ R

n×p
max then

[A ⊕ B](i, j) = A(i, j) ⊕ B(i, j) and [A ⊗ C](i, j) =
n⊕

k=1

A(i, k) ⊗ C(k, j)



Tropical Abstractions of Max-Plus Linear Systems 273

for all i, j in the corresponding dimension.
Given a natural number m, the tropical power of A ∈ R

n×n
max is denoted by

A⊗m and corresponds to A ⊗ . . . ⊗ A (m times). As we find in standard algebra,
the zero power A⊗0 is an n × n identity matrix In, where all diagonals and
non-diagonals are e and ε, respectively.

An (autonomous) MPL system is defined as

x(k + 1) = A ⊗ x(k), (1)

where A ∈ R
n×n
max is the matrix system and x(k) = [x1(k) . . . xn(k)]� is the state

variables [5]. Traditionally, x represents the time stamps of the discrete-events,
while k corresponds to an event counter.

Definition 1 (Precedence Graph [5]). The precedence graph of A, denoted
by G(A), is a weighted directed graph with nodes 1, . . . , n and an edge from j to
i with weight A(i, j) if A(i, j) �= ε.

Definition 2 (Regular (Row-Finite) Matrix [10]). A matrix A ∈ R
n×n
max is

called regular (or row-finite) if there is at least one finite element in each row.

The following notations deal with a row-finite matrix A ∈ R
n×n
max . The coeffi-

cient g = (g1, . . . , gn) ∈ {1, . . . , n}n is called finite coefficient iff A(i, gi) �= ε for
all 1 ≤ i ≤ n. We define the region matrix of A w.r.t. the finite coefficient g as

Ag(i, j) =
{

A(i, j), if gi = j
ε, otherwise. (2)

One can say that Ag is a matrix that keeps the finite elements of A indexed by
g. The conjugate of A is Ac, where

Ac(i, j) =
{−A(j, i), if A(j, i) �= ε

ε, otherwise. (3)

2.2 Definite Forms of Tropical Matrices

The concept of definite form over a tropical matrix was firstly introduced in [17].
Consider a given A ∈ R

n×n
max and let α be one of the maximal permutations1 of

A. The definite form of A w.r.t. α is Aα, where

Aα(i, j) = A(i, α(j)) ⊗ A(j, α(j))⊗−1 = A(i, α(j)) − A(j, α(j)). (4)

In this paper, we allow for a generalisation of the notion of definite form.
We generate the definite form from the finite coefficients introduced above.
Notice that the maximal permutation is a special case of finite coefficient
g = (g1, . . . , gn) when all gi are different. Intuitively, the definite form over a
finite coefficient g is established by; (1) column arrangement of A using g i.e.
1 A permutation α is called maximal if

⊗n
i=1 A(i, α(i)) = per(A), where per(A) is the

permanent of A [6,17].



274 M. S. Mufid et al.

B(·, j) = A(·, gj) and then (2) subtracting each column by the corresponding
diagonal element i.e. Ag(·, j) = B(·, j) − B(j, j) for all j ∈ {1, . . . , n}.

Furthermore, we define two types of definite forms. We call the definite form
introduced in [17] to be a column-definite form. We define as an additional form
the row-definite form gA. The latter form is similar to the former, except that
now the row arrangement is used, namely B(gi, ·) = A(i, ·) for all i ∈ {1, . . . , n}.
Notice that, in a row arrangement, one could find two or more different rows of
A are moved into the same row at B. As a consequence, some rows of B remain
empty. In these cases, ε is used to fill the empty rows. For rows with multiple
entries, we take the maximum point-wise after subtracting by the corresponding
diagonal element.

Example 1. Consider a tropical matrix

A =

⎡

⎣
ε 1 3
5 ε 4
7 8 ε

⎤

⎦ .

and a finite coefficient g = (2, 1, 1). The row-definite form for g is

A =

⎡

⎣
ε 1 3
5 ε 4
7 8 ε

⎤

⎦ ���

⎡

⎢⎢⎣

5 ε 4
7 8 ε
ε 1 3
ε ε ε

⎤

⎥⎥⎦ ���

⎡

⎢⎢⎣

0 ε − 1
0 1 ε
ε 0 2
ε ε ε

⎤

⎥⎥⎦ ��� gA =

⎡

⎣
0 1 − 1
ε 0 2
ε ε ε

⎤

⎦ .

On the other hand, the column-definite form w.r.t. g is

A =

⎡

⎣
ε 1 3
5 ε 4
7 8 ε

⎤

⎦ ���

⎡

⎣
1 ε ε
ε 5 5
8 7 7

⎤

⎦ ��� Ag =

⎡

⎣
0 ε ε
ε 0 − 2
7 2 0

⎤

⎦ .

Notice that, the elements at the 3rd row of gA are all ε. �

The generation of definite forms is formulated as tropical operations as follows:

Proposition 1. The column-definite and row-definite form of A ∈ R
n×n
max w.r.t.

a finite coefficient g are Ag = A ⊗ Ac
g and gA = Ac

g ⊗ A, respectively. �

2.3 Difference Bound Matrices as Tropical Matrices

Definition 3 (Difference Bound Matrices). A DBM in R
n is the intersec-

tion of sets defined by xi −xj ∼i,j di,j, where ∼i,j∈ {>,≥} and di,j ∈ R∪{−∞}
for 0 ≤ i, j ≤ n. The variable x0 is set to be equal to 0. �

The dummy variable x0 is used to allow for the single-variable relation xi ∼ c,
which can be written as xi−x0 ∼ c. Definition 3 slightly differs from [7] as we use
operators {>,≥} instead of {<,≤}. The reason for this alteration is to transfer
DBMs into the tropical domain.



Tropical Abstractions of Max-Plus Linear Systems 275

A DBM in R
n can be expressed as a pair of matrices (D,S). The element

D(i, j) stores the bound variable di,j , while S represents the sign matrix of the
operator i.e. S(i, j) = 1 if ∼i,j = ≥ and 0 otherwise. In case of i = j, it is more
convenient to put D(i, i) = 0 and S(i, i) = 1, as it corresponds to xi − xi ≥ 0.

Under Definition 3, each DBM D in R
n is an (n + 1)-dimensional tropical

matrix. Throughout this paper, we may not include the sign matrix whenever
recalling a DBM. Operations and properties in tropical algebra can be used for
DBM operations such as intersection, computation of the canonical-form, and
emptiness checking. Such DBM operations are key for developing abstraction
procedures.

Proposition 2. The intersection of DBM D1 and D2 is equal to D1 ⊕ D2. �

The sign matrix for D1 ⊕ D2 is determined separately as it depends on the
operator of the tighter bound. More precisely, suppose that S1, S2 and S are the
sign matrices of D1,D2 and of D1 ⊕ D2 respectively, then

S(i, j) =

⎧
⎨

⎩

S1(i, j), if D1(i, j) > D2(i, j)
S2(i, j), if D1(i, j) < D2(i, j)
min{S1(i, j), S2(i, j)}, if D1(i, j) = D2(i, j).

Any DBM admits a graphical representation, the potential graph, by inter-
preting the DBM as a weighted directed graph [14]. Because each DBM is also
a tropical matrix, the potential graph of D can be viewed as G(D).

The canonical-form of a DBM D, denoted as cf(D), is a DBM with the tight-
est possible bounds [7]. The advantage of the canonical-form representation is
that emptiness checking can be evaluated very efficiently. Indeed, for a canonical
DBM (D,S), if there exist 0 ≤ i ≤ n such that D(i, i) > 0 or S(i, i) = 0 then the
DBM corresponds to an empty set. Computing cf(D) is done by the all-pairs
shortest path (APSP) problem over the corresponding potential graph [7,14].
(As we alter the definition of the DBM, it is now equal to all-pairs longest path
(APLP) problem). One of the prominent algorithms is Floyd-Warshall [8] which
has a cubic complexity w.r.t. its dimension.

On the other hand, in tropical algebra sense, [D⊗m](i, j) corresponds to the
maximal total weights of a path with length m from j to i in G(D). Furthermore,
[
⊕n+1

m=0 D⊗m](i, j) is equal to the maximal total weights of a path from j to
i. Thus,

⊕n+1
m=0 D⊗m is indeed the solution of APLP problem. Proposition 3

provides an alternative computation of the canonical form of a DBM D based
on tropical algebra. Proposition 4 relates non-empty canonical DBMs with the
notion of definite matrix. A tropical matrix A is called definite if per(A) = 0
and all diagonal elements of A are zero [6].

Proposition 3. Given a DBM D, the canonical form of D is cf(D) =⊕n+1
m=0 D⊗m, where n is the number of variables excluding x0. �

Proposition 4. Suppose D is a canonical DBM. If D is not empty then it is
definite. �



276 M. S. Mufid et al.

3 MPL Abstractions Using Tropical Operations

3.1 Related Work

The notion of abstraction of an MPL system has been first discussed in [3].
The procedure starts by transforming the MPL system characterised by A ∈
R

n×n
max into a PWA system [3, Algorithm 2], and then considering the partitions

associated to the obtained PWA system [3, Algorithm 6]. The abstract states
associated to the partitions are represented by DBMs. The transitions are then
generated using one-step forward-reachability analysis [3]: first, the image of each
abstract state w.r.t. the MPL system is computed; then, each image is intersected
with partitions associated to other abstract states; finally, transition relations
are defined for each non-empty intersection. This procedure is summarised in [3,
Algorithm 7].

The computation of image and of inverse image of a DBM is described in
[1]. These computations are used to perform forward and backward reachability
analysis, respectively. The worst-case complexity of both procedures is O(n3),
where n is the number of variables in D excluding x0. A more detailed explana-
tion about image and inverse image computation of a DBM is in Sect. 3.3.

3.2 Generation of the Abstract States

We begin by recalling the PWA representation of an MPL system characterised
by a row-finite matrix A ∈ R

n×n
max . It is shown in [9] that each MPL system can

be expressed as a PWA system. The PWA system comprises of convex domains
(or PWA regions) and has correspondingly affine dynamics. The PWA regions
are generated from the coefficient g = (g1, . . . , gn) ∈ {1, . . . , n}n. As shown in
[3], the PWA region corresponding to coefficient g is

Rg =
n⋂

i=1

n⋂

j=1

{x ∈ R
n|xgi

− xj ≥ A(i, j) − A(i, gi)} . (5)

Notice that, if g is not a finite coefficient, then Rg is empty. However, a finite
coefficient might lead to an empty set. Recall that the DBM Rg in (5) is not
always in canonical form.

Definition 4 (Adjacent Regions [3, Definition 3.10]). Two non-empty
regions generated by (5) Rg and Rg′ are called adjacent, denoted by Rg > Rg′ ,
if there exists a single i ∈ {1, . . . , n} such that gi > g′

i and gj = g′
j for each

j �= i. �

The affine dynamic of a non-empty Rg is

xi(k + 1) = xgi
(k) + A(i, gi), i = 1, . . . , n. (6)

Notice that Eq. (6) can be expressed as x(k + 1) = Ag ⊗ x(k), where Ag is a
region matrix that corresponds to a finite coefficient g. As mentioned before, a



Tropical Abstractions of Max-Plus Linear Systems 277

PWA region Rg is also a DBM. The DBM Rg has no dummy variable x0. For
simplicity, we are allowed to consider Rg as a matrix, that is Rg ∈ R

n×n
max . We

show that Rg is related to the row-definite form w.r.t. g.

Proposition 5. For each finite coefficient g, Rg = gA ⊕ In. �

Algorithm 1 provides a procedure to generate the PWA system from a row-
finite A ∈ R

n×n
max . It consists of: (1) generating region matrices (line 3) and

their conjugates (line 4), (2) computing the row-definite form (line 5), and (3)
emptiness checking of DBM Rg (lines 6–7). The first two steps are based on
tropical operations while the last one is using the Floyd-Warshall algorithm.

Algorithm 1. Generation of the PWA system using tropical operations
Input : A ∈ R

n×n
max , a row-finite tropical matrix

Output: R,A, a PWA system over R
n

where R is a set of regions and A represent a set of affine
dynamics

1 for g ∈ {1, . . . , n}n do
2 if g is a finite coefficient then
3 generate Ag according to (2)
4 generate Ac

g from Ag according to (3)
5 Rg := (Ac

g ⊗ A) ⊕ In

6 Rg := cf(Rg)
7 if Rg is not empty then
8 R := R ∪ {Rg},A := A ∪ {Ag}
9 end

10 end
11 end

The complexity of Algorithm 1 depends on line 6; that is O(n3). The worst-
case complexity of Algorithm 1 is O(nn+3) because there are nn possibilities at
line 1. However, we do not expect to incur this worst-case complexity, especially
when a row-finite A has several ε elements in each row.

In [3], the abstract states are generated via refinement of PWA regions. Notice
that, for each pair of adjacent regions Rg and Rg′ , Rg ∩Rg′ �= ∅. The intersection
of adjacent regions is removed from the region with the lower index. Mathemat-
ically, if Rg > Rg′ then Rg′ := Rg′ \ Rg.

Instead of removing the intersection of adjacent regions, the partition of PWA
regions can be established by choosing the sign matrix for Rg i.e. Sg. As we can
see in (5), all operators are ≥. Thus, by (5), Sg(i, j) = 1 for all i, j ∈ {1, . . . , n}.
In this paper, we use a rule to decide the sign matrix of Rg as follows

Sg(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if Rg(i, j) > 0 or
Rg(i, j) = 0 and i ≤ j,

0, if Rg(i, j) < 0 or
Rg(i, j) = 0 and i > j.

(7)

This rule guarantees empty intersection for each pair of region.



278 M. S. Mufid et al.

Algorithm 2 is a modification of Algorithm 1 by applying rule in (7) before
checking the emptiness of Rg. Notation Rg := (Rg, Sg) in line 7 is to emphasise
that DBM Rg is now associated with Sg. It generates the partitions of PWA
regions which represent the abstract states of an MPL system characterised
by A ∈ R

n×n
max . The worst-case complexity of Algorithm 2 is similar to that of

Algorithm 1.

Algorithm 2. Generation of partition from region of PWA system by
tropical operations
Input : A ∈ R

n×n
max , a row-finite tropical matrix

Output: R,A, a PWA system over R
n

where R is a set of regions and A represent a set of affine
dynamics

1 for g ∈ {1, . . . , n}n do
2 if g is a finite coefficient then
3 generate Ag according to (2)
4 generate Ac

g from Ag according to (3)
5 Rg := Ac

g ⊗ A

6 generate sign matrix Sg from Rg according to (7)
7 Rg := (Rg, Sg)
8 Rg := cf(Rg)
9 if Rg is not empty then

10 R := R ∪ {Rg},A := A ∪ {Ag}
11 end
12 end
13 end

Remark 1. The resulting Rg in Algorithms 1 and 2 is an n-dimensional matrix
which represents a DBM without dummy variable x0. This condition violates
Definition 3. To resolve this, the system matrix A ∈ R

n×n
max is extended into

(n + 1)-dimensional matrix by adding the 0th row and column

A(0, ·) = [0 ε . . . ε], A(·, 0) = A(0, ·)�.

As a consequence, the finite coefficient g is now an (n + 1)-row vector g =
(g0, g1, . . . , gn) where g0 is always equal to 0. For the rest of this paper, all
matrices are indexed starting from zero. �

As explained in [3], each partition of PWA regions is treated as an abstract
state. Therefore, the number of abstract states is equivalent to the cardinality
of partitions. Suppose R̂ is the set of abstract states, then R̂ is a collection of
all non-empty Rg generated by Algorithm 2.



Tropical Abstractions of Max-Plus Linear Systems 279

3.3 Computation of Image and Inverse Image of DBMs

This section describes a procedure to compute the image of DBMs w.r.t. affine
dynamics. First, we recall the procedures from [1]. Then, we develop new proce-
dures based on tropical operations.

The image of a DBM D is computed by constructing a DBM D consisting of
D and its corresponding affine dynamics. The DBM D corresponds to variables
x1, x2, . . . , and their primed version x′

1, x
′
2, . . . ,. Then, the canonical-form DBM

cf(D) is computed. The image of D is established by removing all inequalities
with non-primed variables in cf(D). This procedure has complexity O(n3) [1].

Example 2. Let us compute the image of D = {x ∈ R
3|x1 − x2 ≥ 6, x1 − x3 >

−1, x2 − x3 ≥ 2} w.r.t. its affine dynamics x′
1 = x2 + 1, x′

2 = x1 + 5, x′
3 = x1 + 2.

The DBM generated from D and the affine dynamics is D = {[x� (x′)�]� ∈
R

6|x1 −x2 ≥ 6, x1 −x3 > −1, x2 −x3 ≥ 2, x′
1 −x2 = 1, x′

2 −x1 = 5, x′
3 −x1 = 2}.

The canonical-form representation of D is cf(D) = {[x� (x′)�]� ∈ R
6|x1 −x2 ≥

6, x1−x3 ≥ 8, x2−x3 ≥ 2, x′
1−x1 ≤ −5, x′

1−x2 = 1, x′
1−x3 ≥ 3, x′

2−x1 = 5, x′
2−

x2 ≥ 11, x′
2 − x3 ≥ 13, x′

3 − x1 = 2, x′
1 − x′

2 ≤ −10, x′
1 − x′

3 ≤ −7, x′
2 − x′

3 = 3}.
The image of D over the given affine dynamics is generated by removing all
inequalities containing x1, x2 or x3, i.e. {x′ ∈ R

3|x′
1 − x′

2 ≤ −10, x′
1 − x′

3 ≤
−7, x′

2 − x′
3 = 3}. �

The above procedure can be improved by manipulating DBM D directly from
the affine dynamics. By (6), one could write x′

i = xgi
+Ag(i, gi) where xi and x′

i

represent the current and next variables, respectively. For each pair (i, j), we have
x′

i − x′
j = xgi

− xgj
+ Ag(i, gi) − Ag(j, gj). This relation ensures that the bound

of x′
i − x′

j can be determined uniquely from xgi
− xgj

and Ag(i, gi) − Ag(j, gj).

Proposition 6. The image of a DBM D w.r.t. affine dynamics x′
i = xgi

+
Ag(i, gi) for 1 ≤ i ≤ n is a set D′ =

⋂n
i=1

⋂n
j=1{x′ ∈ R

n|x′
i − x′

j = xgi
− xgj

+
Ag(i, gi) − Ag(j, gj)}, where the bound of xgi

− xgj
is taken from D. �

Example 3. We compute the image of D = {x ∈ R
3|x1 − x2 ≥ 6, x1 − x3 >

−1, x2 − x3 ≥ 2} with the same affine dynamics x′
1 = x2 + 1, x′

2 = x1 + 5, x′
3 =

x1 + 2. From the affine dynamics and D, we have x′
1 − x′

2 = x2 − x1 − 4 ≤
−10, x′

1 − x′
3 = x2 − x1 − 1 ≤ −7, and x′

2 − x′
3 = 3 which yields a set {x′ ∈

R
3|x′

1 − x′
2 ≤ −10, x′

1 − x′
3 ≤ −7, x′

2 − x′
3 = 3}. �

Algorithm 3 shows a procedure to generate the image of (D,S) w.r.t. the
affine dynamics represented by x′ = Ag ⊗ x. It requires DBM (D,S) located in
a PWA region Rg. This means that there is exactly one finite coefficient g such
that (D,S) ⊆ Rg. The complexity of Algorithm 3 is in O(n2) as the addition
step at 4 line has complexity of O(1).



280 M. S. Mufid et al.

Algorithm 3. Computation of the image of DBM D w.r.t. x′ = Ag ⊗ x

Input : (D,S), a DBM in R
n

g, the corresponding finite coefficient such that (D,S) ⊆ Rg

Ag, a region matrix which represents the affine dynamics
Output: (D′, S′), image of D w.r.t. x′ = Ag ⊗ x

1 Initialize (D′, S′) with R
n

2 for i ∈ {0, . . . , n} do
3 for j ∈ {0, . . . , n} do
4 D′(i, j) := D(gi, gj) + Ag(i, gi) − Ag(j, gj)
5 S′(i, j) := S(gi, gj)
6 end
7 end

As an alternative, we also show that the image of a DBM can be computed
by tropical matrix multiplications with the corresponding region matrix Ag.

Proposition 7. The image of DBM D in R
n w.r.t. the affine dynamics x′ =

Ag ⊗ x is D′ = Ag ⊗ D ⊗ Ac
g. �

The procedure to compute the image of DBM D w.r.t. MPL system can be
viewed as the extension of Algorithm 3. First, the DBM D is intersected with
each region of the PWA system. Then, for each nonempty intersection we apply
Algorithm 3. The worst-case complexity is O(|R̂|n2).

In [1], the procedure to compute the inverse image of D′ w.r.t. affine dynamics
involves: (1) constructing DBM D that consists of D′ and its corresponding
affine dynamics, (2) generating the canonical form of D and (3) removing all
inequalities with primed variables. The complexity of computing the inverse
image using this procedure is O(n3) as it involves the emptiness checking of a
DBM [1].

Example 4. Let us compute the inverse image of D′ = {x′ ∈ R
3|x′

1 − x′
2 ≤

−10, x′
1 − x′

3 ≤ −7, x′
2 − x′

3 = 3} w.r.t. affine dynamics x′
1 = x2 + 1, x′

2 =
x1 + 5, x′

3 = x1 + 2. The DBM generated from D′ and the affine dynamic is
D′ = {[x� (x′)�]� ∈ R

6|x′
1 − x′

2 ≤ −10, x′
1 − x′

3 ≤ −7, x′
2 − x′

3 = 3, x′
1 − x2 =

1, x′
2 −x1 = 5, x′

3 −x1 = 2}. The canonical-form of D is cf(D) = {[x� (x′)�]� ∈
R

6|x1 − x2 ≥ 6, x′
1 − x1 ≤ −5, x′

1 − x2 = 1, x′
1 − x3 ≥ 3, x′

2 − x1 = 5, x′
2 − x2 ≥

11, x′
3 − x1 = 2, x′

3 − x2 ≥ 8, x′
1 − x′

2 ≤ −10, x′
1 − x′

3 ≤ −7, x′
2 − x′

3 = 3}. The
inverse image of D′ over the given affine dynamic is computed by removing all
inequalities containing x′

1, x
′
2 or x′

3, i.e. {x ∈ R
3|x1 − x2 ≥ 6}. �

The inverse image of D′ can be established by manipulating D′ from the affine
dynamics. Notice that, from (6), we have xgi

−xgj
= x′

i−x′
j+Ag(j, gj)−Ag(i, gi).

Unlike the previous case, it is possible that xgi
− xgj

has multiple bounds. This
happens because there is a case gi1 = gi2 but i1 �= i2. In this case, the bound of
xgi

− xgj
is taken from the tightest bound among all possibilities.

Proposition 8. The inverse image of DBM D′ w.r.t. affine dynamics x′
i =

xgi
+ Ag(i, gi) for i ∈ {1, . . . , n} is a set D =

⋂n
i=1

⋂n
j=1{x′ ∈ R

n|xgi
− xgj

=
x′

i − x′
j + Ag(j, gj) − Ag(i, gi)} where the bound of x′

i − x′
j is taken from D′. �



Tropical Abstractions of Max-Plus Linear Systems 281

Algorithm 4 shows the steps to compute the inverse image of DBM D′ over
the affine dynamics x′ = Ag ⊗ x. It has similarity with Algorithm 3 except it
updates the value of D(gi, gj) and S(gi, gj) for all i, j ∈ {0, . . . , n}. The variables
b and s in lines 4–5 represent the new bound of xgi

− xgj
; that is, xgi

− xgj
≥ b

if s = 1 and xgi
− xgj

> b if s = 0. If the new bound is larger then it replaces
the old one. In case of they are equal, we only need to update the operator.

Algorithm 4. Computation of the inverse image of DBM D′ w.r.t. x′ =
Ag ⊗ x
Input : (D′, S′), a DBM in R

n

g, the corresponding finite coefficient such that (D, S) ⊆ Rg

Ag, a region matrix which represents the affine dynamics
Output: (D, S), inverse image of D w.r.t. x′ = Ag ⊗ x

1 Initialize (D, S) with R
n

2 for i ∈ {0, . . . , n} do
3 for j ∈ {0, . . . , n} do
4 b := D′(i, j) + Ag(j, gj) − Ag(i, gi)
5 s := S′(i, j)
6 if b > D(gi, gj) then
7 D(gi, gj) := b
8 S(gi, gj) := s

9 else if b = D(gi, gj) then
10 S(gi, gj) := min{s, S(gi, gj)}
11 end

12 end

13 end

Similar to Algorithms 3, Algorithm 4 has complexity in O(n2). In tropical
algebra, the procedure of Algorithm4 can be expressed as tropical matrix mul-
tiplications using a region matrix and its conjugate.

Proposition 9. The inverse image of DBM D′ in R
n w.r.t. affine dynamic

x′ = Ag ⊗ x is D = (Ac
g ⊗ D′ ⊗ Ag) ⊕ In+1. �

The procedure to compute the inverse image of DBM D′ w.r.t. MPL sys-
tem can be viewed as the extension of Algorithm 4. First, we compute the
inverse image of DBM D′ w.r.t. all affine dynamics. Then each inverse image
is intersected with the corresponding PWA region. The worst-case complexity is
O(|R̂|n2).

3.4 Generation of the Abstract Transitions

As we mentioned before, the transition relations are generated by one-step
forward-reachability analysis, and involve the image computation of each
abstract state. Suppose R̂ = {r̂1, . . . , r̂|R̂|}2 is the set of abstract states generated

2 R̂ is the collection of non-empty Rg. We use small letter r̂i for sake of simplicity.



282 M. S. Mufid et al.

by Algorithm 2. There is a transition from r̂i to r̂j if Im(r̂i) ∩ r̂j �= ∅, where
Im(r̂i) = {A ⊗ x|x ∈ r̂i} which can be computed by Algorithm3. Notice that,
each abstract state corresponds to an unique affine dynamics.

The procedure to generate the transitions is summarized in Algorithm5. It
spends most time for emptiness checking at line 5. Therefore, the worst-case
complexity is in O(n3|R̂|2), where n is the dimension of A in Algorithm 2.

Algorithm 5. Generation of the transitions via one-step forward reacha-
bility.

Input : R̂ = {r̂1, . . . , r̂|R̂|}, the set of abstract states generated by Algorithm 2

Output: T ⊆ R̂ × R̂, a transition relation
1 Initialize T with an empty set

2 for i ∈ {1, . . . , |R̂|} do

3 for j ∈ {1, . . . , |R̂|} do
4 compute Im(r̂i) by Algorithm 3
5 if Im(r̂i) ∩ r̂j �= ∅ then
6 T := T ∪ {(r̂i, r̂j)}
7 end

8 end

9 end

Example 5. Matrix A in Example 1 has 8 finite coefficients. The abstract states
generated by Algorithm 2 are r̂1 = {x ∈ R

3|x1 − x2 ≥ 1, x1 − x3 ≥ 3, x2 − x3 ≥
2}, r̂2 = {x ∈ R

3|x1 − x2 < 1, x1 − x3 > −1, x2 − x3 ≥ 2}, r̂3 = {x ∈ R
3|x1 −

x2 ≤ −3, x1 − x3 ≤ −1, x2 − x3 ≥ 2}, r̂4 = {x ∈ R
3|x1 − x2 ≥ 1, x1 − x3 >

−1, x2 − x3 < 2}, r̂5 = {x ∈ R
3| − 3 < x1 − x2 < 1,−1 < x1 − x3 < 3,−2 <

x2 − x3 < 2}, r̂6 = {x ∈ R
3|x1 − x2 ≥ 1, x1 − x3 ≤ −1, x2 − x3 ≤ −2}, and

r̂7 = {x ∈ R
3|x1 − x2 < 1, x1 − x3 ≤ −1, x2 − x3 < 2}, which correspond to

finite coefficients (2, 1, 1), (2, 1, 2), (2, 3, 2), (3, 1, 1), (3, 1, 2), (3, 3, 1), and (3, 3, 2),
respectively. The only finite coefficient that leads to an empty set is (2, 3, 1).
Figure 1 shows the illustrations of abstract states and transition relations. �

4 Computational Benchmarks

We compare the run-time of abstraction algorithms in this paper with the pro-
cedures in VeriSiMPL 1.4 [2]. For increasing n, we generate matrices A ∈ R

n×n
max

with two finite elements in each row, with value ranging between 1 and 100. The
location and value of the finite elements are chosen randomly. The computa-
tional benchmark has been implemented on the Oxford University ARC server
[16].

We run the experiments for both procedures (VeriSiMPL 1.4 and Tropical)
using MATLAB R2017a with parallel computing. Over 10 different MPL systems



Tropical Abstractions of Max-Plus Linear Systems 283

3

3
r̂3

r̂4

r̂5

r̂6

r̂7

x1

x2

r̂1r̂2

(a)

r̂4r̂1

r̂2r̂7

r̂6r̂5

r̂3

(b)

Fig. 1. (a) Plot of partitions (and corresponding abstract states), projected on the
plane x3 = 0. The solid and dashed lines represent ≥ and >, respectively. (b) Transition
relations among abstract states.

Table 1. Generation of abstract states and transitions.

n VeriSiMPL 1.4. Tropical

Time for generating
abstract states

Time for generating
transitions

Time for generating
abstract states

Time for generating
transitions

3 {7.51, 9.82}[ms] {0.13, 0.21}[sec] {4.04, 8.39}[ms] {0.12, 0.17}[sec]
4 {11.29, 15.58}[ms] {0.20, 0.29}[sec] {5.23, 16.10}[ms] {0.17, 0.22}[sec]
5 {18.51, 28.19}[ms] {0.20, 0.21}[sec] {5.16, 6.89}[ms] {0.19, 0.20}[sec]
6 {49.22, 55.10}[ms] {0.21, 0.22}[sec] {9.99, 11.44}[ms] {0.20, 0.21}[sec]
7 {90.88, 118.94}[ms] {0.24, 0.26}[sec] {15.88, 20.67}[ms] {0.22, 0.24}[sec]
8 {0.21, 0.28}[sec] {0.32, 0.44}[sec] {0.04, 0.04}[sec] {0.27, 0.38}[sec]
9 {0.52, 0.69}[sec] {0.72, 1.07}[sec] {0.07, 0.10}[sec] {0.60, 0.91}[sec]
10 {1.25, 1.88}[sec] {2.62, 4.48}[sec] {0.14, 0.17}[sec] {2.38, 4.22}[sec]
11 {3.87, 5.14}[sec] {17.62, 29.44}[sec] {0.35, 0.39}[sec] {17.17, 28.88}[sec]
12 {8.34, 14.22}[sec] {1.20, 2.24}[min] {0.61, 0.71}[sec] {1.10, 2.19}[min]

13 {26.17, 45.17}[sec] {5.05, 10.45}[min] {1.21, 1.37}[sec] {4.98, 10.40}[min]

14 {1.81, 4.24}[min] {41.14, 112.09}[min] {0.06, 0.07}[min] {40.61, 110.06}[min]

15 {10.29, 23.18}[min] {2.63, 7.57}[hr] {0.11, 0.17}[min] {2.57, 7.65}[hr]

for each dimension, Table 1 shows the running time to generate the abstract
states and transitions. Each entry represents the average and maximal values.

With regards to the generation of abstract states, the tropical algebra based
algorithm is much faster than VeriSiMPL 1.4. As the dimension increases, we see
an increasing gap of the running time. For a 12-dimensional MPL system over
10 independent experiments, the time needed to compute abstract states using
tropical based algorithm is less than 1 s. In comparison, average running time
using VeriSiMPL 1.4 for the same dimension is 8.34 s.



284 M. S. Mufid et al.

Table 2. Computation of the image of abstract states.

n VeriSiMPL 1.4. Tropical

3 {0.84, 1.13}[ms] {0.16, 0.23}[ms]

4 {1.13, 1.76}[ms] {0.13, 0.20}[ms]

5 {1.53, 2.40}[ms] {0.14, 0.16}[ms]

6 {5.32, 6.68}[ms] {0.18, 0.20}[ms]

7 {11.22, 15.19}[ms] {0.31, 0.44}[ms]

8 {26.05, 46.94}[ms] {0.71, 1.19}[ms]

9 {70.31, 92.87}[ms] {2.37, 3.37}[ms]

10 {153.07, 183.08}[ms] {4.06, 6.57}[ms]

11 {380.01, 477.94}[ms] {5.58, 8.19}[ms]

12 {0.79, 1.13}[sec] {0.02, 0.03}[sec]

13 {1.96, 3.13}[sec] {0.03, 0.04}[sec]

14 {5.51, 9.60}[sec] {0.06, 0.16}[sec]

15 {14.33, 23.82}[sec] {0.49, 0.87}[sec]

For the generation of transitions, the running time of tropical algebra-based
algorithm is slightly faster than that of VeriSiMPL 1.4. We remind that the pro-
cedure to generate transitions involves the image computation of each abstract
state. In comparison to the 2nd and 4th columns of Tables 1 and 2 shows the
running time to compute the image of abstract states. Each entry represents the
average and maximum of running time. It shows that our proposed algorithm
for computing the image of abstract states is faster than VeriSiMPL 1.4.

We also compare the running time algorithms when applying forward- and
backward-reachability analysis. We generate the forward reach set [3, Definition
4.1] and backward reach set [3, Definition 4.3] from an initial and a final set,
respectively. In more detail, suppose X0 is the set of initial conditions; the forward
reach set Xk is defined recursively as the image of Xk−1, namely Xk = {A ⊗ x |
x ∈ Xk−1}. On the other hand, suppose Y0 is a set of final conditions. The
backward reach set Y−k is defined via the inverse image of Y−k+1, Y−k = {y ∈
R

n | A ⊗ y ∈ Y−k+1}, where n is the dimension of A.
We select X0 = {x ∈ R

n | 0 ≤ x1, . . . , xn ≤ 1} and Y0 = {y ∈ R
n | 90 ≤

y1, . . . , yn ≤ 100} as the sets of initial and final conditions, respectively. The
experiments have been implemented to compute X1, . . . ,XN and Y−1, . . . ,Y−N

for N = 10. Notice that it is possible that the inverse image of Y−k+1 results in
an empty set: in this case, the computation of backward reach sets is terminated,
since Y−k = . . . = Y−N = ∅. (If this termination happens, it applies for both
VeriSiMPL 1.4 and the algorithms based on tropical algebra.)

Table 3 reports the average computation of PWA system and reach sets over
10 independent experiments for each dimension. In general, algorithms based on
tropical algebra outperform those of VeriSiMPL 1.4. For a 15-dimensional MPL



Tropical Abstractions of Max-Plus Linear Systems 285

Table 3. Reachability analysis.

n VeriSiMPL 1.4. Tropical

Time for
generating
PWA
system

Time for
generating
forward
reach sets

Time for
generating
backward
reach sets

Time for
generating
PWA
system

Time for
generating
forward
reach sets

Time for
generating
backward
sets

3 2.55[ms] 11.37[ms] 5.73[ms] 1.70[ms] 8.33[ms] 5.63[ms]

4 4.31[ms] 9.87[ms] 27.00[ms] 1.37[ms] 7.72[ms] 28.48[ms]

5 9.23[ms] 11.77[ms] 3.62[ms] 1.88[ms] 9.25[ms] 2.89[ms]

6 23.44[ms] 18.49[ms] 9.76[ms] 3.80[ms] 13.81[ms] 7.35[ms]

7 49.59[ms] 35.68[ms] 21.53[ms] 7.84[ms] 32.02[ms] 17.92[ms]

8 108.75[ms] 85.27[ms] 34.05[ms] 16.84[ms] 73.63[ms] 28.62[ms]

9 0.25[sec] 0.18[sec] 0.09[sec] 0.03[sec] 0.17[sec] 0.07[sec]

10 0.48[sec] 0.28[sec] 0.17[sec] 0.08[sec] 0.25[sec] 0.14[sec]

11 1.19[sec] 0.77[sec] 1.35[sec] 0.18[sec] 0.76[sec] 1.13[sec]

12 2.52[sec] 1.14[sec] 0.88[sec] 0.38[sec] 1.01[sec] 0.70[sec]

13 7.02[sec] 3.96[sec] 2.78[sec] 1.09[sec] 3.56[sec] 1.95[sec]

14 8.15[sec] 5.54[sec] 4.61[sec] 1.54[sec] 5.24[sec] 2.98[sec]

15 20.60[sec] 19.23[sec] 12.39[sec] 4.21[sec] 18.37[sec] 7.16[sec]

16 46.92[sec] 60.19[sec] 36.00[sec] 9.62[sec] 58.70[sec] 20.41[sec]

18 2.98[min] 3.91[min] 2.61[min] 0.83[min] 3.83[min] 1.35[min]

20 15.74[min] 21.03[min] 15.21[min] 4.84[min] 20.86[min] 7.51[min]

system, the average time to generate PWA system using VeriSiMPL 1.4 is just
over 20 s. In comparison, the computation time for tropical algorithm is under
5 s.

Tropical algorithms also show advantages to compute reach sets. As shown
in Table 3, the average computation time for forward and backward-reachability
analysis is slightly faster when using tropical procedures. There is evidence that
the average time to compute the backward reach sets decreases as the dimension
increases. This happens because the computation is terminated earlier once there
is a k ≤ N such that Y−k = ∅. Notice that, this condition occurs for both
VeriSiMPL 1.4 and the new algorithms based on tropical algebra.

We summarise the worst-complexity of abstraction procedures via VeriSiMPL
1.4 and our proposed algorithms in Table 4 – recall that in VeriSiMPL 1.4 the
generation of abstract states involves two procedures: the generation of PWA
systems and the refinement of PWA regions.



286 M. S. Mufid et al.

Table 4. The worst-case complexity of abstraction procedures.

Procedures VeriSiMPL 1.4 Tropical

Generating the PWA systems O(nn+3) O(nn+3)

Generating the abstract states O(nn+3) and O(n2n+1) O(nn+3)

Computing the image of DBMs O(n3) O(n2)

Computing the inverse image of DBMs O(n3) O(n2)

Generating the abstract transitions O(n3|R̂|2) O(n3|R̂|2)

5 Conclusions

This paper has introduced the concept of MPL abstractions using tropical oper-
ations. We have shown that the generation of abstract states is related to the
row-definite form of the given matrix. The computation of image and inverse
image of DBMs over the affine dynamics has also been improved based on trop-
ical algebra operations.

The procedure has been implemented on a numerical benchmark and com-
pared with VeriSiMPL 1.4. Algorithm 2 has shown a strong advantage to generate
the abstract states especially for high-dimensional MPL systems. Algorithms
(Algorithms 3, 4, and 5) for the generation of transitions and for reachability
analysis also display an improvement.

For future research, the authors are interested to extend the tropical abstrac-
tions for non-autonomous MPL systems [5], with dynamics that are characterised
by non-square tropical matrices.

Acknowledgements. The first author is supported by Indonesia Endowment Fund
for Education (LPDP), while the third acknowledges the support of the Alan Turing
Institute, London, UK.

References

1. Adzkiya, D.: Finite abstractions of max-plus-linear systems: theory and algorithms.
Ph.D. thesis, Delft University of Technology (2014)

2. Adzkiya, D., Abate, A.: VeriSiMPL: verification via biSimulations of MPL models.
In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS,
vol. 8054, pp. 274–277. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40196-1 22

3. Adzkiya, D., De Schutter, B., Abate, A.: Finite abstractions of max-plus-linear
systems. IEEE Trans. Autom. Control 58(12), 3039–3053 (2013)

4. Adzkiya, D., De Schutter, B., Abate, A.: Computational techniques for reachability
analysis of max-plus-linear systems. Automatica 53, 293–302 (2015)

5. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linear-
ity: An Algebra for Discrete Event Systems. Wiley, Hoboken (1992)

6. Butkovič, P.: Max-algebra: the linear algebra of combinatorics? Linear Algebra
Appl. 367, 313–335 (2003)

https://doi.org/10.1007/978-3-642-40196-1_22
https://doi.org/10.1007/978-3-642-40196-1_22


Tropical Abstractions of Max-Plus Linear Systems 287

7. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8 17

8. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)
9. Heemels, W., De Schutter, B., Bemporad, A.: Equivalence of hybrid dynamical

models. Automatica 37(7), 1085–1091 (2001)
10. Heidergott, B., Olsder, G.J., Van der Woude, J.: Max Plus at Work: Modeling

and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its
Applications. Princeton University Press, Princeton (2014)

11. Itenberg, I., Mikhalkin, G., Shustin, E.I.: Tropical Algebraic Geometry, vol. 35.
Springer, Basel (2009). https://doi.org/10.1007/978-3-0346-0048-4

12. Lu, Q., Madsen, M., Milata, M., Ravn, S., Fahrenberg, U., Larsen, K.G.: Reach-
ability analysis for timed automata using max-plus algebra. J. Logic Algebraic
Program. 81(3), 298–313 (2012)

13. Mufid, M.S., Adzkiya, D., Abate, A.: Tropical abstractions of max-plus-linear sys-
tems (2018). arXiv:1806.04604

14. Péron, M., Halbwachs, N.: An abstract domain extending difference-bound matri-
ces with disequality constraints. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.
LNCS, vol. 4349, pp. 268–282. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-69738-1 20

15. Pin, J.-E.: Tropical semirings. Idempotency, pp. 50–69 (1998)
16. Richards, A.: University of Oxford Advanced Research Computing (2015). Zenodo.

https://doi.org/10.5281/zenodo.22558
17. Sergeev, S.: Max-plus definite matrix closures and their eigenspaces. Linear Algebra

Appl. 421(2–3), 182–201 (2007)

https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-0346-0048-4
http://arxiv.org/abs/1806.04604
https://doi.org/10.1007/978-3-540-69738-1_20
https://doi.org/10.1007/978-3-540-69738-1_20
https://doi.org/10.5281/zenodo.22558


Author Index

Abate, Alessandro 271
Abdulla, Parosh Aziz 91
Adzkiya, Dieky 271
André, Étienne 37
Asarin, Eugene 199, 215
Atig, Mohamed Faouzi 91

Bakhirkin, Alexey 215
Barkaoui, Kamel 108
Basset, Nicolas 199
Bogdan, Paul 3
Boucheneb, Hanifa 108

Degorre, Aldric 199
Deshmukh, Jyotirmoy V. 3

Elgyütt, Adrián 53

Ferrère, Thomas 53, 215
Fränzle, Martin 252

Henzinger, Thomas A. 53

Jensen, Mathias Claus 145
Jha, Sumit Kumar 235
Jha, Susmit 235

Kress-Gazit, Hadas 71
Krishna, Shankara Narayanan 91
Kyriakis, Panagiotis 3

Larsen, Kim Guldstrand 145
Lee, Edward A. 17
Li, Meilun 252
Lime, Didier 37

Maler, Oded 215
Mardare, Radu 145
Moarref, Salar 71
Mosaad, Peter N. 252
Mufid, Muhammad Syifa’ul 271

Nickovic, Dejan 215

Raj, Sunny 235
Ramparison, Mathias 37

Shankar, Natarajan 235
Sharma, Arpit 162, 179
She, Zhikun 252
Sun, Meng 125

Xue, Bai 252

Zhang, Xiyue 125


	Preface
	Organization
	Contents
	Invited Papers
	Stochastic Temporal Logic Abstractions: Challenges and Opportunities
	1 Introduction
	1.1 Related Work

	2 Stochastic Temporal Logic
	3 Constructing Stochastic Models from Data
	4 Learning Logical Abstractions from Stochastic Models
	4.1 Logical Abstractions Through Parameter Inference

	5 Applications
	5.1 Controller Quality Through Environment Models
	5.2 Causality Models for Large Inter-connected Systems

	6 Challenges, Open Problems, and Future Applications
	References

	Models of Timed Systems
	1 Models in Science and Engineering
	2 What Is Real Time?
	3 Correctness vs. Quality
	4 Achieving Real-Time Behavior
	5 What Is Time?
	6 A Commitment to Models
	7 Conclusion
	References

	Temporal Logics
	TCTL Model Checking Lower/Upper-Bound Parametric Timed Automata Without Invariants
	1 Introduction
	2 Preliminaries
	3 Undecidability of TCTL Emptiness for U-PTAs
	4 Undecidability for Bounded U-PTAs
	5 Decidability of Flat-TCTL for L/U-PTAs Without Invariants
	6 Conclusion and Perspectives
	References

	Monitoring Temporal Logic with Clock Variables
	1 Introduction
	2 Background
	3 Timed Propositional Temporal Logic
	4 Zone-Based Algorithm
	5 Region-Based Algorithm
	5.1 TPTL Formulas with One Variable
	5.2 Region Equivalence
	5.3 Monitoring Algorithm

	6 Experimental Evaluation
	7 Conclusion
	References

	Reactive Synthesis for Robotic Swarms
	1 Introduction
	2 Preliminaries
	3 Reactive Synthesis with Non-instantaneous Actions
	3.1 Synthesis with Auxiliary Propositions raman2014synthesis
	3.2 Non-instantaneous-GR(1)

	4 Reactive Synthesis for Swarm Robotic Systems
	4.1 Synthesis with Auxiliary Action Propositions
	4.2 Non-instantaneous-GR(1)
	4.3 Comparison

	5 Conclusions and Future Work
	References

	Distributed Timed Systems
	Perfect Timed Communication Is Hard
	1 Introduction
	2 Preliminaries
	3 Communicating Timed Automata (CTA)
	4 Acyclic CTA
	4.1 Bounded Context discCTA
	4.2 discCTA Summary

	References

	On Persistency in Time Petri Nets
	1 Introduction
	2 Time Petri Nets
	2.1 Definition and Semantics
	2.2 Contracted State Class Graph

	3 Persistent and Effect-Persistent Transitions
	3.1 Definitions
	3.2 Potential Firing Delays of Transitions from a State Class

	4 Conclusion
	References

	A Relational Model for Probabilistic Connectors Based on Timed Data Distribution Streams
	1 Introduction
	2 A Reo Primer
	3 Observations as Timed Data Distribution Streams
	4 Relations on Timed Data Distribution Streams for Connectors
	4.1 Primitive Reo Channels
	4.2 Probabilistic Channels
	4.3 Composition Operators

	5 Implementation
	6 Conclusion and Future Work
	References

	Behavioral Equivalences
	Weighted Branching Systems: Behavioural Equivalence, Behavioural Distance, and Their Logical Characterisations
	1 Introduction
	2 Preliminaries
	3 Weighted Kripke Structures
	4 Weighted Branching Logic
	5 Behavioural Relative Pseudometric
	6 Topological Properties
	7 Conclusion and Future Work
	References

	Trace Relations and Logical Preservation for Markov Automata
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Schedulers

	3 Trace Equivalence Relations
	3.1 Relationship Between Trace Equivalence and Bisimulation
	3.2 Relationship Between Trace Equivalences

	4 Deterministic Timed Automaton
	5 Metric Temporal Logic
	6 Conclusions and Future Work
	References

	Non-bisimulation Based Behavioral Relations for Markov Automata
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Weighted Markovian Equivalence
	3.1 Quotient MA
	3.2 Repeated Minimization
	3.3 Strong Bisimulation vs WME

	4 Weak Weighted Markovian Equivalence
	4.1 Quotient MA
	4.2 Weak Bisimulation Vs WWME

	5 Deterministic Timed Automaton
	6 Metric Temporal Logic
	7 Conclusions and Future Work
	References

	Timed Words
	Distance on Timed Words and Applications
	1 Introduction
	2 Preliminaries
	2.1 Timed Words and Timed Languages
	2.2 Timed Graphs and Timed Automata
	2.3 Synchronized Product of TA
	2.4 Pre-compact Spaces, and Their -entropy and -capacity

	3 Distance
	4 Quantitative Verification
	4.1 Reachability Problems
	4.2 Timed Automata for Neighbourhoods
	4.3 Quantitative Timed Model-Checking
	4.4 Quantitative Timed Monitoring

	5 Information in Timed Words
	6 Conclusion and Further Work
	References

	Online Timed Pattern Matching Using Automata
	1 Introduction and Motivation
	2 Preliminaries
	3 Membership and Matching Using Timed Automata
	3.1 Checking Acceptance by Non-deterministic Timed Automata
	3.2 Checking Acceptance Online
	3.3 From Acceptance to Matching
	3.4 Example

	4 Implementation and Experiments
	5 Conclusion
	References

	Continuous Dynamical Systems
	Duality-Based Nested Controller Synthesis from STL Specifications for Stochastic Linear Systems
	1 Introduction
	2 Related Work
	3 Preliminarie
	4 Problem Definition
	5 Controller Synthesis
	6 Case Studies
	6.1 Case Study 1: Simple Vehicle Model
	6.2 Case Study 2: Smart Grid Control
	6.3 Case Study 3: Indoor Climate Control

	7 Conclusion
	References

	Safe Over- and Under-Approximation of Reachable Sets for Autonomous Dynamical Systems
	1 Introduction
	2 Preliminaries
	3 Equivalent Definition of the Evolution Function
	4 t-expansion of Evolution Function
	5 Over- and Under-Approximations of Reachable Sets
	5.1 EFOU Framework
	5.2 Improvements of EFOU Framework

	6 Examples and Discussions
	6.1 Examples
	6.2 Discussions

	7 Conclusion
	References

	Tropical Abstractions of Max-Plus Linear Systems
	1 Introduction
	2 Models and Preliminaries
	2.1 Max-Plus-Linear Systems
	2.2 Definite Forms of Tropical Matrices
	2.3 Difference Bound Matrices as Tropical Matrices

	3 MPL Abstractions Using Tropical Operations
	3.1 Related Work
	3.2 Generation of the Abstract States
	3.3 Computation of Image and Inverse Image of DBMs
	3.4 Generation of the Abstract Transitions

	4 Computational Benchmarks
	5 Conclusions
	References

	Author Index



