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Abstract. Incorrect ECG gating of cardiac magnetic resonance (CMR)
acquisitions can lead to artefacts, which hampers the accuracy of diag-
nostic imaging. Therefore, there is a need for robust reconstruction meth-
ods to ensure high image quality. In this paper, we propose a method
to automatically correct motion-related artefacts in CMR acquisitions
during reconstruction from k-space data. Our method is based on the
Automap reconstruction method, which directly reconstructs high qual-
ity MR images from k-space using deep learning. Our main method-
ological contribution is the addition of an adversarial element to this
architecture, in which the quality of image reconstruction (the genera-
tor) is increased by using a discriminator. We train the reconstruction
network to automatically correct for motion-related artefacts using syn-
thetically corrupted CMR k-space data and uncorrupted reconstructed
images. Using 25000 images from the UK Biobank dataset we achieve
good image quality in the presence of synthetic motion artefacts, but
some structural information was lost. We quantitatively compare our
method to a standard inverse Fourier reconstruction. In addition, we
qualitatively evaluate the proposed technique using k-space data con-
taining real motion artefacts.
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1 Introduction

Image reconstruction is an inverse mathematical problem for mapping the sensor
domain information to the image domain. A good image reconstruction is a key
component for establishing high quality images from sensors. Traditionally in
MR imaging the k-space information is used in a compressed sensing framework
to address the problem of image reconstruction [9]. Recently, there has been
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interest in finding the mapping from the frequency domain to the image domain
using deep learning techniques [10]. The majority of such methods have the aim
of accelerating the image acquisition without compromising image quality. In
this work, we address a different problem. We aim to correct motion artefacts
with an end-to-end setup using motion artefact corrupted k-space data as the
input and producing high quality images as the output.

(a) (b) (c) (d)

Fig. 1. Examples of a good quality CINE CMR image (a), corresponding k-space (b)
and a corrupted image (c), where red arrows indicate the artefacts and the correspond-
ing k-space (d). The k-space corruption process is able to simulate realistic motion-
related artefacts. (Color figure online)

High diagnostic accuracy of image analysis pipelines requires high quality
medical images. Misleading conclusions can be drawn when the original data
are of low quality, in particular for cardiac magnetic resonance (CMR) imaging.
CMR images can contain a range of image artefacts [2], and improving the quality
of images acquired by MR scanners is a challenging problem. Traditionally, low
quality images are excluded from further analysis. However, excluding images
not only diminishes the research value of the cohort but also raises the issue of
how to robustly and efficiently identify images for exclusion.

The UK Biobank is a large-scale study with all data accessible to researchers
worldwide, and will eventually consist of CMR images from 100,000 subjects
[12]. To maximize the research value of this and other similar datasets, automatic
artefact correction tools are essential. One specific challenge in CMR is motion-
related artefacts such as mis-triggering, arrhythmia and breathing artefacts due
to incomplete breath-holds. These can result in temporal and/or spatial blurring
of the images, which makes subsequent processing difficult [2]. Examples of a
good quality image and a synthetic motion artefact corrupted image are shown
in Fig. 1a and c for a short-axis view CINE CMR scan. The corresponding k-
space data are shown in Fig. 1b and d. In this work, our goal is to recover the
good quality image (Fig. 1a) from the corrupted k-space data (Fig. 1d) directly
using deep learning.

Our approach is based on automatically correcting for artefacts during the
reconstruction process. We use a deep neural network for correcting artefacts
and evaluate our method on a synthetic dataset of 2000 2D+time CMR images
from the UK Biobank. We also evaluate the performance on real artefact cases
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to showcase the performance of our method. There are two major contributions
of this work. First, we address the problem of motion artefact correction directly
from k-space by leveraging the rich information available and validate it on a
large-scale CMR dataset. Second, we introduce an adverserial component to the
Automap framework [18] to increase the realism and quality of the images.

2 Background

Deep learning techniques have been utilized for inverse problems with consider-
able success [10]. This success has motivated the medical image analysis com-
munity to use deep learning on multiple image reconstruction problems such
as CT [5] and MR [17]. The main motivation has been to accelerate the image
acquisition using under-sampling.

In the literature, there have been four strategies to approach the problem of
estimating high quality images from corrupted (or under-sampled) k-space [4].
One choice is to correct the k-space before applying the inverse Fourier transform
(IFT). Han et al. [4] proposed the use of convolutional networks for k-space
correction coupled with weighting layers on k-space. A more common approach is
to use the IFT on k-space and learn a mapping between the corrupted images and
good quality images. Kwon et al. [7] proposed using multi-layer preceptrons to
find this mapping. This group of approaches are essentially denoising techniques,
which do not directly utilize the information in the frequency domain. To remedy
this broken link an alternative strategy is to use iterative updates between k-
space and the image domain using a cascaded network [14,15]. This group of
methods aims to use networks in the image domain to improve the image and
feed back the improved image information to k-space with a data consistency
term. More recently, Zhu et al. [18] proposed an end-to-end image reconstruction
approach (Automap) for MR and evaluated it on under-sampled k-space data.

In the context of CMR artefact correction, early works focused on changes
in acquisition schemes [13] and analytical methods for motion artefact reduction
[6]. For automatic correction of the CMR, Lotjonen et al. [8] used short-axis
and long-axis images to optimize the locations of the slices using mutual infor-
mation as a similarity measure. However, these methods cannot address the
mis-triggering problem and focus only on the in-plane motion of the heart.

3 Methods

The proposed framework of using a deep neural network for motion artefact
correction on k-space data is based on a generative-adversarial network setup.
Our aim is to train a successful generator to reconstruct good quality images
from motion artefact corrupted k-space data.
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3.1 Network Architecture

The algorithm consists of a generator and a discriminator as illustrated in Fig. 2.
Our generator network follows a similar architecture to [18], which was originally
developed for image reconstruction using domain specific information. In our case
we additionally use a discriminator to increase the robustness and realism of the
reconstructed images. The input to the network is a complex n-by-n k-space
matrix, which we concatenate into a (2 × n × n)-by-1 vector. We then use two
fully connected layers: FC1 with 2×n×n neurons and FC2 with n×n neurons.
The output from FC2 is reshaped and two convolutional layers with 64 filters
and 5 × 5 filter size are used. After that a deconvolutional layer with 64 filters
of size 7 × 7 is applied and finally a 1 × 1 layer is used to aggregate the results
into an image.
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Fig. 2. Generative adversarial Automap architecture for motion artefact correction.

The discriminator takes a generated image or a real image as input and uses
two convolutional layers and a final dense layer for classification. The final output
of the discriminator a decision as to whether the generated image looks real or
fake. By using outputs of the generator (artefact corrected images) and the real
images from the dataset the discriminator is trained to distinguish between the
artefact corrected images and high quality images. The loss function for the
model is a mean squared error loss between the predicted image and real image
and combined with a Wasserstein loss [3], which takes the mean of the differences
between the two images. The weights of the discriminator are frozen during the
training of the whole model and trained separately only with the Wasserstein
loss, which is shown to be effective for inverse problems [1].

3.2 Implementation Details

The parameters of the convolutional and fully-connected layers were initialized
randomly from a zero-mean Gaussian distribution and trained until no substan-
tial progress was observed in the training loss. In this study, we use the RMSprop
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optimizer to minimize mean squared error. One important aspect during training
is the activity regularizer, which is used after the deconvolutional layer. In our
implementation, we first trained without this regularizer, finding that including
it early in training led to the loss being trapped in poor local minima. Once
training converged without the regularizer, it was then added, which led to the
generation of sharper looking images.

First, we trained our network data from the ImageNET dataset to learn a
variety of frequencies from k-space as described in [18] without the regularization
term. Then, the network was trained for 50 epochs with the regularization term.
Finally, we introduced the cardiac MR data and trained our network for an addi-
tional 150 epochs. The training was stopped early if no significant improvement
was observed. An improvement was considered significant if the relative increase
in performance was at least 0.5% over 20 epochs. To better generalize the model
we applied data augmentation by rotating images in increments of 90 ◦. We also
found that the success of our implementation was highly sensitive to the choice
of learning rate, which we set to be 0.00002.

During training, a batch-size of 20 2D k-space datasets was used. We used
the Keras Framework with Tensorflow backend for implementation and training
the network took around 3 days on a NVIDIA Quadro 6000P GPU. Correction
of a single image sequence took less than 1s once the network was trained.

4 Experimental Results

We evaluated our algorithm on a subset of the UK Biobank dataset consisting of
2000 good quality CINE MR acquisitions. 50 temporal frames from each subject
at mid-ventricular level were used to generate synthetic motion artefacts. We
used 75000 2D images for training and 25000 images for testing. The data were
chosen to be free of other types of image quality issues such as missing axial
slices and were visually verified by an expert cardiologist. The details of the
acquisition protocol of the UK Biobank dataset can be found in [12].

4.1 K-space Corruption for Synthetic Data

We generated k-space corrupted data in order to simulate motion artefacts.
We followed a Cartesian sampling strategy for k-space corruption to generate
synthetic but realistic motion artefacts [11]. We first transformed each 2D short
axis sequence to the Fourier domain and changed 1 in 3 Cartesian sampling lines
to the corresponding lines from other cardiac phases to mimic motion artefacts.
We added a random frame offset when replacing the lines. In this way the original
good quality images from the training set were used to generate corresponding
CMR artefact images. This is a realistic approach as the motion artefacts that
occur from mis-triggering often arise from similar misplacement of k-space lines.
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(a) K-space (b) Fourier (c) Proposed (d) Original

Fig. 3. Synthetic dataset results. Corrupted k-space (a), inverse Fourier transform (b),
proposed method (c) and original good quality image (d). The proposed method is able
to correct the motion artefacts, but loses some structure.

4.2 Quantitative Results on Synthetic Dataset

We compared our algorithm with a reconstruction using the IFT and also with
two variants of the proposed deep learning framework: one without the adversar-
ial component and one with the adversarial component but trained only using
ImageNET data. The results are reported in Table 1. We report root mean square
error (RMSE) and peak signal-to-noise ratio (PSNR) results for motion artefact
correction, defined as follows:
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where Nx and Ny denote the number of pixels in the x and y directions and r
and p represent reference and predicted images.

Alongside these two measures, we also computed structural similarity index
(SSIM) [16] results. SSIM has been shown to provide sensitivity to structural
information and texture. The SSIM between two images is defined as follows for
any image region x and y:

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)

where μx and μy are the average intensities for regions x and y, σx and σy are
variance values for regions x and y, σxy is the covariance of regions x and y and
c1 and c2 are constant values for stabilizing the denominator.

Table 1 shows that the cardiac trained adversarial Automap technique is
capable of correcting motion artefacts with high accuracy compared to the other
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techniques. The quality of the images increased particularly in terms of low
RMSE and high PSNR using the ImageNET trained Automap reconstruction
compared to the IFT reconstruction approach. However, some structure has
been lost in comparison with the IFT approach, which can be seen from the
lower SSIM scores with the proposed method. Training with cardiac images
helped to recover some SSIM, but it was still lower than the IFT approach. One
possible explanation for this is that in the proposed method, the network has
been trained to minimise the MSE, which commonly causes smoothed-out or
blurred looking images. An example of such a case can be seen in Fig. 3, where
the proposed method corrects the artefact but loses some structural information.
The adversarial training improves the performance of the Automap model in all
three metrics and especially in terms of SSIM.

Table 1. Mean RMSE, PSNR, and SSIM results of motion artefact correction from
k-space data.

Methods RMSE PSNR SSIM

Inverse Fourier Transform 0.045 27.8 0.883

Proposed-ImageNET 0.032 31.1 0.766

Automap-Cardiac [18] 0.029 32.7 0.814

Proposed-Cardiac 0.027 35.1 0.850

4.3 Qualitative Results on Real Motion Artefact Case

To illustrate the performance of our technique on artefact correction, we applied
it to a dataset from the UK Biobank containing mis-triggering artefacts. The
visual results in Fig. 4 show improved image quality compared to the IFT recon-
structed image.

(a) K-space (b) Motion corrupted image (c) Proposed

Fig. 4. Example of a mis-triggering artefact from the UK Biobank dataset. K-space
data (a), motion corrupted image (b) and proposed method (c). The proposed method
is able to correct the motion artefacts.
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5 Discussion and Conclusion

In this paper, we have proposed an end-to-end image artefact correction pipeline
for 2D CINE CMR, and evaluated it on the large-scale UK Biobank dataset. We
have shown the value and shortcomings of deep learning based reconstruction
for motion artefact correction. We have demonstrated that the generic Automap
framework can aid in correcting motion artefacts using an adversarial setup,
outperforming inverse Fourier transform. To the best knowledge of the authors,
this is the first paper that has addressed the motion artefact correction problem
in MR directly from k-space data. The general applicability of the Automap
framework is limited by its high memory requirement, which is caused by the
fully connected layers at the start of the network.

In future work, we plan to investigate more appropriate loss functions to
attempt to recover the lost structural information in the reconstructed images.
Moreover, we will investigate the robustness of our technique on our own clinical
data, which we expect to contain more motion corruption compared to UK
Biobank data.
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