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Abstract. We propose a new convolutional neural network architec-
ture for image reconstruction in sparse view computed tomography. The
proposed network consists of a cascade of U-nets and data consistency
layers. While the U-nets address the undersampling artifacts, the data
consistency layers model the specific scanner geometry and make direct
use of measured data. We train the network cascade end-to-end on sparse
view cardiac CT images. The proposed network’s performance is evalu-
ated according to different quantitative measures and compared to the
one of a cascade with fully convolutional neural networks with residual
connections and to the one of a single U-net with approximately the
same number of trainable parameters. While in both experiments the
methods show similar performance in terms of quantitative measures,
our proposed U-nets cascade yields superior visual results and better
preserves the overall image structure as well as fine diagnostic details,
e.g. the coronary arteries. The latter is also confirmed by a statistically
significant increase of the Haar-wavelet-based perceptual similarity index
measure in all the experiments.
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1 Introduction

Sparse data-acquisition protocols are widely used in magnetic resonance imaging
(MRI) in order to shorten scanning times. In contrast, in computed tomography
(CT), the data acquisition process is fast while reducing radiation exposure is
an important clinical issue. One possible way to reduce radiation exposure is
to decrease the tube current of the X-ray emitting source. However, the direct
consequence is decreased image quality due to higher image noise. In this paper,
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we use a sparse view data-acquisition scheme to reach a significant radiation
exposure reduction in CT. This can be achieved by masking the X-ray source
at certain angular positions during the rotation of the scanner and therefore
preventing some X-rays to pass through the patient. Using standard algorithms,
images reconstructed from sparse view data exhibit undersampling structures
which are related to the scanner geometry as well as the sub-sampling scheme
used for data acquisition.

Recently, deep neural networks have shown to be a promising alternative
to current state-of-the-art iterative methods for the reconstruction from heavily
undersampled CT data. In particular, the U-net [6] has shown its excellent per-
formance in the restoration of undersampled images in CT and MRI [4]. However,
these standard network designs can be viewed as post-processing methods, as the
network used to remove the artifacts is the only learned component in the recon-
struction pipeline. As a consequence, these methods may lack data consistency.
In this paper we propose a new network architecture for the image reconstruction
from undersampled data in sparse view CT. Our network structure is inspired by
the network cascade developed in [7] and consists of a cascade of convolutional
neural networks and data consistency layers which minimize a properly-chosen
functional. However, while the approach in [7] is based on the isometry of the
full MRI forward operator, our data consistency layer is directly applicable to
general inverse problems as well. Furthermore, the fully convolutional neural net-
works (FCNNs) with residual connections are replaced by U-nets. For different,
gradient-descent-like data consistency layers, see [2,3].

1.1 Sparse View Computed Tomography

Here and after we work with the discrete setting. By x ∈ R
n we refer to the vec-

tor of size m × m with m2 = n as representation of the two-dimensional X-ray
attenuation function and write y ∈ R

d for a fully sampled sinogram. Further, we
use R to denote the discretized forward operator of a CT scanner, i.e. the discrete
X-ray transform specified by the scanner’s geometry. We denote the pseudoin-
verse of the discretized forward operator by R†. Note that the continuous form
of the Radon transform is injective but not surjective. Therefore, we may assume
that the Radon transform R is sampled sufficiently fine such that the discretized
full data operator is injective but not surjective as well. Anyway, the approach
presented below works for an arbitrary discrete transform R ∈ R

d×n.
Assume the data is measured only for lines corresponding to a subset I ⊂ J �

{1, . . . , d}, where J is the full set of projections. The corresponding discretized
sparse data forward operator can be modeled by RI = SIR, where the sub-
sampling operator is given by

SIy(i) �
{

y(i) if i ∈ I

0 if i ∈ Ic := J \ I.
(1)
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The sparse data image reconstruction problem then consists in recovering the
image x ∈ R

n from the set of projections, i.e. we want to solve

RIx = yI . (2)

2 Proposed Network Architecture

In the full data case, (2) can be be solved by filtered back-projection, which is
a stable numerical implementation of R†. However, in the sparse view case we
have |I| � |Ic| and the application of R† to data yI yields images with severe
artifacts. Images with diagnostic quality can usually be obtained by iterative
reconstruction methods designed for minimizing R(x) + λ‖RIx − yI‖p

p, where
R(x) is a regularizer and ‖ · ‖p denotes a norm which ensures data consistency.
Typical choices for the regularizer are the total variation, or the �1-norm with
respect to a frame or a trained dictionary. As a drawback, these methods are
usually computationally expensive since they rely on a repeated application of
the forward and adjoint operators. Furthermore, using regularization solely based
on prior assumptions will likely bias the result.

Methods based on neural networks as for example in [4] propose non-iterative
regularization approaches. Given an estimate solution xI of (2), regularized
images are obtained as the output of a CNN f which is previously trained on
a dataset of pairs (xI ,xfull), where xfull is an image obtained from the recon-
struction of a fully-sampled measurement. Such a procedure consists in a subse-
quent regularization of the initial solution xI rather than a joint minimization
of R(x) + λ‖RIx − yI‖p

p. Therefore, following [7], we propose to train different
networks intercepted by data consistency (DC) layers.

2.1 Data Consistency Layer

Let fΘ be a previously trained CNN with parameters Θ. Given measured data
yI , we can apply a CNN to map xI to its corresponding label, i.e. fΘ(xI) � xfull

where xI � R†yI . However, the CNN reconstruction fΘ(xI) may not satisfy the
data consistency condition RI(fΘ(xI)) � yI .

In order to improve data consistency, we define a new reconstruction
fdc(xcnn,yI , λ) � R†(zdc) where zdc ∈ R

d is the minimizer of the functional
given by

FΘ,yI ,xcnn,λ(z) � ‖R(xcnn) − z‖22 + λ‖yI − SIz‖22 , (3)

with xcnn = fΘ(xI) denoting the output of the trained CNN.
Here, the term ‖yI −SIz‖22 enforces data consistency and ‖R(xcnn)−z‖22 uses

xcnn to regularize in Radon space. Opposed to [7], where the regularization term
‖xcnn − x‖22 in image space has been used, the proposed regularization in data
space yields the following representation of the DC layer for general, possibly
non-orthogonal transforms.
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Theorem 1. Let R ∈ R
d×n be a real valued matrix and RI = SIR, where

SI is the subsampling operator defined in (1). The data consistency layer
fdc(xcnn,yI , λ) is well defined by (3) and takes the explicit form

fdc(xcnn,yI , λ) = R†(ARxcnn +
λ

1 + λ
yI

)
, (4)

where A = diag(a1, . . . , an) is a diagonal matrix of size d × d with diagonal
entries ai = 1 if i �∈ I and ai = 1/(1 + λ) otherwise.

Proof. The functional in (3) takes the separable form
∑

i∈J |Rxcnn(i) − z(i)|22 +
λ|yI(i) − (SIz)(i)|22. Hence, the minimizer of FΘ,yI ,xcnn,λ is unique and can be
found by component-wise minimization. Elementary computations show (4).

The matrix A ensures that, when the i-th projection is not available from the
measurements, (Rx)(i) is directly estimated from the projection data of the
output of the CNN. Otherwise, (Rx)(i) is calculated as a linear combination of
the CNN coefficient Rxcnn(i) and the measured coefficient yI(i). Note that the
evaluation of (4) requires the application of the pseudoinverse, which might be
numerically unstable. In the numerical implementation, the pseudoinverse R† is
replaced by an appropriate regularization. We emphasize that this issue is not
present in MRI reconstruction, as the corresponding full data operator is bijective
and the inverse well-conditioned. Therefore, the extension of the corresponding
data consistency layer from MRI to CT is a non-trivial issue.

2.2 U-Nets Cascade

Here, we always refer to a U-net as any residual encoder-decoder network archi-
tecture with a similar structure to the one presented in [4]. However, in our
experiments we vary the number of stages which are used to encode the input,
the number of convolutional layers per stage, the initial number of feature maps
which are extracted from the input and the factor by which the feature maps
are augmented after each max-pooling layer. In order to satisfy the data consis-
tency condition RI(fΘ(xI)) � yI , we propose to construct a sequence of U-nets
which are intercepted by DC layers as described in Subsect. 2.1. While the U-nets
tackle the removal of the undersampling artifacts, the DC layers account for data
consistency in Radon space. Figure 1 shows the structure of a U-nets cascade,
where each U-net consists of three encoding stages and two convolutional layers
per stage.

3 Numerical Experiments

3.1 Dataset

We test our proposed network architecture on a dataset consisting of cardiac CT
images from 52 patients. The 3D volumes contain from 240 up to 640 slices per
patient. For each slice, the undersampled data yI is generated according to a
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Fig. 1. A cascade of U-nets with intermediate data consistency layers.

parallel-beam geometry where we cover a half rotation of 180◦ of the scanner by
only 32 angles. The images xI are obtained by applying filtered back-projection
R† with Ram-Lak filter to yI . The operator R is assumed to perform 512 pro-
jections. We use the images of 40 patients for training, of 6 for validation and of
6 for testing. For computational reasons and in order to allow us to build neural
networks with a certain depth, the images are first downsampled from 512×512
to 256 × 256 pixels.

3.2 Network Architectures and Training

In all our experiments we train the U-nets cascade to minimize the L2-error
between the predicted output of the cascade and the corresponding label. All
architectures are trained for 20 epochs by stochastic gradient descent. When one
single U-net is used, we decrease the learning rate from 10−7 to 10−9. For all
other architectures which contain the operators R and R†, a more conserva-
tive learning rate which is decreased from 10−10 to 10−14 has to be chosen for
numerical stability. The network architectures are implemented in TensorFlow
and the scanner geometry, the forward and the pseudoinverse operators R and
R† are implemented in ODL [1]. We parametrize a U-net cascade according to
the following hyperparameters:

• U - the number of U-nets employed in the cascade
• E - the number of stages used for the encoding of each U-net
• C - the number of convolutional layers per stage for each U-net
• K - the number of feature maps which are initially extracted from the input

of each U-net
• F - the factor by which the number of feature maps is increased after the

max-pooling layers of each U-net.

For example, U1 E5 C4 K64 F2 denotes a single U-net architecture similar to the
one presented in [4]. On the other hand, U4 E1 C4 K64 denotes a FCNN cascade
as discussed in [7]. Note that, in such a case, we omit the hyperparameter F
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in the notation, since due to the absence of max-pooling layers, the number of
extracted feature maps stays constant over the different stages.

For a fair comparison, we try to keep the number of trainable parameters
approximately equal for the architectures we compare. Note that due to the
large number of possible combinations of hyperparameters, it is computation-
ally demanding to conduct experiments which clearly reveal the effect of each
hyperparamter. However, we identify the presence of max-pooling layers to be
the main difference between the proposed U-net cascade and the cascade in [7]
in terms of feature-extraction-operations of the subnetworks. Therefore, in order
to reach a certain number of trainable parameters, we choose to always favour
to increase the number of encoding stages rather than increasing the number
of convolutional layers per stage, the number of extracted feature maps or the
factor by which they are increased after the max-pooling layers.

For the evaluation of the performance of the network we report the peak
signal-to-noise ratio (PSNR), the relative L2-error (NRMSE), the structural sim-
ilarity index measure (SSIM) and the Haar-wavelet based perceptual similarity
index measure (HPSI, [5]) which has been reported to achieve higher correlation
with human opinion scores than SSIM on various benchmark databases.

Effect of the U-Net: Here, we investigate the effect of the replacement of the
FCNNs discussed in [7] by the U-nets. Table 1 lists the average of the aforemen-
tioned quantitative measures over the test set. In terms of PSNR, SSIM and
NRMSE, both cascades deliver similar results. On the other hand, we report a
statistically significant increase of the mean value of HPSI for all tested U-nets
cascades, (p < 0.001 for all cases). Figure 2 shows two examples of reconstructed
images of the test set. Due the relatively small number of trainable parameters
and the high undersampling factor, both approaches do not entirely remove the

Fig. 2. Comparison of different cascades. 32-views FBP-reconstruction (first column),
ground truth (second column), U4 E1 C4 K64 (third column), U4 E4 C2 K32 (fourth
column). The red circles indicate newly introduced or not correctly removed artifacts
from the reconstruction with the FCNNs-cascade. (Color figure online)
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undersampling artifacts and fail at recovering fine details. Note that, however,
the cascade with the FCNNs even introduces new artifacts. The phenomenon
can be observed in several images reconstructed with the FCNNs cascade. On
the other hand, the U-nets cascade seems to better preserve the overall structure
of the images.

Table 1. Comparison of the proposed U-nets cascade with a cascade of FCNNs with
residual connections. The measures are averaged over the test set.

Model nparams PSNR SSIM HPSI NRMSE

U2 E1 C4 K64 371 459 30.63 0.8961 0.7236 0.1597

U2 E4 C2 K32 352 899 30.56 0.8939 0.7433 0.1612

U3 E1 C4 K64 557 187 30.26 0.8737 0.7311 0.1692

U3 E4 C2 K32 529 347 30.33 0.8744 0.7499 0.1679

U4 E1 C4 K64 742 915 29.89 0.8581 0.7326 0.1799

U4 E4 C2 K32 705 795 29.92 0.8603 0.7540 0.1782

Effect of the Cascade: In this experiment, we test different network architec-
tures where we vary the length of the cascade. Figure 3 shows an image recon-
structed with different network cascades. The results show that the left coronary
artery is better visible in the images reconstructed with the U-nets cascades com-
pared to a single U-net. In contrast to the results presented in [7], increasing the

Fig. 3. Variation of the length of the cascade. Ground truth (top left), FBP-
reconstruction from undersampled data (bottom left), U1 E3 C2 K64 F2-reconstruction
(top middle), U2 E3 C4 K32 F2-reconstruction (bottom middle), U3 E3 C3 K64-
reconstruction (top right), U4 E3 C2 K32 F2-reconstruction (bottom right). The yellow
arrows point at the left coronary artery. (Color figure online)
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Table 2. Variation of the length of the U-nets cascade. The measures are averaged
over the test set.

Model nparams PSNR SSIM HPSI NRMSE

U1 E3 C2 K64 F2 1 957 251 30.19 0.9532 0.7304 0.1832

U2 E3 C4 K32 F2 1 941 379 31.14 0.8905 0.7659 0.1531

U3 E3 C3 K64 1 999 107 30.85 0.8686 0.7732 0.1621

U4 E3 C2 K32 F2 1 960 707 30.38 0.8559 0.7729 0.1732

length of the cascades does not further improve the results. We attribute this
to the fact that the inversion of the Radon-transform is ill-posed and therefore,
numerical errors due to the inversion of R prevail over the presence of the data
consistency layers. However, when we replace a single U-net by a U-nets cascade,
the network’s performance statistically significantly increases (p < 0.001) with
respect to all measures except for SSIM, where a single U-net yields the best
results, see Table 2.

3.3 Conclusion

In this work, we have presented a new network architecture for image reconstruc-
tion in sparse view CT. Replacing the FCNNs by U-nets in the cascade in [7]
visually improves the reconstruction in sparse view CT. The proposed U-nets cas-
cade outperforms the single U-net architecture with respect to all reported quan-
titative measures except for SSIM and better preserves fine anatomic details. By
adapting the data-acquisition process and the index set I, the architecture is
directly applicable to other limited data inverse problems such as limited angle
CT where we expect the method to deliver even better results as the portion of
measured data which can be used in the reconstruction is significantly larger.
Furthermore, we expect the extension of the network cascade employing U-nets
as sub-networks also to further improve the image reconstruction in MRI.
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2. Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural
networks. Inverse Prob. 33(12), 124007 (2017)

3. Hammernik, K., et al.: Learning a variational network for reconstruction of acceler-
ated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

https://github.com/odlgroup/odl
https://github.com/odlgroup/odl


A U-Nets Cascade for Sparse View CT 99

4. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural net-
work for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522
(2017)

5. Reisenhofer, R., Bosse, S., Kutyniok, G., Wiegand, T.: A Haar wavelet-based percep-
tual similarity index for image quality assessment. Signal Process. Image Commun.
61, 33–43 (2018)

6. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical
image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.)
MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24574-4 28

7. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade
of convolutional neural networks for MR image reconstruction. In: Niethammer, M.
(ed.) IPMI 2017. LNCS, vol. 10265, pp. 647–658. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59050-9 51

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-59050-9_51
https://doi.org/10.1007/978-3-319-59050-9_51

	A U-Nets Cascade for Sparse View Computed Tomography
	1 Introduction
	1.1 Sparse View Computed Tomography

	2 Proposed Network Architecture
	2.1 Data Consistency Layer
	2.2 U-Nets Cascade

	3 Numerical Experiments
	3.1 Dataset
	3.2 Network Architectures and Training
	3.3 Conclusion

	References




