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Preface

We are proud to present the proceedings of the First Workshop on Machine Learning
for Medical Image Reconstruction (MLMIR), which was held on 16th September 2018
in Granada, Spain, as part of the 21st Medical Image Computing and Computer
Assisted Intervention (MICCAI) conference.

Image reconstruction is currently undergoing a paradigm shift that is driven by
advances in machine learning. Whereas traditionally transform-based or
optimization-based methods have dominated methods for image reconstruction,
machine learning has opened up the opportunity for new data-driven approaches, which
have demonstrated a number of advantages over traditional approaches. In particular,
deep learning techniques have shown significant potential for image reconstruction and
offer interesting new approaches. Finally, machine learning approaches also offer the
possibility of application-specific image reconstruction, e.g., in motion-compensated
cardiac or fetal imaging.

This is supported by the success of machine learning in other inverse problems by
multiple groups worldwide, with encouraging results and increasing interest. Coinci-
dentally, this year is the centenary of the Radon transform and the 250th anniversary
of the birth of Joseph Fourier. The Fourier transform and the Radon transform provide
the mathematical foundation for tomography and medical imaging. It seems appro-
priate and timely to consider how to invert the Radon transform and Fourier transform
via machine learning, and have this workshop serve as a forum to reflect this emerging
trend of image reconstruction research. In this respect, it will frame a fresh new way to
recharge or redefine the reconstruction algorithms with extensive prior knowledge for
superior diagnostic performance.

The aim of the workshop was to drive scientific discussion of advanced machine
learning techniques for image acquisition and image reconstruction, opportunities for
new applications, as well as challenges in the evaluation and validation of ML-based
reconstruction approaches. We were fortunate that Jong Chul Ye (KAIST) and Michael
Unser (EPFL) gave fascinating keynote lectures that summarised the state of the art in
this emerging field. Finally, we received 21 submissions and were able to accept 17
papers for inclusion in the workshop. The topics of the accepted papers cover the full
range of medical image reconstruction problems, and deep learning dominates the
machine learning approaches that are used to tackle the reconstruction problems.

July 2018 Florian Knoll
Andreas Maier

Daniel Rueckert
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Deep Learning Super-Resolution Enables
Rapid Simultaneous Morphological and

Quantitative Magnetic Resonance
Imaging

Akshay Chaudhari1(B), Zhongnan Fang2, Jin Hyung Lee3, Garry Gold1,
and Brian Hargreaves1
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2 LVIS Corporation, Palo Alto, CA, USA
zhongnanf@gmail.com

3 Department of Neurology, Stanford University, Stanford, CA, USA
ljinhy@stanford.edu

Abstract. Obtaining magnetic resonance images (MRI) with high res-
olution and generating quantitative image-based biomarkers for assess-
ing tissue biochemistry is crucial in clinical and research applications.
However, acquiring quantitative biomarkers requires high signal-to-noise
ratio (SNR), which is at odds with high-resolution in MRI, especially
in a single rapid sequence. In this paper, we demonstrate how super-
resolution (SR) can be utilized to maintain adequate SNR for accurate
quantification of the T2 relaxation time biomarker, while simultaneously
generating high-resolution images. We compare the efficacy of resolution
enhancement using metrics such as peak SNR and structural similarity.
We assess accuracy of cartilage T2 relaxation times by comparing against
a standard reference method. Our evaluation suggests that SR can suc-
cessfully maintain high-resolution and generate accurate biomarkers for
accelerating MRI scans and enhancing the value of clinical and research
MRI.

Keywords: Super-resolution · Quantitative MRI · T2 relaxation

1 Introduction

Magnetic resonance imaging (MRI) is an excellent non-invasive diagnostic tool
to accurately assess pathologies in several anatomies. However, MRI is funda-
mentally constrained in optimizing for either high-resolution, high signal-to-noise
ratio (SNR), or low scan durations. Enhancing one of the three outcomes nec-
essarily degrades one or both of the others. Additionally, unlike other imaging
modalities, MR images are qualitative in nature and do not directly correlate to
the underlying tissue physiology. While quantitative MRI may help in assessing
c© Springer Nature Switzerland AG 2018
F. Knoll et al. (Eds.): MLMIR 2018, LNCS 11074, pp. 3–11, 2018.
https://doi.org/10.1007/978-3-030-00129-2_1
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tissue biochemistry and longitudinal changes, biomarker accuracy is extremely
sensitive to image SNR. Consequently, it is challenging to develop a single MRI
method to produce high-resolution morphological images with high quantitative
biomarker accuracy in a reasonable scan time, which is tolerable for patients and
which ultimately limits cost of the procedure.

1.1 Background

The double-echo in steady-state (DESS) pulse sequence can generate high-
resolution images with diagnostic contrast as well as the quantitative biomarker
of T2 relaxation time, in only five-minutes of scan time [1]. The T2 relaxation
time has shown to be sensitive to collagen matrix organization and tissue hydra-
tion levels, and is useful for assessing degradation of tissues such as cartilage,
menisci, tendons, and ligaments [2]. DESS intrinsically produces two images with
independent contrasts. The first echo of DESS (S1) has a T1/T2 weighting while
the second echo of DESS (S2) has a high T2 weighting.

DESS T2 MapDESS S2DESS S1DESS Composite

Single-Contrast 
DESS

Dual-Contrast 
DESS

Fig. 1. Compared to the single-contrast DESS, dual-contrast DESS provides additional
morphological information and automatic quantitative T2 relaxation time maps. The
separate DESS contrasts (S1 and S2) and T2 maps are useful in assessing the cartilage
(dashed arrow), the menisci (dotted arrow), and inflammation (solid arrow). The T2

maps are not affected by noisy fat-suppression of bony signal.

In previous applications of DESS, the S1 and S2 scans are combined during
the reconstruction process to produce an output with a singular contrast (herein
referred as single-contrast DESS ) [3]. However, separating the two echoes can
provide considerable diagnostic utility since both echoes are sensitive to varying
pathologies. Additionally, the two independent-contrast images (herein referred
as dual-contrast DESS ) can be used to analytically determine the tissue T2

relaxation time, which is a promising biomarker for tissue degradation and OA
progression [2,4]. Example images comparing the output of single-contrast DESS
and dual-contrast DESS are shown in Fig. 1. Dual-contrast DESS has shown to
be useful in diagnostic musculoskeletal imaging of knee as well as in research
studies for evaluating OA progression [1,5].
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1.2 Motivation

While promising, the dual-contrast DESS is limited in acquiring slices with
1.5 mm section-thickness to maintain adequate SNR for T2 measurements of the
cartilage and menisci. Compared to an in-plane resolution of 0.4× 0.4 mm, such
a high-section thickness precludes multi-planar reformations, which are essen-
tial for evaluating thin knee tissues in arbitrary planes, due to excessive image
blurring. An ideal acquisition would provide sub-millimeter section thickness
without biasing T2 measurements. Advances in convolutional neural networks
(CNNs) and 3D super-resolution (SR) methods may enable acquisition of slices
with a thickness of 1.5 mm followed by retrospectively achieving sub-millimeter
resolution, while maintaining SNR for T2 measurements [6]. However, unlike
the single-contrast DESS that has hundreds of datasets publicly available, the
dual-contrast DESS is a newer sequence with very limited amounts of high-
resolution data available, which makes it challenging to create a SR CNN from
scratch. In such scenarios, transfer learning methods may be helpful in overcom-
ing the limitations of a paucity of high-resolution ground-truth dual-contrast
DESS training data. Specifically, it may be possible to train a SR CNN ini-
tially using single-contrast DESS datasets and subsequently adapt the network
to enhance dual-contrast DESS images using limited training data.

Consequently, this study aimed to answer: 1. Can transfer learning enhance
through-plane MRI resolution for the clinically-relevant dual-contrast DESS
sequence and 2. Can transfer learning enable accurate quantitative imaging of
the T2 relaxation time by overcoming SNR limitations commonly faced in high-
resolution imaging? The overall goal of this study was to evaluate whether there
can be an efficient methodology to create a SR CNN for dual-contrast DESS to
produce high-resolution morphological and quantitative images.

2 Related Work

Sparse-coding SR (ScSR) is a state-of-the-art non-deep-learning method that
has been used for 2D MRI SR [7]. CNN-based 3D SR MRI has previously shown
to transform MRI images with a high section-thickness (low slice-direction res-
olution) into images with lower section-thickness (high slice-direction resolu-
tion) [8]. However, this initial training was performed on single-contrast DESS
sequence that does not produce quantitative biomarkers. These scans were orig-
inally acquired with a section thickness of 0.7 mm and retrospectively downsam-
pled by a factor of 2x to a section thickness of 1.4 mm to exactly duplicate a
faster, lower-resolution acquisition. The SR network was then utilized to evalu-
ate whether the original 0.7 mm scans could be recovered from the 1.4 mm slices.
We build upon these results and to extend SR to MRI sequences that can simul-
taneously produce multiple diagnostic contrasts and quantitative biomarkers.
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3 Methods

3.1 Imaging Methodology

We utilized a CNN termed Magnetic Resonance Super-Resolution (MRSR)
to extend the SR capabilities of the network initially trained for single-
contrast DESS scans. The dual-contrast DESS datasets used in this study
were acquired with a slice thickness of 0.7 mm (imaging parameters:
TE1/TE2/TR = 7/39/23 ms, matrix size = 416× 416, field of view = 160 mm,
flip angle = 20◦, scan time = 5 min, phase encoding parallel imaging = 2x,
slices = 160). A slice thicknesses of 0.7 mm was maintained for the single-contrast
and dual-contrast DESS scans.

A pre-trained network for performing SR with a slice downsampling factor of
2x for the single-contrast DESS sequence was utilized to simultaneously enhance
both images from the dual-contrast DESS. This pre-training was performed on
image patches with input and output sizes of 32× 32× 32 using convolutional
filters of size 3× 3× 3 and a feature map length of 64. This SR CNN network
transforms an input low-resolution image into a residual image through a series of
20 convolutions and rectified linear unit (ReLU) activations [8]. An approximate
high-resolution image is generated through the sum of the low-resolution input
and the resultant residual using the L2-norm between the approximate and true
high-resolution images as the loss function.

3.2 Transfer Learning Training for Dual-Contrast DESS

Since dual-contrast DESS contains an extra image contrast, the initial single-
contrast DESS weights for the first convolution layer were duplicated to account
for the dual-echoes. Similarly, the final layer output weights were modified to
output two echo images instead of one, as shown in Fig. 2. In such a manner,
the single-contrast DESS MRSR architecture was modified and subsequently
fine-tuned to simultaneously enhance dual-contrast DESS images.

All data processing steps for the single-contrast DESS and MRSR networks
were kept unchanged. This included data normalization between 0 and 1, simu-
lation of thicker slices with a 48th-order anti-aliasing filter, a mini-batch size of
50, and a learning rate of 0.0001. All input patches had a size of 32× 32× 32× 2
with a stride of 16 in the first three directions. Thus, an input image of dimen-
sions 416× 416× 160 was divided into 5625 patches. The MRSR network was
trained for 10 epochs using 4 NVIDIA Titan 1080Ti graphical processing units.

30 dual-contrast DESS 3D datasets were used for training and 10 for val-
idation. All datasets were collected from patients referred for a clinical MRI
following institutional review board approval and informed consent, for ensuring
unbiased representation of healthy and pathologic tissues.

Two unique datasets, described below, were tested using the MRSR transfer
learning network because it is not currently possible to acquire a single high-
resolution dataset that also has high-SNR for accurate quantitative imaging of
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Fig. 2. The schematic of the Magnetic Resonance Super-Resolution (MRSR) network
demonstrates how the low-resolution (LR) dual-contrast DESS images are simultane-
ously transformed into the super-resolution (SR) images.

the T2 relaxation time. The goal of this two-fold testing was to acquire sep-
arate reference high-resolution and high-SNR scans. The dual-contrast DESS
could therefore have intermediate SNR for accurate T2 measurements and the
intermediate resolution of the acquisition could be enhanced using MRSR.

Image Quality: Test Cohort 1. This dataset had identical scan parameters to
the training dataset. Following the simulation of 2x thicker slices, image quality
enhancements were evaluated by comparing the structural similarity (SSIM),
peak SNR (pSNR), and root mean square error (RMSE) between the ground
truth high-resolution and MRSR images, along with tricubic interpolated (TCI),
Fourier interpolated (FI), and sparse coding super-resolution (ScSR) images.

Fig. 3. MRSR coronal reformatted images demonstrate better resolution in the slice-
direction (left-right) than the input TCI images, compared to the ground-truth.

T2 Accuracy: Test Cohort 2. The second dataset had thicker slices (1.6 mm)
to maintain a higher SNR for accurate T2 quantification, since T2 has a high
sensitivity to noise [1]. Accuracy of the T2 maps was evaluated by comparing the
T2 values in two combined adjacent slices in the medial femoral cartilage of the
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Fig. 4. Example axial reformatted MRSR images, depict finer image details consider-
ably better than the input TCI image compared to the ground-truth.

MRSR, TCI, FI, and ScSR outputs to the ground-truth thick-slice sequences.
Segmentation was performed by a reader with 5 years of experience in knee MRI
segmentation. T2 relaxation time differences, coefficients of variation (CV%),
and concordance correlation coefficients (CCC) assessed T2 variations between
the methods, compared to the ground truth.

Mann-Whitney U-Tests assessed variations between morphological enhance-
ment metrics as well as T2 variations for all enhancement methods.

4 Results

Each epoch training duration was approximately 3 h for the total of 170,000
training patches. The SSIM, pSNR, and RMSE values between the MRSR, TCI,
FI, and ScSR images to the ground-truth are shown in Table 1, where MRSR
was significantly superior compared to TCI, FI, and ScSR. Comparisons for T2

values computed with all methods are shown in Table 2. MRSR had the best
image quality metrics, as well as the closest matches for the T2 values. Despite
being compared on a pixel-wise basis, which can have a high sensitivity to noise,
the MRSR T2 values had the lowest inter-method CV of 3% and an excellent
CCC of 0.93. There were no statistically significant variations for T2 for any
method compared to the ground truth, likely due to a limited sample size.

Example coronal and axial images of the resolution enhancement are shown
in Figs. 3 and 4. The medial collateral ligament (solid arrow, approximately
1 mm thick) is completely blurred out in the input image (Fig. 3), but can be
delineated well with MRSR. Similarly, the ligament bundles (dashed arrow) and
the synovium (dotted arrow) appeared blurrier in the input image than the
MRSR. Figure 4 shows that signal irregularities in medial synovium (solid arrow)
delineated better using MRSR than in the input image. The lateral synovial
membrane (dotted arrow) also appears thickened in the blurred input image but
not in the ground-truth or MRSR, which may incorrectly lead to a diagnosis
of synovitis. The patellar cartilage (dashed arrow) appears blurred with diffuse
signal heterogeneity in the input image, which may lead to an incorrect cartilage
lesion diagnosis. Example T2 map comparisons (shown in Fig. 5) show minimal
differences between the ground-truth and MRSR images, and that the per-pixel
difference map has no organized structure, suggesting minimal systematic bias.
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Fig. 5. MRSR T2 relaxation time maps appear similar and provide a similar spatial
distribution of T2 values compared to the ground-truth. The difference map has no
discernible structure, suggesting minimal systematic bias. (Note the different color
scale). (Color figure online)

Table 1. Quantitative image quality metrics for both DESS echoes comparing the
ground-truth to MRSR, TCI, FI, and ScSR images for test cohort 1. *indicates a
significant difference (p< 0.05) compared to MRSR. †indicates that all displayed values
are multiplied by 103.

Metric Image MRSR TCI FI ScSR

SSIM S1 0.98± 0.01 0.95± 0.02* 0.92± 0.02* 0.97± 0.01*

S2 0.98± 0.01 0.96± 0.02* 0.95± 0.02* 0.97± 0.01

pSNR S1 37.7± 1.5 32.5± 3.6* 32.4± 2.8* 36.6± 1.1

S2 38.7± 2.0 33.6± 4.2 33.6± 3.5* 37.5± 1.6

RMSE† S1 0.18± 0.06 0.72± 0.56* 0.69± 0.47* 0.22± 0.05

S2 0.13± 0.04 0.51± 0.40 0.47± 0.34* 0.16± 0.05

Table 2. Cartilage T2 relaxation times for MRSR, TCI, FI, and ScSR compared to
the ground-truth using differences and coefficients of variation (CV%) in test cohort 2.

Subject Ground-truth MRSR TCI FI ScSR

1 35.2 35.8 36.4 36.1 42.4

2 42.6 44.1 44.4 44.5 50.1

3 27.9 29.1 29.8 29.4 35.9

4 35.3 38.5 39.5 39.0 58.3

5 36.6 38.0 39.0 39.2 46.7

Average 35.5±5.2 37.1±5.4 37.8±5.3 37.6±5.5 46.7±8.4

CV % N/A 3.1±1.8 4.5±2.2 4.1±2.0 18.8±9.3

Difference N/A 1.6±1.0 2.3±1.1 2.1±1.1 11.2±6.7

CCC N/A 0.93 0.87 0.89 0.21
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5 Discussion and Conclusion

In this study, we demonstrated that transfer learning can be effectively used to
perform SR on MRI sequences with varied contrasts that are used clinically and
in epidemiological studies, even with a small training dataset. The dual-contrast
DESS sequence was able to maintain a considerably higher resolution and detail
than the comparison methods. It is important to note that since the SR was
carried out only in one dimension of the 3D dataset, the image enhancements in
Figs. 3 and 4 are more prominent in the left-right direction anatomically, which
is also the same direction of the displayed images.

The MRSR approach maintained comparable T2 relaxation times between
the ground-truth. A pixel-wise CV of 3% has shown to be adequate for use in OA
studies and a CCC of over 0.90 indicated excellent reproducibility compared to
the ground-truth [9]. With MRSR, slices can be acquired with a higher section
thickness for accurate T2 measurement, while enabling super-resolution for per-
forming high-resolution MRI scans, which was not possible previously due to
SNR limitations. Interestingly enough, all methods over-estimated T2 values,
likely because the thin cartilage has two major divisions (deep and superficial),
where the deep cartilage has lower signal. Blurring from the superficial carti-
lage would increase signal in the deeper layer, leading to a higher T2 value.
Performing layer-wise T2 values will be important in future studies.

In conclusion, we demonstrated how SR enhanced through-plane resolution in
MRI and maintained quantitative accuracy of the T2 relaxation time biomarker.
MRSR outperforms conventional and state-of-the-art resolution enhancement
methods and has potential for use in clinical and research studies.
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Abstract. Recently, an end-to-end MR image reconstruction tech-
nique, called AUTOMAP, was introduced to simplify the complicated
reconstruction process of MR image and to improve the quality of
reconstructed MR images using deep learning. Despite the benefits
of end-to-end architecture and superior quality of reconstructed MR
images, AUTOMAP suffers from the large amount of training param-
eters required by multiple fully connected layers. In this work, we pro-
pose a new end-to-end MR image reconstruction technique based on the
recurrent neural network (RNN) architecture, which can be more effi-
ciently used for magnetic resonance (MR) image reconstruction than the
convolutional neural network (CNN). We modified the RNN architec-
ture of ReNet for image domain data to reconstruct an MR image from
k-space data by utilizing recurrent cells. The proposed network recon-
structs images from the k-space data with a reduced number of param-
eters compared with that of fully connected architectures. We present a
quantitative evaluation of the proposed method for Cartesian trajectories
using nMSE and SSIM. We also present preliminary images reconstructed
from k-space data acquired in the radial trajectory.

Keywords: Image reconstruction · Neural network · End to end
RNN · AUTOMAP · ReNet

1 Introduction

In magnetic resonance imaging (MRI), k-space data is acquired using a vari-
ety of MR sequences consisting of different radiofrequency and gradient pulses.
Then, by transforming the frequency information of the k-space data into spatial
information, an MR image can be reconstructed. Generally, 2D or 3D Fourier
transform (FT) is used for reconstruction of an MR image because the k-space is
typically scanned in a Cartesian trajectory. However, relying entirely on the FT
may not be sufficient for certain applications of MRI such as non-Cartesian MRI,
c© Springer Nature Switzerland AG 2018
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accelerated MRI, etc. In such cases, other iterative reconstruction techniques can
be utilized to enhance the quality of MR images.

Recently, deep learning has been also applied in MRI to enhance the image
quality [1–7]. Considering that MRI needs to consider multiple sources of
errors due to its complex nature, including field inhomogeneity, eddy current
effects, phase distortions, regridding, etc., an end-to-end reconstruction using
deep learning could provide a unified solution and simplify the reconstruction
process of MRI. Image reconstruction by domain-transform manifold learning
(AUTOMAP) [1] was a state-of-the-art technique that performed end-to-end
reconstruction. As each voxel of an MR image can be regarded as a weighted
sum of the entire k-space, AUTOMAP is structured as multiple fully connected
layers, requiring a large amount of weights and biases. As a result, the maxi-
mum size of input data is limited by the hardware specification that determines
the amount of processable weights and biases. To resolve this issue, we adopt
the bidirectional recurrent neural network (RNN) as an alternative to the fully
connected layers [8,9]. As a recurrent cell has a memory that stores states, it
allows the previous information to be reflected in the output of the next time
step without overloading the system.

In this work, the RNN extracts features for image reconstruction while sweep-
ing the k-space both horizontally and vertically. In addition, by utilizing the
sequentiality of a recurrent cell, the bidirectional RNN can decode the input
k-space data into image data with a reduced number of weights and biases than
the fully connected layers. In the following sections, we present a detailed expla-
nation of the proposed recurrent neural network architecture and experiment
results.

Fig. 1. The proposed network architecture. The input is sensor domain data with a
dimension of w × h × 2 (2 for real and imaginary k-space). Dotted lines represent
forward direction RNNs and solid lines represent reverse direction RNNs. Two RNN
layers for horizontal and vertical sweeps are sequentially used to learn the relation of
k-space data in the left-right, right-left, top-down, and bottom-up directions.
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2 Method

2.1 Network Architectures

The proposed architecture was designed by benchmarking the ReNet architec-
ture, which was proposed as an alternative to the use of convolutional neural
network (CNN) (Fig. 1). The ReNet replaces the convolution and pooling layer
of the deep CNN with four recurrent neural networks that sweep both horizon-
tally and vertically in forward and backward directions across the images. In
ReNet [9], the relationship between input patch P = {pi,j}, state zFi,j , z

R
i,j , and

feature map V = {vi,j}j=1,...,J
i=1,...,I , where vi,j ∈ R

2d and d is the number of recurrent
units, are defined as follows.

vF
i,j = fV FWD

(
zFi,j−1, pi,j

)
, for j = 1, ..., J

vR
i,j = fV REV

(
zRi,j+1, pi,j

)
, for j = J, ..., 1

(1)

In this work, we modified the architecture of the original ReNet with the
consideration of the characteristics of MR k-space data, thereby improve stability
and convergence of network for MRI reconstruction application. In MRI, most
of the high frequency values in k-space are close to zero, preventing the network
from properly updating weights and biases. Similarly, the marginal areas of MR
images tend to have zero-values, which is also inadequate for training. Thus,
instead of using single points as an input, single columns (or rows) are used
as an input to the recurrent layer. For input format of the network, complex
values of the k-space data having a matrix size of w × h (X ∈ C

w×h) can be
processed as two sets of real-value data, which can be denoted as X = {xi,j,k}
for X ∈ R

w×h×2, where w is size of width (kx) and h is size of height (ky). Then,
the output vectors can be defined as follows,

oF·,j = fV FWD

(
sF1,j−1, ..., s

F
nhidden,j−1, x1,j,·, ..., xI,j,·

)
, for j = 1, ..., J

oR·,j = fV REV

(
sR1,j+1, ..., s

R
nhidden,j+1, x1,j,·, ..., xI,j,·

)
, for j = J, ..., 1

(2)

where s·,j represents hidden states of the recurrent layer in the jth time step
and nhidden represents the number of hidden units in the recurrent layer. J and
I represent the sizes of the time step axis and its orthogonal axis, respectively,
of the input to the recurrent layer. The output size of the recurrent layer should
be 2 × nhidden because of the bi-directionality.

In the proposed network, the input data initially flows into the recurrent
layer which has a time step axis along the horizontal bi-directions. The output
of the horizontal recurrent layer Ohorizontal ∈ R

w×2×nhidden is serialized into the
same size as the input and depth dimensions. Then, the serialized output of the
recurrent layer with horizontal time step axis flows into the second recurrent
layer, which has a time step axis along the vertical bi-directions. The output
of the recurrent layer with vertical time step axis Overtical ∈ R

h×2×nhidden is
also serialized into the same size as the input and depth dimensions. Finally,
the convolutional layer combines the data along the depth dimensions into a
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single data to generate a reconstructed image. We deploy a mean-squared-error
between the regressed image and the ground truth image as a loss function of
the proposed network and choose an optimizer RMSProp [10] with a learning
rate of 0.002, momentum of 0.0, and decay of 0.9. Additionally, the learning
rate annealing with a step decay is also applied. If a difference of loss values
between the current epoch and the one before three epochs is smaller than the
pre-determined threshold value, the learning rate is reduced to a predefined ratio.

2.2 Training Environment

Hardware. The proposed architecture was implemented using Tensorflow [11]
based Keras [12] and processed by Intel(R) Core(TM) i5-8400 2.80 GHz CPU
and NVIDIA Geforce GTX 1080-Ti GPU. Training the weights and biases takes
approximately one hour per each epoch for 50,000 samples.

Dataset. 50,000 image samples of ILSVRC2012 [13] and ten MPRAGE images
(3D-array samples) of HCP [14] datasets were used for training, validating, and
testing. In addition to MR dataset (i.e., HCP images), we also included images of
ILSVRC2012 as pre-training dataset to train the network architecture with input
images having more diverse image characteristics. The T1-weighted MPRAGE
images in HCP dataset were acquired with following parameters. TR = 2,530 ms,
TE = 1.15 ms, TI = 1,100 ms, FA = 7.0◦ and BW = 651 Hz/Px on a Siemens Skyra
3T MRI Scanner (Siemens Medical Solutions, Erlangen, Germany).

The preprocessing of dataset was conducted as follows. To convert natural
images of ILSVRC2012 into grey scale images, we computed the luminance (Y)
component from the RGB values of each pixel (Y = 0.2125 R + 0.7154 G + 0.0721
B) [15] using scikit-image, which is a well-known python package for image pro-
cessing [16]. After the conversion, the intensity values were normalized into a
range of 0 to 1. To guarantee consistency, the intensity of HCP brain images
was also normalized into a range of 0 to 1. Then, data in the image domain
was synthesized into k-space data using Cartesian or radial trajectories. To
synthesize radial k-space data, the numbers of radial views (nv) and readout
samples (np) were 128 and 128, respectively. To synthesize radial k-space data,
we used Berkeley Advanced Reconstruction Toolbox (BART) in MATLAB [17].
All images were resized as 128 × 128 to synthesize the k-space data X ∈ C

w×h

with w = 128 and h = 128 in Cartesian or the k-space data X ∈ C
nv×np with

nv = 128 and np = 128 in radial.
In addition, low pass filtered (LPF) k-space dataset was generated from the

HCP MR images and used as an input of the proposed network, which was
not included in the training dataset, to show the characteristics of the network
and to compare it with 2D fast FT (FFT). LPF k-space data was generated by
masking the high frequency of original k-space using the rectangular mask with
a size of w/2 × h/2.
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2.3 Quantitative Evaluation

For quantitative evaluation, we deploy the normalized mean square error and
structural similarity index [18] defined as follows.

nMSE =

∑I
i

∑I
i

[
xGT
i,j − xPRED

i,j

]2

∑I
i

∑I
i

[
xGT
i,j

]2 , (3)

SSIM =
(2μxμy + C1) (2σxy + C2)(

μ2
x + μ2

y + C1

) (
σ2
x + σ2

y + C2

) , (4)

where xGT
i,j is the ground truth image and xPRED

i,j is the predicted image. Small
constants C1 and C2 are included to avoid instability when the denominator is
very close to zero.

3 Results

In Fig. 2, selected images from the entire dataset are presented for comparison,
where the left column shows the ground truth images and the middle column
shows the predicted results of the corresponding images using the proposed net-
work. The difference map between the ground truth and the predicted image
is also presented in the right column with amplified intensity (×5) for viewing
purposes.

Fig. 2. Comparison of ground truth, prediction, and difference images. Upper and lower
rows show the 135th and 185th slices of selected MR data of HCP, respectively. Left
Ground truth images Middle Prediction images Right Difference between ground
truth and predicted image. Magnitude of difference image is amplified with a factor of
five.
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Fig. 3. Reconstruction of LPF dataset. Upper and lower rows shows the 135th and the
185th slices, respectively. Left Ground truth images Middle Inverse FFT images of
LPF dataset Right Prediction results of LPF dataset.

As the proposed network is trained to conduct inverse FFT, we performed
image reconstruction from the LPF k-space data to indirectly show the char-
acteristics of the proposed network. Figure 3 shows the ground truth images
(left column), images reconstructed using the inverse FFT (middle column),
and the images reconstructed by the proposed network (right column) from the
LPF k-space data. Although LPF data was not included in the training dataset,
the predicted images showed blurring, which is similarly shown in the images
reconstructed by inverse FFT. Thus, we speculate that the proposed network
conducted similar tasks as the inverse FFT.

The mean and standard deviation of the quantitative evaluation values
calculated from the entire slices of a single subject are nMSE= 0.3399 and
SSIM = 0.9583. The selected 135th slice image presented in the previous figure
shows nMSE of 0.4053 and SSIM of 0.9543, meaning that the selected slice repre-
sents below-average quality than the rest of the data used in this experiment. For
the 185th slice, nMSE of 0.2238 and SSIM of 0.9758 were measured, representing
above-average image quality.

To verify the feasibility of the proposed network for non-Cartesian trajecto-
ries, we trained and tested our network with synthesized radial data. As shown
in Fig. 4, the images reconstructed by the proposed method are blurred and the
edges of WM and GM are ambiguous. However, this result suggest that the
proposed method may be used to end-to-end reconstruction of non-Cartesian
k-space with improvements. Thus, further investigation on training process and
optimization of network should be conducted to increase the quality of recon-
structed images and to reduce blurring artifacts.
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4 Discussion

In many deep learning techniques for image processing and understanding, CNN
is preferred for the weight sharing characteristics of convolution kernel, not to
mention the availability of highly optimized CNN structures. Especially in image
to image tasks, the convolution kernel with locally bounded receptive field can
be efficiently used. However, CNN may not be appropriate for end-to-end MR
reconstruction tasks because k-space signals are integrated sum of MR signals
from the entire excitation volume in MRI. For this reason, we proposed an end-
to-end MR image reconstruction method based on the ReNet [9], which utilized
recurrent neural network. In the proposed network, the recurrent cell has a role
of collecting and holding the forward and reverse scan information using bidirec-
tional sweeps. By utilizing information from both directional sweeps, it combines
the current input and the hidden states to produce the output. As the 2D Fourier
transform can be independently performed for each orthogonal axis, we designed
our architecture to perform the reconstruction by sequentially using two RNNs.
In the original architecture of ReNet, the recurrent cell takes input from the cor-
responding point or patch. However, point-by-point input data in k-space may
disturb the network learning process because the magnitude of k-space data is
highly unbalanced and the information is clustered in the central k-space. Thus,
we modified the original architecture of ReNet, so that the recurrent cell can
take input from the entire vector of the orthogonal axis to time step axis.

With respect to computation loads, the number of parameters for weights
and biases in the proposed architecture is much less compared to AUTOMAP.
In the custom-built version of AUTOMAP [1] architecture with an input dimen-
sion of X ∈ R

2×n2
for n = 80 the total number of parameters was 163,982,336.

If the input dimension is increased from 80 to 128 (as in the paper), the num-
ber of parameters between the input and the first fully connected layer can be
calculated as 536,887,296. Considering that this is only for the first layer of the
whole architecture, it is a demanding requirement. On the other hand, the pro-
posed network requires 79,725,073 parameters for 128 × 128 Cartesian k-space
input of X ∈ C

128×128 and 79,733,777 parameters for 128 × 128 radial input of
X ∈ C

128×128.
As shown in Figs. 2 and 3, predicted images show the horizontal and vertical

stripe pattern artifacts, and dark regions in frontal regions. We speculate that
the stripe pattern artifacts were caused by the recurrent cell used in our network
architecture, and dark regions were caused by insufficient amount of training data
and lack of augmentation. Thus, increasing the amount of data, improvement of
augmentation algorithm, and use of more advanced activation functions, such as
leaky ReLU [19] may reduce these artifacts.

In conclusion, we proposed a new end-to-end MR image reconstruction tech-
nique based on recurrent deep learning architecture. As ReNet can be used with
a reduced number of training parameters, it can be used for reconstruction of
images with higher resolution. In this study, preliminary results were presented
to show the feasibility of ReNet for end-to-end MR image reconstruction tasks.
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Fig. 4. Reconstructed images from radial sampling. Upper and lower rows show the
135th and the 185th slices, respectively. Left Ground truth images Middle Prediction
results of radial dataset Right Difference between ground truth and predicted image.
Magnitude of difference image is amplified with a factor of five.

Thus, further investigation should be conducted to improve image quality and
to extend the proposed method for under-sampled k-space data and for other
non-Cartesian trajectories.
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Abstract. Incorrect ECG gating of cardiac magnetic resonance (CMR)
acquisitions can lead to artefacts, which hampers the accuracy of diag-
nostic imaging. Therefore, there is a need for robust reconstruction meth-
ods to ensure high image quality. In this paper, we propose a method
to automatically correct motion-related artefacts in CMR acquisitions
during reconstruction from k-space data. Our method is based on the
Automap reconstruction method, which directly reconstructs high qual-
ity MR images from k-space using deep learning. Our main method-
ological contribution is the addition of an adversarial element to this
architecture, in which the quality of image reconstruction (the genera-
tor) is increased by using a discriminator. We train the reconstruction
network to automatically correct for motion-related artefacts using syn-
thetically corrupted CMR k-space data and uncorrupted reconstructed
images. Using 25000 images from the UK Biobank dataset we achieve
good image quality in the presence of synthetic motion artefacts, but
some structural information was lost. We quantitatively compare our
method to a standard inverse Fourier reconstruction. In addition, we
qualitatively evaluate the proposed technique using k-space data con-
taining real motion artefacts.

Keywords: Cardiac MR · Image reconstruction · Deep learning
UK Biobank · Image artefacts · Image quality · Automap

1 Introduction

Image reconstruction is an inverse mathematical problem for mapping the sensor
domain information to the image domain. A good image reconstruction is a key
component for establishing high quality images from sensors. Traditionally in
MR imaging the k-space information is used in a compressed sensing framework
to address the problem of image reconstruction [9]. Recently, there has been
c© Springer Nature Switzerland AG 2018
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interest in finding the mapping from the frequency domain to the image domain
using deep learning techniques [10]. The majority of such methods have the aim
of accelerating the image acquisition without compromising image quality. In
this work, we address a different problem. We aim to correct motion artefacts
with an end-to-end setup using motion artefact corrupted k-space data as the
input and producing high quality images as the output.

(a) (b) (c) (d)

Fig. 1. Examples of a good quality CINE CMR image (a), corresponding k-space (b)
and a corrupted image (c), where red arrows indicate the artefacts and the correspond-
ing k-space (d). The k-space corruption process is able to simulate realistic motion-
related artefacts. (Color figure online)

High diagnostic accuracy of image analysis pipelines requires high quality
medical images. Misleading conclusions can be drawn when the original data
are of low quality, in particular for cardiac magnetic resonance (CMR) imaging.
CMR images can contain a range of image artefacts [2], and improving the quality
of images acquired by MR scanners is a challenging problem. Traditionally, low
quality images are excluded from further analysis. However, excluding images
not only diminishes the research value of the cohort but also raises the issue of
how to robustly and efficiently identify images for exclusion.

The UK Biobank is a large-scale study with all data accessible to researchers
worldwide, and will eventually consist of CMR images from 100,000 subjects
[12]. To maximize the research value of this and other similar datasets, automatic
artefact correction tools are essential. One specific challenge in CMR is motion-
related artefacts such as mis-triggering, arrhythmia and breathing artefacts due
to incomplete breath-holds. These can result in temporal and/or spatial blurring
of the images, which makes subsequent processing difficult [2]. Examples of a
good quality image and a synthetic motion artefact corrupted image are shown
in Fig. 1a and c for a short-axis view CINE CMR scan. The corresponding k-
space data are shown in Fig. 1b and d. In this work, our goal is to recover the
good quality image (Fig. 1a) from the corrupted k-space data (Fig. 1d) directly
using deep learning.

Our approach is based on automatically correcting for artefacts during the
reconstruction process. We use a deep neural network for correcting artefacts
and evaluate our method on a synthetic dataset of 2000 2D+time CMR images
from the UK Biobank. We also evaluate the performance on real artefact cases
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to showcase the performance of our method. There are two major contributions
of this work. First, we address the problem of motion artefact correction directly
from k-space by leveraging the rich information available and validate it on a
large-scale CMR dataset. Second, we introduce an adverserial component to the
Automap framework [18] to increase the realism and quality of the images.

2 Background

Deep learning techniques have been utilized for inverse problems with consider-
able success [10]. This success has motivated the medical image analysis com-
munity to use deep learning on multiple image reconstruction problems such
as CT [5] and MR [17]. The main motivation has been to accelerate the image
acquisition using under-sampling.

In the literature, there have been four strategies to approach the problem of
estimating high quality images from corrupted (or under-sampled) k-space [4].
One choice is to correct the k-space before applying the inverse Fourier transform
(IFT). Han et al. [4] proposed the use of convolutional networks for k-space
correction coupled with weighting layers on k-space. A more common approach is
to use the IFT on k-space and learn a mapping between the corrupted images and
good quality images. Kwon et al. [7] proposed using multi-layer preceptrons to
find this mapping. This group of approaches are essentially denoising techniques,
which do not directly utilize the information in the frequency domain. To remedy
this broken link an alternative strategy is to use iterative updates between k-
space and the image domain using a cascaded network [14,15]. This group of
methods aims to use networks in the image domain to improve the image and
feed back the improved image information to k-space with a data consistency
term. More recently, Zhu et al. [18] proposed an end-to-end image reconstruction
approach (Automap) for MR and evaluated it on under-sampled k-space data.

In the context of CMR artefact correction, early works focused on changes
in acquisition schemes [13] and analytical methods for motion artefact reduction
[6]. For automatic correction of the CMR, Lotjonen et al. [8] used short-axis
and long-axis images to optimize the locations of the slices using mutual infor-
mation as a similarity measure. However, these methods cannot address the
mis-triggering problem and focus only on the in-plane motion of the heart.

3 Methods

The proposed framework of using a deep neural network for motion artefact
correction on k-space data is based on a generative-adversarial network setup.
Our aim is to train a successful generator to reconstruct good quality images
from motion artefact corrupted k-space data.
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3.1 Network Architecture

The algorithm consists of a generator and a discriminator as illustrated in Fig. 2.
Our generator network follows a similar architecture to [18], which was originally
developed for image reconstruction using domain specific information. In our case
we additionally use a discriminator to increase the robustness and realism of the
reconstructed images. The input to the network is a complex n-by-n k-space
matrix, which we concatenate into a (2 × n × n)-by-1 vector. We then use two
fully connected layers: FC1 with 2×n×n neurons and FC2 with n×n neurons.
The output from FC2 is reshaped and two convolutional layers with 64 filters
and 5 × 5 filter size are used. After that a deconvolutional layer with 64 filters
of size 7 × 7 is applied and finally a 1 × 1 layer is used to aggregate the results
into an image.

2X128X128

INPUT
Corrupted Complex

K-Space

C1
64@
5x5

C2
64@
5x5

DC3
64@
7x7

128x128x2

OUTPUT
Artefact Corrected

Image

C4
1@
1x1

128x128 128X128

FC1

FC2

GENERATOR

Real Image

C5
64@5x5

C6
128@5x5

1

FC3

OUTPUT
Real 
or 

Fake

DISCRIMINATOR

Fig. 2. Generative adversarial Automap architecture for motion artefact correction.

The discriminator takes a generated image or a real image as input and uses
two convolutional layers and a final dense layer for classification. The final output
of the discriminator a decision as to whether the generated image looks real or
fake. By using outputs of the generator (artefact corrected images) and the real
images from the dataset the discriminator is trained to distinguish between the
artefact corrected images and high quality images. The loss function for the
model is a mean squared error loss between the predicted image and real image
and combined with a Wasserstein loss [3], which takes the mean of the differences
between the two images. The weights of the discriminator are frozen during the
training of the whole model and trained separately only with the Wasserstein
loss, which is shown to be effective for inverse problems [1].

3.2 Implementation Details

The parameters of the convolutional and fully-connected layers were initialized
randomly from a zero-mean Gaussian distribution and trained until no substan-
tial progress was observed in the training loss. In this study, we use the RMSprop
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optimizer to minimize mean squared error. One important aspect during training
is the activity regularizer, which is used after the deconvolutional layer. In our
implementation, we first trained without this regularizer, finding that including
it early in training led to the loss being trapped in poor local minima. Once
training converged without the regularizer, it was then added, which led to the
generation of sharper looking images.

First, we trained our network data from the ImageNET dataset to learn a
variety of frequencies from k-space as described in [18] without the regularization
term. Then, the network was trained for 50 epochs with the regularization term.
Finally, we introduced the cardiac MR data and trained our network for an addi-
tional 150 epochs. The training was stopped early if no significant improvement
was observed. An improvement was considered significant if the relative increase
in performance was at least 0.5% over 20 epochs. To better generalize the model
we applied data augmentation by rotating images in increments of 90 ◦. We also
found that the success of our implementation was highly sensitive to the choice
of learning rate, which we set to be 0.00002.

During training, a batch-size of 20 2D k-space datasets was used. We used
the Keras Framework with Tensorflow backend for implementation and training
the network took around 3 days on a NVIDIA Quadro 6000P GPU. Correction
of a single image sequence took less than 1s once the network was trained.

4 Experimental Results

We evaluated our algorithm on a subset of the UK Biobank dataset consisting of
2000 good quality CINE MR acquisitions. 50 temporal frames from each subject
at mid-ventricular level were used to generate synthetic motion artefacts. We
used 75000 2D images for training and 25000 images for testing. The data were
chosen to be free of other types of image quality issues such as missing axial
slices and were visually verified by an expert cardiologist. The details of the
acquisition protocol of the UK Biobank dataset can be found in [12].

4.1 K-space Corruption for Synthetic Data

We generated k-space corrupted data in order to simulate motion artefacts.
We followed a Cartesian sampling strategy for k-space corruption to generate
synthetic but realistic motion artefacts [11]. We first transformed each 2D short
axis sequence to the Fourier domain and changed 1 in 3 Cartesian sampling lines
to the corresponding lines from other cardiac phases to mimic motion artefacts.
We added a random frame offset when replacing the lines. In this way the original
good quality images from the training set were used to generate corresponding
CMR artefact images. This is a realistic approach as the motion artefacts that
occur from mis-triggering often arise from similar misplacement of k-space lines.
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(a) K-space (b) Fourier (c) Proposed (d) Original

Fig. 3. Synthetic dataset results. Corrupted k-space (a), inverse Fourier transform (b),
proposed method (c) and original good quality image (d). The proposed method is able
to correct the motion artefacts, but loses some structure.

4.2 Quantitative Results on Synthetic Dataset

We compared our algorithm with a reconstruction using the IFT and also with
two variants of the proposed deep learning framework: one without the adversar-
ial component and one with the adversarial component but trained only using
ImageNET data. The results are reported in Table 1. We report root mean square
error (RMSE) and peak signal-to-noise ratio (PSNR) results for motion artefact
correction, defined as follows:
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where Nx and Ny denote the number of pixels in the x and y directions and r
and p represent reference and predicted images.

Alongside these two measures, we also computed structural similarity index
(SSIM) [16] results. SSIM has been shown to provide sensitivity to structural
information and texture. The SSIM between two images is defined as follows for
any image region x and y:

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)

where μx and μy are the average intensities for regions x and y, σx and σy are
variance values for regions x and y, σxy is the covariance of regions x and y and
c1 and c2 are constant values for stabilizing the denominator.

Table 1 shows that the cardiac trained adversarial Automap technique is
capable of correcting motion artefacts with high accuracy compared to the other
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techniques. The quality of the images increased particularly in terms of low
RMSE and high PSNR using the ImageNET trained Automap reconstruction
compared to the IFT reconstruction approach. However, some structure has
been lost in comparison with the IFT approach, which can be seen from the
lower SSIM scores with the proposed method. Training with cardiac images
helped to recover some SSIM, but it was still lower than the IFT approach. One
possible explanation for this is that in the proposed method, the network has
been trained to minimise the MSE, which commonly causes smoothed-out or
blurred looking images. An example of such a case can be seen in Fig. 3, where
the proposed method corrects the artefact but loses some structural information.
The adversarial training improves the performance of the Automap model in all
three metrics and especially in terms of SSIM.

Table 1. Mean RMSE, PSNR, and SSIM results of motion artefact correction from
k-space data.

Methods RMSE PSNR SSIM

Inverse Fourier Transform 0.045 27.8 0.883

Proposed-ImageNET 0.032 31.1 0.766

Automap-Cardiac [18] 0.029 32.7 0.814

Proposed-Cardiac 0.027 35.1 0.850

4.3 Qualitative Results on Real Motion Artefact Case

To illustrate the performance of our technique on artefact correction, we applied
it to a dataset from the UK Biobank containing mis-triggering artefacts. The
visual results in Fig. 4 show improved image quality compared to the IFT recon-
structed image.

(a) K-space (b) Motion corrupted image (c) Proposed

Fig. 4. Example of a mis-triggering artefact from the UK Biobank dataset. K-space
data (a), motion corrupted image (b) and proposed method (c). The proposed method
is able to correct the motion artefacts.
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5 Discussion and Conclusion

In this paper, we have proposed an end-to-end image artefact correction pipeline
for 2D CINE CMR, and evaluated it on the large-scale UK Biobank dataset. We
have shown the value and shortcomings of deep learning based reconstruction
for motion artefact correction. We have demonstrated that the generic Automap
framework can aid in correcting motion artefacts using an adversarial setup,
outperforming inverse Fourier transform. To the best knowledge of the authors,
this is the first paper that has addressed the motion artefact correction problem
in MR directly from k-space data. The general applicability of the Automap
framework is limited by its high memory requirement, which is caused by the
fully connected layers at the start of the network.

In future work, we plan to investigate more appropriate loss functions to
attempt to recover the lost structural information in the reconstructed images.
Moreover, we will investigate the robustness of our technique on our own clinical
data, which we expect to contain more motion corruption compared to UK
Biobank data.
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Abstract. Undersampling the k -space data is widely adopted for accel-
eration of Magnetic Resonance Imaging (MRI). Current deep learning
based approaches for supervised learning of MRI image reconstruction
employ real-valued operations and representations by treating complex
valued k-space/spatial-space as real values. In this paper, we propose
complex dense fully convolutional neural network (CDFNet) for learning
to de-alias the reconstruction artifacts within undersampled MRI images.
We fashioned a densely-connected fully convolutional block tailored for
complex-valued inputs by introducing dedicated layers such as complex
convolution, batch normalization, non-linearities etc. CDFNet leverages
the inherently complex-valued nature of input k -space and learns richer
representations. We demonstrate improved perceptual quality and recov-
ery of anatomical structures through CDFNet in contrast to its real-
valued counterparts.

1 Introduction

Magnetic Resonance (MR) Imaging is widely adopted in many diagnostic appli-
cations due to its improved soft-tissue contrast, non-invasiveness and excellent
spatial resolution. However, MRI is associated with long scan durations as the
data is read out sequentially in k -space and the speed at which the k -space can
be traversed is limited by the underlying imaging physics. This in turn limits the
clinical use of MRI, causes inconvenience to patients, and renders this modality
expensive and less accessible. One potential approach to accelerate MRI acqui-
sition is to undersample k -space i.e. reduce the number of k -space traversals
made during acquisition. However, such an undersampling violates the Nyquist-
Shannon Sampling theorem [7] and generates aliasing artefacts upon reconstruc-
tion. A learning based reconstruction algorithm should effectively compensate
for missing k -space samples by leveraging a priori knowledge of the anatomy at
hand and the undersampling pattern.

Deep learning is being increasingly adopted for MR reconstruction. Instead
of using handcrafted features, Hammernik et al. [4] demonstrated learning a set
c© Springer Nature Switzerland AG 2018
F. Knoll et al. (Eds.): MLMIR 2018, LNCS 11074, pp. 30–38, 2018.
https://doi.org/10.1007/978-3-030-00129-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00129-2_4&domain=pdf
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Fig. 1. (i) Complex fully convolutional neural network architecture. (ii) Complex dense
block, composed of 3 complex conv2D layers, followed by complex batch normalization
and ReLU. (iii) Complex Conv2D layer, responsible for performing complex convolution
operation, here a and b represents real and complex feature maps, and WR and WI

represents real and imaginary parts of learnable weights.

of regularizers under a variational framework, for reconstruction of accelerated
MRI data. Kinam et al. [5] used the multilayer perceptron for accelerated par-
allel MRI. These works were further extended using techniques such as, deep
residual learning [6], domain adaptation [13], data consistency layer [10], mani-
fold approximation (AUTOMAP) [14], to name a few. However, all of the above
mentioned reconstruction methods employ real-valued convolution operations in
the spatial-domain by treating real (amplitude) and imaginary (phase) parts
as two independent components. It should be noted that unlike multi-channel
images (such as RGB images) where individual channels are acquired indepen-
dently, MR data is inherently complex-valued in nature. Quadrature detection is
employed to measure the changing circularly polarized magnetic field within the
scanner which results in two simultaneously acquired data streams with a π/2
phase difference. Upon digitization, these signals constitute the real and imag-
inary parts of each complex data point in the k -space. The magnitude derived
from this complex valued data mainly carries information about proton density
as well as relaxation properties of the tissue. The phase can be used to obtain
the information, for example, about magnetic susceptibility, flow, or tempera-
ture. To faithfully recover the complete k -space, it is important to learn the
co-relationship between these data-streams.

In this paper, for the first time, we explore end-to-end learning with complex-
valued data targeted at MR reconstruction. Towards this, we propose the
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Complex Dense Fully Convolutional Network (CDFNet) by introducing densely
connected fully convolutional blocks made with layers supporting deep learning
operations on complex valued data. Complex-valued arithmetic operators for
deep learning were proposed by Trabelsi et al. [11] where complex counterparts
of convolution, batch-normalization, network initialization etc. were explored.
We also propose a composite loss function that simultaneously minimizes recon-
struction error while improving structural similarity.

2 Methodology

2.1 Problem Formulation

Let the fully-sampled complex-valued MR image be represented as xf ∈ C
N

consisting of
√

N × √
N pixels arranged in a column fashion with each pixel

composed of a complex vector with real and imaginary components. This image
is reconstructed from fully-sampled measurements in k -space, say yf ∈ C

N , such
that: yf = Ffxf , where Ff ∈ C

N×N is the fully sampled encoding matrix.
During under-sampling, we acquire measurements in k -space, say yu ∈ C

M

where M � N . Let the image reconstructed from zero-filling yu be represented
as xu, such that xu = F−1

u yu. Reconstructing xf directly from yu is ill-posed
and direct inversion is not possible due to the under-determined nature of the
system of equations. In our approach, we enforce xf to be approximated using a
complex fully convolutional neural network (represented as fC). As xu is highly-
aliased due to sub-Nyquist sampling, fC aims at recovering image xr that is as
close as possible to an ideal fully sampled image xf .

2.2 Network Architecture

Complex Dense Block: The densely connected block proposed in [2], intro-
duces feed-forward connections from each layer to every other layer (illustrated
in Fig. 1(ii)). Such an architecture choice was demonstrated to encourage fea-
ture reusability and strengthen information propagation through the network.
We suitably adapt this block for complex valued data by proposing counterparts
of classic deep learning layers such as convolution, batch normalization, non-
linearity (ReLU), up-sampling etc. For sake of brevity, we delve only into the
complex convolution (denoted as ∗C) in detail. Let h = a + ib be the complex-
valued input to convolution layer with weights W = WR + iWI, the com-
plex convolution between h and W is simulated using real-valued arithmetic as:
W ∗C h = (a ∗ WR − b ∗ WI) + i (a ∗ WI + b ∗ WR), as shown in Fig. 1(iii).
The complex output feature maps are fed into the complex batch normaliza-
tion layer, which normalizes the data to have equal variance along the real and
imaginary components, thereby ensuring a co-relationship between them. The
complex variant of non-linearity ReLU and max-pooling are applied on the real
and imaginary channels separately.

Complex Dense Fully Convolutional Network (CDFNet): The CDFNet
fC is based on the DenseNet [2] architecture, comprising of a sequence of
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four densely-connected complex encoder blocks with corresponding densely-
connected complex decoder blocks separated by a bottleneck layer (illustrated
in Fig. 1(i). The output of the last decoder block is given to a reconstruction
layer (with complex convolution operators) for reconstructing the image. The
encoders and decoders are stacked and trained in a progressive way i.e. output
from one block is used as input to other block. Skip connections are included
in the architecture between encoder and corresponding decoder blocks to fuse
high-level representations (decoder) with low-level features (encoder) for preserv-
ing contextual information. Furthermore, skip connections prevent the vanishing
gradient problem, by directly propagating gradients from decoder to respective
encoder block. The network fC takes complex-valued aliased image xu (gener-
ated by zero-filling under-sampled k -space data yu) as input to an intermediate
reconstructed image x̃r which is fed further into the data consistency layer for
imputing missing k -space values.

Data Consistency Layer (DCL): We recover a full reconstructed k -space
spectrum ỹr via a Fourier transform on the reconstructed image x̃r. To retain
all the a priori available k -space values yu (collected at spatial locations denoted
via mask Ω) and impute only the missing values at locations (�∈ Ω), the data
consistency layer performs the following operation:

yr (z) =
{

yu (z) z ∈ Ω
ỹr (z) z �∈ Ω

(1)

After the DCL layer, the final de-aliased image xr is recovered through inverse
Fourier transform of yr. It must be noted that the inclusion of the DCL layer
within fC ensures improved efficacy of the network by focusing exclusively on
missing k -space values and enforces consistency with a priori acquired data yu.
Further, the DCL layer does not have any learnable parameters and does not
increase the complexity of the network.

2.3 Model Learning and Optimization

The network fC is optimized to recover missing k -space data while simultane-
ously preserving fine-grained anatomical details. We adopt a supervised learning
approach wherein a training dataset D of input-target (under-sampled and fully-
sampled) pairs (xu,xf ) to train fC. We use a composite loss function comprising
of two contributing terms, firstly a mean-squared error term (LL2) and secondly
Structural Similarity Index Measure (SSIM) (LSSIM) as discussed below:
LL2 Loss: This loss is used to minimize the difference between the reconstructed
image xr and target fully sampled image xf .

LL2 =
∑

(xu,xf )∈D
‖xf − xr‖22 =

∑

(xu,xf )∈D
‖xf − fC (xu|θ)‖22 (2)

The L2 loss penalizes large errors, but fails to capture finer details which the
human visual system is sensitive to such as contrast, luminance and structure.
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To offset the above shortcoming of L2 loss, we use SSIM [12], which is percep-
tually closer to the human visual system, as an additional loss LSSIM, defined
as:

LSSIM =
∑

(xu,xf )∈D
(1 − S (xr,xf )) (3)

where S (xr,xf ) is the SSIM calculated between xr and xf . The composite loss
function L for optimizing fC is defined as: L (x, fC (xu|θ)) = LL2 + λLSSIM,
where λ is a scaling constant.

a b c d

e hgf

Fig. 2. Edge-map results comparison at undersampling factor of x4. (a), (e) ground-
truth and its edge-map, (b), (f) undersampled, and its edge-map (c), (g) DLMRI
reconstruction and its edge-map (d), (h) proposed reconstruction and its edge-map.
Here, green represents edges present in ground-truth, red represents edges that are
missing in reconstructed image, as compared to ground-truth and blue represents edges
that are not present in ground-truth but only in reconstructed images. (Color figure
online)

3 Results and Discussion

3.1 Experimental Settings and Evaluation

Dataset. Our experiments were evaluated on the publicly available 20 fully-
sampled knee k -space dataset from mridata.org [9]. The data was split randomly
into 16 patients for training and rest for testing. The coils were fused using sum
of squares into a single complete k -space dataset and training data for proof-of-
concept was generated using Cartesian under-sampling proposed in [10], wherein
eight lowest spatial frequencies were preserved and a zero-mean Gaussian distri-
bution was used to determine the sampling probability along the phase encoding
direction (the frequency-encoding direction was fully-sampled).

http://mridata.org/
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Baselines and Comparative Methods: To ablatively test the introduction
of complex convolution, we compare with the näıve variant of densely connected
networks treating the complex-valued input as two independent channels (termed
BL1). We further compare the contribution of the data-consistency layer by
defining a variant sans DCL (termed BL2). Finally, to evaluate the contribution
of training with LSSIM, we set the corresponding factor λ to 0 and contrast
with the proposed method (termed BL3). Further, we compare against a state-
of-the art dictionary learning based MR reconstruction method proposed in [8]
(termed as DLMRI). It must be noted that BL1 is akin to deep learning based
reconstruction method proposed in [3], differing only in the usage of densely-
connected blocks. In all the aforementioned network configurations, we used
complex convolution operators (except BL1) with a depth of 32, and kernel size
of 3 × 3, BL1 was designed with depth of 46 for a fair comparison. Parameters
were chosen in such a manner so that model complexity across all baselines
remain similar. The networks were trained until convergence using RMSProp as
an optimizer with a learning rate of 5e−5 with decay of 0.9 and batch-size of 5
for 50 epochs.

The networks were evaluated at two acceleration factors of 4× and 6× along
the phase-encoding directions. During training of the deep networks, the under-
sampling masks were generated on-the-fly to induce the tolerance towards a
range of potential aliasing artefacts. We further used image-level rigid and elastic
transformations to augment the training data. As demonstrated in [10], fidelity
of image reconstruction is evaluated by measuring the similarity between a recon-
structed image to the fully-sampled ground truth image using metrics such as
SSIM, mean squared error (MSE) etc. However, these metrics do not explicitly
focus on finer details of the reconstruction and towards this we employ Pratt’s
figure of merit (Pratt’s FOM) [1] as an additional metric. Pratt’s FOM exclu-
sively focuses on the edges and corner points present in the reconstructed image
that are concurrent with structures present in the ground truth image while
simultaneously penalizing both missing and artificially hallucinated edges.

3.2 Results

Table 1. Pratt’s Figure of Merit of comparative
analysis against baselines

Acceleration Pratt’s FOM
Train Test BL1 BL2 BL3 Proposed
4× 4× 0.81657 0.77522 0.82480 0.84364

6× 4× 0.83961 0.7743 0.82409 0.84218

4× 6× 0.71775 0.70099 0.75155 0.77449

6× 6× 0.76009 0.7199 0.75661 0.77514

BL1: DenseNet with λ = 2 with DCL
BL2: CDFNet with λ = 2 without DCL
BL3: CDFNet with λ = 0 with DCL

The networks trained for 4×
and 6× acceleration factors were
tested across and within these fac-
tors resulting in four train-test
combinations. All the methods
were evaluated for each of these
combinations to quantify their
generalizability to unseen aliasing
effects.
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Table 2. Quantitative comparison from Cartesian trajectory with undersampling fac-
tor of 4× and 6×

Acceleration SSIM MSE (x 10−4) Pratt’s FOM

Train Test xu DLMRI Proposed xu DLMRI Proposed xu DLMRI Proposed

4× 4× 0.8886 0.9173 0.9269 11.89 7.01 5.54 0.63795 0.73876 0.84364

6× 4× 0.9266 5.57 0.84218

4× 6× 0.8552 0.8920 0.9062 17.55 10.70 7.76 0.51309 0.64529 0.77449

6× 6× 0.9072 7.54 0.77514

Undersampled DLMRI Proposed

Ground Truth

a b c

d e f

Fig. 3. Reconstruction results using 4× acceleration factor. (a), (d) Undersampled
image and its error map, (b), (e) DLMRI reconstruction and its error map, (c), (f)
Proposed reconstruction and its error-map, and ground truth.

Qualitative Analysis: Figure 2 illustrates the contrastive results on recovery of
fine-grained details using the edge-map extracted from an under-sampled image
(Fig. 2(b, f)), DLMRI (Fig. 2(c, g)) and proposed method (Fig. 2(d, h)). We
observe that the proposed network demonstrates maximal consistency in finer
details with respect to the ground-truth. Figure 3 highlights the differences with
respect to the ground truth through a difference map and particularly focus on
reconstruction of fine details in the region between the tibia and femur and the
synovial membrane.

Ablative Testing: To ablatively evaluate the contributions of this work, the
proposed method was contrasted against baselines (discussed in Sect. 3.1) and
observations are tabulated in Table 1. For sake of brevity, we only present the
Pratt’s FOM metric in this table. Contrasting the proposed method against BL1
in Table 1, we observe a consistent improvement in the reconstruction error due
to the introduction of complex dense blocks in place of vanilla dense blocks. This
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is particularly evident for the case of aggressive under-sampling (6×) where the
proposed method outperformed BL1 with a significant margin of 5.7%. Compar-
ing BL2 with the proposed method, the inclusion of the data consistency layer
proved to be of high significance as evidenced across all validation combinations
with an average improvement of over 6%. The use of SSIM as an additional
loss function during optimization (comparing BL3 with proposed method) also
consistently improves Pratt’s FOM across all the test cases.

Comparative Methods: In Table 2, we compare the proposed method against
the under-sampled input image (xu) and state-of-art compressed sensing app-
roach, DLMRI, in terms of the evaluation metrics SSIM, MSE and Pratt’s FOM.
We observe consistent improvement across all metrics in comparison to DLMRI,
with the proposed method being able to recover finer details significantly (over
11% improvement in Pratt’s FOM). In scenarios of testing on aggressive acceler-
ation (6×), which corresponds to the limit of sparsity based methods, we observe
that CDFNet recovers anatomical details better as it is learnt in an end-to-end
fashion allowing for efficient learning of anatomical priors from the training data.

4 Conclusion and Future Work

We have presented a deep learning based MR imaging reconstruction method,
wherein real-valued neural network operations are replaced by complex convo-
lutional operations. In this work, we demonstrated that the proposed network
architecture outperformed the standard state-of art and the real-valued counter
part methods by significant margins in terms of recovering fine structures and
high frequency textures. The experiments also show that the proposed method is
robust towards the undersampling ratio, which eliminates the need for training
multiple large networks for each acquisition settings. Finally, Pratt’s figure of
merit was adapted for performing evaluation by considering the overall percep-
tual quality of reconstructed image. As k-space is inherently complex-valued, we
believe that this method can be adapted to learn both, domain transformation as
well as reconstruction. Moreover, non-Cartesian trajectories can be investigated,
as they possess different aliasing properties, a further validation is appropriate
to determine the flexibility of our method towards this end.
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Abstract. Magnetic resonance fingerprinting (MRF) quantifies multi-
ple nuclear magnetic resonance parameters in a single and fast acqui-
sition. Standard MRF reconstructs parametric maps using dictionary
matching, which lacks scalability due to computational inefficiency. We
propose to perform MRF map reconstruction using a spatiotemporal
convolutional neural network, which exploits the relationship between
neighboring MRF signal evolutions to replace the dictionary matching.
We evaluate our method on multiparametric brain scans and compare it
to three recent MRF reconstruction approaches. Our method achieves
state-of-the-art reconstruction accuracy and yields qualitatively more
appealing maps compared to other reconstruction methods. In addition,
the reconstruction time is significantly reduced compared to a dictionary-
based approach.

Keywords: Magnetic resonance fingerprinting · Parameter mapping
Image reconstruction · Convolutional neural network

1 Introduction

Magnetic resonance imaging (MRI) is widely used in healthcare centers for the
diagnosis of pathologies. The diagnosis from MRI relies mostly on weighted
images, where the contrast between tissues is used to identify pathologies rather
than the absolute intensities in the images. This qualitative approach limits the
objective evaluation and reproducibility of MRI in the clinics. Although signifi-
cant effort has been made for quantitative MRI, a clinical relevant solution for
nuclear magnetic resonance (NMR) parameter mapping has not been achieved
so far. Mainly time-inefficiency and the limitation to one NMR parameter at
c© Springer Nature Switzerland AG 2018
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interest (e.g. T1 and T2 relaxation times) make quantitative MRI inappropriate
for clinical use. To overcome the drawbacks of quantitative MRI, magnetic reso-
nance fingerprinting (MRF) has been proposed recently as a novel quantitative
MRI technique [6]. MRF quantifies multiple NMR parameters in a single and fast
acquisition. The acquisition relies on a MR sequence with pseudo-randomly vary-
ing parameters to obtain a unique signal evolution, i.e. fingerprint, per tissue and
voxel. After the acquisition, a dictionary matching algorithm assigns the voxel’s
signal evolutions to an entry of a dictionary of simulated and pre-computed signal
evolutions, which allows reconstructing quantitative maps of NMR parameters
of interest. However, this dictionary matching is time-consuming, lacks scalabil-
ity, and can introduce artefacts due to the under-sampled k -space during the
acquisition [8].

Recently, three approaches have been proposed aiming to overcome the issues
associated with dictionary matching during the MRF reconstruction. Gómez et
al. [4] proposed a spatiotemporal dictionary matching that matches a spatial
neighborhood of fingerprints instead of using a fingerprint-wise approach. They
additionally improve the computational efficiency by limiting the matching to a
local search window. However, the search window comes at the cost of requiring
spatially aligned MRF scans, and ultimately only alleviates the problem of scal-
ability of dictionary-based MRF reconstruction methods. Therefore, approaches
replacing the dictionary matching using deep learning have been proposed to
overcome the bottleneck of scalability. Cohen et al. [3] proposed a fully-connected
neural network and Hoppe et al. [5] proposed a convolutional neural network
(CNN) to learn the matching of a MRF signal evolution to NMR properties.
Both approaches show promising results regarding reconstruction accuracy and
speed, and their concepts might be a feasible way to replace the dictionary
matching involved in MRF reconstruction. However, they use a fingerprint-wise
approach, i.e. do not consider any spatial characteristics during the reconstruc-
tion, which might result in noisy reconstructions. Moreover, all three approaches
use maps reconstructed by the standard dictionary matching with simulated
entries as ground truth to compare their reconstructed maps. This ultimately
adds a bias to the methods, which resemble the dictionary matching instead of
learning the underlying relation of the fingerprints to the NMR parameter maps.

We propose a MRF reconstruction approach that exploits the spatiotempo-
ral relationship between neighboring signal evolutions motivated by noisy recon-
structions of fingerprint-wise approaches and the findings of [4]. Our approach
bases on CNNs and yields fast and more accurate reconstructions than recently
proposed methods on six healthy brain MRF images with three NMR maps: pro-
ton density (PD), T1 relaxation time (T1), and T2 relaxation time (T2). Unlike
previously published methods, we rely on parametric maps acquired trough MR
parameter mapping as ground truth instead of reconstructed maps by dictionary
matching. We compare our performance to the aforementioned spatiotemporal
dictionary- and deep learning-based methods. We report quantitative and quali-
tative results and discuss open issues and challenges towards a relevant solution
for accurate and fast MRF reconstruction.
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2 Materials and Methods

We consider a four-dimensional (4-D) MRF image I ∈ C
X×Y ×Z×T , where each

voxel I(v) = {t1, t2, . . . , tT } at location v = (x, y, z) contains a MRF signal
evolution, or fingerprint, with T temporal signal intensities ti. For each MRF
image I, a set Q = {q1, q2, . . . , qM} ∈ R

X×Y ×Z×M with M parametric maps are
available as ground truth for the reconstruction. In this work, six brain MRF
images with M = 3 parametric maps Q = {PD,T1,T2} were used.

2.1 MRF and Parametric Map Acquisition

We acquired brain scans from six healthy male volunteers (21 to 43 years) using
a tailored MRF sequence [7] on a 1.5 Tesla GE SIGNA Artist scanner (GE
Medical Systems, Milwaukee, WI, U.S.) with a 16-channel head coil as part of
an institution approved study. Each scan consisted of Z = 16 axial-oriented
slices with a matrix size of X × Y = 256 × 256, field of view (FOV) of 256 ×
256 mm2, voxel size of 1.0 × 1.0 × 5.0 mm3, and a total of 720 temporal images
per slice. After the acquisition, the images were pre-processed using a sliding-
window reconstruction [1] with a window size of 48 resulting in T = 673 temporal
images.

The parametric maps serving as ground truth for the MRF reconstruction
were acquired with the same number of slices, matrix size, FOV, and voxel
size. The T1 and T2 maps were generated using curve fitting of the MR signal
of multi-FA and multi-echo sequences, respectively. Seven T1-weighted images
were acquired with a gradient recalled echo pulse sequence with FAs of 1◦, 2◦,
5◦, 8◦, 11◦, 14◦, and 25◦, and constant TR/TE = 5.85/1.77 ms. A fast spin echo
sequence with eight TEs starting from 20 ms at an interval of 20 ms was used to
generate the T2 map (FA = 90◦ and TR = 1626 ms). By using a signal intensity
equation, the PD maps were generated from the T1-weighted images acquired
for the T1 mapping.

2.2 Spatiotemporal CNN MRF Reconstruction

We propose a CNN to learn spatiotemporal features to reconstruct the maps
Q from a MRF image I. Input to the CNN are MRF image patches IP (v) ∈
C

5×5×T ⊂ I, centered at location v. Output of the CNN are the values of the
estimated maps Q̂(v) ∈ R

M at location v. The CNN is trained to learn the
mapping M : IP (v) → Q(v). We remark that the reconstruction was performed
slice-wise due to the large slice spacing of 5.0 mm of our data. Figure 1 provides
an overview of how the input and output data are defined for the proposed
multiparametric spatiotemporal MRF reconstruction.

Pre-processing. We first apply a brain mask to the MRF images and the
corresponding maps to exclude the background in all experiments. The masks
were manually segmented using the T1 map with the polygon tool in ITK-SNAP
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Fig. 1. Overview of the proposed spatiotemporal MRF reconstruction. Note that
the signal evolutions are complex-valued but the absolute numbers are plotted for
simplicity.

(www.itksnap.org). Outliers from each map in Q are removed by clipping the
values to the percentiles [0.1, 99.9]. Finally, we normalize I along the temporal
axis T to have zero mean and unit variance, and Q along the temporal axis M
to the range [0, 1]. Note that within each subject the maps were spatially aligned
and therefore no registration was applied.

Architecture. Our network consists of five convolutional layers, which learn
the mapping M, i.e. we predict the M map values at location v from an MRF
image patch IP (Fig. 2). We first concatenate the real and imaginary part of the
complex-valued input IP (v) ∈ C

5×5×T to a real-valued input IP (v) ∈ R
5×5×2T

and consider the temporal dimension (2T ) as the channels in our network. Sec-
ond, we apply two 1 × 1 convolutional blocks to reduce the number of channels
to 256. Subsequently, we apply two convolutional blocks in parallel with differ-
ent receptive fields of 5 × 5 and 3 × 3 motivated by [2]. The output channels
of these two convolutional blocks are concatenated and fed into the last con-
volutional layer with M output channels corresponding to the values of the
estimated maps Q̂. A convolutional block in our network consists of a sequence
of 2-D convolutional layer (valid padding and stride one), dropout, batch nor-
malization, and rectified linear unit (ReLU) activation function. We maintain a
linear activation at the last convolutional layer (valid padding and stride one).
The estimated maps are denormalized to get quantitative values in the range
prior to the pre-processing. We implemented our network using the open source
machine learning library TensorFlow 1.8.0 (Google, Mountain View, CA, U.S.)
with Python 3.6 (Python Software Foundation, Wilmington, DE, U.S.).

www.itksnap.org
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Fig. 2. The architecture of our spatiotemporal CNN. To perform a convolution with
a filter size of 3 × 3, we extract a 3 × 3 patch from a 5 × 5 patch denoted as slicing
operation. The number of channels are denoted on the top of the bars and the x×y size
is provided at the lower left edge of the bars. BN: batch normalization, DO: dropout.

Training. The network was trained using an Adam optimizer with a learning
rate of 0.001, which minimized a mean squared error (MSE) loss with a batch
size of 600 randomly sampled patches IP . The dropout rate was set to 0.2 and
the training was stopped after 50 epochs, which we empirically found to be
sufficient.

2.3 Evaluation

We evaluate the performance our model and the baselines using a leave-one-out
cross-validation, i.e. we train the model on five brain scans and test it on the
left-out brain scan. Note that we tuned the architecture on one randomly chosen
cross-validation split and did not use the other splits to develop and tune the
architecture.

Baselines. We compare our method to recent approaches for MRF reconstruc-
tion using the fully-connected neural network [3], the CNN [5], and the spa-
tiotemporal dictionary matching [4]. For the deep learning-based methods, we
performed the same leave-one-out cross-validation and the data underwent the
same pre-processing as for our method. The approaches were implemented as
proposed in the papers. For [4], we also perform a leave-one-out cross-validation,
i.e. construct a dictionary using five brain scans and reconstruct the left-out
brain scan with following parameters: Wn = 11 × 11 × 3, P = 3 × 3 × 3, C = 5,
and α = 0.5 with two iterations.

Metrics. Quantitatively, we report the mean and standard deviation of the
mean absolute difference (MAE) and the root mean square error (RMSE) for
the leave-one-out cross-validation. The metrics are reported separately for the
three brain tissues white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF). The brain tissue masks were obtained from the T1 maps using
thresholding according to literature values [6].
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3 Results

Mean and standard deviation of the MAE and RMSE for the PD, T1, and T2
map reconstructions are given in Table 1. The proposed method outperforms
the other methods for most brain tissues and maps. Reconstructed maps of a
mid-brain slice are shown in Fig. 3. Qualitatively, our maps show a good recon-
struction with visible brain structures like the ventricles. It is noticeable that our
spatiotemporal approach yields a less noisy reconstruction than the fingerprint-
wise approach of Cohen et al. [3] (similar noisy reconstructions were obtained for
Hoppe et al. [5] but not reported in Fig. 3). The dictionary-based approach [4]
yields a qualitatively coarser reconstruction than our method. Overall, large
reconstruction errors are mainly present at the skull, meninges, ventricles as
well as at the boundary of the brain mask (rightmost column in Fig. 3), which
could be consistently observed for all methods.

Table 1. Mean absolute error (MAE) and root mean square error (RMSE) for the PD,
T1, and T2 map reconstructions separated by the brain tissues white matter (WM),
gray matter (GM), and cerebrospinal fluid (CSF).

Tissue Method PD T1 (ms) T2 (ms)

MAE RMSE MAE RMSE MAE RMSE

WM Cohen 0.084± 0.030 0.107± 0.032 209.0± 28.3 267.5± 21.5 43.6± 23.9 77.3± 54.7

Hoppe 0.080± 0.030 0.101± 0.031 253.9± 64.3 317.7± 67.2 61.3± 36.3 92.0± 53.8

Gómez 0.058± 0.015 0.074± 0.021 258.6± 61.0 327.2± 68.5 33.4± 20.4 73.4± 50.6

Proposed 0.055± 0.015 0.072±0.016 159.4±36.3 242.7± 54.7 28.0±17.6 71.1±62.0

GM Cohen 0.094± 0.028 0.121± 0.026 197.0± 28.4 258.0± 42.0 57.6± 35.4 97.3± 65.9

Hoppe 0.092± 0.030 0.119± 0.029 218.5± 37.6 287.5± 42.5 70.2± 41.0 105.1± 61.7

Gómez 0.060± 0.017 0.081± 0.021 190.8±24.7 269.1± 43.1 45.8± 26.9 90.5±59.6

Proposed 0.061± 0.017 0.077±0.020 208.2± 34.1 286.6± 46.5 43.2±31.2 93.6± 76.3

CSF Cohen 0.126± 0.024 0.152± 0.025 1162.6± 256.2 1364.1± 265.1 183.3± 54.1 237.0± 58.0

Hoppe 0.128± 0.013 0.156± 0.014 1013.3± 236.0 1219.4± 251.5 174.7±49.3 227.8±55.5

Gómez 0.102± 0.020 0.129± 0.019 1072.5± 164.5 1268.8± 172.6 228.6± 85.7 286.8± 86.0

Proposed 0.093± 0.013 0.113±0.009 989.2±254.7 1181.5±288.6 181.6± 48.6 240.2± 48.7

4 Discussion and Conclusion

We presented a deep learning-based, dictionary-free approach to reconstruct
parametric maps from MRF images that exploits the spatiotemporal relation-
ship between neighboring fingerprints. The approach is designed as CNN that
yields a reconstruction of parametric maps in a more accurate way than previ-
ously proposed dictionary-free methods and competes with a dictionary-based
method.

In general, the results show that a spatiotemporal reconstruction is favorable
to a fingerprint-wise reconstruction for almost all brain tissues and parametric
maps (Table 1). Out of the three brain tissues, the GM yielded the most inconsis-
tent results among the different methods. We think that this might arise due to
partial volume effects at the interface to WM and CSF. A spatial analysis reveals
high reconstruction errors in the skull, meningeal layers, and ventricles for all
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Fig. 3. Exemplary map reconstructions of one axial brain slice. The rows represent
the three maps PD, T1, and T2. The columns represent from left to right: the ground
truth map, results of Cohen et al. [3], Gómez et al. [4], and our proposed method. The
rightmost column shows the difference Q̂ − Q between our estimated map Q̂ and the
ground truth map Q.

methods (rightmost column in Fig. 3). These reconstruction errors could origin
from a partial volume effect or an apparent lack of training examples. Recon-
struction artifacts are only present in the method of Gómez et al. [4], confirming
the findings of [8]. In regards to the computational costs, all deep learning-
based approaches yield reconstructed maps within few seconds. Conversely, the
dictionary-based approach is computationally intensive, with calculations in the
order of several minutes per reconstruction. For clinically used MRF reconstruc-
tion, we therefore think that machine learning-based approaches are favorable
to dictionary-based approaches in the long term.

Our study design included parametric maps acquired trough MR parameter
mapping as ground truth. The reconstruction errors of all methods are large
compared to the errors reported in the studies of the baselines [3–5]. Such large
errors are especially surprising for the dictionary-based method, which can be
interpreted as a k-nearest neighbor search. Unfortunately, all baselines com-
pared their performance with a ground truth obtained by dictionary matching
as proposed in the original MRF paper [6]. Therefore, the methods resembled
the dictionary matching instead of learning the underlying relation between fin-
gerprints and NMR maps. We think that a comparison to acquired NMR maps
is ultimately more meaningful than a comparison with maps reconstructed from
simulated dictionaries. Our results suggest that the direct learning of fingerprints
to acquired NMR maps is possible, although additional investigations and work
are needed to lower the reconstruction errors.
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In conclusion, we demonstrated that a spatiotemporal MRF reconstruc-
tion is favorable to a fingerprint-wise MRF reconstruction designed within
a CNN by achieving quantitatively and qualitatively better parametric map
reconstructions.
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Abstract. In dynamic contrast enhanced (DCE) MRI, temporal and
spatial resolution can be improved by time-resolved angiography with
interleaved stochastic trajectories (TWIST) thanks to its highly accel-
erated acquisitions. However, due to limited k-space samples, the
periphery of the k-space data from several adjacent frames should be
combined to reconstruct one temporal frame so that the temporal res-
olution of TWIST is limited. Furthermore, the k-space sampling pat-
terns of TWIST imaging have been especially designed for a generalized
autocalibrating partial parallel acquisition (GRAPPA) reconstruction.
Therefore, the number of shared frames cannot be reduced to provide
a reconstructed image with better temporal resolution. The purpose of
this study is to improve the temporal resolution of TWIST using a novel
k-space deep learning approach. Direct k-space interpolation is per-
formed simultaneously for multiple coils by exploiting spatial domain
redundancy and multi-coil diversity. Furthermore, the proposed method
can provide the reconstructed images with various numbers of view shar-
ing. Experimental results using in vivo TWIST data set showed the accu-
racy and the flexibility of the proposed method.

Keywords: Dynamic contrast enhanced MRI · Parallel imaging
Deep learning

1 Introduction

DCE-MRI is useful for the diagnosis of stroke or cancer because it provides infor-
mation on the physiological characteristics of the tissue by imaging the flow of the
contrast agent [16]. In particular, TWIST [11] imaging gives improved temporal
and spatial resolution thanks to its highly accelerated acquisition. In TWIST,
the high frequency regions of the k-space from multiple temporal frames should
be combined to obtain uniformly sub-sampled k-space data so that GRAPPA
[4] can be applied to reconstruct the data. However, the temporal resolution of
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TWIST is not a true one due to the view sharing of several temporal frames. In
addition, since the k-space sampling patterns are designed for GRAPPA recon-
struction, the number of view sharing is fixed after the data acquisition.

In our previous works [3], we proposed to improve temporal resolution of
TWIST via k-space interpolation using ALOHA [8,12,14] which synergistically
combines parallel MRI (pMRI) and CS-MRI. However, since the multiple matrix
factorization is essential for applying ALOHA, the computational cost for the
reconstruction of 4-dimensional TWIST imaging was too expensive. In addi-
tion, if the number of view sharing is not enough, the spatial resolution can be
degraded. Therefore, new approach is required to overcome this limitation.

This paper aims at enhancing the temporal resolution of TWIST imaging by
reducing the number of view sharing using deep learning. Furthermore, we pro-
posed the algorithm that can generate reconstructed images at multiple number
of view sharing to exploit the trade-off between spatial and temporal resolution.
For our purposes, we need to deal with two major technical issues. First, unlike
most of the deep learning approaches for MR reconstruction [6,10,13,15,17],
our deep network needs to learn the k-space interpolation kernels for reconstruc-
tion at various number of view sharing. Second, with reduced view sharing, the
reconstructed images using GRAPPA cannot be regarded as ground-truth data,
so there is no label data for learning.

Based on the recent mathematical finding of the link between a deep con-
volutional neural network and a data-driven decomposition of Hankel matrix
[18], here we propose a k-space deep network using the basic idea of ALOHA
for parallel MRI [9], which is implemented in the k-space domain by stacking
multi-coil k-space data along the channel direction of the network as shown in
Fig. 1.

Fig. 1. An overall scheme of k-space deep learning for parallel MRI. IFT represents
inverse Fourier transform.

Another major contribution of this paper is that our network learns the
k-space interpolation relationship between the minimum number of k-space sam-
ples and completely sampled k-space data from GRAPPA reconstruction to
address the lack of ground-truth data. As will be shown in later, this approach
allows the trained network to provide accurate reconstruction results at various
number of view sharing, since the network is trained to learn the Fourier domain
features rather than image domain ones.
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2 Theory

2.1 Problem Formulation

In TWIST, the center of k-space data (A region in Fig. 2) is more frequently
sampled than the periphery of k-space data (B region in Fig. 2). Since it reduces
the total number of samples for each frame, the reduced acquisition time is
required. However, high frequency k-space data from several frames should be
shared to make one time frame due to the strongly subsampled high frequency
k-space data. Therefore, the actual temporal resolution of TWIST imaging is
determined by the number of view-sharing.

Fig. 2. The center and periphery of k-space are denoted by A and B, respectively. (a)
Standard view sharing scheme for 2D GRAPPA reconstruction, and (b) an example of
reduced view sharing scheme.

There are different types of view sharing. For example, as shown in Fig. 2(a),
one type of view sharing is specifically designed for 2-D GRAPPA reconstruction,
where high frequency regions of five time frames (Bi−2, · · · , Bi+2) are combined
to provide a 2-D uniform sub-sampled k-space data with downsampling factor
of three and two along kx and ky directions, respectively.

Unlike the standard TWIST view sharing scheme, we are interested in using
various number of reduced view sharing. For example, the number of view sharing
can be reduced to two frames as shown in Fig. 2(b). GRAPPA cannot be applied
to this irregular sampling pattern, so we proposed a multi-coil deep learning
approach to reconstruct the k-space data.

2.2 From ALOHA to Deep Neural Network

ALOHA [9,19] was developed based on the duality between the sparsity in image
domain and the low-rankness of associated Hankel matrix in the k-space domain.
In addition, for parallel MRI, there exists the k-space inter-coil annihilating filter
relationship [9]:

ĝi � ŝj − ĝj � ŝi = 0, ∀i �= j, (1)

where ĝi and ŝi denote k-space data of the i-th coil and the specturm of the i-th
coil sensitivity map, respectively. This relationship in (1) leads to the low-rank
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property of the following extended Hankel structured matrix [9]:

Hd|P ( ̂G) =
[

Hd(ĝ1) · · · Hd(ĝP )
]

(2)

where
̂G =

[

ĝ1 · · · ĝP

] ∈ C
N×P

with the k-space measurement ĝi =
[

ĝi(k1) · · · ĝi(kN )
]T , and Hd(ĝi) is a Hankel

matrix constructed from ĝi with d denoting the matrix pencil size. P denotes the
number of coils. Therefore, the missing elements of k-space data can be recovered
using low rank Hankel matrix completion approaches [2,5]:

(MC) min
̂Z∈CN×P

rank Hd|P (̂Z) (3)

subject to PΛ[ĝi] = PΛ[ẑi], i = 1, · · · , P,

where PΛ is the downsampling operator PΛ : CN → C
N defined as

[PΛ[x̂]]j =

{

[x̂]j j ∈ Λ

0, otherwise
. (4)

However, this approach needs a relatively expensive computational cost for
matrix factorization.

Recently, our group proposed k-space deep learning approaches for acceler-
ated MRI [7] based on the observation that the Hankel matrix in the weighted
k-space domain is low-ranked so that deep neural network can be efficiently
implemented. By extending this idea, we apply the deep learning for the multi-
channel k-space data by stacking the multi-coil k-space data along the channel
direction of the network input.

3 Method

Four sets of in vivo 3D DCE data for carotid vessel imaging were acquired with
a TWIST sequence using Siemens 3T Verio scanners. The scanning parame-
ters for two sets were as following: repetition time (TR) = 2.5 ms, echo time
(TE) = 0.94 ms, 159 × 640 × 80 matrix, 2.5 mm slice thickness, 16 coils, and 37
temporal frames. For other two sets, the acquisition parameters were same as
above, expect for 1.2 mm slice thickness and 30 temporal frames. The sampling
pattern of data sets is illustrated in Fig. 2(a). Only 63% of data was acquired
due to the partial Fourier. The downsampling factor was three and two along kx

and ky direction, respectively. Among four patient data sets, three patient data
sets were used for training and validation. We used the remaining one patient
data set for test. The input k-space data for network is the kx-ky slice along z
direction and temporal frames.

We employed the tight-frame U-net [18] thanks to its capability of preserv-
ing of the details of image. To deal with complex-valued multi-channel k-space
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Fig. 3. Network architecture of tight-frame U-net.

data, we divide the complex-valued k-space data into real and imaginary chan-
nels similar to [7]. The interpolated k-space data can be formed from the real
and imaginary channels as shown in Fig. 3. We implemented the network using
TensorFlow library [1].

4 Result

Figure 4 showed the subtracted maximum intensity projection (MIP) images for
test data. The temporal frames were selected to illustrate the propagation of
the contrast agent. In the proposed method, we generated the reconstructed
images using same neural network at various number of view sharing (VS). The
raw data in Fig. 4 is obtained by directly apply inverse Fast Fourier Transform
(FFT) to the k-space data without view sharing, which provide the true temporal
resolution.

In the GRAPPA reconstruction, the contrast agent was suddenly propagated
from the T = 10 frame to T = 11 frame as shown in Fig. 4. Since the degradation
of temporal resolution can be caused by the combination of multiple temporal
frames, the flow of contrast agent can be quickly changed only between one
frame. In the reconstructed images with VS = 2 using the proposed method, the
dynamics of the contrast agent is correctly demonstrated. As shown in Fig. 4,
the degree of temporal blurring in T = 11 frame can be captured depending on
the number of view sharing. The results of proposed method with VS = 5, which
is same to the conventional method, provided very similar spatial and temporal
resolution to the GRAPPA reconstruction.

Furthermore, the computational cost of the proposed method is more efficient
than that of GRAPPA and ALOHA. The proposed method can produce the
result only in 0.029 s, which is several order of magnitude faster than GRAPPA
and ALOHA.
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Fig. 4. Subtracted MIP results of GRPPA, raw data and the proposed methods for
various number of view sharing. VS stands for the number of view sharing.

5 Conclusion

In this paper, to enhance the temporal resolution of TWIST imaging and to
develop an algorithm that generates reconstruction results at various sliding
window size, we proposed a novel k-space deep learning algorithm for parallel
MRI. Our k-space deep network can exploit the redundancies along the coil
and image domain. The experimental results showed that one trained network
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can provide multiple reconstruction results with various spatial and temporal
resolution by changing the number of view sharing for the network input. We
believe that the proposed method suggests a significant new research direction
that can extend the clinical applications.
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Abstract. Accelerating the acquisition of magnetic resonance imaging
(MRI) is a challenging problem, and many works have been proposed
to reconstruct images from undersampled k-space data. However, if the
main purpose is to extract certain quantitative measures from the images,
perfect reconstructions may not always be necessary as long as the images
enable the means of extracting the clinically relevant measures. In this
paper, we work on jointly predicting cardiac motion estimation and seg-
mentation directly from undersampled data, which are two important
steps in quantitatively assessing cardiac function and diagnosing cardio-
vascular diseases. In particular, a unified model consisting of both motion
estimation branch and segmentation branch is learned by optimising the
two tasks simultaneously. Additional corresponding fully-sampled images
are incorporated into the network as a parallel sub-network to enhance
and guide the learning during the training process. Experimental results
using cardiac MR images from 220 subjects show that the proposed
model is robust to undersampled data and is capable of predicting results
that are close to that from fully-sampled ones, while bypassing the usual
image reconstruction stage.

1 Introduction

Cardiac magnetic resonance imaging (MRI) provides qualitative and quantita-
tive information of the morphology and function of the heart, which are crucial
for assessing cardiovascular diseases. Both cardiac MR image segmentation and
motion estimation are essential steps for the dynamic exploration of the cardiac
function. However, one limitation of the cardiovascular MR is the low acquisi-
tion speed due to both hardware and physiological constraints. Most approaches
consider undersampling the data in k-space and then reconstruct the images
[7,9]. Nevertheless, in most cases, perfect reconstructions are not necessary as
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long as the images allow to obtain accurate clinically relevant parameters such
as changes in ventricular volumes and the elasticity and contractility properties
of the myocardium. Therefore, instead of firstly recovering non-aliased images,
it may be more effective to estimate the final results directly from undersampled
MR data and also to make such estimations as accurate as possible.

In this paper, we propose to learn a joint deep learning network for cardiac
motion estimation and segmentation directly from undersampled cardiac MR
data, bypassing the MR reconstruction process. In particular, we extend the joint
model proposed in [6] which consists of an unsupervised cardiac motion estima-
tion branch and a weakly-supervised segmentation branch, where the two tasks
share the same feature encoder. We investigate the network’s capability of pre-
dicting motion estimation and segmentation maps simultaneously and directly
from undersampled cardiac MR data. The problem is formulated by incorporat-
ing supervision from fully sampled MR image pairs in addition to the composite
loss function as proposed in [6]. Simulation experiments have been performed
on 220 subjects under different acceleration factors with radial undersampling
patterns. Experiments indicate that results learned directly from undersampled
data are reasonably accurate and are close to predictions from fully-sampled
data. This could potentially lead to future works that enable fast and accurate
analysis in an integrated MRI reconstruction and analysis pipeline.

1.1 Related Work

Cardiac segmentation and motion estimation are well studied problems in med-
ical imaging. Traditionally, most approaches consider these two tasks separately
[1,11,12]. However, it is known that segmentation and motion estimation prob-
lems are closely related, and optimising these two tasks jointly has been proven to
improve the performance for both challenges. Recently, Oksuz et al. [5] proposed
a joint optimisation scheme for registration and segmentation using dictionary
learning based descriptors, which enables better performance for both of these
ill-posed processes. Qin et al. [6] proposed a unified deep learning model for both
cardiac motion estimation and segmentation, where no motion ground truth is
required and only temporally sparse annotated frames in a cardiac cycle are
needed.

However, there are only a limited number of works that focus on obtain-
ing segmentation maps and motion fields directly from undersampled MR data.
One direction of the research is on the application-driven MRI [2], where an inte-
grated acquisition-reconstruction-segmentation process was adopted to provide
a more efficient and accurate solution. Schlemper et al. [10] expanded on the
idea of application-driven MRI and presented an end-to-end synthesis network
and a latent feature interpolation network to predict segmentation maps from
extremely undersampled dynamic MR data. Our work focuses on the scenario
where motion fields and segmentation maps can be jointly predicted directly from
undersampled MR data, bypassing the usual MR image reconstruction stage.
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2 Methods

Our goal is to predict the simultaneous motion estimation and segmentation
directly from undersampled cardiac MR images and make sure that such pre-
dictions are as accurate and efficient as possible. Here we extend the effective
unified model (Motion-Seg Net) proposed in [6] to adapt to the application
for undersampled MR data. The proposed network architecture consists of two
branches which perform motion estimation and segmentation jointly, and a well-
trained sub-network for fully-sampled images is incorporated to provide addi-
tional supervision during the training process. Note that at test stage, only the
undersampled sub-network is needed, and no fully-sampled data is required. The
overall architecture of the model is shown in Fig. 1.

Fig. 1. The overall schematic architecture of proposed network for joint estimation of
cardiac motion and segmentation directly from undersampled data. (a) (b) The Motion-
Seg net adopted from [6]. (c) Proposed architecture for training the Motion-Seg net on
undersampled data. US: undersampled, FS: fully-sampled

2.1 Unsupervised Cardiac Motion Estimation from Undersampled
MR Image

Inspired by the success of the joint prediction network proposed in [6] which
effectively learns useful representations, here we propose to adapt the network
to undersampled MR data. In contrast to the fully-sampled case where only self-
supervision is required for the motion estimation, it is difficult for the undersam-
pled images to merely rely on self-supervision, i.e., the intensity difference, due
to the noises caused by aliased patterns. To address this, we propose to incorpo-
rate their corresponding fully-sampled image pairs as an additional supervision
to guide the training for the undersampled images, and a schematic illustration
of the model is shown in Fig. 1(a) and (c).
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The task is to find an optical flow representation between the target under-
sampled frame IUS

t and the source undersampled frame IUS
t+k, where the output is

a pixel-wise 2D motion field ΔUS representing the displacement in x and y direc-
tions. We exploit a modified version of the network proposed in [6] for the rep-
resentation learning, in which it mainly consists of three components: a Siamese
network for the feature extraction of both target frame and source frame where
the encoder is adapted from VGG-16 Net; a multi-scale concatenation of features
from pairs of frames motivated by the traditional multi-level registration method
[8]; and a bilinear interpolation sampler that warps the source frame to the tar-
get one by using the estimated displacement field ΔUS = (ΔUSx,ΔUSy; θUS

Δ ),
where the network is parameterised by θUS

Δ which is learned directly from under-
sampled MR data. Note that a RNN unit could be potentially incorporated to
propagate motion information along the temporal dimension [6], and we will
leave it as one of our future work.

Due to the severe aliased patterns existing in the undersampled MR images,
it is not practical to train the spatial transformer network purely based on min-
imising the intensity difference between the transformed undersampled frame
and the target undersampled frame. To address this, we propose to introduce
the fully-sampled image pairs as a supervision for the training. Specifically,
instead of warping the undersampled source image, here we propose to trans-
form the corresponding fully-sampled source image, which can be expressed as
I

′FS
t+k (x, y) = Γ{IFS

t+k(x + ΔUS
t+kx, y + ΔUS

t+ky)}. Then the network can be trained
by optimising the pixel-wise mean squared error between IFS

t and I
′FS
t+k . To

ensure local smoothness, we maintain the regularisation term for the gradi-
ents of displacement fields which uses an approximation of Huber loss pro-
posed in [3,6], namely H(δx,yΔUS) =

√
ε +

∑
i=x,y(δxΔUSi2 + δyΔUSi2), where

ε = 0.01. Therefore, the loss function can be described as follows:

Lm =
1

Ns

∑
(It,It+k)∈S

[‖IFS
t − I

′FS
t+k ‖2 + αH(δx,yΔUS

t+k)
]
, (1)

where Ns stands for the number of sample pairs in the training set S, and α
is a regularisation parameter to trade off between image dissimilarity and local
smoothness.

However, it is observed that for heavily undersampled images, such weak
supervision in Eq. 1 is not sufficient. Therefore, in order to push the learning
results from undersampled data to be as accurate as that from fully-sampled
data, we additionally introduce a pixel-wise mean squared error loss on the dis-
placement fields between the estimation from undersampled data (ΔUS

t+k) and
that from fully-sampled one (ΔFS

t+k). Since only the motion of anatomical struc-
tures is of interest, here we propose to mask the region of interests (ROI) by
utilising the predicted segmentation maps from fully-sampled data to allow that
only errors from ROI can be backpropagated to contribute to the learning. The
proposed loss term can be expressed as LΔt+k

= ‖(ΔUS
t+k − ΔFS

t+k) ∗Mt‖2, where
Mt is a one-hot mask (1 for ROI, and 0 for background) generated from the
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segmentation maps from frame t of fully-sampled images. Thus, the overall loss
function for motion estimation is as follows:

Lm =
1

Ns

∑ [‖IFS
t − I

′FS
t+k ‖2 +αH(δx,yΔUS

t+k)+β‖(ΔUS
t+k −ΔFS

t+k) ∗Mt‖2
]
, (2)

in which an additional trade-off parameter β is introduced. Note that no ground
truth displacement fields are required during the training, thus the motion is
still estimated unsupervisedly.

2.2 Joint Cardiac Motion Estimation and Segmentation from
Undersampled MR Image

Previous works have shown that motion estimation and segmentation tasks are
complementary [4,6,13]. Therefore, here we couples both tasks for the joint pre-
diction from undersampled MR data. The schematic architecture of the unified
model is shown in Fig. 1.

The joint model consists of two branches: the motion estimation branch
proposed in Sect. 2.1 which introduces additional supervision from fully sam-
pled images, and the segmentation branch based on the network proposed in
[1], where both branches share the joint feature encoder (Siamese style net-
work) as shown in Fig. 1. As images are only temporally sparse annotated,
predictions from corresponding fully-sampled images are used as supervision
for those unlabelled data. Therefore a categorical cross-entropy loss Ls =
−∑

l∈L yGT
l log(f(xl;ΘUS)) − ∑

n∈U ŷFS
n log(f(xn;ΘUS)) on labelled data set

L and unlabelled data set U is used for segmentation branch, in which we define
xl and xn as the input data, yGT

l as the ground truth, ŷFS
n is predictions from

fully-sampled images and f is the segmentation function parameterised by ΘUS .
Different from the loss function as stated in [6], here we don’t employ the loss
Lw between the warped segmentations and the target, as we find that for under-
sampled cases, minimising Lw could introduce more noises and uncertainties
into the network training presumably because of the less accurate predictions.
We empirically observed that this could lead to a small performance degradation
especially for the segmentation branch.

As a result, the overall loss function for the joint model can be defined as:

L = Lm + λLs, (3)

where λ is a trade-off parameter for balancing these two tasks. Lm can be of the
form of Eq. 1 or Eq. 2, and we will examine their comparisons in experiments.

3 Experiments and Results

Experiments were performed on 220 short-axis cardiac MR sequences from
UK Biobank study. Each scan contains a sequence of 50 frames, where man-
ual segmentations of left-ventricular (LV) cavity, the myocardium (Myo) and
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the right-ventricular (RV) cavity are available on ED and ES frames. A short-
axis image stack typically consists of 10 image slices, and the pixel resolution
is 1.8 × 1.8 × 10.0 mm3. Since only magnitude images are available, here we
employed a phase map synthesis scheme proposed in [10] to synthetically gener-
ate phase maps (smoothly varying 2D sinusoid waves), in order to convert magni-
tude images to complex valued images and to make the simulation more realistic.
In experiments, the synthesised complex valued images were back-transformed
to regenerate k-space samples. The input undersampled images were generated
by randomly undersampling the k-space samples using uniform radial undersam-
pling patterns. For pre-processing, all training images were cropped to the same
size of 192×192, and intensity was normalized to the range of [0,1]. In our experi-
ments, we split the data into 100/100/20 for training/testing/validation. Param-
eters used in the loss function were set to be α = 0.001, β = 1, and λ = 0.01,
which were chosen via validation set. Fully-sampled sub-network parameters
were loaded from [6], and we train the undersampled network using Adam opti-
miser with a learning rate of 0.0001. Data augmentation was performed on-the-
fly, with random rotation, translation, and scaling.

As work [6] has already shown that the joint model can significantly outper-
form model with single branch, in this work, we mainly focus on the evaluation
of the performance on undersampled data. We first evaluated the performance of
motion estimation by comparing the proposed model with a B-spline free-form
deformation (FFD) algorithm1 [8], and the results are shown in Table 1. Here
we examined the effect of different losses on the model’s performance, where
we termed method using Lm with the form of Eq. 1 as Proposed-A, and the
one using Eq. 2 as Proposed-B. Motion fields were estimated between ES and
ED frame, and mean contour distance (MCD) and Hausdorff distance (HD) were
computed between the warped ES segmentations and ED segmentations. Results
on fully-sampled (FS) images are presented in Table 1 as a reference. It can be
observed that proposed methods consistently outperform FFD on all accelera-
tion rates with p � 0.001 using Wilcoxon signed rank test, and is able to produce
results that are close to the fully-sampled images. Furthermore, it can also be
noticed that for higher acceleration rates (6× and 8×), Proposed-B produces
significantly better results than Proposed-A (p � 0.001). This is reflected by
the fact that higher undersampling rates result in more aliased images, there-
fore a relatively strong supervision (LΔ) is more needed to guide the learning in
comparison to images with less aliasing (3×).

We further evaluated the segmentation performance of the model on under-
sampled data with different acceleration factors. Results reported in Table 2
are Dice scores computed with manual annotations on LV, Myo, and RV, as
well as the clinical parameter ejection fraction (EF). It has been observed that
Proposed-A and Proposed-B didn’t differ significantly in terms of segmenta-
tion performance, so here we only report results obtained from Proposed-B in
Table 2. It can be seen that though there is a relatively small drop of performance
as acceleration factors increase, the network is robust to train on undersampled

1 https://github.com/BioMedIA/MIRTK.
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Table 1. Evaluation of motion estimation accuracy for undersampled MR data with
different acceleration factors in terms of the mean contour distance (MCD) and
Hausdorff distance (HD) in mm (mean and standard deviation). Loss function using
Lm(Eq. 1) is termed as Proposed-A, and the one using Lm(Eq. 2) is termed as Proposed-
B. Bold numbers indicate the best results for different undersampling rates.

Method MCD HD

LV Myo RV LV Myo RV

FS FFD 1.83 (0.53) 2.47 (0.74) 3.53 (1.25) 5.10 (1.28) 6.47 (1.69) 12.04 (4.85)

Joint model [6] 1.30 (0.34) 1.19 (0.26) 3.03 (1.08) 3.52 (0.82) 3.43 (0.87) 11.38 (4.34)

3× FFD 2.19 (0.49) 2.54 (0.74) 3.94 (1.38) 6.27 (1.64) 6.62 (1.72) 13.92 (5.03)

Proposed-A 1.32 (0.40) 1.23 (0.31) 3.41 (1.22) 3.53 (0.89) 3.59 (1.10) 12.69 (4.47)

Proposed-B 1.37 (0.45) 1.23 (0.31) 3.44 (1.22) 3.59 (0.98) 3.55 (1.10) 12.69 (4.45)

6× FFD 2.80 (0.77) 2.74 (0.75) 4.48 (1.46) 7.83 (2.30) 7.26 (2.26) 15.63 (5.19)

Proposed-A 2.10 (0.80) 1.44 (0.38) 3.84 (1.27) 4.79 (1.40) 3.98 (1.26) 13.45 (4.49)

Proposed-B 1.74 (0.68) 1.34 (0.35) 3.68 (1.27) 4.20 (1.30) 3.77 (1.21) 13.08 (4.49)

8× FFD 3.29 (0.97) 3.09 (0.99) 4.94 (1.67) 9.40 (2.70) 8.48 (3.05) 17.16 (5.75)

Proposed-A 2.30 (0.97) 1.52 (0.46) 4.02 (1.37) 5.19 (1.71) 4.16 (1.32) 13.79 (4.60)

Proposed-B 1.79 (0.70) 1.44 (0.39) 3.76 (1.30) 4.36 (1.40) 3.97 (1.28) 13.27 (4.55)

data, and the clinical parameter predicted directly from undersampled data is
very close to that from fully-sampled images. Furthermore, a visualisation result
of the network predictions on 8× accelerated data in a cardiac cycle is shown in
Fig. 2, where myocardial motion indicated by the yellow arrows were established
between ED and other time frames. Overall, predictions directly from undersam-
pled MR data are reasonably accurate, despite some small underestimations.

Table 2. Evaluation of segmentation performance under different acceleration factors
in terms of Dice Metric (mean and standard deviation) and average percentage (%)
error for ejection fraction (EF) compared with fully-sampled data.

Acceleration LV Myo RV EF

FS [6] 0.9348 (0.0408) 0.8640 (0.0295) 0.8861 (0.0453) -

3× 0.9303 (0.0450) 0.8596 (0.0309) 0.8884 (0.0433) 2.68%

6× 0.9214 (0.0475) 0.8424 (0.0310) 0.8804 (0.0456) 3.56%

8× 0.9141 (0.0487) 0.8260 (0.0343) 0.8658 (0.0523) 4.16%

4 Conclusion

In this paper, we explored the joint motion estimation and segmentation directly
from undersampled cardiac MR data, bypassing the usual image reconstruction
stage. The proposed method takes advantage of a unified model which shares
the same feature encoder for both tasks and performs them simultaneously. In
particular, we additionally introduced a parallel well-trained sub-network for
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Fig. 2. Comparison visualisation results for simultaneous prediction of motion estima-
tion and segmentation on data with undersampling rates 8. Myocardial motions are
from ED to other time points (numbers on the top right). Segmentations are overlaid
on fully-sampled data for better visualisation.

corresponding fully-sampled MR image pairs as a supervision source for training
undersampled data, in order to push the predictions from undersampled data
to be as accurate as possible. We showed that the proposed network is robust
to undersampled data, and results predicted directly from undersampled images
are close to that from fully-sampled ones, which could potentially enable fast
analysis for MR imaging. In the future, it is also interesting to explore methods
that are independent of aliased patterns and acceleration factors.
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Abstract. Recently, many deep learning (DL) based MR image recon-
struction methods have been proposed with promising results. How-
ever, only a handful of work has been focussing on characterising the
behaviour of deep networks, such as investigating when the networks may
fail to reconstruct. In this work, we explore the applicability of Bayesian
DL techniques to model the uncertainty associated with DL-based recon-
structions. In particular, we apply MC-dropout and heteroscedastic loss
to the reconstruction networks to model epistemic and aleatoric uncer-
tainty. We show that the proposed Bayesian methods achieve competitive
performance when the test images are relatively far from the training
data distribution and outperforms when the baseline method is over-
parametrised. In addition, we qualitatively show that there seems to be
a correlation between the magnitude of the produced uncertainty maps
and the error maps, demonstrating the potential utility of the Bayesian
DL methods for assessing the reliability of the reconstructed images.

1 Introduction

Deep learning (DL)-based accelerated magnetic resonance (MR) image recon-
struction is currently an active area of research. Many model architectures have
been proposed, such as networks which learn end-to-end transformations [4],
networks which “unroll” the traditional optimisation algorithm into a deep net-
work [7,9], optimisation algorithms incorporating deep priors [11] and, more
recently, networks incorporating adversarial losses [12]. Finding the optimal net-
work architecture remains an exciting problem. Despite there being an advance
in architectural search, only marginal progress has been made in understanding
the reconstruction networks’ behaviour. In [13], the expressibility of the network
to achieve a perfect reconstruction is outlined using the connection between con-
volutional neural networks (CNN) and convolution framelets. The authors of [6]
empirically assessed the generalisability of the variational inference network, and
found that the performance of the network is sensitive to the signal-to-noise ratio
(SNR) of data. Nevertheless, no theory exists which can explain the worst-case
c© Springer Nature Switzerland AG 2018
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behaviour of these networks. In [1], it is shown that methods with adversarial
losses can bias the reconstruction with the risk of hallucination. Even though
DL methods are shown effective, having a good grasp of how they produce error
is crucial for the reliable deployment of these methods in clinical settings.

While bridging the gap in our theoretical understanding of DL-based recon-
struction remains challenging, the literature from Bayesian deep learning sug-
gests that the uncertainty associated with network outputs can be directly mod-
elled using practical regularisation techniques [2]. Namely, these techniques are
MC-dropout and heteroscedastic loss [5], which capture model uncertainty and
data uncertainty respectively. Although such techniques have been applied to
MR image quality transfer/super-resolution (SR) tasks [10], it is yet to be inves-
tigated for the general MR image reconstruction setting. In this work, we apply
them to two network architectures, UNET [4] and a deep cascade of CNNs (DC-
CNN) [9]. We show that the Bayesian DL methods are able to approximately
characterise the confidence associated with the generated reconstructions. How-
ever, we also point out that the proposed formulation seems to be overly simplis-
tic to model the “true” uncertainty associated with MR reconstruction problem
in general. More sophisticated approaches may be necessary before such uncer-
tainty maps can be leveraged in practical scenarios.

2 Methods

Problem Formulation: Let x ∈ Cn be a fully-sampled image, y ∈ Cm be
the undersampled data obtained as y = Fux + ε, where Fu is an undersam-
pling Fourier operator and ε ∼ N (0, σ2I). The goal is to learn the inversion
p(x|y) or p(x|xu) where xu = FH

u y is the zero-filled reconstruction, which
is aliased. This is typically approached by a maximum a posteriori (MAP)
estimate arg maxx p(x|y) = arg minx − log p(y|x) − log p(x) because this can
be equivalently solved as a minimisation problem, wherein the likelihood and
the prior terms correspond to data fidelity and regularisation terms, respec-
tively. For example, compressed sensing can be seen as a MAP inference with
sparsity-inducing prior. Many deep learning algorithms can be seen as an approx-
imation to such MAP inference [3,7,9], where they learn an inversion func-
tion fw(xu) ≈ x, and the network parameters w are learnt from the dataset
D = (Y,X) = ({y1, . . . ,yn}, {x1, . . . ,xn}). The problem with MAP inference is
that it provides only a point estimate. In the case of compressed sensing, there is
a theoretical framework that relates the number of measurements, sparsity level
and reconstruction error. For deep learning, no such theoretical properties exist
yet and it is unknown when the network fails to reconstruct an image. Therefore,
it is desirable to model the distribution p(x|y) instead, which can provide the
variance associated with the output.

Bayesian Deep Learning: In the Bayesian formulation, given a new under-
sampled image xu and dataset D, a predictive distribution for the reconstructed
image x is obtained by p(x|xu,D) =

∫
p(x|xu,w)p(w|D) dw. Note that in

practice the posterior p(w|D) is intractable and often approximated using a
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distribution q(w) (variational inference). In addition, the above predictive dis-
tribution is often estimated via Monte Carlo integration unless an analytical
solution exists.

There are two types of uncertainty that can be identified in general. The
first kind is called aleatoric (data) uncertainty: this is irreducible uncertainty
observed in data. For MR image reconstruction problem, besides measurement
noise, there is an inherently high level of ambiguity whether a pixel value rep-
resents an aliasing pattern, some anatomy or a texture. Whenever the network
encounters unseen pathological examples, the model should exhibit higher level
of uncertainty for such region in the reconstruction. The second kind is called
epistemic (model) uncertainty: given dataset D, there are many plausible net-
work parameters w that can reconstruct the data well. This can be reduced by
increasing the size of D, however, in medical imaging domain, it is often difficult
to collect large training data and hence it is increasingly important to account
for the variability in network output caused by this uncertainty.

The two types of uncertainty can be modelled by incorporating heteroscedas-
tic loss and MC-dropout respectively. Here we only summarise the method, how-
ever, the detailed derivation can be found in [2,5]. Firstly, we set our likelihood
function to be given by p(x|xu,w) = N (x|fw(xu), gw(xu)), where fw(xu) mod-
els the mean prediction and gw(xu) accounts for the uncertainty found in the
input to estimate the covariance in the prediction. For simplicity, the covariance
matrix is assumed to be diagonal (i.e. we only model the pixel-wise variance).
The two networks are trained by minimising the heteroscedastic loss:

LHet.(w) =
1

N |D|
∑

(xu,x)∈D

N∑

i=1

1
2gwi (xu)

‖xi − fw
i (xu)‖2 +

1
2

log gwi (xu), (1)

i.e. the pixel-wise error is weighted by the predicted inverse pixel variance.
Epistemic uncertainty can be modelled using MC-dropout : it simply applies
dropout to the network activation maps. At test time, the predictive mean
is given by E[x] ≈ 1

T

∑T
t=1 fwt(xu), where wt denotes the network config-

uration after dropout has been applied. The predictive variance is given by
V[x] ≈ 1

T

∑T
t=1 gwt(xu) + 1

T

∑T
t=1(f

wt(xu))2 − (
1
T

∑T
t=1 fwt(xu)

)2, where the
first and the last two terms correspond to aleatoric and epistemic uncertainty
respectively. In addition, the variance of each complex-valued pixel is given by
the sum of real and imaginary components: V[z] = V[R(z)] + V[I(z)].

Network Architectures. We consider UNET [4] and DC-CNN [9] as the base
architectures fw(xu). Note that the design of gw(xu) is flexible. In particular,
one can independently parametrise f and g, or consider one network with mul-
tiple heads. In the former case, gw(xu) models intrinsic data uncertainty [10],
whereas in the latter case, the uncertainty is correlated with the mean prediction.
For DC-CNN, we consider both variants: DC-CNN1 aggregates the penultimate
feature maps from each sub-network, which is fed into a 5-layer variance net-
work. For DC-CNN2, an independent 5-layer variance network is trained directly
from the undersampled image. For UNET, fw(xu) and gw(xu) share the same
encoder but have independent decoders. See Fig. 1 for more details.



Bayesian Deep Learning for Accelerated MR Image Reconstruction 67

Fig. 1. The proposed network architectures. For DC-CNN1, f and g are correlated
whereas for DC-CNN2, f and g are conditionally independent. For UNET, f and g
share the same encoder but have two separate decoding paths.

3 Experiments and Results

Dataset: Two datasets were considered for the experiments. Dataset A consists
of 5000 short-axis cardiac cine MR images from the UK Biobank study [8],
which was acquired using bSSFP sequence, matrix size 208× 187, 50 frames and
a pixel resolution of 1.8× 1.8 × 10.0 mm3. Since only the magnitude images were
available, we simulated the phase components using slowly varying sinusoidal
waves. Dataset B consists of 10 fully sampled short-axis cardiac cine MR scans
acquired at St. Thomas Hospital, UK, using bSSFP sequence with 32-channels,
matrix size 192 × 190, 30 frames, 320 × 320 mm FOV and 10 mm slice thickness.
The multi-coil data was recombined into a single complex-valued image using
SENSE, which was then treated as the ground truth image. Both datasets were
cropped to 192 × 192.

Experiment Setup: In this work, we investigate the following questions: (1)
How do the Bayesian networks perform compared to the standard networks? (2)
How do the generated uncertainty maps look like for (a) same dataset, same
undersampling scheme, different acceleration factors, (b) same dataset, different
undersampling scheme, and (c) different dataset? To answer these questions, the
following experimental setting was considered: Dataset A was split into 4000
training subjects and 1000 test subjects. For training, we used 1D Cartesian
undersampling, where each line was sampled according to a zero-mean Gaussian
distribution. The undersampling masks were generated on-the-fly as we trained,
and the acceleration factor was chosen arbitrarily from nacc ∈ [1, 5]. Note that the
networks perform better when they are fine-tuned on a fixed acceleration factor
alone. However, for this work, this setup sufficed as we were only interested
in the relative performance of the Bayesian formulations. For testing, we used
1000 test subjects from Dataset A and all subjects from Dataset B. In addition,
three different undersampling patterns were considered: 1D Cartesian, radial and
low-resolution undersampling (SR). We used golden-angle sampling for radial
undersampling and for SR, the lowest frequencies were acquired until the desired
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acceleration factor is met. The results were evaluated using peak signal-to-noise
ratio (PSNR).

Model Parameters: For each network proposed above, we considered the fol-
lowing variants for an ablation study: (1) plain network, (2) MC-dropout only
(+D), (3) with heteroscedastic loss only (+H), and (4) both (+D+H). For (1)
and (2), we used the usual mean squared error (MSE) loss instead. The element-
wise dropout with p = 0.2 was applied to every feature map except for the last
layers of UNET and DC-CNN sub-networks. For training, we used Adam with
α = 10−4, β1 = 0.9, β2 = 0.999, where α was reduced by a factor of 0.1 every 100
epochs. Each network was trained for 300 epochs, using He initialisation, weight
decay of λ = 10−6 and a mini-batch size 8. For data augmentation, affine trans-
formations were applied on-the-fly, where parameters were sampled from 360◦

rotation, ±20 pixel shift and scaling factor s ∈ [0.9, 1.3]. For MC-dropout, we
used T = 20 samples as we empirically found that the result rapidly plateaued
beyond that. We used PyTorch for our implementations.

Fig. 2. Quantitative error of all models trained on Dataset A with Cartesian under-
sampling for acceleration factor up to 5, tested on different combinations of dataset,
undersampling scheme and acceleration factor.

Results: In Fig. 2, the quantitative results are summarised for each dataset
and undersampling scheme for a range of acceleration factors (AF). For dataset
A with Cartesian undersampling (the closest to the training distribution), the
Bayesian methods had poorer performance compared to the baseline networks.
However, interestingly, the performance gap was tightened when the experi-
ment was repeated with the different undersampling schemes or dataset B. For
DC-CNN, the plain network achieved the highest PSNR and DC-CNN1+D+H
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performed the poorest. This might be either because the variance estimate may
be too noisy during the training due to dropout, or being stuck in a suboptimal
local minimum as a result of f and g competing. For UNET, the Bayesian mod-
els consistently outperformed the baseline for dataset B. This suggests that the
proposed Bayesian formulation could alleviate the network overfitting a specific
distribution when the model is over-parametrised.

Fig. 3. Visualisation of the generated uncertainty maps for different undersampling
patterns and datasets. (top left) Dataset A, Cartesian, AF = 3 (top right) Dataset A,
radial, AF = 8 (bottom left) Dataset A, SR, AF = 3, (bottom right) Dataset B, Cartesian,
AF = 3. Note that the error and uncertainty maps are normalised across the figure.

The generated epistemic and aleatoric uncertainty maps for UNET+D+H,
DC-CNN1+D+H and DC-CNN2+D+H are displayed in Fig. 3. We see that,
in terms of scale, there is a rough correlation between the error map and the
epistemic uncertainty map. However, when each uncertainty map is inspected
in detail, they do not necessarily highlight the regions with highest error. For
aleatoric uncertainty, it tends to highlight image borders, but they do not con-
sistently correspond to the most aliased regions of the undersampled input. In
Fig. 4, we compare the epistemic and aleatoric uncertainty maps generated by
DC-CNN1+D+H and DC-CNN2+D+H from dataset A with Cartesian under-
sampling for different AFs. We can see that for DC-CNN1, the uncertainty level
increased as AF was increased. For DC-CNN2, we can observe a higher level of
uncertainty across the image, where the edges are highlighted more dominantly.
We note that the observations made here are consistent with literature [10].
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Fig. 4. Visualisation of epistemic and aleatoric uncertainty generated by DC-CNN1
and DC-CNN2 overlaid on the ground-truth image

4 Discussion and Conclusion

In this work, we evaluated MC-dropout and heteroscedastic loss for the MR
image reconstruction problem. We observed that the Bayesian methods per-
formed competitively when the data is further away from the training distribu-
tion and the generated epistemic and aleatoric uncertainty maps showed a corre-
lation with the error maps. However, we note that the current form of modelling
posed several limitations. Firstly, the characteristics of aleatoric uncertainty are
heavily dependant on whether f and g are correlated or not, an architectural
decision that has to be made by the users based on task-oriented goals. Secondly,
we also noticed that between the generated error and the uncertainty maps, there
were noticeable discrepancies at fine-scale. For epistemic uncertainty map, we
speculate that this may be because MC-dropout is a simple technique and cannot
capture the full model uncertainty for the reconstruction networks. For aleatoric
uncertainty map, it is presumably because the proposed methods model only
pixel-wise uncertainty (i.e. only the diagonal entries of the covariance matrix).
We hypothesize that such simplification is a poor approximation for modelling
the variance in MR reconstruction, as aliasing caused by random undersampling
is distributed across the entire image. A better modelling of such covariance
matrix is therefore likely to improve the results. Finally, albeit parallelisable,
obtaining epistemic uncertainty requires T forward passes, which may be prob-
lematic for real-time applications. Nevertheless, we believe that Bayesian deep
learning has a great scope for improvement and is a crucial step towards better
characterisation of deep reconstruction networks.

Acknowledgements. Jo Schlemper is partially funded by EPSRC Grant
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Abstract. We propose a 2D computed tomography (CT) slice image
reconstruction method from a limited number of projection images using
Wasserstein generative adversarial networks (wGAN). Our wGAN opti-
mizes the 2D CT image reconstruction by utilizing an adversarial loss
to improve the perceived image quality as well as an L1 content loss
to enforce structural similarity to the target image. We evaluate our
wGANs using different weight factors between the two loss functions
and compare to a convolutional neural network (CNN) optimized on L1

and the Filtered Backprojection (FBP) method. The evaluation shows
that the results generated by the machine learning based approaches
are substantially better than those from the FBP method. In contrast
to the blurrier looking images generated by the CNNs trained on L1,
the wGANs results appear sharper and seem to contain more structural
information. We show that a certain amount of projection data is needed
to get a correct representation of the anatomical correspondences.

Keywords: Computed tomography · Sparse-view reconstruction
Convolutional neural networks · Generative adversarial networks
L1 loss

1 Introduction

Computed tomography (CT) is a non-invasive image modality to visualize the
interior body structure, enabling fast acquisition and high image quality. To gen-
erate a three dimensional (3D) CT image, multiple 2D X-ray projection images
of the subject are acquired from different angles on the axial plane and used for
reconstruction. The Filtered Backprojection (FBP) is a well established method
for 3D CT reconstruction. However, the quality of the reconstructed image using
FBP heavily depends on the number of projection images, which correlates to
the amount of ionizing radiation exposed.
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As the risk of cancer is increased by radiation exposure, different approaches
exist to decrease the radiation dose. Two popular approaches to decrease radi-
ation dose are tube current reduction, resulting in degraded image quality, and
beam blocking, which restricts the amount of X-rays reaching the subject in a
physical way, resulting in streaking artifacts. Recent promising results for ion-
izing dose reduction were achieved by utilizing convolutional neural networks
(CNN) [3,4,13] and made deep learning also attractive for image reconstruction.

Fig. 1. Reconstruction ŷ of a target image y from a limited number of 2D projection
images xαi generated from y with different angles αi using a combination of a wGAN
loss LwGAN and an additional content loss L1. The generator G is based on the U-Net
[7], the discriminator D results in a single scalar value.

Reducing the number of X-ray image views acquired and used for CT recon-
struction is another approach to decrease the amount of radiation exposed.
Sparse-view CT reconstruction becomes important during minimally invasive
and image guided surgeries, where multiple X-ray images are acquired repeat-
edly during intervention to precisely locate the instruments, leading to an expo-
sure to ionizing radiation for both the patient and medical staff. In a recent
CNN based approach [10], residual learning is used to extract the artifacts from
the FBP image which are then subtracted from the FBP image to obtain the
clean reconstruction. In contrast to other CNN based approaches that learn the
transformation from a low quality, FBP based reconstructed CT image to a high
quality CT image, in our previous work [9], we learned a direct mapping from
3D digitally reconstructed radiographs (DRR) to the full 3D CT reconstruc-
tion using a U-Net architecture. However, the downside of this approach is that
the reconstructed images look blurry due to the used L1 loss. This observation
suggests to improve on the loss function used for training.

Generative adverserial networks (GANs), which can generate realistically
looking images, have a great potential to improve also the reconstruction qual-
ity of medical images. A GAN requires two networks to be trained: a generator,
which has the goal to create images coming from a target distribution, and a dis-
criminator, which has to distinguish between the generated and the real target
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Fig. 2. Generation of 1D projections sα from a target 2D CT slice image y for a number
of N fixed angles αi. All sα are further processed by repeating in the direction of the
respective α yielding the 2D projection images xα used as network input.

distribution. However, GANs are inherently hard to train and often suffer from
stability issues. Wasserstein GANs (wGANs) [1], which were further improved
by utilizing a gradient penalty [2], provide a way to stabilize the training. Com-
bined with a content loss such as L1, state-of-the-art results were achieved for
super resolution [5] and in medical imaging [6,8,11,12].

However, as GANs were initially proposed to generate new images from noise,
its applicability to medical applications is an open question. In this work, we
want to gain insights in the applicability of wGANs for improving the image
quality for 2D CT image slice reconstruction from a limited number of projec-
tion images. We investigate the role of an additional content loss for improved
reconstruction quality and provide insights in the amount of projection images
that are necessary for anatomically correct reconstructions.

2 Method

In our deep learning based method we utilize wGANs with gradient penalty in
combination with a content loss L1 to improve the reconstruction of 2D axial
CT slices, see Fig. 1. Our method is trained to reconstruct the target 2D CT
axial slice directly from a small number of 2D projection images generated by
extending 1D projections of the target image, see Fig. 2.

Projection Image Generation: We generated a 1D sum projection sαi
from

a target 2D axial CT slice y ∈ Y for different angles αi, i ∈ {1, . . . , N}, see Fig. 2.
The angles α are uniformly distributed in the range of 0◦ to 180◦ with a fixed
angle between them. With the same size as y, the 2D projection image xαi

is
generated by repeating sαi

in the direction of αi.

wGAN Architecture: Based on the U-Net [7], the generator G of wGAN uses
a set of 2D projection images xα to generate a 2D image ŷ ∈ Ŷ , which is as
similar as possible to y ∈ Y . Alternately receiving an image from Y and Ŷ ,
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(a) MAE (b) SSIM

Fig. 3. Mean absolute error (MAE) and structural similarity index metric (SSIM) of
our wGAN trained using L1 + LwGAN with λ = 10−3, only L1 and the FBP method
compared to the ground truth for a different number of projection images

the task of the discriminator D of wGAN is to recognize from which of these
two distributions the currently observed image is coming. The architecture of D
consists of consecutive 2D convolution layers and 2D max pooling layers, which
are followed by a fully connected layer resulting in a single scalar value.

Loss Functions: The discriminator’s loss is defined as

LD = −D(y) + D(ŷ) + ρ, (1)

where D(y) is the discriminator’s predicted probability for y coming from Y ,
D(ŷ) is the predicted probability for ŷ coming also from Y and ρ is the gradient
penalty, which is used to stabilize the training of the wGAN [2].

The generator’s loss is defined as

LG = L1 − λ · D(ŷ) = L1 + λ · LwGAN , (2)

where λ is used as a weight between the adversarial loss LwGAN = −D(ŷ) and
L1 loss, which is defined as

L1 =
1

|M |
∑

m∈M

|ŷm − ym|, (3)

where m ∈ M are corresponding pixels in ŷ and y, and M is the set of all pixels.

2.1 Experimental Setup

Our data set consists of 10 3D CT images containing information from neck
to pelvis. To decrease the training time, we downsampled the axial slices for all
images to a size of 128×128. We separated the 3D CT images into eight training
and two testing images. During training, the 2D target image is selected as a
random axial slice from a training 3D CT image that is augmented on the fly
by random translation, rotation and scaling coming from a uniform distribution.
To prevent the problem of different amounts of image data present in projection
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(a) Target (b) L1 (c) L1+λ1 ·LwGAN (d) L1+λ2 ·LwGAN

Fig. 4. The target compared to reconstruction results for eight projections generated
by L1 and L1+LwGAN with two different values for λ. λ1 = 10−3 (default), λ2 = 10−1.

images from different angles when generated from a square shaped target image,
all targets are masked by a circle. We used the same mask when the loss is
calculated. We experiment with a different number N = {1, 2, 4, 6, 8, 15, 30, 60}
of projection images used for reconstruction of 2D CT axial slice images. The
results are compared quantitatively to the FBP method by calculating the mean
absolute error (MAE) and the structural similarity index metric (SSIM). When
results are compared qualitatively, all images share the same brightness setting,
but some values are truncated to give a better contrast.

All networks were trained using a mini-batch size of 16 and 80.000 iterations,
while the discriminator was trained five times for each iteration. We used Adam
as an optimizer for all networks with a learning rate of 0.0001, β1 = 0.5 and
β2 = 0.9. We used a four level deep U-Net [7] as our generator. For both the
generator and the discriminator we used a kernel size of 3×3 and 64 intermediate
convolutional filters. As activation function, we used ReLU for the generator and
Leaky ReLU for the discriminator.

3 Results

Our results for a different number of projection images used for reconstruction of
2D CT axial slice images are presented quantitatively as MAE in Fig. 3(a) and as
SSIM in Fig. 3(b). Qualitative results using eight projection images and a differ-
ent weight factor λ are shown in Fig. 4. For a different number N ∈ {2, 15, 60}
of projection images, Fig. 5 shows the qualitative results for the FBP method
and Fig. 6 for using only L1 loss (λ = 0) and L1 + LwGAN loss (λ = 10−3).

4 Discussion and Conclusion

In this work we investigated the potential use of wGANs for sparse-view CT slice
reconstruction, which is motivated by a reduction of ionizing radiation exposure
to the patient. While a content loss L1 enforces similarity to the target image, our
U-net based CNN is optimized using a combination of the L1 and an adversarial
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(a) Target

F
B
P

(b) 2 (c) 15 (d) 60

Fig. 5. The target image (a) compared to reconstruction results generated by the FBP
method for two (b), 15 (c) and 60 (d) projection images.

loss LwGAN (Eq. (2)) to reconstruct more realistically looking images. In contrast
to other machine learning based approaches in which the reconstruction of a high
quality CT image is learned from the previously reconstructed low quality CT
image [3,4,13], in our approach the CNN learns the reconstruction directly from
a limited number of projection images, see Fig. 1.

When a different number of projection images is used to train our CNNs, our
quantitative results show that the learning based methods perform substantially
better than the FBP, see Fig. 3, which is to be expected, since the FBP does
not utilize any prior knowledge in contrast to the CNN based approaches. In
terms of the MAE, the CNN trained on L1-only performs slightly better than
the wGAN trained on the combination of L1 and adversarial loss (L1+LwGAN ).
This was expected, since L1 loss is optimized to minimize MAE. By comparing
the SSIM results, we can see that the CNN trained on L1-only gives better results
up to eight projection images, but from that point on the results from L1-only
and L1 + LwGAN can be considered equal. Although the quantitative results
indicate that the CNNs trained on L1-only provide a better reconstruction than
on L1 +LwGAN , they have to be considered with caution, since MAE and SSIM
do not represent the human perception of image quality well.

When training CNNs on L1-only loss using a sparse number of projection
images, the qualitative results show that the reconstructed image is blurry with-
out fine structures and clear edges, see Fig. 4(b). Using an additional adver-
sarial loss, the images contain fine structures and clear edges, see Fig. 4(c).
However, when the adversarial loss dominates in the loss function, anatomi-
cal structures without correspondence to the target image can be introduced,
see Fig. 4(d). We investigated the effect of λ by utilizing different orders of mag-
nitude λ = 10{−4,−3,−2,−1,0} and found λ = 10−3 to be the optimum. While
10−4 leads to results very similar to L1-only and seemingly without an influence
of LwGAN , the results using 10{−2,−1,0} lead to a clear reduction of structural
similarity and thus a loss of anatomical correspondence to the target.

Our results using a different number of projection images in Fig. 5 confirm
that the FBP method is not able to produce clinically meaningful images without
a proper number of projections. On the other side, our machine learning based
approach is able to reconstruct the main anatomical structures of the target
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Fig. 6. The target image (a) compared to reconstruction results generated by
L1 + LwGAN with λ = 10−3 (b, c and d) as well as by L1 (e, f and g) for two (b, e),
15 (c, f) and 60 (d, g) projection images.

image already from two projection images, see Fig. 6. While using L1-only loss
generates images that give the impression of a heavily blurred target image, the
reconstructed image by L1+LwGAN loss looks optically more realistic. However,
for both reconstructions, the anatomical structures do not always correspond to
the target due to a huge amount of missing information making them unsuitable
for use in clinical practice. In our experiments we found that 15 projection images
are sufficient for our CNN based approaches to achieve a qualitatively good
reconstruction. However, the results generated by L1 + LwGAN are sharper and
give more textural information compared to L1-only loss. The results generated
from 60 projection images provide a similar amount of fine details as the target
image. Nevertheless, the L1 +LwGAN result is still slightly sharper than L1-only
loss, especially the fine details in the lung region are visible.

We showed that the combination of an adversarial loss LwGAN and a content
loss L1 improves the visual reconstruction quality. The reconstructions using
L1 + LwGAN appear sharper and more structured compared to the CNN results
trained on L1-only. However, the tradeoff λ is crucial to reduce the amount of
newly introduced information by the wGAN and guide the reconstruction in a
direction close to the target image. While images generated by the CNNs trained
on L1-only appear blurry, the additional information present in the wGAN
results trained on L1 + LwGAN can potentially lead to misinterpretation in a
clinical relevant context if not enough data is available for reconstruction.

In conclusion, the wGANs have a potential to improve the perceived image
quality even from a huge amount of missing information, however, it is dependent
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on the application and domain, whether the kind of artifacts introduced are
tolerable, which is an open question in medical imaging. To further evaluate
anatomical correspondence, in our future work we will validate the perceived
image quality of our approach by expert radiologists and also compare to other
state-of-the-art methods based on compressed sensing.
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Abstract. Patient motion is one of the major challenges in cone-beam
computed tomography (CBCT) scans acquired under weight-bearing
conditions, since it leads to severe artifacts in reconstructions. In knee
imaging, a state-of-the-art approach to compensate for patient motion
uses fiducial markers attached to the skin. However, marker placement is
a tedious and time consuming procedure for both, the physician and the
patient. In this manuscript we investigate the use of anatomical land-
marks in an attempt to replace externally attached fiducial markers. To
this end, we devise a method to automatically detect anatomical land-
marks in projection domain X-ray images irrespective of the viewing
direction. To overcome the need for annotation of every X-ray image
and to assure consistent annotation across images from the same sub-
ject, annotations and projection images are generated from 3D CT data.
Twelve landmarks are annotated in supine CBCT reconstructions of the
knee joint and then propagated to synthetically generated projection
images. Then, a sequential Convolutional Neuronal Network is trained
to predict the desired landmarks in projection images. The network is
evaluated on synthetic images and real clinical data. On synthetic data
promising results are achieved with a mean prediction error of 8.4 ± 8.2
pixel. The network generalizes to real clinical data without the need of
re-training. However, practical issues, such as the second leg entering the
field of view, limit the performance of the method at this stage. Never-
theless, our results are promising and encourage further investigations
on the use of anatomical landmarks for motion management.

1 Introduction

C-arm cone-beam computed tomography (CBCT) systems have been used
recently to acquire 3D images of the human knee joint under weight-bearing
conditions [1,2]. Scans under weight-bearing conditions can be beneficial for the
c© Springer Nature Switzerland AG 2018
F. Knoll et al. (Eds.): MLMIR 2018, LNCS 11074, pp. 83–90, 2018.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00129-2_10&domain=pdf


84 B. Bier et al.

investigation of the knee health since it has been shown that the human knee
joint shows different properties in a natural position under load compared to
a supine acquisition [3]. Load bearing imaging requires dedicated imaging pro-
tocols. Using robotic C-arm systems driven in horizontal trajectories [1,4,5], it
takes several seconds to acquire enough 2D projection images for a clinically
satisfying reconstruction. During that time, the standing patient might move
involuntarily. This motion leads to inconsistencies in the projection data, and
thus, to motion artifacts in the reconstructions. Therefore, motion compensation
is indispensable for achieving diagnostic reconstruction quality in weight-bearing
CBCT of the knee.

In order to reduce motion induced artifacts in such scenarios, various
approaches have been proposed: autofocus-based methods optimize image-
quality criteria in reconstructions [6], registration-based approaches align
acquired images to a static reference [4,7,8], while range camera-based solu-
tions image the knee surface to estimate patient motion [5]. Another state-of-
the-art method uses metallic fiducial markers externally attached to the skin
of the knee [1,4]. Due to their high attenuation, these markers are easily visi-
ble and detectable in the 2D projections. Using the detected marker locations,
3D reference marker positions can be computed. Having 2D positions as well
as corresponding 3D reference positions, a refined C-arm trajectory can be
computed analytically in a 2D/3D alignment step, i. e. without the need for
computation-heavy optimization. Despite best-in-class performance, the usabil-
ity of this method suffers: marker placement is time consuming, interrupts the
clinical workflow, and must be executed carefully since markers must not over-
lap in the projections. Therefore, a purely image-based method similar to the
fiducial marker-based approach is desirable.

A promising candidate to replace the markers are anatomical landmarks vis-
ible in projection images. Finding key points and establishing correspondences
in images of the same scene is a well understood concept in computer vision.
However, this concept does not translate easily to transmission imaging, where
the appearance of the same landmark can vary tremendously dependent on
the viewing direction. Recently, Convolutional Neuronal Network (CNN)-based
sequential predication frameworks have shown promising performance in detect-
ing anatomical landmarks in X-ray transmission images of the pelvis across a
large range of viewing angles of the C-arm CT system [9].

Here, we transfer the work in Bier and Unberath et al. [9] to view-independent
anatomical landmark detection in CBCT short scans of knees under weight-
bearing conditions. To this end, a CNN is trained on synthetic projection images
generated from 3D CBCT data. In total, twelve anatomical landmarks are man-
ually annotated in 3D and then predicted in projection domain. The network
readily establishes landmark correspondence across images suggesting that suffi-
ciently accurate landmark detection will pave the way for ”anatomical marker”-
based motion compensation. Our landmark detection is evaluated on a simulated
short scan, and two clinical CBCT scans in supine and weight-bearing condition,
respectively. The network is trained on synthetic data [9], yet, generalizes to real
projection images without the need of re-training.
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2 Method

2.1 X-Ray Invariant Anatomical Landmark Detection

Detection of anatomical landmarks irrespective of the viewing direction has
been proposed recently [9]. The concept of landmark detection was derived
from a sequential prediction framework, namely the Convolutional Pose Machine
(CPM) [10]. This network architecture was initially developed to detect human
joint positions in RGB images and provides key benefits: it combines local image
features with increasingly refined belief maps to establish landmark relation-
ships. The network processes each image independently and, for each landmark,
predicts a belief map indicating the landmark position.
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Fig. 1. Network architecture [9]

The network involves successive processing of the input image over several
stages, see Fig. 1. In the first stage, the network architecture consists of convo-
lutional and pooling layers, which result in initial belief maps. In the following
stages, these belief maps are refined using both local image features and the
belief maps of the previous stage. The cost function of the network is the differ-
ence between the predicted belief maps bpt and the ground truth belief maps b∗

t

of all landmarks p ∈ {1, .., P} and in each stage t: consequently, the l2 norm of
this difference defines the cost function ft [10]:

ft =
P∑

p=1

‖bpt − b∗
t ‖22. (1)

This network structure has several properties: it has a large receptive field (160
× 160 pixels) on the input image, empowering the network to learn characteristic
global configurations over long-distances. The stage-wise manner also allows the
network to resolve ambiguities due to similar local appearance. Further, accu-
mulating the loss after each stage prevents vanishing gradients that often occur
in large CNNs [10].

2.2 Training

In order to train the network, projection images and corresponding landmark
positions have to be known. We follow the approach discussed in [9,11] and
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Fig. 2. Anatomical landmarks defined on the surface of the bones in the knee joint

generate projection images and annotations synthetically by annotating twelve
anatomical landmarks in CBCT volumes of the human knee, see Fig. 2. The
landmarks have been selected to be good visible in the projections images as
well as clearly identifiable in the 3D volume. The CBCT volumes were recon-
structions of scans acquired in supine position (Siemens Zeego, Siemens Health-
care GmbH, Erlangen, Germany). In total 16 CBCT volumes were available for
training. After annotation of the landmark positions in the volumes, projection
images and corresponding annotations were generated synthetically using CON-
RAD [12]. From each dataset, 1000 projection images were simulated. For data
augmentation purposes, images were sampled during projection generation on a
spherical segment with a range of 240◦ LAO/RAO and 20◦ in CRAN/CAUD.
This range covers more than the necessary variance of a common CBCT short
scan. Additionally, random translations in three Cartesian axes and horizontal
flipping of the projections were used. The belief map of a particular landmark
consists of a single normal distribution centered at the true landmark location.
The size of the projections was 615 × 479 with a pixel size of 0.6 mm. The belief
maps were downsampled eight times.

16 supine CT scans, split 14 × 1 × 1-fold in training, validation and testing
data are used for the training and testing. The network was trained with six
stages for 30 epochs with a constant learning rate of 0.00001 and a batch size of
one. The optimization was done using Adam optimization. Figure 3 shows that
convergence is reached during both training and validation.

Fig. 3. Training loss (left side) and Validation loss (right side)
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Fig. 4. Detection results on the synthetic (left), a supine scan (center), and a standing
scan (right)

2.3 Landmark Estimation

The network outputs twelve belief maps that indicate the landmark positions.
The belief map after each step is accumulated, and the 2D landmark position is
defined as the maximum response in the accumulated belief map.
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3 Experiments and Results

Landmark detection is evaluated quantitatively on a synthetic short scan dataset
as well as qualitatively on two clinical CBCT scans in supine and standing condi-
tion, respectively. In order to investigate the prediction results over the complete
trajectory, detection results sampled from different directions are represented in
Fig. 4. Column-wise from left to right, we show results on the synthetic dataset,
the real clinical data in supine and in standing conditions, respectively. Detected
landmarks are highlighted in red and reference marker positions in white, wher-
ever available.

The detection results on the synthetic dataset are in good agreement with
the ground truth label positions. Visually, also the detected landmarks in the
real clinical images are in agreement with the labeled locations. Note that in
the supine scan also a part of the patient’s feet is present in some parts of the
projections. However, this does not seem to influence the landmark detections.
In the projections acquired under weight-bearing conditions a second leg is also
present in parts of the projection. Since there is a second knee in the field of
view, the detection of the landmarks is not consistently on one leg only.

Table 1. Average distance [pixels] of the predicted landmarks to the ground truth
location

Landmark # Distance (μ ± σ) Landmark # Distance (μ ± σ)

1 6.6 ± 2.0 7 17.7 ± 8.6

2 10.5 ± 3.9 8 3.2 ± 1.9

3 3.8 ± 1.4 9 5.1 ± 1.6

4 8.7 ± 2.5 10 5.1 ± 1.6

5 9.5 ± 5.0 11 7.0 ± 4.6

6 18.1 ± 19.2 12 5.7 ± 3.9

Since the reference landmark locations were known on the synthetic short
scan dataset, we computed the average distance to the ground truth landmark
locations as well as the detection rate. We define a landmark as detected, if the
distance to its ground truth location is <15 pixel and the maximum belief is ≥0.4.
The average distance of the landmark detections on the simulated short scan was
then 8.4±8.2 pixels and a detection accuracy of 89.16% is reached. Furthermore,
we investigated the quality of the selected anatomical landmarks and computed
the average distance for each landmark. The results of this are shown in Table 1.
Large differences between individual landmarks can be observed here. The best
landmarks are the tip of the Fibula (landmark #3) and landmarks inside the
knee joint. It is further noticeable that landmarks with less other neighboring
landmarks, e.g. on the Patella (landmark #6), or on the Tibia (landmark #7),
are detected with a much higher uncertainty.
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4 Conclusion and Outlook

The presence of patient motion during CBCT scans is one of the major challenges
in CBCT acquisitions acquired under weight-bearing conditions. Currently, an
approach based on metallic fiducial markers is used to estimate motion. However,
marker placement is time consuming and tedious. Therefore, we investigated the
feasibility of using anatomical landmarks as image-based markers instead.

An X-ray invariant anatomical landmark detection approach was utilized to
detect landmarks in projection images. Trained on high quality supine data of the
knee, the network predicted belief maps in which the position of the anatom-
ical landmarks can be estimated in synthetic as well as in real clinical data.
These landmarks could be used to estimate motion using a 2D/3D based regis-
tration approach. The estimation of the motion with these detections is subject
of future work. It also had been shown that some landmarks could be estimated
more robustly than others. This might contain the potential to incorporate this
information in the further processing steps. Furthermore, we believe that such
approaches might be applicable to compensate other complex body motion [13],
e. g., using motion models for respiratory [14] or cardiac motion [15].

Despite promising results on projection images of the knee, some limitations
remain. The large angular range of short scans unavoidably implies the presence
of both legs in the field of view. On the one hand, bones superimpose and hinder
the detection. On the other hand, we observed ”jumping” of detections from one
knee to the other. These observations further motivate why landmark detection
seems to visually perform better on supine than on standing data. Moreover, the
method results in limited accuracy due to downsampling of the ground truth
belief maps by factor of around eight. To improve the accuracy, an advanced
network incorporating skip-ahead-connections might increase the performance.

Despite these limitations, this work shows that the automatically landmark
detection works well for synthetically generated as well as for real X-ray projec-
tion images of knee joints. In future work, we will investigate methods to make
landmark prediction more robust, particularly in presence of additional anatomy,
and to use our predictions to estimate and compensate for patient motion during
reconstruction.
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Abstract. We propose a new convolutional neural network architec-
ture for image reconstruction in sparse view computed tomography. The
proposed network consists of a cascade of U-nets and data consistency
layers. While the U-nets address the undersampling artifacts, the data
consistency layers model the specific scanner geometry and make direct
use of measured data. We train the network cascade end-to-end on sparse
view cardiac CT images. The proposed network’s performance is evalu-
ated according to different quantitative measures and compared to the
one of a cascade with fully convolutional neural networks with residual
connections and to the one of a single U-net with approximately the
same number of trainable parameters. While in both experiments the
methods show similar performance in terms of quantitative measures,
our proposed U-nets cascade yields superior visual results and better
preserves the overall image structure as well as fine diagnostic details,
e.g. the coronary arteries. The latter is also confirmed by a statistically
significant increase of the Haar-wavelet-based perceptual similarity index
measure in all the experiments.

Keywords: Deep learning · Convolutional neural networks
Data consistency · Computed tomography · Sparse sampling

1 Introduction

Sparse data-acquisition protocols are widely used in magnetic resonance imaging
(MRI) in order to shorten scanning times. In contrast, in computed tomography
(CT), the data acquisition process is fast while reducing radiation exposure is
an important clinical issue. One possible way to reduce radiation exposure is
to decrease the tube current of the X-ray emitting source. However, the direct
consequence is decreased image quality due to higher image noise. In this paper,
c© Springer Nature Switzerland AG 2018
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we use a sparse view data-acquisition scheme to reach a significant radiation
exposure reduction in CT. This can be achieved by masking the X-ray source
at certain angular positions during the rotation of the scanner and therefore
preventing some X-rays to pass through the patient. Using standard algorithms,
images reconstructed from sparse view data exhibit undersampling structures
which are related to the scanner geometry as well as the sub-sampling scheme
used for data acquisition.

Recently, deep neural networks have shown to be a promising alternative
to current state-of-the-art iterative methods for the reconstruction from heavily
undersampled CT data. In particular, the U-net [6] has shown its excellent per-
formance in the restoration of undersampled images in CT and MRI [4]. However,
these standard network designs can be viewed as post-processing methods, as the
network used to remove the artifacts is the only learned component in the recon-
struction pipeline. As a consequence, these methods may lack data consistency.
In this paper we propose a new network architecture for the image reconstruction
from undersampled data in sparse view CT. Our network structure is inspired by
the network cascade developed in [7] and consists of a cascade of convolutional
neural networks and data consistency layers which minimize a properly-chosen
functional. However, while the approach in [7] is based on the isometry of the
full MRI forward operator, our data consistency layer is directly applicable to
general inverse problems as well. Furthermore, the fully convolutional neural net-
works (FCNNs) with residual connections are replaced by U-nets. For different,
gradient-descent-like data consistency layers, see [2,3].

1.1 Sparse View Computed Tomography

Here and after we work with the discrete setting. By x ∈ R
n we refer to the vec-

tor of size m × m with m2 = n as representation of the two-dimensional X-ray
attenuation function and write y ∈ R

d for a fully sampled sinogram. Further, we
use R to denote the discretized forward operator of a CT scanner, i.e. the discrete
X-ray transform specified by the scanner’s geometry. We denote the pseudoin-
verse of the discretized forward operator by R†. Note that the continuous form
of the Radon transform is injective but not surjective. Therefore, we may assume
that the Radon transform R is sampled sufficiently fine such that the discretized
full data operator is injective but not surjective as well. Anyway, the approach
presented below works for an arbitrary discrete transform R ∈ R

d×n.
Assume the data is measured only for lines corresponding to a subset I ⊂ J �

{1, . . . , d}, where J is the full set of projections. The corresponding discretized
sparse data forward operator can be modeled by RI = SIR, where the sub-
sampling operator is given by

SIy(i) �
{

y(i) if i ∈ I

0 if i ∈ Ic := J \ I.
(1)
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The sparse data image reconstruction problem then consists in recovering the
image x ∈ R

n from the set of projections, i.e. we want to solve

RIx = yI . (2)

2 Proposed Network Architecture

In the full data case, (2) can be be solved by filtered back-projection, which is
a stable numerical implementation of R†. However, in the sparse view case we
have |I| � |Ic| and the application of R† to data yI yields images with severe
artifacts. Images with diagnostic quality can usually be obtained by iterative
reconstruction methods designed for minimizing R(x) + λ‖RIx − yI‖p

p, where
R(x) is a regularizer and ‖ · ‖p denotes a norm which ensures data consistency.
Typical choices for the regularizer are the total variation, or the �1-norm with
respect to a frame or a trained dictionary. As a drawback, these methods are
usually computationally expensive since they rely on a repeated application of
the forward and adjoint operators. Furthermore, using regularization solely based
on prior assumptions will likely bias the result.

Methods based on neural networks as for example in [4] propose non-iterative
regularization approaches. Given an estimate solution xI of (2), regularized
images are obtained as the output of a CNN f which is previously trained on
a dataset of pairs (xI ,xfull), where xfull is an image obtained from the recon-
struction of a fully-sampled measurement. Such a procedure consists in a subse-
quent regularization of the initial solution xI rather than a joint minimization
of R(x) + λ‖RIx − yI‖p

p. Therefore, following [7], we propose to train different
networks intercepted by data consistency (DC) layers.

2.1 Data Consistency Layer

Let fΘ be a previously trained CNN with parameters Θ. Given measured data
yI , we can apply a CNN to map xI to its corresponding label, i.e. fΘ(xI) � xfull

where xI � R†yI . However, the CNN reconstruction fΘ(xI) may not satisfy the
data consistency condition RI(fΘ(xI)) � yI .

In order to improve data consistency, we define a new reconstruction
fdc(xcnn,yI , λ) � R†(zdc) where zdc ∈ R

d is the minimizer of the functional
given by

FΘ,yI ,xcnn,λ(z) � ‖R(xcnn) − z‖22 + λ‖yI − SIz‖22 , (3)

with xcnn = fΘ(xI) denoting the output of the trained CNN.
Here, the term ‖yI −SIz‖22 enforces data consistency and ‖R(xcnn)−z‖22 uses

xcnn to regularize in Radon space. Opposed to [7], where the regularization term
‖xcnn − x‖22 in image space has been used, the proposed regularization in data
space yields the following representation of the DC layer for general, possibly
non-orthogonal transforms.
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Theorem 1. Let R ∈ R
d×n be a real valued matrix and RI = SIR, where

SI is the subsampling operator defined in (1). The data consistency layer
fdc(xcnn,yI , λ) is well defined by (3) and takes the explicit form

fdc(xcnn,yI , λ) = R†(ARxcnn +
λ

1 + λ
yI

)
, (4)

where A = diag(a1, . . . , an) is a diagonal matrix of size d × d with diagonal
entries ai = 1 if i �∈ I and ai = 1/(1 + λ) otherwise.

Proof. The functional in (3) takes the separable form
∑

i∈J |Rxcnn(i) − z(i)|22 +
λ|yI(i) − (SIz)(i)|22. Hence, the minimizer of FΘ,yI ,xcnn,λ is unique and can be
found by component-wise minimization. Elementary computations show (4).

The matrix A ensures that, when the i-th projection is not available from the
measurements, (Rx)(i) is directly estimated from the projection data of the
output of the CNN. Otherwise, (Rx)(i) is calculated as a linear combination of
the CNN coefficient Rxcnn(i) and the measured coefficient yI(i). Note that the
evaluation of (4) requires the application of the pseudoinverse, which might be
numerically unstable. In the numerical implementation, the pseudoinverse R† is
replaced by an appropriate regularization. We emphasize that this issue is not
present in MRI reconstruction, as the corresponding full data operator is bijective
and the inverse well-conditioned. Therefore, the extension of the corresponding
data consistency layer from MRI to CT is a non-trivial issue.

2.2 U-Nets Cascade

Here, we always refer to a U-net as any residual encoder-decoder network archi-
tecture with a similar structure to the one presented in [4]. However, in our
experiments we vary the number of stages which are used to encode the input,
the number of convolutional layers per stage, the initial number of feature maps
which are extracted from the input and the factor by which the feature maps
are augmented after each max-pooling layer. In order to satisfy the data consis-
tency condition RI(fΘ(xI)) � yI , we propose to construct a sequence of U-nets
which are intercepted by DC layers as described in Subsect. 2.1. While the U-nets
tackle the removal of the undersampling artifacts, the DC layers account for data
consistency in Radon space. Figure 1 shows the structure of a U-nets cascade,
where each U-net consists of three encoding stages and two convolutional layers
per stage.

3 Numerical Experiments

3.1 Dataset

We test our proposed network architecture on a dataset consisting of cardiac CT
images from 52 patients. The 3D volumes contain from 240 up to 640 slices per
patient. For each slice, the undersampled data yI is generated according to a
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Fig. 1. A cascade of U-nets with intermediate data consistency layers.

parallel-beam geometry where we cover a half rotation of 180◦ of the scanner by
only 32 angles. The images xI are obtained by applying filtered back-projection
R† with Ram-Lak filter to yI . The operator R is assumed to perform 512 pro-
jections. We use the images of 40 patients for training, of 6 for validation and of
6 for testing. For computational reasons and in order to allow us to build neural
networks with a certain depth, the images are first downsampled from 512×512
to 256 × 256 pixels.

3.2 Network Architectures and Training

In all our experiments we train the U-nets cascade to minimize the L2-error
between the predicted output of the cascade and the corresponding label. All
architectures are trained for 20 epochs by stochastic gradient descent. When one
single U-net is used, we decrease the learning rate from 10−7 to 10−9. For all
other architectures which contain the operators R and R†, a more conserva-
tive learning rate which is decreased from 10−10 to 10−14 has to be chosen for
numerical stability. The network architectures are implemented in TensorFlow
and the scanner geometry, the forward and the pseudoinverse operators R and
R† are implemented in ODL [1]. We parametrize a U-net cascade according to
the following hyperparameters:

• U - the number of U-nets employed in the cascade
• E - the number of stages used for the encoding of each U-net
• C - the number of convolutional layers per stage for each U-net
• K - the number of feature maps which are initially extracted from the input

of each U-net
• F - the factor by which the number of feature maps is increased after the

max-pooling layers of each U-net.

For example, U1 E5 C4 K64 F2 denotes a single U-net architecture similar to the
one presented in [4]. On the other hand, U4 E1 C4 K64 denotes a FCNN cascade
as discussed in [7]. Note that, in such a case, we omit the hyperparameter F
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in the notation, since due to the absence of max-pooling layers, the number of
extracted feature maps stays constant over the different stages.

For a fair comparison, we try to keep the number of trainable parameters
approximately equal for the architectures we compare. Note that due to the
large number of possible combinations of hyperparameters, it is computation-
ally demanding to conduct experiments which clearly reveal the effect of each
hyperparamter. However, we identify the presence of max-pooling layers to be
the main difference between the proposed U-net cascade and the cascade in [7]
in terms of feature-extraction-operations of the subnetworks. Therefore, in order
to reach a certain number of trainable parameters, we choose to always favour
to increase the number of encoding stages rather than increasing the number
of convolutional layers per stage, the number of extracted feature maps or the
factor by which they are increased after the max-pooling layers.

For the evaluation of the performance of the network we report the peak
signal-to-noise ratio (PSNR), the relative L2-error (NRMSE), the structural sim-
ilarity index measure (SSIM) and the Haar-wavelet based perceptual similarity
index measure (HPSI, [5]) which has been reported to achieve higher correlation
with human opinion scores than SSIM on various benchmark databases.

Effect of the U-Net: Here, we investigate the effect of the replacement of the
FCNNs discussed in [7] by the U-nets. Table 1 lists the average of the aforemen-
tioned quantitative measures over the test set. In terms of PSNR, SSIM and
NRMSE, both cascades deliver similar results. On the other hand, we report a
statistically significant increase of the mean value of HPSI for all tested U-nets
cascades, (p < 0.001 for all cases). Figure 2 shows two examples of reconstructed
images of the test set. Due the relatively small number of trainable parameters
and the high undersampling factor, both approaches do not entirely remove the

Fig. 2. Comparison of different cascades. 32-views FBP-reconstruction (first column),
ground truth (second column), U4 E1C4K64 (third column), U4 E4C2 K32 (fourth
column). The red circles indicate newly introduced or not correctly removed artifacts
from the reconstruction with the FCNNs-cascade. (Color figure online)
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undersampling artifacts and fail at recovering fine details. Note that, however,
the cascade with the FCNNs even introduces new artifacts. The phenomenon
can be observed in several images reconstructed with the FCNNs cascade. On
the other hand, the U-nets cascade seems to better preserve the overall structure
of the images.

Table 1. Comparison of the proposed U-nets cascade with a cascade of FCNNs with
residual connections. The measures are averaged over the test set.

Model nparams PSNR SSIM HPSI NRMSE

U2 E1C4K64 371 459 30.63 0.8961 0.7236 0.1597

U2 E4C2K32 352 899 30.56 0.8939 0.7433 0.1612

U3 E1C4K64 557 187 30.26 0.8737 0.7311 0.1692

U3 E4C2K32 529 347 30.33 0.8744 0.7499 0.1679

U4 E1C4K64 742 915 29.89 0.8581 0.7326 0.1799

U4 E4C2K32 705 795 29.92 0.8603 0.7540 0.1782

Effect of the Cascade: In this experiment, we test different network architec-
tures where we vary the length of the cascade. Figure 3 shows an image recon-
structed with different network cascades. The results show that the left coronary
artery is better visible in the images reconstructed with the U-nets cascades com-
pared to a single U-net. In contrast to the results presented in [7], increasing the

Fig. 3. Variation of the length of the cascade. Ground truth (top left), FBP-
reconstruction from undersampled data (bottom left), U1E3 C2K64 F2-reconstruction
(top middle), U2 E3C4K32 F2-reconstruction (bottom middle), U3 E3C3K64-
reconstruction (top right), U4 E3C2K32 F2-reconstruction (bottom right). The yellow
arrows point at the left coronary artery. (Color figure online)
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Table 2. Variation of the length of the U-nets cascade. The measures are averaged
over the test set.

Model nparams PSNR SSIM HPSI NRMSE

U1E3 C2K64 F2 1 957 251 30.19 0.9532 0.7304 0.1832

U2E3 C4K32 F2 1 941 379 31.14 0.8905 0.7659 0.1531

U3E3 C3K64 1 999 107 30.85 0.8686 0.7732 0.1621

U4E3 C2K32 F2 1 960 707 30.38 0.8559 0.7729 0.1732

length of the cascades does not further improve the results. We attribute this
to the fact that the inversion of the Radon-transform is ill-posed and therefore,
numerical errors due to the inversion of R prevail over the presence of the data
consistency layers. However, when we replace a single U-net by a U-nets cascade,
the network’s performance statistically significantly increases (p < 0.001) with
respect to all measures except for SSIM, where a single U-net yields the best
results, see Table 2.

3.3 Conclusion

In this work, we have presented a new network architecture for image reconstruc-
tion in sparse view CT. Replacing the FCNNs by U-nets in the cascade in [7]
visually improves the reconstruction in sparse view CT. The proposed U-nets cas-
cade outperforms the single U-net architecture with respect to all reported quan-
titative measures except for SSIM and better preserves fine anatomic details. By
adapting the data-acquisition process and the index set I, the architecture is
directly applicable to other limited data inverse problems such as limited angle
CT where we expect the method to deliver even better results as the portion of
measured data which can be used in the reconstruction is significantly larger.
Furthermore, we expect the extension of the network cascade employing U-nets
as sub-networks also to further improve the image reconstruction in MRI.
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Abstract. We present a framework for accelerated iterative reconstruc-
tions using a fast and approximate forward model that is based on k-
space methods for photoacoustic tomography. The approximate model
introduces aliasing artefacts in the gradient information for the itera-
tive reconstruction, but these artefacts are highly structured and we can
train a CNN that can use the approximate information to perform an
iterative reconstruction. We show feasibility of the method for human
in-vivo measurements in a limited-view geometry. The proposed method
is able to produce superior results to total variation reconstructions with
a speed-up of 32 times.

Keywords: Learned image reconstruction
Photoacoustic tomography · Fast fourier methods · Compressed sensing

1 Introduction

There is increasing interest in Photoacoustic tomography (PAT) for both clinical
and preclinical imaging [1], as it has the potential to provide molecular and
functional information with high spatial resolution [2]. For preclinical imaging
it is often possible to make measurements all around the object, but for clinical
imaging, PAT scanners with access to just one side of the tissue are typically
required. In addition, clinical imaging typically requires high frame rates [3]. The
frame rate is determined both by the time taken for the data acquisition as well as
by the image reconstruction time. Compressed sensing can dramatically reduce
data acquisition time, but then suitable image reconstruction approaches are
required, which are typically slow due to the large number of iterations required.
This paper proposes to use an approximate and fast model within a deep learning
framework for PAT image reconstruction from sparse data measured using a
planar scanner.
c© Springer Nature Switzerland AG 2018
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2 Forward and Inverse Models

2.1 Photoacoustic Tomography

In PAT, a short pulse of near-infrared light is absorbed by chromophores in
tissue. For a sufficiently short pulse, a spatially-varying pressure increase f will
result, which will initiate an ultrasound (US) pulse (photoacoustic effect), which
then propagates to the tissue surface. The measurement consists of the detected
waves in space-time at the boundary of the tissue; this set of pressure time series
constitutes the PA data g. This acoustic propagation is commonly modeled by
the following initial value problem for the wave equation [4],

(∂tt − c2Δ)p(x, t) = 0, p(x, t = 0) = f(x), ∂tp(x, t = 0) = 0. (1)

The measurement of the PA signal is then modeled as a linear operator M act-
ing on the pressure field p(x, t) restricted to the boundary of the computational
domain Ω and a finite time window (see [2,5] for details on measurement sys-
tems):

g = M p|∂Ω×(0,T ). (2)

Equations (1) and (2) define a linear mapping

Af = g, (3)

from initial pressure f to measured pressure time series g, which constitutes the
acoustic forward problem in PAT. The corresponding image reconstruction step
constitutes the acoustic inverse problem to (3).

2.2 Fast Approximate Forward and Inverse Models

When the measurement points lie on a plane (z = 0) outside the support of f ,
the pressure there can be related to f by [4]:

p(x, y, t) =
1
c2

Fkx,ky

{{
Cω

{
B(kx, ky, ω)f̃(kx, ky, ω)

}}}
, (4)

where f̃(kx, ky, ω) is obtained from f̂(k) via the dispersion relation (ω/c)2 =
k2

x + k2
y + k2

z and f̂(k) = Fx{f(x)} is the 3D Fourier transform of f(x). Cω is a
cosine transform from ω to t, Fkx,ky

is the 2D inverse Fourier Transform on the
detector plane. The weighting factor,

B(kx, ky, ω) = ω/
(
sgn(ω)

√
(ω/c)2 − k2

x − k2
y

)
, (5)

contains an integrable singularity which means that if Eq. (4) is evaluated by dis-
cretisation on a rectangular grid, (thus enabling the application of FFT for effi-
cient calculation), then aliasing in p(x, y, t) results. An accurate model employ-
ing Eq. (4) would require suitable measures to deal with the singularity, whereas
evaluation using FFT leads to a fast but approximate forward model. To control
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the degree of aliasing, all components of B for which k2
x + k2

y > (ω/c)2 sin2 θmax

were set to zero. This is equivalent to assuming only waves arriving at angles
up to θmax from normal incidence are detected. There is a trade-off: the greater
the range of angles included, the greater the aliasing, as illustrated in Fig. 1.

By inverting Eq. 4, it can also be used as a method for mapping from the
measured data g to an estimate of f [6]. In this case, there is no singularity to
contend with, but the estimate of f will suffer from limited-view artifacts [7].
We will denote these two k-space methods as AF and A†

F for the forward and
backward projections, respectively.
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Fig. 1. Approximate forward model. Top left: 2D phantom with a line detector (red
line). Bottom left: ideal data. The effect of two different levels of angle thresholding of
the incident waves is shown in the middle column and the resulting backprojection of
the approximate data in the right column. (Color figure online)

3 Learned Reconstruction with Approximate Models

In order to use an approximate forward model, such as described above, in an
iterative reconstruction method, a correction must be incorporated. Here Deep
Learning, specifically convolutional neural networks, offer an ideal framework
to learn a correction to an approximate model. This can be done in two ways,
either by learning an explicit correction of the forward model and subsequently
applying an iterative scheme, or learning the correction inside a learned iterative
reconstruction scheme. This study will concentrate on the second approach.
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3.1 Learned Iterative Reconstruction

Photoacoustic reconstructions from subsampled data measured over a limited
detection aperture are typically computed by solving a variational problem as
the minimisation of the sum of a data-fidelity term and a regularisation, R, term
enforcing certain regularities of the solution f∗ as

f∗ = arg min
f

1
2
‖Af − g‖22 + αR(f), (6)

where α > 0 is a weighting parameter. It has been shown in several studies
[8–11] that these techniques can efficiently deal with the limited view artefacts,
but tend to require a larger number of iterations to converge and are additionally
limited by the expressibility of the chosen regularisation term. Recently it has
been shown that one can instead learn such an iterative scheme to speed up the
reconstruction and additionally learn an effective regularisation for the data at
hand [12–14]. This is achieved by formulating a simple CNN Gθk

, with learned
parameters θk, that computes an iterative update. Given a current iterate fk,
then the CNN combines fk with the gradient ∇d(fk, g) of the fidelity term in
(6), such that

fk+1 = Gθk
(fk,∇d(fk, g)). (7)

In the following we learn each of the networks separately; i.e. starting with
an initial f0, we train Gθ0 and compute the update f1 by (7). Then we train
the subsequent networks for a set amount of iterates. This separation is done
due to computational restrictions in memory and evaluation of the forward and
backward projections.

fk

fk+1
∇Fd(fk, g)

Fig. 2. Network architecture for an iterative gradient update with approximate mod-
els. Each network gets the iterate fk and the approximate gradient information
∇Fd(fk, g) := A†

F(AFfk − g) as input. The output fk+1 is a residual update to the
previous iterate. The multiscale structure is introduced to remove artefacts from the
gradient.
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3.2 An Iterative Gradient Network

We propose to use an approximate model AF as described in Sect. 2.2. This
model will be used to compute the gradient information in (7), i.e. we have
∇Fd(fk, g) := A†

F(AFfk − g) ≈ ∇d(fk, g). By the application of the fast and
approximate forward model we introduce artefacts to the gradient information,
but these are highly structured, as illustrated in Fig. 1. Multiscale networks,
such as a residual U-Net, have been proven to be efficient in detecting and
removing artefacts in images [15]. Thus, we believe that a multiscale network
can be efficiently used to remove these artefacts. On the other hand, smaller
gradient informed networks are more robust to perturbations in the measurement
geometry or the imaged target, as suggested in [14].

In this work we propose to balance both approaches, by combining a deep gra-
dient descent network proposed in [14] with a small mutliscale network in order
to deal successfully with artefacts in the gradient, while still possessing the abil-
ity to generalise well with respect to changes in the measurement geometry. The
particular network structure chosen for this application is illustrated in Fig. 2.
The two inputs, current iterate fk and the approximate gradient ∇Fd(fk, g), go
through two separate convolutional pipelines with filter size 33. The results are
then combined by concatenation and downsampled with a maxpool layer to a
courser scale. The result of the courser scale is concatenated with the result of
the two initial convolutional pipelines and the channel size successively reduced
to one channel, which is added as a residual update to the input iterate fk and
projected onto the positive set to produce the new iterate fk+1.

4 Computational Results for In-Vivo Measurements

4.1 Data Acquisition and Preparation

In-vivo measurements of a human subject have been taken with the planar sensor
described in [16]. For faster acquisition the scanner uses a 16 beam interrogation
laser to measure the PA signal. In total we obtained 27 fully-sampled limited-
view measurements used in this study. Since this is not sufficient for training
an iterative reconstruction algorithm, we have additionally used a large dataset
of 1024 volumes of blood vessels segmented from lung CT scans as described in
[14] of size 240 × 240 × 80. We then simulated accurate sub-sampled limited-
view photoacoustic measurement data of the segmented lung vessels with a sub-
sampling factor of 4 and a randomly generated 16 beam sub-sampling pattern for
each sample, (see Fig. 3 for example patterns). Additionally, we have varied the
sound speed in the simulations to be uniformly distributed in [1560m/s, 1600m/s]
and added normally distributed noise to the data with varying intensity, such
that the resulting signal’s SNR is roughly between 10 to 30. These variations
have been done to increase robustness to variations in the measurements.
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16 beam scanner sampling pattern

Fig. 3. Randomly generated sub-sampling pattern with the 16 beam scanner geometry
and a sub-sampling factor of 4; black dots indicate interrogated points on the sensor.
(Left) Pattern used for experimental sample I, (Right) pattern used for experimental
sample II.

4.2 Training of Proposed Network

We have pre-trained the networks Gθk
on the simulated data from segmented

lung vessels. Given the simulated measurement g, the initial reconstruction is
computed by the k-space backprojection, i.e. f0 = A†

Fg, as described in Sect. 2.2.
We have trained in total 5 iterative networks Gθk

for k = 0, . . . , 4. Each network
is trained in TensorFlow with the Adam algorithm for 30 epochs with an initial
learning rate of 2 · 10−4 and a �2-loss. The training of each iterate takes about
14 hours; with initialisation and computations between iterates the whole pre-
training takes a bit under 4 days on a single Titan Xp GPU.

After pre-training we have taken 25 of the in-vivo measurements and pro-
duced synthetically 4 times sub-sampled data with a 16 beam pattern. As refer-
ence reconstruction we have taken a total variation (TV) constrained reconstruc-
tion of the fully-sampled limited-view data. We have then performed an update
training of the pre-trained networks with the 25 samples to adjust the algorithm
to in-vivo artefacts not present in simulated data. The update training is per-
formed for 8 epochs with a learning rate of 10−4 and we minimised the �2-error
to the reference TV reconstructions from fully-sampled limited-view data.

4.3 Reconstructions of In-Vivo Measurements

The reconstruction with the trained network is performed on 2 samples of in-
vivo limited-view measurements with 4 times sub-sampling, the corresponding
sub-sampling pattern is shown in Fig. 3. The resulting reconstructions for both
samples are shown in Figs. 4 and 5. Evaluation of the projections take each 1.6 s
and of the network 0.45 s, hence one iterate takes a bit less than 4 s. The total
computation time for 5 iterates with initialisation is about 20 s on a single Titan
Xp GPU. For comparison we have computed TV reconstructions of the same
sub-sampled data for both test cases. The regularisation parameter was chosen,
such that PSNR to the reference reconstruction is maximised. The resulting
reconstructions are shown in Fig. 6 and take approximately 11 min.
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Initial backprojection FF-PAT, 5 iterations fully-sampled reference

Fig. 4. Sample I: reconstruction of in-vivo measurements from 4× undersampled 16-
beam pattern (maximum intensity projections). PSNR in comparison to the reference
from fully-sampled limited-view data: backprojection 33.5672, FF-PAT 42.1749.

Initial backprojection FF-PAT, 5 iterations fully-sampled reference

Fig. 5. Sample II: reconstruction of in-vivo measurements from 4× undersampled 16
beam pattern (maximum intensity projections). PSNR in comparison to the reference
from fully-sampled limited-view data: backprojection 34.4372, FF-PAT 42.0388.

Sample I Sample II

Fig. 6. TV reconstructions (20 iterations, maximum intensity projections) of in-vivo
measurements from 4× undersampled 16-beam pattern. PSNR in comparison to the
reference from fully-sampled limited-view data: Sample I 41.1576, Sample II 42.1391.
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4.4 Discussion

In both cases, the image quality of the Fast Forward PAT (FF-PAT) reconstruc-
tions is clearly improved with respect to the initial backprojection. Even though
we have used approximate projection operators, the results suggest that the pro-
posed network generalises well and incorporates the approximate gradient in a
useful manner. In comparison to the TV reconstruction, FF-PAT is competitive
with respect to PSNR computed in comparison to the reference reconstructions:
higher for Sample I and similar for Sample II. In terms of visual quality, the FF-
PAT reconstructions can be considered superior due to strong blocky artefacts
present in the TV reconstructions, especially in the background where small
details are present (compare in Sample II). Furthermore, reconstruction times
are reduced by a factor of 32. In comparison to learned iterative reconstructions
with the accurate model, see [14], image quality is competitive with a speed-up
of FF-PAT by factor 8.

5 Conclusions

Iterative reconstructions are necessary in restricted measurement geometries to
successively negate limited-view artefacts. This involves the repeated evaluation
of forward and backward projections, which can be costly in high-resolution and
3D. We have successfully shown that one can use approximate models instead
in a learned iterative reconstruction algorithm, where the network also learns
to negate approximation artefacts in the gradient. We achieve a speed-up of
up to 32 compared to established TV reconstructions and providing superior
reconstructions. While this study applies for planar sensors in PAT, the frame-
work can be extended to different measurement geometries and possibly other
modalities.
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Abstract. Diffuse optical tomography (DOT) is a relatively new imag-
ing modality that has demonstrated its clinical potential of probing
tumors in a non-invasive and affordable way. Image reconstruction is
an ill-posed challenging task because knowledge of the exact analytic
inverse transform does not exist a priori, especially in the presence of sen-
sor non-idealities and noise. Standard reconstruction approaches involve
approximating the inverse function and often require expert parameters
tuning to optimize reconstruction performance. In this work, we evaluate
the use of a deep learning model to reconstruct images directly from their
corresponding DOT projection data. The inverse problem is solved by
training the model via training pairs created using physics-based simu-
lation. Both quantitative and qualitative results indicate the superiority
of the proposed network compared to an analytic technique.

Keywords: Diffuse optical tomography · Inverse problem
Reconstruction · Deep learning

1 Introduction

Breast cancer, the most common cancer among women, is ranked as the second
leading cause of cancer-related death, in North America. Annually, 1.3 million
new cases of breast cancer are diagnosed worldwide [1]. Prescreening is typically
carried out using clinical breast examination or self-breast examinations that suf-
fers from high false-positive rates. Ultrasound, X-ray mammography, and mag-
netic resonance imaging (MRI) are the most commonly used imaging modalities
for breast cancer detection. While X-ray mammography is the primary screen-
ing technique, it is often a painful exam that is mainly recommended for women
over the age of 50, due to its low sensitivity (67.8%) for younger women or
women with dense breasts as well as its potential health risk due to its ionizing
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radiation. Ultrasound and MRI modalities are well adapted for differentiating
benign and malignant masses in dense breast tissue, however, ultrasound suffers
from higher false positive rates compared to mammography and its effectiveness
varies depending on the skill of the technician, whereas MRI is more costly and
associated with long wait times [2].

New research [3,4] focuses on a novel imaging modality for breast cancer
based on near-infrared (NIR) diffuse optical tomography (DOT), a non-invasive
and non-ionising imaging modality that has demonstrated its clinical potential in
probing tumors. DOT is a particularly-beneficial diagnostic method for women
with dense breast tissue. DOT enables measuring and visualizing the distribution
of tissue absorption and scattering properties where these optical parameters are
related to physiological markers, e.g., blood oxygenation and tissue metabolism.
When multiple wavelengths are used, DOT can map deoxyhemoglobin and oxy-
hemoglobin concentrations, which in turn can be used to quantitatively assess
tissue malignancy from total hemoglobin concentration.

Recently, we developed a new functional hand-held diffuse optical breast
scanner probe (DOB-Scan) [5] that has been applied to breast cancer detection
as a screening tool and aims to improve the assessment parameters in terms
of positive predictive value and accuracy. The probe is currently in clinical
trials for in vivo breast cancer imaging studies. It combines multi-frequency
and continuous-wave near-infrared light to quantify tissue optical properties in
690 to 850 nm spectra and produces a cross-sectional image of the underneath
tissue. The proposed probe uses encapsulated light emitting diodes instead of
laser-coupled fiber-optic, which decreases the complexity, size, and cost of the
probe while providing accurate and reliable optical properties measurement of
the tissue. In this work, we focus on improving the image reconstruction from
DOB-Scan probe measurements using machine learning technique.

Image reconstruction methods are mostly analytic and often suffer from well-
known reconstruction problems, e.g., noise, motion artifacts, image degradation
due to short acquisition time, and computational complexity [6]. Iterative recon-
struction algorithms have become the dominant approach for solving inverse
problems over the past few decades [7]. While iterative reconstruction with reg-
ularization, e.g., total variation, provides a way to mitigate some of the short-
comings of analytic reconstruction it remains difficult to obtain a method that
is fast, provides high-resolution images, and requires a simple calibration pro-
cess [8].

A more recent trend is machine learning based image reconstruction, which is
motivated by the outstanding performance of deep learning on computer vision
problems tasks, e.g., object classification and segmentation. Convolutional neural
networks (CNNs) have previously been applied to medical image reconstruction
problems in computed tomography and MRI [9–11]. Many approaches [6,12,13]
obtain an initial estimate of the reconstruction using a direct inverse operator or
an iterative approach, then use machine learning to refine the estimate and pro-
duce the final reconstructed image. Although this is a straightforward solution,
the number of iterations required to obtain a reasonable initial image estimate
can be hard to define and in general increases the total reconstruction run-time.
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A more elegant solution is to reconstruct an image from its equivalent pro-
jection data directly by learning all the parameters of a deep neural network,
in an end-to-end fashion and therefore, approximates the underlying physics of
the inverse problem. In [14], a unified framework for image reconstruction that
allows a mapping between sensor and image domain is proposed. A pre-trained
CNN model is used to learn a bidirectional mapping between sensor and image
domains where image reconstruction is formulated in a manifold learning frame-
work. The trained model is tested on a variety of MRI acquisition strategies.

While deep learning based image reconstruction has been applied to a vari-
ety of medical imaging modalities, they have not yet been used for DOT. In
this paper, we propose a deep DOT reconstruction method to learn a map-
ping between raw acquired measurements and reconstructed images. The raw
collected data can be considered as image features that approximate nonlinear
combinations of image pixel values, which form the desired tissue optical coeffi-
cients. Therefore, the raw measured data is a nonlinear function of the desired
image pixels values and so performing image reconstruction amounts to learning
to invert this nonlinear function. We propose to use deep neural networks to
learn, from training data, this nonlinear inverse mapping.

To train our model, we rely on synthetic datasets of image pairs and their
corresponding measurements that simulate real-world DOT signals. We leverage
a physics-based optical diffusion simulator to generate these synthetic datasets.
We evaluate our system on real measurements on phantom datasets collected
with the NIR DOB-Scan probe and show the utility of our synthetic data gener-
ation technique in mimicking real measurements and the generalization ability
of our model to unseen phantom datasets. The performance of our proposed sys-
tem shows that our framework improves reconstruction accuracy when compared
against a baseline analytic reconstruction approach.

2 Methodology

Our main goal is to reconstruct tomographic images from corresponding sensor-
domain sampled data or measurements. To this end we collect training mea-
surements from (a) synthesized tissue geometries with known optical properties
using a physics-based simulation of the forward projection operation, and (b)
data collected using the probe on physical phantoms. We describe the genera-
tion of synthetic training datasets as well as the design of the neural network
architecture below.

2.1 Generating Training Data for DOT Reconstruction

Synthetic Datasets: Our aim here is to create training data pairs in-silico,
which include image of optical tissue property and its corresponding measure-
ment. The deep learning model will then be trained to generate the image
from the measurement. We synthesize different geometries of tissue, i.e. dif-
ferent breast shapes and sizes and different lesion shapes, sizes, and locations,
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and model them as 2D triangular meshes. We then assign to these geometries
optical transport parameters (absorption and scattering coefficients) similar to
real human breast tissue and lesion distribution values [15].

To collect synthetic DOT measurements, we used the Toast++ software
suite [16], which simulates the forward projection operation to generate pro-
jection measurements for each training mesh. Modelling the probe sources and
detectors accurately in Toast++ was a critical step in obtaining realistic mea-
surements that mimic real values obtained by the DOT probe. The source model
we created consisted of two light sources that deliver near-infrared light to a
body surface at different points. The detector model is defined as a row of detec-
tors that measure the back-scattered light from the tissue and emitted from the
boundary. The simulated light source and detectors’ spatial distribution were
defined to mimic the probe geometry detailed in [5], which comprise 2 LED light
sources that illuminate tissue symmetrically and surround 128 detectors. Both
LED and all detectors are colinear as depicted in Fig. 1. The forward projection
simulation captures a 1D raw intensity diffraction resulting from the scattering
of the illuminating light exiting the test object.

Phantom Dataset: To create physical phantom datasets we rely on a tissue-
equivalent solution where an intralipid solution is used to mimic background
breast tissue due to its similarity in optical properties to breast fat [3,4]. Mea-
surements are collected with the DOB-Scan probe. In order to mimic cancerous
lesions, a tube with 4 mm cross-sectional diameter was filled with a tumor-like
liquid phantom (Indian black ink solution) and was placed at different locations
inside the intralipid solution container. The flowchart of synthetic and phantom
data acquisition procedures are shown in Fig. 2 (Left side).

Fig. 1. The spatial distribution of the simulated sources and detectors matching the
layout of the physical probe (left). A sample synthetic mesh is also shown (right).

2.2 Reconstructing Images from DOT Measurements

By passing an input measurement through a set of nonlinear transformations
one can reconstruct the equivalent image. The proposed architecture consists
of a dense layer followed by a set of convolution layers which are designed to
efficiently combine features from the first layer with those of deeper layers. The
architecture of our proposed model is shown in Fig. 2 (right side).
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Fig. 2. In silico training pairs generation using TOAST++ and phantom test pairs
collection using DOT-probe are depicted on the left. The overall architecture of the
proposed model is shown on the right, where the arrow after the first fully connected
layer represents the reshaping procedure before the convolution layers.

Initial Image Estimate: A fully connected layer, with a ReLu activation, is
used as the first layer of the network in order to map the measurement vector to
a two-dimensional array that will serve as an initial image estimate. This layer is
first pre-trained then included in the deeper architecture including convolutional
layers. The goal we seek to achieve using the fully connected layer is to generalize
the filtered back projection (FBP) operation by learning a weighted combination
of the different receptive sensors based on the signal collected from scattered light
emitted at different locations in the reconstructed tissue. Empirically we did not
observe any improvements in the reconstruction results using more than one
fully connected layer. This may be related to the size of the input measurement
which is only 256 dimensional in our dataset. Higher dimensional inputs may
benefit from additional layers.

Convolutional Layers: A set of convolutional layers, with 64 channels, are
used to refine the first image and produce the final reconstruction image. The
non linear ReLU activation and zero-padding are employed at each convolution
layer. All feature maps produced by all convolutional layers are set to size 128×
128. The size of the convolution filters is increased gradually to cover a larger
receptive field at deeper layers and capture local spacial correlations. Details of
the architecture are shown in Fig. 2.

Integration Layer: The integration layer is a convolutional layer with 7 × 7
kernel size and a single output channel. It is used to reduce features across the
channels from the penultimate layer of the CNN model into a single channel.
The output of this layer is the reconstructed image.

Training: We trained the model by minimizing the mean squared error between
the reconstructed image and the ground truth synthetic image. We used an
L2 norm penalty on the last convolutional layer output as it facilitates train-
ing (i.e. we observed faster convergence using regularization). The model was
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implemented in Keras and trained for a total of 2,000 epochs on an Nvidia
Titan X GPU using batch gradient descent with momentum. The learning rate
was set to 0.001 and we used a learning decay of 1e−6, momentum was set to 0.9.
All training hyper-parameters were optimized via grid search on a validation set.
We sequentially trained the model to first reconstruct an image using the fully
connected layer only, then we fine-tuned the entire architecture after including
the different convolution layers (Fig. 2).

Note that the model was only trained on synthetic data and we kept the
phantom data for evaluation only, as depicted in Fig. 2. In total, we generated
4,500 synthetic training images and their corresponding simulated DOT mea-
surements and tested our model in 200 synthetic DOT measurements then in 32
phantom real probe measurements with corresponding ground truth images.

3 Experiments and Results

We compared our results with those obtained by the analytic reconstruction
approach described in [5]. Briefly, the analytic method is based on comparing
the collected measurement to the measurement of a tissue-equivalent solution
with homogeneous value. The resulting difference is then used to perform filtered
back-projection and to estimate the spatial location of the lesion.

Qualitative Results: Once trained using the generated synthetic data, our
model was tested on the phantom dataset. In Fig. 3, we visually compare our
proposed reconstruction method to the analytic approach results for phantom
cases. Evidently, the images reconstructed by our method are more accurate than
those reconstructed by the more conventional analytic approach, when tested on
data with a known ground truth. In Fig. 3 we show the reconstructed image
using only the first fully connected layer which is equivalent to the filtered back-
projection operation. Our qualitative results show that reconstructions obtained
with one fully connected layer (third column in Fig. 3) are on par with recon-
structions obtained with the analytic approach (second column in Fig. 3).
Quantitative Results: In order to measure the quality of the results, we con-
sider the mean square error as well as the distance between the centre of the
lesions in the ground truth image versus the reconstructed image. The peak sig-
nal to noise ratio (PSNR), the SSIM similarity measure, and the Jaccard index
(intersection over union) are also calculated. The Jaccard index, used for com-
paring the similarity and diversity of sample sets, is the ratio of area of overlap
between detected and ground truth lesion to the area of their union. This metric
is computed after thresholding the reconstructed image to obtain a binary mask
where foreground pixels correspond to pixels with highest optical coefficient.

Table 1 shows the results for the phantom dataset. This experiment also
allows us to evaluate the quality of the synthetic dataset we generated by testing
how well a model trained only on synthetic data generalizes to unseen physical
phantom images. Results reported in Table 1 show that the proposed approach is
able to generalize well to the phantom dataset and achieves better performance
than the baseline analytic approach in terms of distance (+50%), Jaccard index
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Fig. 3. Qualitative reconstruction performance of our model compared to conventional
techniques. (a)–(d): Ground truth; analytic approach results; generalized FBP with
one fully connected layer only; and proposed model results.

Table 1. Quantitative results scores on 32 phantom test measurements

Distance
(pixel)

MSE PSNR
(db)

SSIM Jaccard Time
(ms)

Analytic
approach

77.4± 32.2 0.06± 0.05 15.08± 6 0.32± 0.26 0.5± 0.19 83.3

Proposed
model

33.2± 23.4 0.02± 0.03 20.1± 4.6 0.46± 0.28 0.85± 0.07 7.3

(+35%), similarity score (+14%) and PSNR (+5db). The high standard devia-
tion in distance metric is mainly due to samples with deep lesion (lesion location
≥30 mm) since as the lesion depth increases it becomes harder to differentiate
the signal from the tumor-free tissue signal. On average, our model achieves an
order of magnitude faster reconstruction than the baseline analytic approach.

4 Conclusion

This work represents a step forward for both image reconstruction in DOT and
the use of machine learning in bio-imaging. We present the first model that lever-
ages physics based forward projection simulators to generate realistic synthetic
datasets and we model the inverse problem with a deep learning model where
the architecture is tailored to accurately reconstruct images from DOT measure-
ment. We test the method on real acquired projection measurements subject to
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sensor non-idealities and noise. Results show that our method improves the qual-
ity of reconstructed images and shows promising results towards real-time image
reconstruction. In future work, we will focus on exploring even more realistic
DOT simulation scenarios and extend the study to clinical cases.
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Abstract. Speed-of-sound is a biomechanical property for quantitative
tissue differentiation, with great potential as a new ultrasound-based
image modality. A conventional ultrasound array transducer can be used
together with an acoustic mirror, or so-called reflector, to reconstruct
sound-speed images from time-of-flight measurements to the reflector
collected between transducer element pairs, which constitutes a chal-
lenging problem of limited-angle computed tomography. For this prob-
lem, we herein present a variational network based image reconstruction
architecture that is based on optimization loop unrolling, and provide
an efficient training protocol of this network architecture on fully syn-
thetic inclusion data. Our results indicate that the learned model presents
good generalization ability, being able to reconstruct images with signifi-
cantly different statistics compared to the training set. Complex inclusion
geometries were shown to be successfully reconstructed, also improving
over the prior-art by 23% in reconstruction error and by 10% in contrast
on synthetic data. In a phantom study, we demonstrated the detection
of multiple inclusions that were not distinguishable by prior-art recon-
struction, meanwhile improving the contrast by 27% for a stiff inclusion
and by 219% for a soft inclusion. Our reconstruction algorithm takes
approximately 10 ms, enabling its use as a real-time imaging method
on an ultrasound machine, for which we are demonstrating an example
preliminary setup herein.

Keywords: Deep learning · Speed-of-sound · Image reconstruction

1 Introduction

Speed-of-sound (SoS) ultrasound computed tomography (USCT) is a promising
image modality, which generates maps of speed of sound in tissue as an imaging
biomarker. Potential clinical applications are differentiation of breast tumorous
lesions [3], breast density assessment [13,15], staging of musculoskeletal [11] and
non-alcoholic fatty liver disease [7], amongst others. For this, a set of time of
flight (ToF) measurements through the tissue between pairs of transmit/receive
elements of an ultrasonic array can be used for a tomographic reconstruction.
c© Springer Nature Switzerland AG 2018
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Various 2D ad 3D acquisition setups have been proposed, including circular or
dome-shaped transducer geometries, which provide multilateral set of measure-
ments that are convenient for reconstruction methods [8] but costly to manufac-
ture and cumbersome in use. Hand-held reflector based setup [10,14] depicted
in Fig. 1a uses a conventional portable ultrasound probe to measure ToF via
wave reflections of a plate placed on the opposite side of the sample. Despite its
simplicity, such a setup results in limited-angle (LA) CT, which requires prior
assumptions and suitable regularization and numerical optimization techniques
to produce meaningful reconstructions [14]. Such optimization techniques may
not be guaranteed to converge, are often slow in runtime, and involve parameters
that are difficult to set.

In this paper, we propose a problem-specific variational network [1,5] for
limited-angle SoS reconstruction, with parameters learned from numerous for-
ward simulations. Contrary to machine learning methods based on sinogram
inpainting [16] and reconstruction artefact removal [6] for LA-CT, we learn recon-
struction process end-to-end, and show that it allows to qualitatively improve
conventional reconstruction.

2 Methods

Using the wave reflection tracking algorithm described in [14], we measure the
ToF Δt between transmit (Tx) and receive (Rx) transducers in a M = 128 ele-
ment linear ultrasound array (see Fig. 1a). Discretizing corresponding ray paths
using a Gaussian sampling kernel, the inverse of ToF can be expressed as a lin-
ear combination of tissue slowness values x [s/m], i.e. (Δt)−1 =

∑
i∈Ray lixi.

Considering a Cartesian n1 × n2 = P grid, we define the forward model

b = diag(m)Lx + N (0, σNI), (1)

where x ∈ R
P is the inverse SoS (slowness) map, L ∈ R

M2×P is a sparse path
matrix defined by acquisition geometry and discretization scheme, m ∈ {0, 1}M2

is the undersampling mask with zeros indicating a missing (e.g., unreliable) ToF
measurement between a corresponding Tx-Rx pair, and b ∈ R

M2
is a zero-filled

vector of measured inverse ToFs (Δt)−1. Reconstructing a slowness map x is
a process inverse to (1) and can be posed as the following convex optimization
problem:

x̂(b,m;λ,∇) = argmin
x

‖diag(m)Lx − b‖1 + λ‖∇x‖1, (2)

which we solve using ADMM [2] algorithm with Cholesky factorization. Here
∇ is a matrix, and λ is the regularization weight.

It is common to choose regularization matrix ∇TV that implements spatial
gradients on Cartesian grid, yielding the total variation (TV) regularization [12],
which allows to efficiently recover sharp image boundaries, but can introduce
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signal underestimation and staircase artefacts that are amplified by the limited-
angle acquisition. In attempt to remedy this problem, one can delicately con-
struct a set of image filters that will penalize problem-specific reconstruction
artefacts. We follow [14] and use regularization matrix ∇MATV that implements
convolution with the set of weighted directional gradient operators. This weights
regularization according to known wave path information, such that the locations
with information from a narrower angular range are regularized more.

Fig. 1. (a) Acquisition setup and ray tracing discretization. (b) Structure of variational
network; tunable parameters of the layer are highlighted in red. (c) Samples from
synthetic training set T and testing set of geometric primitives P. (Color figure online)

2.1 Variational Network

Variational networks (VN) is a class of deep learning methods that incorporate a
parametrized prototype of a reconstruction algorithm in differentiable manner.
A successful VN architecture proposed by Hammernik et al. in [5] for under-
sampled MRI reconstruction unrolls a fixed number of iterations of the gradient
descent (GD) algorithm applied to a virtual optimization-based reconstruction
problem. By unrolling the iterations of the algorithm into network layers (see
Fig. 1b), the output is expressed as a formula parametrized by the regulariza-
tion parameters and step lengths of this GD algorithm. The parameters are then
tuned on retrospectively undersampled training data.
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In contrast to discrete Fourier transform, the design matrix of LA-CT is
poorly conditioned, which compromises the performance of conventional GD.
Therefore, we propose to enhance the VN in the following ways: (i) unroll GD
with momentum, (ii) add left diagonal preconditioner p(k) ∈ R

M2
for the path

matrix L, (iii) use adaptive data consistency term ϕ
(k)
d , and (iv) allow spatial

filter weighting w(k)
i ∈ R

P . The resulting reconstruction network is defined in
Algorithm 1 with tunable parameters Θ, where each of K variational layers con-
tains Nf convolution matrices D = D(d) with Nc×Nc kernels d that are ensured
to be zero-centered unit-norm via re-parametrization: d = (d′ − 〈d′〉)/‖(d′ −
〈d′〉)‖2, where 〈.〉 denotes mean value of the vector. Each filter D is associated
with its potential function ϕr{.} that is parametrized via cubic interpolation of
control knots φr ∈ R

Ng placed on Cartesian grid on [−r, r] interval. Data term
potentials ϕd{.} are defined in the same way. The network is trained to minimize
�1-norm of the reconstruction error on the training set T :

min
Θ

E
{b,m,x�}∈T

‖V(b,m; Θ) − x�‖1. (3)

Input: b — inverse ToF, m — undersampling mask

Parameters: Θ = {φ
(k)
d , φ

(k)
r,i ,p(k),w

(k)
i ,D

(k)
i , α(k)}i=1,...,Nf , k=1,...,K

x(0) ← α(0)LTb, s(0) ← 0
for k := 0 to K − 1

g(k) ← LTdiag(p(k))diag(m) ϕ
(k)
d

{
diag(m)diag(p(k))

(
Lx(k) − b

)}
+

∑
i=1,...,Nf

(
D

(k)
i

)T

diag(w
(k)
i ) ϕ

(k)
r,i

{
diag(w

(k)
i )D

(k)
i x(k)

}

s(k+1) ← α(k+1)s(k) + g(k)

x(k+1) ← x(k) − s(k+1)

Output: reconstructed image V(b,m; Θ) := x(K)

Algorithm 1: Proposed variational reconstruction network model VNv4.

Training. Dataset T is generated using fixed acquisition geometry with reflector
depth equal to transducer array width. High-resolution (HR) 256× 256 synthetic
inclusion masks are produced by applying smooth deformation to an ellipse with
random center, eccentricity, and radius. Two smooth slowness maps with random
values from [1/1650, 1/1350] interval are then blended with this inclusion mask,
yielding a final slowness map x�

HR (see Fig. 1c). The chosen range corresponds
to observed SoS values for breast tissues of different densities and tumorous
inclusions of different pathologies [4]. Forward path matrix LHR and random
incoherent undersmapling mask m are used to generate noisy inverse ToF vector
b according to model (1) with σN = 2 · 10−8. Finally, we downsample x�

HR

to n1 × n2 size yielding the ground truth map x�. About 10% of maps did
not contain inclusions. For each reconstruction problem the path matrix L is
normalized with its largest singular value, and inverse ToF are centered and
scaled: b′ = b − (〈b〉/〈L1〉)L1, b̃ = b′/std(b′).
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The configuration of networks were the following: K = 10, Nf = 50, Nc = 5,
n1 = n2 = 64, Ng = 55. All parameters were initialized from U(0, 1). We refer
to this architecture as VNv4. Ablating spatial filter weighting w(k)

i from VNv4,
we get VNv3; additionally ablating adaptive data potentials ϕ

(k)
d , we get VNv2;

further ablating preconditioner p(k), we get VNv1; and eventually unrolling GD
without momentum, VNv0. For tuning the aforementioned models we used 105

iterations of Adam algorithm [9] with learning rate 10−3 and batch size 25. Every
5000 iterations we readjust potential function’s interval range r by setting it to
the maximal observed value of the corresponding activation function argument.

3 Results

We compare TV and MA-TV against VN architectures on (i) 200 samples from
T that were set aside and unseen during training, and (ii) a set P of 14 geometric
primitives depicted in Fig. 1c, using following metrics:

SAD(x,y) =
‖x − y‖1

P
, CR =

2 |μinc − μbg|
|μinc| + |μbg|

, CRf =
estimated CR

ground truth CR
, (4)

where μinc and μbg are mean values in the inclusion and background regions
accordingly. The optimal regularization weight λ for TV and MA-TV algorithms
was tuned to give the best (lowest) SAD on the P3 image (see Fig. 2). Similarly to
training generation, the forward model for validation and test sets was computed
on high resolution images with normal noise and 30% undersmapling.

Quantitative evaluation on synthetic data is reported in Table 1 and shows
that the proposed VNv4 network outperforms conventional TV and MA-TV
reconstruction methods both in terms of accuracy and contrast. Comparing VNv
options, it can be seen that richer architectures performed better. Figure 2 shows
qualitative evaluation of reconstruction methods. VNv4 is able to reconstruct
multiple inclusions (P5), handle smooth SoS variation (T1), and generally main-
tain inclusion position and geometry without hallucinating nonexistent inclu-
sions. Although for some geometries (e.g. P4) TV reconstruction has lower SAD
value, VNv4 provides better contrast, which allows to separate the two inclu-
sions. As expected from the limited-angle nature of the data, highly elongated
inclusions that are parallel to the reflector either undergo axial geometric dis-
tortion (P1), or could not be adequately reconstructed (T3) by any presented
method.

Breast Phantom Experiment. We also compared the reconstruction meth-
ods using a realistic breast elastography phantom (Model 059, CIRS Inc.) that
mimics glandular tissue with two lesions of different density. Portable ultrasound
system (UF-760AG, Fukuda Denshi Inc., Tokyo, Japan) streams full-matrix RF
ultrasound data over a high bandwidth link to a dedicated PC, which is used to
perform USCT reconstruction and output a live SoS video feedback (cf. Fig. 4).
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Ground Truth TV MA-TV VNv4 VNv3 VNv2 VNv1 VNv0

Fig. 2. Sound speed reconstructions of synthetic data from sets T , P and single natural
image N1. Inclusions are delineated with red curves. For each image transducer array
is placed on top and reflector on bottom. (Color figure online)

We used an ultrasound probe (FUT-LA385-12P) with 128 piezoelectric trans-
ducer elements. For each frame a total of 128 × 128 RF lines are generated for
all Tx/Rx combinations, at an imaging center frequency of 5 MHz digitized at
40.96 MHz. As seen in Fig. 3, VNv4 qualitatively outperforms both TV and MA-
TV methods, showing clearly distinguishable hard and soft lesions. Run-time of
MA-TV and TV algorithms on CPU is ∼30 s per image, while VN reconstruction
takes ∼0.4 s on CPU and ∼0.01 s on GPU.
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Table 1. SoS reconstruction measures computed on 200 validation images from training
distribution T , 14 test images from the set of geometric primitives P.

Shape set TV MA-TV VNv4 VNv3 VNv2 VNv1 VNv0

SAD CRf SAD CRf SAD CRf SAD CRf SAD CRf SAD CRf SAD CRf

Synthetic

inc. (T )

7.27 0.49 7.64 0.53 5.46 0.71 5.91 0.66 6.77 0.59 7.56 0.47 7.96 0.43

Geometric

shapes

(P)

0.54 0.63 0.72 0.84 0.51 0.79 0.60 0.77 0.62 0.73 0.77 0.60 0.78 0.57

Average 3.90 0.56 4.18 0.68 2.99 0.75 3.26 0.71 3.69 0.66 4.16 0.53 4.37 0.50

B-mode VNv4 MA-TV TV

Stiff CR 4.65% Stiff CR 3.66% Stiff CR 2.68%

Soft CR 1.18% Soft CR 0.37% Soft CR 0.17%

Fig. 3. Hand-held SoS mammography of the breast phantom. Stiff (red) and soft
(green) inclusions were delineated in the B-mode image. (Color figure online)

(a) (b)

(c)

B-mode Speed-of-sound (SoS)Reflector delays

SoS image

B-mode image

Transducer

Reflector
Breast phantom

First frame

Subsequent
frames

Computation time (s)

Fig. 4. Live SoS imaging demonstration. (a) Experimental setup. (b) Sample outputs
of B-mode and SoS video feedback. A non-echogenic stiff lesion is clearly delineated in
the SoS image. (c) Computational benchmarks, also showing initialization and memory
allocation times. After initialization, SoS reconstruction time is negligible compared to
data transfer and reflector ToF measurement via dynamic programming [14].
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4 Discussion

In this paper we have proposed a deep variational reconstruction network for
hand-held US sound-speed imaging. The method is able to reconstruct various
inclusion geometries both in synthetic and phantom experiments. VN demon-
strated good generalization ability, which suggests that unrolling even more
sophisticated numerical schemes may be possible. Improvements over conven-
tional reconstruction algorithms are both qualitative and quantitative. The abil-
ity of method to distinguish hard and soft inclusions has great diagnostic poten-
tial in characterizing lesions in real-time.
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Abstract. Accurate noise modelling is important for training of deep
learning reconstruction algorithms. While noise models are well known
for traditional imaging techniques, the noise distribution of a novel sen-
sor may be difficult to determine a priori. Therefore, we propose learning
arbitrary noise distributions. To do so, this paper proposes a fully con-
nected neural network model to map samples from a uniform distribution
to samples of any explicitly known probability density function. During
the training, the Jensen-Shannon divergence between the distribution of
the model’s output and the target distribution is minimized.

We experimentally demonstrate that our model converges towards
the desired state. It provides an alternative to existing sampling meth-
ods such as inversion sampling, rejection sampling, Gaussian mixture
models and Markov-Chain-Monte-Carlo. Our model has high sampling
efficiency and is easily applied to any probability distribution, without
the need of further analytical or numerical calculations.

1 Introduction

Accurate physical modelling is very important for deep learning reconstruction
methods [1]. Therefore, accurate augmentation is a must. Typically, this is per-
formed by sampling from a given probability density function (PDF). Existing
methods for generating such samples include inversion sampling, rejection sam-
pling, Gaussian mixture or Markov-Chain-Monte-Carlo methods. In any case,
random samples of a distribution easy to sample from, such as a uniform dis-
tribution, are used to generate samples of the desired distribution. However, in
very new imaging techniques analytical derivation of accurate noise models is
difficult and thus the noise model may be unknown. As a result, applying deep
learning methods trained on simulation data to real scanners is a challenge [2].

In this paper, we examine how a fully connected neural network (FCNN)
model performs on generating random numbers of a given distribution. Our
model is constructed to map an input vector consisting of n samples from a
uniform distribution to an output vector with the same dimension. For training,
c© Springer Nature Switzerland AG 2018
F. Knoll et al. (Eds.): MLMIR 2018, LNCS 11074, pp. 129–137, 2018.
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we merely need a noise source that is able to generate random numbers of the
given distribution. Such a model yields the highest possible sampling efficiency
since n input samples are required to generate n output samples. It is flexible
towards the choice of the target PDF and needs little manual effort.
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(a) Average of 500 KDEs
each from 500 random val-
ues produced with the mix-
ture of Gaussians method.
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Fig. 1. Comparison of the model to the mixture of Gaussians method on a bimodal
Gaussian target, given by Eq. (4).

2 Conventional Sampling Methods

2.1 Inversion Sampling

This method provides a function, which maps samples from an arbitrary distri-
bution α(x) to samples from the target PDF ρ(y). Let ϕ: x �→ y be this function,
then, assuming that ϕ is a bijection, the differential equation

α(x) dx = ρ(ϕ(x)) dϕ (1)

holds. If α is the uniform distribution over [0, 1], then ϕ can be determined
to be equal to the inverse cumulative distribution function (CDF) correspond-
ing to ρ. In many cases, the CDF or its inverse might not have an analytical
representation. If the integration and inversion are performed numerically, the
computational effort increases and the quality of the samples decreases. In con-
trast, if ϕ is explicitly known, this method has high efficiency and produces
samples with exactly the desired properties. If the samples drawn from α are
independent, the same holds for the produced samples.

This method may be applied to higher dimensional PDFs, using either
the separability of PDFs of uncorrelated random variables or the Bayes’ the-
orem for correlated random variables, to split the sampling process into multi-
ple one-dimensional sampling steps. For this approach all the conditional one-
dimensional PDFs have to be known [3, 526ff].



Deep Learning for Sampling from Arbitrary Probability Distributions 131

2.2 Rejection Sampling

This method requires a proposal distribution β(y) from which sampling can be
performed. Additionally, a constant c such that c · β(y) ≥ ρ(y) ∀y is required.

The procedure starts with drawing a sample y from β and another sample r
from the uniform distribution R over [0, c · β(y)]. If r < ρ(y), then y is a valid
sample from ρ, otherwise y is rejected. This process is continued until enough
valid samples have been generated.

The major disadvantage of this method is that sampling efficiency depends on
how close the proposal distribution lies to the target distribution. Besides that,
the produced samples are independent samples from ρ, if the samples drawn
from β and R are independent. An advantage is that the target does not have
to be normalized [3, 528ff].

2.3 Mixture of Gaussians

The quality of the samples produces by this method depends on how well a
suitable sum of Gaussians approximates the target. Samples from the approxi-
mation can be obtained by randomly choosing a Gaussian mode from the sum
with probability proportional to its weight and generating a sample from it.

This method is easy to perform since sampling from a Gaussian PDF can be
done using inversion sampling and if the Gaussian samples are independent, the
generated samples are independent as well [3, 110ff].

2.4 Markov-Chain-Monte-Carlo

The aim of this method is to construct a Markov chain with a stationary dis-
tribution equal to the target. The Metropolis-Hastings algorithm is a commonly
used method of doing so. An initial sample y0 is used to propose a possible next
sample y′, drawn from an arbitrary conditional distribution q(y′|y0). The sample
is accepted as y1, if

r ≤ min
{

1,
ρ(y′)
ρ(y0)

· q(y0|y′)
q(y′|y0)

}
(2)

where r is drawn from the uniform distribution over [0, 1]. If y′ is rejected, y1 is
equal to y1−1 = y0. This is continued, until enough samples were obtained.

The proposal distribution q(y′|y) has a great impact on the convergence of
the distribution of the samples towards the target distribution. Consider for
example a target with two modes placed distant to each other and a narrow
proposal distribution located at y. It is very unlikely to switch between the
modes, leading to slow convergence. Further, the initial sample y0 has impact
on the convergence: if ρ(y0) is small, it might need some time to reach areas of
higher probability (“burn in”). As, the next sample is generated using the last
one, the samples depend on each other [3, 539ff].

There is a possibility to link Markov-chain-Monte-Carlo methods and gen-
erative adversarial networks [4] in order to produce random numbers [5].
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The generator is used as the transition kernel of the Markov chain if samples
from the target distribution are accessible during the training. If this is not the
case, the generator is trained to propose samples y′. Again, the proposal distri-
bution has a great impact on the convergence and also the correlation of samples,
thus this method is optimizing the step of proposing, leading to fast convergence
and low correlation.
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Fig. 2. Comparison of the model to the inversion sampling method on an exponential
target given by Eq. (5).

2.5 FCNN Sampling

Our model is a simple FCNN, which is able to map an input vector consisting of
n samples from the input distribution to an output vector of the same dimension.
The target has to be known. The term “sample” refers in this context only to
an element of any in- or output vector and is not to be understood as a “sample
from the training set”.

The model has n units in any layer and exponential linear unit (ELU) acti-
vation [6] in each but the last layer. A number of layers equal to ten has proven
to lead to good results. The input dimension is n = 500, limited by the resources
of the used hardware.

The ADAM optimizer [7] was used for the training process, the weights were
initialized using the Xavier Glorot uniform distribution [8] and the biases were
set to zero. The models were implemented using Python and Keras [9] with
TensorFlow [10] backend. The loss-function of the model consists of three parts.
The kernel density estimation (KDE) [11] of each output vector in a mini-batch
is compared to the target. Additionally, the i-th element from each output vector
in a mini-batch is extracted, treated as a set samples and its KDE is compared
to the target. This performed for all i. It promotes diversity, otherwise the model
produces the same output vector with the correct distribution for any input.

The comparison of the KDE and the target may be done using the mean-
squared-error or the Jensen-Shannon-divergence [12], it was empirically found
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Fig. 3. Comparison of our model to rejection sampling and the Metropolis-Hastings
algorithm on the target given by Eq. (6).
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Fig. 4. Comparison of the final KDE of our model’s output values to the two-
dimensional bimodal Gaussian target.

that the latter yields better results for most cases. The Jensen-Shannon-
divergence

DJS(p, q) =
1
2

∫
R

[
p(y) log

p(y)
q(y)

+ q(y) log
q(y)
p(y)

]
dy (3)

between the PDFs p and q measures their similarity. The above integral has to
approximated numerically, which is possible due to the properties of p and q. It
is calculated on a finite set of discrete values. The third part of the loss-function
to confines the output values in between the borders of this set using a “potential
well”, which was chosen to have linearly increasing sides.

The uniform distribution over [−1, 1] was used to generate input samples.
Any input distribution with zero mean leads to equal results, other distributions
perform significantly worse. This is caused by the internal covariate shift, since
no batch normalization was used for our model [13].
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3 Results

Using this setup, our model is able to produce samples of a known target distribu-
tion, i. e., the kernel density estimation of the output values converges towards
the target PDF. The input dimension is equal to 500 and the model has ten
layers. The target is

ρ(y) =
2 · exp

[
2 · (x − 1)2

]
+ exp

[
1
2 (x + 3)2

]
2
√

2π
(4)

which is a bimodal asymmetric Gaussian. The resulting KDE of the output
values is shown in Fig. 1b.

Since 500 values are fed at once into the network, it may happen that the
output values depend on each other. This property allows the KDE of the output
values to lie closer to the target PDF as if the values were drawn independently,
e.g. using the mixture of Gaussians method (see Fig. 1a). Consider that the KDE
is calculated of only 500 values, which are too few for a reasonable estimation of
the underlying PDF. In fact, the model makes the output values interdependent,
in order to overcome this issue. The dependence can be more clearly seen in
Fig. 1, where two randomly chosen elements of the output vectors are plotted
against each other. If they are independent, there would be peaks at (−3, 1) and
(1, −3), too.

If independent samples are required, the input dimension may be reduced
to one. Such setup introduces no further correlation and thus the output values
are independent if the input values are independent as well. The model used in
this scenario has 500 units per layer and ten layers. We can shown experimen-
tally that the model with input dimension one represents the mapping function
given by the inversion sampling method. This is not surprising because the dif-
ferential equation Eq. (1) has a single solution on every finite subset of R, given
any boundary condition (Picard-Lindelöf theorem, note that there exist other
mapping functions, which are not bijections, see Sect. 2.1).

The model with input dimension one was compared to the inversion sampling
method for the target

ρ(y) =
1
2

exp(−|y|) (5)

an exponential distribution with extended domain D = R. The training was
performed on 107 input values and the histogram displayed in Fig. 2a was calcu-
lated out of 104 output values. In contrast, Fig. 2b shows the histogram of just
as many random values obtained from the inversion sampling method.

Comparing these two yields no difference except that in Fig. 2b higher values
occur. This may have been caused by the numerical precision and a more com-
plicated fitting at the borders, since the model is represented by a continuous
function, but the inverse CDF diverges at zero and one. This model was further
compared to the rejection sampling method with a target

ρ(y) ∝ y2 · exp(−b|y|) with b > 0 (6)
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that has an inverse CDF with no analytical representation. Figure 3a shows the
resulting histogram of 104 output values after a training on 107 input values.
Comparatively, the histogram of the same amount of values produced with the
rejection sampling method is displayed in Fig. 3b. The proposal distribution was
chosen to be equal to Eq. (5). This is not the best choice since it has its maximum
where the target is zero. Note that a bimodal Gaussian proposal can not be used
since no constant c fulfills the condition given in Sect. 2.2. But a poor choice
of the proposal distribution does not affect the quality of the samples, only the
computational effort.

Comparing Fig. 3a and b yields that the histogram of the samples produced
by our model approximates the target as well as samples produced with the
rejection sampling method.

The same target was used for the Metropolis-Hastings algorithm, the pro-
posal distribution was chosen to be a Gaussian with standard deviation 0.5
located at the current sample. As in Fig. 3c depicted, the histogram of the sam-
ples approximates the target and the goodness of the fit is comparable to Figs. 3a
and b.

Further, the model is able to sample from two-dimensional PDFs of depen-
dent variables. The model was trained on 2 ·108 input samples for a 2D bimodal
Gaussian target with peaks at (±1.5,±1.5) and variances of one in each direc-
tion. The result together with the target is depicted in Fig. 4.

The computational effort for the comparison of the estimation of output
distribution and the target scales exponentially with the dimension. So there
is a trade-off between training time and correct PDF-estimation. A possible
solution is to manually split the PDF into its conditional one-dimensional parts
and train a separate model for each dimension.

4 Conclusion

Summarizing this paper, our FCNN model is able to sample from any target
PDF. The presented findings show that our model produces results with a good-
ness of the fit comparable to any existing sampling method. The quality of the
approximation can be tuned using the model size and the training duration.

In order to apply our model, a noise source is required, in contrast to the
Metropolis-Hastings algorithm or the rejection sampling method. On the other
side, no proposal distribution, constant c (rejection sampling) or location of
Gaussian modes (Gaussian mixture) has to be determined for our model. The
only parameter of our model that has to be adjusted by hand is the width of the
kernel function for the KDE of the output values.

Our model has the highest possible sampling efficiency equal to the inver-
sion sampling method. Whereas the other described methods transform multiple
samples into a single one. Especially the rejection sampling method may have
low sampling efficiency.

Another important advantage is the flexibility towards the choice of the tar-
get. Compared to inversion sampling, no integration or inversion is required,
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neither analytical nor numerical. Our model with input dimension one tries to
represent the inverse CDF. This is possible, as FCNN models are universal func-
tion approximators. It is neither required to choose how to proceed with the
inversion, nor being bound to an approximation with Gaussian modes.

For high input dimensions, our model is able to generate dependent samples
such that their distribution converges faster towards the target than the distri-
bution of independent samples would do. If the input dimension is set to one, our
model is able to produce independent samples if the input values are independent
as well. This makes it more attractive than the Metropolis-Hastings algorithm,
which produces highly dependent values and may have slow convergence.

Sampling from two-dimensional PDFs of dependent variables is also possible,
but the curse of dimensionality has not yet been overcome. Splitting the target
into conditional one-dimensional distributions using Bayes’ theorem is a possible
solution. Thus, we believe that neural networks are generally suited to learn noise
distributions for data augmentation in deep learning image reconstruction.
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Abstract. Modeling and reconstructing the shape of a heart cham-
ber from partial or noisy data is useful in many (minimally) invasive
heart procedures. We propose a method to reconstruct the shape of the
left atria during the electrophysiology procedure from a series of simple
catheter maneuvers. We use left atria shapes generated from a statisti-
cal based physical model and approximate traversal locations of catheter
maneuvers inside the left atria. These paths mimic realistic ones doable
in a lab phantom. We demonstrate the ability of a deep neural network to
approximate the atria shape solely based on the given paths. We compare
the results against training from partial data generated by the intersec-
tion of a randomly generated sphere and the atria. We test the presented
network on actual lab phantoms and show promising results.

Keywords: Minimally invasive electrophysiology
Left atria reconstruction · Deep neural network

1 Introduction and Related Work

Cardiac arrhythmia is a group of clinical conditions in which the heartbeat is
irregular. Catheter ablation guided by electro-anatomic mapping (using CARTO
or similar 3D mapping system) is one of the major invasive treatment choices
for cardiac arrhythmia. Current systems map the geometry and electric signals
by sampling points during catheter traversal of the chamber. After a significant
amount of sampled points, a geometric reconstruction algorithm creates a surface
that represents the boundary between blood pool and heart tissue. This surface
is used to compute the electrical-chemical propagation wave that creates the
chamber contraction. Figure 1a shows this map and irregular activity that can
help to create an ablation strategy. Figure 1b shows the left atria (LA) anatomy
and a common ablation procedure. Note the pulmonary veins (PV) names and
structure (LI - left inferior, LS - left superior, RI - right inferior and RS - right
superior).
c© Springer Nature Switzerland AG 2018
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(a) LA electric propaga-
tion map

(b) LA physiology and typical
ablation (red points)

Fig. 1. Clinical use of LA surface (Color figure online)

The surface can be extracted using data gathered from other imaging devices
such as MRI, Intra-cardiac ultrasonic catheters etc. A segmentation step is
required to infer the boundary surface from the data acquired by the imag-
ing modality. All systems suffer from at least some of the following limitations:
noise, limited field of view (e.g. partially visited areas) and the change of the
heart shape in real time and as a function of patient pose. To solve the segmen-
tation problem, the gathered data from any imaging modality represents some
function of how probable a point is to be a blood pool or in a tissue. The physi-
cian expects to see a smooth extracted shape with known anatomical parts and
common proportions and orientations as the output of this segmentation.

In this work we develop a statistical model based approach using a neural
network, to capture these requirements. Since patient atrium data (from CT or
MRI) is not available, we use an existing model, developed by Biosense Webster
[1] which is capable of generating likely left atria shapes. This is backed by a
statistical model that is able to determine if the generated atria is probable. By
using such a model we can generate examples of atria and teach a neural network
to represent it. Using the learned representation it is our hope that meaningful
de-noising and reconstruction from partial/noisy data can be learned.

Recent works use networks for complex shape modeling: In [2] a deep network
is shown capable of representing 3D shapes and reconstructing them from partial
data; [3] Used an auto-encoder to train a 2D CNN to detect and segment the
left ventricle in an MRI image. There are several NNs in the literature that
can generate instances from data, such as auto-encoders [4]. In [5], the authors
generate 3D volumes of different shapes and interpolate between them using
a variational auto-encoder [6] combined with a convolutional neural network
(CNN).

In the current work we use a de-noising auto-encoder network to complete
a left atria model from partial data, where some regions (large portions) of the
data are missing. Our goal is to provide an accurate atria model in existing
regions and a probable guess in missing regions. This simulates a stage in a real
procedure where the physician visited a certain region of the atria and wants
a visual estimate of the full atria. In Sect. 3.1 we generate a random sphere
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and intersect it with the atria. We learn the desired network architecture by
reconstructing this partial data. In Sect. 3.2 we simulate a series of maneuvers
that could be taken by the physician, train the model and reconstruct the Left
Atria based on them. We feed synthetic path as input to model trained based on
sphere intersection and compare results. Section 3.3 shows reconstruction results
from data recorded in a lab phantom using an electromagnetic tracking system.

2 Methods

We train a de-noising auto-encoder with one or several hidden layers for our
data completion tasks. The input and output are binary 3D volumes of size 303

voxels. Each voxel has the value of one if it is inside or on the boundary of the
chamber. The output is of similar shape and, via thresholding, optionally binary.
We further assume that the input is registered to some common anatomical
based where the atria is centered via center of mass, and the pulmonary veins
are oriented in a consistent manner.

We trained the auto encoder network with ‘tied weights’ (same weights con-
necting input and output layers) using Adam [7] on the training set that includes
a volume of size 303 voxels with 5006 atria. The models were tested on a set of
1384 synthetic atria. Each voxel represents 4[mm3]. The sigmoid activation func-
tion for all the layers is σ(x) = 1

1+e−x . The network is trained using cross entropy
loss [4]; For a training sample z the loss is defined as

L(x, z) =
n∑

i=1

x̂i log zi + (1 − x̂i) log(1 − zi) (1)

where summation is over all voxels.
In order to reconstruct a realistic atria volume, we suggest to include spatial

Weights Smoothing Regularization (SWR). Our goal is that the weights of the
first layer that converts between volumetric input and output (same for the
case of tied weights) will be a sufficiently smooth function in R3 as are heart
chambers. We investigated the following loss:

L(x, z) + λ

n∑

i=1

‖∇vWi‖2 (2)

where W denotes the layer weights and the differentiation is with respect to
the spatial dimension v. This is defined only in the input and output layers as
each weight corresponds to a voxel. The derivative is computed using a finite
difference. λ represents how much (if any) regularization is performed.

The problem as defined above can be seen as a segmentation task between
the atria interior and exterior regions. In order to assess the performance of
the network, we will use the DICE index [8]. In addition, we will examine the
resulting boundary, which can be represented as a surface or the set of voxels
that separates the interior from exterior. To compare between the generated
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and the true boundaries, we will use the average of distances between the closest
points of the two boundary contours [9] :

AV Dist(∂x, ∂y) =0.5
∑

u∈∂x min{d(u, v) : v ∈ ∂y}
‖∂x‖ +

0.5

∑
u∈∂y min{d(u, v) : v ∈ ∂x}

‖∂y‖ (3)

where d(a, b) is the euclidean distance between voxels a and b.

2.1 Reconstruction Scenarios: Using Sphere Intersection
vs An Atria Path

We explore two reconstruction scenarios: in the first, we simulate a case where
some volume of space is seen by an imaging modality in a confined region of
the atria. The goal is then to complete the full atria based on this region. This
could be a clinical setting where the physician visited a specific area with the
catheter and would like to an approximation of the whole atria. We create a
sphere at a random location. We intersect the sphere with the input left atria
and require the network to reconstruct the full input. Figure 2a shows the input
red intersected sphere inside the yellow atria. In this scenario we optimize the
network architecture for the experiments conducted. Section 3.1 presents the
experiment and results of the sphere atria intersection scenario.

In the second scenario, we start with partial data that simulates a catheter
path. During a typical electro physiology ablation procedure, the physician
maneuvers the catheter from the trans-septal entry point to touch the major
pulmonary veins (left and right) for initial anatomy orientation. This maneuver
last about a minute. The chosen path for the training was as follows. We begin
at the septum which is the entry point during a procedure. The path proceeds
to the left superior, left inferior, right inferior and last to right superior PVs. See
Fig. 2b for an illustration of the path. We synthesize such path using a graph
based algorithm and present the results in Sect. 3.2. In Sect. 3.3 we mimic the
path in the lab phantom. Figure 2c shows the two possible generated inputs to
the auto-encoder and the desired left atria output.

(a) Sphere
Atria Intersec-
tion

(b) Path in
Atria

(c) System Diagram

Fig. 2. System and input modalities (Color figure online)
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3 Experiments and Results

3.1 Sphere Intersection

We train a network to reconstruct the left atria shape from sphere atria intersec-
tion modality (STN). The following training model was used: for each training
example a coin was flipped with probability p = 0.5. If heads then a ratio q = 0.5
of the voxels were set to zero (to preserve auto-encoder properties). Otherwise,
a random sphere was created whose center is close enough to the volume center
to have a reasonable intersection. Specifically, the center was drawn uniformly
from [0.4×30, 0.7×30]3, either with fixed radius R = 10 or uniformly R ∈ [6, 12]
and it was intersected with the input volume, setting to zero every voxel outside
the sphere. The radius 10 was chosen to cover some part of the atria well but
not the other side.

We start with an exploratory phase to select the network architecture based
on sphere related experiments, as follows: We conducted a preliminary test to
determine a successful choice for the number of neurons in a hidden layer, balanc-
ing layer size and performance. We examined networks with a single hidden layer
(up to 1000 neurons) that reconstruct from a fixed radius (R = 10) sphere inter-
section. It was found that 500 neurons were optimal. We next trained network
architectures with two to four hidden layers with 100, 350, 500 neurons, with and
without the smoothing term, SWR. Training was performed with both fixed and
varying intersection radius. Results for reconstruction from different sphere radii
intersection are shown for the three best networks with SWR architectures and
the best no-SWR architecture, in Fig. 3. Network names are given by the number
of neurons per hidden layers - number of hidden layers, S for SWR, NS without
and NoVRI stands for fixed radius training. As expected, the overall perfor-
mance decreases with the sphere radius as the task becomes more challenging.
Network 500-3S performs best. Network 350-2NS performance is slightly lower
the smooth ones, with increase in the gap as the radius of intersection decreases.

(a) Dice (b) AVDist(voxels)

Fig. 3. Results for volume completion from different sphere radii intersections. We
show the mean as point, and error range for 25% and 75% quantiles. For R = 6,
500-2S-NoVRI performance is less than drawing limit.
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In Fig. 4 we visualize a median DICE sample for networks 500-3S and 350-
2NS. We note that the quality and resemblance to an atria, as well as the shape
of the pulmonary veins and ridges, are more evident for the 500-3S, smooth
network compared to the bulb generated in network 350-2NS.

(a) Side View (b) Side View

Fig. 4. Reconstruction for: (a) 350-2NS and (b) 500-3S, with median DICE score. Red:
input volume in ground-truth wire frame; Green: reconstruction result. (Color figure
online)

3.2 Synthetic Catheter Path Reconstruction

We next focus on reconstructing the atria shapes using synthetic paths, via path
trained networks (PTN). The set of synthesized paths was generated using a
novel Dikstra-based algorithm to simulate traversal path between PVs. We pro-
vide this description as added material for the interested reader. We start with
samples taken along the synthesized paths, and use a set of network configu-
rations, as in the previous section. Table 1 presents the results when starting
with the path trained networks, for a variety of architectures, and with/without
the spatially-weighted smoothing term (SWR). We compare to the results of
the best networks trained using varying sphere intersections (sphere trained net-
work (STN)). Note that for STN with SWR, the path volume was too sparse
to activate the network and the result was zero output for most test samples.
Thus, they are discarded from the table. From Table 1 we learn that the network
500N-2L is best performing for this task. Including SWR improves the results
overall. We see an improvement in results for PTN vs. STN that means that the
path information is learned.

Table 1. LA Reconstruction from paths inputs, for PTN compared to STN.

350N 500N
2L 3L 2L 3L

SWR NoSWR SWR NoSWR SWR NoSWR SWR NoSWR
DICE 0.8494 0.8431 0.8508 0.8008 0.8521 0.7589 0.8477 0.8403
AVDist 0.8341 0.83 0.7931 0.9736 0.7915 1.129 0.8053 0.8408

Path
Trained

DICE 0.7661 0.7526 0.7449 0.8099
AVDist 1.07 1.139 1.167 0.9296

Sphere
Trained
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3.3 Laboratory Phantom

In the final experimental setup, we use an electro-magnetic tracking system to
track a catheter tip location in two 3D printed plastic left atria phantoms, recre-
ating paths similar to those described in Sect. 2.1. Figure 5b depicts this scenario.
The phantom computer assisted design (CAD) is voxelized using marching cubes
algorithm. We register the CAD to the catheter path by using landmark reg-
istration. We perform a registration of the coordinates between the tracking
system and the anatomical one learned by the network. This registration was
performed manually by centering the acquired path and a template path (of a
single atria train set) and finding a rotation between them. See Fig. 5c for sam-
ple registration results. We note that in a clinical setting, the reference pad is
placed in the same manner for all patients - thus enabling the detection of the
left atria pose. Results for the best performing architectures are presented in
Table 2. Networks are PTN unless stated otherwise. P1 and P2 are phantoms
one and two, respectfully, while in parentheses is the number of voxels they
occupy. The volume row is the number of voxels the reconstruction had. We can
see that 500-3S resulted in adequate reconstruction for P1 while overestimating
the volume of P2. However, 500-2S shows a better result for P2 while stagger-
ing for P1. Figure 6 depicts the reconstruction results for both phantoms with
500-2S and 500-3S. The locations and orientations of the PVs are detected for
all phantoms which is of major clinical importance. The valve direction estimate
suffers the most since it is in a region where no path data is available. This
induces errors for the networks, impacting DICE and AVDIST performance, as
illustrated in the rightmost of each pair of Fig. 6. An additional error source is
the difference in PV cut length of the model. Finally, further error is induced
due to misalignment in the registration process.

(a) Rigid Phantoms (b) CAD to
path registra-
tion

(c) Phantom Registra-
tion, red is recorded path
and blue is template

Fig. 5. Lab system (Color figure online)

Table 2. Rigid phantom results

500-2S 500-3S 500-3NS 350-2S STN
P1(4451) P2(2194) P1 P2 P1 P2 P1 P2

DICE 0.7532 0.7309 0.7797 0.6764 0.7404 0.72 0.6991 0.6636
AVDist 1.4270 1.328 1.2778 1.6154 1.412 1.3471 1.611 1.4283
Volume 2835 2263 3283 3096 2931 2489 2458 1338
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(a) 500-2S P1 (b) 500-2S P2

(c) 500-3S P1 (d) 500-3S P2

Fig. 6. Visualization of reconstruction vs ground truth for 500-3L (top) and 500-2L
(bottom) networks, first (a, c) and second (b, d) phantoms. In red is the path. The gray
is the ground truth. In cyan is the reconstruction. meshes obtained via marching-cubes.
(Color figure online)

4 Conclusions and Future Work

In this work, we demonstrated the capability of an auto-encoder network to
learn a complex distinct shape from synthetic dataset. The network is able to
recover missing data even for real paths unlike those it was trained for. We view
the presented approach as a generalized dictionary based approach where the
network actually learns probable atria parts and combines them to recover the
missing data. We demonstrated that using spatial weight smoothing regular-
ization (SWR) makes the result of the reconstruction looks more realistic and
accurate. Although the reconstruction is not precise as expected, for visualiza-
tion and the calculation of electrical activation wave it should be adequate, which
are the main tasks required by the physician. Promising results were seen in the
lab for reconstruction from catheter maneuvers. An actual path performed by a
physician contains more information as they usually slide across the boundary
to reach the PVs. Therefore, we expect better results once trained on real paths.

We plan to enhance the spatial resolution by combining the network with
a CNN. We need to address the issue of rigid transformation to the data from
a probable input frame (usual catheter entry locations, known patient poses).
We should add a mechanism for refining solution where additional sensor data
is available.
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Abstract. Frame rate is a crucial consideration in cardiac ultrasound
imaging and 3D sonography. Several methods have been proposed in the
medical ultrasound literature aiming at accelerating the image acquisi-
tion. In this paper, we consider one such method called multi-line trans-
mission (MLT), in which several evenly separated focused beams are
transmitted simultaneously. While MLT reduces the acquisition time, it
comes at the expense of a heavy loss of contrast due to the interactions
between the beams (cross-talk artifact). In this paper, we introduce a
data-driven method to reduce the artifacts arising in MLT. To this end,
we propose to train an end-to-end convolutional neural network consist-
ing of correction layers followed by a constant apodization layer. The
network is trained on pairs of raw data obtained through MLT and the
corresponding single-line transmission (SLT) data. Experimental eval-
uation demonstrates significant improvement both in the visual image
quality and in objective measures such as contrast ratio and contrast-
to-noise ratio, while preserving resolution unlike traditional apodization-
based methods. We show that the proposed method is able to generalize
well across different patients and anatomies on real and phantom data.

Keywords: Ultrasound imaging · MLT · Deep learning

1 Introduction

Medical ultrasound is a wide-spread imaging modality due to its high temporal
resolution, lack of harmful radiation and cost-effectiveness, which distinguishes
it from other modalities such as MRI and CT. High frame rate ultrasound is
highly desirable for the functional analysis of rapidly moving organs, such as the
heart. For a given angular sector size and acquisition depth, the frame rate is
limited by the speed of sound in soft tissues (about 1540 m/s). The frame rate
depends on the number of transmitted beams needed to cover the field of view;
thus, it can be increased by lowering the number of the transmitted events. One
such method termed multi-line acquisition (MLA) or parallel receive beamform-
ing (PRB) employs a smaller number of wide beams in the transmission, and
c© Springer Nature Switzerland AG 2018
F. Knoll et al. (Eds.): MLMIR 2018, LNCS 11074, pp. 147–155, 2018.
https://doi.org/10.1007/978-3-030-00129-2_17
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constructs a multiple numbers of beams in the reception [14,17]. The drawbacks
of the method include block-like artifacts in images, reduced lateral resolution,
and reduced contrast [13]. Another high frame-rate method, multi-line trans-
mission (MLT), employs a simultaneous transmissions of a multiple number
of narrow beams focused in different directions [3,6]. Recently reinvented, this
method suffers from a high energy content due to the simultaneous transmissions
[15], and from cross-talk artifacts on both the transmit and receive, caused by
the interaction between the beams [18,19].

Fig. 1. Single- (left) vs. Multi- (right, with MLT factor of 6) line transmission proce-
dures and their corresponding ultrasound scans. Severe drop in contrast can be observed
in the case of MLT. Blue and red lines correspond two consecutive transmissions. (Color
figure online)

Over the years, numerous methods were proposed to deal with those arti-
facts, including constant [18,19] and adaptive [12,22] apodizations, by allocat-
ing different frequency bands to different transmissions [1,2], and by using a
tissue harmonic mode [11]. The filtered delay-multiply-and-sum beamforming
(F-DMAS) [10] was proposed in the context of MLT in [9], demonstrating better
artifact rejection, higher contrast ratio (CR) and lateral resolution compared to
MLT beamformed with delay-and-sum (DAS) and Tukey apodization on receive,
at expense of lower contrast-to-noise ratio (CNR). Finally, short-lag F-DMAS
for MLT was studied in [8], demonstrating a contrast improvement for higher
maximum-lag values, and resolution and speckle-signal-to-noise ratio (sSNR)
improvements for lower lag values, at the expense of decreased MLT cross-talk
artifact rejection. By using a simulated 2–MLT, it was demonstrated in [11]
that the tissue harmonic imaging mode provides images with a lower transmit
cross-talk artifact as compared to the fundamental harmonic imaging. However,
the receive cross-talk artifact still requires correction. In the present study, we
demonstrate that similarly to the fundamental harmonic, the cross-talk is more
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severe in the tissue harmonic mode for higher MLT configurations, which is
manifested by a lower contrast.

Convolutional neural networks (CNN) were introduced for the processing of
ultrasound acquired data in order to generate a high quality plane wave com-
pounding with a reduced number of transmissions [4] as well as for fast despeck-
ling, and CT-quality image generation [20] during the post-processing stage. In
a parallel effort, [16] demonstrated the effectiveness of CNNs in improving MLA
quality in ultrasound imaging. To the best of our knowledge, ours is the first
attempt to use CNN in MLT ultrasound imaging.

Contributions. In this work, we propose an end-to-end CNN-based approach for
MLT artifact correction. We train a convolutional neural network consisting of
an encoder-decoder architecture followed by a constant apodization layer. The
network is trained with dynamically focused element-wise data obtained from
in-vivo scans in an simulated MLT configuration with the objective to approx-
imate the corresponding single-line transmission (SLT) mode. We demonstrate
the performance of our method both qualitatively and quantitatively using met-
rics such as CR and CNR. Finally, we validate that the trained model generalizes
well to different patients, different anatomies, as well as to phantom data.

2 Methods

MLT Simulation. Acquisition of the real MLT data is a complicated task that
requires a highly flexible ultrasound system. Fortunately, MLT can be faithfully
simulated using the data acquired in a single-line transmit (SLT) mode by sum-
mation of the received data prior to the beamforming stage, as was done in
[11,12] for the fundamental and tissue harmonic modes. It should be noted that
while MLT can be simulated almost perfectly in a fundamental harmonic case,
there is a restriction in the tissue harmonic mode due to the nonlinearity of its
forward model. It was shown in [11] that in the tissue harmonic mode, the sum-
mation of the data sequentially transmitted in two directions provides a good
enough approximation for the simultaneous transmission in the same directions
if the MLT separation angle is above 15◦. The assumption behind the present
study is that this approximation holds for a higher MLT number, as long as the
separation angle remains the same, since the beam profile between two beams
is mainly affected by those beams. For this reason, 4–MLT and 6–MLT with
separation angles of 22.6◦ and 15.06◦, respectively, were used in this study.

Clinical use mandates the use of lower excitation voltage in real MLT, imple-
mented in a standard way [15], due to patient safety considerations, which will
affect the generation of the tissue harmonic and signal-to-noise ratio (SNR).
The latter issue can probably be adressed by the CNNs, that are capable of
learning denoising tasks, as has been demonstrated in [21]. It should be noted,
that alternative implementations of MLT were proposed in [15], allowing a safer
application of the method. However, to the best of our knowledge, no study was
performed concerning impact of those methods on image quality. Nevertheless,
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this study focuses on testing whether the MLT artifact can be corrected using
CNN, while the optimization of the number of simultaneous transmissions in the
tissue harmonic mode is beyond its scope.

Data Acquisition. For the purpose of the study, we chose imaging of quasi-
static internal organs, such as bladder, prostate, and various abdominal struc-
tures, since the simulated MLT of the rapidly moving organ may alter the cross-
talk artifact. The study was performed with the data acquired using a GE ultra-
sound system, scanning 6 healthy human volunteers and a tissue mimicking
phantom (GAMMEX Ultrasound 403GS LE Grey Scale Precision Phantom).
The tissue harmonic mode was chosen for this study, being a common mode for
cardiac imaging, with a contrast resolution that is superior to the fundamental
harmonic, at either f0 or 2f0. The scans were performed in a transversal plane by
moving a probe in a slow longitudinal motion in order to reduce the correlation
in the training data acquired from the same patient. The acquisition frame rate
was 18 frames per second. Excitation sinusoidal pulses of 2.56 cycles, centered
around f0 = 1.6 MHz, were transmitted using a 64-element phased array probe
with the pitch of 0.3 mm. No apodization was used on transmit. On receive, the
tissue harmonic signal was demodulated (I/Q) at 3.44 MHz and filtered. A 90.3◦

field-of-view (FOV) was covered with 180 beams. In the case of MLT, the signals
were summed element-wise with the appropriate separation angles. Afterward,
both SLT and MLT were dynamically focused and summed. In the simulated
MLT mode the data were summed after applying a constant apodization win-
dow (Tukey, α = 0.5) as the best apodization window in [18,19]. At training,
non-apodized MLT and SLT data were presented to the network as the input
and the desired output, respectively.

Improving MLT Quality Using CNNs. As mentioned earlier, traditional
methods tackle the cross-talk artifacts by performing a linear or non-linear pro-
cessing of a time-delayed element-wise data to reconstruct each pixel in the
image. In this work, we propose to replace the traditional pipeline of MLT arti-
fact correction with an end-to-end CNN, as depicted in Fig. 2.

Network Architecture. The proposed network resembles a fully-convolutional
autoencoder (albeit different training regime), consisting of 10 layers with sym-
metric skip connections from each layer in the upsampling track to each layer
within the downsampling track [7]. All the convolutions set to 3 × 3, stride 1
and the non-linearities are set to ReLU. Downsampling is performed through
average pooling and strided convolutions are used for upsampling. The network
accepts time-delayed phase-rotated element-wise I/Q data from the transducer
obtained through MLT as the input.

Apodization Stage. A constant apodization layer is introduced following the
downsampling and upsampling tracks. It is implemented as 1 × 1 convolutions
consisting of 64 channels which are applied element-wise and initialized with
a boxcar function (window of ones). The layer can be implement any constant
apodization such as Tukey or Hann windows.
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Training. Following the apodization at the last output stage, the network outputs
an artifact-corrected I/Q image. At training, SLT I/Q image are used both to
generate a simulated MLT input data as well as the corresponding SLT (artifact-
free) reference output. The network is trained as a regressor minimizing the
L1 discrepancy between the predicted network outputs and the corresponding
ground-truth SLT data. The loss is minimized using Adam optimizer [5], with
the learning rate set to 10−4. The training data were acquired as described in
previous sections. A total of 750 frames from the acquired sequences were used
for training. The input to the network is a MLT I/Q image of size 696×180×64
(depth × lines × elements) and the output is an SLT-like I/Q image data of size
696× 180 (depth × lines). The training is performed separately for the I and Q
components of the image.

Fig. 2. CNN-based MLT artifact correction pipeline. For all the experiments within
this paper: M = 696, N = 180, b = 5

3 Experimental Evaluation

Settings. In order to evaluate the performance of the networks trained on 4– and
6–MLT setups, we consider a test set consisting of two frames from the bladder
and one frame from a different anatomy acquired from a patient excluded from
the training set, and a phantom frame. While all the chosen test frames were
unseen during training, the latter two frames portray different image classes that
were not part of the training set. The data were acquired as described in Sect. 2.
Evaluation was conducted both visually and quantitatively using CR and CNR
objective measures as defined in [8].
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Results and Discussion. Figure 3 (in the paper) and S1-2 (in the supple-
mentary material)1 depict the SLT groundtruth, and the artifact-corrected 4–
and 6–MLT images. Figure 3 demonstrates a number of anatomical structures
in abdominal area, as depicted by the arrows. The CNN processing has restored
the CR loss caused by the MLT cross-talk artifact for the 4–MLT, and improved
the CR by a 9.8 dB for the 6–MLT, as measured for aorta (yellow contour) and
a background region (magenta contour). S1 demonstrates structures in a tissue
mimicking phantom, such as anechoic cyst (the black circle marked by a yellow
rectangle) and number of a point reflectors. Finally, S2 demonstrates a bladder
(large dark cavity) and a prostate, located beneath it, scanned in a transversal
plane. The output of our CNN was compared to the MLT image with Tukey
(α = 0.5) window apodization on receive, a common method to the attenuation
of the receive cross-talk artifact.

Fig. 3. CNN-based MLT artifact correction tested on in-vivo abdominal
frames (a) an in-vivo frame acquired through SLT from the excluded patient, (b),
(d) corresponding 4– and 6–MLT with (Tukey, α = 0.5) window, and (c), (e) corre-
sponding CNN-corrected frames

Qualitative evaluation for the phantom frame is presented in S1 along with
quantitative measurements, provided in the supplementary materials. A magni-
fied region depicts the response from one of the wires of the phantom. A thinner
appearance, as compared to the apodized MLT image, can be observed for both
1 The supplementary materual can be found here https://drive.google.com/open?

id=1fNq NHG ye1Ph6Yvuxvr-y8a L3cXofE.

https://drive.google.com/open?id=1fNq_NHG_ye1Ph6Yvuxvr-y8a_L3cXofE
https://drive.google.com/open?id=1fNq_NHG_ye1Ph6Yvuxvr-y8a_L3cXofE
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4– and 6–MLT frames processed with the proposed CNN, since no apodization
was needed to attenuate the artifacts. Quantitatively, the CR of the anechoic
cyst as compared to the nearby tissue, was restored for the case of 6–MLT,
whereas for the 4–MLT case it was improved by almost 7 dB as compared to the
SLT. Since the network was trained on the data with a higher number of a strong
reflectors, thus higher artifact content, it is possible that the artifact content is
overestimated in some cases. The images of the bladder (S2) appear to have a
higher quality in the 4–MLT and 6–MLT CNN corrected cases, as compared to
the respective apodized versions. Quantitatively, the improvement in contrast
over apodized MLT was around 10 dB for 4-MLT and 13 dB for 6–MLT.

A slight CNR improvement as compared to the apodized MLT was measured
in all cases, except for the 6–MLT for the tissue mimicking phantom, where the
CNR remained the same. The performance of our CNN, verified on the testing
set frames of internal organs, and of a tissue mimicking phantom, suggests that
it generalizes well to other scenes and patients, despite being trained on a small
dataset of bladder frames.

It should be noted that the coherent processing of the data (through con-
volutions applied on the data prior to the envelope detection) along the lateral
direction may impose motion artifacts while imaging regions involving rapid
movement (such as cardiac tissue and blood). Nevertheless, in most compen-
sation methods, the correction is performed without relying on the adjacent
samples in lateral direction, thus, similar approaches relying on constraints in
the lateral direction can be built into the neural network. We defer this case to
a future studies.

4 Conclusion

In this paper, we have demonstrated that correction provided by an end-to-end
CNN outperforms the constant apodization-based correction method of MLT
cross-talk artifacts, as measured using CR and CNR. Moreover, the obtained
CNN generalizes well for different anatomical scenes. In the future, we intend
to address the problem of MLT artifact suppression for rapidly moving objects
scenes, by training a CNN to correct all the lines beamformed from a single
transmit event. Furthermore, we aim at exploring the possibility of similarly
reconstructing artifact-free images for combined MLT-MLA configurations, that
introduce an even larger boost in frame rate.
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